
www.allitebooks.com

http://www.allitebooks.org

Learning Xamarin Studio

Learn how to build high-performance native applications
using the power of Xamarin Studio

William Smith

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Xamarin Studio

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1120814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-081-4

www.packtpub.com

Cover image by Gerard Eykhoff (gerard@eykhoff.nl)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
William Smith

Reviewers
Ryan Alford

John Goodwin

Matt Kennedy

Sergio Martínez-Losa del Rincón

Carlo Wahlstedt

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Sam Wood

Content Development Editor
Mohammed Fahad

Technical Editor
Pratik More

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Danuta Jones

Proofreader
Simran Bhogal

Indexers
Hemangini Bari

Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

William Smith has been writing on software since 1988, when his parents
asked him to make a choice between a school-sponsored trip to Europe (which his
elder sister was enjoying at the time), or a computer. Although accused of being
short-sighted, William chose the computer and he firmly believes he got the better
deal. He began writing about software on the Tandy 1000 SL/2 using Turbo C++
and has been hooked on the technology ever since.

He began his professional career in the environmental field eight years later with
degrees in Environmental Science and Business Administration. While working in
this field full-time, he started his first business focused on installing and managing
small commercial networks and websites. In this role, he saw a need for specialized
network analysis tools, so he learned VB.NET and wrote simple console applications
for his own use. From there, he continued writing applications as a hobbyist before
returning to the University of Maryland for a second Bachelor's degree in Computer
Science. While still completing the Computer Science program, he was offered a
position with a software development firm based in Pittsburgh, PA, where he spent
the next few years working with .NET and Xamarin developing iOS applications.
As a result of this experience, he was asked to be a technical reviewer for iOS
Development with Xamarin Cookbook, Dimitris Tavlikos, Packt Publishing.

William currently works for GIS Inc. in Birmingham, AL, as a Geospatial Developer
specializing in native mobile application development. He also owns Websmiths,
LLC (www.websmithsllc.com), a consulting firm concentrating on cross-platform
mobile application development using Xamarin Studio.

He lives in wild and wonderful West Virginia with his beautiful wife and four sons.
He enjoys hunting and fishing with his family, and he still hasn't been to Europe.

I want to thank the Lord Jesus Christ for giving me the opportunity
to write this book. I would also like to thank my wife Dorothy for
her support and my family for their patience with me as I completed
this work.

www.allitebooks.com

www.websmithsllc.com
http://www.allitebooks.org

About the Reviewers

Ryan Alford is a .NET software engineer who works from home. He has been a
.NET developer for over 7 years, with majority of his focus being on C#. In his early
years, he worked almost exclusively on WinForms and Windows Mobile. He then
started working with ASP.NET, AJAX, and Silverlight. In the past few years, as
mobile development really started to take off, he took an interest in Xamarin
and MonoTouch.

He was able to help convince management at his workplace to use Xamarin for
their upcoming enterprise application on iOS, since the company was using .NET
and C# in other projects. It was at this point that he was added to the three-person
development team to write the new iOS enterprise application.

He has written and released two Android applications: MotoTorch LED and Phase
10 Score Center. MotoTorch LED has more than 500,000 downloads, and was one of
the first applications on Android that used the camera LEDs as a flashlight.

Today, Ryan is rewriting Phase 10 Score Center in Xamarin.Android to ease the
development of new features. He is still on his iOS team and continues to add
new features to his company's enterprise application.

www.allitebooks.com

http://www.allitebooks.org

John Goodwin was born in 1979 on South Korean soil as an American citizen to
US Army parents. He moved a lot with his family, eventually spending much of his
youth in Washington State.

After meeting his wife Jane, he moved to California, where he soon became employed
as a professional software developer for a company in Canoga Park, CA, known as
Cyberspace Headquarters, LLC. Working there for several years, he progressed from
the lowly new guy to Lead Software Developer, in charge of two, or sometimes three
other software developers as well as offshore development projects. The economic
downturn for IT companies post 9/11 eventually took its toll, and John looked
elsewhere for employment, and also moved with his wife further out of the city.

Next in rural Northern Los Angeles County, he took some teaching opportunities.
Then he worked short-term for a Simi Valley factory looking to improve worker
efficiencies. Soon, an opening in the City of Los Angeles for a contract software
developer made its way to his ears; he interviewed, and started work.

In the housing boom from 2002-2006, it had already been very clear that
Southern California's bubble was about to burst. John and Jane sold their home
in favor of moving to Lake Royale, where he continued to work for the City of
Los Angeles telecommute. After working 7 years for the City of Los Angeles,
he started working at CareAnyware doing healthcare-related software for home
health and hospice. CareAnyware was soon purchased by Brightree, where he
continues to work writing post-acute healthcare software with great immediate
teammates and remote teams.

His passion for using technology to create value in the lives of others is mysteriously
tolerated by his loving wife. Unable to find a normal way to work out and keep fit, he
uses local sprint triathlons (and maybe a half in October 2014) to motivate his workout
schedule. You can visit his website: http://johngoodwin.com/

I want to thank my brother and family, mother, and stepfather for
their contribution to the family support structure.

www.allitebooks.com

http://johngoodwin.com/
http://www.allitebooks.org

Sergio Martínez-Losa del Rincón is a computer engineer who loves programming
languages. Since high school, he has been learning about programming and computer
interaction. He is always learning and discovers something new every day.

He likes all kinds of programming languages, but focuses his efforts into mobile
development with native languages such as Objective-C (iPhone), Java (Android),
and Xamarin (C#). He also builds Google Glass applications at his job as well as
mobile applications for iPhone and Android devices. He also develops games for
mobile devices with Cocos2d-x and cocos2d. He has reviewed Learning Cocos2d-x
Game Development, Siddarth Shekar, Packt Publishing.

He loves challenging problems and is always keen to work with new technologies.
More information about his experience and details can be found at www.linkedin.
com/in/sergiomtzlosa.

Carlo Wahlstedt is a graduate from Berea College. He has been a professional
software engineer since 2007, with a focus on the .NET Framework. He has held jobs
in the utility and financial industries. He has earned a Microsoft Certified Solutions
Developer: Web Applications certification and has been very actively working with
Xamarin Studio for over a year. He is most interested in software for the Web and
mobile devices, as well as software development processes and wearable technology.

www.allitebooks.com

www.linkedin.com/in/sergiomtzlosa
www.linkedin.com/in/sergiomtzlosa
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Installing and Setting Up Xamarin Studio 7

Xamarin Studio pricing plans 8
Starter 8
Indie 8
Business 9
Enterprise 9
Understanding the pricing structure 9

An example company 10
Xamarin Studio platform options 10

Xamarin.Android 11
Xamarin.iOS 11
Xamarin.Mac 11

Installing development components 11
Installing Xcode and the iOS SDK 12

Installing Xcode from the App Store 12
Installing Xcode manually 13

Finishing the Xcode installation 14
Installing Xamarin Studio 14
Apple Developer Program 17
Google Play Developer Program 19
Setting up simulators and emulators 20

iOS simulators 21
Android emulators 22

Creating a Nexus 7 AVD using the AVD Manager 22
Creating a Samsung Galaxy S4 AVD using the SDK and AVD Manager 23

Improving AVD performance 26
Intel x86 Atom System Image 26
Hardware Acceleration Execution Manager 27

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Run from Snapshot 29
Third-party AVD options 30

Setting up test devices 30
Setting up iOS devices 31

Obtaining a development certificate 31
Provisioning your devices 32

Setting up Android devices 33
Enabling debugging on your device 33
Installing USB drivers and connecting your device 34

Setting up source control 35
Additional resources for cross-platform developers 37

Xamarin resources 37
Third-party resources 37

Summary 38
Chapter 2: Learning and Customizing the XS Environment 39

The Xamarin Studio IDE 40
Creating your first iOS application 41
Creating your first Android application 42
The Solution pad 42
Design pads 43
Information pads 44
Application, File, and Edit menus 46
View and Search menus 48
The Project menu 50
Build and Run menus 51
The Version Control menu 54
Tools, Window, and Help menus 56
Solution Options 57

The General group 58
The Build and Run groups 58
The Source Code group 58
The Version Control group 58

Project Options 59
The General group 59
The Build group 60

iOS-specific panes 61
Android-specific panes 64

The Run group 67
Source Code and Version Control groups 68

Environment preferences 68
Environment 69
Projects 69

Table of Contents

[iii]

Text Editor 69
Source Code, Version Control, Other, and Packages groups 70

Summary 71
Chapter 3: Working with Xcode and the Android SDK 73

Introduction to Xcode 74
Toolbar 75
The navigator area 75
The utility area 77
The debug area 79
The editor area 79

Outlets and Actions 80
Outlets 81
Actions 81
Adding Outlets and Actions 82

Adding a ViewController to our project 83
How it works 84

XIB, NIB, DESIGNER, and STORYBOARD files 85
Xamarin Studio Designer for iOS 87
Creating a storyboard in Xamarin Studio 88

How it works 91
Android SDK Manager 92

Android Layouts 94
Xamarin Studio Designer for Android 95
Creating a Layout in Xamarin Studio 96

How it works 97
Summary 99

Chapter 4: Plugins, Templates, Libraries, and Files 101
Installing the Visual Studio plugin 102

Configuring your Mac 103
Configuring your Windows machine 103
Configuring a Windows VM within Mac 104
Final installation steps 105
Configuring the Visual Studio toolbar 105

Creating an iPhone application in Visual Studio 106
How it works 109

Project templates 110
iOS project templates 110
Android project templates 113
Mac and Mac (open source) project templates 114

Table of Contents

[iv]

Libraries 115
Portable Class Library 115
Binding Project 116

iOS Binding Project 116
Java Bindings Library 117

Files 117
Summary 121

Chapter 5: Working with Xamarin.Forms 123
Requirements for using Xamarin.Forms 124
The Xamarin.Forms project templates 124
The components of Xamarin.Forms 125

Data binding 125
Components 125
Navigation 126

The API design 126
How it works 133

The XAML design 135
How it works 141

Summary 142
Chapter 6: Application Lifecycle 143

The iOS application lifecycle 144
The AppDelegate class 145

UIViewController lifecycle methods 147
Examining iOS lifecycles 148
Examining the application lifecycle 149

The Android application lifecycle 150
Understanding application lifecycle 150
Activity lifecycle methods 152
Configuration changes 155
Examining application states 155
Examining the Activity lifecycle 156

The background state 157
Summary 159

Chapter 7: Testing and Debugging 161
The Xamarin debugger 162
Unit tests 163

Touch.Unit and Andr.Unit 164
Creating a unit test project 164

Running the tests 166
How it works 168

Table of Contents

[v]

Simulators 169
Testing in an iOS simulator 170

Running the tests 172
How it works 173

Testing in an Android emulator 174
Running the tests 175
How it works 176

Device testing 176
Testing on an iOS device 177
Testing on an Android device 177

TestFlight 178
Setting up a TestFlight account 178

Instruments 179
Device Monitor 180
Logs 180
Other testing considerations 181
Summary 182

Chapter 8: Deployment 183
Deploying iOS applications 184

Distribution provisioning profile 185
Generating a production certificate signing request 185
Submitting a production certificate signing request 187
Creating the App ID 188
Creating and installing the distribution profile 188

Build configuration 189
Bundle signing 190
Publishing your application 190

Setting up an iTunes Connect account 191
Creating the application page 191
Uploading the binary 194

Deploying Mac applications 195
Installing Developer Certificates 196
Registering a Mac App ID 196
Creating a Mac App Development certificate 197
Creating Mac App Store Certificates 198
Creating a Developer ID Certificate 199
Registering the Mac OS X development machine 199
Creating the development provisioning profiles 200
Creating the production provisioning profiles 201
Setting the app configuration 201
Signing your application for direct deployment 202
Build for direct deployment 203

Table of Contents

[vi]

Signing your application for deployment to the Mac App Store 203
Build for Mac App Store deployment 204
Deploying to the Mac App Store 205

Deploying Android applications 208
Preparing your application for release compile 208
Creating a private keystore 210
Signing the APK 211
Publishing to the Google Play Store 212

Summary 215
Appendix: Images and Graphics Tables 217

iOS application icons 217
iOS 3.5-inch Retina display screenshots 218
iOS 4-inch Retina display screenshots 218
iOS iPad screenshots 219
Mac OS X app screenshots 219
Android application icons 220
Android screenshots 220

Index 221

Preface
There are a number of options available for the developer who wants to create
cross-platform mobile applications. The most obvious solution is to go native
and develop on the platform directly, and this approach has some very significant
advantages. For one, nothing is going to run as fast and efficiently as a native app.
Also, your applications will have full access to everything the OS and hardware
have to offer. However, cross-platform native development presents a serious
complication—multiple platforms mean multiple applications written in multiple
languages, possibly even by multiple development teams.

This was painfully true a few years ago, but not any longer. Now we have Xamarin
Studio that allows us to use one technology to create native applications for multiple
platforms. All of our work can be built using .NET, so there's no need to learn
Objective-C or Java, or have multiple applications and development teams.

As is the case with any new tool or technology, installing and integrating Xamarin
Studio into your workflow takes time. The purpose of this book is to remove the
guesswork from that process by walking through the most complex and confusing
portions. We'll begin with a detailed walkthrough of installing and configuring
Xamarin Studio. This walkthrough will include integrating third-party software and
tools, setting up your developer accounts, setting up simulators and emulators, and
preparing your physical devices for testing. Next, we'll take a detailed look at the
IDE itself including basic functionality, environment variables, and user preferences.
Finally, we'll look at how to use Xamarin Studio to deploy your applications. This
will include a review of the various testing tools available in Xamarin Studio, and a
walkthrough of the actual deployment process to several application marketplaces.

Preface

[2]

So, for the moment, please ignore the fanatics who insist that C, memory pointers,
and manual memory management are the tools that define a "real" programmer. Your
average users (paying customers) don't care what language or technology you built the
app on; they care about more practical things. Does the app have a clean UI with a user
friendly workflow? Is the app consistent and reliable? Is the app fast? Does the app
meet my needs at a fair price? Apps built with Xamarin Studio can answer yes to all of
these questions just as readily as an app built using a native language.

What this book covers
Chapter 1, Installing and Setting Up Xamarin Studio, begins by introducing the Xamarin
licensing options available for purchase. Next, it will help you get started by walking
you through the process of installing the Xamarin Studio and Xcode IDEs, setting up
Apple and Google developer accounts, and installing the Android SDK Manager.
Using these tools, you will walk through the process of setting up simulators,
emulators, and devices for testing. Finally, this chapter will demonstrate setting up
source control through Xamarin Studio.

Chapter 2, Learning and Customizing the XS Environment, will walk you through
creating your first iOS and Android application using Xamarin Studio. Using the
development of these applications as a context, you will learn about the various
menus and features of the Xamarin Studio IDE. You will also learn about solution
and project-level properties, as well as the environmental preferences you can use
to customize your personal development workflow.

Chapter 3, Working with Xcode and the Android SDK, explains the key features and
functions of Xcode and the Android SDK. A discussion on every aspect of these tools
is beyond the scope of this book, unfortunately. Instead, this chapter will focus only
on the critical functions necessary for Xamarin developers to successfully accomplish
their cross-platform development goals.

Chapter 4, Plugins, Templates, Libraries, and Files, begins by introducing the Visual
Studio plugin, and then explains how to connect to a networked Mac build machine.
Following this, the various projects, libraries, and file types available for your
applications are explained in detail. With a basic understanding of these components
well in hand, you will be ready to explore how these components can be applied in
your applications.

Chapter 5, Working with Xamarin.Forms, will introduce you to the Xamarin.Forms
framework provided in Xamarin 3. By following the walkthroughs provided, you
will build a fully functional cross-platform application in just a few minutes using
XAML and the UI design API included with the framework.

Preface

[3]

Chapter 6, Application Lifecycle, details application states and application lifecycles
for iOS and Android applications. This discussion might seem out of place in a book
intended to introduce a development tool, but an understanding of this material
is absolutely critical to successfully use Xamarin Studio to develop cross-platform
mobile applications.

Chapter 7, Testing and Debugging, discusses the tools available in Xamarin Studio for
testing including unit test projects, debugging tools, simulators and emulators, crash
logs, TestFlight, and testing on physical devices. Additionally, two platform-specific
suites of powerful testing tools are also discussed.

Chapter 8, Deployment, brings it all together by walking through the process of
releasing your apps to the Apple and Google App Stores. In this chapter, you will
learn how to use Xamarin Studio and other tools and utilities to create provisioning
profiles and build configurations, bundle signing, and building for deployment. You
will also learn about platform-specific tasks such as how to use iTunes Connect to
release your application directly to the iStore.

Appendix, Images and Graphics Tables, details the specifications for images and
graphics required to upload your finished applications to select marketplaces.

What you need for this book
To get the most from this book, you will need an active Internet connection
to download the various components required to set up the development
environment. Also, several of the examples will require an active Apple
or Google Developer account.

In order to run the example code in this book, you will need, at a minimum, a PC
running Windows 7 or higher and any non-Express version of Visual Studio 2010,
2012, or 2013. Additionally, if you intend to perform iOS or Mac development work,
you will need a Mac running OS X Lion or higher. This Mac can be used as either a
primary development environment, or can be paired with a PC to act as a networked
build machine.

Who this book is for
If you are a developer who wants to get started using Xamarin Studio for
cross-platform development with .NET, this is the book for you. Developers of
any skill level or background will find this book useful to set up their development
environment and learn to navigate the IDE. Some degree of programming
knowledge, ideally in .NET languages, is assumed but not required.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open the HelloiPhoneViewController.cs file."

A block of code is set as follows:

#if DEBUG
[assembly: Application(Debuggable=true)]
#else
[assembly: Application(Debuggable=false)]
#endif

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
General pane allows you to define parameters, decide whether or not your app
should run on an external console."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Installing and Setting Up
Xamarin Studio

Software developers are very selective with the tools they work with. We take the
time to evaluate our goals and examine our available options. Then, we compare
these options to our goals to determine the best tool for the task at hand. Xamarin
Studio is one tool we can choose for cross-platform development using .NET. It
is not a one-size-fits-all solution for all of your development needs. Instead, it's a
specialized tool that allows .NET developers to efficiently create applications that
can run on multiple platforms while using the technologies they are already familiar
and experienced with.

The purpose of this chapter is to help you install and set up Xamarin Studio, as well as
the ancillary tools you will need to effectively develop in a cross-platform environment.

In this chapter, we will cover the following topics:

• Xamarin Studio pricing plans
• Xamarin Studio platform options
• Installing Xcode and the iOS SDK
• Installing Xamarin Studio
• Apple Developer Program
• Google Play Developer Program
• Installing simulators and emulators
• Improving AVD performance
• Setting up test devices
• Setting up source control
• Additional resources for cross-platform developers

Installing and Setting Up Xamarin Studio

[8]

Xamarin Studio pricing plans
As of June 2014, Xamarin offers four subscription plans for developers to choose
from: Starter, Indie, Business, and Enterprise. The details and prices of these plans
presented here are accurate as of the time this was written, but be aware that they are
subject to change.

Starter
At the entry level, Xamarin offers the Starter edition of Xamarin Studio. In many
respects, this edition is similar to a fully functional trial except that there is no
expiration date on the license. This edition is perfectly suitable to demonstrate the
guides and walkthroughs presented in this text. At this point, you might ask yourself
why you would need to actually spend money and enroll in one of the professional
editions. For most people, the reason is that the Starter edition is limited in three very
important aspects.

First, this edition limits the size of your compiled packages to 64 KB. This is so
limited even some of the demonstration apps bundled with the Xamarin Studio
installation are too large to be run. Secondly, the Starter edition does not allow
development from within Visual Studio. Finally, this edition does not offer access
to downloadable components and permits calls to third-party native libraries. For
example, while developing a simple Android application using the Starter edition,
I wanted to implement the IParcelable interface, only to learn that my subscription
did not permit me to include the necessary module. I promptly upgraded my plan.
Well played, Xamarin.

Indie
Next up is the Indie edition. Similar to the Starter edition, Indie is fully functional.
However, with the Indie edition you are permitted to call out to third-party native
libraries. More importantly, your compiled application size is no longer limited to
64 KB, and it can effectively be as large as your target device can handle. Without
this limitation, Indie also permits building apps using the Xamarin.Forms framework
introduced in Xamarin 3. Although the Indie edition does not allow System.Data.
SqlClient to be referenced in your project, you may still integrate other third-party
components such as sqlite-netORM to provide data store functionality.

It's worth pointing out that, similar to the Starter edition, Indie does not allow you
to develop within Visual Studio. If developing directly in Visual Studio is a critical
requirement for your process, then the Indie edition isn't for you. However, all of the
independent Xamarin developers that I am acquainted with, myself included, use
this edition and they are satisfied.

Chapter 1

[9]

Business
Cited as being the most popular option, the Xamarin Business edition offers
everything that the Indie edition offered, plus several additional features. First,
you can develop, deploy, and debug from within Visual Studio. Secondly, you
have access to private e-mail support from Xamarin. Finally, and arguably most
importantly, this plan has support for in-house deployment, headless builds, WCF,
and System.Data.SqlClient. Code troubleshooting assistance from Xamarin
experts is also available with this edition at an additional cost.

Note that if you are a company or an incorporated entity with five or more
employees, you may not purchase the Indie edition but must purchase the
Business or Enterprise editions instead.

Enterprise
Finally, the Enterprise edition offers some additional perks in the form of
supplementary support options, bundled prime components, access to Hotfixes,
and a dedicated Technical Account Manager. This plan is topped off by a guaranteed
one-day response service-level agreement, which can be a valuable asset when your
team is facing a tough challenge under a tight deadline.

Understanding the pricing structure
Xamarin editions are not based on licensing the development studio itself, but
rather on the platform the developer will be working with. This means if you or your
team wants to develop iPhone apps, you will need to purchase one of the plans for
the iOS platform. This license will permit you to develop any type of iOS app from
iPhones to iPads or iPod Touch, but it will not permit you to develop applications
for Android devices. In order to develop in both iOS and Android, you will need to
purchase two plans. This is also true for the Mac platform.

These plans are subscriptions that must be renewed annually. If you decide not to
renew the subscription, Xamarin Studio will continue to function and you will still
have access to your development platform and your work. However, you will no
longer have access to new releases or ongoing support.

Additionally, Xamarin offers special discounts to various groups. To inquire about
the specifics of these offers, you will need to contact Xamarin sales directly:

• Open source projects that plan to contribute to the Xamarin framework can
receive complimentary non-commercial licenses for Xamarin products.

• MSDN subscribers can get a 30 percent to 50 percent discount for their
annual subscription costs.

Installing and Setting Up Xamarin Studio

[10]

• Businesses purchasing a large number of licenses can receive a
volume discount.

• Start-ups less than 3 years old and small businesses with fewer than
20 employees can get special discounts as well.

• Finally, the academic discount applies to professors teaching courses on
Xamarin and any students enrolled in accredited institutions. This discount
allows eligible developers to purchase a Business edition (without e-mail
support) of Xamarin.iOS, Xamarin.Android, and/or Xamarin.Mac for $99.

An example company
As an example, let's assume a company has 14 employees, seven of whom are
developers, and this company is endeavoring to create a cross-platform mobile
application. One developer will be focusing on writing the shared logic using
Visual Studio, two will be developing the Windows Phone UI, another two will
develop the Android UI, and the remaining two will develop the iPhone UI. Three
of these developers will not need a Xamarin license, while two will require an
iOS platform license and two will require an Android platform license. Since this
company has more than five employees, only the Business and Enterprise plans are
acceptable. Therefore, at a minimum, this company must procure four business plan
subscriptions at an annual cost of roughly $4,000.

This may seem like a steep price for a small company to absorb, but it's really quite
cost effective. If you compare this subscription cost to the cost of merely recruiting
four full-time specialist developers, you will immediately see the advantage that
Xamarin Studio provides to your organization.

Do you need more information? For more specific details on
the pricing plans, see the Pricing section of Xamarin's FAQ at
http://www.xamarin.com/faq.

Xamarin Studio platform options
Xamarin Studio enables .NET developers to build applications that target three
distinct platforms: Android, iOS, and Mac. Xamarin Studio is the Core Integrated
Development Environment and is required for development on any of these target
platforms. In addition to Xamarin Studio, you will need to install the specific plugin
for your target platform. These plugins are detailed in the following sections.

http://www.xamarin.com/faq

Chapter 1

[11]

Xamarin.Android
The Xamarin.Android package is required to develop applications that target the
Android platform. Android development with Xamarin can be performed on any
Windows PC or Mac that meets the minimum system requirements. The Android
SDK is required for development, and it will be downloaded during the Xamarin
Studio installation.

Xamarin.iOS
Xamarin.iOS is required to develop applications that target the iOS platform.
The iOS development with Xamarin can be performed on any Windows PC or Mac
that meets the minimum system requirements. However, in order to develop on
a Windows PC a networked Mac is required as a build and deployment machine.
Xcode and the iOS SDK are also required for development, and they must be
installed prior to installing Xamarin.iOS. Additionally, at the time of writing this
Xamarin Studio is unable to generate a proxy file for WCF services. Therefore, if you
intend to utilize the WCF services in your iOS application, you will need a Windows
machine to generate the proxy files.

Xamarin.Mac
Xamarin.Mac is required to develop applications that target the Mac platform.
At the time of writing this, Mac development with Xamarin can only be performed
on a Mac running at Lion (OS X 10.7) or higher, which meets the minimum system
requirements. Xcode is also required for development, and it must be installed prior
to installing Xamarin.Mac.

Installing development components
Before we begin installing Xamarin Studio and the necessary supporting
components, it's important to note that this book's perspective is developing
iOS, Android, and Mac applications on a Mac. This means that the names and
conventions will be those you'll see when working with Mac OS X. In most cases,
the differences between a Mac OS X environment and a Windows environment will
be negligible and, therefore, I won't discuss them. However, in the cases where the
differences are significant, or where there is a different process to be followed, the
details will be pointed out and highlighted. In some cases, entire portions of the book
(such as the Installing the Visual Studio plugin section in Chapter 4, Plugins, Templates,
Libraries, and Files) will be dedicated to the Windows platform environment.

Installing and Setting Up Xamarin Studio

[12]

Installing Xcode and the iOS SDK
Xcode is Apple's premier (and free for all OS X users) integrated development
environment to develop Mac, iPad, iPhone, and iPod Touch applications.
Additionally, the iOS SDK comes bundled with Xcode upon installation. Since the
Xcode application's release cycle closely matches that of the Mac and iOS platforms,
you as a developer can expect to always have access to the tools needed to develop
applications that target the latest iOS platforms.

Although Xamarin Studio 5 comes bundled with its own interface builder, this
tool only supports storyboard development as of the time this was written. Xcode
provides an interface builder to create graphical user interfaces for iOS and Mac
development using storyboards as well as XIB files. Also, the package includes
Instruments, which is a graphical user interface tool for application performance
analysis and visualization. We will discuss Instruments more in Chapter 7, Testing
and Debugging.

If you do not intend to develop iOS applications, you may skip this
section for now and come back to it whenever you're ready. However,
you will not be able to install Xamarin.iOS or Xamarin.Mac until
Xcode and the iOS SDK have been installed.

Installing Xcode from the App Store
To install Xcode, perform the following steps:

1. Open the App Store from the Dock or Finder.
2. If you have not already done so, log in by navigating to Store | Log In and

entering your credentials.
3. If you are visiting the App Store for the first time, you will need to create an

account. For details on creating an App Store account, see the Apple support
documentation at http://support.apple.com/kb/HT4479.

4. In the spotlight, type xcode and begin the search.

http://support.apple.com/kb/HT4479

Chapter 1

[13]

5. Select the Xcode Developer Tools app and then click the Install App button.
This will begin the download and initial installation process, as shown in the
following screenshot:

Xcode is not a simple application, and the initial download is just over
2 GB in size. Therefore, depending on your connection speed, you
may need to wait for some time. If you get bored and want to see how
things are progressing, hover over launchpad in the Dock and you will
see the current download/installation progress. Alternatively, you can
open launchpad and view the progress there as well.

Installing Xcode manually
On the other hand, if you don't have an App Store account or for some reason you
don't want to use one for this purpose, you can also download the Xcode installer
manually from https://developer.apple.com/xcode/.

Perform the following steps to download Xcode manually:

1. When you arrive at the download page, you will see the Download Xcode 5
for free. section as shown in the preceding screenshot.

2. Click the View downloads link.

https://developer.apple.com/xcode/

Installing and Setting Up Xamarin Studio

[14]

3. When you reach the program list, type xcode 5 in the search field and
hit Enter.

4. Your search results should include the latest Xcode 5 installer, as shown in
the following screenshot:

5. Click the download link to the right-hand side of the product description.
6. Once the download is complete, open the file and continue.
7. Follow the prompts.

Finishing the Xcode installation
Once the download has completed, we will still need to open Xcode from the
launcher to begin to finalize the installation. The steps are as follows:

1. Open the launcher.
2. Open Xcode.
3. Accept Xcode and iOS SDK License Agreement.
4. When prompted, enter your system credentials to give the installer

permission to continue.

Installing Xamarin Studio
Once Xcode has finished installing, the only prerequisite you have is the Xamarin
Studio Unified Installer, which could not install on its own. All of the other
prerequisites for cross-platform development, such as the Java SDK, the Android
SDK, and the Mono Framework, will be installed concurrently with Xamarin Studio
as needed based on the products you choose. Let's begin installing Xamarin Studio:

1. First, we need to download the Xamarin unified installer from
http://www.xamarin.com/download.

http://www.xamarin.com/download

Chapter 1

[15]

If you haven't purchased a subscription yet, or if you simply
want to download the Starter edition, you can just tell them about
yourself and click Download Xamarin for your platform. However,
if you have created an account or you have already purchased
a subscription, you will need to click Sign In on this page and
follow the link to download Xamarin Studio on the landing page
that follows.

2. If you are trying out Starter edition anonymously, your download should
begin automatically. If you have logged in, you will need to click Download
under your highlighted current plan.

3. Once the Xamarin Studio Unified Installer finishes downloading, you need to
run the installer.

4. When the splash screen appears, double click on the Install Xamarin.app icon.
5. When the installer opens, you will need to review the Xamarin software

license. If you agree to the terms, click the Accept button to proceed.
6. Next, you need to select the plugins you want to install. In my case, I selected

all three, as shown in the following screenshot. However, you should choose
the plugins you intend to work with.

www.allitebooks.com

http://www.allitebooks.org

Installing and Setting Up Xamarin Studio

[16]

7. If you chose to install Xamarin.Android on the next screen, you will be
asked to configure the installation to specify where the Android SDK
will be installed, as shown in the following screenshot:

8. After reviewing the prerequisites that need to be installed, take a moment
to review the additional licenses as they are presented. If you agree to the
terms, click Accept to proceed.

9. Once you have accepted the last batch of licenses, you have an opportunity
to take a short break while the installation proceeds. As you can see from the
following screenshot, Xamarin Studio is another large application:

While the Xcode installation was self-sufficient after it was set in
motion, the Xamarin Studio installation may require you provide
your system credentials for some of the components being installed.
So once the installation starts, you can go ahead and take that break
you've been looking forward to. However, just be sure to check in on
your machine from time to time.

10. Once the installation is complete, please take a moment to review the
progress report before closing the installer.

Chapter 1

[17]

If your installation experiences any common errors or some
components fail to install completely, just restart the installer. Those
components successfully downloaded and installed will persist, and
the installer won't try to download them again. For example, during
my first attempt Xamarin.iOS failed to download. I restarted the
installer and after a few minutes, the component was up and running.

You have now installed the most basic tools you need for developing in Xamarin
Studio. Now, let's begin by exploring the various Apple Developer Programs and
the Google Play Developer Program.

Having developed and maintained applications for both iOS and Android
devices, I learned that the two platforms are very different—not only in
terms of functionality, but also in development process. If you are new to
developing for mobile devices in general, I suggest that you choose one
platform to focus on and work through that development track for the
remainder of this text. Then, once you are comfortable developing for that
platform, come back and work through the opposing platform.
Furthermore, it is my opinion that iOS is the easiest platform to learn for
a first-time Xamarin user. Nevertheless, please make your decision based
on your specific goals.

Apple Developer Program
It's not technically necessary to have an Apple Developer Program account to
develop iOS or Mac applications. However, you will need to have one if you
intend to release your app to the App Store. Additionally, you won't be able to test
your application on your own personal mobile devices without an active account,
specifically an iOS Developer Program account. This may seem unfair at first, but
keep in mind that an active account enables you to create a provisioning profile for
your application. A provisioning profile is a certificate that lets your device know
that your application comes from a trusted source and is permissible to execute. We
will discuss provisioning profiles in more detail later in this chapter.

As stated, the iOS Developer Program account lets you deploy applications to your
iOS devices for testing and to the App Store for sale once the application has passed
Apple's QA process. Apple also offers the Mac Developer Program to develop
Mac applications. Again, you can develop Mac apps using Xamarin Studio without
holding a Mac Developer Program account. The difference is that you can test your
application on your physical machine without holding an active account. You will
only need an active Mac Developer Program account if you intend to release your
app to the App Store.

Installing and Setting Up Xamarin Studio

[18]

Each of the developer program accounts carries an annual subscription cost of
$99, whether you are an individual developer or a business entity with multiple
developers. Under both programs, Apple will also collect 30 percent of every App
Store sale. The iOS Developer Program also has an Enterprise class for businesses
planning to develop apps exclusively for in-house purposes. This subscription costs
$299 per year, presumably because these apps will not produce any revenue for
Apple through sales in the App Store.

Why don't I just jailbreak my device?
While I've heard rumors that it is possible to jailbreak your mobile device
to enable deployment testing without having an active iOS Developer
Program account, what would be the point?
The security you are removing is there to protect your equipment. More
importantly, you will still need to get an account at some point before you
can distribute your application to paying customers. Without an account,
you won't even be able to easily distribute your application to testers or a
contract customer using TestFlight. In my opinion, $99 a year is a small
price to pay to maintain your integrity and professional reputation.

The steps required to subscribe to either the iOS or the Mac Developer Programs
are the same. Also, the only difference between subscribing as an individual
versus a business entity is that a business will require a free D&B D-U-N-S Number.
D-U-N-S Numbers are a unique nine-digit identifier for businesses issued by Dun &
Bradstreet. This identifier has become the standard to track businesses worldwide.
Many businesses, including most of the Fortune 500 companies, require a D-U-N-S
Number when you are applying to do business with them as a supplier, contractor,
or consultant. If your business does not currently have a D-U-N-S Number, you will
have an opportunity to obtain one prior to creating your developer program account.

Be aware that the process of obtaining a D-U-N-S Number is not
automated, and it may take several business days to finalize once
you have completed and submitted the brief application.

Let's walk through the process of subscribing to an iOS Developer Program
account now.

If you do not intend to develop iOS applications, you may
skip this walkthrough for now and come back to it whenever
you're ready.

Chapter 1

[19]

Perform the following steps to subscribe to an iOS Developer Program account:

1. Open your browser and go to https://developer.apple.com/programs/.
2. Click on the iOS Developer Program section.
3. Click the Enroll Now button.
4. Click the Continue button.
5. You will have the option to enroll with your current Apple ID or create a new

ID for this purpose. For this demonstration, we will assume you are using
your current ID. Click the Continue button next to your current ID.

6. Decide whether you are enrolling as an Individual or as a Company and
click the appropriate button.

7. For whichever plan you choose, fill out the required information and click
the Continue button.

8. Choose the programs you wish to subscribe to and click the Continue button.
9. Review your information and click the Continue button.
10. Review any terms and conditions presented. If you agree to the terms check

the boxes and click the I Agree button.
11. Review your shopping cart and click the Buy Now button.
12. Activate your new account.

Google Play Developer Program
Google offers a developer program for Android devices called the Google Play
Developer Program. Like the Apple programs, it is not necessary to have a Google
Play Developer Program account to develop Android applications. Unlike the iOS
program, you can deploy to your personal devices without an active Google Play
Developer Program account. You will only need a Google Play Developer account
if you intend to sell your app on the Google Play Store. At the time of writing
this, Google charges a one-time fee of $25 for a developer program account for an
individual or a business.

If you do not intend to develop Android applications, you may
skip this walkthrough for now and come back to it whenever
you're ready.

https://developer.apple.com/programs/

Installing and Setting Up Xamarin Studio

[20]

Let's walk through the process of subscribing to a Google Play Developer Program
account now:

1. Open your browser and go to https://play.google.com/apps/publish/
signup/.

2. Sign in with your Google account and click the Continue button.
3. Review the Google Play Developer distribution agreement. If you agree to

the terms select the checkbox and click the Continue to payment button.
4. Enter your payment information and click Accept and continue.
5. Once your payment has been accepted, you will need to create your

Developer Profile. Enter your name, e-mail address, website (if applicable),
and phone number and click the Complete registration button.

Once you have completed the registration, you will be redirected to the Google
Play Developer Console. We will discuss the Developer Console in more detail
in Chapter 8, Deployment.

Setting up simulators and emulators
Technically speaking, simulators and emulators are different technologies. Within
the context of our discussions on mobile application testing, it is important to note
that Android testing is performed on an emulator, while iOS testing is performed on
a simulator. At first this may seem like pure semantics, but in fact it is a very critical
distinction for a mobile developer to understand.

Android emulators attempt to emulate the characteristics and environment found
on an actual device. This means if your device has 2 GB of RAM, then the emulator
will likewise be limited to 2 GB of RAM, hence the term emulator. An iOS simulator,
on the other hand, has access to your full system resources. This means that if your
Mac has a 32 GB RAM with a 2.3 GHz i7 quad-core processors, so does that iPhone
simulator you're testing on, even though a true iPhone device does not have 32 GB of
RAM or an i7 processor. Do you see the potential problems presented by this design?

No matter how intense your application is, or how much processing power it
requires, there will almost always be an ample supply of resources available to the
simulator. Inside the simulator, your application will be lightning fast and, unless
you have a leak somewhere in your code, it will probably never run into memory
issues. This is not a real-world testing environment, which is why the iOS testing
environment is referred to as a simulator.

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/

Chapter 1

[21]

Beyond these differences, at least for the purpose of our discussions of virtual
mobile application testing, let's just assume that the remaining differences truly
are semantic. Additionally, the Android SDK refers to an emulator as an Android
Virtual Device (AVD). So, in the further chapters of this book, when we are testing
iOS applications in a virtual environment, we are using a simulator. Also, when we
are testing Android applications in a virtual environment, we are using an emulator
or AVD.

iOS simulators
Luckily for us, the latest iOS simulators come bundled with Xcode and require
very little, if any, setup before they can be used. This means you can test iOS 7
simulators for iPhone, iPhone, iPad, and iPad Mini devices right out of the box.
However, if you want to make your apps backward compatible with an iOS 6
device, which is an entirely reasonable expectation, you will still need to
download the iOS 6.1Simulator package.

To install the iOS 6.1 Simulator, perform the following steps:

1. Open Xcode.
2. Navigate to Xcode | Preferences.
3. Select the Downloads tab and you will see the following window:

4. In the Components group, click the arrow to the right of iOS 6.1 Simulator.
5. Once the download is complete, the new simulators will be available inside

Xamarin Studio.

Installing and Setting Up Xamarin Studio

[22]

Android emulators
Ideally, setting up an AVD for various Android devices should be simple. As is often
the case in development, ideal conditions are not the norm. Since there are so many
types of devices and configurations that can run the Android OS, it is not feasible to
simply include boxed AVDs for every one of them. As you are about to see, the file
sizes associated with even one boxed AVD image makes the idea of simply including
them all with the installation of the SDK impossible to implement. Therefore, it is
typically left up to the developer to create an AVD definition and image to match the
target platform. Although a detailed walkthrough of every permutation of Android
version and device configuration is beyond the scope of this book, let's look at setting
up an AVD for the popular Nexus 7 tablet as well as the Samsung Galaxy S4 as
typical examples.

Creating a Nexus 7 AVD using the AVD Manager
We'll start by creating a user-defined Nexus 7 image. In the case of the Nexus 7,
there is a basic image prepackaged with the SDK installation. Assuming we want to
create a Nexus 7 image with a different configuration for our testing, we can use this
packaged image as a starting point for creating our own. We will accomplish this by
cloning the existing image.

To create a Nexus 7 user image through cloning, perform the following steps:

1. Inside Xamarin Studio, navigate to Tools | Open AVD Manager.
2. Select the Device Definitions tab.
3. Select the Nexus 7 by Google image.
4. Click Create AVD.
5. Change the AVD Name field by entering name for the AVD.
6. Leave the Device value as default.
7. From the Target drop-down list, select Android 4.4.2 – API Level 19. Your

dialog should resemble the following screenshot:

8. Leave all of the other settings at their default values and click the OK button.

Chapter 1

[23]

Once the new user image has been created, it will be available for use during testing
with Xamarin Studio.

Creating a Samsung Galaxy S4 AVD using the SDK
and AVD Manager
Now, let's create a custom user image. For this walkthrough, we'll create a Samsung
Galaxy S4 AVD. This device emulator is not bundled with the SDK, and in fact, it
requires an additional SDK from Sony in order to be created.

To create a Samsung Galaxy S4 AVD, perform the following steps:

1. Inside Xamarin Studio, go to Tools | Open SDK Manager.
2. Once the SDK Manager opens, go to Tools | Manage Add-On Sites.
3. Select the User Defined Sites tab.
4. Click New.
5. Enter http://dl-developer.sonymobile.com/sdk_manager/Sony-Add-

on-SDK.xml in the field provided and click OK.
6. Close the Add-on Sites dialog.
7. Check whether the Sort by property at the bottom of the dialog window is

set to API Level.
8. Expand the Android 4.1.2 (API 16) group.
9. Select the checkbox for Sony Add-on SDK.
10. Scroll down and expand the Extras group.
11. Select the checkbox for Sony Device Profiles.
12. Click Install 2 packages.
13. Once these packages are installed, you may close the SDK Manager.
14. Inside Xamarin Studio, navigate to Tools | Open AVD Manager.
15. Select the Device Definitions tab.
16. Select the XPeria Z1 image.
17. Click Clone.
18. Insert Samsung Galaxy S4 in the Name field.

Installing and Setting Up Xamarin Studio

[24]

19. Set the Buttons value to Hardware and your dialog should resemble the
following screenshot:

20. Click Clone Device.
21. If the settings were accepted, the Clone Device dialog should close and

you will be back at the AVD Manager. Return to the Android Virtual
Devices tab.

22. Click New.
23. In the AVD Name field, enter a name for your AVD, for example, GalaxyS4_1.
24. From the Device drop-down list, select the definition you just created. In my

case, the definition is named Samsung Galaxy S4 (1080 x 1920: xxhdpi).
25. From the Target drop-down list, select Sony Add-on SDK 2.1 (Sony) – API

Level 16.
26. For the Front Camera and Back Camera lists, choose how you would

like to emulate the cameras. Your options are to not emulate them at
all (None), emulate them through software (Emulated), or to use a
webcam (Web Camera).

Chapter 1

[25]

27. Under the Emulation Options group, select the checkbox for Use Host GPU.
Your dialog should resemble the following screenshot:

28. Leave all the remaining settings at their default values and click OK.
29. Review the various licenses that are presented. If you agree to the terms of

each, click the Accept Licenses button.

Once the new user image has been created, it will be available for use during testing
with Xamarin Studio.

www.allitebooks.com

http://www.allitebooks.org

Installing and Setting Up Xamarin Studio

[26]

Improving AVD performance
Once you've had the opportunity to work with one of the AVDs, you will notice right
away that they are very sluggish during their initial startup, and only marginally
faster on subsequent startups. This behavior is consistent on both Mac and Windows
machines running Intel chipsets, but it seems to be especially true on Windows.
However, don't be discouraged by this initial performance because there are steps
that can be taken to significantly improve this.

All of the performance measurements cited in this section are averages
based on tests performed on my personal development machine. For
example, I tested my user-defined Nexus 7 AVD and clocked an average
initial start up time of just over 3 minutes, and an average subsequent
start up time of just over 2 minutes. These average measurements will
serve as the benchmarks for later testing and comparison.

Intel x86 Atom System Image
Most Android devices run ARM processors. Likewise, the out-of-the-box AVDs are
based on the ARM system image called the APM EABI v7a System Image. Although
the ARM processor architecture is highly efficient and suitable for mobile device
applications, it is also quite different from Intel architecture. As a result, the ARM
system image performs very poorly when emulated on an Intel chipset.

Intel is aware of this performance issue and has responded by creating its own
system image called Intel x86 Atom System Image. This image was designed for the
specific purpose of running AVDs on Intel-based machines, and it can significantly
improve AVD startup and operational performance. The only drawback is Intel x86
Atom is not available for every target API level at this time.

Let's create a new AVD from scratch, but this time target the Intel x86 Atom
System Image:

1. Inside Xamarin Studio, go to Tools | Open SDK Manager.
2. Once the SDK Manager opens, go to Tools | Manage Add-On Sites.
3. Select the User Defined Sites tab.
4. Confirm that the Android x86 System Image property exists.

 ° If not, click the New button
 ° Enter https://dl-ssl.google.com/android/repository/sys-

img/x86/sys-img.xml and click OK

5. Close the Add-on Sites dialog.

Chapter 1

[27]

6. Confirm that the Sort by property at the bottom of the dialog window is set
to API Level.

7. Scroll down and expand the Android 4.4.2 (API 19) group.
8. Select the Intel x86 Atom System Image checkbox.
9. Click Install 1 package.
10. Once this package is installed, you may close the SDK Manager.
11. Inside Xamarin Studio, go to Tools | Open AVD Manager.
12. Select the Device Definitions tab.
13. Select the Nexus 7 by Google image.
14. Click the Create AVD button.
15. In the AVD Name field, type AVD_for_Nexus_7_by_Google.
16. From the Target drop-down list, select Android 4.4.2 – API Level 19.
17. From the CPU/ABI drop-down list, select Intel Atom (x86). Now, your

dialog should resemble the following screenshot:

18. Leave all of the other settings at their default values and click OK.

Try using your new Nexus 7 AVD and compare the speed to that of the original,
ARM-based AVD. You should see a marked improvement in both startup and
operational performance.

Hardware Acceleration Execution Manager
So, you've tried out your new Nexus 7 AVD running on the Inter x86 Atom
image. Now you're thinking, "This is good, but can it be better?". To coin a
phrase, "Gentlemen, we can rebuild it. We have the technology."

Installing and Setting Up Xamarin Studio

[28]

If you are running a fairly up-to-date computer with an Intel chip that has Intel®
Virtualization Technology enabled, you can utilize the Intel Hardware Acceleration
Execution Manager (HAXM). HAXM is capable of easily improving performance
by an order of magnitude. Coupled with an AVD built on the Intel x86 Atom system
image, the improvement is almost astounding.

Note that there is a specific hardware prerequisite to use this technology.
Your machine, whether it is Mac OS or Windows, must have an Intel
processor with support for Intel VT-x, EM64T and Execute Disable (XD)
Bit functionality enabled in Basic Input/Output System (BIOS).

AXM can be installed in three steps. First, you need to make sure that virtualization
technology is enabled in the BIOS. Then, you need to install the HAXM add-on
through the SDK Manager. Finally, you need to run the executable for your system.

Since virtualization technology is typically turned on by default on most systems,
we'll start by installing the HAXM add-on through the SDK Manager by using the
following steps:

1. Inside Xamarin Studio, go to Tools | Open SDK Manager.
2. Once SDK Manager opens, go to Tools | Manage Add-On Sites.
3. Select the User Defined Sites tab.
4. Confirm that the Intel HAXM property exists.

 ° If not, click the New button
 ° Enter https://dl-ssl.google.com/android/repository/extras/

intel/addon.xml and click OK

5. Close the Add-on Sites dialog.
6. Confirm that the Sort by property at the bottom of the dialog window is set

to API Level.
7. Scroll down and expand the Extras group.
8. Select the Intel x86 Emulator Accelerator (HAXM) checkbox.
9. Click Install 1 package.
10. Once this package is installed, you can close the SDK Manager.

You may have noticed that the HAXM entry in SDK Manager was listed
as Installed when you were finished. This is just poor design on the part
of the SDK Manager, in my opinion, because the package is not fully
installed quite yet. To do this, we need to launch the HAXM executable.

Chapter 1

[29]

11. Open Finder (or Explorer in Windows) and navigate to <sdk>/extras/
intel/Hardware_Accelerated_Execution_Manager/.

12. From here, launch IntelHAXM.dmg (IntelHAXM.exe in Windows).
13. Proceed through the HAXM installation process. When you reach the screen

titled Memory Limit for Intel HAXM, it's best to just leave the default setting
for now as you can go back and change it later if necessary. Setting this value
too high initially can cause poor performance in other applications on your
system while the HAXM is running.

If during the installation you receive an error message stating that Intel®
Virtualization Technology is not turned on, you will need to enable it
in BIOS before you can proceed. Enter your system's BIOS settings, set
Virtualization Technology: [Enabled], and then restart the executable.

At this stage, you should be enjoying much faster performance of your AVDs. In fact,
HAXM can make those AVDs based on the Intel x86 Atom image run at near native
speeds! Initial startup of the AVD takes around 25 seconds on my machine, while
subsequent startups take around 17 seconds. There's still one more item we can
tweak in our AVD setup to squeeze out just a little more startup performance.

Run from Snapshot
If you edit one of your AVD definitions, at the bottom you will see a group
titled Emulation Options. Within that group there are two options that improve
performance, Snapshot and Use Host GPU. One improves start up performance and
the other improves general operating performance. Unfortunately, you can only use
one of these improvements at a time. For the sake of our discussion, let's assume we
are more concerned with faster start up times, so we will set the option to Snapshot:

1. Inside Xamarin Studio, go to Tools | Open AVD Manager.
2. Select the Device Definitions tab.
3. Select the Nexus 7 by Google image.
4. Click Create AVD.
5. Change the AVD Name field.
6. From the Target drop-down list, select Android 4.4.2 – API Level 19.
7. From the CPU/ABI drop-down list, select Intel Atom (x86).

Installing and Setting Up Xamarin Studio

[30]

8. In the Emulation Options group, select Snapshot as shown in the
following screenshot:

9. Leave all of the other settings at their default values and click OK.

This new AVD is based on the Intel x86 Atom system image and is set to run from
Snapshot. As long as HAXM is running on our system, your initial start up time will
still be about the same, but subsequent startups should clock in much faster. On my
development machine, start up time still averaged about 25 seconds, but subsequent
start up times averaged 5 seconds! Now when your fellow developers tell you that
the AVDs running on the packaged SDK are painfully sluggish, you'll know they just
haven't applied themselves to finding a solution to the problem.

Third-party AVD options
Do you still feel the need for more speed? No worries, I won't judge. At this stage,
if you want to improve performance even further, you need to start looking at
alternatives to the SDK Emulator platform. There are several third-party packages
that provide comparable and, in some cases, even better performance over the SDK
emulators. GenyMotion is one popular alternative that is currently available for free
to individual developers and small companies. GenyMotion provides an alternative to
the entire emulator paradigm, replacing emulation with virtualization. I personally use
the GenyMotion Free edition and I have been very pleased with its performance.

GenyMotion, as well as any other alternative to AVD emulation, is
not essential software for working in Xamarin Studio. Therefore,
installing and setting up the software is beyond the scope of this
book. However, if you are interested in trying out GenyMotion,
you can download and try out the free version at https://shop.
genymotion.com/index.php? controller=order-opc.

Setting up test devices
Simulators and AVDs are acceptable for development testing, but it is unwise to rely
solely on these virtual environments. Therefore, it is important to test on at least one
physical device that matches your target environment.

https://shop.genymotion.com/index.php? controller=order-opc
https://shop.genymotion.com/index.php? controller=order-opc

Chapter 1

[31]

Setting up iOS devices
Although setting up the iOS simulator is a joy, setting up devices for testing is
anything but a joy. To test using your iOS device, you must have several items in
place. If you have been following along up until now, you already have your Apple
iOS Developer Program account. Now, you need a development certificate and a
provisioning profile for your device.

If you do not intend to develop iOS applications, you may skip this
walkthrough for now and come back to it whenever you're ready.

Obtaining a development certificate
There are two ways to generate your development certificate, and the method you
choose is largely based on whether you are developing on a Mac or on a Windows
machine. First, for those who are developing on a Mac, we'll look at how to generate
your development certificate and associate it with your application within Xamarin
Studio. Here are the steps you need to follow:

1. Open your solution inside Xamarin Studio.
2. Go to Xamarin Studio | Preferences.
3. Under the Environment group, select the Developer Accounts panel.
4. Click the plus (+) button.
5. Enter your Apple ID and password in the dialog that appears.
6. Your credentials will be verified and Xamarin will automatically

generate the developer certificate for that account.
7. Close the Preferences dialog.
8. Double-click on the start-up project, which will open the Project

Options dialog.
9. In the Build group, choose the iOS Application item.
10. Open the Team drop-down list and choose your developer account.
11. Click OK.

For those developing iOS applications on a Windows machine, the process is only
slightly more involved and requires manual generation of the developer certificate.
The steps are follows:

1. On your Mac, open Finder.
2. Open Keychain Access by navigating to Applications | Utilities.

Installing and Setting Up Xamarin Studio

[32]

3. Open Keychain Access | Certificate Assistant | Request a Certificate From
a Certificate Authority.

4. Enter your e-mail address and name.
5. Under the Request group, choose Saved to disk.
6. Click the Continue button.
7. When prompted, save the file on your desktop.
8. Open a browser and log in to the Certificates, Identifiers, and Profiles

section of the Developer Portal at https://developer.apple.com/
account/overview.action.

9. In the Certificates section, choose the iOS Apps column.
10. Click the plus (+) button to create a new certificate.
11. For the type of certificate, choose iOS App Development.
12. Click Continue.
13. On the Generate your certificate screen, upload the certificate file you saved

previously.
14. Click Generate.
15. Download your new certificate.
16. Open the file. This will add the certificate to Keychain.

Provisioning your devices
Now that you have a developer certificate for your applications to link to, you still
need to add your devices to your developer account by a process called provisioning.
To provision a device, we must first create a provisioning profile containing that
device's information. You must repeat the following process for every device you
want to provision. Here are the steps you need to follow:

1. Plug your device into your Mac and launch iTunes.
2. From the sidebar select your device.
3. Click on the Serial Number value.
4. The serial number will change to Identifier (UDID).
5. Copy the serial number value.
6. Open a browser and log in to the Certificates, Identifiers, and Profiles

section of the Developer Portal at https://developer.apple.com/
account/overview.action.

7. Open the Devices section and click the plus (+) button.

https://developer.apple.com/account/overview.action
https://developer.apple.com/account/overview.action
https://developer.apple.com/account/overview.action
https://developer.apple.com/account/overview.action

Chapter 1

[33]

8. Enter a name for your device and the UDID you copied from iTunes.
9. Click Continue.
10. Verify that your new information is included in the list of devices and that it

is correct.
11. Click Submit.
12. Once the profile is generated, click Download.
13. Open iTunes again and select your device.
14. Drag the provisioning profile file to the Library in iTunes.
15. Click the Sync button, and the profile will be installed to your device.

Setting up Android devices
In order to test on an Android device, three steps must be performed:

1. First, you must enable debugging on the device.
2. Next, you may need to install additional USB drivers.
3. Finally, you need to connect your device to your computer using a USB or

alternately via Wi-Fi.

If you do not intend to develop Android applications, you may skip
this walkthrough for now and come back to it whenever you're ready.

Enabling debugging on your device
To enable debugging on Android 3.2 and older devices, perform the following steps:

1. On your device, open the Application menu.
2. Go to Settings.
3. Select Applications.
4. Select the Development item.
5. Check USB Debugging.

To enable debugging on Android 4.0 to 4.1, perform the following steps:

1. On your device, go to the Settings screen.
2. Select Developer Options.
3. Uncheck the USB Debugging option.

Installing and Setting Up Xamarin Studio

[34]

To enable debugging on Android 4.2 and higher, perform the following steps:

1. On your device, go to the Settings screen.
2. Open the About Phone group.
3. Tap the Build Number item seven times (yes, I'm serious).
4. Go back to the Settings screen.
5. Select Applications.
6. Select the Development item.
7. Check USB Debugging.

Installing USB drivers and connecting your device
Using a USB cable is the easiest method of connecting your device and development
machine. If you are developing on a Mac, you just need to plug it in. If you are
developing on a Windows machine, you may also need to install additional USB
drivers for your specific device. Since each manufacturer tends to release their
own unique USB drivers, you will need to search over the Internet for the specific
instructions for your device.

Under certain circumstances, however, you may want to use Wi-Fi to connect to your
device. Connecting via Wi-Fi is completely optional so you may skip this section if it
doesn't apply to you. Perform the following steps:

1. Ensure that your device is connected to the same Wi-Fi network as your
development machine.

2. On your device, go to Settings | Wi-Fi.
3. Tap the Wi-Fi network you are currently connected to.
4. Scroll down until you see your device's IP address.
5. Connect your device to your development machine with a USB cable.
6. Open Terminal (command prompt on Windows) and enter the

following command:
adb tcpip 5555

7. Disconnect your device from the development machine.
8. Again in Terminal (command prompt on Windows), enter the

following command replacing the listed IP address with that of your device:
adb connect 192.168.254.12:5555

Chapter 1

[35]

9. Your device can now be tested across a Wi-Fi network. When you are done
testing via Wi-Fi, open Terminal (command prompt on Windows) and enter
the following command:
abd disconnect 192.168.254.12:5555

Setting up source control
Xamarin Studio comes equipped with integrated source control, including support
for both subversion and Git-based repositories. Even if you don't intend to use the
integrated source control features of Xamarin Studio, I still recommend that you set
it up so your Solution Explorer can reflect the current version control state of the files
in your project.

Whether you are using subversion or Git, if you are running on a Windows machine,
you will need to install the respective plugin. Also, each option requires access to
an outside repository. Refer to your source control provider's documentation for
instructions on setting up an account and installing any required plugins.

Once your development machine is ready to support your choice of source control,
the process of setting it up in Xamarin Studio differs only slightly between subversion
and Git. Since I use Git for all of my projects, I will demonstrate setting up a Git repo
within Xamarin Studio by using the following steps:

1. Within Xamarin Studio, go to Version Control | Checkout.
2. Select the Connect to Repository tab.
3. From the Type drop-down list, choose Git.
4. In the Url field, enter the URL to your repository.
5. If the repository you have chosen is a valid Git repo, all of the

remaining fields will populate automatically. Otherwise, complete the
remaining fields as required.

6. At the bottom of the form, choose a target directory for your local
working copy.

www.allitebooks.com

http://www.allitebooks.org

Installing and Setting Up Xamarin Studio

[36]

7. When you are done, your dialog box should resemble the following screenshot:

8. Click OK.
9. Enter your repo credentials when prompted.
10. After your repository finishes downloading, you can close the dialog box.

Although I use BitBucket for my projects, there are other excellent Git
providers available including GitHub, CodeBase, and many more. Be
sure to research what each provider offers in the way of services and
cost before making your decision, though. Once you select a source
control provider you'll find that your choice becomes embedded in
the life of your project, and changing it is not a simple matter.

Chapter 1

[37]

Additional resources for cross-platform
developers
As you work with Xamarin Studio, you will undoubtedly have questions about the
software and cross-platform development in general. However, you are equally
likely to find unique shortcuts and efficiency hacks that others haven't thought of.
Therefore, I strongly recommend that you begin to familiarize yourself with the
various documentation repositories, forums, and blogs that relate to the technology
you are going to be working with so you can give and take with the community.

Xamarin resources
Xamarin Developer Center is your launching point to documentation, code examples,
and training videos provided by the Xamarin team (http://docs.xamarin.com).

Xamarin Forums are an excellent place to start. You can sign up using the same login
you used to download Xamarin Studio. Take time on a regular basis to read through
the posts. You will be amazed by the development gems you will pick up, even from
casually reviewing the topics (http://forums.xamarin.com).

Xamarin's Bugzilla server is an important site to become familiar with. If you find
bugs in the software, this site will help you inform the community. Likewise, you
can research a bug to see if someone else has already posted it; if so, see whether a
workaround exists until a fix can be pushed out (https://bugzilla.xamarin.com).

Third-party resources
In addition to the Apple Developer Program, you should familiarize yourself with
the Apple Developer Library, which contains documentation on developing all
things on Apple (https://developer.apple.com/library/).

The iTunes University offers many resources on iOS and mobile development
completely free of charge (https://www.apple.com/apps/itunes-u/).

Android Developer Library contains a wealth of information on mobile
development. If you are new to Android development, take the time to review
the App Fundamentals tutorial at https://developer.android.com/guide/
index.html.

GenyMotion provides some of the fastest Android emulators for app testing and
presentation (http://www.genymotion.com/).

http://docs.xamarin.com
http://forums.xamarin.com
https://bugzilla.xamarin.com
https://developer.apple.com/library/
https://www.apple.com/apps/itunes-u/
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html
http://www.genymotion.com/

Installing and Setting Up Xamarin Studio

[38]

Summary
In this chapter, we evaluated the prices and options offered by Xamarin Studio and
we walked through installing Xamarin Studio and the secondary software needed for
cross-platform development. Next, we learned how to enroll in the various developer
programs available to cross-platform developers. Finally, we discussed how to set
up the basic functions of our development environment, including how to set up
simulators and emulators for development testing and integrating source control.

In Chapter 2, Learning and Customizing the XS Environment, you will create your first
iOS and Android applications. Building and customizing those applications will
serve as a context to examine the Xamarin Studio environment in more detail.

Learning and Customizing
the XS Environment

In this chapter, we will cover the following topics:

• The Xamarin Studio IDE
• Creating your first iOS application
• Creating your first Android application
• Solution explorer
• Design and information pads
• Menus
• Solution and project options
• Environment preferences

In Chapter 1, Installing and Setting Up Xamarin Studio, we walked through the
somewhat lengthy process of installing Xamarin Studio and the secondary tools
that you'll need for effective cross-platform mobile development. Now, we need to
familiarize ourselves with the tools that are available in the IDE. Rather than simply
walking through the entire interface feature by feature, it's typically easier (and far
less boring) to learn the environment in the context of hands-on demonstrations.
In addition, there are certain features we simply can't view outside the context
of a working solution. Therefore, let's begin by creating a couple of rudimentary
applications. Following this, we will fill in the gaps of our knowledge by reviewing
the interface features and then editing some project settings. Finally, we'll examine
how we can tweak the workspace to maximize your working efficiency.

Learning and Customizing the XS Environment

[40]

The Xamarin Studio IDE
Xamarin Studio's Integrated Development Environment (IDE) is similar to other IDEs
you might have used in terms of functionality and layout. When you open a project,
you will see many familiar components. As seen in the following screenshot, the editor
window makes up a bulk of the IDE. This is where you will write and edit your code
files, set breakpoints for debugging, and stare endlessly for hours asking yourself why
you decided to become a software engineer instead of listening to your mother.

On the left-hand side (by default) the Solution pad serves the same purpose as
the Solution Explorer in Visual Studio or the Project Navigator in Xcode. This tool
displays your files and project architecture, and provides the visual context for the
source control object status. At the top of the IDE is the information window. When
you build and run your app, this window will display the build's status and any
errors or warnings that are encountered.

Chapter 2

[41]

Various other tool pads and context windows exist or will appear based on the state
of your workflow. These will be discussed in detail later in this chapter. For the most
part, each of these units of the Xamarin Studio IDE functions exactly as they would
in any other IDE. Before we delve into exploring each component in detail, it will
help to have a working environment to poke around in, so let's build a pair of quick
and dirty applications for this purpose.

Creating your first iOS application
Creating your first iOS application with Xamarin Studio is remarkably easy.
For now, let's just build a simple project as a point of reference, as shown in
the following steps. We'll dig into the details later.

1. Within Xamarin Studio, navigate to File | New | Solution….
2. Choose the C# | iOS | iPhone group.
3. Choose the Single View Application project type.
4. Name your project HelloiPhone and click OK.
5. Open the HelloiPhoneViewController.cs file.
6. We'll explore some code examples in detail later, but for now just replace the

ViewDidLoad() method with the following block of code:
UILabellabelHello;
public override void ViewDidLoad ()
 {
base.ViewDidLoad ();
var frame = new RectangleF(10, 10, 300, 30);
labelHello = new UILabel(frame);
labelHello.Text = "Hello, iPhone!";
View.Add (labelHello);
 }

7. In the target dropdown, select iPhone Retina (4-inch) -> iOS 7.1.
8. Click the Build and Run button.

That's it! You've created your first iOS application using Xamarin Studio! Yes
it's merely a simple Hello World variation, but this application proves that your
environment is properly configured (assuming it ran, of course) and gives us an
iOS context to work within.

Learning and Customizing the XS Environment

[42]

Creating your first Android application
Surprisingly, creating your first Android application in Xamarin Studio is slightly
simpler than creating the iOS counterpart. I wouldn't get too excited, though,
because that's normally not the case. Let's create an Android application:

1. Within Xamarin Studio navigate to File | New | Solution….
2. Choose the C# | Android group.
3. Keep it simple and choose the Android Application project type.
4. Name your project and click OK.
5. Click the Build and Run button.
6. Choose the emulator you want to target.

If your emulator hasn't started, the build may succeed but deployment
will most likely fail the first time. This is because the Xamarin Studio
deployment will timeout if the emulator doesn't return a response
quickly enough. The fix is typically very easy, though. Simply wait for
the emulator to finish booting up before trying to build and run again.

The Solution pad
Now that we have a project to work with, let's examine the Solution pad in detail.
The Solution pad, as seen in the following screenshot, provides you with an
organized view of your project properties and files, as well as an interface to access
contextual commands related to them. Projects and files are displayed in a tree view,
while a project name displayed in bold represents the startup project.

Chapter 2

[43]

You can select individual items or multiple items in a single project or span multiple
projects in order to perform batch operations. When you select an individual
file, you will notice a small button to the right of the highlighted file. This button
opens a context menu where you can open files, add and remove objects, perform
management tasks, and work with source control for the highlighted object.

Design pads
Documents and objects selected in the Solution pad can be examined in detail
using the Properties pad. Important details such as Build action, Copy to output
directory, and Target directory are all included along with other details, as shown in
the following screenshot. This tool serves the same general purpose as the Properties
window in Visual Studio, although it does not contain all of the same information.

The Toolbox pad serves two functions. First, when viewing code files, the toolbox
provides a drag-and-drop interface for numerous code snippets. You can also
customize the toolbox by adding new snippets from outside assemblies. Secondly,
when working in the designer, the toolbox provides instances of layout and control
objects that can also be dragged-and-dropped into the visual designer.

Learning and Customizing the XS Environment

[44]

The Document Outline pad displays the object tree for the document in the editor
window. This tree includes all of the classes, properties, methods, and events defined
in the open document, and can be used to quickly navigate through large files.

Finally, the Unit Test pad is a simple interface that displays each of the unit tests you
have defined in your project, while the Test Results pad will let you view the output
results when those tests are run. You have the option to single out individual tests or
run all the tests in the project. Xamarin Studio's unit testing is based on the popular
NUnit package, so many of the features found in NUnit can be used in your code
testing here.

For more information on unit testing in Xamarin Studio, please refer to
the documentation found at http://docs.xamarin.com/guides/
ios/deployment,_testing,_and_metrics/touch.unit/.

Information pads
Xamarin Studio shares many of the same information windows you will find in other
IDEs. At any given time in your workflow you will be able to view the Errors and
Tasks pads, as shown in the following screenshot. Any errors, warnings, or messages
that the compiler finds in your code will be listed in the Errors window. From within
the Errors pad, you will also be able to access the Build Output window, which lists
all of the messages generated during a build operation. The Tasks pad displays the
TODO comments found anywhere in your solution, plus any custom tasks you define.
This functionality can be invaluable in ensuring critical features and components are
finalized or cleaned up before release, especially in large projects.

http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/touch.unit/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/touch.unit/

Chapter 2

[45]

You will also be able to view the Help, Database Browser, DeviceLog (iOS and
Android versions), and Code Issues pads at any time in your workflow. The Help,
Database Browser, and Device Log pads function as their names suggest. Code
Issues is a tool that will evaluate your code looking for potential warnings and bad
practices such as unused objects and redundant declarations or modifiers. Items
flagged by the Code Issues tool typically have very minimal impact on the final
quality of your application, if any impact at all. However, this tool can help you
create clean, consistent, and professional code, which all developers should strive for.

While your application is running in the debug mode, you will be able to see several
additional pads, as seen in the following screenshot:

Chief among these is the Application Output window, which is an immensely
powerful debugging tool. This window will display messages generated by the
compiler and your application, such as Warnings and Errors, and it includes any
messages you define in your code using methods such as Console.Writeline,
Debug.Writeline, and Assert.Writeline. Neither the Application Output nor
Build Output windows will clear until the next build operation, which gives you
time to review the messages that are generated and even copy them to the system
clipboard as needed.

The Breakpoints pad displays information about the breakpoints you have
set throughout your application. From this interface, you can add and delete
breakpoints, enable or disable them, set conditions, and define special actions to
be taken when those conditions are met. Using breakpoints also enables you to
take advantage of the remaining pads, because these pads only work when code
execution is paused.

www.allitebooks.com

http://www.allitebooks.org

Learning and Customizing the XS Environment

[46]

The Locals pad lets you inspect variables and values within the current execution
context and Watch lets you add your own variables at runtime and inspect their
values. The Threads pad allows you to view the status of all the currently running
threads in your application.

Call Stack lets you trace your code back from the current point of execution. This
can be particularly useful during a crash event, but it can also be very helpful in
tracking down bugs that don't result in a crash. Finally, a special pad called the
Immediate window allows the developer to enter expressions to be evaluated by the
development language during debugging. Specifically, it can be used to debug and
evaluate expressions, execute statements, print variable values, and so on.

Application, File, and Edit menus
On Mac machines, the first menu you'll see is the Xamarin Studio menu, also known
as the application menu, as shown in the following screenshot:

Now, let's discuss the various options displayed in the preceding screenshot:

• About Xamarin Studio and Check for updates…: These options are
self-explanatory, although it should be noted that they are found under
the Help menu on Windows machines.

• Preferences…: This opens the Xamarin Studio Preferences dialog, which
will be discussed in detail later in this chapter. The Windows counterpart
to Preferences… is Options… and is found under the Tools menu in
Windows environments.

Chapter 2

[47]

• Custom Policies…: This opens the Custom Policies dialog, which allows
you to set Source Code and Version Control defaults for your personal
environment. Custom Policies is also found under the Tools menu in
Windows environments.

• Add-in Manager…: This is very similar to the Visual Studio version. This
dialog allows you to install add-ins to Xamarin Studio from a file or from
the Internet. Many add-ins require an Indie subscription or higher before
they can be installed. Add-in Manager is found under the Tools menu in
Windows environments.

• Account…: This item allows you to enter your Xamarin Studio account
information. This dialog is strictly for the purpose of licensing and has no
bearing on your applications. Account is found under the Tools menu in
Windows environments.

File menus are fairly standardized across applications and platforms, so we won't
examine the options found here. This is also mostly true for the Edit menu, as shown
in the following screenshot:

Learning and Customizing the XS Environment

[48]

There are at least two items worth our attention in the Edit menu:

• Insert Template…: This item opens a template dialog. Choosing an item
from this dialog will insert a code snippet into your code.

• Insert Standard Header: This will prepend a custom header comment to
your current code file.

View and Search menus
The following screenshot shows the options of the View menu:

The View menu contains many familiar options that are self-explanatory. However,
there are three items that are worth reviewing:

• Show Disassembly: This opens the Disassembly window, which shows the
assembly code corresponding to the instructions created by the compiler.

• Archives…: This displays a detailed history of release builds created for
delivery to the App or Google Play stores.

• Focus Document: This moves the current document in the editor pane to
bring the cursor into focus.

Chapter 2

[49]

Next up is the Search menu, as shown in the following screenshot:

Likewise, most of the items under the Search menu are either familiar or
self-explanatory with a few exceptions as follows:

• Go to File…: This lets you navigate to any file by selecting it from an
alphabetized list of all the files in your solution. When you are working
with large or unfamiliar projects with hundreds of files, this is a pretty
handy tool to have around.

• Go to Type…: This is very similar to Go to File… except that it only applies
to class definition files in your solution.

• Inspect: The Inspect submenu group lets you easily navigate through
warnings and errors in your code files.

Learning and Customizing the XS Environment

[50]

The Project menu
The Project menu, shown in the following screenshot, provides access to project level
functions and commands:

The options in the Project menu are as follows:

• Generate Makefiles…: This allows you to create makefiles for your solution.
See the discussion under the Project Options heading later in this chapter for
more information about makefiles.

• Create Package…: This lets you create an installer package from the files in
your solution.

• Edit References…: This opens the reference editor dialog, where you can
define project references to external packages, .NET assemblies, and other
projects within your solution.

• Active Configuration: This lets you choose the current build configuration
for the selected project.

• Android Device Target: This is available for both Android and iOS solutions
at the time of writing this, but is only functional for Android solutions. This
menu allows you to choose a device emulator before you run the application.

• Apply Policy…: This lets you choose editor and version control policies from
those bundled with Xamarin Studio, or files you have previously created
using Export Policy….

• Export Policy…: This lets you save your current project policies to an
external file.

Chapter 2

[51]

• Solution Options: This opens the Solutions Options dialog window,
discussed in depth later in this chapter.

• Project Options: This opens the Project Options dialog window for the
currently selected project. Note that on Mac development machines, this
menu item will be labeled <Project Name> Options. The Project Options
dialog window is also discussed in depth later in this chapter.

• Publish to TestFlight…: This opens the TestFlight publication dialog.
TestFlight will be discussed in depth in Chapter 8, Deployment.

• Zip App Bundle…: This creates a zipped bundle of your entire solution.
This option is only available under iOS solutions.

• Profile – Mono…: This opens the integrated Xamarin Memory Profiler tool
for iOS solutions. Note that this tool is very similar to Instruments in Xcode,
but is only available with a Xamarin Studio Business subscription or higher.

Build and Run menus
Although most developers are familiar with using the few options available in
the Build menu, it doesn't hurt to briefly review the differences between each
of these commands:

The options in the Build menu are as follows:

• Build: We will perform an incremental build of your solution or project.
If the compiler sees no reason for an object or project to be rebuilt, it will be
skipped. If you have a large complex project, then the Build All command
can sometimes be much faster than Rebuild All.

• Rebuild: This will clean and then build a solution or project completely from
scratch, ignoring everything that was built previously.

Learning and Customizing the XS Environment

[52]

• Clean: This will remove all build artifacts from previous builds in the /bin
and /obj directories. Occasions when you've made changes to your code but
you're still seeing old behavior is a good example of when you need to clean
your project.

• Stop: This option will halt a build or rebuild operation.

The Run menu shown in the following screenshot contains the developer's most
often used commands, certainly for debugging an application:

Although many developers will use shortcut keys or toolbar buttons for the
following commands, it pays to review their functions in the context of this menu:

• Start: This will start the execution of your application with or without
debugging, using your target configuration mode and deployment platform.

Chapter 2

[53]

• Run With: This allows you to start and run your application with a specific
simulator or emulator. This can also be accomplished by selecting the target
from the IDE menu bar and clicking the Run button.

• Stop: This option will halt the execution of the application in any mode.
• Debug Application…: This lets you open an existing application, executable

for the purposes of debugging.
• Step Over: This instructs the debugger to treat a function as a single unit,

executing the entire function and then halting execution at the first line of
code outside the function. This means that the application will break on the
next statement inside the current function, regardless of whether the current
statement is a call to another function. Use Step Over if you want to avoid
looking inside function calls.

• Step Into: This instructs the debugger to execute the next line of code.
This option executes the call itself, and then halts execution at the first line
of code inside the function. Use Step Into when you want to look inside
function calls.

• Step Out: This will return the execution of your code to the point of the
calling function. Use Step Out when you are inside a function call and want
to return to the calling function.

• Breakpoint: The various Breakpoint commands allow you to set, disable,
delete, and customize breakpoints in your application. However, this
interface is slow and awkward compared to using the Breakpoints pad
discussed earlier in this chapter.

• Add Tracepoint: This lets you drop a tracepoint at the current line of code.
A tracepoint is simply a breakpoint with a custom action associated with
it. Tracepoints work much like the Trace function, but without the need to
modify your code.

• Exceptions…: This opens the Exception dialog, which lets you choose
specific system exceptions to halt execution on. This feature can be useful
when you are researching crashes with little or no evidence of their source.

• Upload to Device: This lets you manually deploy your application to an
emulator or device.

• Run Unit Tests: This executes any unit tests you have defined in your solution.

Learning and Customizing the XS Environment

[54]

The Version Control menu
The Version Control menu, shown in the following screenshot, provides access to
source control integration within Xamarin Studio:

It's important to note that the operation of several of these functions
is context-specific, based on the type of source control provider you're
using. For example, Commit Solution has a very different meaning
between a Git repo and a Subversion (SVN) repo, and if you're
working in an environment that utilizes both Git and Subversion, you
had better be certain you know the difference!
For an excellent book on Git, try Git: Version Control for Everyone,
Ravishankar Somasundaram, Packt Publishing (http://www.
packtpub.com/git-version-control-for-everyone/book).

http://www.packtpub.com/git-version-control-for-everyone/book
http://www.packtpub.com/git-version-control-for-everyone/book

Chapter 2

[55]

The Version Control menu has the following options:

• Checkout…: Depending on your VC provider, this option will either change
the current working branch (Git) or download a remote repository (SVN).

• Update Solution: This gets and merges the latest code changes from a remote
SVN repo to your local working folder.

• Commit Solution: This will either create a commit point in your local branch
(Git) or upload and merge your changes to the remote repo (SVN).

• Push Changes…: This pushes all commits in your local Git repo to the remote.
• Switch to Branch: This will change the current working branch.
• Merge Branch…: This will merge another branch with your working folder

changes. Merge is a universal source control operation, but in my opinion the
actual process of merging is more painful in some (SVN) than in others (Git).

• Rebase to Branch…: This takes a branch point and moves it to a new
starting point. Whether you should ever use rebase is a point of some
discussion among Git users. However, it is certain that you should never
use this option lightly or without a thorough understanding of its function
and the potential consequences.

• Stash…: Use this menu to create Git stashes. A stash in Git could be
described as a quasi-commit, typically used when you have to switch
branches but the code you're currently working with is in a state that you
don't want to commit.

• Pop stash: This will apply a stash object to your current working branch and
then immediately drop it from your stack.

• Remove: This will discard a file from a Git repo and immediately delete it
from the filesystem.

• Diff: This will compare the current working folder version of a file and the
last committed version in the repo. This function works in the same way in
both Git and SVN.

• Log: This will show you the revision history of the current file. This function
works in the same way in both Git and SVN.

www.allitebooks.com

http://www.allitebooks.org

Learning and Customizing the XS Environment

[56]

Tools, Window, and Help menus
The content of the Tools menu, seen in the following screenshot, varies greatly
between Mac and Windows machines:

The commands that live in the Application menu on a Mac and in the Tools menu
on Windows machines will not be revisited here:

• XML: This submenu group contains commands to work with schemas and
XSLT files.

• Insert Guid: This will randomly generate and insert a GUID in your code
wherever your cursor is located. This tool can be exceptionally useful if you
frequently use GUIDs for object identification.

• Regex Toolkit…: This will open a regex builder GUI. This bundled tool
is similar to many of the regex toolkit extensions you can download for
Visual Studio.

• Launch Instruments: This will launch the Xcode Instruments utility. This
utility will be discussed in more detail in Chapter 7, Testing and Debugging.

• Launch Application Loader: This is a utility that uploads applications
to the Mac/iOS App Store. This utility will be discussed in depth in
Chapter 8, Deployment.

• Sync with Xcode: If for some reason your changes to .xib files in Xcode do
not automatically update in Xamarin Studio, or if you have reason to believe
they are out of date, Sync with Xcode will forcibly update those links.

Chapter 2

[57]

The items in the Window menu are about as universal as you can get, so we'll skip
that menu altogether. Contents of the Help menu change slightly based on platform,
but most of the items are shared between both platforms:

• API Documentation: This will link you to the online docs for the
Mono Framework.

• Open Log Directory: This will take you to the system folder on your local
development machine where the Xamarin Studio logs are stored.

• Report a bug: This will take you to Xamarin's Bugzilla service where you
can enter and research potential defects and other odd behavior you might
encounter while working with Xamarin Studio.

Solution Options
To view the Solution Options dialog (or Solution Properties on Windows
machines), shown in the following screenshot, right-click the solution object in the
Solution pad and choose Options from the context menu, or simply double-click
the solution object. Alternately, you can go to Project | Solution Options. Inside
the Solution Options dialog there are five groups of settings.

Learning and Customizing the XS Environment

[58]

The General group
The General group contains the Main Settings pane and the Author Information
pane. Main Settings consists of your application's version number, description, and
the root directory for the solution on your local machine. Author Information allows
you to override the default information and enter your own information. Both of
these panes are informational and have little impact on the function or deployment
of your application.

The Build and Run groups
Under the Build group, we find several very important settings. The General pane
lists the output directory of your application, while the Configurations pane allows
you to define custom build configuration modes (such as Debug and Release) and
map individual projects to those configurations. The Run group contains the Startup
Project information pane, which allows you to define one or multiple startup projects
for your solution.

The Source Code group
The Source Code group allows you to set solution-specific properties for your code.
The .NET Naming Policies let you customize your namespace organization. In most
everyday development scenarios, it's not necessary to define custom source code
properties with this level of granularity. However, if you're working on multiple
projects and each project has differing coding standards, you'll find that these
solution-level options can save you a lot of time and frustration.

Standard Header allows you to define a custom default header comment for each of
your new files. This comment recognizes smart tags that can import things such as
your name, e-mail address, and company name from the Main Settings group, as
well as other assembly information. The Name Conventions subgroup allows you
to define solution-level conventions for your objects. Finally, the Code Formatting
subgroup allows you to define C#, Text, and XML styles for the entire solution.

The Version Control group
The Version Control group will be discussed in greater detail later in this chapter,
so for now we'll just examine the options provided in the Solution Options dialog.
The General pane simply exposes the option to disable Version Control for the
entire solution. The Commit Message Style subgroup allows you to create your
own default commit message header.

Chapter 2

[59]

Project Options
The Project Options window, as shown in the following screenshot, can be
accessed by selecting a project in the Solution pad, and then right-clicking it
and choosing Options, or simply double-clicking the project. Alternately, go
to Project | Project Options.

The General group
Under the General group, the Main pane is very similar to that of its Solution
options counterpart. The only major difference is that at the Project level, you have
the option to search for and automatically include new files when the project loads.

Unique to the Project Options dialog is the Makefile integration pane. Using this
pane, you can add settings to synchronize file lists and references to variables in
makefiles, plus you can invoke Makefile targets to perform builds.

Learning and Customizing the XS Environment

[60]

What is a Makefile?
Right now, depending on your programming background, you could
be asking yourself what a makefile is. A makefile is really just a form
of a configuration file that contains shell commands and works in
conjunction with a Unix utility called Make.
Make maintains a list of file dependencies and keeps track of the last
time files were updated. Following a build operation, Make recursively
compares these two lists to coordinate a cascading build operation
throughout the project, updating any files based on the dependencies
lists. This process is similar to that of the project build order settings
in Visual Studio, only on a much more granular level. Prior to the
introduction of makefiles, any change to a project or file required you
to recompile any dependent projects and files manually. As you can
imagine, if you were working with a large and complex solution, this
could quickly become a complex and time-consuming task.
Luckily, Xamarin Studio, much like Visual Studio, takes care of this
complexity for us. So if you weren't familiar with makefiles before now,
you probably won't need to worry about this pane at all.

The Build group
The Build group is significantly different at the project level than the solution level.
For example, while the output directory is defined in the General options pane at the
solution level, it is defined in the Output pane at the project level. Also, there are a
number of additional settings at the project level that have no contextual meaning at
the solution level.

If you are viewing Project options in an iOS solution, you will see an option to use
the MSBuild engine, but be aware that this option is only viable for certain project
types. If you are viewing Project options in an Android solution, you will instead see
a Target Framework dropdown. Target Framework allows you to set the Android
version you want your application to target, such as KitKat, Jellybean, and others.

Both iOS and Android projects share the Code Generation and Language Options
subgroups. Code Generation allows you to define the target type (Library, Executable,
and so on), the Main Class, a Win32 icon if desired, and the Compiler Code Page (file
encoding). You also have the option of whether or not to reference mscorlib.dll.

Language Options allows you to choose the C# language version (encoding) and
allow unsafe code.

Chapter 2

[61]

For more information on the "unsafe" keyword, please refer to
the MSDN documentation on the subject at http://msdn.
microsoft.com/en-us/library/t2yzs44b.aspx.

Next is the Custom Commands pane. If you are familiar with defining pre- and
post-build events in Visual Studio, you will find the function of this utility to be very
similar. It is my opinion, however, that the Xamarin Studio utility does a better job
than the Visual Studio equivalent. Visual Studio lets you define a list of scripts or build
events that will run as a sequential batch process, while Xamarin Studio allows you to
define strictly independent commands, each with its own set of execution criteria.

The Compiler pane gives you control over compile time settings based around build
configuration and target platform type. You can set options for whether or not to
generate overflow checks, enable optimizations, and generate XML documentation
of your classes and methods (very handy for APIs). You can also determine what
debug information is generated, determine which symbols are used, and which
platform these settings should target. Under the Warnings subgroup, you can
determine whether specific warnings should be ignored, and whether or not to
treat warnings as errors.

In my personal experience, Treat warnings as errors helped train me as a developer
to address potential problems as they appeared in my code, rather than waiting until
they became release bugs that were difficult to track down. Although there will be
times when this setting might slow down your development progress, in my opinion
it's typically a good practice to turn it on when feasible to do so.

Assembly Signing allows you to attach a Strong Name certificate to your
project build. Output allows you to change your assembly name and define
the output directory.

iOS-specific panes
iOS solutions have four platform-specific panes under the Build group. If you are
already accustomed to development in Xcode, then most of what you see in these
four panes will be familiar to you. First, the iOS Build pane allows you to set build
options that are specific to iOS applications. This pane is very extensive, so we'll
examine it in detail.

http://msdn.microsoft.com/en-us/library/t2yzs44b.aspx
http://msdn.microsoft.com/en-us/library/t2yzs44b.aspx

Learning and Customizing the XS Environment

[62]

The General tab
The General tab consists of the following options:

• SDK Version: This option lets you use different versions of the SDK that
are installed on your build machine, which in turn tells Xamarin.iOS the
compiler, linkers, and libraries that should be referenced during the build.

• Linker Behavior: This can strip out unused objects from your application
during compile to help reduce the size of the executable. Linker is a complex
subject and you should not implement this build feature without first
understanding the implications. For detailed information on Linker, please
refer to Xamarin's documentation at http://docs.xamarin.com/guides/
ios/advanced_topics/linker/.

• Optimize PNG image files for iOS: This feature enable's Apple's modified
PNG crush utility, which tries to reduce the size of PNG files using various
compression methods. This technique can reduce the size of your compiled
application, but the effects on the image are not lossless. So, evaluate the
results before releasing your app with this build feature enabled.

• Enable debugging: As the name implies, use this option to enable debugging
in your compiled application. Be careful that this option is not enabled in the
Release mode, however, because the debugging information will increase
the size of your compiled application significantly as well as slow down
its execution.

• Enable incremental builds: Incremental builds improves deployment
time by telling Xamarin Studio only to rebuild those components that have
changed or depend on a component that has changed. Note that if this option
is enabled, your project can only be built by Xamarin Studio.

• Enable profiling: This option enables the Xamarin Heapshot Memory
Profiler, which is a powerful embedded memory analysis tool. For more
information on how to configure this tool, please refer to Xamarin's
documentation at http://docs.xamarin.com/guides/ios/deployment,_
testing,_and_metrics/monotouch_profiler/.

• Additional mtouch arguments: The mtouch utility converts your compiled
.NET executable into an iOS application bundle. This tool also handles
launching your app into the simulator and deployment to physical devices.
Using the textbox, you can include additional command-line options for the
mtouch utility. For a detailed list of the commands available, refer to Xamarin's
documentation at http://iosapi.xamarin.com/?link=man%3amtouch(1).

http://docs.xamarin.com/guides/ios/advanced_topics/linker/
http://docs.xamarin.com/guides/ios/advanced_topics/linker/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/monotouch_profiler/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/monotouch_profiler/
http://iosapi.xamarin.com/?link=man%3amtouch(1)

Chapter 2

[63]

The Advanced tab
The Advanced tab has the following options:

• Supported architectures: It is possible for your application to support
multiple processor architectures. This option will allow newer devices to use
better optimized code, while still supporting older devices. Beware though,
as supporting additional architectures in this manner effectively doubles the
size of your application.

• Use LLVM optimizing compiler: The LLVM compiler can create smaller and
faster compiled code, but the build process is significantly slower as a result.

• Use Thumb-2 instruction set for ARMv7 and ARMv7s: Thumb-2 compiled
code is even smaller than LLVM compiled code alone. In exchange for this
increased compression, there is a chance that your released application will
run slower.

• Enable generic value type sharing: This option enables shared native
variants of generic methods for value types, but will increase the size of your
compiled application. For more information on generic value type sharing,
see Xamarin's release notes on the subject at http://docs.xamarin.com/
releases/ios/xamarin.ios_6/xamarin.ios_6.4/.

• Use SGen generational garbage collector: SGen or "Simple Generation"
garbage collection is the Mono framework garbage collector. This technology
is still experimental at the time of writing this, but if you would like to
use it to improve performance in your application, you should read the
documentation found at http://www.mono-project.com/Generational_GC.

• Use the reference counting extension: If you are using SGen in an iOS
application, you should be aware that the interaction between garbage
collection and automatic reference counting in Objective-C is a very complex
subject. This extension helps the garbage collector work more closely with
Objective-C by making it aware of the need for reference counting.

• Internationalization: To reduce the size of your compiled application, not all
encodings are included by default. If you need support for encodings other
than the default, you must use this panel to instruct mtouch to include the
necessary assemblies.

The iOS Bundle Signing pane allows you to assign a provisioning profile to your
application, which is essential for publishing to the App Store. Once you have chosen
an identity with a valid provisioning profile, you can enter custom entitlements,
custom resource rules, and any additional arguments necessary for your build.

http://docs.xamarin.com/releases/ios/xamarin.ios_6/xamarin.ios_6.4/
http://docs.xamarin.com/releases/ios/xamarin.ios_6/xamarin.ios_6.4/
http://www.mono-project.com/Generational_GC

Learning and Customizing the XS Environment

[64]

For more information on these options, refer to Apple's App
Distribution Guide at https://developer.apple.com/
library/ios/documentation/IDEs/Conceptual/
AppDistributionGuide/ConfiguringYourApp/
ConfiguringYourApp.html.

In order to perform ad hoc deployment or enterprise deployment, you will need an
IPA file. An IPA file is simply a ZIP file that includes the application, metadata, images,
and icons. Creating an IPA file requires an Ad-Hoc Provisioning Profile. You create an
ad hoc profile in the same way you create a normal provisioning profile, but instead of
choosing App Store as the distribution method, you choose Ad-Hoc.

Once you have your ad hoc profile, the iOS IPA Options pane is preconfigured to help
you create the IPA file. Selecting the Build ad-hoc/enterprise package (IPA) checkbox
is all that is required on this pane, and the remaining fields are optional. To deploy
this file to your devices, you only need to build using the ad hoc configuration, and
then double-click on the IPA file that is created in the project's /bin/iPhone/Ad-Hoc
directory. This will open the file in iTunes, which will let you sync to your device.

Finally, the iOS Application pane gives you direct access to the core iOS project
settings. These are identical to those found in Xcode projects. You can also access
these settings by opening the solution's Info.plist file. In Chapter 3, Working with
Xcode and the Android SDK, we will take a closer look at these settings from within
Xcode. For more information, please refer to the Xcode documentation on project
settings at https://developer.apple.com/library/ios/recipes/xcode_help-
project_editor/_index.html.

Android-specific panes
Android solutions have two platform-specific panes under the Build group.
First, the Android Build pane allows you to set build options that are specific
to Android applications.

The Packaging tab
The Packaging tab has the following options:

• Use shared Mono runtime: This option creates packages with a dependency
on the shared Mono runtime, which allows the package to be built and
deployed much faster.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html
https://developer.apple.com/library/ios/recipes/xcode_help-project_editor/_index.html
https://developer.apple.com/library/ios/recipes/xcode_help-project_editor/_index.html

Chapter 2

[65]

• Fast assembly deployment: This option causes the compiler to create
packages without assemblies, opting instead to deploy the assemblies
directly to the device with your application. The benefit here is that it
will improve code redeployment speed after the initial build.

Although Fast assembly deployment is effective in the emulator,
it can sometimes fail when deploying to a device, giving the error
message Deployment failed. FastDev directory creation failed.
If you receive this message, disable Fast assembly deployment
and try to deploy to the device again.

• Embed assemblies in native code: As the name suggests, this option
will embed your assemblies directly within the native code of your
compiled application. Note that this option requires Xamarin.Android
Enterprise edition.

• Uncompressed resource extensions: By adding a comma-separated list of file
extensions to this field, you have the option to leave certain file formats in an
uncompressed state. You may want to do this for image files to prevent loss
of quality, or other file types that have difficulty being uncompressed on a
physical device.

The Linker tab
The Linker tab has the following options:

• Linker behavior: Linker behavior for Android projects functions in exactly
the same way as for iOS projects.

• Ignore assemblies: Remember that the Linker tool removes features from
managed class libraries that the application is not using in an attempt to
reduce the overall application size. There may be times, however, when you
don't want to modify specific external assemblies. In that case, you can tell
Linker to ignore these assemblies by adding them to this field as a comma-
separated list.

• Internationalization: Internationalization settings functions the same for
Android projects as for iOS projects.

Learning and Customizing the XS Environment

[66]

The Advanced tab
The Advanced tab has the following options:

• Supported ABIs: Android allows machine code that will support multiple
CPU architectures. This is achieved by associating the machine code with
an Application Binary Interface (ABI). The ABI lists the machine code that
can run on a given architecture. This feature is similar to the Supported
architectures option in an iOS project, except that additional architecture
support does not effectively double the size of your compiled application.
At the time of writing this, armeabi has the broadest device support, but
armeabi-v7a is the newest architecture.

• Java heap size: Some of the tools used during the build process require the
Java runtime (JRT). The runtime uses a fixed amount of memory during the
build process, and sometimes this is insufficient for larger applications. If you
find that you are receiving JRT errors during builds, try increasing the heap
size using this option.

• Java arguments: Any JRT arguments you would normally use when
invoking the JRT from the command line can also be introduced into your
application build process by entering them in this field.

• Mandroid arguments: Mandroid is the utility that builds a package from
compiled DLL files and the Android resources in your project. If you need
to pass any additional arguments to the utility, enter them here.

Next, you will see the Android Application pane, which allows you to modify
your package manifest file. You can also access these settings by opening the
AndroidManifest.xml file from your project's Properties folder. In the manifest,
you can define both the application name as well as the package name. The application
name is the name that will appear in the Google Play Store. You can also choose
the application icon, and it is strongly recommended that you do so because some
application stores will not let you publish your app without one.

Note that the Xamarin Studio plugin for Visual Studio 2010 does
not permit you to change this setting. To change this value in a
Visual Studio environment, you must edit the Icon property of the
ApplicationAttribute in the Properties/AssemblyInfo.cs file,
as shown in the following code:

[assembly: Application(Icon = "@drawable/launch_icon")]

Chapter 2

[67]

Version number and version name are your application's primary identifiers, and
version name is the value that will appear in the Google Play Store. The details and
implementation of your versioning system are completely up to you, but don't spend
too much time trying to devise the perfect versioning system because it doesn't exist.
Just design a system that works for your application and workflow, stick to it, and be
sure to update this field before you release new versions of your app.

Typically, an Android application can only run on a device running the target API
or higher. Changing the Minimum Android version field allows your application
to also run on older devices. You should only change this value when you are
very familiar with the framework requirements of your application, and you have
explicitly declared runtime checks to ensure your app only uses newer APIs on
devices that are new enough to support them. You can also change Target Android
version to something other than your target framework if your application uses
libraries that have a specific target API version.

If you want to allow your application to be installed on external storage, Install
location allows you to declare your preference in this matter. Auto indicates that
your application is permitted to be stored on an external storage, but you really don't
have a preference either way. This allows the system to decide where to install your
app, and the user can also move the app between internal and external storage. If you
declare preferExternal, you are requesting that your application be installed on
an external storage, but there is no guarantee that will happen. Lastly, if you declare
internal, then your application will definitely be installed on the internal storage.

Finally, the Required permissions group allows you to explicitly declare the
permissions your application needs to run. These permission settings will be added
to the application's manifest file. While installing your app, your end user will be
required to grant your application permission to use the various features you selected.

The Run group
Under the Run project option group, you can define runtime parameters based on the
build configuration and target platform, plus any custom commands. The General
pane allows you to define parameters, decide whether or not your app should run
on an external console, and introduce any environment variables your application
requires. The Custom Commands panel is similar to that found under the Build
project options group, except that these commands target the application runtime.

Learning and Customizing the XS Environment

[68]

Source Code and Version Control groups
Source code and Version control options at the Project level are identical to those
at the Solution level. On each of these panes, you will see an option called Policy
or Version Control Policy. Typically, these options will be set to Parent Policy or
Inherited Policy, meaning they are inherited from the Solution level. If you want to
implement specific settings for any particular project, you can change these options
to Custom.

The iOS projects have one additional pane at the Project level under the Source
Code | Code Formatting subgroup called Interface Builder file. This pane allows
you to define formatting rules for the XIB and XML files produced by Xcode's
interface builder.

Environment preferences
By this point, you may have already found some aspects of the Xamarin Studio UI
that don't fit well with your personal workflow. For example, if you're moving from
a Windows development environment into a Mac for the first time (as I did when I
began using Xamarin Studio), you may find shortcut key mappings on the Mac to
be nothing short of irritating. No worries because these mappings, and many other
global features within the IDE, can be customized to your taste using the Preferences
dialog, shown in the following screenshot. To begin working on these settings,
we need to open the IDE's Preferences dialog. On a Mac, go to Xamarin Studio |
Preferences…. On a PC, navigate to Tools | Options….

Chapter 2

[69]

Environment
Under the Environment project group, the Author Information, Language, Key
Bindings, and Fonts panes are self-explanatory. The Tasks pane lets you define
custom keywords for various tasks, such as TODO and HACK, throughout your
solution. Any code comments that begin with a keyword in this pane will be
gathered together in the Tasks List window underneath the editor. Finally, the
External Tools pane can be used to add custom functionality to your IDE through
third-party command-line utilities.

Projects
The Projects group contains a number of options that you might never use, or you
might set once and never again, so it's a good idea to set these options early on.
Load/Save lets you choose your default project file format and solution location.
The .NET Runtimes, Apple, and Android SDK Locations panes list file paths for
the utilities of the same name. The Debugger pane lets you define rules for how
the bundled debugger functions. The iOS pane gives you the additional option
to debug iOS apps over Wi-Fi, and the Android pane lets you define additional
command-line arguments to launch the emulator. Finally, the C/C++ pane lets
you choose the default C and C++compilers that will be used during builds.

Text Editor
When we speak of customizing the development environment, in most cases
we're probably thinking about the options found under the Text Editor group.
Within the General pane, in addition to being able to define code-folding behavior
and whether or not to use antialiasing in your font, you can set a value for Line
ending conversion. This option may seem insignificant at first glance, but text file
line endings are one of those obscure fundamental differences between Unix and
Windows. As such, if you find yourself working on linked code files between a Mac
and a PC, you will want to address this option at some point.

In the Behavior pane, you can set automatic behaviors for code completion, define
your default indentation mode, and define word break modes. The Behavior pane
also has a subpane for XML code. Syntax Highlighting is where you can choose or
modify the editor window's color scheme. The Code Templates pane allows you to
modify and create code snippets that appear in the Toolbox pad.

Learning and Customizing the XS Environment

[70]

The Source Analysis pane lets you enable source analysis of files opened in the
editor. If you are not familiar with static source analysis, it's similar to having
another developer looking over your shoulder and reviewing code as you write it,
looking for warnings and errors before they become actual problems. If Xamarin
Studio finds a potential issue in your code, it is flagged in the editor and a marker is
added to the scroll bar.

Lastly, in the Text Editor group, the XML Schemas pane lets you add new XML
schema files and map your file extensions. This mapping is critical to the IDE's
ability to properly parse your code on the fly.

Source Code, Version Control, Other, and
Packages groups
Most of what is found under the Source Code group is identical to the Solution
and Project level options, except that the settings found here are the global defaults.
However, under the C# subgroup, there are two additional panes. First, the Code
Inspection pane that lets you define global filters for common practices and code
improvement, and how the Code Inspection window will color code instances of
these rules. Secondly, the Context Actions pane allows you to select rules for code
completion and autocorrect.

The Version Control group is also similar to its Solution and Project level
counterparts, with the additional option to disable version control globally in the IDE
under the General pane. Finally, under the Other group, the Log Agent pane allows
you to choose whether or not to automatically submit error diagnostic and usage
information to Xamarin. Since F# support was added in Xamarin 3, Xamarin Studio
5 added the F# Settings pane to the Other group. In the F# Settings pane, you can
choose the F# Interactive framework, compiler type, and several basic font options.

Newly added to the Preferences dialog in Xamarin Studio 5 is the Packages group.
In the General pane, you can set the option to automatically restore packages when
opening a solution. Under the Sources pane, you can manage external packages such
as the NuGet Gallery.

Chapter 2

[71]

Summary
In this chapter, you were introduced to the Xamarin Studio IDE and you created
your first application. We examined the many options to customize the editor, as
well as solutions and projects. We also examined the most important menu options
within the application.

In the next chapter, we will learn about Xcode and the Android SDK, focusing on the
functions that are critical for Xamarin Studio developers to understand.

Working with Xcode and the
Android SDK

In this chapter, we will cover the following topics:

• Introduction to Xcode
• Outlets and Actions
• Creating a ViewController in Xcode
• XIB, NIB, DESIGNER, and STORYBOARD files
• Android SDK Manager
• Xamarin Studio Designer for iOS
• Creating a storyboard in Xamarin Studio
• Xamarin Studio Designer for Android
• Creating a Layout in Xamarin Studio

Now that you have Xamarin Studio set up and working, we'll take a little time to
examine the third-party tools you will be using on a regular basis. First, we'll look at
iOS development using Xcode with Xamarin Studio, paying particular attention to
the Xcode IDE and Objective-C components we need to understand in order to bind
our view controllers to our .NET code files. Next, we'll examine the Android SDK
and learn about layout design and implementation. Following this, we'll look at the
iOS and Android designers that come bundled with Xamarin Studio 5. Finally, you'll
create some quick applications to apply what you've learned.

Working with Xcode and the Android SDK

[74]

Introduction to Xcode
Although Xamarin Studio 5 introduced a graphical designer of its own for iOS and
Mac development, the IDE is still capable of utilizing Xcode's Interface Builder for
the development of view controllers and other user interface components. Through
the course of this chapter, we'll look at using both tools. We'll begin with Xcode's
Interface Builder because I feel that understanding how Xcode functions will help
you better understand the design and functionality of the Xamarin Studio designer.
The following screenshot provides a basic breakdown of Xcode's layout:

If you find a control or interface that you need to know more
about, you can easily find the help article for it by holding
Ctrl and clicking on the interface.

Chapter 3

[75]

Toolbar
The toolbar area runs along the top of the IDE, and it contains some of the most
commonly used controls. On the left-hand side of the toolbar are the controls to run
or halt the execution of the application. Clicking the play button will start or restart
the application if it is already running. Next, there is a breadcrumb control that lets
you select a target simulator or device for the application to be executed on. If you
happen to be working in a workspace, this breadcrumb control will also let you
choose a project to start. A workspace is a collection of projects, similar to a solution
in .NET terms. Since development in Xamarin only uses Xcode as a platform to
visually design view controllers, it's unlikely you will work with multiple projects
within Xcode.

At the center of the toolbar is the message window. This displays messages about
anything Xcode is doing while we work with our project. Typically, these messages
will include build status and quick links to warnings or errors found by the compiler.

To the right-hand side of the message window there are two groups of three buttons.
The first group determines the editor view we are currently using. The first of these
buttons enables the standard editor, which allows you to work on one file in the full
editor area. Next, the assistant editor, also known as assistant mode, displays two
files of the developer's choice side by side. This mode is particularly useful when
working with Objective-C because you can view your header and implementation
files side by side. Also, it's almost a requirement in order to work with Interface
Builder because it allows you to create Outlets and Actions easily using your mouse.
Lastly, if your project is under source control, the version editor allows you to review
code changes since your last commit operation.

The second group of three buttons allows you to show or hide the navigator, debug,
and utility areas, respectively.

The navigator area
Before examining the navigator area, be aware that the hierarchy of projects and
objects in an Xcode workspace is somewhat different than that of Visual Studio or
Xamarin Studio. For the purpose of our discussions, there are two main differences
you should be aware of. First, the concept of a solution, which is a collection of
projects in Visual Studio and Xamarin Studio, is represented by a workspace in
Xcode. Project objects are basically the same in both environments.

Working with Xcode and the Android SDK

[76]

Secondly, be aware that an object's position in the project tree does not necessarily
represent its location in the filesystem. Folders in the Xcode project tree are referred
to as groups, and they might or might not map to a matching folder in the filesystem.
This is especially important to understand when you are adding new files to your
project through Xcode, because your assumptions on where the files will be created
in the filesystem could be wrong. When in doubt, right-click on an object and choose
Show in Finder to be sure. You can avoid this complication altogether by simply
adding all of your new files and resources from within Xamarin Studio.

The navigator area is your tool to navigate everything in and about your project
or workspace. There are eight different navigators available, and they can each
be selected by choosing one of the buttons aligned across the top of the area. Each
navigator also provides a series of context-specific functions along the bottom of the
area. Not all of these navigators, shown in the following screenshot, are relevant to
our discussions concerning Xamarin Studio:

These navigators are defined as follows:

• Project navigator: This is normally visible when you open Xcode. From this
navigator, you can access all the groups, files, resources, and configuration
settings for the entire project or workspace. Simply clicking a file from the
project navigator will open that file in the editor area. Code files (those that
end with .h or .m) will open in the text editor, interface design files (with file
extension .xib) will open in Interface Builder, and a project header will open
the project editor. The context-specific functions in this area include tools to
add new files, display only the most recently modified files, list objects by
source control status, and filter objects by name. Realistically, this is the only
Xcode navigator you will absolutely need to use as a Xamarin.iOS developer.

• Symbol navigator: This is a fairly common utility in any IDE, and allows you
to browse the symbols available in your project.

• Find navigator: This allows you to search for strings in your Xcode project.
This is similar in function to using Search all files and folders in Visual Studio.

• Issue navigator: This displays all of the warnings and errors found in your
code. Since you won't be compiling and running your apps from Xcode, you
won't use this navigator very often, if at all.

Chapter 3

[77]

• Test navigator: This displays a list of unit tests defined in your project. It
provides a simple interface to run single tests or groups of tests, and also
displays the results of those tests. Since the majority of our code will be
written in .NET, unit tests will normally be defined in Xamarin Studio using
the Unit.Touch framework. For more information on creating unit tests in
Xamarin Studio, please refer to Chapter 7, Testing and Debugging.

• Debug navigator: When an application is running, the debug navigator
displays the call stack.

• Breakpoint navigator: This displays information on breakpoints and allows
you to manually assign new breakpoints to your project.

• Log navigator: This displays all of the logged messages produced by the
build system and any NSLog (loosely equivalent to Console.Write in .NET)
messages defined in your Objective-C code. You may occasionally find a use
for this navigator, but typically your most important messages will be logged
in Xamarin Studio.

The utility area
To the right-hand side of the editor area is the utility area. The top half of the utility
area contains the inspectors section. Inspectors are content sensitive, so you won't
always have access to every inspector option. If you are editing a text file, you will only
see the File and Quick Help inspectors, but when working with Interface Builder, you
will see six inspectors. In our work designing view controllers using Xcode, we will
use each of the inspectors in the following screenshot on a regular basis:

These inspectors are defined as follows

• File inspector: This provides basic filesystem information. Filename, type,
relative location in the filesystem, and full path are all provided here. If you
are working with an Interface Builder document, you will see additional
options for which a program opens the file, what the file is built for, and how
the file is to be viewed. Finally, you will see an option for Use Auto Layout.
Unchecking the Use Auto Layout option will enable the auto-resizing mask,
also called the springs and struts model on the Size inspector.

Working with Xcode and the Android SDK

[78]

Using Auto Layout isn't always the way to go, especially if you
are trying to design your own custom controls or table view
cells. For more information on the Auto Layout keyword, please
refer to Apple's iOS Developer Library documentation on the
subject at https://developer.apple.com/library/
ios/documentation/userexperience/conceptual/
AutolayoutPG/Introduction/Introduction.html.

• Quick help inspector: This displays the reference documentation for any
object selected in the file navigator or in the editor area. Quick help is
available for symbols in the source editor, for interface objects in Interface
Builder, and for build settings in the project editor. This same information is
also available in a Quick Help window, which can be accessed by holding
down the option (Alt) key and clicking on an object.

• Identity inspector: This allows you to view and manage metadata for an
object, such as its accessibility information, runtime attributes, label, and so
on. Most importantly for us, the identity inspector allows you to define a
Custom Class for your view. To access the Custom Class field in the Identity
inspector, select the File Owner icon on the left edge of the editor area.

• Attributes inspector: This provides tools to configure attributes of the
selected interface object. The available options are context-specific to the
object selected.

• Size inspector: This allows you to define characteristics such as the initial
size and position, minimum and maximum size, and any auto-sizing rules
for the selected object.

• Connections inspector: This allows you to view any Outlets and Actions
defined for the selected object. This interface also allows you to create new
connections or break existing ones.

You can also access the connections in a context menu
by right-clicking the view icon on the left edge of the
editor area.

The bottom half of the utility area contains the libraries section. Unlike the
inspectors, the library is not context-sensitive and its functions remain consistent
no matter what type of file you are working on. There are four libraries, as seen in
the following screenshot:

https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/AutolayoutPG/Introduction/Introduction.html

Chapter 3

[79]

These libraries include the File Template library, Code Snippet library, Object library,
and the Media library. For the majority of our work in Xcode, we will use the Object
library as this contains the UI elements that we will be dropping into our views
during design.

The debug area
At the bottom of the IDE is the debug area. This tool lets you control the execution
of your code, view program variables and registers, view its console output, and
interact with the debugger. As your applications will typically launch from Xamarin
Studio, you may not use this area very often.

The editor area
The editor area is where most development work is performed in Xcode, and it is
always visible in the workspace window. This area is marked by several important
features for Xamarin developers. First, note the jump bar at the top of the area. This
tool provides a sort of breadcrumb interface to select everything from project-level
objects down to class-level properties and methods. The configuration and behavior
of each jump bar is customized for the context it appears in, so this tool will change
based on which editor you are using.

Technically, the editor area comprises nine different editor tools. For the purposes of
our work, we are only interested in four of these:

• Interface Builder: This is where you will graphically create and edit user
interface files.

• Source editor: This is where you will write and edit source code for your
interface files.

• Property list: This editor allows you to view and edit various types of
property lists, or plists. Xamarin Studio has its own plist editor so using
this tool is optional.

• Project editor: This editor lets you view and edit project and target settings,
such as build options, target architectures, and code-signing characteristics.
As discussed in Chapter 2, Learning and Customizing the XS Environment,
Xamarin Studio provides its own tool to edit the project settings, so using
the Xcode version is optional.

Working with Xcode and the Android SDK

[80]

How can I customize this workflow?
By this point you might have noticed that unlike some other
development applications, Xcode isn't very configurable in the area of
workflow. You cannot rearrange, drag-and-drop, or detach panes from
one area to another. That's because this is an Apple program and what
you see is what you get. Navigator stays on the left, utility stays on the
right, and so on.
There is, however, some relief in the form of a Safari-style tabbed
interface, which allows you to have multiple files open simultaneously
in the same workspace. You can open new tabs manually by navigating
to File | New Tab, pressing Command + T, or by clicking the add (+)
button at the right end of the tab bar. Alternatively, you can set Xcode
to automatically open new files in a tab by setting General Preferences:

• Open Xcode | Preferences….
• Select the Navigation panel.
• Set the Double Click Navigation option to Uses Separate Tab.

Once you have implemented these steps, you can double-click on
the files and have them open in a new tab for easy navigation. If you
are coming from a Windows environment, this might not completely
resolve your workflow learning curve, but luckily you won't be
spending the bulk of your time developing in Xcode.

Outlets and Actions
Outlets and Actions are key concepts to understand when working with Xcode
and Xamarin.iOS. Defined in the class header file, these properties allow the
ViewController to tie into, or interact, with the objects defined in the view. In
my opinion, Outlets and Actions are most easily understood in terms of flow of
communication. Simply stated, an Outlet allows your ViewController to talk
to your view, while an Action allows your view to pass messages back to your
ViewController.

Although the new graphical designer for iOS removes much of the headache from
working with Outlets and Actions, it is still a good idea to learn how to create and
manage them using Xcode to better understand how they work.

Chapter 3

[81]

Outlets
An Outlet exposes an object in the view to the corresponding ViewController. This
allows the ViewController to update property values on that object by referencing
the Outlet's name. For example, the following bit of code exposes a UILabel object:

//MYViewController.h file implementation
@interface MYViewController : UIViewController
@property (weak, nonatomic) IBOutlet UILabel *placeholderLabel;
@end

//MyViewControllerCS file (File's Owner)
public override void ViewDidLoad()
{
 placeholderLabel.Text = "I am a placeholder label.";
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

An Outlet is defined as a property with the type qualifier of IBOutlet. This can be
done manually, but it is easier and smarter to let Xcode create the property and wire
up the object for us. We'll examine how in a moment, but at this point just note that
you can change the property values on an object defined in your view. Be aware that
you can add an Outlet to any object defined in your view.

Actions
Unlike Outlets, Actions are methods, not properties. An Action functions as a
messenger from the view to your ViewController. Technically speaking, the
ViewController is set up as Target for any Actions defined in the View. An
Action's behavior can be thought of in terms of the command pattern found in
WPF applications, where user interactions defined in the XAML file are handled
in the CS code behind file.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Working with Xcode and the Android SDK

[82]

Whenever some kind of event occurs with an object on the view, any actions associated
with the event for that object will pass a message on to the ViewController. Just as
you can share event handlers in C#, you can wire up multiple controls to the same
Action in iOS. Strictly speaking, the words "event" and "handler" are not correct in this
context, but since we are predominantly working in .NET, it's just clearer to think in
these terms.

The following bit of code expands our previous code example to add an Action:

//MYViewController.h file implementation
@interface MYViewController : UIViewController
@property (weak, nonatomic) IBOutlet UILabel* placeholderLabel;
-(IBAction)updateLabelButtonTouchUpInside:(id)sender;
@end

//MyViewControllerCS file (File's Owner)
public override void ViewDidLoad()
{
 placeholderLabel.Text = "I am a placeholder label.";
}
partial void updateLabelButtonTouchUpInside(NSObject sender)
{
 placeholderLabel.Text = "I have been updated!";
}

Now the TouchUpInside event is wired to a button defined in our view, and its
handler is defined in the file owner.

Adding Outlets and Actions
Adding an Outlet or an Action through Interface Builder is quite simple. Although
there are several methods to do this, the easiest way is to use the assistant editor and
your mouse.

Open a XIB file in Interface Builder and switch to the assistant editor to open the
header file. Next, right-click or command-click on an object in Interface Builder, and
while still holding the right mouse button or command key down, drag the mouse
over to the @interface section of the header file. When you drop the wire in the
@interface section, you will be prompted to create either an Outlet or an Action.
We'll examine this process in detail during the next walkthrough.

Chapter 3

[83]

Adding a ViewController to our project
Let's manually create a ViewController that consists of a label, text field,
and button:

1. In Xamarin Studio, create a new solution by going to iOS | Empty
Application, and name it UpdateLabelApplication.

2. Right-click on the UpdateLabelApplication project and select Add File….
3. Select a file by going to iOS | iPhone View Controller.
4. Name the file UpdateLabelViewController and click on the New button.
5. If Xcode does not open Interface Builder automatically, open the file from the

Solution Explorer pad.
6. Switch to the assistant view, and open the UpdateLabelViewController.h

file in the right pane using the jump bar.
7. Using the Object Library in the Utility Area, drag-and-drop a Text Field,

Button, and Label control onto the view in the left pane of Interface Builder.
Your view should look something like the following screenshot:

Working with Xcode and the Android SDK

[84]

8. Holding down the Ctrl key, select the text field and drag a wire across to the
.h file, releasing just below the @interface label.

9. Create an Outlet named textField.
10. Drag another wire for the Label control and create an Outlet named label.
11. Finally, drag another wire for the Button control and create an Action for the

Touch Up Inside event named updateButtonTouchUpInside.
12. Save your file and switch back to Xamarin Studio.
13. Open the UpdateLabelViewController.cs file.
14. Below the ViewDidLoad method, type the keyword partial and hit the

Space bar. Xamarin Studio will provide you with an autocomplete option to
create an event handler. Select this option.

15. Inside the new method, replace the default exception code with the following:
label.Text = textField.Text;
textField.Text = "";

16. Open the AppDelegate.cs file from the Solution Explorer pad.
17. Within the FinishedLaunching method, replace the existing code with the

following code:
this.window = new UIWindow (UIScreen.MainScreen.Bounds);

var viewController = new UpdateLabelViewController();

this.window.RootViewController = viewController;
this.window.MakeKeyAndVisible ();
return true;

18. Run the application.
19. Type some text into the text field and click the button. The label should get

updated with the text you entered, and the text field should be cleared.

How it works
You have created a new ViewController using Xamarin Studio and the Xcode
Interface Builder. Your view consists of the XIB file, while your ViewController
consists of three parts, including the header (.h) file, your code behind (CS) file,
and a designer (DESIGNER) file generated by Xamarin Studio.

Chapter 3

[85]

Note that the code behind file is also set as the file owner for the XIB file in Xcode.
This is extremely important! This linkage helps Xcode create the appropriate
bindings between the view and ViewController. The changes you make in
the header file in Xcode will automatically sync to Xamarin Studio through the
DESIGNER file when you save your work, partly because this linkage exists.

Next, you implemented the updateButtonTouchUpInside Action in your code
behind file. In this case, you used the Action to manipulate the properties of objects
in the view through the Outlets you defined for them.

Finally, you wired up your new view to your application architecture. Since
your application was empty when you began, you set this new view as the
rootViewController to be launched from the AppDelegate class. First, your
code defines a window for the application, and then you create an instance
of your new ViewController class. This instance is then set as the window's
RootViewController, and finally you set the window as visible.

XIB, NIB, DESIGNER, and STORYBOARD
files
In the earlier versions of Xcode, the Interface Builder generated NIB files
(pronounced Nib). These were not individual files, but were actually directory
packages. Most developers who worked with these files would probably agree that
directory packages are somewhat complicated to work with, especially with regard
to version control. With Xcode 3.1, Apple introduced XIB files (oddly enough,
also pronounced Nib). XIB files are flat XML files depicting the layout information
of the view. Since they are written in XML, they are much easier to tweak (when
necessary), easier to track with source control, and they make reviewing changes
between versions simpler. Ultimately, the XIB files are compiled into the .nib
files prior to deployment, but you won't be able to edit those because they open in
Interface Builder as unreadable binary code.

With the introduction of .NET into the mix, Xamarin added DESIGNER files.
For lack of a better description, designer files expose your Objective-C header
(.h file) contents to your .NET code. Outlets and Actions defined in Interface
Builder appear in the DESIGNER file in the following format (from the previous
UpdateLabelApplication example):

[Outlet]MonoTouch.UIKit.UILabel label { get; set; }
[Outlet]MonoTouch.UIKit.UITextField textField { get; set; }
[Action ("updateButtonTouchUpInside:")]partial void
 updateButtonTouchUpInside (MonoTouch.Foundation.NSObject
 sender);

Working with Xcode and the Android SDK

[86]

As you can see from the preceding code, the Outlets are generated as private
properties, so they are only accessible to the XIB's file owner. The return types of these
properties are the respective MonoTouch.UiKit framework types for each of the objects
that the Outlets are wired to in the XIB file. Actions are generated as partial methods
(that must be implemented in your CS code behind file). These partial methods are
decorated with the Action keyword and the name of the Action as defined in the .h
file. Don't get too concerned about the trailing colon on that name. This is a method
naming convention of Objective-C, and it's completely appropriate in this context.
Additionally, you will see a method named ReleaseDesignerOutlets() that helps
out with memory management of the Outlet properties.

There are a couple of other items you should be aware of, concerning XIB and
DESIGNER files. First, never edit these files directly. I suppose technically it's possible
to muck about in these without throwing a wrench into the works, but it's rarely
worth the frustration. In my experience, problems in these files can introduce crashes
that produce cryptic Objective-C exception messages coupled with little or no stack
trace information. If you want to change something in the XIB or DESIGNER file,
open it through Xamarin Studio so you can make your changes in Xcode. Then the
DESIGNER file will correctly reflect the current state of the XIB file. While we're on
this subject, never open XIB files directly from Xcode, but always through Xamarin
Studio. When you open the XIB files from Xamarin Studio, your solution will
automatically sync with the new changes when you save your work in Xcode.

Lastly, concerning DESIGNER files, it might be tempting to directly call
ReleaseDesignerOutlets() when you are dismissing a ViewController. Again,
it is technically possible to call this method, but you shouldn't do it. Remember that
MonoTouch is garbage collected, while modern iOS uses ARC (automatic reference
counting) and the relationship between the two is very complex. If you want to
recycle the memory, just call Dispose() and let MonoTouch handle the dirty details.

Newly introduced in Xamarin Studio 5 is the STORYBOARD file and support for
designing storyboards graphically. A storyboard is one single file that contains
all of the views in your app, allowing you to see the whole story at once. Each
ViewController and view pair is referred to as a scene. In iPhone terms, it is safe
to assume that each scene represents one screen of content. On an iPad, however,
multiple scenes can be visible simultaneously using a Popover View Controller. The
STORYBOARD file also includes the flow of your application, allowing you to add
transitions (Apple calls these "segues") between the scenes.

Storyboards are meant to completely replace individual XIB files in your projects,
although it's possible to launch a XIB manually from within a storyboard. This
would be useful if you are retrofitting or adding storyboards to an existing XIB-based
application, or if you simply plan to mix and match XIB files and storyboards in the
same app.

Chapter 3

[87]

The primary advantage to using storyboards is that they will reduce the number
of files in your application and minimize the amount of boilerplate code needed to
manage multiple views. We'll look at adding storyboards to your application in the
next walkthrough.

Xamarin Studio Designer for iOS
Xamarin Studio's Designer for iOS will allow you to create storyboards graphically,
and do so more easily than using Xcode because it's streamlined for this specific
purpose. Although you cannot create individual XIB files using the Xamarin Studio
designer, you do not necessarily need to if your iOS application will be built entirely
on storyboards. You can open the Designer either by double-clicking an existing
STORYBOARD file, or right-clicking on a STORYBOARD file and navigating to
Open With | iOS Designer.

As you can see in the following screenshot, the designer for the iOS interface is made
up of five components:

Working with Xcode and the Android SDK

[88]

The design surface is your canvas to create new user interfaces, and it will open in
the editor area of Xamarin Studio when you open a STORYBOARD file. The Toolbox
pane shows the controls and objects you can drag-and-drop onto the design surface.
The Properties box displays information about the currently selected object, such as
identity, look, and behavior. The Document Outline pad shows a tree representing
the layout of your storyboard. You can select a control from the tree and it will be
selected in the designer. This is useful to select controls that are deeply nested and
difficult or impossible to select using the mouse in the design surface itself.

Finally, the toolbar runs along the top of the design surface, and is broken into
five parts:

• SIZE: This group lets you choose between 3 and 4 inch screen sizes.
• ORIENTATION: This group lets you choose the portrait or landscape

orientation view for the open storyboard. Note that this is not an orientation
lock, but simply a design reference tool so you can see how your storyboard
will be rendered in either orientation.

• iOS VERSION: This group lets you choose the iOS version to view the
storyboard in. Note that this is not a version lock, but simply a design
reference tool so you can see how your storyboard will be rendered in
either version of iOS. Be aware that the iOS 6.1 SDK is required to view the
storyboard using the iOS 6 button. To install the iOS 6.1 SDK, follow the
instructions in Chapter 1, Installing and Setting Up Xamarin Studio, under the
section titled iOS simulators.

• CONSTRAINTS: This group lets you add and remove constraints from
your objects.

• ZOOM: This group lets you zoom in to fit the screen, zoom out, zoom in, and
zoom to the actual size.

Creating a storyboard in Xamarin Studio
Let's create a storyboard using the Xamarin Studio designer:

1. Create a new iOS Empty Project named StoryboardDemo.
2. Add a new Empty iPhone Storyboard file to the solution named

MainStoryboard.
3. Open MainStoryboard in the designer.
4. From the Toolbox pane, drag a View Controller object onto the design surface.
5. Select the View Controller object in the design surface.

Chapter 3

[89]

6. In the Properties box, under the Identity heading, there are three fields.
Enter MainStoryboard into each of them. Once you entered the value in the
first field, you will notice that the IDE created the MainStoryboard.cs file in
the Solution Explorer pad for you.

7. From the Toolbox pane under the Controllers & Objects group, drag a text
field object onto the design surface.

8. In the Properties box, under the Identity heading, set the Name field
to TextField.

9. From Toolbox under the Controls group, drag a Button object onto the
design surface.

10. In the Properties box under the Identity heading, set the Name field
to CopyTextButton.

11. Also in the Properties box, under the Button heading, there is a Title
drop-down combobox. Change the field value below the dropdown to
Copy Text.

12. Again from Toolbox under the Controllers & Objects group, drag a Label
object onto the design surface.

13. In the Properties box under the Identity field, set the Name field to Label.
Your storyboard should look something like what is shown in the
following screenshot:

Working with Xcode and the Android SDK

[90]

14. Open the AppDelegate.cs file.
15. Replace the class declaration with the following code:

public partial class AppDelegate : UIApplicationDelegate
{
 UIWindow window;
 public static UIStoryboard Storyboard =
 UIStoryboard.FromName ("MainStoryboard", null);
 public static UIViewController initialViewController;

 public override bool FinishedLaunching (UIApplication
 app, NSDictionary options)
 {
 window = new UIWindow (UIScreen.MainScreen.Bounds);

 initialViewController =
 Storyboard.InstantiateInitialViewController () as
 UIViewController;

 window.RootViewController = initialViewController;
 window.MakeKeyAndVisible ();
 return true;
 }
}

16. Open the MainStoryboard.cs file.
17. Add the following code below the constructor:

public override void AwakeFromNib ()
{
 this.Initialize ();
}

public void Initialize()
{
}

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();

 CopyTextButton.TouchUpInside += (o, e) => {
 Label.Text = TextField.Text;
 TextField.Text = "";
 };
}

Chapter 3

[91]

18. Run the application in the debug mode.

Occasionally, storyboard projects will fail to build, displaying an error
similar to This class is not key value coding-compliant. In that case,
try to rebuild your project before running it. This will typically resolve
the issue and allow you to proceed.
As a side note, you could also add the -f switch to the Additional
mtouch arguments list (found in the project's options in the iOS Build
pane). However, this flag will cause the compiler to rebuild your project
every time you run it, which can significantly increase your build
time as your project grows larger. If you find that you absolutely must
rebuild every time you run the app, then the switch will save you some
steps. Otherwise, I do not recommend adding the switch.

19. Type some text into the text field, and click the Copy Text button.
The label should get updated with the text you entered, and the
text field should be cleared.

How it works
Once you add the STORYBOARD file to your app, you add an empty
ViewController object and complete its Class and ID fields that are critical to the
operation of your app. The Class field lets you define a custom class to act as the
ViewController for this pane of the storyboard. The Storyboard ID lets you define
an ID that you can use to reference this pane in your code. Finally, the Restoration
ID is used when the ViewController needs to be restored to a previous state. Once
you enter a value in the Class field and tab off, the IDE will automatically create the
necessary ViewController class if it doesn't already exist. Although it is possible to
use an existing class, for now just let the IDE do it for you because the existing classes
require some additional setup. Once your ViewController object is in place, you
added your controls. Giving each control a name allows you to reference that control
within your ViewController class.

Next, you added code to your AppDelegate.cs class. There are two lines of code
here that are of particular interest. The first line of code is as follows:

public static UIStoryboard Storyboard = UIStoryboard.FromName
 ("MainStoryboard", null);

In the preceding line of code, you are registering your storyboard with the
AppDelegate by passing the name of the storyboard file.

Working with Xcode and the Android SDK

[92]

The second line of code is as follows:

initialViewController =
 Storyboard.InstantiateInitialViewController () as
 UIViewController;

In the preceding line of code, you are setting and instantiating the initial
ViewController by calling the InstantiateInitialViewController()
method of the UIStoryboard class.

Finally, in your MainStoryboard.cs file you wired up your button to the
TouchUpInside event handler, as shown in the following code:

CopyTextButton.TouchUpInside += (o, e) => {
 Label.Text = TextField.Text;
 TextField.Text = "";
};

Android SDK Manager
We have already worked with the Android SDK Manager while setting up
emulators in Chapter 1, Installing and Setting Up Xamarin Studio. At this point, we'll
just review the tools in the SDK Manager that we'll be using as Xamarin.Android
developers. There are three components you will use on a regular basis, including
the Package Manager, the Add-On Sites Manager, and the AVD Manager. The
following screenshot shows the package manager:

Chapter 3

[93]

The package manager lets you download and install APIs, tools, documentation,
emulator components, as well as other libraries. You can also delete unused or
outdated components using this tool as you see fit. Try to avoid the temptation to
just download everything at the first sitting though. Some of these components are
very large so it's best to pick and choose as you need them.

In the following screenshot, you can see the Add-on Sites Manager:

The Add-on Sites Manager lets you select both approved and user-defined
third-party sites that manage or host additional Android SDK components.
Once you have added a site to this list, components and libraries hosted there
will appear in the Package Manager list for download.

Working with Xcode and the Android SDK

[94]

Finally, the following screenshot shows the AVD Manager:

The AVD Manager lets you keep track of your emulators. The Android Virtual
Devices tab tracks the emulators that have already been defined by a user or as
part of a downloaded package. The Device Definitions tab allows you to track and
manage the core definitions that your emulators are based on. For an example of
creating a new device and emulator, please refer to the walkthrough in Chapter 1,
Installing and Setting Up Xamarin Studio.

Android Layouts
Android user interfaces are built using View and ViewGroup objects. A View
is simply an object that draws something on the device's screen that the user can
interact with. A ViewGroup is an object that contains other View and ViewGroup
objects to define a layout for the interface. A Layout, therefore, is an object that
defines the visual structure for a user interface.

The Android framework provides six basic layouts that we can build on. Of course,
we can add our own layouts as well. Our applications can programmatically
generate and organize objects and manipulate their properties, so we can instantiate
our layouts at runtime by defining them in code. We can also declare the user
interface elements using XML.

Chapter 3

[95]

In a typical application, it's common to define your general layout elements using
XML, and then modify that layout programmatically at runtime in response to user
interaction or application workflow. Therefore, you should become familiar and
comfortable with using both of these approaches over time. In general, it's a bad idea
to exclusively define your layouts programmatically because doing so tightly binds
your presentation layer to your data layer and business logic. Designing your UI in
XML keeps the descriptions external to your application code, which means that you
can modify or adapt them without the need to recompile. Additionally, defining the
layout in XML makes the structure easier to visualize.

Xamarin Studio Designer for Android
Xamarin Studio's Designer for Android will generate layout XML definitions
for us. You can open the Designer, shown in the following screenshot, by either
double-clicking an existing AXML file, or by adding a new Android Layout file
to the /Resources/layout folder:

Working with Xcode and the Android SDK

[96]

The designer for the Android interface is made up of four components. The design
surface is your canvas to create new layouts, and it will open in the editor area of
Xamarin Studio when you open an AXML file. The design surface can be viewed in
either the content or source mode. The Toolbox pane shows the controls and objects
you can drag-and-drop onto the design surface. The Property pad displays information
about the currently selected object, while the Document Outline pad shows a tree
representing the layout you are currently working with. For more information on these
pads please refer to Chapter 2, Learning and Customizing the XS Environment.

Creating a Layout in Xamarin Studio
Let's create a Layout using the Xamarin Studio designer:

1. Create a new Android Application solution named LayoutDemo.
2. Add a new Android Layout file to the /Resources/layouts folder

named MainLayout.
3. When the designer opens, open the Toolbox pad.
4. From the Text Fields group, drag a Plain Text object onto your canvas.
5. From the Form Widgets group, drag a Button object onto your canvas.
6. Again from the Form Widgets group, drag a Text (Medium) label object

onto you canvas.
Your layout should look something like the following screenshot:

Chapter 3

[97]

7. Open the MainActivity.cs file.
8. Replace the OnCreate() method with the following code:

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);
 SetContentView (Resource.Layout.MainLayout);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>
(Resource.Id.button1);
 TextView textView = FindViewById<TextView>
(Resource.Id.textView1);
 EditText editText = FindViewById<EditText>
(Resource.Id.editText1);

 button.Click += delegate {
 textView.Text = editText.Text;
 editText.Text = "";
 };
}

9. Run the application in the debug mode.
10. Type some text in the text field, and click the button in the emulator screen.

The label should get updated with the text you entered, and the text field
should be cleared.

How it works
Looking back at the MainLayout.axml file in the designer, notice again the two tabs
at the bottom of the designer labeled Content and Source. Select the Source tab
and you will see the XML code. This code defines your layout as you have visually
designed it, and you can make adjustments here or using the designer. Note the
android:id attributes, as their values define the name of the object to be rendered
by the OS. When you click the Source tab, you will see the following code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText

Working with Xcode and the Android SDK

[98]

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText1" />
 <Button
 android:text="Button"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/button1" />
 <TextView
 android:text="Medium Text"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:layout_width="match_parent"
 android:layout_height="41.2dp"
 android:id="@+id/textView1" />
</LinearLayout>

In the MainActivity.OnCreate() method, you first replace the default code with
the following code:

SetContentView (Resource.Layout.MainLayout);

This code sets the new AXML layout file as the content of the activity you are editing,
effectively binding your layout to this activity. Next, you add the following lines:

Button button = FindViewById<Button> (Resource.Id.button1);
TextView textView = FindViewById<TextView>
 (Resource.Id.textView1);
EditText editText = FindViewById<EditText>
 (Resource.Id.editText1);

These lines of code create local objects that you can manipulate in your code. In each
case, an object has been rendered by the OS using the definition in the AXML file,
and you then use the generic FindViewById<T> to locate and bind to that object by
its ID, also defined in the AXML file.

For example, to obtain the instance of the Button object, you called
FindViewByID<Button> because you needed a Button object. The android:id
value of "@+id/button1" was converted to Resource.Id.button1 in your code
example. You can use this same convention for objects of any type in your layouts:

button.Click += delegate {
 textView.Text = editText.Text;
 editText.Text = "";
};

Chapter 3

[99]

Finally, you are binding to the Click event and defining a delegate to handle the
event. Within this handler, you are copying the text from the editText.Text property
into the textView.Text property and then clearing the editText.Text property.

Summary
In this chapter, we learned about the Xcode IDE and Interface Builder. We learned
how to use these tools to create views and view controllers, and how to bind objects in
those views to our code behind files in Xamarin Studio. We also discussed the various
types of files generated by Xcode and Xamarin Studio when we created these view
controllers. Next, we briefly examined the Android SDK Manager and how it is used
to create emulators to test our applications. Finally, we examined the Xamarin Studio
integrated designer, and created a custom storyboard and layout using this tool.

In the next chapter, we're going to look at the Visual Studio plugin including how to
connect to a networked Mac build machine. Following this, we'll examine the various
projects, libraries, and file types available for your applications.

Plugins, Templates,
Libraries, and Files

In this chapter, we will cover the following topics:

• Introduction to the Visual Studio plugin
• Setting up a networked Mac build machine
• Creating an iOS application in Visual Studio
• Project templates
• Libraries
• Files

In this chapter, we will discuss the various components that you can add to your
projects. Since some of these components are only available in specific contexts, we
first need to discuss the final environmental component—the Visual Studio plugin.

This chapter will focus on a series of walkthroughs to help you set up your build
environment to use the Visual Studio plugin. Next, we will discuss the various
project templates that can be created inside Xamarin Studio and Visual Studio,
with a particular focus on the various library project templates. Finally, we will
discuss the types of files you can add to your projects.

Plugins, Templates, Libraries, and Files

[102]

Installing the Visual Studio plugin
Xamarin offers a series of plugins to develop iOS and Android applications from
within Visual Studio. These plugins allow you to develop apps for iOS, Android,
and Windows, all while taking advantage of the tools you're already familiar with.
Moreover, you can run Visual Studio inside a Virtual Machine (VM) on your Mac,
so you don't even need a second development machine.

In order to take advantage of the Visual Studio plugins, you first need a Business
or Enterprise subscription to Xamarin as well as a copy of Visual Studio 2010
Professional or higher. For Xamarin.iOS developers, you will also need a networked
Mac to act as a build machine because Windows machines can't compile to native iOS
code. Additionally, at the time of writing this, whenever you need to work with XIBs
you will need to transfer your solution to the Mac and open it from Xamarin.

Since the Visual Studio plugin still requires a Mac for development, you might
ask yourself whether there is any advantage of using it. In my opinion, there are
several compelling reasons to use the plugin. For one, you're probably already very
familiar with the Visual Studio interface and the tools it provides, so using it will
increase your productivity. Another advantage is that the plugin allows you to
use the full power of Visual Studio, as well as the impressive array of third-party
plugins available for that IDE. Lastly, if you intend to write applications that are
compatible with Windows devices, the plugin will simplify the development process
by allowing you to use one IDE to build the entire suite.

In the following walkthroughs, you will set up a development environment that uses
the Visual Studio plugin on a Windows machine or VM. For the purposes of these
walkthroughs, we'll assume that you want to develop in iOS and will therefore also
want to set up a networked Mac build machine. The process for setting up the Visual
Studio plugin using a Windows VM hosted on your Mac is very similar, although
the individual mileage might vary.

First, you need to make sure your environment meets the minimum requirements.
Your Windows machine will need the following:

• Windows 7 or higher
• Visual Studio 2010 Professional or higher
• Xamarin's plugin for Visual Studio
• Network access to the Mac build machine

Chapter 4

[103]

Your Mac will need the following:

• OS X Lion or higher
• Xamarin.iOS
• Xcode and the iOS SDK

If you have not already done so, install Xamarin on your Windows and Mac
machines, and install Xcode and the iOS SDK on your Mac. For detailed instructions
on installing each of these packages, including the Xamarin Unified Installer, please
refer to Chapter 1, Installing and Setting Up Xamarin Studio.

If you intend to develop apps for Windows Phone 8, you will need
Windows 8 64-bit Pro or higher because the Windows Phone 8
emulator will not run on Windows 7.
If you intend to develop apps for Windows Phone 8, you will need
Visual Studio 2012 Professional or higher.

Configuring your Mac
To configure your Mac, perform the following steps:

1. From the Apple menu, open System Preferences.
2. Open the Personal group.
3. Select the Security and Privacy item.
4. Open the Firewall tab, and ensure the Firewall is turned off.

Configuring your Windows machine
If you haven't configured your Windows machine already, download and
install the Xamarin Unified Installer. This installer includes a tool called Xamarin
Bonjour Service, which runs Apple's network discovery protocol. Xamarin Bonjour
Service requires administrator rights, so you may want to just run the installer as
an administrator.

Plugins, Templates, Libraries, and Files

[104]

Configuring a Windows VM within Mac
There is really no difference between using the Visual Studio plugin from a Windows
machine or from a VM using software, such as Parallels or VMware. However, if you
are running Xamarin Studio on a Retina Macbook Pro, it is advisable to adjust the
hardware video settings. Otherwise, some of the elements within Xamarin Studio
will render poorly making them difficult to use. The following screenshot contains
the recommended video settings:

To adjust the settings in Parallels, follow these steps:

1. If your Windows VM is running, shut it down.
2. With your VM shut down, go to Virtual Machine | Configure….
3. Choose the Hardware tab.
4. Select the Video group.
5. Under Resolution, choose Scaled.

Chapter 4

[105]

Final installation steps
Now that the necessary tools are installed and the settings have been enabled,
you still need to link to your Xamarin account in Visual Studio, as well as connect
Visual Studio to your Mac build machine. To connect to your Xamarin account,
follow these steps:

1. In Visual Studio, go to Tools | Xamarin Account….
2. Click Login to your Xamarin Account and enter your credentials.
3. Once your credentials are verified, you will receive a confirmation message.

To connect to your Mac build machine, follow these steps:

1. On your Mac, open Spotlight and type Xamarin build host.
2. Choose Xamarin.iOS Build Host under the Applications results group.
3. After the Build Host utility dialog opens click the Pair button to continue.
4. You will be provided with a PIN. Write this down.
5. On your PC, open Xamarin Studio.
6. Go to Tools | Options | Xamarin | iOS Settings.
7. After the Build Host utility opens, click the Continue button.
8. If your Mac and network are correctly configured, you will see your Mac in

the list of available build machines.
9. Choose your build machine and click the Continue button.
10. You will be prompted to enter the PIN. Do so, then click the Pair button.
11. Once the machines are paired, you can build, test, and deploy applications

using the networked Mac.

If for whatever reason you want to unpair these two machines, open the Xamarin.
iOS Build Host on your Mac again, and click the Invalidate PIN button. When
prompted, complete the process by clicking the Unpair button.

Configuring the Visual Studio toolbar
It's a good idea to configure your Visual Studio toolbars so that the Xamarin plugin
can be easily accessed. To configure the toolbar in Visual Studio 2010 Professional,
follow these steps:

1. Right-click the Standard toolbar and choose Customize… from the menu.
2. Select the Commands tab.
3. Select the Toolbar radio button.

Plugins, Templates, Libraries, and Files

[106]

4. Select the Standard toolbar from the drop-down list of options.
5. Select the Solution Configurations widget from the Controls window.
6. Click the Add command... button.
7. Under the Categories list, choose the Build category.
8. In the Commands window, choose the Solution Platforms command.
9. Click the OK button.
10. Click the Close button.

Setting up the toolbar under Visual Studio 2013 Professional is slightly easier:

1. Click the menu drop-down button to the right of the Standard toolbar.
2. Choose the Add or Remove Buttons group from the menu.
3. Select the Solution Platforms option from the list provided.

Creating an iPhone application in Visual
Studio
The process of creating an iPhone application in Visual Studio is very similar to that
of Xamarin Studio. In this walkthrough, you will create a new application that will
consist entirely of code. You will not be adding XIBs or storyboards and you will
define your views programmatically by performing the following steps:

1. Open Visual Studio and create a new iOS solution using the iPhone Empty
Project template.

2. Name your project Visual Studio iOS Demo and click the OK button.
3. Add a new Empty class to your project.
4. Name the class MyRootViewController.
5. Add a using statement for the MonoTouch.UIKit framework, as shown in

the following line of code:
Using MonoTouch.UIKit;

6. Set the class to inherit from UIViewController, as shown in the
following code:
classMyRootViewController : UIViewController
{
}

Chapter 4

[107]

7. Override the ViewDidLoad() method:
public override void ViewDidLoad()
{
base.ViewDidLoad();
View.BackgroundColor = UIColor.LightGray;
}

8. Open the AppDelegate.cs file.
9. Just before the FinishedLaunching() method, add the following code:

MyRootViewControllerrootVC = new MyRootViewController();
UINavigationControllernavigationController = new
 UINavigationController();

10. Replace the default code in the FinishedLaunching() method with the
following code:
window = new UIWindow(UIScreen.MainScreen.Bounds);

rootVC.Title = "My Controller";

window.RootViewController = navigationController;
navigationController.PushViewController (rootVC, true);
this.window.MakeKeyAndVisible ();
return true;

You have now created a new custom view controller and set that as the root view
controller in your application. When you run the app at this stage, you should see a
completely gray screen on your simulator or device and a header with the title My
Controller, but not much else. Let's continue by adding some controls to your new
custom view:

1. Back in the MyRootViewController file, add a using statement for
System.Drawing, shown here:
Using System.Drawing;

2. Now in the ViewDidLoad() method, add the following lines of code:
float h = 31.0f;
float w = View.Bounds.Width;

UITextFieldtextField = new UITextField
{
 Placeholder = "Enter some text",
BorderStyle = UITextBorderStyle.RoundedRect,

Plugins, Templates, Libraries, and Files

[108]

 Frame = new RectangleF(10, 75, w - 20, h)
};

UILabel label = new UILabel
{
 Frame = new RectangleF(10, 120, w - 20, h)
};

UIButtonsubmitButton =
 UIButton.FromType(UIButtonType.RoundedRect);
submitButton.Frame = new RectangleF(10, 170, w - 20, 44);
submitButton.SetTitle("Submit", UIControlState.Normal);
submitButton.TouchUpInside += delegate
{
label.Text = textField.Text;
textField.Text = "":
};

View.AddSubview(textField);
View.AddSubview(submitButton);
View.AddSubview(label);

If you run your application at this stage, you will see a view that looks something
like the following screenshot:

Chapter 4

[109]

The app now has duplicate functionality to the app you created in Chapter 3, Working
with Xcode and the Android SDK, using Xamarin Studio and Xcode as your design
platform. As you can see, there is a little more code involved and you need to manually
define the location and size of each control, but it's really not too complicated.

How it works
First, you set up the basic framework of your new application. You began by creating
a new view controller by inheriting from the UIViewController class. Next, you
created an override of the UIViewController.ViewDidLoad() method and you
used that to change the background color property of the view. Finally, you tied
your new customer view controller into your application using the AppDelegate
class. Your code initializes an instance of the MyRootViewController class and
then initializes an instance of UINavigationController (both outside of the
FinishedLaunching() method for garbage collection purposes). Then, you set the
navigation controller instance as the root view controller of your app. The window
object is, effectively, your application container, while you can think of the root view
controller as your home screen.

Note that a navigation controller is a container for other views and is itself treated
like a view in this context. The navigation controller is responsible for maintaining a
stack of memory that keeps track of which view is currently visible, plus any views
that exist underneath the visible view. Views are pushed and popped on and off
the stack using the PushViewController() and PopViewControllerAnimated()
methods. Your application can have multiple navigation controllers, but keeping that
number to a minimum makes it easier to maintain your app (and your sanity).

Be aware that every time you create a new view, you are allocating a
chunk of precious system memory to maintain that view. Once you push
that view onto the stack, its memory will remain allocated until the view
is popped. For this reason, it is very important from a development point
of view to maintain a clear path of navigation throughout your app, and
avoid circular navigational paths. This kind of design flaw can result in
unused views hanging around in memory, causing seemingly random
out-of-memory exceptions that can be extremely difficult to diagnose.

Once your application framework was established, you created three controls
programmatically. Note that each of your controls, like every object in a view, has a
Frame property. In iOS, Frame defines an object's location in the parent view and the
object's size. In your code, you are defining the frame object for each of your controls
using a RectangleF object in the format RectangleF(xCoordinate, yCoordinate,
width, height), where each of the parameters is a float data type.

Plugins, Templates, Libraries, and Files

[110]

Project templates
Xamarin Studio comes bundled with a number of project templates. In this section,
we'll examine the most commonly used template options provided for Xamarin.iOS,
Xamarin.Android, and Xamarin.Mac. There are several advanced project templates
that won't be covered in this text. In addition, there are several commonly used
project templates for mobile apps, but these will be discussed in detail in Chapter 5,
Working with Xamarin.Forms.

iOS project templates
Xamarin Studio provides several iOS project templates for you to choose from.
These templates are organized into groups by platforms, namely iPhone, iPad, and
Universal. Any project template that you can create in Visual Studio is the same as
its counterpart in Xamarin Studio. As previously mentioned, you cannot add XIBs
to your projects in Visual Studio so your template options are slightly limited while
using the plugin. You can still build views and view controllers programmatically,
plus you can add storyboards, but if you want to add XIBs, you will need to open
your project in Xamarin Studio on a Mac and add them there. Here's a list of the
available project types for iOS:

• Empty Project: This is a simple iOS application frame that includes only the
AppDelegate.cs, Info.plist and Main.cs files. This project template is not
available in the storyboard format, but it is available using the Visual Studio
plugin. This project type is available in both C# and F#.

• Single View Application: This includes all of the files from the Empty
Project, plus a single XIB file prewired to the AppDelegate class. The single
view template is available to all of the iOS project groups, as well as the
Visual Studio plugin, although you can't edit the XIB file using Visual Studio.
This project type is available in both C# and F#.

• iOS Tabbed Application: This uses a tab navigation UI design. This UI is
built using the UITabBarController class. The tabbed-application template
will create a project framework to create tabbed applications. This template is
available to all of the iOS project groups, as well as the Visual Studio plugin.
This project type is currently only available in C#.

• iOS Utility Application: This template will create the framework for a utility
application. Utility applications are fairly simple, consisting of one main view
and one supporting view, which are presented by means of a flip animation.
These applications are optimized for simple tasks that require very little user
interaction. At the time of writing this, the utility application template is
available for the iPad, iPhone, and Universal groups, but it is not available using
the Visual Studio plugin. This project type is currently only available in C#.

Chapter 4

[111]

• Page Based Application: This template will create a framework for a
page-based application. Page-based applications use UIPageViewController,
which changes views while swiping, and uses an animation transition
resembling a page being turned into a book. The page-based application
template is only available in the iPad, iPhone, and Universal iOS groups, and
it is not available using the Visual Studio plugin. This project type is currently
only available in C#.

• Web View Application: This simply uses the UIWebView control to display a
web page. The Web View Application template creates a framework, which
includes a view based on web view control. This template is only available
in the iPad, iPhone, and Universal iOS groups, and is not available using the
Visual Studio plugin. This project type is currently only available in C#.

• Sprite-Kit Application: Use this template if you are into game development.
Sprite Kit is Apple's native game framework in order to render 2D graphics
and animation. It includes support for many of the functions you would
expect to find in a game engine, such as animations, collision detection, A/V
support, and more. The Sprite-Kit Application template is only available in
the iPad, iPhone, and Universal iOS groups, and is not available using the
Visual Studio plugin. This project type is currently only available in C#.

For more information about Sprite Kit, please review this article
from Apple at https://developer.apple.com/Library/
ios/documentation/GraphicsAnimation/Conceptual/
SpriteKit_PG/Introduction/Introduction.html.

• Master-Detail Application: This template utilizes the Split View Controller
design. The Master-Detail Application template is available to all of the
iOS project groups, as well as the Visual Studio plugin. This project type is
currently only available in C#.

• iOS Binding Project: This allows you to consume third-party Objective-C
libraries for use within Xamarin Studio. This project uses the same tools that
Xamarin uses to bring the native iOS APIs into Xamarin Studio. Note that if
you need to consume standard C libraries, you should just use the P/Invoke
framework already built into .NET. More details on the binding project
type will be discussed later in the Libraries section of this chapter. The iOS
Binding Project template is found under the main iOS group, but it is not
available using the Visual Studio plugin. This project type is currently only
available in C#.

https://developer.apple.com/Library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/Library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html
https://developer.apple.com/Library/ios/documentation/GraphicsAnimation/Conceptual/SpriteKit_PG/Introduction/Introduction.html

Plugins, Templates, Libraries, and Files

[112]

• iOS Unit Tests Project: This template will create a unit test project based on
the Touch.Unit framework, which includes an iOS test component as well as
a modified version of NUnitLite. The iOS Unit Test Project template is found
under the main iOS group, but it is not available using the Visual Studio
plugin. This project type is currently only available in C#.

• iOS Library Project: This template will allow you to create packages of files
that can be shared between solutions. These packages can contain the actual
files or links to those files. More details on the Library project type and file
linking will be discussed later in the Libraries section of this chapter. The iOS
Library Project template is found under the main iOS group, but it is not
available using the Visual Studio plugin. This project type is currently only
available in C#.

• OpenGL Application: This template allows you to create apps that utilize
the OpenGL framework. The OpenGL Application template is available to
all of the iOS project groups, as well as the Visual Studio plugin. This project
type is currently only available in C#.

What are iPhone, iPad, and Universal applications?
From a development perspective, iPhone and iPad applications are
fairly similar. You'll use the same tools to build them, the same code
for the most part, as well as many of the same controls. From a design
perspective, however, iPhone and iPad applications are quite different.
The additional real estate available on an iPad means that views can
contain more controls and functionality. Plus, the iPad itself introduces
additional UI controls and features that target the larger screen space.
These changes can positively affect user experience and the overall
workflow in the application if you take advantage of them. One way to
do this is to create separate views targeting iPhones and iPads. As you
can imagine, this means you could potentially double the amount of
work you need to put into developing and maintaining your UI.
Alternatively, you can create a Universal application. Universal
applications are optimized to run on iPhones, iPads, and even the
newer iPad Mini devices, and provide the best experience for the user.
Customizing the views for each type of device will still require some
additional tweaking on your part, but not nearly the workload needed
to create and maintain dual UIs.

Chapter 4

[113]

Android project templates
Xamarin Studio provides eight Android project templates for you to choose from.
Most of these templates are available from within Visual Studio, with the exception
of the Unit Test and Web View templates. Again, each of the project templates
available in Visual Studio is the same as its Xamarin Studio counterpart:

• Android Application: This is a blank Android framework that you can
build on. When you create a project using this template, it will include
<solution> and <project> of the same name, folders for Assets,
Resources, and Properties, and a MainActivity.cs file. This
project type is available in both C# and F#.

• Android Honeycomb: This project template will create an application that
supports the Android 3.x operating system and above. This application will
not provide support for features from API Level 14 and above. However,
some backward compatibility for Android 1.6 (API Level 4) through Android
2.3.3 (API level 10—Gingerbread) can be introduced using the Android
Support Package. This project type is available in both C# and F#.

For more information on the Android Support Package, please
refer to the documentation at http://developer.android.
com/tools/support-library/index.html and http://
docs.xamarin.com/guides/android/platform_
features/fragments/part_4_-_providing_backwards_
compatibility_with_the_android_support_package/.

• Android Ice Cream Sandwich: This project template will create an
application that supports the Android 4.0 and 4.0.3 operating system. This
project template does not automatically include support for Android 4.1
(API level 16—Jelly Bean) or above. However, it is possible to add additional
features for Android 4.1 and Android 4.4 (API Level 19—KitKat). For Jelly
Bean support, you must run Xamarin.Android 4.2.6 or higher and have
Android 4.1 (API Level 16) installed. For KitKat support, you must run
Xamarin.Android 4.11.0 or higher and have Android 4.3 (API Level 19)
installed. This project type is available in both C# and F#.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html
http://docs.xamarin.com/guides/android/platform_features/fragments/part_4_-_providing_backwards_compatibility_with_the_android_support_package/
http://docs.xamarin.com/guides/android/platform_features/fragments/part_4_-_providing_backwards_compatibility_with_the_android_support_package/
http://docs.xamarin.com/guides/android/platform_features/fragments/part_4_-_providing_backwards_compatibility_with_the_android_support_package/
http://docs.xamarin.com/guides/android/platform_features/fragments/part_4_-_providing_backwards_compatibility_with_the_android_support_package/

Plugins, Templates, Libraries, and Files

[114]

• Android Library: This is a package of source code and Android resources
that can be shared between multiple Android projects. As with its iOS
counterpart, this library contains the actual files or links to those files.
This project type is available in both C# and F#.

• Java Bindings Library: This project template creates a .NET assembly
containing the necessary Managed Callable Wrappers classes, JAR files, and
resources for Android Library projects embedded into it. By referencing this
assembly, a Xamarin.Android project may use an existing third-party Java
library. More details on the binding project types will be discussed later
in the Libraries section of this chapter. This project type is currently only
available in C#.

For more information on building and using Java Bindings
Library projects to import third-party Android libraries, please
refer to http://docs.xamarin.com/guides/android/
advanced_topics/java_integration_overview/
binding_a_java_library_(.jar)/.

• Android WebView: This template will create an application project that can
display web pages using the WebView control. This project type is currently
only available in C#.

• Android Unit Test: This project template will create a unit test project
targeting an Android application. This project type is available in both
C# and F#.

• Android OpenGL Application: This template is similar to its iOS
counterpart in that it creates a framework in order to work with graphics
in your applications. This project type is available in both C# and F#.

Mac and Mac (open source) project templates
For the sake of completeness, we will also discuss the project types available through
Xamarin.Mac. There are two main groups of projects in this package: Mac and Mac
(open source). The main difference between the Mac and the Mac (open source)
options is that the latter utilizes a more limited set of APIs.

• Xamarin.Mac: This project template creates a single-window Mac project that
you can build on as needed. Under the open source group, this is referred to
as a MonoMac project. This project type is available in both C# and F#.

http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview/binding_a_java_library_(.jar)/
http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview/binding_a_java_library_(.jar)/
http://docs.xamarin.com/guides/android/advanced_topics/java_integration_overview/binding_a_java_library_(.jar)/

Chapter 4

[115]

• Xamarin.Mac Library: This project is a package of source code and Mac
resources that can be shared between multiple projects. As with its iOS and
Android siblings, this library can contain the actual files or links to those
files. The open source version is called MonoMac Library. This project type
is currently only available in C#.

• Empty Xamarin.Mac: This project is a blank slate for you to build on.
Its open source counterpart is the Empty MonoMac project. This project
type is available in both C# and F#.

• Xamarin.Mac Document: This project template lets you create an Apple
Document application. Document-based apps organize multiple documents,
each within its own window, often displaying multiple documents
simultaneously. The open source version is called MonoMac Document. This
project type is currently only available in C#.

Libraries
There are two project templates that need to be explored in more detail due to the
power they provide to your applications. These are the Portable Class Library (PCL)
and the Binding Library projects.

Portable Class Library
Developing true cross-platform applications would not be feasible without a
significant amount of code sharing. Unfortunately, each platform is built to a
different .NET Core Library Profile. This means you can't directly share code
libraries between different platform solutions because each of these libraries is
built to target unique profiles. There are three ways to work around this problem.

The first is to simply duplicate code across your projects. Maintaining multiple sets
of duplicate code is tedious and prone to errors such as copy/paste fail. Duplicate
code means you end up with multiple separate solutions instead of a cross-platform
application. If code duplication was the only option it would be better to just write
your applications in native than to incur the costs of so much additional development
and maintenance overhead.

Plugins, Templates, Libraries, and Files

[116]

The second option is to implement file linking. File linking uses symbolic links for a set
of files, rather than importing the files themselves. This means you can edit these files
in one solution, and see the changes in each of the solutions that link to these files.

The final option is to use PCL. With PCL, you can write code and create libraries
that can then be shared in multiple platforms including iOS, Android, and Windows
Phone. The Portable Library project template can be found under the C# group and
is available in both Xamarin Studio as well as Visual Studio.

Both the file linking and PCL approaches have their strengths and
weaknesses. For instance, file linking can introduce an additional
build step if you are building reusable components that are
intended for external use only, while PCLs require some extra
work to separate profile specific code into targeted libraries. For a
more detailed discussion on when to choose file linking or the PCL
approach, please review http://docs.xamarin.com/guides/
cross-platform/application_fundamentals/building_
cross_platform_applications/sharing_code_options/.

Binding Project
The second library project we need to explore is the Binding project template.
The importance and value of this project type cannot be overstated, as it is one of
those areas where Xamarin Studio really shines. When working on iOS or Android
projects, you will frequently find ideas from third-party libraries and SDKs that
you want to incorporate into your own application. For these cases, you can either
recreate the functionality from scratch, or use binding projects to create a C#
wrapper for the native third-party library.

iOS Binding Project
The iOS Binding Project template uses the same tools that Xamarin uses to wrap
the iOS APIs with C#. When you create a new iOS Binding Project, it will contain
an ApiDefinition.cs file and a StructsAndEnums.cs file. The ApiDefinition.cs
file will contain the API contract definition, while the StructsAndEnums.cs file will
contain any definitions required by your code.

http://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
http://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
http://docs.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/

Chapter 4

[117]

Creating a comprehensive, high-quality binding takes time, but luckily there is a
new tool called Objective Sharpie that can help generate the API contract for you.
Objective Sharpie works by parsing the header files of the native library you are
trying to import, and mapping the public API to the binding definition. At the time
of writing this, Objective Sharpie is a standalone Mac OS X application but there are
plans to integrate it into Xamarin Studio at some point in the future. This tool will
not eliminate all of the work needed to create the contract, but it will greatly reduce
the effort required.

For more information on using Objective Sharpie, please review the
Xamarin documentation at http://developer.xamarin.com/
guides/ios/advanced_topics/binding_objective-c/
objective_sharpie/.

Java Bindings Library
If you want to include third-party Java libraries with your application, you have
two choices. You can either use the Java Native Interface (JNI) to invoke calls to
the libraries directly, or you can create a Java Bindings Library project to wrap the
library in C#. The Java Bindings Library project actually uses a JNI bridge called
Managed Callable Wrappers to implement the bindings. Although the process of
creating the wrapper is not completely automated yet, it's still much easier to use
an existing Android library within a Java Bindings Library project than it is to write
your own for a specific function or feature.

Files
Many of the file types you can add to your projects in Xamarin Studio are
self-explanatory for developers, but it doesn't hurt to review some of those that are
unique to Xamarin Studio, as well as those that are platform-specific. Unfortunately,
detailed demonstrations of how to use each of these files is beyond the scope of this
book. Hopefully, these descriptions can spark your imagination and provide ideas
for your applications:

• Native iOS and Android applications can support hybrid HTML 5 functionality
by using the Razor templating engine. Adding a Preprocessed Razor Template
file to your project will allow you to incorporate Razor-powered web apps into
your application.

http://developer.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/
http://developer.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/
http://developer.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/

Plugins, Templates, Libraries, and Files

[118]

• Add an Asset Catalog to your iOS 7 application to help simplify management
of the various images needed for the user interface of your application. An
Asset Catalog is not a simple resource file. When you add this object to your
project, it will create a folder called Images.xcassets, and within that two
more folders called AppIcons.appiconset and LaunchImages.launchimage.
Within each of these folders there is a Contents.json file, which is a form of
visual designer for your image collection, as shown in the following screenshot:

• Within the Contents.json file, your images are organized into groups called
sets, each based on an iOS version and device type. These sets include a tile
representing the dimension definitions required by your application for each
image resource. With this designer open, you can drag-and-drop images into
their respective tiles to assign them as needed throughout your app. Finally,
if you need additional image groups, you can add new subfolders to the
Images.xcassets folder and Xamarin Studio will automatically include a
new Contents.json file in that folder.

• An interface definition is simply an Interface Builder (IB) file. You can add
a new IB file to your iPhone or iPad application by selecting the respective
Empty Interface Definition file type. This new file is a completely blank
canvas to design views for your application.

Chapter 4

[119]

• A storyboard is a hybrid user interface model that includes both the view
controllers and the navigation mechanisms in one file. You can add a blank
storyboard to your iPhone and iPad applications by selecting the Empty
iPhone Storyboard or Empty iPad Storyboard file, respectively.

• A view inherits from the iOS UIView class, and it is the foremost way an
iOS application will interact with a user. It defines a rectangular area with
dimensions specific to the device it is running on. This definition also
includes the content management for objects in that area. Views can contain
zero or more subviews, and it has the ability to define the size and position of
these subviews as needed. Views are themselves responders that can handle
touch events. You can add a view to your iPhone or iPad application by
choosing the iPhone View or iPad View file type, respectively.

• A view controller is the fundamental view-management model for all iOS
applications, inheriting from the UIViewController class. They manage sets
of views, coordinating its work with other model objects so your app presents
a unified user experience. You can add a view controller to your iPhone, iPad,
or Universal application by choosing the iPhone View Controller, iPad View
Controller, and Universal View Controller files, respectively.

• Table view controllers are controller objects that manage an instance of
UITableView. This object inherits from the iOS UITableViewController
class. You can add table view controllers to your iPhone or iPad application
by choosing the iPhone Table View Controller or iPad Table View
Controller files, respectively.

• Table view cells inherit from the iOS UITableViewCell class. They define
the attributes and behaviors of a cell that appears within the view bounds of
a table view. You can add an instance of this control to your iPhone, iPad, or
Universal application by choosing the respective file type.

• Collection view controllers are view controllers that consist of a collection
view, and they inherit from the iOS UICollectionViewController class.
You can add an instance of this control to your application using the iOS
Collection View Controller.

• Collection view cells inherit from the iOS UICollectionViewCell class.
These objects represent the content of a single data item while that item is
visible within the bounds of the parent view, and they can be customized
as needed. You can add a new collection view cell to your iPhone, iPad, or
Universal application by choosing the respective file type.

• A Dialog View Controller (DVC) inherits from and provides a simplified
API to the iOS UITableViewController class. The control is essentially a
view that contains a table view.

Plugins, Templates, Libraries, and Files

[120]

For more information on any of the above iOS control
types, please review the Apple Developer library at
https://developer.apple.com/.

• A property list (PList) file is a special XML file used by iOS applications to
store data for the application, which will change frequently. This file stores
the data outside of the main app bundle so any changes will not require the
application to be rebuilt. You can think of the Plist file as being similar to a
config file in .NET applications.

• A settings bundle file has the name Settings.bundle and resides in the top
level directory of your solution. Settings bundles are used by Settings App
Interface to implement a set of pages to navigate the application's settings.

• An Android Activity at its simplest form is a screen in an Android
application. Since Android's architecture doesn't rely on a single application
instance, an application can be seen as a conglomeration of one or more
activities. If you are new to Android, it will be important to understand
the concept of an activity as it might be the most important concept in
Android development.

• Use the Android Fragment file type to add a new fragment to your
application. Unlike the iOS platform, which serves a very finite number of
device types, Android can run on more devices and in more shapes and
sizes than I can think of. As of Android 3.0, the concept of the Fragment
was introduced to help service flexible user interface designs for the many
screen sizes found on modern devices. You can think of a Fragment as a
user interface module that can be mixed and matched with other modules
to assemble screens that are aesthetically pleasing and contain a logical
workflow, even on very different devices. What's really great about
fragments is that the developer doesn't have to lay out the various modules
to work with every screen size—you just need to provide the fragments and
the activity will decide which fragments to use automatically!

• An Android Layout will add a new layout to your application. For more
information on layouts, please refer to Chapter 3, Working with Xcode and
the Android SDK.

• An Android View will add a new view to your application. For more
information on views, please refer to Chapter 3, Working with Xcode and
the Android SDK.

• In order for your Android application to work with remote notifications, you
must configure a Broadcast Receiver to listen for the intents that the Google
Services Framework will publish when it receives a message from the
Google Cloud Messaging service.

https://developer.apple.com/

Chapter 4

[121]

For more information on using the Google Services Framework
and Google Cloud Messaging in Xamarin.Android projects, refer
to Xamarin's documentation on how to implement these features
at http://developer.xamarin.com/guides/cross-
platform/application_fundamentals/notifications/
android/remote_notifications_in_android/.

Summary
In this chapter, we learned about the Visual Studio plugin, and walked through
setting up plugin, as well as binding Visual Studio to a networked Mac build
machine. We discussed each of the major project templates available in Xamarin
Studio, pointing out to the ones that are available when using the Visual Studio
plugin. We also looked at the various library types and how they can be leveraged
to reduce your development workload. Finally, we briefly examined the file types
available to use in your solutions.

In the next chapter, we will take a look at the Xamarin.Forms framework newly
introduced by Xamarin 3. You will learn to build a fully functional cross-platform
application in just a few minutes using XAML and the UI design API included with
the framework.

http://developer.xamarin.com/guides/cross-platform/application_fundamentals/notifications/android/remote_notifications_in_android/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/notifications/android/remote_notifications_in_android/
http://developer.xamarin.com/guides/cross-platform/application_fundamentals/notifications/android/remote_notifications_in_android/

Working with Xamarin.Forms
In this chapter, we will cover the following topics:

• Requirements for using Xamarin.Forms
• The Xamarin.Forms project templates
• The Xamarin.Forms components
• The API design
• The XAML design

In addition to the new iOS designer, Xamarin 3 introduces another powerful
toolset to Xamarin Studio: the Xamarin.Forms framework. Xamarin.Forms is a
UI toolkit abstraction that allows developers to rapidly create user interfaces that
will run natively on iOS, Android, and Windows Phone devices all from within
the same solution.

This works because the Xamarin.Forms toolkit is a wrapper that sits on top
of the native UI elements from each platform. At compile time, the UI elements
you create in these projects are converted to their native counterparts. This means
that your application will retain the look and feel of a native application across all
three platforms.

This chapter will briefly introduce the project templates available in the Xamarin.
Forms framework, and you will learn to use those templates to create a solution
that will run on iOS and Android devices using a single code base.

Working with Xamarin.Forms

[124]

Requirements for using Xamarin.Forms
Technically speaking, Xamarin.Forms is loaded with the Starter edition of Xamarin
Studio. Unfortunately, the compiled applications are roughly 512 KB (iOS) and 768 KB
(Android) at a minimum, which exceeds the compiled application size limit of 64 KB
imposed on the Starter edition of Xamarin Studio. As a result, you will need to obtain
an Indie license or higher for either Xamarin.iOS or Xamarin.Android to build apps
using Xamarin.Forms.

If you would like to try out Xamarin.Forms but you don't want to make that financial
commitment yet, you can get a fully functional trial subscription for both Xamarin.
iOS and Xamarin.Android. Although this trial only lasts for 30 days, it will provide
you with more than enough time to follow the walkthroughs later in this chapter.

If your trial period is over, you might be able to get a one-time extension
for the purpose of test driving the Xamarin.Forms framework by
sending e-mail to hello@xamarin.com and making a polite request.
As far as I know, this extension is granted to interested developers as a
courtesy from Xamarin. This courtesy is not part of any official policy I
am aware of, though, so there are no guarantees it will be granted.

The Xamarin.Forms project templates
Xamarin.Forms introduces three additional project templates for you to choose from.
At the time of writing this, these templates are only available in C# format:

• Blank App (Xamarin.Forms Portable): This template will create a blank
application based on PCL. In Chapter 4, Plugins, Templates, Libraries, and Files,
we learned that PCL allows you to share code across multiple platforms and
any refactoring will update all references. PCL, however, lacks support for
preprocessor directives, and only a subset of .NET functions are available.

• Blank App (Xamarin.Forms Shared): This template will create a blank
application based on the shared project paradigm. Shared projects can utilize
preprocessor directives and can contain platform-specific references while
remaining usable across all platforms. Although shared projects have no
output type, that's not a problem in this context since the solution must also
contain a platform-specific project for whichever platform you are targeting.

• Class Library (Xamarin.Forms Portable): This template will allow you to
create a standard class library project that can be shared across all Xamarin.
Forms applications.

Chapter 5

[125]

The components of Xamarin.Forms
The goal of Xamarin.Forms is to enable individuals or teams to rapidly develop
cross-platform apps, primarily targeting enterprise use. In my opinion, this goal has
been achieved because creating cross-platform applications using Xamarin.Forms is
remarkably simple. There are three primary skills that you need to become familiar
with to get started: data binding, the Xamarin.Forms components, and navigation in
Xamarin.Forms.

Data binding
Data binding is a process that establishes a read/write connection between UI
components and the business logic of an application. Typically, bindings can be
established as either one-way or two-way data binding. In one-way data binding,
changes in the source will update the target or changes in the target will update the
source. In two-way data binding, changes in either the source or target will update
the other.

Anyone who has built an app using the MVVM design paradigm should be very
familiar with the concept and power provided by data binding. Personally, I didn't
appreciate how powerful it was until I had to build native iOS applications and
learned that data binding is not a built-in component of every language.

Luckily, the Xamarin.Forms framework includes the BindableObjects class, which
implements the data binding infrastructure in a way that will feel familiar to WPF
and Silverlight developers. This infrastructure includes support for both one- and
two-way binding, value converters, static resources, ItemsSource, and data templates.
The INotifyPropertyChanged and INotifyCollectionChanged interfaces are
included, although there is no INotifyDataErrorInfo implementation this time.
Also, binding validation is missing (at the time of writing this), but you can easily
work around that limitation by implementing your own entry-point validation.

Components
Having the ability to create boilerplate UI components that will run on multiple
platforms and can be compiled using native controls is extremely useful. Xamarin.
Forms goes a step further, however, giving you the ability to tailor components per
platform by writing custom renderers. This means that your designs are not limited
to the basic controls currently available; you can customize how the controls appear
and these customizations can be unique for each platform.

Working with Xamarin.Forms

[126]

Xamarin.Forms provides four primary core components that you can use to create
your applications:

• View: This component represents base user controls in Xamarin.Studio.
Controls such as labels, buttons, and textboxes are all examples of Views.

• Page: This component represents ViewController in iOS, an Activity in
Android, and a Page in Windows Phone.

• Layout: Layouts are View containers used to organize sublayouts and
Views. Typical examples of Layouts include the Grid and StackLayout
controls. Layouts will normally contain logic used for organizing their
child components.

• Cell: This is a simplified element that defines how list and table items are
rendered and displayed. This option allows you to combine a label with
other visual elements in lists and tables.

Navigation
In a Xamarin.Forms application, your in-memory Pages are stored in a stack
data structure, with the topmost Page being the one that is visible to the user. For
navigation, Pages need to be pushed and popped on and off this stack as the user
navigates through the application. In this respect, navigation of Xamarin.Forms
somewhat resembles that of iOS applications; except in the case of Xamarin.Forms,
navigation is handled using asynchronous calls.

These asynchronous calls are defined in the INavigation interface, and each
call returns a Task object that can be used to check whether or not the navigation
was successful. The NavigationPage class is included in the framework, and it is
similar to UINavigationController of iOS. The NavigationPage class implements
INavigation, and acts as a Page manager, neatly providing a container and
mechanism to push and pop Pages when the application executes.

The API design
As mentioned earlier, there are two ways to build apps using Xamarin.Forms.
The first method is to use the built-in user interface API methods. This approach
is strictly code-based; if you're comfortable using code to create all of your Pages,
then this is the way to go. Another way is to use XAML to design your Pages,
which will be discussed later in this chapter.

Chapter 5

[127]

Since I'm writing this chapter at the height of the spring fishing season, I would like
to build an app that can help my fellow anglers in some small way. Let's demonstrate
building a Xamarin.Forms application that lists types of fishing hooks and provides
brief details on their selection and use for various game fishing species. First, we'll set
up the solution by performing the following steps:

1. In Xamarin Studio, create a new solution. Choose the Blank App
(Xamarin.Forms Portable) project template by navigating to C# |
Mobile Apps, as shown in the following screenshot:

2. Name your project FishHooksAPI and click the OK button.
3. Your solution will open and the Solution Explorer will display three projects,

including FishHooksAPI, FishHooksAPI.Android, and FishHooksAPI.iOS.
4. Add three new folders named Models, ViewModels, and Views to the

FishHooksAPI project.
5. Right-click the Models folder and choose New File under Add.
6. Choose the Empty Class file type from General.
7. Name your file FishHook and click the OK button.
8. Right-click the ViewModels folder and choose New File under Add.
9. Choose the General | Empty Class file type.
10. Name your file FishHooksViewModel and click the OK button.
11. Right-click the Views folder and choose New File under Add.

Working with Xamarin.Forms

[128]

12. Choose the General | Empty Class file type.
13. Name your file FishHooksPage and click the OK button.
14. Right-click the Views folder and choose New File under Add.
15. Choose the Empty Class file type under General.
16. Name your file FishHookDetails and click the OK button.

Your solution should now look like the following screenshot:

Next, you'll add the classes to your project:

1. Open the FishHook.cs file from the Models folder.
2. Add the following using statements:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

Chapter 5

[129]

3. Change namespace to the following:
FishHooksAPI.Models

4. Add the following properties:
public string HookName { get; set; }
public string BestSpecies { get; set; }
public string HookDetails { get; set; }

5. Save the file.
6. Open the FishHooksViewModel.cs file from the ViewModels folder.
7. Add the following using statements:

using FishHooksAPI.Models;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

8. Change namespace to the following:
FishHooksAPI.ViewModels

9. Add the following property:
public ObservableCollection<FishHook> FishHooks
{ get; set; }

10. Inside the constructor, add the following code:
FishHooks = new ObservableCollection<FishHook>();
FishHooks.Add(new FishHook
{
 HookName = "Worm Hook",
 BestSpecies = "Largemouth Bass, Smallmouth Bass,
 Speckled Trout, Redfish",
 HookDetails = "The best all-around bass hook. Can be
 used to rig plastics in numerous ways. Usable in
 weeds, rocks, and timber."
});
//More object definitions are available in the accompanying
 code packet.

11. Save the file.
12. Open the FishHooksPage.cs file from the Views folder.

Working with Xamarin.Forms

[130]

13. Add the following using statements:
using FishHooksAPI.Models;
using FishHooksAPI.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Xamarin.Forms;

14. Change namespace to the following:
FishHooksAPI.Views

15. Make the class inherit from ContentPage as shown in the following line
of code:
public class FishHooksPage : ContentPage

16. Add the following code to the constructor:
Title = "Fish Hooks";
var list = new ListView();
var viewModel = new FishHooksViewModel();
list.ItemsSource = viewModel.FishHooks;
var cell = new DataTemplate(typeof(TextCell));
cell.SetBinding(TextCell.TextProperty, "HookName");
list.ItemTemplate = cell;
list.ItemTapped += (sender, args) =>
{
var fishHook = args.Item as FishHook;
if (fishHook == null)
{
return;
}
Navigation.PushAsync(new FishHookDetails(fishHook));
list.SelectedItem = null;
};
Content = list;

17. Save the file. Note that at this time, your application will have errors and
cannot be built.

18. Open the FishHookDetails.cs file from the Views folder.

Chapter 5

[131]

19. Add the following using statements:
using FishHooksAPI.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Xamarin.Forms;

20. Change namespace to the following:
FishHooksAPI.Views

21. Make the class inherit from ContentPage as shown in the following line
of code:
public class FishHookDetails : ContentPage

22. Add the following parameter to the constructor:
FishHook fishHook

23. Add the following code to the constructor:
this.Title = fishHook.HookName;
StringBuilder sb = new StringBuilder();
sb.Append ("Best used for: ")
 .AppendLine().Append(fishHook.BestSpecies).AppendLine()
 .AppendLine();
sb.Append ("Hook details: ")
 .AppendLine().Append(fishHook.HookDetails).AppendLine()
 .AppendLine();
var details = new Label
{
Text = sb.ToString()
};
Content = new ScrollView
{
Padding = 20,
Content = details
};

24. Save the file.

Working with Xamarin.Forms

[132]

Now, your files and folders are ready, but you still need to tie it all together. To do
that, you need to edit the App.cs file by performing the following steps:

1. Open the App.cs file.
2. Add the following using statements:

using FishHooksAPI.Views;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Xamarin.Forms;

3. Replace the code in GetMainPage() with the following code:
var fishHooks = new FishHooksPage();
return new NavigationPage(fishHooks);

4. Right-click the iOS project and choose Set as startup project.
5. Run the application in the Debug mode.

Your application's initial screen should look something like the
following screenshot:

Chapter 5

[133]

6. If you select one of the hooks, you will see a detail view similar to the
following screenshot:

How it works
In this walkthrough, you created your first Xamarin.Forms application that will run
on both iOS and Android devices using a single code base. You started by creating
folders commonly used in MVVM-based applications.

The step to create an MVVM-based folder structure is not
absolutely necessary, but it's good practice to organize your
work. As your applications grow from this simple example into
something more complex, these folders will help you to keep your
files logically organized. You may also have noticed that your
namespaces were created to match this folder structure. Again, this
is not a requirement but it is a good practice.

Working with Xamarin.Forms

[134]

Next, you added the FishHook model. This simple model represents a fishing hook
and contains its name, details, and those species of fish the hook is best suited to catch.
In order to link your model data to the UI, you need a ViewModel. So, you added
the FishHooksViewModel class. This class contains an ObservableCollection<T>
object. ObservableCollection implements the INotifyCollectionChanged
and INotifyPropertyChanged interfaces, both of which are necessary to support
binding under the MVVM model. Inside the FishHooksViewModel constructor, you
instantiated this collection and began adding FishHook objects.

After this, you began to really work with an API to build your app by adding
two Pages named FishHooksPage and FishHookDetails. The FishHooksPage
Page contains a list of every object in ViewModel, while FishHookDetails displays
the details of each of those models. The FishHooksPage class contains two critical
components for our discussion. First, you created a new ListView object and set
the ItemsSource property to an instance of FishHooksViewModel. Then, the
ListView object's ItemTapped event handler was defined. In this definition,
you called Navigation.PushAsync by passing in a new instance of the
FishHookDetails view and the fishhook object the user selected.

Then, you created a new cell object based on TextCell.DataTemplate, and then
bound the properties of that cell using the SetBinding() method. An instance of this
cell will be created to populate the ListView object for each object in FishHooks.
ObservableCollection on the ViewModel.

In the FishHookDetails file, you set the page title to the FishHook.HookName
property of the object that is passed into the constructor. Then, you added a
Label object and set the Text property to a custom string based on the details
of the FishHook object.

Your last code changes occurred in the App.cs file, where you replaced the default
code inside the GetMainPage() method with calls to create a new instance of the
FishHooksPage object. Next, you created a new NavigationPage object and
passed in the FishHooksPage object as the new root Page.

Finally, you set the iOS project as the startup project. Setting either the iOS or Android
project as startup is a necessary step because the main project is not executable. Note
that this is the only thing you needed to do with the iOS or Android projects in order
to get this application to function on either platform. Although, it is possible (and
highly important) to eventually write custom code for each platform, it is not strictly
necessary to do so in order to get a fully functioning application up and running.

Chapter 5

[135]

The XAML design
If you have experience creating applications in WPF, Silverlight, or Windows
Store apps, then you may be more comfortable building your applications using
the Xamarin.Forms XAML. Unfortunately, there currently isn't a visual XAML
designer. So, for the time being we have to create our XAML markups by hand,
but that could change in time.

Note that the Xamarin.Forms XAML is somewhat of a subset to the
XAML you may be familiar with, and it also includes new markup
tags and attributes created specifically for the Xamarin.Forms
framework. I mentioned this to point out that you won't be able
to simply import your XAML code files from other solutions and
compile them in Xamarin.Forms without significant refactoring.

Let's create the same fishing hooks application as before, but this time create the
Pages using XAML. Since the namespaces will change for this project, I will take
the time to detail each step again:

1. In Xamarin Studio, create a new solution. Choose the Blank App
(Xamarin.Forms Portable) project template by navigating to C# |
Mobile Apps.

2. Name your project FishHooksXAML and click the OK button.
3. Add the same three new folders named Models, ViewModels, and Views to

the FishHooksAPI project.
4. Right-click the Models folder and choose New File under Add.
5. Choose the Empty Class file type under General.
6. Name your file FishHook and click the OK button.
7. Right-click the ViewModels folder and choose New File under Add.
8. Choose the Empty Class file type under General.
9. Name your file FishHooksViewModel and click the OK button.
10. Right-click the Views folder and choose New File under Add.
11. Choose the Forms ContentPage Xaml file type by navigating to

Views | Forms.
12. Name your file FishHooksPage and click the OK button.
13. Right-click the Views folder and choose New File under Add.
14. Choose the Forms ContentPage Xaml file type by navigating to

Views | Forms.
15. Name your file FishHookDetails and click the OK button.

Working with Xamarin.Forms

[136]

Your solution should have all of the necessary files and folders at this time. Now let's
build the files by performing the following steps:

1. Open the FishHook.cs file from the Models folder.
2. Add the following using statements:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

3. Change namespace to the following:
FishHooksXAML.Models

4. Add the following properties:
public string HookName { get; set; }
public string BestSpecies { get; set; }
public string HookDetails { get; set; }

5. Save the file.
6. Open the FishHooksViewModel.cs file from the ViewModels folder.
7. Add the following using statements:

using FishHooksXAML.Models;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

8. Change namespace to the following:
FishHooksXAML.ViewModels

9. Add the following property:
public ObservableCollection<FishHook> FishHooks
{ get; set; }

10. Inside the constructor, add the following code:
FishHooks = new ObservableCollection<FishHook>();
FishHooks.Add(new FishHook
{
 HookName = "Worm Hook",

Chapter 5

[137]

 BestSpecies = "Largemouth Bass, Smallmouth Bass,
 Speckled Trout, Redfish",
 HookDetails = "The best all-around bass hook. Can be
 used to rig plastics in numerous ways. Usable in
 weeds, rocks, and timber."
});
//More object definitions are available in the accompanying
 code packet.

11. Save the file.
12. Open the FishHooksPage.cs file from the Views folder.
13. Add the following using statements to the FishHooksPage.xaml.cs file:

using FishHooksXAML.Models;
using FishHooksXAML.ViewModels;
using System;
using System.Collections.Generic;
using Xamarin.Forms;

14. Change namespace to the following:
FishHooksXAML.Views

15. Make the class inherit from ContentPage as shown in the following
line of code:
public class FishHooksPage : ContentPage

16. Add the following code to the constructor below the
InitializeComponent() call:
this.BindingContext = new FishHooksViewModel();

17. Add the OnItemsSelected() event handler:
public void OnItemSelected(object sender, ItemTappedEventArgs
args)
{
 var fishHook = args.Item as FishHook;
 if (fishHook == null)
 {
 return;
 }
 Navigation.PushAsync(new FishHookDetails(fishHook));
 list.SelectedItem = null;
}

18. Save the file. Note that at this time, your application will have errors and
cannot be built.

Working with Xamarin.Forms

[138]

19. If the FishHooksPage.xaml file is not open, open it now.
20. Replace the existing ContentPage with the following code:

<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FishHooksXAML.Views.FishHooksPage"
 xmlns:local="clr-
 namespace:FishHooksXAML.Views;assembly=FishHooksXAML"
 Title="Fish Hooks">

21. Replace the contents of the ContentPage tag with the following code:
<ListView x:Name="list" ItemsSource="{Binding FishHooks}"
 ItemTapped="OnItemSelected">
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding HookName}">
 </TextCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>

22. Save the file. Note that at this time, your application will have errors and
cannot be built.

23. Open the FishHookDetails.cs file from the Views folder.
24. Add the following using statements to the FishHookDetails.xaml.cs file:

using FishHooksAPI.Models;
using System;
using System.Collections.Generic;
using Xamarin.Forms;

25. Change namespace to the following:
FishHooksXAML.Views

26. Make the class inherit from ContentPage as shown in the following code:
public class FishHookDetails : ContentPage

27. Add the following parameter to the constructor:
public FishHookDetails(FishHook fishHook)

28. Add the following code to the constructor below the
InitializeComponent() call:
this.BindingContext = fishHook;

Chapter 5

[139]

29. Save the file.
30. If the FishHookDetails.xaml file is not open, open it now.
31. Replace the existing ContentPage node with the following code:

<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FishHooksXAML.Views.FishHookDetails"
 xmlns:local="clr-
 namespace:FishHooksXAML.Views;assembly=FishHooksXAML"
 Title="{Binding HookName}">

32. Replace the contents of the ContentPage tag with the following code:
<ScrollView Padding="20">
 <StackLayout VerticalOptions="FillAndExpand"
 Spacing="10">
 <Label Text="Best used for:" />
 <Label Text="{Binding BestSpecies}" />
 <Label Text="Hook details:" />
 <Label Text="{Binding HookDetails}" />
 </StackLayout>
 </ScrollView>

Now your solution has everything in place. But again, you need to tie it all together
using the App.cs file by performing the following steps:

1. Open the App.cs file.
2. Add the following using statements:

using FishHooksXAML.Views;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Xamarin.Forms;

3. Replace the code in GetMainPage() with the following code:
var fishHooks = new FishHooksPage();
return new NavigationPage(fishHooks);

4. Now, you can run your application on an Android platform. Right-click the
Android project and choose Set as startup project.

Working with Xamarin.Forms

[140]

5. Run the application in the Debug mode.
Your application's initial screen should look something like the
following screenshot:

6. If you select one of the hooks, you will see a detail view similar to the
following screenshot:

Chapter 5

[141]

How it works
The folder structure and the FishHook and FishHooksViewModel classes you
created for this example are identical to those that you created when building the
application using the API, except that you used different namespaces. In fact, even
the code in the App.cs file is identical in both approaches because the compiler can
tell the difference between the API-based files and XAML files without any extra
development effort on your part. This is an excellent feature because it means you
can develop your applications with both the API and XAML files side by side,
without worrying about managing divergent code branches to handle each.

The only difference in this application is the use of XAML instead of the API, so we
will focus on the two ContentPage files you added. First, you added FishHooksPage.
xaml and its code-behind file FishHooksPage.xaml.cs. There are several important
items to review in these two files. In the code-behind file's constructor, you set the
BindingContext property to an instance of the FishHooksViewModel class. The
BindingContext property tells the compiler where to find the properties referenced by
bindings in the XAML file. Next, you added the event handler for OnItemSelected().
This event handler intercepts a user tap event on the cells in your ListView object,
and in turn uses the Navigation object to asynchronously push a new instance of the
FishHookDetails Page.

Next, in the XAML file, you might have noticed that the x:Class attribute did not
include the correct namespace. This is to be expected because you changed the
namespace in the code-behind file manually after you created the file. Just remember
that whenever you change the namespace, you need to also update the x:Class
attribute in the XAML file; otherwise, you will get build errors. Also, the xmlns:local
attribute was originally missing from the ContentPage tag altogether. This attribute
is crucial for properly linking the code-behind file to the XAML, and you must take
care when creating your Pages to ensure that it is properly formatted. In fact, the most
common (and annoying) errors I have encountered when working with XAML and
code-behind files were due to this attribute being improperly formatted.

Finally, you nested a ListView object control inside the ContentPage tag.
This ListView control contains a TextCell control for each object in the
FishHooksViewModel.FishHooks collection. The TextCell.Text property
contains the object's HookName property via the {Binding HookName} data binding.

Working with Xamarin.Forms

[142]

The second content file you added was FishHookDetails.xaml and its code-behind
file FishHookDetails.xaml.cs. In the code-behind file's constructor, you set the
BindingContext property to the FishHook object that was passed in. In the XAML
file, you edited the ContentPage tag again, updating the x:Class attribute and
adding the xmlns:local attribute. Finally, you nested a StackLayout panel inside the
ContentPage control. Inside this panel, you stacked four labels to display information
on each hook. Details of each hook are bound to the labels' Text properties using the
same {Binding BestSpecies} and {Binding HookDetails} data bindings.

For more information on Xamarin.Forms and example applications
built using the framework, check out Xamarin's documentation
at http://developer.xamarin.com/guides/cross-
platform/xamarin-forms/.

Summary
In this chapter, we briefly reviewed the Xamarin.Forms framework introduced
by Xamarin 3. We looked at the requirements for using the framework in terms
of licensing subscriptions, as well as the components and controls provided by
the framework. Finally, you created two simple cross-platform applications
using the built-in UI design APIs as well as the XAML design approaches.

In the next chapter, we will take a detailed look at application states and the
lifecycles for iOS and Android applications.

http://developer.xamarin.com/guides/cross-platform/xamarin-forms/
http://developer.xamarin.com/guides/cross-platform/xamarin-forms/

Application Lifecycle
In this chapter, we will cover the following topics:

• The iOS application lifecycle
• UIViewController lifecycle methods
• The Android application lifecycle
• Activity lifecycle methods
• Background state

In this chapter, we're going to spend some time examining applications' states,
lifecycles, and multitasking on mobile devices. Although this may seem like a detour
from learning about the development environment, Xamarin Studio developers must
understand these concepts to successfully build cross-platform apps. This chapter
is not intended to introduce every aspect of lifecycles and multitasking in a mobile
environment. It is intended to introduce those core concepts that are, in my experience,
most critical and potentially confusing to a .NET developer being introduced to iOS
and Android development for the first time. Using this knowledge as a foundation,
we'll then be able to move on to testing and deployment in Chapter 7, Testing and
Debugging, and Chapter 8, Deployment, respectively.

By the end of this chapter, you should be familiar with the application states,
the View/Activity lifecycles for iOS and Android apps, as well as the events and
corresponding methods you need to implement to handle transitions. You should
also be familiar with the difference between foreground and background states and
how to prepare your applications to present a seamless flow between the two.

Application Lifecycle

[144]

The iOS application lifecycle
To begin, let's first have a look at the following iOS application lifecycle flowchart:

The application lifecycle includes all of the activity in an app from the time it is
deployed until the time it has been removed from a device. Each platform describes
the lifecycle in varying terms. In the case of an iOS device, the lifecycle is a collection
of application states and methods that must be observed while transitioning between
those states. Using the previous image as a reference, iOS apps will always exist in
one of the following five states:

• Not running: This means your app has either not been launched, or it has
been terminated by the system for some reason. If your app is currently not
running, it can be transitioned into the inactive state when it's launched.

• Inactive: This occurs while the app is in the foreground but does not receive
event updates. It also occurs when the device screen automatically turns
off to conserve power. This state is usually short-lived, and typically occurs
during the transitions between other states. Apps that are currently inactive
can transition into either the active or background state.

Chapter 6

[145]

• Active (Running): This is the normal operating mode for your iOS applications.
While in the active mode, your app is running in the foreground and receiving
events from the system. Active apps can only transition into an inactive state.

• Background: This state encompasses the time your app is not active, but still
executes code. Most apps enter this state briefly prior to being suspended,
although an app may request extra execution time to run additional processes
while in this state. It is also possible to launch an app directly into this state
intentionally to avoid entering the inactive state. An app in the background can
transition into either the inactive or suspended state. For more information on
background state, see the The background state section later in this chapter.

Please note that apps can only enter the background state on
devices that support multitasking, or those that run iOS 4.0 or later.

• Suspended: Apps in this state are in the background but they don't execute
code or receive events. An app can be suspended while in the background if
it has no tasks to run or if those tasks have been completed. The system can
move an app into this state at any time without notifying the app that it is
doing so. During a low memory situation, the system might, without notice,
purge apps from the memory that are in this state. This typically only occurs
when an app running in the foreground needs additional system resources.
Suspended apps can transition into the background or be terminated by the
system as required.

The AppDelegate class
Whenever your application transitions from one state to another, there is usually
an associated event accompanying that transition. In order to respond to these
events, you must implement the appropriate methods in your AppDelegate class.
The AppDelegate object provides a centralized location to coordinate behaviors
throughout your application, and is instantiated by the Main class when your app
first launches. You can think of it as a sort of master controller, responsible for
listening to any event notifications coming from the operating system. It is extremely
important, and in some cases required, to respond to these events in order to
maintain the stability of your app and any user data.

• OnActivated(): This function is called both when the app is launched and
whenever it returns to the foreground. This method gives your app the first
opportunity to execute code at launch time. Additionally, this method is
generally the place where you should ensure that all resources and state
information required for foreground execution are available and configured.

Application Lifecycle

[146]

• WillEnterForeground(): This function is called immediately after an app
returns from a background state. The OnActivated() function will be called
immediately after this call is completed.

• WillFinishLaunching(): This function is called when a launch has been
initiated, but the state restoration hasn't been completed.

• FinishedLaunching(): This function is invoked after the application has
launched and loaded, and the UI is ready to run. This is where you must
configure the main top-level window. This top-level window requires a
root UIViewController object, which must also be configured here.

Do not try to perform too much work using this method! Once
this method is called, you only have 17 seconds to complete the
tasks contained therein. If your code execution lingers here for
more than 17 seconds, the operating system will terminate your
application without any notification.

• OnResignActivation(): This function is called whenever the app is
interrupted by a system event, such as an incoming phone call or text
message. It is also called whenever the app is about to be suspended
or moved into the background state. If you have created any expensive
resources, you will need to release them here to ensure that the application
is in a consistent and restorable state. If you are running an OpenGL
application, you should use this method to pause the game.

• DidEnterBackground(): This function is called whenever the app enters
the background state. The system only gives you 5 seconds to complete this
method, or your app will be terminated without notification. You should use
these 5 seconds wisely to save user data, tasks, and the application state, and
remove any sensitive information from the view. If your app doesn't support
background execution, DidEnterBackground() will not be called; instead,
WillTerminate() will be called.

• WillTerminate(): This function is called when the app is about to be
terminated. On rare occasions, the system will terminate the app due to
memory constraints. More commonly, though, termination is directed by
the user. If you have any data that needs to be saved, this method is your
last chance to do so.

Chapter 6

[147]

UIViewController lifecycle methods
The following is a flowchart depicting a UIViewController lifecycle:

The UIViewController class is the base class responsible for managing the
communication between model and view classes in an iOS. A View's lifecycle is
defined by several methods that can be overridden in any class that inherits from
UIViewController. While you are loading a view into the display, these events
will fire in the order they are listed here:

• ViewDidLoad(): This is arguably the most important event in any
UIView's lifecycle. This method is called when the view and its entire
display hierarchy have been loaded into memory, whether the view was
created programmatically or loaded from a XIB file. This method is a good
place to wire up event handlers and create any additional views that were
not created programmatically or in the XIB file. Also, this is where you
should do any configuration work that could not be done in the XIB file.

Application Lifecycle

[148]

• ViewWillAppear(): This event is called prior to the view being added to
the display hierarchy. If you override this method, you must always call
base.ViewWillAppear(). Any tasks that you wouldn't want to occur
when the view isn't on the screen should be handled here. For example,
if your view needs to subscribe to any notifications, you probably don't
want to do that unless the view is actually going to be visible.

• ViewDidAppear(): This event is called once the view is added to the
display hierarchy. If you override this method, you must always call
base.ViewDidAppear().

Likewise, while you are unloading a view from the display, you should observe
these methods:

• ViewWillDisappear(): This method is called prior to removing the view
from the display hierarchy. If you override this method, you must always
call base.ViewWillDisappear(). It's a good idea to undo anything that
you implemented in ViewWillAppear() or ViewDidAppear().

• ViewDidDisappear(): This method is called after the view is removed from
the display hierarchy.

Another method that you should consider overriding is
DidReceieveMemoryWarning(). This is a good place to clear any caches or unload
large view hierarchies that can be reconstructed later. This method can also be called
if the view has already disappeared from the screen, which would normally occur
if you have left large objects in memory and the system needs to dispose them to
make room for other processes. If you override this method, you must always call
base.DidReceiveMemoryWarning().

Examining iOS lifecycles
In this exercise, we will build a single-view application so that we can examine the
lifecycles of an iOS application and a simple UIViewController:

1. Create a new iPhone single-view application and name it iOSLifecycles.
2. Your solution should open the AppDelegate class. In this class, you will

see four empty methods. Inside each of those methods, insert a line of code
similar to the following, replacing OnResignActivation() with the name of
the method you are modifying:
Console.WriteLine("OnResignActiviation()");

3. Next, add the following class-level property to the AppDelegate class:
iOSLifecyclesViewController viewController;

Chapter 6

[149]

4. Add the following two methods to the AppDelegate class:
public override void OnActivated(UIApplication application)
{
 Console.WriteLine("OnActivated()");
}

public override bool FinishedLaunching(UIApplication app,
 NSDictionary options)
{
 Window = new UIWindow (UIScreen.MainScreen.Bounds);
 viewController = new iOSLifecyclesViewController();
 Window.RootViewController = viewController;
 Window.MakeKeyAndVisible ();
 Console.WriteLine("App has finished launching.");
 return true;
}

5. Open the iOSLifeCyclesViewController class. You will see empty
methods for ViewWillAppear(), ViewDidAppear(), ViewWillDisappear(),
and ViewDidDisappear(). Inside each of the four methods, insert a line of
code similar to the following, replacing ViewWillAppear() with the name of
the method you are modifying:
Console.WriteLine("ViewWillAppear()");

6. Finally, add a default constructor to iOSLifeCyclesViewController:
public iOSLifecyclesViewController()
{
}

Examining the application lifecycle
Run the app and examine the output of the application in the Application
Output tab. Since you began with an iOS Single-View Application project
template, but you haven't added anything yet to the view, your app will load
a black screen (don't panic!), while the Application Output window will log
events as they occur. Your output will look similar to the following:

ViewDidLoad()
ViewWillAppear()
App has finished launching.
OnActivated()
ViewDidAppear()

Application Lifecycle

[150]

At this stage, your app is in the active state. If you hit the Home button on your
device, your app will be moved into the background state. Your output window
should now have the following additional entries:

OnResignActivation()
DidEnterBackground()

If your app has any background code to run, it will remain in the background state
until those tasks are completed. Since you have not added any code to be run in the
background, your app will be moved immediately to the suspended state.

The Android application lifecycle
Most programming paradigms involve a main() method that activates an app and
launches it into the memory. In the case of Android, however, the system creates and
manages an application object. This object initiates code in an Activity instance by
invoking specific callback methods that correspond to specific stages of the Activity's
lifecycle. This means that the lifecycle of the application is directly linked to the
lifecycle of the foreground Activity.

Understanding application lifecycle
The system creates an application object for each app that's running. This object
remains in the memory for the life of the application process, and will always exist in
one of the following five possible process statuses at any given time. These statuses
are each assigned a priority, which is used exclusively by the system when it needs
to determine which processes can be terminated to recover resources:

• Foreground: Any process that has an Activity in the foreground, which
is the Activity on top of the screen the user is currently interacting with,
receives the highest priority. This process will only be terminated by
the operating system as a last resort if it uses more resources than those
available on the device.

• Visible: Processes with a Visible Activity, which is an Activity that is
visible to the user but not in the foreground, is next on the priority list. This
process will not be terminated unless it is absolutely necessary to keep the
foreground process running. Activities can be transitioned into the Visible
state when they become partially obscured by another Activity.

Chapter 6

[151]

• Service: Occasionally, an Activity will need to perform a long-running
operation, which is not directly linked to the Activity itself. An example
might be an application that uploads photos to a social networking site,
but allows the user to leave the application while displaying progress
notifications in the status bar. To achieve this, your Activity should create
a Service. The system will prioritize a service process above other invisible
processes until the task is completed, independent of whether the Activity is
still running or not.

• Background: Below the Service process is the Background process. A
background process contains an Activity, which has been paused and
is not visible to the user. This process is not considered critical, so the
system can safely terminate the thread as needed to recover system
resources. As we will see later in this chapter, before an app becomes a
Background process, the state of the application should be saved using the
OnSavedInstanceState(Bundle) method. Then, when the user opens the
application again, the main Activity's OnCreate(Bundle) method can restore
the app to its previous state. This functionality can provide the appearance
of a seamless transition from Active to Background to Active again, even
though the app may have been terminated at some point along the way.

• Empty: Finally, an Empty process has no Activities or other application
components (such as a Service or BroadcastReceiver object). As resources
begin to become scarce, the operating system will view these apps as
the low hanging fruit. They will be terminated very quickly to recover
resources needed by application objects with higher priorities. This is why
critical background tasks that need to occur outside of an Activity must be
performed within the context of a Service or BroadcastReceiver.

Activities in Android are managed by the Activity stack. Whenever a new Activity
is created, it is pushed onto the stack and becomes the foreground Activity. The
previous Activity will remain below the current Activity until the foreground
Activity is popped. Activities have four states:

• Activities running in the foreground that the user is interacting with are in
the active or running state. These Activities are on top of the Activity stack.

• Activities that have lost focus but are still visible are in a paused state.
Activities are transitioned to the paused state when a new transparent
Activity, or an Activity that isn't full sized, is pushed onto the stack above
your Activity. A paused Activity is still completely functional in terms of
internal processes, although a user cannot interact directly with it. It will
maintain all of its state and member information and will remain attached to
the window manager. However, a paused Activity can be terminated by the
system if the active Activity needs additional resources.

Application Lifecycle

[152]

• When an Activity is completely covered by another, it transitions into the
stopped or background state. It will continue to maintain all state and
member information, but is no longer visible to the user. Its window will be
hidden and it will very likely be terminated by the system when additional
resources are required for an active Activity.

• Whenever an Activity is in the paused or stopped states, the system can
terminate its process by either asking the process to finish, or by just killing
it outright. When this occurs, the Activity is transitioned to the killed state.
If the app opens an Activity that is in a killed state, the Activity must be
completely restarted and restored to its previous state.

Activity lifecycle methods
The following is a flowchart of an Android Activity lifecycle:

Chapter 6

[153]

As an Android developer using Xamarin Studio, it is critical to have a firm
understanding of the Activity lifecycle and its associated methods. Although
the entire lifecycle of an Activity includes many methods, you will only work
with a few key items on a regular basis:

• OnCreate(): This method is called when an Activity is created. This is
where you must set all of your static content, including the creation of views,
binding data to lists, initializing variables, and so on. This method also
provides you with a data object called Bundle. The Bundle is a dictionary
object containing the Activity's previously frozen state, if one exists. When
an Activity is operating in this method, the system cannot terminate it. This
method is always followed immediately by the OnStart() method.

• OnStart(): This method is fired as the Activity becomes visible to the user.
When an Activity is operating in this state, it cannot be terminated by the
system. Your Activity should override this method if you have logic that
needs to be implemented precisely before the Activity becomes visible. This
method is followed by either the OnResume() method if the Activity moves
into the foreground, or the OnStop() method if the Activity is hidden.

• OnRestart(): This method is similar to the OnStart() method, except
it only occurs when the Activity was previously running but has been
terminated by the system. There are no hard rules for what type of code
should be implemented in the OnRestart() method. This is because
OnStart() is always called, whether the Activity is being created or
recreated. Therefore, unless you have logic that is specific to a restart
scenario, you should implement all of your startup logic in the OnStart()
method to avoid code duplication. When an Activity is operating in this
method, the system cannot terminate it, and it is always immediately
followed by the onStart() method.

• OnResume(): This method is called when the Activity is on top of the Activity
stack and about to begin interacting with the user. Activities should use
this method for tasks such as listening for GPS updates, displaying alerts
or dialogs, wiring up external event handlers, and so on. Any actions
implemented in the OnPause() method must be undone in the OnResume()
method. When an Activity is operating in this state, it cannot be terminated
by the system. This method is always followed by the OnPause() method.

Application Lifecycle

[154]

• OnPause(): This method is called as the Activity is placed in the background
or becomes obscured. Typically, you will use this method to commit unsaved
changes to persistent data stores, stop CPU intensive processes, unregister
external events, or ramp down frame rates. Additionally, any alerts or
dialogs that were created by your Activity must be destroyed here using the
Dismiss() method. Be aware that the code in this method must be executed
quickly, because the next Activity will not resume until this call returns. In
Android versions prior to Level 14 (Honeycomb), the system can terminate
Activities operating in this method. From Level 14 and above, however, the
system cannot terminate the Activity until it has returned from the OnStop()
method. The OnPause() method is followed by either OnResume() if the
Activity returns to the front, or OnStop() if it becomes invisible.

• OnStop(): This method is called only after the Activity is not visible to the
user due to another Activity covering it. There is a chance that OnStop()
will not be called in a resource-starved situation, so you should not rely on
it to prepare an Activity for destruction. This method is followed by either
OnRestart() when the Activity is returning to interact with the user, or
OnDestroy() if the Activity is being terminated.

• OnDestroy(): This is the last call you will receive, which occurs just before
your Activity is destroyed. Be aware there is no guarantee this method will
be called, so you should not depend on it to perform any critical functions.
The system can terminate an Activity running in this method. No other
methods follow OnDestroy().

Conceptually, these methods can be grouped into three loops of behavior. The
entire lifetime of an Activity takes place between the first call to OnCreate() and
the last call to OnDestroy(). An Activity will set up all the global state information
in OnCreate(), and release all resources in OnDestroy(). For example, if an Activity
has a thread running in a background process for the purpose of downloading
data from a network location, the Activity can create the thread in the OnCreate()
method and then stop the thread in OnDestroy().

The visible lifetime of an Activity occurs between the call to OnStart() and a
matching call to OnStop(). This loop represents the time for which a user can see the
Activity on the screen, even though the Activity may not be in the foreground where
the user is interacting with it. These two methods can be called multiple times as the
Activity transitions between visible and hidden. Between these methods, you can
maintain the resources required to display the Activity to the user. For example, you
can register a BroadcastReceiver in OnStart() to listen to notifications affecting
the UI, and unregister it in OnStop() when the Activity is no longer visible.

Chapter 6

[155]

Finally, the foreground lifetime of an Activity occurs between a call to OnStart()
or OnResume() and a matching call to OnPause(). These methods encompass the
time that the Activity is on top of the Activity stack. As a general rule, these methods
should be kept lean, because an Activity will transition between the resumed and
paused states frequently through the course of its lifecycle.

Configuration changes
To add another complication, an Android Activity will be destroyed and recreated in
response to a special event known as a configuration change. Configuration changes
happen much more frequently than their name implies. Device rotation, showing
or hiding the keyboard, or even placing the device in a dock are some of the more
common physical events that can trigger a rapid configuration change. To maintain
a seamless user experience, it is extremely important that the state of your Activities
be stored and restored quickly in response to these events. This saved state of an
Activity is called an instance state.

Primitive values in an instance state can be stored using a dictionary object
called the Bundle, and your Activity has two methods to store and retrieve
these values. First, OnSaveStateInstance() is called by the system while the
Activity is being destroyed, and this is where you will place the logic to store
your data using key/value pairs in the Bundle. This method is complimented by
OnRestoreInstance(), which is called once the OnCreate() method is finished.
Once initialization is complete, this method allows you to rehydrate your stored
Activity state from the values stored in the Bundle.

In scenarios where larger, more complex data structures are being stored, or where
it is expensive in terms of resources to retrieve data multiple times, you can override
the OnRetainNonConfigurationInstance() method. The objects returned by this
method are retained by memory, eliminating the need for repeated round trips to the
data source, whether that source is a local data cache or a remote web service.

Examining application states
In this exercise, we will build a basic Android application so that we can examine the
lifecycles of an Android Activity:

1. Create a new Android Ice Cream Sandwich Application and name it
ActivityLifecycle.

2. Your solution should open in the MainActivity.cs class, which contains
an override for OnCreate(bundle). Inside this method, insert a line of code
similar to the following:
Console.WriteLine("OnCreate()");

Application Lifecycle

[156]

3. Next, add the following methods:
protected override void OnStart()
{
 Console.WriteLine("OnStart()");
 base.OnStart();
}
protected override void OnResume()
{
 Console.WriteLine("OnResume()");
 base.OnResume();
}
protected override void OnPause()
{
 Console.WriteLine("OnPause()");
 base.OnPause();
}
protected override void OnStop()
{
 Console.WriteLine("OnStop()");
 base.OnStop();
}
protected override void OnDestroy ()
{
 base.OnDestroy();
 Console.WriteLine("OnDestroy()");
}

4. Run your application. When prompted, be sure to start and select a device
running API Level 15 or above.

Examining the Activity lifecycle
Run the app and examine the output of the application in the Application Output
tab. Since you began with a basic Android Ice Cream Sandwich project template,
your app will launch with a button and label in the display, but you can ignore these
for now. The Application Output window will log application and Activity level
events as they occur. At this stage, your output will look similar to the following:

OnCreate()
OnStart()
OnResume()

Chapter 6

[157]

If you hit the Home button on your device, you will see the methods that fire while
the app is moving into the background state. These two entries should have been
added to your output window:

OnPause()
OnStop()

Next, reopen the application and click on the Recent Applications button. Your app
will move to the background this time because it has become partially obscured by
the Recent Applications Activity. Reopening the app and clicking on the Recent
Applications button should add the following four entries:

OnStart()
OnResume()
OnPause()
OnStop()

Finally, open the app one last time and hit the Back button. This will dismiss the app,
adding the following entries:

OnStart()
OnResume()
OnPause()
OnStop()
OnDestroy()

The patterns demonstrated in your app are predictable and repeatable in any Android
application. The only exception to this is that in low-memory scenarios when the
system needs to destroy the Activity quickly, OnStop() might not be called.

The background state
Multitasking on a mobile device is profoundly different from that of a desktop
machine. Applications on desktop machines have deep system resources to draw
from in terms of memory, processor speed, power, and even screen space. Most
modern desktops can run multiple applications concurrently, allowing each
application to operate efficiently and remain responsive to user interaction. The
limited resources on a mobile device, however, require the system to closely monitor
how applications are functioning, policing their use of system assets in a much
stricter manner. Therefore, if an application is not at the foreground of the device, the
system will place it in the background state. On iOS devices, this transition is called
backgrounding, while on Android devices it is referred to as background processing.
For the remainder of this discussion, we will use the terms backgrounded and
backgrounding generically to describe the behavior on both platforms.

Application Lifecycle

[158]

When an app is in the background, it is placed in a state where it can continue to
perform various processes, but it can also be terminated by the system as needed.
Backgrounding can be initiated by several sources. First, the app itself can request
to be in the background. For example, in order to protect sensitive data an app can
be designed to timeout following a prescribed period of user inactivity. Or maybe
the app is simply designed to launch a service that resides in the background until
a notification is received. An app can also be backgrounded at the request of a user,
such as when the user hits the Home or Sleep buttons on an iOS device. Finally, the
app can be backgrounded in the direction of the system when it is interrupted by a
higher priority process, such as an incoming phone call or text message.

A detailed discussion on the breadth of backgrounding is a book of its own—a
thick book. However, there are several generic principles and concerns common
to all mobile devices that should be adhered to. In response to a transition into
the background, you must at a minimum ensure that your app addresses the
following concerns:

• Saves user data and app state information. If your app is quietly terminated
while in the background, all unsaved changes to user data should be written
to disk prior to entering the background.

• It should free up as much memory as practical. The system will try to
maintain as many of the apps currently running in the memory as possible.
However, when the memory begins to run low, backgrounded apps that
have the largest memory footprint are typically the first to be terminated.

• It should stop any running timers or other periodic tasks.
• It should stop any queries running against the metadata on your local

data store.
• It does not initiate any new tasks.
• If your app is playing a video, playback should be paused.
• If you app is a game, it should transition into a paused state.
• If your app uses OpenGL, it should throttle down ES frame rates.
• Further, any dispatch queues or operational queues running noncritical code

paths should be suspended. An exception to this rule would involve apps
that have processes designed to operate in the background, such as a social
media tool uploading photos to a user's account for example.

Chapter 6

[159]

Summary
In this chapter, we studied application lifecycles and states for both iOS and Android
platforms. For iOS platforms, we examined how the AppDelegate class can be used to
respond to changes in the application state. Also, we looked at the methods associated
with state changes in the UIViewController class. For Android platforms, we
examined how an application's lifecycle is linked to that of its Activities. We looked at
the methods that can be used to respond to changes in an Activity's state, and how to
respond to a rapid configuration change event. Finally, we examined backgrounding
from a generic point of view including the most important concerns that must be
addressed for an app that is transitioning into a background state.

In Chapter 7, Testing and Debugging, we're going to discuss the tools available to
test your applications including unit test projects, debugging tools, simulators
and emulators, crash logs, TestFlight, and platform-specific suites of tools.

Testing and Debugging
In this chapter, we will cover the following topics:

• The Xamarin debugger
• Unit tests
• Simulators
• Device testing
• TestFlight
• Instruments
• Device Monitor
• Logs
• Other testing considerations

Unless you plan on independently releasing your apps outside an App Store, your
work needs to pass a stringent set of tests and approval processes. Companies
such as Apple are more concerned about protecting their business reputations than
helping you unleash the next big thing in mobile development on an unsuspecting
world. In a nutshell, they're not going to knowingly allow bad code to be published
on their sites.

Therefore, in this chapter we're going to look at testing and debugging tools that
will help you certify that your app is bulletproof and ready. Some of these tools
come packaged with Xamarin 3, such as the built-in debugger and Unit Test project
templates. Others come with the iOS or Android platform tools that you installed,
such as Instruments and Device Monitor. Others are available from third-party
vendors such as TestFlight and TestCloud. Methodologies such as the need to test
on physical devices and to do so under variable environmental conditions will also
be discussed. Although we won't be able to dig into each of these tools in detail,
knowing that they exist and what they are capable of is important enough to justify
their inclusion in this chapter.

Testing and Debugging

[162]

The Xamarin debugger
Debugging is the systematic process of locating and eliminating bugs in a piece of
software with the goal of making the software operate as intended. Debugging is
(typically) performed with the help of tools designed for this purpose, which are
collectively known as debuggers. While testing your applications in Xamarin, you
have two options for debugging. You can choose the debugging tools that come
bundled with Xamarin Studio, or you can use the GNU Debugger (GDB).

The Xamarin debugger is a type of soft debugger. Soft debuggers take the compiled
code and use it along with the IDE to allow you to debug the application. Although
this provides a decent debugging experience, soft debuggers have limitations—they
need to actually run the code in order to function. Also, soft debuggers suffer from
flaws known as reentrance problems that can cause all sorts of application instability.
To compensate for this shortcoming, they are limited by design in the scope that
they are permitted to operate in. For example, you typically can't attach to an already
running process and you can never debug a core dump. Keeping these shortcomings
aside, soft debuggers excel at debugging managed memory code.

GDB, on the other hand, is a type of hard debugger. Hard debugging actually
controls the code without the code's knowledge or cooperation. These debuggers
can attach themselves to an already running process and they can also debug a core
dump. Plus, they are impervious to reentrance issues. As a general rule, you should
use the Xamarin tools to debug C# and any other managed memory language code
in your application, but use the GDB to debug C, C++, or Objective-C libraries that
are linked to your solution.

The debugger tool in Xamarin Studio works in the same way as it would work in
any other modern IDE. You set breakpoints by clicking on the gutter of the code
window or by adding them through the Breakpoint tab. These breakpoints can have
conditions attached to them, or they can be left to halt execution every time that line
of code is hit. You have the ability to enable and disable the breakpoints, or delete
them altogether by clicking them a second time. For more information on setting and
modifying breakpoints, please check out the Information pads section in Chapter 2,
Learning and Customizing the XS Environment.

In order to use the debugger, you must select the Debug configuration for your
platform from the drop-down menu in the IDE toolbar. Then, run your application
by either selecting the Start Debugging menu option under Run, or by simply
clicking the Start button.

Chapter 7

[163]

Unit tests
Although most .NET developers are probably familiar with the concept of unit
testing, it's worth reviewing briefly here. Generally speaking, unit tests are programs
designed to figuratively break apart your application into independent blocks, or
units, based on specific functions, and then test those blocks to ensure they function
as intended. To put it another way, unit tests allow us to take any function in our
application and, given a specific set of inputs, test to ensure that the function is
returning the correct values or failing gracefully.

For more information about unit testing, please visit http://
www.extremeprogramming.org/rules/unittests.html.

Including unit tests in your solutions offers several advantages. Since unit tests
work on small, manageable chunks of code, they naturally train a developer to
create methods that are less complex and more focused on a single task. Also, as
unit tests exist outside the normal process flow of the application, it's possible to
package them in a separate project that can be run at will, without actually running
the application itself. This package can even be integrated with a build process to
support continuous integration (CI).

For more information about CI, please visit http://www.
extremeprogramming.org/rules/integrateoften.html.

Over time, as you create more and more tests, you could have an entire suite of
tests that cover large portions of your code that can be executed on demand. This
is valuable because it allows you to quickly confirm whether or not changes in
your code will break the build, without actually rebuilding the entire solution
or performing regression testing. Also, you can run these tests before the code
is actually committed to source control. This helps developers to discover errors
in our algorithms and logic, long before the code reaches QA or, even worse, the
customer. Obviously, all of these advantages come at the cost of additional upfront
development effort. Most experienced developers will agree, though, that increased
confidence in the code's stability and reduced long-term maintenance more than
outweighs the initial investment.

http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/unittests.html
http://www.extremeprogramming.org/rules/integrateoften.html
http://www.extremeprogramming.org/rules/integrateoften.html

Testing and Debugging

[164]

Touch.Unit and Andr.Unit
Xamarin provides two unit test frameworks for you to work with. For iOS
development, there is the Touch.Unit framework, based on a modified version of
NUnitLite coupled with an iOS test runner. For Android development, there is the
Andr.Unit framework. Unfortunately, these two packages are not portable from one
platform to another, so you must create separate unit test projects for each platform.

Creating a unit test project
To begin, you need to create your unit test project. To create the project, follow
these steps:

1. Navigate to iOS | iPhone and create a new Empty Project solution.
2. Name this project UnitTestsLibrary.
3. Change the name of the solution to UnitTestsSolution and click the

OK button.
4. Right-click the solution and add a new project.
5. From the new object dialog, open the iOS group.
6. Select the iOS Unit Tests Project template.
7. Name the project UnitTests and click the OK button.
8. Right-click the UnitTestsLibrary project and add a new file.
9. From the General group, add a new Empty Class to the project.
10. Name the file MethodsForTesting.
11. From the same project, delete the MyClass.cs file.
12. In the UnitTests project, right-click on the References folder and choose

Edit References.
13. In the Projects tab, check the UnitTestsLibrary project and click the

OK button.
14. From the UnitTestLibrary project, open the MethodsForTesting.cs file

and add the following code below the constructor:
public int AddValues(int x, int y)
{
 return x + y;
}

public int SubtractValues(int x, int y)
{

Chapter 7

[165]

 return x - y;
}

public int MultiplyValues(int x, int y)
{
 return x * y;
}

public int DivideValues(int x, int y)
{
 if (y == 0)
 {
 return 0;
 }
 return x / y;
}

15. From the UnitTest project, open the Tests.cs file and add the following
using statement:
using UnitTestsLibrary;

16. Next, add the following code below the existing tests:
[Test]
public void AddValuesTest()
{
 int x = 9;
 int y = 10;

 MethodsForTesting methods = new MethodsForTesting ();
 int testValue = methods.addValues (x, y);

 Assert.True (testValue == 19);
}

[Test]
public void SubtractValuesTest()
{
 int x = 10;
 int y = 9;

 MethodsForTesting methods = new MethodsForTesting ();
 int testValue = methods.subtractValues (x, y);

 Assert.True (testValue == 1);
}

[Test]

Testing and Debugging

[166]

public void MultipleValuesTest()
{
 int x = 9;
 int y = 10;

 MethodsForTesting methods = new MethodsForTesting ();
 int testValue = methods.multiplyValues (x, y);
 Assert.True (testValue == 90);
}

[Test]
public void DivideValuesTest()
{
 int x = 9;
 int y = 3;

 MethodsForTesting methods = new MethodsForTesting ();
 int testValue = methods.divideValues (x, y);
 Assert.True (testValue == 3);
}

Running the tests
Now that you have your unit test project in place, you can run the project and
examine the results. Perform the following steps to start running the tests:

1. Right-click on the UnitTests project and navigate to Run With | iPhone
Retina (3.5-inch) iOS 7.1 (or any other device simulator of your choice).

2. When your simulator opens, you should see the following screen:

Chapter 7

[167]

3. Click the UnitTests.exe item and select the Tests option. You should see the
following screen that lists the available unit tests:

4. If you click addValuesTests, divideValuesTests, multipleValuesTests,
or subtractValuesTests, you will receive a passing test result. This is
shown in the following screenshot:

Testing and Debugging

[168]

5. Next, select the Fail test option and you will be taken to a screen that explains
the failure, including the stack trace information for the error.

6. Finally, return to the main screen and select Run Everything.
7. The UnitTests.exe item should now include a count of all passing, failing,

and ignored tests. If any of the tests have failed or were ignored, then the
text will be red; otherwise, it will be green.

How it works
Your test methods each create a new instance of the MethodsForTesting class.
This introduces an important rule of unit testing. Although this may seem like
overkill at first, creating a new instance of the test object for each test maintains the
unit structure. You should avoid sharing objects in memory as much as possible
when unit testing, because doing so could introduce cascading errors into your test
environment which can be notoriously difficult to track down. Once the new object is
created, the Assert method is called to determine whether the value returned by the
method being tested matches the expected value.

Chapter 7

[169]

How do you code the assertion value?
In the case of our simple tests, it is possible to calculate the expected or
assertion value rather than hardcoding it into the code as we have done.
Technically speaking, that would be a mistake. Using the .NET arithmetic
operators to calculate the assertion value is a bad idea, because we know
the methods we are testing are using the exact same arithmetic operators
to perform their calculations. Essentially, if an arithmetic operator has
a flaw, then the method being tested that uses that operator will have
a flaw as well. Nevertheless, the method will still pass the test because
both the assertion value and the value returned from the method will be
calculated with the same flaw.
So, it's important to ensure that you are using reliable sources for your
assertion values. For example, don't try to test a method by comparing its
output to itself. That may sound obvious, but I've seen stranger mistakes.

Simulators
Both the iOS and Android platforms provide mechanisms to rapidly test your
application in a simulated device environment. As discussed in Chapter 1, Installing
and Setting Up Xamarin Studio, iOS provides simulators while the Android SDK
provides emulators for this purpose, and the two systems are fundamentally
different. For more information on those differences, please refer to the Setting up
simulators and emulators section in Chapter 1, Installing and Setting Up Xamarin Studio.
For the sake of simplicity, we'll use the term "simulator" to refer to both iOS- and
Android-simulated device testing for the remainder of this discussion.

In addition to helping you locate issues and defects in your app during the early
phases of development, testing in a simulator provides a number of distinct
advantages over physical device testing in several areas. For one, the simulated
environment provides testing tools that are not available on the device. For another,
simulators can provide basic functionality testing on numerous devices without the
need to maintain each of those devices in-house. Also, getting your app deployed to
a simulator is typically much faster than deploying it to a device for testing. This is
because the physical device deployment process involves several bottlenecks, most
notably the transfer process itself. These bottlenecks don't exist when your app is
being shuffled around in memory.

Testing and Debugging

[170]

This isn't to say that simulator testing alone is sufficient to certify the stability of
your app. Simulators have some disadvantages when compared to physical devices
as well. Especially in terms of iOS development, a simulator has access to all of the
development system's resources. Obviously, this gives the simulator an incredible
advantage over its physical counterpart in terms of processing power, memory, and
disk space. Although this may seem like a benefit, it's actually a problem if you depend
solely on simulator testing, because you'll never know how your app performs in the
real world. In fact, the performance difference on the physical device might surprise
you in some cases and shock you in others.

Another issue is that a simulator never "gets out of the lab". Physical device testing
will allow you to literally take your app out into the real world. If this doesn't seem
important to you, try taking your finished map-based application or an application
beholden to web service calls into an underground parking garage where there's no
network service and see how it performs. Otherwise, if you're feeling particularly
bold, leave it up to your end users (that is, paying customers) to find out what
happens in that scenario! I'm just guessing here, but you will probably feel the need
to implement an offline mode for the Version 1.1.

Therefore, a well-rounded QA program involves both simulated as well as physical
device testing. Should you test everything on a physical device? In my opinion, the
answer is an emphatic yes! However, that doesn't necessarily mean you should be
testing on a physical device every time you tweak your code. As a general rule, the
majority of your testing should be performed in a simulator just to confirm that the
code is functioning as expected. Then, when you are certain your algorithms and
logic are solid, you should follow this up with physical device testing to ensure that
the code is as performant as expected.

Exceptions to this rule typically include components that involve the UI, the
filesystem, or processes that require large blocks of memory. In these cases, it's
better to test on device as early as possible to determine whether your design will
even function in the real world before you spend too much time polishing the logic.
As strange as it might sound, you will often encounter cases where components
work flawlessly in the simulator, only to crash and burn on the device without even
showing you the courtesy of providing a decent stack trace.

Testing in an iOS simulator
For this exercise, you're going to create a new iOS solution and perform several
basic functions using the simulator. Since you already have experience starting and
running the simulator, we're going to focus on those tasks that simulate hardware
state changes and user interactions with your View:

1. Create a new solution.

Chapter 7

[171]

2. From the iPhone group under iOS, select the Empty Project template.
3. Name your project iOSInMotion and click the OK button.
4. Right-click on the iOSInMotion project and select Add | New File.
5. From the iOS group, select iPhone View Controller and name your file

MotionViewController.
6. Replace all of the code in the class declaration with the following code:

public MotionViewController () : base ("MotionViewController",
null) { }
public override bool CanBecomeFirstResponder
{
 get
 {
 return true;
 }
}
UILabel label1;

public override void ViewDidLoad ()
{
 base.ViewDidLoad ();
 var frame = new RectangleF (10, 10, 300, 30);
 label1 = new UILabel (frame);
 label1.Text = "I'm just holding a place.";
 View.Add (label1);
}

public override void ViewDidAppear (bool animated)
{
 base.ViewDidAppear (animated);
 this.BecomeFirstResponder();
}

public override void ViewWillDisappear (bool animated)
{
 this.ResignFirstResponder();
 base.ViewWillDisappear (animated);
}

public override void DidReceiveMemoryWarning ()
{
 base.DidReceiveMemoryWarning ();
 label1.Text = "Getting low on memory over here!";

Testing and Debugging

[172]

}

public override void DidRotate (UIInterfaceOrientation
 fromInterfaceOrientation)
{
 base.DidRotate (fromInterfaceOrientation);
 label1.Text = String.Format("WHOA! You just rotated
 me!");
}

public override void MotionEnded (UIEventSubtype motion,
 UIEvent evt)
{
 if (motion == UIEventSubtype.MotionShake)
 {
 label1.Text = "Shake! Shake! Shake!";
 }
}

7. Open the AppDelegate.cs file.
8. Add the following line of code before the FinishedLaunching() method:

MotionViewController vc;

9. Replace the content of the FinishedLaunching() method with the
following code:
UIApplication.SharedApplication.ApplicationSupportsShakeTo
 Edit = true;

window = new UIWindow (UIScreen.MainScreen.Bounds);
vc = new MotionViewController ();
window.RootViewController = vc;
window.MakeKeyAndVisible ();

return true;

Running the tests
Please follow these steps to run the tests:

1. Select either Debug or Release from the Build Configuration dropdown in
the toolbar.

2. Select any simulator from the iOS Simulators group in the targets' dropdown.
3. Run the application by clicking the Run button.

Chapter 7

[173]

4. Click on the simulator to ensure it has focus.
5. From the menu, select the Rotate Left command under Hardware.
6. From the menu, select the Rotate Right command under Hardware.
7. From the menu, select the Shake Gesture command under Hardware.
8. From the menu, select the Simulate Memory Warning command

under Hardware.
9. From the menu, select the Home command under Hardware. Your

application should transition to the background and you should see the
home screen of your simulator.

10. Open your application again from within the simulator.
11. From the menu, select the Lock command under Hardware. Your screen

should go dark, simulating a user locking their device.

How it works
In this exercise, you learned how to mimic physical state changes inside the
simulator. Each time the physical state of the simulated hardware changed in some
way, the methods inside your MotionViewController class intercepted the event
notification from the system and displayed the corresponding message.

Although it isn't possible to demonstrate gestures in action using this very basic
application, you can still mimic gestures in the simulator. Reopen the app and hold
down the option (Alt) key. You will notice two small dots that appear on the screen,
as shown in the following screenshot:

Testing and Debugging

[174]

These dots indicate that you are now inputting touch events at two separate locations
on the screen, which means you can use your touchpad or mouse to mimic gesture
motions as though you were using two fingers instead of one. So gestures such as
swipe, flick, pinch, two-finger drag, and rotate can be handled through the simulator
in the same way as they are handled on the device.

The inputs you tested here are only a few of those available to the iOS simulator
platform. You can also use the Toggle In-Call Status Bar command to see how your
app will look if your user opens it while in a phone call. Also, the External Displays
command will open an additional window, allowing you to simulate the devices' TV
Out signal.

For more information on interacting with the simulator, please check
out Apple's iOS Simulator User Guide at https://developer.
apple.com/library/ios/documentation/IDEs/Conceptual/
iOS_Simulator_Guide/InteractingwiththeiOSSimulator/
InteractingwiththeiOSSimulator.html.

Testing in an Android emulator
For this exercise, you're creating a new Android solution and performing several
basic functions using an Android emulator. Again, your app will focus on handling
hardware state changes and user interactions with your Activity:

1. Create a new solution.
2. From the Android group, select the Android Ice Cream Sandwich

Application template.
3. Name your project AndroidInMotion and click the OK button.
4. Your solution should have opened to the MainActivity.cs file. If not, open

that file now.
5. Delete this line of code from the MainActivity.cs file:

Int count = 1;

6. Replace all of the code in the OnCreate() method with the following code:
base.OnCreate (bundle);

var relLayout = new RelativeLayout (this);

var layoutParams = new RelativeLayout.LayoutParams
 (ViewGroup.LayoutParams.FillParent,
 ViewGroup.LayoutParams.FillParent);

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html

Chapter 7

[175]

relLayout.LayoutParameters = layoutParams;

var orientation = WindowManager.DefaultDisplay.Rotation;
RelativeLayout.LayoutParams textViewLayoutParams;

if (orientation == SurfaceOrientation.Rotation0 ||
 orientation == SurfaceOrientation.Rotation180)
{
textViewLayoutParams = new RelativeLayout.LayoutParams
 (ViewGroup.LayoutParams.FillParent,
 ViewGroup.LayoutParams.WrapContent);
}
else
{
textViewLayoutParams = new RelativeLayout.LayoutParams
 (ViewGroup.LayoutParams.FillParent,
 ViewGroup.LayoutParams.WrapContent);
textViewLayoutParams.LeftMargin = 100;
textViewLayoutParams.TopMargin = 100;
}

var textView = new TextView (this);
textView.LayoutParameters = layoutParams;
textView.Text = "Programmatically Generated Layout";

relLayout.AddView (textView);

SetContentView (relLayout);

Running the tests
Please follow these steps to run the tests:

1. Start your application in debug mode. If you haven't done so already, start
and run any emulator using API Level 15 (Ice Cream Sandwich) or higher.

2. Rotate the device to the left. On a Mac, you need to hold the fn and control
keys, and then click F11. On Windows, you can either press Ctrl + F11 or 7
on the numpad.

3. Note the orientation change.
4. Rotate the device to right. On a Mac, you need to hold the fn and control

keys, and then click F12. On Windows, you can either press Ctrl + F12 or 9
on the numpad.

Testing and Debugging

[176]

How it works
In this exercise, you learned how to simulate physical state changes inside the
emulator. As we discussed in Chapter 6, Application Lifecycle, Activities are created
and destroyed regularly throughout the life of the application object. This process
occurs in response to many physical and system events, including whenever the
device is rotated. In your application, every time you rotated the emulator the
Activity was destroyed and recreated. The same would occur with the Activity
running on a physical device.

Android provides an object called the WindowManager. Inside the OnCreate()
method, this object was used to determine the device's current orientation using the
WindowManager.DefaultDisplay.Rotation property. Using the rotation value as
a guide, the TextView object was positioned so that it is 100 pixels from the top and
the left edges of the screen, and always at the center. The transition is automatically
animated as required to give the impression that the objects are only being shifted
around, instead of being destroyed and recreated repeatedly.

Note that in this example, you are handling physical state changes programmatically.
Android also allows you to handle these declaratively using layout files specific to
each orientation. This gives you very specific control over how your Activities will
be rendered by the OS under all conditions. However, this control comes at a cost;
you actually need to define every Activity twice—once for portrait and once again
for landscape mode. Since this effectively doubles the design workload, it's not the
ideal workflow in my opinion. There are cases where it will certainly be easier to
use the declarative method, but in most cases I would recommend handling these
changes programmatically. Of course, do what works best for your project given the
requirements and the resources you have available.

Device testing
Now that you are familiar with the fundamentals of simulator testing, let's discuss
testing our apps on physical devices. We have already covered how to set up
your physical devices for testing in Chapter 1, Installing and Setting Up Xamarin
Studio, so all that's left is to debug an application on a device from each platform.
As discussed earlier in the Simulators section of this chapter, you should test all of
your functionality on a physical device. That's because the most effective way to
certify the behavior and stability of your application is by using it in a real-world
environment. If it functions as expected, without crashing, hanging, returning bad
values, and so on, then the app is probably ready for release.

Chapter 7

[177]

Testing on an iOS device
Let's begin with testing on an iOS device.

If you do not intend to develop iOS applications, or if you do
not currently possess a physical iOS device to test on, you may
skip this walkthrough for now and come back to it whenever
you're ready.

To test on your iOS device, please follow these steps:

1. In Xamarin Studio, open the iOSInMotion project you created earlier.
2. Check and ensure that your physical device is connected to your Mac.
3. From the targets' dropdown, select a physical device as a target. This target

can have any name, depending on what you called your device. For example,
I'm currently using Will Smith's iPhone because I save my creativity for
designing applications, not naming my devices!

4. Run the application.
5. Once your app is running, take a screenshot by pressing the Home and

Sleep buttons at the same time. If your volume is turned up, you will hear
the familiar photo click sound effect. In either case, your screen will flash
momentarily as the screenshot is saved to your photo roll.

Back on your Mac, open the device with iTunes and take a look at the screenshot you
just took. Since the app you're using has no code, this is just a blank photo; however,
it does confirm that your device is properly configured for running physical tests.

Testing on an Android device
Next, let's perform a test on an Android device.

If you do not intend to develop Android applications, or if you
do not currently possess a physical Android device to test on,
you may skip this walkthrough for now and come back to it
whenever you're ready.

To test on your Android device, please follow these steps:

1. In Xamarin Studio, open the AndroidInMotion project you created earlier.
2. Check and ensure that your physical device is connected to your

development machine.

Testing and Debugging

[178]

3. From the targets' dropdown, select a physical device as a target. This target
can have any name, depending on what you called your device.

4. Run the application.

TestFlight
All of the testing techniques we have discussed up to this point are fine for a single
developer or a small team of developers who are working closely with one another.
However, what if you have a large team of developers, or what if your team is
distributed across the country or even halfway around the world? Or, maybe your
project has a dedicated team of testers who don't have access to Xamarin Studio to
publish the app to their physical devices.

In the era of virtual offices, remote employees, and flexible schedules, these scenarios
are no longer uncommon. Therefore, it's a necessity to have a platform in place to
publish the latest development releases to the team in a manner that is efficient. It
doesn't hurt if this system is also simple for everyone to use, and not just for the big
brains in the development team.

TestFlight is one service that provides this type of platform. TestFlight allows you
to publish your apps from within Xamarin Studio, distributing it to all of your
team members across the Internet. This service allows you to get your entire team
involved with a new release moments after you publish it. Also, it reports crucial
metrics such as who has installed the latest version, on which devices, and when
they did it. Best of all, at the time of writing this, the service is completely free!

Setting up a TestFlight account
Setting up an account with TestFlight is so simple that I almost hesitate to include it
here. However, for the sake of completeness let's walk through it together:

1. Open a browser and navigate to https://testflightapp.com/register.
2. Enter your name, e-mail address, and password in the fields provided.
3. Set the Developer switch to ON.
4. Read the Terms of Use and Privacy policy documents via the links provided.

If you agree to these terms, check the I have read and agree box and click the
Sign Up button.

5. You're going to land on the welcome screen. Go ahead and click the Create a
New Team button at this time.

https://testflightapp.com/register

Chapter 7

[179]

6. Enter your Team Name and click the Save button.
7. If you wish, you can also move on and invite members to your new team, but

that's probably a decision for a later time.

What about all those Android devices?
TestFlight is great for in-house testing on iOS devices, but the service
no longer supports Android devices (as an odd coincidence, this
occurred just after Apple bought the parent company). So this begs the
question—have you and your testers acquired testing units for each of
the Android devices your app could possibly run on? Odds are, you
haven't and you don't want to procure and maintain all of those devices
in-house due to the cost of purchase and ownership.
This introduces another hardware testing challenge. How do you certify
your app is ready for roll-out when you have only been able to test on
a percentage of the devices available to consumers? Well, you could
just test on the most popular devices and then toss it over the wall,
letting your customers find and report any device specific bugs you
missed. I politely refer to this method as "letting the market sort it out".
Alternatively, there are services available called cloud-based testing.
One example of this is Xamarin's TestCloud, which provides an
automatable tool for UI Acceptance Testing using mobile applications
in the cloud and using thousands of different physical devices. As
a cloud-based service, TestCloud removes the procurement and
maintenance costs of these devices from your business, allowing you
to focus on your development efforts rather than maintaining a device
farm. This service and others like it are not free, but their use allows you
to certify the stability of your application with much more confidence
than you could if you were only testing on a few devices in-house.

Instruments
Instruments is an analysis and testing tool that comes packaged with Xcode, which
you can use to dynamically trace and profile iOS application code. The power and
flexibility of this tool cannot be understated as it allows you to track one or more
processes and examine the collected data in real time. In addition to the many tools
that come packaged in Instruments, you can also create and configure your own
custom Instrument tools. Most often, you will find yourself using Instruments to
track down and repair memory-related issues. Instruments will not present you
with a "quick fix" for memory leaks, but it will remove most of the guesswork.

Testing and Debugging

[180]

A detailed discussion of Instruments is beyond the scope of this book.
For more information on the tools provided by this suite, please see the
documentation on each one at https://developer.apple.com/
library/mac/documentation/developertools/conceptual/
instrumentsuserguide/Introduction/Introduction.html.

Device Monitor
Until recently, the Android SDK didn't provide a suite of analysis tools that offer as
many options that are as tightly integrated as Instruments for iOS. However, there
is now a package that comes bundled with the SDK called Device Monitor. Device
Monitor is also a standalone tool that provides a GUI for a number of Android
application debugging and analysis tools. These include DDMS, Tracer for OpenGL
ES, Hierarchy Viewer, Systrace, Traceview, and the Perfect Pixel Magnification
Viewer tool. You can launch Device Monitor from the SDK's /tools folder using the
monitor command.

A detailed discussion of Device Monitor is beyond the scope of
this book. For more information on the tools provided in this
suite, check out the documentation on each one at http://
developer.android.com/tools/help/monitor.html.

Logs
Another invaluable tool for testing purposes is the crash and debug log files
generated by your testing platforms. You can learn a tremendous amount of
information from a crash log, including the environmental conditions on the
device platform when the crash occurred, memory usage of the app, and which
library was causing the app to be terminated.

Whenever a crash occurs on an iOS device, the OS will generate a crash log that is
then stored to the disk. If your device is synced with iTunes, the log will also be
stored on your development machine. Alternatively, you can connect to the device
through Instruments and review the crash logs using the diagnostic tools. Viewing
the crash logs in Instruments tends to provide a raw picture of what is happening
because you will see all of the stack trace information that can be a little difficult
to sift through. Often, it's this additional information that gives you the clue you
need to pinpoint the source of the problem. If you are looking for crash reports from
your end users, you can access those too. If your app was distributed through the
iStore, then any crash logs that occur in the field are automatically collected and
summarized for you in your iTunes account.

https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/developertools/conceptual/instrumentsuserguide/Introduction/Introduction.html
http://developer.android.com/tools/help/monitor.html
http://developer.android.com/tools/help/monitor.html

Chapter 7

[181]

Android device crashes generate debug logs. If you are testing an app on your own
device, you can access these logs using the logcat command from the console. Even
if your device wasn't connected to a build machine when the crash occurred, you
can still use the adb logcat command to download and review the entire debug log
history from the device. If you are looking for debug details from your end users'
devices, you can find those in your Google Play developer account also.

Other testing considerations
One last testing concern worth mentioning is the need to take your app offline
and get out of the lab. As developers, it's very easy for us to get totally absorbed
in our work and forget that outside of our cubicle there is (literally) an entire world.
Real-world variables such as poor cell reception, inaccurate GPS reception, and
Wi-Fi dead spots can all cause our applications to behave in unpredictable ways
if we don't design for these scenarios. You can simulate the offline mode in your
simulator by simply turning off the Wi-Fi to OS X and unplugging any network
cables, but Wi-Fi isn't the only variable you need to be concerned about.

Therefore, it is extremely important to take the app out from behind the desk as
often as you can. For example, I was recently working with a team on a map-based
application. While I was working in the office, everything seemed to be going well.
GPS accuracy was exceptional, signal strength was off the chart, and Wi-Fi was
constantly available. Everything was functioning flawlessly as designed, so we were
feeling pretty confident in our work. At lunch one afternoon, I decided to take a walk
and carry the app with me for some quick field testing. Before I made it 15 yards from
the front door, the Wi-Fi signal dropped off completely and the app promptly locked
me out. Oh yeah, offline mode. How did we forget that?

For iOS devices, there are additional location-based simulator tools that you can use
from your desk. To access these, while your simulator is running go to the Location
menu group under Debug. Here, you will find several prescripted route files that
can simulate significant location changes for your device.

In my opinion, this tool is quite useful to a point. It will confirm whether or not your
functions are behaving as expected, and whether your design and logic are correct.
However, this is no substitute for actually moving around with the device. For
example, outdoor GPS accuracy will vary from location to location, and that accuracy
measurement can even "twitch" at times. Additionally, when you first turn a device
on the GPS, accuracy can be anywhere from 100 feet to nil. It takes time for the device
to pinpoint its location on the planet, and while that is taking place your app could be
recording some very inaccurate data. Don't get me wrong, this is a great tool; just don't
rely too heavily on it. You still need to test the corner cases and design accordingly.

Testing and Debugging

[182]

Summary
We covered a lot of information in this chapter. First, we took a look at the
debugging tools that come packaged with Xamarin 3. From there, we examined unit
testing options available and reviewed some ideas on how to apply those options.
Next, we examined testing on simulators, on emulators, and on physical devices.

After this, we shifted gears to the third-party testing tools that are available for
mobile platform developers, and how we can leverage those to improve our
development processes and workflows. Tools such as TestFlight can streamline the
QA phase of development. Instruments and Device Monitor can help us track down
and repair platform-specific memory bugs, while crash and debug logs can be used
to help us determine what is happening with our app while it's in the hands of our
customers in the real world. Finally, we examined the importance of taking our
testing on the road so that we can test how our app behaves under unpredictable
scenarios and circumstances.

Unfortunately, this chapter barely scratches the surface of some truly fascinating
testing and debugging methodologies. If any of this seems new or strange to you,
I would encourage you to take the time to review the references provided in detail.
Most of the knowledge in this skill set is universally applicable to all software
development platforms and technologies, not just Xamarin 3 and mobile.

In the next chapter, we will look at how to deploy your application through Xamarin
Studio and the App Store and Google Play Store.

Deployment
In this chapter, we will cover the following topics:

• Deploying iOS applications
• Deploying Mac applications
• Deploying Android applications

Now that your app has been tested, debugged, tested again, hardened, and certified,
you're obviously eager to upload it to various marketplaces so that consumers
can get their hands on it. I wish I could tell you that the process of deployment to
various marketplaces was quick and easy, but there are a number of steps you need
to complete to achieve that goal. Additionally, you'll need to carefully plan your
deployment and marketing strategy in conjunction with the release schedule so that
your app has the best possible chance for being a success. Then, you'll finally be
ready to turn over your delicate masterpiece to the review teams for Gorilla Testing.

Due to the complicated nature of the deployment process, this chapter is dedicated
solely to walking through the procedures of releasing apps to the Apple Store and
Google Play Store. For the purpose of these walkthroughs, we are going to release a
fictional application called Ultimate Widget Fu.

Deployment

[184]

Deploying iOS applications
Let's begin by looking at deploying an iOS application to the App Store.

If you do not intend to develop iOS applications, or if you are not
currently a member of the iOS Apps Developer Program, you
can skip this walkthrough for now and come back to it whenever
you're ready.

Xamarin Studio provides you with the mechanism to publish your app through
any of the channels supported by Apple. These include App Store Distribution
to the general public, enterprise deployment targeting in-house users, and finally
ad hoc deployment for testers. Each of these scenarios requires a corresponding
provisioning profile. In this walkthrough, we're going to focus on publishing your
app to the App Store.

Before publishing your app, you should take the time to review the App Store
Review Guidelines. These guidelines will help you avoid the frustration of being
rejected for missing something obvious. For example, if your app crashes at any
point during execution, it's going to be rejected. Do you plan on mentioning or
promoting the Android or Windows Phone versions of your app? Denied. If you try
and create an app using the emergency services location-based APIs to track your
neighbor's cat, you're going to be shut down. These are just some of the items in the
rather lengthy list of nonstarters that Apple has detailed for us.

Getting rejected is no fun, but it happens to the best of us sometimes.
The app reviewers aren't trying to shut your business down; they're just
trying to ensure only apps of the highest quality reach the App Store.
Whatever you do, don't throw a tantrum on Twitter when this happens,
just fix the app.
Knowing the guidelines in advance will minimize the chances of
rejection in the first place, so I highly recommend you take time and
review the documents found at https://developer.apple.com/
appstore/resources/approval/guidelines.html.

https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/appstore/resources/approval/guidelines.html

Chapter 8

[185]

Distribution provisioning profile
First, you need a distribution provisioning profile for your application. This is
not the same as the provisioning profile for your device, which was discussed in
Chapter 1, Installing and Setting Up Xamarin Studio. A distribution provisioning
profile, also known as a store provisioning profile, authorizes your app to use the
technologies and services that you specified during the development phase. The
profile contains a single App ID matching that of your app, plus a distribution
certificate. These two components are used to certify that the app was actually
submitted to the store by you, which protects both you and your customers.

For iOS apps, you will always need a store provisioning profile in order to submit
your app to the App Store. For Mac apps, which we will discuss later, you will only
need a store provisioning profile if your app uses technologies and services that
require provisioning. Otherwise, you can just use the distribution certificate to sign
your app.

Provisioning profiles are generated by the iOS Provisioning Portal on the Apple
Developer site. In order to complete the generation process, we need the following
three things:

• An App ID
• A distribution profile
• A production certificate

The App ID is a two-part string consisting of a Team ID and Bundle ID that are
used to identify one or more applications produced by a single development team.
The production certificate is a means of code signing your app so that Apple knows
you're the one who created it.

Let's walk through the process of provisioning our application, starting with the
production certificate.

Generating a production certificate signing request
Please follow these steps to generate a production certificate signing request:

1. On your Mac, launch Keychain.
2. Open the Preferences… menu item.
3. Switch to the Certificates tab and turn off Online Certificates Status Protocol

(OSCP) and Certificates Revocation List (CRL).

Deployment

[186]

4. Navigate to Keychain Access | Certificate Assistant | Request a Certificate
from a Certificate Authority…. Confirm that there are no certificates
highlighted in this dialog. If there are, your next request won't be accepted.
The following screenshot shows the Certificate Information dialog box:

5. In the User Email Address field, enter the e-mail address you used when you
registered as an iOS developer.

6. Enter your name in the Common Name field.
7. Select the Saved to disk radio button, and check Let me specify key

pair information.
8. Click the Continue button.

Chapter 8

[187]

9. Specify a location to save your certificate and click the Save button to proceed
to the Key Pair Information dialog, as shown in the following screenshot:

10. For Key Size, choose 2048 bits.
11. For Algorithm, choose RSA.
12. Click the Continue button. Your certificate will be generated and saved

to disk.

Submitting a production certificate signing request
Please follow these steps to submit a production certificate signing request:

1. Open a web browser and navigate to http://developer.apple.com.
2. Log in to the Dev Center.
3. Click Member Center in the navigation bar at the top of the page.
4. Click the Certificates, Identifiers, and Profiles button.
5. Under the Certificates group, select the Production tab.
6. Click the Add New (+) button in the upper-right corner.

http://developer.apple.com

Deployment

[188]

7. Select the App Store and Ad Hoc radio button and click the Continue button.
8. Click the Choose File button that appears on the next screen, and select the

certificate file you just generated in Keychain.
9. Click the Generate button.
10. Once the Production Certificate is generated, click the Download button.
11. Open your Downloads folder in Finder, and double-click the certificate to

install it on your keychain.

Creating the App ID
Please follow these steps to create the App ID:

1. While on the Certificates, Identifiers, and Profiles page, select the
Identifiers group.

2. You will see a list of any currently available App IDs attached to
your account. To create a new ID, click the Add New (+) button
in the upper-right corner.

3. Enter a description for your app.
4. Choose any services your app will require.
5. Select App ID Prefix.
6. Enter a unique Bundle ID for your app. Apple recommends using a reverse

domain style name for this purpose. So in the case of our app, we can enter
com.websmithsllc.ultimatewidgetfu.

7. Review the information you entered, and if you are satisfied, click the
Submit button.

Creating and installing the distribution profile
Please follow these steps to create and install the distribution profile:

1. While on the Certificates, Identifiers, and Profiles page, select the
Provisioning Profiles group.

2. You will see a list of any currently available Provisioning Profiles attached
to your account. To create a new Provisioning Profile, click the Add New (+)
button in the upper-right corner.

3. When prompted, select App Store as the Distribution Method.
4. Enter a name for this profile. In our case, we will enter Ultimate Widget Fu.
5. Click the Continue button.

Chapter 8

[189]

6. Looking at the list of Distribution Certificates, ensure that the one you
just created is displayed correctly. If so, select that certificate and click the
Continue button.

7. Select the App ID you just created and click the Continue button.
8. Name this profile and click the Generate button.
9. Once the profile has been generated, click the Download button next to the

Distribution Provisioning Profile you just created, which will download a
.mobileprovision file.

10. Double-click the .mobileprovision file you just downloaded to install the
Distribution Provisioning Profile to your keychain.

Build configuration
Next, we need to define a new build configuration to be released to the App Store.
This build configuration requires the distribution profile you just created. Now that
you have that in place, let's walk through adding a new build configuration:

1. Open your solution in Xamarin Studio.
2. Double-click on the solution to open the Solution Options dialog.
3. Under the Build group, select the Configurations panel.
4. Under the General tab, click the Add button.
5. Name this configuration. Since this configuration will be shared with other

solutions in Xamarin Studio, you shouldn't include the solution name here.
Choose something more generic such as Apple or AppStore.

6. Under Platform, choose iPhone. This might seem like the wrong choice if
you are creating a universal application, but the iPhone platform actually
represents all iOS applications in this context.

7. Click the OK button, and then click the OK button again to close the
Solution Options dialog.

8. Next, double-click the project to open the Project Options dialog.
9. Under the Build group, select the iOS Build panel.
10. Under the General tab, set the Configuration dropdown to the configuration

you just created.

Deployment

[190]

Bundle signing
Please follow these steps for bundle signing:

1. While leaving the Project Options dialog open, under the Build group, select
the iOS Bundle Signing pane.

2. Ensure that Identity is set to Distribution (Automatic).
3. Xamarin Studio will default to what it thinks is the correct Provisioning

Profile. This decision is based on the Developer Identity and the Bundle ID.
Check to ensure that the selection in this field is correct before continuing.

4. Under the Build group, select the iOS Application panel.
5. In the iOS Application panel under the iOS Application Target heading,

enter the Application Name, Identifier, Version, and Target Devices. Note
that the identifier must have the same value that was set for the Bundle
Identifier when you created your Provisioning Profile.

6. If you have not included an Application Icon for your app yet, you should
do so now under the iPhone Icons heading. If your app does not include an
Application Icon, it will be rejected upon the App Store submission.

7. Click the OK button to close the Project Options dialog.
8. In Xamarin Studio, set the Build target dropdown to the new configuration

you just created.
9. Go to Build | Build All to confirm that no build issues were introduced by

the new configuration settings.
10. Once built in the Release mode, you should test your app again. As

discussed in Chapter 2, Learning and Customizing the XS Environment, the
Linker can have some unintended side effects so it is vital that you test
your application's release build before submitting it to the marketplace.

Publishing your application
If your application builds successfully, you're almost ready to submit it to the App
Store. Before you do, you're going to need an iTunes Connect account. iTunes
Connect is the portal to distribute your apps through iTunes, App Store, and more.
Through iTunes Connect, you can view the metrics on your app's performance in the
field, including any crash logs that are generated by your app when the unthinkable
happens. You can also use iTunes Connect to manage the pricing and availability of
your app.

Chapter 8

[191]

Setting up an iTunes Connect account
Let's begin by setting up an account. You can skip this walkthrough if you already
have an iTunes Connect account:

1. Begin by opening a web browser and navigating to
https://itunesconnect.apple.com.

2. Log in with your Developer Account credentials.
3. Review the Terms of Service agreement. If you agree with the terms, select

the checkbox and click the I Agree button.

Technically, this is all that is really required to create an iTunes Connect account,
assuming you are giving away your apps for free. If you want to get paid for your
apps (and who doesn't really?) by selling them or collecting advertising revenue,
then you're going to need to complete the Contracts, Tax and Banking section.
The good news is that this section only needs to be completed once, so it's worth
the trouble to go ahead and get it out of the way right now. The bad news is that
this section is very lengthy, more than a little bit boring, and its content varies
from country to country. For all of these reasons, we're going to leave it out of our
discussions here and assume that Ultimate Widget Fu is part of a pro bono project.

For full details of the functionality iTunes Connect provides,
please review the Developer Documentation at https://
developer.apple.com/library/ios/documentation/
LanguagesUtilities/Conceptual/iTunesConnect_
Guide/iTunesConnect_Guide.pdf.

Creating the application page
Once you have an iTunes Connect account set up, you will need to generate an
App Page for your app. Before that, there are a few more items you'll need to
collect, including:

• App Name: This is the name that will appear in the App Store. Note that
the text that appears below the App Icon following the installation must be
derived from the App Name. This name has a limit of 255 characters, but
that's not an excuse to spam the system with an unnecessarily long name.
That being said, you should do some research in advance to learn what
keywords people are searching for and, if possible, include one or more of
those keywords in your App Name. This is one of the most important and
often overlooked ways to get more downloads since only the App Name and
keywords are actually indexed for store searching.

https://itunesconnect.apple.com
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf
https://developer.apple.com/library/ios/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf

Deployment

[192]

• App Description: This is the description your users will see in the App
Store. There is a limit of 4,000 characters. The first two lines are critical in
grabbing the user's attention because Apple will hide the rest behind a More
link. Be sure your text is clear, concise, and highly scannable. Avoid large
blocks of text and try to keep the overall length below 700 characters. This is
your chance to sell your app to a customer who is already interested. They
want more information, so be sure to put your best foot forward. Focus on
functionality, design, and simplicity of workflow from the user's viewpoint. If
possible, point out what makes your app unique without naming competitors.

• App Icon: You are required to include an App Icon, and your app will
be rejected without one. The icon should be a 24-bit PNG file with no
transparency, and sized 512 x 512 px, or 1024 x 1024 px for Retina displays.
Make sure your icon is both memorable and clear, even at a small size. It is
also extremely important that the customer can immediately identify the icon
from the App Store with the one installed on their device. Remember that
this icon is the face of your app, so take the time to design it wisely.

• App Screenshot: Screenshots are another often overlooked element for
the success of your application. You're required to include at least one
app screenshot with your submission, but four more are permitted (and
encouraged). You should collect compelling and attractive screenshots,
showing the actual screen of your app without borders or graphics around
the image. Screenshots are displayed in the order that they are uploaded,
and you can't reorder them after the fact. Therefore, always place the best
screenshots first because many users will not bother to scroll if the initial
screenshots are boring or uninformative. Your screenshots can come in
many different shapes, sizes, and resolutions depending on the device and
its orientation. For a complete list of the available screenshots and the rules
imposed for each, please review Appendix, Images and Graphics Tables.

• App Ratings: Even if your app isn't targeting children of age 11 or less, it's
always a good idea to place ratings on your app to help users make informed
decisions. Be aware that Apple will reject any apps that include material
determined to be obscene, pornographic, offensive, or defamatory.

At this point, you should have everything you need to begin creating the application
page for your app. Although this may feel like a tremendous hassle, the tools provided
to you through iTunes Connect via the application page are definitely worth the effort.
Plus, you really don't have any other choice. Here's how to create that page:

1. Inside iTunes Connect, click the Managing Your Applications link.
2. Click the Add new app button.
3. If you have multiple developer account types, you will need to specify the

iOS App type for your new app.

Chapter 8

[193]

4. Choose the Primary language of your app.
5. Enter your company name in the Company Name field. Confirm whether

your company name is correct before moving on, because once you set this
value, it is very difficult to change it later.

6. Fill in your app name in the App Name field. Remember that the name
appearing under your App Icon following the installation must be derived
from this value.

7. Enter a SKU number in the SKU Number field. The SKU number can be any
number with two or more digits.

8. Select your Bundle ID. The selections in this dropdown are populated from
the App IDs you have registered in the Provisioning Portal, so be sure you
choose the right one for this app.

9. Check your entries one last time. If you are satisfied, click the Continue button.
10. Choose the price tier for your app. In the case of Ultimate Widget Fu, we

will choose Free. Otherwise, click the View Pricing Matrix link to see details
on the available options.

11. Click the Continue button.
12. On the next screen, begin by entering your version number since it is

recorded in Project Options.
13. Enter the App Description you prepared earlier.
14. Select any categories that apply to your app.
15. Enter a few keywords from the list of keywords you researched earlier while

naming your app. This is extremely important because only the App Name
and this list of keywords are indexed for the App Store search. You should
choose keywords that potential users might use to find your app or even
a competitor's app. Choose carefully because you can only change this list
when you submit an update to your app.

16. Enter your Copyright information, which is usually just the release year
followed by your company name.

17. Enter your contact email address.
18. Enter a support URL and any App URL for websites that might provide

additional information or resources. Note that these websites will also be
reviewed by Apple before your app is approved, so remember that many
of the rules that apply to your app might also apply to these sites.

19. Enter any Review Notes, including additional information the user might
need, signup requirements, or hardware requirements.

Deployment

[194]

20. Complete the Rating information section. Users can change these ratings if
they think you've mischaracterized your app, so be as honest as possible.

21. Submit your graphics. You will need to upload the App Icon, and at least
one screenshot. However, if you are submitting a Universal app, you will
need to submit at least one screenshot for the iPhone and one for the iPad.

22. When these uploads are complete, confirm that you uploaded the right
images and click the Save button.

23. Click the View Details button below the App Icon.
24. Click the Ready to Upload Binary button.
25. You will be asked whether or not your app uses cryptography or contains

incorporate cryptography. Answer honestly and click the Save button.
26. Select the availability date for your app. You have two choices for this:

 ° If you want your app to be released as soon as it is approved,
choose Automatically release Ultimate Widget Fu 1.0 as soon
as it is approved

 ° If you want your app to be released at some time in the future, choose
I will release Ultimate Widget Fu 1.0 after it has been approved

27. Click the Save button.
28. You will be presented with instructions on how to upload your app. Since

we will be using Xamarin Studio for this purpose, you can safely ignore these
and click the Continue button.

Uploading the binary
You will land on your newly created application page. Note that the Status of your
app page should be listed as Waiting For Upload. Now we're going to deploy the
app using the Archive tool in Xamarin Studio by performing the following steps:

1. Within Xamarin Studio, go to Build | Archive.
2. Once the build is completed, the Archives tab will open. This tab will display

a list of all the archived applications. It's a good idea to select the latest build
and add comments. In this case, enter App Store deployment build.

3. Open Xcode and go to Window | Organizer.
4. Open the Archives tab. You will see the same list of archives that you just

saw in Xamarin Studio.
5. If you would like to validate your app before submitting it, click the

Validation… button, which will open Validation Wizard.
6. For method of distribution, select Submit to the iOS App Store.

Chapter 8

[195]

7. Click the Next button.
8. Enter your Apple ID and password so Xcode can log in to iTunes Connect.
9. Click the Next button.
10. Once the list of apps with a status of Waiting For Upload has been retrieved,

you can choose your app page and signing identity from the drop-down lists.
11. Click the Next button and Xcode will upload your app.
12. If your app passes validation, you will receive a message stating that

no problems were found and your app may be submitted to the App Store.
13. Click the Distribute… button, which will open the Distribution Wizard.

Repeat each of the steps you just performed with the Validation Wizard.
14. Once the upload is completed this time, you will receive a message stating it

has been submitted to the App Store and is awaiting review.
15. If you open your app page again, the status should be Waiting For Review.

You've just submitted your app to the App Store! That wasn't so hard, was it? If
everything goes as planned, you should be approved within a few days. Check
your app page every day or so until you learn the outcome of the review process. If
your app is rejected, a detailed explanation of the rejection will be included for your
attention and response. In that case, don't sweat it, just make the changes or fix the
bugs as necessary, and submit again.

Deploying Mac applications
Next, let's look at how to deploy Mac applications.

If you do not intend to develop Mac applications, or if you are
not currently a member of the Mac Apps Developer Program,
you can skip this walkthrough for now and come back to it
whenever you're ready.

Mac applications can be distributed in one of the two ways. First, they can be digitally
signed by the Developer ID allowing them to be distributed directly to end users
without using the App Store. Secondly, if your app has a digitally signed installer
package it can be distributed through the App Store. Since the steps required for
direct distribution are also required for distribution through the App Store, we will
detail both the methods in this walkthrough.

Deployment

[196]

Begin by opening a browser and navigating to the Developer Certificate Utility at
https://developer.apple.com/certificates/i. When you arrive at this page,
you will notice four panels listed below the Mac Developer Program group. You can
view these panels as a checklist, which must be completed to submit your app to the
App Store.

Installing Developer Certificates
In order to install your developer certificates, start on the main overview page and
perform the following steps:

1. Under Certificates, click the WWDR Intermediate Certificate link, which
will download the certificate. The WWDR Intermediate Certificate is
something similar to a root-level certificate authority that checks whether
your distribution profile certificate was in fact issued by Apple.

2. Under Certificates, click the Developer ID Intermediate Certificate link.
The Developer ID Intermediate Certificate is used by the Gatekeeper to
verify the signed installer.

3. Open your Downloads folder in Finder, and double-click the files you just
downloaded to install them to your keychain.

Registering a Mac App ID
Just like iOS applications, every Mac application requires a unique App ID:

1. Select the App ID panel.
2. If you have never created an App ID previously, you will immediately be

taken to the Register Your Mac App ID dialog. Otherwise, you will see a
list of previously registered Mac OS X App IDs. In this case, click the
Create App ID button in the upper-right corner of the page.

3. Enter a Name for your app.
4. Enter a unique Bundle ID for your app. Apple recommends using a

reverse-domain style name. So in the case of our app, we can enter
com.websmithsllc.ultimatewidgetfu.

5. Click the Continue button.
6. Confirm that the data you have entered is correct because you can't

change it later.

https://developer.apple.com/certificates/i

Chapter 8

[197]

7. Click the Submit button when you are satisfied.
8. If all goes well, you will be returned to the Mac OS X App IDs list where

you will see your new App ID listed. From this page, you can set up the
iCloud, Push Notifications, and Game Center features by clicking the
Configure button.

Creating a Mac App Development certificate
A Mac App Development certificate is required if your app needs access to features
such as the iCloud or Push Notifications.

If your Mac application does not utilize these services, you
can skip this walkthrough for now and come back to it
whenever you need it.

Please follow these steps to create the Mac App Development certificate:

1. Select the Certificates panel.
2. Under the Deployment category, select the Mac App Development

Certificate radio button.
3. Click the Create button.
4. Open Keychain on your Mac.
5. Go to Keychain Access | Certificate Assistant | Request a

Certificate from a Certificate Authority….
6. Inside the Certificate Information window, enter the user's e-mail address in

the User Email Address field.
7. Choose a specific name for the key so you can find it easily later, and

enter that value in the Common Name field.
8. Select the Saved to disk radio button.
9. Click the Continue button.
10. This will create a certificate request file with an extension

.certSigningRequest on your desktop.
11. Back in Developer Certificate Utility, click the Continue button.
12. Click the Choose File button and locate the .certSigningRequest

file you just created.
13. Click the Generate button.

Deployment

[198]

14. Once you receive the message that your certificate has been generated, click
the Continue button again.

15. The next page will list the newly generated certificate including its
expiration date. Click the Download button.

16. Open your Downloads folder in Finder and double-click the
certificate to install it to your keychain.

17. Back in Developer Certificate Utility, click the Continue button.

Creating Mac App Store Certificates
Please follow these steps to create Mac App Store Certificates:

1. Click the Certificates panel again.
2. Select the Mac App Store radio button.
3. Check both the Mac App Certificate and Mac Installer Certificate

boxes as you will need to create both.
4. Click the Create button.
5. Open Keychain on your Mac.
6. Go to Keychain Access | Certificate Assistant | Request a

Certificate from a Certificate Authority….
7. Inside the Certificate Information window, enter the user's e-mail address in

the User Email Address field.
8. Choose a specific name for the key so that you can find it easily later,

and enter that value in the Common Name field. Be certain to include the
word Application in this first key so you can distinguish it later.

9. Select the Saved to disk radio button.
10. Click the Continue button.
11. This will create a certificate request file with an extension

.certSigningRequest on your desktop.
12. Back in Developer Certificate Utility, click the Continue button.
13. Click the Choose File button and locate the .certSigningRequest

file you just created.
14. Click the Generate button.
15. Once you receive the message that your certificate has been

generated, click the Continue button again.
16. The next page will list the newly generated certificate including its expiration

date. Click the Download button.

Chapter 8

[199]

17. Open your Downloads folder in Finder and double-click the certificate to
install it to your Keychain.

18. Back in Developer Certificate Utility, click the Continue button once more.
19. You will need to repeat the same process for the Installer now. When you

name the key, be sure to include the word Installer so you can distinguish
it later.

20. Once you have installed these certificates to your keychain, click the
Continue button to be returned to the Developer Certificate Utility
main page.

Creating a Developer ID Certificate
Please follow these steps to create a Developer ID Certificate:

1. Click the Certificates panel again.
2. Select the Developer ID radio button.
3. Check both the Developer ID Application Certificate and Developer

ID Installer Certificate boxes as you will need to create both.
4. Click the Create button.
5. From this point, follow the exact same steps that you performed to

create Mac App Store Certificates, making sure to include the word
Application when naming Developer ID Application Certificate, and
the word Installer when creating Developer ID Installer Certificate.

6. Once you have installed these certificates to your keychain, click the
Continue button to return to the Developer Certificate Utility main page.

Registering the Mac OS X development
machine
Before you can use the certificates that you just generated to obtain provisioning
profiles for your application, you must register the Mac development machine
by performing the following steps:

1. Inside Developer Certificate Utility, click the Systems panel.
2. If you have never created a system previously, you will immediately be taken

to the Register Mac OS X System dialog. Otherwise, you will see a list of the
previously registered Mac OS X Systems. In this case, click the Add Mac OS
X System button in the upper-right corner of the page.

Deployment

[200]

3. In the System Name or Description field, enter a descriptive name for the
machine you want to register.

4. In the Hardware UUID field, enter the UUID of this machine. If you are not
certain how to find UUID, follow the help link provided below the field.

5. Click the Continue button.
6. Once the confirmation screen appears, click the Continue button.
7. You will be returned to the Mac OS X Systems list.

Creating the development provisioning
profiles
You must obtain separate provisioning profiles for the development platform
and deployed production application. The development provisioning profile is
used for local development and testing. Any time you create a new application,
or you want to add a new machine to test your application on, you will need to
create a new development provisioning profile that associates the App ID with
the registered system:

1. Inside Developer Certificate Utility, click the Provisioning Profiles panel.
2. If you have not created Mac Development Provisioning Profile previously,

you will immediately be taken to the Create a Mac Provisioning Profile
dialog. Otherwise, you will see a list of the previously registered Mac
Provisioning Profiles. In this case, click the Create Mac Provisioning Profile
button in the upper-right corner of the page.

3. In the Kind group, select the Development Provisioning Profile
radio button.

4. In the Name field, enter the name for this provisioning profile. Be
sure to include the word Development so you can distinguish it later.

5. Choose the Mac App ID that this profile will be associated with.
6. Select the Developer Certificate you created earlier, or whichever certificate

you intend to use.
7. Select the system you just registered, or the system you intend to

develop and test with.
8. Click the Create button.
9. This will generate a new Development Provisioning Profile, with the

extension .provisionprofile. Once the development provisioning profile
has been created, click the Download button.

Chapter 8

[201]

10. Navigate to your Downloads folder in Finder, and double-click on the
downloaded profile to add it to your Keychain.

11. When prompted, click the Install button.

Creating the production provisioning profiles
You must obtain a production provisioning profile before you can submit to the
App Store.

1. Inside the Developer Certificate Utility, click the Provisioning Profiles panel.
2. If you have never created a Mac Development Provisioning Profile

previously, you will immediately be taken to the Create Mac Provisioning
Profile dialog. Otherwise, you will see a list of previously registered Mac
Provisioning Profiles. In this case, click the Create Mac Provisioning Profile
button in the upper-right corner of the page.

3. In the Kind group, select the Production Provisioning Profile radio button.
4. In the Name field, enter the name for this provisioning profile. Be sure to

include the word Production so you can distinguish it later.
5. Choose the Mac App ID that this profile will be associated with.
6. Select the Mac App Certificate you created earlier, or whichever

certificate you intend to use.
7. Click the Create button.
8. This will generate a new Production Provisioning Profile, with the

extension .provisionprofile. Once the production provisioning
profile has been created, click the Download button.

9. Navigate to your Downloads folder in Finder, and double-click on the
downloaded profile to add it to your keychain.

10. When prompted, click the Install button.

Setting the app configuration
The last step needed to prepare for the release build is to set up our
application configuration:

1. Open your solution in Xamarin Studio.
2. Right-click the project and open the Project Options dialog.
3. Under the Build group, select the Mac OS X Application panel.
4. Choose App Icon.

Deployment

[202]

5. In the Application Category dropdown, specify the app category.
6. In the Identifier field, enter the Bundle ID you defined when you

created the App ID.
7. Define the Version and Build values.
8. Choose Deployment Target. This is the minimum OS level that will

run your app.
9. Choose Main Interface.
10. Under the Build group, select the Mac OS X Packaging panel.
11. In the General tab, check the Include the Mono runtime in

the application bundle box. Embedding the mono runtime is
a requirement for the App Store submission.

Signing your application for direct
deployment
At this stage, you should be ready to deploy your app, and this is where the
workflow paths diverge. If you are planning to deploy your app directly to your
customers, you should sign your app using your Developer ID and then build for
release. I say you should sign your app because technically it's not required. The
gatekeeper will not immediately permit an unsigned app to be installed, but users
can bypass that restriction. The exact procedure to bypass the security will differ
from OS version to version, but just be aware that it's possible.

If allowing users to install your app outside of the security protection
of Gatekeeper fits with your development and deployment
workflow, you can skip these steps.
If you do not intend to deploy your applications directly to users,
opting instead to deploy via the Mac App Store, you can skip the
next section as well.

Please use the following steps to sign your application for direct deployment:

1. Back in the Project Options dialog under the Mac OS X Packaging panel,
change the Configuration to Release.

2. In the General tab, under the Code Signing Options heading, check the Sign
the application bundle box.

3. Choose your Developer ID from the Identity dropdown.

Chapter 8

[203]

4. Choose your Production Provisioning Profile from the Provision dropdown.
5. Under the Packaging Options heading, check both the Create installer

package and Sign the installer package boxes.
6. Choose your Developer ID from the remaining Identity dropdown.

Build for direct deployment
At this time, your app is ready for a release build intended for direct deployment:

1. Close the Project Options dialog.
2. Choose the Release | x86 configuration from the Configuration dropdown.
3. Go to Build | Build All to confirm that no build issues were

introduced using the new configuration settings.
4. During the build process, you will be prompted twice to Allow your

Developer ID certificate to be used for signing the build package.
5. Once built in the Release mode, you should test your app again, this time

by installing it locally using the newly created package. As discussed in
Chapter 2, Learning and Customizing the XS Environment, the Linker can have
some unintended side effects so it is vital that you test your application's
release build before submitting it to the marketplace. Also, you want to
ensure that the installer is working as you intend.

6. You will find the .pkg file located in the bin/Release folder of your solution.

You have now successfully created an installer package that can be directly
distributed to your end users!

Signing your application for deployment to
the Mac App Store
If you are planning to deploy your app via the Mac App Store, you will be required
to sign your app using your Developer ID and then build for release. The next two
sections will walk you through signing and building your app for that purpose.

If you do not intend to deploy your applications via the
Mac App Store, opting instead to deploy directly to your
users, you can skip the remainder of the Deploying Mac
applications walkthrough.

Deployment

[204]

Please use the following steps to sign your application for deployment to the Mac
App Store:

1. Back in the Project Options dialog under the Mac OS X Packaging panel,
change the Configuration to AppStore.

2. In the General tab, under the Code Signing Options heading, check the Sign
the application bundle box.

3. Choose your Developer ID from the Identity dropdown.
4. Choose your Production Provisioning Profile from the Provision dropdown.
5. Under the Packaging Options heading, check both the Create installer

package and the Sign the installer package boxes.
6. Choose your Developer ID from the remaining Identity dropdown.

Build for Mac App Store deployment
At this time, your app is ready for release build for direct deployment.

1. Close the Project Options dialog.
2. Choose the AppStore configuration from the Configuration dropdown.
3. Go to Build | Build All to confirm that no build issues were

introduced using the new configuration settings.
4. During the build process, you will be prompted at two different

points to Allow your Developer ID certificate to be used for signing
the build package.

5. Once built in the AppStore mode, you should test your app again, this
time by installing it locally using the newly created package. As discussed in
Chapter 2, Learning and Customizing the XS Environment, the Linker can have
some unintended side effects so it is vital that you test your application's
release build before submitting it to the marketplace. Also, you want to
ensure that the installer is working as you intend.

6. You will find the .pkg file located in the bin/x86/AppStore folder of
your solution.

You have successfully created an installer package that can be uploaded to the
Mac App Store!

Chapter 8

[205]

Deploying to the Mac App Store
Just like iOS applications, you will use iTunes Connect to deploy applications to the
Mac App Store. For details on setting up an iTunes Connect account, please review
the Setting up an iTunes Connect account section earlier in this chapter. Likewise,
before you can continue on to publishing your app, there are a few more items you
will need to define or collect. You will find that most of these items are similar to
their iOS counterparts:

• App Name: This is the name of the app that will appear in the App Store,
and it has a limit of 255 characters. You should do some research in advance
to learn what keywords people are searching for and, if possible, include
one or more of those keywords in your App Name. This is one of the most
important and often overlooked ways to get more downloads.

• App Description: This is the description your users will see in the App Store.
There is a limit of 4,000 characters. The first two lines are critical in grabbing
the user's attention because Apple will hide the rest behind a More link. Be
sure your text is clear, concise, and highly scannable. Avoid large blocks of
text, and try to keep the overall length below 700 characters. This is your
chance to sell to a customer who has already taken the time to look for more
information. Focus on functionality, design, and simplicity of workflow from
the user's viewpoint. If possible, point out what makes your app unique
without naming competitors.

• App Screenshot: Screenshots are another often overlooked element for the
success of your application. You must include at least one app screenshot
with your submission, but four more are permitted (and encouraged).
You should collect compelling and attractive screenshots, showing the
actual screen of your app without borders or graphics around the image.
Screenshots are displayed in the order they are uploaded, and you cannot
reorder them after the fact. Always place the best screenshots first because
many users will not bother to scroll if the initial screenshots are boring or
uninformative. For a complete list of the available screenshots and the rules
imposed for each, please review Appendix, Images and Graphics Tables.

• App Ratings: Even if your app isn't targeting children of age 11 or less, it's
always a good idea to place ratings on your app to help users make informed
decisions. Note that Apple will reject any apps that include material
determined to be obscene, pornographic, offensive, or defamatory.

Deployment

[206]

At this point, you should have everything you need to begin creating the application
page for your app. Here's how to create that page:

1. Inside iTunes Connect, click the Managing Your Applications link.
2. Click the Add new app button.
3. If you have multiple developer account types, you will need to

choose the Mac OS X App type.
4. Choose the primary language of your app.
5. Fill in your app name in the App Name field.
6. Enter a SKU number in the SKU Number field. The SKU number can

be any number with two or more digits.
7. Select your Bundle ID. The selections in this dropdown are populated from

the App IDs you have registered in the Provisioning Portal, so be sure you
choose the right one for this app.

8. Check your entries one last time. If you are satisfied, click the Continue
button.

9. Select the availability date for your app. You have two choices for this:
 ° If you want your app to be released as soon as it is approved, choose

today's date.
 ° If you want your app to be released at some time in the future, choose

a date that you are certain of after the review process will finish,
perhaps a year from now. Then, once approved, you can deploy the
app on your schedule.

10. Choose the price tier for your app. In the case of Ultimate Widget Fu, we
will choose Free. Otherwise, click the View Pricing Matrix link to see details
on the available options.

11. Click the Continue button.
12. On the next screen, begin by entering your version number as it is

recorded in your Project Options.
13. Enter your copyright information, which is usually just the release

year followed by your company name.
14. Select any categories that apply to your app.
15. Complete the Rating information section. Users can change these ratings if

they think you mischaracterized your app, so be as honest as possible.
16. Enter the App Description you prepared earlier.

Chapter 8

[207]

17. Enter a few keywords from the list of keywords you researched earlier while
naming your app. Just as in the case of iOS apps, this is extremely important
because only the app name and this list of keywords are indexed for the App
Store search.

18. Enter a marketing URL and privacy policy URL if they are available. Note that
these websites will also be reviewed by Apple before your app is approved, so
remember that many of the rules that apply to your app might also apply to
these sites.

19. Enter your contact information including your first name, last name, e-mail
address, and phone number.

20. Enter any Review Notes, including additional information the user might
need, signup requirements, or hardware requirements.

21. If your application has a Demo mode, enter the account credentials
under the Demo Account Information heading.

22. If your app uses any entitlements, enter the necessary keys in the
table under the App Sandbox Entitlement Usage Information heading.

23. Finally, under the Uploads heading, you should add your
screenshots. You will need to upload at least one screenshot.

24. When these uploads are complete, confirm that you selected the right
images and click the Save button.

25. Click the View Details button below the App Icon.
26. In the View Details dialog, click the Ready to Upload Binary button.
27. You will be asked whether or not your app uses cryptography or contains

incorporate cryptography. Answer honestly and click the Save button.
28. You will be advised that iTunes Connect is ready to accept your binary file.

Click the Continue button.
29. This will open the Start Application Loader tool. Once you are logged in,

click the Deliver Your App button to proceed.
30. Choose your application from the dropdown, and click the Next button.
31. Review the data associated with your application. If everything looks correct,

click the Next button.
32. When Finder opens, you will find the binary in the solution's directory under

the bin/x86/AppStore folder. Select the file and click the Open button.
33. Click the Send button.
34. At this time, the package will be validated. Your package will be submitted

for review if no errors are found. Otherwise, fix the errors that are reported
and upload again.

Deployment

[208]

You've just submitted your Mac app to the App Store! If everything goes as planned,
you should be approved within a few days. Check the app page every day or until
you learn the outcome of the review process. If your app is rejected, a detailed
explanation of the rejection will be included for your attention and response. Make
the required changes or fix the bugs as necessary, and submit your app again.

Deploying Android applications
Deploying an Android application includes many of the same steps you took to
deploy an iOS or Mac application. One noteworthy difference is that while iOS apps
can only be distributed via the iOS App Store, there are many modes of deployment
for your Android apps. These include the big app stores such as Google Play Store
and Amazon App Store for Android, other lesser known app stores, independent
outlets, or your own website. It's even possible to release your app by e-mail,
although I don't know anyone personally who has ever done this.

Although publishing an app through an established marketplace requires additional
effort on your part, these outlets really do provide access to the greatest number
of potential customers within your target market. Plus, you can deploy to multiple
markets simultaneously to increase your market exposure quickly. For the purpose
of this demonstration, we're going to focus on deployment to what is still the most
prominent marketplace, the Google Play Store.

Preparing your application for release
compile
First, you need to build your application in the Release mode. To do so, please
follow these steps:

1. Open your application solution in Xamarin Studio.
2. Open the Project/AssemblyInfo.cs file.
3. You need to disable debugging to prevent outside applications from taking

control of your Java process and executing additional code in the context
of your application. The best way to do this is to simply add the following
preprocessor directive to the AssemblyInfo.cs file:
#if DEBUG
[assembly: Application(Debuggable=true)]
#else
[assembly: Application(Debuggable=false)]
#endif

Chapter 8

[209]

4. Double-click the project to open the Project Options dialog.
5. Under the Build group, select the Android Application panel.
6. Select an application icon for your app. The icon should be 512 x 512 px,

32-bit PNG format. Transparency is allowed, but the maximum file size
must not exceed 1024 KB. The application icon is extremely important
because some marketplaces, including the Google Play Store, will not
permit your app to be listed without it.

Note that if you are building your app using the Visual Studio plugin,
you will not be able to set this value in the Project Options dialog.
Therefore, you must edit the Project/AssemblyInfo.cs file directly.
Insert the following code snippet into the AssemblyInfo.cs file.
Remember to replace iconName with the actual name of your icon file:

[assembly: Application(Icon = "@drawable/iconName")]

7. While still inside the Android Application panel, set the Version number
value. This value is used internally by Android and the application to
determine when to apply available updates. Most applications on their
initial release begin by setting this value to 1, and then incrementing from
there by whatever system you have chosen. Interestingly, I once worked for
a company that "does not release 1.0 Versions" of its software, so all of their
initial releases were labeled as 2.0 and above. If you have similar concerns
about the consumer's perception of your products, don't worry because the
Version number is never seen by the user.

8. Next, set the Version name. This value is not used in any way by the system,
but is instead used to communicate information to your end user. For an
initial release, it would be appropriate (but not required) to enter a value
of 1.0 in this field.

9. Under the Build group, select the Android Build panel.
10. Change the Configuration mode to Release. This is important because the

Release mode turns off the shared runtime, excludes debugging components,
and activates the Linker, which will discard any assemblies, types, and
members that are not referenced by your project. All of these result in a much
leaner APK, or Android Application Package file. Keeping the APK lean is
important because the Google Play Store imposes a 50 MB file size limit on
the APK.

11. Build your application to ensure that none of the changes have broken your
solution. Once your app is built in the Release mode, you should test your
app again.

Deployment

[210]

Creating a private keystore
Android will not execute applications that have not been digitally signed. A digital
signature includes the application creator's identity, and assures the OS that the app
was created by a trustworthy source. Signing your APK requires a keystore, which
is a database containing security certificates created by the keytool program in the
Java SDK. Once created, these certificates must be stored in a place where the signing
tool can access them.

Keep your keystore safe!
It is vitally important that you maintain your keystore in a safe and
reliable repository! If you lose the keystore, you won't be able to
post updates to your application within the Google Play Store. Your
only course of action would be to delete the old application from the
marketplace, create a new keystore, resign the APK with the new key,
and then submit a completely new application.
Another concern is security. If the keystore is compromised, it would
be possible for a hacker to distribute uncertified code under the
name of your application, including malicious versions of your app.
Obviously, this kind of breach can be very bad for business!

To create a new private keystore, you must complete the following steps:

1. Open a terminal session on your Mac. If you are on a Windows machine,
open a command console.

2. The keytool utility comes with the JDK, so you will be able to launch it from
the directory that contains javac. If you're not sure where that directory is,
please refer to the tip at the end of this section.

3. Use the following code snippet to execute keytool. Remember to replace
fileName with the intended filename for your keystore, and keyName with
the name of the key you want to create inside the store:
keytool -genkey -v -keystore fileName.keystore -alias
 keyName -keyalg RSA -keysize 2048 -validity 10000

4. When prompted, enter the keystore password.
5. When prompted again, re-enter the keystore password.
6. Answer the series of security questions that are presented.
7. When prompted, enter the password for the key name if it is different

than that of the keystore.
8. When prompted, re-enter the password for the key name.

Chapter 8

[211]

Where is the keytool?
Finding the keytool can be a pain if you're not sure where to look.
On either a Windows machine or a Mac, a keytool is bundled with
the Java SDK so it's available in the same directory that contains
javac. On a Windows machine, that directory is always located at
%JAVA_HOME%\bin.
If you're not sure where %JAVA_HOME% points towards, check your
system's environment variables to confirm the directory.
Locating the bin path on a Mac is also very simple. Open a terminal
and enter the following command:
cd `/usr/libexec/java_home`/bin

Note that in the preceding code, the quotes are back ticks, not
normal single quotes.

Signing the APK
There are several ways to sign the APK. In our case, we're going to sign it through
Xamarin Studio. There are different sets of steps involved with signing the APK
using the Visual Studio plugin, but we will not detail them here. Perform the
following steps to sign the APK:

1. With your solution open in Xamarin Studio, go to Project | Publish
Android Application….

2. In the Keystore selection dialog, choose the keystore you just created from
the Location field.

3. Enter the password for the keystore in the Password field.
4. Reenter the password for the keystore in the Confirm field.
5. In the Alias field, enter the key-name you chose when you ran keytool.
6. Enter the key-name password in the Key password field.
7. Click the Forward button.
8. In the Select destination dialog, enter a target directory for the

signed APK.
9. Enter the APK name in the File field.
10. Click the Create button.

At this stage, you have a signed APK file that is ready for deployment.

Deployment

[212]

Publishing to the Google Play Store
Before you can publish your app to the Google Play Store, there are a few more items
you will need to collect:

• App Name: This is the name of the app that will appear in the Google Play
Store. The Google Play Store imposes a 30-character limit on your App
Name! As with an iOS app, you should do some research in advance to learn
what keywords people are searching for and, if possible, include one or more
of those keywords in your App Name.

• App Description: This is the description your users will see in the App Store.
There is a limit of 4,000 characters here. The first two lines are critical in
grabbing the user's attention. Be clear, concise, and highly scannable. Avoid
large blocks of text, and try to keep the overall length below 700 characters.
This is your chance to sell to a customer who has already taken the time to
look for more information. Focus on functionality, design, and simplicity of
workflow from the user's viewpoint. If possible, point out what makes your
app unique without naming.

• Category: Choosing a category is a requirement for apps distributed via
the Google Play Store. Be honest, as choosing an inappropriate category
can result in your app being removed.

• Application Type: You must choose either Application or Game. Hopefully,
by this stage you already know the answer to this question!

• Company Name: You must include your company name with your app
submission to the Google Play Store. If you haven't picked one out, now's
the time.

• Support Information: An e-mail address, URL, or phone number for
providing user support is required for apps submitted to the Google Play
Store. You must include one or more of these values.

• Launcher Icons: You should include launcher icons for each of the
generalized screen densities, including 36 x 36 px for ldpi (120dpi),
48 x 48 px for mdpi (160dpi), 72 x 72 px for hdpi (240dpi), and 96 x 96 px
for xhdpi (320dpi). These images must be a 32-bit PNG file and transparency
is allowed.

Chapter 8

[213]

• Additional Graphics: You have the option to include two additional
graphics, titled Promo Graphic and Feature Graphic. The Promo Graphic
must be 180 x 120 px, 24-bit PNG, with no border and no transparency. The
Feature Graphic can be up to 1024 x 500 px, but to be on the safer side, you
should stay within a 924 x 400 px frame. The graphic must also be 24-bit PNG
with no transparency. Google officially states that the promo and feature
graphics are optional, but you should really consider them a requirement.
These graphics are used whenever your app is featured anywhere in the App
Store, and their inclusion can greatly enhance your app page.

• App Screenshot: Screenshots are another often overlooked element for the
success of your application. You must include at least two app screenshots
with your submission for each supported device platform, including
phones, 7-inch tablets, and 10-inch tablets. However, six more screenshots
are permitted (and encouraged) for each platform, allowing a total of eight
screenshots per platform (24 in all). You should collect compelling and
attractive screenshots, showing the actual screen of your app without borders
or graphics around the image. Always place the best screenshots first because
many users will not bother to scroll if the initial screenshots are boring or
uninformative. Your screenshots can come in many different shapes, sizes,
and resolutions depending on the device and its orientation. You should, at
a minimum, include a portrait screenshot in 320 x 480 px, 480 x 800 px, and
480 x 854 px sizes. Note that landscape screenshots will be cropped. For a
complete list of the available screenshots and the rules imposed for each,
please review Appendix, Images and Graphics Tables.

• Video Link: You can also include a link to a YouTube video demonstrating
your application's functionality. This video should be 30 seconds to 2 minutes
in length. Although it is optional, I highly recommend including a video if
you have the means to do so. Nothing can communicate both the functionality
and simplicity of your app workflow like a demonstration.

Once you have these materials in hand, you are ready to upload the APK to the
Google Play Store:

1. Open a web browser and log in to the Google Play Developer Console.
2. Click the Publish App on Google Play button.
3. Click the All Applications group on the left.
4. Click the Add new application button.
5. Choose a default language.

Deployment

[214]

6. Enter a name for your application in the field provided.
7. Click the Upload an APK button.
8. Click the Upload your first APK to Production button.
9. Click the Browse button and select your signed APK file. The widget

will automatically upload and assess your file to ensure that it is a valid
APK file.

10. Once complete, you will see your app listed on the Production tab
with a status of Draft in Production.

11. Click the Save Draft button.
12. Click the Store Listing tab.
13. Enter your app's title, description, and promo text (optional) in the

respective fields.
14. Using the widget under the Graphics Assets header, upload your

icons and screenshots.
15. Add a link to your promotional video in the Promo Video field.
16. Under the Categorization header, choose Application Type,

Category, and Content rating.
17. Under the Contact Details header, enter your support information.
18. Enter a URL to your privacy policy (optional).
19. Click the Pricing and Distribution tab.
20. If you intend to publish paid applications or you want to provide in-app

products, you will need an active merchant account. The process of opening
a merchant account is lengthy and varies by country so I will leave it up to
you to complete that later.

21. Select any countries you wish to distribute your app to.
22. Scroll down to the Consent section.
23. Read the links on Content guidelines and US export laws. If you

understand and acknowledge/consent to these, check the boxes. Your
selections will be automatically saved.

24. If for some reason you see a Draft button in the upper-right corner of the page,
it means there is a problem with your submission. Otherwise, you should see
the Ready to publish button in the upper-right corner. Click that button, and
choose the Publish this app option from the subsequent dropdown.

That's it! Your application has been published and it should be available in the
Google Play Store within a few hours.

Chapter 8

[215]

Summary
In this chapter, we have walked through the process of taking our finished
applications from the development department to the open market. Although these
processes are lengthy and cumbersome in places, they help to ensure that only the
highest quality products are available to customers using the various marketplaces.
This translates to a more positive experience for users of the marketplace, which in
turn means increased trust in the marketplace system and its vendors as a whole.

Images and Graphics Tables
The following sections contain lists and tables of the image and graphics
specifications that we will require while working on our app.

iOS application icons
The following list and table show specifications and requirements for iOS
application icons:

• File Type: PNG
• Quality: 24 bit
• Transparency: Not allowed
• Required: Yes

Type Dimensions (px) Notes
Standard 512 x 512 px
Retina 1024 x 1024 px

Images and Graphics Tables

[218]

iOS 3.5-inch Retina display screenshots
The following list and table show specifications and requirements for iOS
screenshots for 3.5-inch Retina displays:

• File Type: High-quality JPEG, TIFF, or PNG
• Quality: 72 dpi, RGB, flattened
• Transparency: Not allowed
• Required: At least one

Type Dimensions (px) Notes
Portrait 640 x 920 Hi-res, do not include status bar
Portrait 640 x 960 Hi-res, fullscreen
Landscape 960 x 600 Hi-res, do not include status bar
Landscape 960 x 640 Hi-res, fullscreen

iOS 4-inch Retina display screenshots
The following list and table show specifications and requirements for iOS
screenshots for 4-inch Retina displays:

• File Type: High-quality JPEG, TIFF, or PNG
• Quality: 72 dpi, RGB, flattened
• Transparency: Not allowed
• Required: At least one screenshot is required if your app will run on 4-inch

Retina displays and up to four additional screenshots are permitted

Type Dimensions (px) Notes
Portrait 640 x 1096 Do not include status bar
Portrait 640 x 1136 Fullscreen
Landscape 1136 x 600 Do not include status bar
Landscape 1136 x 640 Fullscreen

Appendix

[219]

iOS iPad screenshots
The following list and table show specifications and requirements for iOS application
screenshots for iPad:

• File Type: High-quality JPEG, TIFF, or PNG
• Quality: 72dpi, RGB, flattened
• Transparency: Not allowed
• Required: At least one screenshot is required if your app will run on an iPad

and up to four additional screenshots are permitted

Type Dimensions (px) Notes
Portrait 768 x 1004 Do not include status bar
Portrait 768 x 1024 Fullscreen
Portrait 1536 x 2008 Hi-res, do not include status bar
Portrait 1536 x 2048 Hi-res, fullscreen
Landscape 1024 x 748 Do not include status bar
Landscape 1024 x 768 Fullscreen
Landscape 2048 x 1496 Hi-res, do not include status bar
Landscape 2048 x 1536 Hi-res, fullscreen

Mac OS X app screenshots
The following list and table show specifications and requirements for Mac OS X
application screenshots:

• File Type: High-quality JPEG, TIFF, or PNG in the RGB color space
• Quality: 72dpi, RGB, flattened
• Transparency: Not allowed
• Required: At least one screenshot is required and up to four additional

screenshots are permitted

Type Dimensions (px) Notes
1280 x 800 16:10 aspect ratio
1440 x 900 16:10 aspect ratio
2880 x 1800 16:10 aspect ratio

Images and Graphics Tables

[220]

Android application icons
The following list and table show specifications and requirements for Android
application icons:

• File Type: PNG
• Quality: 32 bit
• Transparency: Allowed
• Required: Yes

Type Dimensions (px) Notes
Standard 512 x 512 px 1024 KB maximum file size

Android screenshots
The following list and table show specifications and requirements for Android
application screenshots:

• File Type: JPG or PNG
• Quality: 24 bit
• Transparency: Not allowed
• Required: At least two screenshots are required for each supporting

device platform, including phones, 7-inch tablets, and 10-inch tablets,
and up to six additional screenshots are permitted (all screenshots
should be in the portrait mode)

Type Dimensions (px) Notes

Screenshots
Min: 320
Max: 3840

Maximum dimension cannot be more than twice as
long as the maximum dimension.

Feature
Graphic 1024 x500 The Feature Graphic is used for promotions on

Google Play.

Promo
Graphic 180 x 120

The Promo Graphic is used for promotions on older
versions of the Android OS (earlier than 4.0). A
promo graphic is optional.

Index
A
Actions

about 80, 81
adding 82

active state, iOS application lifecycle 145
Add-on Sites Manager, Android SDK

Manager 93
Ad-Hoc Provisioning Profile 64
Advanced tab, Android Build pane

options 66
Advanced tab, iOS Build pane

options 63
Android Activity 120
Android Activity lifecycle methods

OnCreate() 153
OnDestroy() 154
OnPause() 154
OnRestart() 153
OnResume() 153
OnStart() 153
OnStop() 154

Android application
creating 42

Android application deployment
APK, signing 211
application, building in

Release mode 208, 209
performing 208
private keystore, creating 210
publishing, to Google Play Store 212-214

Android application icons 220
Android application lifecycle

about 150
Activity lifecycle, examining 156, 157
Activity lifecycle methods 152, 153

application states, examining 155, 156
background state 151, 157, 158
configuration change 155
empty state 151
foreground state 150
service state 151
visible state 150

Android Build pane
Advanced tab 66, 67
Linker tab 65
Packaging tab 64

Android Developer Library 37
Android device

testing 177
Android devices, setting up

about 33
debugging, enabling on device 33
USB drivers, installing 34

Android emulator
about 22
testing in 174
tests, running 175
working 176

Android Fragment file type
using 120

Android Layouts 94, 95
Android project templates

about 113
Android Application 113
Android Honeycomb 113
Android Ice Cream Sandwich 113
Android Library 114
Android OpenGL Application 114
Android Unit Test 114
Android WebView 114
Java Bindings Library 114

[222]

Android screenshots 220
Android SDK Manager

about 92
Add-on Sites Manager 93
AVD Manager 94
Package Manager 92, 93

Android View 120
Android Virtual Device (AVD) 21
Andr.Unit framework 164
API design, Xamarin.Forms

about 126
using 126-132

APK
signing 211

APM EABI v7a System Image 26
AppDelegate class

DidEnterBackground() function 146
FinishedLaunching() function 146
OnActivated() function 145
OnResignActivation() function 146
WillEnterForeground() function 146
WillFinishLaunching() function 146
WillTerminate() function 146

AppDelegate object 145
App Fundamentals tutorial

URL 37
Apple Developer Library

URL 37
Apple Developer Program

about 17, 18
iOS Developer Program account 17
Mac Developer Program 17

Apple support documentation
URL 12

Application Binary Interface (ABI) 66
application lifecycles

Android application lifecycle 150
iOS application lifecycle 144

Application menu
about 46-48
About Xamarin Studio 46
Account… 47
Add-in Manager… 47
Check for updates… 46
Custom Policies… 47
Preferences… 46

App Page, iOS application
App Description 192
App Icon 192
App Name 191
App Ratings 192
App Screenshot 192
creating 191-194

App Store Review Guidelines 184
ARC (automatic reference counting) 86
Attributes inspector 78
AVD Manager

about 94
used, for creating Nexus 7 AVD 22, 23

AVD performance
Hardware Acceleration

Execution Manager 27
improving 26
Intel x86 Atom System Image 26, 27
running, from Snapshot 29
third-party AVD options 30

B
background state, Android application

lifecycle 157, 158
background state, iOS application

lifecycle 145
Basic Input/Output System (BIOS) 28
Binding Project

about 116
iOS Binding Project 116
Java Bindings Library 117

Blank App (Xamarin.Forms Portable) 124
Blank App (Xamarin.Forms Shared) 124
breakpoint navigator 77
build configuration, iOS application

defining 189
Build group, Project Options

Android Build pane 64
iOS Build pane 61

Build menu
about 51-53
Build 51
Clean 52
Rebuild 51
Stop 52

[223]

Bundle ID 185
Business edition, Xamarin Studio 9

C
Class Library (Xamarin.Forms Portable) 124
cloning 22
collection view cells 119
collection view controllers 119
components, Xamarin.Forms

about 125
Cell 126
Layout 126
Page 126
View 126

connections inspector 78
continuous integration (CI)

about 163
URL 163

D
data bindings, Xamarin.Forms 125
debug area, Xcode 79
debugging 162
debug navigator 77
deployment

Android applications 208
iOS applications 184
Mac applications 195

DESIGNER files 85
Design pads 43, 44
developer certificates, Mac application

installing 196
Developer Certificate Utility

URL 196
Developer ID Certificate, Mac application

creating 199
development components

installing 11
development provisioning profiles,

Mac application
creating 200

Device Monitor
about 161, 180
launching 180

URL 180
device testing

about 176
Android device, testing 177
iOS device, testing 177

Dialog View Controller (DVC) 119
DidEnterBackground() function 146
direct deployment, Mac application

build 203
signing for 202

distribution provisioning profile, iOS
application

about 185
App ID, creating 188
creating 188
installing 189
production certificate signing request,

generating 185-187
production certificate signing request,

submitting 187, 188
requisites, for generation process 185

D-U-N-S Numbers 18

E
Edit menu

about 46-48
Insert Standard Header 48
Insert Template… 48

editor area, Xcode 79
emulators 20
Enterprise edition, Xamarin Studio 9
Execute Disable (XD) 28

F
file inspector 77
File menu 46-48
files

about 117
Contents.json file 118
Interface Builder (IB) file 118
property list (PList) file 120

find navigator 76
FinishedLaunching() function 146

[224]

G
General tab, iOS Build pane

options 62
GenyMotion

about 30
URL 30, 37

GNU Debugger (GDB) 162
Google Cloud Messaging service

about 120
reference link 121

Google Play Developer Program
about 17-19
subscribing 20

Google Play Store
Additional Graphics 213
Android application, publishing to 212-214
App Description 212
Application Type 212
App Name 212
App Screenshot 213
Category 212
Company Name 212
Launcher Icons 212
Support Information 212
Video Link 213

Google Services Framework
about 120
reference link 121

Gorilla Testing 183

H
HAXM (Hardware Acceleration Execution

Manager)
about 28
installing 28

Help menu
about 56, 57
API Documentation 57
Open Log Directory 57
Report a bug 57

I
IBOutlet 81
IDE 39
identity inspector 78

inactive state, iOS application lifecycle 144
INavigation interface 126
Indie edition, Xamarin Studio 8
Indie license 124
Information pads 44-46
Instruments 12, 161, 179
Integrated Development

Environment. See IDE
Intel x86 Atom System Image

about 26
installing 27

Interface Builder 79
Interface Builder (IB) file 118
Interface Builder, Xcode 74
iOS 3.5-inch Retina display screenshots 218
iOS 4-inch Retina display screenshots 218
iOS 6.1 Simulator

installing 21
iOS application

creating 41
iOS application deployment

build configuration 189
build configuration, defining 189
bundle signing 190
distribution provisioning profile 185
performing 184

iOS application icons 217
iOS application lifecycle

about 144
active state 145
AppDelegate class 145
background state 145
examining 149
inactive state 144
not running state 144
suspended state 145
UIViewController lifecycle methods 147

iOS application, publishing
about 190
application page, creating 191-194
binary, uploading 194, 195
iTunes Connect account, setting up 191

iOS Apps Developer Program 184
iOS Binding Project 116
iOS Build pane

Advanced tab 63, 64
General tab 62

[225]

iOS control types
URL 120

iOS Developer Program
subscribing 18

iOS device
testing 177

iOS devices, setting up
about 31
development certificate, obtaining 31, 32
devices, provisioning 32

iOS interface, Xamarin Studio Designer
about 87
design surface 88
Document Outline pad 88
Properties box 88
Toolbox pane 88

iOS iPad screenshots 219
iOS lifecycles

examining 148, 149
iOS project templates

about 110
Empty Project 110
iOS Binding Project 111
iOS Library Project 112
iOS Tabbed Application 110
iOS Unit Tests Project 112
iOS Utility Application 110
Master-Detail Application 111
OpenGL Application 112
Page Based Application 111
Single View Application 110
Sprite-Kit Application 111
Web View Application 111

iOS Provisioning Portal 185
iOS SDK

about 11, 21
installing 12

iOS simulator
testing in 170-172
tests, running 172
working 173, 174

IParcelable interface 8
iPhone application

creating, in Visual Studio 106-109
working 109

issue navigator 76
iTunes 177

iTunes Connect
about 190
account, setting up 191
reference link 191
URL 191

iTunes University
URL 37

J
Java Bindings Library 117
Java Native Interface (JNI) 117

L
Layout

creating 96, 97
working 97, 98

libraries
about 115
Binding Project 116
Portable Class Library 115

Linker
URL 62

Linker tab, Android Build pane
options 65

log navigator 77
logs

about 180
crash logs 180
debug logs 181

M
Mac App Development certificate

creating 197, 198
Mac App ID

registering 196, 197
Mac application deployment

application configuration, setting 201
build, for direct deployment 203
build, for Mac App Store deployment 204
developer certificates, installing 196
Developer ID Certificate, creating 199
development provisioning profiles,

creating 200, 201
direct deployment, signing for 202

[226]

Mac App Development certificate,
creating 197, 198

Mac App ID, registering 196, 197
Mac App Store Certificates,

creating 198, 199
Mac App Store deployment 205-207
Mac App Store deployment,

signing for 203, 204
Mac OS X development machine,

registering 199
performing 195
production provisioning profiles,

creating 201
Mac Apps Developer Program 195
Mac App Store

App Description 205
App Name 205
App Ratings 205
App Screenshot 205
Mac application, deploying to 205-208

Mac App Store Certificates
creating 198

Mac App Store deployment
build 204
signing for 203, 204

Mac/Mac (open source) project templates
about 114
Empty Xamarin.Mac 115
Xamarin.Mac 114
Xamarin.Mac Document 115
Xamarin.Mac Library 115

Mac OS X application screenshots 219
Mac OS X development machine

registering 199
Make 60
makefile 60

N
NavigationPage class 126
navigation, Xamarin.Forms 126
navigator area, Xcode

about 75, 76
breakpoint navigator 77
debug navigator 77
find navigator 76
issue navigator 76

log navigator 77
project navigator 76
symbol navigator 76
test navigator 77

Nexus 7 AVD
creating, AVD Manager used 22, 23

NIB files 85
not running state, iOS application

lifecycle 144

O
Objective Sharpie

about 117
reference link 117

OnActivated() function 145
OnCreate() method 153
OnDestroy() method 154
OnPause() method 154
OnResignActivation() function 146
OnRestart() method 153
OnRestoreInstance() 155
OnResume() method 153
OnSaveStateInstance() 155
OnStart() method 153
OnStop() method 154
Outlets

about 80, 81
adding 82

P
package manager,

Android SDK Manager 93
Packaging tab, Android Build pane

options 64
Portable Class Library (PCL)

about 115
using 115

Preferences
Environment 69
Other group 70
Packages group 70
Projects 69
Source Code group 70
Text Editor 69
Version Control group 70

[227]

pricing plans
URL 10

pricing structure
about 9
example company 10

private keystore, Android application
creating 210

production provisioning profiles, Mac
application

creating 201
project editor 79
Project menu

about 50
Active Configuration 50
Android Device Target 50
Apply Policy… 50
Create Package… 50
Edit References… 50
Export Policy… 50
Generate Makefiles… 50
Profile – Mono… 51
Project Options 51
Publish to TestFlight… 51
Solution Options 51
Zip App Bundle… 51

Project navigator 76
Project Options

about 59
Build group 60, 61
General group 59, 60
Run group 67
Source Code group 68
Version Control group 68

project templates
about 110
Android project templates 113
iOS project templates 110
Mac (open source) project templates 114
Mac project templates 114

Properties pad. See Design pads
property list 79
property list (PList) file 120

Q
quick help inspector 78

R
Razor templating engine 117
ReleaseDesignerOutlets() method 86
resources, cross-platform developers

third-party resources 37
Xamarin resources 37

Run menu
about 51-53
Add Tracepoint 53
Breakpoint 53
Debug Application… 53
Exceptions… 53
Run Unit Tests 53
Run With 53
Start 52
Step Into 53
Step Out 53
Step Over 53
Stop 53
Upload to Device 53

S
Samsung Galaxy S4 AVD

creating, SDK and AVD
Manager used 23-25

Search menu
about 48, 49
Go to File… 49
Go to Type… 49
Inspect 49

SGen garbage collection
URL, for documentation 63

simulators 20, 169, 170
Size inspector 78
Solution Options

about 57
Build group 58
General group 58
Run group 58
Source Code group 58
Version Control group 58

Solution pad 42, 43
source control

setting up 35, 36

[228]

source editor 79
Starter edition, Xamarin Studio 8
storyboard

about 119
creating 88-91
working 91

STORYBOARD file 86
Subversion (SVN) 54
suspended state,

iOS application lifecycle 145
symbol navigator 76
System.Data.SqlClient 8

T
table view cells 119
table view controllers 119
Team ID 185
test devices

Android devices, setting up 33
iOS devices, setting up 31
setting up 30

TestFlight
about 18, 178, 179
account, setting up 178
URL 178

testing
considerations 181
device testing 176
performing, in Android emulator 174
performing, in iOS simulator 170-172

test navigator 77
third-party AVD options 30
third-party resources, cross-platform

developers 37
toolbar area, Xcode 75
Tools menu

about 56, 57
Insert Guid 56
Launch Application Loader 56
Launch Instruments 56
Regex Toolkit… 56
Sync with Xcode 56
XML 56

Touch.Unit framework 164

U
UIViewController class

ViewDidAppear() 148
ViewDidDisappear() 148
ViewDidLoad() 147
ViewWillAppear() 148
ViewWillDisappear() 148

UIViewController lifecycle methods
about 147
flowchart 147

Ultimate Widget Fu 183
unit test project

creating 164, 165
unit tests

about 163
running 166-168
URL 163
working 168

utility area, Xcode
about 77, 78
attributes inspector 78
connections inspector 78
file inspector 77
identity inspector 78
quick help inspector 78
size inspector 78

V
Version Control menu

about 54, 55
Checkout… 55
Commit Solution 55
Diff 55
Log 55
Merge Branch… 55
Pop stash 55
Push Changes… 55
Rebase to Branch… 55
Remove 55
Stash… 55
Switch to Branch 55
Update Solution 55

view 119

[229]

view controller 119
ViewController

adding, to project 83, 84
working 84, 85

ViewDidAppear() event 148
ViewDidDisappear() method 148
ViewDidLoad() method 147
ViewGroup object 94
View menu

about 48, 49
Archives… 48
Focus Document 48
Show Disassembly 48

View object 94
ViewWillAppear() event 148
ViewWillDisappear() method 148
Virtual Machine (VM) 102
Visual Studio

iPhone application, creating 106-108
Visual Studio 2012 Professional 103
Visual Studio plugin

installation steps 105
installing 102
Mac, configuring 103
requisites, for Mac 103
requisites, for Windows 102
Visual Studio toolbar, configuring 105, 106
Windows machine, configuring 103
Windows VM, configuring within Mac 104

Visual Studio toolbar
configuring 105, 106

W
WillEnterForeground() function 146
WillFinishLaunching() function 146
WillTerminate() function 146
WindowManager 176
Window menu 56, 57
Windows 8 64-bit Pro 103

X
Xamarin.Android 11
Xamarin debugger 162
Xamarin Developer Center 37
Xamarin.Forms

about 123

API design 126
requisites 124
URL 142
XAML design 135

Xamarin.Forms application
building, API design used 127-133
building, XAML used 135-139
working, with API 133, 134
working, with XAML 141

Xamarin.Forms components
about 125
data binding 125
navigation 126
primary core components 125, 126

Xamarin.Forms project templates
Blank App (Xamarin.Forms Portable) 124
Blank App (Xamarin.Forms Shared) 124
Class Library

(Xamarin.Forms Portable) 124
Xamarin.Forms XAML

about 135
using 135-140

Xamarin Forums
about 37
URL 37

Xamarin Heapshot Memory Profiler
URL 62

Xamarin.iOS 11
Xamarin.Mac 11, 114
Xamarin resources, cross-platform

developers 37
Xamarin's Bugzilla

about 37
URL 37

Xamarin Studio
Android application, creating 42
development components, installing 11
file 117
installing 14-16
iOS application, creating 41
Layout, creating 96, 97
libraries 115
project templates 110
source control, setting up 35
storyboard, creating 88, 89
URL 14
Visual Studio plugin, installing 102

[230]

Xamarin Studio Designer,
for Android 95, 96

Xamarin Studio Designer, for iOS 87, 88
Xamarin Studio IDE

about 39-41
Application menu 46-48
Build menu 51-53
Design pads 43, 44
Edit menu 46-48
File menu 46-48
Help menu 56, 57
Information pads 44-46
Preferences 68
Project menu 50
Project Options 59
Run menu 51-53
Search menu 48, 49
Solution Options 57
Solution pad 42, 43
Tools menu 56, 57
Version Control menu 54, 55
View menu 48, 49
Window menu 56, 57

Xamarin Studio menu. See Application
menu

Xamarin Studio platform options
about 10
Xamarin.Android 11

Xamarin.iOS 11
Xamarin.Mac 11

Xamarin Studio pricing plans
about 8
Business 9
Enterprise 9
Indie 8
pricing structure 9
Starter 8

Xamarin team
URL 37

Xcode
about 11, 12, 74
debug area 79
editor area 79
installing 12
installing, from App Store 12
installing manually 13, 14
Interface Builder 74
navigator area 75, 76
toolbar area 75
utility area 77, 78

Xcode Installation
finishing 14

Xcode installer
URL 13

XIB files 85

Thank you for buying
Learning Xamarin Studio

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xamarin Cross-platform
Application Development
ISBN: 978-1-84969-846-7 Paperback: 262 pages

Develop production-ready applications for iOS and
Android using Xamarin

1. Write native iOS and Android applications
with Xamarin.

2. Add native functionality to your apps such as
push notifications, camera, and GPS location.

3. Learn various strategies for cross-platform
development.

Xamarin Mobile Application
Development for Android
ISBN: 978-1-78355-916-9 Paperback: 168 pages

Learn to develop full featured Android apps using
your existing C# skills with Xamarin.Android

1. Gain an understanding of both the Android
and Xamarin platforms.

2. Build a working multiview Android app
incrementally throughout the book.

3. Work with device capabilities such as location
sensors and the camera.

Please check www.PacktPub.com for information on our titles

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use
one language for multiple devices with Xamarin

1. A clear and concise look at how to create your
own apps building on what you already know
of C#.

2. Create advanced and elegant apps by yourself.

3. Ensure that the majority of your code can
also be used with Android and Windows
Mobile 8 devices.

Building Mobile Applications
Using Kendo UI Mobile and
ASP.NET Web API
ISBN: 978-1-78216-092-2 Paperback: 256 pages

Get started with Kendo UI Mobile and learn how
to integrate it with HTTP-based services built using
ASP.NET Web API

1. Learn the basics of developing mobile
applications using HTML5 and create an
end-to-end mobile application from scratch.

2. Discover all about Kendo UI Mobile, ASP.NET
Web API, and how to integrate them.

3. Understand how to organize your
JavaScript code to achieve extensibility
and maintainability.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Setting Up Xamarin Studio
	Xamarin Studio pricing plans
	Starter
	Indie
	Business
	Enterprise
	Understanding the pricing structure
	An example company

	Xamarin Studio platform options
	Xamarin.Android
	Xamarin.iOS
	Xamarin.Mac

	Installing development components
	Installing Xcode and the iOS SDK
	Installing Xcode from the App Store
	Installing Xcode manually
	Finishing the Xcode installation

	Installing Xamarin Studio
	Apple Developer Program
	Google Play Developer Program
	Setting up simulators and emulators
	iOS simulators
	Android emulators
	Creating a Nexus 7 AVD using the AVD Manager
	Creating a Samsung Galaxy S4 AVD using the SDK and AVD Manager

	Improving AVD performance
	Intel x86 Atom System Image
	Hardware Acceleration Execution Manager
	Run from Snapshot
	Third-party AVD options

	Setting up test devices
	Setting up iOS devices
	Obtaining a development certificate
	Provisioning your devices

	Setting up Android devices
	Enabling debugging on your device
	Installing USB drivers and connecting your device

	Setting up source control
	Additional resources for cross-platform developers
	Xamarin resources
	Third-party resources

	Summary

	Chapter 2: Learning and Customizing the XS Environment
	The Xamarin Studio IDE
	Creating your first iOS application
	Creating your first Android application
	The Solution pad
	Design pads
	Information pads
	Application, File, and Edit menus
	View and Search menus
	The Project menu
	Build and Run menus
	The Version Control menu
	Tools, Window, and Help menus
	Solution Options
	The General group
	The Build and Run groups
	The Source Code group
	The Version Control group

	Project Options
	The General group
	The Build group
	iOS-specific panes
	Android-specific panes

	The Run group
	Source Code and Version Control groups

	Environment preferences
	Environment
	Projects
	Text Editor
	Source Code, Version Control, Other, and Packages groups

	Summary

	Chapter 3: Working with Xcode and the Android SDK
	Introduction to Xcode
	Toolbar
	The navigator area
	The utility area
	The debug area
	The editor area

	Outlets and Actions
	Outlets
	Actions
	Adding Outlets and Actions

	Adding a ViewController to our project
	How it works

	XIB, NIB, DESIGNER, and STORYBOARD files
	Xamarin Studio Designer for iOS
	Creating a storyboard in Xamarin Studio
	How it works

	Android SDK Manager
	Android Layouts

	Xamarin Studio Designer for Android
	Creating a Layout in Xamarin Studio
	How it works

	Summary

	Chapter 4: Plugins, Templates,
Libraries, and Files
	Installing the Visual Studio plugin
	Configuring your Mac
	Configuring your Windows machine
	Configuring a Windows VM within Mac
	Final installation steps
	Configuring the Visual Studio toolbar

	Creating an iPhone application in Visual Studio
	How it works

	Project templates
	iOS project templates
	Android project templates
	Mac and Mac (open source) project templates

	Libraries
	Portable Class Library
	Binding Project
	iOS Binding Project
	Java Bindings Library

	Files
	Summary

	Chapter 5: Working with Xamarin.Forms
	Requirements for using Xamarin.Forms
	The Xamarin.Forms project templates
	The components of Xamarin.Forms
	Data binding
	Components
	Navigation

	The API design
	How it works

	The XAML design
	How it works

	Summary

	Chapter 6: Application Lifecycle
	The iOS application lifecycle
	The AppDelegate class

	UIViewController lifecycle methods
	Examining iOS lifecycles
	Examining the application lifecycle

	The Android application lifecycle
	Application lifecycle
	Activity lifecycle methods
	Configuration changes
	Examining application states
	Examining the Activity lifecycle

	The background state
	Summary

	Chapter 7: Testing and Debugging
	The Xamarin debugger
	Unit tests
	Touch.Unit and Andr.Unit

	Creating a unit test project
	Running the tests
	How it works

	Simulators
	Testing in an iOS simulator
	Running the tests
	How it works

	Testing in an Android emulator
	Running the tests
	How it works

	Device testing
	Testing on an iOS device
	Testing on an Android device

	TestFlight
	Setting up a TestFlight account

	Instruments
	Device Monitor
	Logs
	Other testing considerations
	Summary

	Chapter 8: Deployment
	Deploying iOS applications
	Distribution provisioning profile
	Generating a production certificate signing request
	Submitting a production certificate signing request
	Creating the App ID
	Creating and installing the distribution profile

	Build configuration
	Bundle signing
	Publishing your application
	Setting up an iTunes Connect account
	Creating the application page
	Uploading the binary

	Deploying Mac applications
	Installing Developer Certificates
	Registering a Mac App ID
	Creating a Mac App Development certificate
	Creating Mac App Store Certificates
	Creating a Developer ID Certificate
	Registering the Mac OS X development machine
	Creating the development provisioning profiles
	Creating the production provisioning profiles
	Setting the app configuration
	Signing your application for direct deployment
	Build for direct deployment
	Signing your application for deployment to the Mac App Store
	Build for Mac App Store deployment
	Deploying to the Mac App Store

	Deploying Android applications
	Preparing your application for release compile
	Creating a private keystore
	Signing the APK
	Publishing to the Google Play Store

	Summary

	Appendix: Images and Graphics Tables
	iOS application icons
	iOS 3.5-inch Retina display screenshots
	iOS 4-inch Retina display screenshots
	iOS iPad screenshots
	Mac OS X app screenshots
	Android application icons
	Android screenshots

	Index

