
www.allitebooks.com

http://www.allitebooks.org


Learning Yeoman

Design, implement, and deliver a successful modern 
web application project using three powerful tools in  
the Yeoman workflow

Jonathan Spratley

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Learning Yeoman

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1120814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-138-0

www.packtpub.com

Cover image by Tony Shi (shihe99@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Jonathan Spratley

Reviewers
Lauren Bridge

Dejan Markovic

Matt Momont

Commissioning Editor
Edward Gordon

Acquisition Editors
Sam Birch

Ellen Bishop

Content Development Editor
Rikshith Shetty

Technical Editor
Neha Mankare

Copy Editors
Janbal Dharmaraj

Karuna Narayanan

Alfida Paiva

Project Coordinators
Melita Lobo

Kartik Vedam

Proofreaders
Simran Bhogal

Lauren Harkins

Lawrence Herman

Joanna McMahon

Indexers
Hemangini Bari

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org


About the Author

Jonathan Spratley, or as his friends call him, Jonnie, is currently working at GE 
Software and actively uses technologies such as Yo, Bower, Grunt, Node, AngularJS, 
and Backbone. He leveraged his knowledge of creating Yeoman web applications 
to write this book. He started developing with HTML, CSS, and JavaScript around 
2004 and has spent several years designing and implementing web applications for 
both mobile and desktop browsers. He is a full-stack developer with experience 
in both server- and client-side technologies. His passion for tools and technologies 
that streamline a developer's productivity has driven him to become an autodidact. 
He has written articles for Safari Books Online Blog, and Flash & Flex Developer's 
Magazine. This is his first time as an author.

I would like to dedicate this book to all those who believed in me.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Lauren Bridge is a software engineer on the Predix platform team at GE Software. 
She earned her BS in Computer Science from the University of Michigan and  
is working on her MCS at the University of Illinois at Urbana-Champaign. She 
mostly develops in JavaScript and Java, and she enjoys learning more frontend  
web technologies every day.

I would like to thank Jonnie for teaching me about Yeoman.

Dejan Markovic is an accomplished web developer who enjoys working on 
both frontend and backend technologies. Since 2003, he has added great value 
to numerous projects for small- and medium-sized businesses as well as major 
corporations such as Rogers Media and Softchoice. He is the co-owner of NYTO 
Group (New York City/Toronto Group), a premium web development company  
in Toronto, Canada.

NYTO Group's portfolio is available at http://nytogroup.com/portfolio/.  
NYTO Group is always looking for new projects and partnerships.

Matt Momont is a full-stack developer at GE Software working on the Industrial 
Internet—the Internet of (really big) Things. He holds a Computer Science degree 
from the University of Notre Dame and is currently pursuing his Masters in Computer 
Science at the University of Illinois at Urbana-Champaign. He likes Yeoman because it 
helps backend developers quickly scaffold out frontend web applications.

www.allitebooks.com

http://nytogroup.com/portfolio/
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com 
www.PacktPub.com
http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Modern Workflows for Modern Webapps	 7

An overview of Yeoman	 7
Yeoman's architecture	 8

Node's package manager	 8
Features of Yeoman	 8
Quick installation	 9

Installing Yeoman and friends	 9
Installing a generator	 10

Scaffolding with Yo	 10
Creating the project	 10
Invoking the generator	 10
Directory structure	 11

The build process	 12
The Connect LiveReload server	 13

Previewing the server	 13
Package management with Bower	 14
Code linting with JSHint	 16
Automation	 18
Testing with PhantomJS	 22

Running tests	 23
Optimizing for production	 24

Self-test questions	 26
Summary	 26

Chapter 2: Getting Started	 27
Yo – generators	 27

The Yeoman workflow	 28
Official generators	 28

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

The generator-webapp	 29
Features	 29
Installing the generator-webapp	 29
Using the generator-webapp	 29
Options	 30
Example usage	 30
Previewing	 30
Conclusion	 31

The generator-angular	 31
Features	 32
Installing the generator-angular	 32
Using the generator-angular	 32
Options	 32
Example usage	 32
Angular subgenerators	 33
Previewing	 35
Conclusion	 36

The generator-backbone	 36
Features	 36
Installing the generator-backbone	 36
Using the generator-backbone	 36
Options	 37
Example usage	 37
Backbone subgenerators	 37
Previewing	 38
Conclusion	 39

The generator-ember	 39
Features	 40
Installing the generator-ember	 40
Using the generator-ember	 40
Options	 40
Example usage	 40
Ember subgenerators	 41
Previewing	 42
Conclusion	 42

Self-test questions	 43
Summary	 43

Chapter 3: My Angular Project	 45
Anatomy of an Angular project	 45

Why Angular?	 46
Creating a new Angular project	 47

Installing the generator-angular	 47
Scaffolding the application	 47
Configuring the application	 49
Creating the application definition	 51
Creating the application controller	 52
Creating the application views	 53

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Customizing the main view	 56
Previewing the application	 57

Testing an Angular application	 58
Angular unit tests	 58
End-to-end tests with Protractor	 59

Angular controllers	 61
Creating controllers	 62
Using controllers	 62
Testing controllers	 63

Angular services	 64
Creating services	 64
Using services	 65
Testing services	 65

Angular filters	 67
Creating filters	 67
Using filters	 68
Testing filters	 68

Angular directives	 69
Creating directives	 69
Using directives	 70
Testing directives	 71

Angular views	 72
Creating the Angular views	 72

Self-test questions	 74
Summary	 75

Chapter 4: My Backbone Project	 77
Anatomy of the Backbone project	 77
The new Backbone project	 78

Installing the generator-backbone	 78
Scaffolding a Backbone application	 79

Understanding the directory structure	 80
Configuring the application	 81
Scaffolding the app view	 82

The Backbone app view	 82
The Handlebars app template	 83

Scaffolding the main view	 84
The Backbone main view	 84

Scaffolding the app router	 86
Bootstrapping the app	 87
Previewing the app	 88

Testing	 89
Configuration	 89
Unit testing	 91
End-to-end tests	 92

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Backbone.Events	 92
Creating events	 92
Using events	 92
Testing events	 93

Backbone.Model	 93
Scaffolding models	 94
Using the Backbone models	 95

Creating a model	 95
Updating a model	 95
Saving a model	 96
Destroying a model	 96
Validating a model	 96

Testing a model	 97
Backbone.Collection	 97

Creating collections	 98
Using collections	 99
Testing collections	 99

The Backbone view	 100
Creating views	 100
Using views	 100
Testing views	 102

Backbone.Router	 103
Creating routers	 103
Using routers	 103
Testing routers	 104

Self-test questions	 106
Summary	 106

Chapter 5: My Ember Project	 107
Anatomy of the Ember project	 107
The new Ember project	 108

Installing the generator-ember	 108
Scaffolding the application	 108
Understanding the directory structure	 109
Application configuration	 110
Application definition	 111
The application template	 112
The index template	 113
The feature component	 114
Previewing the application	 115

Testing	 116
The test helpers	 117



Table of Contents

[ v ]

Setup	 117
End-to-end integration tests	 118
Unit tests	 120

Ember Data	 121
Ember Data concepts	 122

Models	 122
Creating a model	 122
Methods	 122
Attributes	 123
Fixtures	 124

Records	 125
Finding all records	 125
Finding a single record	 125
Creating a record	 125
Deleting a record	 126

Routes	 126
Creating the routes	 126
Using routes	 127
Posts route	 128
Post route	 128
Posts edit route	 129

Templates	 129
Handlebar helpers	 129
Posts template	 130
Post template	 131
Posts edit template	 133

Controllers	 134
Post edit controller	 135

Self-test questions	 136
Summary	 136

Chapter 6: Custom Generators	 137
Anatomy of a generator	 137

Types of generators	 138
The new custom generator	 138

Installing the generator-generator	 138
Using generator-generator	 138
Understanding the directory structure	 139
Adding logic to the generator	 140

Initializing the generator	 141
Asking questions to the user	 141
Copying the project files	 143



Table of Contents

[ vi ]

Copying the application files and folders	 144
Installing dependencies with Bower	 145

Creating custom templates	 146
Creating the Gruntfile.js file	 146
Creating the package.json file for npm	 149
Creating the .editorconfig file for IDEs	 149
Creating the .jshintrc file for JSHint	 150
Creating the .travis.yml file for Travis CI	 151
The .gitattributes file for Git	 151
The .gitignore file for Git	 151
Creating the .bowerrc file for Bower	 152
Creating the bower.json file for Bower	 152
Creating the application templates	 153

Testing a custom generator	 156
Setup	 156
Testing the generator output	 158
Test generator loading	 160

The new custom subgenerator	 162
Understanding the subgenerator's directory structure	 162
Creating subgenerator templates	 163
Adding logic to the subgenerator	 163
Using your custom generator	 164

Link your generator	 164
Scaffolding a new webapp	 165

Self-test questions	 167
Summary	 167

Chapter 7: Custom Libraries	 169
The new CommonJS project	 170

Installing the generator-commonjs	 170
Scaffolding a CommonJS project	 170
The CommonJS logic	 171

Module properties	 172
Connecting to MongoDB	 173
Finding all models	 174
Finding a model	 174
Creating a model	 175
Updating a model	 176

Testing a CommonJS project	 177
Test for no model	 179
Test finding all models	 179
Test finding one model	 180
Test creating a model	 180
Test updating a model	 181
Test destroying a model	 182

Deploying to npm	 183
Conclusion	 183



Table of Contents

[ vii ]

The new Node.js module project	 184
Installing the generator-node	 184
Scaffolding a Node.js module project	 184
The NodeJS module logic	 185
Testing a Node.js module	 186
Deploying	 189
Conclusion	 189

The new jQuery project	 189
Installing the generator-jquery	 189
Scaffolding a jQuery project	 190
Adding the plugin logic	 191

Testing a jQuery plugin	 192
Creating the unit test	 193

Deploying to Bower	 196
Conclusion	 196

Self-test questions	 197
Summary	 197

Chapter 8: Tasks with Grunt	 199
Overview on GruntJS	 199
Installing the Grunt CLI	 200

Installing Grunt	 200
Grunt usage	 201
Grunt options	 201

Installing the generator-gruntfile	 201
Using Grunt	 202

The package.json file	 202
The Gruntfile.js file	 203
Loading tasks	 203
Creating the alias tasks	 204
Multiple target tasks	 204
Registering the basic tasks	 205

The new project	 208
My custom Grunt plugin	 209

Installing the generator-gruntplugin	 209
Usage	 209
The directory structure	 209
The Grunt plugin logic	 210

Plugin options	 211
Using Grunt to read files	 211
Using Grunt to write files	 212

Testing a Grunt plugin	 213
Creating test fixtures	 214
Running the tests	 214



Table of Contents

[ viii ]

Deploying to npm	 215
Usage	 215

Self-test questions	 216
Summary	 216

Chapter 9: Yeoman Tips and Tricks	 217
WebApp generator solutions	 217

Creating a RESTful Node.js server	 218
Installing module dependencies	 218
Creating the server	 218
Configuring the server	 218
Configuring the data source	 219
Defining server routes	 220
Starting the server	 223
Running the server	 223
Testing the server	 223
Setting up the proxy server	 224

Conclusion	 225
Angular generator solutions	 226

Protractor e2e testing	 226
Installing Protractor	 226
Installing the grunt-protractor-runner	 227
Configuring the Protractor task	 227
Creating the Protractor configuration	 227
Creating an e2e spec	 229
Starting the Selenium WebDriver	 232
Starting the application	 233
Running e2e tests	 233

Backbone generator solutions	 233
Code coverage with Karma	 233

Installing Karma and plugins	 234
Karma configuration	 234
Configuring test-main.js	 236
Running tests	 237
Code coverage report	 238

Self-test questions	 238
Summary	 238

Appendix: Yeoman Resources	 239
Reference guides	 239

Yo – the scaffolding tool	 239
Usage	 239

Bower – the package tool	 240
Usage	 240
Commands	 240
Options	 240

Grunt – the build tool	 241



Table of Contents

[ ix ]

Usage	 241
Options	 241

Git	 242
Usage	 242
Commands	 242

Jasmine – behavior-driven JavaScript	 243
Structure of a suite	 243
Matchers	 243
Spy matchers	 244
Reserved words	 244

Installation guides	 245
Installing Git	 245

Installing Git on Windows	 245
Installing Git on Mac	 246

Installing Node.js and npm	 246
Installing Node on Windows	 246
Installing Node on Mac	 246

Installing Yo	 247
Installing Yo on Mac/Windows	 247

Installing Grunt	 247
Installing Grunt on Mac/Windows	 247

Installing Bower	 248
Installing Bower on Mac/Windows	 248

Self-test answers	 248
Summary	 253

Index	 255





Preface
Now is the time to start using a workflow that can keep up with the fast pace of the 
development world. Software changes so fast that keeping your project libraries 
updated and using the latest code has always been a manual, tedious process. Well, 
not anymore, thanks to modern tooling that has taken my development productivity 
to greater levels! I have been using Yeoman since the early versions, where Yeoman 
was the one tool that could do it all.

Since the Yeoman project grew, it has evolved into something I have always wanted 
in the web development community, such as code generators that can quickly 
scaffold out working applications that are in alignment with the best practices of that 
specific framework or language. Now, the time has come and Yeoman is going to 
take the development world by storm and grow into something that will become a 
standard in creating modern web applications.

This book is a compilation of using the most popular Yeoman generators on npm. 
We explore the options that each tool has to offer and use them to create various 
types of projects, ranging from AngularJS applications to Node.js modules. This  
book provides examples and information regarding the tools in Yeoman.

What this book covers
Chapter 1, Modern Workflows for Modern Webapps, is an overview of the three core tools 
used in the Yeoman workflow—Yo, Bower, and Grunt. We cover how to use these 
tools in development and how to incorporate the workflow into new or existing 
projects, followed by an example of each of the features in Yeoman.

Chapter 2, Getting Started, begins with installing Yeoman for development and an 
overview on the AngularJS, Backbone.js, Ember.js, and webapp generators, the options 
and subgenerators it uses, and examples of using each generator to start the project.



Preface

[ 2 ]

Chapter 3, My Angular Project, starts out with covering the concepts of Angular 
and the anatomy of an AngularJS application. We will use the generator-angular 
to scaffold an extendable AngularJS application that uses directives, services, and 
factories. We will cover setting up a CRUD application with unit tests that use the 
Karma runner.

Chapter 4, My Backbone Project, covers the anatomy of a Backbone.js project and the 
concepts behind the library. We create a Backbone application to perform CRUD 
operations on a data source that is unit tested using Jasmine. The project uses 
CoffeeScript, Require.js, and AMD to create a well-structured app ready for extending.

Chapter 5, My Ember Project, starts out by creating a new Ember.js project. We 
then cover how an Ember application is structured and the concepts around the 
framework, configuring a test environment that is used to run both unit and 
integration tests.

Chapter 6, Custom Generators, covers the Yeoman generator API and the common 
methods used when developing generators. We also cover installing and invoking 
the generator-generator to create a custom Yeoman generator with option prompts 
that scaffold a custom application based on users' feedback. We cover how to handle 
testing the generators using nodeunit and then we publish the generator to npm.

Chapter 7, Custom Libraries, covers using Yeoman to create custom libraries that are 
deployed to either Bower or npm. We learn how to use the Node.js generator and 
the CommonJS generator to create a Node module, followed by a client-side jQuery 
plugin that handles sending CRUD operations to a Node REST API server.

Chapter 8, Tasks with Grunt, starts out by covering all the available options when 
using the Grunt command. We install two Yeoman Grunt generators: the Gruntfile 
generator that enables adding Grunt to existing projects, and the Grunt plugin 
generator. We cover creating a custom Grunt task that is then deployed to npm  
along with unit tests using the nodeunit framework.

Chapter 9, Yeoman Tips and Tricks, aims to cover the holes from the Yeoman generators 
and specific projects. We cover adding code coverage to a Backbone.js project, as well 
as setting up Protractor to run end-2-end testing for our Angular project.



Preface

[ 3 ]

What you need for this book
You will need to have the following installed software on your development box in 
order to properly run the examples and tutorials in the chapters:

•	 Node 0.10.24
•	 NPM 1.4.7
•	 Git 1.8.5.2
•	 Ruby 1.9.2
•	 Text editor of some sort
•	 Google Chrome

Who this book is for
This book is for newbies and intermediate web developers looking to speed up the 
process when it comes to creating web applications of various frameworks. You should 
have basic knowledge of HTML, CSS, and JavaScript. The examples in this book will 
use jQuery style selectors and methods, so some jQuery experience is needed. The 
tools in this book involve the command line, so having basic knowledge about using 
the shell to invoke commands on a system is required. As long as you understand 
basic principles about structuring HTML and OO JavaScript applications, you should 
have no problem following the step-by-step examples in the chapters.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The bower.json file is how Bower manages the project's dependencies."

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 4 ]

A block of code is set as follows:

<div class="header">
  <ul class="nav nav-pills pull-right">
    <li ng-repeat="item in App.menu" 
      ng-class="{'active': App.location.path() === item.href}">
      <a ng-href = "#{{item.href}}"> {{item.title}} </a>
    </li>
  </ul>
  <h3 class="text-muted"> {{ App.sitetitle }} </h3>
</div>

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

require 'scripts/config'
LearningYeomanCh5 = window.LearningYeomanCh5 =  
  Ember.Application.create(
  LOG_VIEW_LOOKUPS: true
  LOG_ACTIVE_GENERATION: true
  LOG_BINDINGS: true
  config: window.Config
)

Any command-line input or output is written as follows:

$ npm install -g generator-webapp

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "See for 
yourself; open Chrome Developer Tools and click on the Network tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ 5 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support


Preface

[ 6 ]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



Modern Workflows for 
Modern Webapps

This chapter will cover the three core tools that make up the Yeoman workflow, how 
to use these tools in development, and how to incorporate this workflow into new or 
existing projects.

In this chapter, you will learn the following topics:

•	 The Yeoman tools and architecture
•	 Downloading and installing Yeoman
•	 Features of Yeoman
•	 Using the Yeoman tools

An overview of Yeoman
The term modern webapps is a relatively new thing, as the Web is still in its infancy 
stage. As the Web matures, so does the need for developer tools and workflows, 
thanks to some modern-day Web pioneers over at Google. Paul Irish and Addy 
Osmani have developed a modern workflow that goes by the name of Yeoman.

The Yeoman workflow is a collection of three tools to improve developers' 
productivity when building web applications: Yo is the scaffolding tool,  
Grunt is the build tool, and Bower is the package tool.

•	 Yo is used to scaffold things such as projects and files from templates
•	 Grunt is used for task management, testing, code linting, and optimization
•	 Bower is used for package management and to manage client-side dependencies



Modern Workflows for Modern Webapps

[ 8 ]

Yeoman's architecture
The Yeoman toolset runs in the Node.js environment and is invoked from the 
command line. Each tool is installed using Node's package manager (npm)  
and uses the npm repository to manage all plugins.

Node's package manager
Node.js is a platform that is built on Chrome's JavaScript runtime engine. Node.js 
uses an event-driven, non-blocking I/O model that makes it lightweight, efficient, 
and perfect for real-time applications that run across distributed devices.

The official package manager for Node.js is npm. From Node versions 0.6.3 and up, 
npm is bundled and installed automatically with the environment. The npm package 
manager runs through the command line and manages the application dependencies 
that are available on the npm registry.

The current Node.js version used in this book is v0.10.28.

Features of Yeoman
Before we dig deep into using each tool of the workflow, let's take a look at some of 
the Yeoman tooling features that will help you in your next project:

•	 Quick install: Easily installs all three tools from the npm repository using  
one command

•	 Scaffolding: Fast and easy-to-use command-line tool to create new projects 
or files from templates that individual generators provide

•	 Build process: Tasks for concatenation, minification, optimization,  
and testing

•	 Preview server: Connect LiveReload server to preview your application in 
the browser

•	 Package management: Search, install, and manage project dependencies via 
the command line

•	 Code linting: Scripts are run against JSHint to ensure language best practices
•	 Automation: A simple watch task to compile CoffeeScript, LESS, or SASS, 

and reload the browser upon changes



Chapter 1

[ 9 ]

•	 Testing: Executes JavaScript code in multiple real browsers with the  
Karma runner

•	 Optimization: Images are optimized using OptiPNG and JPEGtran, and 
HTML is optimized using the HTML minifier

The preceding features are dependent on what the individual generators provide 
via Grunt tasks. By default, the Angular, Backbone, Ember, and other webapp 
generators provide tasks to perform all the features listed.

Grunt tasks are individual plugins that perform specific 
operations on files or folders.

Quick installation
Modern tools usually mean more tools to learn, but learning the tools of the Yeoman 
workflow is easier than you think. To demonstrate by example, here is how easy it is 
to get a modern web application up and running, all from the command line.

Installing Yeoman and friends
To install all three tools in the Yeoman workflow, just execute the following 
command in the terminal:

$ npm install -g yo

The command will install Yo, Grunt, and Bower into your systems path as follows:

•	 The -g option flag specifies the installation to be globally available in  
your path, allowing the yo command to be invoked from anywhere

•	 If using the latest versions of Node and Git, Yeoman will automatically 
install Bower and Grunt while installing Yo

The -g flag installs globally and requires an administrator user.

If you run into any errors during the initial installation process, you can install the 
envcheck module to ensure that your system is ready for all of Yeoman's features; 
just execute the following command:

$ npm install -g envcheck



Modern Workflows for Modern Webapps

[ 10 ]

Installing a generator
To install generators for Yo, use npm. Let's install the generic webapp generator;  
open a terminal and execute the following command:

$ npm install -g generator-webapp

The preceding command will install the webapp generator globally on your system, 
easily letting you create new web projects within any directory of your choice.

Scaffolding with Yo
Yeoman includes a powerful command-line utility that can scaffold files based on 
individual generator templates, allowing you to save time creating files from scratch. 
There are over 700 community generators on npm.

•	 To search for generators, add the generator- prefix before the name,  
as follows:
$ npm search generator-[name]

•	 To install generators, use npm install passing in the name of the package, 
as follows:
$ npm install generator-[name]

The npm attribute is the package manager for Node.js and 
comes bundled with it.

Creating the project
All Yeoman commands work off the current directory, so create a new folder named 
learning-yeoman-ch1, open the terminal, and cd to that location into the newly 
created directory.

Invoking the generator
Yo, the scaffold tool, will easily create and set up project configuration, files, and 
folders needed for a modern web application. Execute the following command:

$ yo webapp



Chapter 1

[ 11 ]

Generators can be invoked with different options; in the preceding command,  
we use the generators' default options that include Mocha as the test framework  
and JavaScript as the scripting language. You will get an output similar to the 
following screenshot:

The preceding command does many things. First off, it's going to ask you a few 
questions about your new project, such as whether to include Twitter Bootstrap  
with or without Compass SASS and whether to include Modernizr.

Select the first option (Bootstrap), and press Enter; you will see the output to the 
terminal, and Yeoman is performing all the magic right before your eyes.

Directory structure
Do not be overwhelmed by the number of files generated; take a minute and examine 
the directory structure that Yeoman produces. You will notice how organized the 
directory structure is. It looks as follows:

├── Gruntfile.js

├── app

│   ├── 404.html

│   ├── bower_components



Modern Workflows for Modern Webapps

[ 12 ]

│   │   ├── bootstrap

│   │   └── jquery

│   ├── favicon.ico

│   ├── images

│   ├── index.html

│   ├── robots.txt

│   ├── scripts

│   │   └── main.js

│   └── styles

│       └── main.css

├── bower.json

├── node_modules

├── package.json

└── test

    ├── bower.json

    ├── bower_components

    ├── index.html

    └── spec

Just think of Yeoman as a helpful robot that does all the hard work for you, creating 
all the necessary files and folders to get started with development.

The build process
Yeoman includes Grunt, a task-based command-line tool for JavaScript projects. It is 
used to perform various build tasks on projects and exposes several useful tasks that 
you will want to use in your workflow. Yeoman automatically creates and configures 
Gruntfile.js, which specifies the configuration of the tasks and targets.

The following order of commands is used for a seamless development workflow:

$ yo webapp                   #scaffold application

$ bower install jquery        #install dependency

$ grunt serve                 #start preview server

$ grunt test                  #run unit tests

$ grunt                       #create optimized build



Chapter 1

[ 13 ]

Generally, a modern web developer's workflow consists of the following steps:

1.	 First, scaffold a new application using yo.
2.	 Search and install third-party client-side libraries using bower.
3.	 Start a preview server for development that allows you to write code, save it, 

and watch the results automatically become refreshed.
4.	 Then run the test task that executes the tests located in the test directory.
5.	 Then use the default grunt task to run the tests before creating an  

optimized build.

To view all the installed grunt tasks associated with the project, you can use the 
grunt –h command, which will output a list of all tasks and their descriptions.

The Connect LiveReload server
Now that you have all the initial files and folders for the project, you can really start 
to see the power of Yeoman.

Previewing the server
Connect LiveReload is the module that is a server that will auto reload when files are 
changed by the watch process.

To preview the application, execute the following command:

$ grunt serve

The serve task does a few things, which are as follows:

1.	 First, it removes all the files in the .tmp directory via the clean task.
2.	 It starts the Connect LiveReload server located at 127.0.0.1:9000, and opens 

the default web browser via the connect task.
3.	 Then, finally, it runs the watch task that monitors the project's source (app/*) 

files, thus executing subtasks on changes.

www.allitebooks.com

http://www.allitebooks.org


Modern Workflows for Modern Webapps

[ 14 ]

Your default browser should have opened up, displaying the following page:

 

Package management with Bower
Yeoman includes an excellent tool called Bower, which is a package manager for the 
Web and allows you to easily manage dependencies for your projects. Packages can 
include any type of assets such as JavaScript, images, and CSS. Twitter and the open 
source community actively maintain it.

Here are some of the available Bower commands:

•	 search: This command will search for a dependency in the Bower registry
•	 install: This command installs one or more dependencies
•	 list: This command lists all the dependencies installed in the project
•	 update: This command updates a dependency to the latest version



Chapter 1

[ 15 ]

Let's go ahead and add a templating library to our webapp to handle the  
compilation of model data with HTML for the view. Open the terminal and  
execute the following command:

$ bower install handlebars --save

This command will download the Handlebars templating library and place the 
package in the app/bower_components directory.

To view all client-side dependencies associated with the project, just use the  
bower list command that will output a tree of all the installed components  
and their versions, and also inform us if updates are available, as shown in the 
following screenshot:

The preceding screenshot is the result of running the bower list command from 
within the project's root directory or the directory containing the bower.json file, 
which stores all the installed libraries.

The --save flag tells Bower to write the library name and version to the bower.json 
file located in the project's root directory. The bower.json file is how Bower manages 
the project's dependencies.

To wire up the newly downloaded package to the application's index.html page, 
execute the following grunt task:

$ grunt bowerInstall

This command will read the contents of the index.html file in the app folder. Then, 
look for the <!-- bower:js --> block and inject a script tag with the location of the 
component's main file for each package in the bower_components directory.



Modern Workflows for Modern Webapps

[ 16 ]

Code linting with JSHint
Yeoman includes JSHint, which is a linting tool that helps developers detect errors 
and potential problems in their JavaScript code; it is a great way to force best 
practices and improve the code quality. This is very useful when working with a 
large code base or in a team environment.

The jshint task is responsible for linting all code before it gets executed. The 
following screenshot shows an example of using the jshint task. It displays the 
errors that output when code fails the linking process:

  

For more information on configuring JSHint, 
visit http://goo.gl/c2lsk1.

Let's begin to add some logic to the applications' main script file that was created 
during the initial scaffold. Open app/scripts/main.js and add the following:

/* global Handlebars */
(function () {
  'use strict';
  window.App = {
    init: function (config) {
      console.log( '1 - initialize' );
      this.config = config;
      if (this.config.feature && this.config.feature.endpoint) {

http://goo.gl/c2lsk1


Chapter 1

[ 17 ]

        this.fetch();
      }
      return this;
    },
    render: function () {
      console.log( '4 - render' );
      var template = Handlebars.compile( $( this.config.el ).find(  
        'script[type="text/x-handlebars-template"]' ).html() );
      var html = template( this.config );
      $( this.config.el ).html( html );
      return this;
    },
    onSuccess: function (response) {
      console.log( '3 - onSuccess' );
      this.config.features = response;
      this.render();
    },
    onError: function (error) {
      return this.log( error );
    },
    fetch: function () {
      console.log( '2 - fetch' );
      var self = this;
      $.ajax( {
        url: self.config.feature.endpoint,
        dataType: 'jsonp',
        success: function (results) {
          return self.onSuccess( results );
        },
        error: function (error) {
          return self.onError( error );
        }
      } );
    }
  };
})();

console.log( 'Allo, Allo!' );

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


Modern Workflows for Modern Webapps

[ 18 ]

Here is the breakdown of the preceding code:

1.	 First, we define Handlebars' global library to let JSHint know what we  
are doing.

2.	 Then, we create a new App object on the JavaScript global window object.
3.	 The render method takes the config.el property and renders the compiled 

template into the element.
4.	 The init function takes a config object as the argument and will be set on 

the class as the config property.
5.	 If the passed object has a feature.endpoint property, then the app will 

fetch features from that endpoint.
6.	 The render method will compile the Handlebars template with the config 

object to create the HTML output, which is injected into config.el.
7.	 The onSuccess method will set the model.features property to the results 

of the request and invoke the render method to display the contents.
8.	 The onError method will log the error to the console.
9.	 The fetch method will invoke a JSONP request to config.feature.endpoint.

Save the file, and the lint task will then compile into JavaScript and reload the browser; 
nothing will look different because we haven't added the application's template.

Automation
Yeoman comes with a watch task that is responsible for the automation of different 
tasks when developing web applications, such as compiling CoffeeScript to JavaScript 
when source files change or concatenating and parsing SASS files and then reloading 
the web browser to see changes.

The automation tasks are limited to the Grunt tasks that are defined by the generator; 
any changes to the .js or .html file in the app directory will automatically get 
parsed, and the browser will get refreshed. If the watch task detects changes to files 
in the test directory, then the unit tests are run via the test task.

Let's create the application's template; we will use the {{ }} double mustache syntax 
to render the dynamic content. Open the app/index.html file, and add the following 
contents inside the body element right below the browsehappy code line:

...  
<![endif]-->
  <div class="container">



Chapter 1

[ 19 ]

    <script type="text/x-handlebars-template">
      <div class="header">
        <ul class="nav nav-pills pull-right">
          <li class="active"> 
             <a href="/">Home</a>
          </li>  
          {{#each menu}}
          <li>  
            <a href="#{{route}}">{{name}}</a>
          </li>
          {{/each}}
        </ul>
        <h3 class="text-muted">{{sitetitle}}</h3>
      </div>
      <div class="jumbotron">
        <h1>{{feature.title}}</h1>
        <img src="{{feature.image}}"/>   
        <p class="lead">{{feature.body}}</p>
      </div>
      <div class="marketing">  
        {{#each features}}
        <div class="media">
          <a class="pull-left"> 
            <img src="{{ image }}" class="img-thumbnail"/> 
          </a>
          <div class="media-body">
            <h4 class="media-heading">{{ title }}</h4>
            <p>{{ body }}</p>
          </div>
        </div>
        {{/ each }}
      </div>
      <div class="footer">
        <p>{{sitecopy}}</p>
      </div>  
    </script>
  </div>
  <!-- build:js scripts/vendor.js -->



Modern Workflows for Modern Webapps

[ 20 ]

The preceding code is very similar to the HTML that was created by Yeoman, except 
we are replacing the static content with data for Handlebars to compile the template 
with dynamic configuration data. Now, let's initialize the application by adding the 
following script block at the bottom of the app/index.html file in the app folder that 
was created during the initial scaffold:

  <!-- build:js({app,.tmp}) scripts/main.js -->
  <script src="scripts/main.js"></script>
  <!-- endbuild -->
  <script>
    $(document).ready(function() {
      App.init({
        el: '.container',
        sitetitle : 'Learning Yeoman',
        sitecopy : '2014 Copyright',
        version: '0.0.1',
        feature : {
          title : 'Chapter 1',
          body : 'a starting point for a modern web app.',
          image : 'http://goo.gl/kZZ6dX',
          endpoint :  
            'http://jonniespratley.me:8181/api/v2/learning-yeoman- 
            ch1/posts'
        },
        features : null,
        menu: [
          {name: 'About', route: '/about'},
          {name: 'Contact', route: '/contact'}
        ]
      });
    });
  </script>

In the preceding code, we perform the following steps:

1.	 First, we use jQuery's ready method to wait for the document to finish 
loading before executing the contents.

2.	 Then, a new instance of the App class is created, passing in the site 
configuration options.



Chapter 1

[ 21 ]

3.	 The endpoint property is set to a simple API endpoint used to access the 
features data.

4.	 The el property is set to the div.container element in the index.html page.
5.	 Then, general site information such as the title, version, and copyright  

is declared.
6.	 The site feature information is populated with default content, and the site 

navigation menu array is defined with two items that represent pages.
7.	 Save the file, and you will see your browser automatically reloading with 

something similar to the following screenshot:



Modern Workflows for Modern Webapps

[ 22 ]

Testing with PhantomJS
If testing is not a part of your workflow, it should be! Yeoman makes it incredibly 
easy to test your application by setting up a testing environment with the Mocha 
framework. Other options include Jasmine, QUnit, and just about any other 
framework. That helpful robot (Yeoman) just saved hours of development time by 
creating all the necessary configuration files during the initial project scaffold.

Several testing tasks can be customized to do many useful things like showing test 
results in JUnit for use in many continuous integration systems such as Jenkins and 
Bamboo. Perform the following steps:

1.	 Open the Gruntfile.js file, locate the mocha task object around line #138, 
and configure the specific options for this target, as follows:
  ...
  //#138 - Mocha testing framework configuration options
  mocha: {
    all: {
      options: {
        run: true,
        log: true,
        reporter: 'Spec',
        files: ['<%= config.app %>/scripts/{,*/}*.js'] 
      }
    }
  },
  ...

In the preceding code:
°° We specify where the source of the scripts are by the files property
°° The run and log properties, as you may have guessed, log the output 

and run the tests
°° The reporter property is Spec, so it will display the message in  

the console

2.	 Then, the files property sets the location of the test specs. Open the default 
test the generator created, test/spec/test.js, and add the following:
/*global App, expect, it, describe */
'use strict';
var testApp = null;
var config = {
  el: '.container',
  sitetitle: 'Learning Yeoman',



Chapter 1

[ 23 ]

  sitecopy: '2014 Copyright',
  version: '0.0.1',
  feature: {
    title: 'Chapter 1',
    body: 'a starting point for a modern web application.',
    image: 'http://goo.gl/kZZ6dX',
    endpoint: '/posts'
  },
  features: null
};
testApp = App.init( config );
describe( 'Learning Yeoman Chapter 1 Test', function () {
  describe( 'App.init', function () {
    it( 'should store config on instance',  
      function (done) {
        expect( testApp.config.version, 'App.config'  
          ).to.equal( config.version );
        done();
    } );
  } );
} );

In the preceding code:
°° First, the JShint configuration at the top defines global variables used 

in the spec
°° The describe block contains some local variables that define the 

application's configuration
°° The it block is testing if the configuration options passed to the  

App.init method are correctly set on the config property of the 
testApp instance

Running tests
To run the tests, use the following command:

$ grunt test

www.allitebooks.com

http://www.allitebooks.org


Modern Workflows for Modern Webapps

[ 24 ]

The output in the console should look similar to the following screenshot:

As we can see from the output, the configuration of PhantomJS is already taken care 
of. It nicely starts the PhantomJS browser; after connecting to the browser, it logs the 
output to the console as the tests run.

Optimizing for production
The default Grunt task ($ grunt) takes care of optimizing your entire project by 
doing the following:

•	 Compiles and concatenates all style sheets together
•	 Minifies all referenced third-party libraries into a separate file
•	 Groups Angular modules into a separate minimized file
•	 Then, it combines all application scripts into one separate file
•	 All HTML files and images are processed through their  

corresponding optimizer
•	 All processed files have a revision number appended to the filename
•	 All built files are located in the dist directory, making your application 

ready for deployment



Chapter 1

[ 25 ]

•	 To preview what your application runs like once optimized, execute the 
following command:
$ grunt serve:dist

•	 Your webapp is fully optimized with fewer requests; now, it loads much 
faster in the browser, as shown in the following screenshot:

See for yourself; open Chrome Developer Tools and click on the Network tab.



Modern Workflows for Modern Webapps

[ 26 ]

Self-test questions
The following are some questions that you should be able to answer after reading 
this chapter. If you get stuck on a question, the answers are located in the Appendix.

1.	 Which four Yeoman generators are the most popular among the community?
2.	 What are the three core tools used in Yeoman?
3.	 What is the general developer tool workflow when using Yeoman?
4.	 Which platform and environment does Yeoman run in?
5.	 Who created Yeoman?

Summary
That was a lot to take in for the first chapter, but we have much more to cover. In 
this chapter, we learned how to install all the tools in the Yeoman workflow with 
one easy command: npm install yo -g. We learned about the commands that 
the Bower, Grunt, and Yo webapp generators have to offer. We also got to see the 
LiveReload server in action while making changes to the generated files.

We were able to make sure our coding syntax was error-free via JSHint. We also got 
our hands dirty configuring the mocha task and a unit test to make sure the app is 
functioning properly; we wrapped it up by taking a look at the optimization that 
takes place when your project is ready to ship.

Next, we are going to turn it up a notch by introducing the most popular Yeoman 
generators in the community: the Angular, Backbone, and Ember generators.



Getting Started
This chapter is going to cover getting started with Yeoman generators.  
We will explore the four most popular official generators, their options and  
the subgenerators they expose, and the purpose of using them. This chapter  
is going to cover the following topics:

•	 The basics of the Yeoman workflow
•	 Installing the following commonly-used official generators:

°° The generator-webapp: This is used to create a generic web application
°° The generator-angular: This is used to create an AngularJS  

web application
°° The generator-backbone: This is used to create a Backbone.js  

web application
°° The generator-ember: This is used to create an Ember.js  

web application

•	 The subgenerators that these modules expose
•	 We do not cover any of the grunt tasks that are configured with the projects 

after they are scaffolded
•	 The life cycle of creation to deployment using these generators

Yo – generators
What makes Yeoman amazing are the generators. There is a robust set of templates 
(commonly referred to as generators) for any type of project. Finding a generator to 
install and use is quite simple as well; just use the npm search generator-[name] 
command to search for a generator where the name matches.



Getting Started

[ 28 ]

The Yeoman workflow
The general workflow to follow when using Yo, Bower, and Grunt is as follows:

1.	 Install a generator as follows:
$ npm install generator-[name]

2.	 Scaffold a project:
$ yo [generator] [args] [options]

3.	 Install a dependency:
$ bower install [dependency#version] [options]

4.	 Test the project:
$ grunt test

5.	 Preview the project:
$ grunt serve

6.	 Build the project for deployment:
$ grunt

Official generators
Here is a list of the official generators maintained by the Yeoman team. Use these as a 
base to create a custom generator or to create a project:

•	 polymer: This is a generator used to create Polymer webapps and components
•	 chromeapp: This is a generator used to create a Google Chrome application
•	 jquery: This is a generator used to create a custom jQuery library
•	 gruntfile: This is a generator used to create a basic Gruntfile
•	 commonjs: This is a generator used to create a CommonJS module, including 

nodeunit unit tests
•	 nodejs: This is a generator used to create a Node.js module, including 

nodeunit unit tests



Chapter 2

[ 29 ]

Other generators include webapp, angular, backbone, ember, jasmine, karma, mocha, 
bootstrap, mobile, gruntplugin, and chrome-extension.

For more information on official generators, visit 
http://goo.gl/mYhTgw.

The generator-webapp
The generator-webapp is the webapp generator for Yeoman that scaffolds a generic 
web application, including unit testing.

Features
The generator-webapp has some great features worth noting, which include  
the following:

•	 It automatically wires up Bower components with the bower-install task
•	 It provides Mocha or Jasmine unit testing with PhantomJS
•	 It contains Twitter Bootstrap for Syntactically Awesome Stylesheets (SASS)
•	 It provides an optimized Modernizr build

Installing the generator-webapp
To use this generator, all that is required is the module installation. This is easily done 
with the Node package manager (npm). To install it, use the following command:

$ npm install -g generator-webapp

The -g flag requires an administrator user.

Using the generator-webapp
The following is how the generator-webapp is invoked from the command line:

$ yo webapp [name] [options]

http://goo.gl/mYhTgw


Getting Started

[ 30 ]

Options
The webapp generator has the following options available:

Option Description Defaults
--skip-install Skips automatic execution of Bower and npm False
--test-framework Sets the testing framework Mocha
--coffee Enables support for CoffeeScript False

These options are applied during the initial 
project's scaffold.

Example usage
To use the generator, simply open a terminal and execute the following:

$ yo webapp hello-webapp 

The preceding command will scaffold a new webapp project with the  
name hello-webapp.

You will be prompted to answer some questions that the generator asks, such as 
whether to:

•	 Use SASS with Compass
•	 Include Twitter Bootstrap
•	 Include Modernizer

After answering these questions, the project files are created, the dependencies are 
downloaded and installed into the bower_components directory, and the application 
is ready to preview.

Previewing
To run the application, you can use the following command to start the server and 
open a default web browser that displays the application:

$ grunt serve



Chapter 2

[ 31 ]

On opening, your default web browser should display a page similar to the 
following screenshot:

Conclusion
Typically, one will want to consider using the webapp generator when looking to 
create a scaffold out of a simple website that can be easily deployed to Heroku or 
another cloud application server for hosting.

The generator-angular
This is the AngularJS generator for Yeoman, which quickly scaffolds a new project 
with sensible defaults and community best practices. This is one of the most popular 
generators in the community, with more forks and stars on Github than any other.



Getting Started

[ 32 ]

Features
Some notable features that the generator-angular includes are as follows:

•	 It is based on the angular-seed project
•	 It includes ngCookies, ngSanitize, ngResource, and ngRoute modules
•	 It includes Twitter Bootstrap with or without SASS
•	 It provides full CoffeeScript support

Installing the generator-angular
The following command is used to install the AngularJS generator:

$ npm install -g generator-angular

The -g flag requires an administrator user.

Using the generator-angular
This is how to use this new generator:

$ yo angular[:subgenerator] [args] [options]

Options
The following options are available when invoking the generator-angular:

Option Description Defaults
--help Prints the generator's options and usage False
--app-suffix Allows a custom suffix to be added to the 

module name
False

--coffee Generates CoffeeScript instead of JavaScript False
--minsafe Generates AngularJS minification safe code False

Example usage
The following is an example of using the generator to create a new  
AngularJS application:

$ yo angular hello-angular



Chapter 2

[ 33 ]

The preceding command will invoke the generator with the application name set to 
hello-angular.

Angular subgenerators
The following subgenerators are provided with the generator-angular; all of the 
subgenerators listed as follows can run independently:

•	 angular:app: The angular or angular:app command is used to create the 
initial AngularJS application. This is shown in the following code:
$ yo angular:app [name]

•	 angular:common: The angular:common subgenerator is used to create the 
general default files used for an AngularJS application. This is shown in the 
following code:
$ yo angular:common [name]

   create app/scripts/services/[name].js

•	 angular:constant: The angular:constant subgenerator is used to create 
a module that is available during the configuration and run phases of the 
application's life cycle, which Angular cannot override. This is shown in the 
following code:
$ yo angular:constant [name]

   create app/scripts/services/[name].js

   create test/spec/services/[name].js

•	 angular:decorator: The angular:decorator subgenerator is used to create 
a decorator module that can be used to intercept the creation of a service, 
allowing methods to be overridden or modified during the configuration 
phase of the services' life cycle. This is shown in the following code:
$ yo angular:decorator [name]

•	 angular:directive: The angular:directive subgenerator is used to  
create an Angular directive. This module allows you to create reusable  
view components for the application. This is shown in the following code:
$ yo angular:directive [name]

   create app/scripts/directives/[name].js

   create test/spec/directives/[name].js

www.allitebooks.com

http://www.allitebooks.org


Getting Started

[ 34 ]

•	 angular:factory: The angular:factory subgenerator is used to create an 
Angular factory. This module can be used to create reusable pieces of the 
application logic. This is shown in the following code:
$ yo angular:factory [name]

   create app/scripts/services/[name].js

   create test/spec/services/[name].js

•	 angular:main: The angular:main subgenerator is used to create the main 
Angular module used to Bootstrap an Angular application and configure the 
router. This is shown in the following code:
$ yo angular:main [name]

•	 angular:provider: The angular:provider subgenerator is used to create 
an Angular provider module used to expose an API for application-wide 
configuration that must be made before the application starts. This is shown 
in the following code:
$ yo angular:provider [name]

•	 angular:route: The angular:route subgenerator is used to create an 
Angular view template and controller, and add a route to the application's 
router. This module allows you to handle the routes for the application. This 
is shown in the following code:
$ yo angular:route [name]

   create app/scripts/controllers/[name].js

   create test/spec/controllers/[name].js

   create app/views/[name].html

•	 angular:service: The angular:service subgenerator is used to create an 
Angular service module. This module allows you to create reusable business 
logic for the application. This is shown in the following code:
$ yo angular:service [name]

   create app/scripts/services/[name].js

   create test/spec/services/[name].js

•	 angular:value: The angular:value subgenerator is used to create an 
Angular value module. This module allows you to define simple objects  
or strings for the application. This is shown in the following code:
$ yo angular:value [name]



Chapter 2

[ 35 ]

•	 angular:view: The angular:view subgenerator is used to create an Angular 
view template. This template allows you to use AngularJS directives and 
data-binding syntax to display data from the controllers' scope.
$ yo angular:view [name]

   create app/views/[name].html

Previewing
To run the application, you use the serve task to start the preview server, which 
opens a default web browser that displays the application; append :dist to start 
the server in the distribution mode. For example, to run the application execute the 
following command:

$ grunt serve

After running the command, your default web browser should display a page 
similar to the following screenshot:



Getting Started

[ 36 ]

This is the example running in serve mode; the watch task is running in the 
background, enabling changes to LiveReload upon save; give it a try and  
modify the source file.

Conclusion
The generator-angular is a great generator used to create new AngularJS projects  
that are already preconfigured to build, test, and run with minimal effort for  
the developer.

The generator-backbone
The Backbone.js generator for Yeoman provides a functional boilerplate application 
out of the box. It includes access to a number of subgenerators that can be easily used 
to create individual models, views, collections, and routers.

Features
Some notable features that the generator-backbone includes are as follows:

•	 Require.js (AMD) support
•	 Full CoffeeScript support
•	 R.js build optimization of all AMD modules (the Require.js option)
•	 Unit testing with PhantomJS

Installing the generator-backbone
The following is the command used to install the Backbone.js generator for Yeoman:

$ npm install -g generator-backbone

The -g flag requires an administrator user.

Using the generator-backbone
The following shows how to use this new generator:

$ yo backbone[:subgenerator] [args] [options]



Chapter 2

[ 37 ]

Options
Here are the options available when invoking the Backbone generator:

Option Description Defaults
--appPath Scaffolds into a custom directory Null
--coffee Enables scaffolds in CoffeeScript Null 
--requirejs Scaffolds using Require.js (AMD) loader Check for Require.js
--skip-install Skips the automatic execution of Bower 

and npm
False

--test-framework Sets the default testing framework Mocha
--template-
framework

Sets the default template framework Lodash

Example usage
Here, you can see an example of using the Backbone.js generator to create a  
new project:

$ yo backbone hello-backbone 

In this command, the backbone generator is invoked with hello-backbone as the 
application name.

Backbone subgenerators
The following subgenerators are provided with the generator-backbone module:

•	 The backbone:app subgenerator is used to create new Backbone 
applications. This is shown in the following code:
$ yo backbone:app myApp

•	 The backbone:all subgenerator is used to create a Backbone model, 
collection, view, route, and template for the passed parameter. This is  
shown in the following code:
$ yo backbone:all tags

  create app/scripts/models

  create app/scripts/collections

  create app/scripts/views

  create app/scripts/routes

  create app/scripts/helpers

  create app/scripts/templates



Getting Started

[ 38 ]

•	 The backbone:model subgenerator is used to create new Backbone  
models for the application. The Backbone.Model class provides a set  
of basic methods and events such as change, invalid, destroy, and  
add to manage changes to data. This is shown in the following code:
$ yo backbone:model post

  create app/scripts/models/post.coffee

•	 The backbone:collection subgenerator is used to create new Backbone 
collections for the application. The Backbone.Collection class is an ordered 
set of models and has methods to manage collections of model data. This is 
shown in the following code:
$ yo backbone:collection posts

  create app/scripts/collections/posts.coffee

•	 The backbone:view subgenerator is used to create new Backbone views  
for the application. The Backbone.View class provides an organized 
structure to add custom event handlers that model data and the logic  
in the view. They render to display the model or collect data. This is  
shown in the following code:
$ yo backbone:view posts

  create app/scripts/templates/posts.ejs

  create app/scripts/views/posts.coffee

•	 The backbone:router subgenerator is used to create new Backbone routers 
for the application. The Backbone.Router class provides a set of methods for 
handling the routing in a client-side web application by connecting (#/route) 
routes to actions and methods.
$ yo backbone:router posts

  create app/scripts/routes/posts.coffee

Previewing
To run the application, you can use the grunt serve task command to start the 
preview server and open a default web browser that displays the application; append 
:dist to the view in the production mode. This is shown in the following code:

$ grunt serve



Chapter 2

[ 39 ]

The following screenshot is the hello-backbone example that runs in the serve 
mode. This is the default layout that is created during the initial scaffold:

Conclusion
The best way to get started with Backbone applications is definitely to use the 
generator-backbone Yeoman generator. It takes all the pain out of creating a 
new Require.js Backbone application, with unit testing and R.js optimized build 
configuration already set up.

The generator-ember
The generator-ember generator handles creating Ember applications; it is based on 
the Ember.js starter app as the base application.



Getting Started

[ 40 ]

Features
Some notable features that the generator-ember includes are as follows:

•	 Optional CoffeeScript support
•	 Unit testing with Karma and PhantomJS
•	 Jasmine or Mocha test framework

Installing the generator-ember
This is how to install the Ember.js generator for Yeoman:

$ npm install -g generator-ember

Using the generator-ember
To use the generator, simply open a console and execute the following:

$ yo ember [name] [options]

Options
These are the options available when invoking the Ember generator:

Option Description Defaults
--coffee Generates scaffolds in CoffeeScript False
--skip-install Skips the automatic execution of Bower and npm False
--test-framework Enables different testing frameworks like Jasmine Mocha
--karma Enables support for the Karma test runner Null

Example usage
Here, you can see an example that uses the Ember.js generator to create a  
new application:

$ yo ember hello-ember 

In this command, the ember generator is invoked with hello-ember as the app name.

You will be prompted with some questions that the generator asks. After you have 
answered the questions, and the installation of the project dependencies is complete, 
you can then preview your new application by running it.



Chapter 2

[ 41 ]

Ember subgenerators
The subgenerators that the Ember generator includes are as follows:

•	 The ember:app subgenerator is used to create the initial Ember application. 
The Ember.Application class helps to instantiate, initialize, and coordinate 
the objects in the app. This is shown as follows:
$ yo ember:app myApp

Each Ember project has one and only one Ember.Application. This object 
is created during the initial scaffold of the generator and is the name of the 
project's folder.

•	 The ember:model subgenerator is used to create a new Ember model.  
The DS.Model class is an object that stores a persisted state; templates  
use models to display data to the user. This is shown as follows:
$ yo ember:model book

   create app/scripts/models/book_model.js

   create     app/scripts/controllers/books_controller.js

   create     app/scripts/controllers/book_edit_controller.js

   create     app/scripts/routes/books_route.js

   create     app/scripts/routes/book_route.js

   create     app/scripts/routes/book_edit_route.js

   create         app/scripts/views/book_view.js

   create         app/scripts/views/book_edit_view.js

   create         app/scripts/views/books_view.js

   create         app/templates/book.hbs

   create         app/templates/book/edit.hbs

   create         app/templates/books.hbs

   create         app/scripts/router.js

•	 The ember:router subgenerator is used to create a new Ember router. The 
Ember.Router class manages the application state and URLs. This is shown 
as follows:
$ yo ember:router books

   create app/scripts/router.js



Getting Started

[ 42 ]

•	 The ember:view subgenerator is used to create a new Ember view.  
The Ember.View class manages the combining of model data with  
templates and responds to user events. This is shown as follows:
$ yo ember:view library

   create app/scripts/views/library_view.js

   create app/scripts/views/library_edit_view.js

   create app/scripts/views/libraries_view.js

   create app/templates/library.hbs

   create app/templates/library/edit.hbs

   create app/templates/libraries.hbs

Previewing
To run the application, you can use the following command to start the server 
and open a default web browser that displays the application; you can use the 
serve:dist task to the view in the production mode:

$ grunt serve

On opening, your default web browser should display a page that looks similar to 
the following screenshot:

Conclusion
The Ember.js generator is built off the ember-app boilerplate and is a great start for 
development. Something worth noting is that the subgenerators always generate 
CRUD-type application files and do not allow much customization. Further features 
are on the road map, which will hopefully solve some of these issues.



Chapter 2

[ 43 ]

Self-test questions
The following are questions you should be able to answer at the end of this chapter:

1.	 What are the names of at least three official Yeoman generators?
2.	 Which Angular subgenerator creates a view and a controller, and wires the 

application's router?
3.	 Which is the default test framework for the Backbone generator?
4.	 Which option is common among the four most popular Yeoman generators?
5.	 Which command is used to search for only Yeoman generators?
6.	 Which Ember subgenerator will create a model, controller, route, view,  

and template?
7.	 Which is the default test framework for the Ember generator?

Summary
In this chapter, we covered the installation and usage of the four most popular 
official Yeoman generators:

•	 The generator-webapp
•	 The generator-angular
•	 The generator-backbone
•	 The generator-ember

We also covered using the subgenerators of each generator to assist in creating 
various parts of an application in the desired framework.

In the next chapter, we are going to use the AngularJS generator in detail. We will 
explore each subgenerator, and create the individual pieces of a single page CRUD 
application. We'll also explore writing unit tests for each of the AngularJS modules 
as well as setting up an end-to-end test environment to automate the functionality  
of the application.

www.allitebooks.com

http://www.allitebooks.org




My Angular Project
AngularJS is a client-side MV* JavaScript framework with tons of features that give 
web applications structure with two-way data binding and declarative markup, 
allowing an ease in development of any type of application.

This chapter is going to cover how to use the Angular Yeoman generator to create a 
single page application that can be easily extended into something more. We will use 
the angular subgenerators to create the pieces of the application, giving you insight 
into using the angular generator in a real world project today.

By the end of this chapter, you should have a firm understanding of AngularJS's core 
concepts and how it fits into a modern web application.

In this chapter, we are going to cover the following:

•	 Concepts of AngularJS and how to leverage the framework in a new or 
existing project

•	 Using the different angular subgenerators to create a CRUD application that 
uses custom filters, directives, and services

•	 Getting acquainted with how an AngularJS application is structured using 
the Yeoman Angular generator

Anatomy of an Angular project
Generally in a single page application (SPA), you create modules that contain a 
set of functionality, such as a view to display data, a model to store data, and a 
controller to manage the relationship between the two. Angular incorporates the 
basic principles of the MVC pattern into how it builds client-side web applications.



My Angular Project

[ 46 ]

The major Angular concepts are as follows:

•	 Templates: A template is used to write plain HTML with the use of 
directives and JavaScript expressions

•	 Directives: A directive is a reusable component that extends HTML with the 
custom attributes and elements

•	 Models: A model is the data that is displayed to the user and manipulated by 
the user

•	 Scopes: A scope is the context in which the model is stored and made 
available to controllers, directives, and expressions

•	 Expressions: An expression allows access to variables and functions defined 
on the scope

•	 Filters: A filter formats data from an expression for visual display to the user
•	 Views: A view is the visual representation of a model displayed to the user, 

also known as the Document Object Model (DOM)
•	 Controllers: A controller is the business logic that manages the view
•	 Injector: The injector is the dependency injection container that handles  

all dependencies
•	 Modules: A module is what configures the injector by specifying what 

dependencies the module needs
•	 Services: A service is a piece of reusable business logic that is independent  

of views
•	 Compiler: The compiler handles parsing templates and instantiating 

directives and expressions
•	 Data binding: Data binding handles keeping model data in sync with  

the view

Why Angular?
AngularJS is an open source JavaScript framework known as the Superheroic 
JavaScript MVC Framework, which is actively maintained by the folks over at 
Google. Angular attempts to minimize the effort in creating web applications by 
teaching the browser's new tricks. This enables the developers to use declarative 
markup (known as directives or expressions) to handle attaching the custom logic 
behind DOM elements.



Chapter 3

[ 47 ]

Angular includes many built-in features that allow easy implementation of  
the following:

•	 Two-way data binding in views using double mustaches {{ }}
•	 DOM control for repeating, showing, or hiding DOM fragments
•	 Form submission and validation handling
•	 Reusable HTML components with self-contained logic
•	 Access to RESTful and JSONP API services

The major benefit of Angular is the ability to create individual modules that handle 
specific responsibilities, which come in the form of directives, filters, or services. This 
enables developers to leverage the functionality of the custom modules by passing in 
the name of the module in the dependencies.

Creating a new Angular project
Now it is time to build a web application that uses some of Angular's features.  
The application that we will be creating will be based on the scaffold files created  
by the Angular generator; we will add functionality that enables CRUD operations 
on a database.

Installing the generator-angular
To install the Yeoman Angular generator, execute the following command:

$ npm install -g generator-angular

For Karma testing, the generator-karma needs to be installed.

Scaffolding the application
To scaffold a new AngularJS application, create a new folder named  
learning-yeoman-ch3 and then open a terminal in that location. Then,  
execute the following command:

$ yo angular --coffee



My Angular Project

[ 48 ]

This command will invoke the AngularJS generator to scaffold an AngularJS 
application, and the output should look similar to the following screenshot:

Understanding the directory structure
Take a minute to become familiar with the directory structure of an Angular 
application created by the Yeoman generator:

•	 app: This folder contains all of the front-end code, HTML, JS, CSS, images, 
and dependencies:

°° images: This folder contains images for the application
°° scripts: This folder contains AngularJS codebase and business logic:

°° app.coffee: This contains the application module definition  
and routing

°° controllers: Custom controllers go here:
°° main.coffee: This is the main controller created  

by default
°° directives: Custom directives go here
°° filters: Custom filters go here



Chapter 3

[ 49 ]

°° services: Reusable application services go here
°° styles: This contains all CSS/LESS/SASS files:

°° main.css: This is the main style sheet created by default
°° views: This contains the HTML templates used in the application

°° main.html: This is the main view created by default
°° index.html: This is the applications' entry point

•	 bower_components: This folder contains client-side dependencies
•	 node_modules: This contains all project dependencies as node modules
•	 test: This contains all the tests for the application:

°° spec: This contains unit tests mirroring structure of the  
app/scripts folder

°° karma.conf.coffee: This file contains the Karma  
runner configuration

•	 Gruntfile.js: This file contains all project tasks
•	 package.json: This file contains project information and dependencies
•	 bower.json: This file contains frontend dependency settings

The directories (directives, filters, and services)  
get created when the subgenerator is invoked.

Configuring the application
Let's go ahead and create a configuration file that will allow us to store the 
application wide properties; we will use the Angular value services to reference  
the configuration object.

Open up a terminal and execute the following command:

$ yo angular:value Config

This command will create a configuration service located in the app/scripts/
services directory. This service will store global properties for the application.

For more information on Angular services, visit 
http://goo.gl/Q3f6AZ.

http://goo.gl/Q3f6AZ


My Angular Project

[ 50 ]

Now, let's add some settings to the file that we will use throughout the application. 
Open the app/scripts/services/config.coffee file and replace with the 
following code:

'use strict'
angular.module('learningYeomanCh3App').value('Config', Config =
  baseurl: document.location.origin
  sitetitle: 'learning yeoman'
  sitedesc: 'The tutorial for Chapter 3'
  sitecopy: '2014 Copyright'
  version: '1.0.0'
  email: 'jonniespratley@gmail.com'
  debug: true
  feature:
    title: 'Chapter 3'
    body: 'A starting point for a modern angular.js application.'
    image: 'http://goo.gl/YHBZjc'
  features: [
    title: 'yo'
    body: 'yo scaffolds out a new application.'
    image: 'http://goo.gl/g6LO99'
  ,
    title: 'Bower'
    body: 'Bower is used for dependency management.'
    image: 'http://goo.gl/GpxBAx'
  ,
    title: 'Grunt'
    body: 'Grunt is used to build, preview and test your project.'
    image: 'http://goo.gl/9M00hx'
  ]
  session:
    authorized: false
    user: null
  layout:
    header: 'views/_header.html'
    content: 'views/_content.html'
    footer: 'views/_footer.html'
  menu: [
    title: 'Home', href: '/'
  ,
    title: 'About', href: '/about'
  ,
    title: 'Posts', href: '/posts'
  ]
)



Chapter 3

[ 51 ]

The preceding code does the following:

•	 It creates a new Config value service on the learningYeomanCh3App module
•	 The baseURL property is set to the location where the document  

originated from
•	 The sitetitle, sitedesc, sitecopy, and version attributes are set to 

default values that will be displayed throughout the application
•	 The feature property is an object that contains some defaults for displaying 

a feature on the main page
•	 The features property is an array of feature objects that will display on the 

main page as well
•	 The session property is defined with authorized set to false and user set 

to null; this value gets set to the current authenticated user
•	 The layout property is an object that defines the paths of view templates, 

which will be used for the corresponding keys
•	 The menu property is an array that contains the different pages of  

the application

Usually, a generic configuration file is created at the top 
level of the scripts folder for easier access.

Creating the application definition
During the initial scaffold of the application, an app.coffee file is created by 
Yeoman located in the app/scripts directory. The scripts/app.coffee file is the 
definition of the application, the first argument is the name of the module, and the 
second argument is an array of dependencies, which come in the form of angular 
modules and will be injected into the application upon page load.

The app.coffee file is the main entry point of the application and does the following:

•	 Initializes the application module with dependencies
•	 Configures the applications router

Any module dependencies that are declared inside the dependencies array are 
the Angular modules that were selected during the initial scaffold. Consider the 
following code:

'use strict'
angular.module('learningYeomanCh3App', [
  'ngCookies',



My Angular Project

[ 52 ]

  'ngResource',
  'ngSanitize',
  'ngRoute'
])
  .config ($routeProvider) ->
    $routeProvider
      .when '/',
        templateUrl: 'views/main.html'
        controller: 'MainCtrl'
      .otherwise
        redirectTo: '/'

The preceding code does the following:

•	 It defines an angular module named learningYeomanCh3App with 
dependencies on the ngCookies, ngSanitize, ngResource, and  
ngRoute modules

•	 The .config function on the module configures the applications' routes by 
passing route options to the $routeProvider service

Bower downloaded and installed these modules during 
the initial scaffold.

Creating the application controller
Generally, when creating an Angular application, you should define a top-level 
controller that uses the $rootScope service to configure some global application 
wide properties or methods. To create a new controller, use the following command:

$ yo angular:controller app

This command will create a new AppCtrl controller located in the app/scripts/
controllers directory.

Open the app/scripts/controllers/app.coffee file and replace with the 
following code:

'use strict'

angular.module('learningYeomanCh3App')
  .controller('AppCtrl', ($rootScope, $cookieStore, Config) ->
      $rootScope.name = 'AppCtrl'
      App = angular.copy(Config)
      App.session = $cookieStore.get('App.session')
      window.App = $rootScope.App = App)



Chapter 3

[ 53 ]

The preceding code does the following:

•	 It creates a new AppCtrl controller with dependencies on the $rootScope, 
$cookieStore, and Config modules

•	 Inside the controller definition, an App variable is copied from the Config 
value service

•	 The session property is set to the App.session cookie, if available

Creating the application views
The Angular generator will create the applications' index.html view, which acts as 
the container for the entire application. The index view is used as the shell for the 
other views of the application; the router handles mapping URLs to views, which 
then get injected to the element that declares the ng-view directive.

Modifying the application's index.html
Let's modify the default view that was created by the generator. Open  
the app/index.html file, and add the content right below the following  
HTML comment:

<!-- Add your site or application content here -->

The structure of the application will consist of an article element that contains a 
header, section, and footer. Replace with the following content:

<article id="app" ng-controller="AppCtrl" class="container">
  <header id="header" ng-include="App.layout.header"></header>
  <section id="content" class="view-animate-container">
    <div class="view-animate" ng-view=""></div>
  </section>
  <footer id="footer" ng-include="App.layout.footer"></footer>
</article>

In the preceding code:

•	 The article element declares the ng-controller directive to the  
AppCtrl controller

•	 The header element uses an ng-include directive that specifies what 
template to load, in this case, the header property on the App.layout object

•	 The div element has the view-animate-container class that will allow the 
use of CSS transitions

•	 The ng-view attribute directive will inject the current routes view template 
into the content

www.allitebooks.com

http://www.allitebooks.org


My Angular Project

[ 54 ]

•	 The footer element uses an ng-include directive to load the footer specified 
on the App.layout.footer property

Use ng-include to load partials, which allows you to 
easily swap out templates.

Creating Angular partials
Use the yo angular:view command to create view partials that will be included in 
the application's main layout. So far, we need to create three partials that the index 
view (app/index.html) will be consuming from the App.layout property on the 
$rootScope service that defines the location of the templates.

Names of view partials typically begin with an underscore (_).

Creating the application's header
The header partial will contain the site title and navigation of the application.  
Open a terminal and execute the following command:

$ yo angular:view _header

This command creates a new view template file in the app/views directory.

Open the app/views/_header.html file and add the following contents:

<div class="header">
  <ul class="nav nav-pills pull-right">
    <li ng-repeat="item in App.menu" 
      ng-class="{'active': App.location.path() === item.href}">
      <a ng-href = "#{{item.href}}"> {{item.title}} </a>
    </li>
  </ul>
  <h3 class="text-muted"> {{ App.sitetitle }} </h3>
</div>



Chapter 3

[ 55 ]

The preceding code does the following:

•	 It uses the {{ }} data binding syntax to display App.sitetitle in a  
heading element

•	 The ng-repeat directive is used to repeat each item in the App.menu array 
defined on $rootScope

Creating the application's footer
The footer partial will contain the copyright message and current version of the 
application. Open the terminal and execute the following command:

$ yo angular:view _footer

This command creates a view template file in the app/views directory.

Open the app/views/_footer.html file and add the following markup:

<div class="app-footer container clearfix">
    <span class="app-sitecopy pull-left">
      {{ App.sitecopy }}
    </span>
    <span class="app-version pull-right">
      {{ App.version }}
    </span>
</div>

The preceding code does the following:

•	 It uses a div element to wrap two span elements
•	 The first span element contains data binding syntax referencing  

App.sitecopy to display the application's copyright message
•	 The second span element also contains data binding syntax to reference  

App.version to display the application's version



My Angular Project

[ 56 ]

Customizing the main view
The Angular generator creates the main view during the initial scaffold. Open the 
app/views/main.html file and replace with the following markup:

<div class="jumbotron">
  <h1>{{ App.feature.title }}</h1>
  <img ng-src="{{ App.feature.image  }}"/>
    <p class="lead">
      {{ App.feature.body }}
    </p>
</div>   
<div class="marketing">
  <ul class="media-list">
        <li class="media feature" ng-repeat="item in App.features">
       <a class="pull-left" href="#">
          <img alt="{{ item.title }}" 
                      src="http://placehold.it/80x80" 
                      ng-src="{{ item.image }}"
            class="media-object"/>
       </a> 
       <div class="media-body">
          <h4 class="media-heading">{{item.title}}</h4>
          <p>{{ item.body }}</p>
       </div>
     </li>
  </ul>
</div>

The preceding code does the following:

•	 At the top of the view, we use the {{ }} data binding syntax to display the 
title and body properties declared on the App.feature object

•	 Next, inside the div.marketing element, another div element is  
declared with the ng-repeat directive to loop for each item in the  
App.features property

•	 Then, using the {{ }} data binding syntax wrapped around the title and 
body properties from the item being repeated, we output the values



Chapter 3

[ 57 ]

Previewing the application
To preview the application, execute the following command:

$ grunt serve

Your browser should open displaying something similar to the following screenshot:

Download the AngularJS Batarang (http://goo.gl/0b2GhK) 
developer tool extension for Google Chrome for debugging.

http://goo.gl/0b2GhK


My Angular Project

[ 58 ]

Testing an Angular application
Testing an Angular application is very easy when using Yeoman because all  
the configuration files are created during the initial project scaffold and all  
the subgenerators create a test spec that can easily be customized with  
specific functionality.

Angular unit tests
When scaffolding new files using the Yeoman Angular generator, the subgenerators 
create skeleton specs that are located in the test/spec directory. Yeoman makes it 
extremely easy to start testing your scripts.

Configuring the Karma Runner
Since the application is using various client-side dependencies, you will need to add 
the library locations to the test/karma.conf.coffee file:

//Line #15
files: [
  //Bower Dependencies
  'bower_components/jquery/jquery.js',
  'bower_components/bootstrap/dist/js/bootstrap.js',
...
],

Running unit tests
To run the tests for the application, execute the following command:

$ grunt test

The preceding command will do the following:

1.	 It will compile all projects scripts in the app/scripts directory to the  
.tmp/scripts directory.

2.	 Then, invoke the Karma that will launch Chrome and start the runner.
3.	 It will show the output of the tests in the console as they go.

You can invoke the Karma runner directly by executing:  
$ karma start test/karma.conf.coffee.



Chapter 3

[ 59 ]

The results from the test task should look similar to the following screenshot:

End-to-end tests with Protractor
Being able to test the functionality of the code in the application is always a good 
thing, but being able to run actual browser tests that mimic the actions of a real user is 
priceless. The folks over at Angular have created a new end-to-end testing framework 
that goes by the name of Protractor, which is built on top of the Selenium WebDriverJS.

The npm installs Protractor. To install the project, execute the following command:

$ npm install –g protractor

This command will install the Protractor library globally, which then can be  
invoked from any directory. After installing it, you will need to update Selenium; 
Protractor includes webdriver-manager, which allows you to update and start the 
standalone server.

To download and update the Selenium Server, execute the following command:

$ webdriver-manager update

The command above will download the latest driver from Selenium and place it in 
the correct directory. To start the server, use the following command:

$ webdriver-manager start



My Angular Project

[ 60 ]

This command will kick off the Selenium Server process that is run in the background, 
allowing you to run your Protractor tests. You should see the following screenshot if 
it's working correctly:

Configuring Protractor
To configure Protractor to run tests against your application, you will need to create 
a configuration file that contains settings for the location of test specs, the driver 
URL, and so on. First, create a configuration file named e2e.conf.js in the projects 
root directory.

Open the e2e.conf.js file and add the following content:

exports.config = {
  seleniumAddress: 'http://localhost:4444/wd/hub',
  capabilities: {
    'browserName': 'chrome'
  },
  specs: ['test/e2e/*.js'],
  jasmineNodeOpts: {
    showColors: true
  }
};

In the preceding code:

•	 The exports.config object holds properties that are passed to Protractor
•	 The seleniumAddress property specifies the location of the WebDriver 

server that is running



Chapter 3

[ 61 ]

•	 The capabilities property contains the browser capabilities to enable;  
here we are specifying to use the Chrome browser; other options can  
include PhantomJS

•	 The specs property specifies the location of the test specs to run
•	 The jasmineNodeOpts property specifies what options to pass to the Jasmine 

node module

Creating Protractor e2e spec
Now, let's create a simple example spec that will load the application and check if the 
site title matches what we are expecting. Create an empty file named app.js in the 
test/e2e directory.

Open the test/e2e/app.js file and add the following content:

describe('Chapter3 e2e:', function() {
  beforeEach(function() {
    browser.get('http://localhost:9000');
  });
  it('should have site title', function() {
    var siteTitle;
    siteTitle = element(protractor.By.binding('App.sitetitle'));
    expect(siteTitle.getText()).toEqual('Learning Yeoman');
  });
});

To run the tests, just open the terminal and execute the following command:

$ protractor e2e.conf.js

This command will start the Protractor runner and execute the specs specified in the 
configuration file.

Angular controllers
The controllers in an Angular app are the most important things in the application. 
They define the scope for the view, which acts as a proxy by receiving user actions or 
input and performing the proper operations with the assistance of Angular services 
and/or custom services that third party modules expose.



My Angular Project

[ 62 ]

Creating controllers
Creating Angular controllers is very easy using the angular:controller generator; to 
create a new controller, open the terminal and execute the following command:

$ yo angular:controller posts

The preceding command creates a new PostsCtrl controller located in the  
app/scripts/controllers directory.

Using controllers
Generally, in Angular, you use controllers to handle view-specific interactions and 
handle setting up the model data for the templates to display.

To demonstrate this, open the app/scripts/controllers/posts.coffee file and 
add the following code:

'use strict'
angular.module('learningYeomanCh3App').controller 'PostsCtrl', 
($scope, $location, Posts) ->
  $scope.name = 'Posts'
  $scope.posts = Posts.query()

  $scope.add = ()->
    $location.path('/posts/new')

  $scope.view = (id)->
    $location.path('/posts/view/' + id)

The preceding code does the following:

•	 It defines a controller on the learningYeomanCh3App module and 
dependencies on the $scope, $location, and Posts services

•	 The name property is set on the scope with the value of Posts
•	 The posts property is set on the scope to the value returned from the  

Posts.query() method
•	 The add function on the scope will handle sending the browser to the  

/posts/new URL
•	 The view function on the scope will handle sending the browser to the  

/posts/view/:id URL, where id is dynamic and comes from the view



Chapter 3

[ 63 ]

For more information on controllers, visit  
http://goo.gl/8Yk1vg.

Testing controllers
The angular:controller generator creates a controller spec file when the 
angular:controller generator is invoked. The controller specs are located  
in the test/specs/controllers directory.

To demonstrate testing the controller created now, open the test/specs/
controllers/posts.coffee spec and add the following code:

'use strict'
describe 'Controller: PostsCtrl', () ->
  beforeEach module 'learningYeomanCh3App'

  PostsCtrl = {}
  scope = {}
  location = {}

  beforeEach inject ($controller, $rootScope, $location) ->
    scope = $rootScope.$new()
    location = $location
    PostsCtrl = $controller 'PostsCtrl', {
      $scope: scope
      $location: location
    }

  it 'should have name equal to "Posts" on the scope', () ->
    expect(scope.name).toBe('Posts')

  it 'should change the location to /posts/new', () ->
    location.path('/posts')
    scope.add()
    expect(location.path()).toEqual('/posts/new')

  it 'should change the location to /posts/view/:id', () ->
    location.path('/posts')
    scope.view(1)
    expect(location.path()).toEqual('/posts/view/1')

http://goo.gl/8Yk1vg


My Angular Project

[ 64 ]

In the preceding code:

•	 At the top, the describe method is used to contain the inner code into a spec 
named Controller: PostsCtrl

•	 The beforeEach method handles loading the module named 
learningYeomanCh3App for testing

•	 The PostsCtrl, scope, and location private variables are declared and will 
be set inside another beforeEach method

•	 The beforeEach method runs before each spec defined below; inside the 
beforeEach method, we use the inject method to load the proper Angular 
services that will be referenced by the private variables defined above

•	 The first it block expects that the scope.name property matches 'Posts'
•	 The second it block handles testing the URL location when the add() 

method is invoked
•	 The third it block handles testing the URL location when the view(id) 

method is invoked

Angular services
In Angular, services are singleton objects or functions that contain methods common 
with web applications. Angular has a number of built-in services that simplify 
various tasks within a web application. Angular also supports custom services  
that allow a developer to create reusable modules with ease.

Creating services
The angular:service subgenerator handles creating a new Angular service. Let's 
create a simple $resource service that will be used to connect to a RESTful backend 
API service; open the terminal and execute the following command:

$ yo angular:service Posts

The preceding command does the following:

•	 It will create a new service located in the app/scripts/services directory
•	 This service will use the Angular $resource service



Chapter 3

[ 65 ]

Using services
A service is a reusable piece of business logic independent of views. Let's add  
the logic to handle connecting to a RESTful backend API to access; open the  
app/scripts/services/posts.coffee file and add the following content:

'use strict'
angular.module('learningYeomanCh3App').factory 'Post', ($resource) ->
  return $resource('/api/posts/:id', { id: '@_id' }, {
    'query': method: 'GET', isArray: true
    'update': method : 'PUT'
  })

The preceding code does the following:

•	 Defines a new factory service named Post on the main module with a 
dependency on the $resource service

•	 The factory service returns a $resource instance with a custom update 
method that changes the request method to PUT

•	 This factory can be used to access RESTful API services

Testing services
The angular:service subgenerator will create a service test spec located in the  
test/spec/services directory when invoked. Open the test/spec/services/
post.coffee file and add the following code:

'use strict'
describe 'Service: Post', () ->

  beforeEach module 'learningYeomanCh3App'

  Post = {}
  httpBackend = null
  mockData = [{_id: 1}, {_id:2}, {_id:3}]

  beforeEach inject (_$httpBackend_, _Post_) ->
    Post = _Post_
    httpBackend = _$httpBackend_
  
  it 'should fetch list of posts', () ->



My Angular Project

[ 66 ]

    httpBackend.expectGET('/api/posts').respond(mockData)
    posts = null
    promise = Post.query().$promise
    promise.then((data)->
      posts = data
    )
    expect(posts).toBeNull()
    httpBackend.flush()
    expect(posts.length).toEqual(3)

In the preceding code:

•	 At the top, the describe method is used to contain the inner code into a spec 
named Service: Post

•	 The beforeEach method handles loading the module named 
learningYeomanCh3App for testing

•	 The second beforeEach method injects the service for the spec, which is set 
to the local Post variable

•	 The it block expects that the Posts service should fetch a list of posts
•	 Inside the function, the httpBackend.expectGET method is used to expect 

a GET request to the passed argument that is the URL of the request and 
respond to the request with the mock data defined in the spec

•	 The local posts variable is set to null because the service should fulfill the 
promise with the returned data

•	 The expect method is used to ensure whether the posts variable is null 
before the request is made

•	 The httpBackend.flush() method is used to process any pending requests
•	 The last expect method is used to check whether the length of the posts 

variable matches the expected length, which is 3

For more information on testing, visit http://goo.gl/BDo0jZ.

http://goo.gl/BDo0jZ


Chapter 3

[ 67 ]

Angular filters
A filter formats the data for display to the user. In Angular, filters are used in 
expressions, which can be used in templates, controllers, or services. Angular 
includes several filters for formatting various types of data.

For more information on filters, visit http://goo.gl/Mvhe0S.

Creating filters
The angular:filter subgenerator handles creating a new Angular filter. Let's create a 
markdown filter that will convert markdown to HTML; open the terminal and execute 
the following command:

$ yo angular:filter markdown

The preceding command will create a new filter located in the app/scripts/
filters directory. This directive will use a third-party library for conversion,  
so execute the following command:

$ bower install markdown --save

This will download and install the markdown library in the app/bower_components 
directory.

To install this library into the app/index.html file, execute the following command:

$ grunt wiredep

The preceding command will attempt to wire all components listed in the project's 
bower.json file to the app/index.html page by adding a script tag referencing  
the main .js file defined in the components metadata.

Remember to add this library to the Karma configuring 
file before running unit tests.

http://goo.gl/Mvhe0S


My Angular Project

[ 68 ]

Using filters
The filter definition is simply a function that returns a string; the first argument 
of the function is the input value to be filtered and any arguments passed after 
are parameters passed to the filter function. Open the app/scripts/filters/
markdown.coffee file and add the following content:

'use strict'
angular.module('learningYeomanCh3App').filter 'markdown', () ->
  (input, truncate) ->
    input = input.substring(0, truncate) if input and truncate
    return (markdown.toHTML(input)) if input

In the preceding code:

•	 It creates a new filter named markdown on the learningYeomanCh3App module
•	 The filter takes two arguments in the return function; the first argument  

will be converted to markdown and the second argument will be the length 
of the string

•	 Inside the function, the returned string is set to the first argument; if there is a 
second argument passed, then the length of the returned string is the number 
passed as the second argument

•	 The filter returns the parsed input value that is passed and returned from the 
markdown.toHTML method, if there is an input value

Testing filters
The angular:filter subgenerator will create a filter test spec located in the test/
spec/filters directory when invoked. It is up to the developer to add the testing 
logic. Let's write a test for the created filter now. Open the test/spec/filters/
markdown.coffee file and add the following code:

'use strict'
describe 'Filter: markdown', () ->
  markdown = {}
  beforeEach module 'learningYeomanCh3App'
  beforeEach inject ($filter) ->
    markdown = $filter 'markdown'

  it 'should return the input converted to HTML', () ->
    input = '#Heading 1'
    output = '<h1>Heading 1</h1>'
    expect(markdown(input)).toBe(output)

  it 'should return input to HTML, truncated length', () ->



Chapter 3

[ 69 ]

    input = 'This text is **bold**, and this will be truncated.'
    output = '<p>This text is <strong>bold</strong>, and</p>'
    expect(markdown(input, 26)).toBe(output)

The preceding code does the following:

•	 At the top, the describe method is used to contain the inner code into a spec 
named Filter: markdown

•	 The beforeEach method handles loading the module named 
learningYeomanCh3App for testing

•	 The second beforeEach method injects the filter for the spec, which is set to 
the local markdown variable

•	 The first it block tests if the passed input is converted to the expected output
•	 The second it block tests if the passed input is converted to HTML and 

limited to the length passed in the second argument of the filter function

For more information, visit http://goo.gl/M3fhsT.

Angular directives
A directive in Angular is a reusable declarative HTML component with custom 
attributes and/or elements with self-contained logic that instructs Angular's HTML 
compiler to attach the specified behavior to that DOM element or transform the 
DOM element and its children.

For more information on directives, visit 
http://goo.gl/4bGGBh.

Creating directives
The angular:directive subgenerator handles creating a new Angular directive. 
Let's create a loading directive by opening the terminal and executing the  
following command:

$ yo angular:directive loading

The preceding command creates a new directive located in the app/scripts/
directives folder. This directive will handle showing or hiding the element  
when the route is changing.

http://goo.gl/M3fhsT
http://goo.gl/4bGGBh


My Angular Project

[ 70 ]

Using directives
A directive contains reusable functionality that can be used in view templates.  
Let's add the logic to the loading directive; open app/scripts/directives/
loading.coffee and add the following code:

'use strict'
angular.module('learningYeomanCh3App').directive('loading',  
  ($rootScope) ->
  template: '<p>Loading...</p>'
  restrict: 'EA'
  replace: true
  link: (scope, element, attrs) ->
    element.addClass('loading').fadeOut('fast')
    $rootScope.$on( '$routeChangeStart', ->
      element.fadeIn('fast')
    )
    $rootScope.$on('$routeChangeSuccess', ->
      element.fadeOut()
    )
  )

The preceding code does the following:

•	 It defines a new loading directive on the learningYeomanCh3App module, 
with dependencies on the $rootScope service

•	 The directive definition consists of an object with properties that define 
how the directive is used

•	 The template property is set to an inline string that will simply display the 
text Loading...

•	 The restrict property is set to EA, which informs Angular how to allow 
only an element or attribute to use this directive

•	 The replace property is set to true, which informs Angular to replace the 
content with the content defined in the template property

•	 The link property is set to a function that is invoked by Angular to wire  
the directive

•	 Inside the link function, the element gets the loading class added and is 
hidden using the jQuery fadeOut method

•	 Then, the $rootScope.$on method will bind to the $locationChangeStart 
event dispatched by the router and show the element using the fadeIn method

•	 Then, the $rootScope.$on method will bind to the $locationChangeSuccess 
event dispatched by the router and hide the element using the fadeOut method



Chapter 3

[ 71 ]

Testing directives
The angular:directive subgenerator will create a directive test spec located 
in the test/spec/directives directory when invoked. Open the test/spec/
directives/loading.coffee file and add the following code:

'use strict'
describe 'Directive: loading', () ->
  beforeEach module 'learningYeomanCh3App'
  scope = {}

  beforeEach inject ($controller, $rootScope, $location) ->
    scope = $rootScope.$new()
    scope.location = $location

 it 'should replace element with Loading...', inject ($compile) ->
  element = angular.element '<loading></loading>'
  element = $compile(element) scope
  expect(element.text()).toBe 'Loading...'

In the preceding code:

•	 At the top, the describe method is used to contain the inner code into a spec 
named Directive: loading

•	 The beforeEach method handles loading the module named 
learningYeomanCh3App for testing

•	 The second beforeEach method injects the proper dependencies for the spec, 
which are set to local variables

•	 The it block defines that the directive should replace the element with the 
Loading... text

•	 The $compile method is used to compile the directive into HTML against  
the scope

•	 The expect method is used to check the text value of the element, which 
should be Loading...

For more information on testing, visit http://goo.gl/m5UaDH.

http://goo.gl/m5UaDH


My Angular Project

[ 72 ]

Angular views
Creating views is extremely easy with Yeoman using the angular:view subgenerator. 
Let's create the CRUD views for the application.

Creating the Angular views
To create a new view, open the terminal and execute the following command:

$ yo angular:view [name]

To create a view, controller, and route, use yo angular:route.

Creating the posts list
Let's create a view that will list all the posts defined on the scope. Open the terminal 
and execute the following command:

$ yo angular:view posts

The preceding command creates a new posts.html template located in the  
app/views directory. This view will contain angular specific directives along  
with custom filters to display a list of posts.

Open the app/views/posts.html file and add the following code:

 <div id="posts">
   <button class="btn btn-default pull-right" 
     ng-click="add()">Add New</button>
   <ol class="breadcrumb">
     <li><a href="#">Home</a></li>
     <li class="active">Posts</li>
   </ol>
    

   <ul class="posts list-unstyled">
     <li ng-repeat="post in posts | filter:tag">
       <div class="post" data-id="{{post._id}}">
         <header 
             ng-include="'views/post-header.html'"></header>
         <section 
             ng-bind-html="post.body | markdown:200"></section>
       </div>
     </li>
   </ul>
 </div>



Chapter 3

[ 73 ]

The preceding code does the following:

•	 It wraps the entire content in a div element with an ID of posts, and a simple 
breadcrumb list displaying the current location

•	 A button with the label Add New is declared using the ng-click directive 
that will invoke the add() method defined on the scope

•	 Then the ul element is declared with a class of list-unstyled to modify the 
default browser styles

•	 The inner li element is declared using the ng-repeat directive that will loop 
each item in the posts defined on the scope

•	 The filter:tag expression is used to inform Angular to only repeat items 
that match the defined filter

•	 The header element is used with the ng-include directive that will load the 
template into the content

•	 Then, the section element is used with the ng-bind-html directive set to 
the value of the post.body property

•	 The markdown:200 expression will invoke the custom markdown filter to 
transform markdown to HTML, limited to 250 characters

Creating the post-header view
Now, we need to create a post-header view that is present in the posts.html view; 
open the terminal and execute the following command:

$ yo angular:view post-header

The preceding command does the following:

•	 Creates a new post-header.html template located in the app/views directory
•	 This view will contain elements that will be used in the list and detail views

Open the app/views/post-header.html file and add the following code:

  <div class="header">
    <a href="" ng-click="view(post._id)">
      <h1 class="media-heading">{{post.title}}</h1>
    </a>
    <span>
      Posted on {{post.created | date:'mediumDate'}}
      </span> |
        <span ng-if="post.tags">Tags:
          <span class="label label-default tag" 
            ng-repeat="t in post.tags">{{t}}</span> |



My Angular Project

[ 74 ]

        </span>
    <a href="" ng-click="edit(post._id)"> 
      class="btn btn-xs btn-default edit">
      <i class="glyphicon glyphicon-pencil"></i> EDIT
    </a>
  </div>

The preceding code does the following:

•	 The div element is declared with a class of header that will contain the title, 
created date, and tags of the post being repeated

•	 The ng-click directive that is used will invoke the view(id) method on the 
scope, passing the id of the post being repeated

•	 The ng-repeat directive is used to loop each tag in the tags array
•	 The ng-click directive that is used will invoke the edit(id) method on  

the scope

Self-test questions
The following are questions you should be able to answer at the end of this chapter:

1.	 What type of data binding does Angular support and what is the syntax?
2.	 Which Angular method allows the creation of Angular modules?
3.	 What type of module would one use to create a reusable UI component?
4.	 Which is the default testing framework used in the Angular generator?
5.	 What type of module would someone use to create reusable business logic?
6.	 How does Angular manage its dependencies?
7.	 How would you add the create and detail logic to expand on what we created?



Chapter 3

[ 75 ]

Summary
In this chapter, we learned the concepts of AngularJS and how to leverage the 
framework in a new or existing project. We covered using the different angular 
subgenerators to create a CRUD application that uses custom filters, directives,  
and services.

We also covered the default filters and most common services that Angular includes 
in the library. We wrote unit tests for the custom filters, directives, and services, as 
well as got an inside look at how an AngularJS application is structured using the 
Yeoman Angular generator.

In the next chapter, we will be using the Backbone.js generator. We will cover 
installing the generator, using the subgenerators to create the individual files  
needed for a Backbone-powered single page web application.





My Backbone Project
Creating a modular single-page application that is scalable has always been  
a daunting task. However, with the Yeoman Backbone.js generator, achieving  
this is a lot easier than you might think.

A JavaScript library called Backbone.js gives web applications a structure with models, 
collections, and views that allows easy development of JavaScript applications.

This chapter is going to cover how to use the Backbone Yeoman generator to create 
a modular single-page application, which can be easily extended into something 
more. We will use each of the Backbone subgenerators to create the pieces of the 
application, thus giving you an insight into how to use the Backbone generator  
in a real-world project today.

In this chapter, we are going to cover the following:

•	 Many important topics on Backbone.js such as models, collections, views, 
routers, and events

•	 How to get an optimized Backbone.js project with CoffeeScript and  
Require.js AMD modules, set up a testing environment with Jasmine,  
and serve it on a Node.js server

Anatomy of the Backbone project
The concept behind Backbone is to provide a common set of data-structuring objects 
(collections and models) and user interface (routes and views) primitives that are 
useful when creating a single-page application.



My Backbone Project

[ 78 ]

The Backbone.js concepts are as follows:

•	 Model: This is a layer of abstraction that provides access to network resources
•	 Collection: This is a way to provide methods on an ordered set of models
•	 View: This is a way to encapsulate the presentation layer into objects
•	 Router: This is a way to support navigation by responding to hash changes
•	 Event: This is emitted by model and collection corresponding to the  

state changes

In short, Backbone.js abstracts functionality, separates concerns, and decouples code. 
Backbone always works with just about any library and is most often used with 
Require.js to load scripts; the Handlebars templating library is used to compile and 
render model data, and the Jasmine testing framework to create unit tests to verify 
the functionality. Backbone's only hard dependency is the highly popular utility 
library called Underscore.js, which gives you access to many useful functions; the 
library is considered a must for any developer's tool belt.

For more information on Underscore.js, visit 
http://goo.gl/QRpah3.

The new Backbone project
This new Backbone project will get you started on combining Backbone.js with 
Asynchronous Module Definitions (AMD), using Require.js to implement a 
modular design and leverage Yeoman for the application structure.

Installing the generator-backbone
To install the Yeoman Backbone generator, open a terminal and execute the 
following command:

$ npm install -g generator-backbone@0.2.8

The current generator-backbone version is 0.2.8.

The Backbone generator has some open issues on the Github repository; if you run 
into any issues, Google would be your best solution.

http://goo.gl/QRpah3


Chapter 4

[ 79 ]

Scaffolding a Backbone application
To create a new Backbone project, use this two-step process; open a terminal and 
execute the following steps:

1.	 First, create a project directory named learning-yeoman-ch4, and make this 
your current directory.

2.	 Then, scaffold the Backbone project with Yeoman using the  
following command:
$ yo backbone --coffee --test-framework=jasmine --template-
framework=handlebars

This command does the following:
°° It scaffolds a new Backbone application with the folder name as the 

application name
°° It sets the default testing framework to use Jasmine
°° It sets the default templating framework to use Handlebars

The generator will prompt for options, including those to use Twitter Bootstrap, 
CoffeeScript, and Require.js. The result should look similar to the following screenshot:

To use Jasmine as the testing framework, generator-jasmine 
must be installed globally.



My Backbone Project

[ 80 ]

Understanding the directory structure
Take a moment to understand the directory structure layout of a Backbone 
application. The layout consists of the following:

•	 app: This folder contains all the frontend code, HTML, JS, CSS, images,  
and dependencies:

°° bower_components: This contains the client-side dependencies
°° images: This contains the images for the application
°° scripts: This contains the Backbone.js codebase and business logic

°° app.coffee: This file contains the application  
module's definition

°° config.coffee: This file contains the configuration module
°° main.coffee: This file contains the Require.js configuration
°° collections: This contains the application's collections
°° models: This contains the application's models
°° routes: This contains the custom filters
°° templates: This contains reusable application services
°° views: This contains the HTML templates used in  

the application:
°° main.coffee: This file is the main view created  

by default
°° styles: This contains all CSS/LESS/SASS files:

°° main.css: This is the main style sheet created by default
°° index.html: This is the application's entry point

•	 node_modules: This contains all project dependencies as node modules
•	 test: This folder contains all the tests for the application:

°° bower_components: This contains the test dependencies
°° spec: This contains unit test's mirroring structure of the  

app/scripts folder
°° bower.json: This file contains testing dependencies

•	 Gruntfile.js: This file contains all project tasks
•	 package.json: This file contains project information and dependencies
•	 bower.json: This file contains frontend dependency settings
•	 karma.conf.js: This file contains the Karma Runner configuration



Chapter 4

[ 81 ]

Configuring the application
Create a configuration module that will store application properties in a separate  
file, which will be used when bootstrapping the application. Create a new  
config.coffee file in the app/scripts directory.

Open the app/scripts/config.coffee file and add the following content:

define "config", [], ->
  window.Config =
    baseurl: document.location.origin
    sitetitle: "Learning Yeoman"
    sitedesc: "a starting point for a modern backbone.js app."
    sitecopy: "2014 Copyright"
    version: "0.0.1"
    email: "admin@email.com"
    debug: true
    feature:
      image: "http://goo.gl/fOq55C"
      title: "Chapter 4"
      body: "A starting point for a modern backbone.js application."
    features: [
        title: "CoffeeScript"
        body: "CoffeeScript is a little language that compiles into  
          JavaScript..."
        image: "http://goo.gl/DTiliC"
    ,
        title: "BackboneJS"
        body: "Backbone.js gives structure to web applications by  
          providing..."
        image: "http://goo.gl/94Pe0E"
    ,
        title: "RequireJS"
        body: "RequireJS is a JavaScript file and module loader..."
        image: "http://goo.gl/GOc6Mr"
    ]
    menu: [
        title: "Home"
        href: "/"
    ,
        title: "About"
        href: "/about"
    ,
        title: "Posts"
        href: "/posts"
    ]



My Backbone Project

[ 82 ]

The following actions are performed in the preceding code:

•	 It creates a new module using the define method to enclose the script
•	 It returns an object that has properties common to the application
•	 The feature property is an object that will be displayed in the main view 

that we will create
•	 The features property is an array of featured items that will be displayed  

in the main view as well
•	 The menu property is an array of menu items that will be displayed for the 

navigation of the site

Scaffolding the app view
The application will need to render upon initial loading of the browser and have a 
top-level view that all other views render into. Open the terminal and execute the 
following command:

$ yo backbone:view app

The preceding command does the following:

•	 It will create a new Backbone view located in the app/scripts/views 
directory

•	 Then, it will create a new Handlebars template located in the app/scripts/
templates directory

The Backbone app view
The AppView will extend the Backbone.View class and perform the duties of 
rendering the application's layout template into the DOM. Open the app/scripts/
views/app.coffee file and replace with the following code:

define ['jquery', 'underscore', 'backbone', 'templates'], 
 ($, _, Backbone, JST) ->
  class AppView extends Backbone.View
    template: JST['app/scripts/templates/app.hbs'] 
    el: '.content'
    initialize : () ->
      console.log(@)
      @render()
    render: () ->
      @$el.html(@template(@model))
      return @



Chapter 4

[ 83 ]

The following actions are performed in the preceding code:

•	 An AppView class is declared by extending the Backbone.View class
•	 The template property is specified to the path of the Handlebars template
•	 The initialize method gets invoked when a new instance is created and 

will invoke its render method
•	 The render method is simply setting the current elements' HTML to the 

template property, passing the views model as the argument; the template 
method will take the template property and the object passed, and return a 
compiled HTML for display

The Handlebars app template
Now, let's create the template for the AppView class; open the app/scripts/
templates/app.hbs file and add the following code:

<article id="app" class="container">
  <header id="header" class="header">
    <ul class="nav nav-pills pull-right">
      {{#each menu}}
        <li>
           <a href="#{{href}}">{{title}}</a>
        </li>
      {{/each}}
    </ul>
    <h3 class="brand text-muted">{{sitetitle}}</h3>
  </header>
  <section id="content" class="content"></section>
  <footer id="footer" class="footer">
      <span class="app-sitecopy pull-left">
            {{ sitecopy }}
      </span>
      <span class="app-version pull-right">
            {{ version }}
      </span>
  </footer>
</article>

The following actions are performed in the preceding code:

•	 An article element with the id attribute of the app is declared and will act as 
the container for the application

•	 A header element is declared with h3 {{sitetitle}} for the name of  
the application



My Backbone Project

[ 84 ]

•	 Inside the header element, the handles {{each}} helper is used to repeat 
each item in the menu

•	 A section element is used to house the content for the different views
•	 A footer element is used to display the site copy and site version

Scaffolding the main view
The application needs a main view that will render when the index page is loaded. 
Open up a terminal and execute the following command:

$ yo backbone:view main

The Backbone main view
The MainView class will render the default view for the application. Open the  
app/scripts/views/main.coffee file replace with add the following content:

define ['jquery','underscore','backbone','templates'],  
  ($, _, Backbone, JST) ->
  class MainView extends Backbone.View
    template: JST['app/scripts/templates/main.hbs']
    initialize: () ->
      console.log('initialize MainView', @)
    render: () ->
      @$el.html(@template(@model))
      return @

The following actions are performed in the preceding code:

•	 A new MainView class is created; it extends the Backbone.View class
•	 The template property is specified to the path of the Handlebars template
•	 The initialize method is just logging to the console for the view that  

is created

The render method is simply setting the current elements' HTML to the template 
property, passing the views model as the argument, The template method will 
take the template property and the object passed, and return a compiled HTML 
for display. As we specified Handlebars as the template framework, invoking 
template() as a function returns HTML.



Chapter 4

[ 85 ]

The Handlebars main template
The main view needs to have some content, so add the following HTML to the  
app/scripts/templates/main.hbs file:

<div class="jumbotron hero-unit">
  <h1>{{ feature.title }}</h1>
  <img src="{{ feature.image}}" class="img-"/>
  <p class="lead">
    {{feature.body}}
  </p>
</div>
<div class="marketing">
  <ul class="media-list">
    {{#each features}}
      <li class="media feature">
      <a class="pull-left" href="#">
       <img alt="{{ title }}" src="{{ image }}" 
               class="media-object"/>
      </a>
        <div class="media-body">
          <h4 class="media-heading">{{title}}</h4>
          <p>{{ body }}</p>
        </div>
      </li>
    {{/each}}
  </ul>
</div>

The following actions are performed in the preceding code:

•	 The div element is used with a jumbotron class for some styling
•	 Inside the div element, the feature title, image, and body from  

the configuration will be displayed using the {{}} Handlebars  
data-binding syntax

•	 Then, using the Handlebars {{#each}} function, we loop over each item in 
the array, thus displaying the title, image, and body of that item



My Backbone Project

[ 86 ]

Scaffolding the app router
The router is used to handle the various locations in an application. To create a new 
router, open the terminal and execute the following command:

$ yo backbone:router app

The preceding command will create a new Backbone router located in the  
app/scripts/routes directory.

Open the app/scripts/routers/app.coffee file and replace with the following code:

define ['backbone', 'config', 'views/app', 'views/main'],
 (Backbone, Config, AppView, MainView) -> 
 
  Backbone.Router.extend
    currentView: null
    routes:
      '': 'index'
    index: () ->
      console.log 'index route'
      App = new AppView(el: '.container', model: Config)
      @showView(new MainView(el: '.content', model: Config))
    showView: (view) ->
      @currentView.close() if @currentView
      @currentView = view
      @currentView.render()
      console.log('showView', @)

The following actions are performed in the preceding code:

•	 A new class named AppRouter is created that extends the  
Backbone.Router class.

•	 The routes property is set to a hash of routes and callback methods to 
invoke when that route is matched.

•	 The default route that will always be triggered on page load will invoke the 
index() method.

•	 The showView method is invoked that passes a new instance of the app and 
main view for display.

•	 The  showView method handles setting the currentView in the application. 
This method will handle rendering a view and closing the current view to 
avoid memory leaks.



Chapter 4

[ 87 ]

At the top of the app/scripts/routes/app.coffee file, we override the Backbone.
View class' close method that allows the application to unbind from any events that 
were previously bound during the initialize method of that view; the code is as follows:

Backbone.View::close = ->
    @unbind()
    @remove()
    @onClose() if @onClose

The following actions are performed in the preceding code:

•	 When the close() method is invoked, the unbind() method is invoked  
as well

•	 If there is an onClose() method on the view, then that method will be 
invoked as well

Bootstrapping the app
The app/scripts/main.coffee file is the script that configures Require.js as  
well as does any application's bootstrapping. Take a look at the contents of the  
app/scripts/main.coffee file:

#/*global require*/
'use strict'

require.config
  shim:
    underscore:
      exports: '_'
    backbone:
      deps: [
        'underscore'
        'jquery'
      ]
      exports: 'Backbone'
    bootstrap:
      deps: ['jquery'],
      exports: 'jquery'
    handlebars:
      exports: 'Handlebars'
  paths:



My Backbone Project

[ 88 ]

    jquery: '../bower_components/jquery/jquery'
    backbone: '../bower_components/backbone/backbone'
    underscore: '../bower_components/underscore/underscore'
    bootstrap: '../bower_components/sass-bootstrap/ 
      dist/js/bootstrap'
    handlebars: '../bower_components/handlebars/handlebars'
    config: './config'

require [ 'backbone', 'routes/app'], (Backbone, AppRouter) ->
  window.App = new AppRouter()
  Backbone.history.start() 

The following actions are performed in the preceding code:

•	 The shim property configures the dependencies, exports, and custom 
initialization for older scripts that do not use define()

•	 The paths property configures path mappings to module names
•	 The paths property is relative to baseUrl or the location of the HTML page 

that loads Require.js
•	 The window.App object is set to a new instance of AppRouter, which prepare 

the routes
•	 The Backbone.history.start() method simply tells Backbone to begin 

monitoring all hash change events

For more information on Require.js, visit http://goo.gl/SKvLVB.

Previewing the app
To run the application locally, execute the following command:

$ grunt serve

http://goo.gl/SKvLVB


Chapter 4

[ 89 ]

Your browser should open up, displaying something like the following screenshot:

Testing
Testing the application is not as easy as 1-2-3; as we passed in the options to use 
CoffeeScript and Require.js, the configuration to run tests is a little bit more complex, 
but testing is still possible.

Configuration
First off, you will need to install the Jasmine/Require.js template; so, open a terminal 
and execute the following command:

$ npm install grunt-template-jasmine-requirejs@0.1.10 --save-dev

This command will download and install grunt-template-jasmine-requirejs 
into the project's node_modules directory and add a new entry to the package.json 
file's devDependencies property.



My Backbone Project

[ 90 ]

The configuration that you will need to modify is located in the Gruntfile.js file in 
the projects root directory and is around line 130 as follows:

jasmine: {
    all:{
        src : '.tmp/scripts/{,*/}*.js',
        options: {
            specs : ['.tmp/spec/**/*.js'],
            vendor : ['<%= yeoman.app %>/bower_components/jquery/ 
              jquery.js'],
            template: require('grunt-template-jasmine-requirejs'),
            templateOptions: {
                requireConfigFile: '.tmp/scripts/main.js',
                requireConfig: {
                    baseUrl: '.tmp/scripts',
                    shim: {
                        handlebars: {
                            exports: 'Handlebars'
                        }
                    },
                    paths: {
                        jquery: '../../<%= yeoman.app %>/bower_ 
                          components/jquery/dist/jquery',
                        backbone: '../../<%= yeoman.app %>/bower_ 
                          components/backbone/backbone',
                        underscore: '../../<%= yeoman.app %>/bower_ 
                          components/underscore/underscore',
                        handlebars: '../../<%= yeoman.app %>/bower_ 
                          components/handlebars/handlebars'
                    }
                }
            }
        }
    }
},

The following actions are performed in the preceding code:

•	 The jasmine task is modified to set the src directory with the compiled 
CoffeeScript files located in the .tmp/scripts directory

•	 The template property is set to the grunt-template-jasmine-requirejs 
node module; this module enables the Jasmine spec runner to dynamically 
load source and spec modules to test Require.js applications

•	 The templateOptions property is modified to reflect the locations of the 
required libraries by the application



Chapter 4

[ 91 ]

•	 The baseUrl property is modified to the location of the compiled scripts to 
the .tmp/scripts location

•	 This configuration will allow you to test this application using the Jasmine 
framework with Require.js

Unit testing
Let's add an initial spec that will be used as a starting point for other tests; create a 
new app.coffee file in test/spec. Open the test/spec/app.coffee file and add 
the following code:

define ['jquery', 'backbone', 'views/app', 'config'], 
 ($, Backbone, App, Config) ->
  testApp = null
  
  describe "My Backbone Project", ->
    beforeEach(()->
      testApp = new App(model: Config)
    )
    describe 'App', ->
      it 'should have model', ->
        expect( testApp.model ).toBeDefined()

To run the tests for the application, use the following command:

$ grunt test

When the test task is run, you should see the console log output from the test results, 
which should look similar to the following screenshot:



My Backbone Project

[ 92 ]

As the generator does not scaffold the Backbone spec, adding more tests for the 
application is very straightforward as the configuration is taken care of.

End-to-end tests
Currently, there is no formal way of writing end-to-end scenario tests for Backbone 
applications. There are plenty of testing frameworks out there to choose from that 
will navigate your web application and perform assertions around submission of 
forms and more.

Here is a list of some libraries to check out:

•	 Nightwatch.js: This provides browser-automated testing with  
JavaScript end-to-end tests in Node.js that run against Selenium  
Server (http://goo.gl/Q4vvhK)

•	 Casper.js: This provides browser-navigation scripting and testing utility 
written in JavaScript for PhantomJS (http://goo.gl/iLYJvT)

•	 Zombie.js: This provides extremely fast, headless, full-stack testing using 
Node (http://goo.gl/rNeD3Z)

Backbone.Events
Backbone.Events is a class that can be extended into any object, allowing the object 
to bind and trigger custom-named events. The events can be bound at any time and 
can take the passed arguments.

Creating events
To use the Backbone.Events class, you will need to extend it into another object that 
will be used to trigger events or bind handlers to, for example, the following code:

App.pubsub = _.extend({}, Backbone.Events)

Using events
The easiest way to use Backbone events is to simply invoke the on or off method on 
any object or class in Backbone, as all classes extend from the events class, as follows:

  App.pubsub.bind('fetch:posts', (data) ->
    alert data
  )
  //Usage
App.pubsub.trigger('fetch:posts', 'And send this to handler')

http://goo.gl/Q4vvhK
http://goo.gl/iLYJvT
http://goo.gl/rNeD3Z


Chapter 4

[ 93 ]

The following actions are performed in the preceding code:

•	 The bind method is invoked on the App.pubsub object that will bind the 
callback function to the event

•	 Using the pubsub object is easily done with the trigger method by passing 
the name of the event and data to be passed on to the handler

Testing events
To test events in Backbone, use a spy that will test if the event system is working, 
by creating events that have subscribers and making sure that the subscribers are 
notified when an event occurs.

Create a new pubsub-spec.coffee file located in test/spec. Open the file and add 
the following content:

describe 'App.pubsub', ->
  beforeEach ->
    pubsubSpy = jasmine.createSpy()
    App.pubsub.bind('test:event', pubsubSpy)

  it 'should trigger event handler', ->
    App.pubsub.trigger('test:event')
    expect(pubsubSpy).toHaveBeenCalled()

The following actions are performed in the preceding code:

•	 The beforeEach method sets up a new pubsubSpy event that will allow you 
to check the call count and so on

•	 The first it block will test if the handler is called when the event is fired

For more information on Backbone.Events, visit 
http://goo.gl/kaF35Z.

Backbone.Model
The Backbone.Model class is used to extend application-specific domain methods 
and logic, which provide functionality to manage changes to data, and the ability 
to send CRUD (GET/PUT/POST/DELETE) operations on the server and dispatch 
many useful events.

http://goo.gl/kaF35Z


My Backbone Project

[ 94 ]

For more information on Backbone.Model, visit 
http://goo.gl/f9Wj2l.

To bind to the model events, use the model.on('name', callback) function, which 
will trigger the callback when that event is invoked.

Scaffolding models
To create a new model, use the backbone:model subgenerator, open the terminal, 
and execute the following command to create a new post model:

$ yo backbone:model post

This command will create a new file named post.coffee located in the  
app/scripts/models directory; open the newly created model and add  
the following code:

define ['underscore', 'backbone'], (_, Backbone) ->
  'use strict'
  class PostModel extends Backbone.Model
    idAttribute: '_id'
    urlRoot: '/api/v2/learning-yeoman-ch3/posts'
    defaults:
      title: 'post-title'
      slug: 'post-title'
      image: 'http://placehold.it/250&text=Image'
      body: 'This is an example post with default data.'
      tags: ['featured', 'post']
      created: null
      modified: null
      published: true
    initialize: ->
      console.log('PostModel', @)
    validate: (attrs, options)->
       if attrs.title.length < 2
         return 'The title must be at least 2 characters.'
       else if attrs.title is ''
         return 'You must provide a title.'

The following actions are performed in the preceding code:

•	 The PostModel class is created; it extends from the Backbone.Model class
•	 The idAttribute property is set to the mongodb default id field, _id

http://goo.gl/f9Wj2l


Chapter 4

[ 95 ]

•	 The url property can either be a string or a function that returns a string; 
in this case, it is a function that returns the endpoint URL with the id of the 
model appended to the URL

•	 The defaults property is set to an object, with model property keys with the 
default values

•	 The initialize method is used for debugging purposes to log to the 
console when the model is created

•	 The validate method is used to validate the attrs object before it is set on 
the model

Using the Backbone models
There are many ways to use models; you can create a new model, update an existing 
model, destroy a model, and validate a model and parse the response from the server 
before setting attributes on a model.

Creating a model
To create a new instance of a model, use the following code snippet:

var p = new PostModel({title: 'New Post'});
console.log( p.toJSON() );

The following actions are performed in the preceding code:

•	 The variable p is set to a new instance of PostModel
•	 The model is passed through a JSON.stringify() method and logged  

to the console

Updating a model
To update the properties of an existing model, use the set() method, as follows:

var p = new PostModel({title: 'New Post'});
    p.set({title: 'Updated Title'});

The following actions are performed in the preceding code:

•	 The variable p is set to a new instance of PostModel
•	 The set() method is invoked and passed with an updated attribute hash on 

the instance of PostModel
•	 The model is passed through a JSON.stringify() method and is logged to 

the console



My Backbone Project

[ 96 ]

Saving a model
To save a model instance on the server, use the save() method, as follows:

var p = new PostModel({title: 'New Post'});
    p.save();

The following actions are performed in the preceding code:

•	 The variable p is set to a new instance of PostModel
•	 The save() method is invoked on the model to send a POST request to the 

server or a PUT request if the model has an id attribute

Destroying a model
To destroy a model instance on the server, use the destroy() method, as follows:

var p = new PostModel({title: 'New Post'});
    p.destroy();

The following actions are performed in the preceding code:

•	 The variable p is set to a new instance of PostModel
•	 The destroy() method is invoked on the model to send a DELETE request 

to the server

Validating a model
To validate a model, override the validate method in the model definition,  
as follows:

class PostModel extends Backbone.Model
  validate: (attrs, options)->
    if attrs.title.length < 2
      return 'The title must be at least 2 characters.'
    else if attrs.title is ''
      return 'You must provide a title.'

The following actions are performed in the preceding code:

•	 The validate method takes two arguments: the attributes and options
•	 The attributes object contains the properties defined in the model
•	 If a model does not meet the criteria, it will return the error, and if it is valid, 

it returns nothing



Chapter 4

[ 97 ]

Testing a model
To test a model, you will want to test if the model can be created with attributes, 
without attributes, and anything else, as follows:

 define(['models/post'],(PostModel) ->
  describe 'PostModel:', ->
    postModel = null    
    beforeEach ->
       postModel = new PostModel()
    it 'should have default attribute values', ->
       expect(postModel.get('title')).toEqual('Post Title')
    it 'should set attributes', ->
       postModel = new PostModel(title: 'NewPost')
)

The following actions are performed in the preceding code:

•	 The define method loads the post model module located in the  
models directory

•	 The describe method is the test suite for PostModel
•	 The beforeEach method simply creates a new model instance before  

each spec
•	 The it method is an example test case that will check to see if the model has 

default values
•	 Each of the expect methods simply check to see if the attribute on the model 

is as expected

Backbone.Collection
The Backbone.Collection class is used to store an ordered set of models; you can 
bind to collection events and fetch data from the server with RESTful routes and also 
include a full suite of Underscore.js methods.

For more information on Backbone.Collection, 
visit http://goo.gl/lJvDE1.

http://goo.gl/lJvDE1


My Backbone Project

[ 98 ]

Creating collections
To create a new collection, use the backbone:collection subgenerator as follows:

$ yo backbone:collection posts

In the preceding command:

•	 The backbone:collection subgenerator is invoked with the name of the 
collection set to posts

•	 The subgenerator then creates a new file located in the app/scripts/
collections directory

As collections are ordered sets of models, the collection should have the model 
property set to a model that the collection is of; this collection is going to contain  
a set of post models.

Open the app/scripts/collections/posts.coffee file and add the  
following content:

define ['underscore', 'backbone', 'models/post'],  
  (_, Backbone, PostModel) ->
    class PostsCollection extends Backbone.Collection
        model: PostModel
        url: ->
            'http://jonniespratley.me:8181/api/v2/learning- 
              yeoman/posts'
        parse : (response) ->
            @trigger('posts:fetch:complete')
            return response

The following actions are performed in the preceding code:

•	 The define block is used to import the dependencies for this module
•	 The PostsCollection class is declared; it extends the  

Backbone.Collection class
•	 The model property is set to the model that will be contained in the collection
•	 The url property is set to a simple REST JSONP server
•	 The parse method is triggered on the response from the server by passing 

response as the parameter
•	 The trigger method is used to dispatch the posts:fetch:complete event



Chapter 4

[ 99 ]

Using collections
To use the collections, just attach event handlers to a collection instance or invoke 
methods on a collection instance. Any event that is triggered on a model in a 
collection will also be triggered on the collection directly. This allows you to listen 
for changes to specific attributes in any model in a collection.

@collection = new PostsCollection()
@collection.fetch(dataType: 'jsonp')
@collection.bind('posts:fetch:complete', @render, @)

The following actions are performed in the preceding code:

•	 A new instance of PostsCollection is created
•	 The fetch method on the collection is invoked to request data
•	 When the posts:fetch:complete event fires, the render method is invoked

Testing collections
When testing collections, generally, you should test if a model can be added to the 
collection either as an object or an array of objects, as follows:

define(['collections/posts'],(PostsCollection) ->
  postsCollection = null
  describe 'Post Collection:', ->
    beforeEach ->
      spyOn($, "ajax").andCallFake (options) ->
        options.success()
      postsCollection = new PostsCollection()
    it 'should add model as object to the collection', ->
      expect(postsCollection.length).toBe(0)
      postsCollection.add({title: 'New Post'})
      expect(postsCollection.length).toBe(1)
    it 'should add models as an array to the collection', ->
      expect(postsCollection.length).toBe(0)
      postsCollection.add([
        {title: 'New Post 1'},
        {title: 'New Post 2'}
      ])
      expect(postsCollection.length).toBe(2)
    it 'should send a GET request to correct URL', ->
      postsCollection.fetch()
      request = $.ajax.mostRecentCall.args[0]
      expect(request.type).toEqual('GET')
)  



My Backbone Project

[ 100 ]

The following actions are performed in the preceding code:

•	 The describe method wraps the inner content in a test suite
•	 Then, the beforeEach method is used to create a new collection instance and 

a Jasmine spy that will trigger the success method on the AJAX request
•	 The first it spec is used to test if an object can be added to the collection
•	 The second it spec is used to test if an array of objects can be added to  

the collection
•	 The third it spec is used to check whether an HTTP request has the  

correct type

The Backbone view
Backbone views are used to reflect data; they are used to listen to events and respond 
accordingly. The idea is to organize the user interfaces into logical views that have 
methods to handle user interaction and can update the UI independently when the 
model data changes, without having to refresh the page.

Creating views
To create a new view, use the backbone:view subgenerator as follows:

$ yo backbone:view posts

The preceding command creates a new Backbone view located at app/scripts/
views/posts.coffee and a new Handlebars view template located at app/
scripts/templates/posts.hbs.

Using views
Backbone views use an optional render() method that defines the logic to render 
a template. This example uses the Handlebars templating library to compile a 
collection with HTML that gets injected into the view's el property.

Open the app/scripts/views/posts.coffee file and add the following code:

define [
  'jquery',
  'underscore',
  'backbone',
  'templates',
  'collections/posts',



Chapter 4

[ 101 ]

  'views/post'
], ($, _, Backbone, JST, PostsCollection, PostView) ->

    class PostsView extends Backbone.View
        template: JST['app/scripts/templates/posts.hbs']
        el: '.content'
        initialize: () ->
            _.bindAll(@, "render")
            @collection = new PostsCollection()
            @collection.fetch(dataType: 'jsonp')
            @collection.bind('posts:fetch:complete', @render, @)
            @childViews = []
            @listenTo(@collection, 'add', @renderOne)
            @listenTo(@collection, 'reset', @renderAll)

        render: () ->
            #@$el.html(@template(@model.toJSON())
            @$el.html(@template())
            return @

        renderOne: (item) ->
            
            #Create new list item view passing in a single model
            itemView = new PostView(model: item)
            
            #Store reference to view by adding to child-views
            @childViews.push(itemView)
            
  #Append item to view element by the render method.
            @$el.find('.list-group').append(itemView.render())
          
            renderAll: () ->
            @collection.each(@renderOne, @)

The following actions are performed in the preceding code:

•	 At the top, the define block specifies the required dependencies that will be 
loaded before the script is executed

•	 A PostsView class is defined; it extends the Backbone.View class
•	 The template property is set to the corresponding precompiled  

Handlebars template



My Backbone Project

[ 102 ]

•	 The el property specifies which element to attach the view instance to
•	 The initialize method is invoked whenever a new instance of this view is 

created; here, we use Underscore.js' bindAll method to render, to control 
the scope on the view instance

•	 The views collection property is set to a new instance of PostsCollection 
and then issued to fetch data from the server by passing in dataType set  
to jsonp

•	 The bind method on the collection is used to invoke the render method 
when this event occurs

•	 The view's childViews property is set to an empty array that will hold the 
instances of all PostView properties that are created

•	 The render method will set the elements' content to the template and return 
an instance of the view

•	 The renderOne method is used to render a single model along with a single 
view into the content

•	 The renderAll method will loop each model in the collection and invoke the 
renderOne method

Testing views
To test Backbone views, you will want to test the initial setup, view rendering, and 
templating. Testing if event callbacks are triggered when the elements' action is 
invoked will also help ensure that the view is responding correctly to user events,  
as follows:

describe 'AppView', ->
  beforeEach ->
    sandbox = $('<div class="content"></div>')
    $('body').append(sandbox)
    testApp = new App(model: Config).render()
  afterEach ->
    sandbox.remove()
  it 'should have a header, content, and footer element', ->
     expect(testApp.$el.find('header').length).toBe(1)

The following actions are performed in the preceding code:

•	 The describe block wraps the inner content in a test suite
•	 Then, the beforeEach method is used to add a sandbox element to the body
•	 Then, a new instance of the view is created and injected into the  

sandbox element



Chapter 4

[ 103 ]

•	 The afterEach method is used to remove the view from the sandbox 
element after every test

•	 The first it block will test if the view is rendered and has the proper  
child elements

For more information on Backbone.View, visit 
http://goo.gl/KVu2Rw.

Backbone.Router
Single-page web applications usually need to provide linkable and user-friendly 
links. Until recently, the only way around this was using hash fragments (/#/posts), 
but with the HTML5 history API, the use of standard URLs (/posts) is available.  
The Backbone.Router class provides useful methods for client-side routing in a 
single-page web application.

Creating routers
To create a new router, use the backbone:router subgenerator as follows:

$ yo backbone:router posts

This command creates a new Backbone router located at app/scripts/routes/
posts.coffee.

Using routers
To use the Backbone.Router class, simply extend the class and provide the routes 
property with an object hash set on the name/callback of the route, as follows:

define [
  'backbone'
  'config'
  'views/app'
  'views/main'
  'views/about'
  'views/posts'
  'models/post'
  ], (Backbone, Config, AppView, MainView, AboutView, PostsView,  
    PostModel) ->

  class AppRouter extends Backbone.Router

http://goo.gl/KVu2Rw


My Backbone Project

[ 104 ]

    currentView: null
    childViews: {}
    routes: 
       '': 'index'
       'about': 'about'
       'posts': 'posts'
    index: () ->
      console.log('#/index route')
      App = new AppView(el: '.container', model: Config)
      @showView(new MainView(el: '.content', model: Config))
    
    posts: () ->
      console.log('posts view')
      @showView(new PostsView(el: '.content'))
    
    showView: (view) ->
      @currentView.close() if @currentView
        @currentView = view
      @currentView.render()
      console.log('showView', @)

The following actions are performed in the preceding code:

•	 The define block is used to declare all the dependencies that this module 
will use; in this case, all the views will be imported

•	 The routes property is set to a hash of route name and functions to invoke 
when the route matches

Testing routers
To test the routers, you will want to create a spy that monitors if the route's callback 
function is invoked when the route matches the name, as follows:

define(['jquery', 'backbone', 'underscore', 'routes/app'],  
  ($, Backbone, _, AppRouter) ->
  router = null
  routerSpy = null
  describe "AppRouter:", ->
    
    beforeEach ->
      router = new AppRouter()



Chapter 4

[ 105 ]

      routerSpy = jasmine.createSpy()
      
      try
        Backbone.history.start(slient: true, pushState: false)
        router.navigate('_SpecRunner.html')
      catch error
        console.log error
      
    afterEach ->
      router.navigate('_SpecRunner.html')
    
    it "should have the right amount of routes", ->
      expect(_.size(router.routes)).toEqual 6

    it 'should handle index route', ->
      router.bind('route:index', routerSpy)
      router.navigate('', true)
      expect(routerSpy.wasCalled).toBe(true)
    
    it 'should handle posts route', ->
      router.bind('route:posts', routerSpy)
      router.navigate('#posts', true)
      expect(routerSpy.wasCalled).toBe(true)
      
    it 'should not handle unknown', ->
      router.bind('route:route-doesnt-exist', routerSpy)
      router.navigate('#route-doesnt-exist', true)
      expect(routerSpy.wasCalled).toBe(false)
  
)

The following actions are performed in the preceding code:

•	 The describe block wraps the inner content in a test suite
•	 Then, the beforeEach method creates a new router instance along with a 

Jasmine spy
•	 The Backbone.history.start method is called to inform Backbone to start 

listening for route changes
•	 The afterEach method is used to reset the router's location to the  

default state
•	 The it block expects that the number of routes match the expectations
•	 The next it block tests that, when navigating to a different route, the callback 

function is invoked



My Backbone Project

[ 106 ]

For more information on Backbone.Router, 
visit http://goo.gl/5L8zNx.

Self-test questions
The following are the questions you should be able to answer at the end of  
this chapter:

1.	 Which library(s) does Backbone.js heavily depend on?
2.	 Which class do all Backbone classes extend?
3.	 Which option is only available in the Yeoman Backbone generator?
4.	 What functionality does the Backbone.Model class provide?
5.	 What functionality does the Backbone.Collection class provide?

Summary
In this chapter, we covered many important topics of Backbone.js such as models, 
collections, views, routers, and events. We also covered interesting topics on the 
basic project setup to get an optimized Backbone.js project with CoffeeScript and 
Require.js AMD modules, set up a testing environment with Jasmine, and serve  
it on a Node.js server.

In the next chapter, we will be using the Ember.js generator to create a single-page 
web application that will leverage some of the core features in the framework.

http://goo.gl/5L8zNx


My Ember Project
This chapter is going to cover using the Ember.js generator to create a modern 
web application that can be easily extended into something more. We will use the 
subgenerators to create the pieces of the application. You will get a feel of how an 
Ember application is structured and the concepts of Ember.

In this chapter, we are going to cover the following topics:

•	 Creating Ember.js applications easily by using Yeoman generators
•	 Creating a configuration object that will hold settings for the entire application
•	 Exploring the Handlebars templating system by binding data from the 

applications' configuration file to display a list of features
•	 Core concepts of the Ember.js framework

Anatomy of the Ember project
The concept behind Ember is to provide developers with the tools to ambitiously 
build large JavaScript applications that can be used on any platform. Native 
application frameworks such as Cocoa and Smalltalk-76 have pioneered Ember 
ideas. Ember apps are structured around the URL of an application; like many 
JavaScript frameworks, this is not at the top of their concerns, but Ember derives the 
tools and concepts of its framework from the Web's most powerful thing, the URL.

The following are some Ember concepts:

•	 Template: A template is written using the Handlebars templating language 
and describes the user interface of the application

•	 Router: A router is used to translate a URL into a series of nested templates, 
each with a model that is always in sync with the current URL



My Ember Project

[ 108 ]

•	 Component: A component is a reusable custom HTML tag that is described 
with a Handlebars template and JavaScript functionality

•	 Model: A model is an object that stores a persisted state; templates use 
models to display data to the user

•	 Controller: A controller is an object that stores an application state; templates 
can use controllers and/or models to retrieve properties

The new Ember project
We are going to use the Yeoman Ember generator to scaffold the pieces of an Ember.
js web application. This project will get you started with a basic application that can 
be used as a starting point for creating a more robust application.

Installing the generator-ember
To install the Yeoman Ember generator, execute the following command:

$ npm install  -g generator-ember

The version required for the following steps is 0.8.3.

The –g flag requires an administrator user.

Scaffolding the application
First, create a folder named learning-yeoman-ch5 and then make that your current 
working directory. Now, to scaffold the application, open a terminal and execute the 
following command:

$ yo ember --test-framework=jasmine --coffee --karma

This command does the following:

•	 Creates an initial project located in the current directory
•	 Sets the test framework to use Jasmine
•	 Sets the project scripting language to CoffeeScript
•	 Sets the project to use the Karma test runner
•	 And will prompt whether to use Bootstrap SASS (select Yes)



Chapter 5

[ 109 ]

The output from the command should look similar to the following screenshot:

Now you are ready to start development on a fresh Ember web application.

SASS option requires the Compass gem to be installed.

Understanding the directory structure
Take a minute to become familiar with the directory structure of an Ember application.

•	 app: This is where the application source code is present:
°° images: This is where images for your application go
°° scripts: This is where the application logic scripts go:

°° controllers: This is for controllers
°° models: This is for models
°° routes: This is for routes
°° views: This is for views
°° app.coffee: This is the main Ember.js app file
°° router.coffee: This is the main application router
°° store.coffee: This is the application's data store adapter

°° styles: This is for stylesheets



My Ember Project

[ 110 ]

°° templates: This is for Handlebar templates:
°° application.hbs: This is the main app template
°° index.hbs: This is the app index template

°° bower_components: This contains client-side Bower dependencies
°° index.html: This contains the application's entry point

Application configuration
Let's now go ahead and create a configuration object module that will allow  
us to store some application-wide properties in a separate file. Create a new  
config.coffee file located in the app/scripts directory.

Then, add some properties to the file that we will use when initializing the 
application. Open the app/scripts/config.coffee file and add the following code:

window.Config =
  baseurl: document.location.origin
  sitetitle: 'Learning Yeoman'
  sitedesc: 'a starting point for a modern ember.js application.'
  sitecopy: '2014 Copyright'
  version: '0.0.1'
  email: "admin@email.com"
  debug: true
  feature:
    image: 'http://goo.gl/ur9Ueu'
    title: 'Chapter 5'
    body: 'A starting point for a modern ember.js application.'

  features: [
     title: 'Yeoman'
     body: 'Yeoman is a robust client-side stack.'
     image: 'http://goo.gl/W3ZtMx'
  ,
     title: 'EmberJS'
     body: 'Ember.js is built for productivity.'
     image: 'http://goo.gl/8bRsMq'
  ,
     title: 'Grunt'
     body: 'The Grunt ecosystem is growing every day.'
     image: 'http://goo.gl/xvqzS6'
  ]
  session:



Chapter 5

[ 111 ]

    authorized: false
    user: null
  menu: [
    title: 'Home', href:'#/'
  ,
    title: 'About', href:'#/about'
  ,
    title: 'Posts', href:'#/posts'
  ]

The preceding code does the following:

•	 We declare a Config object on the window object with some  
application-specific properties

•	 The site title, site description, and site copyright are defined with defaults
•	 The version, email, and debug properties are declared and set
•	 The feature property is set to an object with title, image, and body for 

displaying on the index page
•	 The features property is set to an array with objects that contain title, 

image, and body properties to display on the index page
•	 The session property is set to an object with authorized and user properties 

that are currently not used
•	 The menu property is set to an array of objects containing title, icon, and 

href properties for the navigation

Application definition
The application module will have a set of commonly used properties and methods 
that other components can access through the global App namespace, which is set on 
the window object.

Open the app/scripts/app.coffee file and add the following highlighted contents:

require 'scripts/config'

LearningYeomanCh5 = window.LearningYeomanCh5 =  
  Ember.Application.create(
  LOG_VIEW_LOOKUPS: true
  LOG_ACTIVE_GENERATION: true
  LOG_BINDINGS: true



My Ember Project

[ 112 ]

  config: window.Config
)

require 'scripts/controllers/*'
require 'scripts/store'
require 'scripts/models/*'
require 'scripts/routes/*'
require 'scripts/views/*'
require 'scripts/router'

The grunt-neuter task will concatenate files in the 
order you require.

The preceding code does the following:

•	 Before the application definition, the configuration file is required
•	 Then, the Ember.js application is defined with some debugging properties
•	 The config property is set to the window.Config object; this property is now 

globally accessible
•	 Then, we use the require method to load the files in order to start with the 

controllers and end with the router

For more information on debugging Ember, visit 
http://goo.gl/GfcSzh.

The application template
Let's go ahead and adjust the applications' default layout template. Open  
the app/templates/application.hbs file and replace the contents with  
the following code:

<article class="container">
  <header class="header">
    <ul class="nav nav-pills pull-right">
      {{#each LearningYeomanCh5.config.menu}}
      <li>
        <a {{bind-attr href=href}}>{{ title }}</a>
      </li>
      {{/each}}
    </ul>
    <h3 class="brand text-muted"> {{  
      LearningYeomanCh5.config.sitetitle }} </h3>

http://goo.gl/GfcSzh


Chapter 5

[ 113 ]

    <hr />
  </header>
  <section class="">
    {{outlet}}
  </section>
  <footer class="footer">
    <p class="pull-left">
      {{ LearningYeomanCh5.config.sitecopy }}
    </p>
    <p class="pull-right">
      {{ LearningYeomanCh5.config.version }}
    </p>
  </footer>
</article>

The preceding code does the following:

•	 The article element is declared with the container class; this will be the 
application's container

•	 The header element is declared to hold the application's navigation and title
•	 The ul element is declared with the nag and nav-pills class for styling and 

will contain the navigation links
•	 The {{#each }} helper is used to loop each item in the menu defined in the 

config property of the application
•	 The {{bind-attr}} helper is used to bind the value of href from the menu 

item for linking to the correct page
•	 The section element is declared to contain the output from the  

rendered views
•	 The {{outlet}} helper is a placeholder that the router will fill in with the 

proper template based on the current URL
•	 The footer element is declared to display the application's site copyright 

defined in the config property

The index template
Open the app/templates/index.hbs file and replace the content with the  
following code:

<div class="jumbotron">
  <h1> {{ LearningYeomanCh5.config.feature.title }} </h1>
  <img {{ bind-attr src= 
    LearningYeomanCh5.config.feature.image }}/>
  <p class="lead">



My Ember Project

[ 114 ]

    {{ LearningYeomanCh5.config.feature.body }}
  </p>
</div>
<div class="marketing">
  {{#each item in LearningYeomanCh5.config.features }}
    {{ feature-item feature=item }}
  {{/each}}
</div>

The preceding code does the following:

•	 The .jumbtron class is applied to a div element to hold the feature 
information for the application

•	 The .marketing class is applied to another div element that will contain the 
list of feature items

•	 The {{feature-item feature=item}} component helper is used to load 
the feature-item component and the feature property in the component, 
which is set by item

The feature component
Ember.Component is a reusable view component that is completely isolated; many 
properties or actions are targeted at the view object and have no access to the outer 
context or controllers.

The simplest way to create a component is to use the ember:component 
subgenerator, open the terminal, and execute the following command:

$ yo ember:component feature-item	

The preceding command will do the following actions:

•	 It will create a new template file named feature-item.hbs in the  
app/templates/components directory

•	 It will create a new component definition file named feature_item_
component.coffee located in the app/scripts/components directory



Chapter 5

[ 115 ]

Open the app/templates/components/feature-item.hbs file and add the 
following content:

<div class="media feature" data-id="{{feature.id}}">
  <a class="pull-left">
    <img class="media-object"  
      {{bind-attr src=feature.image}}/>
  </a>
  <div class="media-body">
    <h4 class="media-heading">{{feature.title}}</h4>
    <p>{{feature.body}}</p>
  </div>
</div>

The preceding code does the following:

•	 It declares a div element with .media and .feature CSS classes for styling 
and the data-id attribute set to the current items id

•	 The img element is using a special Ember helper that will bind the src 
attribute of the element to the image property of the feature

•	 Then, an h4 element is used to display the title of the feature item
•	 Lastly, the p element is used to display the body of the feature

Notice how we are referencing a feature object's property; where does this  
come from? Well, the feature object is what is passed into the component  
from the outer view.

You can reuse this component anywhere in the application's view templates using 
the name of the component {{feature-item feature=item}}, which helps Ember 
to render the content of the component with the feature variable set to item.

Previewing the application
Now, to preview the application, run the following command:

$ grunt serve



My Ember Project

[ 116 ]

Your default browser should open the page displaying something similar to the 
following screenshot:

You can make changes to the code and watch the browser LiveReload automatically; 
thanks to the watch task, which monitors files and executes Grunt tasks.

Try the Ember Inspector for Google Chrome at 
http://goo.gl/7ExhIj.

Testing
Testing an Ember application is easy. Ember includes several helpers to aid with 
integration testing; these helpers are aware of asynchronous behavior in the 
application and make it extremely easy to write tests.

http://goo.gl/7ExhIj


Chapter 5

[ 117 ]

The test helpers
Ember provides some useful helper methods for integration testing, which are  
as follows:

•	 visit(url): This visits the given route (url) and returns a promise that is 
resolved when all async behavior is complete

•	 find(selector, context): This locates an element by selector within the 
application and/or within the context

•	 fillIn(selector, text): This locates an input element by selector, fills 
with the given text, and returns a promise when complete

•	 click(selector): This locates an element by selector, triggers the 
elements' click event, and returns a promise when complete

•	 keyEvent(selector, type, keyCode): This simulates a key event with 
keyCode on the element found by selector

Setup
Ember comes with support for integration testing and unit testing. Let's configure 
how the application handles testing; open test/support/initializer.coffee  
and add the following highlighted code that will handle setting up everything:

Ember.Test.JasmineAdapter = Ember.Test.Adapter.extend(
  asyncRunning: false
  asyncStart: ->
    Ember.Test.adapter.asyncRunning = true
    waitsFor Ember.Test.adapter.asyncComplete

  asyncComplete: ->
    not Ember.Test.adapter.asyncRunning

  asyncEnd: ->
    Ember.Test.adapter.asyncRunning = false

  exception: (error) ->
    expect(Ember.inspect(error)).toBeFalsy()
)

LearningYeomanCh5.exists = (selector) ->

  !!find(selector).length

LearningYeomanCh5.text = (selector) ->

  $.trim(find(selector).text())

Ember.testing = true



My Ember Project

[ 118 ]

Ember.Test.adapter = Ember.Test.JasmineAdapter.create()

document.write('<div id="ember-app"></div>');
LearningYeomanCh5.rootElement = "#ember-app"
LearningYeomanCh5.setupForTesting()
LearningYeomanCh5.injectTestHelpers()

The preceding code does the following:

•	 At the top of the file, a JasmineAdapter class is created that will contain 
special async methods that are implemented by the framework.

•	 The exists helper method will simply locate the element and return the 
length of elements.

•	 The text helper method will locate the element and return the trimmed  
text value.

•	 Then, the document.write method is used to create a container that will 
contain the application for testing.

•	 Next, we set the Ember.testing property to true to inform Ember that we 
are testing our application.

•	 Then, we set Ember.Test.adapter to the JasmineAdapter object that was 
created by extending Ember's test adapter. This enables you to write custom 
adapters for just about any testing framework.

•	 Next, the rootElement property is set to the ID of the test container that is 
added to the document.

•	 Then, we invoke the setupForTesting method on the application to 
initialize testing of the app.

•	 Next, we invoke the injectTestHelpers method that informs Ember to set 
the test helpers on the window scope.

Custom adapters need to provide methods for asyncStart 
and asyncEnd to handle asynchronous testing.

End-to-end integration tests
End-to-end integration testing is pretty straightforward with Ember; basically, when 
you want to assert that the application is functioning properly, displaying the correct 
content, and handling the correct actions, you write an integration test.



Chapter 5

[ 119 ]

Let's write a simple integration test that will make sure the application is displaying 
the proper content in the application; open the test/integration/index.coffee 
file and replace with the following code:

describe "LearningYeomanCh5 Application", ->  
  it 'should display site title, nav and site copyright', ->
    visit('/').then ->
      expect(LearningYeomanCh5.text('.brand')). 
        toBe(LearningYeomanCh5.config.sitetitle)
      expect(LearningYeomanCh5.text('footer .pull- 
        left')).toBe(LearningYeomanCh5.config.sitecopy)
      expect(find('.nav li').length). 
        toEqual(LearningYeomanCh5.config.menu.length)

  it "should display title, image, body, and list features", ->
    visit('/').then ->
      expect(LearningYeomanCh5.text('.jumbotron  
        h1')).toBe(LearningYeomanCh5.config.feature.title)
      expect(LearningYeomanCh5.text('.jumbotron  
        p')).toBe(LearningYeomanCh5.config.feature.body)
      expect(find('.jumbotron img').attr('src')). 
        toBe(LearningYeomanCh5.config.feature.image)
      expect(find('.feature').length).toBe(3)

The preceding code does the following:

•	 The describe method creates an Index route spec that will contain the 
assertion methods

•	 The first it method creates a new spec that will check for the site title, 
navigation, and copyright

•	 The visit method loads the index route and when complete, proceeds to run 
the assertions contained

•	 The expect methods will ensure that the located elements' text matches the 
expected value

•	 The second it method creates a new spec that will check for the feature title, 
image, body, and features

•	 The visit method loads the index route and when complete, proceeds to run 
the assertions contained

•	 The second expect methods will ensure that the located elements' text 
matches the expected value



My Ember Project

[ 120 ]

•	 The third expect method will locate the element by selector, get the src 
attribute, and match it against the expected value

•	 The fourth expect method will locate the element by selector and match the 
length against the expected length

Unit tests
Setting up unit tests is fairly straightforward, and since the --test-framework  
flag was set to Jasmine, you can use all the Jasmine methods when writing unit  
test specs. For example, create a new test/spec/app.coffee file and add the  
following content:

describe 'PostModel', ->
    postModel = LearningYeomanCh5.Post
    it 'title should be a string', ->
        expect(postModel.metaForProperty('title').type).
          toEqual('string')

The preceding code does the following:

•	 The describe method creates a PostModel spec that will contain methods 
for testing the model

•	 The postModel variable is set to the Post model defined on the apps 
namespace

•	 The it method specs out the test and expects the post model's title type  
to be a string

To run the applications tests, open the terminal and execute the following command:

$ grunt test

The output from the preceding command should look similar to the  
following screenshot:



Chapter 5

[ 121 ]

For more information on Karma, visit http://goo.gl/gPdJi3.

Ember Data
Ember Data is a library that integrates with Ember.js to make handling data from 
a server seamless; it can cache locally for performance, send data to the server, and 
create new records on the client. Ember Data gives the user the ability to create CRUD 
type applications fairly quickly; using the proper naming conventions, most of the 
controllers and files are created at runtime to allow applications to be adaptable.

Without any configuration, Ember Data can load and save records and their 
relationships via a RESTful JSON API, as long as the API follows RESTful 
conventions. Ember Data can also be configured to integrate with existing  
JSON APIs that do not follow the conventions. Ember Data can be configured  
to handle any data your server returns.

http://goo.gl/gPdJi3


My Ember Project

[ 122 ]

Ember Data concepts
There are some concepts of Ember Data that should be understood in order to properly 
leverage all the power the module has to offer. These concepts are as follows:

•	 Store: The store acts as the central repository of all records in the application
•	 Model: A model is a class that defines properties and behavior of the data
•	 Record: A record is an instance of a model and contains data loaded from  

the server
•	 Adapter: An adapter is an object that handles translating requests and 

responses from the server
•	 Serializer: The serializer is responsible for converting raw JSON sent from 

the server into record objects

Models
Models in an Ember application are associated with every route. Models are set 
up with data by either a route implementing the model property in a v view using 
the {{link-to}} helper, passing the model as an argument, or invoking a route's 
transitionTo method, passing the model as its argument.

Creating a model
To create a new model, use the ember:model subgenerator as follows:

$ yo ember:model Post title:string body:string image:string  
slug:string--coffee

The preceding command creates a new Ember model located at app/scripts/
models/post_model.coffee.

By passing the name of the model and default attributes as property:type, they will 
be added to the model definition.

Methods
Models in Ember extend the Ember.Object class and are defined as DS.Model; there 
are many methods available for this class, but let's take a look at the most frequently 
used methods.



Chapter 5

[ 123 ]

The following are the DS.Model methods:

•	 changedAttributes: This will return the object with keys of changed 
properties and values of the [old, new] array

•	 deleteRecord: This will mark the record for deletion, invoke save() to send 
to server, or rollback() to revert

•	 destroyRecord: This will delete the record immediately and send to the server
•	 save: This will save the record, return a promise, and send it to the external 

source via the adapter
•	 serialize: This will return the JSON representation of the object using the 

adapter's serialization
•	 toJSON: This will return the JSON representation of a record

For more information on Models, visit http://goo.gl/PCEGrC.

Attributes
Models in Ember use attributes to define the properties on the model when parsing 
the JSON payload sent to and from the server. Attributes are defined using the 
DS.attr() method by passing the first argument as either string, number, boolean, 
or date, and the second argument as an object of options such as defaultValue or 
defined as the computed properties, which is a function that returns the value.

Models can also define relationships with other models by using either the 
DS.belongsTo or DS.hasMany method by passing in the name of the model  
as the argument.

For example, open app/scripts/models/post_model.coffee and add the 
following highlighted code:

#global Ember
LearningYeomanCh5.Post = DS.Model.extend(
  title: DS.attr('string', {defaultValue: 'Post title'})
  body: DS.attr('string')
  image: DS.attr('string')
  published: DS.attr('boolean', {defaultValue: true})
  created: DS.attr('date', {defaultValue: () -> new Date()})
  slug: (-> 
    @get('title').replace(/\W/g, '-').toLowerCase()
  ).property('title')
)

http://goo.gl/PCEGrC


My Ember Project

[ 124 ]

The preceding code does the following:

•	 At the top, the DS.Model.extend method is used to create a new Post model 
on the app's namespace

•	 The object passed to the extend method will set the default attributes  
on the model

•	 Three of the four types of attributes are used to define the title, image, 
body, published, and slug properties

•	 The slug property is a computed function that will take the title, strip all 
non-characters, and make it lowercase

Slug is a part of a URL that identifies a page using 
human-readable keywords.

Fixtures
Fixtures in Ember allow you to define default static data that can be used when 
waiting for an API to become available. By changing the ApplicationAdapter 
property on the Ember.Application instance, you can easily change how your app 
communicates with a data source. Open the app/scripts/store.coffee file and 
change its load fixture data by using the DS.FixtureAdapter property as follows:

LearningYeomanCh5.ApplicationAdapter = DS.FixtureAdapter
LearningYeomanCh5.Store = DS.Store.extend({})

The preceding code sets the application's data adapter to use fixtures, and now to 
populate the fixture data, open app/scripts/models/post_model.coffee and  
add the following code:

LearningYeomanCh5.Post.FIXTURES = [
    id: 1
    title: 'Post 1'
    body: 'Lorem ipsum dolor sit amet, adipiscing elit.'
    image: '//placehold.it/225'
  ,
    id: 2
    title: 'Post 2'
    body: 'Lorem ipsum dolor sit amet, adipiscing elit.'
    image: '//placehold.it/225'
  ,
    id: 3
    title: 'Post 3'



Chapter 5

[ 125 ]

    body: 'Lorem ipsum dolor sit amet, adipiscing elit.'
    image: '//placehold.it/225'
]

The preceding code sets the FIXTURES property on the Post model to an array of 
objects that contain default values.

Records
Ember uses a record to define an instance of a model, which contains the data loaded 
from a server. Records are used to find, create, delete, and update entities in the 
application; records are uniquely identified by two things:

•	 A model type
•	 A globally unique ID

Finding all records
To find all records of a model, invoke the find method on the store by passing the 
name of the model as the only argument, as follows:

@store.find('post');  // => [ { id: 1, title: 'Post 1', ... } ]

Finding a single record
To find a single record, invoke the find method on the store; the first argument is the 
name of the model and the second is the ID of the record, as follows:

@store.find('posts', 1);  // => { id: 1, title: 'Post 1', … }

Creating a record
To create a record, invoke the createRecord method on the store; here, the first 
argument is the name of the model and the second is an object of properties to  
create it with, as follows:

@store.createRecord('post', {
  title: 'New Post'
  body: 'This is a new post'
  image: '//placehold.it/225'
})



My Ember Project

[ 126 ]

Deleting a record
To delete a record, invoke the deleteRecord method on the store, which will mark 
it for deletion, and then use the save method to send the command to the server for 
removal or the rollback method to revert the deletion, as follows:

@get('model').deleteRecord()

For more information on records, visit http://goo.gl/EfiyvL.

Routes
Routes in Ember represent each of the possible states in the application and are 
represented by the URL. Every route in Ember has a model, which is always kept in 
sync with the current URL. Ember allows you to specify a different root URL instead 
of the domain's root by setting the rootURL property when creating a route, which 
allows applications to run in deeply nested domains.

As the application increases in size, you can set the LOG_TRANSITIONS property  
to true on the Ember.Application instance that allows all routes to be logged  
in the console, which is great for debugging, or seeing the autogenerated routes  
that Ember produces.

Creating the routes
To create a new route, use the ember:model subgenerator because it will generate 
all the necessary controllers, views, and routes. Open the terminal and execute the 
following command:

$ yo ember:model tag

This command will create the following:

•	 Creates a new model class located at app/scripts/models/tag_model.
coffee

•	 Creates a new controller class located at app/scripts/controllers/ 
tags_controller.coffee

•	 Creates a new edit controller class located at app/scripts/controllers/
tag_edit_controller.coffee

•	 Creates a new view class located at app/scripts/views/tags_view.coffee

http://goo.gl/EfiyvL


Chapter 5

[ 127 ]

•	 Creates a new edit view class located at app/scripts/views/tags_edit_
view.coffee

•	 Creates a new Handlebars view template located at app/templates/tag.hbs
•	 Creates a new Handlebars edit view template located at app/templates/

tag/edit.hbs

Using routes
There are two things to keep in mind when using routes in Ember, which are  
as follows:

•	 Resource: This is the beginning of a route, controller, or template name
•	 Route: This is nested inside a resource and is added to the resource name 

separated by a dot (.)

For example, open the applications router located at app/scripts/router.coffee, 
and examine the following code:

LearningYeomanCh5.Router.map( ->
    @resource('posts', ->
    @resource('post', path: '/:post_id', ->
      @route('edit')
    )
    @route('create')
  )
)

The preceding code does the following:

•	 The application's route is defined by passing a function to the map property 
on the router

•	 A resource is declared for posts, and inside the posts resource function 
another resource is declared for editing a post, which sets the path to  
/posts/:post_id and the route to edit

•	 Then, the create route is defined to handle routing to /posts/create to 
add a new post



My Ember Project

[ 128 ]

Posts route
The generator will create a route that will handle fetching all the records for the 
model in the store.

Open the app/scripts/routes/posts_route.coffee file and examine the content:

LearningYeomanCh5.PostsRoute = Ember.Route.extend(
  model: ->
    @get('store').find('post')
)

The preceding code does the following:

•	 The PostsRoute class is declared extending the Ember.Route class
•	 The model property is set to the records returned from the store's find method

This allows the controller and template to have access to the model property that 
contains an array of model records.

Post route
The generator will create a route that will handle setting the model found in the store.

Open the app/scripts/routes/post_route.coffee file and examine the  
following content:

LearningYeomanCh5.PostRoute = Ember.Route.extend(
  model: (params) ->
    @get('store').find('post', params.post_id)
)

The preceding code does the following:

•	 The PostRoute class is declared extending the Ember.Route class
•	 The model property is set to the record returned from the store's find 

method invoked with the routes params, which holds post_id

This allows the controller and template to have access to the model property that 
contains the properties from the record.



Chapter 5

[ 129 ]

Posts edit route
The generator will create an edit route that will handle a finding record by ID for the 
model in the store.

Open the app/scripts/routes/post_edit_route.coffee file and examine the 
following content:

LearningYeomanCh5.PostEditRoute = Ember.Route.extend(
  model: (params) ->
    @get('store').find('post', @modelFor('post').id)
)

The preceding code does the following:

•	 The PostRoute class is declared extending the Ember.Route class
•	 The model property is set to the record returned from the store's find 

method invoked with the routes param property

For more information on routes, visit http://goo.gl/sKma5G.

Templates
Ember has integrated the Handlebars semantic templating library to power your 
app's user interface. Handlebars allow the use of regular HTML markup along with 
the double mustache {{ }} expressions to display data and automatically update 
when the underlying data changes.

Handlebar helpers
Ember provides Handlebars helpers that can be used in your templates to render 
other views. Here is the list of default helpers:

•	 {{ partial }}: This renders the specified name of the template in the 
current view and has access to the current scope.
The partial's name must start with an underscore (data-template-name="_
partial" or data-template-name="views/_partial").

http://goo.gl/sKma5G


My Ember Project

[ 130 ]

•	 {{ view }}: This renders the specified view template and has access to the 
current model and controller.
This helper works like the partial helper, except instead of providing a 
template to be rendered within the current template, you provide a view class.

•	 {{ render }}: This renders the view template in the current view and  
has access to the current model and controller, and takes the following  
two parameters:

°° The first parameter describes the context to be set up
°° The optional second parameter is a model, which will be passed to 

the controller if provided

Posts template
The generator will create a template that will display a list of all the records for the 
model in the store.

Open the app/templates/posts.hbs file and replace with the following content:

<div id="posts">
  <div class="page-header">
    <h1>Posts</h1>
  </div>
  <div class="list-group">
    {{#each model}}
      {{#link-to 'post' this classNames='list-group-item'}}
      <h4 class="list-group-item-heading">{{ title }}</h4>
      <p class="list-group-item-text">
        {{ body }}
      </p>
      {{/link-to}}
    {{/each}}
  </div>
</div>
{{outlet}}

The preceding code does the following:

•	 At the top, a div element is declared with the ID of posts
•	 A legend element is used to display the title of the page
•	 A div element with the list-group class is declared to hold all posts
•	 The {{#each}} helper is used to loop each item in the model
•	 The {{#link-to}} helper is used to link the current item to the PostRoute 

route's model property



Chapter 5

[ 131 ]

•	 The heading element is used to wrap the title of the current item being repeated
•	 The paragraph element is used to wrap the body of the current item  

being repeated

Save the file and the browser should refresh; navigate to the /#/posts route and the 
display should be similar to the following screenshot:

Post template
The generator will create a template that will display a detailed view of the current 
model in the store based on the route.

Open the app/templates/post.hbs file and add the following content:

<div id="post-details">
  <div class="row">
    <div class="col-md-12">
      <div class="page-header">
        {{#link-to 'post.edit' model classNames= 
          'btn btn-default btn-edit pull-right'}}Edit{{/link-to}}
        <h1>{{model.title}}</h1>
      </div>
      <img class="img-thumbnail pull-right"  
        {{bind-attr src=model.image}}/>
      <p>



My Ember Project

[ 132 ]

        {{model.body}}
      </p>
    </div>
  </div>
</div>
{{outlet}}

The preceding code does the following:

•	 At the top, a div element is declared with an id of post-details
•	 Then, another div element is declared with the class set to row
•	 Another div is declared with the class of page-header for styling
•	 The {{#link-to}} helper is used to link the current model to the 

PostsEditRoute route's model property

Save the file and the browser should refresh; navigate to the /#/posts/2 route and 
the display should be similar to the following screenshot:



Chapter 5

[ 133 ]

Posts edit template
The generator will create a template that will display a form view of the current 
model in the store based on the route. 

Open the app/templates/post/edit.hbs file and add the following content:

<div id="post-edit">
  <div class="page-header">
    <h1>Edit {{title}}</h1>
  </div>
  <form role="form">
    <div class="form-group">
      <label for="title">Title</label>
      {{input type="text"  class="form-control" value=title}}
    </div>
    <div class="form-group">
      <label for="title">Slug</label>
      {{input type="text"  class="form-control" value= 
        slug disabled="true"}}
    </div>
    <div class="form-group">
      <label for="image">Image</label>
      {{input type="text" class="form-control" value=image}}
    </div>
    <div class="form-group">
      <label for="body">Body</label>
      {{textarea rows="5" class="form-control" value=body}}
    </div>
    <button class="btn btn-primary" {{action 'save'}}>
      Update
    </button>
    <button class="btn btn-danger" {{action 'destroy'}}>
      Delete
    </button>
  </form>
</div>

The preceding code does the following:

•	 At the top, a div element is declared with an id of post-edit
•	 Next, a form element is declared that will contain input elements
•	 Then, for each property in the model, the {{input value=property}} 

helper is used to render a data binding text input



My Ember Project

[ 134 ]

•	 The {{action 'save'}} action helper is used to trigger the save action 
defined in the PostsEditController method

•	 The {{action 'destroy'}} action helper is used to trigger the destroy 
action defined in the PostsEditController method

Save the file and the browser should refresh; navigate to the /#/posts/2/edit route 
and the display should be similar to the following screenshot:

For more information on templates, visit http://goo.gl/rcmwSf.

Controllers
In Ember.js, controllers allow you to decorate your models with display logic; 
models have properties that are sent to the server and controllers have properties 
that do not need to be sent to the server.

http://goo.gl/rcmwSf


Chapter 5

[ 135 ]

Post edit controller
The generator will create a controller that will control the edit view; let's add some 
logic that will handle saving and destroying a model.

Open the app/scripts/controllers/post_edit_controller.coffee file and add 
the following content:

LearningYeomanCh5.PostEditController =  
  Ember.ObjectController.extend(
  needs: 'post'
  actions:
    save: ->
      @get('model').save()
      @transitionToRoute 'post', @get('model')
    destroy: ->
      @get('model').deleteRecord()
      @transitionToRoute 'posts'
)

The preceding code does the following:

•	 The PostEditController class is defined extending the  
Ember.ObjectController class

•	 The needs property specifies that this controller depends on the  
post controller

•	 The actions object declares a save action and a destroy action
•	 The save action will get an instance of the model and invoke the save 

method, and then transitions the app to the post detail route
•	 The destroy action will get an instance of the model and invoke the 

deleteRecord method, and then transitions to the posts list route

For more information, visit http://goo.gl/QYFfAs.

http://goo.gl/QYFfAs


My Ember Project

[ 136 ]

Self-test questions
The following are questions that you should be able to answer after reading  
this chapter:

1.	 Which template library is built into Ember?
2.	 Which class handles persisting data in Ember?
3.	 What two things uniquely identify a record object?
4.	 How do models define a relationship to another model?
5.	 How do you find a single record in Ember?
6.	 Which method is used to delete a model?
7.	 Which template helper links to a specific method on the controller, current 

route, or route ancestors?

Summary
We have covered how you can quickly get started with creating Ember.js 
applications easily by using Yeoman generators. We started off by creating a 
configuration object that will hold settings for the entire application. Next, we 
modified the application and index layouts to display the site title and navigation 
links, and then we explored the Handlebars templating system by binding data  
from the applications' configuration file to display a list of features.

We then created a simple CRUD operation that allows one to fetch records from a 
data store, modify them, and then save them back into the data store. We covered  
the core concepts of the Ember.js framework to give you an idea of how powerful 
and robust it truly is.

Next up, we are going to explore the world of creating custom Yeoman generators. 
We will take a look at using a generator to scaffold a custom generator that will be 
customized to scaffold a simple website using predefined templates and options.



Custom Generators
This chapter will cover creating custom Yeoman generators with the Yeoman 
generator-generator. By the end of this chapter, you will be able to create a 
customizable Yeoman generator that is installed using Node's package manager 
(npm) and made available to the community.

In this chapter, we will leverage the Yeoman API to handle processing files, install 
Bower components, prompt for user input, and test the generator's output using 
Mocha, which is a feature-rich JavaScript test framework that runs on Node.js.  
By the end of this chapter, you will be able to save time and money developing  
your next project by creating a custom Yeoman generator.

In this chapter, we are going to cover the following:

•	 Creating custom Yeoman generators that take multiple answers from 
command-line prompts and scaffold a modern web application

•	 Using the API to download and install libraries from Bower into  
the application

•	 Writing tests that verify the directory structure and content of files created 
dynamically based on user input, and publish the generator to npm for 
community usage

•	 Using the generator to create a simple test website and create custom  
Grunt tasks

Anatomy of a generator
Yeoman generators run in a Node.js environment and are managed by npm. They 
are executed from the command line, have a powerful prompting library, and 
leverage the Node.js API for functionality. Generators are responsible for one and 
only one thing—to take user input and output generated files based on that input.



Custom Generators

[ 138 ]

Types of generators
Generally, there are two types of generators:

•	 Copiers: It simply copies boilerplate files from one location to another
•	 Advanced: It has customizable options, remote dependencies, and more

The new custom generator
We are going to create a custom generator that will scaffold a single-page web 
application. The project will include jQuery, Bootstrap, and Handlebars that will be 
managed via Bower. The project is also going to use Grunt, which will run and watch 
files for changes, and start a Connect LiveReload server for development.

Installing the generator-generator
First, we need to install the generator to create our generator. Open the terminal and 
execute the following command:

$ npm install -g generator-generator

The current version used is 0.4.4.

This command will install the Yeoman generator-generator globally, so you can 
use the yo generator command from within any directory.

Using generator-generator
To create a new Yeoman generator, execute the following command in the directory 
of your generator:

$ yo generator

The preceding command will ask questions about the generator as shown in the 
following screenshot:



Chapter 6

[ 139 ]

 

Enter your Github username and a different base 
generator name.

Understanding the directory structure
The directory structure that the Yeoman generator creates includes default templates 
and tests to streamline the creation of a new custom generator. Take a minute and 
review the directory structure created. The directory structure looks like the following:

•	 README.md: This file contains information on how to use the generator
•	 app: This folder contains the main module definition and templates:

°° index.js: This file contains generator module definition



Custom Generators

[ 140 ]

°° templates: This folder contains custom boilerplate files:
°° editorconfig: This file contains IDE settings
°° jshintrc: This file contains JSHint settings
°° _package.json: This file contains project information
°° _bower.json: This file contains client-side dependencies
°° travis.yml: This file contains build settings for Travis CI

•	 node_modules: This folder contains project dependencies
•	 package.json: This file contains information about the project
•	 test: This folder contains the unit tests for the generator:

°° test-creation.js: This file tests the contents of the generated files
°° test-load.js: This file tests loading into the Node.js environment

Adding logic to the generator
The logic for the generator is located in the app/index.js file. This file defines the 
generator module extending from the yeoman.generators.Base class as shown in 
the following code:

'use strict';
var util = require( 'util' );
var path = require( 'path' );
var yeoman = require( 'yeoman-generator' );
var yosay = require( 'yosay' );
var chalk = require('chalk');

var LearningYeomanCh6Generator = yeoman.generators.Base.extend(..);

The preceding code does the following:

•	 The util, path, yeoman, chalk, and yosay modules are included using the  
require method

•	 The LearningYeomanCh6Generator variable declares a new generator 
extending from the Base class in the yeoman.genators package

•	 The code that gets generated inside the extend method is omitted as we will 
cover that later

•	 At the bottom of the file, the module.exports variable is set to the custom 
generator object that makes it available to the public



Chapter 6

[ 141 ]

For more information on Node.js modules, visit 
http://goo.gl/TCpUR1.

Initializing the generator
The init method initializes the generator by loading the package.json file and 
adding an event listener to the end event of the generator, as follows:

init: function() {
  this.pkg = require('../package.json');
  this.on('end', function() {
    if (this.options['skip-install'] !== true) {
      this.installDependencies();
    }
  });
},

The preceding code does the following:

•	 It adds an event listener on the end event that will install the dependencies if 
the –skip-install flag is false or null

•	 It sets the pkg property of the generator to the loaded package.json file in 
the project's root directory

Asking questions to the user
The askFor method asks questions to the user by displaying prompts. After the user 
enters the input value, the callback then loops over each property and sets the name 
equal to the value on the generator using the following code:

askFor: function() {
  var done = this.async();
  
  this.log(yosay('Welcome to the marvelous LearningYeomanCh6  
    generator!'));
  this.prompts = [
    {
      type: 'input',
      name: 'siteTitle',
      message: 'What is the name of your site',
      "default": 'My Site'
    }, {
      type: 'input',

http://goo.gl/TCpUR1


Custom Generators

[ 142 ]

      name: 'siteDesc',
      message: 'What is the site description?',
      "default": 'A modern site built with a Yeoman Generator.'
    }, {
      type: 'input',
      name: 'featureTitle',
      message: 'What is the feature?',
      "default": 'Modern Site'
    }, {
      type: 'input',
      name: 'featureBody',
      message: 'The feature description?',
      "default": 'A modern site using modern tools &  
        technologies.'
    }, {
      type: 'input',
      name: 'featureImage',
      message: 'The feature image?',
      "default": 'http://goo.gl/SYjnUf'
    }
  ];
  this.prompt(this.prompts, (function(props) {
    this.siteTitle = props.siteTitle;
    this.siteDesc = props.siteDesc;
    this.featureTitle = props.featureTitle;
    this.featureBody = props.featureBody;
    this.featureImage = props.featureImage;
    done();
  }).bind(this));
},

Yeoman generators rely on the Inquirer.js library that handles the generators' 
prompts during the scaffold.

The following table lists the properties available for a question object:

Name Type Description
Type Input

Confirm
List
Rawlist

The type property specifies the types of prompts, which are 
input, confirm, list, and rawlist.

Name String The name property specifies the name to use when storing the 
answer in the answers hash.



Chapter 6

[ 143 ]

Name Type Description
Message String The message property specifies the question to print.
Default String

Number
Array
Function

The default property specifies the value or function that returns 
the default value. If the type is function, the first parameter is 
the current session's input answer.

Choices Array 
function

The choices type can be either an array of choices or a function 
that returns an array of string values or objects (name: value).

Validate Function The validate property receives the value from user input; it 
will return true if the value is valid, or it will return an error 
message if false.

Filter Function The filter property receives the value and returns a filtered 
value; the value returned will be added to the answers hash.

When Function The when property receives the answers hash and returns true 
or false depending on whether or not the question should be 
asked.

For more information on Inquirer.js, visit http://goo.gl/lMf2ty.

Copying the project files
The projectFiles method will copy all the project-specific files. Any file at a project 
level that needs to be included should go under the projectFiles method. Consider 
the following code:

projectfiles: function() {
   this.copy('_package.json', 'package.json');
   this.copy('_Gruntfile.js', 'Gruntfile.js');

   //Copy all of the bower specific files.
   this.copy('bowerrc', '.bowerrc');  
   this.copy('_bower.json', 'bower.json');

   //Copy all files that handle code editing.
   this.copy('editorconfig', '.editorconfig');
   this.copy('jshintrc', '.jshintrc');

   //Copy all files that handle git repositorys
   this.copy('gitignore', '.gitignore');

http://goo.gl/lMf2ty


Custom Generators

[ 144 ]

   this.copy('gitattributes', '.gitattributes');

   //Copy files for Travis CI.
   this.copy('travis.yml', '.travis.yml');
},

The preceding code does the following:

•	 It will copy the files from the app/templates directory to the directory 
where the generator was invoked

•	 In this case, the package.json, Gruntfile.js, .bowerrc, bower.json, 
.gitignore, .gitattributes, .travis.yml, .editorconfig, and 
.jshintrc files will be copied from the templates directory to the root  
of the project

Copying the application files and folders
The app method will copy and create all the application-specific files and folders. 
The copy function will pass the generator instance if no third argument is set to each 
template; this allows you to use Underscore template expressions <%= %> to render 
user input in the templates, as follows:

app: function() {
  this.mkdir('app');
  this.mkdir('app/images');
  this.mkdir('app/scripts');
  this.mkdir('app/styles');
  this.mkdir('app/pages');
  this.copy('_index.html', 'app/index.html');
  this.copy('_main.html', 'app/pages/main.html');
  this.copy('_main.js', 'app/scripts/main.js');
  this.copy('_main.css', 'app/styles/main.css');
},

The preceding code does the following:

•	 It invokes the mkdir method that takes a string of the path where a directory 
should be created. Here, we create the images, scripts, and styles folders 
in the app directory.

•	 It will invoke the copy method to copy the image file from app/templates 
into app/images.

•	 Each copy method will copy the specified file in the first argument to the 
second argument's location, passing an instance of the generator to each file, 
allowing the use of Underscore templating methods inside the template files.



Chapter 6

[ 145 ]

Installing dependencies with Bower
The bowerInstaller method will invoke the bowerInstall method that the 
Yeoman API provides, which will fetch the specified libraries from Bower,  
download them into the projects bower_components folder, and add the entries  
into the projects bower.json file. Consider the following code:

bowerInstaller: function() {
  if (this.options['skip-install'] !== true) {
    this.bowerInstall(['jquery', 'handlebars', 'bootstrap'], {
      save: true
    });
  }
});

The preceding code does the following:

•	 The bowerInstaller method installs the specified libraries and saves them 
to the bower.json file

•	 This method will only be invoked if the user did not specify the  
--skip-install flag

That wasn't so bad now, was it? We wrote six functions that extended the  
yeoman.generators.Base object that will handle the following:

•	 Initializing the generator and loading the package.json file
•	 Asking the session user questions and storing responses
•	 Copying all project-specific files into the root directory where the generator 

was invoked
•	 Creating the application-specific folder structure
•	 Then copying all application-specific files passing in the generator's session 

instance to use the dynamic values from the questions
•	 And finally, installing some libraries using the bowerInstall method that 

takes an array of dependencies to install

Now we are ready to start customizing the templates that were created by the 
generator-generator by default, and add some custom styles, and scripts that handle 
the logic for routing from page to page and loading the main view. Let's proceed to 
create some templates.



Custom Generators

[ 146 ]

Creating custom templates
The generators template files are located in the app/templates directory, where 
the generator performs all file operations in the templates directory as the current 
working directory. We will create a few templates in this directory that are prefixed 
with an underscore (_) to indicate that the file contains Underscore.js templating 
syntax <%= exp %>. The files that we will create in addition to the default generated 
files will be the following:

•	 _Gruntfile.js: This file will contain the task settings
•	 _bower.json: This file will contain the client dependencies
•	 _index.html: This file will display the home page
•	 _main.css: This file will contain default styles
•	 _main.js: This file will bootstrap the app

Creating the Gruntfile.js file
The Gruntfile.js file contains the tasks for the project; there will be a task to  
watch files, start a development server, and wire installed Bower components  
to the index.html page. Create a new file in the app/templates directory  
named _Grunfile.js. Here is the content of the _Gruntfile.js file:

'use strict';
module.exports = function(grunt) {
  require('load-grunt-tasks')(grunt);
  require('time-grunt')(grunt);
  //Project tasks configuration
  grunt.initConfig({});
};

The preceding code defines the logic for Grunt; the module.exports function passes 
in the grunt instance, which allows project-specific tasks to be configured.

Creating the watch task
Now that we have the initial structure of the Gruntfile set up let's add the 
configuration settings for the watch task. Open the app/templates/_Gruntfile.js 
file and add the following watch object to the initConfig method:

//Watch - This task will watch files and run tasks when  
  files change.
watch: {
  options: {
    nospawn: true,



Chapter 6

[ 147 ]

    livereload: true
  },
  //Watch for index file changes and build
  livereload: {
    files: ['app/index.html', 'app/scripts/**/*.js',  
      'app/styles/*.css'],
    tasks: ['build']
  },
  //Watch any bower changes and inject scripts.
  bower: {
    files: ['bower.json'],
    tasks: ['bowerInstall']
  },
},

Creating the serve task
Now, let's add the configuration settings for the serve task. Open the  
app/templates/_Gruntfile.js file and add the following connect  
object to the initConfig method:

//Connect Server - The actual grunt server settings
 connect: {
     options: {
         port: 9000,
         livereload: 35729,
         hostname: 'localhost'
     },
     livereload: {
         options: {
             open: true,
             base: ['.tmp', 'app']
         }
     }
 },

The preceding code defines the server settings for the connect task. The options 
task sets up the server's port, host, and livereload port. The livereload target 
sets the open property to true, so the default web browser opens automatically and 
the base property specifies the location of files to serve.



Custom Generators

[ 148 ]

Creating the bowerInstall task
Lastly, let's add the configuration settings for the bowerInstall task. Open the  
app/templates/_Gruntfile.js file and add the following bowerInstall object  
to the initConfig method:

//Bower installer - This installs bower_component packages  
  into specified files.
 bowerInstall: {
     target: {
         src: ['app/**/*.html'],
         dependencies: true,
         devDependencies: false
     }
 }

The preceding code defines the bowerInstall target task by setting the location  
of the src file to inject the scripts into; the dependencies property is set to true, 
which means that it will inject all items in the dependencies object in the project's 
bower.json file.

Registering tasks in Gruntfile.js
Now that we have created and configured the default tasks for the project, for the 
tasks to be available to the user, we will need to register a few named tasks. The tasks 
we will register will be a serve task, a build task, and the default grunt task.

Add the following to the bottom of the _Gruntfile.js file right before the  
closing bracket:

//Serve task - $ grunt serve 
grunt.registerTask('serve', function(target) {
  console.log('running serve');
  grunt.task.run(['bowerInstall', 'build',  
    'connect:livereload', 'watch']);
});

//Build task - $ grunt build
grunt.registerTask('build', 'Building the project.', function() {
  console.log('running build');
});

//Default task - $ grunt
grunt.registerTask('default', ['build', 'serve']);



Chapter 6

[ 149 ]

The preceding code will register the following three tasks with Grunt:

•	 The serve task will handle starting the Connect LiveReload server that will 
serve the files in the app directory

•	 The build task will handle doing any pre-deployment tasks; feel free to 
customize what tasks are ran during the build phase

•	 The default task will handle running the build and serve tasks

Creating the package.json file for npm
The _package.json file is going to contain project-specific information that  
npm uses to install project dependencies. Create a new _package.json file  
in the app/templates directory, if it does not already exist, and then add the 
following contents:

{
    "name": "<%= _.slugify(siteTitle) %>",
    "version": "0.0.1",
    "dependencies": {},
    "devDependencies": {
        "grunt": "~0.4.1",
        "time-grunt": "~0.2.0",
        "grunt-contrib-connect": "~0.5.0",
        "grunt-contrib-watch": "~0.5.0",
        "grunt-contrib-copy": "~0.4.1",
        "grunt-bower-install": "~1.0.0",
        "load-grunt-tasks": "~0.2.0"
    },
    "engines": {
        "node": ">=0.8.0"
    }
}

Creating the .editorconfig file for IDEs
The .editorconfig file specifies the projects style guidelines for different file types; 
it enables developers to share a common set of formatting styles, which the project 
works with numerous IDEs. Create a new file in the app/templates directory 
named editorconfig if it doesn't exist, and add the following code:

root = true

[*]
indent_style = tab



Custom Generators

[ 150 ]

indent_size = 2
end_of_line = lf
charset = utf-8
trim_trailing_whitespace = true
insert_final_newline = false

[*.md]
trim_trailing_whitespace = false

For more information on EditorConfig, visit http://goo.gl/ZpiMa9.

Creating the .jshintrc file for JSHint
The .jshintrc file specifies configuration settings when JSHint is linking files in the 
project; it enables developers to have increased code quality by sharing a common 
set of coding standards. Create a new file in the app/templates directory named 
jshintrc if it doesn't exist, and add the following code:

{
  "node": true,
  "esnext": true,
  "bitwise": true,
  "camelcase": true,
  "curly": true,
  "eqeqeq": true,
  "immed": true,
  "indent": 2,
  "latedef": true,
  "newcap": true,
  "noarg": true,
  "quotmark": "single",
  "regexp": true,
  "undef": true,
  "unused": true,
  "strict": true,
  "trailing": true,
  "smarttabs": true,
  "white": true
}

For more information on JSHint options, visit 
http://goo.gl/ebwCEX.

http://goo.gl/ZpiMa9
http://goo.gl/ebwCEX


Chapter 6

[ 151 ]

Creating the .travis.yml file for Travis CI
Travis CI is a hosted continuous integration and deployment system. There  
are two versions, https://travis-ci.com for private repositories and  
https://travis-ci.org for public repositories. The .travis.yml file specifies 
the build configuration for a project hosted on https://travis-ci.org; it enables 
Travis CI to learn about the project and how to build it. Create a new file in the  
app/templates directory named travis.yml if it doesn't exist, and add the 
following code:

language: node_js
node_js:
  - '0.10'
before_install:
  - 'bower install'
  - 'grunt build'

For more information on Travis CI, visit http://goo.gl/wMVg0c.

The .gitattributes file for Git
The .gitattributes file specifies separate merging strategies for individual 
files and/or directories, and how Git runs a diff command on non-text files, or 
filters contents before a checkin/checkout. Create a new file in the app/templates 
directory named gitattributes if it doesn't exist, and add the following:

* text=auto

For more information on Git attributes, visit 
http://goo.gl/i4NwSQ.

The .gitignore file for Git
The .gitignore file intentionally specifies untracked files and directories that Git 
should ignore and not add to the repository. Create a new file in the app/templates 
directory named gitignore if it doesn't exist, and add the following code:

app/bower_components/
node_modules/
.tmp/
.grunt

https://travis-ci.com
https://travis-ci.org
https://travis-ci.org
http://goo.gl/wMVg0c
http://goo.gl/i4NwSQ


Custom Generators

[ 152 ]

For more information on the Git ignore file, 
visit http://goo.gl/OfSHGW.

Creating the .bowerrc file for Bower
The .bowerrc file specifies the installation directory of Bower components; it enables 
developers to manage Bower components in a custom directory location. Create a 
new file in the app/templates directory named bowerrc if it doesn't exist and add 
the following code:

{
  "directory": "app/bower_components"
}

The preceding code simply specifies in which directory Bower should install 
components into.

Creating the bower.json file for Bower
The bower.json file specifies the applications' dependencies, it enables developers to 
install, update, and remove application packages using the Bower package manager. 
Create a new file in the app/templates directory named _bower.json, if it doesn't 
exist, and add the following code:

{
    "name": "<%= _.slugify(siteTitle) %>",
    "version": "0.0.1",
    "main": [
        "app/scripts/main.js",
        "app/styles/main.css"
    ],
    "ignore": [
        "./node_modules",
        ".tmp",
        "app/bower_components",
        "app/images"
    ],
    "dependencies": {
        "jquery": "latest",
        "bootstrap": "latest",
        "handlebars": "latest"
    }
}

http://goo.gl/OfSHGW


Chapter 6

[ 153 ]

The preceding code does the following:

•	 It sets the name property to siteTitle that will be populated by the value 
from the prompts

•	 The main property defines the locations of the main files that should be only 
installed when using bower install

•	 The ignore property defines the locations that should be ignored when 
installing with bower install

•	 The dependencies property holds any Bower components that the project 
depends on

For more information on configuring Bower, visit 
http://goo.gl/R98hD4.

Creating the application templates
The application-specific files will allow the user to run the app as well as have the 
files wired up and ready for logic. Let's take a look at the application level templates 
that will be created when the generator is invoked.

The index.html file
The index.html file is going to be the main application entry point; it will include 
default markup that will render the file in the browser upon initial page load.

The following is the content of the app/templates/_index.html file:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
    <meta name="viewport" content="width=device-width,  
      initial-scale=1">
    <title><%= _.capitalize(siteTitle) %></title>
    <!-- bower:css -->
    <!-- endbower -->
    <link rel="stylesheet" href="styles/main.css"/>
  </head>
  <body>
  
    <article class="container slim">
      <header class="header">

http://goo.gl/R98hD4


Custom Generators

[ 154 ]

        <nav>
          <ul class="nav nav-pills pull-right">
            <li class="active">
              <a href="#"> Home </a>
            </li>
          </ul>
        </nav>
        <h3 class="text-muted"><%= _.capitalize(siteTitle) %></h3>
        <hr/>
      </header>

      <section class="jumbotron center">
        <h1><%= _.capitalize(featureTitle) %></h1>
        <img src="<%= featureImage %>" alt= 
          "<%= featureTitle %> image"/>
        <p class="lead">
          <%= _.capitalize(featureBody) %>
        </p>
      </section>
      <section class="page"></section>
    </article>

    <!-- bower:js -->
    <!-- endbower -->
    <script type="text/javascript" src="scripts/main.js"></script>
  </body>
</html>

The preceding code does the following:

•	 It declares the basic HTML5 site markup that contains templating and 
building tags, which get dynamically updated

•	 The title element inside the head uses the _.capitalize method from 
Underscore, which capitalizes the first letter of the siteTitle

•	 The <!-- bower:css --> comment is placed in the head where the installed 
Bower components' stylesheet files should get injected

•	 The markup used as the initial layout is referenced by the other projects 
created in earlier chapters using the templating syntax

•	 The <!-- bower:js --> comment is placed at the location where the 
installed Bower components' JavaScript files should go

•	 Then, at the very bottom, the main script for the application is declared, 
which will execute after the document is loaded



Chapter 6

[ 155 ]

The main.css file
The main.css file is going to store the applications' styles. Here is the content of the 
app/templates/_main.css file:

/* Styles for <%= _.slugify(siteTitle) %> */
body{
  background: fefefe;
}
.slim{
  max-width:760px;
}
.center{
  text-align:center;
}

The preceding code does the following:

•	 A CSS comment is placed at the top that will be replaced by siteTitle
•	 Then some generic classes are declared that will adjust the background, 

width, and centering of text

The main.js file
The main.js file is going to store the applications' logic. It will create a global 
namespace with properties to store the created models, controllers, and views.  
Here is the content of the app/templates/_main.js file:

/* Script for <%= _.slugify(siteTitle) %> */
$(document).ready(function(){
  var App = {
    config: null,
    Models: {},
    Controllers: {},
    Views: {},
    init: function(){
      console.log('<%= _.capitalize(siteTitle) %> is ready to  
        rock and roll!');
      return this;
    }
  };
  
  window.App = App.init();
});



Custom Generators

[ 156 ]

The preceding code does the following:

•	 The document.ready function is used to execute the wrapped contents once 
the document is fully loaded

•	 The App variable is declared with some properties for storing config, 
models, controllers, and views

•	 The init method will simply log a message to the console and return  
the App object

•	 The window.App property is set to the App.init() method, which  
returns itself

Testing a custom generator
The generator-generator creates two example test files that will need to get modified 
to handle the prompts and files created when the jps-site generator is invoked. 
Yeoman does not set up any Grunt tasks for running the tests, so we are going to 
create a Gruntfile and populate it with tasks that will handle running unit tests and 
linting source files.

The following steps assume that the current directory 
is generator-jps-site.

Setup
The first step will be setting up our testing environment, so that it will be easy to add 
more tests down the road. Perform the following steps:

1.	 First, add the following development dependencies to the package.json file 
in the generator's project directory:
"devDependencies": {
      "grunt": "^0.4.4",
      "grunt-contrib-coffee": "^0.10.1",
      "grunt-contrib-nodeunit": "^0.3.3",
      "grunt-contrib-jshint": "^0.9.2",
      "grunt-contrib-watch": "^0.6.1",
      "grunt-mocha-test": "^0.10.0",
      "grunt-contrib-clean": "^0.5.0",
      "load-grunt-tasks": "^0.4.0",
      "time-grunt": "^0.3.1",
      "chai": "^1.9.1",
      "mocha": "^1.18.2"
},



Chapter 6

[ 157 ]

In the preceding code, we declared some development dependencies that 
will be installed by npm that allow us to create Grunt tasks for compiling  
and testing.

2.	 Next, create a file named Gruntfile.js in the custom generator's root 
directory. Open the Gruntfile.js file and add the following code:
'use strict';
  module.exports = function(grunt) {
    require('load-grunt-tasks')(grunt);
    require('time-grunt')(grunt);
    grunt.initConfig({
      clean: {
        test: ['test/temp']
      },
      watch: {
        compile: {
          files: ['app/*.js', 'test/*.js'],
          tasks: ['mochaTest']
        }
      },
      mochaTest: {
        test: {
          options: {
            reporter: 'spec'
          },
          src: ['test/**/test-*.js']
        }
      }
    });
    grunt.registerTask('default', ['clean', 'mochaTest']);
    grunt.registerTask('test', ['default']);
  };

The preceding code does the following:
°° The module.exports property is set to a function that takes grunt as 

the argument, which allows access to the instance
°° The grunt.initConfig method is invoked by passing an object of 

task-specific configuration settings
°° The clean property declares a test target, which will remove any file 

and folder inside the test/temp directory



Custom Generators

[ 158 ]

°° The mochaTest property declares a test target, with options  
for reporting the specs run and src set to the location of the 
compiled files

°° Finally, the grunt.registerTask method is invoked passing the 
name of the task (default) and subtasks to execute

Testing the generator output
The Yeoman API includes helpers for testing whether files exist, matching contents, 
and more. We are going to write a test that will execute the generator and ensure that 
the files created match the files expected. We will also match the content of those files 
against regular expressions to ensure that the values from the prompts are properly 
inserted in the correct locations.

The following specs are written in JavaScript. Create a new file test-creation.js 
in the test folder if it doesn't exist and add the following code:

'use strict';
var path = require( 'path' );
var helpers = require( 'yeoman-generator' ).test;
require( 'chai' ).should();

//Mocked questions and answers
var mockAnswers = {
  siteTitle: 'My Test Site',
  siteDesc: 'A modern site build to test.',
  featureTitle: 'Mocha Tests',
  featureBody: 'A modern site created by a Yeoman generator.',
  featureImage: 'http://goo.gl/SYjnUf'
};

//Mock expected files
var mockFiles = [
  '.bowerrc', 
  'bower.json',
  '.gitattributes', 
  '.gitignore',
  '.editorconfig', 
  '.jshintrc', 
  '.travis.yml', 
  'Gruntfile.js', 
  'package.json',
  'app/styles/main.css', 
  'app/scripts/main.js', 



Chapter 6

[ 159 ]

  'app/index.html'
];

//Mock expected file contents
var mockFilePairs = [
  ['app/index.html',     RegExp( "<title>" + mockAnswers. 
    siteTitle + "</title>" )],
];

describe( 'generator', function () {

  //Before each test clean the test/temp folder and create  
    a new generator.
  beforeEach( function (done) {

    helpers.testDirectory( path.join( __dirname,  
      'temp' ), (function (err) {
      if (err) {
        done( err );
      }

      //App generator
      this.app = helpers.createGenerator( 'learning-yeoman-ch6:app',  
        ['../../app'], 'test-gen' );

      done();
    }).bind( this ) );
  } );

  //First test if the files that were created match what  
    we expect.
  it( 'creates expected files', function (done) {

    //Add some mock prompts for the user to answer
    helpers.mockPrompt( this.app, mockAnswers );

    //Skip installing of the bower and npm dependencies
    this.app.options['skip-install'] = true;

    //Run the app and test for files and file contents
    this.app.run( {}, function () {
      helpers.assertFile( mockFiles );
      helpers.assertFileContent( mockFilePairs );
      done();
    } );
  } );
} );



Custom Generators

[ 160 ]

The preceding code does the following:

•	 At the top of the file, some inline JSHint options are declared
•	 The path, yeoman-generator, and chai helpers are imported
•	 The describe block contains the content for testing
•	 The mockAnswers variable is set to an object of question name/value pairs 

that will get passed to the generator
•	 The mockFiles variable is set to an array of files expected to be created after 

the generator is invoked
•	 The mockFilePairs variable is set to an array of file/regex subarrays
•	 The beforeEach method will clean the test/temp folder and create a new 

generator instance
•	 The it method tests that the created files match the expected files
•	 The mockPrompt method is invoked on the helper passing in the generator 

instance and mockAnswers
•	 The skip-install option is set to true on the instance of the generator
•	 The generator instance is then run; in the callback function, the assertFile 

method is invoked passing the array of expected files
•	 The assertFileContents method is invoked on the helper, passing the 

array of mockFilePairs that will ensure contents are correct

Test generator loading
The load tests will check whether the generator can be initialized and loaded into the  
Node.js environment without breaking. Open the test/test-load.js file and add 
the following content:

'use strict';
var assert = require('assert');
require('chai').should();
  describe('jps-site generator', function() {
    it('can be imported without blowing up', function() {
       var app = require('../app');
       assert(app !== undefined);
     });
});



Chapter 6

[ 161 ]

The preceding code does the following:

•	 At the top, it imports the assert and chai modules
•	 The it block will try and load the app/index.js module and assert  

that it is defined

To run the tests against the generator, you can use the following command:

$ grunt

After running this command, the result should look similar to the following screenshot:



Custom Generators

[ 162 ]

With the proper configuration, we can write generator unit tests and use Grunt to 
watch when source files change. The tests are run to ensure whether everything is 
working as expected.

The new custom subgenerator
Let's create a subgenerator for the custom generator we just created; this subgenerator 
is going to simply create a new page in the project and add a link to the page defined 
in the projects app/index.html file.

To create a new subgenerator, open a terminal and make the generator we created 
before the current working directory and execute the following command:

$ yo generator:subgenerator page

The preceding command will invoke the generator:subgenerator command, 
which then scaffolds a subgenerator module definition file and a template in the  
root of the generator project.

Understanding the subgenerator's  
directory structure
The directory structure created is relatively simple; it consists of a folder named  
after the subgenerator, an index.js file that contains the module definition, and  
a template in the page/templates directory:

page
├── index.js
└── templates
    └── somefile.js

1 directory, 2 files

The directory structure is broken down into the following:

•	 page: This folder is created and named after the subgenerator
°° index.js: This file contains the subgenerator module logic
°° templates: This folder contains the subgenerator template files

°° somefile.js: This is the default template that was scaffolded



Chapter 6

[ 163 ]

The somefile.js file will be replaced with our actual template.

Creating subgenerator templates
Now that we have the initial subgenerator files, we need to create a custom template 
that will be copied into the target project when this subgenerator is invoked.

In the page/templates directory, create a new file named _page.html and add the 
following content:

    <h1><%= name %></h1>

The content of the page/_page.html file is very simple; it only includes a 
Underscore.js templating expression to output the value of the passed name 
argument when the subgenerator was invoked.

Adding logic to the subgenerator
The logic for the subgenerator is very straightforward; the only responsibility the 
subgenerator has is to create a new file based on the name argument passed when 
invoking the subgenerator, and append a new link to the app/index.html file.

Open the page/index.js file and add the following content:

'use strict';
var util = require('util'), yeoman = require('yeoman-generator');

var PageSubGenerator = yeoman.generators.NamedBase.extend({

  //init - Initialize sub-generator
  init: function () {
    if (this.name) {
      return console.log('You called the page sub-generator  
        with the argument' + this.name + '.');
    } else {
      throw new Error('You must provide a page name!');



Custom Generators

[ 164 ]

    }
  },

  //files - Write the template to the projects app directory file
  files: function () {
    return this.copy('_page.html', 'app/pages/' + this.name +  
      '.html');
  },

  //Handle appending a link to the index.html pages .nav element
  appendLink: function () {
    var htmlLink = '<li><a href="#/' + this.name + '">' +  
      this.name + '</a></li>';
    return this.appendToFile('app/index.html', 'ul.nav',  
      htmlLink);
  }
});
module.exports = PageSubGenerator;

At the top of the preceding code, the util and yeoman modules are included  
using the require method. The code comments to understand the logic this 
subgenerator provides.

Using your custom generator
When developing generators, it's always a good practice to try the generator out by 
yourself. As you don't have tons of issues logged in Github or another system, let's 
use it and create a simple website.

Link your generator
Now we need to link the custom generator to the system so that we can use the 
generator from the command line; from inside the root folder of the generator 
project, execute the following command:

npm link

The preceding command will add a symbolic link to your systems path, allowing 
you to run the yo learning-yeoman-ch6 generator command from anywhere.

For more information on npm link, visit http://goo.gl/fwKa4Z.

http://goo.gl/fwKa4Z


Chapter 6

[ 165 ]

Scaffolding a new webapp
We are going to scaffold a website using the custom generator we created; open the 
terminal and perform the following steps:

1.	 Create the directory where your site will live and then execute the generator:
$ yo learning-yeoman-ch6

After running this command, the result will look like the following screenshot:

After answering the questions, the files, shown in the preceding screenshot, 
are created and starts the installation of dependencies.

2.	 Now, you can start the server by running the following command:
$ grunt serve



Custom Generators

[ 166 ]

3.	 Your default web browser should open up displaying a page similar to the 
following screenshot:

4.	 With a terminal window open, invoke the subgenerator and add the  
About page:
$ yo learning-yeoman-ch6:page About

Watch LiveReload automatically refresh the browser and 
display your newly created link.



Chapter 6

[ 167 ]

Self-test questions
The following are questions the reader should be able to answer by the end  
of this chapter:

1.	 Which command do you use to invoke a subgenerator?
2.	 What is the default templating library Yeoman uses to process templates?
3.	 What are the two types of code generators?
4.	 What two tests are created when invoking the Yeoman generator-generator?
5.	 What library is used to test Yeoman generators?
6.	 What prompting library does Yeoman use for its command prompts?
7.	 What are the four methods that are generated on the custom generator object?
8.	 Which class must you extend when creating a subgenerator?

Summary
This chapter covered creating custom Yeoman generators that take multiple answers 
from command line prompts and scaffold a modern web application. We used the 
API to download and install libraries from Bower into the application.

We covered writing tests that verify the directory structure and contents of files 
created dynamically based on user input, and publish the generator to npm for 
community usage. We also covered using the generator to create a simple test 
website and created custom Grunt tasks.

In the next chapter, we are going to look at creating custom libraries using Yeoman. 
We will create three libraries using the CommonJS generator, Node.js generator, and 
jQuery plugin generator.





Custom Libraries
In this chapter, we are going to cover how to create independent modules or plugins 
that can be used in a variety of ways such as a Node.js module, which will contain 
methods for creating a RESTful API server.

For the server side, we require a CommonJS module that will be used to handle the 
data store access, and then a jQuery plugin that will handle the client-side logic of 
performing CRUD operations via RESTful HTTP Ajax requests. We will write tests 
for these modules and use Bower and npm to publish them to the cloud for the npm 
community to consume.

In this chapter, we will cover the following topics:

•	 Using some of the official Yeoman generators to create different modules and 
plugins for different systems

•	 Creating a standard server-side JavaScript module in the form of CommonJS
•	 Creating a Node.js module that uses the same format as CommonJS
•	 Creating a jQuery plugin for usage in the browser
•	 The different types of modules and module loaders available on either the 

server or the client



Custom Libraries

[ 170 ]

The new CommonJS project
Using the Yeoman CommonJS generator, we will create a reusable module that can 
be consumed by other projects. This module will contain methods to perform CRUD 
(create, read, update, delete) operations. Let's get started!

Installing the generator-commonjs
To install the CommonJS generator, open a terminal and execute the  
following command:

$ npm install -g generator-commonjs

The preceding command will install the CommonJS generator globally on the 
system. You can use the yo commonjs command, which can be invoked anywhere.

Scaffolding a CommonJS project
To scaffold a new CommonJS project, open a terminal and do the following steps:

1.	 First, create the directory where the project is going to live, replace the jps 
attribute with your initials, and execute the following command:
$ mkdir jps-ds && cd jps-ds

The preceding command will create a new folder and make it the  
current directory.

2.	 Then, invoke the Yeoman generator inside the projects directory using the 
following command:
$ yo commonjs

The following actions are performed by the preceding command:
°° It prompts you with a series of questions about the module
°° It answers the questions as if you were the author
°° After answering the questions, the scaffold process will take place



Chapter 7

[ 171 ]

The output from the preceding command should look similar to the  
following screenshot:

That's it! All the necessary files were just created in the current directory and include 
everything to get started writing module logic and unit tests. Now we are going to 
add the logic that will handle accessing the database.

To use this module during development in another project on the same machine, 
simply execute $ npm link as an administrator user to set the module in your PATH. 
Now, you will be able to use Node's require method to include this module from 
within any project during development.

The CommonJS logic
The logic for this module is going to be fairly straightforward; we will wrap the 
module in a function that takes one argument, that is, the options passed to the 
module. This module will have methods for connecting to the database, creating 
a new model instance, finding all records, finding one record, creating a record, 
updating a record, and removing a record.



Custom Libraries

[ 172 ]

This module is going to leverage Mongoose, which is a Node module for  
accessing MongoDB. The other module that we will use is Q, which provides  
a cross-platform solution for composing asynchronous promises in JavaScript. 
Perform the following steps:

1.	 Add the Mongoose module to the project, open a terminal, and execute the 
following command:
$ npm install mongoose --save

For more information on Mongoose, visit 
http://goo.gl/OscTpz.

2.	 Then, add the Q module to the project, open a terminal, and execute the 
following command:
$ npm install q --save

For more information on Q, visit http://goo.gl/ZWFjnb.

The preceding commands will download and install the packages into your  
node_modules folder inside the projects directory; the --save flag will add  
the entries to your project's package.json dependencies.

Module properties
The generator will create a skeleton file located in learning-yeoman-ch7-
commonjs/src with the filename set to the name of the module specified  
during the generator prompts.

The module is wrapped in an immediately invoked function that passes in the  
global exports object. Some of the default properties need to be adjusted; so,  
open the src/ds.js file and add the following code:

(function(exports) {
  'use strict';
  exports.DS = function(options){
      var mongoose = require("mongoose"),
            Q = require("q"),
            instance = null,
            models = {},
            ds = {};
  };
}(typeof exports === 'object' && exports || this));

http://goo.gl/OscTpz
http://goo.gl/ZWFjnb


Chapter 7

[ 173 ]

The following actions are performed by the preceding code:

•	 An immediate invoking function wraps the entire module to ensure variables 
do not pollute any globals

•	 The DS property is set to a function on the exports object that takes one 
argument, that is, the options object to initialize this module with it

•	 The mongoose and q libraries are required and set to local variables
•	 The instance variable will handle keeping a reference of the  

current connection
•	 The models object will hold a reference to all the models when initialized
•	 The ds variable will hold all the methods that this module will expose to the 

public API

Connecting to MongoDB
The connect method will create model instances for each of the models passed in the 
options object and open a connection to the MongoDB database specified. Open the 
src/ds.js file and add the following code:

ds.connect = function (host) {
    if (options.models) {
      for (var m in options.models) {
       if (m) {
        var model = mongoose.model( m, new mongoose.Schema(  
          options.models[m] ) );
         
                 models[m] = model;
        }
       }
    }
    instance = mongoose.connect( "mongodb://" + host );
    return this;
};

The following actions are performed by the preceding code:

•	 The connect method takes one argument, which is the mongo host location
•	 Inside the method body, we check if there is a models property on the passed 

arguments' options object



Custom Libraries

[ 174 ]

•	 If there are models, then a new model is created using the mongoose.model 
method by passing in the name of the model and mongoose.Schema that is 
created from the models object

•	 The newly created mongoose model instance is stored in the local models 
hash by name

Finding all models
The findAll method will handle fetching all records from the MongoDB database; 
this method returns a promise that will be resolved once the records are retrieved. 
Add the following code to the src/ds.js file:

ds.findAll = function (name) {
    var deferred = Q.defer();
    if (!models[name]) {
        throw new Error('Must add table to options.');
    }
    models[name].find( function (err, m) {
       if (!err) {
          deferred.resolve(m);
       } else {
          deferred.reject(err);
       }
    } );
    return deferred.promise;
};

The following actions are performed by the preceding code:

•	 The findAll method takes one argument, that is, the name of the collection
•	 If no model is found in the models hash object, then an error is thrown
•	 If there is a model, then the find method is invoked on that model instance 

and the promise is resolved by passing the items found
•	 If there is an error, then the promise is rejected passing in the err object

Finding a model
The findOne method will find a record by id and resolve the promise when found or 
reject if not found; add the following code to the src/ds.js file:

ds.findOne = function(name, id) {
    var deferred = Q.defer();
    if (!models[name]) {
       throw new Error('Must add table to options.');



Chapter 7

[ 175 ]

    }
    

    models[name].findById( id, function (err, m) {
       if (!err) {
        deferred.resolve( m );
       } else {
        deferred.reject( err );
       }
    } );
    return deferred.promise;
};

The following actions are performed by the preceding code:

•	 The findOne method takes two arguments, which is the name of the 
collection and the ID of the document

•	 If no model is found in the models hash object, then an error is thrown
•	 If there is a model, then the findById method is invoked on the model 

instance that will then resolve the promise by passing in the object found 
from the method

•	 If there is an error while invoking the findById method, then the promise is 
rejected passing in the err object

Creating a model
The create method will handle creating a new document in the collection; to create 
a new document, all that is required is the name of the collection to insert into and 
the data object to insert.

Open the src/ds.js file and add the following content:

ds.create = function(name, data) {
    var deferred = Q.defer();
    if (!models[name]) {
       throw new Error('Must add table to options.');
    }

    var model = new models[name](data);
    model.save(function(err, m) {
      if (!err) {
         deferred.resolve(m);
      } else {
         deferred.reject(err);
      }
    } );
    return deferred.promise;
};



Custom Libraries

[ 176 ]

The following actions are performed by the preceding code:

•	 The create method takes two arguments, the name of the collection and the 
data object to insert

•	 If no model is found in the models hash object, then an error is thrown
•	 If there is a model, then the save method is invoked on the model instance by 

passing in the data object to create, which resolves the promise after that
•	 If an error occurs while invoking the save method, then the promise is 

rejected passing in the err object

Updating a model
The update method will handle updating a document in the collection found by the 
ID of the document. To update a document, just pass in the name of the collection, 
the ID of the document, and a data object of key:value pairs to update.

Open the src/ds.js file and add the following content:

ds.update = function (table, id, data) {
    var deferred = new Deferred();
   if (!models[name]) {
        throw new Error('Must add table to options.');
    }
    models[table].findByIdAndUpdate( id, data, function (err, m) {
        if (!err) {
            deferred.resolve( m );
        } else {
            deferred.reject( err );
        }
    } );
    return deferred.promise;
};

The following actions are performed by the preceding code:

•	 The update method takes three arguments, the name of the collection, the ID 
of the document, and the properties to update

•	 If no model is found in the models object hash, then an error is thrown
•	 If there is a model, then the findByIdAndUpdate method is invoked on the 

model instance passing in the ID and the data to update; when finished, the 
promise will be resolved with the results from the method

•	 If an error occurs, then the promise will be rejected passing in the err object



Chapter 7

[ 177 ]

Destroying a model
The delete method will handle removing a document from a collection; all that  
is required is the name of the collection and the ID of the document from which  
to remove. Open the src/ds.js file and add the following code:

ds.destroy = function (table, id) {
    var deferred = Q.defer();
   if (!models[name]) {
        throw new Error('Must add table to options.');
    }
    models[table].findByIdAndRemove( id, function (err, m) {
        if (!err) {
            deferred.resolve( m );
        } else {
            deferred.reject( err );
        }
    } );
    return deferred.promise;
};
if (options.host) {
    return ds.connect( options.host );
} else {
    return ds;
}

The following actions are performed by the preceding code:

•	 The destroy method takes two arguments, the name of the collection and 
the ID of the document

•	 If no model is found in the models object hash, then an error is thrown
•	 If there is a model, then the findByIdAndRemove method is invoked by 

passing the ID of the document to destroy, and the promise is resolved  
by passing the response from the method

•	 If an error occurs, then the promise will be rejected by passing in the  
err object

Testing a CommonJS project
The CommonJS Yeoman generator includes nodeunit as the default test framework. 
The specs for the module are located in the test directory; using this test framework 
is fairly simple.



Custom Libraries

[ 178 ]

For more information on nodeunit, visit http://goo.gl/vHzSyG.

Open the test spec that is located at test/ds_test.js and add the following code:

'use strict';
var DS = require( '../src/ds.js' ).DS;

var _ds = new DS( {
    host: 'test:test@ds037498.mongolab.com:37498/learning-yeoman',
    models: {
       'pages': { title: String, body: String}
    }
} );

var _page, _pages, _id;

exports['DS'] = {
    setUp: function (done) {
       done();
    },
};

The following actions are performed by the preceding code:

•	 At the top of the file, the module that we are testing is imported using the 
require method

•	 Then, the _ds variable is set to a new instance of the DS module, passing in an 
options object that contains the mongo host

•	 The models property is set to an object that defines the collections' structure
•	 The _page variable will hold a reference of the page that will be used  

for testing
•	 The _pages variable will hold a reference of all the pages that are returned 

from the module
•	 The _id variable will hold a reference of the model created for deleting  

it as well
•	 The global exports object has the DS property, which is the name of the 

module that we were testing
•	 The setUp function will run before each key in the object and is used to set 

up the model before running tests

http://goo.gl/vHzSyG


Chapter 7

[ 179 ]

Test for no model
The module should throw an error if there is no model instance created before calling a 
method on the table. Open the test/ds_test.js file and add the following code:

'noTable': function (test) {
    test.expect( 1 );
    test.throws( function () {
       _ds.findAll( 'null-table' );
    }, Error, 'should throw Error if no table' );
    test.done();
},

The following actions are performed by the preceding code:

•	 The noTable property is declared, which is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one test expectation
•	 The throws method is called with a function that will invoke the findAll 

method by passing a table that does not exist
•	 The module should throw an error if no table is found prior being invoked
•	 The done method is called to inform nodeunit that the test is complete

Test finding all models
To ensure that the module can return the proper data when the findAll method  
is invoked, open the test/ds_test.js file and add the following code snippet to  
the DS object:

    'findAll': function (test) {
       test.expect( 1 );
       _ds.findAll( 'pages' ).then( function (data) {
        _pages = data;
        test.ok( (data instanceof Array) );
        test.done();
       } );
    },

The following actions are performed by the preceding code:

•	 The findAll property is declared, which is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one test expectation



Custom Libraries

[ 180 ]

•	 Then, the findAll method is invoked with the pages argument that will set 
the _pages variable to the returned data

•	 Inside the then method, the ok method is called to ensure the data object is 
an instance of the Array class

•	 The done method is called to inform nodeunit that the test is finished

Test finding one model
The findOne method should return an object, so let's create the spec. Open the  
test/ds_test.js file and add the following code snippet to the DS object:

'findOne': function (test) {
   test.expect( 1 );
   _id = _pages[0]._id;  
   _ds.findOne( 'pages', _id ).then( function (data) {
    _page = data;
    test.ok( (data instanceof Object),  
      'should return object.' );
     test.done();
    });
},

The following actions are performed by the preceding code:

•	 The findOne property is declared and is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one test expectation
•	 The _id variable is set to the first object's ID in the results from the findAll 

method called before
•	 Then, the findOne method is invoked with the _id argument that sets the 

_page variable to the object returned
•	 Inside the then method, the ok method is called to ensure the _page object is 

an instance of the Object class
•	 The done method is called to inform nodeunit that the test is finished

Test creating a model
The module should be able to create a new model, so we will write a spec for that. 
Open the test/ds_test.js file and add the following code to the DS object:

'create': function (test) {
    test.expect( 1 );



Chapter 7

[ 181 ]

    _page = {
        title: 'Page ' + Date.now(),
        body: 'This is the page content.',
        published: true,
        created: new Date()
    };
    _ds.create( 'pages', _page ).then( function (data) {
        test.ok(data._id, 'should return object with id.' );
        test.done();
    } );
},

The following actions are performed by the preceding code:

•	 The create property is declared, which is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one test expectation
•	 The create method is invoked on the module, passing in the _page object 

that was constructed
•	 Inside the then function, the ok method is used to test that the data returned 

from the module has an _id object, which will be the newly created model
•	 The done method is called to inform nodeunit that the test is complete

Test updating a model
The module should be able to update an existing model; open the test/ds_test.js 
file and add the following code to the DS object:

'update': function (test) {
    test.expect( 1 );
    _page = {
        title: 'Updated Page'
    };
    _ds.update( 'pages', _id, _page ).then( function (data) {
        test.equal( data.title, 'Updated Page',  
          'should have updated title.' );
        test.done();
    } );
},



Custom Libraries

[ 182 ]

The following actions are performed by the preceding code:

•	 The update property is declared, which is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one test expectation
•	 The update method is called on the pages model, passing in the _id variable 

and the update _page object
•	 Inside the then function, the equal method is used to ensure the returned 

value from the module is the same value that was updated
•	 The done method is called to inform nodeunit that the test is complete

Test destroying a model
The module should be able to delete a model; open the test/ds_test.js file and 
add the following to the DS object:

'destroy': function (test) {
    test.expect( 1 );
    _ds.destroy( 'pages', _page._id ).then( function (data) {
        test.equal( data, true, 'should return object.' );
        test.done();
    } );
}

The following actions are performed by the preceding code:

•	 The destroy property is declared, which is set to a function that takes a test 
argument, which is an instance of nodeunit

•	 The expect method is called, declaring that there should be one  
test expectation

•	 The destroy method is called on the pages model, passing the ID of the 
updated model used before

•	 Inside the then function, the equal method is used to ensure the data 
returned is true, signifying a successful deletion

•	 The done method is called to inform nodeunit that the test is complete

To run the tests, execute the following command:

$ grunt nodeunit -v



Chapter 7

[ 183 ]

The preceding command will output something similar to the following screenshot:

The default grunt command will build and test the module; different tasks can be 
added to the Gruntfile.js file, easily allowing the use of more tasks.

Deploying to npm
Deploying the newly created module is fairly straightforward using npm, which is a 
package manager for managing Node dependencies. You need to authenticate first 
by running the $ npm adduser command. To publish this module to npm, use the 
following command:

$ npm publish

Your module will then show up in results from the npm search command, if the 
criteria matches that defined in the modules package.json file.

Conclusion
In this section, we have learned about the CommonJS module format and how to 
create modules that can be used on the server side. We covered the basics of setting 
up testing.



Custom Libraries

[ 184 ]

The new Node.js module project
We can easily scaffold node modules using the Yeoman Node.js generator; all projects 
include nodeunit unit tests. The generator is based on the grunt-init-node module, 
authored by the magnificent GruntJS team.

Installing the generator-node
To install the Node.js generator, execute the following command:

$ npm install -g generator-node

The preceding command will install the Node.js generator globally on the system. 
Now, the yo node command can be invoked anywhere.

Scaffolding a Node.js module project
First create a new directory and make that the current working directory. To quickly 
scaffold a new Node.js module project, execute the following command:

$ yo node

The preceding command will prompt you with a series of questions about the 
plugin. After answering the questions, the scaffold process will take place.

The output from the preceding command should look similar to following screenshot:



Chapter 7

[ 185 ]

You can answer the questions as if you are the plugin author. For demonstration 
purposes, you can use any information you like; just be sure to make the proper 
naming changes when following the code examples.

The Node.js module logic
The logic for this module is very straightforward; it will consist of a simple Node.
js server that will handle GET/PUT/POST/DELETE HTTP calls from the client. The 
module will return an instance of an Express server that can be used in any application.

Before we can start writing the module logic, we need to install the module's 
dependencies. Open a terminal and execute the following command:

$ npm install supertest express body-parser --save

The preceding command with download and install the supertest, express, and 
body-parser modules from npm and will add them to the project's package.json 
dependencies array.

Open the lib/jps-node-plugin.js file and add the following content:

'use strict';
exports.RestServer = function() {
    var express = require('express'),
      bodyParser = require('body-parser'), server = express();
    server.use(bodyParser.json());
};

The following actions are performed by the preceding code:

•	 On the global exports object, a RestServer module function is declared that 
will house the logic for the module

•	 Next, express is loaded via the require method along with the  
body-parser module

•	 Then, a new express instance is created, which is set to the private  
server variable



Custom Libraries

[ 186 ]

Now that the module definition is in place, we can start adding methods that  
will handle incoming HTTP requests. Inside the module definition, add the  
following code:

      server.get('/api', function (req, res) {
        res.json({message: 'RESTful Node API Server'});
    });

      server.get('/api/:table', function (req, res) {
        res.json({message: 'Query items in ' + req.params.table});
    });

      server.post('/api/:table', function (req, res) {
        res.json({message: 'Create item in ' +  
          req.params.table});
    });

    return server;

The following actions are performed by the preceding code:

•	 At the top, the entire module is wrapped inside a function that is declared on 
the exports object

•	 The name of the module is the name of the property that is declared on the 
exports object, which is a function that will return the server object

•	 The server object contains handlers that will accept HTTP requests in the 
form of GET and POST

•	 For example, each call will just return a message of what it is supposed to  
do in JSON; you can actually extend this further with logic that does what 
you desire

For more information on Express, visit http://goo.gl/0qEBVX.

Testing a Node.js module
The Yeoman Node.js generator sets up testing with the nodeunit framework and 
makes it easy to write unit tests for custom node modules; since we are going to be 
testing an HTTP server, we are going to use the supertest module that will handle 
sending example requests to the server and then make sure the response from the 
server is what we are expecting.

http://goo.gl/0qEBVX


Chapter 7

[ 187 ]

Open the test/jps-node-plugin_test.js file and add the following content:

var RestServer = require('../lib/jps-n.js').RestServer;
var request = require('supertest'),
   mockServer,
   expected = {
     message: 'RESTful Node API Server'
   };
//Start mock servermockServer = new RestServer();mockServer.
listen(9090);
//Listen to mock server
exports.RestServer = {
   setUp: function(done) {
     done();
   },
   'GET /api/posts': function(test) {
     expected.message = 'Query items in posts';
      request(mockServer).get('/api/posts').expect('Content-Type',  
        /json/).expect(200).end(function(err, res) {
       if (err) {
         throw err;
       }
       test.deepEqual(res.body, expected, 'should get all items');
       test.done();
     });
    },
   'POST /api/posts': function(test) {
     expected.message = 'Create item in posts';
     request(mockServer).post('/api/posts').expect('Content-Type',  
       /json/).expect(200).end(function(err, res) {
       if (err) {
         throw err;
       }
       test.deepEqual(res.body, expected, 'should create item');
       test.done();
     });
   }
 };

The following actions are performed by the preceding code:

•	 At the top of the file, the request variable references the supertest module 
that is imported using the require method

•	 Then, we start a mock server by invoking the listen method on the module 
that we created earlier



Custom Libraries

[ 188 ]

•	 The tests are declared on the global exports object; the keys for the specs 
and the values are functions, which get invoked for every spec

•	 There will be two test cases, which are as follows:
°° The first spec will test if the default route will return the message that 

is expected
°° The GET /api/posts spec will send a GET request to the server and 

expect that the response is what we expect
°° The POST /api/posts spec will send a POST request to the server 

along with an object we wish to create; the response should match  
the expected message set above the request call

To run the unit tests, open the terminal and execute the following command:

$ grunt -v

The default grunt task will lint and test the module displaying the results from the 
tests in the console, as seen in the following screenshot:

For more information on SuperTest, visit http://goo.gl/GjiJAc.

http://goo.gl/GjiJAc


Chapter 7

[ 189 ]

Deploying
Since this is a Node.js module, the only logical place to deploy this module  
would be the Node's package manager (npm); to publish this package to npm,  
use the following command:

$ npm publish

The preceding command will register your package.json file into the npm 
repository, allowing your module to be installed and updated using npm.

For more information on deploying, visit http://goo.gl/g4LuCP.

Conclusion
That was easy; now you should have an understanding on what a CommonJS 
module is and how to create one using the Yeoman CommonJS generator. We 
covered setting up a new CommonJS project, writing a unit test to verify the code 
works, and publishing the module to the npm repository. Now, you should be able 
to create CommonJS modules with ease and publish them to the npm repository.

The new jQuery project
Let's create a new jQuery project that will demonstrate using the Yeoman jQuery 
generator to quickly create a reusable plugin, which is fully tested and deployed to 
Bower for consumption by others in the community. This plugin will simply call 
CRUD methods on the client side by creating utility methods that aid in sending 
GET/PUT/POST/DELETE requests to the server and handling the response 
accordingly. Let's get started.

This generator is based on grunt-init-jquery, authored by the magnificent  
GruntJS team.

Installing the generator-jquery
To install the jQuery generator, open the terminal and execute the following command:

$ npm install -g generator-jquery

The preceding command will install the jQuery generator globally on the system. 
Now, the yo jquery command can be invoked anywhere.



Custom Libraries

[ 190 ]

Scaffolding a jQuery project
First create a new directory and make that the current working directory. To scaffold  
a new jQuery project, open a terminal and execute the following command:

$ yo jquery

The following actions are performed by the preceding command:

•	 It will prompt you with a series of questions about the plugin
•	 Answer the questions as if you were the author of this plugin
•	 After answering the questions, the scaffold process will take place,  

logging the output to the console as the files are created and the 
dependencies are downloaded

If you answered the questions, then you should see something similar to the 
following screenshot:



Chapter 7

[ 191 ]

Adding the plugin logic
We are going to create the client-side adapter for the plugin that will handle sending 
objects to the server side for processing; the file that will handle the routing logic will 
be the CommonJS module we created earlier in the chapter. The server-side routes 
will be the Node.js modules that we created in the new Node.js project.

Let's go ahead and open the src/jps-plugin.js file and add the logic that will 
handle sending requests to the server:

(function ($) {
    var crud = {
        endpoint: '/api',
        create: function (table, data) {
            return this._send( 'POST', table, data );
        },
        read: function (table, data) {
            return this._send( 'GET', table, data );
        },
        update: function (table, data) {
            return this._send( 'PUT', table, data );
        },
        destroy: function (table, data) {
            return this._send( 'DELETE', table, data );
        },
        query: function (table, params) {
            return this._send( 'GET', table, params );
        },
        _send: function (type, table, data) {
            var url;
            url = this.endpoint + "/" + table;
          if (data != null ? data.id : void 0 &&  
            type !== 'GET') {
              url += '/' + (data != null ? data.id : void 0);
            }
            return $.ajax( {
                url: url,
                type: type,
                dataType: "json",
                data: data
            } );
        }
    };

    $.extend( $.fn, {
        crud: crud
    } );
})( jQuery );



Custom Libraries

[ 192 ]

The following actions are performed by the preceding code:

•	 The script looks similar to the CommonJS module created earlier, except  
that we are setting our plugin methods on the query object instead of the 
exports object.

•	 This is a self-invoking function that passes a reference of query to the 
constructor that will be used to set the plugin methods and options.

•	 The first method is set on the $ object, which is a function that takes an  
object of plugin options that will extend with the default options defined  
in the plugin.

•	 The create method will be invoked using $.crud.create(), which will 
take two arguments: the name of the collection and the object to create. The 
method will return a promise that is resolved upon response from the server.

•	 The read method will be invoked using $.crud.ready(), which will take 
two arguments: the first is the name of the collection and the second is the 
object to find; if null, it will find all objects in the collection. This method 
returns a promise that will be resolved once a response from the server is sent.

•	 The update method will be invoked using $.crud.update, which will take 
two arguments: the first is the name of the collection and the second is the 
object to update. This method will also return a promise that will be resolved 
once received from the server.

•	 The destroy method will be invoked using $.crud.destory, which will 
take two arguments: the first is the name of the collection and the second is 
the object to remove. This method will return a promise that is resolved once 
sent from the server.

Testing a jQuery plugin
The Yeoman jQuery generator sets up testing configuration for the plugin that 
includes the QUnit testing framework. Since this plugin interacts with the server  
by sending HTTP requests, having a way to mock the responses from the server  
is generally recommended, as we do not know if there is a server available to send 
our requests to and keeping everything local while running unit tests will speed up 
the time.

For more information on QUnit, visit http://api.qunitjs.com/.



Chapter 7

[ 193 ]

Before we start writing the spec, install the jquery-mockajax library. Open the 
terminal and execute the following command:

$ bower install jquery-mockajax --save-dev

The following actions are performed by the preceding command:

•	 It will download and install the jquery-mockajax library into the  
bower_components directory

•	 Then, it will add the library to the devDependencies object in the  
bower.json file

Now, add the jquery-mockajax library to the test spec runner located in the  
test/test-plugin.html file and add the following script tag that includes  
the jQuery Mockjax library:

<script src="../bower_components/jquery- 
  mockajax/jquery.mockjax.js"></script>

For more information on jQuery Mockjax, visit 
http://goo.gl/wkGACb.

Creating the unit test
Now that we have installed the Ajax mocking library, the next step would  
be to add the mock methods to the test spec. Open the test spec located at  
test/jps-plugin_test.js and add the following code:

/* global module, asyncTest, jQuery, expect, equal, start */
(function ($) {

    var expected = {
        create: 'Create item in posts',
        query: 'Query items in posts'    
    };

        module('$.fn.crud', {
        setup: function() {
       $.mockjax({
         url: '/api/*',
         type: 'GET',
         responseText: {
           message: expected.query
         }



Custom Libraries

[ 194 ]

       });
       $.mockjax({
         url: '/api/*',
         type: 'POST',
         responseText: {
           message: expected.create
         }
       });
     }
   });

The following actions are performed by the preceding code:

•	 The entire spec is an immediate function that will pass jQuery as the parameter
•	 The expected object contains the results that we are expecting; the keys in 

the object represent the method and the value represents the expected value
•	 The module method creates a new spec; the first argument ($.fn.crud) is 

the name of the test and the second parameter is an object containing the 
setup function that is used for bootstrapping the spec before it is run

Now, we are ready to write a few tests to verify that the plugin is returning the  
data that we are expecting; open the test/jps-plugin_test.js file and add  
the following code:

    //Should make a POST request to the server sending the data.
    asyncTest( 'create', function () {
        expect( 1 );
        $.fn.crud.create( 'posts', {name: 'test',  
          body: 'This is a test.'} ).done( function (data) {
            equal( data.message, expected.create,  
              'should return data' );
            start();
        } );
    } );

    //Should make a GET request to the server.
    asyncTest( 'query', function () {
        expect( 1 );
        $.fn.crud.query( 'posts' ).done( function (data) {
            equal( data.message, expected.query,  
              'should return data' );
            start();
        } );
    } );

}( jQuery ));



Chapter 7

[ 195 ]

The following actions are performed by the preceding code:

•	 The asyncTest('create') method will handle verifying whether the 
$.crud.create() method makes the proper request and returns the  
correct response. The start method is called to inform QUnit that the  
async operation is complete and it is good to proceed.

•	 The asyncTest('update') method also handles verifying whether the 
$.crud.update() method makes the property request, and inside the done 
method, the results are compared to the expected update object to match, 
again calling the done method when complete.

•	 The same process goes for the destroy method, as well, making the call and 
comparing the results with the expected value.

To run these unit tests, open a terminal and execute the following command:

$ grunt test

The output from the command should look similar to the following screenshot:

You can also run these tests in the browser by opening the test/jps-plugin.htm 
file in any browser of your choice.



Custom Libraries

[ 196 ]

Deploying to Bower
The jQuery plugin will be deployed to Bower; this allows the library to easily be 
updated whenever a new version is available. To deploy the plugin to bower.io's 
repository, perform the following steps:

1.	 The first step is to create the bower.json file by running the  
following command:
$ bower init

The following actions are performed by the preceding command:
°° It will initialize a new bower.json file and ask you a series of 

questions about the library
°° The prompts are already set up with the expected default values; 

confirm each entry by pressing Enter

2.	 Next, you need to register the plugin by executing the following command:
$ bower register [name] [url]

The preceding command will register the plugin's name and URL with Bower. 
The URL is generally the location of the repository but can reference a .zip file 
or other resource.

3.	 To validate that your plugin is now registered with Bower's repository, open 
a terminal and execute the following command:
$ bower search [plugin-name]

The preceding command will send a search query to bower.io and return 
any results that match the [name] argument, as demonstrated in the 
following screenshot:

Conclusion
Creating a jQuery plugin is fun and pretty easy, but using the Yeoman jQuery plugin 
generator makes it even easier. In this section, we covered installing and scaffolding 
a plugin project using the jQuery generator. Now that you have created a jQuery 
plugin with unit tests and published to Bower, the sky is limit.



Chapter 7

[ 197 ]

Self-test questions
The following are questions that you should be able to answer after reading  
this chapter:

1.	 What is a package manager?
2.	 What is a command-line interface?
3.	 How do you register a package on Bower?

Summary
We have covered how to create different modules and plugins for different systems 
using some of the official Yeoman generators. We began by creating a standard 
server-side JavaScript module in the form of CommonJS; we also created a Node.
js module that uses the same format as CommonJS. We covered creating a jQuery 
plugin for usage in the browser.

We also got acquainted with the different types of modules and module loaders 
available on either the server or client. This should give you enough ammo to  
create some useful plugins that are available for the community.

In the next chapter, we are going to cover how to use Grunt, the JavaScript task runner.





Tasks with Grunt
This chapter will cover using Grunt, the JavaScript task runner; we will install and 
set up Grunt in new or existing projects. We will use Yeoman generators to automate 
the processes of automating a project.

There are a number of benefits of using Grunt in your everyday development 
workflow. We are going to cover what Grunt is and how to utilize the various tasks 
for managing projects as well as adding Grunt to existing projects. Let's get started!

In this chapter, we are going to cover the following topics:

•	 The basics of Grunt and how to add it to a new or existing project
•	 The Yeoman Grunt plugin generator to create a plugin that is published  

to npm

Overview on GruntJS
Grunt is a JavaScript task runner for managing tasks during development. Grunt 
runs in the Node.js environment and provides a quick solution over other build tools 
because of the huge ecosystem of plugins, which add additional functionality to the 
command line. Grunt is an alternative to Ant or Make.

Grunt tasks are JavaScript modules that utilize the Node and Grunt API to add 
automation in just about anything; tasks are installed using Node's package  
manager npm.

Grunt eases the management of a project by performing various tasks and can help 
manage a project's life cycle from development to production.

For more information on GruntJS, visit http://goo.gl/XA9qnz.

http://goo.gl/XA9qnz


Tasks with Grunt

[ 200 ]

Installing the Grunt CLI
In order to use the grunt command, you will need to install Grunt's command-line 
interface (CLI) globally on your system. Open a terminal and execute the  
following command:

$ npm install -g grunt-cli

The preceding command will download and install grunt-cli on your system and 
wire up the grunt command in your system path. This does not install the Grunt 
task runner; the CLI is only responsible for running the version of Grunt that is 
specified in a project's package.json file relative to the Gruntfile.js file. This 
enables different projects to use different versions of Grunt without getting affected.

The –g flag generally requires an administrator user.

Installing Grunt
The easiest way to add Grunt to your project is with the npm install command, 
which will download and install the plugin into your project's node_modules folder 
and add the entry to your project's package.json file. Open a terminal and execute 
the following command:

$ npm install grunt --save-dev

The preceding command will install Grunt and save the devDependencies property 
to the package.json files.

This assumes that the project has a package.json 
file in the root.



Chapter 8

[ 201 ]

Grunt usage
To use Grunt, the command format is as follows:

$ grunt [task [...]] [options]

The preceding command will execute the task(s) specified by passing in the specified 
options to invoke the tasks.

Grunt options
The grunt command comes with many options to choose from when invoking tasks; 
the options available are as follows:

Option Description
-h, --help This displays the help text
--no-color This disables all colored output
--gruntfile This specifies an alternative Gruntfile
-d, --debug This enables debugging mode on tasks that support debug mode
-f, --force This forces tasks to complete through warnings and errors
--tasks This displays an additional directory to scan for tasks
--npm This scans node_modules for Grunt plugin tasks
-v, --verbose This displays the detailed output log
-V, --version This displays the current Grunt version
--completion This outputs autocompletion shell rules

Installing the generator-gruntfile
The Yeoman Gruntfile generator will streamline setting up Grunt in an existing or 
new project. To install, open a terminal and execute the following command:

$ npm install -g generator-gruntfile

To use this generator, execute the following command:

$ yo gruntfile



Tasks with Grunt

[ 202 ]

The output from this command will look similar to the following screenshot:

The questions the generator asks will help it decide on whether the DOM is involved; 
it will set up QUnit and if not, it will add nodeunit. If files in the project need to be 
minified, then the generator will set up tasks to do that.

After the execution of command is finished, you should have a new Gruntfile.js 
file and package.json file located in the current working directory.

Using Grunt
To set up Grunt, either with a new project or an existing project, there are only two 
very important files that are needed to add the Grunt JavaScript task runner.

The package.json file
The package.json file is the file that contains the project's dependencies and 
development dependencies that are generally Grunt tasks. Take a look at the 
following package.json file:

{
  "name": "learning-yeoman-ch8",
  "version": "0.0.0",
  "dependencies": {},
  "devDependencies": {



Chapter 8

[ 203 ]

    "grunt": "~0.4.2",
    "grunt-contrib-watch": "~0.5.3",
    "grunt-contrib-concat": "~0.3.0",
    "grunt-contrib-uglify": "~0.2.7",
    "grunt-contrib-jshint": "~0.7.2",
    "grunt-contrib-qunit": "*"
  }
} 

This file simply defines the project configuration settings and then specifies  
the project's dependencies; the Grunt tasks are located in the devDependencies 
property, which specifies what Grunt task plugins are required for this project.

The Gruntfile.js file
The Gruntfile.js file is the file that contains the configuration settings for tasks in 
your project. Take a look at the following example:

grunt.initConfig({
    concat: {
        options: {},
        foo: {},
        bar: {
            options: {}
        }
    }
});

The following actions are performed by the preceding code:

•	 The grunt.initConfig method is invoked by passing in task options
•	 The concat task is configured with global options overriding the  

task defaults
•	 The foo property is a target of the task that sets target-level options
•	 The bar property is a target of the task that will use the task-level options

Loading tasks
Grunt handles loading tasks that are specified in the Gruntfile.js file using the 
loadNpmTasks method, as follows:

grunt.loadNpmTasks('grunt-contrib-concat');



Tasks with Grunt

[ 204 ]

The preceding code is placed inside the Gruntfile.js file right below the  
module.exports = function(grunt) method and will load the Grunt task  
by the passed name. The tasks are loaded by performing a lookup inside the  
node_modules directory relative to the current working project's directory.

Creating the alias tasks
Grunt also supports the ability to create alias tasks that can be used to execute 
multiple tasks by creating an alias task, which invokes all subtasks that are  
defined in the alias. For example, consider the following code:

grunt.registerTask('customTask', ['qunit', 'concat', 'uglify']);

The following actions are performed by the preceding code:

•	 It uses the registerTask method to register a new task named customTask 
that will execute the tasks in the order specified in the second argument

•	 The usage of invoking this newly registered task goes in the form of the 
following command:
$ grunt customTask

The preceding command will invoke the custom registered task, thus 
running all tasks defined in the task list array.

For more information, visit http://goo.gl/PvNbZf.

Multiple target tasks
Grunt has the ability to run multiple tasks with multiple configurations; each task 
that is declared in the Gruntfile.js file can have any number of target tasks, which 
are just aliases for running the task with different configuration options, as follows.

A task such as concat:dist or uglify:dist will do the following:

•	 It will only process the files specified in the tasks' dist target options
•	 Then each target specified inside that task will be executed, which allows  

you to have more control over which tasks and targets will be run with 
different files

For more information on multiple task targets, 
visit http://goo.gl/urjOkA.

http://goo.gl/PvNbZf
http://goo.gl/urjOkA


Chapter 8

[ 205 ]

Registering the basic tasks
Grunt will execute the basic tasks without looking at the configuration or 
environment and will just run the task function by passing in any specified  
colon-separated arguments to the task function as arguments. For example,  
consider the following code snippet:

grunt.registerTask(taskName, [description, ] taskFunction)

The preceding code registers a new task named taskName with an optional 
description and function to invoke when that task is run.

For more information on creating basic tasks, 
visit http://goo.gl/yUvkNT.

Options – files
Most tasks perform file operations, so Grunt has included a powerful abstraction 
layer for declaring which files the task should operate on. There are many ways to 
define the file mappings that are used when running the tasks.

For example, take a look at the following task target options:

grunt.initConfig({
    myTask: {
        staticFiles: {
            files: [{
                src: 'src/myfile.js',
                dest: 'build/myfile.min.js'
            }]
        }
    }
});

The following actions are performed by the preceding code:

•	 The grunt.initConfig method is invoked by passing an object of installed 
tasks configuration settings

•	 The myTask property specifies the options for the task, with a target  
of staticFiles

•	 The files property for the target task is set to an array of file objects that 
have properties specifying the source (src) and destination (dest) for the 
input/output of the files

http://goo.gl/yUvkNT


Tasks with Grunt

[ 206 ]

For more information on configuring tasks, 
visit http://goo.gl/iu0ra8.

Options – file patterns
The files property of Grunt supports the node-glob file pattern, which allows you 
to use the following options:

•	 *: This option matches any number of characters but not the / directory slash
•	 ?: This option matches a single character but not the / directory slash
•	 **: This option matches any number of characters, including / if it's the  

only character
•	 {}: This option matches a comma-separating list of expressions
•	 !: This option matches the beginning of a pattern with a negative match

For more information on file patterns, visit 
http://goo.gl/ssnWV7.

Options – dynamic patterns
To build the file options of your tasks dynamically, you can use template strings in the 
file property values, which can be used in both compact and the files array formats. 
When you set the expand property to true, the following options become available:

•	 cwd: This sets the current working directory where files are matched from
•	 src: This specifies the patterns to match relative to the cwd property
•	 dest: This specifies the destination file path
•	 ext: This replaces the file extension specified in the dest property
•	 extDot: This is used to specify the period location of the file extension, either 

first or last
•	 flatten: This will remove all file paths from the generated dest path
•	 rename: This is a function that will be invoked for each file, which matches 

the src property
•	 dest: This is a function that will be invoked with each src and dest of every 

file matched in the src property; this function must return the new destination

http://goo.gl/iu0ra8
http://goo.gl/ssnWV7


Chapter 8

[ 207 ]

For example, take a look at the following Grunt task:

grunt.initConfig({
  myTask: {
    dynamicFiles: {
      files: [
        {
          expand: true,
          cwd: 'lib/',
          src: ['**/*.js'],
          dest: 'build/',
          ext: '.min.js',
          extDot: 'first'
        }
      ]
    }
  }
});

The following actions are performed by the preceding code:

•	 The grunt.initConfig method is invoked with an object of task settings
•	 The myTask property specifies the options for the task
•	 The dynamicFiles property is the target and files of the task, which use the 

expand property to enable extra options for dynamic file lookups
•	 The cwd property sets the lib folder as the director to perform the file lookups
•	 The src property sets the source of the files to any file nested inside the 

directory with the .js file extension
•	 The dest property sets the location of the processed files to be placed  

by the task
•	 The ext property sets the new extension for each file that is processed  

by the task
•	 The extDot property specifies the extension that begins after the first dot 

in the filename

For more information on dynamic file objects, 
visit http://goo.gl/7b0E6o

http://goo.gl/7b0E6o


Tasks with Grunt

[ 208 ]

Options – templates
By default, Grunt supports Lo-Dash template expressions that are specified using the 
<%= %> syntax. Grunt will automatically expand each task recursively until no more 
tasks or targets remain. You can dynamically create filenames and contents using 
templates and also provide support for methods in templates, as follows:

<%= grunt.template.today('yyyy-mm-dd') %>.

The preceding code will invoke a date and time helper method on the  
grunt.templates object by passing in a date pattern that will be executed,  
and return the current date in that given format.

For more information on templates, visit http://goo.gl/2GPAjc.

Options – importing data
Grunt also supports importing external data that can be in either a JSON or YAML 
format. The following methods can be used to import existing external data for your 
grunt tasks:

•	 grunt.file.readJSON: This method will load the file specified as JSON
•	 grunt.file.readYAML: This method will load the file specified as YAML

For more information on importing formats, visit 
http://goo.gl/DWn1W4.

The new project
The easiest way to add Grunt to a new project is to use a Yeoman app generator. The 
most common generator to use with a generic project would be the generator-webapp, 
which will create all the necessary files and configure some general tasks to build and 
test your code.

To use a Yeoman generator, execute the following command:

$ yo [generator_name]

The preceding command will invoke the generator in the current directory by 
creating all files needed for development along with fully configured Grunt tasks 
ready for use.

http://goo.gl/2GPAjc
http://goo.gl/DWn1W4


Chapter 8

[ 209 ]

My custom Grunt plugin
Now that we have an overview on using Grunt and the power that it can bring to 
a new or existing project, let's use the Yeoman Grunt plugin generator to create a 
custom Grunt plugin that will allow the use of custom created tasks in any project.

Installing the generator-gruntplugin
To install the Yeoman Grunt plugin generator, execute the following command:

$ npm install -g generator-gruntplugin

The preceding command will install the Grunt plugin generator globally on your 
system, allowing the use of the yo gruntplugin command from within any directory.

Usage
To use the Grunt plugin generator, execute the following command:

$ yo gruntplugin

The directory structure
The directory structure that is created contains very few files and modules by 
default, but your plugin can include any Grunt task installed into the project.  
Take a look at the directory structure created by Yeoman:

├── Gruntfile.js
├── README.md
├── node_modules
│   ├── grunt
│   ├── grunt-contrib-clean
│   ├── grunt-contrib-jshint
│   ├── grunt-contrib-nodeunit
│   ├── jshint-stylish
│   └── load-grunt-tasks
├── package.json
├── tasks
│   └── learning_yeoman_ch8.js
└── test
    ├── learning_yeoman_ch8_test.js
    ├── expected
    └── fixtures



Tasks with Grunt

[ 210 ]

The generator scaffolds the directory structure as follows:

•	 Gruntfile.js: This contains Grunt tasks to use on the plugin
•	 README.md: This contains project-specific information including installation 

and usage of the plugin
•	 node_modules: This contains the module dependencies used by the plugin
•	 package.json: This contains project information including repository 

location, main script paths, start and stop commands, and npm dependencies
•	 tasks: This contains the source files for the plugin tasks
•	 test: This contains the test specs for the plugin that will be run against  

the module:
°° expected: This directory contains the expected files that the  

plugin produces
°° fixtures: This directory contains sample files that the plugin will 

load for testing

The Grunt plugin logic
The plugin logic is located in the tasks/learning_yeoman_ch8.js file that gets 
created by Yeoman during the initial scaffold; open the file and add the following code:

'use strict';
module.exports = function(grunt) {
  function LearningYeomanCh8() {
    //Plugin logic here
  };
  grunt.registerMultiTask(
    'learning_yeoman_ch8', 
    'This is an example plugin.', 
    LearningYeomanCh8
  );
};

The following actions are performed by the preceding code:

•	 The module.exports property is set to a function, which takes grunt as the 
only argument

•	 Inside the exports method, the plugin's main function is declared and will 
encapsulate the logic of the plugin

•	 The task is then registered by invoking the registerMultiTask method by 
passing in a description and the constructor function of the plugin



Chapter 8

[ 211 ]

When registering a plugin as a multi-task, this enables the task to iterate over every 
target specified in the configuration settings. If no target is specified when invoking 
the custom task, then each target in the task is executed.

Plugin options
Tasks generally have a set of default options, which they use when performing some 
type of logic. To specify default options for your plugin, add the following code 
inside the module method:

var options = this.options( {
  template: 'Hello <%= name %>',
  data: {
    name: 'Learning Yeoman'
  }
} );

The following actions are performed by the preceding code:

•	 It declares an options variable that is set to the current task's target options
•	 If no options exist in that target, then the defaults are specified
•	 If a task's target has options, then the task will use those options instead

Using Grunt to read files
Tasks generally take input files and process them, so your plugin should have 
methods for checking whether the file path exists before trying to read the content. 
Open the tasks/learning_yeoman_ch8.js file and add the following code inside 
the main function:

var checkFiles = function (filepath) {
  if (!grunt.file.exists( filepath )) {
    grunt.log.warn( 'Source file "' + filepath + '" not found.' );
    return false;
  } else {
    return true;
  }
};
var readSource = function (file) {
  return file.src.filter( checkFiles ).map( function (filepath) {
    return grunt.file.read( filepath );
  } ).join( grunt.util.normalizelf( '' ) );
}



Tasks with Grunt

[ 212 ]

In the preceding code, the files.forEach method is invoked internally on the 
this.files property.

Since all tasks involve the file system, the files property is the files that are populated 
from the options in the task configuration; using file globbing patterns the files are 
added to the local instance of the task.

Using Grunt to write files
Since tasks usually manipulate files in some sort of way, writing the output of those 
files should be included.

Open the tasks/learning_yeoman_ch8.js file and add the following code inside 
the LearningYeomanCh8 function:

var readWriteFile = function (file) {
  var src = readSource( file );
  src += grunt.template.process(
    options.template,{data: options.data}
  );

  grunt.file.write( file.dest, src );
  grunt.log.writeln( 'File "' + file.dest + '" created.' );
};
// Iterate over all specified file groups.
this.files.forEach(function(file) {
  readWriteFile(file);
});

The following actions are performed by the preceding code:

•	 The src variable is set to the results from the readSource method, which 
will return the content of the file passed

•	 Then the compiled fragment returned from invoking the grunt.template.
process method will be added to the source files

•	 Then the grunt.file.write method is invoked by passing file.dest, 
which will be the dest set in the task options along with the new contents  
of the file

•	 The last method will log a message to the console when the task is complete
•	 Finally the last three lines bring this plugin together by invoking 

readWriteFile for each file that is matched from the tasks file settings



Chapter 8

[ 213 ]

Testing a Grunt plugin
The Yeoman generator creates the testing configuration and an example spec that is 
located in the test/learning_yeoman_ch8_test.js file; open the file and examine 
the content, which should look like the following:

'use strict';
var grunt = require('grunt');
exports.learning_yeoman_ch8 = {
  setUp: function (done) {
    // setup here if necessary
    done();
  },

 //default options test - should write 'Hello Learning Yeoman'  
   by default.
  default_options: function(test) {
    test.expect(1);
    var actual = grunt.file.read('tmp/default_options');
    var expected = grunt.file.read('test/expected/default_options');
    test.equal(actual, expected, 'should perform task with  
      default options.');
    test.done();
  },
  
//custom options test - should write 'Hello [name]' where [name] is 
the value.  custom_options: function(test) {
    test.expect(1);
    var actual = grunt.file.read('tmp/custom_options');
    var expected = grunt.file.read('test/expected/custom_options');
    test.equal(actual, expected, 'should perform task with custom  
      options.');
    test.done();
  }
};

The preceding code:

•	 At the top, the grunt variable is assigned to the grunt module.
•	 The exports object defines the test suite; in this case,  

it's learning_yeoman_ch8.
•	 This object has three properties; the first is setUp, a function that is ran 

during the initialize phase and any initializing logic should go here.
•	 The second property is default_options; this tests the plugin and creates 

the correct file content that matches the plugins default_options.
•	 The third property is custom_options; this tests the plugin and creates the 

correct file content that matches the plugins custom_options.



Tasks with Grunt

[ 214 ]

Creating test fixtures
Since tasks in Grunt generally modify the filesystem or file(s) in some way or 
another, creating fixtures allows you to test whether your plugin is performing  
the correct logic.

Open the test/fixtures/default_options file and modify it to the following:

Hello Learning Yeoman

The preceding code is the value that is set up as the default value in the  
tasks/learning_yeoman_ch8.js file.

Open the test/fixtures/custom_options file and modify it to the following:

Hello Jonnie

The preceding code is the value that is set in the Gruntfile.js file, under the 
learning_yeoman_ch8.custom_options task. This is the value we are expecting  
the plugin to add to the created files.

Running the tests
Now that we have a test spec and fixtures, we are ready to test the plugins 
functionality. To run the nodeunit tests, open the terminal and execute the following:

$ grunt test -v

The preceding command will execute the test task specified in the Gruntfile.js file 
and display something similar to the following screenshot:



Chapter 8

[ 215 ]

Deploying to npm
The custom plugin is ready to publish on npm for community usage. To publish 
your package, execute the following command:

$ npm publish

This command will register the package with npm and is now ready to install anywhere.

Usage
To use this task, all that is required is to install the module using npm and then add 
the configuration options to your project's Gruntfile.js file. For example, here are 
the steps:

1.	 Install the plugin and save it to your package.json file; execute the 
following command:
$ npm install learning-yeoman-ch8 --save-dev

2.	 Add the task options to your Gruntfile, as follows:
learning_yeoman_ch8 : {
    default_options : {
      files : {
        'tmp/default_options' : ['test/fixtures/default',  
          'test/fixtures/custom']
      }
    },
    custom_options : {
      options : {
        data :{
          name: 'Jonnie'
        }
      },
      files : {
        'tmp/custom_options' : ['test/fixtures/default',  
          'test/fixtures/custom']
      }
    }
}

3.	 Finally, execute the task by executing the following command:
$ grunt learning_yeoman_ch8



Tasks with Grunt

[ 216 ]

Self-test questions
The following are questions that the reader should be able to answer at the end of 
this chapter:

1.	 Which command is used to list all the available Grunt tasks?
2.	 Which are the three most common Grunt tasks?
3.	 What type of environment does Grunt run in?
4.	 How to execute a target Grunt task?
5.	 How do you register a new Grunt task?
6.	 How to install a new Grunt task?
7.	 What are the alternatives to Grunt?

Summary
In this chapter, we covered the basics of Grunt and how to add it to a new or existing 
project. We also utilized the Yeoman Grunt plugin generator to create a plugin that 
is published to npm. Now that we have covered creating and configuring tasks for 
modern web development, the sky is the limit.

In the next chapter, we will learn a few important Yeoman tips and tricks.



Yeoman Tips and Tricks
In this chapter, we will cover some useful tips and tricks that one might need when 
using Yeoman and some of the generators. We will improve the existing projects 
that we created earlier by adding code coverage to our projects, as well as creating 
a RESTful Node server that will communicate to a MongoDB database using the 
module we created in the previous chapter.

While this is not an extensive list of tips and tricks, it does consist of some very 
detailed steps that will help with adding functionality to any project—not just the 
ones covered in this chapter.

Some common issues that developers run into while using the different Yeoman 
generators are as follows:

•	 Accessing server-side resources because of cross-domain scripting issues
•	 Configuring, running, and creating e2e (end-to-end) UI tests
•	 Configuring and generating code coverage reports from unit tests

In the sections to come, we will tackle these problems and come up with usable 
solutions that will make developing web applications, using any of the generators,  
a lot smoother.

Let's get started!

Webapp generator solutions
When creating a generic web application using the Yeoman generator-webapp, it 
would be nice to have a remote server somewhere serving all the API endpoints 
for the app to consume. However, since JavaScript cannot simply make HTTP calls 
to remote domains without some type of cross-site scripting setup, having a proxy 
server that can integrate with the Connect server while developing will make life a 
lot easier. It allows you to start writing code without having to wait for the server 
team to set up custom proxy scripts in order to access the endpoints.



Yeoman Tips and Tricks

[ 218 ]

Creating a RESTful Node.js server
Problem: Your project requires RESTful API routes that map resources to a 
MongoDB database to perform basic CRUD (create, read, update, and delete) 
operations and return the results in a JSON format.

Solution: Create a Node.js server by installing Express and the jps-ds module 
from Chapter 7, Custom Libraries; since that module contains methods for performing 
CRUD operations on a MongoDB data source, we can easily leverage the module to 
speed up development. As for the server routes, we can easily use Express, which is 
a Node.js module, as well. Then, it's a matter of connecting the dots and starting the 
server. Let's get started!

Installing module dependencies
First, install the dependences using npm. Open the terminal and execute the  
following command:

$ npm install jps-ds express body-parser --save

The preceding command will download and install both jps-ds and express,  
and then save the modules to the project's package.json file.

Creating the server
Now, create a server.js file that will contain the routes and logic. The server  
will handle taking request parameters and invoke the corresponding methods  
on the data source.

Configuring the server
Now, we need to import the modules that allow us to create an express server that 
will handle the routes for the application. Open the server.js file and add the 
following code:

var application_root = __dirname,
    express = require('express'),
    path = require('path'), 
    bodyParser = require('body-parser'),
    app = express(),
    DS = require('jps-ds').DS,



Chapter 9

[ 219 ]

    port = process.env.PORT || 5000;

//Setup static directory
app.use(express.static(application_root + '/dist'));

// parse application/json
app.use(bodyParser.json());

The following actions are performed by the preceding code:

•	 At the top of the file, private variables are declared and set to some required 
modules, such as express, path, bodyParser, and jps-ds

•	 The app variable creates a new instance of an express app
•	 The DS variable stores a reference to the DS module created in the  

earlier chapter
•	 The bodyParser.json() method tells express to parse the request body as 

content-type application/json and populate the request.body property  
with the value

•	 The express.static method tells express in what directory to serve  
static content

Configuring the data source
Now, we need to configure the data source settings so that it can connect to the 
MongoDB database and make queries. Open the server.js file and add the 
following code below the server configuration:

var _ds = new DS({
  host: 'localhost/learning-yeoman',
  models: {
    'posts': {
      title: String,
      slug: String,
      body: String,
      image: String,
      published: Boolean,
      tags: Array,
      created: Date,
      modified: Date
    }
  }
});



Yeoman Tips and Tricks

[ 220 ]

The following actions are performed by the preceding code:

•	 It defines a _ds variable that will hold a reference to the DS module instance; 
passing an object to the module will configure the module

•	 The host property is set to a local installation of MongoDB that should be 
running in the background

•	 The models property is an object where the key is the name of the table or 
collection and the value is the fields for that collection

•	 That's the configuration needed for accessing the MongoDB resource since 
this module provides a layer of abstraction

Defining server routes
Now, it's time to define the routes for the application and add the logic that will 
invoke the DS module to gather data to be returned by the express app when  
the route is matched and processed.

The default route
The default route will simply return a message to the user; open the server.js file 
and add the following code:

app.get('/api', function (request, response) {
  response.send({message: 'API is running'});
});

The following actions are performed by the preceding code:

•	 The /api route is registered, so that when the URL is hit, it will return an 
object that contains a message stating the API is running

•	 The response.send method will handle sending the object to the browser  
as JSON

GET – fetch the posts route
For the GET route that will handle fetching all posts from the MongoDB database, 
open the server.js file and add the following code:

app.get('/api/posts', function (request, response) {
  _ds.findAll('posts').then(function(data){
    return response.send(data);
  });
});



Chapter 9

[ 221 ]

The following actions are performed by the preceding code:

•	 The /api/posts route is registered, so that when the URL is requested with 
a GET method, it will call the findAll method on the DS module passing in 
the name of the collection

•	 Since the method is a promise, the then method handles the response by 
sending the data to the browser

POST – create the post route
Now, for the POST route that will handle creating a post in the MongoDB database, 
open the server.js file and add the following code:

app.post('/api/posts', function (request, response) {
  _ds.create( 'posts', {
    title: request.body.title,
    body: request.body.body,
    published: request.body.published,
    created: new Date()
  } ).then( function (model) {
    return response.send(model);
  } );
});

The following actions are performed by the preceding code:

•	 The /api/posts route is registered, so that when the URL is requested with 
a post method, it will call the create method on the DS module passing in 
the object to send to the backend

•	 The object that is sent to the create method is extracted from request.body; 
since express parsed the body and made it an object, we can easily access 
properties by using dot syntax

•	 After the model is saved to the database, the browser is given with the results 
from the create method

•	 The response.send method will handle sending the object to the browser  
as JSON

GET – a single post route
Now, for the GET route that will find one post in the MongoDB database by the post 
ID, open the server.js file and add the following code:

//Get a single by id
app.get('/api/posts/:id', function (request, response) {



Yeoman Tips and Tricks

[ 222 ]

  _ds.findOne('posts', request.params.id).then(function(data){
    return response.send(data);
  });
});

The following actions are performed by the preceding code:

•	 The /api/posts/:id route is registered, so that when a GET request is  
sent to the URL with an ID parameter, it will call the findOne method  
on the DS module

•	 The findOne method will find the record where the ID matches and returns 
the object

•	 The response.send method will handle sending the object to the browser  
as JSON

PUT – update the post route
Now, for the PUT route that will handle updating a post in the MongoDB database 
by the post ID, open the server.js file and add the following code:

app.put('/api/posts/:id', function (request, response) {
  _ds.update( 'posts', request.params.id, {
    title: request.body.title,
    body: request.body.body,
    image: request.body.image,
    tags: request.body.tags,
    published: request.body.published
  } ).then( function (model) {
    return response.send(model);
    console.log( 'model updated', model );
  } );
});

The following actions are performed by the preceding code:

•	 The /api/posts/:id route is registered, so that when the URL is requested 
with a PUT method and has an ID parameter in the URL, it will call the 
update method on the DS module

•	 The update method takes three arguments: the table name, the ID of the 
object to update, and the object to send to the database to update

•	 The method returns a promise that will be resolved when complete
•	 The response.send method will send the object to the browser as JSON



Chapter 9

[ 223 ]

DELETE – remove the post route
Now, for the DELETE route that will remove a post from the MongoDB database by 
the post ID, open the server.js file and add the following code:

//Delete 
app.delete('/api/posts/:id', function (request, response) {
  _ds.destroy( 'posts', request.params.id).then( function (data) {
    return response.send(data);
  } );
});

Starting the server
Now, it's time to start the server so that we can test these routes and make sure that 
they are correctly handling requests. Open the server.js file and add the following 
code snippet at the bottom of the file:

var port = 9090;
app.listen(port, function () {
  console.log('listening on port %d in %s mode', port,
    app.settings.envenv);
});

The preceding code simply creates a port variable set to 9090 and invokes the 
listen method on the express app, which will start the server.

Running the server
Now, we are all ready to run this node server so that requests to the endpoint will 
react accordingly. Open the terminal and execute the following command:

$ node server

The preceding command will run the server.js file and display the log output in  
the console.

Testing the server
Now, we are ready to test if the server handles the requests properly. Let's send the 
server some requests and check if we get what we are expecting. You could write a 
unit test for this, but to demonstrate quickly, let's just use curl to send the requests.



Yeoman Tips and Tricks

[ 224 ]

Open the terminal and execute the following commands to test the server:

1.	 Test the default endpoint:
$ curl -i -H "Accept: application/json" http://localhost:9090/api

2.	 Test to get all posts:
$ curl -i -H "Accept: application/json" http://localhost:9090/api/
posts

3.	 Test to create a post:
$ curl -i -H "Accept: application/json" http://localhost:9090/api/
posts

4.	 Test to update a post:
$ curl -i -H "Accept: application/json" -X PUT -d "title=cURL 
Updated&body=Updated post content&image=http://placehold.it/200" 
http://localhost:9090/api/posts/5341d503527b01000072a2cc

5.	 Test to remove a post:
$ curl -i -H "Accept: application/json" -X DELETE http://
localhost:9090/api/posts/5341b957527b01000072a2cb

Setting up the proxy server
Now, we are ready to install and configure the json-proxy module that will handle 
allowing you to route all API calls to a local or remote server based on the matching 
prefix in the requested URL. It will make more sense when we implement this proxy; 
open the terminal and execute the following command:

$ npm install json-proxy --save-dev

The preceding command will download and install the json-proxy node module 
that will enable you to use a proxy server during development.

Configuring the proxy server
Now, we need to configure the proxy server so that all HTTP calls that match a 
certain criteria will be forwarded to a URL of our choice. Open the Gruntfile.js 
file and add the following to the connect:livereload task options; the middleware 
function that is declared is where you want to insert the following code:

    //Around line #55
    connect:{
      livereload: {
        options: {
          middleware: function(connect) {



Chapter 9

[ 225 ]

            return [
            
              //Import and configure the json-proxy module.
              require( 'json-proxy' ).initialize( proxyConfig ),
              ...
              
            ];
          }
        }
      }
    }

The preceding code will handle importing and initializing the json-proxy module 
with the specified configuration; so when the connect:livereload server task is ran, 
this proxy server will be up and running listing on the same port. Add the following to 
the top of the Gruntfile.js file that declares the settings for the proxy module:

var serverEndpoint = 'http://jonniespratley.me:8181/api/v2/learning-
yeoman';
var proxyConfig = {
 proxy: {
  forward: {
   '/api': serverEndpoint
  }
 }
};

The preceding code simply declares a serverEndpoint variable that holds the 
location of the API server we will route HTTP calls to. The proxyConfig object has 
a proxy property.forward property that specifies the context in which to forward 
requests to when matched, the value is serverEndpoint, which is the API endpoint 
we wish to forward all requests made with /api in the URL.

To use this proxy server, simply start the Grunt connect live reload server by running 
the following command:

$ grunt serve

Conclusion
It took only nine steps and we were able to get a RESTful Node server up and 
running, talking to a MongoDB database that can perform CRUD operations,  
which are accessed through a proxy server.



Yeoman Tips and Tricks

[ 226 ]

Angular generator solutions
The most common issue with Angular apps is setting up e2e testing. Well, let's cover 
setting up Protractor with an Angular app, so we can run e2e tests to verify that the 
application is functioning as it should.

Protractor e2e testing
Problem: I have an AngularJS app that was created using Yeoman and I want to 
add Protractor e2e testing to my project. I want to run a Grunt task that will start 
Protractor and execute my project's e2e test specs.

Solution: In order to properly test your AngularJS application using Protractor,  
you will need to perform the following steps in this order:

1.	 Install protractor using npm.
2.	 Install grunt-protractor-runner using npm.
3.	 Configure the Grunt task.
4.	 Create a Protractor configuration file.
5.	 Create an e2e test spec.
6.	 Start Selenium WebDriver.
7.	 Start the application.
8.	 Run the Grunt task.

Installing Protractor
To install Protractor, you must use npm and install it globally, as follows:

$ npm install protractor -g

Now, update the Selenium WebDriver using the web driver manager. Open the 
terminal and execute the following command:

$ webdriver-manager update

The preceding command will invoke webdriver-manager that comes bundled with 
Protractor to update the required files needed to run the Selenium WebDriver.

It will download chromedriver and Selenium Server's .jar files to 
the installation directory of Protractor, which, on a Linux or Mac system, 
lives in /usr/local/lib/node_modules/protractor. You might 
need to adjust the permissions of the protractor directory.



Chapter 9

[ 227 ]

Installing the grunt-protractor-runner
Now, you will need to install the Grunt task to run the Protractor tests; open the 
terminal and execute the following command:

$ npm install grunt-protractor-runner --save-dev

The preceding command will download and install the grunt-protractor-runner 
node module to the node_modules directory and add the entry to your project's 
package.json file.

Configuring the Protractor task
Now, let's configure the Grunt task. Open the Gruntfile.js file and add the 
following at the bottom of the task settings object:

protractor : {
  options : {
    keepAlive : true, 
    noColor : false, 
    args : {}
  },
  test : {
    options : {
      configFile : "e2e.conf.js"
    }
  }
}

The following actions are performed by the preceding code:

•	 It configures the grunt-protractor-runner task by setting up some options 
that will be passed to the protractor instance

•	 The test target defined inside the protractor task will be the configuration 
file that is loaded by Protractor when running this task

Creating the Protractor configuration
Now, you need to create the configuration file for Protractor. Open the terminal and 
execute the following command:

$ touch e2e.config.js



Yeoman Tips and Tricks

[ 228 ]

Open the e2e.config.js file and add the following content:

exports.config = {
  seleniumAddress : 'http://localhost:4444/wd/hub',
  capabilities : {
    'browserName' : 'chrome'
  },
  baseUrl : 'http://localhost:9090',
  specs : ['test/e2e/*.js', '.tmp/e2e/*-e2e.js'],
  jasmineNodeOpts : {
    isVerbose : true,
    showColors : true,
    includeStackTrace : true,
    defaultTimeoutInterval : 30000
  }
};

The following actions are performed by the preceding code:

•	 The config property is set on the global exports property
•	 The seleniumAddress property is set to the location of the Selenium Server 

instance that is running
•	 The capabilities property is an object that sets the capabilities of  

the browser
•	 The baseUrl property is set to the location of the web server that is hosting 

the application
•	 The specs property is an array that contains the location of the specs; you 

can use file globbing patterns for including specs
•	 The jasmineNodeOpts property is an object that contains settings that will be 

passed to the Jasmine node module when Protractor is running
•	 The isVerbose property is set to true so that all logging will display in the 

console; the showColors property will allow color logs to be enabled
•	 The includeStackTrace property is set to true so that the console will log 

stack trace errors
•	 The defaultTimeoutInterval is used for specifying the default number of 

milliseconds before the spec fails



Chapter 9

[ 229 ]

Creating an e2e spec
Now, we need to create an e2e test spec that will handle loading the application 
and checking if the pages contain what we are expecting. Open the test/e2e/app.
coffee file and add the following code:

var Config = {
  baseurl: "http://localhost:9000/#",
  sitetitle: "learning yeoman",
  sitedesc: " a starting point for a modern application.",
  sitecopy: "2014 Copyright",
  version: '0.0.1',
  email: "admin@email.com",
  debug: true,
  feature: {
    title: 'Chapter 3',
    image: /img/learning-yeoman/yo-ng.png',
    body: 'A starting point for a modern angular.js application.'
  }
};

The following actions are performed by the preceding code:

•	 At the top, a Config object is created that holds values, which should be in 
the application

•	 This is the same Config object that was used in all previous chapters; so I 
assume you are familiar with it by now

The MainPage object
Since it is a best practice to create page objects that contain properties and methods 
for the corresponding page, let's create a MainPage object that will hold properties 
and a method for loading the page.

Open the test/e2e/app.coffee file and add the following code:

MainPage = ->
  @sitetitle = element(protractor.By.binding("App.sitetitle"))
  @featureTitle =  
    element(protractor.By.binding("App.feature.title"))
  @featureDesc =  
    element(protractor.By.binding("App.feature.body"))
  @features = element(protractor.By.binding("App.features"))
  @get = ->
    return browser.get("http://localhost:9000/#")
  @name = 'MainPage'



Yeoman Tips and Tricks

[ 230 ]

The following actions are performed by the preceding code:

•	 The MainPage is a function that contains some properties and methods
•	 The sitetitle is set to the element selector by binding, which looks for 

{{App.sitetitle}} in the view
•	 The featureTitle, featureDesc, and features properties are also set to 

the element selector by binding
•	 The get method will handle loading the correct URL in the browser
•	 The name property is set to the name of the page object

The PostPage object
Now, let's create a PostPage object that will hold properties to reference the form 
inputs in the page and some methods for loading the different views populating  
the form.

Open the test/e2e/app.js file and add the following:

PostPage = ->
  @title = element(protractor.By.model('post.title'))
  @body = element(protractor.By.model('post.body'))
  @image = element(protractor.By.model('post.image'))
  @tags = element(protractor.By.model('post.tags'))
  @published = element(protractor.By.model('post.published'))
    @submitBtn =  
      element(protractor.By.css('button[type="submit"]'))
  @get = ->
    return browser.get(Config.baseurl + '/posts')
  @getNew = ->
    return browser.get(Config.baseurl + '/posts/new')
  @getEdit = (id)->
    return browser.get(Config.baseurl + '/posts/edit/' + id)
  @edit = (id) ->
    @editBtn =  
      element(protractor.By.css("[data-id=\"#{id}\"] .edit"))
    @editBtn.click()
  @form = (p)->
    @title.sendKeys(p.title)
    @body.sendKeys(p.body)
    @image.sendKeys(p.image)
    @tags.sendKeys(p.tags)
    @submitBtn.click()
    browser.sleep(1500)

  @name = 'PostEditPage'



Chapter 9

[ 231 ]

The following actions are performed by the preceding code:

•	 It creates a new PostPage object that will contain properties and methods for 
the post page

•	 The title property is set to the element selector by model, which will look 
for ng-model=post.title in the view

•	 The getNew method will simply load the new post page into the browser
•	 The getEdit method will simply load the edit post page into the browser
•	 The edit method takes one argument, that is, the ID of the model to edit
•	 The form method takes one argument that is an object; when invoked, the 

method will call the sendKeys method on the elements that were selected  
by the model value

•	 Then, the submitBtn.click() method is invoked, which will submit the 
form followed by the browser.sleep method to inform Protractor to wait 
about 1.5 seconds before proceeding

The e2e spec
Now, the test spec will use the page objects along with the assertion methods to 
handle testing the values retrieved from the page objects.

Open the test/e2e/app.coffee file and add the following code:

describe 'Chapter3 e2e:', ->
  mainPage = new MainPage()

  describe "the main page", ->
    beforeEach ->
      mainPage.get()

    it "should have site title and description", ->
      expect(mainPage.sitetitle.getText())
                 .toEqual(Config.sitetitle)
      expect(mainPage.featureTitle.getText())
                 .toEqual(Config.feature.title)
      expect(mainPage.featureDesc.getText())
                 .toEqual(Config.feature.body)

  describe 'the new post page', ->
    postPage = new PostPage()
    beforeEach ->



Yeoman Tips and Tricks

[ 232 ]

      postPage.getNew()

    it 'should create a post', ->
      expect(browser.getCurrentUrl())
                 .toEqual(Config.baseurl + '/posts/new')
      postPage.form({
                title: Test -' + new Date().toString(), 
                body: 'Test post body',  
                tags: 'protractor,angular,test',  
                image: 'http://placehold.it/200'})
      expect(browser.getCurrentUrl()).toEqual(Config.baseurl +  
        '/posts')

The following actions are performed by the preceding code:

•	 The describe block wraps the entire content in a test suite
•	 A mainPage variable is defined and set to a new instance of the  

MainPage object
•	 Then, the describe block encloses the content in a main page test suite
•	 The beforeEach method will invoke the get method on the mainPage object, 

which will load the web page
•	 The it spec will handle testing if the page has a site title, feature title, and 

description by calling the getText() method
•	 The third describe block encloses the post page spec, and the beforeEach 

method will load the posts/new web page
•	 The it spec will check if the post form can create a new post
•	 The expectation is that the current URL is /posts/new, and then calling the 

form method on the post page object and passing an object with properties  
to send to the form

•	 After the post is saved, the expectation is that the /posts route is loaded to 
display all posts in the database

Starting the Selenium WebDriver
Now, in order to run Protractor, you need to have the Selenium Server running  
in the background; this is done by starting it with the web driver manager that 
Protractor installed. To start the Selenium Server, open the terminal and execute  
the following command:

$ webdriver-manager start



Chapter 9

[ 233 ]

The preceding command will start the Selenium Server and output  
the logging information such as the host it is running on, which is 
http://127.0.0.1:4444/wd/hub.

Starting the application
Now that the web driver is running, you can start your application; open another 
terminal and execute the following command:

$ grunt serve

The preceding command will start the Connect server launching 
Chrome, displaying your application that was created earlier. 
The tutorial is present in Chapter 3, My Angular Project.

Running e2e tests
To run the e2e tests, you will need to modify your Grunfile.js file so that the 
CoffeeScript is compiled before the tests run; so open the Gruntfile.js file  
and add the following code snippet to the bottom of the file:

grunt.registerTask('test:e2e', ['test', 'protractor']);

The preceding code will register a new task that will first run the test task to clean 
and compile the source files, and then launch the e2e tests using Protractor.

Now, to run your e2e tests, you can just run the following command:

$ grunt test:e2e

This command will run all tests followed by launching Chrome and Protractor to test 
the application end-to-end.

Backbone generator solutions
This section covers some solutions that one might need when using the  
Backbone generator.

Code coverage with Karma
Problem: You want to run your project's unit tests with Karma and generate code 
coverage for your project.



Yeoman Tips and Tricks

[ 234 ]

Solution: Since you want to use Karma and leverage the karma-coverage plugin,  
you will need to create and configure a test/test-main.js file that will parse all 
the indexed files and create an array of spec files that are then added to the Require.js 
configuration as dependencies. After all the files have been indexed, you will need to 
start Karma so the specs can be run. To do so, perform the following steps:

Installing Karma and plugins
Since the Yeoman Backbone generator creates a Karma configuration file located  
in the root of the project directory by default, all that is needed is to install the 
karma-coverage plugin and enable it in your karma.conf.js file.

To install karma-coverage, open the terminal and execute the following command:

$ npm install karma-coverage --save

The preceding command will download and install Karma and the karma-coverage 
plugin into your node_modules folder. Then, it will add the entry to your package.
json devDependencies property.

Karma configuration
Now, we need to adjust the Karma configuration file to include the correct files; since 
the project created in Chapter 4, My Backbone Project, uses CoffeeScript, we need to 
adjust the source location to use the compiled scripts.

Open karma.conf.js and add the following code:

module.exports = function (config) {
  config.set({
    basePath: '',
    frameworks: ['jasmine', 'requirejs'],
     files: [
    { pattern: 'app/bower_components/**/*.js', included: false },
      { pattern: '.tmp/scripts/**/*.js', included: false },
      { pattern: '.tmp/spec/**/*.js', included: false },
      'test/test-main.js'
    ],
    exclude: [],
    reporters: ['progress', 'coverage'],
    port: 9876,
    colors: true,
    logLevel: config.LOG_INFO,



Chapter 9

[ 235 ]

    preprocessors: {
      '.tmp/scripts/**/*.js': ['coverage']
    },
    browsers: ['Chrome'],
    captureTimeout: 60000,
    autoWatch: false,
    client: {
      captureConsole: true,
      useIframe: false
    },
    singleRun: true
  });
};

The following actions are performed by the preceding code:

•	 At the top of the file, the module.exports property is set to a function that 
takes the config argument from Karma

•	 The config.set method is invoked by passing an object of settings to send 
to Karma

•	 The basePath property is set to an empty string
•	 The frameworks property is set to an array of libraries to include for testing
•	 The files property is set to an array of file objects that specify the files 

to index; here, we specify the bower_components directory, the compiled 
scripts and compiled test specs, and the test configuration main.js file

•	 The reporters property is set to an array of Karma reporters to use
•	 The port, colors, and logLevel properties are set to their default values
•	 The preprocessors property is set to an object of files and type of 

preprocessor; here, we specify the source of the compiled scripts to be  
run through the coverage preprocessor

•	 The browsers property is set to Google Chrome
•	 Then, we configure the client method to capture any console logs to the 

runner and set singleRun to true; so it will run and exit when finished



Yeoman Tips and Tricks

[ 236 ]

Configuring test-main.js
Now, we need to create a configuration file that will replicate the app/scripts/main.
coffee file, and instead loop all files and then check if a test spec exists, pushing that 
file into an array that will be handed to Require.js when all is finished, which will in 
turn execute the specs. Create a new file by executing the following command:

$ touch test/test-main.js

Open the test/test-main.js file and add the following content:

var tests = Object.keys(window.__karma__.files).filter(function (file) 
{
  var isTest = /.tmp\/spec.*.js/.test(file);
  if (isTest) {
    return file;
  }
});
requirejs.config({
  baseUrl: 'base/.tmp/scripts',
  shim: {
      "underscore": {
        "exports": "_"
      },
      "backbone": {
        "deps": [
          "underscore",
          "jquery"
        ],
        "exports": "Backbone"
      },
      "handlebars": {  
        "exports": "Handlebars"
      }
    },
    paths: {
      "jquery": "../../app/bower_components/jquery/jquery",
      "backbone": "../../app/bower_components/backbone/backbone",
      "underscore": "../../app/bower_components/underscore/ 
         underscore",
      "handlebars": "../../app/bower_components/handlebars/ 
        handlebars",



Chapter 9

[ 237 ]

      "app": "app"
    },

    // ask Require.js to load these files (all our tests)
    deps: tests,

    // start test run, once Require.js is done
    callback: window.__karma__.start
});

The following actions are performed by the preceding code:

•	 At the top of the file, we declare a tests variable that will contain all the 
specs to run. It is set to the Object.keys method that will handle testing if 
the current file is indeed a test spec, and if it is, it will return that file, which 
pushes it into the files' array.

•	 Then, requirejs is configured with a new baseUrl property that will be the 
location of the source files. Since Karma places everything under the base, we 
need to adjust the URL accordingly.

•	 The shim and paths properties are set as normal to the same value as in the 
regular main script file.

•	 The reps property is set to the files array that will contain all the test specs 
to run.

•	 The callback property is set to the start method on the karma namespace 
object, which will invoke the runner and execute the tests.

Running tests
Now, we are ready to run the tests with Grunt, which will start the Karma runner 
and execute all the specs that are in the test/spec directory. Open the terminal and 
execute the following command:

$ grunt test

The preceding command will do the following tasks:

•	 It will run the test task that will clean the .tmp directory
•	 It will compile the CoffeeScript's source and spec files
•	 Then, it will launch Karma, which in turn will execute the specs



Yeoman Tips and Tricks

[ 238 ]

Code coverage report
Now, we are ready to view the code coverage that Karma generated after running 
the tests; Karma uses Istanbul for instrumenting and displaying the coverage reports. 
The reports are created in the root of the project in a folder named coverage, inside 
the folder will be another folder with the same name as the browser on which we ran 
our tests.

Open the index.html file in a browser of your choice to view the code coverage.  
You should see something similar to the following screenshot if all went well:

Self-test questions
1.	 How do you start and update the Selenium WebDriver when using 

Protractor in your project?
2.	 What npm module enables your project to generate code coverage from  

unit tests?

Summary
In this chapter, we covered a lot of things. We began with setting up a Node  
RESTful server that talks to a MongoDB database and returns JSON to the browser. 
We set up Protractor with an Angular application to cover the e2e tests that are 
needed as an application gets larger. We also set up Karma to handle testing our 
specs and generating code coverage on a Backbone application that uses Require.
js and CoffeeScript. Finding the correct solution to a problem can sometimes be 
a difficult task, but with patience and persistence, anything can be done; take 
this chapter as a welcome to writing better unit tests and creating projects with 
outstanding code coverage.



Yeoman Resources
This chapter will include often-used commands when using Grunt, Bower, and 
Yo, as well as the other tools and technologies used in this book; it will serve as a 
reference for developers when using tools in the Yeoman workflow and also includes 
installation details to set up the development environment.

Reference guides
As using the Yeoman workflow tools includes several different commands, let's have 
a look at the reference commands and documentation.

Yo – the scaffolding tool
Yo is a lightening-fast scaffolding tool that runs in the Node.js environment.

Usage
The Yo tool is invoked from the command line as follows:

$ yo [generator] [args] [options]

General options:

  -h, --help     # Print generator's options and usage

  -f, --force    # Overwrite files that already exist

For more information on Yo, visit http://goo.gl/ft8YFz.

http://goo.gl/ft8YFz


Yeoman Resources

[ 240 ]

Bower – the package tool
Bower is a package manager for the web.

Usage
The Bower tool is invoked from the command line as follows:

$ bower [command] [args] [options]

Commands
The Bower commands available are as follows:

Command Description
cache This manages the Bower cache
help This displays help information about Bower
home This opens a package homepage into your favorite browser
info This provides information on a particular package
init This interactively creates a bower.json file
install This installs a package locally
link This symlinks a package folder
list This lists local packages
lookup This looks up a package URL by name
prune This removes local extraneous packages
register This registers a package
search This searches for a package by name
update This updates a local package
uninstall This removes a local package

Options
The Bower options available are as follows:

Option Description
-f, --force This makes various commands more forceful
-j, --json This outputs consumable JSON
-l, --log-level This lists what level of logs to report
-o, --offline This does not hit the network
-q, --quiet This provides only important output information



Appendix

[ 241 ]

Option Description
-s, --silent This does not output anything, besides errors
-V, --verbose This makes output more verbose
--allow-root This allows running commands as root

For more information on Bower, visit http://goo.gl/x0RuZ6.

Grunt – the build tool
Grunt is a JavaScript task runner that runs in the Node.js environment.

Usage
The Grunt tool is invoked from the command line as follows:

$ grunt [task] [options]

Options
The Grunt options available are as follows:

Option Description
-h, --help This displays the help text
-d, --debug This enables debugging mode for tasks that support it
-f, --force This provides a way to force your way past warnings
-v, --verbose This enables detailed logging to be displayed during execution
-V, --version This prints the Grunt version and combines it with --verbose for  

more information
--base This specifies an alternate base path
--no-color This disables colored output
--gruntfile This specifies an alternate Gruntfile
--stack This prints a stack trace when exiting with a warning or fatal error
--tasks This lists additional directory paths to scan for task and extra files
--npm This lists npm-installed Grunt plugins to scan for task and extra files
--no-write This disables writing files (dry run)
--completion This outputs shell autocompletion rules

http://goo.gl/x0RuZ6


Yeoman Resources

[ 242 ]

For more information on Grunt, visit http://goo.gl/XA9qnz.

Git
Git is a version control system to manage a project's code base.

Usage
To use the Git tool, the usage is as follows:

$ git [command] [args] [options]

Commands
The Git commands available are as follows:

Command Description
add This adds file contents to the index
bisect This finds by binary search the change that introduced a bug
branch This lists, creates, or deletes branches
checkout This checks out a branch or paths to the working tree
clone This clones a repository into a new directory
commit This records changes to the repository
diff This shows changes between commits, commit and working tree, and so on
fetch This downloads objects and refs from another repository
grep This prints lines that match a pattern
init This creates an empty Git repository or reinitializes an existing one
log This shows commit logs
merge This joins two or more development histories together
mv This moves or renames a file, directory, or symlink
pull This fetches from and merges with another repository or a local branch
push This updates remote refs along with associated objects
rebase This integrates changes from two different branches
reset This resets the current HEAD to the specified state
rm This removes files from the working tree and from the index

http://goo.gl/XA9qnz


Appendix

[ 243 ]

Command Description
show This shows various types of objects
status This shows the working tree status
tag This creates, lists, deletes, or verifies a tag object signed with GPG

Jasmine – behavior-driven JavaScript
Jasmine is a behavior-driven testing framework for JavaScript programming language.

Structure of a suite
Jasmine uses the describe and it methods to structure test suites, as follows:

    describe("colors", function() {
        describe("red", function() {
            var red;
            beforeEach(function() {
                red = new Color("red");
            });
            afterEach(function() {
                red = null;
            });
            it("has the correct value", function() {
                expect(red.hex).toEqual("FF0000");
            });
            it("makes orange when mixed with yellow", function() {
                var yellow = new Color("yellow");
                var orange = new Color("orange");
                expect(red.mix(yellow)).toEqual(orange);
            });
        });
    });

Matchers
The available Jasmine matchers are as follows:

Method Description
expect(x).toEqual(n) This checks whether x is equal to n
expect(x).toBe(n) This checks whether two objects are the same
expect(x).toBeTruthy() This checks whether the value of x is truthy (not just true)
expect(x).toBeFalsy() This checks whether the value of x is falsy (not just false)
expect(x).toContain(n) This checks whether the value of x contains value n



Yeoman Resources

[ 244 ]

Method Description
expect(x).toBeDefined() This checks whether the value of x is defined
expect(x).toBeUndefined() This checks whether the value of x is undefined
expect(x).toBeNull() This checks whether the value of x is null
expect(x).toBeNaN() This checks whether the value of x is NaN
expect(x).toBeCloseTo(n) This checks the decimal proximity of x
expect(x).toMatch(n) This checks whether the value of x matches a given 

regular expression
expect(x).toThrow(e) This checks whether the x function throws an error
expect(x).not.toEqual(n) This checks the x inverse of the following matcher

Spy matchers
The available Jasmine spy matchers are as follows:

Method Description
expect(x).toHaveBeenCalled() This passes if x is a spy and has been called
expect(x).toHaveBeenCalledWith(args) This passes if x is a spy and has been called 

with args
expect(x).not.toHaveBeenCalled() This passes if x is a spy and was not called
expect(x).not.
toHaveBeenCalledWith(args)

This passes if x is a spy and has not been 
called with args

spyOn(x, 'method').andCallThrough() This spies on AND invokes the original  
spied-on function

spyOn(x, 'method').andReturn(args) This returns args when the spy method is 
invoked

spyOn(x, 'method').andThrow(exception) This throws the passed exception when the 
method is invoked

spyOn(x, 'method').andCallFake(fn) This invokes the passed fn function when spy 
is invoked

Reserved words
The reserved words in Jasmine are as follows:

Word Description
jasmine This is the global variable for the Jasmine instance
describe(description, function) This groups a related set of specs
it(description, function) This invokes the function for test spec



Appendix

[ 245 ]

Word Description
expect(x) This is an expectation that takes the expected value
beforeEach(function) This makes the function invoke before each spec in suite
afterEach(function) This makes the function invoke after each spec in suite
runs(function) This starts an asynchronous operation
waits(condition) This waits for condition
waitsFor(function, message, 
timeout)

This waits until the function returns true within a 
specified timeout

spyOn This stubs the function and tracks calls and arguments
xdescribe This marks a suite as pending and skips
xit This marks a spec as pending and skips

For more information on Jasmine, visit http://goo.gl/2tpIUV.

Installation guides
In order to take full advantage of the Yeoman Workflow, you need to set up your 
development environment. The following tools are required for this book's projects 
and code examples.

Installing Git
There are many ways to install and run Git. Let's take a look at the installation steps 
for both Mac and Windows operating systems.

Installing Git on Windows
To install Git on Windows, follow these steps:

1.	 Visit http://git-scm.com/downloads, and click on the Windows link.
2.	 Run the .exe file that was downloaded.
3.	 Follow the installation steps, and Git will be installed as a command-line utility.

http://goo.gl/2tpIUV
http://git-scm.com/downloads


Yeoman Resources

[ 246 ]

Installing Git on Mac
To install Git on Mac, follow these steps:

1.	 Visit http://git-scm.com/downloads, and click on the Mac OS X link.
2.	 Run the .dmg file that was downloaded.
3.	 Follow the installation steps, and Git will be installed as a command-line utility.

Once Git is installed, you can test git by executing the following command:

$ git --version

The version used in this book is 1.8.5.2.

Installing Node.js and npm
As npm comes bundled with Node.js, installing Node.js will install npm.

Installing Node on Windows
The following steps will cover the installation of npm on Windows through the  
Node installer:

1.	 Download the .msi installer located at http://nodejs.org/download/.
2.	 Run the .msi installer to install Node and npm.
3.	 Follow the installation steps, and npm will be installed as a  

command-line utility.

Installing Node on Mac
The following steps will cover the installation of npm on Mac through the  
Node installer:

1.	 Download the .pkg installer located at http://nodejs.org/download.
2.	 Run the .pkg installer to install Node and npm.
3.	 Follow the installation steps, and npm will be installed as a  

command-line utility.

 http://git-scm.com/downloads
http://nodejs.org/download/
http://nodejs.org/download


Appendix

[ 247 ]

Once Node is installed, you can test Node and npm by executing the  
following command:

$ node -v && npm -v

The version used in this book is Node 0.10.28 and npm 1.4.9.

Installing Yo
As Yo runs in the Node.js environment, you should already have Node and  
npm installed.

Installing Yo on Mac/Windows
Once npm is installed, you can install Yo globally using the following command:

$ npm install -g yo

Once Yo is installed, you can test Yo by executing the following command:

$ yo -v

The version used in this book is 1.2.0.

Installing Grunt
As Grunt runs in the Node.js environment, you should already have Node and  
npm installed.

Installing Grunt on Mac/Windows
Once npm is installed, you can install Grunt globally using the following command:

$ npm install -g grunt-cli



Yeoman Resources

[ 248 ]

Once Grunt is installed, you can test Grunt by executing the following command:

$ grunt --v

The version used in this book is 0.1.13.

Installing Bower
As Bower runs in the Node.js environment, you should already have Node and  
npm installed.

Installing Bower on Mac/Windows
Once npm is installed, you can install Bower globally using the following command:

$ npm install -g bower

Once Bower is installed, you can test Bower by executing the following command:

$ bower -v

The version used in this book is 1.3.6.

Self-test answers
The following sections are the answers to the questions that the user should be able 
to answer after reading each chapter.

Chapter 1, Modern Workflows for Modern 
Webapps

1.	 The four most popular Yeoman generators are as follows:
°° generator-angular: This is for AngularJS applications
°° generator-backbone: This is for Backbone.js applications
°° generator-ember: This is for Ember.js applications
°° generator-webapp: This is for generic web applications



Appendix

[ 249 ]

2.	 The three core tools used in Yeoman are as follows:
°° Yo: This is the build tool
°° Bower: This is the package tool
°° Grunt: This is the build tool

3.	 The general developer workflow when using Yeoman is as follows:
$ yo        # scaffold project

$ bower     # manage dependencies

$ grunt     # preview, test, build

4.	 Yeoman requires and runs in the Node.js environment on either the 
Windows, Mac, or Linux platform.

5.	 Addy Osmani and Paul Irish are the major contributors behind the creation 
of Yeoman.

Chapter 2, Getting Started
1.	 The names of at least three Yeoman generators are generator-node, 

generator-angular, and generator-ember.
2.	 The angular:route subgenerator in the generator-angular package will create 

a template and controller, and wire the named route to the applications 
router (app/scripts/app.js).

3.	 The default test framework for the Backbone generator is Mocha, which is a 
feature-rich JavaScript test framework that runs on Node and the browser.

4.	 The --coffee option is available in all four generators:
°° generator-webapp
°° generator-angular
°° generator-backbone
°° generator-ember

5.	 The search generator- will search npm for all packages with generator- 
in the name.

6.	 The ember:model subgenerator will create a model, controller, route, view, 
and template for the passed name argument.

7.	 The default test framework for a scaffolded Ember project is Mocha.



Yeoman Resources

[ 250 ]

Chapter 3, My Angular Project
1.	 Angular supports two-way data binding using the {{ }} double  

mustache syntax.
2.	 The angular.module method is used to define Angular modules.
3.	 The directive module should be used when creating a reusable  

UI component.
4.	 The Jasmine framework is the default testing framework.
5.	 The service module should be used when creating reusable business logic.

Chapter 4, My Backbone Project
1.	 The library that Backbone.js heavily depends on is Underscore.js.
2.	 All Backbone classes extend the Backbone.Event class.
3.	 The Require.js option is only available in the generator-backbone project.
4.	 The Backbone.Model class provides basic functionality to manage changes  

to the model data.
5.	 The Backbone.Collection class provides functionality to manage an 

ordered set of models.

Chapter 5, My Ember Project
1.	 The Handlebars library is built into Ember.
2.	 The EmberData class (DS) object provides access to various types of prescient 

storage options.
3.	 Two things that uniquely identify records are as follows:

°° A model type
°° A globally unique ID

4.	 Models can use the hasMany or belongsTo property to specify what the value 
is when creating the model's definition.

5.	 To find a single record, you pass a second argument to the find method, 
which is the unique identifier of the model, as follows:
this.model.find('post', 1);

6.	 To delete a model, you invoke the deleteRecord() method on a model 
instance as follows:
this.get('model').deleteRecord();



Appendix

[ 251 ]

7.	 To link a view action to a controller or route, you use the {{action 'name'}} 
helper in your view template. The name parameter is the name of the action 
you wish to invoke. To pass arguments to the action handler, just pass in the 
arguments after the name of the action as follows:
<p>
    <button {{action "select" post}}>View</button
      {{ post.title }}
</p>

Chapter 6, Custom Generators
1.	 To invoke a subgenerator, use the generator:sub-generator command, 

where the generator is the name of the Yeoman generator and subgenerator 
is the name of the subgenerator.

2.	 The default templating library that Yeoman uses is the Underscore.js 
template method.

3.	 The two types of generators are basic and advanced. A basic generator 
simply copies files from one location to another, and an advanced generator 
uses prompts and dynamic templates when writing files to their destination.

4.	 The two types of tests that are created by default when invoking the Yeoman 
generator-generator are as follows:

°° The test-creation.js test, which tests whether the generator can 
create the expected files

°° The test-load.js test, which tests whether the generator can be 
loaded into the system without blowing up

5.	 The Mocha library is used to test Yeoman generators.
6.	 Yeoman uses the Inquery.js library for its command prompts.
7.	 The four methods that are created on the custom generator object are init, 

askFor, files, and app; they are explained as follows:
°° The app function is responsible for creating all the applications' 

project files
°° The files function is responsible for creating all the application-

specific files
°° The askFor function is responsible for prompting the user with 

questions and storing values
°° The init function is responsible for setting up initial variables and 

other initializing methods



Yeoman Resources

[ 252 ]

8.	 To create a subgenerator, you extend the yeoman.generators.NamedBase 
class with your own subgenerator-specific methods as follows:
var MySubGenerator = yeoman.generators.NamedBase.extend(
        init: function(){},
        files: function(){}
    );

Chapter 7, Custom Libraries
1.	 A package manager is a tool to automate the process of installing, upgrading, 

configuring, and managing dependencies for projects.
2.	 A command-line interface is a way for developers to interact with a system 

using text commands.
3.	 To register a package on Bower, use the register command by passing the 

name and URL of the package as follows:
$ bower register [name] [url]

Chapter 8, Tasks with Grunt
1.	 The grunt -h command is used to list all of the available tasks defined in the 

relative Gruntfile.js file.
2.	 The three most common Grunt tasks are grunt, test, and serve.
3.	 Grunt runs in the Node.js environment and is invoked from the  

command line.
4.	 To execute a target task in Grunt, you use the task:target syntax that will 

execute the named task in the named target.
5.	 To register a new Grunt task, you use the grunt.registerTask method 

by passing in the name of the task and the array of subtasks to execute. 
Additionally, you can pass in a callback function instead of the array, and 
this function will be invoked by passing the target as the argument. This 
allows you to conditionally execute tasks based on what the target is.

6.	 To install a new Grunt task, you must first install it using npm; use the npm 
install grunt-contrib-jshint --save-dev command to install the 
plugin and save it to your package.json file.

7.	 The alternatives to Grunt would be Ant, Make, Jake, Rake, SBT, and other 
build-type tools.



Appendix

[ 253 ]

Chapter 9, Yeoman Tips and Tricks
1.	 To start and update the Selenium WebDriver, you would use the  

webdriver-manager command and either start or update the  
Selenium WebDriver.

2.	 The karma-coverage module allows your project to generate detailed code 
coverage reports using Istanbul. To add coverage, you need to modify your 
karma.conf.js file and add the settings that configure the module as follows:
reporters: ['progress', 'coverage'],
preprocessors: {
    '.tmp/scripts//*.js': ['coverage']
 },

Summary
This appendix covered all of the available options and commands for the tools used 
in the Yeoman workflow. It also covered installation details for each of the tools.





Index
Symbols
$rootScope.$on method  70
.bowerrc file

about  152
creating, for Bower  152

.config function  52

.editorconfig file
about  149
creating, for IDEs  149

-g flag  9, 200
.gitattributes file

about  151
creating, for Git  151

.gitignore file
about  151
creating, for Git  151

.jshintrc file
about  150
creating, for JSHint  150

{{ partial }}, Handlebars helpers  129
{{ render }}, Handlebars helpers  130
--save flag  15
.travis.yml file

about  151
creating, for Travis CI  151

{{ view }}, Handlebars helpers  130

A
add function  62
advanced generator  138
alias tasks, Grunt

creating  204
Angular application

Angular unit tests  58

end-to-end tests with Protractor  59
testing  58

angular:app subgenerator  33
angular:common subgenerator  33
Angular concepts

compiler  46
controller  46
data binding  46
directive  46
expression  46
filters  46
injector  46
model  46
module  46
scope  46
service  46
template  46
view  46

angular:constant subgenerator  33
Angular controllers

about  46, 61
creating  62
reference link  63
testing  63, 64
using  62

angular:decorator subgenerator  33
Angular directives

about  69
creating  69
testing  71
using  70

angular:directive subgenerator  33, 69
angular:factory subgenerator  34
Angular filters

about  67
creating  67



[ 256 ]

testing  68
using  68

angular:filter subgenerator  67
Angular generator solutions

about  226
Protractor e2e testing  226

AngularJS
about  45, 46
features  47

AngularJS Batarang
URL  57

angular:main subgenerator  34
Angular project

anatomy  45
application, configuring  49-51
application controller, creating  52, 53
application definition, creating  51
application, previewing  57
application, scaffolding  47
application views, creating  53
creating  47
directory structure  48
generator-angular, installing  47
main view, customizing  56

angular:provider subgenerator  34
angular:route subgenerator  34
Angular services

about  64
creating  64
testing  65
URL  49
using  65

angular:service subgenerator  34, 64
angular subgenerators

angular:app  33
angular:common  33
angular:constant  33
angular:decorator  33
angular:directive  33
angular:factory  34
angular:main  34
angular:provider  34
angular:route  34
angular:service  34
angular:value  34
angular:view  35

Angular unit tests
about  58
Karma Runner, configuring  58
running  58

angular:value subgenerator  34
Angular views

about  72
creating  72
post-header view, creating  73, 74
posts list, creating  72, 73

angular:view subgenerator  35
app

bootstrapping  87, 88
previewing  89

application configuration,  
Ember project  110

application definition,  
Ember project  111, 112

application template,  
Ember project  112, 113

application templates, custom generator
creating  153
index.html file  153, 154
main.css file  155
main.js file  155

application views
Angular partials, creating  54
footer partial, creating  55
header partial, creating  54
index.html, modifying  53

app method  144
app router, Backbone

scaffolding  86
app view, Backbone

Handlebars app template  83
scaffolding  82

article element  53
askFor method  141
Asynchronous Module  

Definitions (AMD)  78
automation

implementing  18-20

B
backbone:all subgenerator  37



[ 257 ]

Backbone application
configuration testing  89, 90
configuring  81, 82
directory structure layout  80
end-to-end tests  92
scaffolding  79
testing  89
unit testing  91, 92

Backbone app router
scaffolding  86

backbone:app subgenerator  37
Backbone app view

Handlebars app template  83
scaffolding  82, 83

Backbone.Collection class  97
Backbone collections

creating  98
testing  99
using  99

backbone:collection subgenerator  38
Backbone.Events class  92
Backbone events

about  92
creating  92
testing  93
using  92

Backbone generator solutions
about  233
code coverage, with Karma  233

Backbone.js  77
Backbone main view

Handlebars main template  85
scaffolding  84

Backbone.Model class
about  93
URL  94

Backbone models
creating  94, 95
destroying  96
saving  96
testing  97
updating  95
using  95
validating  96

backbone:model subgenerator  38
Backbone project

about  78

anatomy  77, 78
creating  79
generator-backbone, installing  78

Backbone routers
about  103
creating  103
testing  104, 105
using  103, 104

backbone:router subgenerator  38
backbone subgenerators

backbone:all  37
backbone:app  37
backbone:collection  38
backbone:model  38
backbone:router  38
backbone:view  38

Backbone view
about  100
creating  100
testing  102
using  100-102

backbone:view subgenerator  38
basic tasks, Grunt

data import  208
dynamic patterns  206
file patterns  206
files  205
registering  205
templates  208
URL  205

beforeEach method  64, 66, 69, 71
Bower

about  7, 240
commands  240
installing  248
installing, on Mac  248
installing, on Windows  248
options  240
reference link for configuring  153
URL  241
usage  240

Bower commands. See  commands, Bower
bowerInstaller method  145
bower.json file

about  152
creating, for Bower  152



[ 258 ]

Bower options
--allow-root  241
-f  240
--force  240
-j  240
--json  240
-l  240
--log-level  240
-o  240
--offline  240
-q  240
--quiet  240
-s  241
--silent  241
-v  241
--verbose  241

build process  12, 13

C
capabilities property  61
Casper.js  92
changedAttributes method  123
chromeapp generator  28
click(selector) method  117
code coverage, with Karma

about  234
code coverage report  238
Karma configuration, adjusting  234, 235
karma-coverage plugin, installing  234
test-main.js, configuring  236, 237
tests, running  237

code linting
JSHint used  16-18

collections, Backbone
about  78
creating  98
testing  99
using  99

commands, Bower
cache  240
help  240
home  240
info  240
init  240
install  14, 240
link  240

list  14, 240
lookup  240
prune  240
register  240
search  14, 240
uninstall  240
update  14, 240

commonjs generator  28
CommonJS logic

about  171, 172
connection, to MongoDB  173
model, creating  175, 176
model, destroying  177
model, finding  174, 175
models, finding  174
model, updating  176
module properties  172, 173

CommonJS project
about  170
deploying, to npm  183
generator-commonjs, installing  170
logic  171, 172
scaffolding  170, 171
testing  177, 178

compiler  46
component, Ember concepts  108
concepts, Backbone.js

collection  78
event  78
model  78
router  78
view  78

configuration, Backbone application  81, 82
configuration testing  89, 90
connect method  173
controller, Ember concepts  108
controllers. See  Angular controllers
controllers, Ember application

about  134
post edit controller  135
URL  135

copiers generator  138
copy function  144
create method  175
createRecord method  125
custom generator

creating  138



[ 259 ]

custom templates, creating  146
directory structure  139
generator-generator, installing  138
generator-generator, using  138
logic, adding  140
testing  156
using  164
webapp, scaffolding  165, 166

custom Grunt plugin
about  209
deploying, to npm  215
directory structure  209
generator-gruntplugin, installing  209
logic  210
testing  213
usage  209, 215

custom subgenerator
creating  162
directory structure  162
logic, adding  163, 164
subgenerator templates, creating  163

custom templates
.bowerrc file, creating for Bower  152
.editorconfig file, creating for IDEs  149
.gitattributes file, for Git  151
.gitignore file, for Git  151
.jshintrc file, creating for JSHint  150
.travis.yml file, creating for Travis CI  151
application templates, creating  153
bower.json file, creating for Bower  152
creating  146
Gruntfile.js file, creating  146
package.json file, creating for npm  149

custom Yeoman generators
advanced  138
anatomy  137
copiers  138
creating  137
types  138

D
data binding  46
debugging Ember

URL  112
default route, RESTful Node.js server  220
delete method  177

deleteRecord method  123, 126
DELETE route, RESTful Node.js server  223
deploying, Node.js module

URL  189
describe method  64, 66, 69, 71
destroy method  177
directive definition  70
directives

about  46
reference link  69

directory structure, AngularJS application
about  48
app.coffee folder  48
app folder  48
bower_components folder  49
bower.json folder  49
controllers folder  48
directives folder  48
e2e.conf.js folder  
filters folder  48
Gruntfile.js folder  49
images folder  48
index.html folder  49
karma.conf.js folder  
karma.e2e.conf.js folder  
main.coffee folder  48
main.css folder  49
main.html folder  49
node_modules folder  49
package.json folder  49
scripts folder  48
services folder  49
styles folder  49
test folder  49
views folder  49

directory structure, custom generator
_bower.json, app folder  140
_package.json, app folder  140
about  139
app folder  139
editorconfig, app folder  140
index.js, app folder  139
jshintrc, app folder  140
node_modules folder  140
package.json folder  140
README.md  139
templates, app folder  140



[ 260 ]

test-creation.js, test folder  140
test folder  140
test-load.js, test folder  140
travis.yml, app folder  140

directory structure, custom Grunt plugin
expected, test  210
fixtures, test  210
Gruntfile.js  210
node_modules  210
package.json  210
README.md  210
tasks  210
test  210

directory structure, custom subgenerator
about  162
index.js, page folder  162
page folder  162
somefile.js, page folder  162
templates, page folder  162

directory structure, Ember application
about  109
app  109
app.coffee  109
application.hbs  110
bower_components  110
controllers  109
images  109
index.hbs  110
index.html  110
models  109
router.coffee  109
routes  109
scripts  109
store.coffee  109
styles  109
templates  110
views  109

directory structure layout, Backbone  
application

app.coffee file  80
app folder  80
bower_components  80
bower.json file  80
collections  80
config.coffee file  80
Gruntfile.js file  80
images  80

index.html file  80
karma.conf.js file  80
main.coffee file  80
main.css file  80
main.html file  80
models  80
node_modules  80
package.json file  80
routes  80
scripts  80
spec  80
styles  80
templates  80
test folder  80
views  80

div element  53
Document Object Model (DOM)  46
DS.Model methods, Ember application

changedAttributes  123
deleteRecord  123
destroyRecord  123
save  123
serialize  123
toJSON  123

dynamic file objects
URL  207

dynamic patterns options, Grunt basic tasks
cwd  206
dest  206
ext  206
extDot  206
flatten  206
rename  206
src  206

E
end-to-end tests  92
e2e test spec

creating  229
MainPage object, creating  229
page objects values testing,  

handling  231, 232
PostPage object, creating  230, 231

EditorConfig
URL  150



[ 261 ]

Ember application
 previewing  115, 116
testing  116

ember:app subgenerator  41
Ember.Component  114
Ember concepts

component  108
controller  108
model  108
router  107
template  107

Ember Data
about  121
adapter  122
model  122
record  122
serializer  122
store  122

Ember Inspector, for Google Chrome
URL  116

ember:model subgenerator  41
Ember project

about  108
anatomy  107
application configuration  110, 111
application definition  111, 112
application, scaffolding  108, 109
application template  112, 113
controllers  134
directory structure  109
Ember Data  121
feature component  114, 115
generator-ember, installing  108
index template  113, 114
models  122
records  125
routes  126
templates  129

ember:router subgenerator  41
ember subgenerators

ember:app  41
ember:model  41
ember:router  41
ember:view  42

Ember.View class  42
ember:view subgenerator  42

end-to-end integration testing, Ember  
application

about  118
writing  119

end-to-end tests, with Protractor
about  59
Protractor, configuring  60
Protractor e2e spec, creating  61

events, Backbone
about  78
creating  92
testing  93
using  92

expect method  66, 71
exports.config object  60
Express

URL  186
expressions  46

F
feature component, Ember project  114, 115
features, Yeoman

automation  8
build process  8
code linting  8
optimization  9
package management  8
preview server  8
quick install  8
scaffolding  8
testing  9

fetch method  18
file patterns

URL  206
file patterns options, Grunt basic tasks

!  206
?  206
{}  206
:  206
::  206

fillIn(selector, text) method  117
filters

about  46
reference link  67, 69

findAll method  174
find method  125



[ 262 ]

findOne method  174
find(selector, context) method  117
footer element  54

G
generator-angular

about  31
conclusion  36
example usage  32
features  32
installing  32
options  32
previewing  35
subgenerators  33
using  32

generator-backbone
about  36
conclusion  39
example usage  37
features  36
installing  36
options  37
previewing  38
subgenerators  37, 41
using  36

generator-ember
conclusion  42
example usage  40
features  40
installing  40
options  40
previewing  42
using  40

generators
about  27
URL  29

generator-webapp
about  29
conclusion  31
example usage  30
features  29
installing  29
options  30
previewing  30
using  29

GET route, RESTful Node.js server  220, 221

Git
about  242
commands  242
installing  245
installing, on Mac  246
installing, on Windows  245
URL  245
usage  242

Git attributes
URL  151

Git commands
add  242
bisect  242
branch  242
checkout  242
clone  242
commit  242
diff  242
fetch  242
grep  242
init  242
log  242
merge  242
mv  242
pull  242
push  242
rebase  242
reset  242
rm  242
show  243
status  243
tag  243

Git ignore file
URL  152

Grunt
about  7, 241
adding, to project  208
alias tasks, creating  204
basic tasks, registering  205
Gruntfile.js file  203
installing  200, 247
installing, on Mac  247
installing, on Windows  247
multiple target tasks  204
options  201, 241
package.json file  202, 203
setting up  202



[ 263 ]

tasks, loading  203, 204
URL  242
usage  201, 202, 241

Grunt CLI installation
generator-gruntfile, installing  201, 202
Grunt, installing  200
Grunt, using  202
performing  200

gruntfile generator  28
Gruntfile.js file

about  203
bowerInstall task, creating  148
creating  146
serve task, creating  147
tasks, registering  148
watch task, creating  146

grunt.file.readJSON method  208
grunt.file.readYAML method  208
GruntJS

about  199
overview  199
URL  199

Grunt options
--base  241
--completion  201, 241
-d  201, 241
--debug  201, 241
-f  201, 241
--force  201, 241
--gruntfile  201, 241
-h  201, 241
--help  201, 241
--no-color  201, 241
--no-write  241
--npm  201, 241
--stack  241
--tasks  201, 241
-v  201, 241
-V  201, 241
--verbose  201, 241
--version  201, 241

Grunt plugin logic
about  210
files, reading  211
files, writing  212
plugin options  211

H
Handlebars app template  83
Handlebars helpers, Ember

{{ partial }}  129
{{ render }}  130
{{ view }}  130
about  129

Handlebars main template  85
header element  53
helper methods, Ember application testing

click(selector)  117
fillIn(selector, text)  117
find(selector, context)  117
keyEvent(selector, type, keyCode)  117
visit(url)  117

httpBackend.expectGET method  66
httpBackend.flush() method  66

I
importing formats

URL  208
index.html file  153, 154
Index route spec  119
index template, Ember project  113, 114
init method  141
injectors  46
Inquirer.js

about  142
URL  143

installation
Bower  248
Git  245
Grunt  247
Node.js  246
Yeoman  9
Yeoman Backbone generator  78
Yo  247

J
Jasmine

about  243
matchers  243
reserved words  244
spy matchers  244



[ 264 ]

structure  243
URL  245

Jasmine matchers
expect(x).not.toEqual(n)  244
expect(x).toBeCloseTo(n)  244
expect(x).toBeDefined()  244
expect(x).toBeFalsy()  243
expect(x).toBe(n)  243
expect(x).toBeNaN()  244
expect(x).toBeNull()  244
expect(x).toBeTruthy()  243
expect(x).toBeUndefined()  244
expect(x).toContain(n)  243
expect(x).toEqual(n)  243
expect(x).toMatch(n)  244
expect(x).toThrow(e)  244

jasmineNodeOpts property  61
Jasmine spy matchers

expect(x).not.toHaveBeenCalled()  244
expect(x).not.toHaveBeenCalledWith(args)  

244
expect(x).toHaveBeenCalled()  244
expect(x).toHaveBeenCalledWith(args)  244
spyOn(x, 'method').andCallFake(fn)  244
spyOn(x, 'method').andCallThrough()  244
spyOn(x, 'method').andReturn(args)  244
spyOn(x, 'method').andThrow(exception)  

244
jquery generator  28
jQuery Mockjax

URL  193
jQuery project

about  189
deploying  196
generator-jquery, installing  189
plugin logic, adding  191, 192
scaffolding  190
testing  192, 193
unit test, testing  193, 195

JSHint
about  16
URL, for configuration  16
URL, for options  150

jshint task  16

K
Karma

URL  121
Karma Runner

configuring  58
keyEvent(selector, type, keyCode)  

method  117

L
LiveReload server  13
loadNpmTasks method  203
logic, adding to custom generator

about  140
application files and folders, copying  144
dependencies, installing with Bower  145
generator, initializing  141
project files, copying  143
questions, asking to user  141, 142

logic, adding to custom  
subgenerator  163, 164

M
main.css file  155
main.js file  155
main view, Backbone

Handlebars main template  85
scaffolding  84

models, Angular  46
models, Backbone

about  78
creating  94, 95
destroying  96
saving  96
testing  97
updating  95
using  95
validating  96

models, Ember application
about  122
attributes  123
creating  122
fixtures  124
methods  122
URL  123



[ 265 ]

modern webapps  7
modules  46
module dependencies,  

RESTful Node.js server
installing  218

Mongoose
URL  172

multiple target tasks, Grunt
about  204
URL  204

N
name property  62
ng-click directive  74
ng-repeat directive  74
ng-view attribute  53
Nightwatch.js  92
Node.js

about  8
installing  246
installing, on Mac  246
installing, on Windows  246
URL  246

nodejs generator  28
Node.js module project

about  184
deploying  189
generator-node, installing  184
logic  185, 186
scaffolding  184, 185
testing  186, 187

Node package manager (npm)  8, 29
nodeunit

URL  178

O
official generators

chromeapp  28
commonjs  28
gruntfile  28
jquery  28
nodejs  28
polymer  28

onError method  18
onSuccess method  18

P
package.json file

about  149, 202
creating, for npm  149

package management, with Bower
performing  14, 15

PhantomJS
used, for testing  22, 23

polymer generator  28
POST route, RESTful Node.js server  221
projectFiles method  143
properties, question object  142
Protractor

about  59
configuring  60
installing  226
e2e spec, creating  61

Protractor e2e testing
about  226
application, starting  233
e2e spec, creating  229
e2e tests, running  233
grunt-protractor-runner, installing  227
Protractor configuration, creating  227, 228
Protractor, installing  226
Protractor task, configuring  227
Selenium WebDriver, starting  232

PUT route, RESTful Node.js server  222

Q
Q module

URL  172
QUnit

URL  192

R
records, Ember application

about  125
creating  125
deleting  126
finding  125
single record, finding  125
URL  126

render method  18



[ 266 ]

Require.js
URL  88

reserved words, Jasmine  244
RESTful Node.js server

configuring  218, 219
creating  218
data source, configuring  219, 220
module dependencies, installing  218
running  223
server routes, defining  220
starting  223
testing  223

restrict property  70
router, Ember concepts  107
routers, Backbone

about  78
creating  103
testing  104, 105
using  103, 104

routes, Ember application
about  126
creating  126
post route  128
posts edit route  129
posts route  128
URL  129
using  127

S
save method  123
scaffolding, AngularJS application  47
scaffolding, with Yo

directory structure  11, 12
generator, invoking  10, 11
performing  10
project, creating  10

scopes  46
seleniumAddress property  60
Selenium WebDriver

starting  232
serialize method  123
server routes, RESTful Node.js server

default route  220
defining  220
DELETE route  223
GET route  220, 221

POST route  221
PUT route  222

services  46
single page application (SPA)  45
span element  55
specs property  61
subgenerator templates, custom subgenerator

creating  163
Superheroic JavaScript MVC Framework  46
SuperTest

URL  188
Syntactically Awesome  

Stylesheets (SASS)  29

T
tasks, configuring

URL  206
tasks, Grunt

loading  203, 204
template, Ember concepts  107
template property  70
templates

about  46
URL  208

templates, Ember application
about  129
Handlebars helpers  129
posts edit template  133, 134
posts template  130
post template  131, 132
URL  134

testing
performing, PhantomJS used  22, 23
reference link  66, 71
unit tests, running  23, 24

testing, CommonJS project
finding all models, testing  179
finding one model, testing  180
model creation, testing  180, 181
model deletion, testing  182, 183
model updation, testing  181, 182
no model instance, testing for  179
performing  177, 178

testing, custom generator
environment, setting up  156, 157
load testing  160-162



[ 267 ]

output, testing  158-160
performing  156

testing, Ember application
configuring  117, 118
end-to-end integration testing  118-120
performing  116
test helpers  117
unit tests, setting up  120

toJSON method  123
Travis CI

about  151
URL  151

U
Underscore.js

about  78
URL  78

unit testing  91, 92
unit test, jQuery project

creating  193, 194
unit tests, Ember application

setting up  120
update method  176

V
view function  62
views, Angular  46
views, Backbone

about  78
creating  100
testing  102
using  100-102

visit(url) method  117

W
WebApp generator solutions

about  217
RESTful Node.js server, creating  218

workflow, Yeoman generators  28

Y
Yeoman

about  7
architecture  8

automation  18
build process  12
custom generators  137
features  8, 9
installation  9
LiveReload server  13
official generators  28
optimizing, for production  24, 25
overview  7
package management, with Bower  14
scaffolding  10

Yeoman Angular generator
installing  47

Yeoman Backbone generator
installing  78

Yeoman generators
about  27
generator-angular  31
generator-backbone  36
generator-ember  39
generator-webapp  29
workflow  28

Yeoman installation
Bower, installing  9
generator, installing  10
Grunt, installing  9
performing  9
Yo, installing  9

Yeoman workflow
about  7
Bower  7
Grunt  7
Yo  7

Yo
about  7, 239
generators  27
installing  247
installing, on Mac  247
installing, on Windows  247
URL  239
usage  239

Z
Zombie.js  92





Thank you for buying  
Learning Yeoman

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Getting Started with Grunt: The 
JavaScript Task Runner
ISBN: 978-1-78398-062-8              Paperback: 132 pages

A hands-on approach to mastering the fundamentals 
of Grunt

1.	 Gain insight on the core concepts of Grunt, 
Node.js, and npm to get started with Grunt.

2.	 Learn how to install, configure, run, and 
customize Grunt.

3.	 Example-driven and filled with tips to help you 
create custom Grunt tasks.

Mastering Grunt
ISBN: 978-1-78398-092-5              Paperback: 110 pages

Master this powerful build automation tool to 
streamline your application development

1.	 Master the development of your web 
applications by combining Grunt with  
an army of other useful tools.

2.	 Learn about the key tasks behind DevOps 
integration and automation so you can utilize 
Grunt in a team-working environment.

3.	 Accelerate your web development abilities by 
employing best practices, including SEO, page 
speed optimization, and responsive design.

 
Please check www.PacktPub.com for information on our titles



Dependency Injection with 
AngularJS
ISBN: 978-1-78216-656-6             Paperback: 78 pages

Design, control, and manage your dependencies with 
AngularJS dependency injection

1.	 Understand the concept of dependency 
injection.

2.	 Isolate units of code during testing JavaScript 
using Jasmine.

3.	 Create reusable components in AngularJS.

AngularJS Directives
ISBN: 978-1-78328-033-9             Paperback: 110 pages

Learn how to craft dynamic directives to fuel your 
single-page web applications using AngularJS

1.	 Learn how to build an AngularJS directive.

2.	 Create extendable modules for plug-and-play 
usability.

3.	 Build apps that react in real time to changes in 
your data model.

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Modern Workflows for Modern Webapps
	An overview of Yeoman
	Yeoman's architecture
	Node's package manager

	Features of Yeoman
	Quick installation
	Installing Yeoman and friends
	Installing a generator

	Scaffolding with Yo
	Create the project
	Invoke the generator
	Directory structure

	Build process
	The Connect LiveReload server
	Previewing the server

	Package management with Bower
	Code linting with JSHint
	Automation
	Testing with PhantomJS
	Running tests

	Optimizing for production

	Self-test questions
	Summary

	Chapter 2: Getting Started
	Yo – generators
	The Yeoman workflow
	Official generators
	The generator-webapp
	Features
	Installing the generator-webapp
	Using the generator-webapp
	Options
	Example usage
	Previewing
	Conclusion

	The generator-angular
	Features
	Installing the generator-angular
	Using the generator-angular
	Options
	Example usage
	Angular subgenerators
	Previewing
	Conclusion

	The generator-backbone
	Features
	Installing the generator-backbone
	Using the generator-backbone
	Options
	Example usage
	Backbone subgenerators
	Previewing
	Conclusion

	The generator-ember
	Features
	Installing the generator-ember
	Using the generator-ember
	Options
	Example usage
	Ember subgenerators
	Previewing
	Conclusion

	Self-test questions

	Summary

	Chapter 3: My Angular Project
	Anatomy of an Angular project
	Why Angular?
	Creating a new Angular project
	Installing the generator-angular
	Scaffolding the application
	Configuring the application
	Creating the application definition
	Creating the application controller
	Creating the application views
	Customizing the main view
	Previewing the application

	Testing an Angular application
	Angular unit tests
	End-to-end tests with Protractor

	Angular controllers
	Creating controllers
	Using controllers
	Testing controllers

	Angular services
	Creating services
	Using services
	Testing services

	Angular filters
	Creating filters
	Using filters
	Testing filters

	Angular directives
	Creating directives
	Using directives
	Testing directives

	Angular views
	Creating the Angular views


	Self-test questions
	Summary

	Chapter 4: My Backbone Project
	Anatomy of the Backbone project
	The new Backbone project
	Installing the generator-backbone
	Scaffolding a Backbone application
	Understanding the directory structure

	Configuring the application
	Scaffolding the app view
	The Backbone app view
	The Handlebars app template

	Scaffolding the main view
	The Backbone main view

	Scaffolding the app router
	Bootstrapping the app
	Previewing the app

	Testing
	Configuration
	Unit testing
	E2E tests

	Backbone.Events
	Creating events
	Using events
	Testing events

	Backbone.Model
	Creating models
	Using the Backbone models
	Creating models
	Updating models
	Saving models
	Destroying models
	Validating models

	Testing models

	Backbone.Collection
	Creating collections
	Using collections
	Testing collections

	The Backbone view
	Creating views
	Using views
	Testing views

	Backbone.Router
	Creating routers
	Using routers
	Testing routers

	Self-test questions
	Summary

	Chapter 5: My Ember Project
	Anatomy of the Ember project
	The new Ember project
	Installing the generator-ember
	Scaffolding the application
	Understanding the directory structure
	Application configuration
	Application definition
	The application template
	The index template
	The feature component
	Previewing the application

	Testing
	Test helpers
	Setup
	End-to-end integration tests
	Unit tests

	Ember Data
	Ember Data concepts

	Models
	Creating a model
	Methods
	Attributes
	Fixtures

	Records
	Finding all records
	Finding a single record
	Creating a record
	Deleting a record

	Routes
	Creating the routes
	Using routes
	Posts route
	Post route
	Posts edit route

	Templates
	Handlebar helpers
	Posts template
	Post template
	Posts edit template

	Controllers
	Post edit controller

	Self-test questions
	Summary

	Chapter 6: Custom Generators
	Anatomy of a generator
	Types of generators

	The new custom generator
	Installing the generator-generator
	Using generator-generator
	Understanding the directory structure
	Adding logic to the generator
	Initializing the generator
	Asking questions to the user
	Copying the project files
	Copying the application files and folders
	Installing dependencies with Bower

	Creating custom templates
	Creating the Gruntfile.js file
	Creating the package.json file for npm
	Creating the .editorconfig file for IDEs
	Creating the .jshintrc file for JSHint
	Creating the .travis.yml file for Travis CI
	The .gitattributes file for Git
	The .gitignore file for Git
	Creating the .bowerrc file for Bower
	Creating the bower.json file for Bower
	Creating the application templates

	Testing a custom generator
	Setup
	Testing the generator output
	Test generator loading


	The new custom subgenerator
	Understanding the subgenerator's directory structure
	Creating subgenerator templates
	Adding logic to the subgenerator
	Using your custom generator
	Link your generator
	Scaffolding a new web app


	Self-test questions
	Summary

	Chapter 7: Custom Libraries
	The new CommonJS project
	Installing the generator-commonjs
	Scaffolding a CommonJS project
	The CommonJS logic
	Module properties
	Connect to MongoDB
	Finding all models
	Finding a model
	Creating a model
	Updating a model

	Testing a CommonJS project
	Test for no model
	Test finding all models
	Test finding one model
	Test creating a model
	Test updating a model
	Test destroying a model

	Deploying to npm
	Conclusion

	The new Node.js module project
	Installing the generator-node
	Scaffolding a Node.js module project
	The NodeJS module logic
	Testing a Node.js module
	Deploying
	Conclusion

	The new jQuery project
	Installing the generator-jquery
	Scaffolding a jQuery project
	Adding the plugin logic
	Testing a jQuery plugin
	Creating the unit test

	Deploying to Bower
	Conclusion


	Self-test questions
	Summary

	Chapter 8: Tasks with Grunt
	Overview on GruntJS
	Installing the Grunt CLI
	Installing Grunt
	Grunt usage
	Grunt options

	Installing the generator-gruntfile
	Using Grunt
	The package.json file
	The Gruntfile.js file
	Loading tasks
	Creating the alias tasks
	Multiple target tasks
	Registering the basic tasks

	The new project

	My custom Grunt plugin
	Installing the generator-gruntplugin
	Usage
	The directory structure
	The Grunt plugin logic
	Plugin options
	Using Grunt to read files
	Using Grunt to write files

	Testing a Grunt plugin
	Creating test fixtures
	Running the tests

	Deploying to npm
	Usage

	Self-test questions
	Summary

	Chapter 9: Yeoman Tips and Tricks
	WebApp generator solutions
	Creating a RESTful Node.js server
	Installing module dependencies
	Creating the server
	Configuring the server
	Configuring the data source
	Defining server routes
	Start the server
	Run the server
	Test the server
	Setting up the proxy server

	Conclusion

	Angular generator solutions
	Protractor e2e testing
	Installing Protractor
	Installing the grunt-protractor-runner
	Configuring the Protractor task
	Creating the Protractor configuration
	Creating an e2e spec
	Starting the Selenium WebDriver
	Starting the application
	Running e2e tests


	Backbone generator solutions
	Code coverage with Karma
	Installing Karma and plugins
	Karma configuration
	Configuring test-main.js
	Running tests
	Code coverage report


	Self-test questions
	Summary

	Appendix: Yeoman Resources
	Reference guides
	Yo – the scaffolding tool
	Usage

	Bower – the package tool
	Usage
	Commands
	Options

	Grunt – the build tool
	Usage
	Options

	Git
	Usage
	Commands

	Jasmine – behavior-driven JavaScript
	Structure of a suite
	Matchers
	Spy matchers
	Reserved words


	Installation guides
	Installing Git
	Installing Git on Windows
	Installing Git on Mac

	Installing Node.js and npm
	Installing Node on Windows
	Installing Node on Mac

	Installing Yo
	Installing Yo on Mac/Windows

	Installing Grunt
	Installing Grunt on Mac/Windows

	Installing Bower
	Installing Bower on Mac/Windows


	Self-test answers
	Summary

	Index

