
www.allitebooks.com

http://www.allitebooks.org

Learning YARN

Moving beyond MapReduce—learn resource
management and big data processing using YARN

Akhil Arora
Shrey Mehrotra

BIRMINGHAM - MUMBAI

www.allitebooks.com

https://epic.packtpub.com/index.php?module=Contacts&action=DetailView&record=97d4b49e-7f9d-4451-2222-538eff4156a3
http://www.allitebooks.org

Learning YARN

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1210815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-396-0

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Akhil Arora

Shrey Mehrotra

Reviewers
P. Tomas Delvechio

Swapnil Salunkhe

Parambir Singh

Jenny (Xiao) Zhang

Commissioning Editor
Sarah Crofton

Acquisition Editor
Kevin Colaco

Content Development Editor
Susmita Sabat

Technical Editor
Deepti Tuscano

Copy Editors
Merilyn Pereira

Alpha Singh

Laxmi Subramanian

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Akhil Arora works as a senior software engineer with Impetus Infotech and
has around 5 years of extensive research and development experience. He joined
Impetus Infotech in October 2012 and is working with the innovation labs team.
He is a technology expert, good learner, and creative thinker. He is also passionate
and enthusiastic about application development in Hadoop and other big data
technologies. He loves to explore new technologies and is always ready to work
on new challenges. Akhil attained a BE degree in computer science from the
Apeejay College of Engineering in Sohna, Haryana, India.

A beginning for a new voyage, A first step towards my passion and to gain
recognition, My first book Learning YARN..!!

 -- Akhil Arora

I dedicate this book to my parents, who are always an inspiration
for me; my wife, who is my strength; and my family and friends for
their faith. Last but not least, thanks to my MacBook Pro for adding
the fun element and making the entire process trouble-free.

Shrey Mehrotra has more than 5 years of IT experience, and in the past 4 years,
he has gained experience in designing and architecting solutions for cloud and big
data domains.

Working with big data R&D Labs, he has gained insights into Hadoop, focusing
on HDFS, MapReduce, and YARN. His technical strengths also include Hive, PIG,
ElasticSearch, Kafka, Sqoop, Flume, and Java. During his free time, he listens to
music, watches movies, and enjoys going out with friends.

I would like to thank my mom and dad for giving me support
to accomplish anything I wanted. Also, I would like to thank
my friends, who bear with me while I am busy writing.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

The three Is—idea, intelligence, and invention correlate to an idea given by Shrey,
implemented by Akhil, and which has been used in this book.

We are glad that we approached Packt Publishing for this book and they agreed.
We would like to take this opportunity to thank Packt Publishing for providing
us the platform and support to write this book.

Words can't express our gratitude to the editors for their professional advice and
assistance in polishing the content. A special thanks to Susmita for her support and
patience during the entire process. We would also like to thank the reviewers and
the technical editor, who not only helped us improve the content, but also enabled
us to think better.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

P. Tomas Delvechio is an IT programmer with nearly 10 years of experience.
He completed his graduation at Luján University, Argentina. For his thesis, he
started to research big data trends and gained a lot of deep knowledge of the
MapReduce approach and the Hadoop environment. He participated in many
projects as a web developer and software designing, with PHP and Python as
the main languages. In his university, he worked as an assistant for the subject
computer networks and taught courses on Hadoop and MapReduce for distributed
systems subjects and academic conferences. Also, he is a regular member of the staff
of programmers in the same institution. In his free time, he is an enthusiastic user of
free software and assists in the organization of conferences of diffusion on it.

Swapnil Salunkhe is a passionate software developer who works on big data.
He has a keen interest in learning and implementing new technologies. He also
has a passion for functional programming, machine learning, and working with
complex datasets. He can be contacted via his Twitter handle at @swapnils10.

I'd like to thank Packt Publishing and their staff for providing me
with an opportunity to contribute to this book.

www.allitebooks.com

http://www.allitebooks.org

Parambir Singh is a JVM/frontend programmer who has worked on a variety
of applications in his 10 years of experience. He's currently employed as a senior
developer with Atlassian and is working on building their cloud infrastructure.

I would like to thank my wife, Gurleen, for her support while I was
busy reviewing different chapters for this book.

Jenny (Xiao) Zhang is a technology professional in business analytics, KPIs, and
big data. She helps businesses better manage, measure, report, and analyze big data
to answer critical business questions and give better experiences to customers. She
has written a number of blog posts at jennyxiaozhang.com on big data, Hadoop,
and YARN. She constantly shares insights on big data on Twitter at @smallnaruto.
She previously reviewed another YARN book called YARN Essentials.

I would like to thank my dad, Michael (Tiegang) Zhang, for providing
technical insights in the process of reviewing this book. Special thanks
to Packt Publishing for this great opportunity.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Starting with YARN Basics 1

Introduction to MapReduce v1 2
Shortcomings of MapReduce v1 3
An overview of YARN components 5

ResourceManager 6
NodeManager 6
ApplicationMaster 6
Container 7

The YARN architecture 7
How YARN satisfies big data needs 8
Projects powered by YARN 11
Summary 12

Chapter 2: Setting up a Hadoop-YARN Cluster 13
Starting with the basics 14

Supported platforms 15
Hardware requirements 15
Software requirements 15
Basic Linux commands / utilities 16

Sudo 16
Nano editor 16
Source 16
Jps 17
Netstat 17
Man 17

Preparing a node for a Hadoop-YARN cluster 18
Install Java 18
Create a Hadoop dedicated user and group 19
Disable firewall or open Hadoop ports 19

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Configure the domain name resolution 20
Install SSH and configure passwordless SSH from the master to all slaves 21

The Hadoop-YARN single node installation 22
Prerequisites 22
Installation steps 22

Step 1 – Download and extract the Hadoop bundle 23
Step 2 – Configure the environment variables 23
Step 3 – Configure the Hadoop configuration files 24
Step 4 – Format NameNode 27
Step 5 – Start Hadoop daemons 27

An overview of web user interfaces 28
Run a sample application 29

The Hadoop-YARN multi-node installation 30
Prerequisites 30
Installation steps 31

Step 1 – Configure the master node as a single-node Hadoop-YARN installation 31
Step 2 – Copy the Hadoop folder to all the slave nodes 33
Step 3 – Configure environment variables on slave nodes 33
Step 4 – Format NameNode 34
Step 5 – Start Hadoop daemons 34

An overview of the Hortonworks and Cloudera installations 35
Summary 36

Chapter 3: Administering a Hadoop-YARN Cluster 37
Using the Hadoop-YARN commands 37

The user commands 38
Jar 38
Application 39
Node 40
Logs 41
Classpath 42
Version 42

Administration commands 42
ResourceManager / NodeManager / ProxyServer 42
RMAdmin 43
DaemonLog 44

Configuring the Hadoop-YARN services 44
The ResourceManager service 44
The NodeManager service 46
The Timeline server 46
The web application proxy server 48
Ports summary 48

Managing the Hadoop-YARN services 49
Managing service logs 50
Managing pid files 50

Table of Contents

[iii]

Monitoring the YARN services 51
JMX monitoring 51

The ResourceManager JMX beans 52
The NodeManager JMX beans 53

Ganglia monitoring 53
Ganglia daemons 54
Integrating Ganglia with Hadoop 54

Understanding ResourceManager's High Availability 55
Architecture 55
Failover mechanisms 56
Configuring ResourceManager's High Availability 57

Define nodes 58
The RM state store mechanism 58
The failover proxy provider 60
Automatic failover 61

High Availability admin commands 62
Monitoring NodeManager's health 62

The health checker script 62
Summary 64

Chapter 4: Executing Applications Using YARN 65
Understanding the application execution flow 65

Phase 1 – Application initialization and submission 66
Phase 2 – Allocate memory and start ApplicationMaster 67
Phase 3 – ApplicationMaster registration and resource allocation 68
Phase 4 – Launch and monitor containers 69
Phase 5 – Application progress report 70
Phase 6 – Application completion 71

Submitting a sample MapReduce application 72
Submitting an application to the cluster 72
Updates in the ResourceManager web UI 73
Understanding the application process 74
Tracking application details 74
The ApplicationMaster process 75
Cluster nodes information 76
Node's container list 76
YARN child processes 77
Application details after completion 77

Handling failures in YARN 78
The container failure 78
The NodeManager failure 79
The ResourceManager failure 79

Table of Contents

[iv]

YARN application logging 80
Services logs 80
Application logs 80

Summary 81
Chapter 5: Understanding YARN Life Cycle Management 83

An introduction to state management analogy 83
The ResourceManager's view 85

View 1 – Node 85
View 2 – Application 88
View 3 – An application attempt 94
View 4 – Container 99

The NodeManager's view 103
View 1 – Application 103
View 2 – Container 105
View 3 – A localized resource 107

Analyzing transitions through logs 109
NodeManager registration with ResourceManager 109
Application submission 110
Container resource allocation 110
Resource localization 111

Summary 111
Chapter 6: Migrating from MRv1 to MRv2 113

Introducing MRv1 and MRv2 114
High-level changes from MRv1 to MRv2 115

The evolution of the MRApplicationMaster service 115
Resource capability 116
Pluggable shuffle 116
Hierarchical queues and fair scheduler 116
Task execution as containers 116

The migration steps from MRv1 to MRv2 117
Configuration changes 117
The binary / source compatibility 120

Running and monitoring MRv1 apps on YARN 120
Summary 123

Chapter 7: Writing Your Own YARN Applications 125
An introduction to the YARN API 126

YARNConfiguration 126
Load resources 126
Final properties 127
Variable expansion 127

Table of Contents

[v]

ApplicationSubmissionContext 128
ContainerLaunchContext 128
Communication protocols 129

ApplicationClientProtocol 129
ApplicationMasterProtocol 130
ContainerManagementProtocol 130
ApplicationHistoryProtocol 130

YARN client API 131
Writing your own application 132

Step 1 – Create a new project and add Hadoop-YARN JAR files 132
Step 2 – Define the ApplicationMaster and client classes 133

Define an ApplicationMaster 134
Define a YARN client 140

Step 3 – Export the project and copy resources 147
Step 4 – Run the application using bin or the YARN command 148

Summary 149
Chapter 8: Dive Deep into YARN Components 151

Understanding ResourceManager 151
The client and admin interfaces 152
The core interfaces 153
The NodeManager interfaces 155
The security and token managers 155

Understanding NodeManager 156
Status updates 157
State and health management 158
Container management 159
The security and token managers 161

The YARN Timeline server 161
The web application proxy server 162
YARN Scheduler Load Simulator (SLS) 162
Handling resource localization in YARN 162

Resource localization terminologies 163
The resource localization directory structure 164

Summary 165
Chapter 9: Exploring YARN REST Services 167

Introduction to YARN REST services 168
HTTP request and response 168

Successful response 168
Response with an error 169

ResourceManager REST APIs 170
The cluster summary 170

Table of Contents

[vi]

Scheduler details 171
Nodes 171
Applications 171

NodeManager REST APIs 173
The node summary 174
Applications 174
Containers 174

MapReduce ApplicationMaster REST APIs 175
ApplicationMaster summary 176
Jobs 176
Tasks 178

MapReduce HistoryServer REST APIs 179
How to access REST services 180

RESTClient plugins 180
Curl command 185
Java API 185

Summary 194
Chapter 10: Scheduling YARN Applications 195

An introduction to scheduling in YARN 196
An overview of queues 197
Types of queues 199

CapacityScheduler Queue (CSQueue) 199
FairScheduler Queue (FSQueue) 201

An introduction to schedulers 202
Fair scheduler 203

Hierarchical queues 204
Schedulable 204
Scheduling policy 205
Configuring a fair scheduler 206

CapacityScheduler 208
Configuring CapacityScheduler 209

Summary 211
Chapter 11: Enabling Security in YARN 213

Adding security to a YARN cluster 213
Using a dedicated user group for Hadoop-YARN daemons 214
Validating permissions to YARN directories 215
Enabling the HTTPS protocol 216
Enabling authorization using Access Control Lists 216
Enabling authentication using Kerberos 217

Table of Contents

[vii]

Working with ACLs 218
Defining an ACL value 218
Type of ACLs 219

The administration ACL 219
The service-level ACL 220
The queue ACL 222
The application ACL 223

Other security frameworks 224
Apache Ranger 224
Apache Knox 225

Summary 225
Chapter 12: Real-time Data Analytics Using YARN 227

The integration of Spark with YARN 228
Running Spark on YARN 228

The integration of Storm with YARN 232
Running Storm on YARN 233

Create a Zookeeper quorum 234
Download, extract, and prepare the Storm bundle 234
Copy Storm ZIP to HDFS 235
Configuring the storm.yaml file 235
Launching the Storm-YARN cluster 235

Managing Storm on YARN 237
The integration of HAMA and Giraph with YARN 238
Summary 239

Index 241

[ix]

Preface
Today enterprises generate huge volumes of data. In order to provide effective
services and to make smarter and intelligent decisions from these huge volumes of
data, enterprises use big data analytics. In recent years, Hadoop is used for massive
data storage and efficient distributed processing of data. YARN framework solves
design problems faced by Hadoop 1.x framework by providing a more scalable,
efficient, flexible, and highly available resource management framework for
distributed data processing. It provides efficient scheduling algorithms and utility
components for optimized use of resources of cluster with thousands of nodes,
running millions of jobs in parallel.

In this book, you'll explore what YARN provides as a business solution for
distributed resource management. You will learn to configure and manage single
as well as multi-node Hadoop-YARN clusters. You will also learn about the YARN
daemons – ResourceManager, NodeManager, ApplicationMaster, Container, and
TimeLine server, and so on.

In subsequent chapters, you will walk through YARN application life cycle
management, scheduling and application execution over a Hadoop-YARN cluster.
It also covers a detailed explanation of features such as High Availability, Resource
Localization, and Log Aggregation. You will learn to write and manage YARN
applications with ease.

Toward the end, you will learn about the security architecture and integration of
YARN with big data technologies such as Spark and Storm. This book promises
conceptual as well as practical knowledge of resource management using YARN.

Preface

[x]

What this book covers
Chapter 1, Starting with YARN Basics, gives a theoretical overview of YARN, its
background, and need. This chapter starts with the limitations in Hadoop 1.x that
leads to the evolution of a resource management framework YARN. It also covers
features provided by YARN, its architecture, and advantages of using YARN as a
cluster ResourceManager for a variety of batch and real-time frameworks.

Chapter 2, Setting up a Hadoop-YARN Cluster, provides a step-by-step process to set
up Hadoop-YARN single-node and multi-node clusters, configuration of different
YARN components and an overview of YARN's web user interface.

Chapter 3, Administering a Hadoop-YARN Cluster, provides a detailed explanation
of the administrative and user commands provided by YARN. It also provides
how to guides for configuring YARN, enable log aggregation, auxiliary services,
Ganglia integration, JMX monitoring, and health management, and so on.

Chapter 4, Executing Applications Using YARN, explains the process of executing
a YARN application over Hadoop-YARN cluster and monitoring it. This chapter
describes the application flow and how the components interact during an
application execution in a cluster.

Chapter 5, Understanding YARN Life Cycle Management, gives a detailed description
of internal classes involved and their core functionalities. It will help readers
to understand internals of state transitions of services involved in the YARN
application. It will also help in troubleshooting the failures and examining the
current application state.

Chapter 6, Migrating from MRv1 to MRv2, involves the steps and configuration changes
required to migrate from MRv1 to MRv2 (YARN). Showcase the enhancements made
in MRv2 scheduling, job management, and how to re-use MRv1 jobs in YARN. An
introduction to MRv2 components integrated with YARN such as MR Job History
Server and Application Master.

Chapter 7, Writing Your Own YARN Applications, describes the steps to write your
own YARN applications. This includes Java code snippets for various application
components definition and order of execution. It also includes detailed explanation
of YARN API for creating YARN applications.

Chapter 8, Dive Deep into YARN Components, provides a detailed description of
various YARN components, their roles and responsibilities. It'll also covers an
overview of additional features provided by YARN such as resource localization,
log management, auxiliary services, and so on.

Preface

[xi]

Chapter 9, Exploring YARN REST Services, provides a detailed description of REST-
based web services provided by YARN and how we can use the REST services
in our applications.

Chapter 10, Scheduling YARN Applications, gives a detailed explanation of Scheduler and
Queues provided by YARN for better and efficient scheduling of YARN applications.
This chapter also covers the limitations of scheduling in Hadoop 1.x and how the new
scheduling framework optimizing the cluster resource utilization.

Chapter 11, Enabling Security in YARN, explains the component and application-level
security provided by YARN. It also gives an overview of YARN security architecture
for interprocess, intercomponent communication, and token management.

Chapter 12, Real-time Data Analytics Using YARN, explains YARN adoption as a resource
manager by various real-time analytics tools such as Apache Spark, Storm, and Giraph.

What you need for this book
In this book, the following are the software applications required:

• Operating systems:
 ° Any Linux operating system (Ubuntu or CentOS)
 ° If you wish to choose Windows, then you need to use Oracle

VirtualBox to create Linux VM on the Windows machine

• Software Frameworks:
 ° Java (1.6 or higher)
 ° Apache Hadoop (2.5.1 or higher)
 ° Apache Spark (1.1.1 or higher)
 ° Apache Storm (0.9.2 or higher)

• Development Environment:
 ° Eclipse IDE for Java

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Who this book is for
Yet Another Resource Negotiator (YARN) is a resource management framework
currently integrated with major big data technologies such as Hadoop, Spark,
Storm, and so on. People working on big data can use YARN for real-time, as well as
batch-oriented data analysis. This book is intended for those who want to understand
what YARN is and how efficiently it is used for resource management of large
clusters. For cluster administrators, it gives a detailed explanation to provision and
manager YARN clusters. If you are a Java developer or an open source contributor,
this book will help you drill down the YARN architecture, application execution
phases, and application development in YARN. It also helps big data engineers to
explore YARN integration with real-time analytics technologies such as Spark, Storm,
and so on. This book is a complete package for YARN, starting with YARN's basics
and taking things forward to enable readers to create their own YARN applications
and integrate with other technologies.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
This chapter uses the Apache tar.gz bundles for setting up Hadoop-YARN clusters
and gives an overview of Hortonworks and Cloudera installations."

A block of code is set as follows:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:8020</value>
 <final>true</final>
</property>

Any command-line input or output is written as follows:

hdfs namenode –format

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"View the list of DataNodes connected to the NameNode"

Preface

[xiii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Chapter 1

[1]

Starting with YARN Basics
In early 2006, Apache Hadoop was introduced as a framework for the distributed
processing of large datasets stored across clusters of computers, using a programming
model. Hadoop was developed as a solution to handle big data in a cost effective and
easiest way possible. Hadoop consisted of a storage layer, that is, Hadoop Distributed
File System (HDFS) and the MapReduce framework for managing resource utilization
and job execution on a cluster. With the ability to deliver high performance parallel
data analysis and to work with commodity hardware, Hadoop is used for big data
analysis and batch processing of historical data through MapReduce programming.

With the exponential increase in the usage of social networking sites such as
Facebook, Twitter, and LinkedIn and e-commerce sites such as Amazon, there was
the need of a framework to support not only MapReduce batch processing, but
real-time and interactive data analysis as well. Enterprises should be able to execute
other applications over the cluster to ensure that cluster capabilities are utilized to
the fullest. The data storage framework of Hadoop was able to counter the growing
data size, but resource management became a bottleneck. The resource management
framework for Hadoop needed a new design to solve the growing needs of big data.

YARN, an acronym for Yet Another Resource Negotiator, has been introduced
as a second-generation resource management framework for Hadoop. YARN is
added as a subproject of Apache Hadoop. With MapReduce focusing only on batch
processing, YARN is designed to provide a generic processing platform for data
stored across a cluster and a robust cluster resource management framework.

In this chapter, we will cover the following topics:

• Introduction to MapReduce v1
• Shortcomings of MapReduce v1
• An overview of the YARN components

Starting with YARN Basics

[2]

• The YARN architecture
• How YARN satisfies big data needs
• Projects powered by YARN

Introduction to MapReduce v1
MapReduce is a software framework used to write applications that simultaneously
process vast amounts of data on large clusters of commodity hardware in a reliable,
fault-tolerant manner. It is a batch-oriented model where a large amount of data is
stored in Hadoop Distributed File System (HDFS), and the computation on data is
performed as MapReduce phases. The basic principle for the MapReduce framework
is to move computed data rather than move data over the network for computation.
The MapReduce tasks are scheduled to run on the same physical nodes on which
data resides. This significantly reduces the network traffic and keeps most of the
I/O on the local disk or within the same rack.

The high-level architecture of the MapReduce framework has three main modules:

• MapReduce API: This is the end-user API used for programming the
MapReduce jobs to be executed on the HDFS data.

• MapReduce framework: This is the runtime implementation of various
phases in a MapReduce job such as the map, sort/shuffle/merge
aggregation, and reduce phases.

• MapReduce system: This is the backend infrastructure required to run the
user's MapReduce application, manage cluster resources, schedule thousands
of concurrent jobs, and so on.

The MapReduce system consists of two components—JobTracker and TaskTracker.

• JobTracker is the master daemon within Hadoop that is responsible for
resource management, job scheduling, and management. The responsibilities
are as follows:

 ° Hadoop clients communicate with the JobTracker to submit or kill
jobs and poll for jobs' progress

 ° JobTracker validates the client request and if validated, then it
allocates the TaskTracker nodes for map-reduce tasks execution

 ° JobTracker monitors TaskTracker nodes and their resource
utilization, that is, how many tasks are currently running, the count
of map-reduce task slots available, decides whether the TaskTracker
node needs to be marked as blacklisted node, and so on

Chapter 1

[3]

 ° JobTracker monitors the progress of jobs and if a job/task fails,
it automatically reinitializes the job/task on a different
TaskTracker node

 ° JobTracker also keeps the history of the jobs executed on the cluster

• TaskTracker is a per node daemon responsible for the execution of
map-reduce tasks. A TaskTracker node is configured to accept a number of
map-reduce tasks from the JobTracker, that is, the total map-reduce tasks a
TaskTracker can execute simultaneously. The responsibilities are as follows:

 ° TaskTracker initializes a new JVM process to perform the MapReduce
logic. Running a task on a separate JVM ensures that the task failure
does not harm the health of the TaskTracker daemon.

 ° TaskTracker monitors these JVM processes and updates the task
progress to the JobTracker on regular intervals.

 ° TaskTracker also sends a heartbeat signal and its current resource
utilization metric (available task slots) to the JobTracker every
few minutes.

Shortcomings of MapReducev1
Though the Hadoop MapReduce framework was widely used, the following are the
limitations that were found with the framework:

• Batch processing only: The resources across the cluster are tightly coupled
with map-reduce programming. It does not support integration of other data
processing frameworks and forces everything to look like a MapReduce job.
The emerging customer requirements demand support for real-time and near
real-time processing on the data stored on the distributed file systems.

• Nonscalability and inefficiency: The MapReduce framework completely
depends on the master daemon, that is, the JobTracker. It manages the
cluster resources, execution of jobs, and fault tolerance as well.
It is observed that the Hadoop cluster performance degrades drastically
when the cluster size increases above 4,000 nodes or the count of concurrent
tasks crosses 40,000. The centralized handling of jobs control flow resulted in
endless scalability concerns for the scheduler.

Starting with YARN Basics

[4]

• Unavailability and unreliability: The availability and reliability are
considered to be critical aspects of a framework such as Hadoop. A single
point of failure for the MapReduce framework is the failure of the JobTracker
daemon. The JobTracker manages the jobs and resources across the cluster. If
it goes down, information related to the running or queued jobs and the job
history is lost. The queued and running jobs are killed if the JobTracker fails.
The MapReduce v1 framework doesn't have any provision to recover the lost
data or jobs.

• Partitioning of resources: A MapReduce framework divides a job into
multiple map and reduce tasks. The nodes with running the TaskTracker
daemon are considered as resources. The capability of a resource to execute
MapReduce jobs is expressed as the number of map-reduce tasks a resource
can execute simultaneously. The framework forced the cluster resources to be
partitioned into map and reduce task slots. Such partitioning of the resources
resulted in less utilization of the cluster resources.

If you have a running Hadoop 1.x cluster, you can refer
to the JobTracker web interface to view the map and
reduce task slots of the active TaskTracker nodes.
The link for the active TaskTracker list is as follows:
http://JobTrackerHost:50030/machines.
jsp?type=active

• Management of user logs and job resources: The user logs refer to the logs
generated by a MapReduce job. Logs for MapReduce jobs. These logs can be
used to validate the correctness of a job or to perform log analysis to tune
up the job's performance. In MapReduce v1, the user logs are generated and
stored on the local file system of the slave nodes. Accessing logs on the slaves
is a pain as users might not have the permissions issued. Since logs were
stored on the local file system of a slave, in case the disk goes down, the logs
will be lost.

Chapter 1

[5]

A MapReduce job might require some extra resources for job execution. In the
MapReduce v1 framework, the client copies job resources to the HDFS with the
replication of 10. Accessing resources remotely or through HDFS is not efficient.
Thus, there's a need for localization of resources and a robust framework to manage
job resources.

In January 2008, Arun C. Murthy logged a bug in JIRA against
the MapReduce architecture, which resulted in a generic resource
scheduler and a per job user-defined component that manages the
application execution.
You can see this at https://issues.apache.org/jira/
browse/MAPREDUCE-279

An overview of YARN components
YARN divides the responsibilities of JobTracker into separate components, each
having a specified task to perform. In Hadoop-1, the JobTracker takes care of
resource management, job scheduling, and job monitoring. YARN divides these
responsibilities of JobTracker into ResourceManager and ApplicationMaster. Instead
of TaskTracker, it uses NodeManager as the worker daemon for execution of map-
reduce tasks. The ResourceManager and the NodeManager form the computation
framework for YARN, and ApplicationMaster is an application-specific framework
for application management.

Starting with YARN Basics

[6]

ResourceManager
A ResourceManager is a per cluster service that manages the scheduling of compute
resources to applications. It optimizes cluster utilization in terms of memory, CPU
cores, fairness, and SLAs. To allow different policy constraints, it has algorithms
in terms of pluggable schedulers such as capacity and fair that allows resource
allocation in a particular way.

ResourceManager has two main components:

• Scheduler: This is a pure pluggable component that is only responsible
for allocating resources to applications submitted to the cluster, applying
constraint of capacities and queues. Scheduler does not provide any
guarantee for job completion or monitoring, it only allocates the cluster
resources governed by the nature of job and resource requirement.

• ApplicationsManager (AsM): This is a service used to manage application
masters across the cluster that is responsible for accepting the application
submission, providing the resources for application master to start, monitoring
the application progress, and restart, in case of application failure.

NodeManager
The NodeManager is a per node worker service that is responsible for the
execution of containers based on the node capacity. Node capacity is calculated
based on the installed memory and the number of CPU cores. The NodeManager
service sends a heartbeat signal to the ResourceManager to update its health status.
The NodeManager service is similar to the TaskTracker service in MapReduce v1.
NodeManager also sends the status to ResourceManager, which could be the status
of the node on which it is running or the status of tasks executing on it.

ApplicationMaster
An ApplicationMaster is a per application framework-specific library that
manages each instance of an application that runs within YARN. YARN treats
ApplicationMaster as a third-party library responsible for negotiating the resources
from the ResourceManager scheduler and works with NodeManager to execute the
tasks. The ResourceManager allocates containers to the ApplicationMaster and these
containers are then used to run the application-specific processes. ApplicationMaster
also tracks the status of the application and monitors the progress of the containers.
When the execution of a container gets complete, the ApplicationMaster unregisters
the containers with the ResourceManager and unregisters itself after the execution of
the application is complete.

Chapter 1

[7]

Container
A container is a logical bundle of resources in terms of memory, CPU, disk, and
so on that is bound to a particular node. In the first version of YARN, a container
is equivalent to a block of memory. The ResourceManager scheduler service
dynamically allocates resources as containers. A container grants rights to an
ApplicationMaster to use a specific amount of resources of a specific host. An
ApplicationMaster is considered as the first container of an application and it
manages the execution of the application logic on allocated containers.

The YARN architecture
In the previous topic, we discussed the YARN components. Here we'll discuss
the high-level architecture of YARN and look at how the components interact
with each other.

www.allitebooks.com

http://www.allitebooks.org

Starting with YARN Basics

[8]

The ResourceManager service runs on the master node of the cluster. A YARN client
submits an application to the ResourceManager. An application can be a single
MapReduce job, a directed acyclic graph of jobs, a java application, or any shell
script. The client also defines an ApplicationMaster and a command to start the
ApplicationMaster on a node.

The ApplicationManager service of resource manager will validate and accept the
application request from the client. The scheduler service of resource manager will
allocate a container for the ApplicationMaster on a node and the NodeManager
service on that node will use the command to start the ApplicationMaster service.
Each YARN application has a special container called ApplicationMaster. The
ApplicationMaster container is the first container of an application.

The ApplicationMaster requests resources from the ResourceManager. The
RequestRequest will have the location of the node, memory, and CPU cores required.
The ResourceManager will allocate the resources as containers on a set of nodes.
The ApplicationMaster will connect to the NodeManager services and request
NodeManager to start containers. The ApplicationMaster manages the execution of
the containers and will notify the ResourceManager once the application execution
is over. Application execution and progress monitoring is the responsibility of
ApplicationMaster rather than ResourceManager.

The NodeManager service runs on each slave of the YARN cluster. It is responsible
for running application's containers. The resources specified for a container are
taken from the NodeManager resources. Each NodeManager periodically updates
ResourceManager for the set of available resources. The ResourceManager scheduler
service uses this resource matrix to allocate new containers to ApplicationMaster or
to start execution of a new application.

How YARN satisfies big data needs
We talked about the MapReduce v1 framework and some limitations of the
framework. Let's now discuss how YARN solves these issues:

Chapter 1

[9]

• Scalability and higher cluster utilization: Scalability is the ability of a
software or product to implement well under an expanding workload. In
YARN, the responsibility of resource management and job scheduling /
monitoring is divided into separate daemons, allowing YARN daemons to
scale the cluster without degrading the performance of the cluster.
With a flexible and generic resource model in YARN, the scheduler handles
an overall resource profile for each type of application. This structure
makes the communication and storage of resource requests efficient for the
scheduler resulting in higher cluster utilization.

• High availability for components: Fault tolerance is a core design principle
for any multitenancy platform such as YARN. This responsibility is
delegated to ResourceManager and ApplicationMaster. The application
specific framework, ApplicationMaster, handles the failure of a container.
The ResourceManager handles the failure of NodeManager and
ApplicationMaster.

• Flexible resource model: In MapReduce v1, resources are defined as the
number of map and reduce task slots available for the execution of a job.
Every resource request cannot be mapped as map/reduce slots. In YARN, a
resource-request is defined in terms of memory, CPU, locality, and so on. It
results in a generic definition for a resource request by an application. The
NodeManager node is the worker node and its capability is calculated based
on the installed memory and cores of the CPU.

Starting with YARN Basics

[10]

• Multiple data processing algorithms: The MapReduce framework is
bounded to batch processing only. YARN is developed with a need to
perform a wide variety of data processing over the data stored over Hadoop
HDFS. YARN is a framework for generic resource management and allows
users to execute multiple data processing algorithms over the data.

• Log aggregation and resource localization: As discussed earlier, accessing
and managing user logs is difficult in the Hadoop 1.x framework. To manage
user logs, YARN introduced a concept of log aggregation. In YARN, once the
application is finished, the NodeManager service aggregates the user logs
related to an application and these aggregated logs are written out to a single
log file in HDFS. To access the logs, users can use either the YARN command-
line options, YARN web interface, or can fetch directly from HDFS.

A container might require external resources such as jars, files, or scripts on
a local file system. These are made available to containers before they are
started. An ApplicationMaster defines a list of resources that are required
to run the containers. For efficient disk utilization and access security, the
NodeManager ensures the availability of specified resources and their
deletion after use.

Chapter 1

[11]

Projects powered by YARN
Efficient and reliable resource management is a basic need of a distributed application
framework. YARN provides a generic resource management framework to support
data analysis through multiple data processing algorithms. There are a lot of projects
that have started using YARN for resource management. We've listed a few of these
projects here and discussed how YARN integration solves their business requirements:

• Apache Giraph: Giraph is a framework for offline batch processing of
semistructured graph data stored using Hadoop. With the Hadoop 1.x
version, Giraph had no control over the scheduling policies, heap memory
of the mappers, and locality awareness for the running job. Also, defining
a Giraph job on the basis of mappers / reducers slots was a bottleneck.
YARN's flexible resource allocation model, locality awareness principle,
and application master framework ease the Giraph's job management and
resource allocation to tasks.

• Apache Spark: Spark enables iterative data processing and machine learning
algorithms to perform analysis over data available through HDFS, HBase, or
other storage systems. Spark uses YARN's resource management capabilities
and framework to submit the DAG of a job. The spark user can focus more
on data analytics' use cases rather than how spark is integrated with Hadoop
or how jobs are executed.

Some other projects powered by YARN are as follows:

• MapReduce: https://issues.apache.org/jira/browse/MAPREDUCE-279
• Giraph: https://issues.apache.org/jira/browse/GIRAPH-13
• Spark: http://spark.apache.org/
• OpenMPI: https://issues.apache.org/jira/browse/MAPREDUCE-2911
• HAMA: https://issues.apache.org/jira/browse/HAMA-431
• HBase: https://issues.apache.org/jira/browse/HBASE-4329
• Storm: http://hortonworks.com/labs/storm/

A page on Hadoop wiki lists a number of projects/applications that
are migrating to or using YARN as their resource management tool.
You can see this at http://wiki.apache.org/hadoop/
PoweredByYarn.

Starting with YARN Basics

[12]

Summary
It is time to summarize the learning from this chapter and let you know what's
to come in the next chapter. In this chapter, you learnt about the MapReduce v1
framework and its shortcomings. The chapter also covered an introduction to
YARN, its components, architecture, and different projects powered by YARN.
It also explained how YARN solves big data needs. In the next chapter, you will
create single as well as multiple node Hadoop-YARN clusters and begin with
your first step to YARN.

[13]

Setting up a
Hadoop-YARN Cluster

YARN is a subproject of Apache Hadoop at the Apache Software Foundation,
introduced in the Hadoop 2.0 version. YARN replaces the old MapReduce framework
of the Hadoop 1.x version and is shipped with the Hadoop 2.x bundle. This chapter
will provide a step-by-step guide for Hadoop-YARN users to install and configure
YARN with Hadoop.

A Hadoop-YARN cluster can be configured as a single node as well as a multi-node
cluster. This chapter covers both types of installations along with the troubleshooting
guidelines. This chapter helps YARN beginners and the cluster administrators easily
configure Hadoop-YARN clusters and understand how YARN components interact
with each other.

Apache, Hortonworks, and Cloudera are the main distributors of Hadoop. These
vendors have their own steps to install and configure Hadoop-YARN clusters. This
chapter uses the Apache tar.gz bundles for setting up Hadoop-YARN clusters and
gives an overview of Hortonworks and Cloudera installations.

In this chapter, we will cover the following topics:

• The supported platforms, hardware and software requirements, and basic
Linux commands

• How to prepare a node while setting up a cluster
• A single node installation
• Overview of Hadoop HDFS and YARN ResourceManager web-UI
• Testing your cluster
• Multi-node installation
• Overview of Hortonworks and Cloudera installations

Setting up a Hadoop-YARN Cluster

[14]

Starting with the basics
The Apache Hadoop 2.x version consists of three key components:

• Hadoop Distributed File System (HDFS)
• Yet Another Resource Negotiator (YARN)
• The MapReduce API (Job execution, MRApplicationMaster,

JobHistoryServer, and so on)

There are two master processes that manage the Hadoop 2.x cluster—the NameNode
and the ResourceManager. All the slave nodes in the cluster have DataNode and
NodeManager processes running as the worker daemons for the cluster. The
NameNode and DataNode daemons are part of HDFS, whereas the ResourceManager
and NodeManager belong to YARN.

When we configure Hadoop-YARN on a single node, we need to have all four
processes running on the same system. Hadoop single node installation is generally
used for learning purposes. If you are a beginner and need to understand the
Hadoop-YARN concepts, you can use a single node Hadoop-YARN cluster.

In the production environment, a multi-node cluster is used. It is recommended to
have separate nodes for NameNode and ResourceManager daemons. As the number
of slave nodes in the cluster increases, the requirement of memory, processor, and
network of the master nodes increases. The following diagram shows the high-level
view of Hadoop-YARN processes running on a multi-node cluster.

Chapter 2

[15]

Supported platforms
To install a Hadoop-YARN cluster, you can use either GNU-, Linux-, or Windows-
based operating systems. The steps to configure and use the Hadoop-YARN cluster
for these operating systems are different. It is recommended to use GNU/Linux
for your cluster installations. Apache Hadoop is an open source framework and
it's widely used on open source platforms such as Ubuntu/CentOS. The support
documents and blogs for Linux machines are easily available. Some companies use
the enterprise version of Linux systems such as RHEL (RedHat Enterprise Linux).

In this chapter, we'll be using a 64-bit Ubuntu Desktop (version 14.04) for
deployment of the Hadoop-YARN cluster. You can download an ISO image for
Ubuntu Desktop from its official website (http://www.ubuntu.com/download).

Hardware requirements
The following section covers the recommended hardware configuration to run
Apache Hadoop.

For learning purpose, nodes in the cluster must have the following:

• 1.5 or 2 GB of RAM
• 15-20 GB free hard disk.

If you don't have physical machines, you can use a tool such as Oracle Virtualbox to
host virtual machines on your host system. To know more about Oracle Virtualbox
and how to install virtual machines using Oracle Virtualbox, you can refer to the
blog at http://www.protechskills.com/big-data/hadoop/administration/
create-new-vm-using-oracle-virtualbox.

To select nodes for a production environment, you can refer to a blog on the
Hortonworks website at http://hortonworks.com/blog/best-practices-for-
selecting-apache-hadoop-hardware/.

Software requirements
Hadoop is an open source framework that requires:

• Java already installed on all the nodes
• A passwordless SSH from the master node to the slave nodes

The steps to install java and configure passwordless SSH are covered later in
the chapter.

http://www.ubuntu.com/download
http://www.protechskills.com/big-data/hadoop/administration/create-new-vm-using-oracle-virtualbox
http://www.protechskills.com/big-data/hadoop/administration/create-new-vm-using-oracle-virtualbox
http://hortonworks.com/blog/best-practices-for-selecting-apache-hadoop-hardware/
http://hortonworks.com/blog/best-practices-for-selecting-apache-hadoop-hardware/

Setting up a Hadoop-YARN Cluster

[16]

Basic Linux commands / utilities
Before moving forward, it is important to understand the usage of the following
Linux commands:

• Sudo
• Nano editor
• Source
• Jps
• Netstat
• Man

The official documentation for the Hadoop cluster installation is based on the Linux
platform and as mentioned in the previous section, Linux OS is preferred over the
Windows OS. This section allows readers with minimum knowledge of Linux to
deploy a Hadoop-YARN cluster with ease. Readers new to Linux should have basic
knowledge of these commands / utilities before moving to the cluster installation
steps. This section of the chapter covers an overview and usage of these commands.

Sudo
In Linux, the sudo command allows a user to execute a command as a superuser,
or in other words an administrator of a windows system. The file /etc/sudoers
contains a list of users who have the sudo permission. If you need to change any
of the system properties or access any system file, you need to add sudo in the
beginning of the command. To read more about the sudo command, you can refer
to the blog at http://www.tutorialspoint.com/unix_commands/sudo.htm.

Nano editor
Nano is one of the editor tools for Linux. Its ease of use and simplicity allow
beginners to handle files easily. To read more about the nano editor, you can refer
to the documentation at http://www.nano-editor.org/dist/v2.0/nano.html.

The alternate to the nano editor is the default vi editor.

Source
When you edit any of the environment setting files such as /etc/environment or
~/.bashrc, you need to refresh the file to apply the changes made in the file without
restarting the system. To read more about the source command, you can refer to the
blog at http://bash.cyberciti.biz/guide/Source_command.

http://www.tutorialspoint.com/unix_commands/sudo.htm
http://www.nano-editor.org/dist/v2.0/nano.html
http://bash.cyberciti.biz/guide/Source_command

Chapter 2

[17]

Jps
Jps is a Java command used to list the Java processes running on a system. The
output of the command contains the process ID and process name for all of the
Java processes. Before using the jps command, you need to make sure that the bin
directory of your JAVA_HOME command is set in the PATH variable for the user.

A sample output is as follows:

hduser@host:~$ jps

6690 Jps

2071 ResourceManager

2471 NameNode

To read more about the jps command, you can refer to the Oracle documentation at
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html.

Netstat
The netstat command is a utility to list the active ports on a system. It checks for
TCP and UDP connections. This command will be helpful to get the list of ports
being used by a process. To read more about the netstat command and its options,
you can refer to the blog at http://www.c-jump.com/CIS24/Slides/Networking/
html_utils/netstat.html.

You can use the netstat command with the grep command to get filtered results for
a particular process:

netstat -nlp | grep <PID>

Man
Most of the Linux commands have their documentations and user manuals that are
also known as man pages. The man command is used to format and view these man
pages through the command line interface. The basic syntax of the man command is
as follows:

• Syntax: man [option(s)] keyword(s)
• Example: man ls

To read more about the man command, you can refer to the wiki page at
http://en.wikipedia.org/wiki/Man_page

www.allitebooks.com

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html
http://www.c-jump.com/CIS24/Slides/Networking/html_utils/netstat.html
http://www.c-jump.com/CIS24/Slides/Networking/html_utils/netstat.html
http://en.wikipedia.org/wiki/Man_page
http://www.allitebooks.org

Setting up a Hadoop-YARN Cluster

[18]

Preparing a node for a Hadoop-YARN cluster
Before using a machine as a Hadoop node in a cluster, there are a few prerequisites
that need to be configured.

Install Java
As mentioned in the software requirements for a cluster, all the nodes across the
cluster must have Sun Java 1.6 or above and the SSH service installed. The Java
version and JAVA_HOME should be consistent across all the nodes. If you want to
read more regarding the Java compatibility with Hadoop, you can browse to a page
on wiki at http://wiki.apache.org/hadoop/HadoopJavaVersions.

To install and configure Java on Ubuntu, you can refer to the blog at http://www.
protechskills.com/linux/unix-commands/install-java-in-linux.

• To verify if Java is installed, you can execute the following command:
java –version

• The Java version will be displayed on the console. The output of the
command will look like this:
java version "1.8.0"
Java(TM) SE Runtime Environment (build 1.8.0-b132)
Java HotSpot(TM) 64-Bit Server VM (build 25.0-b70, mixed
mode)

• To verify that the environment variable for Java is configured properly,
execute the following command:
echo $JAVA_HOME

• The installation directory for Java will be displayed on the console.
The output of the command will look like this:

/usr/lib/jvm/jdk1.8.0/

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://www.protechskills.com/linux/unix-commands/install-java-in-linux
http://www.protechskills.com/linux/unix-commands/install-java-in-linux

Chapter 2

[19]

Create a Hadoop dedicated user and group
In the Hadoop cluster node installation, the Hadoop daemons run on multiple
systems. The slave nodes run the DataNode and NodeManager services. All the
nodes in a cluster must have a common user and a group. It is recommended to
create a dedicated user for the Hadoop cluster on all the nodes of your cluster.

To create a user on Ubuntu, you can refer to the Ubuntu documentation at
http://manpages.ubuntu.com/manpages/jaunty/man8/useradd.8.html.

Here is a sample command to create a new user hduser on Ubuntu:

sudo usersadd –m hduser

After creating a new user, you also need to set a password for the new user.
Execute the following command to set a password for the newly created user hduser:

sudo passwd hduser

Disable firewall or open Hadoop ports
Hadoop daemons use a few ports for internal and client communication. The cluster
administrator has an option to either disable the firewall of the nodes or allow traffic
on the ports required by Hadoop. Hadoop has a list of default ports, but you can
configure them as per your need.

To disable the firewall in Ubuntu, execute the following command:

sudo ufw disable

Here are some useful links for the ports to be used and firewall options
available:
http://www.cloudera.com/content/cloudera-content/
cloudera-docs/CM4Ent/4.5.2/Configuring-Ports-for-
Cloudera-Manager-Enterprise-Edition/cmeecp_topic_3.
html

http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-
1.2.0/bk_reference/content/reference_chap2_1.html

http://www.protechskills.com/linux/ubuntu/ubuntu-
firewall

http://wiki.centos.org/HowTos/Network/IPTables

http://manpages.ubuntu.com/manpages/jaunty/man8/useradd.8.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/4.5.2/Configuring-Ports-for-Cloudera-Manager-Enterprise-Edition/cmeecp_topic_3.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/4.5.2/Configuring-Ports-for-Cloudera-Manager-Enterprise-Edition/cmeecp_topic_3.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/4.5.2/Configuring-Ports-for-Cloudera-Manager-Enterprise-Edition/cmeecp_topic_3.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/4.5.2/Configuring-Ports-for-Cloudera-Manager-Enterprise-Edition/cmeecp_topic_3.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.0/bk_reference/content/reference_chap2_1.html
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.2.0/bk_reference/content/reference_chap2_1.html
http://www.protechskills.com/linux/ubuntu/ubuntu-firewall
http://www.protechskills.com/linux/ubuntu/ubuntu-firewall
http://wiki.centos.org/HowTos/Network/IPTables

Setting up a Hadoop-YARN Cluster

[20]

Configure the domain name resolution
A Hadoop node is identified through its hostname. All the nodes in the cluster
must have a unique hostname and IP address. Each Hadoop node should be able
to resolve the hostname of the other nodes in the cluster.

If you are not using a DHCP server that manages your DNS hostname resolution,
then you need to configure the /etc/hosts file on all the nodes. The /etc/hosts
file of a system contains the IP addresses of the nodes specified with their hostname.
You need to prepend the file with the IP address and hostname mapping. You can
use the nano or vi editor with the sudo option to edit the file contents. Assuming the
hostname of your nodes is master, slave1, slave2, and so on; the contents of the file
will look similar to the following:

192.168.56.100 master

192.168.56.101 slave1

192.168.56.102 slave2

192.168.56.103 slave3

To view the system hostname, you can execute the hostname command.

hostname

To modify the system hostname in Linux, you can refer to the blogs here:

CentOS: https://www.centosblog.com/how-to-change-hostname-on-centos-
linux/

Ubuntu: http://askubuntu.com/questions/87665/how-do-i-change-the-
hostname-without-a-restart

After editing the file, you need to either restart your system network settings or
reboot your system.

To restart networking on Ubuntu, execute the following command:

sudo /etc/init.d/networking restart

To verify that configuration is working properly, execute the following command:

ping slave1

To stop the command, press ctrl + c. The output of the command will look like this:

PING slave1 (slave1) 56(84) bytes of data.

64 bytes from slave1: icmp_req=1 ttl=64 time=0.025 ms

64 bytes from slave1: icmp_req=2 ttl=64 time=0.024 ms

https://www.centosblog.com/how-to-change-hostname-on-centos-linux/
https://www.centosblog.com/how-to-change-hostname-on-centos-linux/
http://askubuntu.com/questions/87665/how-do-i-change-the-hostname-without-a-restart
http://askubuntu.com/questions/87665/how-do-i-change-the-hostname-without-a-restart

Chapter 2

[21]

Install SSH and configure passwordless SSH from
the master to all slaves
The OpenSSH server and client packages should already be installed and the sshd
service should be running on all the nodes. By default, the sshd service uses port 22.

To install these packages on Ubuntu, execute the following commands:

sudo apt-get install openssh-client

sudo apt-get install openssh-server

The Hadoop master node remotely manages all the Hadoop daemons running across
the cluster. The master node creates a secure connection through SSH using the
dedicated user group for the cluster. It is recommended that you allow the master
node to create an SSH connection without a password. You need to configure a
passwordless SSH from the master node to all slave nodes.

First you need to create SSH keys for the master node, then share the master's public
key with the target slave node using the ssh-copy-id command.

Assuming that the user for the Hadoop-YARN cluster is hduser, the ssh-copy-
id command will append the contents of the master node's public key file, /home/
hduser/.ssh/ id_dsa.pub, to the /home/hduser/.ssh/authorized_keys file on
the slave node.

To install the SSH service and configure a passwordless SSH on Ubuntu, you
can refer to the Ubuntu documentation at https://help.ubuntu.com/lts/
serverguide/openssh-server.html.

To verify that the sshd service is running, execute the following netstat command:

sudo netstat -nlp | grep sshd

The output will contain the service details if the service is running:

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 670/sshd

To verify the passwordless SSH connection, execute the ssh command from the
master node and observe that the command will not prompt for a password now:

ssh hduser@slave1

https://help.ubuntu.com/lts/serverguide/openssh-server.html
https://help.ubuntu.com/lts/serverguide/openssh-server.html

Setting up a Hadoop-YARN Cluster

[22]

The Hadoop-YARN single node
installation
In a single node installation, all the Hadoop-YARN daemons (NameNode,
ResourceManager, DataNode, and NodeManager) run on a single node as
separate Java processes. You will need only one Linux machine with a minimum
of 2 GB RAM and 15 GB free disk space.

Prerequisites
Before starting with the installation steps, make sure that you prepare the node as
specified in the above topic.

• The hostname used in the single node installation is localhost with
127.0.0.1 as the IP address. It is known as the loopback address for a
machine. You need to make sure that the /etc/hosts file contains the
resolution for the loopback address. The loopback entry will look like this:
127.0.0.1 localhost

• The passwordless SSH is configured for localhost. To ensure this, execute
the following command:

ssh-copy-id localhost

Installation steps
After preparing your node for Hadoop, you need to follow a simple five-step process
to install and run Hadoop on your Linux machine.

Chapter 2

[23]

Step 1 – Download and extract the Hadoop bundle
The current version of Hadoop is 2.5.1 and the steps mentioned here will assume that
you use the same version. Login to your system using a Hadoop dedicated user and
download the Hadoop 2.x bundle tar.gz file from the Apache archive:

wget https://archive.apache.org/dist/hadoop/core/hadoop-2.5.1/hadoop-
2.5.1.tar.gz

You can use your home directory for the Hadoop installation (/home/<username>).
If you want to use any of the system directories such as /opt or /usr for installation,
you need to use the sudo option with the commands. For simplicity, we'll install
Hadoop in the home directory of the user. The commands in this chapter assume
that the username is hduser. You can replace hduser with the actual username.
Move your Hadoop bundle to the user's home directory and extract the contents
of the bundle file:

mv hadoop-2.5.1.tar.gz /home/hduser/

cd /home/hduser

tar -xzvf hadoop-2.5.1.tar.gz

Step 2 – Configure the environment variables
Configure the Hadoop environment variables in /home/hduser/.bashrc
(for Ubuntu) or /home/hduser/.bash_profile (for CentOS). Hadoop requires the
HADOOP_PREFIX and home directory environment variables to be set before starting
Hadoop services. HADOOP_PREFIX specifies the installation directory for Hadoop.
We assume that you extracted the Hadoop bundle in the home folder of hduser.

Use the nano editor and append the following export commands to the end of
the file:

export HADOOP_PREFIX="/home/hduser/hadoop-2.5.1/"

export PATH=$PATH:$HADOOP_PREFIX/bin

export PATH=$PATH:$HADOOP_PREFIX/sbin

export HADOOP_COMMON_HOME=${HADOOP_PREFIX}

export HADOOP_MAPRED_HOME=${HADOOP_PREFIX}

export HADOOP_HDFS_HOME=${HADOOP_PREFIX}

export YARN_HOME=${HADOOP_PREFIX}

After saving the file, you need to refresh the file using the source command:

source ~/.bashrc

Setting up a Hadoop-YARN Cluster

[24]

Step 3 – Configure the Hadoop configuration files
Next, you need to configure the Hadoop site configuration files. There are four
configuration files that you need to update. You can find these files in the
$HADOOP_PREFIX/etc/Hadoop folder.

The core-site.xml file
The core-site.xml file contains information for the namenode host and the RPC
port used by NameNode. For a single node installation, the host for namenode will
be localhost. The default RPC port for NameNode is 8020. You need to edit the file
and add a configuration property under the configuration tag:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:8020</value>
 <final>true</final>
</property>

The hdfs-site.xml file
The hdfs-site.xml file contains the configuration properties related to HDFS.
In this file, you specify the replication factor and the directories for namenode and
datanode to store their data. Edit the hdfs-site.xml file and add the following
properties under the configuration tag:

<property>
 <name>dfs.replication</name>
 <value>1</value>
</property>

<property>
 <name>dfs.namenode.name.dir</name>
 <value>file:///home/hduser/hadoop-
2.5.1/hadoop_data/dfs/name</value>
</property>

<property>
 <name>dfs.datanode.data.dir</name>
 <value>file:///home/hduser/hadoop-
2.5.1/hadoop_data/dfs/data</value>
</property>

Chapter 2

[25]

The mapred-site.xml file
The mapred-site.xml file contains information related to the MapReduce
framework for the cluster. You will specify the framework to be configured as yarn.
The other possible values for the MapReduce framework property are local and
classic. A detailed explanation of these values is given in the next chapter.

In the Hadoop configuration folder, you will find a template for the mapred-site.
xml file. Execute the following command to copy the template file to create the
mapred-site.xml file:

cp /home/hduser/hadoop2.5.1/etc/Hadoop/mapred-site.xml.template
/home/hduser/hadoop2.5.1/etc/Hadoop/mapred-site.xml

Now edit the mapred-site.xml file and add the following properties under the
configuration tag:

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
</property>

The yarn-site.xml file
The yarn-site.xml file contains the information related to the YARN daemons and
YARN properties. You need to specify the host and port for the resourcemanager
daemon. Similar to the NameNode host, for a single node installation, the value for
a ResourceManager host is localhost. The default RPC port for ResourceManager
is 8032. You also need to specify the scheduler to be used by ResourceManager and
auxiliary services for nodemanager. We'll cover these properties in detail in the next
chapter. Edit the yarn-site.xml file and add the following properties under the
configuration tag:

<property>
 <name>yarn.resourcemanager.address</name>
 <value>localhost:8032</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>localhost:8030</value>
</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address</name>
 <value>localhost:8031</value>
</property>

Setting up a Hadoop-YARN Cluster

[26]

<property>
 <name>yarn.resourcemanager.admin.address</name>
 <value>localhost:8033</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>localhost:8088</value>
</property>

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
 <name>yarn.nodemanager.aux-
services.mapreduce_shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.cap
acity.CapacityScheduler</value>
</property>

The hadoop-env.sh and yarn-env.sh files
The Hadoop daemons require Java settings to be set in the Hadoop environment
files. You need to configure the value for JAVA_HOME (the java installation directory)
in the Hadoop and YARN environment files. Open the hadoop-env.sh and yarn-
env.sh files, uncomment the export JAVA_HOME command, and update the export
command with the actual JAVA_HOME value. To uncomment the export command,
just remove the # symbol from the line.

The slaves file
The slaves file contains a list of hostname for slave nodes. For single node
installation, the value of host is localhost. By default, the slaves file contains only
localhost. You don't need to modify the slaves file for a single node installation.

Chapter 2

[27]

Step 4 – Format NameNode
After configuring Hadoop files, you need to format the HDFS using the namenode
format command. Before executing the format command, make sure that the dfs.
namenode.name.dir directory specified in the hdfs-site.xml file does not exist.
This directory is created by the namenode format command. Execute the following
command to format NameNode:

hdfs namenode –format

After executing the preceding command, make sure that there's no exception on the
console and that the namenode directory is created.

The following line in the console output specifies that the namenode
directory has been successfully formatted:
INFO common.Storage: Storage directory /home/hduser/
hadoop-2.5.1/hadoop_data/dfs/name has been successfully
formatted.

Step 5 – Start Hadoop daemons
Start the Hadoop services using Hadoop 2 Scripts in the /home/hduser/
hadoop-2.5.1/sbin/ directory. For a single node installation, all the daemons will
run on a single system. Use the following commands to start the services one by one.

Service Command

NameNode hadoop-daemon.sh start namenode

DataNode hadoop-daemon.sh start datanode

ResourceManager yarn-daemon.sh start resourcemanager

NodeManager yarn-daemon.sh start nodemanager

www.allitebooks.com

http://www.allitebooks.org

Setting up a Hadoop-YARN Cluster

[28]

Execute the jps command and ensure that all Hadoop daemons are running. You
can also verify the status of your cluster through the web interface for HDFS-
NameNode and YARN-ResourceManager.

Service URL

HDFS-NameNode http://<NameNodeHost>:50070/

YARN-ResourceManager http://<ResourceManagerHost>:8088/

You need to replace <NameNodeHost> and <ResourceManagerHost> with localhost
for single node installation such as http://localhost:8088/.

An overview of web user interfaces
Similar to web interfaces available in the Hadoop 1.x version, the Hadoop 2.x version
has web user interfaces for Hadoop services. Instead of the JobTracker service web
UI, the web UI for ResourceManager is used to monitor applications and resources.
A detailed explanation regarding the configurations related to the web UI's is given
in the next chapter.

The following screenshot refers to the web-interface of Hadoop HDFS. Through the
HDFS interface, you can:

• Explore the HDFS metrics
• View the list of DataNodes connected to the NameNode
• Browse the file system, and so on

Chapter 2

[29]

The following screenshot refers to the web-interface of YARN ResourceManager.
It shows:

• A summarized view of the cluster resource capabilities
• A list of applications related to the cluster

• A list of NodeManager nodes connected
• The scheduler details, and so on

You can refer to the .pid files for the Hadoop daemons that are created in the /tmp
folder of your node. These files contain the current process ID for each daemon:

Testhdfs dfs -mkdir –p /user/hduser/input

hdfs dfs -copyFromLocal /home/hduser/hadoop-2.5.1/etc/hadoop/*
/user/hduser/input

To verify that your files are successfully copied into HDFS, execute the following
command or browse to the HDFS filesystem through the HDFS web UI at
http://localhost:50070/explorer.html:

hdfs dfs -ls /user/hduser/input

Run a sample application
Hadoop uses the yarn command to submit an application to the cluster. You can
find the yarn command in the /home/hduser/hadoop-2.5.1/bin folder and the
examples jar file containing sample MapReduce applications in the /home/hduser/
hadoop-2.5.1/share/hadoop/mapreduce folder. Other than the examples jar
path, specify three arguments to the command—the operation to perform (word
count), the HDFS input directory, and an HDFS directory to store the output of the
MapReduce application. Ensure that the HDFS output directory does not exist.

Setting up a Hadoop-YARN Cluster

[30]

Execute the following command to run a word count example:

yarn jar /home/hduser/hadoop-2.5.1/share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.5.1.jar wordcount /user/hduser/input
/user/hduser/output

Monitor the progress of the application through the YARN web user-interface at
http://localhost:8088/cluster/apps

The Hadoop-YARN multi-node installation
Installing a multi-node Hadoop-YARN cluster is similar to a single node installation.
You need to configure the master node, the same as you did during the single node
installation. Then, copy the Hadoop installation directory to all the slave nodes and
set the Hadoop environment variables for the slave nodes. You can start the Hadoop
daemons either directly from the master node, or you can login to each node to run
their respective services.

Prerequisites
Before starting with the installation steps, make sure that you prepare all the nodes
as specified here:

• All the nodes in the cluster have a unique hostname and IP address. Each
node should be able to identify all other nodes through the hostname. If you
are not using the DHCP server, you need to make sure that the /etc/hosts
file contains the resolution for all nodes used in the cluster. The entries will
look similar to the following:
192.168.56.101 master

192.168.56.102 slave1

192.168.56.103 slave2

192.168.56.104 slave3

• Passwordless SSH is configured from the master to all the slave nodes in the
cluster. To ensure this, execute the following command on the master for all
the slave nodes:

ssh-copy-id <SlaveHostName>

http://localhost:8088/cluster/apps

Chapter 2

[31]

Installation steps
After preparing your nodes as per the Hadoop multi-node cluster installation, you
need to follow a simple six-step process to install and run Hadoop on your Linux
machine. To better understand the process, you can refer to the following diagram:

Step 1 – Configure the master node as a single-node
Hadoop-YARN installation
You need to follow the first three steps mentioned in the installation steps for the
Hadoop-YARN single node installation. The main difference while configuring the
node for the multi-node cluster is the usage of the master node's hostname instead of
a loopback hostname (localhost). Assuming that the hostname of the master node
is master, you need to replace localhost with master in the core-site.xml and
yarn-site.xml configuration files. The properties in these files will look as follows:

• core-site.xml:
<property>
 <name>fs.defaultFS</name>
 <value>hdfs://master:8020</value>
 <final>true</final>
</property>

• yarn-site.xml:
<property>
 <name>yarn.resourcemanager.address</name>

Setting up a Hadoop-YARN Cluster

[32]

 <value>master:8032</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>master:8030</value>
</property>

<property>
 <name>yarn.resourcemanager.resource-tracker.address</name>
 <value>master:8031</value>
</property>

<property>
 <name>yarn.resourcemanager.admin.address</name>
 <value>master:8033</value>
</property>

<property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>master:8088</value>
</property>

<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
 <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</
name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.
scheduler.capacity.CapacityScheduler</value>
</property>

You also need to modify the slaves file. As mentioned earlier, it contains the list of
all the slave nodes. You need to add a hostname for all the slave nodes to the slaves
file. The content of the file will look as follows:

slave1

slave2

slave3

Chapter 2

[33]

Step 2 – Copy the Hadoop folder to all the
slave nodes
After configuring your master node, you need to copy the HADOOP_PREFIX directory
to all the slave nodes. The location of the Hadoop directory and the Hadoop
configuration files should be in sync with the master node. You can use the scp
command to securely copy files from master to all slaves:

for node in 'cat <path_for_slaves_file in hadoop_conf_directory>'; do
 scp -r <hadoop_dir> $node:<parent_directory of hadoop_dir>; done

After replacing the path used in the preceding command with valid
directories, the command will look as follows:
for node in 'cat /home/hduser/hadoop-
2.5.1/etc/hadoop/slaves'; do scp
 -r /home/hduser/hadoop-2.5.1 $node:/home/hduser;
done

If you are using any system directory as a Hadoop directory (a directory that
requires a sudo option for any write operation, for example, /opt), then you will
have to use the rsync utility to copy the Hadoop folder to all the slave nodes. It
requires NOPASSWD: ALL enabled for the user on the slave machines. You can
refer to the blog at http://www.ducea.com/2006/06/18/linux-tips-password-
usage-in-sudo-passwd-nopasswd/. This ensures that the user is not prompted for
any password while running sudo:

for node in `cat <path_for_slaves_file in hadoop_conf_directory>`; do
 sudo rsync --rsync-path="sudo rsync" -r <hadoop_dir>
$node:<parent_directory of hadoop_dir>; done

Step 3 – Configure environment variables on
slave nodes
Similar to configuring the Hadoop environment variables on the master node, you
need to configure the environment variables in all the slave nodes. You need to login
to the slave node, edit the /home/hduser/.bashrc file and recompile the file using
the source command. You can also refer to step 2, under the installation steps for
the Hadoop-YARN single node installation.

http://www.ducea.com/2006/06/18/linux-tips-password-usage-in-sudo-passwd-nopasswd/
http://www.ducea.com/2006/06/18/linux-tips-password-usage-in-sudo-passwd-nopasswd/

Setting up a Hadoop-YARN Cluster

[34]

Step 4 – Format NameNode
This step is the same as you followed for the single node installation. You need to
login to the master node and execute the hdfs format command. For more details,
you can refer to step 4, under the installation steps for the Hadoop-YARN single
node installation.

Step 5 – Start Hadoop daemons
The configuration for the Hadoop-YARN multi node cluster is now finished. Now
you need to start the Hadoop-YARN daemons. Login to the master node and run
the master daemons (NameNode and ResourceManager) using the below scripts:

Service Command

NameNode hadoop-daemon.sh start namenode

ResourceManager yarn-daemon.sh start resourcemanager

Login to each slave node and execute the following scripts to start the DataNode and
NodeManager daemons.

Service Command

DataNode hadoop-daemon.sh start datanode

NodeManager yarn-daemon.sh start nodemanager

If you are configuring a large cluster, then executing the scripts on all the slave nodes
is time consuming. To help cluster administrators, Hadoop provides scripts to
start / stop all Hadoop daemons through the master node. You need to login to
the master node and execute the following scripts to start / stop the HDFS
and YARN daemons respectively.

Service Command

HDFS start-dfs.sh / stop-dfs.sh

NodeManager start-yarn.sh / stop-yarn.sh

You can find scripts such as start-all.sh and stop-all.sh, but the usage of these
scripts is deprecated in the latest versions of Hadoop.

Chapter 2

[35]

Execute the jps command on each node and ensure that all the Hadoop daemons are
running. You can also verify the status of your cluster through the web interface for
HDFS-NameNode and YARN-ResourceManager.

Service Url
HDFS-NameNode http://master:50070/

YARN-ResourceManager http://master:8088/

To test your cluster, you can refer to the previous topic as the steps to test the
multi-node cluster are exactly the same as the single node cluster.

An overview of the Hortonworks and
Cloudera installations
Hortonworks and Cloudera are two main distributors of Hadoop. These distributors
have their own style of installation. The installation is done as a package installation
through yum (CentOS) or apt-get (Ubuntu). The directory structure is different for
configuration files, log files, .pid files, and so on.

Both these distributors have developed tools to provision, manage, and monitor the
Hadoop clusters through a web UI. Cloudera Manager from Cloudera and Apache
Ambari are being used by a majority of the companies. Ambari is an open source
project that lacks features such as rolling upgrades, managements of third-party
libraries, and so on. Cloudera Manager is a mature product and is available in both
Express and Enterprise versions.

To read more about Cloudera Manager and Ambari, you can refer to the official
website at http://www.cloudera.com/content/cloudera/en/products-and-
services/cloudera-enterprise/cloudera-manager.html.

http://ambari.apache.org/

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise/cloudera-manager.html
http://ambari.apache.org/

Setting up a Hadoop-YARN Cluster

[36]

Summary
In this chapter, we covered the Hadoop-YARN single as well as multi node cluster
setup. We will assume that you are now familiar with the Hadoop-YARN processes
and can test your cluster by running a sample MapReduce job. You can now load
sample data HDFS and try to run different MapReduce jobs. You can check the
progress of the running applications through the YARN web-UI and explore other
options as well. In the next chapter, we'll cover the administrative part of YARN.

[37]

Administering a
Hadoop-YARN Cluster

In the previous chapter, we covered the installation steps to configure single and
multi-node Hadoop-YARN clusters. As an administrator or a user of a Hadoop-YARN
cluster, it is important to know how services are configured or managed. For example,
an administrator must monitor the health of all the nodes across the cluster and a user
should be able to view the logs of the applications submitted.

Hadoop-YARN has a predefined set of user, as well as administrative commands.
It exposes monitoring data as service metrics and provides an easy integration of
monitoring data with tools such as Ganglia, Nagios, and so on. It also defines a
mechanism for High Availability and recovery.

In this chapter, we will cover:

• The YARN user and administration commands
• Configuring, managing, and monitoring YARN services
• ResourceManager's High Availability
• Monitoring NodeManager's health

Using the Hadoop-YARN commands
YARN commands are invoked using the bin/yarn script in the Hadoop bundle.
The basic syntax for the yarn command is:

yarn [--config confdir] COMMAND COMMAND_OPTIONS

www.allitebooks.com

http://www.allitebooks.org

Administering a Hadoop-YARN Cluster

[38]

Running the YARN script without any arguments, prints the description for all the
commands. The config option is optional and its default value is $HADOOP_PREFIX/
etc/hadoop.

YARN commands are classified as user and administration commands, as shown in
the following figure:

The user commands
Hadoop-YARN clients execute the user commands. These clients connect to the YARN
services using the configuration settings specified in the yarn-site.xml file. As
specified in the previous chapter, the yarn-site.xml file and the other configuration
files are all placed in the Hadoop configuration folder (/home/hduser/hadoop-2.5.1/
etc/conf/). There are mainly six user commands in the Hadoop-YARN framework.

Jar
The jar command is used to run a jar file with the YARN code, that is, to submit a
YARN application to the ResourceManager.

• Usage: yarn jar <jar_path> <mainClass> args
• Class: org.apache.hadoop.util.RunJar

The main method of the RunJar class is invoked. It checks the argument list and then
validates the jar file. It extracts the jar file and runs the main method of the Java
main class specified as the second argument of this command.

Chapter 3

[39]

Application
The application command is used to print the list of applications submitted to the
ResourceManager by any client. It can also be used to report or kill an application.

• Usage: yarn application <options>
• Class: org.apache.hadoop.yarn.client.cli.ApplicationCLI

Command options
• –status ApplicationId: The status option is used to print the status of

the application in the form of an application report. For an existing / valid
application ID, it prints the data retrieved from an object of the org.apache.
hadoop.yarn.api.records.ApplicationReport class. For a non existing
application ID, it throws an ApplicationNotFoundException.

Sample output
Application Report:

Application-Id: application_1389458248889_0001

Application-Name: QuasiMonteCarlo

Application-Type: MAPREDUCE

User: Root

Queue: Default

Start-Time: 1389458385135

Finish-Time: 1389458424546

Progress: 100%

State: FINISHED

Final-State: SUCCEEDED

Tracking-URL: http://slave1:19888/jobhistory/job/job_1389458248889_0001

RPC Port: 34925

AM Host: slave3

Diagnostics:

• –list –appTypes=[] –appStates=[]: The list option prints the list of
all the applications based on the application's type and state. It supports two
sub-options, appTypes and appStates. If no option is specified, by default
all the applications with the state RUNNING, ACCEPTED, SUBMITTED are listed.
The user can specify the type and state filter as a comma-separated list of
values (without adding a space).

 ° appTypes: MAPREDUCE, YARN

Administering a Hadoop-YARN Cluster

[40]

 ° appStates: ALL, NEW, NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING,
FINISHED, FAILED, KILLED

• –kill ApplicationId: The kill option is used to kill a running /
submitted application. If the application is already finished, the state of
the application is either FINISHED, KILLED,or FAILED, then it prints the
message to the command line. Otherwise, it sends a kill request to the
ResourceManager to kill the application.

Node
A YARN cluster consists of nodes running with the NodeManager daemon as a
Java process. The ResourceManager saves the node information and the yarn node
command prints the information of the node in the form of a node report using the
object of the class org.apache.hadoop.yarn.api.records.NodeReport.

• Usage: yarn node <options>
• Class: org.apache.hadoop.yarn.client.cli.NodeCLI

Command options
• –status NodeId: The status option is used to print the status of a node in

the form of a node report. The NodeId parameter is a string representation of
an object of the org.apache.hadoop.yarn.api.records.NodeId class, that
is, the combination of the node's host name and the communicating port for
the node manager daemon, the IPC Server listener port. For an existing / valid
node ID, it prints the data retrieved from an object of the NodeReport class.

Sample output
Node Report:

Node-Id: slave1:36801

Rack: /default-rack

Node-State: RUNNING

Node-Http-Address:slave1: 8042

Last-Health-Update: Sun 09/Feb/14 11:37:53:774IST

Health-Report:

Containers: 0

Memory-Used: 0MB

Memory-Capacity: 8192MB

CPU-Used: 0 vcores

CPU-Capacity: 8 vcores

Chapter 3

[41]

• –list: The list option prints the list of all the nodes based on the node
state. It supports an optional use of -states to filter the nodes based on the
node state, and -all to list all the nodes:

 ° The user can specify the state filter as a comma-separated list of
values. org.apache.hadoop.yarn.api.records.NodeState is an
enumeration representing the different states of a node.

 ° The states are: NEW, RUNNING, UNHEALTHY, DECOMMISSIONED, LOST,
REBOOTED

 ° The output of the list command is a list of nodes with basic
information about the nodes, such as Node-Id, Node-State,
Node-Http-Address, and the number of running containers.

Logs
The logs command retrieves the logs for the completed YARN applications, that is,
an application in any of the following three states—FAILED, KILLED, or FINISHED.

To view the logs through the command line, the user needs to enable log-
aggregation for the YARN cluster. To enable the log-aggregation feature, the
user needs to set the yarn.log-aggregation-enable property to true in the yarn-
site.xml file. The user can also view logs based on the container ID and node ID for
an application.

• Usage: yarn logs -applicationId <application ID> <options>
• Class: org.apache.hadoop.yarn.client.cli.LogsCLI

Command options
• –applicationId applicationID: The applicationId command is

mandatory and is used to get the application details from the resource
manager.

• –appOwner AppOwner: It is optional and assumed to be the current user if not
specified.

• –nodeAddress NodeAddress -containerId containerId: The
nodeAddress and containerId commands can be specified to get container
specific logs for a particular node. nodeAddress is a string in the form of
host:port (the same as NodeId).

Administering a Hadoop-YARN Cluster

[42]

Classpath
The classpath command is used to print the current value of CLASSPATH for
the YARN cluster. This command is very useful for developers and cluster
administrators as it displays the list of the libraries included in the PATH
while running the YARN services.

• Usage: yarn classpath
• Script: echo $CLASSPATH

Version
The version command is used to print the version of the deployed YARN cluster.
Since YARN is tightly coupled with Hadoop, the command uses the HadoopUtil
classes to fetch the version of the Hadoop bundle used.

• Usage: yarn version
• Class: org.apache.hadoop.util.VersionInfo

Administration commands
YARN administration commands are mainly used to start cluster services on a
particular node. A cluster administrator also uses these commands to manage the
cluster nodes, queues, information related to the access control list, and so on.

ResourceManager / NodeManager / ProxyServer
These commands are used to start the YARN services on a particular node. For
the ResourceManager and NodeManager services, the script appends the logger
properties to the classpath variable. To modify the log properties, the user needs
to create the log4j.properties file in the service specific configuration directories
(rm-config and nm-config) in the YARN configuration directory for the cluster.
The YARN script also uses the environment variables defined for the JVM heap size
configured for that service.

• Usage: yarn resourcemanager
• Class: org.apache.hadoop.yarn.server.resourcemanager.

ResourceManager

• Usage: yarn nodemanager
• Class: org.apache.hadoop.yarn.server.nodemanager.NodeManager
• Usage: yarn proxyserver
• Class: org.apache.hadoop.yarn.server.webproxy.WebAppProxyServer

Chapter 3

[43]

RMAdmin
The rmadmin command starts a resource manager client from the command line. It is
used to refresh the access control policies, scheduler queues and the nodes registered
with ResourceManager. The change in the policies is directly reflected in the YARN
cluster after the rmadmin refresh command and the cluster does not require
a restart for the associated services.

The RMAdminCLI class uses the YARN protobuf services to call the methods
defined in the AdminService class in the org.apache.hadoop.yarn.server.
resourcemanager package.

• Usage: yarn rmadmin <options>
• Class: org.apache.hadoop.yarn.client.cli.RMAdminCLI

Command options
• -refreshQueues: Reloads the queues' acls, states, and scheduler properties.

It reinitializes the configured scheduler with the latest configuration files.
• -refreshNodes: Refreshes the host's information for ResourceManager. It

reads the resource manager's nodes include and exclude files to update the
included and excluded node lists for the cluster.

• -refreshUserToGroupsMappings: Based on the configured Hadoop security
group mapping, it updates the user to groups mappings by refreshing the
groups' cache.

• -refreshSuperUserGroupsConfiguration: Refreshes the superuser proxy
groups mappings and update the proxy hosts and proxy groups defined in
the hadoop.proxyuser settings in the core-site.xml configuration file.

• -refreshAdminAcls: Refreshes the access control list for administration of
the resource manager defined by the yarn.admin.acl property in the YARN
site / default configuration files.

• -refreshServiceAcl: Reloads the service level authorization policy file and
resource manager will reload the authorization policy file. It checks whether
the Hadoop security authorization is enabled and refreshes the access control
lists for the following resource manager services:

 ° IPC Server
 ° ApplicationMaster
 ° Client
 ° The resource tracker

• -help [cmd]: Displays help for the given command or all the commands if
none is specified.

Administering a Hadoop-YARN Cluster

[44]

DaemonLog
It is used to view or update the log level for the YARN resource manager or
node manager daemons. It verifies the administrator access for the user and then
internally connects to http://host:port/logLevel?log=name service. The port
specified should be an HTTP port for the service.

• Usage : yarn daemonlog <options> args
• Class : org.apache.hadoop.log.LogLevel

Command options
• -getLevel host:port name: Prints the log level of the daemon
• -setLevel host:port name level: Sets the log level of the daemon

Configuring the Hadoop-YARN services
Hadoop-YARN services are configured using a property tag. A property tag
contains the name, value, and description of a property. It also contains an
optional flag to mark the property as final. The default values for these properties
are defined in the yarn-default.xml file. An administrator can override the default
values by defining properties in the yarn-site.xml file. To explore the properties in
the yarn-default.xml file, you can refer to the link http://hadoop.apache.org/
docs/r2.5.1/hadoop-yarn/hadoop-yarn-common/yarn-default.xml.

A YARN service is configured as a host:port value. The host can be the hostname
or an IP address of a node. You can also specify the value of any another property
using the $ symbol with curly braces, such as ${sample.property}.

The ResourceManager service
The hostname for the ResourceManager node is configured using the yarn.
resourcemanager.hostname property. Its default value is 0.0.0.0 and an
administrator should override its value in the yarn-site.xml file, as given in the
following script:

<property>
 <name>yarn.resourcemanager.hostname</name>
 <value>ResourceManagerHost</value>
</property>

Chapter 3

[45]

As we saw in the previous chapter, you can assume the value for
ResourceManagerHost to be master. The ResourceManager service consists of
various interfaces, such as applications manager, scheduler, admin, web application,
and so on. Each of these interfaces is mapped to a particular port. An administrator
can override the value of the configured port, but the value of the hostname should
be the same as the yarn.resourcemanager.hostname value.

The following are the properties related to the ResourceManager's interfaces:

• Applications manager:
<property>
 <name>yarn.resourcemanager.address</name>
 <value>${yarn.resourcemanager.hostname}:8032</value>
</property>

• Web application-HTTP:
<property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>${yarn.resourcemanager.hostname}:8088</value>
</property>

• Web application-HTTPs:
<property>
 <name>yarn.resourcemanager.webapp.https.address</name>
 <value>${yarn.resourcemanager.hostname}:8090</value>
</property>

• Admin:
<property>
 <name>yarn.resourcemanager.admin.address</name>
 <value>${yarn.resourcemanager.hostname}:8033</value>
</property>

• Scheduler:
<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>${yarn.resourcemanager.hostname}:8030</value>
</property>

• The resource tracker:
<property>
 <name>yarn.resourcemanager.resource-tracker.address</name>
 <value>${yarn.resourcemanager.hostname}:8031</value>
</property>

Administering a Hadoop-YARN Cluster

[46]

The NodeManager service
An administrator can define the hostname of the NodeManager service by using
the yarn.nodemanager.hostname property. The default value for this property
is 0.0.0.0 and it is recommended to use the default value only. The IP address
0.0.0.0 points to the same node and this ensures consistent configuration across all
the NodeManager nodes in the cluster, as given in the following script:

<property>
 <name>yarn.nodemanager.hostname</name>
 <value>0.0.0.0</value>
</property>

Similar to ResourceManager, the NodeManager service also exposes a few
interfaces for internal communication. The following are the properties related
to the NodeManager's interfaces:

• Container manager:
<property>
 <name>yarn.nodemanager.address</name>
 <value>${yarn.nodemanager.hostname}:0</value>
</property>

• Web Application - HTTP:
<property>
 <name>yarn.nodemanager.webapp.address</name>
 <value>${yarn.nodemanager.hostname}:8042</value>
</property>

• Localizer:
<property>
 <name>yarn.nodemanager.localizer.address</name>
 <value>${yarn.nodemanager.hostname}:8040</value>
</property>

The Timeline server
The Timeline server is a new feature in YARN. It provides generic information about
the applications executed on the YARN cluster. It also exposes the TimelineClient
class to publish application specific information. By default, this service is disabled.

Chapter 3

[47]

An administrator can enable the Timeline server by specifying the following
property in the yarn-site.xml file:

<property>
 <name>yarn.timeline-service.generic-application-
history.enabled</name>
 <value>true</value>
</property>

The Timeline server is a per-cluster service and an administrator needs to configure
the host in the yarn-site.xml file. It uses an RPC port for internal communication
and exposes a web application through HTTP, as well as HTTPS ports.

An administrator can configure the host for the Timeline server by using the
following property:

<property>
 <name>yarn.timeline-service.hostname</name>
 <value>0.0.0.0</value>
</property>

An administrator can also configure RPC, as well as web application ports, using the
following properties:

<property>
 <name>yarn.timeline-service.address</name>
 <value>${yarn.timeline-service.hostname}:10200</value>
</property>

<property>
 <name>yarn.timeline-service.webapp.address</name>
 <value>${yarn.timeline-service.hostname}:8188</value>
</property>

<property>
 <name>yarn.timeline-service.webapp.https.address</name>
 <value>${yarn.timeline-service.hostname}:8190</value>
</property>

Currently, the Timeline server is in the development phase. To read more about
the Timeline server, you can refer to the Apache Hadoop documentation at
http://hadoop.apache.org/docs/r2.5.2/hadoop-yarn/hadoop-yarn-site/
TimelineServer.html.

www.allitebooks.com

http://www.allitebooks.org

Administering a Hadoop-YARN Cluster

[48]

The web application proxy server
The proxy server in YARN is embedded within the ResourceManager service by
default. You can also configure the proxy server to run on a separate node. It is
introduced to save the ResourceManager service and the users accessing the cluster
from web based attacks. ApplicationMaster is treated as a process from an untrusted
user. The links exposed by the ApplicationMaster could point to malicious external
sites. YARN provides a basic implementation to warn the users about the risk of
accessing the ApplicationMaster. You can configure the host and the port of the
proxy server by using the configuration mentioned next:

<property>
 <name>yarn.web-proxy.address</name>
 <value>WebAppProxyHost:port<value>
</property>

If the preceding property is not specified in the yarn-site.xml file, then the proxy
server will run with the ResourceManager service.

Ports summary
The following table defines a summarized list of default ports configured for the
YARN services:

Service Property Default
Port

ResourceManager

RPC
Communication yarn.resourcemanager.address 8032

Web UI yarn.resourcemanager.webapp.
address 8088

Scheduler yarn.resourcemanager.scheduler.
address 8030

Resource tracker yarn.resourcemanager.resource-
tracker.address 8031

Admin yarn.resourcemanager.admin.address 8033

NodeManager

RPC
Communication yarn.nodemanager.address 8041

Localizer yarn.nodemanager.localizer.address 8040

Web UI yarn.nodemanager.webapp.address 8042

Chapter 3

[49]

Service Property Default
Port

TimeLine Server

RPC
Communication yarn.timeline-service.address 10200

Web UI yarn.timeline-service.webapp.
address 8188

HTTPS yarn.timeline-service.webapp.
https.address 8190

Managing the Hadoop-YARN services
The sbin Hadoop-YARN bundle contains shell scripts to manage the YARN services.
It is always easy to use scripts to start or stop the services. It reads the required
Hadoop configuration files, such as yarn-site.xml and slaves, in the etc/hadoop/
directory. This section will cover the usage of different scripts used by YARN.

Similar to Hadoop-HDFS scripts, YARN uses four scripts, listed and described next:

• start-yarn.sh: The start-yarn script is used to start all the YARN
daemons—ResourceManager, NodeManager on all slaves and the proxy
server with a single script. It should be executed on the ResourceManager
node, that is, the master node. It reads the slaves file in the configuration
folder to get a list of the slaves in the YARN cluster. It creates a secure shell
connection to each of the slave nodes and executes a command to start the
NodeManager daemon on that node. It does not require any arguments.

• stop-yarn.sh: The stop-yarn script is similar to the start-yarn.sh script.
It is used to stop all the YARN daemons with a single script.

• yarn-daemon.sh: The yarn-daemon script is used to start or stop a particular
service on a node. It reads the yarn-site.xml file to get the value of the host.
It requires two arguments: the action that needs to be performed and the
service name.

 ° Command syntax: yarn-daemon.sh [--config <conf-dir>]
[--hosts hostlistfile] (start|stop) <yarn-command>

 ° Other than the two required arguments, you can also specify the
directory path for the configuration folder and a host file that
contains the list of hosts, to start the specified service.

Administering a Hadoop-YARN Cluster

[50]

 ° The different values for the YARN command can be:
resourcemanager

nodemanager

proxyserver

historyserver

• yarn-daemons.sh: The yarn-daemons script is used to start or stop a
particular service on all the slave nodes. It executes the sbin/slaves.sh
file to list the slave nodes and connect to the node. An administrator can
use this script to manage the NodeManager daemons on all the slave nodes
with a single script.

Managing service logs
The logs files of each of the Hadoop-YARN services is created during the service
start command.

The default directory for logs is the $HADOOP_PREFIX/logs folder. You can configure
the directory location by specifying the YARN_LOG_DIR environment variable in the
etc/hadoop/yarn-env.sh file. The pattern for name of a log file is $YARN_LOG_DIR/
yarn-$YARN_IDENT_STRING-$command-$HOSTNAME.log. This is described as follows:

• YARN_IDENT_STRING is a string to identify the user name that executed the
start script. Its default value is $USER.

• $command is one of the YARN commands used with the yarn-daemon.sh
script.

• $HOSTNAME is the host for the YARN service.

A sample name for a log file will be yarn-hduser-resourcemanager-master.log.

Managing pid files
During service startup, a pid file for each service is created. This file contains the
process ID for that service. The default directory to store these pid files is /tmp.
You can configure the storage for the pid file by specifying the YARN_PID_DIR
environment variable in the etc/hadoop/yarn-env.sh file. The pattern for the
name of a pid file is similar to a log file. It is $YARN_PID_DIR/yarn-$YARN_IDENT_
STRING-$command.pid.

When an administrator executes a stop script, the process ID for the specified service
is fetched from the pid file and the script uses the kill command to stop the service.

Chapter 3

[51]

Monitoring the YARN services
When we talk about handling big data and multi node clusters for distributed
processing, we consider performance and efficiency as major factors. Monitoring
of the YARN services includes collection of cluster, node, and service level metrics.
Each of the YARN services exposes its monitoring information as JMX MBean object.
As a cluster administrator, a person needs to monitor these metrics through detailed
graphs and reporting tools, such as Jconsole, Ganglia, and so on. In this section, we'll
discuss the different techniques used to monitor the YARN services.

JMX monitoring
JMX are the Java tools used for monitoring and managing applications, objects, and
so on. The resources are represented as Managed Bean or simply MBean objects.
An MBean represents a resource running in a Java Virtual Machine. The statistical
information collected from these resources regarding performance, system resource
usage, application events, and such, could be used to fine tune the application.

The Hadoop-YARN daemons, ResourceManager, and NodeManager provide Java
Management Extensions (JMX) beans. These beans contain information about the
cluster or the YARN services running on the cluster. A bean name is a composite
attribute of the Hadoop-YARN service name and the information type.

The following is a sample JMX response in JSON format from NodeManager
JMX URL:

Administering a Hadoop-YARN Cluster

[52]

The ResourceManager JMX beans
The ResourceManager beans are available at http://ResourceManagerHost:8088/
jmx. The response is in the JSON format containing an array of various beans objects,
such as memory, threads, ResourceManager metrics, and so on.

The following are some of the important beans provided by ResourceManager JMX:

• ClusterMetrics: The ClusterMetrics of the ResourceManager service
contains the ResourceManager's hostname and counts of the NodeManager
nodes in the cluster under the NumActiveNMs, NumDecommissionedNMs,
NumLostNMs, NumUnhealthyNMs, and NumRebootedNMs categories.

• RpcActivity: This bean provides RpcActivity for a port of service.
The bean object contains annotated data configured for JMX on that
port. For example, port 8031 provides RegisterNodeManagerNumOps,
RegisterNodeManagerAvgTime, NodeHeartbeatNumOps, and
NodeHeartbeatAvgTime.

• JvmMetrics: This bean provides the ResourceManager JVM stats for threads,
garbage collection, memory, and logging.

• RMNMInfo: This bean provides detailed information of the NodeManager
associated with the ResourceManager. It consists of a hostname, rack,
IPC address, health status, containers, and memory information of all the
NodeManager nodes in the cluster.

• QueueMetrics: This bean provides the metrics of each queue configured
in YARN. For every queue, it provides information regarding applications
submitted to the queue, such as AppsSubmitted, AppsRunning, AppsPending,
AppsCompleted, AppsKilled, AppsFailed, and the current state of memory,
cores, and containers. An interesting section of information is also provided
for the running time metrics of the applications in queue. The metrics are
provided as running_0, running_60 , running_300, and running_1440,
where 0, 60, 300, and 1440 are time intervals in minutes. It gives the number
of applications running over a particular time on the cluster.

• UgiMetrics: This bean provides login statistics including
LoginSuccessNumOps, LoginSuccessAvgTime, LoginFailureNumOps,
and LoginFailureAvgTime.

Chapter 3

[53]

The NodeManager JMX beans
Similar to ResourceManager's JMX data, NodeManager's JMX data is available at
http://NodeManagerHost:8042/jmx.

The following are some of the important beans provided by NodeManager JMX:

• JvmMetrics: Similar to the ResourceManager, this bean provides
NodeManager JVM stats for threads, garbage collection, memory, and
logging.

• ShuffleMetrics: This bean provides shuffle information for the
MapReduce applications if configured in the yarn-site.xml file. It provides
ShuffleOutputBytes, ShuffleOutputsFailed, ShuffleOutputsOK, and
ShuffleConnections for the configured shuffle service.

• RpcActivity: This bean provides RpcActivity for a port of service. The
bean object contains annotated data configured for JMX on that port. For
example, port 8040 provides RpcQueueTimeNumOps, RpcQueueTimeAvgTime,
RpcAuthenticationFailures, and RpcAuthenticationSuccesses.

• NodeManagerMetrics: This bean provides containers details for a
particular NameNode service. It includes stats for ContainersLaunched,
ContainersCompleted, ContainersFailed, ContainersKilled,
ContainersIniting, ContainersRunning, and AllocatedContainers.

• UgiMetrics: This bean remains the same for both the ResourceManager
and NodeManager services and provides login statistics including
LoginSuccessNumOps, LoginSuccessAvgTime, LoginFailureNumOps,
and LoginFailureAvgTime

Ganglia monitoring
Ganglia is a scalable and distributed system monitoring tool used to monitor large
clusters. It provides memory, CPU usage, and network utilization metrics for all the
nodes in a cluster. It provides both live metrics and historical statistics for a certain
period of time.

Ganglia uses broadcast and listen protocol for communication and monitoring of
services. It uses XML and XRD for data representation and transport. Low per node
overheads and high concurrency is achieved using efficient algorithms for gathering
the metrics.

Administering a Hadoop-YARN Cluster

[54]

Ganglia daemons
Ganglia has a flexible master/slave architectural style with the following
two services:

• Monitoring daemon (gmond): The monitoring service runs on every node, of
the cluster that needs to be monitored by Ganglia. It collects the node as well
as the service level metrics, and sends the information to the master daemon.

• Metadata daemon (gmetad): The metadata daemon is responsible to
collect the data from all the monitoring daemons and create the .rrd files
containing the metrics information.

• Web application: Ganglia provides a web user-interface for graphical
representation of the metrics data. You can view real-time as well as
aggregated data through the Ganglia web application.

To install and configure Ganglia, you can refer to the documentation at
http://ganglia.sourceforge.net/.

Integrating Ganglia with Hadoop
Ganglia is used as a tool to monitor metrics of the Hadoop-YARN services. It
provides service metrics for the ResourceManager and NodeManager daemons
running on a cluster. The Ganglia monitoring daemon reads the JMX data of the
YARN services and sends the data to the metadata daemon.

The flexible design of Ganglia allows its daemons to be configured in multiple ways.
To make things simple, you can run the Ganglia monitoring daemon (gmond) on
all the nodes across the cluster and choose any one node for the Ganglia metadata
daemon (gmetad). It is not necessary to run the gmetad daemon node on the master
node of the Hadoop-YARN cluster. You can run the metadata daemon on a separate
machine as well.

To enable Ganglia monitoring in YARN, an administrator needs to append the
following configuration parameters to the hadoop-metrics2.properties file in the
configuration directory of the Hadoop-YARN installation (the $HADOOP_PREFIX/
etc/hadoop directory), before starting the service:

resourcemanager.sink.ganglia.class=org.apache.hadoop.metrics2.sink.
ganglia.GangliaSink31

resourcemanager.sink.ganglia.servers=centos-server-node1:8649

resourcemanager.sink.ganglia.period=10

Chapter 3

[55]

nodemanager.sink.ganglia.servers=centos-server-node1:8649

nodemanager.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31

nodemanager.sink.ganglia.period=10

You will find the .rrd files with names starting with yarn. related to the
ResourceManager and NodeManager services inside the rrd directory of the
Ganglia metadata daemon.

Understanding ResourceManager's High
Availability
The ResourceManager is a per-cluster service in a YARN cluster. It manages the
cluster resources and schedules the applications on the basis of resource availability.
What if this one service goes down or the node running the services gets out of the
network? The whole cluster would become unusable, as the only point of contact for
the clients is unavailable. Also, the running applications would not be able to acquire
the cluster resources for task execution or status updates.

The ResourceManager service is considered to be the single point of failure in a
cluster. In Hadoop 2.4.1, this issue is resolved and the High Availability feature
of the ResourceManager service is introduced in YARN.

Architecture
A cluster configured with High Availability of ResourceManager has multiple
ResourceManager services running; only one of them is active at a time and the rest
are in standby state. Clients always connect to the active ResourceManager service. It
is important to synchronize the current state of the active ResourceManager service
to all the standby instances.

Administering a Hadoop-YARN Cluster

[56]

Currently, YARN defines the following two mechanisms to synchronize the state:

• FileSystemRMStateStore

• ZKRMStateStore

The FileSystemRMStateStore mechanism stores the state using files shared across
all the ResourceManager nodes. By default, these files are stored in HDFS.

The Zookeeper-based state store uses a Zookeeper quorum to store the
ResourceManager's state. It is a more reliable mechanism than filesystem. It allows
only a single ResourceManager service to write to the state store at a time and avoids
the split brain scenario (multiple ResourceManager services trying to write
to the state store at a given point of time).

As described in the preceding diagram, when the Active RM goes down, the
communication between the client and the active RM fails. At that moment, a failover
is initiated. A standby ResourceManager service changes to active. All the services,
such as RMClient, NodeManager, ApplicationMaster, and so on, that were connecting
to the old active RM now connect to the new active RM node. Hadoop-YARN also
provides a default mechanism for active RM selection.

Failover mechanisms
Hadoop-YARN provides the following two failover mechanisms for the transition of
a standby ResourceManager service to an active state:

• Manual Failover: An admin can manually change a ResourceManager
service from an active to a standby role, or vice versa. YARN provides a CLI
command, yarn rmadmin, to manage these transitions. During failover,
the admin's manual efforts are needed to transit any one of the standby
ResourceManager services to active. The turnaround time for manual failover
control depends on the time before the admin comes to know about the issue
and the time he/she takes to execute the transition command.

Chapter 3

[57]

• Automatic Failover: In case of automatic failover control, if the active
ResourceManager service goes down due to any reason, the standby service
will automatically serve requests as active ResourceManager. Similar to High
Availability in HDFS, it requires a Zookeeper quorum to initiate failover
transition. Although, it does not require a separate process to monitor
Zookeeper state like ZKFC in HDFS. The ResourceManager service has an
embedded implementation (ActiveStandbyElector) for failure detection
and Zookeeper leader election.

For production scenarios, it is recommended to configure a Zookeeper quorum for
RM state store mechanism over filesystem, and automatic over manual failover.

Configuring ResourceManager's High
Availability
By default, the High Availability of the ResourceManager in YARN is disabled. You
can enable the ha by defining the following property in the yarn-site.xml file:

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>

The configuration of High Availability for the ResourceManager is divided in the
following four steps as given in the following figure:

• Define nodes
• The RM state store mechanism
• The failover proxy provider
• Automatic failover (optional, but recommended)

Administering a Hadoop-YARN Cluster

[58]

Define nodes
You need to define the ResourceManager ID for hosts and hostnames associated with
each ID in the yarn-site.xml file:

<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>master1</value>
</property>

<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>master2</value>
</property>

You can also explicitly define the ID of the current ResourceManager host by
defining the yarn.resourcemanager.ha.id property for each ResourceManager
host. This is an optional configuration; if not specified, then the ID is figured
out by comparing the local address of the RM host and value of the yarn.
resourcemanager.address.{id} property:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm1</value>
</property>

The RM state store mechanism
You can configure the state store mechanism by configuring the yarn.
resourcemanager.store.class property in the yarn-site.xml file. The default
configured mechanism for state store is org.apache.hadoop.yarn.server.
resourcemanager.recovery. FileSystemRMStateStore.

You need to configure the state store directory, as shown next:

<property>
 <name>yarn.resourcemanager.fs.state-store.uri</name>
 <value>hdfs://master:8020/rmstore</value>
</property>

Chapter 3

[59]

The default value for the state store directory is ${hadoop.tmp.dir}/yarn/system/
rmstore.

The directory in the HDFS will be automatically created on ResourceManager
startup. Since all the ResourceManager daemons can write to the HDFS directly,
there's a possibility for the occurrence of a split brain scenario.

If you need to configure the ZKRMStateStore mechanism, you require a Zookeeper
quorum already running in your cluster. To install and configure Zookeeper, you can
refer to the Apache Zookeeper documentation at http://zookeeper.apache.org/.

To configure Zookeeper for the state store mechanism, you need to override the default
value with the ZKRMStateStore class and define a list of Zookeeper server nodes:

<property>
 <name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRM
StateStore</value>
</property>
<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>zk1:2181,zk2:2181,zk3:2181</value>
</property>

zk-address is a comma separated list of Zookeeper server nodes defined in the form
of Host:ClientPort.

The following is a list of configuration properties with their default values for the
Zookeeper state store. You can override these values in the yarn-site.xml file:

• Znode for the ResourceManager state store: You can configure the znode
path for the Zookeeper ensemble to store the information related to the
ResourceManager state store:
<property>
 <name>yarn.resourcemanager.zk-state-store.parent-
path</name>
 <value>/rmstore</value>
</property>

Administering a Hadoop-YARN Cluster

[60]

• Connection retry count: The ResourceManager service connects to the
Zookeeper ensemble to store the state information. You can configure
the number of retry attempts for a ResourceManager to connect to the
Zookeeper server:
<property>
 <name>yarn.resourcemanager.zk-num-retries</name>
 <value>1000</value>
</property>

• Connection retry interval: You can configure the interval in milliseconds for
retry attempts for a ResourceManager to connect to the Zookeeper server.
The default value is 1000 ms:

<property>
 <name>yarn.resourcemanager.zk-retry-interval-ms</name>
 <value>1000</value>
</property>

To read more about the configuration properties for state store, you can refer to the
Apache YARN documentation at http://hadoop.apache.org/docs/r2.5.1/
hadoop-yarn/hadoop-yarn-common/yarn-default.xml.

The failover proxy provider
The YARN clients, NodeManager daemons, and different ApplicationMasters running
in a cluster communicate with the active ResourceManager. During failover, the
communication to the active ResourceManager will break and these services need to
initialize a new communication interface to the new active ResourceManager daemon.

All these services communicating with the ResourceManager service have a list of
configured ResourceManager nodes. They try connecting to ResourceManager in
a round-robin way until they successfully connect to one active ResourceManager.
If the active ResourceManager goes down, the services start looking for new active
ResourceManager in the same way until they successfully find another active
ResourceManager.

This default implementation of the failover proxy provider is predefined in Hadoop-
YARN. If an administrator needs to define a new mechanism, he/she needs to
define a class that should implement the org.apache.hadoop.yarn.client.
RMFailoverProxyProvider interface.

Chapter 3

[61]

To configure a class for the failover proxy provider, an administrator can define the
following property in the yarn-site.xml file:

<property>
 <name>yarn.client.failover-proxy-provider</name>
<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProv
ider</value>
</property>

Automatic failover
As mentioned previously, automatic failover is recommended for a production
environment and it requires a Zookeeper quorum already running in your cluster.
By default, it is enabled and it uses the zk-address property defined for the
Zookeeper-based state store mechanism:

<property>
 <name>yarn.resourcemanager.ha.automatic-
failover.enabled</name>
 <value>true</value>
</property>

<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>zk1:2181,zk2:2181,zk3:2181</value>
</property>

You can also override the value for the znode path used for storing leader election
information. The default value for the znode path is /yarn-leader-election:

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.zk-base-
path</name>
 <value>/yarn-leader-election</value>
</property>

To explore how Zookeeper keeps the leader information and how znode works,
you can log in to the Zookeeper node and connect to the Zookeeper server using
the Zookeeper command line script (zkCli.sh).

You can refer to the Zookeeper documentation at https://zookeeper.
apache.org/doc/r3.4.6/zookeeperStarted.html#sc_
ConnectingToZooKeeper.

Administering a Hadoop-YARN Cluster

[62]

High Availability admin commands
ResourceManager High Availability admin commands allow an administrator to
configure or query the ResourceManager's state. The following are the important
commands available to High Availability admin:

• yarn rmadmin -transitionToActive rm1: In case of manual failover
control, an administrator runs this command to update the state of the
specified ResourceManager as active.

• yarn rmadmin -transitionToStandby rm1: Similar to the
transitionToActive command, an administrator runs this command
to update the state of the specified ResourceManager as standby.

• yarn rmadmin -getServiceState rm1: Admin can get the status of a
particular ResourceManager at any point by executing this command.
The output would either be active or standby.

Monitoring NodeManager's health
NodeManager is a per-node daemon running on all the slave nodes of the cluster. All
the NodeManager nodes are worker nodes that perform application execution. For
efficient scheduling, it is important for the ResourceManager to monitor the health
of these nodes. Health may include memory, CPU, network usage, and so on. The
ResourceManager daemon will not schedule any new application execution requests
to an unhealthy NodeManager.

The health checker script
YARN defines a mechanism to monitor health of a node using a script. An
administrator needs to define a shell script to monitor the node. If the script returns
ERROR as the first word in any of the output lines, then the ResourceManager marks
the node as UNHEALTHY.

A sample script to check the memory usage of a node is written next. It checks the
current memory usage and if the memory usage is greater than 95%, it prints an
error message. You need to create a shell script such as check_memory_usage.sh
and change its permissions to allow the execution of permissions.

A sample NodeManager health check script:

#!/bin/bash

mem_usage=$(echo `free -m | awk '/^Mem/ {printf("%u", 100*$3/$2);}'`)

echo "Usage is $mem_usage%"

Chapter 3

[63]

if [$mem_usage -ge 95]

 then

 echo 'ERROR: Memory Usage is greater than 95%'

 else

 echo 'NORMAL: Memory Usage is less than 95%'

fi

You need to configure the path of the health script and runtime arguments required
to run the script (if any) in the yarn-site.xml file by using the following properties:

<property>
 <name>yarn.nodemanager.health-checker.script.path</name>
 <value>/home/hduser/check_memory_usage.sh</value>
</property>

<property>
 <name>yarn.nodemanager.health-checker.script.opts</name>
 <value>arg1 arg2</value>
</property>

The sample script mentioned previously does not require any runtime arguments.

If the output of the above mentioned sample script is ERROR: Memory Usage
is greater than 95%, then the ResourceManager updates the state of the
NodeManager to UNHEALTHY.

Some optional health checker properties defined in yarn-default.xml are
mentioned next. You can override these properties in the yarn-site.xml file.

<property>
 <name>yarn.nodemanager.health-checker.interval-ms</name>
 <value>600000</value>
 <description>Frequency of running node health
script</description>
</property>

<property>
 <name>yarn.nodemanager.health-checker.script.timeout-ms</name>
 <value>1200000</value>
 <description>Script time out period</description>
</property>

Administering a Hadoop-YARN Cluster

[64]

To view the list of unhealthy nodes in the cluster, you can browse to the
ResourceManager web UI at http://ResourceManagerHost:8088/cluster/
nodes/unhealthy.

Summary
In this chapter, we covered the Hadoop-YARN command line interface, that is,
the usage of the user, as well as administrative commands. You can now use the
different Hadoop-YARN scripts to start or stop services with ease and read log files
wherever required. We also talked about the configurations related to different
components and the list of default ports used by each component.

With the help of monitoring tools and JMX data, you can analyze cluster state and
performance. Features such as recovery, High Availability, and health script checker
are now supported.

The next chapter will talk about application execution over a YARN cluster. It gives
an in-depth explanation of the application execution phases with the help of a
sample MapReduce application.

Chapter 4

[65]

Executing Applications
Using YARN

YARN is used to manage resources and execute different applications over a multi-
node cluster. It allows users to submit any type of application to the cluster. It
solves scalability and MapReduce framework-related issues by providing a generic
implementation of application execution.

This chapter targets the YARN users and developers to develop their understanding
of the application execution flow. With the help of flow diagrams and snapshots,
it explains how the YARN components communicate with each other during
application execution.

In this chapter, we'll cover:

• Understanding application execution flow
• Submitting a sample MapReduce application
• Handling failures in YARN
• Exploring container and application logs

Understanding application execution flow
A YARN application can be a simple shell script, MapReduce job, or any group of jobs.
This section will cover YARN application submission and execution flow. To manage
application execution over YARN, a client needs to define an ApplicationMaster. The
client submits an application context to the ResourceManager. As per the application
needs, the ResourceManager then allocates memory for an ApplicationMaster and
containers for application execution.

Executing Applications Using YARN

[66]

The complete process of application execution can be broadly divided into six
phases, as shown in the following figure:

Phase 1 – Application initialization and
submission
In the first phase of application execution, a client will connect to the applications
manager service of the ResourceManager daemon and will request the
ResourceManager for a new application ID. The ResourceManager will validate the
client request and if the client is an authorized user, it will send a new and unique
application ID, along with the cluster metrics to the client. The client will use this
application ID, and will submit an application to the ResourceManager as described
in the following figure:

Chapter 4

[67]

The client will send ApplicationSubmissionContext along with the submission
request. The submission context contains metadata information related to an
application, such as application queue, name, and so on. It also contains the
information to start the ApplicationMaster service on a particular node. The
application submission is a blocking call which waits for the application completion.
In the background, the ResourceManager service will accept the application and will
allocate containers for application execution.

Phase 2 – Allocate memory and start
ApplicationMaster
In the second phase, the ResourceManager daemon starts an ApplicationMaster
service on any of the NodeManager node. The scheduler service within the
ResourceManager is responsible for the node selection. The basic criteria for selecting
a node for the ApplicationMaster container is that the amount of memory required
by the ApplicationMaster service should be available on that node. This is shown in
the following figure:

The ApplicationSubmissionContext submitted by the client contains LaunchContext
for the ApplicationMaster's container. The LaunchContext contains information
such as the memory requirements for ApplicationMaster, command to start the
ApplicationMaster, and so on.

The scheduler service of the ResourceManager daemon allocates memory specified
in the LaunchContext and sends the context a NodeManager node to start the
ApplicationMaster service.

Executing Applications Using YARN

[68]

Phase 3 – ApplicationMaster registration and
resource allocation
ApplicationMaster's container creates clients to communicate with the
ResourceManager and NodeManager of the cluster. The ApplicationMaster then
registers itself with the ResourceManager using the AMRMClient service. It specifies
the host and port for the container it is running on. While developing an application,
a developer can also use AMRMClientAsync, an asynchronous implementation of the
AppMaster ResourceManager client.

It also sends a tracking URL for the application. The tracking URL is an application
specific framework used to monitor the application execution.

The ResourceManager sends back the registration response with information
related to access control lists, cluster capabilities, and access tokens, as shown in the
following figure:

The ApplicationMaster requests the ResourceManager for containers allocation on
the NodeManager nodes to execute the application tasks. The request includes the
desired capabilities of the worker containers in terms of memory and CPU cores
with the application priority. The optional parameters include nodes and racks
specifications for execution of containers.

The ResourceManager iterates the list of asked containers, filters out the blacklisted
containers, and creates a list of containers to be released.

Chapter 4

[69]

Phase 4 – Launch and monitor containers
Once the ResourceManager allocates the requested containers to the
ApplicationMaster, the ApplicationMaster connects to the NodeManager nodes
using AMNMClient. The ApplicationMaster sends the LaunchContext for
each worker container to the NodeManager node. It is also possible that the
ResourceManager allocates two containers on a single NodeManager node. The
NodeManager node then uses the information in the LaunchContext to start a
container. Each container runs as a YARN child process on the NodeManager node.

The ApplicationMaster asks for the status of the current state of running containers.
The response for container status request consists of a list of newly created and
completed container's information, as described in the following figure:

For all the containers, the ResourceManager performs the following actions:

• Liveliness check on the ApplicationMaster
• Updates the asked / released / blacklisted containers' list
• Validates the new resource requirements, allocates resources, and updates

the cluster resource metrics

Executing Applications Using YARN

[70]

Phase 5 – Application progress report
An application specific framework to monitor the application is exposed through
the tracking URL for that application. The YARN client uses the tracking URL to
monitor the current status of an application. The tracking URL generally contains
the application metrics. For example, if the application is a MapReduce job, then the
tracking URL will expose the list of mappers and reducers for the job, as described in
the following figure:

At any point in time, the YARN client may request the applications manager service
of the ResourceManager to get the status of an application. The ResourceManager
sends the application status in the form of an application report.

Chapter 4

[71]

Phase 6 – Application completion
On completion of an application, the ApplicationMaster sends out an un-registration
request to the ResourceManager. The ApplicationMaster terminates itself and releases
the used memory back to the NodeManager. For an application, there is a final state
and a final status. The ResourceManager marks the final state of the application as
FINISHED. The final status of the application is set by the ApplicationMaster and is
specific to the application executed.

The YARN client may interrupt the application execution at any point by sending
a kill request to the ResourceManager. The ResourceManager kills the running
containers for that application and changes the application status to completed.

Executing Applications Using YARN

[72]

Submitting a sample MapReduce
application
When a MapReduce application is submitted to a Hadoop-YARN cluster, a series
of events occurs in different components. In this section, we will submit a sample
Hadoop-YARN application to a cluster. We will discuss the application flow with
the help of snapshots and understand how the series of events occurs.

Submitting an application to the cluster
As discussed in Chapter 3, Administering a Hadoop-YARN Cluster, the yarn jar
command is used to submit a MapReduce application to a Hadoop-YARN cluster.
An example jar is packaged inside the Hadoop bundle. It contains sample
MapReduce programs, such as word count, pi estimator, pattern search, and so on.
This is shown in the following figure:

As shown in the preceding diagram, we have submitted a pi job with 5 and 10 as
sample arguments. The first argument 5 denotes the number of map tasks and the
second argument 10 represents the samples per map as parameters to the job.

yarn jar <jarPath> <JobName> <arguments>

Chapter 4

[73]

Connect to a Hadoop master node and execute the command as specified in the
diagram. Once the job is submitted, the command reads the configuration files and
creates a connection to the ResourceManager. It uses the ResourceManager host and
RPC port specified in the yarn-site.xml file. The ResourceManager registers the
request and provides a unique ID to the application. The application ID is prefixed
with application_ to the ID provided by the ResourceManager. For the MapReduce
jobs, a job ID prefixed with job_ is also created.

The ResourceManager accepts the application and starts an MRApplicationMaster
service on one of the nodes to manage the application execution. The
ApplicationMaster then registers itself to the ResourceManager. After successful
registration, a tracking URL is provided to track the status of the application and
progress of the different containers executed for that application.

Updates in the ResourceManager web UI
Once the application is successfully submitted and accepted by the ResourceManager,
the cluster's resource metrics are updated and application progress is visible on the
ResourceManager web interface. This is shown in the following screenshot:

The HTTP web interface is available at the ResourceManager hostname and port
specified against the yarn.resourcemanager.webapp.address property in the
yarn-site.xml file.

You can browse to the ResourceManager URL from your master node at http://
localhost:8088/

Also, if you are using a multi-node Hadoop-YARN cluster, then replace the localhost
with the actual ResourceManager hostname.

http://centos-server-node1:8088/

Executing Applications Using YARN

[74]

The landing page contains a summary of the cluster metrics and a list containing all
the applications for the cluster. It also contains metadata about the application, such
as the current state, application name, and so on. The web interface also contains
information related to the NodeManager nodes and available queues.

Understanding the application process
In the first step, when an application is submitted to a Hadoop-YARN cluster, the
RunJar class is instantiated. The RunJar class is a java process that is used as an
interface between the client and the ResourceManager node. This is shown in the
following figure:

To check for all the Java processes running on the system, the jps command is used.
The output of the jps command on the client node will contain a process named as
RunJar. The output will also contain the process ID for all the java processes.

To see the process information, you can use the ps aux command. It lists all
the processes running on the node. To filter out the result, you can use the grep
command along with the process ID. The command will look as shown next:

ps aux | grep <processID>

Tracking application details
The ResourceManager web interface provides application details at
http://<RMHost>:<WebPort>/http://<RMHost>:<WebPort>/cluster/
apps/<application_id>

http://<RMHost>:<WebPort>/http://<RMHost>:<WebPort>/cluster/apps/<application_id>
http://<RMHost>:<WebPort>/http://<RMHost>:<WebPort>/cluster/apps/<application_id>

Chapter 4

[75]

The ResourceManager web interface provides generic information about the
applications submitted to it. This is shown in the following figure:

For each application, there can be multiple attempts on the same or different nodes.
The application details page contains the list of nodes used for every attempt of
application execution. It provides links for the log files generated for the application.

The ApplicationMaster process
An ApplicationMaster is a first container for an application. Every application
framework has a predefined ApplicationMaster to manage the application execution.
To manage the MapReduce application execution, Hadoop is bundled with the
MRAppMaster service. This is shown in the following screenshot:

The MRApplicationMaster for MapReduce applications runs as a Java process. The
name of the process is MRAppMaster. Similar to the RunJar process, you can execute the
jps and ps aux commands on the node running the MRApplicationMaster service.

Executing Applications Using YARN

[76]

Cluster nodes information
The ResourceManager web interface provides the nodes list at
http://<RMHost>:<WebPort>/cluster/nodes. This is shown in the
following screenshot:

It provides the list of the NodeManager nodes. The node metadata includes the rack
name, current state, RPC and HTTP addresses, and node capability metrics. It also
contains cluster metrics similar to the metrics available on the application list page.
You may notice that the node usage is updated as the job progresses.

Node's container list
All the NodeManager daemons provide a web interface to monitor the containers
running on the node. The address for the NodeManager web interface is

http://<NMHost>:<WebPort>/node.

The default value of port for the NodeManager web interface is 8042 as shown in the
following screenshot:

Chapter 4

[77]

The details of all the containers currently running on a NodeManager node is
available at http://<NMHost>:<WebPort>/http://<NMHost>:<WebPort>/node/
allContainers.

It provides current state of the containers and a link to the logs generated by
the container.

YARN child processes
Containers are considered as the worker services. The actual MapReduce tasks are
executed inside these containers. Containers in a Hadoop-YARN cluster run as a
YarnChild Java process. Each MapReduce task will be executed as YarnChild and
a node can have multiple YarnChild processes running simultaneously, as shown in
the following:

Similar to the RunJar and MRAppMaster processes, you can execute the jps and ps
aux commands on the node running the MapReduce tasks.

Application details after completion
Once the MapReduce application is finished, the state and the final status for the
application are updated. The tracking URL also gets updated to a link for the
application specific history server. We'll discuss the history server further in Chapter
6, Migrating from MRv1 to MRv2.

http://<NMHost>:<WebPort>/http://<NMHost>:<WebPort>/node/allContainers
http://<NMHost>:<WebPort>/http://<NMHost>:<WebPort>/node/allContainers

Executing Applications Using YARN

[78]

Handling failures in YARN
A successful execution of a YARN application depends on robust coordination of
all the YARN components, including containers, ApplicationMaster, NodeManager,
and ResourceManager. Any fault in the coordination of the components or lack of
sufficient cluster resource can cause the application to fail. The YARN framework is
robust in terms of handling failures at different stages in the application execution
path. The fault tolerance and recovery of the application depends on its current stage
of execution and the component in which the problem occurs. The following section
explains the recovery mechanism applied by YARN at component level.

The container failure
Containers are instantiated for executing the map or reduce tasks. As mentioned
in the previous section, these containers in Hadoop-YARN are Java processes
running as YarnChild processes. There could be some exception in the execution
or abnormal termination of JVM due to lack of sufficient resources. The failure
is either propagated back from the container to the ApplicationMaster, or the
ApplicationMaster notices it when it doesn't receive any response from a container
over a period of time (the timeout is set by the property mapreduce.task.timeout).
In both the scenarios, the task attempt is marked as failed.

The ApplicationMaster then tries to reschedule or re-execute the task and only after
a specific number of task attempts are failed, is the complete task considered as
failed. The max number of retries is configured by mapreduce.map.maxattempts
for map tasks and mapreduce.reduce.maxattempts for reduce tasks. A job is
considered as failed if a certain percent age of map or reduce tasks are failed during
the job execution. The percentage is configured by the mapreduce.map.failures.
maxpercent and mapreduce.reduce.failures.maxpercent properties for mappers
and reducers respectively.

The ApplicationMaster manages the application execution and containers running.
There is always only one instance of ApplicationMaster running for an application.
The ApplicationMaster sends a heartbeat to the ResourceManager daemon
periodically. In case of ApplicationManager failure, the ResourceManager would
not receive any heartbeat within the specified time interval and would then consider
the ApplicationMaster a failure. You can also configure the expiry interval for an
ApplicationMaster reporting by configuring the yarn.am.liveness-monitor.
expiry-interval-ms property in the yarn-site.xml file.

Chapter 4

[79]

An application can have multiple attempts on failure. An attempt is marked as
failed if the ApplicationMaster fails in between the application execution. The
maximum retry attempt count for application execution is configured using the
yarn.resourcemanager.am.max-retries property. By default, the value is 2
and the preceding property is a global setting for all the ApplicationMasters in the
cluster. This value is considered as the upper bound defined for the cluster. An
ApplicationMaster can specify its maximum retry count, but the individual count
cannot be more than the specified global upper bound.

The NodeManager failure
The NodeManager daemon keeps on periodically sending the liveliness heartbeat
to the ResourceManager. The ResourceManager maintains a list of the active
NodeManager nodes. If a NodeManager fails, the ResourceManager waits for
a heartbeat for the specified time interval. The ResourceManager wait time
interval is configured by setting up the value in millisecond for property yarn.
resourcemanager.nm.liveness-monitor.expiry-interval-ms. Its default value
is 600000 (10 minutes). The ResourceManager removes the node information from
the active node list and marks the node as a Lost node.

An MRApplicationMaster can blacklist a NodeManager node. If a task fails on a
particular node for a number of times, the ApplicationMaster will mark the node
as blacklisted. You can configure the maximum retry count allowed for a node
using the mapreduce.job.maxtaskfailures.per.tracker property. Its default
value is 3, which means that if more than 3 tasks fails on a NodeManager, then the
ApplicationMaster will mark the node as a blacklisted node and will schedule the
tasks on a different node.

The ResourceManager failure
Before Hadoop 2.4.1 release, the ResourceManager was the single point of failure
in a Hadoop-YARN cluster. With Hadoop-2.4.1, manual as well as automatic
failover control is achieved for high availability of the ResourceManager. A detailed
explanation of high availability and its implementation is provided in Chapter 3,
Administering a Hadoop-YARN Cluster. An administrator can also enable the
ResourceManager recovery to handle a failure scenario. By default, the recovery is
disabled and you can enable the recovery by setting the yarn.resourcemanager.
recovery.enabled property to true.

If the recovery is enabled, you need to configure a state-store mechanism to store
the ResourceManager information. To read more about the state-store mechanisms
available, you can refer to the ResourceManager High Availability or the apache
documentation at http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/
hadoop-yarn-site/ResourceManagerRestart.html.

http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html
http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html

Executing Applications Using YARN

[80]

YARN application logging
With the execution of an application over a YARN cluster, logs are generated for
activities in the different components. These logs are broadly classified as follows:

Services logs
The ResourceManager and NodeManager daemons run 24 x 7 on the cluster nodes.
These services keep a track of the activities on the cluster and coordinate with the
other processes such as ApplicationMaster and container. The YARN service logs are
created under the logs directory in the HADOOP_PREFIX directory. You can refer to the
managing service logs section in the previous chapter.

Application logs
The ApplicationMaster, as well as the containers running in the cluster, generate
the application logs. Logging allows the debugging and analyzing of applications.
By default, these logs are generated under the user_logs directory of logs in the
Hadoop installation folder. You can configure the location of the directory by using
the following property:

<property>
 <name>yarn.nodemanager.log-dirs</name>
 <value>/home/hduser/hadoop-2.5.1/logs/yarn</value>
<property>

An application running over YARN is provided with a unique ID. The container's
ID is derived from the application ID by appending the container number to it. The
logs for an application are generated in the directory with application ID containing
directories of the containers logs named with containers ID.

Each container generates the following three log types:

• stderr: This file contains the error that occurred during the execution of the
particular container.

• syslog: This file contains the log messages for the configured log level.
Default logging is done for INFO, WARN ERROR, and FATAL log messages.

• stdout: This file contains the print messages encountered in the container
execution flow.

Chapter 4

[81]

The three logs are shown in the following screenshot:

Summary
This chapter showcased how an application is executed over a YARN cluster.
The chapter started with explaining the phases involved in the execution flow
for an application. These phases explicate the coordination and communication
happening between the different YARN components during application execution.

We executed a sample application provided by Hadoop over the YARN cluster.
For the sample application, we saw how an application is submitted to the
ResourceManager and how YARN executes the containers of the application as a
YarnChild process over the cluster nodes. We also covered progress reports and
resource utilization through the ResourceManager web UI.

We also discussed the different failure scenarios and a brief overview about logging
in YARN. This chapter was intended to help the users in debugging and analyzing
the flow of applications submitted to the cluster.

In the next chapter, we will discuss the internal life cycle management in YARN. It is
an extension of the application execution flow and it will cover the state management
in detail.

[83]

Understanding YARN Life
Cycle Management

The YARN framework consists of ResourceManager and NodeManager services.
These services maintain different components of the life cycle associated with YARN
such as an application, a container, a resource, and so on. This chapter focuses on the
core implementation of YARN framework and describes how ResourceManager and
NodeManager manage the application execution in a distributed environment.

It does not matter if you are a Java developer, an open source contributor, a cluster
administrator, or a user; this chapter provides a simple and easy approach to gain
YARN insights. In this chapter, we'll discuss the following topics:

• Introduction to state management analogy
• ResourceManager's view for a node, an application, an application attempt,

and a container
• NodeManager's view for an application, a container, and a resource
• Analyzing transitions through logs

An introduction to state management
analogy
Life cycle is an important phenomenon in event-driven implementation of
components in any system. Components of the system pass through a predefined
series of valid states. The transition across states is governed by events associated
with the state and actions to be performed to address the event occurred.

Understanding YARN Life Cycle Management

[84]

Here are the some key terms that are used in this chapter:

• State: In computer science, the state of a computer program is a technical
term for all the stored information, at a given instance in time, to which the
program has access.

• Event: An event is an action or occurrence detected by the program that may
be handled by the program. Typically, events are handled synchronously
with the program flow, that is, the program has one or more dedicated places
where events are handled.

• Event handle: Handles are associated with the events that describe what
would be the next state and store information for the process if a particular
event occurred.

• State transition: This is defined as transition of a state and change in stored
information of the process based on the occurrence of an event.

The state of processes such as an ApplicationMaster, a container, and so on, is the
information stored in the process is helpful for YARN services for initializing and
monitoring the complete execution of the applications or tasks. The key decisions,
such as application initialization, resource scheduling and allocation, application
termination, releasing resources, and so on, are handled with the help of state
transitions and event handlers. When an event occurs, the state of the corresponding
component is changed, the state information is updated, and an event handle is
executed based on the event.

Let's make it simple with the help of an example. The ResourceManager service
stores information for the NodeManager services running across the cluster. The
information contains details of the NodeManager service, including the current state
of the NodeManager. If the NodeManager service is up, the state of NodeManager
is RUNNING. When an event to decommission a node is triggered, then the state of
the NodeManager service is updated to DECOMMISSIONED.

In this chapter, we'll cover such scenarios and discuss how ResourceManager and
NodeManager services maintain a life cycle for YARN processes. This chapter will
focus on the different views for the ResourceManager and NodeManager services.
Each view will have the following:

• Enumeration definitions: This defines the different events and states.
• List of classes involved: This defines the implementation of event handlers

and state transitions. The execution of the event handle updates the
information of the process associated with the view in the cluster metrics.

• State transition diagram: This explains the state transitions with a flow
diagram. A transition diagram will have a start state and a few final states.

Chapter 5

[85]

The ResourceManager's view
Being the master service, the ResourceManager service manages the following:

• Cluster resources (nodes in the cluster)
• Applications submitted to the cluster
• Attempt of running applications
• Containers running on cluster nodes

The ResourceManager service has its own view for different processes associated
with YARN management and application execution of YARN. The following is the
view of ResourceManager:

• Node: This is the machine with the NodeManager daemon
• Application: This is the code submitted by any client to the

ResourceManager
• Application attempt: This attempt is associated with the execution of any

application
• Container: This is the process running the business logic of the submitted

application

View 1 – Node
The node view of ResourceManager manages the life cycle for NodeManager nodes
within a cluster. For every node in the cluster, the ResourceManager maintains an
RMNode object. The states and event types of a node are defined in enumerations
NodeState and RMNodeEventType.

Here is the list of enumerations and classes involved:

• org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNode:
This is an interface to a NodeManager's information on available resources
such as its capability, applications executed, running containers, and so on.

• org.apache.hadoop.yarn.server.resourcemanager.rmnode.
RMNodeImpl: This is used to keep track of all the applications/containers
running on a node and defines node state transitions.

• org.apache.hadoop.yarn.server.resourcemanager.rmnode.
RMNodeEventType: This is an enumeration that defines different
event types for a node.

• org.apache.hadoop.yarn.api.records.NodeState: This is an
enumeration that defines different states of a node.

Understanding YARN Life Cycle Management

[86]

The following state transition diagram explains the ResourceManager's view
of a node:

The start and final states of the ResourceManager's view of a node are as follows:

• Start state: NEW
• Final states: DECOMMISSION / REBOOTED / LOST

As soon as a NodeManager registers itself to the ResourceManager, the node is
marked with the NEW state. The state is updated to RUNNING after successful
registration. An AddNodeTransition event handler is initiated, which updates
the scheduler with the new node and its capabilities. If the node already exists in
the inactive RM nodes list, it removes the node from the inactive list and updates
the cluster metrics with rejoined node information. If the node is new, it directly
increments the active node count in the cluster metrics.

Every NodeManager daemon sends its liveliness information as a heartbeat to the
ResourceManager. ResourceManager keeps track of each node's last heartbeat,
and the nodes with the last contact value greater than the configured value
specified for the cluster are considered as expired nodes. By default, the time to
wait until a NodeManager is considered dead is 600000 ms, that is, 10 minutes.
The node is marked as UNUSABLE and is added to the inactive node list of the
ResourceManager. All the containers running on a dead node are assumed to be
dead and new containers will be scheduled to other NodeManager daemons. A
NodeManager can also be decommissioned from the cluster or be rebooted due
to technical reasons.

Chapter 5

[87]

The heartbeat of the NodeManager also contains information related to the running
or finished containers on that node. If the node is healthy, the node information is
updated with latest metrics and initiates a node update scheduler event for the next
heartbeat. The ResourceManager also keeps track of completed applications and
containers for every NodeManager.

In case of a reboot or restart of service, a NodeManager tries to reconnect to the
ResourceManager to resume its services. If the reconnected node's configuration
(the total capability and the HTTP port of node) differs, the NodeManager replaces
the old or resets the heartbeat if the reconnected node is the same. The scheduler is
updated with a new node added event and the node is marked as RUNNING.

The NodeHealthCheckerService class defined in the package for YARN
NodeManager determines the health of a node. Every node performs a health
checkup by periodically running a script on the node configured by the yarn.
nodemanager.health-checker.script.path property in the yarn configuration
file. The default frequency of running the node health script is 600000 ms, that is,
10 minutes, and is configured using the yarn.nodemanager.health-checker.
interval-ms property.

The NodeHealthScriptRunner class runs the health check-up script on the node,
parses the output from the node health monitor script and checks for the presence
of error pattern in the report. The timed out script or script, which causes the
IOException output is ignored. If the script throws java.io.IOException or org.
apache.hadoop.util.Shell.ExitCodeException, the output is ignored and the
node is left remaining healthy, as a script might have a syntax error.

The node is marked unhealthy if:

• The node health script times out
• The node health scripts output has a line, which begins with ERROR
• An exception is thrown while executing the script

The node also runs a DiskHealthCheckerService class, to get the disks' health
information of the node. To read more about the node health checker script, you can
refer to Chapter 3, Administering a Hadoop-YARN Cluster.

Understanding YARN Life Cycle Management

[88]

Here is a summarized table view for ResourceManager's view of a node:

Current State Event Occurred New State Event Class Instantiated

NEW STARTED RUNNING AddNodeTransition

RUNNING STATUS_UPDATE RUNNING /
UNHEALTHY

StatusUpdateWhenHealthy
Transition

CLEANUP_APP RUNNING CleanUpAppTransition

CLEANUP_
CONTAINER

RUNNING CleanUpContainerTransition

RECONNECTED RUNNING ReconnectNodeTransition

DECOMMISSION DECOMMISSIONED DeactivateNodeTransition

EXPIRE LOST DeactivateNodeTransition

REBOOTING REBOOTED DeactivateNodeTransition

UNHEALTHY STATUS_UPDATE RUNNING /
UNHEALTHY

StatusUpdateWhenUnHealthy
Transition

CLEANUP_APP UNHEALTHY CleanUpAppTransition

CLEANUP_
CONTAINER

UNHEALTHY CleanUpContainerTransition

RECONNECTED UNHEALTHY ReconnectNodeTransition

DECOMMISSION DECOMMISSIONED DeactivateNodeTransition

EXPIRE LOST DeactivateNodeTransition

REBOOTING REBOOTED DeactivateNodeTransition

View 2 – Application
The application view of ResourceManager represents the application's life cycle
managed by ResourceManager during the application's execution over the YARN
cluster. In the previous chapter, we discussed the different phases related to
application execution. This section will give you a more detailed explanation on how
ResourceManager handles an application life cycle.

Here is the list of enumerations and classes involved:

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMApp: This
is an interface to an application for the ResourceManager

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl:
This is used to access various updates in application status/report and
defines application state transitions

Chapter 5

[89]

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.
RMAppEventType: This is an enumeration defining the different event types
for an application

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppState:
This is an enumeration defining the different states of an application

The following state transition diagram explains the ResourceManager's view of an
application:

The start and final states of the ResourceManager's view of an application are as
follows:

• Start state: NEW
• Final states: FAILED / FINISHED / KILLED

When a client submits a new application request to ResourceManager, RM registers
the application and provides a unique application ID. (Phase 1 for application
execution flow in the previous chapter). The application state is initialized with
NEW.

Understanding YARN Life Cycle Management

[90]

The RMAppImpl object maintains a set of RMNode objects that contain the
information related to the current state of a node. During a NODE_UPDATE event, the
ResourceManager updates the information for usable and unusable nodes in the
cluster. The state of an application in the NEW state is unchanged during the NODE_
UPDATE event.

The client submits the application using application submission content. If recovery
of ResourceManager is enabled, the submission context for an application is stored
in the configured state store for ResourceManager. Once the application context
is saved, it is submitted to the cluster, which means it is being put in a queue for
execution.

The applications are picked up for execution from the configured queues; if the
resource requirement of an application is met, then the application will be accepted
and its state changes to ACCEPTED.

An App_Rejected event is triggered if the application is rejected due to insufficient
resources or some exception. In this case, the application will be marked as FAILED.

ApplicationMaster is launched as the first attempt of the application execution on
one of the nodes. ApplicationMaster will register its attempt with ResourceManager
and create an RMAppAttempt context for that attempt. After successful registration,
the state of the application will be changed to RUNNING.

On successful completion, the application attempt first unregisters its attempt,
changes the state to REMOVING, and then it moves to the FINISHED state.
An attempt can directly move from RUNNING to FINISHED state if it is an
unmanaged attempt.

If an attempt fails, the ResourceManager will re-execute the application attempt
on another node. The application is marked as SUBMITTED with the trigger of
the Attempt_Failed event and it increments the applications attempt count. If the
retry count exceeds the maximum retry count specified in the configuration, the
application will be marked as FAILED.

You can configure the number of maximum attempts allowed for an application in
yarn-site.xml as follows:

<property>
 <description>Default value is 2</description>
 <name>yarn.resourcemanager.am.max-attempts</name>
 <value>2</value>
</property>

Chapter 5

[91]

At any state of application, including SUBMITTED, ACCEPTED, RUNNING, and
so on, if a kill signal or event is sent by the user, the state of the application will be
directly updated to the KILLED state and all the containers used by the application
will be released.

Here is a summarized table view for ResourceManager's view of an application:

Current State Event Occurred New State Event Class Instantiated

NEW NODE_UPDATE NEW RMAppNodeUpdateTransition

START NEW_SAVING RMAppNewlySavingTransition

RECOVER SUBMITTED StartAppAttemptTransition

KILL KILLED AppKilledTransition

APP_REJECTED FAILED AppRejectedTransition

NEW_SAVING NODE_UPDATE NEW_SAVING RMAppNodeUpdateTransition

APP_SAVED SUBMITTED StartAppAttemptTransition

KILL KILLED AppKilledTransition

APP_REJECTED FAILED AppRejectedTransition

SUBMITTED NODE_UPDATE SUBMITTED RMAppNodeUpdateTransition

APP_REJECTED FAILED AppRejectedTransition

APP_ACCEPTED ACCEPTED

KILL KILLED KillAppAndAttemptTransition

Understanding YARN Life Cycle Management

[92]

Current State Event Occurred New State Event Class Instantiated

ACCEPTED NODE_UPDATE ACCEPTED RMAppNodeUpdateTransition

ATTEMPT_
REGISTERED

RUNNING

ATTEMPT_FAILED SUBMITTED,
FAILED

AttemptFailedTransition

KILL KILLED KillAppAndAttemptTransition

RUNNING NODE_UPDATE RUNNING RMAppNodeUpdateTransition

ATTEMPT_
UNREGISTERED

REMOVING RMAppRemovingTransition

ATTEMPT_FINISHED FINISHED FINISHED_TRANSITION

ATTEMPT_FAILED SUBMITTED,
FAILED

AttemptFailedTransition

KILL KILLED KillAppAndAttemptTransition

REMOVING NODE_UPDATE REMOVING

KILL KILLED KillAppAndAttemptTransition

APP_REMOVED FINISHING RMAppFinishingTransition

ATTEMPT_FINISHED FINISHED FINISHED_TRANSITION

Chapter 5

[93]

Current State Event Occurred New State Event Class Instantiated

FINISHING NODE_UPDATE,
APP_REMOVED

FINISHING

ATTEMPT_FINISHED FINISHED FINISHED_TRANSITION

KILL FINISHED KillAppAndAttemptTransition

FINISHED NODE_UPDATE,
ATTEMPT_
UNREGISTERED,
ATTEMPT_FINISHED,
KILL, APP_REMOVED

FINISHED final state

FAILED KILL, NODE_
UPDATE, APP_
SAVED, APP_
REMOVED

FAILED final state

KILLED APP_ACCEPTED,
APP_REJECTED,
KILL, ATTEMPT_
FINISHED,
ATTEMPT_FAILED,
ATTEMPT_KILLED,
NODE_UPDATE,
APP_SAVED, APP_
REMOVED

KILLED final state

Understanding YARN Life Cycle Management

[94]

View 3 – An application attempt
ResourceManager's view of an application attempt represents the life cycle of each
attempt made by an application for its execution over the YARN cluster. As we have
seen in the application life cycle, when an application is moved from ACCEPTED to
RUNNING, an attempt of the application is registered with the ResourceManager.
This section will cover the state management for an application attempt.

Here is the list of enumerations and classes involved:

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.
RMAppAttempt: This is an interface to an application attempt for the
ResourceManager. An application can have multiple attempts based on
maximum number of attempts configured.

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.
RMAppAttemptImpl: This class defines application attempt state transitions
and access to the application's current attempt.

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.
RMAppAttemptEventType: This is an enumeration defining the different
event types for an application attempt.

• org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.
RMAppAttemptState: This is an enumeration defining the different states of
an application attempt.

The following state transition diagram explains the ResourceManager's view of an
application attempt:

Chapter 5

[95]

The start and final states of the ResourceManager's view of an application attempt
container are as follows:

• Start state: NEW
• Final states: FINISHED / EXPIRED / RELEASED / KILLED

As the ResourceManager accepts an application successfully, an application attempt
is initialized with the NEW state. A new attemptId is generated for the attempt and
the attempt is added to the application's attempt list.

An RMAppStartAttemptEvent handler is invoked and the state of the attempt
is changed to SUBMITTED. During the start attempt event, the attempt is first
registered with ApplicationMasterService of ResourceManager. If the application
is running in a secured mode, then the user is authenticated with the client-token-
master-key in application, and the same key is available in the ResourceManager
context. For more information about security in YARN, you can refer to Chapter 11,
Enabling Security in YARN Cluster. An AMRMToken is generated and the attempt is
added to scheduler.

Understanding YARN Life Cycle Management

[96]

The scheduler accepts the application attempt and allocates a container for the
ApplicationMaster process, as per the requirements in the ContainerLaunchContext
object. If the application is configured as an unmanaged AM, the attempt will be
saved and the state is directly changed to LAUNCHED.

Unmanaged AM: An application is said to be unmanaged if the
ResourceManager does not manage the execution of ApplicationMaster.
An unmanaged AM does not require allocation of a container and the
ResourceManager will not start the ApplicationMaster service. The client
will start the ApplicationMaster service only after the ResourceManager
has ACCEPTED the application. If the ApplicationMaster fails to connect
to the ResourceManager within the ApplicationMaster liveliness period,
then the ResourceManager will mark the application as failed.

If the ApplicationMaster is to be executed in a managed environment, then the state
of the attempt will be changed to SCHEDULED. The attempt then requests the
scheduler to allocate a container for the ApplicationMaster service.

On successful allocation, the attempt acquires the allocated container and the state of
attempt is changed to ALLOCATED. Once containers are allocated, ResourceManager
will execute the command to start ApplicationMaster and the state of attempt is
updated to LAUNCHED. ResourceManager waits for ApplicationMaster to register
itself within the ApplicationMaster liveliness period, otherwise ResourceManager will
mark the attempt as FAILED. ApplicationMaster registers itself with the host and port
on which it is running and a tracking URL to monitor the progress of the application.
ApplicationMaster also registers a communication client token with ResourceManager
(AMRMClient) and NodeManager (AMNMClient).

ApplicationMaster will request for containers and manage the application execution.
Once the attempt is finished, it is unregistered and moved to FINISHING, where
the final state is stored and then the attempt is marked as FINISHED. At any state
of attempt execution, if an exception occurs, the attempt is marked as FAILED. For
example, if there's an error during the registration of an attempt, then the attempt is
rejected. Similarly, when we manage ApplicationMaster and there are insufficient
resources to launch the ApplicationMaster, the launch event fails and the attempt is
marked as FAILED.

If a client sends a signal to kill an application, then its attempt or all associated
containers are directly marked as KILLED. A KillAllocatedAMTransition handle
is invoked and cleanup tasks are executed.

Chapter 5

[97]

Here is a summarized table view for ResourceManager's view of an application
attempt:

Current State Event Occurred New State Event Class Instantiated

NEW START SUBMITTED AttemptStartedTransition

KILL KILLED BaseFinalTransition

REGISTERED FAILED UnexpectedAMRegistered
Transition

RECOVER RECOVERED

SUBMITTED APP_REJECTED FAILED AppRejectedTransition

APP_ACCEPTED LAUNCHED_
UNMANAGED_
SAVING /
SCHEDULED

ScheduleTransition

KILL KILLED BaseFinalTransition

REGISTERED FAILED UnexpectedAMRegistered
Transition

SCHEDULED CONTAINER_
ALLOCATED

ALLOCATED_
SAVING

AMContainerAllocated
Transition

KILL KILLED BaseFinalTransition

ALLOCATED_
SAVING

ATTEMPT_SAVED ALLOCATED AttemptStoredTransition

CONTAINER_
ACQUIRED

ALLOCATED_
SAVING

ContainerAcquiredTransition

KILL KILLED BaseFinalTransition

LAUNCHED_
UNMANAGED_
SAVING

ATTEMPT_SAVED LAUNCHED UnmanagedAMAttemptSaved
Transition

REGISTERED FAILED UnexpectedAMRegistered
Transition

KILL KILLED BaseFinalTransition

ALLOCATED CONTAINER_
ACQUIRED

ALLOCATED ContainerAcquiredTransition

LAUNCHED LAUNCHED AMLaunchedTransition

LAUNCH_FAILED FAILED LaunchFailedTransition

KILL KILLED KillAllocatedAMTransition

CONTAINER_
FINISHED

FAILED AMContainerCrashedTransition

LAUNCHED REGISTERED RUNNING AMRegisteredTransition

CONTAINER_
FINISHED

FAILED AMContainerCrashedTransition

EXPIRE FAILED EXPIRED_TRANSITION

KILL KILLED FinalTransition

Understanding YARN Life Cycle Management

[98]

Current State Event Occurred New State Event Class Instantiated

RUNNING UNREGISTERED FINISHING /
FINISHED

AMUnregisteredTransition

STATUS_UPDATE RUNNING StatusUpdateTransition

CONTAINER_
ALLOCATED

RUNNING

CONTAINER_
ACQUIRED

RUNNING ContainerAcquiredTransition

CONTAINER_
FINISHED

RUNNING /
FAILED

ContainerFinishedTransition

EXPIRE FAILED EXPIRED_TRANSITION

KILL KILLED FinalTransition

FINISHING CONTAINER_
FINISHED

FINISHING /
FINISHED

AMFinishingContainerFinished
Transition

EXPIRE FINISHED FinalTransition

UNREGISTERED /
STATUS_UPDATE
/CONTAINER_
ALLOCATED/KILL

FINISHING

FAILED EXPIRE / KILL /
UNREGISTERED /
STATUS_UPDATE
/CONTAINER_
ALLOCATED/
CONTAINER_
FINISHED

FAILED final state

FINISHED EXPIRE / KILL /
UNREGISTERED /
CONTAINER_
ALLOCATED/
CONTAINER_
FINISHED

FINISHED final state

KILLED APP_ACCEPTED /
APP_REJECTED
/ EXPIRE /
LAUNCHED /
LAUNCH_FAILED
/EXPIRE /
REGISTERED /
STATUS_UPDATE
/ CONTAINER_
ALLOCATED/
ATTEMPT_SAVED
/CONTAINER_
FINISHED /
UNREGISTERED /
KILL

KILLED final state

Chapter 5

[99]

Current State Event Occurred New State Event Class Instantiated

RECOVERED START / APP_
ACCEPTED /
APP_REJECTED
/ EXPIRE /
LAUNCHED /
LAUNCH_FAILED
/EXPIRE /
REGISTERED /
STATUS_UPDATE
/ CONTAINER_
ALLOCATED/
ATTEMPT_SAVED
/CONTAINER_
FINISHED /
UNREGISTERED /
KILL

RECOVERED final state

View 4 – Container
ResourceManager manages the life cycle of all the requested containers. An application
demands the container application execution and releases containers back to
ResourceManager after the application is finished. The ResourceManager stores the
metadata related to each container and schedules the applications accordingly.

The metadata of a container includes:

• Container ID: This is a unique ID for all the containers
• Application attempt ID: This is the application attempt ID associated with

the container
• Node ID: This is the reserved and allocated node for the container
• Resource: This is the memory and virtual cores
• Time-Stamps: This is the creation and finish time
• States: This includes ContainerState and RMContainerState
• Monitoring info: This is the container's diagnostic information and logs URL

Here is the list of enumerations and classes involved:

• org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.
RMContainer: This is an interface to a container for the ResourceManager. It
stores container properties such as its priority, creation time, attempt ID, and
so on.

• org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.
RMContainerImpl: This class defines container state transitions and
associated event handlers.

Understanding YARN Life Cycle Management

[100]

• org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.
RMContainerEventType: This is an enumeration defining the different event
type for a container.

• org.apache.hadoop.yarn.server.resourcemanager.rmcontainer.
RMContainerState: This is an enumeration defining the different states
of a container.

The following state transition diagram explains the ResourceManager's view of
a container:

The start and final states of the ResourceManager's view of a container are as follows:

• Start state: NEW
• Final states: COMPLETED / EXPIRED / RELEASED / KILLED

ResourceManager instantiates a new instance of RMContainer as the request for
containers is accepted. The container is either allocated to the application or an
application attempt can reserve a container when the container is in the NEW state
by calling up the Reserved event.

ApplicationMaster acquires the allocated containers and the state of the container
is updated to ACQUIRED. The container creation time and allocated node
information is saved with container context. ApplicationMaster communicates with
NodeManager and executes the command to start the container. The container is
launched on the allocated node and the state is changed to RUNNING.

Chapter 5

[101]

After successful execution, the finished event is called and the container is marked as
COMPLETED. ApplicationMaster releases the memory occupied by the completed
containers back to ResourceManager, and the FinishedTransition handle is
invoked. The finish time, finished status, exit status, and diagnostic information is
captured. If a container in the RUNNING state is directly released, the state of the
container is changed to RELEASED and the KillTransition handle is invoked.

At any state of execution, the container is being monitored for liveliness and
expiration. If the expiration time is reached at any state, the execution of the
container is stopped and the container is marked as EXPIRED. Similarly, at any state,
if a container receives a kill signal, it directly moves up to the KILLED state.

Here is a summarized table view for ResourceManager's view of a container:

Current State Event Occurred New State Event Class Instantiated

NEW START ALLOCATED ContainerStarted
Transition

RESERVED RESERVED ContainerReserved
Transition

KILL KILLED

RESERVED START ALLOCATED ContainerStarted
Transition

RESERVED RESERVED ContainerReserved
Transition

KILL KILLED

RELEASED RELEASED

ALLOCATED ACQUIRED ACQUIRED AcquiredTransition

EXPIRE EXPIRED FinishedTransition

KILL KILLED FinishedTransition

Understanding YARN Life Cycle Management

[102]

Current State Event Occurred New State Event Class Instantiated

ACQUIRED LAUNCHED RUNNING LaunchedTransition

FINISHED COMPLETED ContainerFinishedAt
AcquiredState

RELEASED RELEASED KillTransition

EXPIRE EXPIRED KillTransition

KILL KILLED KillTransition

RUNNING FINISHED COMPLETED FinishedTransition

RELEASED RELEASED KillTransition

EXPIRE RUNNING

KILL KILLED KillTransition

COMPLETED KILL,
RELEASED,
EXPIRE

COMPLETED final state

EXPIRED KILL, RELEASED EXPIRED final state

RELEASED KILL,
RELEASED,
EXPIRE,
FINISHED

RELEASED final state

KILLED KILL,
RELEASED,
EXPIRE,
FINISHED

KILLED final state

This completes the ResourceManager's view for YARN processes. To read more
about the transitions or events, you can refer to the implementation classes referred
to in each section. In the next section, you'll learn about the NodeManager's view of
YARN.

Chapter 5

[103]

The NodeManager's view
The NodeManager service in YARN updates its resource capabilities to the
ResourceManager and tracks the execution of containers running on the node.

Other than the health of a node, the NodeManager service is responsible for
the following:

• Execution of an application and its associated containers
• Provide localized resources for the execution of containers related

to applications
• Manage logs of different applications

The NodeManager service has its own view for the following:

• Application: This manages the application's execution, logs, and resources
• Container: This manages the execution of containers as a separate process
• Localized resource: This involves the files required for the container's

execution

View 1 – Application
NodeManager manages the life cycle of the application's containers and resources
used during application execution. The NodeManager view of an application
represents how NodeManager manages the container's execution, resources, and
logs of the application.

Here is the list of enumerations and classes involved. All these classes are defined
under the org.apache.hadoop.yarn.server.nodemanager.containermanager.
application package.

• Application: This is an interface to an application for the NodeManager. It
stores application metadata only.

• ApplicationImpl: This class defines application state transitions and
associated event handlers.

• ApplicationEventType: This is an enumeration that defines the different
event types for an application.

• ApplicationState: This is an enumeration defining the different states for
an application.

Understanding YARN Life Cycle Management

[104]

The NodeManager service stores only the basic information related to an application.
The application metadata includes:

• The application ID
• The application state with respect to NodeManager
• The list of associated containers
• The user name

The following state transition diagram explains the NodeManager's view of an
application:

The start and final states of the NodeManager's view of an application are as follows:

• Start state: NEW
• Final states: FINISHED

During an application execution, the ApplicationMaster service runs as the first
container for an application. ResourceManager accepts the application request and
allocates resources for the ApplicationMaster service. The ContainerManager service
within NodeManager accepts the application and starts the ApplicationMaster
service on the node.

Chapter 5

[105]

NodeManager marks the state of an application as NEW, initializes the application,
and changes the application state to INITING. In this transition, the log aggregator
service is initialized, along with the application's access control lists. If there's
an exception while initializing the application or creating log directories, then
the application remains in the INITING state and NodeManager sends warning
messages to the user. NodeManager waits for either the Application_Inited
or Finish_Application event.

If log aggregation is enabled and the creation of log directory fails, a
warning message such as Log Aggregation service failed
to initialize, there will be no logs for this
application is logged.

If Application_Inited gets completed, the state of the application is changed to
RUNNING. The application requests and releases a number of containers during
execution. Events such as Application_Container_Finished and Container_
Done_Transition update the container list for the application and the state of the
application is unchanged.

As the application finishes, the Finish_Application event is triggered.
NodeManager waits for execution of all currently running containers for that
application. The state of the application is changed to Finishing Containers Wait.
After completion of all containers, the NodeManager service cleans up the resources
used by the application and performs log aggregation for the application. Once the
resources are cleaned up, the application is marked as FINISHED.

View 2 – Container
As discussed earlier, the NodeManager service is responsible for providing
resources, containers execution, clean up, and so on. The life cycle of a container with
NodeManager is defined in the org.apache.hadoop.yarn.server.nodemanager.
containermanager.container package.

Here is the list of enumerations and classes involved:

• Container: This is an interface to a container for the NodeManager
• ContainerImpl: This class defines container state transitions and associated

event handlers
• ContainerEventType: This is an enumeration defining the different event

type for a container
• ContainerState: This is an enumeration defining the different states

for a container

Understanding YARN Life Cycle Management

[106]

The following state transition diagram explains the NodeManager's view of a
container:

The start and final states of the NodeManager's view of a container are as follows:

• Start state: NEW
• Final states: Done

ResourceManager allocates containers on a particular node. As the containers are
acquired by an application, the NodeManager initializes the container's object for
the node. NodeManager requests the ResourceLocalizationManager service to
download the resources required to run the container and marks the container state
as Localizing.

For localization, the specified auxiliary service is informed. The auxiliary service has
the information about the service data for the container. The Resource_Localized
event is triggered when resources are successfully localized. If resources are already
localized or resources are not required, then the container directly enters into the
Localized state. If the resource localization fails, then the state of the container is
changed to Localization Failed. The container launch is skipped if it directly moves
to the Done state.

Chapter 5

[107]

Once the container's resource requirements are met, the Container_Launched
event is triggered and the container state is changed to Running. In this transition,
the ContainersMonitor service is being informed to monitor the resource usage
of the container. The NodeManager waits for the completion of the container. If
the container is successfully executed, then a success event is invoked and the exit
status of the container is marked as 0. The container's state is changed to EXITED_
WITH_SUCCESS. If the container fails, then the exit code and diagnostic information is
updated and the state of the container is changed to EXITED_WITH_FAILURE.

At any stage, if a container receives a kill signal, the container is moved to the
KILLING state, where the container cleanup is done and the state is later changed to
Container_CleanedUp_After_Kill. It is mandatory for a container to clean up the
resources used for its execution. When the resources are cleaned up, the Container_
Resources_CleanedUp event is invoked and the state is marked as DONE.

View 3 – A localized resource
Resource localization is defined as downloading resource files before the execution
of a container. For example, if a container requires a jar file for its execution, a
localized resource is configured in ContainerLaunchContext. It is the responsibility
of the NodeManager service to download the resource file on the local filesystem of
the node. To find out more about resource localization, you can refer to Chapter 8,
Dive Deep into YARN Components.

The NodeManager service maintains a life cycle for localized resources.
NodeManager stores information related to a resource. The information includes:

• The resource path on the local filesystem
• The size of the resource
• The list of containers using the resource
• The resource visibility, type, pattern, and download path
• (LocalResourceRequest): The life cycle of a localized resource with

NodeManager is defined in the org.apache.hadoop.yarn.server.
nodemanager.containermanager.localizer package

• LocalizedResource: This class stores resource information, defines the
state transitions and associated event handlers

• ResourceState: This is an enumeration defining the different states
for a resource

• event.ResourceEventType: This is an enumeration defining the different
event types for a resource

Understanding YARN Life Cycle Management

[108]

The following state transition diagram explains the NodeManager's view of a
resource:

The start and final states of the NodeManager's view of a resource are as follows:

• Start state: INIT
• Final states: LOCALIZED / FAILED

As specified in the NodeManager's view of a container, resource localization is
initiated during the INIT_CONTAINER event. The resources specified in the container
launch context are initialized with INIT state.

When a resource is requested, a FetchResourceTransition handle is invoked and it
initializes the resource details such as location, visibility, context, and so on. The state
of the resource is changed to DOWNLOADING.

Once the resource is downloaded successfully, the resource state is marked as
LOCALIZED and the resource path, size, and references are updated. If the
localization of the resource fails, then the resource is marked as FAILED and the
context is updated with a diagnostic message containing the reason of failure.

If there's any subsequent requests for a resource in the DOWNLOADING or
LOCALIZED state, the handle to the path and context of the local resource is
provided.

Multiple containers can use the same resource at the same time. The NodeManager
service maintains a queue of containers for each localized resource. A container
reference is added to the queue during a resource request, and is removed from the
queue after resource release.

Chapter 5

[109]

Analyzing transitions through logs
Both YARN services, ResourceManager and NodeManager generate logs and store
them in a .log file locally inside the folder specified using the HADOOP_LOGS_DIR
variable. By default, the logs are stored in HADOOP_PREFIX/logs. All the state
transitions in YARN are recorded in the log files. In this section, we'll cover few state
transitions and the logs generated during those transitions.

Setting the log level: Hadoop-YARN uses Apache Log4j library and
it uses a log4j.properties file located in the configuration folder
of the Hadoop-YARN bundle at HADOOP_PREFIX/etc/hadoop.
The Log4j library supports six log levels – TRACE, DEBUG, INFO,
WARN, ERROR, and FATAL. A cluster administrator sets the log level
for Hadoop-YARN services and the default log level is INFO. The
hadoop.root.logger property is used to update the log level for
Hadoop-YARN services. To read more about Apache Log4j library,
you can refer to the official site at http://logging.apache.org/
log4j/.

NodeManager registration with
ResourceManager
The ResourceManager consists of ResourceTracker service that is responsible for
monitoring of the resources across the cluster. A NodeManager service registers itself
to the ResourceManager service. The registration information contains the ports used
and the memory information of the node. After successful registration, the state of
the node is changed from NEW to RUNNING.

You can refer to the following ResourceManager's logs during NodeManager
registration:

2014-10-25 08:24:15,183 INFO
org.apache.hadoop.yarn.server.resourcemanager.ResourceTrackerService:
NodeManager from node master(cmPort: 37594 httpPort: 8042) registered
with capability: <memory:8192, vCores:8>, assigned nodeId
master:37594

2014-10-25 08:24:28,079 INFO
org.apache.hadoop.yarn.server.resourcemanager.rmnode.RMNodeImpl:
master:37594 Node Transitioned from NEW to RUNNING

Understanding YARN Life Cycle Management

[110]

Application submission
The following ResourceManager logs describe the state transitions during
application execution. The ClientRMService state assigns a new application ID and
RMAppImpl initializes the application object with the NEW state. Once the application
is submitted, a queue is assigned and the state of the application changes from
SUBMITTED to ACCEPTED.

org.apache.hadoop.yarn.server.resourcemanager.ClientRMService:
Allocated new applicationId: 1

org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl:
Storing application with id application_1414205634577_0001

org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl:
application_1414205634577_0001 State change from NEW to NEW_SAVING

org.apache.hadoop.yarn.server.resourcemanager.recovery.RMStateStore:
Storing info for app: application_1414205634577_0001

org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl:
application_1414205634577_0001 State change from NEW_SAVING to
SUBMITTED

org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.Pare
ntQueue: Application added - appId: application_1414205634577_0001
user: akhil leaf-queue of parent: root #applications: 1

org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.Capa
cityScheduler: Accepted application application_1414205634577_0001
from user: akhil, in queue: default

org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl:
application_1414205634577_0001 State change from SUBMITTED to
ACCEPTED

Container resource allocation
The ResourceManager scheduler is responsible for allocating containers to YARN
applications. The following logs describe the details of the assigned container
(container ID, memory, and cores assigned). It also contains the summary of the
assigned host, including the number of containers, memory used, and available
memory after allocation.

org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerNode
: Assigned container container_1414205634577_0001_01_000003 of
capacity <memory:1024, vCores:1> on host master:37594, which has 3
containers, <memory:4096, vCores:3> used and <memory:4096, vCores:5>
available after allocation

Chapter 5

[111]

Resource localization
The NodeManager service is responsible for providing resources required during
execution of containers. The resources are downloaded from the supported source
(such as HDFS, HTTP, and so on) to the NodeManager node's local directory.

You can refer to the following NodeManager log during resource localization:

2014-10-25 14:01:26,224 INFO
org.apache.hadoop.yarn.server.nodemanager.containermanager.localizer.
LocalizedResource: Resource hdfs://master:8020/tmp/hadoop-
yarn/staging/akhil/.staging/job_1414205634577_0001/job.splitmetainfo(
->/tmp/hadoop-akhil/nm-local-
dir/usercache/akhil/appcache/application_1414205634577_0001/filecache
/10/job.splitmetainfo) transitioned from DOWNLOADING to LOCALIZED

Summary
In this chapter, we learned about the state management analogy of YARN and why it
is important. We discussed about the ResourceManager and NodeManager views for
the different processes associated with the YARN framework. This chapter provides
core concepts about how YARN monitors and manages the resources or application
execution over YARN. You can now easily scan the logs for ResourceManager or
NodeManager and observe the messages during state transitions of a node, an
application, or a container, and so on.

In the next chapter, we'll talk about the execution of MapReduce applications over a
YARN cluster and how you can migrate from MRv1 to MRv2.

[113]

Migrating from MRv1
to MRv2

Hadoop development started in 2005 and in December 2011, it reached version 1.0.0.
Enterprises started using Hadoop and implemented data processing algorithms based
on the MapReduce programming framework. In 2013, Hadoop version 2.2.0 was
released and the MapReduce framework went through a lot of architectural changes.
A generic framework for resource management, that is, YARN was introduced and
architecture for MapReduce job execution over a Hadoop cluster changed. The old API
of the framework is known as MRv1 and the MapReduce APIs associated with YARN
framework are termed as MRv2.

In this chapter, we will cover the following:

• Introduction MRv1 and MRv2
• Migrating to MRv2
• Running and monitoring MRv1 apps on YARN

Migrating from MRv1 to MRv2

[114]

Introducing MRv1 and MRv2
The MapReduce framework in Hadoop 1.x version is also known as MRv1. The
MRv1 framework includes client communication, job execution and management,
resource scheduling and resource management. The Hadoop daemons associated
with MRv1 are JobTracker and TaskTracker as shown in the following figure:

JobTracker is a master service responsible for client communications, MapReduce
job management, scheduling, resource management, and so on. The TaskTracker
service is a worker daemon that runs on every slave of the Hadoop cluster. It is
responsible for the execution of map reduce tasks. A client submits a job to the
JobTracker service. The JobTracker validates the request and breaks the job into
tasks. The JobTracker uses a data localization mechanism and assigns TaskTracker
for the execution of tasks. The TaskTracker service runs a map reduce task as a
separate JVM named as child as described in the following figure:

Chapter 6

[115]

The following diagram shows the MRv1 services and their equivalent MRv2 services:

JobTracker and TaskTracker services in YARN are no longer used. The MRv2
framework uses ResourceManager and MRApplicationMaster services instead of
the JobTracker service. Also, the NodeManager service replaces the TaskTracker
service.

High-level changes from MRv1 to MRv2
With the introduction of YARN, the architecture for Hadoop job execution and
management framework changed. In this section, we'll discuss the list of high-level
changes observed in MRv2 framework.

The evolution of the MRApplicationMaster
service
In YARN, the responsibility of JobTracker is divided across the ResourceManager
service and application-specific ApplicationMaster service. For management
of MapReduce jobs, MRApplicationMaster service is defined in the Hadoop
framework. For each MapReduce job submitted to ResourceManager, an instance
MRApplicationMaster service is launched. After successful execution of the job, the
MRApplicationMaster service is terminated.

The MRApplicationMaster service is responsible for:

• Registering the job with the ResourceManager
• Negotiating YARN containers for execution of map reduce tasks
• Interacting with NodeManager to manage execution of allocated containers
• Handling task failure and reinitiate failed tasks
• Handling client request for job status through REST API / Web UI

Migrating from MRv1 to MRv2

[116]

The implementation of MRApplicationMaster is defined in the org.apache.hadoop.
mapreduce.v2.app package. For more information about the MRAppMaster class,
you can refer to the Java class at:

http://www.grepcode.com/file/repo1.maven.org/maven2/org.apache.
hadoop/hadoop-mapreduce-client-app/2.5.1/org/apache/hadoop/mapreduce/
v2/app/MRAppMaster.java.

Resource capability
In MRv1, the capability of a slave node is measured as the maximum number of map
reduce task slots available for task execution. In MRv2, the resource capability of a
node is measured in terms of the memory and virtual cores that are available for task
execution. The properties for defining the maximum map reduce tasks associated
with a node are no longer used. A detailed description about these properties is
given in the next section.

Pluggable shuffle
During MapReduce job execution, the output of the map function is copied to the
node selected for reduce task. This phase during a MapReduce job is known as
shuffling. The YARN framework allows users to define a shuffle mechanism that
can be used for data transfer during job execution. The configuration for shuffle
mechanism is discussed in the next section.

Hierarchical queues and fair scheduler
YARN schedulers support for hierarchical queues. Queues have a parent-child
relationship and the fair scheduler uses queues instead of pools. The properties
for the fair scheduler, such as minMaps, minReduces, maxMaps, and so on, are now
deprecated and are replaced by minResources, maxResources, and so on. To read
more about the schedulers, you can refer to Chapter 10, Scheduling YARN Applications.

Task execution as containers
A container is a simple notation for a block of memory and virtual cores used by a
task. In MRv2, the map reduce tasks run as a YARN container known as YARNChild.
For more information, you can also refer to the implementation of a YARNChild class
at http://grepcode.com/file/repo1.maven.org/maven2/org.apache.hadoop/
hadoop-mapreduce-client-app/2.5.1/org/apache/hadoop/mapred/YarnChild.
java.

Chapter 6

[117]

The migration steps from MRv1 to MRv2
The migration steps from MRv1 to MRv2 can be categorized as:

• The configuration changes to use YARN as the MapReduce execution
framework

• The binary / source compatibility while working with MapReduce APIs

Configuration changes
In this section, we'll discuss the configuration changes required during migration
from MRv1 to MRv2. The information provided in this section is limited to
the minimum configuration changes required during the migration. Detailed
information regarding the deprecated and new properties is provided in a Cloudera
blog at https://www.cloudera.com/content/cloudera/en/documentation/
core/v5-2-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html.

The upcoming sections describe the changes while migrating from MRv1 to MRv2.

• The MapReduce framework
If you recall the configuration of a Hadoop cluster in MRv1, the mapred-
site.xml file contains the host information related to the JobTracker
service. In MRv2, the following property in the mapred-site.xml file
contains the configuration for the MapReduce framework to be used:
<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
</property>

A cluster administrator can define any of the three MapReduce frameworks
(local / classic / yarn). To enable YARN, the value of the property should
be set to yarn. To find out more about the local and classic mode, you can
refer to Chapter 2, Setting up a Hadoop-YARN Cluster.

• The ResourceManager host
In the MapReduce framework specified in mapred-site.xml is yarn, then
you need to define host for ResourceManager service. A cluster administrator
needs to configure the following property containing the hostname or IP for
the ResourceManager node:
<property>
 <name>yarn.resourcemanager.hostname</name>
 <value>master</value>
</property>

Migrating from MRv1 to MRv2

[118]

Properties such as yarn.resourcemanager.address, yarn.
resourcemanager.webapp.address, yarn.resourcemanager.admin.
address, and so on will automatically reuse the value of the ResourceManager
host specified in the property we just saw and will use the default port settings.
If you wish to change the default ports, you can define these properties in the
yarn-site.xml file in the host:port format.
To read more about default ResourceManager properties, you can refer to the
yarn-default.xml at http://hadoop.apache.org/docs/r2.5.1/hadoop-
yarn/hadoop-yarn-common/yarn-default.xml.

• The shuffle service
As mentioned in the previous section, the shuffle service in the MapReduce
job moves the map task's output to reduce the task nodes. YARN provides
an option to configure AUX services used during application execution.
An administrator needs to define the MapReduce shuffle service as an
AUX service for the YARN cluster. It can be configured using the following
properties in the yarn-site.xml file:
<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

<property>
 <name>yarn.nodemanager.aux-
services.mapreduce_shuffle.class</name>
 <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

• The scheduler configuration
The default scheduler in MRv1 is First In First Out (FIFO), but in MRv2 the
default scheduler is CapacityScheduler. A cluster administrator needs to
specify the class for scheduling using the following property:
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.cap
acity.CapacityScheduler</value>
</property>

Chapter 6

[119]

• The resource capability
As mentioned in the previous section, the resource capability of a node in
YARN is calculated as the memory and virtual cores available for container
execution. The MRv1 properties mapred.tasktracker.map.tasks.maximum,
mapred.tasktracker.reduce.tasks.maximum, and so on for defining the
mapreduce tasks associated with a node are no longer used. An administrator
can use the following properties in the mapred-site.xml file to define the
memory each mapreduce task can request from the scheduler:
<property>
 <name>mapreduce.map.memory.mb</name>
 <value>1536</value>
</property>

<property>
 <name>mapreduce.reduce.memory.mb</name>
 <value>2560</value>
</property>

In MRv1, the mapred.child.java.opts property in the mapred-site.xml
file is used to define the hard limits on each map reduce task. In MRv2, the
hard limit of tasks is defined using the following properties in the mapred-
site.xml file:
<property>
 <name>mapreduce.map.java.opts</name>
 <value>-Xmx1024m</value>
</property>

<property>
 <name>mapreduce.reduce.java.opts</name>
 <value>-Xmx2048m</value>
</property>

To understand the recommended memory configuration settings, you can
refer to an HDP blog at http://docs.hortonworks.com/HDPDocuments/
HDP2/HDP-2.1.2/bk_installing_manually_book/content/rpm-
chap1-11.html.

Migrating from MRv1 to MRv2

[120]

The binary / source compatibility
One of the major concerns while migrating is the compatibility of MapReduce's
existing source and binary files written using MRv1 classes. If an enterprise adopts
YARN, then will the programs developed with old APIs work with the new
framework? The answer is yes for binary files, but it is not 100 percent true for
source code.

If a developer needs to execute an MRv1 job using a binary file (executable jar file)
on a Hadoop-YARN, then the job execution will be similar to execution in MRv1.
All the binaries will work on the new framework. To verify this, you can use any
of the old hadoop-examples-<version 1.x>.jar command and execute the yarn
application submission command:

yarn jar <jarPath><class><args>

If a developer needs to execute a MapReduce job using source code,
then the developer first needs to compile and build the source code
against the new Hadoop-YARN libraries. Most of the MRv1 classes
exist in the new framework, but there are some minor changes in the
API.
A summary of the API changes is available at http://docs.
hortonworks.com/HDPDocuments/HDP2/HDP-2.1.2/bk_using-
apache-hadoop/content/running_hadoop_v1_apps_on_yarn.
html.

Running and monitoring MRv1 apps on
YARN
The syntax to submit applications is similar to the MRv1 framework. A minor
difference in MRv2 is the use of the yarn command in the Hadoop-YARN bin folder
rather than hadoop. Although submission of applications is supported using the
hadoop command in MRv2, the yarn command is still preferred.

YARN uses the ResourceManager web interface for monitoring applications running
on a YARN cluster. The ResourceManager UI shows the basic cluster metrics, list of
applications, and nodes associated with the cluster. In this section, we'll discuss the
monitoring of MRv1 applications over YARN.

You can execute a sample MapReduce job like word count and browse to the web UI
for ResourceManager at http://<ResourceManagerHost>:8088/.

Chapter 6

[121]

A new application is submitted to the YARN cluster and you can view the
application summary in the application table. You can open the application
details page by clicking on the link for the corresponding row in the table.

The application details page is the same for all applications in YARN. It contains
the information related to the application's state, attempts, and so on, as shown
in the following figure:

You can observe that if the application is in the RUNNING state, then the Tracking
URL on the application details page refers to the ApplicationMaster page. On
clicking the link for ApplicationMaster, you will be redirected to the web UI of
MRApplicationMaster. This page contains running the status of a job including
the job ID, the number of map reduce tasks, the current state, and so on.

Migrating from MRv1 to MRv2

[122]

To view the job status in detail, you can click on the link with the Job ID. A new
page will open and it'll contain a detailed view of job statistics. You can also browse
through several links in the Jobs menu on the left side of the page such as overview,
counters, configuration, tasks, and so on. You can refer to any of the links to get the
required information.

The web-UI for MRApplicationMaster is available only until the application is in
running state. Once the application is finished, the MRApplicationMaster web UI
is not available. You will see that the tracking URL on the application details page
changes to History.

There are two different terminologies for application state for an application in
YARN—State and FinalStatus. The FinalStatus of an application represents the
final state of the MapReduce job and the State represents the overall state of the
YARN application. You can refer to the following screenshot, which shows that the
state of the application is FINISHED, but the FinalStatus of the MapReduce job is
FAILED, as given in the following screenshot:

Chapter 6

[123]

Summary
With the adoption of YARN with Hadoop, the architecture for MapReduce
programming framework and APIs were modified and the new framework is named
MRv2. This chapter covered a brief about the differences between MRv1 and MRv2. It
also explained the configuration changes, code compatibility, and monitoring of MRv1
applications when administrators and developers migrate from MRv1 to MRv2.

In the next chapter, you'll learn about writing your own YARN applications.
This requires you to have basic knowledge of Java programming and is focused
for developers who are eager to learn application development that is compatible
with YARN.

[125]

Writing Your Own YARN
Applications

In the first chapter, we talked about the shortcomings of Hadoop 1.x framework.
Hadoop 1.x framework was restricted to MapReduce programming only. You had to
write data processing logic as map and reduce tasks. With the introduction of YARN
in Hadoop 2.x version, you can now execute different data processing algorithms
over the data stored in HDFS. YARN separates the resource management and the
data processing frameworks into two different components, ResourceManager and
ApplicationMaster.

In the last few chapters, you learned about the application execution flow, and
how YARN components communicate and manage the life cycle of an application.
You executed a MapReduce application over a YARN cluster and worked with
MRApplicationMaster component. In this chapter, you will learn to create your
own YARN applications using YARN Java APIs. This chapter requires you to have
a Java background and basic knowledge of Eclipse IDE. This chapter is helpful
for developers and open source contributors who want to create and execute
applications over a YARN cluster.

In this chapter, we will cover the following topics:

• Introduction to the YARN API
• Key concepts and classes involved
• Writing your own application
• Executing applications over the Hadoop-YARN cluster

Writing Your Own YARN Applications

[126]

An introduction to the YARN API
YARN is a Java framework that is packaged with the Hadoop bundle. YARN
provides resource management, as well as easy integration of data processing or
accessing algorithms for data stored in Hadoop HDFS. Apache Storm, Giraph, and
HAMA are few examples of the data processing algorithms that use YARN for
resource management. A detailed integration of such technologies is covered in
Chapter 12, Real-time Data Analytics Using YARN.

The Hadoop-YARN API is defined in the org.apache.hadoop.yarn.api package.
While writing your own YARN applications, you will use some of the classes from
the YARN API. Before moving ahead, it is important to list the classes used and
understand their role. This section will cover a few important classes defined in
the org.apache.hadoop.yarn.api package.

YARNConfiguration
The YARNConfiguration class is defined in the org.apache.hadoop.yarn.conf
package and it extends the org.apache.hadoop.conf.Configuration class. Similar
to the Configuration class, it reads the YARN configuration files (yarn-default.
xml and yarn-site.xml) and provides access to Hadoop-YARN configuration
parameters. The following are the responsibilities of the YARNConfiguration class:

Load resources
The Hadoop configuration files contain name / value properties as XML data. The
files are loaded in the order they are added. The YARNConfiguration class will load
the yarn-default.xml file and then the yarn-site.xml file. The value specified
in the yarn-site.xml file will be used. The properties specified in *-site.xml are
overridden over those in *-default.xml and rest are referred from *-default.xml.

Consider the following example, where a property has a default value in
yarn-default.xml and a user defines the same property in yarn-site.xml.
The following property is defined in the yarn-default.xml file:

<property>
<name>yarn.resourcemanager.hostname</name>
<value>0.0.0.0</value>
</property>

Chapter 7

[127]

And you have specified the same property in yarn-site.xml as follows:

<property>
<name>yarn.resourcemanager.hostname</name>
<value>masternode</value>
</property>

The YARNConfiguration class will return the masternode value for
yarn.resourcemanager.hostname property.

Final properties
A property may be declared as a final property. If an administrator does not want
any client to update the value of any parameter, then the administrator will define
the property as final as given in the following:

<property>
<name>yarn.acl.enable</name>
<value>true</value>
<final>true</final>
</property>

Variable expansion
The value for a property may contain variables as other properties defined in the
configuration files or properties of the Java process. You can consider the following
example for the resourcemanager hostname:

<property>
<name>yarn.resourcemanager.hostname</name>
<value>masternode</value>
</property>

<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>${yarn.resourcemanager.hostname}:8088</value>
</property>

The value for the yarn.resourcemanager.webapp.address property is evaluated
using the variable from the previous property.

A commonly used Java system property used in YARN for variable
expansion is ${user.name}.

Writing Your Own YARN Applications

[128]

To read more about the YARNConfiguration class, you can refer to the Hadoop API
documentation at http://hadoop.apache.org/docs/r2.5.1/api/org/apache/
hadoop/yarn/conf/YarnConfiguration.html.

ApplicationSubmissionContext
ApplicationSubmissionContext is an abstract class containing the information
to launch the ApplicationMaster for an application. The client defines the
submission context containing the attributes of the application, command to run
the ApplicationMaster service and list of resources required, and so on. During the
application submission request, the client sends this context to the ResourceManager.
The ResourceManager uses this context to save the application state and launch the
ApplicationMaster process on a NodeManager node.

The ApplicationSubmissionContext class contains the following:

• The application ID, name, and type
• Queue and its priority
• AM container specification (ContainerLaunchContext for AM)
• Boolean flags for unmanaged AM and container management
• Number of maximum application attempts and resources required

To read more about the ApplicationSubmissionContext class, you can refer to the
Hadoop API documentation at http://hadoop.apache.org/docs/r2.5.1/api/
org/apache/hadoop/yarn/api/records/ApplicationSubmissionContext.html.

ContainerLaunchContext
ContainerLaunchContext is an abstract class containing information to
start a container on a node. A NodeManager daemon uses the launch context
to start containers associated with an application. An ApplicationMaster is
the first container of an application and its launch context is defined in the
ApplicationSubmissionContext class.

The ContainerLaunchContext objects contain the following:

• A map of the local resources used during startup
• A map for environment variables defined
• A list of commands used to start the container
• Information related to associated auxiliary services and tokens
• Application ACLs (application access type to view or modify the application)

Chapter 7

[129]

To read more about the ContainerLaunchContext class, you can refer to the
Hadoop API documentation at http://hadoop.apache.org/docs/r2.5.1/api/
org/apache/hadoop/yarn/api/records/ContainerLaunchContext.html.

Communication protocols
The YARN API contains four communication protocols for interaction of YARN
client and ApplicationMaster with YARN services such as ResourceManager,
NodeManager, and Timeline server. These are defined in the org.apache.hadoop.
yarn.api package. This section gives a brief description of these interfaces and
their usage:

ApplicationClientProtocol
The ApplicationClientProtocol interface defines the communication between the
client and the ResourceManager service.

A client uses this interface to:

• Create/submit/kill an application
• Get reports for application/container/application attempts
• Get information related to cluster metrics/nodes/queues

Writing Your Own YARN Applications

[130]

• Use filters to fetch application and nodes list (GetApplicationsRequest and
GetClusterNodesRequest)

• Request for a new delegation token or renew the existing one

ApplicationMasterProtocol
The ApplicationMasterProtocol interface is used by an active ApplicationMaster
instance to communicate with the ResourceManager service. As soon as an
ApplicationMaster service gets started, it registers itself to the ResourceManager.
The ApplicationMaster instance sends AllocateRequest to the ResourceManager
to request for new containers and releases unused or blacklisted containers.
After application execution, the ApplicationMaster sends a notification to the
ResourceManager using the finishApplicationMaster() method.

ContainerManagementProtocol
The ContainerManagementProtocol interface is used as a communication
protocol between an active ApplicationMaster and NodeManager service. The
ResourceManager service allocates containers to an ApplicationMaster instance and
the ApplicationMaster then submits a start container request to the corresponding
NodeManager.

An active ApplicationMaster uses this interface to:

• Request NodeManager to start containers using ContainerLaunchContext
for each container

• Get the current status of the containers
• Stop the containers corresponding to specified container IDs

ApplicationHistoryProtocol
ApplicationHistoryProtocol is a new protocol added in the 2.5 version
of Hadoop. This protocol is used for communication between clients and the
application history server (Timeline server) to fetch information related to completed
applications. A Timeline server keeps the historical data for applications submitted
to the YARN cluster. A client can use this interface to get reports for competed
applications, containers, and application attempts.

To read more about the available communication protocols, you can refer to the
Hadoop API documentation at http://hadoop.apache.org/docs/r2.5.1/api/
org/apache/hadoop/yarn/api/package-summary.html.

Chapter 7

[131]

YARN client API
YARN client API refers to the classes defined in the org.apache.hadoop.yarn.
client.api package. These classes use the earlier mentioned communication
protocols and are used while writing Java-based YARN applications. These are
the classes exposed to a client / ApplicationMaster service to communicate with
YARN daemons.

Some of the classes in the client API are:

• YarnClient: This is a communication bridge between the client and the
ResourceManager service. A client can submit an application, request
application status/report and get cluster metrics.

• AMRMClient / AMRMClientAsync: These facilitate blocking AMRMClient and
non-blocking AMRMClientAsync communication between ApplicationMaster
and the ResourceManager. As mentioned in Chapter 5, Understanding
YARN Life Cycle Management, the ApplicationMaster connects to the
ResourceManager service using AMRMClient. The ApplicationMaster uses
the AMRMClient to register the AM service, to request resources from
ResourceManager, and to get the resource availability of the cluster.

• NMClient / NMClientAsync: These facilitate blocking NMClient and non-
blocking NMClientAsync communication between ApplicationMaster
and the NodeManager. Similar to a connection to ResourceManager, the
ApplicationMaster creates a connection to the NodeManager on which
containers are allocated. The ApplicationMaster uses the NMClient to request
start/stop containers and get container status.

• AHSClient / TimelineClient: This facilitate communication between client
and Timeline server. Once the applications are completed, a client can fetch
the application report from the Timeline sever. The client uses the AHSClient
to get the list of applications, application attempts, and containers.

To read more about the YARN client API, you can refer to the Hadoop API
documentation at http://hadoop.apache.org/docs/r2.5.1/api/org/apache/
hadoop/yarn/client/api/package-summary.html.

Writing Your Own YARN Applications

[132]

Writing your own application
YARN framework provides flexibility to run any application in a clustered
environment. An application could be as simple as a Java process, a shell script, or a
simple date command. The ResourceManager service manages the cluster resource
allocation and the NodeManager services execute tasks as specified by the application
framework; for example, the map and reduce tasks of Hadoop MapReduce jobs.

In this section, you will write your own applications to run in a distributed
environment through YARN.

The complete process can be summarized in four simple steps, which are shown in
the following diagram:

Step 1 – Create a new project and add
Hadoop-YARN JAR files
We will create a new Java project in Eclipse and will use the YARN client APIs to
write a simple YARN application. You can either create a simple Java project or a
Maven project.

You need to add the following jar files to your project's build path:

• hadoop-yarn-client-2.5.1.jar

• hadoop-yarn-api-2.5.1.jar

• hadoop-yarn-common-2.5.1.jar

• hadoop-common-2.5.1.jar

Chapter 7

[133]

If you choose to create a simple Java project, you can create a library folder (named
lib) to store the required jar files in your project directory and add the required jar
files to the library folder. If you choose to create a Maven project, then you will need
to add the following dependency entries in pom.xml and install the project to resolve
the dependencies:

<dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-yarn-client</artifactId>

 <version>2.5.1</version>

</dependency>

<dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-yarn-common</artifactId>

 <version>2.5.1</version>

</dependency>

<dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-yarn-api</artifactId>

 <version>2.5.1</version>

</dependency>

<dependency>

 <groupId>org.apache.hadoop</groupId>

 <artifactId>hadoop-common</artifactId>

 <version>2.5.1</version>

</dependency>

Step 2 – Define the ApplicationMaster and
client classes
A client needs to define classes for ApplicationMaster to manage the application
execution and YARN client to submit the application to ResourceManager.

Writing Your Own YARN Applications

[134]

The following are the roles for client while writing the ApplicationMaster and
YARN client:

Define an ApplicationMaster
Create a new package and add a new class ApplicationMaster.java with the
main method to your project. You need to add the following code snippets to the
ApplicationMaster.java class:

package com.packt.firstyarnapp;

import java.util.Collections;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.net.NetUtils;

import org.apache.hadoop.yarn.api.ApplicationConstants;

import org.apache.hadoop.yarn.api.protocolrecords.AllocateResponse;

import org.apache.hadoop.yarn.api.records.Container;

import org.apache.hadoop.yarn.api.records.ContainerLaunchContext;

import org.apache.hadoop.yarn.api.records.ContainerStatus;

import org.apache.hadoop.yarn.api.records.FinalApplicationStatus;

import org.apache.hadoop.yarn.api.records.Priority;

import org.apache.hadoop.yarn.api.records.Resource;

Chapter 7

[135]

import org.apache.hadoop.yarn.client.api.AMRMClient;

import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest;

import org.apache.hadoop.yarn.client.api.NMClient;

import org.apache.hadoop.yarn.conf.YarnConfiguration;

import org.apache.hadoop.yarn.util.Records;

public class ApplicationMaster {

 public static void main(String[] args) throws Exception {

 System.out.println("Running ApplicationMaster");

 final String shellCommand = args[0];

 final int numOfContainers = Integer.valueOf(args[1]);

 Configuration conf = new YarnConfiguration();

 // Point #2

 System.out.println("Initializing AMRMCLient");

 AMRMClient<ContainerRequest> rmClient = AMRMClient.
createAMRMClient();

 rmClient.init(conf);

 rmClient.start();

 System.out.println("Initializing NMCLient");

 NMClient nmClient = NMClient.createNMClient();

 nmClient.init(conf);

 nmClient.start();

 // Point #3

 System.out.println("Register ApplicationMaster");

 rmClient.registerApplicationMaster(NetUtils.getHostname(), 0, "");

 // Point #4

 Priority priority = Records.newRecord(Priority.class);

 priority.setPriority(0);

Writing Your Own YARN Applications

[136]

 System.out.println("Setting Resource capability for Containers");

 Resource capability = Records.newRecord(Resource.class);

 capability.setMemory(128);

 capability.setVirtualCores(1);

 for (int i = 0; i < numOfContainers; ++i) {

 ContainerRequest containerRequested = new ContainerRequest(

 capability, null, null, priority, true);

 // Resource, nodes, racks, priority and relax locality flag

 rmClient.addContainerRequest(containerRequested);

 }

 // Point #6

 int allocatedContainers = 0;

 System.out

 .println("Requesting container allocation from ResourceManager");

 while (allocatedContainers < numOfContainers) {

 AllocateResponse response = rmClient.allocate(0);

 for (Container container : response.getAllocatedContainers()) {

 ++allocatedContainers;

 // Launch container by creating ContainerLaunchContext

 ContainerLaunchContext ctx = Records

 .newRecord(ContainerLaunchContext.class);

 ctx.setCommands(Collections.singletonList(shellCommand + " 1>"

 + ApplicationConstants.LOG_DIR_EXPANSION_VAR

 + "/stdout" + " 2>"

 + ApplicationConstants.LOG_DIR_EXPANSION_VAR

 + "/stderr"));

 System.out.println("Starting container on node : "

 + container.getNodeHttpAddress());

 nmClient.startContainer(container, ctx);

 }

 Thread.sleep(100);

 }

Chapter 7

[137]

 // Point #6

 int completedContainers = 0;

 while (completedContainers < numOfContainers) {

 AllocateResponse response = rmClient.allocate(completedContainers

 / numOfContainers);

 for (ContainerStatus status : response

 .getCompletedContainersStatuses()) {

 ++completedContainers;

 System.out.println("Container completed : " + status.
getContainerId())

;

 System.out

 .println("Completed container " + completedContainers);

 }

 Thread.sleep(100);

 }

 rmClient.unregisterApplicationMaster(FinalApplicationStatus.
SUCCEEDED,

 "", "");

 }

}

The code snippets of the ApplicationMaster are explained as follows:

1. Read YARN configuration and input arguments: The ApplicationMaster
uses the YARNConfiguration class to load the Hadoop-YARN configuration
files and reads the specified input arguments. For this example, the first
argument is a shellCommand such as /bin/date and the second argument
is the numofContainers to be launched during application execution:
Public static void main(String[] args) throws Exception {

 final String shellCommand = args[0];

 final intnumOfContainers = Integer.valueOf(args[1]);

 Configuration conf = new YarnConfiguration();

}

Writing Your Own YARN Applications

[138]

2. Initialize the AMRMClient and NMClient clients: The ApplicationMaster
first creates and initializes the communication interfaces with the
ResourceManager service AMRMClient and the NodeManager service
NMClient as given in the following code:
AMRMClient<ContainerRequest> rmClient =
AMRMClient.createAMRMClient();

rmClient.init(conf);

rmClient.start();

NMClient nmClient = NMClient.createNMClient();

nmClient.init(conf);

nmClient.start();

3. Register the attempt with the ResourceManager: The ApplicationMaster
registers itself to the ResourceManager service. It needs to specify the
hostname, port and a tracking URL for the attempt. After successful
registration, the ResourceManager moves the application state to RUNNING.
rmClient.registerApplicationMaster(NetUtils.getHostname(), 0,
"");

4. Define ContainerRequest and add the container's request: The client
defines the execution requirement of worker containers in terms of memory
and cores (org.apache.hadoop.yarn.api.records.Resource). The client
might also specify the priority of the worker containers, a preferred list of
nodes, and racks for resource locality. The client creates a ContainerRequest
reference and adds the requests before calling the allocate() method:
Priority priority = Records.newRecord(Priority.class);

priority.setPriority(0);

Resource capability = Records.newRecord(Resource.class);

capability.setMemory(128);

capability.setVirtualCores(1);

for (inti = 0; i<numOfContainers; ++i) {

ContainerRequest containerRequested = new
ContainerRequest(capability, null, null, priority, true);

// Resource, nodes, racks, priority and relax locality flag

rmClient.addContainerRequest(containerRequested);

}

Chapter 7

[139]

5. Request allocation, define ContainerLaunchContext and start the containers:
The ApplicationMaster requests the ResourceManager to allocate the required
containers and notifies the ResourceManager about the current progress of the
application. Hence, the value of progress indicator during the first allocation
request is 0. The response from the ResourceManager contains the number of
allocated containers. The ApplicationMaster creates ContainerLaunchContext
for each allocated container and requests the corresponding NodeManager
to start the container. It will wait for the execution of the containers. In this
example, the command executed to launch the containers is specified as the
first argument for the ApplicationMaster (the /bin/date command):
intallocatedContainers = 0;

 while (allocatedContainers<numOfContainers) {

AllocateResponse response = rmClient.allocate(0);

 for (Container container :
response.getAllocatedContainers()) {

 ++allocatedContainers;

 // Launch container by creating ContainerLaunchContext

 ContainerLaunchContext ctx =

Records.newRecord(ContainerLaunchContext.class);

ctx.setCommands(Collections.singletonList(shellCommand +

" 1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout"
+

" 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr"

));

nmClient.startContainer(container, ctx);

}

Thread.sleep(100);

}

6. On completion, unregister ApplicationMaster from ResourceManager:
The allocation response also contains the list of completed containers.
Once all the containers acquired in the response start executing on
the different NodeManagers, the ApplicationMaster waits for its
completion. The ContainerStatus class provides the current status of
the containers in execution. To unregister ApplicationMaster, call the
unregisterApplicationMaster() method on the AMRMClient reference.
With the unregister call, the ApplicationMaster sends the final status of
the application, application message, and final application tracking URL
as arguments:
intcompletedContainers = 0;

 while (completedContainers<numOfContainers) {

Writing Your Own YARN Applications

[140]

AllocateResponse response =
rmClient.allocate(completedContainers/numOfContainers);

 for (ContainerStatus status :
response.getCompletedContainersStatuses()) {

 ++completedContainers;

System.out.println("Completed container " +
completedContainers);

 }

Thread.sleep(100);

 }

rmClient.unregisterApplicationMaster(FinalApplicationStatus.SU
CCEEDED, "", "");

Define a YARN client
Add a new class Client.java with the main method to your project. For simplicity,
you can create it within the same project.

The code for the Client.java file is as follows:

package com.packt.firstyarnapp;

import java.io.File;

import java.util.Collections;

import java.util.HashMap;

import java.util.Map;

import org.apache.hadoop.fs.FileStatus;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.yarn.api.ApplicationConstants;

import org.apache.hadoop.yarn.api.ApplicationConstants.Environment;

import org.apache.hadoop.yarn.api.records.ApplicationId;

import org.apache.hadoop.yarn.api.records.ApplicationReport;

import
org.apache.hadoop.yarn.api.records.ApplicationSubmissionContex
t;

Chapter 7

[141]

import
org.apache.hadoop.yarn.api.records.ContainerLaunchContext;

import org.apache.hadoop.yarn.api.records.LocalResource;

import org.apache.hadoop.yarn.api.records.LocalResourceType;

import
org.apache.hadoop.yarn.api.records.LocalResourceVisibility;

import org.apache.hadoop.yarn.api.records.Resource;

import
org.apache.hadoop.yarn.api.records.YarnApplicationState;

import org.apache.hadoop.yarn.client.api.YarnClient;

import
org.apache.hadoop.yarn.client.api.YarnClientApplication;

import org.apache.hadoop.yarn.conf.YarnConfiguration;

import org.apache.hadoop.yarn.util.Apps;

import org.apache.hadoop.yarn.util.ConverterUtils;

import org.apache.hadoop.yarn.util.Records;

public class Client {

 public static void main(String[] args) throws Exception {

 try {

 Client clientObj = new Client();

 if (clientObj.run(args)) {

 System.out.println("Application completed
successfully");

 } else {

 System.out.println("Application Failed / Killed");

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public boolean run(String[] args) throws Exception {

 // Point #1

 final String command = args[0];

 final int n = Integer.valueOf(args[1]);

 final Path jarPath = new Path(args[2]);

Writing Your Own YARN Applications

[142]

 System.out.println("Initializing YARN configuration");

 YarnConfiguration conf = new YarnConfiguration();

 YarnClient yarnClient = YarnClient.createYarnClient();

 yarnClient.init(conf);

 yarnClient.start();

 // Point #2

 System.out.println("Requesting ResourceManager for a new
Application");

 YarnClientApplication app =
yarnClient.createApplication();

 // Point #3

 System.out.println("Initializing ContainerLaunchContext
for ApplicationMaster container");

 ContainerLaunchContext amContainer = Records

 .newRecord(ContainerLaunchContext.class);

 System.out.println("Adding LocalResource");

 LocalResource appMasterJar =
Records.newRecord(LocalResource.class);

 FileStatus jarStat = FileSystem.get(conf).getFileStatus(jarPath);

appMasterJar.setResource(ConverterUtils.getYarnUrlFromPath(jar
Path));

 appMasterJar.setSize(jarStat.getLen());

 appMasterJar.setTimestamp(jarStat.getModificationTime());

 appMasterJar.setType(LocalResourceType.FILE);

 appMasterJar.setVisibility(LocalResourceVisibility.PUBLIC);

 // Point #4

 System.out.println("Setting environment");

 Map<String, String> appMasterEnv = new HashMap<String,
String>();

 for (String c : conf.getStrings(

 YarnConfiguration.YARN_APPLICATION_CLASSPATH,

 YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH))
{

Chapter 7

[143]

 Apps.addToEnvironment(appMasterEnv,
Environment.CLASSPATH.name(),

 c.trim());

 }

 Apps.addToEnvironment(appMasterEnv,
Environment.CLASSPATH.name(),

 Environment.PWD.$() + File.separator + "*");

 System.out.println("Setting resource capability");

 Resource capability = Records.newRecord(Resource.class);

 capability.setMemory(256);

 capability.setVirtualCores(1);

 System.out.println("Setting command to start
ApplicationMaster service");

 amContainer.setCommands(Collections.singletonList("/usr/lib/jv
m/jdk1.8.0/bin/java"

 + " -Xmx256M" + "
com.packt.firstyarnapp.ApplicationMaster"

 + " " + command + " " + String.valueOf(n) + " 1>"

 + ApplicationConstants.LOG_DIR_EXPANSION_VAR +
"/stdout"

 + " 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR

 + "/stderr"));

 amContainer.setLocalResources(Collections.singletonMap(

 "first-yarn-app.jar", appMasterJar));

 amContainer.setEnvironment(appMasterEnv);

 System.out.println("Initializing
ApplicationSubmissionContext");

 ApplicationSubmissionContext appContext = app

 .getApplicationSubmissionContext();

 appContext.setApplicationName("first-yarn-app");

 appContext.setApplicationType("YARN");

 appContext.setAMContainerSpec(amContainer);

 appContext.setResource(capability);

 appContext.setQueue("default");

Writing Your Own YARN Applications

[144]

 ApplicationId appId = appContext.getApplicationId();

 System.out.println("Submitting application " + appId);

 yarnClient.submitApplication(appContext);

 ApplicationReport appReport =
yarnClient.getApplicationReport(appId);

 YarnApplicationState appState =
appReport.getYarnApplicationState();

 while (appState != YarnApplicationState.FINISHED

 && appState != YarnApplicationState.KILLED

 && appState != YarnApplicationState.FAILED) {

 Thread.sleep(100);

 appReport = yarnClient.getApplicationReport(appId);

 appState = appReport.getYarnApplicationState();

 }

 if (appState == YarnApplicationState.FINISHED) {

 return true;

 } else {

 return false;

 }

 }

}

You need to add the code snippets given in the following steps to the run()method
of the Client.java class:

1. Read YARNConfiguration and initialize YARNClient: Similar to the
ApplicationMaster, the client also uses the YARNConfiguration class to
load the Hadoop-YARN configuration files and reads the specified input
arguments. The client initiates a YARNClient service on the client node.
In this example, the first two arguments are directly passed to the
ContainerLaunchContext of ApplicationMaster and the third argument
is the HDFS path for job resources (jar file with ApplicationMaster):

public Booleanrun(String[] args) throws Exception {

final String command = args[0];

 final int n = Integer.valueOf(args[1]);

 final Path jarPath = new Path(args[2]);

Chapter 7

[145]

YarnConfigurationconf = new YarnConfiguration();

YarnClientyarnClient=YarnClient.createYarnClient();

yarnClient.init(conf);

yarnClient.start();

}

2. Connect to ResourceManager and request for a new application ID:
The client connects to the ResourceManager service and requests a new
application. The response of the request (that is, YarnClientApplication
– GetNewApplicationResponse) contains a new application ID and the
minimum and maximum resource capability of the cluster.
YarnClientApplication app = yarnClient.createApplication();

3. Define ContainerLaunchContext for Application Master: The first container
for an application is the ApplicationMaster's container. The client defines
a ContainerLaunchContext, which contains information to start the
ApplicationMaster service.
The ContainerLaunchContext will contain the following information:

 ° Set up jar for ApplicationMaster: The NodeManager should be
able to locate the ApplicationMaster jar file. The jar file is placed
on HDFS and is accessed by NodeManager as a LocalResource as
given in the following code:
ContainerLaunchContextamContainer =
Records.newRecord(ContainerLaunchContext.class);

LocalResourceappMasterJar =
Records.newRecord(LocalResource.class);

FileStatusjarStat =
FileSystem.get(conf).getFileStatus(jarPath);

appMasterJar.setResource(ConverterUtils.
getYarnUrlFromPath(jar
Path));

appMasterJar.setSize(jarStat.getLen());

appMasterJar.setTimestamp(jarStat.getModificationTime());
appMasterJar.setType(LocalResourceType.FILE);

appMasterJar.setVisibility(LocalResourceVisibility.PUBLIC);

Writing Your Own YARN Applications

[146]

 ° Set up CLASSPATH for ApplicationMaster: It might be possible for
your shell command to run ApplicationMaster, which requires some
environment variables. A client can specify a list of environment
variables.
Map<String, String>appMasterEnv = new HashMap<String,
String>();

for (String c
:conf.getStrings(YarnConfiguration.YARN_APPLICATION_
CLASSPATH,
YarnConfiguration.DEFAULT_YARN_APPLICATION_CLASSPATH))

{

Apps.addToEnvironment(appMasterEnv,
Environment.CLASSPATH.name(),c.trim());

}

Apps.addToEnvironment(appMasterEnv,Environment.CLASSPATH.
name(
),Environment.PWD.$() + File.separator + "*");

 ° Set up resource requirement for ApplicationMaster: The resource
requirement is defined as the memory and CPU cores required by
the ApplicationMaster.
Resource capability = Records.newRecord(Resource.class);

capability.setMemory(256);

capability.setVirtualCores(1);

 ° The command to start the ApplicationMaster service: In this
example, the ApplicationMaster is a Java program, so the client
will define a Java jar command to start the ApplicationMaster.
amContainer.setCommands(Collections.singletonList("$JAVA_
HOME/
bin/java" +" –Xmx256M" +"
com.packt.firstyarnapp.ApplicationMaster" + " " + command +
"
" + String.valueOf(n) + " 1>" +
ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" + "
2>"
+ ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr"));

amContainer.setLocalResources(Collections.
singletonMap("first-
yarn-app.jar",appMasterJar));

amContainer.setEnvironment(appMasterEnv);

Chapter 7

[147]

4. Create ApplicationSubmissionContext: The client defines
ApplicationSubmissionContext for the application. The submission
context contains information such as application name, queue, priority, and
so on.
ApplicationSubmissionContextappContext =
app.getApplicationSubmissionContext();

appContext.setApplicationName("first-yarn-app");

appContext.setApplicationType("YARN");

appContext.setAMContainerSpec(amContainer);

appContext.setResource(capability);

appContext.setQueue("default");

5. Submit the application and wait for completion: The client submits
the application and waits for application completion. It requests the
ResourceManager for the application status.
ApplicationIdappId = appContext.getApplicationId();

System.out.println("Submitting application " + appId);

yarnClient.submitApplication(appContext);

ApplicationReportappReport =
yarnClient.getApplicationReport(appId);

YarnApplicationStateappState =
appReport.getYarnApplicationState();

while (appState != YarnApplicationState.FINISHED&&

appState != YarnApplicationState.KILLED&&

appState != YarnApplicationState.FAILED) {

Thread.sleep(100);

appReport = yarnClient.getApplicationReport(appId);

appState = appReport.getYarnApplicationState();

}

Step 3 – Export the project and copy
resources
You need to export the Java project as a jar file and copy the jar file on HDFS. If
you have created two different projects for Client.java and ApplicationMaster.
java, then you will need to export both the projects as jar files and copy only the
ApplicationMaster jar to HDFS. In this case, you need create only one jar file.

Writing Your Own YARN Applications

[148]

To copy the file to HDFS, you can use the Hadoop hdfs command using either the
put or copyFromLocal option. Assuming the name of the jar to be first-yarn-
app.jar, the hdfs command will look like this:

bin/hdfsdfs -put first-yarn-app.jar /user/hduser/first-yarn-app.jar

Step 4 – Run the application using bin or the
YARN command
The last step is to submit the application to YARN using the yarn command found
in Hadoop-bin folder ($HADOOP_PREFIX/bin).

As mentioned in the main method of the Client.java class, you need to pass
three arguments:

• The shell command
• The number of containers required
• The HDFS path for the jar file containing ApplicationMaster

The yarn command will look like this:

bin/yarn jar first-yarn-app.jar com.packt.firstyarnapp.Client
/bin/true1 hdfs://master:8020/user/hduser/first-yarn-app.jar

The output of the preceding application looks like this:

Initializing YARN configuration

15/07/05 23:52:51 INFO client.RMProxy: Connecting to ResourceManager
at master/192.168.56.101:8032

Requesting ResourceManager for a new Application

Initializing ContainerLaunchContext for ApplicationMaster container

Adding LocalResource

Setting environment

Setting resource capability

Setting command to start ApplicationMaster service

Initializing ApplicationSubmissionContext

Submitting application application_1436101688138_0009

15/07/05 23:52:53 INFO impl.YarnClientImpl: Submitted application
application_1436101688138_0009

Application completed successfully

Chapter 7

[149]

The output of the program will be displayed on the terminal. You can also refer
to the ResourceManager web UI to check the status of the submitted application.
As shown in the following screenshot:

Writing a complete YARN-compatible distributed application is a very
complex task and it does not allow developers to focus on the business
logic. A developer/admin also needs to monitor and manage the running
applications. To reduce the complexity and allow easy integration
with YARN, Apache Slider and Apache Twill are two projects that are
currently in incubator state. To read more about these frameworks, you
can refer to their official websites at http://slider.incubator.
apache.org/ and http://twill.incubator.apache.org/.

Summary
Writing your own Hadoop-YARN applications allows Hadoop users to apply
their own business logic (other than MapReduce programming) in a distributed
environment. This chapter covered the basics of the YARN APIs and walked you
through how to write a simple YARN application. To read more about the topic,
you can refer to the Hadoop documentation at http://hadoop.apache.org/docs/
r2.5.1/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html.

Writing Your Own YARN Applications

[150]

The Hadoop documentation covers a bird's eye view of the APIs used while writing
YARN applications. You can also refer to a sample Hortonworks project on GitHub
at https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-
project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-
distributedshell. You can build and execute it on a Hadoop-YARN cluster.

The next chapter covers YARN insights and the core services related to YARN
components. It'll help the Java developers and open source contributors to
understand the communication between YARN components and to dive
deeper into YARN's architecture.

[151]

Dive Deep into YARN
Components

YARN consists of various efficient and scalable components that make it a powerful,
robust, and preferable resource management framework. In order to have a better
understanding of YARN offerings and how to integrate YARN, users need to have
in-depth knowledge of various YARN components. This chapter explains the
internals of YARN components, the classes involved, and how YARN components
interact with each other. The component's insights provided in this chapter will
enable users to leverage the features of YARN and integrate YARN with distributed
application frameworks easily.

In this chapter, we will cover the following topics:

• Understanding ResourceManager
• Understanding NodeManager
• Working with auxiliary services, resource localization, log aggregation
• An overview of Timeline server, web application proxy, and YARN

scheduler load simulator

Understanding ResourceManager
ResourceManager is the core component of the YARN framework, which is
responsible for managing the resources of a multinode cluster. It facilitates the
resources allocation and bookkeeping for a distributed application running
across multiple nodes of a YARN cluster. It works with a per node daemon called
NodeManager and a per application service called ApplicationMaster. It manages
resources across the cluster and executes YARN applications.

Dive Deep into YARN Components

[152]

ResourceManager has several subcomponents that assist it in the efficient management
of a multinodes cluster with thousands of distributed, resource exhaustive and
time-bound applications running in parallel. This is shown in the following figure:

The client and admin interfaces
ResourceManager exposes methods to clients and cluster administrators
for RPC communications to the ResourceManager and for accepting
admin commands on priority. Here are the two classes that are used for
communication to ResourceManager:

1. ClientRMService
The ClientRMService class is the client interface to the ResourceManager.
All clients create RPC connections to the ResourceManager. This module
handles all the RPC interfaces to the ResourceManager. The implementation
of this service is defined in the org.apache.hadoop.yarn.server.
resourcemanager.ClientRMService package. Clients initialize this service
using the client configuration files such as yarn-site.xml.
Clients request ResourceManager for:

 ° Application requests: This interface exposes services such as
new application requests, submitting applications to the cluster,
killing an application, listing containers, fetching the application,
and application attempt reports, and so on to the clients.

 ° Cluster metrics: The clients can also request ResourceManager
to share the cluster metrics, node capabilities, scheduler details,
and so on using this service.

 ° Security: To connect to a secured cluster environment, clients
use delegation tokens and access the control lists provided by
ResourceManager.

Chapter 8

[153]

To read more about different methods defined in ClientRMService,
you can refer to the grepcode site at http://grepcode.com/file/
repo1.maven.org/maven2/org.apache.hadoop/hadoop-yarn-
server-resourcemanager/2.6.0/org/apache/hadoop/yarn/server/
resourcemanager/ClientRMService.java.

2. AdminService
The AdminService class is used by the cluster administrators to manage the
ResourceManager service. Cluster administrators use command-line options
for the rmadmin command that internally uses AdminService.
The following is the list of actions a cluster administrator can perform
through AdminService:

 ° Refresh the cluster nodes, access control lists and queues
 ° Check cluster health
 ° Manage the High Availability feature for ResourceManager.

The implementation of this service is defined in org.apache.hadoop.yarn.
server.resourcemanager.AdminService package.
You can refer to the rmadmin command in Chapter 3, Administering a
Hadoop-YARN Cluster.

The core interfaces
The ResourceManager core consists of the scheduler and applications manager. The
following classes define how ResourceManager performs scheduling and manages
application and state information.

1. YarnScheduler
The YarnScheduler class is responsible for resource allocation and cleanup
among various applications, that is, the scheduling of applications based
on some predefined specifications across multiple nodes in a cluster.
YarnScheduler is based on a pluggable policy plug-in. This plug-in is
responsible for partitioning of cluster resources (CPU, memory, disk, and
so on) among multiple applications, queues, and so on. It maintains a queue
for scheduled applications and also has metrics of cluster resources having
information such as number of nodes in the cluster, minimum and maximum
resource capability, and so on. YarnScheduler is defined in the org.apache.
hadoop.yarn.server.resourcemanager.scheduler.YarnScheduler
interface and the two main implementations of YarnScheduler available
with MapReduce YARN are:

 ° Fair scheduler

Dive Deep into YARN Components

[154]

 ° Capacity scheduler

A detailed explanation of schedulers and scheduler configuration is covered
in Chapter 10, Scheduling YARN Applications.

2. RMAppManager
RMAppManager is responsible for managing the list of applications for the
ResourceManager executed over the YARN cluster. It runs as a service within
ResourceManager. It creates and logs ApplicationSummary, that is, runtime
information related to a particular application. The YARN client connects to
this service for any application related request.
The implementation of this service is defined in org.apache.hadoop.yarn.
server.resourcemanager.RMAppManager.

3. RMStateStore
To handle recovery of the ResourceManager service during failures,
RMStateStore is an abstract implementation to store the state information
of the ResourceManager service. It also stores information related to running
applications and their attempts.
Currently, YARN defines four mechanisms to store the ResourceManager state:

 ° FileSystemRMStateStore

 ° MemoryRMStateStore

 ° ZKRMStateStore

 ° NullRMStateStore

ZKRMStateStore is the most reliable and recommended mechanism to store
the RMState, but it requires a Zookeeper ensemble to store the information
as Znode. The state store mechanism in ResourceManager is also used while
configuring the ResourceManager High Availability feature. For more
information on the state store, you can refer to the state store configurations
specified in ResourceManager High Availability in Chapter 3, Administering a
Hadoop-YARN Cluster.

4. SchedulingMonitor
This interface provides monitoring of containers and a provision to edit
schedules at regular intervals. It also provides provision to tune the monitor
interval of resources and to define SchedulingEditPolicy. To read more
about SchedulingMonitor, you can refer to the org.apache.hadoop.yarn.
server.resourcemanager.monitor.SchedulingMonitor class.

Chapter 8

[155]

The NodeManager interfaces
The ResourceManager service communicates with the NodeManager service.
The NodeManager service sends regular updates to the ResourceManager service
containing the health and resource information of the node. Here are a few classes
of ResourceManager that manages the NodeManager nodes across the cluster:

1. NMLivelinessMonitor
NMLivelinessMonitor helps ResourceManager to keep track of all live
NodeManager nodes in the cluster and more importantly, the unusable
ones in the system. It receives heartbeats frequently from all NodeManager
nodes and considers a node to be dead if it does not receive any heartbeats
for 600,000 milliseconds or 10 minutes (default). This interval could be
configured through the RM_NM_EXPIRY_INTERVAL_MS property of YARN
configuration. When a node is marked as dead, all the containers running
on that node is also considered to be dead and no new container will be
scheduled on that node. The ResourceManager reallocates resources for
the containers running on that dead node.
To override the default value of the expiry interval, an administrator can
configure the following property in the yarn-site.xml file:
<property>
 <name>yarn.am.liveness-monitor.expiry-interval-ms</name>
 <value>600000</value>
</property>

The implementation of this service is defined in org.apache.hadoop.yarn.
server.resourcemanager.NMLivelinessMonitor.

2. ApplicationMasterLauncher
ApplicationMasterLauncher maintains a queue of application masters
for different applications submitted to the YARN cluster. It launches an
AM as a service, taking one application at a time from the queue. It also
maintains a thread-pool to launch AMs and cleaning up AMs when the
application is finished or terminated forcefully. The implementation of this
service is defined in org.apache.hadoop.yarn.server.resourcemanager.
amlauncher.ApplicationMasterLauncher.

The security and token managers
ResourceManager manages a set of tokens for authentication and authorization of
different RPC communication channels. ResourceManager manages the services
explained in the upcoming sections for security.

Dive Deep into YARN Components

[156]

1. RMAuthenticationHandler
RMAuthenticationHandler is responsible for authenticating a request based
on the delegation header and then returning a valid token for that request.
It extends the KerberosAuthenticationHandler class and is used when
Kerberos security is enabled.
Kerberos is an authentication protocol used to authenticate the identity of the
services running and communicating on different nodes over a nonsecure
network. An overview of Kerberos and YARN Kerberos configurations
is covered in Chapter 11, Enabling Security in YARN. To read more about
this service, you can refer to the org.apache.hadoop.yarn.server.
resourcemanager.security.RMAuthenticationHandler package.

2. QueueACLsManager
The YarnScheduler uses the QueueACLsManager class to check whether a
user has access to a particular queue. If the ACLs are not enabled, then it'll
allow all users to submit applications to all queues. A detailed explanation on
queues and queue ACLs is given in Chapter 10, Scheduling YARN Applications
and Chapter 11, Enabling Security in YARN.

3. TokenSecretManagers for RM
ResourceManager defines TokenSecretManagers to manage security across
multiple applications, containers, and nodes.
Few of the TokenSecretManagers are:

 ° AMRMTokenSecretManager

 ° ClientToAMTokenSecretManagerInRM

 ° NMTokenSecretManagerInRM

 ° RMContainerTokenSecretManager

 ° RMDelegationTokenSecretManager

Understanding NodeManager
The NodeManager node is the worker node for YARN and is responsible for updating
the resource availability on a node to ResourceManager. It is also responsible for
monitoring the health of a node and for executing containers for an application.

Chapter 8

[157]

The following diagram shows various subcomponents of the NodeManager daemon
followed by a detailed description of these subcomponents:

Status updates
The resource capability of a cluster is calculated as the sum of the capabilities of
all NodeManager nodes. To utilize cluster resources efficiently, it is important to
keep track of all resources across the cluster. NodeManager nodes send regular
status updates to the ResourceManager. This enables ResourceManager to schedule
execution of applications efficiently and increases the cluster performance. Few
of the classes defined in the NodeManager framework for sending updates are
mentioned in the upcoming sections.

1. NodeStatusUpdater
Every slave node with the NodeManager daemon registers itself with
ResourceManager. The NodeManager daemon specifies its resource
capability to the ResourceManager. It has a StatusUpdater service,
which updates the node's current status with respect to applications
and containers running on it.
It computes resource capability in terms of:

 ° Physical memory
 ° Virtual to physical memory ratio
 ° Number of cores
 ° Duration to track stopped containers

It exposes public interfaces to request and update the container's current
status. The implementation of this service is defined in org.apache.hadoop.
yarn.server.nodemanager.NodeStatusUpdaterImpl.

Dive Deep into YARN Components

[158]

2. NodeManagerMetrics
The NodeManager daemon manages a metrics of the resources available on
the Node. It stores the initial metrics for the node and updates the metrics
for different events of a container such as container launch, complete,
killed, and so on. The current resource metrics implementation takes
memory and CPU cores into account. The implementation of this service
is defined in org.apache.hadoop.yarn.server.nodemanager.metrics.
NodeManagerMetrics.

State and health management
It is important to periodically check the health of different nodes in the cluster
and take necessary action if any of the nodes are found to be unhealthy. The
NodeManager service provides utilities to manage the state and monitor the health
of a node at any point of time. As a part of failure/fault management and recovery,
even if an unhealthy node goes out of the network or becomes faulty, NodeManager
provides services to recover the state of resources on the node and again actively
participate in cluster operations.

1. NodeHealthCheckerService
This service provides status on the NodeManager node's current state of
health. It executes a user-defined script on the node to monitor the health
of the Node using the NodeHealthScriptRunner service.
The script execution ends with any one of the following results:

 ° SUCCESS

 ° TIMED_OUT

 ° FAILED_WITH_EXIT_CODE

 ° FAILED_WITH_EXCEPTION

 ° FAILED

Internally, this service would only check for output of the script to be started
with the ERROR pattern. If the service finds any match or timeout is hit during
script execution, it would mark the node as unhealthy and return the report
to the service asked for the report.

Chapter 8

[159]

2. NMStateStoreService

The NodeManager is responsible for storing the resources for containers
locally. The terminology used in YARN to provide resources to containers
is termed as resource localization. The NMStateStoreService service stores
the state of localized and in progress resources on NodeManager at any point
of time. It also provides a handle for the recovery of user's resources and
localization state.

Container management
NodeManager implements different services to meet the pre-requisites for running
a container and its monitoring. For example, a container may require extra resources
to be downloaded for its execution or any auxiliary service needed by the container.
The upcoming sections provide a detailed explanation of different services managed
by NodeManager for container management:

1. ContainerExecutor
This interface of NodeManager is responsible for fulfilling the prerequisites,
including resource localization, container's directory creation (user and
application specific directories and caches), and finally executing containers as
requested. It also facilitates killing a container, checking whether a container is
alive, and sending the signal to a container.

2. ResourceLocalizationService
NodeManager instantiates ResourceLocalizationService to ensure locality
of the resources required by the container to run the application's task.
ResourceLocalizationService downloads resources corresponding to an
application on NodeManager's local filesystem. Containers use these resources
for execution of the application. When the execution of the container finishes,
ResourceLocalizationService cleans up the resources from the disk.

3. ContainersLauncher
The ContainersLauncher service launches the containers on the node.
This service should only be started after ResourceLocalizationService
as the latter creates the system directories in the local file and download any
resources required by the container. This service launches the containers one
by one. It receives either of the following ContainersLauncherEvent:

 ° LAUNCH_CONTAINER: If the event type is launch_container,
the ContainersLauncher service launches the container using
ExecuterService

Dive Deep into YARN Components

[160]

 ° CLEANUP_CONTAINER: If the event type is cleanup_container, the
ContainersLauncher service sends the signal to kill the container
process and clean up the container's directories on the local filesystem

4. ContainersMonitor
ContainersMonitor is a service to monitor containers running on a slave
node. It maintains a list of containers the NodeManager needs to monitor.
It adds ContainerId and ProcessTreeInfo to the list when a new container
is started on the node and removes the finished containers from the list.

5. Auxiliary service
Auxiliary service is a framework to define per node customer services required
for running applications over YARN. Considering an example of a Hadoop
MapReduce job, the output of map phase is to be transferred to the reducer
node. The NodeManager daemon provides a handle to retrieve the metadata
for the MapReduce services in Hadoop. The metadata can be the connection
information between a mapper and a reducer to transfer map output files
during MapReduce job execution. Hadoop provides mapreduce_shuffle
as an auxiliary service for NodeManager as shown in the following figure.

6. LogHandler and log aggregation
LogHandler is a pluggable implementation for logging of application and
containers. Nonaggregated logs are generated on the local filesystem for
every application executed over YARN. Logs get deleted after the configured
retention period, which, by default, is three hours, and could be configured
by setting up the NM_LOG_RETAIN_SECONDS property.

Chapter 8

[161]

YARN provides an option to consolidate the container logs generated for
an application on different NodeManager nodes to a centralized location.
LogAggregationService implemented as part of NodeManager's ContainerManager
component run aggregators for each application running on YARN to push the logs
from NodeManager nodes to HDFS.

The security and token managers
NodeManager manages the following security services:

• NMTokenSecretManagerInNM: This manages the keys for authentication and
the authorization of NodeManager nodes and applications that are going to
run on a NodeManager node.

• NMContainerTokenSecretManager: This manages and authenticates
containers running on the NodeManager node. It checks for a key from the
container with a key for the same container from ResourceManager; after
successful authentication, it allows the container to run on the node.

The YARN Timeline server
It keeps the information for current and historic applications executed on the YARN
cluster. It performs the following two important tasks:

• Generic information about the completed applications. It provides the
following information for an application:

 ° Queue name
 ° User information
 ° Application attempts
 ° Containers that ran for every application attempt
 ° Containers

• Per framework information of running and completed applications:
 ° Application or framework-specific information, such as the number

of map reduce tasks for a MapReduce application.
 ° The user published information from client or application master.

To configure and start the YARN Timeline server, you can refer to Chapter 3,
Administering a Hadoop-YARN Cluster.

Dive Deep into YARN Components

[162]

The web application proxy server
Web application proxy server is introduced in YARN to reduce the possibility of
web-based attacks through YARN. By default, it is run as part of ResourceManager
but could be configured by the administrator by setting up the following property
in yarn-site.xml.

In YARN, Application Master is responsible for providing a web UI and provides
link information to ResourceManager. This causes services communication
vulnerable to certain common attacks. The web application proxy mitigates the risk
by warning users who do not own the given application that they are connecting
to an untrusted site.

YARN Scheduler Load Simulator (SLS)
SLS is a tool that simulates load corresponds to a large scale YARN cluster in a
single machine. It helps researchers and developers to prototype new scheduler
features and predicts the performance and behavior over the large cluster. The size
of the cluster and application load could be configured from configuration files.
The simulator will produce real-time metrics for:

• Resource usage for the whole cluster and each queue
• Detailed application execution trace for analyzing scheduler behavior in

terms of throughput, fairness, a job's turnaround time
• Key metrics of the scheduler algorithm, such as time of each scheduler

operation

Handling resource localization in YARN
Resource is anything that is required by the container to execute the assigned
task. Since the containers are running and managed by NodeManager on different
nodes, it is the responsibility of NodeManager to make the required resources
available on every node. YARN facilitates this feature of NodeManager by providing
ResourceLocalizationService. This service is responsible for downloading the
application resource locally to the NodeManager node's filesystem and to make it
available to containers running for that application.

Chapter 8

[163]

Resource localization terminologies
In this section, we'll discuss a few terminologies related to resource localization
in YARN. In order to configure and use resource localization, it is important to
understand the following concepts:

• LocalResource: It is defined as a resource required by the container for the
execution of the application. NodeManager is responsible for making the
resources available to the local filesystem before launching the container. A
LocalResource has the following properties:

 ° URL: The location where the resource is available and could be
downloaded from.

 ° LocalResourceType: It defines the type of resource to be
downloaded by NodeManager. It is one of of the following:|
ARCHIVE: NodeManager automatically decompresses archive resources.
FILE

PATTERN: This includes partially archived files containing a mix of
archived and normal files.

 ° Size: This is the size of the resource to be localized.
 ° Timestamp: This is the original timestamp of the resource to be

localized. It is used for verification.
 ° LocalResourceVisibility: This specifies the visibility of the

resource downloaded to the local filesystem of the NodeManager
node. It is defined under:
PUBLIC: This is shared by all the users on the node.
PRIVATE: This is shared by all the applications of a user.
APPLICATION: This is shared by all the containers running for a
particular application.

• ResourceState: This represents the state of resource at any point of time.
The valid states are:

 ° INIT

 ° DOWNLOADING

 ° LOCALIZED

 ° FAILED

Dive Deep into YARN Components

[164]

• LocalizerTracker: This is a subcomponent of
ResourceLocalizationService. It handles ContainerLocalizer
spawning. It spawns and tracks private and public localizers.

• PublicLocalizer: This starts as a separate thread and downloads the
public resource to NodeManager's node local filesystem. It also ensures safe
downloading if multiple containers are requesting for the same resource at the
same time by checking the state of resource against downloading the state.

• LocalizerRunner: This starts up as a separate process and runs
ContainerLocalizer with access to the user's credential.

The resource localization directory structure
For resource localization, YARN creates and uses the user logs directory under
Hadoop's default log directory. Users can specify a directory to be used by YARN
to download and store resources, as shown in the following figure:

ResourceLocalizationService uses either the default or user defined local directory
and create subdirectories for cache and resource. Depending on the resource visibility,
the directories are categorized as explained in the upcoming sections:

1. Public
Resources with public visibility are shared across all users. All the resources
are placed under a single directory in the local directory of NodeManager, that
is, <yarn.nodemanager.local-dirs>/filecache as shown in the following:

Chapter 8

[165]

2. Private
A resource with private visibility is shared across all the user's application.
All resources are stored under the user specific cache directory, that is,
<yarn.nodemanager.local-dirs>/usercache/<username>/filecache
as shown in the following:

3. Application
A resource with application visibility is shared across all containers of an
application and is stored under an application-specific cache directory,
that is, <yarn.nodemanager.local-dirs>/usercache/<username>/
appcache/<appId>/ as shown in the following:

Summary
As YARN is a powerful resource management framework, it is important to know
what makes it robust and efficient. An easy-to-understand and in-depth explanation
of different YARN components helps users to get a clear picture of component's roles
and responsibilities. This chapter also covered how YARN components communicate
with each other and gave an overview of the features, including resource localization,
log aggregation and auxiliary services. This chapter helps users to understand the core
functionality of YARN and how it can used efficiently in various use cases.

In the next chapter, we'll explore the REST APIs exposed by different YARN services
and how we can use the APIs as monitoring information.

[167]

Exploring YARN
REST Services

Web services based on the Representational State Transfer (REST) architectural
style are called RESTful Application Programming Interfaces (APIs) or REST APIs.
RESTful services use HTTP protocol as a primary protocol for communication. To
read more about REST services, refer to the wiki page at http://en.wikipedia.
org/wiki/Representational_state_transfer.

YARN defines a set of identifiers or URIs that expose information related to clusters,
nodes, applications, and so on, through REST APIs. This chapter covers the list of
REST APIs defined for different YARN daemons and the different ways to access
REST services.

In this chapter, we will cover the following topics:

• Introduction to YARN REST services
• ResourceManager REST APIs
• NodeManager REST APIs
• MapReduce ApplicationMaster REST APIs
• MapReduce HistoryServer REST APIs
• How to access REST services data

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Exploring YARN REST Services

[168]

Introduction to YARN REST services
All YARN daemons expose a set of URIs as REST APIs to fetch cluster information.
The format for a URI representing a REST API is as follows:

http://{http address of service}/ws/{version}/{resourcepath}

It consists of the following three placeholders:

• http address of service: This is a set of the host name (or IP address)
and HTTP port for a YARN service or a DNS mapping to host and port,
if hosted publically. For example, the HTTP address of a REST API for
ResourceManager with host name master and HTTP port 8088 will be
master:8088.

• version: This is the latest version number for the APIs defined by YARN
services. The current version of YARN services is v1.

• resourcepath: This path is uniquely resolved to a resource at the server.
For example, the value of a resource path defined to fetch cluster metrics
is cluster/metrics.

Hence, a sample URI for the ResourceManager service to fetch cluster metrics will be:

http://master:8088/ws/v1/cluster/metrics.

HTTP request and response
Each URI is associated with HTTP request and response objects. For HTTP
requests, currently only the GET method is supported. However, newer versions
of Hadoop-YARN support more HTTP methods, such as PUT, POST, and DELETE.

A request object can have custom headers for accept and accept-encoding headers,
and so on. Currently, accept-encoding headers support the gzip format and return
the compressed output in the same format.

Successful response
YARN services support responses in either JSON or XML format. A successful
response will contain the data based on the REST call. The sample successful
response object will look like the following:

{
 "clusterMetrics": {
 "containersPending": 0,
 "allocatedVirtualCores": 0,

Chapter 9

[169]

 "lostNodes": 0,
 "totalNodes": 1,
 "activeNodes": 1,
 "containersReserved": 0,
 "appsRunning": 0,
 "availableVirtualCores": 8,
 "appsFailed": 0,
 "availableMB": 8192,
 "allocatedMB": 0,
 "appsSubmitted": 1,
 "appsPending": 0,
 "unhealthyNodes": 0,
 "decommissionedNodes": 0,
 "appsKilled": 0,
 "totalMB": 8192,
 "reservedMB": 0,
 "rebootedNodes": 0,
 "appsCompleted": 1,
 "reservedVirtualCores": 0,
 "totalVirtualCores": 8,
 "containersAllocated": 0
 }
}

Response with an error
In the event of an exception or invalid request, the response object will contain
the exception type, the name of the Java class involved, and the exception message.
The following is the sample error response object:

{
 "RemoteException" : {
 "javaClassName" :
"org.apache.hadoop.yarn.webapp.NotFoundException",
 "exception" : "NotFoundException",
 "message" : "java.lang.Exception: app with id: <app_id> not
found"
 }
}

Exploring YARN REST Services

[170]

ResourceManager REST APIs
YARN ResourceManager APIs allow the user or administrator to obtain
cluster metrics, lists of NodeManager nodes, scheduler information, associated
applications, and so on. As mentioned in the previous chapters, the default port
for the ResourceManager web application is 8088. An administrator can configure
the web application address using the yarn.resourcemanager.webapp.address
property in the yarn-site.xml file:

<property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>master:8088</value>
</property>

The ResourceManager REST APIs can be grouped as:

• Cluster summary
• Scheduler details
• Nodes
• Applications

The cluster summary
There are two URIs to fetch cluster meta-information such as the deployed version,
available memory, cluster capabilities, nodes available, and so on:

• Cluster metadata: This API provides overall information about the cluster,
including the state and version of ResourceManager and Hadoop:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/info
 ° Example: http://master:8088/ws/v1/cluster/info

• Cluster metrics: This API provides the overall cluster metrics. It provides
total applications submitted to the cluster and the current state of containers,
cores, and nodes in the cluster:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/metrics
 ° Example: http://master:8088/ws/v1/cluster/metrics

http://master:8088/ws/v1/cluster/info
http://master:8088/ws/v1/cluster/info
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics

Chapter 9

[171]

Scheduler details
The scheduler API provides detailed information about the scheduler and the queues
configured for the cluster. The response object also provides information on active
and pending applications in the cluster and the queues to which the application
belongs. The scheduler information in the response object is based on the type of
scheduler configured (capacity or fair):

• URI: http://<RM Http Address:Port>/ws/v1/cluster/scheduler
• Example: http://master:8088/ws/v1/cluster/scheduler

Nodes
The node APIs provide the details of all nodes (or a specific node) in the cluster.
They provide rack information, state, health, cores, and memory information,
and so on, for each node:

• Nodes list: A list of nodes part of YARN cluster:
 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/nodes
 ° Example: http://master:8088/ws/v1/cluster/nodes

• Single node information: Node information for a single node passed as a
part of the URI:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/nodes/
{nodeid}

 ° Example: http://master:8088/ws/v1/cluster/nodes/
node1:57168

Applications
Application APIs provide information related to a collection of application objects or
a specific application. The application details contain information such as application
name, user, state, application type, and so on. You can also use application APIs to
fetch information related to application attempts.

• Applications list: This API provides the list of all applications associated
with the cluster. It also supports a few query parameters to filter the required
application list:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/apps
 ° Example: http://master:8088/ws/v1/cluster/apps

http://master:8088/ws/v1/cluster/scheduler
http://master:8088/ws/v1/cluster/scheduler
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/apps
http://master:8088/ws/v1/cluster/apps

Exploring YARN REST Services

[172]

Following is the supported query parameter list:

Query parameter Description

states Applications with the specified state or set of states provided
as a comma-separated list, for example RUNNING, FINISHED

finalStatus Final status of the application matched with specified value

user Applications submitted by the specified user

queue Queue information of all applications

limit Limits the total application information returned

startedTimeBegin Applications having specified start time of execution (in
milliseconds)

startedTimeEnd Applications with start time ending at a specified time (in
milliseconds)

finishedTimeBegin Applications having specified finish time of execution (in
milliseconds)

finishedTimeEnd Applications with end time equivalent to specified time (in
milliseconds)

applicationTypes Applications with specified application type or a comma-
separated list of types

applicationTags Applications with specified application tag or a comma-
separated list of tags

• Applications statistics: The statistics API provides the count of different
applications executed over the cluster. This API returns a triplet of
application type, application state, and number of applications of this
type. It supports a few query parameters to filter the statistics based on
application state or application type. Currently, one application type at
most is supported as a query parameter:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/
appstatistics

 ° Example: http://master:8088/ws/v1/cluster/appstatisatics

http://master:8088/ws/v1/cluster/appstatisatics

Chapter 9

[173]

Following is the supported query parameter list:

Query parameter Description
States Comma-separated list of application states

applicationTypes Comma-separated list of application types

• Single application information: This API provides information about
a particular application executed on the cluster. The response includes
tracking URL, running containers, status, queue, and other important
information about the application:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/apps/
{appid}

 ° Example: http://master:8088/ws/v1/cluster/apps/
application_142018169_0001

• Application attempts: This API provides an object for all the attempts made
to execute an application. It includes the container and NodeManager host
address of each attempt:

 ° URI: http://<RM Http Address:Port>/ws/v1/cluster/apps/
{appid}/appattempts

 ° Example: http://master:8088/ws/v1/cluster/apps/
application_1428169_0001/appattempts

To read more about ResourceManager REST APIs, refer to the Hadoop-YARN
documentation at http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/
hadoop-yarn-site/ResourceManagerRest.html.

NodeManager REST APIs
YARN NodeManager APIs allow the user or administrator to obtain the node
resource metrics, health status of the node, list of applications and containers
associated with that node, and so on. The default port for NodeManager's web
application is 8042. An administrator can configure the web application address
using the yarn.nodemanager.webapp.address property in the yarn-site.xml file.

NodeManager REST APIs can be grouped as:

• Node summary
• Applications
• Containers

http://master:8088/ws/v1/cluster/apps
http://master:8088/ws/v1/cluster/apps

Exploring YARN REST Services

[174]

The node summary
This API provides metadata about the node, which includes the version of the
NodeManager service, host name, node status, resource utilization, and more:

• Node metadata: The summary for the node:
 ° URI: http://<NM Http Address:Port>/ws/v1/node/info
 ° Example: http://node1:8042/ws/v1/node/info

Applications
Similar to the ResourceManager API, the application APIs for NodeManager provide
information related to a collection of application objects or a specific application that
is associated with the NodeManager.

The metadata of application includes application ID, user name, application state
and list of application containers.

• Applications list: A list of applications that are associated with a
particular node:

 ° URI: http://<NM Http Address:Port>/ws/v1/node/apps
 ° Example: http://node1:8042/ws/v1/node/apps

Following is the supported query parameter list:

Query parameter Description
state Comma-separated list of application states

user Comma-separated list of user names

• Single application information: Information of a single application with
application ID passed as part of the URI:

 ° URI: http://<NM Http Address:Port>/ws/v1/node/apps/{appid}
 ° Example: http://node:8042/ws/v1/node/apps/

application_142018169_0001

Containers
Similar to the application API, the NodeManager service exposes the container
API. You can either view all the containers associated to a node or fetch details
of a particular container:

http://node1:8042/ws/v1/node/info
http://node1:8042/ws/v1/node/info
http://node1:8042/ws/v1/node/apps
http://node1:8042/ws/v1/node/apps
http://node:8042/ws/v1/node/apps

Chapter 9

[175]

• Containers list: A list of containers running on a node:
 ° URI: http://<NM Http Address:Port>/ws/v1/node/containers
 ° Example: http://node1:8042/ws/v1/node/containers

• Single container information: Information of a container specified as a part
of URI:

 ° URI: http://<NM Http Address:Port>/ws/v1/node/containers/
{containerId}

 ° Example: http://node1:8042/ws/v1/node/containers/
container_201434_123

To read more about NodeManager REST APIs, refer to the Hadoop-YARN
documentation at http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/
hadoop-yarn-site/NodeManagerRest.html.

MapReduce ApplicationMaster REST APIs
MapReduce ApplicationMaster REST APIs provide information about the running
ApplicationMaster service. As mentioned in the earlier chapters, MapReduce
ApplicationMaster is an application-specific service that manages execution of
MapReduce job over a Hadoop-YARN cluster.

The URI format of MapReduce ApplicationMaster REST services is:

http://<proxy http address:port>/proxy/{appid}/ws/v1/mapreduce

MapReduce ApplicationMaster REST APIs are accessed using a
proxy server, that is, Web Application Proxy server. Proxy server
is an optional service in YARN. An administrator can configure the
service to run on a particular host or on the ResourceManager itself
(stand-alone mode). If the proxy server is not configured, then it
runs as a part of the ResourceManager service.
By default, REST calls could be made to the web address port of
ResourceManager 8088. It could also be explicitly set using the
yarn.web-proxy.address property in the yarn-site.xml file.
To read more about the Web Application proxy server, refer
to the Hadoop documentation at http://hadoop.apache.
org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/
WebApplicationProxy.html

http://node1:8042/ws/v1/node/containers
http://node1:8042/ws/v1/node/containers
http://node1:8042/ws/v1/node/containers
http://node1:8042/ws/v1/node/containers
http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/WebApplicationProxy.html
http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/WebApplicationProxy.html
http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/hadoop-yarn-site/WebApplicationProxy.html

Exploring YARN REST Services

[176]

MapReduce ApplicationMaster REST APIs can be grouped as:

• ApplicationMaster summary
• Jobs
• Tasks

ApplicationMaster summary
This API provides information about ApplicationMaster, including application ID,
application name, start time, and time elapsed:

• ApplicationMaster metadata: The information for ApplicationMaster service:
 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/

v1/mapreduce/info

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/info

Jobs
Job APIs provide information related to the MapReduce jobs associated with
ApplicationMaster. As per the current implementation, ApplicationMaster is
associated with a single MapReduce job. The APIs are used to access job attempts,
counters, and tasks, as explained in the following:

• Jobs list: List of jobs associated with the application:
 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/

v1/mapreduce/jobs

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs

• Single job information: Information of a single job specified as part of the URI:
 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/

v1/mapreduce/jobs/{jobid}

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job__2014554343_0001

Chapter 9

[177]

• Job attempts: This API provides a collection of job attempts corresponding to
a job. It provides the attempt ID, node ID, HTTP address of the node, link to
log files, container ID, and start time of each attempt:

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/jobattempts

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job__2014554343_0001/jobattempts

• Job counters: This API provides all counters for a job executed over the
YARN cluster. Each counter contains the name, map counter value, reduce
counter value, and total counter value. It provides counters for following set
of groups:
Shuffle errors

FileSystemCounter

TaskCounter

FileInputFormatCounter

FileOutputFormatCounter

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/counters

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job__2014554343_0001/counters

• Job configuration: This API provides configurations for the specified job.
It provides the path of the job configuration file job.xml and the name,
value, and source of all configurations defined for the job. The source
specifies the mode by which the property is defined. The valid values are:
hdfs-site.xml

job.xml

programmatically

mapred-site.xml

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/conf

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job__2014554343_0001/conf

Exploring YARN REST Services

[178]

Tasks
Similar to the NodeManager jobs API, task APIs provide information related to each
MapReduce task associated with a MapReduce job. The APIs are used to fetch the
task list, summary, attempts, and attempt counters:

• Tasks list: Each task object contains the task ID, current progress, current
state, elapsed time, start time, task type, and so on:

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/tasks

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job_2014554343_0001/tasks

Following is the supported query parameter list:

Query parameter Description
type Valid values are m or z:

m for map task and z for reduce task

• Single task information: Information of a single task specified as part of
the URI:

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/tasks/{taskid}

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job_2014554343_0001/tasks/task_0001

• Task counters: This API provides the counters of a job's task corresponding
to an application. The counter groups are same as that of a job:

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/tasks/{taskid}/counters

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job_2014554343_0001/tasks/task_0001/counters

• Task attempts: This API provides a collection of attempts corresponding to a
task. It provides attempt ID, state, rack, node http address, attempt type, start
time, assigned container ID etc. for each attempt:

 ° URI: http://<proxy http address:port>/proxy/{appid}/ws/
v1/mapreduce/jobs/{jobid}/tasks/{taskid}/attempts

Chapter 9

[179]

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job_2014554343_0001/tasks/task_0001/attempts

• Single task attempt information: Information of a single task attempt
specified as part of the URI:

 ° URI: http://<proxy http address:port>/proxy/{appid}/
ws/v1/mapreduce/jobs/{jobid}/tasks/{taskid}/attempts/
{attempt id}

 ° Example: http://master:8088/proxy/
application_2014554343_0001/ws/v1/mapreduce/jobs/
job_2014554343_0001/tasks/task_0001/attempts/
attempt_0001

• Task attempt counters: This API provides the counters of the specified attempt:
 ° URI: http://<proxy http address:port>/proxy/{appid}/

ws/v1/mapreduce/jobs/{jobid}/tasks/{taskid}/attempts/
{attempt id}/counters

 ° Example: http://master:8088/proxy/
application_20145543_0001/ws/v1/mapreduce/jobs/
job_20145543_0001/tasks/task_0001/attempts/attempt_0001/
counters

To read more about NodeManager REST APIs, refer to the Hadoop-YARN
documentation at http://hadoop.apache.org/docs/r2.5.1/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapredAppMasterRest.html.

MapReduce HistoryServer REST APIs
HistorySever maintains information of MapReduce applications executed over the
cluster. The Rest API provides counters, attempts, and configuration information
about the jobs and tasks. MapReduce HistoryServer starts at web address port 19888
by default. This could be configured by setting up the mapreduce.jobhistory.
webapp.address property in the mapred-site.xml file.

MapReduce HistoryServer REST APIs provide information about the finished
applications executed over the cluster. These APIs have similar URI structures
and information types as the MapReduce ApplicationMaster API. The MapReduce
ApplicationMaster API is used when the application is in RUNNING state. However,
once the application is finished, the application data is accessed through the
MapReduce HistoryServer API.

http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001
http://master:8088/proxy/application_2014554343_0001/ws/v1/mapreduce/jobs/job_2014554343_0001/tasks/task_0001/attempts/attempt_0001

Exploring YARN REST Services

[180]

The URI format for MapReduce HistoryServer REST services is:

http://<history server http address:port>/ws/v1/history

MapReduce Job HistoryServer REST APIs are accessed using a job
HistoryServer daemon configured with the MapReduce framework
in Hadoop. A cluster administrator needs to configure the service
using the mapreduce.jobhistory.webapp.address property
in the mapred-site.xml file.
The default HTTP port for HistoryServer is 19888 and it uses port
10020 as the RPC port for internal communication.

To read more about NodeManager REST APIs, refer to the Hadoop-YARN
documentation at http://hadoop.apache.org/docs/r2.5.1/hadoop-mapreduce-
client/hadoop-mapreduce-client-hs/HistoryServerRest.html.

How to access REST services
The preceding sections in the chapter cover the list of URIs exposed by YARN. In this
section, you will learn about three different ways to fetch data from these services:

• REST client plugins
• Curl command
• Java API

RESTClient plugins
You can use plugins available for different web browsers to fetch data from YARN
REST services. The RESTClient plugin can be used in Firefox. To install or read more
about the plugin, refer to https://addons.mozilla.org/en-us/firefox/addon/
restclient/:

Chapter 9

[181]

Following are the steps to use RESTClient in Firefox:

1. After successful installation, open the RESTClient page in your Firefox
browser. The page contains a menu section and a request section:

2. From the menu section, add a Custom Header to the request:

Exploring YARN REST Services

[182]

3. Enter Accept and application/json in the Name and Value fields of the
header, respectively. If you need the response as XML data, then specify the
value of the Accept header as application/xml:

4. Specify request URI: In the request section, choose the request method
and specify the URI for the REST service. In this example, specify the
ResourceManager's cluster metrics URI and select the request method as
GET. A sample URI for cluster metrics is http://master:8088/ws/v1/
cluster/metrics:

http://master:8088/ws/v1/cluster/metrics

Chapter 9

[183]

To send your request to the ResourceManager service, click on the Send button:

• View response: A response section containing the response headers and
body is automatically added to the page. The body contains the information
in the JSON / XML format based on the request header specified.

• JSON response:

Exploring YARN REST Services

[184]

• XML response:

Chapter 9

[185]

Curl command
Curl is a command-line tool used to transfer data with the URL. It uses the libcurl
library, a client-side URL library that supports file transfer with multiple protocols,
such as FTP, FTPS, HTTP, HTTPS, SFTP, and Telnet. To install and read more about
the curl command, refer to the official website at http://curl.haxx.se/:

• Calling REST API using curl: You can use the curl command on the Linux
as well as Windows system. Following are the basic command options for
the curl command and information on how you can fetch data from REST
services on Linux systems:

• Syntax: curl [options] [URL...]
• Command options:

-h prints the usage options for curl command
-i shows http response headers
-H allows you to set http request headers
-d allows you to set the request body
-v enable interactive

• Sample curl command:
curl -v -H "Accept: application/json" -X GET
http://master:8088/ws/v1/cluster/metrics

curl -v -H "Accept: application/xml" -X GET
http://master:8088/ws/v1/cluster/metrics

Java API
A Java developer can fetch REST data using the classes defined in the java.net
package. Here is a small example that connects to the YARN REST service and
retrieves the required JSON/XML data. In this section, we'll walk through an
example to write a Java API, create an executable jar, and execute to fetch the
data in JSON format.

http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics
http://master:8088/ws/v1/cluster/metrics

Exploring YARN REST Services

[186]

Follow these steps to create and execute a runnable jar:

1. Create a new Java project in Eclipse and name it YarnRestClient:

2. Download json-simple-1.1.jar from http://code.google.com/p/json-
simple/ and add it to the build path of the project.

http://code.google.com/p/json-simple/

Chapter 9

[187]

Exploring YARN REST Services

[188]

3. Select the src directory and create a new Java package with the name
hadoop.yarn.rest.client:

4. Select the package and create a new class with the name CallableRequest,
which implements the java.util.concurrent.Callable interface. Add the
following code to the class:
package hadoop.yarn.rest.client;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.Callable;

import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;

public class CallableRequest implements Callable<JSONObject> {

 String url;

 public CallableRequest(String url) {
 this.url = url;
 }

Chapter 9

[189]

 private String getRequest(String urlPath, String input) {
 HttpURLConnection conn = null;
 String output = "";
 OutputStream os = null;
 try {
 URL url = new URL(urlPath);
 conn = (HttpURLConnection) url.openConnection();
 conn.setDoOutput(true);
 conn.setRequestMethod("GET");
 conn.setRequestProperty("Accept", "application/json");
 conn.setRequestProperty("Content-type", "application/json");
 if (input != null && !input.isEmpty()) {
 os = conn.getOutputStream();
 os.write(input.getBytes());
 os.flush();
 }
 String buffer = "";
 BufferedReader br;

 br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

 while ((buffer = br.readLine()) != null) {
 output += buffer;
 }
 } catch (Exception e) {
 return null;
 } finally {
 if (conn != null) {
 conn.disconnect();
 }
 if (os != null) {
 try {
 os.close();
 } catch (Exception e) {
 // TODO: handle exception
 }
 }
 }
 return output;
 }

Exploring YARN REST Services

[190]

 @Override
 public JSONObject call() throws Exception {
 JSONObject json = null;

 String data = this.getRequest(url, null);

 if (data == null) {
 throw new Exception("Could not fetch data from " + url);
 } else {
 json = (JSONObject) new JSONParser().parse(data);
 }
 return json;
 }
}

Chapter 9

[191]

5. The class contains a getRequest() method and overrides the call() method
of the Callable class. The getRequest() method connects to the specified
URL and returns the json result as JSONObject data.

6. Select the package and create a new class with name SampleClient, which
contains the main method. Add the following code to the class:
package hadoop.yarn.rest.client;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.FutureTask;

import java.util.concurrent.TimeUnit;

import org.json.simple.JSONObject;

public class SampleClient {

 public static void main(String[] args) {

 try {

 long waitTime = 10000;

 CallableRequest callableRequest = new
CallableRequest(args[0]);

 FutureTask<JSONObject> getRequestTask = new
FutureTask<JSONObject>(

 callableRequest);

 ExecutorService executor = Executors.newFixedThreadPool(1);

 executor.execute(getRequestTask);

 JSONObject beanObject = getRequestTask.get(waitTime,

 TimeUnit.MILLISECONDS);

 if (beanObject == null) {

 System.out.println("Error: Unable to get JSON response.");

 } else {

 System.out.println("JSON Response:");

 System.out.println(beanObject.toJSONString());

 }

 } catch (Exception e) {

 System.out.println("Exception: " + e.getMessage());

 e.printStackTrace();

Exploring YARN REST Services

[192]

 }

 System.exit(0);

 }
}

7. The main method accepts a URL as the first argument. It connects to the
specified URL and prints the result on the console. The package structure
appears as in the following screenshot:

Chapter 9

[193]

8. In the Run Configurations section of the project, add a ResourceManager
REST API URL (such as http://master:8088/ws/v1/cluster/metrics) as
an argument. Ensure that the ResourceManager service is up and running:

9. Click on Run to run the project as a Java application and the output of the
program will look like the following:
JSON Response:

{"clusterMetrics":{"containersPending":0,"allocatedVirtualC
ores":0,"lostNodes":0,"totalNodes":1,"activeNodes":1,"conta
inersReserved":0,"appsRunning":0,"availableVirtualCores":8,
"appsFailed":0,"availableMB":8192,"allocatedMB":0,"appsSubm
itted":1,"appsPending":0,"unhealthyNodes":0,"decommissioned
Nodes":0,"appsKilled":0,"totalMB":8192,"reservedMB":0,"rebo
otedNodes":0,"appsCompleted":1,"reservedVirtualCores":0,"to
talVirtualCores":8,"containersAllocated":0}}

10. You can copy the JSON output and view it using an online JSON editor like
http://jsoneditoronline.org/.

http://centos-server-node2:8088/ws/v1/cluster/metrics
http://centos-server-node2:8088/ws/v1/cluster/metrics

Exploring YARN REST Services

[194]

11. Use the Runnable Jar File Export option to export the project and save the
jar with the name hadoop-yarn-rest-client.jar:

12. Open the terminal and execute the Java command using the jar created
in the previous step. The output of the command will contain the JSON
response of the REST API as follows:
java -jar hadoop-yarn-rest-client.jar
http://master:8088/ws/v1/cluster/metrics

Use the sample client application to fetch data from YARN REST services.

Summary
YARN services expose a set of URIs as REST APIs to fetch information related to
clusters, nodes, applications, jobs, and more. The response format for these REST
APIs is configurable as JSON or XML. These APIs provide useful information to
monitor cluster resources and application execution. In this chapter, we covered
the different REST APIs available in YARN and looked at how we can access them
through web browsers and tools such as Curl. This chapter also covered the REST
APIs defined for MapReduce ApplicationMaster and JobHistoryServer services. In
the next chapter, we'll discuss the different scheduling algorithms defined in YARN
and understand how these schedulers can easily be configured with your cluster.

[195]

Scheduling YARN
Applications

In YARN, scheduling means allocation of cluster resources to applications running
in the cluster. Scheduler is one of the core components of the ResourceManager
service and is responsible for allocation of resources based on the container resource
requirements. Random Access Memory (RAM) and the processor are the two critical
resources required for execution of every container. With an increasing number of
concurrent containers, fulfilling the resource requirements for each container and
resource management for clusters becomes critical for the successful execution of
applications.

In this chapter, you will learn about the scheduling mechanisms in YARN and
how schedulers can be configured. You will also learn about queues and different
scheduling algorithms available in YARN.

We will cover the following topics:

• Introduction to scheduling in YARN
• Introduction to queues and queue types
• Capacity scheduler
• Fair scheduler

Scheduling YARN Applications

[196]

An introduction to scheduling in YARN
YARN schedulers are the efficient algorithms written to manage cluster resources.
YARN's ResourceManager service has a pluggable and pure scheduler component,
that is, it does not monitor or track the applications running in the cluster. It is
responsible only for allocation of resources to running applications.

You might be wondering, what is resource allocation and why it is important?
Well, let's consider a simple scenario. Suppose an organization has a 100 nodes
Hadoop-YARN cluster and there are N teams (for example, A, B, ….. N) using the
same cluster. Each team has around 10-15 members and each team member can
submit YARN applications on the cluster. In order to provide a shared multitenant
and efficient cluster utilization, cluster resource allocation plays an important role for
a cluster administrator. The cluster resources are divided among the different teams
or team members based on a pluggable policy. While defining sharing parameters,
the scheduler should be flexible enough to support the following scenarios:

• Suppose Team A works on client requirements and all the jobs require 40
percent of the cluster resources. The cluster administrator needs to ensure
that the resource requirements for Team A are fulfilled as they work for
the client.

• A team has multiple subteams and the resources need to be shared among
those subteams as well. That is, if a total of 20 percent of cluster resources
are allocated to Team N, then this 20 percent share is to be distributed
among the different subteams as well.

Chapter 10

[197]

The Hadoop-YARN has two predefined schedulers as follows:

• Capacity scheduler: This is a division of resources as a percentage of total
cluster resources

• Fair scheduler: This is a division of resources based on memory and
processor requirements

To configure and use schedulers, an administrator needs to first define queues.
Before covering these schedulers in detail, we'll learn about the queues concept
and the different type of queues defined in YARN.

An overview of queues
Queues are the data structures or placeholders for the applications submitted to
the YARN cluster. A queue is a logical grouping of applications submitted to the
YARN cluster. An application is always submitted to a queue. The scheduler then
dequeues the applications based on certain parameters to allocate resources and to
initiate application execution.

The basic structure of a queue is defined using an interface org.apache.hadoop.yarn.
server.resourcemanager.scheduler.Queue, as shown in the following diagram:

Scheduling YARN Applications

[198]

A queue object contains the following information:

• Queue name: This is a name assigned to the queue. In case of hierarchical
queues, the complete path to the queue is the name along with the parent
queue name. We'll discuss about the hierarchical queues in detail later.

• Queue information: YARN defines an abstract class QueueInfo to store
information related to a queue. It is defined in the org.apache.hadoop.
yarn.api.records package.
The QueueInfo object contains the following information:

Queue name
Configured capacity of the queue
Maximum capacity of the queue
Current capacity of the queue
Child queues
List of running applications
QueueState of the queue

The capacity of a queue is a float value representing the memory assigned to a
particular queue. A queue may also contain a list of child queues (hierarchical
queues). RUNNING and STOPPED are two queue states defined in YARN. When a
queue is in the STOPPED state, it does not accept new application submissions.

• Queue metrics: The QueueMetrics class is defined in the org.apache.
hadoop.yarn.server.resourcemanager.scheduler package. It contains
statistics for applications, containers and users for a specific queue.

• Queue Access Control List: Queue Access Control List is a mechanism
to define user and group permissions for a specific queue. You can define a
list of users or groups who are allowed to submit applications to the queue.
For more details, you can refer to Chapter 11, Enabling Security in YARN.

You can view the list of queue objects and their properties either through the
ResourceManager web interface or through the ResourceManager REST APIs for
scheduler. To read more about the ResourceManager REST APIs, you can refer to
the Hadoop documentation at http://hadoop.apache.org/docs/r2.6.0/hadoop-
yarn/hadoop-yarn-site/ResourceManagerRest.html#Cluster_Scheduler_API.

Chapter 10

[199]

Types of queues
As mentioned earlier in this chapter, YARN defines two schedulers (capacity
and fair schedulers). These schedulers use their own implementation of the
queue interface. The following diagram represents a class diagram for different
queues defined in YARN:

CapacityScheduler Queue (CSQueue)
CSQueue is an interface that extends the Queue interface. It is defined in the
org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity
package. The CSQueue interface represents a queue structure for a node in the
tree of hierarchical queues for CapacityScheduler.

The two classes that implement the CSQueue interface are as follows:

• ParentQueue

• LeafQueue

The properties associated with a CapacityScheduler queue are as follows:

• yarn.scheduler.capacity.<queue-path>.capacity: This is a float
value that specifies the capacity of the queue in percentage (%). At each
level of queues (hierarchical queues), the sum of capacities for all queues
must be equal to 100. In order to provide elasticity and cluster efficiency,
applications may consume more resources than the defined capacity.

• yarn.scheduler.capacity.<queue-path>.maximum-capacity: It is a
float value that specifies the maximum capacity of the queue in percentage
(%). This property is used to limit the capacity consumed by the queue.
By default, the maximum capacity is set to -1. By default, there's no limit
and if cluster resources are available, then the queue can use 100 percent
of the resources.

Scheduling YARN Applications

[200]

• yarn.scheduler.capacity.<queue-path>.minimum-user-limit-
percent: This is an integer value that specifies the value that specified the
minimum limit in percentage (%) for each user in a queue. When there are
multiple users in the same queue, this property enforces the users to get a
minimum percentage of cluster resources in a shared environment.
The default value for the property is 100, that is no user limits are imposed.
Suppose, if an administrator has set the value to 20, then if only three users
have submitted applications to YARN, then the maximum allowed resources
allocated for each user is 33 percent. However, if 5 or more users submit
applications, then each user will have a minimum of 20 percent of resources,
and if the resources are not available, then the applications will be queued.

• yarn.scheduler.capacity.<queue-path>.user-limit-factor: This is a
float value that specifies a multiplier value for the queue capacity to allow a
user to acquire more cluster resources. For example, if the value is set to 1.5
and the configured queue capacity is 40 percent, then a user in this queue can
acquire 60% (1.5 * 40%) of the cluster resources. The default value is set to 1.
It ensures that a user can consume the queue's configured capacity only.

• yarn.scheduler.capacity.<queue-path>.maximum-applications:
This is an integer value that specifies the maximum count of applications a
queue can accept. An application acceptance means applications in running
state or queued applications (applications waiting for resource allocation
but allocated to a queue). When this limit is reached, the new application
submission requests will be rejected.

• yarn.scheduler.capacity.<queue-path>.maximum-am-resource-
percent: This is a float value that specifies the maximum percent of
resources used by ApplicationMaster services.

• yarn.scheduler.capacity.<queue-path>.state: This property is used to
set the state of the queue. A queue can have either RUNNING or STOPPED state.
If a queue is in the STOPPED state, a new application submission requests for
a queue or its child queues are rejected.

You can also refer to the Java code for the interface at
http://grepcode.com/file/repo1.maven.org/
maven2/org.apache.hadoop/hadoop-yarn-server-
resourcemanager/2.5.1/org/apache/hadoop/yarn/
server/resourcemanager/scheduler/capacity/
CSQueue.java?av=h#CSQueue.

Chapter 10

[201]

FairScheduler Queue (FSQueue)
FSQueue is an abstract class defined in the org.apache.hadoop.yarn.server.
resourcemanager.scheduler.fair package. It implements the Queue interface
and represents the queue's resource computation based on the fair share allocation
of capacity on the basis of total cluster memory.

Similar to CSQueue, FSQueue represents a queue structure for a node
for FairScheduler.

The two classes that extend the FSQueue class are as follows:

• FSParentQueue

• FSLeafQueue

Similar to CSQueue, each object of FSQueue has the following elements:

• minResources and maxResources: This is the minimum and maximum
resources allocated to a queue. The value is in the form X mb and Y vcores.

• maxRunningApps: This is an integer value that specifies the maximum
number of running or queued applications submitted to a queue.

• maxAMShare: This is a float value that specifies the maximum percent of
resources used by ApplicationMaster services. The default value is -1.0f and
it means that the ApplicationMaster resource usage share check is disabled.

• weight: Similar to user limit factor for CSQueue, FSQueue has a weight
property that specifies a multiplier value for the specified resources to
allow a user to acquire more resources than other queues.

• schedulingPolicy: FSQueue uses a scheduling policy for allocating
resources within a queue. YARN defines three scheduling policies,
which are as follows:

 ° First In First Out policy (FIFO)
 ° Fair share policy
 ° Dominant Resource Fairness policy (DRF)

The default policy for a queue is fair. The concept of scheduling policy is
discussed in detail in the next section.

• aclSubmitApps and aclAdministerApps: It defines the list of users and
groups who can submit or kill applications to the queue.

Scheduling YARN Applications

[202]

• minSharePreemptionTimeout: It is the number of seconds the queue will wait
before it will try to acquire containers to use resources from other queues.

You can also refer to the Java code for the interface at http://
grepcode.com/file/repo1.maven.org/maven2/org.apache.
hadoop/hadoop-yarn-server-resourcemanager/2.5.1/org/
apache/hadoop/yarn/server/resourcemanager/scheduler/
fair/FSQueue.java?av=h#FSQueue.

An introduction to schedulers
The scheduler is responsible for providing resources to different tasks of running
applications. It is only responsible for scheduling of tasks and is not concerned with
status tracking and monitoring of tasks. The scheduler ensures meeting resource
requirements in terms of memory, cores, disk, and network for the application.
At granular level, it meets the resource requirement of containers running for the
particular application. The default scheduler of Hadoop uses a single queue (root
queue) to accept and schedule applications. It means that all the applications are
submitted to the root queue.

You can view the details of the configured scheduler through ResourceManager web
UI at http://<ResourceManager IP>:8088/cluster/scheduler. This is shown in
the following screenshot:

Chapter 10

[203]

YARN provides interfaces for implementation of pluggable scheduler. The two
popular schedulers available with Hadoop are:

• Fair scheduler
• Capacity scheduler

Fair scheduler
Fair scheduler is developed to assign a fair share of resources to all the applications
running on the Hadoop YARN cluster. Memory and CPU are the resources currently
being distributed fairly among the applications. When a single application is submitted
to the cluster, all resources are available to it. When another application is submitted, a
part of resources is given to the second application as demanded. Unlike the Hadoop
default scheduler, fair scheduler allows parallel execution of short-lived, compute-
intensive, and lengthy applications together so that all applications executed in
fair time.

A fair scheduler accepts the applications and puts it in a queue. By default, all
applications go into a single queue named default. Applications could be scheduled
to different queues based on the users submitting the application. A scheduling
policy is designed for each queue that governs the sharing of resources in the queue.

The applications could be submitted with priorities and queues take care of
application priority while scheduling it on cluster. A priority can be set as an integer
value while submitting an application. To read more about priority, you can refer
to the class org.apache.hadoop.yarn.api.records.Priority. In the current
version of Hadoop (2.6.0), per application priorities are not passed to the YARN
scheduler and default priority for all the applications is set to 1. You can refer to
the getPriority method of the FSAppAttempt class.

A fair scheduler also guarantees minimum shares to the queues, which means the
user or group submitting application to the queue would get the minimum share
of resources defined for that queue. When a part of the resources are not utilized by
the queue, it will be given to another applications. A fair scheduler also restricts the
number of applications executing concurrently on the cluster on per user or per queue
basis, though it could accept and queue any number of applications by the user.

In this section, we'll discuss about fair scheduler features and concepts.

Scheduling YARN Applications

[204]

Hierarchical queues
A fair scheduler provides support for hierarchical queue. The parent of all
user-defined queues is the root queue. A root queue can contain any number of
children to any level. The queues at the bottom of tree are called as leaf queues.

Applications are always scheduled through leaf queues. If a
user tries to submit an application to a nonleaf queue, then the
following exception is returned:
java.io.IOException: Failed to run job : <Queue_
Name> is not a leaf queue.

A queue name starts with the parents' queue name followed by the dot character and
the current queue name. For example, if the sales queue is the child of root, then the
queue path for sales will be root.sales. Similarly, if sales have further children,
then their names would be root.sales.child1 and root.sales.child2.

Schedulable
A schedulable is an entity that can initiate a task to run on the cluster. It could be
a Job or a Queue. In YARN, it is an abstract class that could be used to define the
algorithms as a fair share that could be applied within a queue or among queues.

Schedulable is of two types—JobSchedulables and QueueSchedulabels

A schedulable is responsible for the following tasks:

• It can launch tasks through its assignTask() interface
• It provides information about the job/queue to the scheduler, including:

 ° Demand (the maximum number of tasks required)
 ° Number of currently running tasks
 ° Minimum share (for queues)
 ° Job/queue weight (for fair sharing)
 ° Start time and priority (for FIFO)

• It can be assigned a fair share to use with fair scheduling

Chapter 10

[205]

Scheduling policy
FSQueue uses a scheduling policy for allocating resources within a queue.
YARN defines three scheduling policies:

• First In First Out policy (FIFO)
• Fair share policy
• Dominant Resource Fairness policy (DRF)

The FIFO policy is simple and easy to implement. It states that the applications
submitted first will get more priority.

The fair share policy is the default scheduling policy for FSQueue. There are three
rules for sharing resources fairly:

• Schedulables below their min share of resources are given priority over the
schedulables whose minimum share has been met.

• Schedulables below their min share are compared by how far below it they
are in terms of ratio. For example, a job A is executed 15 out of minimum
share of 20 tasks while another job, B, runs 20 out of minimum share of 40
tasks, then job B is scheduled next because job B is at 50 percent of its min
share completion while job A has completed 75 percent of its min share.

• Schedulables above their min share are compared by (running tasks /
weight). If all weights are equal, slots are given to the job with the fewest
tasks; otherwise, jobs with more weight get proportionally more slots.

A customized policy could be defined by extending the org.apache.hadoop.
yarn.server.resourcemanager.scheduler.fair.SchedulingPolicy class.
Each queue could be assigned with a different scheduling policy by specifying
the schedulingPolicy property for that queue.

To read more about the fair scheduler, you can refer to the YARN
documentation at http://hadoop.apache.org/docs/r2.5.1/
hadoop-yarn/hadoop-yarn-site/FairScheduler.html.

Scheduling YARN Applications

[206]

Configuring a fair scheduler
In this section, we'll discuss about the configurations required to set up a fair
scheduler. The implementation of a fair scheduler in YARN is defined in the
org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.
FairScheduler class. To configure ResourceManager to use fair scheduler,
you need to specify the class name in the yarn-site.xml file using property:

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fai
r.FairScheduler</value>
</property>

You can also configure the following FairScheduler parameters in the
yarn-site.xml file:

Property Description
yarn.scheduler.fair.
allocation.file

A path to an XML file that contains FSQueues
definition and their properties.

yarn.scheduler.fair.user-
as-default-queue

Use username as the default queue name, if the queue
name is not specified.

yarn.scheduler.fair.
preemption

Set this to true if pre-emption needs to be enabled.

yarn.scheduler.fair.
preemption.cluster-
utilization-threshold

This is the resource utilization threshold for
pre-emption. The default is 0.8f.

yarn.scheduler.fair.
sizebasedweight

This is the weighted share or equal share to all apps
irrespective of its size.

yarn.scheduler.fair.
update-interval-ms

It is the time interval in milliseconds to calculate a fair
share, resource demand, and pre-emption requests.
The default value is 500 ms.

Other than the configurations in the yarn-site.xml file, you need to define
an allocations file. The allocations file is an .xml file that contains a FSQueues
definition and their properties. A sample allocations file for FairScheduler is
shown in the following:

<?xml version="1.0"?>
<allocations>
 <queue name="queue1" type="parent">
 <minResources>100 mb,1 vcores</minResources>
 <maxResources>8000 mb,8 vcores</maxResources>
 <maxRunningApps>50</maxRunningApps>

Chapter 10

[207]

 <queue name="sub_queue1">
 <minResources>100 mb,1 vcores</minResources>
 </queue>
 </queue>

 <queue name="queue2">
 <minResources>1000 mb,1 vcores</minResources>
 <maxResources>6000 mb,5 vcores</maxResources>
 <maxRunningApps>40</maxRunningApps>
 <maxAMShare>0.2</maxAMShare>
 <schedulingPolicy>fifo</schedulingPolicy>
 <weight>1.5</weight>
 <schedulingPolicy>fair</schedulingPolicy>
 </queue>
 <queueMaxAMShareDefault>1.0</queueMaxAMShareDefault>
 <userMaxAppsDefault>5</userMaxAppsDefault>
</allocations>

You can save the file as fair-scheduler.xml in the configuration folder for
Hadoop. You need to specify the file path in the yarn-site.xml file using the
property template:

<property>
<name>yarn.scheduler.fair.allocation.file</name>
<value>/home/hduser/hadoop-2.5.1/etc/Hadoop/fair-scheduler.xml</value>
</property>

The file may also contain the following properties related to FairScheduler:

• UserElements

• userMaxAppsDefault

• fairSharePreemptionTimeout

• defaultMinSharePreemptionTimeout

• queueMaxAppsDefault

• queueMaxAMShareDefault

• defaultQueueSchedulingPolicy

• queuePlacementPolicy

To read a detailed explanation about configuration parameters and
allocations file, you can refer to the FairScheduler documentation
at http://hadoop.apache.org/docs/r2.5.1/hadoop-yarn/
hadoop-yarn-site/FairScheduler.html#Configuration.

Scheduling YARN Applications

[208]

After configuring the yarn-site.xml file and allocation files, you will need to restart
the ResourceManager service. To submit a job to a queue, you need to specify the
queue name while submitting the job using –D parameters. A sample command to
submit the job to sub_queue1 is shown in the following:

yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jar
pi -Dmapreduce.job.queuename=root.queue1.sub_queue1 2 5

To view the queue stats, you can refer to the scheduler page through
ResourceManager web UI at http://<ResourceManagerIP>:8088/cluster/
scheduler?openQueues=root.queue1#root.queue1.sub_queue1.

The following screenshot refers to the queue stats for root.queue1.sub_queue1:

CapacityScheduler
CapacityScheduler is another pluggable scheduler provided by YARN. It allows
the execution of multiple applications sharing cluster resources and maximizing
throughput of the cluster. It also provides support for multi-tenancy and capacity
guarantees. The CapacityScheduler uses CSQueue objects for queue definition.
The implementation of CapacityScheduler is defined in the org.apache.hadoop.
yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler class.

The CapacityScheduler offers the following features:

• Hierarchical queues
• Capacity guarantees
• Security

Chapter 10

[209]

• Elasticity
• Multi-tenancy
• Runtime configuration
• Drain applications
• Resource-based scheduling

To read more about these features, you can refer to the Hadoop documentation at
http://hadoop.apache.org/docs/r2.6.0/hadoop-yarn/hadoop-yarn-site/
CapacityScheduler.html.

Configuring CapacityScheduler
Configuring CapacityScheduler in YARN is as simple as configuring
FairScheduler. To enable CapacityScheduler, you need to configure
the following property in yarn-site.xml:

<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.cap
acity.CapacityScheduler</value>
</property>

Similar to FairScheduler, CapacityScheduler also has an allocations file. It is an
.xml file but with a different format than fair scheduler's allocations file. The default
allocations file CapacityScheduler is $HADOOP_PREFIX/etc/hadoop/capacity-
scheduler.xml.

The parent queue in CapacityScheduler is called root. All user-defined queues will
be children of the root queue.

The following xml properties defines three queues for CapacityScheduler—alpha,
beta and default. The queue alpha has two child queues—a1 and a2. At each level,
the sum of all the capacities within a queue should be 100 percent.

You can refer to the following capacity scheduler configurations. You might notice that
the sum of capacities of child queues of root (alpha-50, beta-30, and default-20)
and alpha (a1-60 and a2-40) is 100, as given in the following code:

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>alpha,beta,default</value>
</property>

Scheduling YARN Applications

[210]

<property>
 <name>yarn.scheduler.capacity.root.alpha.capacity</name>
 <value>50</value>
</property>
<property>
 <name>yarn.scheduler.capacity.root.alpha.queues</name>
 <value>a1,a2</value>
</property>
<property>
 <name>yarn.scheduler.capacity.root.alpha.a1.capacity</name>
 <value>60</value>
</property>
<property>
 <name>yarn.scheduler.capacity.root.alpha.a2.capacity</name>
 <value>40</value>
</property>

<property>
 <name>yarn.scheduler.capacity.root.beta.capacity</name>
 <value>30</value>
</property>

<property>
 <name>yarn.scheduler.capacity.root.default.capacity</name>
 <value>20</value>
</property>

Similar to FairScheduler, to submit a job to a particular queue, you need to specify
the queue name using the –D parameter as follows:

yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jar pi
-Dmapreduce.job.queuename=a1 5 10

Chapter 10

[211]

The following screenshot shows the stats for queue the root.alpha.a1 queue
during application execution:

Summary
Scheduling in YARN is a pluggable framework to allocate cluster resources in a
multiuser environment. In this chapter, you learned about different queues that
are defined in YARN. The concepts and parameters related FSQueue and CSQueue.
You also learned about the fair and capacity schedulers that are available in YARN.
You also covered an overview about the queue definitions, configurations and job
submission for both the schedulers.

In the next chapter, you will learn about the security framework of YARN. You will
learn how Kerberos provides an authentication mechanism to YARN and how you
can use access control lists.

[213]

Enabling Security in YARN
A lot of enterprises today use Hadoop and other big data technologies in a production
environment. A secured environment has always been a concern for the Hadoop
community. A secured environment ensures rightful access to objects in a shared mode
by different entities. The objects refer to the data stored in HDFS or local filesystem,
applications running on the cluster, and so on. An entity refers to the services within
the cluster, clients accessing the cluster, and so on. YARN needs to ensure that the
data and logs stored on the local, as well as on the Hadoop filesystem are secured, so
that, only authenticated and authorized users can access the information. YARN also
exposes data through web applications and REST calls. A perimeter level security
should be added in order to secure these applications and calls.

In this chapter, we will cover the following topics:

• Adding security to a YARN cluster
• Working with Access Control Lists (ACLs)
• An overview of Apache Ranger and Knox

Adding security to a YARN cluster
Hadoop provides a few methods that add security layers to a cluster. YARN inherits
those methods and enables security for YARN services.

Enabling Security in YARN

[214]

The following are the methods a cluster administrator can implement while
configuring a secure Hadoop-YARN cluster:

Using a dedicated user group for
Hadoop-YARN daemons
Before starting the Hadoop-YARN services, an administrator needs to ensure that a
dedicated user group is created on all the nodes of the cluster and all Hadoop-YARN
daemons run as the dedicated user only. Hadoop-dedicated users—hdfs, yarn, and
mapred must be created on all the nodes and these must belong to a common user
group called hadoop.

All the Hadoop-YARN daemons, the ResourceManager, NodeManager, and the
Application Timeline server should run under the YARN user. The MapReduce
JobHistoryServer service should run as a mapred user.

To create a new group and add new users to the group in Linux, you need to execute
the following commands:

• Create a new group:
sudo group add <GroupName>

• Create a new user for a group:
sudo user add -G <GroupName> -p <Password><NewUser>

• Sample commands:

sudo groupadd hadoop

sudo useradd -G hadoop -p hadoop yarn

You must have root credentials or sudo (admin) access for all the nodes.

Chapter 11

[215]

Validating permissions to YARN directories
YARN daemons access directories in the HDFS as well as the local filesystem of the
node. An administrator needs to ensure that only a dedicated user is set as the owner
for the directory and valid permissions are set on these directories.

A list of such directories with their permission details is given here:

Owner
(User:Group) Configuration property File

system Permissions

yarn:hadoop

$YARN_LOG_DIR
Local

drwxrwxr-x

yarn.nodemanager.local-dirs drwxr-xr-x

yarn.nodemanager.log-dirs drwxr-xr-x

yarn.nodemanager.remote-app-
log-dir

HDFS

drwxrwxrwxt

mapred:hadoop

mapreduce.jobhistory.
intermediate-done-dir drwxrwxrwxt

mapreduce.jobhistory.done-dir drwxr-x---

You can execute the following commands to change the owner of a directory and
modify its permissions:

chown -R <UserName>:<GroupName> <DirPath>

chmod -R <Octal Code> <DirPath>

If there's a permission denied error, then you can use the sudo option for both the
commands. The sample commands are as follows:

chown -R hdfs:hadoop /home/hduser/hadoop-2.5.1/data/name

chmod -R 700 /home/hduser/hadoop-2.5.1/data/name

To read more about the octal code for directory / file permissions,
you can refer to the wikipedia page at http://en.wikipedia.
org/wiki/File_system_permissions#Numeric_notation.

Enabling Security in YARN

[216]

Enabling the HTTPS protocol
By default, YARN web applications for ResourceManager and TimeLine server use
the HTTP protocol. For a secured cluster, a cluster administrator needs to enable the
HTTPS protocol by specifying the following property in the yarn-site.xml file:

<property>
 <name>yarn.http.policy</name>
 <value>HTTPS_ONLY</value>
<property>

By default, the value of the above property is set to HTTP_ONLY, which uses the HTTP
protocol and disables the HTTPS protocol.

An administrator also needs to configure the HTTPS addresses for the YARN
daemons by specifying the following properties in the yarn-site.xml file:

<property>
 <name>yarn.resourcemanager.webapp.https.address</name>
 <value>${yarn.resourcemanager.hostname}:8090</value>
<property>

<property>
 <name>yarn.timeline-service.webapp.https.address</name>
 <value>${yarn.timeline-service.hostname}:8190</value>
<property>

The default HTTPS ports for ResourceManager and the TimeLine server daemons
are 8090 and 8190, respectively.

Enabling authorization using Access
Control Lists
Access Control Lists are the list of permissions associated with an object in the
system. An object can refer to a YARN service, a queue, or an application, and so on.
These ACLs are defined as users / groups that are allowed to access or modify an
object.

In a Hadoop-YARN cluster, the ACLs check is disabled, by default. You need to
configure the yarn.acl.enable property in the yarn-site.xml file to enable the
ACLs:

<property>
 <name>yarn.acl.enable</name>
 <value>true</value>
<property>

Chapter 11

[217]

To read more about the ACLs, you can refer to the next section in this chapter,
Working with ACLs.

Enabling authentication using Kerberos
Kerberos is an authentication protocol used to authenticate the identity of the
services running and communicating on different nodes over a nonsecure network.
It uses a secret key cryptography mechanism to provide secure authentication. By
default, Kerberos authentication is disabled in a Hadoop-YARN cluster. To enable
Kerberos authentication in Hadoop, an administrator needs to configure following
properties in the core-site.xml file:

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
</property>
<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
</property>

The default value of the hadoop.security.authentication property is simple
that disables Kerberos secure authentication for a cluster. This chapter does not
focus on the architecture of Kerberos and its components; instead, this book gives
an overview of Hadoop-Kerberos and the basic configuration settings to configure
Kerberos with YARN.

The following are the three main Kerberos entities that Hadoop-YARN uses to
enable security:

• realm – A Kerberos realm; in most cases, this is the domain name specified
in upper case letters.

• principal – A principal is a unique identity represented as username/
fully.qualified.domain.name@YOUR-REALM.COM.

• keytab – A keytab contains pairs of these principals and encrypted keys
(similar to passwords) to authenticate the key distribution center (KDC).

In a Hadoop-YARN cluster, each daemon is associated with a Kerberos principal
name and a keytab file. A cluster administrator needs to configure the principal
name and location of the keytab file for each service in the yarn-site.xml
configuration file.

Enabling Security in YARN

[218]

The following are the properties used for configuring Kerberos:

• yarn.<service>.keytab

• yarn.<service>.principal

Replace <service> with resourcemanager and nodemanager.

To read about configuring Kerberos in detail, you can refer to the
blogs at
http://queryio.com/hadoop-big-data-docs/hadoop-
big-data-admin-guide/queryio/hadoop-security-setup-
kerberos.html or http://beadooper.com/?p=206.

Working with ACLs
In the previous section, we covered a basic overview of ACLs and how to enable ACLs
in a Hadoop-YARN cluster. In this section, we'll discuss in depth the implementation
of ACLs and the different types of ACLs available for YARN.

Defining an ACL value
ACLs define the authorization rules for an object in a YARN. A cluster administrator
can specify a list of users and groups authorized to access the object. It is a comma-
separated list of both users and groups. These two lists (users and groups) are
separated by a space:

• user1,user2,user3 group1: The above ACL value specifies that user1,
user2, user3 and other users belonging to group1 are authorized to access
the object

• user1,user2: If you want to authorize only a specific list of users and do not
want any group to access the object, then you can define a list of users with a
space at the end

• group1,group2: Similarly, if you wish to authorize a list of users belonging to
specified groups and no other user to access the object, then you can define a
list of groups after a space

• *: A special value of * implies that there's no restriction and all users are
authorized to access the object

• : A special value of blank space implies that no user is authorized to access
the object

Chapter 11

[219]

If an ACL for an object is not defined, then the value of security.
service.authorization.default.acl is applied.
If security.service.authorization.default.acl is not
defined, then * is applied.

Type of ACLs
When we work in a multi-user environment, authorization for services, applications,
queues is an important concern. Consider the following scenarios in order to
understand the need for authorization in a cluster:

• An anonymous user is allowed to submit new applications to the cluster
• A user submits an application and another user kills the application without

any notification
• A user that does not belong to a queue is allowed to submit an application

to that queue
• A user is able to execute admin commands such as refresh nodes or High

Availability, and so on

YARN provides the following four types of ACLs mechanisms to add authorization
for objects in a cluster:

The administration ACL
A cluster administrator can define a list of users and groups who could be the
admin of the YARN cluster. An administrator here refers to a user who can
execute the rmadmin command for a YARN cluster. To read more about the
rmadmin command, you can refer to the YARN commands section in Chapter 3,
Administering a Hadoop-YARN Cluster.

Enabling Security in YARN

[220]

You can add the following property in the yarn-site.xml file:

<property>
 <name>yarn.admin.acl</name>
 <value>user1,user2 group1</value>
</property>

Zookeeper ACLs
YARN supports the feature of state store and high availability for
ResourceManager. A cluster administrator can define the following
ACL properties for Zookeeper and root znode in the yarn-site.
xml file:
yarn.resourcemanager.zk-acl

yarn.resourcemanager.zk-state-store.root-node.acl

yarn.resourcemanager.zk-auth

To read more about Zookeeper ACLs, you can refer to the Zookeeper
documentation at http://zookeeper.apache.org/doc/trunk/
zookeeperProgrammers.html#sc_ZooKeeperAccessControl.

The service-level ACL
YARN consists of the ResourceManager and NodeManager services running across
the cluster. YARN clients connect to these services to execute the applications or to get
the cluster status and metrics. Hadoop provides an initial authorization mechanism to
ensure the authorization of its services. YARN inherits the same mechanism to provide
client service authorization. The service level authorization in Hadoop is defined
through a hadoop.policy.xml file. The hadoop.policy.xml file is located inside the
Hadoop configuration directory HADOOP_CONF_DIR. The following is the list of ACLs
that can be configured through the hadoop-policy.xml file:

• security.resourcetracker.protocol.acl: This is the ACL for
ResourceTracker protocol, that is communication between the
ResourceManager and NodeManager services

• security.resourcemanager-administration.protocol.acl: This is the
ACL for ResourceManagerAdministration protocol, list of users / groups
authorized to execute admin commands

• security.applicationclient.protocol.acl: This is the ACL for
ApplicationClient protocol, that is, communication between the
ResourceManager and YARN clients

Chapter 11

[221]

• security.applicationmaster.protocol.acl: This is the ACL for
ApplicationMaster protocol, that is, communication between the
ResourceManager and ApplicationMasters services

• security.containermanagement.protocol.acl: This is the ACL for
ContainerManagement protocol, that is, communication between the
NodeManager and ApplicationMasters services

• security.resourcelocalizer.protocol.acl: This is the ACL for
the ResourceLocalizer protocol, that is, communication between the
NodeManager and ResourceLocalizer services

For a secured environment, YARN also provides authentication for inter-process
communications through SecretManager and tokens. The SecretManager service
governs the communication and coordination between different YARN services.
The YARN services such as ResourceManager and NodeManager communicate
with each other for containers execution, liveliness check, resource localization,
and so on. For each communication, it is important to validate the authenticity
of the service requesting an information or task execution.

The following implementations of SecretManager are defined in YARN:

• BaseNMTokenSecretManager: The NodeManager keys are generated using
NMTokenIdentifier, which accepts the application attempt ID, node ID,
application submitter, and the master key as the input. A unique master
key is generated using the javax.crypto.SecretKey and javax.crypto.
KeyGenerator interfaces of the Java Cryptography Extension (JCE) APIs.

• AMRMTokenSecretManager: AM-RM tokens are generated per application
attempt. A secret token is generated and associated with each application
attempt. The token is used by the attempt in all further communication.
ResourceManager stores information of the tokens in the memory until the
application lasts; it is being used for attempt authentication and restart, in
case of a failed attempt.

• BaseClientToAMTokenSecretManager: This is used to generate
tokens for communication between clients, ResourceManager, and
the ApplicationMaster services. It has the following two concrete
implementations:

 ° ClientToAMTokenSecretManager: AM validates client-RM tokens
issued by ResourceManager to clients. Each AM has only one
associated master key.

 ° ClientToAMTokenSecretManagerInRM: ResourceManager maintains
an in-memory list of per application attempt master keys for managing
client tokens.

Enabling Security in YARN

[222]

• BaseContainerTokenSecretManager: This is used for generating
authentication keys for each container. ResourceManager persist
the MasterKey in memory and NodeManagers request it from
ResourceManager and validate against the container token.

The queue ACL
YARN supports two schedulers—capacity and fair. Both these schedulers manage
application scheduling with the help of queues. If the YARN authorization check is
enabled, then QueueACLManager checks the authorization for each user against the
ACLs defined for a queue. Both these schedulers support hierarchical queues that is,
parent and leaf queues. An ACL specified for a parent queue will be automatically
applied to all of its descendant queues.

For each queue, an administrator can define two authorization checks:

• Application submission: A list of users/groups who can submit applications
to the given queue.

• Administer queue: A list of users/groups who can administer applications
on the given queue. Queue administration includes application submission,
operations such as viewing or killing an application that is associated with a
particular queue.

To specify a queue ACL for the capacity and fair schedulers, you can configure the
following queue properties in their respective .xml files:

Capacity scheduler

yarn.scheduler.capacity.root.<queue-path>.
acl_submit_applications

yarn.scheduler.capacity.root.<queue-path>.
acl_administer_queue

Fair scheduler
aclSubmitApps

aclAdministerApps

Chapter 11

[223]

The application ACL
YARN allows users to set ACL for applications. A user can specify the list of
users who can view or modify the application. ApplicationACLsManager is
responsible for authorizing the user's access control to applications running
on the Hadoop-YARN cluster. ApplicationACLsManager maintains a context
of ApplicationAccessType and AccessControlList for each application
scheduled on YARN cluster. The enumeration for ApplicationAccessType is
defined in the package org.apache.hadoop.yarn.api.records with values for
ApplicationAccessType:

• VIEW_APP: This access type specifies who all can view all or some parts
of the application's details

• MODIFY_APP: This access type specifies who can modify the running
application, for example, killing the application

If the YARN authorization check is enabled, ApplicationACLsManager checks
whether the user is the owner of the application or is authorized to access the
application as specified in ApplicationAccessType.

To enable and add ACLs for a MapReduce application, you can specify the following
properties in the mapred-site.xml file inside the configuration folder of Hadoop:

• mapreduce.cluster.acls.enabled

• mapreduce.job.acl-modify-job

• mapreduce.job.acl-view-job

You can also refer to the mapred-default.xml file at http://hadoop.apache.org/
docs/r2.5.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
mapred-default.xml.

To enable ACLs for a custom application, you will need to define ACLs in
ContainerLaunchContext for the AppMaster container. The sample code to
define ACLs is given here:

Map<ApplicationAccessType, String>appAclDefinition = new
HashMap<ApplicationAccessType, String>();
appAclDefinition.put(ApplicationAccessType.MODIFY_APP, "*");
appAclDefinition.put(ApplicationAccessType.VIEW_APP, "*");

// amContainer is an instance of ContainerLaunchContext (AppMaster
container definintion in ApplicationSubmissionContext)
amContainer.setApplicationACLs(appAclDefinition);

Enabling Security in YARN

[224]

For more information, you can refer to the JAVA API for
ContainerLaunchContext at http://hadoop.apache.org/
docs/r2.5.1/api/org/apache/hadoop/yarn/api/
records/ContainerLaunchContext.html.

Other security frameworks
Other than the mentioned security mechanisms, a few security frameworks are
being developed. These frameworks are being developed to simplify the security
configurations for a cluster administrator. This section will cover a basic overview
of the Apache Ranger and Knox projects.

Apache Ranger
Apache Ranger is an incubator project that provides a framework for central
management of the Hadoop security policies. It provides a central UI and REST APIs
to manage security policies for the Hadoop cluster.

This consists of three components:

• Policy manager
• Plugins
• User group sync

The current release (0.4) supports security administration for the following
technologies/frameworks—Hadoop HDFS, Hive, HBase, Storm, and Knox. The next
release (0.5) is focused to support authorization and auditing for YARN services. It'll
provide support for managing and auditing ACLs for YARN queues.

To read more about Apache Ranger, you can refer to the official website at
http://ranger.incubator.apache.org/. You can also refer to the Hortonworks
documentation at http://hortonworks.com/hadoop/ranger/.

Chapter 11

[225]

Apache Knox
With the introduction of the YARN framework as a generic ResourceManager,
integration and adoption of big data technologies and new frameworks is easy.
Before adopting any new framework/application, an enterprise needs to maintain
compliance with its security policies. Apache Knox is a stateless reverse proxy
framework that ensures security compliance adherence and provides perimeter
security to a Hadoop cluster. Perimeter security means securing the HTTP/REST
based services and providing a proxy gateway between cluster resources and users
accessing the cluster. Knox also encapsulates Kerberos and eliminates the need to
client side libraries and configuration while accessing a secured Hadoop cluster.

To read more about Apache Knox, you can refer to the
official website at http://knox.apache.org/.
You can also refer to the Hortonworks documentation
at http://hortonworks.com/hadoop/knox/.

Summary
YARN extends security features available in Hadoop and allows enterprises to
secure their production clusters. Security for YARN includes the authentication
and authorization of services, directories, applications, queues, and so on. In this
chapter, you learned about the methods to enable security in a Hadoop-YARN
cluster and had an overview of Kerberos with YARN. This chapter also explained
usage of ACLs and overview of Hadoop security projects such as Apache Ranger
and Knox. In the next chapter, you will learn about the integration of YARN with
other big data technologies such as Spark, Storm, and so on.

[227]

Real-time Data Analytics
Using YARN

Hadoop is known for batch processing of data available in HDFS through MapReduce
programming. The data is placed in HDFS before it can be queried for analysis. The
Hadoop services execute only MapReduce jobs. The cluster resources are not fully
utilized for other operations when the resources are ideal.

This is considered as a limitation for use cases that required processing of data in real
time. Apache Storm and Spark are the frameworks developed for processing data in
real time. These frameworks need an efficient cluster's ResourceManager. Focusing
on a common solution for the preceding limitations in Hadoop, YARN evolved as a
generic framework to provide resource management and application execution over
a cluster. It not only allows different frameworks other than MapReduce to use the
same cluster but also provides efficient scheduling algorithms to the applications
running on the cluster. Frameworks such as Storm, Spark, and Giraph adopted
YARN for application execution and management.

In this chapter, we will cover the integration of the following technologies with YARN:

• Spark
• Storm
• HAMA
• Giraph

Real-time Data Analytics Using YARN

[228]

The integration of Spark with YARN
Spark is a distributed computing framework that uses in-memory primitives to
process data available in a data store. It provides an in-memory representation of
data to be processed and it is well suited for various machine learning algorithms.
Spark allows easy connection to different data stores such as HDFS, Cassandra, and
Amazon S3.

There are several companies that use Spark for big data processing. The complete
list of companies and their use cases is available at https://cwiki.apache.org/
confluence/display/SPARK/Powered+By+Spark.

Spark has two components: SparkContext (Driver) and Executor. SparkContext
is a master service that connects with a cluster manager and acquires resources for
Executor services on worker nodes. For cluster management, Spark supports YARN,
Apache Mesos and an in-built standalone cluster manager.

In this section, we'll discuss how Spark is integrated with YARN and how you can
submit Spark-YARN applications on a Hadoop-YARN cluster. This book does not
focus on Spark components and its architecture. To read more about the technology,
you can refer to the official website at https://spark.apache.org/.

Running Spark on YARN
YARN allows execution of user-defined applications over a cluster. Spark defines its
own application master to interact with ResourceManager and manage the execution
of Spark application tasks over the cluster. A client submits a Spark application to
the YARN ResourceManager service. The ResourceManager accepts the application
request and starts an ApplicationMaster service for the new application. The
ApplicationMaster runs as a first YARN container and manages the application
execution. The ResourceManager is responsible for scheduling applications
submitted to the cluster. It allocates YARN containers for Executor services.

Chapter 12

[229]

The following diagram represents a Spark-YARN cluster:

As discussed earlier, Spark runs a Driver service SparkContext as a master service.
The node on which the driver service runs depends on the deployment mode
specified during startup. There are two deploy modes for running Spark-on-YARN:

• yarn-client: In this mode, the Driver service runs within the client process
that initiates the application. The ApplicationMaster process is responsible
for acquiring resources from ResourceManager only. The yarn-client mode
is useful for interactive Spark applications that require user input, such as
Spark-shell.

• yarn-cluster: In this mode, the Driver service runs within the
Spark ApplicationMaster process, that is, with a YARN container. The
ApplicationMaster is responsible for both, requesting resources from the
ResourceManager and driving the application execution. The client may
not maintain the session for the application's entire lifetime. This mode is
widely used for long production jobs that do not require user input.

You can download the Spark-Hadoop bundle from the official website of Spark at
http://spark.apache.org/downloads.html.

You need to choose the package type based on your Hadoop version.

Real-time Data Analytics Using YARN

[230]

Spark requires Hadoop client configuration files to read the address of YARN
ResourceManager and other Hadoop-YARN configurations. To submit Spark
applications on YARN, you can use the spark-submit command available at
$SPARK_HOME/bin as shown in the following lines of command:

export HADOOP_CONF_DIR=XXX
$SPARK_HOME/bin/spark-submit --class
org.apache.spark.examples.SparkPi --master <deploy-mode> --num-
executors 3 --driver-memory 512m --executor-memory 512m --executor-
cores 1 $SPARK_HOME/lib/spark-examples*.jar 10

You need to replace <deploy-mode> with either yarn-cluster or yarn-client. The
preceding command will instantiate the org.apache.spark.deploy.SparkSubmit
class and launch the Spark Driver service based on the node based on the deploy
mode. You can configure the number of executors and memory for each executor
using the submit command options.

The output snippets of the preceding command are described as follows:

• Initializing ApplicationSubmissionContext:
15/03/10 02:15:43 INFO Client: Requesting a new application
from cluster with 1 NodeManagers

15/03/10 02:15:43 INFO Client: Verifying our application has
not requested more than the maximum memory capability of the
cluster (8192 MB per container)

15/03/10 02:15:43 INFO Client: Will allocate AM container,
with 896 MB memory including 384 MB overhead

15/03/10 02:15:43 INFO Client: Setting up container launch
context for our AM

15/03/10 02:15:43 INFO Client: Preparing resources for our AM
container

15/03/10 02:15:43 INFO Client: Source and destination file
systems are the same. Not copying file:/opt/spark/spark-1.2.1-
bin-hadoop2.4/lib/spark-assembly-1.2.1-hadoop2.4.0.jar

15/03/10 02:15:43 INFO Client: Source and destination file
systems are the same. Not copying file:/opt/spark/spark-1.2.1-
bin-hadoop2.4/lib/spark-examples-1.2.1-hadoop2.4.0.jar

15/03/10 02:15:43 INFO Client: Setting up the launch
environment for our AM container

15/03/10 02:15:43 INFO SecurityManager: Changing view acls to:
root

Chapter 12

[231]

15/03/10 02:15:43 INFO SecurityManager: Changing modify acls
to: root

15/03/10 02:15:43 INFO SecurityManager: SecurityManager:
authentication disabled; uiacls disabled; users with view
permissions: Set(root); users with modify permissions:
Set(root)

• Submitting application to ResourceManager:
15/03/10 02:15:44 INFO Client: Submitting application 3 to
ResourceManager
15/03/10 02:15:44 INFO YarnClientImpl: Submitted application
application_1425928419662_0003
15/03/10 02:15:45 INFO Client: Application report for
application_1425928419662_0003 (state: ACCEPTED)

• Launching ApplicationMaster service:
15/03/10 02:16:19 INFO Client:
 client token: N/A
 diagnostics: N/A
ApplicationMaster host: 192.168.56.102
ApplicationMaster RPC port: 0
 queue: default
 start time: 1425933944023
 final status: UNDEFINED
 tracking URL: http://localhost:8088/proxy/
application_1425928419662_0003/
 user: root

You can also view the application status on the YARN's ResourceManager UI at
http://<ResourceManagerHost>:8088/:

Real-time Data Analytics Using YARN

[232]

To read more about Spark on YARN and other configuration
parameters, you can refer to the following links:
http://spark.apache.org/docs/1.3.0/running-on-
yarn.html

http://blog.cloudera.com/blog/2014/05/apache-
spark-resource-management-and-yarn-app-models/

https://spark.apache.org/docs/1.3.0/submitting-
applications.html

The integration of Storm with YARN
Storm is a distributed computational and processing framework, which was developed
to process streaming data in real time. It has been released as open source. It is useful
for continuous monitoring of processes and running machine learning algorithms.
Storm can process millions of records per second on a single node and is widely used
for low-latency processing.

Storm has two main services: Nimbus (master) and Supervisor (slave). Storm
requires Zookeeper component for co-ordination between the Nimbus and
Supervisor services. The Storm bundle contains a storm.yaml configuration
file. The file contains information related to the Nimbus server and the Zookeeper
quorum. Similar to Spark, this book does not focus on the architecture and the
components of Storm. To read more about Storm, you can refer to the official
website at https://storm.apache.org/.

Companies such as GroupOn, The Weather Channel, Twitter, Yahoo, and so on
are using Storm. To get the full list and their use cases, you can refer to the official
documentation at https://storm.apache.org/documentation/Powered-By.html.

Similar to Hadoop MapReduce application, Storm executes topologies over a
cluster of nodes. As a distributed framework, Storm needs to manage the cluster
resources and schedule the execution of topologies efficiently. The Storm services
(Nimbus / Supervisor / Core) run as YARN containers and are managed by the
ApplicationMaster for Storm (MasterServer service).

Chapter 12

[233]

The following diagram shows the bird's eye view of Storm's architecture over YARN:

Running Storm on YARN
Before running Storm over a YARN cluster, you need to make sure that Storm
dependencies are already installed on all the cluster nodes. If you wish to read more
about Storm cluster mode deployment, you can refer to the official documentation at
https://storm.apache.org/documentation/Setting-up-a-Storm-cluster.html.

The following are the dependencies for the current stable Storm release (0.9.3):

• Java 7
• Python 2.6.6 or later

Real-time Data Analytics Using YARN

[234]

Running a Storm-Yarn cluster is a simple five-step process, as shown in the
following diagram:

Create a Zookeeper quorum
Apache Zookeeper is a coordination service for distributed applications such as
Storm, Kafka, HBase, and so on. A running Zookeeper quorum is required by
Nimbus service to manage the available supervisor nodes in the cluster. You need
to deploy a Zookeeper quorum (either standalone or clustered mode). To deploy
a standalone Zookeeper quorum, you can refer to any of these blogs at http://
www.protechskills.com/big-data/hadoop-ecosystem/zookeeper/zookeeper-
standalone-installation or http://zookeeper.apache.org/doc/trunk/
zookeeperStarted.html.

Download, extract, and prepare the Storm bundle
You can download a Storm bundle from the official download page at
https://storm.apache.org/downloads.html or from the Apache archive.
Extract the download Storm bundle on your node using the tar command.

wgethttp://archive.apache.org/dist/storm/apache-storm-0.9.3/apache-storm-
0.9.3.tar.gz
tar -xvzf apache-storm-0.9.3.tar.gz

Storm-Yarn is an open source project available on GitHub. You can access the project
at https://github.com/yahoo/storm-yarn. You can download the source code
as a ZIP file from the GitHub page we mentioned. You will need to extract the file
contents and change the current working directory to the extracted folder.

wget https://github.com/yahoo/storm-yarn/archive/master.zip
unzip storm-yarn-master.zip
cd storm-yarn-master

Chapter 12

[235]

To prepare the bundle for YARN, you need to execute a script and create a ZIP
file (storm.zip) containing Storm libraries. You need to execute the following
commands to prepare a storm ZIP file:

/create-tarball.sh lib/storm.zip
cd lib
unzip storm.zip
cp storm-0.9.0-wip21 storm-0.9.3
zip -r storm.zip storm-0.9.3

Copy Storm ZIP to HDFS
You need to create a directory for the Storm library in Hadoop HDFS. Log in to a
Hadoop node or a Hadoop client node and execute the following commands to
create the required directory and copy the storm.zip file to HDFS:

hdfsdfs -mkdir -p '/lib/storm/0.9.3'
hadoop fs -put '/opt/storm-yarn-
master/lib/storm.zip''/lib/storm/0.9.3/'

Configuring the storm.yaml file
Before running the launch command, you need to configure the storm.yaml file.
You can edit the file in the configuration folder apache-storm-0.9.3/conf of the
storm folder extracted in the step 2 (a).

You need to add the configuration for your Zookeeper quorum, the initial number
of supervisor nodes required and the size of the Storm master service (the
ApplicationMaster for Strom) in MB using the following properties:

storm.zookeeper.servers:
 - "server1"
master.initial-num-supervisors: 1
master.container.size-mb: 256

Launching the Storm-YARN cluster
To launch the Storm-Yarn cluster, you will need to execute the following storm-yarn
executable in the bin folder of the bundle extracted in step 2 (b).

bin/storm-yarn launch apache-storm-0.9.3/conf/storm.yaml

Real-time Data Analytics Using YARN

[236]

You can refer to the ResourceManager UI of Hadoop-YARN cluster http://<Resou
rceManagerHost>:8088/ to view details of a new application related to the Storm-
Yarn cluster:

You can also execute the jps command on the nodes to view the MasterServer,
Nimbus, core and Supervisor services running in the cluster:

Chapter 12

[237]

Managing Storm on YARN
The storm-yarn executable file that was used in step 5 in the preceding section to
launch the Storm-Yarn cluster is used to manage the cluster as well.

Here are a few options for the storm-yarn command:

• help

• launch

• shutdown

• addSupervisors-setStormConfig

• getStormConfig

• startNimbus

• stopNimbus-startUI

• stopUI

• startSupervisors

• stopSupervisors

The command to get the storm.yaml configuration file on the local filesystem is:

storm-yarn getStormConfig –appId <Application-ID> --output <path to
storm.yaml>

You need to replace <Application-ID> with the actual application ID retrieved
from the ResourceManager UI. You also need to specify the local filesystem path to
store the storm.yaml file. The final command will look like this:

storm-yarn getStormConfig --appId application_23232344_001 --output
/home/hduser/storm.yaml

To read more about these commands and arguments required, you can
refer to the StormMasterCommand class at https://github.com/
yahoo/storm-yarn/blob/master/src/main/java/com/yahoo/
storm/yarn/StormMasterCommand.java.
Similar to the MapReduce in Hadoop, Storm master communicates
with the ResourceManager using StormAMRMClient service. To read
about the service, you can refer to the class at https://github.com/
yahoo/storm-yarn/blob/master/src/main/java/com/yahoo/
storm/yarn/StormAMRMClient.java.

Real-time Data Analytics Using YARN

[238]

The integration of HAMA and Giraph
with YARN
Apache HAMA is a distributed computing framework based on Bulk
Synchronous Parallel algorithms. It provides high performance computing
for performance-intensive, scientific, and iterative algorithms such as Matrix,
Graph, and Machine Learning.

HAMA consists of three major components:

• BSPMaster
• GroomServers
• Zookeeper

Deploying HAMA with YARN is a simple process and you can refer to the
following references:

• http://wiki.apache.org/hama/GettingStartedYARN

• http://wiki.apache.org/hama/GettingStarted/Properties

Apache Giraph is a framework for iterative processing of semi-structured graphs.
It is inspired from Google's Pregel, which is also a graph processing framework.
Giraph is also based on a Bulk Synchronous Parallel model of distributed computing.

For more details on Giraph, you can refer to the official website at
http://giraph.apache.org/.

Initially, Giraph was used with the MapReduce framework for Hadoop 1.x. There were
a few concerns, such as:

• Defining cluster resource requirements as Map / Reduce slots
• No control over resource allocation
• Inappropriate UI to monitor the progress and statistics

Use of YARN allows Giraph to define its own ApplicationMaster and resource
allocations policies. Giraph applications can be easily monitored using a customized
web application for GiraphApplicationMaster as well.

To read more about submitting Giraph jobs to the Hadoop-YARN cluster, you can
refer to the documentation at http://giraph.apache.org/quick_start.html.

Chapter 12

[239]

Summary
YARN is used as a generic resource manager for distributed applications. YARN allows
easy resource scheduling and application execution over a cluster of nodes. YARN is
being integrated with different big data technologies such as Apache Storm, Spark, and
so on. In this chapter, you learned about the Spark-YARN architecture and how you
can submit Spark jobs on YARN. You also learned about the integration of Storm on
YARN and how you can manage the storm services through YARN. This chapter also
covered a brief overview of the integration of HAMA and Giraph with YARN.

[241]

Index
A
ACLs

administration ACL 219
application ACL 223
queue ACL 222
service-level ACL 220-222
type 219
working with 218

ACLs, configuring through
hadoop-policy.xml file

security.applicationclient.protocol.acl 220
security.applicationmaster.protocol.acl 221
security.containermanagement.protocol.

acl 221
security.resourcelocalizer.protocol.acl 221
security.resourcemanager-administration.

protocol.acl 220
security.resourcetracker.protocol.acl 220

admin commands, ResourceManager's
High Availability

yarn rmadmin -getServiceState rm1 62
yarn rmadmin -transitionToActive rm1 62
yarn rmadmin -transitionToStandby

rm1 62
administration ACL 219
administration commands, Hadoop-YARN

about 42
daemonlog 44
NodeManager 42
ProxyServer 42
ResourceManager 42
rmadmin 43

Ambari
URL 35

Apache 13

Apache Hadoop
hardware requisites 15
software requisites 15

Apache Hadoop 2.x
components 14
master processes 14

Apache Knox
about 225
URL 225

Apache Ranger
about 224
URL 224

Apache YARN
URL 60

application
ApplicationMaster, defining 133-139
client classes, creating 133, 140-146
Java project, creating 132, 133
project, exporting 147
resources, copying 147
running, bin/yarn command used 148
writing 132

application ACL 223
application attempts

example 173
URI 173

application attempt view, ResourceManager
service 85, 94-96

ApplicationClientProtocol interface 129, 130
application command

about 39
command options 39, 40
sample output 39

application execution flow
about 65
application completion phase 71

[242]

application initialization and submission
phase 66, 67

ApplicationMaster, registering 68
ApplicationMaster, starting 67
application progress report 70
containers, launching 69
containers, monitoring 69
memory, allocating 67
resource allocation 68

ApplicationHistoryProtocol
about 130
URL 130

application logs 80
ApplicationMaster 6, 84
ApplicationMaster metadata

example 176
URI 176

ApplicationMasterProtocol interface 130
ApplicationMaster summary, MapReduce

ApplicationMaster REST APIs
ApplicationMaster metadata 176

applications list
about 174
example 172-174
query parameter list 172-174
URI 172, 174

ApplicationsManager (AsM) 6
applications, NodeManager REST APIs

about 174
applications list 174
single application information 174

applications, ResourceManager REST APIs
application attempts 173
applications list 171
applications statistics 172
query parameter list 172
single application information 173

applications statistics
example 172
query parameter list 173
URI 172

ApplicationSubmissionContext class
about 128
URL 128

application view, NodeManager
service 103-105

application view, ResourceManager
service 85-91

architecture, ResourceManager High
Availability 55

authorization checks
administer queue 222
application submission 222

B
bin command

used, for running application 148

C
CapacityScheduler

about 208
configuring 209, 210
features 208

CapacityScheduler Queue (CSQueue)
about 199
properties 199, 200

classes, YARN client API
AHSClient / TimelineClient 131
AMRMClient / AMRMClientAsync 131
NMClient / NMClientAsync 131
YarnClient 131

classpath command 42
client and admin interfaces,

ResourceManager
about 152
AdminService 153
ClientRMService 152, 153

ClientRMService
application requests 152
cluster metrics 152
security 152
URL 153

Cloudera
about 13
URL 117

Cloudera installation 35
Cloudera Manager

URL 35
cluster metadata

example 170
URI 170

[243]

cluster metrics
example 170
URI 170

cluster metrics, ResourceManager service
URL 168

cluster summary, ResourceManager
REST APIs

cluster metadata 170
cluster metrics 170

communication protocols
about 129
ApplicationClientProtocol

interface 129, 130
ApplicationHistoryProtocol interface 130
ApplicationMasterProtocol interface 130
ContainerManagementProtocol

interface 130
components, MapReduce system

JobTracker 2, 3
TaskTracker 3

components, ResourceManager
ApplicationsManager (AsM) 6
Scheduler 6

components, YARN
about 5
ApplicationMaster 6
container 7
NodeManager 6
ResourceManager 6

configuration changes, migration steps
from MRv1 to MRv2

MapReduce framework 117
resource capability 119
ResourceManager host 117
scheduler configuration 118
shuffle service 118

configuration, ResourceManager's
High Availability

about 57
automatic failover 61
failover proxy provider 60
nodes, defining 58
RM state store mechanism 58, 59

container 7
container failure 78
ContainerLaunchContext class

about 128

URL 129
container management, NodeManager

about 159
auxiliary service 160
ContainerExecutor 159
ContainersLauncher 159
ContainersMonitor 160
log aggregation 160
LogHandler 160
ResourceLocalizationService 159

ContainerManagementProtocol
interface 130

containers list
about 175
example 175
URI 175

containers, NodeManager REST APIs
about 174
containers list 175
single container information 175

container view, NodeManager
service 103-107

container view, ResourceManager
service 85, 99-102

core interfaces, ResourceManager
about 153
RMAppManager 154
RMStateStore 154
SchedulingMonitor 154
YarnScheduler class 153

core-site.xml file 24
curl command

about 185
options 185
syntax 185
URL 185
used, for calling REST API 185

D
daemonlog command

about 44
command options 44

DataNode 14
data processing, Spark

URL 228

[244]

deploy modes, Spark-on-YARN
yarn-client 229
yarn-cluster 229

directory structure, resource localization
about 164
application 165
private 165
public 164

E
event 84
event handle 84

F
failover mechanisms, ResourceManager's

High Availability
automatic failover 57
manual failover 56

failures, YARN
container failure 78
handling 78
NodeManager failure 79
ResourceManager failure 79

fair scheduler 197
about 203
configuring 206-208
hierarchical queues 204
schedulable 204
scheduling policy 205
URL 205

FairScheduler Queue (FSQueue)
about 201
elements 201, 202

Firefox
RESTClient, using in 181, 182

First In First Out (FIFO) 118

G
Ganglia

about 53
integrating, with Hadoop 54, 55
URL, for documentation 54

Ganglia daemons
about 54
metadata daemon (gmetad) 54

monitoring daemon (gmond) 54
web application 54

Ganglia monitoring, YARN services
about 53
Ganglia daemons 54
Ganglia, integrating with Hadoop 54, 55

Giraph
about 11
integrating, with YARN 238
URL 11

Giraph jobs, Hadoop-YARN cluster
URL, for documentation 238

H
Hadoop

about 1
Ganglia, integrating with 54, 55
URL 11

Hadoop configuration files
core-site.xml file 24
hadoop-env.sh file 26
hdfs-site.xml file 24
mapred-site.xml file 25
slaves file 26
yarn-env.sh file 26
yarn-site.xml file 25

Hadoop Distributed File System. See HDFS
hadoop-env.sh file 26
Hadoop-YARN

capacity scheduler 197
fair scheduler 197

Hadoop-YARN cluster
about 13
supported platforms 15

Hadoop-YARN commands
administration commands 42
user commands 38
using 37, 38

Hadoop-YARN multi-node installation
about 30
prerequisites 30
steps 31

Hadoop-YARN services
configuring 44
managing 49
NodeManager service 46

[245]

pid files, managing 50
ports summary 48
ResourceManager service 44, 45
service logs, managing 50
Timeline server 46, 47
web application proxy server 48

Hadoop-YARN single node installation
about 22
prerequisites 22
steps 22

HAMA
about 238
components 238
integrating, with YARN 238
URL 11

HBase
URL 11

HDFS
about 1
Storm ZIP, copying to 235

hdfs-site.xml file 24
health checker script, NodeManager 62-64
high-level architecture, MapReduce

framework
MapReduce API 2
MapReduce framework 2
MapReduce system 2

high-level changes, from MRv1 to MRv2
about 115
evolution, of MRApplicationMaster

service 115, 116
fair scheduler 116
hierarchical queues 116
pluggable shuffle 116
resource capability 116
task execution, as containers 116

Hortonworks
about 13
URL, for selecting nodes 15

Hortonworks installation 35

I
implementation of SecretManager, YARN

AMRMTokenSecretManager 221
BaseClientToAMTokenSecretManager 221
BaseContainerTokenSecretManager 222

BaseNMTokenSecretManager 221

J
jar command 38
Java API 185
Java compatibility, with Hadoop

URL 18
Java Cryptography Extension (JCE) 221
Java installation, on Ubuntu

URL, for blog 18
JMX monitoring, YARN services

about 51
NodeManager JMX beans 53
ResourceManager JMX beans 52

job attempts
example 177
URI 177

job configuration
example 177
URI 177

job counters
example 177
URI 177

jobs list
example 176
URI 176

jobs, MapReduce ApplicationMaster
REST APIs

job attempts 177
job configuration 177
job counters 177
jobs list 176
single job information 176

JobTracker
about 114
functionalities 2, 3
URL 4

jps command
about 17
URL 17

K
Kerberos

about 217
URL 218

[246]

Kerberos entities
keytab 217
principal 217
realm 217

key distribution center (KDC) 217

L
Linux commands / utilities

about 16
jps command 17
man command 17
nano editor 16
netstat command 17
source command 16
sudo command 16

localized resource view, NodeManager
service 103-108

logs command
about 41
command options 41

log types, container
stderr 80
stdout 80
syslog 80

M
man command

about 17
URL 17

man pages 17
mapred-default.xml file

reference link 223
mapred-site.xml file 25
MapReduce

about 2
URL 11

MapReduce ApplicationMaster REST APIs
about 175
ApplicationMaster summary 176
Jobs 176
Tasks 178

MapReduce framework
high-level architecture 2

MapReduce HistoryServer REST APIs
about 179
URL 180

MapReduce system
components 2

MapReduce v1
about 2
shortcomings 3-5

master processes, Apache Hadoop 2.x
NameNode 14
ResourceManager 14

memory configuration settings, HDP
reference link 119

methods, secure Hadoop-YARN cluster
authentication, enabling with Kerberos 217
authorization, enabling with Access

Control Lists 216
dedicated user group, using for

Hadoop-YARN daemons 214
HTTPS protocol, enabling 216
permissions, validating to YARN

directories 215
migration steps, from MRv1 to MRv2

about 117
binary / source compatibility 120
configuration changes 117

MRApplicationMaster service
functionalities 115

MRAppMaster class
reference link 116

MRv1 114
MRv1 apps

monitoring 120-122
running, on YARN 120-122

N
NameNode 14
nano editor

about 16
URL 16

netstat command
about 17
URL 17

node command
about 40
command options 40, 41
sample output 40, 41

NodeManager
about 6, 14, 42, 156

[247]

container management 159
health checker script 62-64
health, monitoring 62
security and token managers 161
state and health management 158
status updates 157

NodeManager failure 79
NodeManager interfaces

about 155
ApplicationMasterLauncher 155
NMLivelinessMonitor 155

NodeManager JMX beans
about 53
JvmMetrics 53
NodeManagerMetrics 53
RpcActivity 53
ShuffleMetrics 53
UgiMetrics 53

NodeManager REST APIs
about 173
applications 174
containers 174
node summary 174
URL 175

NodeManager service
about 46, 84, 103
application view 103-105
container view 103-107
localized resource view 103-108

node metadata
example 174
URI 174

node, preparing for Hadoop-YARN cluster
about 18
domain name resolution, configuring 20
firewall, disabling 19
Hadoop dedicated user and group,

creating 19
Java, installing 18
open Hadoop ports, disabling 19
passwordless SSH, configuring from

master to all slaves 21
SSH, installing 21

nodes list
example 171
URI 171

nodes, ResourceManager REST APIs
about 171
nodes list 171
single node information 171

node summary, NodeManager REST APIs
node metadata 174

node view, ResourceManager service 85-88

O
octal code, for directory / file permissions

reference link 215
open Hadoop ports

references 19
OpenMPI

URL 11
Oracle Virtualbox

URL 15

P
pid files, Hadoop-YARN services

managing 50
placeholders, YARN REST services

http address of service 168
resourcepath 168
version 168

projects, YARN
Giraph 11
HAMA 11
HBase 11
MapReduce 11
OpenMPI 11
Spark 11
Storm 11

ProxyServer 42

Q
query parameter list, applications list

applicationTags 172
applicationTypes 172
finalStatus 172
finishedTimeBegin 172
finishedTimeEnd 172
limit 172
queue 172

[248]

startedTimeBegin 172
startedTimeEnd 172
state 174
states 172
user 172-174

query parameter list, applications statistics
applicationTypes 173
States 173

Queue Access Control List 198
QueueInfo object 198
QueueMetrics class 198
queue object

queue information 198
queue name 198

queues
CapacityScheduler Queue (CSQueue) 199
FairScheduler Queue (FSQueue) 201
overview 197
types 199

R
Random Access Memory (RAM) 195
resource localization, YARN

directory structure 164
handling 162
LocalizerRunner 164
LocalizerTracker 164
LocalResource 163
PublicLocalizer 164
ResourceState 163

ResourceManager
about 14, 42, 151
client and admin interfaces 152
components 6
core interfaces 153
NodeManager interfaces 155
security 155
token managers 155

ResourceManager failure 79
ResourceManager JMX beans

about 52
ClusterMetrics 52
RpcActivity 52
UgiMetrics 52

ResourceManager REST APIs
about 170
applications 171
cluster summary 170
nodes 171
scheduler details 171
URL 173

ResourceManager service
about 44, 45, 84, 85
application attempt view 85, 94-96
application view 85-91
container view 85, 99-102
JSON response 183
node view 85-88
view response 183
XML response 183

ResourceManager's High Availability
about 55
architecture 55, 56
configuring 57
failover mechanisms 56

ResourceManager services
classes 85
enumerations 85

ResourceManager web UI
URL 64

REST API
about 167
calling, curl used 185

RESTClient plugin
about 180
URL 180
using, in Firefox 181, 182

REST services
accessing 180
URL 167

RHEL (RedHat Enterprise Linux) 15
rmadmin command

about 43
options 43

runnable jar
creating 186-194
executing 186-194

[249]

S
sample application, YARN web

user-interface
running 29
URL 30

sample MapReduce application submission
about 72
application details, after completion 77
application details, tracking 74, 75
ApplicationMaster process 75
application process 74
application, submitting to cluster 72, 73
cluster nodes information 76
container list 76
updates, in ResourceManager web UI 73
YARN child process 77

scheduler details, ResourceManager
REST APIs

about 171
example 171
URI 171

Scheduler Load Simulator (SLS), YARN 162
schedulers

about 202
CapacityScheduler 208
fair scheduler 203

scheduling 196
scripts, YARN

command syntax 49
start-yarn.sh 49
stop-yarn.sh 49
yarn-daemon.sh 49

security
adding, to YARN cluster 213

security and token managers, NodeManager
about 161
NMContainerTokenSecretManager 161
NMTokenSecretManagerInNM 161

security and token managers,
ResourceManager

about 155
QueueACLsManager 156
RMAuthenticationHandler 156
TokenSecretManager 156

security frameworks
about 224

Apache Knox 225
Apache Ranger 224

service-level ACL 220-222
service logs, Hadoop-YARN services

managing 50
services logs 80
single application information

example 173, 174
URI 173, 174

single container information
example 175
URI 175

single job information
example 176
URI 176

single node information
example 171
URI 171

single task attempt information
example 179
URI 179

single task information
example 178
URI 178

slaves file 26
Slider

URL 149
source command

about 16
URL 16

Spark
about 11, 228
integrating, with YARN 228
running, on YARN 228-231
URL 11

Spark-Hadoop bundle
URL, for downloading 229

Spark-on-YARN
URL 232

standalone Zookeeper quorum
URL 234

state 84
state and health management,

NodeManager
about 158
NMStateStoreService 159
NodeHealthCheckerService 158

[250]

state management analogy 83, 84
state transition 84
status updates, NodeManager

about 157
NodeManagerMetrics 158
NodeStatusUpdater 157

steps, Hadoop-YARN multi-node
installation

about 31
environment variables, configuring

on slave nodes 33
Hadoop daemons, starting 34, 35
Hadoop folder, copying to slave nodes 33
master node, configuring as single-node

Hadoop-YARN installation 31, 32
NameNode, formatting 34

steps, Hadoop-YARN single node
installation

about 22
environment variables, configuring 23
Hadoop bundle, downloading 23
Hadoop bundle, extracting 23
Hadoop configuration files, configuring 24
Hadoop daemons, starting 27
NameNode, formatting 27

Storm
about 232
integrating, with YARN 232
managing, on YARN 237
running, on YARN 233
URL, for official documentation 232

StormAMRMClient service
reference link 237

Storm bundle
URL, for downloading 234

Storm cluster mode deployment
URL, for official documentation 233

StormMasterCommand class
reference link 237

storm.yaml file
configuring 235

Storm-YARN cluster
launching 235, 236

Storm ZIP
copying, to HDFS 235

sudo command
about 16
URL 16

system hostname, modifying in Linux
URLs, for blog 20

T
task attempt counters

example 179
URI 179

task attempts
example 178
URI 178

task counters
example 178
URI 178

tasks list
example 178
URI 178

Tasks, MapReduce ApplicationMaster
REST APIs

about 178
single task attempt information 179
single task information 178
task attempt counters 179
task attempts 178
task counters 178
task list 178

TaskTracker
functionalities 3

Timeline server
about 46
reference link 47

transitions, analyzing through logs
about 109
application submission 110
container resource allocation 110
NodeManager registration,

with ResourceManager 109
resource localization 111

Twill
URL 149

[251]

U
Ubuntu

URL, for documentation 19-21
user commands, Hadoop-YARN

about 38
application 39
classpath 42
jar 38
logs 41
node 40, 41
version 42

V
version command 42

W
web application proxy server 48, 162
web user interfaces 28, 29

Y
YARN

about 1, 13, 126
benefits 8-10
components 5
Giraph, integrating with 238
HAMA, integrating with 238
MRv1 apps, running on 120-122
projects 11
resource localization, handling 162
Scheduler Load Simulator (SLS) 162
scripts 49
Spark, integrating with 228
Spark, running on 228-231
Storm, integrating with 232
Storm, managing on 237
Storm, running on 233
Timeline server 161

YARN application logging
about 80
application logs 80
services logs 80

YARN architecture 7, 8

YARN client API
about 131
classes 131
URL 131

YARN cluster
security, adding to 213

yarn command
used, for running application 148

YARNConfiguration class
about 126
final properties 127
resources, loading 126
URL, for documentation 128
variable expansion 127

yarn-env.sh file 26
YARN ResourceManager

web-interface 29
YARN REST services

about 168
HTTP request 168
HTTP response 168
placeholders 168
response, with error 169
successful response 168

YARN schedulers 196
YARN services

monitoring 51
monitoring, Ganglia used 53
monitoring, JMX used 51

yarn-site.xml file 25
Yet Another Resource Negotiator.

See YARN

Z
Zookeeper

URL, for documentation 59-61
Zookeeper ACLs

about 220
URL 220

Zookeeper Quorum
creating 234

Thank you for buying
Learning YARN

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

YARN Essentials
ISBN: 978-1-78439-173-7 Paperback: 176 pages

A comprehensive, hands-on guide to install,
administer, and configure settings in YARN

1. Learn the inner workings of YARN and
how its robust and generic framework
enables optimal resource utilization
across multiple applications.

2. Get to grips with single and multi-node
installation, administration, and real-time
distributed application development.

3. A step-by-step self-learning guide to help
you perform optimal resource utilization
in a cluster.

Hadoop Backup and
Recovery Solutions
ISBN: 978-1-78328-904-2 Paperback: 206 pages

Learn the best strategies for data recovery from
Hadoop backup clusters and troubleshoot problems

1. Learn the fundamentals of Hadoop’s backup
needs, recovery strategy, and troubleshooting.

2. Determine common failure points, intimate
HBase, and explore different backup techniques
to resolve failures.

3. Explore common issues and their solutions
using in-depth knowledge of Hadoop.

Please check www.PacktPub.com for information on our titles

Mastering Hadoop
ISBN: 978-1-78398-364-3 Paperback: 374 pages

Go beyond the basics and master the next generation
of Hadoop data processing platforms

1. Learn how to optimize Hadoop MapReduce,
Pig and Hive.

2. Dive into YARN and learn how it can integrate
Storm with Hadoop.

3. Understand how Hadoop can be deployed
on the cloud and gain insights into analytics
with Hadoop.

Hadoop MapReduce v2 Cookbook
Second Edition
ISBN: 978-1-78328-547-1 Paperback: 322 pages

Explore the Hadoop MapReduce v2 ecosystem to
gain insights from very large datasets

1. Process large and complex datasets using next
generation Hadoop.

2. Install, configure, and administer
MapReduce programs and learn what's
new in MapReduce v2.

3. More than 90 Hadoop MapReduce recipes
presented in a simple and straightforward
manner, with step-by-step instructions and
real-world examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with YARN Basics
	Introduction to MapReduce v1
	Shortcomings of MapReducev1
	An overview of YARN components
	ResourceManager
	NodeManager
	ApplicationMaster
	Container

	The YARN architecture
	How YARN satisfies big data needs
	Projects powered by YARN
	Summary

	Chapter 2: Setting up a
Hadoop-YARN Cluster
	Starting with the basics
	Supported platforms
	Hardware requirements
	Software requirements
	Basic Linux commands / utilities
	Sudo
	Nano editor
	Source
	Jps
	Netstat
	Man

	Preparing a node for a Hadoop-YARN cluster
	Install Java
	Create a Hadoop dedicated user and group
	Disable firewall or open Hadoop ports
	Configure domain name resolution
	Install SSH and configure passwordless SSH from the master to all slaves

	The Hadoop-YARN single node installation
	Prerequisites
	Installation steps
	Step 1 – Download and extract the Hadoop bundle
	Step 2 – Configure the environment variables
	Step 3 – Configure the Hadoop configuration files
	Step 4: Format NameNode
	Step 5: Start Hadoop daemons

	An overview of web user interfaces
	Run a sample application

	The Hadoop-YARN multi-node installation
	Prerequisites
	Installation steps
	Step 1: Configure the master node as a single-node Hadoop-YARN installation
	Step 2: Copy the Hadoop folder to all the
slave nodes
	Step 3: Configure environment variables on
slave nodes
	Step 4: Format NameNode
	Step 5: Start Hadoop daemons

	An overview of the Hortonworks and Cloudera installations
	Summary

	Chapter 3: Administering a
Hadoop-YARN Cluster
	Using the Hadoop-YARN commands
	The user commands
	Jar
	Application
	Node
	Logs
	Classpath
	Version

	Administration commands
	ResourceManager / NodeManager / ProxyServer
	RMAdmin
	DaemonLog

	Configuring the Hadoop-YARN services
	The ResourceManager service
	The NodeManager service
	The Timeline server
	The web application proxy server
	Ports summary

	Managing the Hadoop-YARN services
	Managing service logs
	Managing pid files

	Monitoring the YARN services
	JMX monitoring
	The ResourceManager JMX beans
	The NodeManager JMX beans

	Ganglia monitoring
	Ganglia daemons
	Integrating Ganglia with Hadoop

	Understanding ResourceManager's High Availability
	Architecture
	Failover mechanisms
	Configuring ResourceManager High Availability
	Define nodes
	The RM state store mechanism
	The failover proxy provider
	Automatic failover

	High Availability admin commands

	Monitoring NodeManager's health
	The health checker script

	Summary

	Chapter 4: Executing Applications
Using YARN
	Understanding application execution flow
	Phase 1 – application initialization and submission
	Phase 2 – allocate memory and start ApplicationMaster
	Phase 3 – ApplicationMaster registration and resource allocation
	Phase 4 – launch and monitor containers
	Phase 5 – application progress report
	Phase 6 – application completion

	Submitting a sample MapReduce application
	Submitting an application to the cluster
	Updates in ResourceManager web UI
	Understanding the application process
	Tracking application details
	The ApplicationMaster process
	Cluster nodes information
	Node's container list
	YARN child processes
	Application details after completion

	Handling failures in YARN
	The container failure
	The NodeManager failure
	The ResourceManager failure

	YARN application logging
	Services logs
	Application logs

	Summary

	Chapter 5: Understanding YARN Life Cycle Management
	An introduction to state management analogy
	The ResourceManager's view
	View 1 – Node
	View 2 – Application
	View 3 – An application attempt
	View 4 – Container

	The NodeManager's view
	View 1 – Application
	View 2 – Container
	View 3 – A localized resource

	Analyzing transitions through logs
	NodeManager registration with ResourceManager
	Application submission
	Container resource allocation
	Resource localization

	Summary

	Chapter 6: Migrating from MRv1
to MRv2
	Introducing MRv1 and MRv2
	High-level changes from MRv1 to MRv2
	The evolution of the MRApplicationMaster service
	Resource capability
	Pluggable shuffle
	Hierarchical queues and fair scheduler
	Task execution as containers

	The migration steps from MRv1 to MRv2
	Configuration changes
	The binary / source compatibility

	Running and monitoring MRv1 apps on YARN
	Summary

	Chapter 7: Writing Your Own YARN Applications
	An introduction to the YARN API
	YARNConfiguration
	Load resources
	Final properties
	Variable expansion

	ApplicationSubmissionContext
	ContainerLaunchContext
	Communication protocols
	ApplicationClientProtocol
	ApplicationMasterProtocol
	ContainerManagementProtocol
	ApplicationHistoryProtocol

	YARN client API

	Writing your own application
	Step 1 – Create a new project and add Hadoop-YARN jar files
	Step 2 – Define the ApplicationMaster and client classes
	Define an ApplicationMaster
	Define a YARN client

	Step 3 – Export the project and copy resources
	Step 4 – Run the application using bin/the yarn command

	Summary

	Chapter 8: Dive Deep into YARN Components
	Understanding ResourceManager
	The client and admin interfaces
	The core interfaces
	The NodeManager interfaces
	The security and token managers

	Understanding NodeManager
	Status updates
	State and health management
	Container management
	The security and token managers

	The YARN Timeline server
	Web application proxy server
	YARN Scheduler Load Simulator (SLS)
	Handling resource localization in YARN
	Resource localization terminologies
	The resource localization directory structure

	Summary

	Chapter 9: Exploring YARN
REST Services
	Introduction to YARN REST services
	HTTP request and response
	Successful response
	Response with an error

	ResourceManager REST APIs
	The cluster summary
	Scheduler details
	Nodes
	Applications

	NodeManager REST APIs
	The node summary
	Applications
	Containers

	MapReduce ApplicationMaster REST APIs
	ApplicationMaster summary
	Jobs
	Tasks

	MapReduce HistoryServer REST APIs
	How to access REST services
	RESTClient plugins
	Curl command
	Java API

	Summary

	Chapter 10: Scheduling YARN Applications
	An introduction to scheduling in YARN
	An overview of queues
	Types of queues
	CapacityScheduler Queue (CSQueue)
	FairScheduler Queue (FSQueue)

	An introduction to schedulers
	Fair scheduler
	Hierarchical queues
	Schedulable
	Scheduling policy
	Configuring a fair scheduler

	CapacityScheduler
	Configuring CapacityScheduler

	Summary

	Chapter 11: Enabling Security in YARN
	Adding security to a YARN cluster
	Using a dedicated user group for
Hadoop-YARN daemons
	Validating permissions to YARN directories
	Enabling the HTTPS protocol
	Enabling authorization using Access
Control Lists
	Enabling authentication using Kerberos

	Working with ACLs
	Defining an ACL value
	Type of ACLs
	The administration ACL
	The service-level ACL
	The queue ACL
	The application ACL

	Other security frameworks
	Apache Ranger
	Apache Knox

	Summary

	Chapter 12: Real-time Data Analytics Using YARN
	The integration of Spark with YARN
	Running Spark on YARN

	The integration of Storm with YARN
	Running Storm on YARN
	Create a Zookeeper quorum
	Download, extract, and prepare the Storm bundle
	Copy Storm ZIP to HDFS
	Configuring the storm.yaml file
	Launching the Storm-YARN cluster

	Managing Storm on YARN

	The integration of HAMA and Giraph
with YARN
	Summary

	Index

