
www.allitebooks.com

http://www.allitebooks.org


Learning iBeacon

Build proximity applications for iOS using Apple's 
groundbreaking iBeacon technology

Craig Gilchrist

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Learning iBeacon

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1181114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-712-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Craig Gilchrist

Reviewers
Ankush Agrawal

Long Tran

Tian Zhang

Commissioning Editor
Kunal Parikh

Acquisition Editor
Reshma Raman

Content Development Editor
Manasi Pandire

Technical Editor
Mrunmayee Patil

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org


About the Author

Craig Gilchrist is the Digital Director at Eden Agency (http://createdineden.
com/), a small but mighty digital agency that is at the forefront of proximity 
marketing. His team is one of the first to release commercial iBeacon-powered  
apps in the world and currently boast over 1.5 million app downloads in multiple 
fields and have a perfectly balanced technical and creative team.

Craig is based in North Yorkshire, England, and has been developing commercial 
software since graduating from the University of Teesside in 2004 with a BSc in 
Software Engineering and has been building apps for iOS since 2009.

Craig is an avid reader and is always at the forefront of commercial technological 
developments. Other than mobile app development and digital marketing, Craig also 
has a keen interest in developing rich media, including gaming, children's interactive 
media, and a very keen interest in Unity and virtual reality with Oculus Rift.

First, I'd like to thank my baby boy, Teddy, for being my raison 
d'être. I know you don't know it yet, but I never knew what life 
meant before you arrived. As you grow and blossom, I hope I'm as 
inspiring to you as you are to me, I'm already so proud of you son.

I would also like to thank my wife, Ria, for being a beacon of support 
throughout the writing of this book. Your new mummy voice is the 
stern voice I need to kick me into shape. You're beautiful, patient, 
and majestic. You're my fairy tale and my happily ever after.

Finally, I'd like to thank my team at Eden Agency (@createdineden) 
who I'm proud to call my friends, for being so creative, innovative, 
and generally awesome, and for keeping me on my toes. May we 
continue to build exquisite solutions for long.

www.allitebooks.com

http://createdineden.com/
http://createdineden.com/
http://www.allitebooks.org


About the Reviewers

Ankush Agrawal is a third year undergraduate student studying Computer 
Science and Business at the University of California, San Diego. He is a self-taught 
iOS developer who also has a passion for Bluetooth low energy. He has utilized BLE 
in various forms for award-winning hackathon projects and is eagerly working to 
discover its full potential. He has interned at The Boeing Company for the past two 
summers and is now seeking opportunities in Silicon Valley.

Long Tran is a student at the University of California, San Diego (class of 2016), 
where he studies Computer Science and Business. He loves challenging himself 
outside school by interning at Fortune 500 companies and exploring new technology 
trends. He has put iBeacon to good uses in his most recent iOS side projects. After 
graduation, Long plans to work at an established company with a start-up culture, 
where he hopes to learn a thing or two to start his own business.

Tian Zhang is a freelancer working in the field of iOS development, Bluetooth low 
energy, and home automation.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers,  
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and 
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and 
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch 
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up 
for a range of free newsletters and receive exclusive discounts and offers on Packt books 
and eBooks.

TM

https://www.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Welcome to iBeacon	 7

Introducing iBeacon	 7
Hey, 'sup	 8
Understanding a range using RSSI	 9
Compatible devices	 10
Commercial applications of iBeacon	 11
So many vendors, so little time	 12

Estimote	 13
Estimote beacons – pros	 15
Estimote beacons – cons	 15

ROXIMITY	 15
ROXIMITY beacons – pros	 17
ROXIMITY beacons – cons	 17

RedBearLab	 18
RedBear Beacon B1 – pros	 19
RedBear Beacon B1 – cons	 20

Other vendor options	 20
The companion OS X application and website	 21

Using the companion app	 22
Hello world	 23

Let's get started	 24
Adding the Core Location framework	 25
Adding a permission message	 27
Configuring the CLLocationManagerDelegate method	 27
Adding a CLLocationManager instance	 28
Preparing UUID	 28
Start monitoring	 28

Line by line	 29

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Testing our code	 30
Summary	 32

Chapter 2: Detecting Beacons – Showing an Advert	 33
Uses of the UUID/major/minor broadcasting triplet	 33

UUID – Universally Unique Identifier	 33
Major	 35
Minor	 35
An example of a use case	 35

Understanding Core Location	 36
The CLBeaconRegion class	 36
The CLLocationManager class	 37

Creating a CLLocationManager class	 37
Defining a CLLocationManager class line by line	 37
locationManager:didEnterRegion	 38
locationManager:didExitRegion	 39
locationManager:didRangeBeacons:inRegion	 39
locationManager:didChangeAuthorizationStatus	 40

Understanding iBeacon permissions	 40
Location permissions in iOS 8	 41
Enabling the location after denying it	 42

Building the tutorial app	 43
Creating the app	 43
Adding CLOfferViewController	 43
Setting location permission settings	 44

Adding some controls	 44
Setting up our root view controller	 45
Configuring our location manager	 46
Wiring up CLLocationManagerDelegate	 47
Showing the advert	 49
Dismissing the offer	 51

Summary	 53
Chapter 3: Broadcasting Advertisements – Sending Offers	 55

Introducing the Core Bluetooth framework	 55
Understanding centrals and peripherals	 55
The Core Bluetooth framework, centrals, and peripherals	 56

The CBCentral class	 56
The CBPeripheral class	 57
The CBPeripheralManager class	 57

Obtaining broadcast values from CLBeaconRegion	 57
Measured power (TXPower)	 58
Let's get started	 58

Adding frameworks	 59

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Setting up our controls	 59
Creating our views	 60
Wiring up the storyboard	 61
Setting up our view controller	 62
Adding our switch logic	 63

Summary	 65
Chapter 4: Ranging Beacons – Hunting for Treasure	 67

There be treasure nearby	 67
Understanding distance	 68
Our application	 70
Getting started with building our app	 71

Drawing our initial views	 72
Adding frameworks and project settings	 73
Adding images	 73
Building the root view controller	 74
Building the treasure view controller	 75

Finally, wire it up	 78
Building the hunter view controller	 78

Hunter view controller states	 79
Imports and public properties	 80
Private properties	 80
Loading the view	 81
Entering and exiting the region	 82
Changing the state	 82
Tidying up	 85
Being extra conscientious	 85

Completing the code	 85
Summary	 86

Chapter 5: Detecting Beacons in the Background – Location  
Dating	 87

Real-life use cases	 88
An example use case for retail loyalty	 88
An example use case for airline assistance	 88

Handing over responsibility	 89
The CLBeaconRegion options	 90
Passbook integration	 91
Our tutorial app	 93

The scenario	 93
Viewing anatomy	 94
The code	 95

Creating the application	 95
Creating the view	 95

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Configuring the app delegate	 96
Implementing our view controller	 101

Testing your application	 104
Testing the beacons	 105
Testing the passbook pass	 105

Summary	 106
Chapter 6: Leaving Regions – Don't Forget Your Stuff	 107

Raspberry Pi	 108
Ninja Blocks	 108
Nest	 108
Phillips Hue	 109
Belkin WeMo	 109
iBeacon and home automation	 109
Beacon stickers	 110
Our tutorial	 111

Ranging beacons in the background	 111
Tracking locations using background modes	 112

Cheating the system	 113
Building our app	 113

Beginning the app with a database schema	 113
Using a little helper	 114
Master view controller implementation	 116

Configuring the view controller	 117
Fetching data from the Core Data framework	 118
Configuring the table cell	 119
Notifying the user	 120
Inserting new objects	 121
Ranging beacons	 121

Detailed view controller implementation	 122
Configuring the view	 123
Getting and setting properties	 124
Validating input	 125
Finishing off UI	 125

Adding NSLocationAlwaysUsageDescription	 126
Enabling the background mode	 126

Testing your app	 127
Summary	 127

Chapter 7: Vendor SDKs – Buying and Configuring Beacons	 129
Estimote motes and SDK	 129
ROXIMITY implementation	 130
Choosing the best platform for your requirements	 130
AltBeacon – the open beacon specification	 130



Table of Contents

[ v ]

Using Estimote API 2.1	 131
Security	 131
Estimote SDK classes	 132

ESTBeacon	 132
ESTBeaconDelegate	 132
ESTBeaconManager	 133
ESTBeaconManagerDelegate	 133

Let's get building	 133
Adding EstimoteSDK	 134
Adding API access	 135
The helper class	 135
Configuring the master view controller	 136

Configuring our beacon manager	 137
Configuring the detail view controller	 138

Configuring the view	 139
Connecting and disconnecting from beacons	 140
Saving the changes	 141
Creating the view	 144

Testing your application	 145
Summary	 145

Chapter 8: Advanced Tutorial – iBeacon Museum	 147
Our exhibitions	 147
The museum map	 149
Our app structure	 149

The permission view	 149
The atrium view	 150
The exhibit view	 150

The supporting website	 150
Tracking our user's journey	 151

Our app design	 152
Building the application	 153

Creating the project	 153
Initializing the views	 153
Adding the CoreLocation functionality	 155
Determining the first view	 155
Configuring our permission view	 157

Adding controls	 158
Configuring the exhibit view	 160

Adding controls to the exhibit view	 161
Adding content methods	 162
Ranging beacons	 163

Configuring our atrium view	 165
Adding atrium view controls	 165



Table of Contents

[ vi ]

Time to test	 167
Summary	 167

Chapter 9: iBeacon Security – Understanding the Risks	 169
Beacon spoofing	 169

Defending against beacon spoofing	 170
Rotating UUIDs	 171

Beacon hacking	 171
Dispelling security myths	 172
Overcoming users' fears with good UX	 172
Summary	 173

Index	 175



Preface
The iBeacon technology is the most disruptive technology in the field of interaction 
design. Formally, iBeacon is simply a protocol defined by Apple and built on top of 
Bluetooth 4.0. Creatively, iBeacon is your passport to apps that truly interact with  
the world around them.

Imagine your shopping list becoming an interactive map of the supermarket, your 
phone turning the porch lights on as you drive down the street, or ordering your 
meal at your favorite table in your favorite restaurant without ever speaking with  
a waiter. All this and more is made possible with iBeacon.

Taking a practical and pragmatic approach, this book will introduce you to the 
concepts and applications of iBeacon technology for providing proximity-based 
solutions to iOS devices. We cover everything from prototyping simple scenarios 
to building a fully-functional interactive museum app, all using Xcode and Apple's 
Core Location and Core Bluetooth frameworks.

This book is designed to cover easy-to-follow examples to introduce the core features 
of iBeacon technology solutions, from discovering beacons and using your iOS device 
as a beacon, to some more powerful tutorials that closely match real-world examples.

Everything in this book can be applied to your own developments, but is done 
in a way which breaks down each element of the technology and the supporting 
iOS SDKs. Soon, you will be armed with all the tools and to produce interactive 
proximity-powered solutions with ease.

Finally, this book comes with an OS X app that lets you use your Mac as an iBeacon 
so that you can get to grips with the technology without having to buy any beacons.



Preface

[ 2 ]

What this book covers
Chapter 1, Welcome to iBeacon, introduces you to the technology and the incredible 
opportunities it offers us as developers. We'll cover the technological advancements 
that have made iBeacon possible and we'll discuss some of the options which you 
have to get your hands on for some real beacons. Finally, we'll create the age-old 
Hello World application and start detecting beacons easily.

Chapter 2, Detecting Beacons – Showing an Advert, introduces you to beacon detection 
in more detail. We'll show you how to differentiate between beacons using the 
values that they broadcast and we'll introduce the concept of regions and some of 
the CoreLocation classes used to represent regions and location. We will also cover 
the user permissions needed to monitor beacons before building a tutorial using our 
new-found knowledge to build an app that shows different offers as you approach 
different beacons.

Chapter 3, Broadcasting Advertisements – Sending Offers, introduces you to the 
important classes in the Core Bluetooth framework and discusses how to handle 
the variations in beacon broadcasting power before building a functioning beacon 
broadcasting app. Now that you know how to detect beacons and act on their unique 
broadcasting values, you will learn how to turn your iPhone or iPad into a fully 
functioning iBeacon broadcaster.

Chapter 4, Ranging Beacons – Hunting for Treasure, introduces the concept of ranging 
beacons and determining their distance from the receiver. This chapter expands on 
the CLLocationManager class usage and will take you through a tutorial that allows  
one device to be configured as a sender and another as a receiver to ultimately  
build a simple treasure-hunting app.

Chapter 5, Detecting Beacons in the Background – Location Dating, introduces you to the 
core responsibilities of the iOS in monitoring beacons in the background. We will 
discuss how iOS takes over beacon monitoring when the app is in the background 
and will also launch the app if it has been terminated.

Chapter 6, Leaving Regions – Don't Forget Your Stuff, discusses other uses of beacon 
technology and introduces functionalities based on when a user leaves a region.  
This chapter will introduce you to the possibilities of the technology for home 
automation before showing how to develop an application that ensures you don't 
leave your keys or wallet at home.



Preface

[ 3 ]

Chapter 7, Vendor SDKs – Buying and Configuring Beacons, discusses some popular vendor 
implementations of iBeacon hardware and takes you through some of the vendor 
software development kits to build a beacon configuration tool using the Estimote SDK, 
as buying iBeacon hardware can be difficult. By the end of this chapter, you'll be armed 
and confident to go and buy beacons for your commercial implementation.

Chapter 8, Advanced Tutorial – iBeacon Museum, pulls everything together with a more 
advanced tutorial. The tutorial focuses on an imaginary museum, which has different 
exhibits and multiple displays within each of the exhibits. As the user travels around 
the museum, the information shown in the app changes to show information about 
the display that they are currently closest to. As the user travels around the museum, 
you can track the user's journey on an interactive website.

Chapter 9, iBeacon Security – Understanding the Risks, arms you with a complete idea 
of the security vulnerabilities that need consideration when building apps that use 
iBeacon. This chapter also dispels any myths around security that concern users 
and discusses ways to naturally request the security permissions in an app without 
scaring users.

What you need for this book
For this book, you will be required to download Xcode on your Mac OS X machine.

In order to jump quickly into the tutorials, you will need to download the companion 
app, which allows your Mac machine to act as an iBeacon and contains all of the 
iBeacon profiles featured in the book.

Your Mac needs to have Bluetooth 4.0 (which most do), but if it doesn't, there's no 
need to worry, as you can pick up a Bluetooth 4.0 USB dongle for under $ 15, which 
will allow the companion app to work.

To see whether your Mac is Bluetooth 4.0 enabled, follow these steps:

1.	 Click on the menu.
2.	 Select About This Mac.
3.	 Click on the More Info button.
4.	 Click on the System Report button.
5.	 Select Bluetooth from the sidebar on the left, underneath Hardware.
6.	 Scan down the list of information until you find LMP Version.
7.	 If your Mac is equipped with Bluetooth 4.0, LMP Version will say 0x6. 

Anything lower than that is an older version of Bluetooth and will need  
a USB dongle.



Preface

[ 4 ]

Who this book is for
This book is designed for new or experienced iOS developers who want to build 
solutions that interact with the world around them. The book doesn't require you to 
have any prior experience in developing apps using Xcode and iOS SDKs, but some 
familiarity would allow you to get going very quickly. The tutorials are designed to 
progressively build on your knowledge until you are armed with everything you 
need to build proximity-powered solutions.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"In order to do this, we need to add a reference to CoreLocation."

A block of code is set as follows:

-(void)locationManager:(CLLocationManager *)manager  
  didEnterRegion:(CLRegion *)region {
    UIAlertView * av = [[UIAlertView alloc] init];
    av.title = [NSString stringWithFormat:@"Entered Region  
      '%@'", region.identifier];
    [av addButtonWithTitle:@"OK"];
    [av show];
}

Any command-line input or output is written as follows:

open Estimote\ Beacon\ Manager.xcworkspace/

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Select About This Mac."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ 5 ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ 6 ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.



Welcome to iBeacon
Welcome to iBeacon—a range of opportunity! Back in the summer of 2013, Craig 
Federighi, Apple's Senior Vice President of Software Engineering, quietly announced 
that iOS 7 would feature iBeacon and ended months of speculation about when  
iOS devices would feature Near Field Communication (NFC)—the answer was  
that they didn't.

During the conference, Craig touched on why Apple devices wouldn't feature NFC 
when he discussed the new sharing features of AirDrop. He said, "There's no need 
to wander around the room bumping your phone with others." This, in a nutshell, 
shows the reason behind choosing iBeacon technology and the amazing commercial 
potential versus the limitations of the NFC technology, as iBeacon's range massively 
exceeds that of NFC.

Introducing iBeacon
Simply put, an iBeacon is a Bluetooth low energy (BLE) device that emits a signal 
that conforms to the iBeacon specification. The iOS 7 SDK includes updates to the 
Core Location and Core Bluetooth frameworks that will allow you to build apps 
that respond to iBeacon signals or even act as an iBeacon transmitter.

The iBeacon specification for building hardware beacons is only available under 
nondisclosure agreement to vendors who sign up to the Made for iPhone (MFi) 
program. However, as an iOS developer, you don't need to know how to build 
hardware, you only need to understand how to interact with iBeacons or to simulate 
them with an iOS device, all of which we will cover in this book.

BLE is a groundbreaking leap in classic Bluetooth technology that allows the 
development of devices that can broadcast a signal up to 100 m (330 ft) with very 
little power consumption. This means that beacons can be produced for as little as  
$ 5 and broadcast for up to 2 years on a single lithium watch battery.

www.allitebooks.com

http://www.allitebooks.org


Welcome to iBeacon

[ 8 ]

Hey, 'sup
There's often a misconception about what information an iBeacon can broadcast. 
Basically, an iBeacon broadcasts its presence and nothing more. It says, "Hey, here 
I am", and nothing else. You can't broadcast data using iBeacon technology, and 
similarly, iBeacons aren't snooping into where you're going or where you've been. 
Any data that your apps require outside of the iBeacon identification must be 
retrieved from another source such as a bundled database or cloud service, as  
shown in the following diagram:

iBeacon app relationship

The best way to think about iBeacons is as a trigger for your app functionality.  
The trigger is based on the presence of a beacon or the relative distance of an  
iBeacon from your device.

iBeacons broadcast three values to help you identify which beacon your app is seeing. 
I call this the UUID/major/minor broadcasting triplet, discussed as follows:

•	 UUID: The Universally Unique Identifier (UUID) is application-specific 
and belongs only to your app and nobody else. You generate a UUID 
and tell your app to look out for this value and act accordingly when you 
come across an iBeacon broadcasting this value. It's specific to your app 
deployment and use case.

•	 Major: The major value further specifies a specific iBeacon and use case.  
For example, this could be the city that the beacon resides in or the actual 
store itself.

•	 Minor: The minor value allows further subdivision of the use case. For 
example, it could be the department within a store or a particular area  
of a theme park.

By generating a UUID yourself, you ensure that nobody else 
can be using your UUID by accident. However, there isn't any 
governing body to register the use of a UUID with specific 
apps, so just be aware that people can spoof this value.



Chapter 1

[ 9 ]

The following table shows how this UUID/major/minor triplet might be used  
by Disney to develop a queue-jumping app at some of their Walt Disney parks  
and resorts:

Resort location Florida California Paris
UUID D03CA503-04B9-4D03-ABCE-54C9708A8C49
Major 1 2 3
Minor Terror Tower 10 10 10

Space Mountain 20 20 20
Monorail 30 30 30

A single multinational Disney resort's queue-jumping app could be used to 
determine your location and book your slot on the ride, provided you were  
located within the iBeacon proximity. As you can see from the preceding table,  
no information is passed to the device about the park or the ride itself; this 
information needs to be ascertained by the app from a different source such as  
a local database or cloud API before triggering the functionality based on that ride.

Understanding a range using RSSI
Obviously, one of the most important factors that your app needs to be able to 
understand is the distance of mobile devices from the beacon itself. We'll cover  
this in depth in Chapter 4, Ranging Beacons – Hunting for Treasure, when we'll build  
a treasure hunt app that relies on the range of the beacon. For now, it's important  
to know that there's one extra piece of information that is broadcasted by iBeacons.

iBeacons broadcast one extra byte of data known as measured power. Measured 
power is a value representing the received strength signal indication (RSSI) value 
at a distance of 1 meter. RSSI is measured in dBm and indicates the measurable 
signal strength of the beacon, which decreases with distance. This RSSI value varies 
across the vendor beacon implementations and so isn't very reliable to determine  
the distance. This is where measured power comes into play.

When iBeacon vendors are configuring their hardware iBeacons, it's important that 
they configure the measured power broadcast value accurately because the Core 
Location framework uses this value to determine the distance of the beacon and 
converts it into a distance that you, as a developer, can utilize.



Welcome to iBeacon

[ 10 ]

Think of the measured power value as a way of making an 
otherwise unreliable source of distance measuring reliable. 
In essence, it's a translation value that you don't see as a 
developer, but it's important for you to understand its value.

Compatible devices
Although Apple only released the specification for BLE devices to broadcast iBeacon 
signals at the end of 2013, they'd been cleverly putting Bluetooth 4.0 hardware into 
devices since 2011, which means that even some older devices worked immediately 
with iBeacon with the release of iOS 7.

The following table lists some of the iBeacon-compatible iOS devices:

Device family Model Release date
iPhone iPhone 4s October 14, 2011

iPhone 5 September 21, 2012
iPhone 5s September 20, 2013
iPhone 5c September 20, 2013

iPad iPad Mini (first generation) November 2, 2012
iPad Mini (second 
generation)

June 30, 2014

iPad (third generation) March 16, 2012
iPad (fourth generation) November 2, 2012
iPad Air November 1, 2013

iPod Touch iPod Touch (fifth 
generation)

October 11, 2012

Although not covered in this book, it's worth noting that 
Bluetooth beacons also work with Android devices that 
have Bluetooth 4.0 and running Android 4.3 and later, 
which includes some of the most popular devices (Samsung 
Galaxy S3/S4/S5/S4 Mini, Samsung Galaxy Note 2/3, HTC 
One, Google/LG Nexus 7 (2013 version)/Nexus 4/Nexus 5, 
and HTC Butterfly).



Chapter 1

[ 11 ]

Commercial applications of iBeacon
The commercial opportunities for iBeacon are endless. By adopting BLE, Apple have 
essentially brought location-based technology indoors and signed iOS devices up to 
the Internet of Things.

By formalizing a specification for the BLE technology for vendors and developers 
alike, Apple has essentially brought location- and proximity-based functionality 
indoors, which has obviously excited the home-automation community a great  
deal. However, it's the commercial app potential that excites most developers.  
The ability to understand, within a few feet, exactly where an iOS device is within  
a store, museum, or theme park means that we, as app developers, have been  
given a great big golden ticket of opportunity.

In December 2013, Apple leveraged iBeacon themselves by installing beacons in 
all 254 of their U.S. stores to become their very own case study. The Apple Store 
leveraged micro-location awareness to provide customers who had the official  
Apple Store app installed on their devices with information relevant to the items 
they were actually looking at.

Since Apple's iBeacon implementation, there have been a whole host of high-profile 
commercial projects, including:

•	 Macy's (http://bit.ly/macysibeacon): Macy's was the first major retailer 
to support iBeacon, which gives shoppers special offers and deals and 
rewards shoppers for their visits

•	 Virgin Atlantic (http://bit.ly/virgin-ibeacon): Virgin Atlantic has 
deployed iBeacons into London's Heathrow airport to give promotional 
offers while passengers are visiting the terminal

•	 Major League Baseball (http://bit.ly/mlb-ibeacon): Many Major 
League Baseball teams have now adopted iBeacons in stadiums to engage 
with fans on their mobile devices while at the game

•	 Antwerp Museum (http://bit.ly/antwerp-ibeacon): The Antwerp 
Museum has brought its exhibits to life with iBeacon, allowing visitors to 
move around its Rubens House exhibit and trigger information about the 
current display based on the user's current location

These are just some of the actual iBeacon implementations that are available at the 
time of writing this book. As far as your own projects go, the sky is the limit. Here 
are a few ideas to whet your appetite:

•	 Proximity marketing: Offer complete customized marketing when a 
customer enters your store combined with information about their previous 
purchases. As they pass some fine leather brogues say, "Hey, those blue 
leather brogues would look great with that floral shirt you bought last week."

http://bit.ly/macysibeacon
http://bit.ly/virgin-ibeacon
http://bit.ly/mlb-ibeacon
http://bit.ly/antwerp-ibeacon


Welcome to iBeacon

[ 12 ]

•	 Home automation: Imagine pulling up to your drive and your porch lights 
turn on. That's not groundbreaking really; we've had movement sensors for 
years. However, imagine that the movement sensors, as well as turning your 
lights on, also started running you a bath, dimming the lights, and playing 
some relaxing music.

•	 Museum exhibits: Just like a personalized audio tour on your phone as you 
browse between exhibits and galleries without a predetermined direction, 
museum curators can build heatmaps of their most popular exhibits and 
reorganize galleries based on visitor behavior.

•	 Venue navigation: Get geofenced navigation of large venues with a custom 
tour guide app.

•	 Conference interaction: Using iBeacon, we could deliver location-context 
information and features. During a keynote your app could deliver features 
to people who are sitting in the theater, not to those walking around the 
exhibits outside the theater.

•	 Car rental: Just before you get on a flight, you could order and pay for your 
car rental. Then, when you arrive at the airport, your car could automatically 
unlock when you get near to it. This would require a little more computation 
and extra hardware within the car, but the essence is made possible by iBeacon.

•	 Taxi alert: Order a cab through your phone and receive a push notification 
when they're outside waiting for you.

So many vendors, so little time
You've bought this book, so I'm going to don my super-sleuth hat and say that you've 
either been tasked with building an iOS app that utilizes iBeacon, or you've got a 
project in mind that would benefit from proximity-based location. Ignoring my limited 
powers of deduction, I'd say that's great news. This book will arm you with all the 
development knowledge you need to build any iBeacon-enabled iPhone and iPad 
apps. What the book won't give you though is some lovely iBeacon hardware.

Don't worry; you don't actually need any hardware to complete the tutorials in  
the book. This book includes an accompanying OS X app, which allows your Mac  
to become any beacon you want. I'll take you through getting it working later in  
this chapter.

If you're going to build a commercial application, you'll need to make a decision 
about which beacons to buy. I've been an early adopter of iBeacons and have 
sampled lots of the most popular beta devices, and so, hopefully, I can give you  
some insights into the different implementations of iBeacons between vendors.



Chapter 1

[ 13 ]

At the time of writing this book, the process to become an iBeacon vendor was to 
sign up to the MFi program and gain the specifications for iBeacons. The ones I've 
sampled personally are motes from Estimote, RedBearLab's RedBear Beacon B1, and 
ROXIMITY beacons. Many vendors supply their own SDKs with their hardware, and 
we'll explore some of these SDKs in Chapter 7, Vendor SDKs – Buying and Configuring 
Beacons, but for now, we'll go through the main differences between the vendors' 
iBeacon implementations to help you make a more informed choice when it comes  
to sourcing hardware for your commercial project.

Estimote
Have a look at the following figure that shows what motes look like:

Estimote Beacons or motes

Estimote was set up with $ 3.1 million seed funding in December 2013 and have  
been well featured in digital press news stories, including the TechCrunch and 
Wired magazines. Their marketing material boasts that their motes can run up  
to 2 years on a single watch battery, and their stylish silicon casing means that  
they work beautifully outside too.

Estimote beacon sensors are already being used by large retailers in Europe, and 
they're working to build a large network of their sensors in the U.S.

Estimote has opted to provide a richer feature set than most beacons by including 
accelerometer hardware and temperature sensors. Although these sensors are only 
accessible when using the Estimote SDK, they do allow for a more creative set of 
projects to be developed.



Welcome to iBeacon

[ 14 ]

Estimote has definitely ridden the crest of the tsunami of iBeacon technology in the 
press and has some very high-profile customers. At the time of writing this book, 
the beacons themselves were available as a $ 99 development kit containing three 
beacons and weren't available for larger volumes as a commercial purchase.

Estimote offers an SDK for managing and interacting with their beacons and has 
also provided an iOS app available in the App Store, which includes a number of 
development tutorials and tools such as:

•	 Distance- and proximity-based demos: This tool shows the distance  
of the device in meters or in written English (near, far, and so on) from 
Estimote beacons

•	 Notifications demo: This tool shows you a local push notification when  
you enter into the Estimote Beacon's region

•	 Accelerometer and temperature sensor: Beacons also include an accelerometer 
and temperature sensor for more imaginative projects to be developed

•	 Beacon management: This tool allows you to check the status of your 
Estimote beacons including battery life, temperature, and hardware settings, 
as well as allowing you to configure the beacon's UUID/major/minor 
broadcast triplet values

Some of the Estimote companion app's features



Chapter 1

[ 15 ]

Estimote beacons – pros
The following are some pros of Estimote beacons:

•	 They are beautifully designed, and so once released commercially, they  
have all the elegant aesthetics to feature immediately in any retail- or 
customer-facing environment

•	 They have good support for both iOS and Android applications using the 
Estimote SDK

•	 They have a silicon cover, which means that beacons can be used outside

Estimote beacons – cons
The following are some cons of Estimote beacons:

•	 They are not yet commercially available, and you can only buy developer packs
•	 They have sealed silicon units, which means that battery replacement is likely 

to destroy the unit
•	 They have wait times of up to 6 weeks for developer kit availability

ROXIMITY
ROXIMITY has taken a completely different approach and made their beacons 
completely centrally managed. There's no Bluetooth beacon configuration and 
beacons can be repurposed for multiple apps simultaneously. You can use a single 
ROXIMITY beacon within an app dedicated to a shopping mall for direction and 
also for a loyalty app of a retail store within the mall itself because they don't use 
the UUID/major/minor broadcasting triplet. These values have been removed from 
you as a developer when using ROXIMITY beacons. Instead, you can work with 
ROXIMITY beacon identifiers and must use the ROXIMITY SDK; you can't use the 
Core Location framework.

"The ROXIMITY Beacon hardware and software are designed and built for  
large-scale deployments. Our beacons are designed for easy installation and  
zero maintenance."

                                                                   - http://roximity.com/platform/

The ROXIMITY beacons and hardware are most definitely geared up for mobile 
marketing, and so may not be the best choice for highly customized functionality. 
However, if your goal is to provide ROXIMITY-based marketing to specialist apps 
such as sporting venues, shopping malls, or airports, then ROXIMITY beacons and 
the SDK are probably the most comprehensive beacons to use straight out of the box.



Welcome to iBeacon

[ 16 ]

ROXIMITY features are all centrally managed via the online merchant dashboard. 
By following ROXIMITY's approach to beacon management, you, as a solutions 
provider, would need to complete the following steps to deploy beacons at your 
target location:

1.	 Buy ROXIMITY beacons from the ROXIMITY website.
2.	 Beacons are shipped to you and added to your online merchant dashboard.
3.	 Configure a new application on the merchant dashboard and choose which 

beacons will be attached to the application.
4.	 Add the ROXIMITY SDK to your app and wire up the delegate methods.

ROXIMITY merchant dashboard notification message dialog

By following this simple approach, you already have tons of features available 
without having to write a single line of custom code:

•	 ROXIMITY allows you to send push notifications directly via their merchant 
dashboard and configure push notifications.

•	 ROXIMITY provides in-depth analytics of visitors.
•	 The ROXIMITY SDK is capable of verifying a device's phone number for a 

user. Doing so provides additional reachability and location information for 
that user and an additional means to look up or request that user's location.



Chapter 1

[ 17 ]

•	 The ROXIMITY SDK, when correctly implemented into your app, reports the 
exact location of your beacons placed in their commercial location. This exact 
location can also be configured using the ROXIMITY Beacon Explorer app 
that ROXIMITY offers via the App Store.

•	 Message dialogs can be configured to capture responses when users enter  
a region via the merchant dashboard.

The ROXIMITY Beacon Explorer app (http://bit.ly/
roximity-be) allows you to demonstrate and test your 
dialogs and settings without having to build the app using 
their SDK. This is great for testing functionality before you 
start building your app.

ROXIMITY beacons – pros
The following are some pros of ROXIMITY beacons:

•	 Rapid development with an extensive SDK
•	 Single beacons can be used in multiple apps because they don't rely on the 

UUID/major/minor broadcasting triplet
•	 They have no hardware configuration requirements (via Bluetooth), meaning 

beacons can be quickly and easily reused for other purposes, and marketing 
campaigns can be optimized via a central management platform

ROXIMITY beacons – cons
The following are some cons of ROXIMITY beacons:

•	 No control over the UUID/major/minor broadcasting triplet, and  
so the ROXIMITY SDK must be used, which means that the iOS SDK  
can't be used for development

•	 Too much emphasis on proximity marketing means that using  
ROXIMITY beacons for other purposes is more difficult than  
simpler beacon implementations

•	 Currently, only very limited analytics are available via the  
merchant dashboard

www.allitebooks.com

http://bit.ly/roximity-be
http://bit.ly/roximity-be
http://www.allitebooks.org


Welcome to iBeacon

[ 18 ]

RedBearLab
RedBearLab is a Hong-Kong-based company that specializes in BLE technology 
exclusively. They have many BLE products such as Arduino shields and have an 
established name in hardware.

The RedBear Beacon B1

RedBearLab adopted a simple, no-nonsense approach in their iBeacon product,  
the RedBear Beacon B1, and have focused on the hardware, not branding.

Much bigger than both the ROXIMITY and Estimote options, the RedBear Beacon B1 
is powered by two AAA batteries, offering five times the battery life of beacons that 
are powered by a CR2032 coin battery.

RedBearLab don't provide any online management platform for their beacons; 
however, they do offer over-the-air firmware upgrades, which means that firmware 
updates can be easily done via their RedBear BeaconTool app available via the App 
Store (http://bit.ly/RedBear-BT).

The RedBear Beacon B1 also features very simple administration via the BeaconTool 
app and is very secure compared to other beacons since it has a hardware 
configuration button, which activates the configuration mode for a short period. 
Combining this hardware feature with the fact that you can very easily set custom 
administrator passwords on the beacon means that these devices are far less likely 
to be hijacked than other vendor beacons. We will discuss the security issues 
surrounding iBeacons in Chapter 9, iBeacon Security – Understanding the Risks.

http://bit.ly/RedBear-BT


Chapter 1

[ 19 ]

Finally, the RedBear Beacon B1 has one unique feature that is both elegant and 
genius—a power switch. None of the other beacons I've had the pleasure of trialing 
have this feature, which when developing an app makes perfect sense. A hardware 
power switch allowing you to turn a beacon on and off makes simulating entering 
and exiting a beacon region very simple.

RedBear BeaconTool app for iOS

The RedBear Beacon B1 and RedBear BeaconTool app provide simple configuration, 
robust hardware security, and power features, which mean it's the perfect 
development companion.

RedBear Beacon B1 – pros
The following are the pros of RedBear Beacon B1:

•	 Hardware button to switch between configuration and online mode, making 
it more difficult for unauthorized configuration of the UUID/major/minor 
broadcasting triplet

•	 Longest battery life and easiest unit to change batteries
•	 Power switch allows easy simulation of entering and existing beacon range



Welcome to iBeacon

[ 20 ]

RedBear Beacon B1 – cons
The following are the cons of RedBear Beacon B1:

•	 Largest beacon of the three discussed and heavy in comparison when 
including two AAA batteries.

•	 Aesthetically, this is the least pleasing of the beacons discussed. This means  
it is not great for consumer-facing commercial deployments.

•	 No extra sensors or software features present like the other two  
beacons discussed.

Other vendor options
There are of course plenty of other vendors and more and more new beacons coming 
onto the market all the time, so there'll be lots of amazing new vendors for you to 
choose from.

The three discussed are just some of the most popular beacons that I've had the 
pleasure of testing and so can share my experiences. If you're buying beacons  
in bulk, then you might also want to consider using a trade website such as  
http://www.alibaba.com/. I've had some great beacons and some not so great 
beacons through this online trading platform, but overall, my experiences have been 
good. The three beacons we've already discussed range between $ 23 per unit and 
$ 35 per unit. However, when buying direct from suppliers on Alibaba.com, I've 
personally bought very good units for as little as $ 4 per unit.

When buying iBeacons from trade websites, my recommendation is that you order  
a subset first, maybe 5 to 10 units. Most vendors will charge you $ 2 to $ 3 more per 
unit for this type of transaction and offer you economies of scale for buying more  
in future.

When buying iBeacons from trade sites, you should also look out for beacons that 
have conformed to the Made for iPhone program; a key way of identifying these is 
when they show the iBeacon logo.

Made for iPhone logo

http://www.alibaba.com/
Alibaba.com


Chapter 1

[ 21 ]

The companion OS X application  
and website
In order to complete the tutorials in this book, you don't need to be in possession  
of any iBeacon hardware since there's a companion app that lets your Mac act as  
an iBeacon using its built-in Bluetooth adapter provided it has Bluetooth 4.0.

You can download the companion app from the companion website as well as all 
of the code tutorials from the app. You can download the companion app and code 
samples from:

http://ibeacon.university/

If your machine doesn't have Bluetooth 4.0, there's no need to worry. You can  
pick up a Bluetooth 4.0 USB dongle for under $ 15 that will allow the companion  
app to work.

To see if your Mac is Bluetooth 4.0 enabled, follow these steps:

1.	 Click on the Apple icon in the status bar.
2.	 Select About This Mac.
3.	 Click on the More Info button.
4.	 Click on the System Report button.
5.	 Select Bluetooth from the sidebar on the left, underneath Hardware.
6.	 Scan down the list of information until you find LMP Version, as shown:

If your Mac is equipped with Bluetooth 4.0, LMP Version will say 0x6. Anything 
lower than that is an older version of Bluetooth and will need a USB dongle.

http://ibeacon.university/


Welcome to iBeacon

[ 22 ]

The Mac in the preceding screenshot needs a dongle.

The earlier screenshot shows a MacBook Pro fitted with Bluetooth 3.1 and will need  
a USB dongle.

The Mac in the preceding screenshot shows the same MacBook Pro with a USB 
dongle fitted.

While writing this book, I used a MacBook Pro from late 2011, 
which unfortunately is only fitted with Bluetooth 3.1. I picked 
up a pluggable USB-BT4LE Bluetooth 4.0 USB Adapter for $ 13, 
which enabled my MacBook for iBeacon transmissions.

Using the companion app
The companion app is used throughout the book and lets you use your Mac as an 
iBeacon. It can be downloaded from the download section of the Packt Publishing 
website and comes preconfigured with all of the beacons used throughout the book.



Chapter 1

[ 23 ]

Using the companion app, you can simulate physical beacons in the real world using 
any Bluetooth-4.0-powered Mac running OS X Mavericks or Mountain Lion.

Companion app broadcasting an iBeacon signal

The companion OS X app has beacons configured already for every tutorial in this 
book. To start a beacon, simply select the beacon from the tutorial from the menu on 
the left, and then tap on the power button in the right panel.

The features of the companion app can be seen in the following table:

Button Use
Add new iBeacon profiles to suit your own development 
needs using the add button
Remove iBeacon profiles using the minus button

If you lose some of the tutorial beacons, then reset the app 
iBeacon profiles using the reset button

Hello world
In time-honored tradition, we can't conclude the first chapter without the traditional 
"Hello World" tutorial. We'll be using your Mac as an iBeacon broadcaster using the 
companion app, and the app will simply show an alert every time it enters or exits 
the region.



Welcome to iBeacon

[ 24 ]

We will cover all of these concepts in more detail in later chapters, but for reference, 
here are the classes we'll be using:

•	 CLLocationManager: The CLLocationManager class delivers location-related 
events to your app and tells you when you enter or exit a region

•	 CLLocationManagerDelegate: The CLLocationManagerDelegate protocol 
defines the delegate methods used to receive location and heading updates 
from CLLocationManager

•	 CLBeaconRegion: A CLBeaconRegion object defines a type of region that is 
based on the device's proximity to a Bluetooth beacon

Let's get started
Fire up Xcode and start a new project. Choose Single View Application from the 
iOS template menu as your project type.

A new project dialog



Chapter 1

[ 25 ]

Set up your new project using the values shown in the following screenshot:

A new project options dialog

Adding the Core Location framework
All of the features we need for this app to work are present in the Core  
Location framework.



Welcome to iBeacon

[ 26 ]

Click on the project in the project navigator and scroll down to the Linked 
Frameworks and Libraries section of the General tab and then click on the  
add icon. We'll need to add the CoreLocation framework as shown in the  
following screenshot:

Adding the Core Location framework

We only really care about the LIViewController class for this tutorial as that's  
where we're going to be presenting to the user when we're moving in and out  
of regions. In order to do this, we need to add a reference to CoreLocation.  
Open LIViewController.h and add the following line just below the existing  
UIKit import:

#import <CoreLocation/CoreLocation.h>

Downloading the example code
You can download the example code files for all Packt books 
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and 
register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support


Chapter 1

[ 27 ]

Adding a permission message
Since iOS 8.0, you must specify a location description message in your plist settings. 
This is a nice friendly message for the users to help them understand why they  
need permission to use those location services. To do this, open the project file,  
click on your target Hello World, and then under the Info tab, add a new item to  
the dictionary under Custom iOS Target Properties with the following values:

•	 Key: NSLocationAlwaysUsageDescription
•	 Value: This app needs your location to show you how cool  

iBeacon is.

Configuring the CLLocationManagerDelegate 
method
Our ViewController instance is where all the action happens, so it makes sense 
for ViewController to be aware of location events. For that, we need to make it 
CLLocationManagerDelegate.

Go ahead and add the declaration to the LIViewController interface declaration. 
Change the interface declaration in LIViewController.h so that it looks like the 
following code:

@interface LIViewController :  
  UIViewController<CLLocationManagerDelegate>

We also need to implement the CLLocationManagerDelegate methods so that we 
can show our notification when the device enters a region. Add the following code to 
the end of the LIViewController implementation in the LIViewController.m file:

-(void)locationManager:(CLLocationManager *)manager  
  didEnterRegion:(CLRegion *)region {
    UIAlertView * av = [[UIAlertView alloc] init];
    av.title = [NSString stringWithFormat:@"Entered Region  
      '%@'", region.identifier];
    [av addButtonWithTitle:@"OK"];
    [av show];
}

-(void)locationManager:(CLLocationManager *)manager  
  didExitRegion:(CLRegion *)region {
    UIAlertView * av = [[UIAlertView alloc] init];
    av.title = [NSString stringWithFormat:@"Left Region  
      '%@'", region.identifier];

www.allitebooks.com

http://www.allitebooks.org


Welcome to iBeacon

[ 28 ]

    [av addButtonWithTitle:@"OK"];
    [av show];
}

"Wait, what's CLRegion?" I hear you asking. Well, 
CLBeaconRegion inherits CLRegion and so 
CLBeaconRegion is CLRegion. Remember that 
CLLocationManager is used to deliver location-related 
events, which don't necessarily need to come from a 
beacon-related activity.

Adding a CLLocationManager instance
Now, our view controller will be notified when a CLLocationManager instance 
receives events, but we don't have an instance of CLLocationManager yet. Add the 
following property to the LIViewController interface inside LIViewController.m:

@property (nonatomic, strong) CLLocationManager * locationManager;

Preparing UUID
For our app to know which region it's looking out for, we need some way of 
storing the UUID. Add the following line just below the implementation in 
LIViewController.m:

static NSString * uuid = @"EB9AB493-32C2-4E5C-BF67-76E86E338BB9";

Start monitoring
Our app is already ready to start accepting location-based updates. All we need to 
do now is create a region, instantiate our location manager, and start monitoring our 
regions. Overwrite the viewDidLoad method of our LIViewController with the 
following code. We'll go through the most important code shortly.

- (void)viewDidLoad
{
    [super viewDidLoad];
    NSUUID * regionUUID = [[NSUUID alloc]  
      initWithUUIDString:uuid];
    
    CLBeaconRegion * region = [[CLBeaconRegion alloc]  
      initWithProximityUUID:regionUUID identifier:@"My Region"];
    
    [region setNotifyOnEntry:YES];
    [region setNotifyOnExit:YES];



Chapter 1

[ 29 ]

    self.locationManager = [[CLLocationManager alloc] init];
    self.locationManager.delegate = self;

    [self.locationManager requestAlwaysAuthorization];

    [self.locationManager startMonitoringForRegion:region];
}

Line by line
Let's break the preceding code down line by line:

1.	 First, we create an NSUUID instance using our string identifier (uuid) since 
CLBeaconRegion requires an object of this type in order to be initialized:
NSUUID * regionUUID = [[NSUUID alloc]  
  initWithUUIDString:uuid];

2.	 Next, we create a new CLBeaconRegion passing in our NSUUID:
CLBeaconRegion * region = [[CLBeaconRegion alloc]  
  initWithProximityUUID:regionUUID  
  identifier:@"My Region"];

3.	 Next, we configure our region events. We're interested in being notified 
when we enter and leave the region:
[region setNotifyOnEntry:YES];
[region setNotifyOnExit:YES];

4.	 Next, we instantiate CLLocationManager and add ViewController as its 
delegate:
self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self;

5.	 Finally, we request permission for location services, then start monitoring for 
the CLBeaconRegion we've just created:
[self.locationManager requestAlwaysAuthorization];
[self.locationManager startMonitoringForRegion:region];



Welcome to iBeacon

[ 30 ]

Testing our code
Plug in an iOS device to your Mac, and compile and debug the app. You should be 
presented with a lovely blank white screen. Because we're using CoreLocation,  
you need to give permission for the app to use your location. It's important that  
you agree to this:

Location permission dialog

Now, open the companion app on your Mac and choose the beacon profile named 
Chapter 1 : Default Beacon from the list on the left-hand side and then click on the 
power button, as shown in the following screenshot:

Using your Mac to broadcast your first iBeacon



Chapter 1

[ 31 ]

What you've just simulated is your device entering a region. If this was a real 
scenario, the beacon would have been running all along and your device would 
come into range because you walk towards the beacon, but the companion app 
serves just as well in this instance.

If all was successful, you should see the following screenshot:

Successfully entered the region

Finally, test exiting the region by turning the beacon profile off in the companion OS 
X app. It may take up to 30 seconds for the app to register that you've left the region. 
Once the event fires, you should see the following screenshot:

Successfully exited the region



Welcome to iBeacon

[ 32 ]

The reason for the delay is that the didExitRegion method 
is meant for tidying up resources after ranging beacons, which 
we'll cover in the later chapters. Apple's implementation 
includes a delay to ensure the event isn't fired when the 
Bluetooth signal may be subject to interference.

Summary
Congratulations on building your first app using iBeacon technology! You've  
added the first building blocks to your arsenal of tools to build amazing indoor 
location-based applications. The rest of the book concentrates less on the technology 
and more on the code, and next we'll be covering more in-depth functionality by 
showing proximity-based marketing. Hold on to your hats!



Detecting Beacons – 
Showing an Advert

In the previous chapter, we introduced you to the amazing possibilities of iBeacon 
and brought the UUID/major/minor broadcasting triplet to your attention. We also 
built our first, albeit very simple, app that detected the presence of beacons.

In this chapter, we're going to expand our knowledge and get an in-depth 
understanding of the broadcasting triplet, and we'll expand on some of the  
important classes within the Core Location framework.

To help demonstrate the more in-depth concepts, we'll build an app that shows 
different advertisements depending on the major and minor values of the beacon 
that it detects. We'll be using the context of an imaginary department store called 
Matey's. Matey's are currently undergoing iBeacon trials in their flagship London 
store and at the moment are giving offers on their different-themed restaurants and 
also on their ladies clothing to users who are using their branded app.

Uses of the UUID/major/minor 
broadcasting triplet
In the last chapter, we covered the reasons behind the broadcasting triplet; we're 
going to use the triplet with a more realistic scenario. Let's go over the three values 
again in some more detail.

UUID – Universally Unique Identifier
The UUID is meant to be unique to your app. It can be spoofed, which we'll cover in 
Chapter 9, iBeacon Security – Understanding the Risks, but generally, your app would be 
the only app looking for that UUID.



Detecting Beacons – Showing an Advert

[ 34 ]

The UUID identifies a region, which is the maximum broadcast range of a beacon 
from its center point. Think of a region as a circle of broadcast with the beacon in  
the middle.

If lots of beacons with the same UUID have overlapping broadcasting ranges, then 
the region is represented by the broadcasting range of all the beacons combined as 
shown in the following figure. The combined range of all the beacons with the same 
UUID becomes the region.

Broadcast range

More specifically, the region is represented by an instance of the CLBeaconRegion 
class, which we'll cover in more detail later in this chapter. The following code shows 
how to configure CLBeaconRegion:

NSString * uuidString = @"78BC6634-A424-4E05-A2AE-A59A25CAC4A9";

NSUUID * regionUUID; 
regionUUID = [[NSUUID alloc] initWithUUIDString:uuidString"];
    
CLBeaconRegion * region;
region = [[CLBeaconRegion alloc] initWithProximityUUID: 
  regionUUID identifier:@"My Region"];

Generally, most apps will be monitoring only for one region. This is normally 
sufficient since the major and minor values are 16-bit unsigned integers, which 
means that each value can be a number up to 65,535 giving 4,294,836,225 unique 
beacon combinations per UUID.



Chapter 2

[ 35 ]

Since the major and minor values are used to represent a subsection of the use case, 
there may be a time when 65,535 combinations of a major value may not be enough 
and so, this would be the rare time that your app can monitor multiple regions with 
different UUIDs. Another more likely example is that your app has multiple use 
cases, which are more logically split by UUID.

An example where an app has multiple use cases would be a loyalty app that has 
offers for many different retailers when the app is within the vicinity of the retail 
stores. Here you can have a different UUID for every retailer.

Major
The major value further identifies your use case. The major value should separate 
your use case along logical categories. This could be sections in a shopping mall or 
exhibits in a museum. In our example, a use case of the major value represents the 
different types of service within a department store.

In some cases, you may wish to separate logical categories into more than one major 
value. This would only be if each category has more than 65,535 beacons.

Minor
The minor value ultimately identifies the beacon itself. If you consider the major 
value as the category, then the minor value is the beacon within that category.

An example of a use case
The example laid out in this chapter uses the following UUID/major/minor values 
to broadcast different adverts for Matey's:

Department Food Women's clothing
UUID 8F0C1DDC-11E5-4A07-8910-425941B072F9
Major 1 2
Minor 1 30 percent off 

on sushi at The 
Japanese Kitchen

50 percent off on all ladies' clothing

2 Buy one get one free 
at Tucci's Pizza

N/A



Detecting Beacons – Showing an Advert

[ 36 ]

Understanding Core Location
The Core Location framework lets you determine the current location or heading 
associated with the device. The framework has been around since 2008 and was 
present in iOS 2.0. Up until the release of iOS 7, the framework was only used for 
geolocation based on GPS coordinates and so was suitable only for outdoor location.

The framework got a new set of classes and new methods were added to the existing 
classes to accommodate the beacon-based location functionality. Let's explore a few 
of these classes in more detail.

The CLBeaconRegion class
Geo-fencing (geofencing) is a feature in a software program that uses the global 
positioning system (GPS) or radio frequency identification (RFID) to define 
geographical boundaries. A geofence is a virtual barrier.

The CLBeaconRegion class defines a geofenced boundary identified by a UUID  
and the collective range of all physical beacons with the same UUID. When a device 
matching the CLBeaconRegion UUID comes in range, the region triggers the delivery 
of an appropriate notification.

CLBeaconRegion inherits CLRegion, which also serves as the superclass of 
CLCircularRegion. The CLCircularRegion class defines the location and 
boundaries for a circular geographic region. You can use instances of this class 
to define geofences for a specific location, but it shouldn't be confused with 
CLBeaconRegion. The CLCircularRegion class shares many of the same methods 
but is specifically related to a geographic location based on the GPS coordinates of 
the device. The following figure shows the CLRegion class and its descendants.

The CLRegion class hierarchy



Chapter 2

[ 37 ]

The CLLocationManager class
The CLLocationManager class defines the interface for configuring the delivery  
of location-and heading-related events to your application. You use an instance of 
this class to establish the parameters that determine when location and heading 
events should be delivered and to start and stop the actual delivery of those events. 
You can also use a location manager object to retrieve the most recent location and 
heading data.

Creating a CLLocationManager class
The CLLocationManager class is used to track both geolocation and proximity based 
on beacons. To start tracking beacon regions using the CLLocationManager class, we 
need to do the following:

1.	 Create an instance of CLLocationManager.
2.	 Assign an object conforming to the CLLocationManagerDelegate protocol  

to the delegate property.
3.	 Call the appropriate start method to begin the delivery of events.

All location- and heading-related updates are delivered to the associated delegate 
object, which is a custom object that you provide.

Defining a CLLocationManager class line  
by line
Consider the following steps to define a CLLocationManager class line by line:

1.	 Every class that needs to be notified about CLLocationManager events  
needs to first import the Core Location framework (usually in the header file) 
as shown:
#import <CoreLocation/CoreLocation.h>

2.	 Then, once the framework is imported, the class needs to declare itself as 
implementing the CLLocationManagerDelegate protocol like the following 
view controller does:
@interface MyViewController :  
  UIViewController<CLLocationManagerDelegate>

www.allitebooks.com

http://www.allitebooks.org


Detecting Beacons – Showing an Advert

[ 38 ]

3.	 Next, you need to create an instance of CLLocationManager and set your 
class as the instance delegate of CLLocationManager as shown:
    CLLocationManager * locationManager =  
      [[CLLocationManager alloc] init];
    locationManager.delegate = self;

4.	 You then need a region for your location manager to work with:
// Create a unique ID to identify our region.
NSUUID * regionId = [[NSUUID alloc]  
  initWithUUIDString:@" 
  AD32373E-9969-4889-9507-C89FCD44F94E"];

// Create a region to monitor.
CLBeaconRegion * beaconRegion =  
  [[CLBeaconRegion alloc] initWithProximityUUID: 
  regionId identifier:@"My Region"];

5.	 Finally, you need to call the appropriate start method using the beacon region. 
Each start method has a different purpose, which we'll explain shortly:
// Start monitoring and ranging beacons.
[locationManager startMonitoringForRegion:beaconRegion];
[locationManager startRangingBeaconsInRegion:beaconRegion];

6.	 Once the class is imported, you need to implement the methods of the 
CLLocationManagerDelegate protocol.

Some of the most important delegate methods are explained shortly. This isn't an 
exhaustive list of the methods, but it does include all of the important methods 
we'll be using in this chapter. A complete list of the CLLocationManagerDelegate 
methods can be found on the Apple developer site:

https://developer.apple.com/library/ios/documentation/corelocation/
reference/cllocationmanagerdelegate_protocol/index.html

locationManager:didEnterRegion
Whenever you enter a region that your location manager has been 
instructed to look for (by calling startRangingBeaconsInRegion), the 
locationManager:didEnterRegion delegate method is called. This method  
gives you an opportunity to do something with the region such as start  
monitoring for specific beacons, shown as follows:

-(void)locationManager:(CLLocationManager *) 
  manager didEnterRegion:(CLRegion *)region {
    // Do something when we enter a region.
}

https://developer.apple.com/library/ios/documentation/corelocation/reference/cllocationmanagerdelegate_protocol/index.html
https://developer.apple.com/library/ios/documentation/corelocation/reference/cllocationmanagerdelegate_protocol/index.html


Chapter 2

[ 39 ]

locationManager:didExitRegion
Similarly, when you exit the region, the locationManager:didExitRegion delegate 
method is called. Here you can do things like stop monitoring for specific beacons, 
shown as follows:

-(void)locationManager:(CLLocationManager *)manager  
  didExitRegion:(CLRegion *)region {
    // Do something when we exit a region.
}

When testing your region monitoring code on a device, realize 
that region events may not happen immediately after a region 
boundary is crossed. To prevent spurious notifications, iOS 
does not deliver region notifications until certain threshold 
conditions are met. Specifically, the user's location must cross 
the region boundary and move away from that boundary by a 
minimum distance and remain at that minimum distance for 
at least 20 seconds before the notifications are reported.

locationManager:didRangeBeacons:inRegion
The locationManager:didRangeBeacons:inRegion method is called whenever  
a beacon (or a number of beacons) change distance from the device. We'll cover 
ranging beacons more in Chapter 4, Ranging Beacons – Hunting for Treasure. For now, 
it's enough to know that each beacon that's returned in this array has a property 
called proximity, which returns a CLProximity enum value (CLProximityUnknown, 
CLProximityFar, CLProximityNear, and CLProximityImmediate), shown  
as follows:

-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons inRegion: 
  (CLBeaconRegion *)region {
    // Do something with the array of beacons.
}



Detecting Beacons – Showing an Advert

[ 40 ]

locationManager:didChangeAuthorizationStat
us
Finally, there's one more delegate method to cover. Whenever the users grant or 
deny authorization to use their location, locationManager:didChangeAuthoriza
tionStatus is called. This method is passed as a CLAuthorizationStatus enum 
(kCLAuthorizationStatusNotDetermined, kCLAuthorizationStatusRestricted, 
kCLAuthorizationStatusDenied, and kCLAuthorizationStatusAuthorized), 
shown as follows:

-(void)locationManager:(CLLocationManager *)manager  
  didChangeAuthorizationStatus:(CLAuthorizationStatus)status {
    // Do something with the array of beacons.
}

Understanding iBeacon permissions
It's important to understand that apps using the Core Location framework are 
essentially monitoring location, and therefore, they have to ask the user for their 
permission. The authorization status of a given application is managed by the system 
and determined by several factors. Applications must be explicitly authorized to use 
location services by the user, and the current location services must themselves be 
enabled for the system. A request for user authorization is displayed automatically 
when your application first attempts to use location services.

Requesting the location can be a fine balancing act. Asking for permission at a point 
in an app, when your user wouldn't think it was relevant, makes it more likely that 
they will decline it. It makes more sense to tell the users why you're requesting their 
location and why it benefits them before requesting it so as not to scare away your 
more squeamish users.



Chapter 2

[ 41 ]

Building those kinds of information views isn't covered in this book, but to 
demonstrate the way a user is asked for permission, our app should show an  
alert like this:

Requesting location permission

If your user taps Don't Allow, then the location can't be enabled through the app 
unless it's deleted and reinstalled. The only way to allow location after denying it  
is through the settings.

Location permissions in iOS 8
Since iOS 8.0, additional steps are required to obtain location permissions. In order 
to request location in iOS 8.0, you must now provide a friendly message in the app's 
plist by using the NSLocationAlwaysUsageDescription key, and also make a call to 
the CLLocationManager class' requestAlwaysAuthorization method.

The NSLocationAlwaysUsageDescription key describes the reason the app 
accesses the user's location information. Include this key when your app uses 
location services in a potentially nonobvious way while running in the foreground  
or the background.



Detecting Beacons – Showing an Advert

[ 42 ]

There are two types of location permission requests as of iOS 8 as specified by the 
following plist keys:

•	 NSLocationWhenInUseUsageDescription: This plist key is required 
when you use the requestAlwaysAuthorization method of the 
CLLocationManager class to request authorization for location services. 
If this key is not present and you call the requestAlwaysAuthorization 
method, the system ignores your request and prevents your app from using 
location services.

•	 NSLocationAlwaysUsageDescription: This key is required when you use 
the requestWhenInUseAuthorization method of the CLLocationManager 
class to request authorization for location services. If the key is not present 
when you call the requestWhenInUseAuthorization method without 
including this key, the system ignores your request.

Since iBeacon requires location services in the background, we will only ever use the 
NSLocationAlwaysUsageDescription key with the call to the CLLocationManager 
class' requestAlwaysAuthorization.

Enabling the location after denying it
If a user denies enabling location services, you can follow the given steps to enable 
the service again on iOS 7:

1.	 Open the iOS device settings and tap on Privacy.
2.	 Go to the Location Services section.
3.	 Turn location services on for your app by flicking the switch next to  

your app name.

When your device is running iOS 8, you need to follow these steps:

1.	 Open the iOS device settings and tap on Privacy.
2.	 Go to your app in the Settings menu.
3.	 Tap on Privacy.
4.	 Tap on Location Services.
5.	 Set the Allow Location Access to Always.



Chapter 2

[ 43 ]

Building the tutorial app
To demonstrate the knowledge gained in this chapter, we're going to build an app for 
our imaginary department store Matey's. Matey's is trialing iBeacons with their app 
Matey's offers. People with the app get special offers in store as we explained earlier.

For the app, we're going to start a single view application containing two 
controllers. The first is the default view controller, which will act as our 
CLLocationManagerDelegate, the second is a view controller that will be  
shown modally and shows the details of the offer relating to the beacon we've  
come into proximity with.

The final thing to consider is that we'll only show each offer once in a session and  
we can only show an offer if one isn't showing. Shall we begin?

Creating the app
Let's start by firing up Xcode and choosing a new single view application just as  
we did in the previous chapter. Choose these values for the new project:

•	 Product Name: Matey's Offers
•	 Organization Name: Learning iBeacon
•	 Company Identifier: com.learning-iBeacon
•	 Class Prefix: LI
•	 Devices: iPhone

Your project should now contain your LIAppDelegate and LIViewController 
classes. We're not going to touch the app delegate this time round, but we'll need 
to add some code to the LIViewController class since this is where all of our 
CLLocationManager code will be running. For now though, let's leave it to come 
back to later.

Adding CLOfferViewController
Our offer view controller will be used as a modal view controller to show the offer 
relating to the beacon that we come in contact with. Each of our offers is going to be 
represented with a different background color, a title, and an image to demonstrate 
the offer.



Detecting Beacons – Showing an Advert

[ 44 ]

Be sure to download the code relating to this chapter and add the three images 
contained therein to your project by dragging the images from finder into the  
project navigator:

•	 ladiesclothing.jpg

•	 pizza.jpg

•	 sushi.jpg

Next, we need to create the view controller. Add a new file and be sure to choose the 
template Objective-c class from the iOS Cocoa Touch menu. When prompted, name 
this class LIOfferViewController and make it a subclass of UIViewController.

Setting location permission settings
We need to add our permission message to the applications so that when we request 
permission for the location, our dialog appears:

1.	 Click on the project file in the project navigator to show the project settings.
2.	 Click the Info tab of the Matey's Offers target.
3.	 Under the Custom iOS Target Properties dictionary, add the 

NSLocationAlwaysUsageDescription key with the value. This  
app needs your location to give you wonderful offers.

Adding some controls
The offer view controller needs two controls to show the offer the view is 
representing, an image view and a label. Consider the following steps to add  
some controls to the view controller:

1.	 Open the LIOfferViewController.h file and add the following properties 
to the header:
@property (nonatomic, strong) UILabel * offerLabel;
@property (nonatomic, strong) UIImageView * offerImageView;

2.	 Now, we need to create them. Open the LIOfferViewController.m file  
and first, let's synthesize the controls. Add the following code just below  
the @implementation LIOfferViewController line:
@synthesize offerLabel;
@synthesize offerImageView;

3.	 We've declared the controls; now, we need to actually create them. Within 
the viewDidLoad method, we need to create the label and image view. We 
don't need to set the actual values or images of our controls. This will be 
done by LIViewController when it encounters a beacon.



Chapter 2

[ 45 ]

4.	 Create the label by adding the following code below the call to [super 
viewDidLoad]. This will instantiate the label making it 300 points wide  
and appear 10 points from the left and top:
UILabel * label = [[UILabel alloc]  
  initWithFrame:CGRectMake(10, 10, 300, 100)];

5.	 Now, we need to set some properties to style the label. We want our label to 
be center aligned, white in color, and with bold text. We also want it to auto 
wrap when it's too wide to fit the 300 point width. Add the following code:
label setTextAlignment:NSTextAlignmentCenter];
[label setTextColor:[UIColor whiteColor]];
[label setFont:[UIFont boldSystemFontOfSize:22.f]];
label.numberOfLines = 0; // Allow the label to auto wrap.

6.	  Now, we need to add our new label to the view and assign it to  
our property:
[self.view addSubview:label];
self.offerLabel = label;

7.	 Next, we need to create an image. Our image needs a nice border; so to 
do this, we need to add the QuartzCore framework. Add the QuartzCore 
framework like we did with CoreLocation in the previous chapter, and 
come to mention it, we'll need CoreLocation; so, add that too.

8.	 Once that's done add #import <QuartzCore/QuartzCore.h> to the top 
of the LIOfferViewController.m file. Now, add the following code to 
instantiate the image view and add it to our view:
UIImageView * imageView = [[UIImageView alloc]  
  initWithFrame:CGRectMake(10, 120, 300, 300)];
[imageView.layer setBorderColor:[[UIColor  
  whiteColor] CGColor]];
[imageView.layer setBorderWidth:2.f];
imageView.contentMode = UIViewContentModeScaleToFill;
[self.view addSubview:imageView];
self.offerImageView = imageView;

Setting up our root view controller
Let's jump to LIViewController now and start looking for beacons. We'll start by 
telling LIViewController that LIOfferViewController exists and also that the view 
controller should act as a location manager delegate. Consider the following steps:

1.	 Open LIViewController.h and add an import to the top of the file:
#import <CoreLocation/CoreLocation.h>
#import "LIOfferViewController.h"



Detecting Beacons – Showing an Advert

[ 46 ]

2.	 Now, add the CLLocationManagerDelegate protocol to the declaration:
@interface LIViewController :  
  UIViewController<CLLocationManagerDelegate>

3.	 LIViewController also needs three things to manage its roll:
°° A reference to the current offer on display so that we know to show 

only one offer at a time
°° An instance of CLLocationManager for monitoring beacons
°° A list of offers seen so that we only show each offer once

4.	 Let's add these three things to the interface in the CLViewController.m file 
(as they're private instances). Change the LIViewController interface to 
look like this:
@interface LIViewController ()
    @property (nonatomic, strong) CLLocationManager *  
      locationManager;
    @property (nonatomic, strong) NSMutableDictionary *  
      offersSeen;
    @property (nonatomic, strong) LIOfferViewController *  
      currentOffer;
@end

Configuring our location manager
Our location manager needs to be configured when the root view controller is first 
created, and also when the app becomes active. It makes sense therefore that we put 
this logic into a method. Our reset beacon method needs to do the following things:

•	 Clear down our list of offers seen
•	 Request permission to the user's location
•	 Create a region and set our LIViewController instance as the delegate
•	 Create a beacon region and tell CLLocationManager to start ranging beacons

Let's add the code to do this now:

-(void)resetBeacons {
// Initialize the location manager.
self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self;

// Request permission.
[self.locationManager requestAlwaysAuthorization];



Chapter 2

[ 47 ]

// Clear the offers seen.
self.offersSeen = [[NSMutableDictionary alloc]  
  initWithCapacity:3];
    
// Create a region.
NSUUID * regionId = [[NSUUID alloc] initWithUUIDString: 
  @"8F0C1DDC-11E5-4A07-8910-425941B072F9"];

CLBeaconRegion * beaconRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:regionId identifier:@"Mateys"];

// Start monitoring and ranging beacons.
[self.locationManager stopRangingBeaconsInRegion:beaconRegion];
[self.locationManager startMonitoringForRegion:beaconRegion];
[self.locationManager startRangingBeaconsInRegion:beaconRegion];
}

Now, add the two calls to the reset beacon to ensure that the location manager is 
reset when the app is first started and then every time the app becomes active.

Let's add this code now by changing the viewDidLoad method and adding the 
applicationDidBecomeActive method:

-(void)viewDidLoad {
    [super viewDidLoad];
    [self resetBeacons];
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
   [self resetBeacons];
}

Wiring up CLLocationManagerDelegate
Now, we need to wire up the delegate methods of the CLLocationManagerDelegate 
protocol so that CLViewController can show the offer view when the beacons come 
into proximity.

The first thing we need to do is to set the background color of the view to show 
whether or not our app has been authorized to use the device location. If the 
authorization has not yet been determined, we'll use orange. If the app has been 
authorized, we'll use green. Finally, if the app has been denied, we'll use red.

We'll be using the locationManager:didChangeAuthorizationStatus delegate 
method to do this.

www.allitebooks.com

http://www.allitebooks.org


Detecting Beacons – Showing an Advert

[ 48 ]

Let's add the code now:

-(void)locationManager:(CLLocationManager *)manager  
  didChangeAuthorizationStatus:(CLAuthorizationStatus) 
  status {
    switch (status) {
        case kCLAuthorizationStatusNotDetermined:
        {
            // Set a lovely orange background
            [self.view setBackgroundColor:[UIColor  
              colorWithRed:255.f/255.f green:147.f/255.f  
              blue:61.f/255.f alpha:1.f]];
            break;
        }
        case kCLAuthorizationStatusAuthorized:
        {
            // Set a lovely green background.
            [self.view setBackgroundColor:[UIColor  
              colorWithRed:99.f/255.f green:185.f/255.f  
              blue:89.f/255.f alpha:1.f]];
            break;
        }
        default:
        {
            // Set a dark red background.
            [self.view setBackgroundColor:[UIColor  
              colorWithRed:188.f/255.f green:88.f/255.f  
              blue:88.f/255.f alpha:1.f]];
            break;
        }
    }
}

The next thing we need to do is to save the battery life by stopping and starting 
the ranging of beacons when we're within the region (except for when the 
app first starts). We do this by calling the startRangingBeaconsInRegion 
method with the locationManager:didEnterRegion delegate method 
and calling the stopRangingBeaconsInRegion method within the 
locationManager:didExitRegion delegate method.

Add the following code to do what we've just described:

-(void)locationManager:(CLLocationManager *)manager  
  didEnterRegion:(CLRegion *)region {
    [self.locationManager  
      startRangingBeaconsInRegion:(CLBeaconRegion*)region];



Chapter 2

[ 49 ]

}
-(void)locationManager:(CLLocationManager *)manager  
  didExitRegion:(CLRegion *)region {
    [self.locationManager  
      stopRangingBeaconsInRegion:(CLBeaconRegion*)region];
}

Showing the advert
To actually show the advert, we need to capture when a beacon is ranged by 
adding the locationManager:didRangeBeacons:inRegion delegate method to 
LIViewController. This method will be called every time the distance changes  
from an already discovered beacon in our region or when a new beacon is found  
for the region.

The implementation is quite long so I'm going to explain each part of the method as 
we write it.

Start by creating the method implementation as follows:

-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons inRegion: 
  (CLBeaconRegion *)region {

}

We only want to show an offer associated with the beacon if we've not seen it before 
and there isn't a current offer being shown. We do this by checking the currentOffer 
property. If this property isn't nil, it means an offer is already being displayed and so, 
we need to return from the method.

The locationManager:didRangeBeacons:inRegion method gets called by the 
location manager and gets passed to the region instance and an array of beacons that 
are currently in range. We only want to see each advert once in a session and so need 
to loop through each of the beacons to determine if we've seen it before.

Let's add a for loop to iterate through the beacons and in the beacon looping do an 
initial check to see if there's an offer already showing:

for (CLBeacon * beacon in beacons) {
    if (self.currentOffer) return;
}



Detecting Beacons – Showing an Advert

[ 50 ]

Our offersSeen property is NSMutableDictionary containing all the beacons  
(and subsequently offers) that we've already seen. The key consists of the major  
and minor values of the beacon in the format {major|minor}.

Let's create a string using the major and minor values and check whether this string 
exists in our offersSeen property by adding the following code to the loop:

NSString * majorMinorValue = [NSString stringWithFormat: 
  @"%@|%@", beacon.major, beacon.minor];
if ([self.offersSeen objectForKey:majorMinorValue]) continue;

If offersSeen contains the key, then we continue looping.

If the offer hasn't been seen, then we need to add it to the offers that are seen, before 
presenting the offer.

Let's start by adding the key to our offers that are seen in the dictionary and then 
preparing an instance of LIOfferViewController:

[self.offersSeen setObject:[NSNumber numberWithBool:YES]  
  forKey:majorMinorValue];
LIOfferViewController * offerVc = [[LIOfferViewController alloc]  
  init];
offerVc.modalPresentationStyle = UIModalPresentationFullScreen;

Now, we're going prepare some variables to configure the offer view controller. 
Food offers show with a blue background while clothing offers show with a red 
background.

We use the major value of the beacon to determine the color and then find out the 
image and label based on the minor value:

UIColor * backgroundColor;
NSString * labelValue;
UIImage * productImage;
        
// Major value 1 is food, 2 is clothing.
if ([beacon.major intValue] == 1) {
    
    // Blue signifies food.
    backgroundColor = [UIColor colorWithRed:89.f/255.f  
      green:159.f/255.f blue:208.f/255.f alpha:1.f];
    
    if ([beacon.minor intValue] == 1) {
        labelValue = @"30% off sushi at the Japanese Kitchen.";
        productImage = [UIImage imageNamed:@"sushi.jpg"];
    }



Chapter 2

[ 51 ]

    else {
        labelValue = @"Buy one get one free at  
          Tucci's Pizza.";
        productImage = [UIImage imageNamed:@"pizza.jpg"];
    }
}
else {
    // Red signifies clothing.
    backgroundColor = [UIColor colorWithRed:188.f/255.f  
      green:88.f/255.f blue:88.f/255.f alpha:1.f];
    labelValue = @"50% off all ladies clothing.";
    productImage = [UIImage imageNamed:@"ladiesclothing.jpg"];
}

Finally, we need to set these values on the view controller and present it modally. 
We also need to set our currentOffer property to be the view controller so that  
we don't show more than one color at the same time:

[offerVc.view setBackgroundColor:backgroundColor];
[offerVc.offerLabel setText:labelValue];
[offerVc.offerImageView setImage:productImage];
[self presentViewController:offerVc animated:YES  
  completion:nil];
self.currentOffer = offerVc;

Dismissing the offer
Since LIOfferViewController is a modal view, we're going to need a dismiss 
button; however, we also need some way of telling it to our root view controller 
(LIViewController). Consider the following steps:

1.	 Add the following code to the LIViewController.h interface to declare  
a public method:
-(void)offerDismissed;

2.	 Now, add the implementation to LIViewController.h. This method simply 
clears the currentOffer property as the actual dismiss is handled by the 
offer view controller:
-(void)offerDismissed {
    self.currentOffer = nil;
}



Detecting Beacons – Showing an Advert

[ 52 ]

3.	 Now, let's jump back to LIOfferViewController. Add the following code to 
the end of the viewDidLoad method of LIOfferViewController to create  
a dismiss button:
UIButton * dismissButton = [[UIButton alloc]  
  initWithFrame:CGRectMake(60.f, 440.f, 200.f, 44.f)];
[self.view addSubview:dismissButton];
[dismissButton setTitle:@"Dismiss"  
  forState:UIControlStateNormal];
[dismissButton setTitleColor:[UIColor whiteColor]  
  forState:UIControlStateNormal];
[dismissButton addTarget:self  
  action:@selector(dismissTapped:)  
  forControlEvents:UIControlEventTouchUpInside];

As you can see, the touch up event calls @selector(dismissTapped:), 
which doesn't exist yet. We can get a handle of LIViewController through 
the app delegate (which is an instance of LIAppDelegate). In order to use 
this, we need to import it and LIViewController.

4.	 Add the following imports to the top of LIOfferViewController.m:
#import "LIViewController.h"
#import "LIAppDelegate.h"

5.	 Finally, let's complete the tutorial by adding the dismissTapped method:

-(void)dismissTapped:(UIButton*)sender {
    [self dismissViewControllerAnimated:YES completion:^{
        LIAppDelegate * delegate =  
          (LIAppDelegate*)[UIApplication  
          sharedApplication].delegate;
        LIViewController * rootVc =  
          (LIViewController*)delegate. 
          window.rootViewController;
        [rootVc offerDismissed];
    }];
}



Chapter 2

[ 53 ]

Now, let's run our app. You should be presented with the location permission 
request as shown in the Requesting location permission figure, from the Understanding 
iBeacon permissions section. Tap on OK and then fire up the companion app. Play 
around with the Chapter 2 beacon configurations by turning them on and off. What 
you should see is something like the following figure:

Our app working with the companion OS X app

Remember that your app should only show one offer at a time and your beacon 
should only show each offer once per session.

Summary
Well done on completing your first real iBeacon powered app, which actually 
differentiates between beacons. In this chapter, we covered the real usage of UUID, 
major, and minor values. We also got introduced to the Core Location framework 
including the CLLocationManager class and its important delegate methods. We 
introduced the CLRegion class and discussed the permissions required when using 
CLLocationManager.

Finally, we put this all together with offers from our Matey's store.

In the next chapter, we're going to broadcast offers using our iOS device as an 
iBeacon transmitter.





Broadcasting Advertisements 
– Sending Offers

In the previous chapter, we used the companion beacon app and learned how to react 
when we come into the range of beacons. We built the Matey's offers app to show 
offers around the store. In this chapter, we're going to look at the other side and we're 
going to become Matey's by actually using our iOS device to broadcast offers.

Introducing the Core Bluetooth 
framework
Let's start with a new framework that makes broadcasting possible: Core Bluetooth. 
In this chapter, we'll still be using the Core Location framework but only to configure 
our transmitter. This chapter is all about the technology behind beacons.
The Core Bluetooth framework provides the classes needed for your iOS and Mac 
apps to communicate with the Bluetooth's low energy wireless technology.
Core Bluetooth has been available since iOS 6.0 and is intended solely for the 
implementation of centrals and peripherals.

Understanding centrals and peripherals
Before we understand how to broadcast as a beacon, it's worth understanding what 
centrals and peripherals are. If you think about peripherals as devices that have  
data and centrals as devices that want data, this makes the concept much easier  
to understand.

Peripherals are things such as thermostats, heart monitors, blood pressure monitors, 
proximity sensors, lamps, lights, and LED bulbs. They are devices that collect data or 
receive commands and they advertise their data such as iBeacons.



Broadcasting Advertisements – Sending Offers

[ 56 ]

Centrals are things such as iPhones, iPads, and home automation servers that collate 
or act on this data.

Consider the following figure: if the peripheral in question is a thermostat, it will 
broadcast its presence and the temperature together. It wouldn't really need to 
receive data unless there were some configuration options available via Bluetooth 
low energy (Bluetooth LE).

Now, consider that the beacon might be an LED light with multicolor capability. The 
peripheral here has two roles: to broadcast its current color and also allow a central 
to transmit a command back so that the user can set the color of his/her room as per 
his/her mood using an iPhone app.

Peripheral broadcasting

The Core Bluetooth framework, centrals,  
and peripherals
The Core Bluetooth framework provides an abstract implementation of the central 
and peripheral requirements. Let's look at each class in a little more detail.

The CBCentral class
The CBCentral class represents a central in a BLE implementation that is 
currently connected to you while implementing the peripheral role using the 
CBPeripheralManager class. The central used to represent classes that are currently 
connected when your app is performing the peripheral role and you want to  
update the central with new values.



Chapter 3

[ 57 ]

The CBPeripheral class
The CBPeripheral class represents the remote peripherals that your app has 
discovered while advertising and can connect to (or are already connected to).

The CBPeripheral class lets your app interact with peripherals that you discover 
using the CBCentralManager class. The CBPeripheral class lets you query, discover 
characteristics, discover services, and monitor connections to the peripherals.

The CBPeripheralManager class
Instances of the CBPeripheralManager class are used to manage and publish 
peripheral data of the capabilities of your device. In the simplest of terms, it allows 
you to broadcast as a BLE peripheral (among other things). As you can probably 
guess, this is the class we're most interested in for this chapter.

We'll also be using a CLBeaconRegion instance to collate a 
dictionary of values to broadcast as an iBeacon with this class.

The CBPeripheralManagerDelegate protocol is required to make the peripheral 
manager useful to us, and the most important thing to remember is that 
CBPeripheralManager can't really do anything if the device doesn't have BLE 
capability or the Bluetooth adapter isn't powered on yet. To determine the state of 
the Bluetooth adapter, you need to use the peripheralManagerDidUpdateState: 
protocol method, which we'll be doing in our tutorial.

Our CBPeripheralManager class acts as a beacon using the startAdvertising 
method, which takes a dictionary of values to broadcast. It gets this dictionary from 
CLBeaconRegion.

Obtaining broadcast values from 
CLBeaconRegion
In order to use the startAdvertising method of the CBPeripheralManage 
class, we need to know what we're broadcasting. We do this by calling the 
peripheralDataWithMeasuredPower: method of CLBeaconRegion. The resulting 
NSMutableDictionary class can be used with the startAdvertising method of the 
CBPeripheralManage class.

www.allitebooks.com

http://www.allitebooks.org


Broadcasting Advertisements – Sending Offers

[ 58 ]

Measured power (TXPower)
Back in Chapter 1, Welcome to iBeacon, we discussed RSSI and measured power to 
adjust the power of the transmission so that the distance could be better understood. 
We'll put this principle into effect during the tutorial by using the measured power of 
-63 dBm, which should give the correct RSSI value at distance of 1 meter. This might 
not be completely accurate as it's hardware-dependent, but it should be pretty close.

Let's get started
To build our app, we need two devices. One device should be running the tutorial 
from Chapter 2, Detecting Beacons – Showing an Advert as a receiver and the second 
device is what we'll be using to build our transmission app.

We'll be using storyboards to build a universal app, which will broadcast each of the 
offers from Chapter 2, Detecting Beacons – Showing an Advert. We'll be broadcasting the 
values using a CBPeripheralManager object and the project will be a single  
view application.

Let's get started by creating a universal single view application.

Fire up Xcode and create a new project. When prompted, choose Single View 
Application from the iOS | Application menu.

When choosing options for the project, enter the following details as shown:



Chapter 3

[ 59 ]

Choose where you want to save your project. You should now have LIAppDelegate, 
LIViewController, Main_iPhone.storyboard, and Main_iPad.storyboard.

We'll only be working with the storyboards and LIViewController. If you want  
to use any of the images in the Download folder to embellish, then feel free.

Adding frameworks
We'll be using Core Bluetooth and Core Location in this project. Click on the  
project in the project navigator (⌘1) and under the General tab, click on the  
+ button under Linked Frameworks and Libraries. Add the Core Location and  
Core Bluetooth frameworks.

Setting up our controls
Now, we need to set up our view controls to allow the user to change the 
broadcasting advert. Jump on to the LIViewController.h file, where we'll  
be presenting the following things:

•	 A label to give some context to the CBPeripheralManager status
•	 A switch to send the sushi offer from Chapter 2, Detecting Beacons – Showing 

an Advert
•	 Another switch for the pizza offer
•	 One final switch for the ladies' clothing offer

Let's start by configuring these properties. Remember that we're using storyboards, 
so these properties need to be IBOutlet. Add the following code to the header file:

@property (nonatomic, weak) IBOutlet UILabel * offerLabel;
@property (nonatomic, weak) IBOutlet UISwitch * sushiSwitch;
@property (nonatomic, weak) IBOutlet UISwitch * pizzaSwitch;
@property (nonatomic, weak) IBOutlet UISwitch * clothingSwitch;

We also need to define an action for when the switches change state. Let's add  
that too:

- (IBAction)offerSwitchValueChanged:(id)sender;



Broadcasting Advertisements – Sending Offers

[ 60 ]

Creating our views
Let's open Main_iPhone.storyboard and create our view. Since we chose a single 
view application from the options when we created the project, Xcode should have 
already wired up a view to LIViewController. Consider the following steps to 
create views:

1.	 Drag three switches and three labels for those switches onto the view. Set 
the text for those labels to represent what the switches do. Ensure that you 
disable the switches inside the attributes selector. We'll enable the switches in 
the code when BLPeripheralManager is available. The labels can represent 
the switches with text as follows:

°° 30% off sushi
°° Buy one get one free pizza
°° 50% off ladies clothing

2.	 Add UILabel to the bottom of the view to represent the 
BLPeripheralManager status. If you're feeling artistic, then you can  
add images too. I've created a Matey's logo, which is available in the code 
bundle for this chapter. Your view should now look something like the 
following screenshot:

Storyboard view

Go ahead and do the same for Main_iPad.storyboard too.



Chapter 3

[ 61 ]

Wiring up the storyboard
Next, we need to wire the storyboard controls to our view controller. We can do this 
using the assistant editor, which can be shown by pressing alt + command + enter. 
Follow these steps to wire up the storyboard:

1.	 Using the assistant editor, ensure the storyboard is open on the left pane 
and LIViewController.h on the right pane. Click on the switch you want 
to bind on the left pane and drag it to the properties in the right pane while 
holding the control key as shown in following figure.

2.	 Do this for all the three switches and also for the offer label.
3.	 Finally, bind the actions of all the three switches to IBAction 

offerSwitchValueChanged.

Binding views using the assistant editor



Broadcasting Advertisements – Sending Offers

[ 62 ]

Setting up our view controller
Now that we've wired up the entire user interface, it's time to configure our view 
controller. Let's start by adding our CoreBluetooth and CoreLocation library 
imports to the LIViewController.h file.

We also need to make our view controller CBPeripheralManagerDelegate. Add the 
following code to your LIViewController.h file:

#import <CoreBluetooth/CoreBluetooth.h>
#import <CoreLocation/CoreLocation.h>

@interface LIViewController :  
  UIViewController<CBPeripheralManagerDelegate>

Now, jump over to the LIViewController.m file. We're going to need the unique ID 
for the region. Add this as static before the internal interface declaration, right at 
the top:

static NSString * uuid = @"8F0C1DDC-11E5-4A07-8910-425941B072F9";

We're going to need some private properties to keep a track of our peripheral 
manager and the peripheral broadcast dictionary. Let's overwrite the private 
interface with our own implementation:

@interface LIViewController ()
@property (nonatomic, strong) CBPeripheralManager *  
  peripheralManager;
@property (nonatomic, strong) NSDictionary * sushiPeripheralData;
@property (nonatomic, strong) NSDictionary * pizzaPeripheralData;
@property (nonatomic, strong) NSDictionary *  
  clothingPeripheralData;
@end

We'll need a new region to create the peripheral data. In fact, we'll need one for each 
dictionary. Let's set these up in the ViewDidLoad method, as shown:

// Prepare the uuid.
NSUUID * uid = [[NSUUID alloc] initWithUUIDString:uuid];
CLBeaconRegion * sushiRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:uid major:1 minor:1 identifier: 
  @"Matey's Sushi"];
CLBeaconRegion * pizzaRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:uid major:1 minor:2 identifier: 
  @"Matey's Pizza"];
CLBeaconRegion * clothingRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:uid major:2 minor:1 identifier: 
  @"Matey's Clothing"];



Chapter 3

[ 63 ]

Now that we've got our regions, let's set up peripheral data using them. Remember 
that to do this, we need a measured power value, as shown:

NSNumber * power = [NSNumber numberWithInt:-63];

// Use the beacon region to create the peripheral data.
self.sushiPeripheralData = [[sushiRegion  
  peripheralDataWithMeasuredPower:power] copy];
self.pizzaPeripheralData = [[pizzaRegion  
  peripheralDataWithMeasuredPower:power] copy];
self.clothingPeripheralData = [[clothingRegion  
  peripheralDataWithMeasuredPower:power] copy];

Finally, we need to instantiate our peripheral manager. To do this, we need a 
dispatch queue for broadcasting and to set the delegate as our view controller, 
shown as follows:

dispatch_queue_t queue =  
  dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
self.peripheralManager = [[CBPeripheralManager alloc]  
  initWithDelegate:self queue:queue];

We need to wire up the delegate method peripheralManagerDidUpdateState so 
that we can enable the switches when the peripheral manager is available. Let's add 
this code now:

-(void)peripheralManagerDidUpdateState:(CBPeripheralManager  
  *)peripheral {
    if (peripheral.state == CBPeripheralManagerStatePoweredOn) {
        // Enable the buttons.
        [self.pizzaSwitch setEnabled:YES];
        [self.sushiSwitch setEnabled:YES];
        [self.clothingSwitch setEnabled:YES];
    }
    else {
        [self.offerLabel setText:@"Bluetooth not enabled"];
    }
}

Adding our switch logic
The final thing to do is to start advertising when switches are flicked. Since all 
switches utilize the offerSwitchValueChanged method, we need to implement it:

- (IBAction)offerSwitchValueChanged:(id)sender {
}



Broadcasting Advertisements – Sending Offers

[ 64 ]

We should ever broadcast only one item at a time from our app, and so the first thing 
to do in this method is to stop advertising if we already are. Add the call to stop the 
peripheral manager from broadcasting to the method:

[self.peripheralManager stopAdvertising];

We need to understand which switch has called the selector and turn the rest of the 
switches off. We also need to know what advertising data to send and also what 
status message to show. Add this code now:

// Cast the sender to a switch.
    UISwitch * senderSwitch = (UISwitch*)sender;
    
    NSDictionary * advertData;
    NSString * advertString;
    
    if (senderSwitch == self.sushiSwitch) {
        [self.pizzaSwitch setOn:NO animated:YES];
        [self.clothingSwitch setOn:NO animated:YES];
        advertData = self.sushiPeripheralData;
        advertString = @"Offering 30% off sushi";
    }
    
    if (senderSwitch == self.pizzaSwitch) {
        [self.sushiSwitch setOn:NO animated:YES];
        [self.clothingSwitch setOn:NO animated:YES];
        advertData = self.pizzaPeripheralData;
        advertString = @"Offering Buy one get one free on all  
          pizza";
    }
    
    if (senderSwitch == self.clothingSwitch) {
        [self.pizzaSwitch setOn:NO animated:YES];
        [self.sushiSwitch setOn:NO animated:YES];
        advertData = self.clothingPeripheralData;
        advertString = @"Offering 50% off ladies clothing";
    }



Chapter 3

[ 65 ]

Finally, we need to know whether the switch is on or off in order to know whether 
we need to start advertising the data or not. Let's do this:

if (senderSwitch.isOn) {
[self.peripheralManager startAdvertising:advertData];
   [self.offerLabel setText:advertString];
}
else {
   [self.offerLabel setText:@"Not Broadcasting"];
}

Et voilà—we're done! Run the app from Chapter 2, Detecting Beacons – Showing an 
Advert, and run the app that we created in this chapter on another device. Turn on 
each switch in turn to see the ads appear, and dismiss the ad before flicking the next 
switch on your broadcasting device.

Summary
We've covered quite a lot for such a short chapter. You learned about the Core 
Bluetooth framework and a very small subset of the features contained within.  
I'd recommend delving deeper into this framework using off the shelf hardware. 
There's an excellent article on Ray Wenderlich's website about using an iPhone  
to interact with the Polar Bluetooth heart rate monitor, which you can find at 
http://bit.ly/hr-monitor.

In the next chapter, we're going to cover determining distance to build a treasure 
hunt app. We're going to make it exciting by making the app talk as we get closer  
to the treasure. So, what are ye waiting for me hearties? Let's go!

http://bit.ly/hr-monitor




Ranging Beacons – Hunting 
for Treasure

In the previous chapter, we covered functionality, which is triggered when we come 
into the range of a beacon. In this chapter, we will range beacons in a pirate-inspired 
treasure hunt.

We won't cover lots of new features in this chapter; instead, we will focus on  
honing our existing knowledge and add just one or two more new methods of  
the CLLocationManager class.

In this chapter, we'll cover the following topics:

•	 Using the CLLocationManager class to range beacons
•	 Detecting the range using the CLLocationManager 

didRangeBeacons:inRegion delegate method of 
CLLocationManagerDelegate

There be treasure nearby
We will build a treasure-hunting app in this chapter. Ideally, you'll have two 
compatible iOS devices so that one can be the treasure and another can be the  
hunter. Don't worry if you have only one iOS device; the companion app can  
act as the treasure, and your iOS device can be the treasure.

Our app will perform both features using modal view controllers. The main view  
of the app will simply allow the user to choose whether the device is the treasure 
or the hunter. Once the user makes his or her choice, the app will open a dedicated 
view controller with a single role to hunt or to be hunted.



Ranging Beacons – Hunting for Treasure

[ 68 ]

We'll call our treasure view controller LITreasureViewController and our hunter 
view controller LIHunterViewController.

When our app runs in treasure mode, it will simply operate as a beacon, much  
like we did in Chapter 3, Broadcasting Advertisements – Sending Offers, when we  
sent Matey's offers from our iOS device. The app gets more interesting when it  
is running in hunter mode.

In hunter mode, the app will range the beacons and show the distance on an 
illustrated map, as seen in the next figure. We'll use the determined distance.

Understanding distance
When we range beacons using the locationManager:didRangeBeacons:inRegion 
method of CLLocationManager, we're given a collection of beacons (CLBeacon). In 
order to understand the distance of the beacon from our device, the CLBeacon class 
gives us two properties:

•	 proximity: The proximity property gives you the distance from 
the device using the CLProximity enum, giving one of four values 
CLProximityUnknown, CLProximityFar, CLProximityNear, and 
CLProximityImmediate.

•	 accuracy: The accuracy property gives you the distance from the device 
as a double value, which is the distance measured in meters. If the distance 
cannot be determined, the value is returned as negative.

The CLProximity enum values represent the approximate distance from the device 
in four bands and are great to determine when to perform an action.

Imagine you're building an app for a museum. Your app tells users about the 
individual cabinets within different exhibits as visitors walk through. If your visitor 
enters an exhibition of Dutch art, and you start playing a video about a Rembrandt 
painting situated on the other side of the room, you'll be left with a very confused user.

In this instance, you only want to trigger this video when the beacon reports a 
proximity value of CLProximityImmediate.

For most use cases, the proximity property is enough. In circumstances where you're 
trying to plot a user's position on an internal map accurately, you're most likely to 
use the accuracy value to triangulate the user's position using multiple beacons.



Chapter 4

[ 69 ]

The upcoming figure represents the approximate distance of the CLProximity  
enum values:

•	 CLProximityUnknown: This represents a distance greater than 30 meters.  
This is used when a more accurate range cannot be determined.

•	 CLProximityFar: This means that the beacon is still quite far away and 
represents a distance between 2 to 30 meters.

•	 CLProximityNear: This means that the beacon is reasonably close to the user 
at a distance between half a meter and 2 meters.

•	 CLProximityImmediate: This means that the beacon is within half a meter; 
you should be able to touch the beacon.

CLProximity enum values



Ranging Beacons – Hunting for Treasure

[ 70 ]

Our application
Our app operates in two modes, as shown in the following figure. Both the 
treasure and hunter modes have independent view controllers to encapsulate their 
functionality. Our root view controller (LIViewController) simply allows us to 
choose the mode we want to run.

Treasure hunt app view controllers



Chapter 4

[ 71 ]

If you don't have two iOS devices at hand, don't worry; we can use the companion 
app to broadcast as our treasure beacon, as shown in the following figure. 
Unfortunately, you can't perform Bluetooth interactions in the simulator. So, unless 
you have two devices, you'll only be able to test the hunter.

Using the companion app as the treasure

Getting started with building our app
Consider the following steps to build our app:

1.	 Fire up Xcode and create a new project. Choose Single View Application 
from the list of templates, and when prompted, use the following values for 
the new project:

°° Product Name: TreasureHunt
°° Organization Name: Learning iBeacon
°° Company Identifier: com.learning-ibeacon
°° Class Prefix: LI
°° Devices: Universal

2.	 We'll need the Core Bluetooth and Core Location frameworks, so go ahead 
and add them to the project too. If you need help with this, refer to Chapter 3, 
Broadcasting Advertisements – Sending Offers.



Ranging Beacons – Hunting for Treasure

[ 72 ]

Drawing our initial views
We'll be using storyboards this time round to create our views. We'll write each 
controller separately, but to get us started, we'll create stubs for these controllers  
so that we can set up our storyboards. Execute the following steps:

1.	 Start by creating two new Objective-C classes and subclass them from 
UIViewController. Call these classes LITreasureViewController and 
LIHunterViewController.

2.	 Open the Main_iPhone.storyboard file. You'll see that the Xcode template 
has already created a view for LIViewController. We will drop view 
controllers for each of our modal view controllers.

3.	 Drag two new view controllers onto the storyboard from Object Library 
(^⌥⌘3).

4.	 Select the first view controller you added and open Identity Inspector (⌥⌘3). 
Under the custom class, set the value to LITreasureViewController. We'll 
need a way to create an instance of this view controller and view in code, so 
set the Storyboard ID value to TreasureViewController.

5.	 Follow the previous steps for the hunter view, using the following values:
°° Class: LIHunterViewController
°° Storyboard ID: HunterViewController

6.	 Now, let's define how these views get presented using segues. Hold down 
the control key, click, and drag from our root view controller to our treasure 
view controller. In the resulting segue dialog, choose modal as the type, as 
shown in the following figure. Do the same for the treasure view controller:

Modal segue options

Don't forget to do the same for the iPad views over in 
the Main_iPhone.storyboard file. We wouldn't 
want your iPad app to be missed out.

Let's start coding each of our view controllers now. We can wire up the views as  
we go.



Chapter 4

[ 73 ]

Adding frameworks and project settings
We'll need the following frameworks. Add them now:

°° CoreLocation

°° CoreBluetooth

°° QuartzCore

Next, we need to ensure that when our app has the plist setting, ask for location 
permission to enable it. Add the NSLocationAlwaysDescription key to the Info tab 
of the project settings. Set the value to This app needs your location so that we 
can find some treasure in your project settings, as shown in the following figure:

Adding location service description settings

Adding images
In the available source code, there are six images that we'll need for this app.

Using the downloaded resources, locate the images folder and pull the following 
files into your application. Ensure you check the Copy items into destination 
group's folders (if needed) option:

•	 Flat.png: This image is a pirate flag to represent your pirate party on the 
hunt for treasure



Ranging Beacons – Hunting for Treasure

[ 74 ]

•	 Treasure-Map-1.png: This image is a treasure map showing you very far 
away from the treasure (CLProximityUnknown)

•	 Treasure-Map-2.png: This image is a treasure map showing you far away 
from the treasure (CLProximityFar)

•	 Treasure-Map-3.png: This image is a treasure map showing you near to the 
treasure (CLProximityNear)

•	 Treasure-Map-4.png: This image is a treasure map showing you in 
immediate proximity to the treasure (CLProximityImmediate)

•	 Treasure.png: This image is a lovely treasure chest filled with treasure

Building the root view controller
Our root view controller should simply have two buttons to present one of the two 
functional view controllers modally. There's very little functionality in this controller, 
so let's just pop it in immediately:

1.	 Open up the LIViewController.m file and create the two IBAction methods 
that will instantiate a new view controller using the current storyboard and 
the identifier values that we set earlier before presenting the newly created 
view controller:
- (IBAction)chooseTreasure:(id)sender {
    UIViewController * vc = [self.storyboard  
      instantiateViewControllerWithIdentifier: 
      @"TreasureViewController"];
    
    [self presentViewController:vc animated:YES completion:nil];
}

- (IBAction)chooseHunter:(id)sender {
    UIViewController * vc = [self.storyboard  
      instantiateViewControllerWithIdentifier: 
      @"HunterViewController"];
    
    [self presentViewController:vc animated:YES completion:nil];
}

2.	 Jump back over to the iPhone storyboard file and add some instruction labels 
and two buttons from Object Library (^⌥⌘3). Set the button images to 
Treasure.png and Flag.png and lay out your view so that it looks like the 
following figure. Finally, use the control key and drag the view controller 
buttons to their associated IBAction using Assistant Editor (⌥⌘⏎).



Chapter 4

[ 75 ]

3.	 Don't forget the iPad storyboard too!

Our root view controller view

Building the treasure view controller
Our treasure view controller has a simpler UI, but it has a lot more going on behind 
the scenes.

LITreasureViewController will provide the functionality to broadcast a beacon 
profile using CBPeripheralManager, just like what was described in Chapter 2, 
Detecting Beacons – Showing an Advert. This time, we'll need to be neater in our 
implementation because we need to clean up and stop broadcasting when the  
app enters the background or the modal view is dismissed.

We will also dismiss this view controller if the iOS device isn't compatible with BLE. 
We'll do this with an alert message.

The first thing we need to do is declare our view controller as 
CBPeripheralManagerDelegate and UIAlertViewDelegate.

1.	 Open up the LITreasureViewController.h file, import the frameworks, 
and set the delegate declarations as follows:
#import <UIKit/UIKit.h>
#import <CoreBluetooth/CoreBluetooth.h>
#import <CoreLocation/CoreLocation.h>



Ranging Beacons – Hunting for Treasure

[ 76 ]

@interface LITreasureViewController :  
  UIViewController<CBPeripheralManagerDelegate,  
  UIAlertViewDelegate>
@end

2.	 Now, jump over to the LITreasureViewController.m file and declare  
a CBPeripheralManager property in the private interface declaration,  
as shown in the following code:
@interface LITreasureViewController ()
@property (nonatomic, strong) CBPeripheralManager *  
  peripheralManager;
@end

3.	 We need a way to dismiss the view controller and stop broadcasting as  
a beacon. Add the following method:
- (IBAction)stopBroadcasting:(id)sender {
    [self.peripheralManager stopAdvertising];
    [self dismissViewControllerAnimated:YES completion:nil];
}

As discussed in Chapter 3, Broadcasting Advertisements – Sending Offers, 
we need to wait until CBPeripheral is powered up before we can use it, 
so the responsibility of our viewDidLoad method is simply to create the 
peripheral manager. We'll also be conscientious and ensure that when our 
app enters the background, we stop broadcasting. We'll do this by observing 
the UIApplicationDidEnterBackgroundNotification event of default 
NSNotificationCenter and calling our stopBroadcasting method when  
the event is observed.

Add the viewDidLoad method now:

-(void)viewDidLoad {
    [super viewDidLoad];
    
    self.peripheralManager = [[CBPeripheralManager alloc]  
      initWithDelegate:self queue:nil];
    
    [[NSNotificationCenter defaultCenter] addObserver:self 
      selector:@selector(stopBroadcasting:) 
      name:UIApplicationDidEnterBackgroundNotification 
      object:nil];
}



Chapter 4

[ 77 ]

In order to start advertising our beacon data, we need to implement the 
peripheralManagerDidUpdateState method of the CBPeripheralManagerDelegate 
protocol; when the Bluetooth peripheral is powered up, we can start advertising.

This is just like we did back in Chapter 3, Broadcasting Advertisements – Sending Offers, 
but this time we will ensure not to use an old iOS device that doesn't have BLE 
capability. If this occurs, we'll show an alert view.

We determine that a device doesn't have BLE capability when 
CBPeripheralManager reports a state of CBPeripheralManagerStateUnsupported.

Now, add the detection implementation:

-(void)peripheralManagerDidUpdateState:(CBPeripheralManager  
  *)peripheral {
    if (peripheral.state == CBPeripheralManagerStateUnsupported) {
        UIAlertView * av = [[UIAlertView alloc]  
          initWithTitle:@"Error" message:@"This device doesn't  
          support BLE" delegate:self cancelButtonTitle:@"Close"  
          otherButtonTitles:nil, nil];
        
        [av show];
        return;
    }
    
    if (peripheral.state == CBPeripheralManagerStatePoweredOn) {
        // Start broadcasting.
        CLBeaconRegion * beaconRegion = [[CLBeaconRegion alloc]  
          initWithProximityUUID:[[NSUUID alloc]  
          initWithUUIDString:@"A547414E-C4D6-4778-BBEB- 
          57BA3BD679E2"] identifier:@"Treasure"];
        
        NSNumber * power = [NSNumber numberWithInt:-63];
        
        NSMutableDictionary * sData = [beaconRegion  
          peripheralDataWithMeasuredPower:power];
        
        [self.peripheralManager startAdvertising:sData];
    }
}



Ranging Beacons – Hunting for Treasure

[ 78 ]

Finally, if our iOS device is too old, we need to handle the alert view and dismiss the 
view controller:

-(void)alertView:(UIAlertView *)alertView  
  clickedButtonAtIndex:(NSInteger)buttonIndex
{
    [self dismissViewControllerAnimated:YES completion:nil];
}

Finally, wire it up
We need to wire the view up to the view controller; our view only needs two 
subviews: an image to show our lovely treasure and a button to dismiss it.

Create your view so that it looks like the following figure, and bind the button  
to the stopBroadcasting action:

Our treasure view controller view

Building the hunter view controller
The hunter view controller is where all the fun happens. Once we enter the beacon 
region, we need to start ranging for beacons and then monitor our distance from the 
first beacon that we range in the collection.



Chapter 4

[ 79 ]

Let's have a quick look at how our user interface should look for 
LIHunterViewController from the following figure:

Hunter view controller view

Hunter view controller states
Our hunter view controller has a number of states based on the distance from  
the beacon.

Hunter view controller states



Ranging Beacons – Hunting for Treasure

[ 80 ]

The following table describes the states of these properties:

Distance from beacon Map image Status label text
CLProximityUnknown Treasure-Map-1.png There's no treasure in sight
CLProximityFar Treasure-Map-2.png The treasure is very far away 

(%.2fm)
CLProximityNear Treasure-Map-3.png The treasure is very close 

(%.2fm)
CLProximityImmediate Treasure-Map-4.png We've found the treasure

Once we get within half a meter of our beacon, we'll show an alert with the message 
You found the treasure, and then we'll dismiss the view controller since we don't 
need to search anymore. It makes sense that LIHunterViewController needs to 
handle the alert view. We also need CLLocationManager to range our beacons, so  
we need to handle the delegate methods for this object too.

Imports and public properties
Let's start by setting up our interface in the LIHunterViewController.h file.

Add the declarations to your view controller for both CLLocationManagerDelegate 
and UIAlertViewDelegate:

#import <UIKit/UIKit.h>
#import <CoreBluetooth/CoreBluetooth.h>
#import <CoreLocation/CoreLocation.h>

@interface LIHunterViewController : UIViewController<CLLocationManager
Delegate, UIAlertViewDelegate>

@property (nonatomic, strong) IBOutlet UILabel * statusLabel;
@property (nonatomic, strong) IBOutlet UIImageView * mapImageView;

@end

Private properties
Let's set up our private properties. We'll need CLLocationManager to range the 
beacons and CLBeaconRegion to represent the region that we're ranging.



Chapter 4

[ 81 ]

Add these properties to the private interface declaration in 
LIHunterViewController.m:

@interface LIHunterViewController()
@property (nonatomic, strong) CLLocationManager * locationManager;
@property (nonatomic, strong) CLBeaconRegion * beaconRegion;
@end

Loading the view
Our CLHunterViewController needs to do a few things when it's loading:

1.	 Instantiate its CLLocationManager instance.
2.	 Ask for permission to use the user's location.
3.	 Create a CLBeaconRegion instance representing the region.
4.	 Set itself as the delegate for the region.
5.	 Start ranging the beacons within the region.

Let's create our viewDidLoad method to perform these actions now:

-(void)viewDidLoad{
    [super viewDidLoad];
    
    // Create a new location manager.
    self.locationManager = [[CLLocationManager alloc]  
      init];
    // Ask for location permission.
    [self.locationManager requestAlwaysAuthorization];
    
    // Create a new region.
    self.beaconRegion = [[CLBeaconRegion alloc]  
      initWithProximityUUID:[[NSUUID alloc]  
      initWithUUIDString:@"A547414E-C4D6-4778-BBEB- 
      57BA3BD679E2"] identifier:@"Treasure"];
    
    [self.locationManager setDelegate:self];
    [self.locationManager  
      startRangingBeaconsInRegion:self.beaconRegion];
    
}



Ranging Beacons – Hunting for Treasure

[ 82 ]

Entering and exiting the region
When we enter or exit a region, we need the start and stop ranging beacons.

Add the following CLLocationManagerDelegate methods:

-(void)locationManager:(CLLocationManager *)manager  
  didEnterRegion:(CLRegion *)region
{
    [self.locationManager  
      startRangingBeaconsInRegion:self.beaconRegion];
}

-(void)locationManager:(CLLocationManager *)manager  
  didExitRegion:(CLRegion *)region {
    [self.locationManager  
      stopRangingBeaconsInRegion:self.beaconRegion];
}

Changing the state
To change between the states shown in the figure of the Building the hunter view 
controller section, we need to set the map image and status message when our beacons 
are ranged. In order to do this, we need to implement the locationManager:didRang
eBeacons:inRegion method of the CLLocationManagerDelegate protocol.

The following code shows the method in its entirety; we'll break it down line by line 
in a moment.

For now, add the code to your implementation:

-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons inRegion:(CLBeaconRegion  
  *)region {
    
    if (beacons.count == 0) return;
    
    CLBeacon * beacon = [beacons firstObject];
    
    NSString * imageName;
    NSString * message;
    bool showAlert = false;
    
    switch (beacon.proximity) {
        case CLProximityFar: 
          imageName = @"Treasure-Map-2.png";



Chapter 4

[ 83 ]

        message = [NSString stringWithFormat:@"The treasure is  
          very far away (%.2fm)", beacon.accuracy];
        break;
        case CLProximityNear: 
          imageName = @"Treasure-Map-3.png";
        message = [NSString stringWithFormat:@"The treasure is  
          very close (%.2fm)", beacon.accuracy];
        break;
        case CLProximityImmediate: 
          imageName = @"Treasure-Map-4.png";
        message = @"We've found the treasure!!!";
        showAlert = true;
        break;
        case CLProximityUnknown:
        default:
            imageName = @"Treasure-Map-1.png";
            message = @"There's no treasure in sight";
            break;
    }
    
    [self.mapImageView setImage:[UIImage imageNamed:imageName]];
    [self.statusLabel setText:message];
    
    if (showAlert)
    {
        [self.locationManager  
          stopRangingBeaconsInRegion:self.beaconRegion];
        UIAlertView * av = [[UIAlertView alloc]  
          initWithTitle:@"Well done!"
        message:@"You found the treasure"
        delegate:self cancelButtonTitle:@"Stop hunting"
          otherButtonTitles:nil, nil];
        
        [av show];
    }
}

Since we called the startRangingBeaconsInRegion method before we entered the 
region, we might actually be passed an empty array in this method. In this scenario, 
we don't need to do anything, so we can return out of the method:

if (beacons.count == 0) return;



Ranging Beacons – Hunting for Treasure

[ 84 ]

Next, we need to pull the first beacon from the array. In our use case, there's only one 
treasure. If you're building other apps, there might be lots of beacons in this array:

CLBeacon * beacon = [beacons firstObject];

Using the beacon proximity value, we gather values for the image and label using 
the switch statement before setting the view values:

NSString * imageName;
NSString * message;
bool showAlert = false;
switch (beacon.proximity) {
   ...
}
[self.mapImageView setImage:[UIImage imageNamed:imageName]];
[self.statusLabel setText:message];

Finally, if our proximity to the beacon is CLProximityImmediate, we show our alert 
view, congratulating the user on finding the treasure:

if (showAlert)
    {
        [self.locationManager stopRangingBeaconsInRegion:self.
beaconRegion];
        UIAlertView * av = [[UIAlertView alloc] initWithTitle:@"Well 
done!"
        message:@"You found the treasure"
        delegate:self cancelButtonTitle:@"Stop hunting"
        otherButtonTitles:nil, nil];
        
        [av show];
    }

To dismiss the controller when our alert view is shown, we need to implement the 
UIAlertViewDelegate protocol's alertView:clickedButtonAtIndex: method to 
dismiss the view controller when the alert is tapped.

Add the alert view now:

-(void)alertView:(UIAlertView *)alertView  
  clickedButtonAtIndex:(NSInteger)buttonIndex
{
    [self dismissViewControllerAnimated:YES completion:nil];
}



Chapter 4

[ 85 ]

Tidying up
Just like in our treasure view, we need a method to tidy up and dismiss our view 
controller. This time, we need to stop ranging beacons using the following steps:

1.	 Add the stopHunting method, shown as follows:
- (IBAction)stopHunting:(id)sender {
    [self.locationManager  
      stopRangingBeaconsInRegion:self.beaconRegion];
    [self dismissViewControllerAnimated:YES completion:nil];
}

2.	 Wire this action to the touchUpInside event of the button in the view.

Again, don't forget the iPad storyboard too!

Being extra conscientious
We should ensure that we're tidying up if the app enters the background.

Add an observer to the stopHunting: method when the app enters the background:

[[NSNotificationCenter defaultCenter] addObserver:self
  selector:@selector(stopHunting:)EnterBackgroundNotification 
object:nil];

Completing the code
Debug and test your app on two devices. Start the app on one device and start 
running it as the treasure. Try to get at least 50 meters away before starting hunter 
mode on the second device.

Slowly move towards your treasure and see the map and messages change before 
you get less than an arm's length away. Once you do this, your hunter should show 
an alert view and then close when dismissed.



Ranging Beacons – Hunting for Treasure

[ 86 ]

Summary
In this chapter, we expanded our knowledge of the CLLocationManager and 
CLBeacon classes by determining our device distance from a beacon using the 
CLBeacon class's proximity and accuracy properties.

In the next chapter, we'll discuss beacon discovery when our app is in the 
background, and using this knowledge, we'll be building a proximity-based  
dating app.

Since there's a lot of code in this chapter, you might come across some stumbling 
blocks; feel free to ask me any questions on Twitter at @craiggilchrist  
(https://twitter.com/craiggilchrist).

https://twitter.com/craiggilchrist


Detecting Beacons in the 
Background – Location 

Dating
So far, we have talked about discovering beacons, ranging beacons, and even using 
our iOS device to broadcast as a beacon. You should be feeling pretty empowered 
right now. All of these use cases, however, require your app to be running.

Having a running app for every use case isn't realistic. Considering that iBeacons 
are basically triggers for functionality, it makes sense that some of this functionality 
might be to bring the app into the foreground. In this chapter, we'll explore some 
other use cases where the app might be running in the background and is brought  
to life when a beacon region is entered.

To demonstrate background beacon detection, we'll create a location-based dating 
app that notifies the user when a potential date is nearby.

We'll cover the following topics:

•	 Monitoring for beacons in the background
•	 iOS architecture to defer region monitoring to the operating system
•	 Different scenarios for background monitoring
•	 Configurations needed for background monitoring
•	 Using beacons with passbook



Detecting Beacons in the Background – Location Dating

[ 88 ]

Real-life use cases
If you think about it, most usages of iBeacons won't always involve the app running 
in the foreground. Most apps are most likely to be awakened when entering the 
boundaries of a beacon region and then brought into the foreground by the user if 
they want to use the app.

An example use case for retail loyalty
Imagine that you're building an app for retail loyalty. In this scenario, you are  
almost certainly going to want to trigger some functionality when the user comes 
into the range of your store. You might want to send the customer a tasty offer for 
your new bagel range, or simply offer users loyalty cards just in case they want to 
pop in for coffee.

An example use case for airline assistance
Now, ponder building an app for an airline. Your app allows users to book their 
flight and download their boarding pass. The app also allows the user to get 
departure lounge discounts and directs them around the airport.

Once you book your flight using the app, it becomes completely useless until you 
arrive at the airport. During this time, your user forgets about it; he/she doesn't  
need its features until he/she approaches the airport terminal. In this scenario, you 
want to present the user with their boarding pass as they approach the check-in desk. 
The user opens the app and presents the boarding pass to the check-in staff.

Now, your user checks their bags and is stress-free; they are ready to do some 
shopping. As the user approaches the departure lounge, you present them with a 
push notification describing the fantastic offers available. The user opens the app, 
reviews the offers, and decides to head over to buy some new headphones from  
the electronic goods store to make their flight a little more comfortable.

These are just two examples of when your app is more likely to be awakened  
by beacons.

It's very rare that you won't want to know when your user is in the range of one  
of your beacons and is not using the app. This is why Apple, in its infinite wisdom, 
has made it very easy to monitor for regions in the background.



Chapter 5

[ 89 ]

Handing over responsibility
In iOS, regions (CLBeaconRegion or CLRegion) associated with your app are tracked 
all the time, including when the app isn't running. If a region boundary is crossed 
while an app isn't running, the app is relaunched in the background to handle  
the event.

Similarly, if the app is suspended when the event occurs, it's woken up and given  
a short amount of time (around 10 seconds) to handle the event.

When necessary, an app can request more background execution time  
using the beginBackgroundTaskWithExpirationHandler: method of the 
UIApplication class.

This means that your app can perform a few actions such as showing a local 
notification or sending an HTTP request (or both), but it can't really perform running 
actions such as ranging beacons any longer; this is because once your app goes back 
to sleep, this function is stopped being called.

You can perform longer running actions in the background by turning on the 
background modes in the Capabilities tab of the application in Xcode, as shown in 
the following figure. Turning on background modes adds the Required Background 
Modes key to the info.plist file.

If you don't have a very valid reason for requiring constant 
location updates in your commercial application, then Apple 
is likely to reject the application during review because of the 
implications on battery life.

Turning on background modes



Detecting Beacons in the Background – Location Dating

[ 90 ]

Realistically, you don't need to turn on background modes for iBeacon-powered 
apps. This feature is reserved for apps that need location for navigation, such as the 
Waze app (https://www.waze.com/) that allows you to continue navigating to your 
journey in the background with local notifications for turn-by-turn instructions.

When you create CLLocationManager and call the startMonitoringForRegion 
method, your app starts receiving events for the specified region. When your app 
enters the background, it hands this responsibility over to the OS.

While your app is running, all CLLocationManager events related to beacons 
such as didRangeBeacons:inRegion: are handled directly by the delegate from 
CLLocationManager. When your app runs once and enters the background, the 
events are deferred to the operating system; this fires up your application to handle 
the events, which in turn brings your app to the foreground for a short period.

The CLBeaconRegion options
The properties of the CLBeaconRegion instance have a huge impact on how your app 
behaves when running in the background. Let's explore a few of these options now:

•	 CLBeaconRegion.notifyOnEntry: When this property is YES, a device 
crossing from the outside to the inside of the region triggers the delivery of  
a notification. If the property is NO, a notification is not generated. If the app 
is not running when a boundary crossing occurs, the system launches the 
app in the background to handle it.

•	 CLBeaconRegion.notifyOnExit: This property works in a similar way as 
mentioned in the preceding point, except for the notification that occurs when 
the device crosses from the inside to the outside of the region. There is usually 
a delay of up to 10 seconds after the device has fallen out of range of the last 
beacon in the region, but this can also be up to 30 seconds. This cushion time 
is to ensure that numerous entered and exited events are not called in quick 
succession while the user is traveling close to the edge of the boundary.

•	 CLBeaconRegion.notifyEntryStateOnDisplay: While notifyOnEntry 
and notifyOnExit are both actually inherited properties of CLRegion, 
notifyEntryStateOnDisplay is a CLBeaconRegion property in its own 
right. When set to YES, the location manager sends beacon notifications 
when the user turns on the display and the device is already inside the 
region. For the most responsive background notifications, always set the 
CLBeaconRegion.notifyEntryStateOnDisplay property to YES. This 
ensures that the app comes into the foreground when the screen is turned  
on even if the device is on the lock screen.

https://www.waze.com/


Chapter 5

[ 91 ]

In some scenarios, you might want to show a notification when you enter a region, 
but only when the user is looking at their device. In this scenario, you should set 
notifyOnEntry to NO and notifyEntryStateOnDisplay to YES, which will notify 
the region entry only when the device display is on.

Passbook integration
Wouldn't it be great if beacons worked directly with Apple's e-wallet solution 
passbook? Of course it would, and of course Apple has thought of this. You can 
easily bring your passbook passes to the foreground when in the range of a beacon.

As of iOS 7.0, Apple added the beacon dictionary keys to the PassKit bundle, giving 
the ability to define activating beacons alongside text to display when in the range of 
a particular beacon.

With the new dictionary values, you can specify an array of beacons that show a 
message and a thumbnail image of the pass, which allows you to bring the pass to 
the forefront without unlocking your phone, as shown in the following figure:

Showing passbook passes from the lock screen using iBeacon



Detecting Beacons in the Background – Location Dating

[ 92 ]

Exploring PassKit (Apple's tool to create passes) is definitely beyond the scope of  
this book, so we'll only skim over the structure of a pass. It's enough to know that 
a pass is made up of a ZIP file with the file extension .pkpass, which contains the 
following files:

•	 The pass.json file that gives the pass details in JSON format, including the 
pass type, colors, titles, labels, and descriptions represented in the pass

•	 The icons and strip images used within the pass, which are in PNG format
•	 Developer signatures and certificates used within the pass

The pass.json file has a number of new beacon dictionary keys to allow your pass 
to be shown on the lock screen. These are shown in the following table:

Key name Type Description
proximityUUID String The UUID for your beacon region.

major 16-bit unsigned integer The major value of the beacon.
minor 16-bit unsigned integer The minor value of the beacon.

relevantText String This is optional. It is the text 
displayed on the lock screen when 
the pass is currently relevant. For 
example, it could be a description of 
the nearby location, such as "Store 
nearby on 1st and Main".

In order to show you how this functionality works, I created a pass to use in the 
tutorial, which includes the following beacon array in its pass.json file:

{
    … //rest of pass.json omitted for clarity
    "beacons": [
        {
            "proximityUUID": "B20891ED-02C7-4987-AE14- 
              2DB2D759F735"",
            "major": 2,
            "minor": 1,
            "relevantText": "A hot guy is nearby"
        },
        {
            "proximityUUID": "B20891ED-02C7-4987-AE14- 
              2DB2D759F735",
            "major": 1,
            "minor": 1,



Chapter 5

[ 93 ]

            "relevantText": "A hot gal is nearby"
        }
    ]
}

Passbook and PassKit are beyond the scope of this book, but 
if you want a great tutorial on creating passbook passes using 
PassKit, I recommend Marin Todorov's two-part tutorial on 
Ray Wenderlich's site http://bit.ly/rw-passbook.

Our tutorial app
We will now create an app that demonstrates all of these features; it will monitor 
regions in the background before presenting a local notification. When the app is 
running, we'll range the beacons in our region and stop ranging them when the  
app drops into the background. Finally, we'll allow the user to add a Ticket to  
love passbook event ticket pass that will show up on the lock screen when it's  
within a region.

To test our app, we'll use the companion OS X application to advertise one of  
two beacons, representing either a "hot guy" or a "hot gal".

The scenario
You've been asked to build a new location-based dating app. When lonely hearts 
sign up to the service, they are sent an iBeacon key ring that they carry around with 
them, and they also get to download a companion app that lets them know when 
other lonely hearts are in the area.

The lonely heart key rings use the same UUID; however, hot gals broadcast the 
major value of 1 while hot guys broadcast the major value of 2. Each lonely heart will 
be given a unique minor value; however, you've been asked to test the concept using 
just one guy and one gal value, as shown in the following table:

UUID Major Minor Lonely heart
B20891ED-02C7-4987-AE14-2DB2D759F735 1 1 A hot gal

2 1 A hot guy

Our user will be able to choose whether they're seeking a hot guy or a hot gal. When 
the app is running, they'll be shown the distance in meters from their target date, if 
one is in range.

http://bit.ly/rw-passbook


Detecting Beacons in the Background – Location Dating

[ 94 ]

When the app is in the background and the user comes into range of a beacon, they'll 
be shown a push notification telling them that a potential date is in range. If the app 
is open, ranging of the beacons will begin.

Finally, the user will also be able to add a passbook pass to their device, which will 
show them whenever a guy or gal is in region; we'll call this the "ticket to love".

Viewing anatomy
We will produce an app that looks like the one shown in the following figure.  
The app will be a single view application, and again, we'll use a storyboard to  
create our user interface.

Our app view

All of the images used in this app are contained within the chapter code. There's also 
a very important file named hotdate.pkpass, which is the signed passbook pass 
associated with the tutorial; be sure to download them all.



Chapter 5

[ 95 ]

The code
We'll build our app in two parts. All of the beacon functionality we need will be 
done in the app delegate (LIAppDelegate) while our app will consist of a single 
view controller.

We'll communicate between the app delegate and ViewController using the default 
NSNotificationCenter.

Creating the application
Let's begin by creating the project and adding the frameworks. There's quite a lot of 
code in this tutorial, so we'll go through each piece step by step:

1.	 Fire up Xcode and create a single view application. When prompted, use the 
following options for your new product, as follows:

°° Product Name: Location Dating
°° Organization Name: Learning iBeacon
°° Company Identifier: com.learning-ibeacon
°° Class Prefix: LI
°° Devices: iPhone

2.	 We need the CoreLocation and PassKit frameworks for this app. Go ahead 
and add these frameworks now as we did in the previous chapters.

3.	 Next, we need to ensure that our app has the plist settings to enable it to 
ask for location permission. Add the NSLocationAlwaysDescription key 
to the info tab of the project settings. Set the value to This app needs your 
permission to find a hot date.

Creating the view
Again, we use storyboards for this app. By creating a single view application, we've 
already been given LIViewController, and a storyboard with this controller has 
already been represented.

I won't go into detail about how to create each control in the storyboard since we 
covered much of this in the previous chapters. Consider the following steps for 
creating the view:

1.	 Open the Main.storyboard file and lay out your view as shown in the Our 
app view figure. For the items at the bottom, I used UIToolbar with a flexible 
Space bar button item to separate the distance label from the action button.



Detecting Beacons in the Background – Location Dating

[ 96 ]

If you want to jump straight to the code, then feel 
free to borrow the view from the complete code that is 
available to download.

2.	 Create the following properties in LIViewController.h and wire them up in 
the storyboard. The highlightView property is used to show the user which 
button has been selected; the rest of the properties should be pretty obvious, 
but again, do refer back to the completed code if you're not sure:
@property (weak, nonatomic) IBOutlet UIButton * guyButton;
@property (weak, nonatomic) IBOutlet UIButton * galButton;
@property (weak, nonatomic) IBOutlet UIView *  
  highlightView;
@property (weak, nonatomic) IBOutlet UILabel * guyLabel;
@property (weak, nonatomic) IBOutlet UILabel * galLabel;
@property (weak, nonatomic) IBOutlet UIBarButtonItem *  
  distanceBarButtonItem;

3.	 Open LIViewController.m and create the following method, then wire the 
touchUpInside action from both guyButton and galButton to the method. 
We'll complete the implementation later:
-(IBAction)genderButtonPressed:(id)sender {
}

4.	 Add another method for the action button in the toolbar at the bottom  
of the view and wire up the action to it. Again, we'll provide the 
implementation later:
-(IBAction)actionButtonPressed:(id)sender {
}

Configuring the app delegate
Our app delegate is responsible for all of the beacon functionalities and is the host 
(and delegate) of our CLLocationManager instance. Consider the following steps  
to configure the app delegate:

1.	 Open LIAppDelegate.h and add the import for CoreLocation:
#import <CoreLocation/CoreLocation.h>

2.	 Since our app delegate needs to be CLLocationManagerDelegate, add  
the declaration to the interface declaration, location manager instance,  
and beacon region so that our interface declaration looks like this:
@interface LIAppDelegate : UIResponder  
  <UIApplicationDelegate, CLLocationManagerDelegate>



Chapter 5

[ 97 ]

@property (strong, nonatomic) UIWindow * window;
@property (strong, nonatomic) CLLocationManager *  
  locationManager;
@property (strong, nonatomic) CLBeaconRegion *  
  beaconRegion;

@end

3.	 We'll need a way for our view controller to tell the location manager in our 
app delegate to start monitoring for ''guys'' or ''gals''. Add the following 
method declaration:
-(void)startMonitoringForMajor:(NSInteger)major  
  minor:(NSInteger)minor{
}

4.	 Since we're looking at our custom method, let's create the implementation 
now. Open LIAppDelegate.m and clear out all of the default methods. Create 
the method stub for the startMonitoringForMajor:minor: function:
-(void)startMonitoringForMajor:(NSInteger)major  
  minor:(NSInteger)minor {
}

5.	 Within the startMonitoringForMajor:minor: method, we need to check 
whether we have a location manager yet. Add this code to check and create 
the CLLocationManager instance and ask for permission:
if (!self.locationManager) {
    self.locationManager = [[CLLocationManager alloc]  
      init];
    [self.locationManager requestAlwaysAuthorization];
   self.locationManager.delegate = self;
}

6.	 Next, we need to stop monitoring the existing beacon region if it exists. 
Straight after the last line of code, add this check:
if (self.beaconRegion) {
    [self.locationManager  
      stopMonitoringForRegion:self.beaconRegion];
    [self.locationManager  
      stopRangingBeaconsInRegion:self.beaconRegion];
}



Detecting Beacons in the Background – Location Dating

[ 98 ]

7.	 Now, we need to create CLBeaconRegion. This time, we won't use a 
generic region, we'll look for a very specific beacon based on what the view 
controller has requested. Add the region instantiation after the previously 
added line:
NSUUID * uuid = [[NSUUID alloc]  
  initWithUUIDString:@""B20891ED-02C7-4987-AE14- 
  2DB2D759F735""];
    
// Create a new region.
self.beaconRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:uuid major:major minor:minor  
  identifier:@""Hot Date""];

8.	 We need our all-important beacon region properties. We want to show a push 
notification when we enter or exit a region when the app is in the background, 
regardless of whether the device display is on. Set the properties of the beacon 
and then request CLLocationManager to start monitoring and ranging the 
beacons straight after the previous line. Normally, you will only start ranging 
beacons in a region once you know you're actually in the region, using the 
locationManager:didEnterRegion method. However, for this app, the 
other beacons are moving around, and so, we range straightaway:

self.beaconRegion.notifyEntryStateOnDisplay = YES;
self.beaconRegion.notifyOnEntry = YES;
self.beaconRegion.notifyOnExit = YES;

self.locationManager 
    
[self.locationManager  
  startMonitoringForRegion:self.beaconRegion];
[self.locationManager  
  startRangingBeaconsInRegion:self.beaconRegion];

No ranging in the background
Remember that there isn't much point in ranging beacons when our app is 
running in the background. Let's add applicationDidEnterBackground and 
applicationDidBecomeActive to stop and resume ranging the beacons.

Add the following methods to the LIAppDelegate.m file:

-(void)applicationDidEnterBackground:(UIApplication *) 
  application {
    if (self.beaconRegion) {
        [self.locationManager  
          stopRangingBeaconsInRegion:self.beaconRegion];



Chapter 5

[ 99 ]

    }
}

-(void)applicationDidBecomeActive:(UIApplication *) 
  application {
    if (self.beaconRegion) {
        [self.locationManager  
          startRangingBeaconsInRegion:self.beaconRegion];
    }
}

Entering and exiting regions
We handled starting and stopping the monitoring of beacons when we're in the 
background, which means the only thing left to do is send a local notification when 
our app enters or exits a region, but only if the app is running in the background.

We want to present a local notification with a message that is relevant to the users' 
search (guys or gals), and so we'll need to determine this from the major value of  
the current region. Consider the following steps to enter and exit regions:

1.	 Add the locationManager:didEnterRegion: delegate method to the  
app delegate:
-(void)locationManager:(CLLocationManager *)manager  
  didEnterRegion:(CLRegion *)region {
    
    if ([[UIApplication sharedApplication]  
      applicationState] == UIApplicationStateBackground) {
        
        UILocalNotification * notification =  
          [[UILocalNotification alloc] init];
        if ([self.beaconRegion.major intValue] == 1) {
            notification.alertBody = @""A hot gal is  
              nearby"";
        }
        else {
            notification.alertBody = @"A hot guy is  
              nearby";
        }
        notification.soundName =  
          UILocalNotificationDefaultSoundName;
        notification.applicationIconBadgeNumber = 1;
        [[UIApplication sharedApplication]  
          presentLocalNotificationNow:notification];
    }
}



Detecting Beacons in the Background – Location Dating

[ 100 ]

2.	 Similarly, when we exit a region, we want to send a notification 
to the user to tell them that they missed out on a date. Add the 
locationManager:didExitRegion: method to the app delegate:

-(void)locationManager:(CLLocationManager *)manager  
  didExitRegion:(CLRegion *)region {
    
    if ([[UIApplication sharedApplication]  
      applicationState] == UIApplicationStateBackground) {
        
        UILocalNotification * notification =  
          [[UILocalNotification alloc] init];
        notification.alertBody = @"You've lost track of  
          the hot date";
        notification.soundName =  
          UILocalNotificationDefaultSoundName;
        notification.applicationIconBadgeNumber = -1;
        [[UIApplication sharedApplication]  
          presentLocalNotificationNow:notification];
    }
}

Clearing out badges
Did you notice that we presented the local notification with a badge in the 
locationManager:didEnterRegion delegate method? I'm quite fanatical  
about clearing out every badge on my iPhone, and I know I'm not alone.

Let's add the application:didFinishLaunchingWithOptions: method to clear  
out these pesky badges:

- (BOOL)application:(UIApplication *)application  
  didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
    [UIApplication sharedApplication].applicationIconBadgeNumber  
      = 0;
    return YES;
}

Ranging beacons
Finally, we need to range beacons, and when we do, we need a way to notify 
the view controller that a beacon distance has changed. To do this, we'll use 
NSNotificationCenter and a custom notification named DistanceUpdated. When 
sending our custom notification, we'll pass the beacon itself as the object, which we  
can pick up in our observer method in the view controller that we'll implement shortly.



Chapter 5

[ 101 ]

Add the locationManager:didRangeBeacons:inRegion delegate method to our 
app delegate:

-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons inRegion: 
  (CLBeaconRegion *)region
{
    if ([beacons count] == 0) return;
    
    CLBeacon * beacon = [beacons firstObject];
    
    [[NSNotificationCenter defaultCenter]  
      postNotificationName:@""DistanceUpdated"" object:beacon];
}

Implementing our view controller
We have finished with our app delegate and got method stubs for most of our  
view controller methods. We're in great shape; all we need to do now is implement  
a couple of view controller features and we'll be done.

Initializing the view
We will use a nice gradient pink image for the background of our view. When 
our app first loads, the user doesn't select a preference, and so, we need to hide 
highlightView and set a default message for the distanceBarButtonItem controls. 
Consider the following steps for initializing the view:

1.	 Add the Background.png image to the project.
2.	 Then, add the following code to the viewDidLoad: method of the 

LIViewController.m file to initialize the view controls:
self.view.backgroundColor = [UIColor  
  colorWithPatternImage:[UIImage  
  imageNamed:@"Background.png"]];
[self.distanceBarButtonItem setTitle:@"Not searching"];
[self.highlightView setHidden:YES];

3.	 Under memory constraints, our app might have its memory reclaimed. When 
our view loads, we need to check whether our app delegate has a beacon 
region, and if it does, we simulate a button press to configure the view. First, 
add the import for the app delegate at the top of LIViewController.m:
#import "LIAppDelegate.h"



Detecting Beacons in the Background – Location Dating

[ 102 ]

4.	 Then, add the following code to the end of the viewDidLoad method:
LIAppDelegate * delegate = (LIAppDelegate*) 
  [UIApplication sharedApplication].delegate;
    
if (delegate.beaconRegion) {
    if ([delegate.beaconRegion.major intValue] == 1) {
        [self genderButtonPressed:self.galButton];
    }
    else {
        [self genderButtonPressed:self.guyButton];
    }
}

5.	 We should also clean up the view when it first appears by setting the label 
value. Add the following viewDidAppear: method:
-(void)viewDidAppear:(BOOL)animated {
    [super viewDidAppear:animated];
    [self.distanceBarButtonItem setTitle:@"Not searching"];
}

Receiving beacon distance
Remember that our app delegate is in charge of the beacon location and 
ranging and that it sends this information on using a custom notification named 
DistanceUpdated. Consider the following steps for receiving beacon distance:

1.	 Add a new observer method to LIViewController.m. This method will 
accept our beacon range event and use the accuracy property of the beacon  
to set the distance bar button item title:
- (void) receiveDistance:(NSNotification *) notification
{
    CLBeacon * beacon = notification.object;
    
    self.distanceBarButtonItem.title = [NSString  
      stringWithFormat:@"%.2fm", beacon.accuracy];
}

2.	 Add a couple of lines to the viewDidLoad method to observe our  
custom notification:
[[NSNotificationCenter defaultCenter] removeObserver:self];
    
[[NSNotificationCenter defaultCenter] addObserver:self  
  selector:@selector(receiveDistance:)  
  name:@"DistanceUpdated" object:nil];



Chapter 5

[ 103 ]

Choosing a gender
It's time to fill in our genderButtonPressed: method. Within it, we should check 
whether the guy or gal button has been pressed and then tell our app delegate to 
start monitoring for the relevant major and minor values.

We also need to set our highlight view frame to sit underneath the selected button  
by following the given steps:

1.	 Complete the genderButtonPressed: method so that it looks like the 
following code:
-(IBAction)genderButtonPressed:(id)sender {
    [self.distanceBarButtonItem setTitle:@"Searching..."];
    [self.highlightView setHidden:NO];
    
    LIAppDelegate * delegate =  
      (LIAppDelegate*)[UIApplication  
      sharedApplication].delegate;
    
    CGRect highlightFrame = self.highlightView.frame;
    
    int major = 0;
    
    if (sender == self.guyButton) {
        major = 2;
        highlightFrame.origin.x =  
          self.guyLabel.frame.origin.x +  
          (self.guyLabel.frame.size.width*.5) -  
          (highlightFrame.size.width*.5);
    }
    else {
        major = 1;
        highlightFrame.origin.x =  
          self.galLabel.frame.origin.x  +  
          (self.galLabel.frame.size.width*.5) -  
          (highlightFrame.size.width*.5);
    }
    
    self.highlightView.frame = highlightFrame;
    
    [delegate startMonitoringForMajor:major minor:1];
}



Detecting Beacons in the Background – Location Dating

[ 104 ]

2.	 The following line of code sets the frame to be positioned in the middle  
of guyLabel:
highlightFrame.origin.x = self.guyLabel.frame.origin.x  +  
  (self.guyLabel.frame.size.width*.5) -  
  (highlightFrame.size.width*.5);

Adding a passbook pass
Finally, we need to implement the actionButtonPressed: method to add our pass 
to passbook. Execute the following steps:

1.	 From the downloaded resources, add the hotdate.pkpass file to  
your project.

2.	 Add an import declaration to the top of the LIViewController.m file  
to add PassKit:
#import <PassKit/PassKit.h>

3.	 Finally, add the implementation for the actionButtonPressed method. 
The method needs to present a new PKAddPassesViewController, which 
presents a view controller, allowing the user to add a pass to their passbook:
- (IBAction)actionButtonPressed:(id)sender {
    
    NSString * filePath = [[NSBundle mainBundle]  
      pathForResource:@"hotdate" ofType:@"pkpass"];
    
    NSData * fileData = [NSData  
      dataWithContentsOfFile:filePath];
    
    PKPass * hotDatePass = [[PKPass alloc] 
      initWithData:fileData error:nil];
    
    PKAddPassesViewController * vc =  
      [[PKAddPassesViewController alloc]  
      initWithPass:hotDatePass];
    
    [self presentViewController:vc animated:YES  
      completion:nil];
}

Testing your application
We have finished building the app, and it's time to test. There's a lot of code in this 
tutorial, so don't be disheartened if it doesn't work the first time.



Chapter 5

[ 105 ]

Testing the beacons
Just go through the steps again to see where you went wrong, or review the complete 
code from the download resources. Use the following steps:

1.	 Tap guyButton before pressing the device's home button, thus sending the 
app to the background.

2.	 Now, using the companion OS X app, start the beacon entitled Chapter 5: 
The hot guy, as shown in the upcoming figure. You should be presented 
with a push notification.

3.	 Start the app, and you should see the distance being updated in 
distanceBarButtonItem.

4.	 Press the home button again before turning off the beacon in the  
companion app.

5.	 Wait for up to 15 seconds for the exit region event to fire, and again, you 
should be presented with a different push notification notifying you that 
you've exited the region.

6.	 Perform steps 1 to 5 for the gal.

Running the companion application

Testing the passbook pass
Testing the passbook pass is simple. Start by pressing the Action button. You should 
be presented with a view controller, allowing you to add the pass to your passbook; 
do so.



Detecting Beacons in the Background – Location Dating

[ 106 ]

Finally, lock your device and open the lock screen before turning on the beacon profile 
in the companion app. Your lock screen should look something like the Showing 
passbook passes from the lock screen using iBeacon figure. When you slide across on the 
notification, you are presented with the pass without having to unlock your device.

Summary
Congratulations, you're now an iBeacon guru. In this chapter, we completed 
our knowledge of CLBeaconRegion and its properties, which affect background 
behaviors such as notifyEntryStateOnDisplay and notifyOnEntry.

We discussed the limitations of functionality when our app is activated by an OS 
when entering a region, and why we shouldn't range beacons in the background.

We also discovered how we can bring the passbook passes to the front of the lock 
screen using iBeacons.

In the next chapter, we'll expand our knowledge of what to do when we leave a 
region, and we'll discuss home automation and the implications of iBeacon upon  
that field.



Leaving Regions – Don't 
Forget Your Stuff

So far, we have mostly discussed about the triggering functionality when your 
device enters a region from beacons that are static. However, that's not always going 
to be the case. Beacons, after all, are tiny Bluetooth devices that can be easily ported 
around with you.

One of the areas in which iBeacon technology offers an exciting opportunity is  
home automation. Very inexpensive computing power such as the Raspberry Pi 
(http://www.raspberrypi.org/) and innovative projects such as Ninja Blocks 
(https://ninjablocks.com/) are being funded by Kickstarter, which means that 
there is a growing community of people subscribing to the Internet of Things.

Beacons not only offer an excellent opportunity to trigger functionality based 
on your proximity to space in the world, but also gives you the ability to trigger 
notifications and features when items come into your range because beacons don't 
need to be fixed to bricks and mortar.

I'm sure if you're anything like me, you'll have a set of three or four things that go 
with you everywhere. For me, these things are my wallet, my house keys, and also, 
my Boston Terrier, Stitch, who comes to the office with me every day. Wouldn't it  
be great if you got a notification when those things aren't nearby?

In this chapter, we'll be learning:

•	 How to use background modes to allow ranging beacons in the background
•	 How to trigger functionality when a beacon gets further than two meters 

away even when your app is running in the background
•	 About the usage of iBeacon in home automation

http://www.raspberrypi.org/
https://ninjablocks.com/


Leaving Regions – Don't Forget Your Stuff

[ 108 ]

Before we get started, let's touch on some of the other technologies that make home 
automation an amazing subject for the implementation of iBeacon.

Raspberry Pi
Raspberry Pi is a credit-card-sized computer that outputs high-resolution displays 
via HDMI and includes USB and Ethernet interfaces. It does everything you'd expect 
a desktop computer to do and also has a hackable circuitry.

The model A retails at $ 25 while B+ retails at $ 35, making it an incredible, hackable, 
affordable, and most of all, an accessible little device. The Pi has rekindled the 
hobbyist programmer and led to a whole host of home automation projects. 
Check out the latest Raspberry Pi home automation projects on the Raspberry Pi 
Foundation blog (http://bit.ly/pi-ha).

Ninja Blocks
Ninja Blocks started out as a Kickstarter project with the intention of connecting 
your physical world with the World Wide Web (WWW). The Kickstarter funding 
smashed its initial crowd-sourcing goals, and has since then shipped thousands of 
Ninja Blocks devices.

The platform is controlled by simple if this, then that style tasks using effectors and 
actuators. Both effectors and actuators can be made up in the physical or virtual 
world, which means you can do things such as post on Twitter when a door sensor  
is triggered by an opening door or turn on a lava lamp when a file is uploaded  
to Dropbox.

Find out more about Ninja Blocks on their official website at  
http://bit.ly/ninja-blocks.

Nest
The Nest project is a learning thermostat that controls your home's central heating 
system and learns about your habits to ensure that your home is always at the 
optimum temperature while also saving energy when you're not home.

Nest was recently acquired by Google who maintained its open platform API, 
allowing us programmers to continue to build solutions to work with it.

Find out more about the Nest API on the nest developer website at  
http://bit.ly/nestapi.

http://bit.ly/pi-ha
http://bit.ly/ninja-blocks
http://bit.ly/nestapi


Chapter 6

[ 109 ]

Phillips Hue
Phillips Hue is a network-enabled lighting system for your home. You swap all the 
bulbs in your home with Hue LED bulbs and configure the Hue bridge as a control 
hub for all of the bulbs in your home, giving you a completely personalized colored 
lighting depending on any factor you choose. You can change your lighting's color to 
red to match the creepy horror movie in the middle of the movie while your partner 
has a blue light in the bathroom to enable them to enjoy a nice relaxing bath.

The developer APIs allow you to trigger bulb configurations via HTTP posts, which 
means that you can automate almost any lighting situation you like using web hooks. 
You can trigger flashing red lights when there's breaking news on your favorite news 
channel or light the living room blue when you're mentioned on Twitter.

Find out more about the Hue API at the developer website at http://bit.ly/dev-hue.

Belkin WeMo
The Belkin WeMo switch is a programmable, Wi-Fi-enabled power switch that plugs 
directly into your power outlet and in which you plug your mains-powered devices 
into. The Belkin Wi-Fi-enabled WeMo switch lets you turn electronic devices on or 
off from anywhere. The WeMo switch uses your existing home Wi-Fi network to 
provide wireless control of TVs, lamps, stereos, heaters, fans, and more.

Find out more about the WeMo API at the developer website at  
http://bit.ly/devwemo.

iBeacon and home automation
You might be asking yourself where iBeacon fits into all of these amazing projects, 
and the answer is everywhere! What makes all of these projects so incredibly 
successful is their open platforms, which means that as an iOS developer with an 
iPhone or iPad, the world is your oyster.

My team at my company, Eden Agency, likes to play with the Internet of Things. 
Since we're a team of app developers, we like to get our hands dirty hacking at 
anything hackable, and this means I've been fortunate enough to get my hands on 
lots of technologies that are making waves in home automation.

A great middleware piece of hardware is the Ninja Block since it simplifies the 
interfacing between devices. By using Ninja Blocks, you can automatically wire up 
Belkin WeMo devices and Phillips Hue devices as actuators for any of your triggers, 
including web hooks.

http://bit.ly/dev-hue
http://bit.ly/devwemo


Leaving Regions – Don't Forget Your Stuff

[ 110 ]

By setting up a web hook, you can effectively trigger interactions in your home by 
doing a simple HTTP post request from your iPhone when you come into range of 
a beacon. Using a single Ninja Block, you can have your coffee machine turn on, the 
lights set to relax, and music start playing as you drive up your street after a tough 
day at the office.

This can be done using simple web hooks and your custom iOS app by following 
these simple steps:

1.	 You enter the region of a beacon situated on your garage door. This beacon 
has a broadcast range of 70 m, so your iPhone picks up the region at the end 
of your street.

2.	 Your app is opened by the OS and the locationManager:didEnterRegion 
method is called on your CLLocationManagerDelegate instance.

3.	 Your delegate method sends a HTTP post request to a Ninja Block inbound 
web hook.

4.	 The web hook triggers a Ninja Block rule. This rule simultaneously triggers 
the following actions:

1.	 Turn on the Belkin WeMo attached to the coffee machine.
2.	 Turn on the Belkin WeMo attached to the stereo.
3.	 Send the RGB value 135, 206, 250 to the living room and kitchen end 

points on the Phillips Hue device to set the lights to blue.

This can all be achieved by configuring one simple rule using Ninja Blocks, and by 
writing no more than a few lines of code to send a HTTP request.

Beacon stickers
A number of companies are now developing iBeacon stickers that allow you to 
flip the idea of beacons being static and you being the variable position to the 
consideration that things in the real world can move and your device can trigger 
functionality based on that moving device.

For example, imagine that you want to track every place you've cycled using 
an iPhone that uses a cycling tracker app. Your app doesn't know the difference 
between when you're riding a bus, jogging, or cycling, and so would rely on you  
to tell it when you're cycling, which you are likely to forget at least once.

If you had a very small sticker, such as a beacon, attached to your bicycle, you could 
automatically start tracking your journey when you're on your bike without having 
to think about it.



Chapter 6

[ 111 ]

Estimote and Jaalee are the two companies that have streamlined stickers such as 
beacons for exactly the kind of purpose I just described. Estimote Nearable beacons 
provide additional functionality including temperature and accelerometer data, 
while the Jaalee ES003 model even boasts a long battery life due to electro-magnetic 
energy harvesting, which sounds a bit like science fiction to me.

Beacon stickers are the perfect solution to cases that require the geolocation of things 
rather than just you.

Our tutorial
We're going to demonstrate this sticker-type functionality by building an app that 
lets you add beacon profiles to a local database, and when the beacon is more than 
two meters away, the app shows a push notification.

Our companion app already includes three beacon profiles for the important things 
we might forget, which are listed in the following table:

UUID Major Minor
C5FAC3DE-33D5-469C-
B094-AD527AF3ECCD

1 1 My wallet
2 My keys
3 My dog

The idea behind our app is that we never leave anything important behind. This 
means that we need to send a notification if the app isn't active and a beacon moves 
out of range or present an alert if the app is running at the time we lose the beacon.

Ranging beacons in the background
Since all beacons share the same UUID, we can't rely on the 
locationManager:didExitRegion delegate method because if we've got two out of 
the three important things with us, then we'll still be in the region and so we might 
leave something behind and not be notified! We'll need to rely on the locationManage
r:didRangeBeacons:inRegion delegate method to tell us when we've lost a beacon.

"Wait, didn't you say that ranging beacons in the background isn't possible back in 
Chapter 4, Ranging Beacons – Hunting for Treasure?" I hear you say...

Technically, ranging beacons in the background isn't possible. You can activate the 
app when entering and exiting regions, but your app is brought into the foreground 
by these delegate methods. You've only got around 4 to 5 seconds of time before the 
app goes back to sleep; at this point, the locationManager:didRangeBeacons:inRe
gion method stops running.



Leaving Regions – Don't Forget Your Stuff

[ 112 ]

Tracking locations using background modes
In some circumstances, you may want to track your location in the background 
as if you've got a navigation app that doesn't need to be in the foreground to give 
you directions such as Google Maps or the Waze app. In these scenarios, Apple has 
kindly provided us with background modes, which strictly speaking aren't meant  
for iBeacon implementations.

By checking the Location updates option from the Background Modes option in the 
Capabilities tab of our Xcode project, we tell the compiler that our app needs some 
extra special permissions to run permanently in the background. This can be seen in 
the following screenshot:

Location updates enabled in background modes

By turning on the location updates, you still won't be able to receive ranged beacons 
in the background because strictly speaking, this option isn't intended for iBeacon 
implementation.



Chapter 6

[ 113 ]

Cheating the system
To receive ranged beacon information in the background, we need to cheat. We 
need to use one of the CLLocationManager traditional location methods that are 
allowed to be run in the background (startUpdatingLocation). Once we call 
startUpdatingLocation, our location manager is already tracking location and 
keeping our app running in the background, and therefore, we're also receiving 
ranged beacon information at the same time in our locationManager:didRangeBea
cons:inRegion delegate method.

I can almost guarantee that if you attempt to use this 
technique in a production app to be released via the App 
Store, it will fail its review. Apple doesn't take apps that 
drain the battery, and so by constantly tracking a user's 
location without any functionality that requires it will 
result in a failed review.

Building our app
Let's get started with building our "important stuff" app. We'll be using core data 
to store a list of our important stuff, and luckily, Apple has provided a very nice 
template, which should give us a head start. Consider the following steps:

1.	 Fire up Xcode and create a new project. This time, choose Master-Detail 
Application as your project template and call the project My Important 
Stuff. Be absolutely sure to check the Use Core Data option as this tutorial 
heavily relies on it.

2.	 We're going to need CoreLocation; so, add that to the linked frameworks 
and libraries as we've done in previous chapters.

Beginning the app with a database schema
Let's start with the database required to support the app. We'll need to store all of 
our beacons within the local database so that our location manager knows what's 
missing. We'll also need to remove any of the default entities that the template has 
created so that we don't cloud up our nice clean code. Consider the following steps:

1.	 Open up the My_Important_Stuff.xcdatamodel file. This file contains the 
meta descriptions of our database.

2.	 Delete the Event entity, which has been created by default, and add a new 
entity named Beacon.



Leaving Regions – Don't Forget Your Stuff

[ 114 ]

3.	 Add three new attributes to the beacon as follows; your model should look 
like the following screenshot:

°° major: Integer 16
°° minor: Integer 16
°° name: String

Beacon model implementation

Using a little helper
We will do some duplicate functionality across both LIMasterViewController and 
LIDetailViewController, and so, it makes sense to share these in a helper class.

Our helper class needs the following methods:

•	 +(NSString*)proximityStringForBeacon:(CLBeacon*)beacon: This 
method returns a string representing the distance from the device such as 
Near or Far



Chapter 6

[ 115 ]

•	 +(NSString*)stringForBeacon:(CLBeacon*)beacon: This method returns 
a string representation of a beacon in the major:minor:proximity format 
and is used for comparing beacons

•	 +(NSArray*)beaconsNearbyForBeacons:(NSArray*)beacons: This  
method filters an array of beacons to only those that have a proximity  
status of CLProximityNear or CLProximityImmediate

In order to add these methods, follow the given steps:

1.	 Create a new Objective-C class and a subclass named NSObject. Name this 
class LIBeaconHelper.

2.	 Open LIBeaconHelper.h and add the static method declarations:
+(NSString*)proximityStringForBeacon:(CLBeacon*)beacon;
+(NSString*)stringForBeacon:(CLBeacon*)beacon;
+(NSArray*)beaconsNearbyForBeacons:(NSArray*)beacons;

3.	 Open LIBeaconHelper.m and add the implementation of these methods:
+(NSString*)proximityStringForBeacon:(CLBeacon*)beacon {
    NSString * proximity;
    
    switch (beacon.proximity) {
        case CLProximityFar:
            proximity = @"Far";
            break;
        case CLProximityImmediate:
            proximity = @"Immediate";
            break;
        case CLProximityNear:
            proximity = @"Near";
            break;
        case CLProximityUnknown:
        default:
            proximity = @"Unknown";
            break;
    }
    
    return proximity;
}

+(NSString*)stringForBeacon:(CLBeacon*)beacon {
    NSString * proximity = [self  
      proximityStringForBeacon:beacon];
    



Leaving Regions – Don't Forget Your Stuff

[ 116 ]

    return [NSString stringWithFormat:@"%@:%@:%@",  
      beacon.major, beacon.minor, proximity];
}

+(NSArray*)beaconsNearbyForBeacons:(NSArray*)beacons {
    
    NSArray * nearbyBeacons = [beacons  
      filteredArrayUsingPredicate:[NSPredicate  
      predicateWithFormat:@"proximity >= %d",  
      CLProximityNear]];
    
    return [NSArray arrayWithArray:nearbyBeacons];

}

4.	 So that we don't need to import the helper class twice, it's best to add it to the 
precompiled header class. Open the My Important Stuff-Prefix.pch file 
and add the import:
#import "LIBeaconHelper.h"

Master view controller implementation
Next, we'll build our master view controller. This class is going to be responsible for 
showing a list of all my beacons and their range if known. It'll also be the host for the 
location manager functionality. Although our template has created lots of code in the 
LIAppDelegate class to support core data, we won't actually be using it:

1.	 Open LIMasterController.h and add an import for CoreLocation as 
we've done in previous chapters.

2.	 Add two new properties for our location manager and region, shown  
as follows:
@property (strong, nonatomic) CLLocationManager  
  *locationManager;
@property (strong, nonatomic) CLBeaconRegion *beaconRegion;

3.	 Add CLLocationManagerDelegate to the LIMasterViewController class 
declaration, as this time, our master view will be acting as the delegate.

4.	 We're going to need a couple more private properties. We need one property 
for keeping the beacons that our location manager has ranged and then 
another to show when we last notified our user that they've gone out of 
range of their items (since we don't want to be bombarding them with alerts).



Chapter 6

[ 117 ]

5.	 Open LIMasterController.m, and in the interface declaration, add the 
following new properties:
@property (strong, nonatomic) NSArray *beacons;
@property (strong, nonatomic) NSDate *lastNotification;

Configuring the view controller
Our viewDidLoad method requires us to configure the location manager and regions,  
and is also going to be the point of call to start ranging for beacons. Consider the 
following steps:

1.	 Within the viewDidLoad method, right after the call to [super 
viewDidLoad], add the following code to tidy up any existing location 
manager:
// Restart the location manager.
if (self.locationManager) {
    [self.locationManager  
      stopMonitoringForRegion:self.beaconRegion];
    [self.locationManager stopUpdatingLocation];
    [self.locationManager  
      stopRangingBeaconsInRegion:self.beaconRegion];
}

2.	 Now, we need to create the location manager and ask for permission.  
We also need to configure the associated region and then start monitoring 
the beacons. Immediately after the last code that you have added, add the 
following code:

self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self;
[self.locationManager requestAlwaysAuthorization];
    
self.beaconRegion = [[CLBeaconRegion alloc]  
  initWithProximityUUID:[[NSUUID alloc]  
  initWithUUIDString:@"C5FAC3DE-33D5-469C-B094- 
  AD527AF3ECCD"] identifier:@"My Stuff"];
    
[self.locationManager  
  startRangingBeaconsInRegion:self.beaconRegion];

3.	 Remember our hack to ensure we can range the beacons in the background? 
Add a call to the location manager to start updating the location:
[self.locationManager startUpdatingLocation];



Leaving Regions – Don't Forget Your Stuff

[ 118 ]

4.	 Since we're getting the user's location constantly and not actually using it, 
we should make it as battery-efficient as possible. To do this, we can set the 
desired accuracy of the location manager to a very large region, which will 
reduce the GPS usage and ultimately increase the battery life:
self.locationManager.desiredAccuracy =  
  kCLLocationAccuracyThreeKilometers;

Fetching data from the Core Data framework
Core Data provides ways to persist data easily using a local database stored on the 
device. When using Core Data, you as the application developer define the object 
graph mapping and simply choose the way the data is stored; Core Data then 
handles the complexity of managing the database schema and you manage data 
using entity descriptions and very simple queries.

Using Core Data allows you to choose how your persistent data store is implemented. 
This could be XML, atomic, or most commonly using a bundled SQLite database, 
which is then copied to the application storage on the first run. To get a better 
understanding of Core Data, there is an excellent article on the developer library 
documentation available from Apple at http://bit.ly/ios-coredata.

XML isn't available as a data store on iOS, but is included as an 
option for Core Data when developing apps for OS X.

Our master-detail application template with core data uses a single table of Events 
by default. We've already removed the Event entity from the model and replaced it 
with our Beacon entity, but now we need to ensure that what the app pulls back is 
what we're expecting to see. Consider the following steps:

1.	 Scroll down to the fetchedResultsController method and find the line 
that creates NSEntityDescription. It should look like this:
NSEntityDescription *entity = [NSEntityDescription  
  entityForName:@"Event"  
  inManagedObjectContext:self.managedObjectContext];

2.	 Replace it with the entity name in this line so that it looks like this:
NSEntityDescription *entity = [NSEntityDescription  
  entityForName:@"Beacon"  
  inManagedObjectContext:self.managedObjectContext];

http://bit.ly/ios-coredata


Chapter 6

[ 119 ]

3.	 The template has created sort descriptors, which sort the results based on 
timeStamp. We want to sort our database results by the beacon's major and 
minor values. Replace the NSSortDescriptor declarations with our own code:
// Edit the sort key as appropriate.
NSSortDescriptor *majorSortDescriptor = [[NSSortDescriptor  
  alloc] initWithKey:@"major" ascending:YES];
NSSortDescriptor *minorSortDescriptor = [[NSSortDescriptor  
  alloc] initWithKey:@"minor" ascending:YES];
NSArray *sortDescriptors = @[majorSortDescriptor,  
  minorSortDescriptor];

Configuring the table cell
Our table cell needs to represent the major and minor values and our beacon name, 
and currently, the prototype cell has a basic style that doesn't give us much room to 
present our beacon data:

1.	 Open the Main.storyboard file and find the MasterViewController  
view. Select the prototype cell and change its style to Left Detail within 
Attributes Inspector.

2.	 Now that we've got the Left Detail style in our prototype cell, we can make 
use of both the textLabel and detailTextLabel properties to show our 
beacon data. Scroll down to the configureCell:atIndexPath: method  
and remove its current implementation body.

3.	 First, we need the managed object from Core Data for the index path.  
Add the following line:
NSManagedObject *object = [self.fetchedResultsController  
  objectAtIndexPath:indexPath];

4.	 We're going to use detailTextLabel to show the beacon major, minor, and 
name values in the major:minor – name format. For example, the beacon 
attached to my dog takes the format 1:3 – My Dog. Add the following line 
to set the cell text from the managed object properties:
cell.detailTextLabel.text = [NSString  
  stringWithFormat:@"%@:%@ - %@", [object  
  valueForKey:@"major"], [object valueForKey:@"minor"],  
  [object valueForKey:@"name"]];



Leaving Regions – Don't Forget Your Stuff

[ 120 ]

5.	 Our textLabel property is going to show the current distance from the device 
using our helper method. To find out the distance, we will need to see if there's 
an associated beacon that has been ranged by our location manager. If not, 
we'll need to show "Unknown". Add the code to loop through our beacons  
and set the values if the app knows the location of our managed object:
for (CLBeacon * beacon in self.beacons) {    
    int major = [[object valueForKeyPath:@"major"]  
      intValue];
    int minor = [[object valueForKeyPath:@"minor"]  
      intValue];
        
    if ([beacon.major intValue] == major && [beacon.minor  
      intValue] == minor) {
        cell.textLabel.text = [LIBeaconHelper  
          proximityStringForBeacon:beacon];
        return;
        }
    }
    
cell.textLabel.text = @"Not found";

Notifying the user
We need a method to notify the user when their important things aren't in range 
anymore. When the app is active, we want to show a UIAlert, and when the app  
isn't active, we'll present a local notification.

Add the following method to send the notification:

-(void)notifyUser {
    
    // Build the string of missing stuff.
    NSString * message = @"Hey dude, your important stuff  
      isn't nearby!";
    
    if ([UIApplication sharedApplication].applicationState ==  
      UIApplicationStateActive) {
        UIAlertView * alert = [[UIAlertView alloc]  
          initWithTitle:@"Missing Stuff"
            message:message delegate:nil
            cancelButtonTitle:@"Ok"
            otherButtonTitles:nil, nil];
        
        [alert show];
    }



Chapter 6

[ 121 ]

    else {
        UILocalNotification * localNotification =  
          [[UILocalNotification alloc] init];
        [localNotification setAlertBody:message];
        [localNotification  
          setSoundName:UILocalNotificationDefaultSoundName];
        [[UIApplication sharedApplication]  
          presentLocalNotificationNow:localNotification];
    }
}

Inserting new objects
The template has created an add new object button for us that has its touchUpInside 
event bound to the insertNewObject method. This method is still trying to set the 
timeStamp property. We need to set default values for a new beacon.

Scroll to the insertNewObject: method and replace the line [newManagedObject 
setValue:[NSDate date] forKey:@"timeStamp"]; with the following code:

[newManagedObject setValue:@"My new beacon" forKey:@"name"];
    [newManagedObject setValue:[NSNumber numberWithInt:1]  
      forKey:@"major"];
    [newManagedObject setValue:[NSNumber numberWithInt:1]  
      forKey:@"minor"];

Ranging beacons
The last major thing to do is range the beacons within our master view controller. 
Consider the following steps:

1.	 Create the empty method stub:
-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons  
  inRegion:(CLBeaconRegion *)region {
}

2.	 Within the new method, the first thing we need to do is filter our beacons to 
only those that are immediate or near to the device using our helper method. 
Declare a new variable and filter the beacons that have been ranged:
NSArray * nearbyBeacons = [LIBeaconHelper  
  beaconsNearbyForBeacons:beacons];



Leaving Regions – Don't Forget Your Stuff

[ 122 ]

3.	 We don't want to bombard our user with alerts; we only want to notify 
them every 5 minutes if their stuff isn't in range. For this, we'll use the last 
notification property, and if it hasn't been set, then we'll set it to 300 seconds 
ago (5 minutes):
if (!self.lastNotification) self.lastNotification =  
  [NSDate dateWithTimeIntervalSinceNow:-300];

4.	 Next, we need to determine whether the beacons are what we expected to 
retrieve; if not, we need to notify our user that some of their stuff is missing:
id <NSFetchedResultsSectionInfo> sectionInfo =  
  [self.fetchedResultsController sections][0];
int expectedItems = (int)[sectionInfo numberOfObjects];

if (expectedItems != [self.beacons count] &&  
  [self.lastNotification timeIntervalSinceNow] < -300)  
  {
    [self notifyUser];
    self.lastNotification = [NSDate date];
}

5.	 Finally, we need to set the locally stored beacons array and refresh our table 
so that it can update the distance of our beacons:
self.beacons = nearbyBeacons;
[self.tableView reloadData];

Detailed view controller implementation
Our detail view controller is responsible for editing managed object data. Its sole 
responsibility is to set the name, major, and minor values of the beacon in the Core 
Date database.

Our master view controller creates new beacons using the add button. When any 
beacon is selected in the master view's table, the master view controller hands the 
managed object over to the detail view controller.

Before we head off and create our detail view, there's one thing left that we've got to 
do. When our master view reappears (after our detail view is dismissed), we need to 
save the changes to the database. This way, what our detail view really does is that it 
just sets the three properties of an existing object:

1.	 Add the following method to LIMasterViewController.m:
-(void)viewWillAppear:(BOOL)animated {
    [self.managedObjectContext save:nil];
}



Chapter 6

[ 123 ]

2.	 Our detail view is going to need UITextField properties for the three fields. 
Open LIDetailViewController.h and add the following properties:
@property (weak, nonatomic) IBOutlet UITextField  
  *majorTextField;
@property (weak, nonatomic) IBOutlet UITextField  
  *minorTextField;
@property (weak, nonatomic) IBOutlet UITextField *  
  nameTextField;

3.	 Our controller also needs to be the delegate for these new text fields; so, let's 
add UITextFieldDelegate to our class declaration so that it looks like this:
@interface LIDetailViewController :  
  UIViewController<UITextFieldDelegate>

Configuring the view
Our view needs three simple text fields with three labels. Each of the text fields 
should set our detail view controller object as the reference and should be bound  
to the associated properties as created in the previous steps.

Create your view so that it looks like the following screenshot:

Our Detail view



Leaving Regions – Don't Forget Your Stuff

[ 124 ]

Getting and setting properties
The template we used has already created a configureView method for us.  
Let's replace the body to use our beacon item instead of the default event item:

- (void)configureView
{
    if (self.detailItem) {
        
        self.nameTextField.text =  [[self.detailItem  
          valueForKey:@"name"] description];
        
        self.majorTextField.text =  [[self.detailItem  
          valueForKey:@"major"] description];
        
        self.minorTextField.text =  [[self.detailItem  
          valueForKey:@"minor"] description];
    }
}

When our view controller is dismissed, we need to set the values from our text fields 
back to the object. Add the following implementation of viewWillDisappear:

- (void)viewWillDisappear:(BOOL)animated {
    [super viewWillDisappear:animated];
    
    if (self.isMovingFromParentViewController) {
        
        NSNumberFormatter * f = [[NSNumberFormatter alloc] init];
        [f setNumberStyle:NSNumberFormatterNoStyle];
        
        [self.detailItem setValue:self.nameTextField.text  
          forKey:@"name"];
        [self.detailItem setValue:[f  
          numberFromString:self.majorTextField.text]  
          forKey:@"major"];
        [self.detailItem setValue:[f  
          numberFromString:self.minorTextField.text]  
          forKey:@"minor"];
    }
}



Chapter 6

[ 125 ]

Validating input
We need to validate the user entry to ensure that the major and minor values aren't 
greater than what int16 will allow and also that they haven't entered whitespace for 
the name. Add the following UITextFieldDelegate method to validate the input:

-(void)textFieldDidEndEditing:(UITextField *)textField {
    if (textField == self.majorTextField || textField ==  
      self.minorTextField){
        if ([textField.text intValue] > INT16_MAX) {
            textField.text = [NSString stringWithFormat:@"%i",  
              INT16_MAX];
        }
        if ([textField.text intValue] < 1) {
            textField.text = @"1";
        }
        return;
    }
    
    if ([[textField.text  
      stringByTrimmingCharactersInSet:[NSCharacterSet  
      whitespaceCharacterSet]] length] == 0) {
        textField.text = @"My beacon";
    }
}

Finishing off UI
We also need to finish off the UI properly so that we can press next on the same text 
field, and also so that we can resign any responders if the user touches outside of the 
text fields when a keyboard is showing. Consider the following points:

1.	 Add the following implementation to handle the Next button on  
the keyboard:
-(BOOL)textFieldShouldReturn:(UITextField *)textField {
    
    if (textField == self.nameTextField)  
      [self.majorTextField becomeFirstResponder];
    if (textField == self.majorTextField)  
      [self.minorTextField becomeFirstResponder];
    
    return YES;
}



Leaving Regions – Don't Forget Your Stuff

[ 126 ]

2.	 Add the following touch event to resign responders:
-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent  
  *)event
{
    [super touchesBegan:touches withEvent:event];
    [self.nameTextField resignFirstResponder];
    [self.majorTextField resignFirstResponder];
    [self.minorTextField resignFirstResponder];
}

Adding NSLocationAlwaysUsageDescription
As we've done in previous chapters, we need to add a description of the location 
usage, which is displayed in the location permission dialog. Under the target info 
settings dialog, add the NSLocationAlwaysUsageDescription key to Custom iOS 
Target Properties. Set the value to something like This app requires access to 
your location to track your important items.

Enabling the background mode
The final thing to do is to enable the background mode for the app so that we can 
range beacons in the background. Consider the following steps:

1.	 Open the project settings and click on the Capabilities tab.
2.	 Turn the Background Modes option on.
3.	 Check the box next to Location updates.



Chapter 6

[ 127 ]

Enabling location updates in background mode

Testing your app
Test your app using the companion OS X app provided. Add a wallet, keys, and 
dog to your collection as shown in the Location updates enabled in background modes 
figure and then turn the beacon profiles on and off in the companion app to test the 
notifications. Remember to wait for 5 minutes before receiving your notifications.

Summary
In this chapter, we learned about the amazing potential of iBeacons in home 
automation and also that beacons need not be fixed in the world. It's just possible  
for the beacon to be movable than the mobile user! Our tutorial showed us how  
to utilize background modes to range beacons in the background and also how to 
show local notifications when the app is in the background.

In the next chapter, we'll be discussing purchasing beacons from well-known 
manufacturers and their SDKs. We'll also be hacking Estimote beacons, which  
will require hardware beacons to complete the tutorial.





Vendor SDKs – Buying and 
Configuring Beacons

In the previous chapters, we only utilized Apple's Core Location and Core Bluetooth 
frameworks to interact with beacons. Many vendors actually provide their own 
hardware beacons, a web-based API for managing beacons, and an SDK for 
manipulating their values over BLE.

In this chapter, we will explore Estimote beacons and the associated SDK and also 
ROXIMITY beacons before delving further into the ROXIMITY SDK and producing an 
app that allows you to configure the Estimote beacon UUID, major, and minor values.

Estimote motes and SDK
Although Estimote have recently implemented a cloud-based platform, their beacons 
can quite happily work independent of it, and their beacons conform to the iBeacon 
specification as set out by Apple.

On top of the features laid out by the iBeacon specifications, Estimote beacons also 
include a temperature sensor and accelerometer for additional functionality.

Currently, the only data that is actually synchronized to the cloud is a property 
representing the color of the silicon case that surrounds the beacon and a single 
property signifying the beacon's location. This property is just intended as a 
reference for you as the beacon owner. When you purchase beacons from Estimote, 
they automatically add your beacons to the cloud platform.



Vendor SDKs – Buying and Configuring Beacons

[ 130 ]

ROXIMITY implementation
ROXIMITY beacons implement a very different architecture. Although their beacon 
broadcasting ad rate is iBeacon certified, there is no way of actually choosing a UUID 
to suit your requirements.

ROXIMITY beacons are entirely cloud-platform managed. Much like Estimote, when 
you purchase ROXIMITY beacons, they are automatically added to your cloud account.

Since ROXIMITY beacons must use their SDK to build enterprise-level applications, it 
means that each beacon isn't locked down to a single UUID and so can be utilized for 
multiple apps.

ROXIMITY have based their platform very much on an advertiser network, and as 
such, their SDK allows you to implement rich notifications, modal pop ups, and pop up 
requests via simple web forms in their cloud platform without having to write any code.

By implementing the SDK, the ROXIMITY platform also gives you powerful targeting 
for your notifications based on demographics and behavior such as the dwell time.

Choosing the best platform for your 
requirements
Although there are many more platforms than just the two we've discussed  
here, many implement similar architectures. If you're looking to build an  
enterprise-level advertising network and don't have the capability or resources  
to build a web platform, then ROXIMITY is the choice for you.

However, if you want more control over your beacon's implementation or want 
additional features beyond that of just the iBeacon specification, then Estimote or  
one of the other more open beacons is definitely a better choice.

You might have other considerations such as beacon size, cost, or branding of 
beacons. Check back to Chapter 1, Welcome to iBeacon, which gives a more in-depth 
run-down of some of the providers on the market at the time of writing.

AltBeacon – the open beacon specification
Because there is no open and interoperable specification for proximity beacons, 
Radius Networks has authored the AltBeacon specification as a proposal on how to 
solve this problem. The AltBeacon specification defines the format of advertisement 
messages in an attempt to bring a standard platform-independent way for proximity 
beacons to broadcast.



Chapter 7

[ 131 ]

This is unlike the iBeacon specification, which requires the vendor to register with 
Apple's MFI program in order to find out the exact Bluetooth advertising channel 
protocol data unit (PDU), which iOS devices look out for.

The AltBeacon specification defines the format of the advertisement message that 
BLE proximity beacons broadcast and is free for all to implement with no royalty  
or fees.

Keep an eye out for AltBeacon implementations. I'm sure they'll come thick and fast 
with third-party library implementations very soon.

Using Estimote API 2.1
Our tutorial is going to take us through how to use the Estimote API to build an  
app, which allows us to configure Estimote beacons with custom UUID, major,  
and minor values.

To complete this tutorial, you will need some hardware. Estimote offer a  
3-beacon developer kit at $ 99, which allows you to get started with building 
solutions using their beacons, which can be ordered from their website at  
https://order.estimote.com/.

I've used the latest SDK (2.1) at the time of writing this, but the developers working 
at Estimote are always busy and constantly improving their API and firmware. 
Before beginning this tutorial, I'd recommend heading over to the Estimote API 
pages (http://bit.ly/estimoteapi) and checking out the latest API.

I'd also recommend upgrading your Estimote beacon firmware to the latest version.

Security
In the latest version of the Estimote SDK, you need to connect to the devices using 
the API app ID and API app token. When you buy beacons from Estimote, they're 
automatically added to the cloud platform (http://cloud.estimote.com/) and  
are secured from access using your personal keys.

When you try to connect to a beacon without authenticating, you will receive an 
authorization error. In order to connect to beacons to be configured, you need to 
have called the setupAppID:andAppToken static method of the ESTBeaconManager 
class previously, by providing your keys from the Estimote cloud.

https://order.estimote.com/
http://bit.ly/estimoteapi
http://cloud.estimote.com/


Vendor SDKs – Buying and Configuring Beacons

[ 132 ]

Estimote SDK classes
Estimote's API builds on top of the Core Location and Core Bluetooth frameworks, 
and many of the classes mimic and extend upon the functionality of Core Location.

We'll only be using two of the framework classes for this tutorial and their  
associated delegate protocols. For a comprehensive view of the API, head  
over to the website and read through their comprehensive documentation  
at http://bit.ly/estimote-github.

ESTBeacon
The ESTBeacon class (as you've probably guessed) encapsulates a hardware beacon 
just like the CLBeacon class, but with a whole heap of extra properties and options. 
The ESTBeacon instances have many publicly available properties that you can 
access freely using the SDK, and then a number of properties that are only accessible 
once you've connected to the beacon.

Public properties of ESTBeacon are similar to those of the CLBeacon class including 
proximity UUID, major, minor, and RSSI.

Once you've connected to the beacon using the connect method, you also get access 
to the device's hidden properties, including (but not limited to):

•	 Battery level
•	 Remaining lifetime
•	 Battery type
•	 Whether the device is moving
•	 Firmware version

ESTBeaconDelegate
The beacon delegate allows you to monitor for changes in the beacon's status, including 
connection and accelerometer changes. The delegate protocol includes four tasks:

•	 beaconConnectionDidFail:withError:: This occurs when the connection 
to the device fails. This can be a transient fail and the app will still attempt 
connection.

•	 beaconConnectionDidSucceeded:: This occurs when the connection to the 
device completes successfully and the connected functions are available.

•	 beacon:didDisconnectWithError:: This occurs when the connection is 
broken, either intentionally (without error) or due to a fault in which the 
error is passed.

http://bit.ly/estimote-github


Chapter 7

[ 133 ]

•	 beacon:accelerometerStateChanged:: This occurs when the accelerometer 
data has changed because the beacon is moving.

ESTBeaconManager
The ESTBeaconManager class defines the interface for handling and configuring the 
Estimote beacons and getting related events to your application. You use an instance 
of this class to establish the parameters that describe the behavior of every beacon. 
You can also use a beacon manager object to retrieve all beacons in range.

Unlike CLBeaconManager, ESTBeaconManager allows you to discover beacons 
without a region. ESTBeaconManager mimics many of the CLBeaconManager 
methods for ranging and monitoring regions and also features for turning the device 
into a beacon.

ESTBeaconManager also includes methods that require Core Bluetooth for discovering 
Estimote beacons. We'll be using the startEstimoteBeaconsDiscoveryForRegion: 
method, which accepts a region but returns all Estimote beacons regardless of region if 
nil is passed.

ESTBeaconManagerDelegate
The ESTBeaconManagerDelegate protocol mimics much of the CLBeaconManager 
methods and also provides event handlers for beacon discovery. We'll be using the 
beaconManager:didDiscoverBeacons:inRegion: method in our app.

Let's get building
We'll be building a simple master-detail application similar to that of Chapter 6, 
Leaving Regions – Don't Forget Your Stuff. Our master view controller will be used to 
show the Estimote beacons in range, while the detail view controller will be used to 
change the values of the beacon.

Our detail view controller will also show the output from the beacon's temperature 
sensor and will also vibrate the iPhone when the beacon is moved.

Let's start by firing up Xcode and creating a new project following the given steps:

1.	 Choose Master-Detail Application as our template.
2.	 Set Product Name as Estimote Beacon Manager, uncheck the Use Core 

Data checkbox, and use LI as our class prefix.
3.	 To make our app vibrate, we will need the Audio Toolbox framework; so,  

go ahead and add that framework to the project.



Vendor SDKs – Buying and Configuring Beacons

[ 134 ]

Adding EstimoteSDK
We'll be using CocoaPods to add EstimoteSDK. If you're not familiar with 
CocoaPods, it's a Ruby dependency manager for Objective-C projects that allows  
you to add dependencies and keep them up to date easily. Follow the given steps  
to add Estimote SDK:

1.	 Close your Xcode project and open a terminal window.
2.	 Navigate to your folder that contains the xcodeproj file. For example, you 

can navigate to the folder using the following command:
cd //Users/craiggilchrist/Documents/Projects/Learning\ iBeacon/
Estimote\ Beacon\ Manager

3.	 You'll need to ensure you've got CocoaPods and Ruby installed. If not, then 
run the following command. Be patient, it may take a little while:
sudo gem install cocoapods

4.	 CocoaPods uses a plain text file named Podfile to determine its dependencies. 
Let's create and then open this text file now using the following command:
touch Podfile
nano Podfile

5.	 Now that Podfile is open in nano, add the following line to the file:
pod 'EstimoteSDK', '~> 2.0'

6.	 Press control + O to save the file; when prompted, choose Podfile as the 
filename and press enter.

7.	 Press control + X to close the file.
8.	 Run the following command to install the dependencies. This may take  

a little while:
pod install

9.	 This should have added all the dependencies required and created an 
xcworkspace file. From now on, we should only use the xcworkspace file to 
open our project. Since we have already got the terminal window open, we 
might as well use it to open our project again. Run the following command  
to open the project:
open Estimote\ Beacon\ Manager.xcworkspace/



Chapter 7

[ 135 ]

Adding API access
Since we need to be authenticated to manage our beacons, we need to add a call to 
the setupAppID:andAppToken: method of ESTBeaconManager using our app ID,  
as follows:

1.	 Go to http://cloud.estimote.com/#/account and log in with your 
Estimote credentials.

2.	 Add the following code to LIAppDelegate, replacing the holding strings 
with your API credentials:
- (BOOL)application:(UIApplication *)application  
  didFinishLaunchingWithOptions:(NSDictionary  
  *)launchOptions
{
    [ESTBeaconManager setupAppID:@"<YOUR API APP ID>"  
      andAppToken:@"<YOUR API APP TOKEN>"];
    return YES;
}

The helper class
Just like in Chapter 6, Leaving Regions – Don't Forget Your Stuff, we're going to create  
a little helper class. This time, its only responsibility is to return the color name of the 
beacon as returned from the cloud. Consider the following steps:

1.	 Create a new Objective-C class and name it LIBeaconHelper.
2.	 Add the method declaration to the header file:

+(NSString*)colorNameForBeacon:(ESTBeacon*)beacon;

3.	 Add the implementation to the LIBeaconHelper.m file:
+(NSString*)colorNameForBeacon:(ESTBeacon*)beacon {
    NSString * color = @"Unknown";
    switch (beacon.color) {
        case ESTBeaconColorBlueberry:
            color = @"Blueberry Pie";
            break;
        case ESTBeaconColorIce:
            color = @"Icy Marshmallow";
            break;
        case ESTBeaconColorMint:
            color = @"Cocktail Mint";
            break;

http://cloud.estimote.com/#/account


Vendor SDKs – Buying and Configuring Beacons

[ 136 ]

        case ESTBeaconColorTransparent:
            color = @"Transparent";
            break;
        case ESTBeaconColorWhite:
            color = @"Arctic White";
            break;
        default:
            break;
    }
    return color;
}

4.	 Add an import into the Estimote Beacon Manager-Prefix.pch file:
#import "LIBeaconHelper.h"

Configuring the master view controller
Our master view controller just needs to tell us which beacons are nearby and allow 
our user to choose them. Consider the following steps:

1.	 Open LIMasterViewController.h and import the ESTBeaconManager.h 
class:
#import <EstimoteSDK/ESTBeaconManager.h>

2.	 Add the ESTBeaconManagerDelegate protocol declaration to the 
LIMasterViewController declaration.

3.	 Add ESTBeaconManager as a property:
@property (nonatomic, strong) ESTBeaconManager *  
  beaconManager;

4.	 Our table view cell is going to present the beacon major and minor values 
and also the color of the beacon. For that, we need a better prototype cell 
type. Open Main.storyboard, locate the MasterViewController view,  
and change the prototype cell Style to Left Detail.

5.	 Open LIMasterViewController.m, and in the private interface declaration, 
add a local property to hold the beacons:
@property (nonatomic, strong) NSArray * beacons;

6.	 Clear out the viewDidLoad method; we don't need an add or edit button in 
our implementation.



Chapter 7

[ 137 ]

Configuring our beacon manager
We're going to need to create our beacon manager and clear out any existing beacon 
manager if it already exists. Consider the following steps:

1.	 Just after the call to [super viewWillAppear:animated], add our call to 
clear out and recreate our beacon manager:
if (self.beaconManager) {
    [self.beaconManager stopEstimoteBeaconDiscovery];
}
self.beaconManager = [[ESTBeaconManager alloc] init];

2.	 Next, we need to tell our beacon manager to return all the beacons for 
different regions in one collection:
self.beaconManager.returnAllRangedBeaconsAtOnce = YES;

3.	 Now, we need to set view controller as the ESTBeaconManager 
delegate and start discovering beacons. By passing nil to the 
startEstimoteBeaconsDiscoveryForRegion: method, we're  
asking the manager to bring back all nearby Estimote beacons:
self.beaconManager.delegate = self;
[self.beaconManager  
  startEstimoteBeaconsDiscoveryForRegion:nil];

4.	 Our beaconManager:didDiscoverBeacons:inRegion method from the 
ESTBeaconManagerDelegate protocol needs to set the local beacons property 
and then reload the table data:
-(void)beaconManager:(ESTBeaconManager *)manager  
  didDiscoverBeacons:(NSArray *)beacons  
  inRegion:(ESTBeaconRegion *)region {
    
    NSSortDescriptor *major = [NSSortDescriptor  
      sortDescriptorWithKey:@"major" ascending:YES];
    NSSortDescriptor *minor = [NSSortDescriptor  
      sortDescriptorWithKey:@"minor" ascending:YES];
    self.beacons = [beacons  
      sortedArrayUsingDescriptors:@[major, minor]];
    [self.tableView reloadData];
}

5.	 Finally, tableView:cellForRowAtIndexPath: needs to return the table cell 
for our beacon. Replace the existing method with our own method:
- (UITableViewCell *)tableView:(UITableView *)tableView  
  cellForRowAtIndexPath:(NSIndexPath *)indexPath
{



Vendor SDKs – Buying and Configuring Beacons

[ 138 ]

    UITableViewCell *cell = [tableView  
      dequeueReusableCellWithIdentifier:@"Cell"  
      forIndexPath:indexPath];

    ESTBeacon * beacon = [self.beacons  
      objectAtIndex:indexPath.row];
    
    cell.detailTextLabel.text = [LIBeaconHelper  
      colorNameForBeacon:beacon];
    cell.textLabel.text = [NSString  
      stringWithFormat:@"%@:%@", beacon.major,  
      beacon.minor];
    return cell;
}

Configuring the detail view controller
The detail view controller needs to connect to the selected beacon before showing the 
details of the beacon and allowing the details to be changed. Consider the following 
steps for configuring the detail view controller:

1.	 Start by adding the Estimote SDK and Audio Toolbox imports to 
LIDetailViewController.h:
#import <EstimoteSDK/ESTBeacon.h>
#import <AudioToolbox/AudioToolbox.h>

2.	 Our view controller needs to act as the beacon delegate. Add the 
ESTBeaconDelegate declaration to the class declaration.

3.	 Next, we're going to need three text fields: a status label, a save button, and 
an activity indicator. Add the properties to the header file:
@property (weak, nonatomic) IBOutlet UITextField 
*proximityUUIDTextField;
@property (weak, nonatomic) IBOutlet UITextField *majorTextField;
@property (weak, nonatomic) IBOutlet UITextField *minorTextField;
@property (weak, nonatomic) IBOutlet UILabel *statusLabel;
@property (weak, nonatomic) IBOutlet UIButton *saveButton;
@property (weak, nonatomic) IBOutlet UIActivityIndicatorView 
*activityIndicator;



Chapter 7

[ 139 ]

Configuring the view
When the beacon instance is passed to our view controller, we need to determine its 
the state before disabling/enabling the save button, and then we attempt connecting 
to the beacon if it isn't connected already.

Consider the following steps for configuring the view:

1.	 Replace the implementation of setDetailItem: with this one:
- (void)setDetailItem:(id)newDetailItem
{
    if (_detailItem != newDetailItem) {
        _detailItem = newDetailItem;
        
        ESTBeacon * beacon = (ESTBeacon*)_detailItem;
        
        beacon.delegate = self;
        if (beacon.peripheral.state == CBPeripheralStateConnected) 
{
            [self.saveButton setEnabled:YES];
            [self.activityIndicator stopAnimating];
        }
        else {
            [self.saveButton setEnabled:NO];
            [((ESTBeacon*)_detailItem) connect];
            [self.activityIndicator startAnimating];
        }
        
        
        // Update the view.
        [self configureView];
    }
}

2.	 We also need to update the configureView method based on the 
current connection status. Replace the implementation with our own 
implementation, which enables the save button only when the connection  
is made and sets the control values from the beacon:
- (void)configureView
{
    // Update the user interface for the detail item.
    ESTBeacon * beacon = (ESTBeacon*)self.detailItem;
    
    switch (beacon.peripheral.state) {
        case CBPeripheralStateConnected:
            self.statusLabel.text = @"Connected";



Vendor SDKs – Buying and Configuring Beacons

[ 140 ]

            [self.saveButton setEnabled:YES];
            break;
        default:
            self.title = @"Connecting...";
            self.statusLabel.text = @"Connecting...";
            [self.saveButton setEnabled:NO];
            break;
    }
    
    self.majorTextField.text = [beacon.major stringValue];
    self.minorTextField.text = [beacon.minor stringValue];
    self.proximityUUIDTextField.text = [beacon.proximityUUID 
UUIDString];
}

Connecting and disconnecting from beacons
We're going to implement three ESTBeaconDelegate methods that handle when the 
beacon connects, when the beacon disconnects, and when the accelerometer values have 
changed. Consider the following steps for connecting and disconnecting from beacons:

1.	 Let's start with the beaconConnectionDidSucceeded: method. Here, we'll 
enable the accelerometer and set the title of our view controller using the 
temperature values from the beacon. We'll also enable the save button:
-(void)beaconConnectionDidSucceeded:(ESTBeacon *)beacon {

    [self.navigationItem setRightBarButtonItem:nil];
    NSLog(@"Connected to beacon %@", beacon);
    
    [beacon enableAccelerometer:YES completion:nil];
    
    [self configureView];
    
    self.statusLabel.text = @"Connected";
    
    [beacon readTemperatureWithCompletion:^(NSNumber *value, 
NSError *error) {
        self.title = [NSString stringWithFormat:@"%@ - %@ºC", 
[LIBeaconHelper colorNameForBeacon:beacon], value];
    }];
    
    [self.saveButton setEnabled:YES];
    [self.activityIndicator stopAnimating];
}



Chapter 7

[ 141 ]

2.	 Next, we'll implement the beaconConnectionDidFail:withError: method. 
This method might occur multiple times with transient errors, which we can 
ignore. If a permanent error occurs, then we pop the view controller off the 
navigation stack; the user can try again if this occurs. Add the implementation:
-(void)beaconConnectionDidFail:(ESTBeacon *)beacon 
withError:(NSError *)error {
    NSLog(@"Failed to connect to beacon: %@", error);
    if (error.code == 404) [[self navigationController] 
popViewControllerAnimated:YES];
}

3.	 Finally, we want the accelerometer to detail changes by vibrating our device 
when changes occur. Add the delegate method beacon:accelerometer 
StateChanged:
-(void)beacon:(ESTBeacon *)beacon accelerometerStateChanged:(BOOL)
state {
    AudioServicesPlayAlertSound(kSystemSoundID_Vibrate);
}

Saving the changes
The main piece to our detail view controller is to save the changes to the beacon 
when the save button is pressed. When we save the values, we need to write 
them independently to the device using the writeProximityUUID:completion:, 
writeMajor:completion:, and writeMinor:completion: values sequentially.

In order to ensure the values are written successfully, we'll chain the calls to write 
the values in the completion block in the previous call.

In each call, we'll check the success of the call before making the next one; if the call 
fails, we'll show an error. Consider the following steps for saving the changes:

1.	 Add a method to show an error message and re-enable the save function if 
an error occurs:
-(void)showErrorAndEnableSave:(NSError*)error {
    UIAlertView * av = [[UIAlertView alloc] 
      initWithTitle:@"An error occurred"
    message:error.description
    delegate:nil
    cancelButtonTitle:@"Ok"
    otherButtonTitles:nil, nil];
    
    [av show];
    



Vendor SDKs – Buying and Configuring Beacons

[ 142 ]

    [self.activityIndicator stopAnimating];
    [self.saveButton setEnabled:YES];
}

2.	 Add our save method to set the values of the device:

- (IBAction)saveChanges:(id)sender {
    ESTBeacon * beacon = (ESTBeacon*)self.detailItem;
    
    [self.navigationItem setHidesBackButton:
      YES animated:YES];
    [self.activityIndicator startAnimating];
    
    [beacon writeProximityUUID:
      self.proximityUUIDTextField.text 
      completion:^(NSString *value, NSError *error) {
        if (error && error.code != 411) {
            [self showErrorAndEnableSave:error];
        }
        else {
            [beacon writeMajor:[self.majorTextField.text 
              intValue] completion:^(unsigned short value, 
              NSError *error) {
                if (error && error.code != 411) {
                    [self showErrorAndEnableSave:error];
                }
                else {
                    [beacon writeMinor:
                      [self.minorTextField.text intValue] 
                      completion:^(unsigned short value, 
                      NSError *error) {
                        if (error && error.code != 411) {
                            [self 
                            showErrorAndEnableSave:error];
                        }
                        else {
                            [self.navigationItem 
                              setHidesBackButton:NO 
                              animated:YES];
                            [self.activityIndicator 
                              stopAnimating];
                            [[self navigationController] 
                            popViewControllerAnimated:YES];
                        }
                    }];
                }
            }];
        }
    }];
}



Chapter 7

[ 143 ]

This is a complex method that's doing quite a lot; so, let's go through it in sections.

First, it disables the back button and shows an activity indicator so that the user can't 
leave the view while it's trying to update the beacon:

ESTBeacon * beacon = (ESTBeacon*)self.detailItem;
[self.navigationItem setHidesBackButton:YES animated:YES];
[self.activityIndicator startAnimating];

Next, the code tries to use the Estimote SDK to configure the device, and takes some 
time to do so. The completion block is fired upon completion or failure:

[beacon writeProximityUUID:self.proximityUUIDTextField.text 
completion:…]

The completion block then first checks to see whether an error occurred, and if so,  
we enable the save button again, as follows:

if (error && error.code != 411) {
[self showErrorAndEnableSave:error];
}
else {…}

If all is well, then the else statement attempts to write the major value, which also 
has a completion block:

[beacon writeMajor:[self.majorTextField.text intValue] com-pletion:…]

The completion block again checks whether there's an error, and if so, re-enables the 
save button:

if (error && error.code != 411) {
[self showErrorAndEnableSave:error];
}
else {…}

Finally, if everything was successful, the else statement configures the minor value 
following the same structure as the previous write attempts with the additional code 
to stop the animation and pop off the view controller from the stack:

[beacon writeMinor:[self.minorTextField.text intValue] 
completion:^(unsigned short value, NSError *error) {
if (error && error.code != 411) {
[self showErrorAndEnableSave:error];
   }
   else {
[self.navigationItem setHidesBackButton:NO animated:YES];
[self.activityIndicator stopAnimating];



Vendor SDKs – Buying and Configuring Beacons

[ 144 ]

      [[self navigationController] popViewControllerAnimated:YES];
 }
}];

Creating the view
Finally, to make everything work, we need to wire up our view to the  
view controller.

Open up Main.storyboard and drag controls onto the view so that it resembles  
the following figure:

Our detail view

Ensure that you wire the following outlets to LIDetailViewController.h:

•	 proximityUUIDTextField

•	 majorTextField

•	 minorTextField

•	 statusLabel

•	 saveButton

•	 activityIndicator



Chapter 7

[ 145 ]

Then, wire the touchUpInside event of the save button to saveChanges: IBOutlet 
in LIDetailViewController.m.

Testing your application
Finally, you can fire up your application and get your Estimote beacons out.

Try changing some of your values and check whether it works. Don't forget to open 
a beacon in the detail view and then give the beacon a shake. Make sure it vibrates 
your iOS device!

Summary
In this chapter, we explored the Estimote SDK in some detail as well as discussed 
some other vendor implementations of iBeacon.

In the next chapter, we will combine everything we've learned in the previous 
chapters to build a complete museum app.





Advanced Tutorial – iBeacon 
Museum

So far throughout this book, you've learned about discovering beacons, determining 
the range of beacons, and even picking up and utilizing their presence when our 
app is running in the background. The aim of this chapter is to consolidate your 
knowledge into an app, which is as close to a real-world example as we can get.

In this chapter, we will not bring in any new iBeacon knowledge, but we will  
really get to grips with everything we learned throughout the book with an  
all-encompassing tutorial.

Our museum app allows users to wander around the exhibitions, and as they draw 
closer to the displays within each exhibition hall, they're given a more in-depth 
description of the context of what's on display.

Unlike in previous chapters, we will not use crude examples and try and mimic the 
kind of choices you'd make when considering user experience in a real-world app. 
A great example of this is that we'll ask for location permission by explaining to 
the user why we need location data and requesting them to click a button to grant 
permission before attempting to access the location information.

Our exhibitions
Our iBeacon museum is made up of three exhibitions. Each exhibition contains three 
displays, which we'll refer to as exhibits.



Advanced Tutorial – iBeacon Museum

[ 148 ]

Our entire museum will use the 1A285B28-EA1B-43F5-984A-CE5D2ED463CE UUID. 
We'll be using major values to identify the exhibitions and the minor values to 
identify the exhibits beneath them as shown in the following figure:

iBeacon museum exhibits

Because researching, collating, and even designing beautiful exhibit views is way 
beyond the scope of our app, what we'll be doing instead is using UIWebView to 
display our exhibit information. This way, we can concentrate on what's important 
for our app.

Other than skimming over the designs and using predefined, responsively-designed 
web views for our exhibit content, our app is pretty much a fully functioning real-
world example. You can take the code base on this app and reuse it in a commercial 
application if you wish, and of course, you have my consent to do so. I'd love to see 
your commercial applications and will even feature them on this book's accompanying 
site http://ibeacon.university/ if you let me know when they're published.

http://ibeacon.university/


Chapter 8

[ 149 ]

The museum map
Our museum is made up of an atrium and three exhibition halls in a lovely hexagon 
design as shown in the following figure:

The museum map

The main entrance of our museum takes the visitor into the atrium. Once there,  
they can visit any of our three exhibitions, but always have to come back through  
the atrium. We'll assume that if the user isn't within 5 meters of any beacon, then 
they're probably in the atrium and we'll let them know what else they can visit in  
our museum.

Our app structure
Our app is split into three views, which are automatically presented completely. 
There's no real navigation system to the application, the app navigation is controlled 
by where the user's feet take them.

The permission view
The first view halts the users' access to the app until the app can determine that 
the location services are switched on for use by the app and that the user has given 
permission for the app to use their location.

Without location information, our app is useless, but rather than just assuming  
that we have it like we have in all of our other tutorials, we'll actually give users  
the reason why we need it and give them a much nicer user experience.



Advanced Tutorial – iBeacon Museum

[ 150 ]

The atrium view
The atrium view gives our user more information about the museum and a summary 
of the exhibits within. We'll be presenting the user with the atrium view when 
they're no closer than 5 meters to any exhibit beacon. When they're closer than that, 
we'll always present the user with an exhibit view.

The atrium view also has the responsibility for collecting the name of the users so 
that we can show them which exhibit they're closest to on the map.

The exhibit view
Our final view shows contextual information about the exhibit that the user is 
nearest to. For example, if the user is right next to the industrial revolution exhibit of 
the British Empire exhibition, then the current view will be a cut-down version of the 
associated Wikipedia page about the industrial revolution of the British Empire.

This information view also contains a button that can be tapped and shows the user's 
location on the map rather than the current exhibit information.

If the user has already granted location permission, then we automatically jump to 
the museum view.

The supporting website
In order to skip the design phase of this app and really concentrate on the iBeacon 
related functionality, I've provided the view and map content in a separate 
responsive website.

Most of the content of our app will be delivered as responsive web pages presented 
in UIWebViews from http://museum.ibeacon.university/.

Our companion site also uses real-time socket connections so that you can actually 
see which exhibit you're currently visiting in real time from any browser as shown  
in the following figure:

http://museum.ibeacon.university/


Chapter 8

[ 151 ]

iBeacon museum current visitors

Tracking our user's journey
The role of the supporting website is to track our user's journey but also to return 
the content associated to the beacon that they are nearest to. In order to do both and 
effectively track our user, we need to follow a strict order of calls to our service. We'll 
do this by maintaining a browser session in a hidden UIWebView, which belongs to 
our main view controller. Consider the following steps to track our user's journey:

1.	 Create http://museum.ibeacon.university/name/{user_name}, where 
{user_name} is replaced by the name of the visitor. This first call tells our 
server who our visitor is and also sets some cookies so that we can track our 
visitor's journey.
For example, after entering my name, the URL would be http://museum.
ibeacon.university/name/Craig%20Gilchrist/.



Advanced Tutorial – iBeacon Museum

[ 152 ]

2.	 For each exhibit, we then visit http://museum.ibeacon.university/
exhibit/{major}/{minor}, where {major} and {minor} would be replaced 
by the major and minor values from the beacon. This URL then tracks the 
user's journey and then forwards the browser to the relevant Wikipedia page.
For example, if we're closest to the Machu Picchu exhibit, our URL would be 
http://museum.ibeacon.university/exhibit/2/2.

3.	 Finally, we have a dedicated web page that returns our map for our overlay 
that shows where we are currently in the museum. The URL is similar to 
the exhibit URL with the exception that the exhibit path element has been 
replaced by a map path element: http://museum.ibeacon.university/
map/{major}/{minor}.

Our app design
Our app is going to be essentially a single view application with all of our 
functionalities being placed offscreen when it's not in use but still present  
within the view and ultimately owned by the view controller.

This is a nice and easy way to ensure that UIWebView, which is maintaining our 
session with the server, is always in memory, and so that we're not getting a new 
identity with the server every time, the view is released by our application.

The following figure gives a much clearer indication of how our app is designed:

Views hidden until required



Chapter 8

[ 153 ]

Building the application
Now that we've fully explained our app and all of its features, let's build it!

Creating the project
Follow these steps to create the project:

1.	 Start by firing up Xcode and choosing a single view application from the 
templates when prompted.

2.	 Enter the following options for your new project:
°° Product Name: iBeacon Museum
°° Organization Name: Learning iBeacon
°° Product Identifier: com.learningibeacon
°° Devices: iPhone

3.	 Before we begin coding, let's start by setting our project properties. Open 
up the project properties by clicking on the top-level project in Project 
Navigator, and then under Deployment Info ensure that you turn on 
the Hide status bar option. Also ensure that our iPhone app can only be 
displayed in portrait mode by ensuring that only Portrait is checked in the 
Device Orientation option.

4.	 We're going to be displaying a lot of Wikipedia content in our app so it 
makes sense to hide any other text when it's just content on the screen.  
Open the Info tab of our Properties window and under Custom iOS  
Target Properties, set the View controller-based status bar appearance 
property to NO. This will ensure that the status bar is never shown.

5.	 Under the Linked Frameworks and Libraries section in the Info tab,  
click on the add icon and add CoreLocation.framework.

Initializing the views
We will not use nibs or storyboards for this tutorial. We'll be laying out each of the 
views in code (it is an advanced tutorial after all). We'll start by creating the views 
and positioning them offscreen first before building the functionality for each view. 
Perform the following steps to initialize the views:

1.	 Open our view controller implementation file. It will be named 
ViewController.m if you didn't choose a class prefix or 
LIViewController.m if you did as we did in the previous chapters.



Advanced Tutorial – iBeacon Museum

[ 154 ]

2.	 Add a property for each of our views in the implementation's interface 
section so that it resembles the following code:
@interface ViewController ()

@property (nonatomic, retain) UIView *  
  locationPermissionView;
@property (nonatomic, retain) UIView * exhibitView;
@property (nonatomic, retain) UIView * atriumView;

@end

3.	 Now, we need to instantiate our views. We'll be using our view controller's 
view frame to instantiate the views with frames and we'll offset the views we 
don't want to show to be just off the right-hand side of the view by setting the 
x-origin to be that of the view width. We'll also set the backgrounds for our 
atrium and permission views to a nice dark color. Add the following code:
CGRect frame = self.view.frame;
    
    self.locationPermissionView = [[UIView alloc]  
      initWithFrame:frame];
    
    // Set the frame off screen to the right.
    frame.origin.x = frame.size.width;
    
    self.exhibitView = [[UIView alloc] initWithFrame:frame];
    self.atriumView = [[UIView alloc] initWithFrame:frame];
    
    self.locationPermissionView.backgroundColor = [UIColor  
      colorWithRed:37.f/255.f green:33.f/255.f  
      blue:28.f/255.f alpha:1.f];
    self.atriumView.backgroundColor = self.  
      locationPermissionView.backgroundColor;

Notice that we didn't add the views as subviews yet? That's because we're not entirely 
sure whether we should be presenting the permissions view or the atrium view since 
we don't know whether the user has already allowed access to their location.



Chapter 8

[ 155 ]

Adding the CoreLocation functionality
In order to determine whether we've been given permission to use the user's 
location, we need a CLLocationManager instance. Perform the following steps:

1.	 Switch over to your view controller header file and add an import declaration 
for CoreLocation and declare our view controller as a CLLocationManager 
delegate. Your header file contents should now look something like the 
following code implementation:
#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface ViewController : UIViewController<CLLocationManagerDele
gate>

@end

2.	 Switch back to your implementation file and add a new CLLocationManager 
delegate and region properties:
@property (nonatomic, retain) CLLocationManager *  
  locationManager;
@property (nonatomic, retain) CLBeaconRegion * region;

3.	 Just below where we set our atrium view background color, add a few lines 
to instantiate our location manager, set our view controller as the delegate, 
and create our beacon region:
self.locationManager = [[CLLocationManager alloc] init];
self.locationManager.delegate = self;
NSUUID * beaconUUID = [[NSUUID alloc]  
  initWithUUIDString:@"1A285B28-EA1B-43F5-984A- 
  CE5D2ED463CE"];
self.region = [[CLBeaconRegion alloc]  
  initWithProximityUUID:beaconUUID identifier:@"Exhibits"];

Determining the first view
Now that we can determine permission status, we can see whether or not to 
initially show the permission view or the atrium view. If [CLLocationManager 
authorizationStatus] reports a status of kCLAuthorizationStatusAuthorized, 
then we need to show the atrium view instead of the permission view.



Advanced Tutorial – iBeacon Museum

[ 156 ]

Since our frame is already set to offscreen, we set our location permission view  
frame to that of our frame before resetting the x-origin back to zero and using it  
to reposition the atrium view. Perform the following steps:

1.	 Add this code just below the location manager instantiation code:
CLAuthorizationStatus authStatus = [CLLocationManager  
  authorizationStatus];
    
if (authStatus == kCLAuthorizationStatusAuthorized) {
    self.locationPermissionView.frame = frame;
    frame.origin.x = 0;
    self.atriumView.frame = frame;
}
    
[self.view addSubview:self.exhibitView];
[self.view addSubview:self.atriumView];
[self.view addSubview:self.locationPermissionView];

2.	 In order to keep our code tidy, we'll configure the rest of the view details in 
the viewDidAppear method and call out to separate methods to configure 
each view independently. Add three method stubs to configure the view and 
a call to each in the viewDidAppear method:
-(void)viewDidAppear:(BOOL)animated {
    [self configureAtriumView];
    [self configureExhibitView];
    [self configurePermissionView];
}

-(void)configureAtriumView {
    
}

-(void)configurePermissionView {
    
}

-(void)configureExhibitView {
    
}



Chapter 8

[ 157 ]

Configuring our permission view
Now that we've created a method stub to configure our permission view, we can go 
ahead and add the pieces we need. We'll add another check to CLLocationManager 
to see whether the user has actually denied location services and show a message if 
they have; otherwise, we'll add a button to ask for the permission.

Let's start by wiring up our CLLocationManager delegate method, locationManag
er:didChangeAuthorizationStatus so that it shows an error message if the user 
has denied location authorization. First, we'll need a method that checks and sets 
the label and button properties of our view depending on the authorization status. 
Consider the following steps:

1.	 Add the following method:
-(void)setPermissionInstructions {
    
    UILabel * permissionInstructions =  
      (UILabel*)[self.locationPermissionView  
      viewWithTag:1];
    UIButton * permissionButton =  
    (UIButton*)[self.locationPermissionView viewWithTag:2];
    
    if ([CLLocationManager authorizationStatus] ==  
      kCLAuthorizationStatusDenied) {
        [permissionInstructions setText:@"Allow permissions  
          in the system preferences under Privacy >  
          Location Services > iBeacon Museum"];
        [permissionButton setHidden:YES];
    }
    else {
        [permissionInstructions setText:@"Before we begin,  
          we'll need access to your location so that we can  
          bring you content relevant to your current  
          location"];
        [permissionButton setHidden:NO];
    }
}

2.	 Now, we can add our locationManager:didChangeAuthorizationStatus: 
method to hide the welcome view if the user grants permission or changes 
the instructions if they don't grant permission:
-(void)locationManager:(CLLocationManager *)manager  
  didChangeAuthorizationStatus: 
  (CLAuthorizationStatus)status {
    
    [self setPermissionInstructions];
    



Advanced Tutorial – iBeacon Museum

[ 158 ]

    if (status == kCLAuthorizationStatusAuthorized) {
        // Animate in the atrium view.
        CGRect frame = self.view.frame;
        CGRect offsetLeftFrame = CGRectMake(- 
          frame.size.width, 0, frame.size.width,  
          frame.size.height);
        
        [UIView animateWithDuration:0.5f animations:^{
            self.locationPermissionView.frame =  
              offsetLeftFrame;
            self.atriumView.frame = frame;
        }];
    }
}

3.	 We'll also need a method to start monitoring our beacon region. Add the 
method now:
-(void)startMonitoringForRegion {
    NSUUID * beaconUUID = [[NSUUID alloc]  
      initWithUUIDString:@"1A285B28-EA1B-43F5- 
      984A-CE5D2ED463CE"];
    CLBeaconRegion * region = [[CLBeaconRegion alloc]  
      initWithProximityUUID:beaconUUID  
      identifier:@"Exhibits"];
    [self.locationManager startMonitoringForRegion:region];
}

Adding controls
Now, finally we need to create all of the controls for our view. Notice, that we 
retrieved the labels and views using their tags in the setPermissionInstructions 
method so we'll need to make sure we add tags. This method is quite large, so I'll 
break it down into sections. Perform the following steps:

1.	 First, we need to create UINavigationBar to section off our page nicely.  
Add the following code to the configurePermissionView method:
    UINavigationBar * navbar = [[UINavigationBar alloc]  
      init];
    navbar.barTintColor = [UIColor colorWithRed:129.f/255. 
      f green:76.f/255.f blue:166.f/255.f alpha:1.f];
    navbar.translucent = NO;
    [navbar setFrame:CGRectMake(0, 0,  
      self.locationPermissionView.frame.size.width, 44.f)];
    [self.locationPermissionView addSubview:navbar];
    



Chapter 8

[ 159 ]

2.	 Now, add a title label to the navbar:
UILabel * titleLabel = [[UILabel alloc]  
  initWithFrame:navbar.frame];
[titleLabel setText:@"Welcome"];
[titleLabel setTextAlignment:NSTextAlignmentCenter];
[titleLabel setTextColor:[UIColor whiteColor]];
[navbar addSubview:titleLabel];
    

3.	 We'll use the navbar height to position our next welcome label:
UILabel * welcomeLabel = [[UILabel alloc] initWithFrame:
CGRectMake(10.f, titleLabel.frame.size.height + 10.f,   
  self.view.frame.size.width-20.f, 60.f)];
[welcomeLabel setTextColor:[UIColor whiteColor]];
[welcomeLabel setTextAlignment:NSTextAlignmentCenter];
[welcomeLabel setText:@"Thank you for visiting iBeacon  
  Museum."];
[welcomeLabel setFont:[UIFont systemFontOfSize:20.f]];
[welcomeLabel setNumberOfLines:0];
[self.locationPermissionView addSubview:welcomeLabel];

4.	 Now, we'll give a tag value of 1 to all our important instruction's label and 
use the welcome label to position it:
UILabel * instructionsLabel = [[UILabel alloc]  
  initWithFrame:
CGRectMake(10.f, welcomeLabel.frame.origin.y +  
  welcomeLabel.frame.size.height + 20.f,  
  self.view.frame.size.width-20.f, 120.f)];
[instructionsLabel setTextColor:[UIColor whiteColor]];
[instructionsLabel setTextAlignment:NSTextAlignmentCenter];
[instructionsLabel setTag:1];
instructionsLabel.numberOfLines = 0;
[self.locationPermissionView addSubview:instructionsLabel];

5.	 Now, we need to add a button to start region monitoring which will request 
permission the first time the user presses it. We need to grab this button in 
the setPermissionInstructions method so we need to give it a tag of 2:
UIButton * button = [[UIButton alloc] initWithFrame:  
  CGRectMake(10, self.view.frame.size.height-54.f,  
  self.view.frame.size.width-20.f, 44.f)];
[button setTag:2];
[button setTitle:@"Tap to allow location"  
  forState:UIControlStateNormal];
[button addTarget:self  
  action:@selector(startMonitoringForRegion)  
  forControlEvents:UIControlEventTouchUpInside];
[self.locationPermissionView addSubview:button];



Advanced Tutorial – iBeacon Museum

[ 160 ]

6.	 Finally, we need to set the permission instruction properties for our newly 
added labels and buttons, as follows:
[self setPermissionInstructions];

Configuring the exhibit view
Our exhibit view's responsibility is to load the web content corresponding to the 
nearest beacon. If there isn't a beacon near, then we show the atrium view.

Our exhibit view is also responsible for sending our users name up to the server. 
Let's start by creating our web view. It contains a simple navigation bar and a web 
view filling the rest of the page. Inside our navigation bar, we also got a button that 
switches between map mode and detail mode. Perform the following steps:

1.	 We'll keep the important fields as properties so that we don't have to keep 
hunting them down from the sub views. Add the following properties to  
our view controller:
@property (nonatomic, retain) UILabel * exhibitLabel;
@property (nonatomic) BOOL isMapMode;
@property (nonatomic) BOOL hasSentNameToServer;
@property (nonatomic, retain) UINavigationBar *  
  exhibitNavbar;
@property (nonatomic, retain) UIWebView * mapWebView;
@property (nonatomic, retain) UIWebView * detailWebView;

2.	 Add a method to switch between the map and detail mode. This method 
simply needs to set the local isMapMode property and hide one or more of  
the web views:
-(void)switchMapMode {
    self.isMapMode = !self.isMapMode;
    self.mapWebView.hidden = !self.isMapMode;
    self.detailWebView.hidden = self.isMapMode;
}

3.	 Our app needs to know when it can switch over to the exhibit view, and 
it can only do this once the name has been sent to the server. Add the 
UIWebViewDelegate declaration to our controller header file and then 
add the following method so that we know that our app can start showing 
exhibits as soon as they come into range:
-(void)webViewDidFinishLoad:(UIWebView *)webView {
    self.detailWebView.delegate = nil;
    
    self.hasSentNameToServer = YES;



Chapter 8

[ 161 ]

    UILabel * atriumInstructions =  
      (UILabel*)[self.atriumView viewWithTag:2];
    [atriumInstructions setText:@"As you browse the museum  
      we'll present information relevant to you"];
    
    [self startMonitoringForRegion];
}

4.	 Now, be sure to make our controller the delegate of the web view at the end 
of the configureExhibitView method:
self.detailWebView.delegate = self;

Adding controls to the exhibit view
Now, we need to add our controls to the exhibit view. It's very straightforward but 
again, there's a lot of code so we'll do it in sections. Perform the following steps:

1.	 Just like the permission view, we need a navigation bar; although this time, 
we keep a reference in our controller property. Add the following code to  
our configureExhibitView method:
UINavigationBar * navbar = [[UINavigationBar alloc] init];
    navbar.barTintColor = [UIColor colorWithRed:129.f/255.f  
      green:76.f/255.f blue:166.f/255.f alpha:1.f];
    navbar.translucent = NO;
    [navbar setFrame:CGRectMake(0, 0,  
      self.locationPermissionView.frame.size.width, 44.f)];
    [self.exhibitView addSubview:navbar];
    self.exhibitNavbar = navbar;

2.	 Now, add a title and keep a reference in our property:
UILabel * titleLabel = [[UILabel alloc]  
  initWithFrame:navbar.frame];
[titleLabel setText:@"Exhibit"];
[titleLabel setTextAlignment:NSTextAlignmentCenter];
[titleLabel setTextColor:[UIColor whiteColor]];
[navbar addSubview:titleLabel];
self.exhibitLabel = titleLabel;

3.	 Add a navigation item with a right bar button item to switch our view from 
the info to map views:
UIButton * button = [UIButton  
  buttonWithType:UIButtonTypeDetailDisclosure];
    CGRect frame = button.frame;
    frame.origin.x = navbar.frame.size.width - 10.0f -  
      frame.size.width;



Advanced Tutorial – iBeacon Museum

[ 162 ]

    frame.origin.y = (navbar.frame.size.height/2)- 
      (frame.size.height/2);
    button.tintColor = [UIColor whiteColor];
    [button addTarget:self action:@selector(switchMapMode)  
      forControlEvents:UIControlEventTouchUpInside];
    [button setFrame:frame];
    [navbar addSubview:button];

4.	 Now, add our web views and again keep a local reference:
UIWebView * detailWebView = [[UIWebView alloc]  
  initWithFrame:CGRectMake(0, navbar.frame.size.height, self.view.
frame.size.width, self.view.frame.size.height- 
navbar.frame.size.height)];
UIWebView * mapWebView = [[UIWebView alloc] 
initWithFrame:detailWebView.frame];
[mapWebView setHidden:YES];
self.detailWebView = detailWebView;
self.mapWebView = mapWebView;
[self.exhibitView addSubview:detailWebView];
[self.exhibitView addSubview:mapWebView];

Adding content methods
To complete our exhibit view, we need two methods, one to show content and 
another to set the name. Perform the following steps:

1.	 Add the method to send the user's name to the server. We'll be using the 
UITextField value from the atrium view, which we'll create shortly.

2.	 This method grabs the text field and forms the URL using its text value 
before sending the value and then starts monitoring for location:
 -(void)sendNameToServer {
    UITextField * nameTextField = (UITextField*)[self.atriumView 
viewWithTag:1];
    NSString * urlString = [NSString stringWithFormat:@"http://
museum.ibeacon.university/name/%@", [nameTextField.text stringByAd
dingPercentEscapesUsingEncoding:NSASCIIStringEncoding]];
    [self.detailWebView loadRequest:[NSURLRequest 
requestWithURL:[NSURL URLWithString:urlString]]];
    [self startMonitoringForRegion];
}



Chapter 8

[ 163 ]

Ranging beacons
The last things we need to do to finish our exhibit view is range beacons and show 
the relevant details. Perform the following steps:

1.	 First, add major and minor properties so that we know what our current 
view exhibit is:
@property (nonatomic) int currentMajor;
@property (nonatomic) int currentMinor;

2.	 Now, add our locationManager:didRangeBeacons:inRegion method stub:
-(void)locationManager:(CLLocationManager *)manager  
  didRangeBeacons:(NSArray *)beacons  
  inRegion:(CLBeaconRegion *)region
{
}

3.	 To our new method stub, add the following code that prepares some frames 
for the relevant views and determines which is the closest beacon:
if (!self.hasSentNameToServer) return;
CGRect frame = self.view.frame;
    CGRect offsetLeftFrame = CGRectMake(-frame.size.width,  
      0, frame.size.width, frame.size.height);
    
    CLBeacon * closestBeacon = nil;
    for (CLBeacon * beacon in beacons) {
        if (closestBeacon == nil) {
            closestBeacon = beacon;
        }
        else {
            if (beacon.accuracy < closestBeacon.accuracy) {
                closestBeacon = beacon;
            }
        }
    }

4.	 Now, we need to determine whether we have a beacon within 5 meters and 
if so, we need to show the exhibit view by loading the content into our web 
views and ensuring the atrium view isn't being shown:
if (closestBeacon && closestBeacon.accuracy < 5) {
    self.atriumView.frame = offsetLeftFrame;
    self.exhibitView.frame = frame;
    
    if (self.currentMajor != [closestBeacon.major  
      intValue] || self.currentMinor !=  
      [closestBeacon.minor intValue]) {



Advanced Tutorial – iBeacon Museum

[ 164 ]

          self.currentMajor =[closestBeacon.major  
          intValue];
        self.currentMinor =[closestBeacon.minor  
          intValue];
        
        NSURL * detailUrl = [NSURL  
          URLWithString:[NSString  
          stringWithFormat:@ 
          "http://museum.ibeacon.university/exhibit 
          /%i/%i", self.currentMajor, self.currentMinor]];
            NSURL * mapUrl = [NSURL URLWithString:[NSString  
              stringWithFormat:@"http://museum.ibeacon. 
              university/map/%i/%i", self.currentMajor,  
              self.currentMinor]];
            
            [self.detailWebView loadRequest:[NSURLRequest  
              requestWithURL:detailUrl]];
            [self.mapWebView loadRequest:[NSURLRequest  
              requestWithURL:mapUrl]];
        }
    }
    if (self.currentMajor == 1) {
        self.exhibitNavbar.barTintColor = [UIColor  
          colorWithRed:95.f/255.f green:185.f/255.f  
          blue:89.f/255.f alpha:1.f];
        self.exhibitLabel.text = @"Ancient Egypt";
    }
    if (self.currentMajor == 2) {
        self.exhibitNavbar.barTintColor = [UIColor  
          colorWithRed:85.f/255.f green:159.f/255.f  
          blue:208.f/255.f alpha:1.f];
        self.exhibitLabel.text = @"Native America";
    }
    if (self.currentMajor == 3) {
        self.exhibitNavbar.barTintColor = [UIColor  
          coloWithRed:188.f/255.f green:88.f/255.f  
          blue:88.f/255.f alpha:1.f];
        self.exhibitLabel.text = @"British Empire";
    }

5.	 If we don't have a beacon nearby, then we should show the atrium view. 
Add an else if statement as follows:
else if (self.currentMajor > 0) {
    self.exhibitView.frame = offsetLeftFrame;
    self.atriumView.frame = frame;
    self.currentMajor = 0;
    self.currentMinor = 0;
};



Chapter 8

[ 165 ]

Configuring our atrium view
Our final view is the atrium view, which is a holding view for when there are no 
beacons within 5 meters, or we've not yet got the user's name. It makes sense then that 
the first thing we need to do is collect the user's name. Perform the following steps:

1.	 Jump back over to our ViewController header file and declare the controller 
UITextFieldDelegate.
Once we've got an acceptable answer for a name, we need to hide the text 
field and make our first web call to the server, which we already configured. 
In order to know when we should start monitoring beacons, we need to use 
the textFieldShouldReturn: method of UITextFieldDelegate. Once 
we've got an acceptable value, we'll call our sendNameToServer method we 
created earlier.

2.	 Now, add the following code to ensure the text field isn't empty:
-(BOOL)textFieldShouldReturn:(UITextField *)textField {
    if ([textField.text stringByTrimmingCharactersInSet:[NSCharact
erSet whitespaceAndNewlineCharacterSet]]) {
        [textField setHidden:YES];
        [textField resignFirstResponder];
        [self sendNameToServer];
        return YES;
    }
    return NO;
}

Adding atrium view controls
The last thing to do before testing our app is to configure the atrium view controls. 
This doesn't need any detailed explanation as it's very similar to the other control 
creation methods, except to note that we're using a tag value of 1 for the text field 
and a tag value of 2 for the instructions as we need to grab these in other methods 
we've created earlier.

Complete configureAtriumView so that it looks like the following snippet:

-(void)configureAtriumView {
    UINavigationBar * navbar = [[UINavigationBar alloc] init];
    navbar.barTintColor = [UIColor colorWithRed:129.f/255.f  
      green:76.f/255.f blue:166.f/255.f alpha:1.f];
    navbar.translucent = NO;
    [navbar setFrame:CGRectMake(0, 0,  
      self.atriumView.frame.size.width, 44.f)];
    [self.atriumView addSubview:navbar];



Advanced Tutorial – iBeacon Museum

[ 166 ]

    
    // Add a title.
    UILabel * titleLabel = [[UILabel alloc]  
      initWithFrame:navbar.frame];
    [titleLabel setText:@"Atrium"];
    [titleLabel setTextAlignment:NSTextAlignmentCenter];
    [titleLabel setTextColor:[UIColor whiteColor]];
    [navbar addSubview:titleLabel];
    
    // Add instructions and labels.
    UILabel * welcomeLabel = [[UILabel alloc] initWithFrame:
      CGRectMake(10.f,
      titleLabel.frame.size.height + 10.f,
      self.view.frame.size.width-20.f,
      60.f)];
    [welcomeLabel setTextColor:[UIColor whiteColor]];
    [welcomeLabel setTextAlignment:NSTextAlignmentCenter];
    [welcomeLabel setText:@"You are currently in the atrium"];
    [welcomeLabel setFont:[UIFont systemFontOfSize:20.f]];
    [welcomeLabel setNumberOfLines:0];
    [self.atriumView addSubview:welcomeLabel];
    
    UILabel * instructionsLabel = [[UILabel alloc] initWithFrame:
        CGRectMake(10.f,
        welcomeLabel.frame.origin.y +  
          welcomeLabel.frame.size.height + 20.f,
        self.view.frame.size.width-20.f,
        80.f)];
    [instructionsLabel setTextColor:[UIColor whiteColor]];
    [instructionsLabel setTextAlignment:NSTextAlignmentCenter];
    instructionsLabel.numberOfLines = 0;
    [instructionsLabel setText:@"Before you begin, to help us make  
      your journey more enjoyable, please tell us your name."];
    instructionsLabel.tag = 2;
    [self.atriumView addSubview:instructionsLabel];
    
    UITextField * textField = [[UITextField alloc]  
      initWithFrame:CGRectMake(10.f,  
      instructionsLabel.frame.origin.y +  
      instructionsLabel.frame.size.height + 10.f,  
      self.view.frame.size.width-20.f, 44.f)];
    [textField setDelegate:self];
    textField.tag = 1;
    textField.backgroundColor = [UIColor whiteColor];
    [textField setReturnKeyType:UIReturnKeyGo];
    [self.atriumView addSubview:textField];
}



Chapter 8

[ 167 ]

There's quite a lot of code in this snippet, but most of it is just layout and styling 
code. What the code does in a sequential order is:

1.	 Configures the navigation bar.
2.	 Adds a title label.
3.	 Adds a welcome label just below the title.
4.	 Creates UITextField, sets the current ViewController as the delegate,  

and then adds it to the view.

Time to test
This really has been a huge tutorial and so there's a good chance that you might 
have missed a step. If something doesn't work quite like you expected it to, then 
go through each step again and download the completed source code from the 
companion site to compare it with your own to see what you might have missed.

Use the companion OS X app to act as your beacons and don't forget to open  
a separate browser window for http://museum.ibeacon.university/ to see  
your progress (as well as others) on the web too.

Finally, feel free to amend, adapt, and refactor any of the code or feel free to catch me 
on Twitter if you have any questions about this tutorial (@craiggilchrist).

Summary
This chapter really was just to reinforce everything you've learned throughout this 
book. The final chapter looks at some security issues surrounding iBeacon and also 
what the future holds for the technology.

As far as coding goes, this was the final tutorial in the book. I hope you've really got 
to grips with the amazing potential of this technology and you are well armed with 
all the coding skills you need to build amazing proximity-powered applications.

In the next chapter, we'll discuss some of the security aspects of deploying iBeacon 
solutions including spoofing, hacking, and overcoming user fears with good  
user experience.

http://museum.ibeacon.university/




iBeacon Security – 
Understanding the Risks

The final chapter of this book is about understanding the security issues surrounding 
iBeacon for you as both a developer and a consumer. If you've followed all of  
the tutorials in this book, then you've already got a good understanding of what 
security issues you might face as a developer. This chapter gives more depth to  
that understanding.

I thought a rundown of some security considerations together with a vocabulary of 
common security concerns of users would be a great way to finish off the book.

We've covered some of the security risks in Chapter 1, Welcome to iBeacon, so we may 
go over some old ground but since this chapter is entirely dedicated to security, we'll 
cover the topics in more depth.

Beacon spoofing
As a developer, one of your primary concerns should be the vulnerability of your 
iBeacon profile. It's very easy for anyone equipped with a Bluetooth sniffer app  
to determine your beacon signatures and spoof them in their own app. After all, 
you've already made your iPhone act as a beacon during the course of this book.

The Consumer Electronics Show (CES) 2014 offered its visitors a treasure hunt 
powered by iBeacons and before the conference even began, the show had been 
hacked by the team at Make Magazine so that they could win the treasure hunt 
without even being at the event. Read more about Make's audacious hack at  
http://bit.ly/makehacks.

http://bit.ly/makehacks


iBeacon Security – Understanding the Risks

[ 170 ]

What Make Magazine did is downloaded the Android APK file (a compiled zip 
containing the Android app) and ran it through a decompiler to discover the  
beacon profiles used by CES.

CES treasure hunt winner

Defending against beacon spoofing
Ultimately, the best way to defend against people maliciously is to first decide 
whether or not you care?

If your beacon profile is used to send marketing messages or some benign 
functionality, then it's safe to opt for a very low level security mechanism. If 
you decide that the assets that the beacon represents are more valuable and the 
functionality needs protecting, then it's time to face the facts. Your beacon profile  
can be hacked and discovered easily and so, your app needs to employ extra clues  
to determine whether your device really is within the range of the beacon.

You can use other cues to determine whether this is actually your beacon, such as 
GPS location, or user behavior (has the user passed other beacons that you know  
are nearby?).



Chapter 9

[ 171 ]

Another way of managing your beacon security is by actually delivering the beacon 
profiles to your app using a web service via a content management system. This way, 
when one gets spoofed, you can easily stop monitoring it.

Rotating UUIDs
Gimbal beacons use a rotating UUID in which you use an SDK that queries a secure 
web API to give you the UUID of the beacons. The beacons are also smart and 
change the UUID without any internet connectivity.

This is a fantastic way of securing beacon deployments, as once deployed,  
the beacons are essentially useless without using the API. There is however a 
significant cost involved to using Gimbal as your solution provider as the SDK  
and cloud platform is charged on a per user basis.

Beacon hacking
We've already discussed buying beacons and different types of beacons in  
Chapter 1, Welcome to iBeacon and Chapter 7, Vendor SDKs – Buying and Configuring 
Beacons, so we already know that there are various differences in the way beacon 
vendors implement their security models.

Beacon vendors have a catch-22 situation. They need a way to allow you as the 
owner to configure the UUID, major, and minor values, while at the same time 
stopping malicious persons hijacking the beacons and repurposing them for their 
own requirements.

Most beacons are configured over the air using Bluetooth devices, so if they aren't 
properly locked down, you only need a hacker within 100 meters of your beacon to 
repurpose them. For example, if you place beacons all over a public place such as  
a mall with a weak security model, then a hacker can leave the beacons where they 
are and change their UIUD/major/minor triplet for their own app.

What's worse, if hackers know they can change your beacon profiles, then why not 
just steal them and reuse them somewhere else?

Knowing that your beacons are still where you left them is important to you as an 
app developer or service provider. My team at Eden Agency has deployed a number 
of ways to ensure that beacons are still where we designed them to be (and that they 
still have battery), all of which ultimately involve relying on our app consumers to 
walk past a beacon using our app. We then pick up the physical location using GPS 
and report back to a central HTTP web service.



iBeacon Security – Understanding the Risks

[ 172 ]

Dispelling security myths
We already dispelled most of the common security myths in Chapter 1, Welcome to 
iBeacon, but I thought I'd just reiterate them so that you've got a complete vocabulary 
for your wary clients or users. Consider the following steps:

•	 Beacons are tracking my location: Beacons aren't tracking your location. 
They're not doing anything at all except telling you they're nearby. They 
push data and don't receive data at all and what's more, most beacons  
your app comes into contact with don't even care that they are there.

•	 Beacons are delivering targeted offers: Beacons aren't delivering anything 
except their UUID/major/minor triplet values. In order to deliver targeted 
offers, your app needs to know more about your habits and so ultimately 
needs your permission and some other understanding about you as a person.

•	 Beacons can track me without my permission: Your mobile device will come 
in contact with beacons every day and as the technology gains momentum, 
your device will encounter thousands of beacons. Beacons don't pull any data 
from your device and in order for any app to notify the developer of your 
location, you need to have given permission to location information first.

•	 My UUID belongs to me: The UUID doesn't belong to you; you might 
generate it and it's impossible for somebody else to generate the same one 
by accident, but since there's no governing body looking after which UUID 
belongs to whom, there's nothing to stop people using the same UUID as you.

Overcoming users' fears with good UX
As with any new technology, it's important to alleviate your users' fears about their 
privacy with a good UI.

Instead of just using the default location permission dialog box, it's important to 
tell the user why you want permission for their location with a full description. 
What's more, since iOS 7, you have been able to add this description using the 
NSLocationUsageDescription key in the app's info.plist file.

It's also important to ask for location at a relevant point; don't just spring the  
request on your user as soon as they start the app; otherwise, they're likely to  
deny your request.

Finally, only get the location if you have to. There's no quicker way to get a user to 
delete your app than by spamming them with marketing messages.



Chapter 9

[ 173 ]

My final piece of advice when developing apps with beacons is to look at your app 
as a user and not just a developer. If your piece of functionality feels right from a 
user perspective, then it is. If you ask yourself whether a user might see your app 
as snooping, then the chances are that you're not providing the user with enough 
valuable functionality to request the user's location.

Summary
In this chapter, we discussed some of the security issues surrounding iBeacon 
deployment and ways to protect against some of those security issues. Finally,  
we discussed common fears of users who encounter iBeacon solutions and ways  
to alleviate those fears.

We've come to the end of the chapter and your initial journey into iBeacon solutions, 
but this is by no means the end of your journey. If you have any questions at all about 
the book, then I'd love to hear from you, catch me on Twitter at @craiggilchrist 
and I'll gladly help you out. All that remains is to wish you the best of luck with your 
future proximity-powered endeavors from myself and everyone involved in the book. 
Thank you for reading and I hope you build incredible iBeacon solutions.





Index
A
accuracy property  68
advert

displaying  49-51
AirDrop  7
airline assistance

use case for  88
AltBeacon  130, 131
anatomy

viewing  94
Antwerp Museum

URL  11
API access

adding  135
app

background mode, enabling  126
beacons, testing  105
beginning, with database schema  113
building  58, 113
helper, using  114-116
NSLocationAlwaysUsageDescription,  

adding  126
passbook pass, testing  105
responsibility, handling  89
testing  104, 127, 145

app delegate
configuring  96-98

atrium view, iBeacon museum app
about  150
configuring  165
controls, adding  165-167

B
background

beacons, ranging  111

background modes
enabling  126
system, cheating  113
used, for keeping location  112

beacon
about  107
distance, receiving  102
hacking  171
ranging  100
ranging, in background  111
security myths, dispelling  172
spoofing  169
spoofing, defending against  170, 171
stickers  110, 111
testing  105
users' fears, overcoming with UX  172
UUIDs, rotating  171

beacon:accelerometerStateChanged: task, 
ESTBeaconDelegate  133

beacon:didDisconnectWithError: task,  
ESTBeaconDelegate  132

beaconConnectionDidFail:withError: task, 
ESTBeaconDelegate  132

beaconConnectionDidSucceeded: task,  
ESTBeaconDelegate  132

beacon manager, master view controller
configuring  137

beacons, detail view controller
connecting  140, 141
disconnecting  140, 141

beacons, iBeacon museum app
ranging  163, 164

beacons, master view controller
ranging  121

Belkin WeMo
about  109



[ 176 ]

URL  109
Bluetooth Low Energy (BLE)  7, 56
broadcast values

obtaining, from CLBeaconRegion  57

C
CBCentral class  56
CBPeripheral class  57
CBPeripheralManager class  57
centrals  56
CLBeaconRegion

about 36
broadcast values, obtaining from  57

CLBeaconRegion, options
CLBeaconRegion.notifyEntryState 

OnDisplay  90
CLBeaconRegion.notifyOnEntry  90
CLBeaconRegion.notifyOnExit  90

CLLocationManager class
about  37
defining, line by line  37, 38
locationManager:didChangeAuthorization

Status  40
locationManager:didEnterRegion  38
locationManager:didExitRegion  39
locationManager:didRangeBeacons: 

inRegion  39
CLLocationManagerDelegate method

configuring  27
writing up  47, 48

CLLocationManager instance
adding  28

CLOfferViewController
adding  43

CLProximity enum values
CLProximityFar  69
CLProximityImmediate  69
CLProximityNear  69
CLProximityUnknown  69

commercial applications, iBeacon  11
companion app

URL  21
using  22, 23

companion OS X application  21, 22
compatible devices, iBeacon  10
Consumer Electronics Show (CES)  169

content methods, iBeacon museum app
adding  162

controls
adding  44, 45
setting up  59

controls, iBeacon museum app
adding  158-160
adding, to exhibit view  161

Core Bluetooth framework
about  7, 55, 56
CBCentral class  56
CBPeripheral class  57
CBPeripheralManager class  57

Core Data framework, master  
view controller

data, fetching from  118
URL  118

Core Location framework
about  7, 36
adding  26
CLBeaconRegion class  36
CLLocationManager class  37

CoreLocation functionality, iBeacon  
museum app

adding  155

D
database schema

app, beginning with  113
detail view controller

beacons, connecting  140, 141
beacons, disconnecting  140, 141
changes, saving  141-143
configuring  138
implementing  122
input, validating  125
properties, obtaining  124
properties, setting  124
UI, finishing off  125, 126
view, configuring  123, 139

down badges
clearing  100

E
ESTBeacon  132



[ 177 ]

ESTBeaconDelegate
about  132
beacon:accelerometerStateChanged:  

task  133
beacon:didDisconnectWithError: task  132
beaconConnectionDidFail:withError:  

task  132
beaconConnectionDidSucceeded: task  132

ESTBeaconManager  133
ESTBeaconManagerDelegate  133
Estimote

about  13
and SDK  129
development tutorials  14
tools  14
URL  131

Estimote API 2.1
security  131
using  131

Estimote API pages
URL  131

Estimote beacons
cons  15
pros  15

Estimote SDK classes
about  132
adding  134
ESTBeacon  132
ESTBeaconDelegate  132
ESTBeaconManager  133
ESTBeaconManagerDelegate  133

exhibitions, iBeacon museum app  148
exhibit view, iBeacon museum app

about  150
configuring  160, 161
controls, adding  161

F
frameworks

adding  59

G
gender

selecting  103, 104
Geo-fencing (geofencing)  36
global positioning system (GPS)  36

H
hacking, Beacon  171
Hello world

about  23, 24
CLLocationManagerDelegate method,  

configuring  27, 28
CLLocationManager instance, adding  28
code, breaking  29
code, testing  30-32
Core Location framework, adding  25
monitoring, starting  28
permission message, adding  27
UUID, preparing  28

helper class
about  135, 136
using  114-116

home automation
about  107
and iBeacon  109, 110

hunter view controller, treasure hunting app
building  78
code, completing  85
imports  80
private properties  80
public properties  80
region, entering  82
region, exiting  82
state, changing  82-84
states  79, 80
tidying up  85
view, loading  81

I
iBeacon

about  7
and home automation  109, 110
commercial applications  11, 12
compatible iOS devices  10
permissions  40, 41
security  169

iBeacon museum app
about  149
building  153
design  152
exhibitions  147, 148
iBeacon university, URL  150



[ 178 ]

structure  149
supporting website  150
testing  167
user's journey, tracking  151, 152

iBeacon museum app, building
atrium view, configuring  165
atrium view controls, adding  165-167
beacons, ranging  163, 164
content methods, adding  162
controls, adding  158-160
controls, adding to exhibit view  161, 162
CoreLocation functionality, adding  155
exhibit view, configuring  160, 161
first view, determining  155, 156
permission view, configuring  157, 158
project, creating  153
views, initializing  153, 154

iBeacon museum app, views
atrium view  150
exhibit view  150
permission view  149

iBeacon university
URL  148

images, treasure hunting app
adding  73, 74

imports, hunter view controller  80
input, detail view controller

validating  125

L
location manager

configuring  46, 47
locationManager:didChangeAuthorization

Status  40
locationManager:didEnterRegion  38
locationManager:didExitRegion  39
locationManager:didRangeBeacons: 

inRegion  39
location permission, settings

advert, displaying  49-51
CLLocationManagerDelegate,  

writing up  47, 48
controls, adding  44, 45
location manager, configuring  46, 47
offer, dismissing  51-53
root view controller, setting up  45

locations
enabling, after denial  42
keeping, background modes used  112
NSLocationAlwaysUsageDescription  42
NSLocationWhenInUseUsage 

Description  42
permissions, in iOS 8  41

M
Macy's

URL  11
Made for iPhone (MFi)  7
Major League Baseball

URL  11
major value, UUID  35
Make hack

URL  169
master view controller

about  133
beacons, ranging  121
configuring  136
data, fetching from Core Data  

framework  118
implementing  116
new objects, inserting  121
table cell, configuring  119, 120
user, notifying  120
view controller, configuring  117

measured power  9
minor value, UUID  35
N
Near Field Communication (NFC)  7
Nest

about  108
URL  108

Ninja Blocks
about  108
URL  107, 108

NSLocationAlwaysUsageDescription
about  42
adding  126

NSLocationWhenInUse 
UsageDescription  42



[ 179 ]

O
objects, master view controller

inserting  121

P
passbook

integration  91-93
passbook pass

adding  104
testing  105

peripherals  55
permission message

adding  27
permissions, iBeacon

about  40
location, in iOS 8  41

permission view, iBeacon museum app
about  149
configuring  157, 158

Phillips Hue
about  109
URL  109

platform
selecting  130

project, iBeacon museum app
creating  153

properties, detail view controller
getting  124
setting  124

protocol data unit (PDU)  131
proximity property  68
public properties, hunter view controller  80

R
radio frequency identification (RFID)  36
range  9
Raspberry Pi

about  108
URL  107, 108

received strength signal indication (RSSI)  9
RedBear Beacon B1

cons  20
pros  19

RedBear BeaconTool app
URL  18

RedBearLab
cons  18, 19

regions
entering  99, 100
exiting  99, 100

retail loyalty
use case for  88

root view controller
setting up  45

root view controller, treasure hunting app
building  74, 75

ROXIMITY
about  15-17
implementing  130

ROXIMITY Beacon Explorer app
URL  17

ROXIMITY beacons
cons  17
pros  17

S
SDK

and Estimote  129
security, Beacon

myths, dispelling  172
security, Estimote API 2.1  131
states, hunter view controller

about  79, 80
changing  82-84

storyboard
wiring up  61

switch logic
adding  63-65

T
table cell, master view controller

configuring  119, 120
treasure hunting app

about  67-71
building  71
distance  68
frameworks, adding  73
hunter view controller, building  78
images, adding  73, 74
initial views, drawing  72
project settings, adding  73



[ 180 ]

root view controller, building  74, 75
treasure view controller, building  75-78
wiring up  78

treasure view controller, treasure  
hunting app

building  75-78
tutorial app

about  93, 111
advert, showing  49-51
anatomy, viewing  94
app delegate, configuring  96-98
application, creating  95
beacons, ranging  100
building  43
CLLocationManagerDelegate,  

wiring up  47, 48
CLOfferViewController, adding  43, 44
code  95
controls, adding  44, 45
creating  43
down badges, clearing  100
location manager, configuring  46, 47
location permission, setting  44
no ranging, in background  98
offer, dismissing  51-53
regions, entering  99
regions, exiting  99
root view controller, setting up  45, 46
scenario  93, 94
view controller, implementing  101
view, creating  95, 96

TXPower  58

U
UI, detail view controller

finishing off  125, 126
Universally Unique Identifier. See  UUID
use case 

for airline assistance  88
for retail loyalty  88

use case, UUID  35
user, master view controller

notifying  120
users' fears

overcoming, with UX  172

user's journey, iBeacon museum app
tracking  151, 152

UUID
about  8, 9, 33-35
major value  8, 35
minor value  8, 35
preparing  28
rotating  171
use case, example  35

V
vendor

about  12, 13
options  20

view
creating  60, 95, 96

view controller
beacon distance, receiving  102
gender, selecting  103, 104
passbook pass, adding  104, 105
setting up  62, 63
view, initializing  101, 102

view, detail view controller
configuring  123, 139
creating  144

view, hunter view controller
loading  81

views, iBeacon museum app
first view, determining  155, 156
initializing  153, 154

Virgin Atlantic
URL  11

W
Waze app

URL  90
website, iBeacon museum app

supporting  150
World Wide Web (WWW)  108

X
Xcode

implementing  133



Thank you for buying  
Learning iBeacon

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


Near Field Communication with 
Android Cookbook
ISBN:  978-1-78328-965-3            Paperback: 286 pages

Discover the endless possibilities of using Android 
NFC capabilities to enhance your apps over 50 
practical recipes

1.	 Practical and real-life examples showing how 
and where NFC can be used.

2.	 Discover how to exploit NFC capabilities to 
enhance your apps to easily share and interact 
with the world.

3.	 Learn how to extend cross-device content 
sharing by taking advantage of Android  
Beam's capabilities.

iOS and OS X Network 
Programming Cookbook
ISBN:  978-1-84969-808-5            Paperback: 300 pages

Over 50 recipes to develop network applications in 
both the iOS and OS X environment

1.	 Use several Apple and third-party  
APIs to develop both server and client 
networked applications.

2.	 Shows you how to integrate all of the third-party 
libraries and APIs with your applications.

3.	 Includes sample projects for both iOS and  
OS X environments.

Please check www.PacktPub.com for information on our titles



Arduino Home Automation 
Projects
ISBN:  978-1-78398-606-4            Paperback: 132 pages

Automate your home using the powerful  
Arduino platform

1.	 Interface home automation components  
with Arduino.

2.	 Automate your projects to communicate 
wirelessly using XBee, Bluetooth, and Wi-Fi.

3.	 Build seven exciting, instruction-based home 
automation projects with Arduino in no time.

Application Development in iOS 7
ISBN:  978-1-78355-031-9            Paperback: 126 pages

Learn how to build an entire real-world application 
using all of iOS 7's new features

1.	 Get acquainted with the new features of iOS 7 
through real-world, project-based learning.

2.	 Take an in-depth look at Xcode 5, Foundation, 
and autolayout.

3.	 Utilize the full source code and assets present 
to build an actual interactive application.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome to iBeacon
	Introducing iBeacon
	Hey, 'sup
	Understanding range using RSSI
	Compatible devices
	Commercial applications of iBeacon
	So many vendors, so little time
	Estimote
	Estimote beacons – pros
	Estimote beacons – cons

	ROXIMITY
	ROXIMITY beacons – pros
	ROXIMITY beacons – cons

	RedBearLab
	RedBear Beacon B1 – pros
	RedBear Beacon B1 – cons

	Other vendor options

	Companion OS X application and website
	Using the companion app

	Hello world
	Let's get started
	Adding the Core Location framework
	Adding a permission message
	Configuring the CLLocationManagerDelegate method
	Adding a CLLocationManager instance
	Preparing the UUID
	Start monitoring
	Line by line


	Testing our code
	Summary

	Chapter 2: Detecting Beacons – Showing an Advert
	Uses of the UUID/major/minor broadcasting triplet
	UUID – Universally Unique Identifier
	Major
	Minor
	Example of a use case

	Understanding Core Location
	The CLBeaconRegion class
	The CLLocationManager class

	Creating a CLLocationManager class
	Defining a CLLocationManager class line 
by line
	locationManager:didEnterRegion
	locationManager:didExitRegion
	locationManager:didRangeBeacons:inRegion
	locationManager:didChangeAuthorizationStatus

	Understanding iBeacon permissions
	Location permissions in iOS 8
	Enabling location after denying it

	Building the tutorial app
	Creating the app
	Adding CLOfferViewController
	Setting location permission settings
	Adding some controls
	Setting up our root view controller
	Configuring our location manager
	Wiring up CLLocationManagerDelegate
	Showing the advert
	Dismissing the offer


	Summary

	Chapter 3: Broadcasting Advertisements – Sending Offers
	Introducing the Core Bluetooth framework
	Understanding centrals and peripherals
	The Core Bluetooth framework, centrals, and peripherals
	The CBCentral class
	The CBPeripheral class
	The CBPeripheralManager class


	Obtaining broadcast values from CLBeaconRegion
	Measured power (TXPower)
	Let's get started
	Adding frameworks
	Setting up our controls
	Creating our views
	Wire up the storyboard
	Setting up our view controller
	Adding our switch logic


	Summary

	Chapter 4: Ranging Beacons – Hunting for Treasure
	There be treasure nearby
	Understanding distance
	Our application
	Getting started with building our app
	Drawing our initial views
	Adding frameworks and project settings
	Adding images
	Building the root view controller
	Building the treasure view controller
	Finally, wire it up

	Building the hunter view controller
	Hunter view controller states
	Imports and public properties
	Private properties
	Loading the view
	Entering and exiting the region
	Changing state
	Tidying up
	Being extra conscientious


	Completing the code
	Summary

	Chapter 5: Detecting Beacons in the Background – Location Dating
	Real-life use cases
	An example use case for retail loyalty
	An example use case for airline assistance

	Handing over responsibility
	The CLBeaconRegion options
	Passbook integration
	Our tutorial app
	The scenario
	Viewing anatomy
	The code
	Creating the application
	Creating the view
	Configuring the app delegate
	Implementing our view controller


	Testing your application
	Testing the beacons
	Testing the passbook pass

	Summary

	Chapter 6: Leaving Regions – Don't Forget Your Stuff
	Raspberry Pi
	Ninja Blocks
	Nest
	Phillips Hue
	Belkin WeMo
	iBeacon and home automation
	Beacon stickers
	Our tutorial
	Ranging beacons in the background
	Tracking location using background modes
	Cheating the system


	Building our app
	Beginning the app with a database schema
	Using a little helper
	Master view controller implementation
	Configuring the view controller
	Fetching data from the Core Data framework
	Configuring the table cell
	Notifying the user
	Inserting new objects
	Ranging beacons

	Detail view controller implementation
	Configuring the view
	Getting and setting properties
	Validating input
	Finishing off the UI

	Adding NSLocationAlwaysUsageDescription
	Enabling the background mode

	Testing your app
	Summary

	Chapter 7: Vendor SDKs – Buying and Configuring Beacons
	Estimote motes and SDK
	Roximity implementation
	Choosing the best platform for your requirements
	AltBeacon – the open beacon specification
	Using Estimote API 2.1
	Security
	Estimote SDK classes
	ESTBeacon
	ESTBeaconDelegate
	ESTBeaconManager
	ESTBeaconManagerDelegate


	Let's get building
	Adding EstimoteSDK
	Adding API access
	The helper class
	Configuring the master view controller
	Configuring our beacon manager

	Configuring the detail view controller
	Configuring the view
	Connecting and disconnecting from beacons
	Saving the changes
	Creating the view


	Testing your application
	Summary

	Chapter 8: Advanced Tutorial – iBeacon Museum
	Our exhibitions
	The museum map
	Our app structure
	The permission view
	The atrium view
	The exhibit view

	The supporting website
	Tracking our user's journey

	Our app design
	Building the application
	Creating the project
	Initializing the views
	Adding the CoreLocation functionality
	Determining the first view
	Configuring our permission view
	Adding controls

	Configuring the exhibit view
	Adding controls to the exhibit view
	Adding content methods
	Ranging beacons

	Configuring our atrium view
	Adding atrium view controls


	Time to test
	Summary

	Chapter 9: iBeacon Security – Understanding the Risks
	Beacon spoofing
	Defending against beacon spoofing
	Rotating UUIDs

	Beacon hacking
	Dispelling security myths
	Overcoming users' fears with good UX
	Summary

	Index



