
www.allitebooks.com

http://www.allitebooks.org

Learning iPhone Game
Development with Cocos2D 3.0

Harness the power of Cocos2D to create your own stunning
and engaging games for iOS

Kirill Muzykov

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning iPhone Game Development with Cocos2D 3.0

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1190614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-014-4

www.packtpub.com

Cover image by Svetlana Muzykova (svetlana.muzykova@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Kirill Muzykov

Reviewers
Saeed Afshari

Nader Eloshaiker

Muhammad Lukman Nasaruddin

Kazuki Sakamoto

Sergio De Simone

Marcio Valenzuela

Acquisition Editor
Rebecca Youé

Content Development Editor
Azharuddin Sheikh

Technical Editors
Indrajit A. Das

Shashank Desai

Copy Editors
Sarang Chari

Janbal Dharmaraj

Deepa Nambiar

Karuna Narayanan

Alfida Paiva

Project Coordinator
Binny K. Babu

Proofreaders
Maria Gould

Ameesha Green

Game Artwork
Svetlana Muzykova

Indexer
Tejal Soni

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kirill Muzykov has been passionate about programming since the age of six, when he
wrote his first line of code in BASIC. After graduating from university, he worked for a couple
of years in a software development company, but then decided he wanted to be in charge
and founded a new company with two of his colleagues.

It took several years to grow the company from a small team consisting of cofounders to one of
the leading companies in the region. However, after almost six years and dozens of completed
projects for clients, he tried game development and fell in love with it. A few years ago, he
made a big turn in his career and started working as an independent game developer.

In his free time, he loves to play games and watch Simpsons and Futurama. You can find his
blog and forum for this book at www.kirillmuzykov.com.

I would like to thank my wife, Svetlana, who always believed in me. With
her support, it was much easier to write this book. Also, she created all
the art for this book and saved you from the nightmares that you would
definitely have had if you would have seen my drawings.

I would like to thank both our families for their constant support and
patience. Thanks to all my friends; without them I wouldn't become
the person I am.

Also, thanks to the reviewers of this book. The issues you found, as well as
your ideas and suggestions, definitely made this book better.

Finally, I want to thank all the people who contributed to Cocos2D. Without
them, writing this book simply wouldn't be possible. Special thanks to
Ricardo Quesada for creating Cocos2D for iPhone and to Lars Birkemose for
leading it forward!

www.allitebooks.com

www.kirillmuzykov.com
http://www.allitebooks.org

About the Reviewers

Saeed Afshari is an independent game developer based in Luxembourg. He is focused on
developing mobile games for the iOS and Android platforms under the brand Neat Games.
Previously, he created the open source XNA-based Neat Game Engine, which is a library on
top of the XNA framework that contains features such as console and scripting, geometry
helpers and polygon collision detection, menus and UI, Kinect for Windows support, and so
on. He also created the 2.5D graphics engine, Sectors, as well as several other open source
XNA-based projects.

Apart from independent game development, he works as the game developer on the
European Commission project, LiveCity, which deals with long distance multiplayer gaming
on multitouch tables. Currently employed by the University of Luxembourg, his research
projects deal with interaction with mobile games, virtual-reality head mounted displays, and
behavior change through serious gaming.

In 2013, he became interested in Cocos2D due to the fact that it is a robust, free, multiplatform
game engine. Since then he has been actively using Cocos2d-x in his mobile projects and has
published several games using Cocos2d-x on the iTunes App Store and Google Play Store.

www.allitebooks.com

http://www.allitebooks.org

Nader Eloshaiker is an electrical engineer in computer systems. His first involvement with
technology was at the beginning of high school when he built and sold 8-bit audio digitizers
connected via parallel ports for the Commodore Amiga 500.

He became deeply involved in the home upgrade consumer market, always finding
employment relating to computers and electronics.

At the advent of web-hosted databases for retail websites, he worked with Mark Cavallo of
AEON Graphics developing high-end e-commerce websites. Since then he has been involved
in a number of creative and advanced web projects with Mark.

For most of Nader's professional career, he has worked at one of the largest automotive
manufactures in the world, based in Australia, managing a global engineering design
releasing system.

During this time, he was also a part-time lecturer at Swinburne University of Technology. His
subjects included Object-oriented Software Design, Java Development, Web Development,
Server Side Web Development, and User Interface Design. He also taught and was the
convener for a Master's subject in Internet Networking Infrastructure.

Nader has open source applications hosted with GitHub titled Teamcenter Engineering
Admin View, used to manage system security and workflow configuration for Siemens data
management software. He has also developed BigZip; a free Java-based WinZip equivalent
with an intuitive user interface that was ahead of its time.

Nader's current project is developing an original iPhone game with Mark Cavallo. The last
five years have seen him develop a vast wealth of knowledge with Cocos2D and the Apple
iOS. This is an exciting direction for Nader and one he will continue to expand upon with his
new company, Rotate Gears.

I would like to personally thank my loving and incredibly smart wife Hanaa
as well as my adorable one-year old son Zain, both of whom have been very
patient with me while I spend a lot of time researching Cocos2D and Apple's
API so that I can develop my game. I would like to also acknowledge Mark
Cavallo who is my partner at Rotate Gears; his expertise as an artist and
intuitive knowledge in game design has injected some amazing creativity into
the game. Finally, I would like to thank my beautiful five-year old daughter,
Raya, who has been the source of my inspiration to develop a game. I hope
that when this game is released, I will be able to spend more time at home
and watch her grow into a woman.

www.allitebooks.com

http://www.allitebooks.org

Kazuki Sakamoto is a software engineer, quite experienced in embedded systems,
UNIX kernel, device drivers, game consoles, web applications, and iOS/Android mobile game
applications; including Cocos2D. Actually, he is one of the contributors of Cocos2D for iPhone
and Cocos2d-x.

His expertise is also further confirmed through his book, Pro Multithreading and
Memory Management for iOS and OS X: with ARC, Grand Central Dispatch, and Blocks
(Professional Apress).

You can follow him on Twitter @splhack.

Sergio De Simone has been working as a software engineer for over fifteen years across a
range of different technologies and companies, including different work environments such
as Siemens, HP, and also small startups. Currently, his focus is on development for mobile
platforms and related technologies. He tries to be a successful iOS independent developer
and is always on the lookout for challenging and new endeavors as a consultant. He is also a
part of the InfoQ editorial team.

He is based in Barcelona and can be reached at labs@freescapes.org. You can have a
look at his work at http://labs.freescapes.org.

Marcio Valenzuela is a biochemist who has studied programming as a hobby for over 12
years. He is perseverant, autodidactic, and is always looking into the latest technologies.
Marcio started by picking up ASP back in the early 90s as a chief web developer for a
consulting firm that developed web applications for private companies. He also delved
into PHP applications with a MySQL database backend. Then in 2008, he started his path
down iOS and has had experience developing applications and games for the platform. His
experience is mostly in business applications where there exists a cloud-based web service to
interact with, and more recently in games created in Cocos2D.

Marcio is the cofounder of activasolutions.com and currently runs a small iOS project
called santiapps.com, which programs for companies wishing to enter the iOS platform.
He is also a forum moderator at raywenderlich.com.

I would like to acknowledge the time I have taken from raising my son,
Santiago, to dedicate to this book. I just hope someday he follows in the
programming tradition as it fosters critical skills such as problem solving
and innovation, which is something we share.

www.allitebooks.com

http://labs.freescapes.org
http://activasolutions.com
http://santiapps.com
http://raywenderlich.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
�� Fully searchable across every book published by Packt
�� Copy and paste, print and bookmark content
�� On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: All About Cocos2D	 7

Game engines	 8
So what is a game engine?	 8
So what is this all about?	 9

Why Cocos2D?	 10
Cocos2D is easy	 10
Cocos2D is free	 10
Cocos2D is popular	 10
Cocos2D is open source	 11
Want more?	 11

Games created with Cocos2D	 12
BADLAND	 12
Feed Me Oil 2	 13
Lep's World 2	 14
Other games	 14

Summary	 15
Chapter 2: Hello Cocos2D	 17

Starting with Xcode	 17
Integrating Cocos2D with Xcode	 18
Time for action – downloading and installing Cocos2D	 18
Creating a Hello World project	 20
Time for action – creating a new project from a template	 20

Testing your projects on a device and simulator	 22
Time for action – running the project on the simulator	 23
Modifying the project	 25
Time for action – creating a new scene	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – displaying the world	 28
Time for action – displaying the welcome label	 34
Reviewing Cocos2D distribution	 38
Time for action – running tests	 39
Summary	 41

Chapter 3: Cocos2D – Under the Hood	 43
Reviewing Cocos2D	 43

Have Cocos2D your way	 44
Rendering on the screen and the birth of CCNode	 44
Organizing the game with CCScene	 45
Children of CCNode	 46
Back to real Cocos2D	 47

Cocos2D game life cycle	 48
Reviewing the AppDelegate class	 48
Cocos2D configuration options	 50
Further life of the game	 52

Reviewing the CCDirector class	 53
Summary	 55

Chapter 4: Rendering Sprites	 57
Creating the game project	 58
Time for action – creating the Cocohunt Xcode project	 58
Time for action – creating GameScene	 59
Adding sprites to your game	 63
Time for action – adding the background sprite	 64
Time for action – adding the player character	 69
Time for action – fixing z-order	 80
Adding more sprites and moving them	 82
Time for action – adding birds	 82
Time for action – making the bird move	 86
Understanding debug FPS labels	 91
Spritesheets and animation	 92
Time for action – creating a spritesheet	 94
Time for action – modifying the game to use spritesheets	 98
Time for action – animating the birds	 105
Summary	 110

Chapter 5: Starting the Action	 111
Making the hunter aim and shoot	 111
Time for action – handling touches	 112
Time for action – aiming at the touch position	 115
Time for action – shooting the arrow	 123

Table of Contents

[iii]

Adding more birds to the GameScene class	 126
Time for action – adding more birds	 126
Time for action – detecting if the arrow hits the bird	 132
Winning, losing, and other states	 137
Time for action – using states for the bird's life cycle	 138
Time for action – animating the shooting and limiting the shooting rate	 143
Time for action – winning or losing the game	 148
Improving the gameplay	 152
Time for action – limiting the aiming range	 153
Time for action – alternative control using a gyroscope	 158
Summary	 166

Chapter 6: Rendering Text	 167
The easy way – CCLabelTTF	 167
Time for action – adding labels	 168
Time for action – updating labels	 174
Using bitmap fonts for better performance	 178

Choosing a bitmap font generator	 178
Time for action – creating a bitmap font using Glyph Designer	 179

Using the bitmap font in the game	 183
Time for action – adding hit points	 183
Time for action – adding the win and lose labels	 188
Summary	 192

Chapter 7: Animations and Particle Systems	 193
Using frame-based animation	 194
Time for action – exploding coconut	 194
Animating using actions	 202
Time for action – hitting the bird animation	 203
Skeletal animation	 205
Creating particle systems for advanced effects	 207
Time for action – adding the feathers explosion	 208
Time for action – adding a fire to the scene	 213
Time for action – using Particle Designer	 216
Summary	 220

Chapter 8: Adding Sound Effects and Music	 223
Creating AudioManager and playing sound effects	 224
Time for action – adding the AudioManager class	 224
Time for action – finding and playing our first sound effect	 227
Time for action – playing the remaining sound effects	 230
Music and background sounds	 233

Table of Contents

[iv]

Time for action – adding background sounds	 233
Time for action – adding music	 236
Enhancing Cocohunt sound effects	 242
Time for action – preloading sound effects	 242
Time for action – playing a sound at position	 245
Summary	 247

Chapter 9: User Interface and Navigation	 249
Using buttons	 249
Time for action – adding menu buttons	 250
Time for action – toggling sound and music	 260
Time for action – storing settings in NSUserDefaults	 267
Navigating between scenes	 270
Time for action – pushing AboutScene	 271
Time for action – using more transitions	 278
Time for action – using the scroll view to select levels	 284
Creating modal dialogs and using text input	 290
Time for action – pausing the game with a pause dialog	 290
Time for action – restarting and exiting the game	 298
Time for action – displaying stats when losing and winning	 302
Entering and displaying highscores	 309
Time for action – displaying highscores with CCTableView	 309
Time for action – using the text field	 314
Summary	 324

Chapter 10: Physics	 325
Creating a physics world	 325
Time for action – creating a game level with physics	 326
Time for action – adding ground to the scene	 335
Time for action – adding the hunter	 339
Time for action – fixing the hunter movement	 349
Detecting and filtering collisions	 351
Time for action – detecting and ignoring collisions	 351
Time for action – filtering collisions using a collision mask	 358
Time for action – filtering collisions using collision groups	 360
Applying forces and impulses and using joints	 362
Time for action – launching stones	 362
Time for action – adding angry birds	 367
Summary	 379

Table of Contents

[v]

Chapter 11: Working with Tile Maps	 381
Creating tile maps	 382
Time for action – creating a tileset	 383
Time for action – creating a tile map	 384
Time for action – creating the Retina version of the tile map	 390
Using the tile maps	 394
Time for action – creating TilemapScene	 394
Time for action – moving and following the bird	 397
Time for action – using parallax scrolling	 399
Summary	 403

Pop Quiz Answers	 405
Index	 409

Preface
Cocos2D Swift is a popular and robust framework used to develop 2D games and
applications. It is fast, easy to use, open source, and has a big and friendly community.
It is free, and you can use it for commercial purposes with no restrictions.

Cocos2D can be used to create games and applications for iOS, OS X, and even Android
(via Apportable). There are thousands of games in the AppStore created with this Cocos2D
framework, including many bestsellers.

Cocos2D Swift is written in Objective-C and was previously named Cocos2D for iPhone.
Renaming the project simply shows that Cocos2D developers are looking into the future
and will continue improving the project to support all the latest Apple's innovations.

At the time of writing this book, you can only use Objective-C to create games using Cocos2D
Swift, but in future, both languages will be supported. This book covers the Cocos2D API and
Cocos2D concepts that will remain unchanged, independent of the language you use to write
your code.

There are several ways to learn a new topic, but I think the best way to learn game
development is by actually making games. In this book, we're going to take a practical
approach and complete many common tasks that arise when creating games. We will work
on rendering and animating sprites and text, handling user input and controlling the game,
implementing game logic, adding sound effects and music, building user interface, using
physics, and so on.

At the end of this book, you will know all the basics and will have some practical experience
to start creating games.

Preface

[2]

What this book covers
Chapter 1, All About Cocos2D, provides basic information about game engines, additional
information about Cocos2D, as well as examples of great games created with Cocos2D.

Chapter 2, Hello Cocos2D, guides you through the installation process and reviews the
contents of the Cocos2D distribution package and demo projects that come with it.

Chapter 3, Cocos2D – Under the Hood, describes the architecture of the framework and
its main classes. In the second part of this chapter, we will review several Cocos2D
configuration options.

Chapter 4, Rendering Sprites, begins to unveil the process of game creation. In this chapter, we
will add a game scene, background image, player, and enemy characters. We will review some
of the main properties of Cocos2D nodes and will make them move, rotate, flip, and so on.

Chapter 5, Starting the Action, covers the process of controlling the game using states,
handling touches, or using a gyroscope to get player input. At the end of this chapter,
we will have a skeleton of a playable game.

Chapter 6, Rendering Text, shows you how to display score, lives, earned points, and winning
and losing labels. In this chapter, we will use both True Type and Bitmap font-based labels of
Cocos2D and will discuss benefits and performance considerations.

Chapter 7, Animations and Particle Systems, demonstrates the use of different animation types
and shows how to use particle systems to get really cool effects such as explosion and fire.

Chapter 8, Adding Sound Effects and Music, shows how to easily add sound effects and
music, switch between music tracks, and adjust audio properties.

Chapter 9, User Interface and Navigation, concentrates on creating a convenient user
interface using Cocos2D controls such as buttons, the scroll view, table view, and so on. In
this chapter, we will see how to create scenes that exist in most games, such as the menu
scene, about scene, and so on, and how to navigate between them.

Chapter 10, Physics, shows how to use the physics engine in your game. In this chapter, we
will create a playable level using the physics engine; we will review how to create physics
objects, adjust their properties, detect and filter collisions, use joints, and so on.

Chapter 11, Working with Tile Maps, explains tile maps and shows the complete process of
creating and using a tile map in the game.

Chapter 12, Standing Out – Integrating Game Center and In-App Purchases, covers integrating
Game Center and adding In-App purchases to the game. This is a downloadable chapter and
you can download this chapter from https://www.packtpub.com/sites/default/
files/downloads/0144OS_Chapter_12.pdf.

Preface

[3]

What you need for this book
To run the code listed in this book, you will need the following:

�� A Mac computer running OS X 10.8.4 (Mountain Lion) or a higher version

�� Xcode 5.1 or a higher version

To test the code on your device, you must be enrolled as an iPhone developer on
the Apple iOS Developer program. However, you can test all the code in the book
on the simulator, except the small part where we use gyroscope to control the
game in Chapter 5, Starting the Action, and to test In-App purchases covered in
Chapter 12, Standing Out – Integrating Game Center and In-App Purchases.

Sample game art, sound, music, and all the other required assets are included in the book's
supporting files, which you can download for free at the Packt website.

Who this book is for
This book is for anyone who wants to start making games. No previous experience in
game development or working with previous versions of Cocos2D or any other game
engine is required.

You should have at least basic Objective-C knowledge, as all the code in this book as well as the
Cocos2D-iPhone framework itself is written in Objective-C. You don't have to be an Objective-C
expert, but you should at least know how to create class, add an instance variable and
property, call a method, and be familiar with classes such as NSString or NSArray.

Sections
In this book, you will find several headings that appear frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

Preface

[4]

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Name this
class Bird and make it a subclass of CCSprite."

A block of code is set as follows:

#import "CCSprite.h"

typedef enum BirdType
{
 BirdTypeBig,
 BirdTypeMedium,
 BirdTypeSmall
} BirdType;

@interface Bird : CCSprite

@property (nonatomic, assign) BirdType birdType;

-(instancetype)initWithBirdType:(BirdType)typeOfBird;

@end

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold as follows:

@implementation GameScene
{
 Hunter *_hunter;
}

Preface

[5]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "After filling out all the fields,
click on the Next button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from:

https://www.packtpub.com/sites/default/files/downloads/0144OS_
ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would
be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/0144OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0144OS_ColoredImages.pdf

1
All About Cocos2D

Before diving deep into the fun world of game development, we will spend
some time (but only a little) understanding what Cocos2D is, how it can help
you develop games, and why you should use it.

In this chapter, we're going to review the following points:

�� What a game engine is and why you should use it
�� Why you should choose Cocos2D as a game engine
�� A list of games created with Cocos2D

There are several versions of Cocos2D. The original Cocos2D is written
in Python and was first released in 2008. There is also a C++ version
called cocos2d-x, HTML5 version called cocos2d-HTML5, and several
other versions.
In this book, we're going to review the currently most popular version
of Cocos2D, that is, Cocos2D Swift (previously named Cocos2D-iPhone).
However, for brevity, I will just call it Cocos2D.
If in future you will want to learn some other version, it will be quite
easy, because all versions share the same architecture, main concepts,
and a majority of functions.

All About Cocos2D

[8]

Game engines
Long before the mobile-games era or even PC-gaming era, each game was created for a
specific hardware. This means that if you wanted to create a game, you had to spend some
time learning low-level details of hardware specification and take into account all of its
characteristics, constraints, and sometimes, issues.

Then, when the game was completed and you wanted to create a different game, there was
very little you could reuse from the previous games you created. We're not even speaking
about porting your existing game to another platform. In this case, you just had to rewrite it
almost from scratch.

But hey! We're very lucky to live in a different time. A game developer's life is much easier
these days. In our time, we have a lot of different game engines at our disposal; these make
our lives much easier.

So what is a game engine?
A game engine is a software framework that adds a level of abstraction between
hardware, video drivers, sound drivers, and your code. Typical game engines provide
the following functionalities:

�� Rendering: This is the main function of the majority of game engines. This function
helps you actually draw something on the screen without the need to write any
low-level code. In addition, a game engine sets up a lot of features for you, such as
initializing graphics and loading textures. For example, using a modern game engine,
you can draw a player character on screen with 2-3 lines of code compared to
30-50 lines of code if you're using OpenGL ES 2.0 directly. In addition to static
drawing, game engines provide the ability to animate, scale, rotate, and do many
other useful things just by changing an object property.

�� User input: There might be a few great games I don't know about, where you don't
have to do anything and don't control the game flow in any way. You just watch what
happens on the screen and enjoy (if you know of such games, let me know!). All the
recent popular games take some kind of user input (cutting the rope with a finger
swipe, touching to activate jetpack, and so on). A game engine lets you get that user
input in a convenient manner and respond to it in the game.

Chapter 1

[9]

�� Sound: Games with sound are so much better! Adding the right sound effects and
music can turn a mediocre game into a real gem. Again, game engines come to the
rescue and let you play sound effects and background music with only a few lines
of code.

Some game engines provide additional functionalities such as physics engine, collision
detection, scripting, artificial intelligence, networking and multiplayer support, and
localization support. However, many great games were created only using the three
functionalities mentioned earlier.

So what is this all about?
First, it is nice to know that you're lucky to live in a time when you can take a game engine
and concentrate on making great games instead of spending time on learning hardware
specification. So, you have no excuses to not start creating games right now!

Second, Cocos2D is a game engine, so it is a good idea to get a basic understanding of a
game engine, its purpose, and its main functions.

Third, many developers including myself love to reinvent the wheel. If you're just beginning
game development and considering whether you should invest your time in learning a game
engine and using it, or learning low-level features such as OpenGL and possibly creating your
own game engine with blackjack, I strongly advise you to start with a game engine such
as Cocos2D.

You will learn a lot of game development concepts, and more importantly, you will be able
to actually make games. After releasing your first game, you will get invaluable experience,
and later, if you decide to dive deeper into low-level details, you will find it much easier after
working with a game engine.

Also, it is nice to know that Cocos2D is based on OpenGL ES 2.0 and won't constrain you in
any way. You will be able to write low-level code where you think it is required, but still leave
all the routine work to Cocos2D.

All About Cocos2D

[10]

Why Cocos2D?
Now that we have discussed why game engines are good for you, let's have a look why you
should use Cocos2D.

Cocos2D is easy
You can start creating your first game in no time. A few chapters later, you will see this
yourself. Cocos2D has a very beginner-friendly learning curve, and although there is a lot
you can learn about Cocos2D, you can actually start making games and learn as you go.

This is very important, as making games is not about learning advanced tools; it is about
creating a fun and exciting experience for your players. You don't have to master Cocos2D
to create your first game that might reach the top of the AppStore.

Cocos2D is free
Yes, Cocos2D is completely free for commercial use. You will never have to pay anything
for it, and there are a bunch of extensions, utilities, tools, and frameworks that work with
Cocos2D. Of course, there are other free game engines, but some of them just don't reach
the required quality level, and some of them are free only until you start to earn some real
money, and I'm sure you're planning to do that.

I know it is tempting to buy the new, shiny game engine, because you think that if it costs
money, it is better. Well, it is not always true. It is hard to believe, but Cocos2D's quality
can be compared to top-level commercial products, and you still get it for free! Even more,
big companies are not only using Cocos2D, but also contributing to it!

Cocos2D is popular
Cocos2D has a huge and very responsive community. You will almost never be left alone,
struggling to solve some complicated tasks. A task is either already solved and maybe
even integrated in Cocos2D, or there is a third-party framework or class implementing
the required functionality.

Chapter 1

[11]

Cocos2D is open source
You can have any opinion about open source projects, but I can assure that you will be
very glad to have access to full source code when things go wrong. When you just start
learning Cocos2D, you will mostly make errors that are easy to spot and fix; we've all
done them. However, later, when you start doing some advanced stuff, having access to
the under-the-hood internals of game engine is just great!

Regarding the source code, it is well written, well-structured, and commented. You can
learn a lot just from reading it. In fact, I would suggest every beginner game developer
read it at some point.

Want more?
In addition to all the preceding goodies, you will get the following too:

�� Physics simulation with the Chipmunk physics engine
�� Visual tools for building interfaces and levels
�� Porting to Android with only a few steps
�� Lots of ready-to-use controls
�� A lot of other features

Porting to Android has become possible due to efforts of the Apportable
company (www.apportable.com), which is a sponsor of Cocos2D project.
They are also providing a great free tool called SpriteBuilder, which definitely
stands out from the rest. High chances that after some time this will be the
only tool you need to develop games for Cocos2D. With SpriteBuilder, you can
design your scenes using GUI editor, create animations, edit physics shapes,
and many more.
However, using SpriteBuilder doesn't eliminate the need to write the code and
understand how Cocos2D works. This is why, I strongly believe that first you
need to learn pure Cocos2D and after that it will be very easy to start using
SpriteBuilder and make your life even easier.
Both SpriteBuilder and porting to Android are not covered in this book.

All About Cocos2D

[12]

Games created with Cocos2D
I'm sure you are wondering if there are any great games created with Cocos2D. The answer
is that there are plenty! Let's have look at some of them right now.

This is only the tip of the iceberg. We physically cannot list all the
great games made using Cocos2D, as it will take up a significant part
of the book.

BADLAND
BADLAND is a very atmospheric side-scroller action game with great gameplay and graphics.
BADLAND received a lot of awards (including an award from Apple) and reached the number
one place in more than 80 countries.

The game makes good use of physics and has an amazing design. BADLAND was developed
by a two-man game studio called Frogmind. A screenshot of the game is as follows:

Chapter 1

[13]

Feed Me Oil 2
Feed Me Oil 2 is a great mind-bending puzzle game, where you need to deliver oil to the
target zone using many different devices. The game reached the top of the AppStore and
was featured in many countries. Its predecessor, Feed Me Oil, was also a great success!

The game was developed by an independent game developer, Alexander Ilin. A screenshot of
the game is as follows:

All About Cocos2D

[14]

Lep's World 2
Lep's World 2 is a really cool and fun platformer game with more than 60 million downloads.
The game reached the number one place in several countries and still is very popular. I think
you won't be surprised to know that it was created using Cocos2D. A screenshot of the game
is as follows:

Other games
The listed games here are just a small set of all the games created using Cocos2D. The games
listed earlier were picked because of their quality, high ratings, and to be honest, because I
like them. There are thousands of games created with Cocos2D.

If you don't believe me and want to see a huge list of Cocos2D games, please visit http://
www.cocos2d-iphone.org/games. However, note that this is also not a full list of games,
as it contains only the manually submitted games.

http://www.cocos2d-iphone.org/games
http://www.cocos2d-iphone.org/games

Chapter 1

[15]

Summary
In this chapter, we've learned some general information about game engines and
Cocos2D in particular. Don't worry if this part seems too abstract; it serves several very
important purposes.

First, you should understand what benefits you get from using game engines, that is, a higher
level of abstraction and faster development at the cost of less control. Don't worry; this cost
is minimal with Cocos2D and in fact, is close to zero as Cocos2D is an open source project.

Also, if you were still deciding whether Cocos2D is the right way to go, this chapter should
have dispelled all doubts. You've seen some examples of great and successful games
developed using Cocos2D. I believe they will inspire you to create your own great and
successful game.

In the next chapter, we're going to use a more practical approach. We will download and
install Cocos2D and will create and run our first Cocos2D project.

www.allitebooks.com

http://www.allitebooks.org

2
Hello Cocos2D

We learned a bit about Cocos2D in the previous chapter, but it is now time to
get our hands dirty and try it out in action. This chapter covers all the steps
from installing Cocos2D to seeing your first Cocos2D game running. In addition
to this, we're going to review Cocos2D distribution and will see some sample
Cocos2D code in action.

In this chapter, we will complete the following tasks:

�� Downloading and installing Cocos2D

�� Creating and modifying our first Cocos2D project

�� Reviewing the contents of Cocos2D distribution

�� Running sample projects that come with Cocos2D

Starting with Xcode
Xcode is an Integrated Development Environment (IDE) created by Apple. It provides
everything you need to create apps and games for iOS. In fact, you can even use Cocos2D to
create apps and games for Mac OS X, but this is not covered in this book as we're going to
concentrate on making games only for iOS.

We will use Xcode throughout this book for all of our projects, so if you don't have it installed
yet, you should go and install it now. Downloading and installing Xcode will take some time,
as it is about 2 GB; so, don't delay this and start installing it right away.

Hello Cocos2D

[18]

Don't worry, it won't cost you a dime. Yes, this great IDE from Apple is completely free and
you can get it easily from the Mac App Store. To install Xcode, go to the Mac App Store (don't
get confused with the iTunes App Store) and search for Xcode, or alternatively, you can just
visit https://developer.apple.com/xcode/downloads/ and click on View on the
Mac App Store.

If you have an Xcode version prior to Xcode 5, you should update to the
latest version. All samples in this book are written and tested in Xcode 5,
and although you shouldn't have problems completing them using later
versions of Xcode 4, it is better to update just to be on the safe side.

Integrating Cocos2D with Xcode
We'll have to perform a small setup before we can use Cocos2D in our games. This won't
require much of our time or a lot of complicated actions. We only need to download the
Cocos2D installer from the official website and run it. The installer will integrate Cocos2D
with Xcode and add new project templates and documentation.

Time for action – downloading and installing Cocos2D
We're going to install Cocos2D in three easy steps, which are as follows:

1.	 Head over to http://www.cocos2d-iphone.org/download/ and download the
installer of the latest stable version of Cocos2D.

At the time of writing this book, Cocos2D Version 3.0.0 was the latest
stable version and Version 3.1 was shortly to be released. However, most
of the changes will not affect the code presented. They are mostly feature
enhancements and performance optimizations. Also, the Cocos2D team
stated that they will focus on the backwards compatibility with next
releases, so you should be fine with any later version.
However, keep in mind that even with all the developers' efforts trying
to maintain the backwards compatibility, it is really hard to guarantee
that the next versions will be fully backwards compatible. If you have
any issues with the latest version, you can use the Chapter_02/
Cocos2D+Installer+3.0.0.zip installer that comes with this
book's supporting files (which can be downloaded from www.packtpub.
com/support). Don't worry, switching to the latest version will be easy as
soon as you know all the basics, but it is better to ensure that there are no
differences that cause problems when you're still learning.

https://developer.apple.com/xcode/downloads/
http://www.cocos2d-iphone.org/download/
www.packtpub.com/support
www.packtpub.com/support

Chapter 2

[19]

2.	 After the download is complete, unpack the archive and you should see the
Cocos2D Installer 3.0.0.app installer application. Run the installer by
double-clicking on the file.

At this point, you should already have Xcode installed on your
computer. We're going to run the installer in the next step, and
this installer will copy files to the Xcode templates folder
as well as the document set to the library, which is kind of
difficult if you don't have Xcode.

3.	 The installer will do everything automatically, so all you need to do is sit and wait
until it completes. At the end, you should see something similar to what is shown in
the following screenshot and can close the dialog by pressing the Quit button:

Congratulations, now we have Cocos2D installed and ready to use!

Hello Cocos2D

[20]

What just happened?
We now have everything we need to create Cocos2D games. Mostly this is source code
of Cocos2D and source code of the libraries used by Cocos2D internally. However, the
installer took care of everything, and we didn't have to copy everything manually or
create Xcode templates.

If you had any issues installing Cocos2D, a good place to
search for help is the Cocos2D forum, which can be found
at http://forum.cocos2d-iphone.org/.

Creating a Hello World project
I'm sure you're eager to create a project using the newly installed templates. Let's do this!

Time for action – creating a new project from a template
Before starting any serious project, let's create a very simple application using the newly
installed Cocos2D templates, just to feel the taste of it. We'll do this using the following steps:

1.	 Open Xcode and create a new project by navigating to File | New | Project. This will
open the project creation dialog. In this dialog, you should see the new cocos2d v3.x
category by navigating to iOS | cocos2d v3.x on the left of the screen. Refer to the
following screenshot:

2.	 Go ahead and select the cocos2d iOS template. After this, click on the Next button.

http://forum.cocos2d-iphone.org/

Chapter 2

[21]

3.	 Let's fill out the required information. Enter HelloWorld for the Product Name and
fill out the Organization Name and the Company Identifier fields as you like. The
following is how I filled out the information in this dialog:

Filling out the project options

Right now, you can enter anything in these fields, just to keep
Xcode happy. However, when you want to actually publish your
game in the App Store, you will need to make sure that Bundle
Identifier is a combination of Company Identifier and Product
Name is unique across the App Store.

4.	 After filling out all the fields, click on the Next button. Save the project anywhere
you like.

It is a good idea to create a folder in Documents or on
your desktop where you will place all your sample projects
for this book. This way, you can easily find them later.

That's it! Xcode will do the rest of the job.

What just happened?
You've just created your first project using the Cocos2D template. Using the template
provided by Cocos2D is very convenient. Without this template, we'd have to create an
empty iOS application, add all the required files, frameworks, and libraries, and then write
the Cocos2D initialization code manually each time we want to create a new project.

We will review the contents and structure of the project created via this template later in
Chapter 3, Cocos2D – Under the Hood. Right now, we're going to modify it a little because
I'm sure you're very eager to actually write some code.

However, before writing the code, let's make sure we can run the project.

Hello Cocos2D

[22]

Testing your projects on a device and simulator
It is a good idea to build and run the project as often as you can, especially while you're
learning. If you've just changed one line of the code and the project doesn't build anymore,
crashes, or there is some kind of a new bug that you didn't notice before, most likely, there
is an error in the line of code you just wrote.

Note that typical real-life projects are quite complicated and the bug you've
just noticed may have been there for some time. Nevertheless, the earlier
you spot it, the less code you will have to review to find the bug. A good way
to spot a bug is to run the project as often as possible.

We're going to follow this tradition and run the project we've just created a few paragraphs
later. Before this, let's review what options we have.

When developing for iOS, you can test your game on a simulator or on an actual device.
Testing on an actual device all the time can be time consuming, as it takes time to install
on the device and copy all resources. However, it is highly recommended to test your game
on an actual device at least from time to time, as it is as close as you can get to the actual
user's device.

Note that there are some bugs that you can catch only when running on a device. For example,
if your game uses a lot of memory, it can run fine on the simulator but will crash on the device.

On the other hand, your game may run slow on the simulator, as there is no hardware
acceleration, but will run smoothly on the device. So, before optimizing your game, try
running it on a device. There are cases when you simply cannot make it run smoothly on the
simulator while it runs great on all the supported devices.

In addition to this, there are some other restrictions when you run your game on the simulator.
For example, there is no convenient way to simulate the accelerometer and gyroscope or
complex multi-touch gestures on the simulator. Although there are some workarounds using
third-party software, it cannot be compared to testing on the actual device, especially in
dynamic games.

You can find more information about the simulator's limitations
at https://developer.apple.com/library/ios/
documentation/IDEs/Conceptual/iOS_Simulator_Guide/
TestingontheiOSSimulator/TestingontheiOSSimulator.html.
(short link: http://bit.ly/1hsORkY).

Despite all limitations, the simulator is a convenient way to test your game, especially in the
early stages.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/TestingontheiOSSimulator/TestingontheiOSSimulator.html
http://bit.ly/1hsORkY

Chapter 2

[23]

Don't worry if you don't have an iOS device or an Apple iOS Developer Program membership
right now. Almost all the code in this book can be tested on the simulator. However, if you
plan to actually submit your games to the App Store, it is highly recommended that you have
at least one device to test everything.

To run your projects on devices such as iPhone and iPad, you should be a
member of the Apple iOS Developer Program. At the time of writing this
book, it will cost you $99 a year and will also let you submit your apps to the
App Store and sell your games. You can read more about the program and
enroll at https://developer.apple.com/programs/ios/.

Time for action – running the project on the simulator
The project generated using Cocos2D already contains some code that we can see in action,
so let's make sure that Xcode is targeting the simulator and run the project, before making
any changes. To do this, perform the following steps:

1.	 Switch to Xcode and take a look at the top-left corner of the Xcode window,
as shown in the following screenshot:

2.	 Click on the iPhone label marked with the black square as shown in the
previous screenshot. It will open a drop-down list similar to what is shown
in the following screenshot:

https://developer.apple.com/programs/ios/

Hello Cocos2D

[24]

3.	 Here, we can see the different simulators we can run our project on. Let's select iOS
7.1 by navigating to iPhone Retina (4-inch) | iOS 7.1 and click on the Run button
(command + R).

If you don't see some of the simulator versions in this
drop-down list, you just don't have them installed. To install
additional simulators, navigate to Xcode | Preferences and
select the Downloads tab in the opened dialog.

It will take some time to build a project for the first time and launch the simulator.
After about half a minute, depending on your hardware, you should see the
Cocos2D splash screen followed by the Hello World application generated by the
Cocos2D template, as shown in the following screenshot:

The good thing is that you don't have to close the simulator and
relaunch it every time. Once the simulator is started, you can keep
it running and save a lot of time for the next launches.

Chapter 2

[25]

Personally, I find iPhone Retina, especially iPad Retina simulators screens,
too big. This shouldn't be surprising as iPad with Retina display has a
screen with a higher resolution than most of the modern displays, unless
you're a lucky owner of the Retina monitor. To make it more convenient
to work with, you can set up the scale of the simulator window. You can
do this by switching to the simulator window and selecting different
options by navigating to Window | Scale. You can also find many useful
options in the simulator menu at the top. For example, you may need to
simulate the home button press, the shake gesture, or simply rotate the
simulator window to test the game in different orientations.

What just happened?
Congratulations, you've just run your first Cocos2D game. Don't worry if it feels like magic
right now and you don't feel you are in control, as too much is happening behind the scenes.
After all, we haven't written a single line of code yet.

However, this generated project already does a lot of useful things. We'll see this ourselves
when we review the structure of the Cocos2D project in the next chapter.

I'm sure it feels great to see something on display of the simulator, but you know what, it can
be even better when you make some changes to the project!

Modifying the project
We're going to create a new view from scratch and will display it instead of the view with the
Hello World label generated by the Cocos2D template.

Time for action – creating a new scene
We will create an empty scene and display it on the screen using the following steps:

1.	 Switch to Xcode and create a new Objective-C class. To do this, open the Xcode menu
and navigate to File | New | File and select Cocoa Touch by navigating to iOS | Cocoa
Touch on the left of the screen. Then, in the list of templates, select the Objective-C
class item and click on the Next button. Refer to the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Hello Cocos2D

[26]

2.	 In the next dialog, name our new scene class FirstScene and make it a subclass of
CCScene. After filling out fields in this dialog, as shown in the following screenshot,
click on the Next button:

3.	 Click on Create and save the files somewhere inside the project folder.

In this book, we will not concentrate too much on organizing
the files that are stored on the disk, and for simplicity,
we will store them in the root of the project folder. If you
prefer organizing files using physical folders, you can create
subfolders within the project folder and save files there.

4.	 Now that we have the scene, we need to display it. Open the AppDelegate.m file
(it is in the HelloWorld\Classes group) and import the FirstScene.h header,
at the top of the file and just below other #import, as follows:
#import "FirstScene.h"

5.	 After importing the header file, search for the startScene method and replace it
with the following:
-(CCScene *)startScene
{
 return [[FirstScene alloc] init];
}

6.	 Build and run the project. You should see the Cocos2D splash screen displayed for a
few seconds just like before, but then you should see a black screen instead of the
default view generated by the Cocos2D template as follows:

Chapter 2

[27]

The empty FirstScene on the screen

What just happened?
We created a new blank scene and displayed it on the screen. We'll discuss scenes and
scene management in detail in the next chapter. For now, just remember that you need to
place your objects in the scene to display them, as you can only pass a scene for Cocos2D to
display. This is exactly what we've done in the AppDelegate.m file. We changed the code
in the startScene method to display our FirstScene scene instead of the IntroScene
scene generated by Cocos2D.

The black screen is exactly what we expected to see. We didn't add anything to our
FirstScene scene, and thus, we only displayed an empty scene that is completely
transparent and all we see is the black background.

As you can see, the screen is not entirely black; there are some numbers
displayed at the bottom-left corner of the screen and we didn't add them.
This is the debug information displayed by Cocos2D globally (not a part of
any scene). We will discuss what these numbers mean later and I will show
how to turn them off.

By the way, Malevich got famous for a similar painting! Of course, we're not going to rest
on its laurels, and in a moment, we're going to add some objects to our layer to see them
on the screen.

Hello Cocos2D

[28]

Time for action – displaying the world
Making a video game implies drawing on the screen. Everybody knows that! So, let's go
ahead and finally draw something on the screen. We're not going to step aside from the
tradition of saying hello to the world, but we're going to make it more visual.

In this part, we will display an image of the earth, and in the next part, we will welcome it
using some text. Refer to the following steps:

1.	 First of all, we'll need an actual image to display on the screen. It is not some kind
of a special image; we could use any, but I've prepared an earth image that works
best for this sample. To display images in the game, we should first add them to the
project so that they are packed and distributed with the game or application.

If you haven't downloaded the supporting files for the book,
it is time to do so. Visit http://www.packtpub.com/
support/, select the title of this book from the drop-down
list, and then follow the download instructions.

Go ahead and open the folder with the supporting files for the book. Find the
Chapter_02\Assets folder. Here, you will find the following two files that we'll use:

�� earth.png

�� earth-hd.png

There are several ways we can add these files to our Xcode project. The simplest
way is to drag-and-drop them right into Xcode. Select both files in Finder (hold the
command key when clicking to select multiple files) and then drag them over to the
Resources group in the Xcode project.

http://www.packtpub.com/support/
http://www.packtpub.com/support/

Chapter 2

[29]

Adding images to the project by dragging them over the Resources group in Xcode

2.	 When you release the mouse button, Xcode will ask you a few questions about
how you want to add those files to the project. Make sure that you set the options,
as shown in the following screenshot, and then click on Finish:

You can find information about the options to add files by
visiting the following link:
https://developer.apple.com/library/mac/
recipes/xcode_help-structure_navigator/
articles/Adding_an_Existing_File_or_Folder.
html (short link: http://bit.ly/1fdJp6u).

https://developer.apple.com/library/mac/recipes/xcode_help-structure_navigator/articles/Adding_an_Existing_File_or_Folder.html
https://developer.apple.com/library/mac/recipes/xcode_help-structure_navigator/articles/Adding_an_Existing_File_or_Folder.html
https://developer.apple.com/library/mac/recipes/xcode_help-structure_navigator/articles/Adding_an_Existing_File_or_Folder.html
https://developer.apple.com/library/mac/recipes/xcode_help-structure_navigator/articles/Adding_an_Existing_File_or_Folder.html
http://bit.ly/1fdJp6u

Hello Cocos2D

[30]

3.	 Now, when the files are added to the project, they will be bundled with the rest of
the project contents and will be available on the simulator and the actual devices so
that we can use them from the code.

4.	 Switch to the FirstScene.m file and import the cocos2d.h header file at the top,
as follows:
#import "cocos2d.h"

5.	 After this, add the init method with the following code:
-(instancetype)init
{
 if (self = [super init])
 {
 //1
 CCSprite* earth =
 [CCSprite spriteWithImageNamed:@"earth.png"];

 //2
 CGSize winSize = [CCDirector sharedDirector].viewSize;

 //3
 earth.position = ccp(winSize.width / 2.0f,
 winSize.height / 2.0f);

 //4
 [self addChild:earth];
 }

 return self;
}

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

6.	 Build and run the project (command + R) and you should see a lonely earth in space,
as shown in the following screenshot:

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[31]

What just happened?
We implemented the init method for our scene. It will be called when we create our scene
in the AppDelegate class and return as a start scene in the startScene method.

It is a common technique of adding objects to the scene in its
init method, this way all objects will already be in the scene
before it shows up on the screen.

In our init method, we created a sprite with an earth.png image that we've added to
the project before. After creating the sprite, we added it to the scene, making it appear on
the screen.

Think of a sprite as another way of saying
2D image.

Hello Cocos2D

[32]

Now, let's analyze each line marked by comments with numbers in the init method using
the following steps:

1.	 To draw sprites, Cocos2D provides a special class called CCSprite. In this line, we
created an instance of CCSprite using the earth image. The CCSprite class loads
the image from the disk into memory and prepares to draw it.

2.	 The CCDirector class is one of the cornerstone classes in Cocos2D. We will discuss
it in detail in the next chapter. This time, we used it to get the size of the game view
in points, which we'll discuss below. As most games are fullscreen, the size of the
view is equal to the size of the screen.

3.	 We set the position of the sprite on the screen using the position property,
which also uses points. The ccp macro is just a shorthand for CGPointMake, which
creates a point taking the (x, y) components. We didn't hardcode coordinates;
instead, we used half of the values of the width and height of the screen to position
our sprite at the center of the screen. This will put it at the center of the screen on
any device (iPhone 4, iPhone 5, or even iPad if we were creating a universal app).

By default, setting the sprite position will set the center of the
sprite to this position. Later, we will see how you can change
this using the anchorPoint property.

4.	 Finally, we add the sprite to the scene. Before this point, the sprite was just an
instance of the CCSprite class in memory. Adding the sprite to the scene is what
makes it visible, as the scene will draw all of its children.

There are a few interesting things that you might have noticed:

1.	 We added two image files: earth.png and earth-hd.png, but there is only one
earth displayed.

2.	 The size of the screen is returned in some points instead of good old pixels; also,
the position property uses points to position the sprite on the screen.

Using points and providing two images is required to support devices with different displays.
If you simply take a 100 x 100 pixel image and display it on iPhone 3GS and then on iPhone 4
without scaling, it will look twice as small on iPhone 4.

This happens because iPhone 4 has the same physical size of the screen as iPhone 3GS, but
has twice the resolution to that of iPhone 3GS. This means that 100 pixels on iPhone 4 take
two times less physical space on the screen, just to fit double the amount of pixels in the
same physical screen.

Chapter 2

[33]

In other words, if we place the two iPhones side by side, the image on iPhone 4 will look two
times smaller to our eye. Also, if we specify a position in pixels, let's say (240, 160), it will be
at the center of iPhone 3GS, but it will be at the left-bottom corner on iPhone 4.

This is not what you usually want. To solve this, we need to provide a picture that is two
times bigger to display on Retina displays and use points instead of pixels to set coordinates.
Refer to the following screenshot:

Points are logical measurement units used to unify coordinates on Retina and non-Retina
displays. On old devices like iPhone 3GS, 1 point equals 1 pixel, but on new devices with
Retina display like iPhone 4 or newer, 1 point equals 2 pixels. This way, you can set the
coordinates and size of the object in points and it will be displayed at the same position on
both Retina and non-Retina displays.

To provide separate images for Retina and non-Retina displays, Cocos2D provides several
options. The first option is by using suffixes, just as we did, and the second way is by using
different folders for each resolution.

Hello Cocos2D

[34]

With any approach, you can specify only one name of the file in the code (for example,
@"earth.png") and Cocos2D will automatically choose an image for the current screen
type, so you don't have to detect the screen type at runtime and provide a corresponding
image. However, there are differences on how you should set up your project to use one
mode or another.

To separate different images using the folders approach, you have to create a folder for each
screen type and place images in different folders. You should also adjust some Cocos2D
configuration settings to switch to the folders mode (suffixes are used by default).

To separate different images using the suffixes approach, you have to add corresponding
suffixes to all images (for example, –hd for Retina display).

You can also provide earth-iphone5hd.png if you need a specific image
to be displayed on iPhone 5 or earth-ipad.png and earth-ipadhd.
png to support iPad and iPad Retina. Irrespective of how many different images
you specify, you can always write earth.png in the code and Cocos2D will
automatically load the corresponding file.

As Xcode is not very "folder friendly" and previous versions of Cocos2D used only the suffixes
mode (the folders mode was introduced in Cocos2D Version 3.0); we'll be using the suffixes
mode in this book.

Time for action – displaying the welcome label
Now that we have a world displayed, let's welcome it! Refer to the following steps:

1.	 Open the FirstScene.m file and add the following code in the init method,
right after the [self addChild:earth]; line.
//1
CCLabelTTF* welcome =
 [CCLabelTTF labelWithString:@"Hello!"
 fontName:@"Helvetica"
 fontSize:32];

//2
welcome.position = ccp(winSize.width / 2.0f,
 winSize.height * 0.9f);

//3
[self addChild:welcome];

2.	 Build and run the project.

Chapter 2

[35]

You should see the Hello! label at the top half of the screen. Refer to the following screenshot:

Displaying the Hello! label and the earth sprite

If you have any trouble with the project, you can always compare your project
with the completed project in the book's supporting files. You can view the
HelloWorld project in the Chapter_02/HelloWorld folder.

What just happened?
This is our Hello part from the Hello World!. The following is a step-by-step description of
what we've done:

1.	 We created a label object using the CCLabelTTF class. It takes the text to display,
the name of the font to use, and the font size in points as parameters. You can specify
the system font, such as Helvetica, or add your own True Type font to the project and
use it.

You can review available fonts at
http://iosfonts.com/.

www.allitebooks.com

http://iosfonts.com/
http://www.allitebooks.org

Hello Cocos2D

[36]

2.	 We positioned the label at the top of the screen. Cocos2D uses the coordinate
system where the origin (0,0) by default is situated at the left-bottom corner of
the screen (the x axis points to the right-hand side of the screen and the y axis
points to the top of the screen).

Cocos2D coordinates system

Again, we used values relative to the screen size instead of hardcoding coordinates
so that the label is positioned well on all devices. This time we placed it at 0.9
height of the screen.

You've probably noticed that all numbers are explicitly specified
as floats (for example, 2.0f, 0.9f). This is a good habit that
will allow you to avoid some hard detectable errors. For example,
consider the following:

float half = 1 / 2;

NSLog(@"%f",half);

If you write this, then, the output will be 0.0 and this is not
what you expected. However, if you write the following code,
you get an expected output of 0.5:

float half = 1.0f / 2.0f;

NSLog(@"%f",half);

In fact, to make it work, you can just write 1.0 and 2.0 without
f in the end, but this will make the compiler parse them as the
double type and then convert to float.

3.	 We added a label to our scene to display it on the screen.

Chapter 2

[37]

Have a go hero
This looks nice! We can draw images and text. In fact, some of the games consist of only this.
I encourage you to play with positions of elements, font, and font size. The following is a list
of things you can try:

1.	 Place the image of the earth at the bottom-left corner of the screen, then in the
right-bottom corner.

2.	 Place the label at the center of the screen.

3.	 Change the label's font and font size.

4.	 Try to place them at the same position and see what is displayed on top (the image
of the earth or the label).

5.	 In addition to changing positions, change the number of the objects on the screen.
Add another earth or another label, or add more of both of them!

6.	 Remove the earth-hd.png image from the project and see what happens when
you run the game on the iPhone simulator (non-Retina version), and then on the
iPhone Retina simulator. This will help you to understand why you need two images
for Retina and non-Retina displays.

In order to see changes, you will need to remove the application
from the simulator (by clicking and holding the mouse button
over the icon) and executing the Clean command in Xcode by
navigating to Product | Clean or by pressing shift + command
+ K. If you don't do this, you might not see any changes after
removing the earth-hd.png image. This happens because
removing the file from the project doesn't remove it from the
simulator, as it only copies or overwrites files. This way, without
removing the app from the simulator and doing a cleanup, the
earth-hd.png file might still be present on the simulator and
will be used just as before.

Hello Cocos2D

[38]

Reviewing Cocos2D distribution
Previous versions of Cocos2D were distributed only in the form of archive, which you needed
to download, unpack, and run the install script from the console. Now, there is an installer
and this is much more convenient, especially if you have never worked with a console.

However, although the installer is convenient, it makes it impossible to review the contents
of Cocos2D distribution, which previously was automatically at your disposal when you
unpacked the archive.

Of course, there is still a way to review it. You can download it on the same page where you
downloaded the installer (http://www.cocos2d-iphone.org/download), but select
Cocos2D zip archive 3.0.0 this time, or if you downloaded the book's supporting files, you
can find it in the Chapter_02/cocos2d-iphone-v3.0-distribution folder.

Most of the items in the Cocos2D distribution are self-explanatory, but the following are a
few items I should mention separately:

�� AUTHORS: This is a list of people who contributed to the Cocos2D-iPhone project.
These are the people you should thank after you make your first million on a
Cocos2D game.

�� Cocos2D: This is the Cocos2D source code. I encourage you to review it after you
become familiar with Cocos2D. You don't need to keep distribution for that, as
you can find this folder in any project created with the Cocos2D template (in the
Libraries/cocos2d group).

�� cocos2d-ui: These are the Cocos2D user interface controls. We will review them
in Chapter 9, User Interface and Navigation. The source code is also definitely
worth reviewing.

�� externals: These are the several external libraries used by Cocos2D or
with Cocos2D.

�� tests: This folder contains code to demonstrate usage of some of the Cocos2D
features and test them. It is quite useful when you want to see the usage example
of some Cocos2D features.

Let's review the tests more carefully.

http://www.cocos2d-iphone.org/download

Chapter 2

[39]

Time for action – running tests
There are several Xcode projects in the distribution folder and one is particularly interesting
to us. It is called cocos2d-tests-ios.xcodeproj. We're going to open this project and
run it. Refer to the following steps:

1.	 Go ahead and open the cocos2d-tests-ios.xcodeproj project in Xcode.

2.	 After the project is loaded, open a list of its targets, as shown in the
following screenshot:

3.	 Select the cocos2d-tests-ios target to run on iPhone Retina (4-inch) using iOS 7.1
(or any other simulator or even your device), as shown in the following screenshot:

Hello Cocos2D

[40]

4.	 Now run the project. You should see a list of tests you can run. Select different tests
and use arrows in the bottom corners to review different test variations.

What just happened?
We just found a great source of Cocos2D sample code as well as seeing some of Cocos2D in
action. You can review all tests and find something interesting. The most important part is
that you can straight away review the code of what you see on the screen.

Note that understanding the code right now might be quite hard, but after
you become familiar with the basics of Cocos2D, you can return and learn
some new tricks from the code of the tests.

Chapter 2

[41]

Pop quiz – hello quiz
Q1. Which class will you use to display an image on the screen?

1.	 CCLabelTTF

2.	 CCSprite

3.	 CCScene

4.	 CCDirector

Q2. In which corner of the screen is the ccp(0,0) point?

1.	 Bottom-left

2.	 Bottom-right

3.	 Top-left

4.	 Top-right

Summary
In this chapter, we took a more practical approach to learning Cocos2D. We've done a few
very important things: installed Cocos2D and learned how to create a simple project and
then modify it to the point where you can actually write the code, experiment with it, and
immediately see results.

We've learned to use two main things used in most games: sprites and text.

In the next chapter, we are going to analyze the structure of the typical Cocos2D project,
learn more Cocos2D classes, and their hierarchy.

3
Cocos2D – Under the Hood

At this point, you should be a little familiar with Cocos2D. We've set everything
up and even created a basic project. Before we can move to some actual game
making, we have to review a few basic concepts and review how Cocos2D
works under the hood. This is required so that we can concentrate on writing
code in the future without huge side notes about each line of the code. After
this chapter, you will have a general top-level understanding of Cocos2D
concepts, main classes, and techniques and will be able to concentrate on
actually using Cocos2D to solve real-world tasks.

In this chapter, we will cover the following topics:

�� An overview of the Cocos2D architecture
�� The main Cocos2D classes CCNode, CCScene, and CCDirector
�� The Cocos2D initialization code and configuration options

Reviewing Cocos2D
I know that you want to start writing the code and creating games as soon as possible.
If you just can't fight this feeling, then skip to Chapter 4, Rendering Sprites, and continue
reading the book from that point. The rest of the book uses a purely practical approach.

Then, after some time or even after completing the whole book, you can return and read
this skipped chapter. However, I believe that spending some time now and not skipping this
chapter will help you to get the ideology of Cocos2D, understand some under-the-hood
concepts and get a deeper understanding of the practical material in the rest of the book.

If you decided not to skip, then let's move on.

Cocos2D – Under the Hood

[44]

It is hard to review a seasoned framework, library, or a project's source code. Even if you
have decades of experience in software development, when you take a first glance at a
project that has evolved over several years, you don't quite understand why things are
done the way they are. The answer is pretty simple—evolution.

When any project starts, its initial architecture is pretty simple and easy to understand. In
most cases, when the architecture is complicated right from the start, it is a sign of a bad
design. However, you then start to evolve the project, you add more and more code to
support more use cases and more hardware, sometimes you have to write unclear code to
fix some operating system bug, and if the person reviewing the code doesn't know about
this bug, the code solving the issue might look like buggy code itself. After couple of years of
iterations, your code won't be easy to understand although the main concepts and ideology
can still be very clear.

Cocos2D might seem complicated at first glance, but it is only a bit complicated compared
to some other open source projects out there. The code of Cocos2D is structured and
maintained very well.

We're going to use an unusual approach and will spend some time imagining how we
would have implemented Cocos2D from scratch if we were developing it and then the
main concepts of the real Cocos2D will become crystal clear. So here we go.

Have Cocos2D your way
So, what would we do if we wanted to make a game engine like Cocos2D? Let's pretend that
we're developing Cocos2D from scratch and see how we would evolve our code.

This is only an illustration of how things could happen, not a history of
Cocos2D development. Many things are omitted or simplified just to show the
idea behind the main Cocos2D classes. Of course, I don't know what exactly
the developers had in mind while designing Cocos2D, so I'm guessing that they
might have thought something similar.

Rendering on the screen and the birth of CCNode
First of all, we want to render things on the screen. After all, this is the main part of any
video game.

The main elements to render are images (sprites) and text. As we want to follow an
object-oriented programming pattern (after all, we're writing in Objective-C), we're going
to create two classes to solve this task.

�� CCSprite

�� CCLabelTTF

Chapter 2

[45]

We're not going to actually write the code of the following classes, let's just pretend that
we've created these classes in some magical way, which do what we need.

You're probably asking why did we name the class CCLabelTTF instead of
just CCLabel? The reason is that there are different implementations of
labels in Cocos2D, and CCLabelTTF is one of them. As we still want to use
actual class names and don't want to introduce other kind of labels at this
point to keep everything simple, we're taking the CCLabelTTF class that we
used earlier as an example.

Nice! Now we can render sprites and labels on the screen. You've seen both of the classes in
action in the previous chapter.

Both classes have common code, similar properties (position, rotation, scale, and so on),
and methods (draw, add on screen, remove, and so on). Of course, we want to follow the
Don't Repeat Yourself (DRY) principle.

So, it might seem a good idea to create a base class that will contain all the common code,
implement all of the common methods and properties, and then inherit both sprite and
label classes from that base class.

This will be a very generic class, so let's give it a suitable name and call it a Node. Also,
as we're using the CC prefix for all our classes, let's name the class CCNode. This class will
contain the common code for CCSprite and CCLabelTTF.

Looking good! Now, we can draw sprites and text on the screen and we've even done a little
refactoring. What is our next step?

Organizing the game with CCScene
Most games consist of different game views. A game starts with a splash screen, then opens
a menu, and then the player can start playing by opening the GameScene scene or visit the
screens that show the high scores or about the game, and other parts of the game.

Just refresh any recently played real game in your mind; there are different views that you
can open and each contains a different set of elements (sprites, text, buttons, and so on).

Our game is no different, we also want to have a menu. We want to tell players about our cool
game studio in the About us screen and of course we need a game view where players can
actually play our game. How can we do this with only a sprite and label objects?

Well, we can add all objects from all parts of the game to one view and then show only the
elements that correspond to the current view or a game state. This will work, but it would
lead us to a total mess in the code. Just imagine how many elements we will have to juggle.
Also, think about the size of the source file with the code to handle every possible aspect of
the game—it will be enormous and totally unmaintainable.

www.allitebooks.com

http://www.allitebooks.org

Cocos2D – Under the Hood

[46]

In most cases, each game part can be easily separated. For example, the menu doesn't need
to know anything about the About us screen and vice versa. Why don't we separate them?

To do this, we'll create a Scene class that will contain all objects specific to the current view.
Let's name it CCScene. We will split the game into scenes and will be able to switch between
them. This way, we can better organize our code and avoid one huge unmaintainable file
replacing it with several scene files, each responsible only for a part of the game.

Now, when each object is contained in the corresponding scene, we might think what if we
want to move all objects in one scene at once, rotate them, or zoom in/out (scale)? Just
imagine if we want a special effect, such as a scene sliding from the top, popping out from
the bottom, or something even cooler. To avoid manipulating all sprites and labels one by
one, we could move, rotate, or scale the scene itself and all the transformations would
simply propagate to the contained sprites and labels.

It looks like the scene would benefit from inheriting from our CCNode class that has all of
this implemented. As we're in control in our imaginary game engine, let's just do this and
inherit the CCScene class from CCNode.

Children of CCNode
Our CCScene is a container class. It contains all those sprites and labels in the current scene.
A good way to implement this in the code is to create a children array in the CCScene
class where we'll hold all of the objects contained in the current scene.

Our decision to inherit CCScene from CCNode brings an interesting question. Should we
move the children property to the parent CCNode class and allow CCNode and all of its
descendant classes to have children just as the CCScene can? Will we benefit from it? Yes
we will!

We will be able to use the CCNode class to create groups of objects in the scene and
organize everything even better. We will be able to add child objects to sprites and labels.
For example, we can add a health bar or a label with the character name as a child of a
sprite. Then, when we move the sprite, the health bar and label will automatically move as
they position themselves relative to the parent node, which is our sprite. We can also scale,
rotate, or change other properties of the parent class and they can be propagated to the
children node.

We will see many scenarios later in the book where the decision of moving the children
array to the CCNode base class serves us well.

Chapter 2

[47]

Back to real Cocos2D
I think it is becoming a bit too complicated to build our game engine in our minds, so we'll
stop here. We will have to add many more classes to catch up with the real Cocos2D project
anyway. However, at this point, we can already do a lot with our imaginary game engine.

Before we return to the real Cocos2D, let's take a look at our classes' diagram. The following
is what we've ended up in our imaginary engine:

The imaginary basic version of Cocos2D

Looks pretty simple, but this is an oversimplified model of how the part of Cocos2D related
to rendering and scene management can be implemented. I hope it will help you to
understand how things work in the actual Cocos2D game engine.

If you want to take a look at the list of classes in the real Cocos2D, just visit
http://www.cocos2d-iphone.org/docs/api/index.html.

If you open the preceding link, you will see that Cocos2D has more classes than we had in
our imaginary game engine, but trust me the main concept is similar.

If we continue to improve our imaginary game engine, we'll end up with something like this.
Of course, it would take a lot of time and effort. It is also much easier to understand the idea
behind any framework or a library if you review its minimal implementation rather than the
latest version.

I hope you've got the big picture of the Cocos2D architecture, and how everything works when
it comes to actually rendering elements on the screen. There are also animations, user input
handling, scene management, startup code, and many other things that we'll review later. But
when you ask yourself why you need CCScene or why every object is inherited from CCNode
you should have answers for those questions after reading this part of the chapter.

http://www.cocos2d-iphone.org/docs/api/index.html

Cocos2D – Under the Hood

[48]

Cocos2D game life cycle
Now that we know more about Cocos2D, let's have a look at how this is all glued into an
iOS application. After all, for an iOS operating system, our game is just a usual application,
just like a clock or a calculator app.

This part of the chapter might be hard to grasp, but don't worry if you
don't understand every piece of it, just keep reading. You don't have
to fully understand everything right now, but try to continue reading
the book. Later, you might want to return to this part of the book and
reread everything.

Reviewing the AppDelegate class
This is the starting point for all iOS applications, and this is the place where you enter the
Cocos2D world. To review the contents of the AppDelegate class, open the HelloWorld
Xcode project from the previous chapter.

If you don't have the HelloWorld project from the previous chapter,
you can find it in the book's supporting files under the Chapter_02/
HelloWorld folder.

After the project loads, open the AppDelegate.m file and find the
application:didFinishLaunchingWithOptions: method.

If you're new to iOS development, don't worry, just think of AppDelegate
as an entry point of the iOS application. Of course, there is a standard main
function, which you might be looking for if you know languages such as C++,
but in most cases, you never have to touch anything outside the AppDelegate
class for an app startup code. Even the Empty iOS application template
generates an AppDelegate class for you.

Let's review how a usual iOS application becomes a Cocos2D game in this method. In fact,
there is not much to see, as Cocos2D takes care of everything with a single call to the
setupCocos2dWithOptions: method.

Right now, this method has only one option passed, the CCSetupShowDebugStats
option, and many options that have been commented out to show you. Refer to the
following screenshot:

Chapter 2

[49]

By the way, setting CCSetupShowDebugStats to YES makes Cocos2D
display the debug numbers in the left-bottom corner. So, if you want to hide
them, simply change it to NO.

There is a lot happening in that function, but there are a bunch of configuration options that
we need to focus on.

Cocos2D does a lot of work under the hood and passing parameters to the
setupCocos2dWithOptions: method is one of the places where you
can configure how it does its work.

We're not going to review all the low-level details, but the following is a list of actions that
take place inside the setupCocos2dWithOptions: method.

1.	 A UIWindow view is created just as in any iOS application.

2.	 Then, a CCGLView view is created using the options passed to the
setupCocos2dWithOptions: method. The CCGLView view takes care of many
things that we need to set up manually if we were using pure OpenGL ES, such as
setting up the CoreAnimation layer, handling iOS touches and dispatching them to
the Cocos2D responder manager for a more convenient touch handling, and so on.

We can say that Cocos2D is a single-view application;
as Cocos2D applications don't use the standard view
management, there is only one UIView and the whole
game is drawn in this UIView. Switching between scenes
is done internally by Cocos2D, by simply drawing the
currently running scenes into this view.

3.	 Then, a CCDirector class is created and configured. The CCDirector class will
be the root view controller of the application and will take care of many other
tasks. It is one of the most important classes in Cocos2D and we will discuss the
CCDirector class later.

Cocos2D – Under the Hood

[50]

4.	 The rest of the configuration options passed to the setupCocos2dWithOptions:
method are processed. The code of the method sets up the update intervals,
scaling, texture pixel format, file utils mode (suffixes versus folders), and other
OpenGL-related configuration options.

5.	 The audio framework is initialized.

6.	 Finally, everything is configured and set up, added to UIWindow and is displayed on
the screen. After this, Cocos2D takes the scene you return from the startScene
method and displays it on the screen.

You can find the full source code of the setupCocos2dWithOptions: method in the
CCAppDelegate class in the CCAppDelegate.m file. You can review any other method,
class, or any piece of Cocos2D, as you always have its source code in your Libraries/
cocos2d group in Xcode.

In many cases, the easiest way of finding the required file, class,
or method is just pressing the command + shift + O combination and
just typing the class name, method name, and so on. So, if you want
take a quick look at the CCAppDelegate class, simply press this
combination and type CCAppDeleagate.

As you can see, there are lots of things going on behind the scene. It is a good thing
that you don't have to dive deep in it and try to understand all the complicated code or
adjust it. Cocos2D provides several configuration options that you can simply pass to the
setupCocos2dWithOptions: method.

Cocos2D configuration options
Let's review some of the configuration options. You won't have to change any of them for
quite some time, at least during this book, but it is better to know about them. Maybe
later, when you will actually need them, you will get the so-called "aha" moment and will
remember that you can change these parameters. Refer to the following points:

�� CCSetupShowDebugStats – This will enable or disable debug stats in the
left-bottom corner. We'll speak about what these numbers mean in the
next chapter.

�� CCSetupPixelFormat – This is the format for the OpenGL render buffer.

Don't confuse it with the texture format (that is, the images you
use in the game). Think of the CCSetupPixelFormat format
as the format of the final rendered image, displayed on each
frame on the screen.

Chapter 2

[51]

The more bits per color component you have, the better the color precision is. The
default is RGBA8 (kEAGLColorFormatRGBA8) that gives 8 bits per color component.
The alternative is RGB565 (kEAGLColorFormatRGB565), which provides five bits per
red and blue, and six for green. It is faster but has a lower color precision, which can
badly affect things like gradients.

RGBA8 also has an alpha channel, which can be useful in some
advanced scenarios.

�� CCSetupScreenMode – This is the mode of the screen, which can
either be CCScreenModeFlexible or CCScreenModeFixed. The
CCScreenModeFlexible mode is the default mode. In this mode, the screen size
will vary in size (for example, 480 in width on iPhone 4 and 568 on iPhone 5 in the
landscape mode). In the CCScreenModeFixed mode, the dimensions of the screen
are always 568 x 384; this means that the edges of the screen might be cropped on
some devices. In other words, in the CCScreenModeFlexible mode, the scene
fills the device screen, while in CCScreenModeFixed, it always stays the same.
This, for example, will lead to a different behavior, if you express the size or position
of your elements in percentage of the screen size.

�� CCSetupScreenOrientation – This is the screen orientation of your game.
The default is landscape (CCScreenOrientationLandscape) if you want the
game to run in the portrait mode, set it to CCScreenOrientationPortrait.

�� CCSetupAnimationInterval – This is the desired framerate of your game.
In most cases, you should leave this untouched, which defaults to 60 FPS.

You should always try to get your game running near 60 FPS,
but setting a desired FPS to this value doesn't guarantee you
that. If you make heavy calculations or many draw calls per
frame, your FPS can easily drop far below 60 FPS. We will
discuss framerate later in the book.

�� CCSetupFixedUpdateInterval – This sets the fixed timestep. We will discuss
this in Chapter 10, Physics.

�� CCSetupTabletScale2X – This will make the iPad work in the 2x scale mode
(4x for iPad Retina).

�� CCSetupDepthFormat – This sets the depth buffer and stencil parameters.
The default is zero, which means you don't use a depth buffer. Most of the time,
you don't need to change this option. A few cases where you need to specify
the non-zero depth format is when you're using 3D effects, drawing 3D objects,
or using CCClippingNode.

Cocos2D – Under the Hood

[52]

�� CCSetupPreserveBackbuffer – This parameter controls whether a back buffer
should be retained. In most cases, you should leave this option to its default value
of NO. Setting it to YES can be only useful if you need to preserve the contents of
the color render buffer between frames, and even in this case, there are some other
options. If you don't understand what this means, it is totally fine. There is very little
chance that you will ever need to change this option.

�� CCSetupMultiSampling – The multisampling is one of the techniques used to
achieve antialiasing, which means removing jagged edges and not letting your edges
turn into staircases. The following is an illustration of antialiasing:

This is done by sampling each pixel at the edge several times, each time with a
slight offset (smaller than a pixel) and then using an averaged value of all samples.
Of course, this comes at a price of performance, so you should only enable
multisampling when you know you need it.

�� CCSetupNumberOfSamples – This parameter is used only when multisampling is
enabled. It specifies a desired number of samples to take.

Understanding all these options is quite hard, mostly because there are so many new options
introduced such as multisampling, pixel format, depth format, and so on. All of these new
concepts can be quite overwhelming for someone with little or no OpenGL experience.

As I've mentioned before, don't worry, you don't have to understand all of the options to
make great games, but you need to know where you can configure the options in case you
need it.

Further life of the game
After the code in the AppDelegate class, you're on your own. Cocos2D is running one of
your scenes and it is up to you to decide what will happen next.

With any project, you will spend most of the time starting from this point creating the game,
but it is important to know how you got here.

Before we write some code to consolidate the knowledge, let's discuss one more Cocos2D
classes that we've already used but haven't discussed in detail.

Chapter 2

[53]

Reviewing the CCDirector class
The CCDirector class is one of the cornerstones of Cocos2D classes. The following are
some of its responsibilities:

�� Initializing the OpenGL ES context

�� Configuring OpenGL properties such as pixel format, depth buffer, and projection

�� Managing scenes such as running, replacing, pausing, and resuming scenes

�� Converting the UIKit coordinates to Cocos2D and vice versa

The difference between UIKit and Cocos2D (which uses
OpenGL) coordinate systems is that in UIKit, the origin is
at the top-left corner and the y axis extends downwards
whereas in Cocos2D, the origin is at the bottom-left and the
y axis extends upwards.

�� Providing access to the current configuration, such as the current view size

�� Displaying FPS stats at the left-bottom corner

There is more; the whole scene drawing is started in CCDirector class's drawScene
method, so believe me that CCDirector is a significant part of Cocos2D.

We're not going to review every aspect of the CCDirector class right now. I think you're
already overwhelmed with the details in this chapter and I'm sure you want to get to the
code as soon as possible. However, we're going to quickly review the scene management
aspect of the CCDirector class.

First of all, you need to know something about CCDirector. It is a singleton class; this
means there is only one instance of it and you can access it from anywhere in the code
using the class method to get an instance of CCDirector. You simply write [CCDirector
sharedDirector] and then you can use any of its methods.

Singleton is a design pattern that restricts creation of more than one instance
of the class. You can access it globally using a class method of the class. The
Singleton pattern is quite useful when you want to have a globally accessible
object. There are ongoing debates about the Singleton pattern; some consider
it an antipattern and provide some arguments that have a right to live, but
personally I find the Singleton pattern quite useful. The Singleton pattern is
widely used in the Cocos2D source code, and we are also going to use this
pattern in our code later in the book.

Cocos2D – Under the Hood

[54]

Now that we know how to access CCDirector, let's have a look at some of the methods it
provides for scene management, which are as follows:

�� runWithScene: – This method is only used to feed the first scene to CCDirector
at the start and shouldn't be used after that. In Cocos2D v3.0, you don't even need
to use it anymore, as you simply return the first scene from the startScene
method of the AppDelegate class.

�� replaceScene: – This method is used to replace the currently running scene,
in other words, to switch to a different scene. The currently running scene will
be deallocated.

�� pushScene: – This is used when you don't want to remove the current scene.
Instead of removing it, it will be suspended and pushed on the stack, and a new
scene will be displayed. The Cocos2D documentation advises you to avoid having a
big stack of pushed scenes (that is, pushing many scenes without popping). I would
recommend that you avoid using the pushScene: method at all if you can use the
replaceScene: method instead.

�� popScene: This is a counterpart of the pushScene: method. It removes the
currently running scene, pops the previously pushed scene from the stack and
makes it run again.

�� popToRootScene: This is a handy method that pops all the pushed scenes, leaving
only the root scene. It is handy if you don't know or don't care how many scenes are
pushed using pushScene: and want to close all of them to return to the root scene.

This is actually all we need to manage the scenes for now. In Chapter 9, User Interface and
Navigation, we're going to return to this topic and review everything in more detail, but right
now, this will be enough to display different scenes that we'll create shortly.

We will meet the other CCDirector properties later in the book.

Pop quiz – under the hood
Q1. Which is the base class for all objects displayed by Cocos2D?

1.	 CCScene

2.	 CCNode

3.	 CCLabelTTF

4.	 CCSprite

Chapter 2

[55]

Q2. Which configuration option would you use to toggle the debug information in the
bottom-left corner?

1.	 CCSetupShowDebugStats

2.	 CCSetupScreenMode

3.	 CCSetupFixedUpdateInterval

4.	 CCSetupPixelFormat

Q3. How do you specify which scene to run first in your game?

1.	 Use the replaceScene: method of the CCDirector class
2.	 Use the pushScene: method of the CCDirector class
3.	 Use the popScene method of the CCDirector class
4.	 Return this scene from the startScene method of the AppDelegate class

Summary
After reading this chapter, you should now have a general understanding of the Cocos2D
architecture and some of its main classes. Also, thinking how to create a game engine like
Cocos2D should give you some ideas about why things in Cocos2D might work the way
they do.

I believe that it is always important to understand the idea that stands behind some
technology rather than just mindlessly memorizing names of the classes and their
properties. This knowledge should help you grasp more advanced concepts of Cocos2D
with ease in the rest of the book and even beyond it.

Don't worry if you don't fully understand right now what happens in AppDelegate or some of
the configuration options. It will get clearer when you will actually need to adjust something.
The same can be said about the CCDirector class. Don't worry, you will be shown how to use
it and you will fully understand its significance during the course of this book.

This is the final theoretical chapter of this book. In the next chapter, we'll start creating a
game and you will see the first results on the screen of your simulator or device in no time.

www.allitebooks.com

http://www.allitebooks.org

4
Rendering Sprites

In this chapter, we'll start building our sample game called Cocohunt. We'll start
by creating the Xcode project skeleton and adding the GameScene class to the
project. Then, we'll start filling the empty GameScene scene with the actual game
objects. We will add the most common type of objects used in games—sprites.
We'll learn their main properties, such as position and anchor point. We will make
them move and will even add an animation.

The goal of this chapter is to learn how to work with sprites and get to know their main
properties. After reading this chapter, you will be able to add sprites to your games.

In this chapter, we will cover the following topics:

�� Setting up the initial project

�� Sprites and their main properties

�� Adding sprites to the scene

�� Adding sprites as a child node of another sprite

�� Manipulating sprites (moving, flipping, and so on)

�� Performance considerations when working with many sprites

�� Creating spritesheets and using the sprite batch node to optimize performance

�� Using basic animation

Rendering Sprites

[58]

Creating the game project
In the next few chapters of the book, we're going to practice every new thing we learn straight
away. We could create many separate mini projects, each demonstrating a single Cocos2D
aspect, but this way we won't learn how to make a complete game. Instead, we're going to
create a game that will demonstrate every aspect of Cocos2D that we learn.

The game we're going to make will be about hunting. Not that I'm a fan of hunting, but
taking into account the material we need to cover and practically use in the game's code,
a hunting game looks like the perfect candidate.

The following is a screenshot from the game we're going to develop. It will have several
levels demonstrating several different aspects of Cocos2D in action:

Time for action – creating the Cocohunt Xcode project
Let's start creating this game by creating a new Xcode project using the Cocos2D template,
just as we did with HelloWorld project, using the following steps:

1.	 Start Xcode and navigate to File | New | Project… to open the project creation dialog.

2.	 Navigate to the iOS | cocos2d v3.x category on the left of the screen and select the
cocos2d iOS template on the right. Click on the Next button.

Chapter 4

[59]

3.	 In the next dialog, fill out the form as follows:

�� Product Name: Cocohunt

�� Organization Name: Packt Publishing

�� Company Identifier: com.packtpub

�� Device Family: iPhone

4.	 Click on the Next button and pick a folder where you'd like to save this project.
Then, click on the Create button.

5.	 Build and run the project to make sure that everything works. After running the
project, you should see the already familiar Hello World screen, so we won't show
it here.

Make sure that you select the correct simulator version to
use. This project will support iPhone, iPhone Retina (3.5-inch),
iPhone Retina (4-inch), and iPhone Retina (4-inch, 64-bit)
simulators, or an actual iPhone 3GS or newer device running
iOS 5.0 or higher.

What just happened?
Now, we have a project that we'll be working on.

The project creation part should be very similar to the process of creating the HelloWorld
project, so let's keep the tempo and move on.

Time for action – creating GameScene
As we're going to work on this project for some time, let's keep everything clean and tidy by
performing the following steps:

1.	 First of all, let's remove the following files as we won't need them:

�� HelloWorldScene.h

�� HelloWorldScene.m

�� IntroScene.h

�� IntroScene.m

Rendering Sprites

[60]

2.	 We'll use groups to separate our classes. This will allow us to keep things organized.
To create a group in Xcode, you should right-click on the root project folder in Xcode,
Cocohunt in our case, and select the New Group menu option (command + alt +
N). Refer to the following sceenshot:

Creating a new group

3.	 Go ahead and create a new group and name it Scenes. After the group is created,
let's place our first scene in it.

4.	 We're going to create a new Objective-C class called GameScene and make it a
subclass of CCScene. Right-click on the Scenes group that we've just created and
select the New File option.

Right-clicking on the group and selecting New File instead of
using File | New | File will place our new file in the selected
group after creation.

5.	 Select Cocoa Touch category on the left of the screen and the Objective-C class on
the right. Then click on the Next button.

Chapter 4

[61]

6.	 In the next dialog, name the the class as GameScene and make it a subclass of the
CCScene class. Then click on the Next button.

7.	 Make sure that you're in the Cocohunt project folder to save the file and click on
the Create button.

You can create the Scenes folder while in the save dialog
using New Folder button and save the GameScene class
there. This way, the hierarchy of groups in Xcode will match
the physical folders hierarchy on the disk. This is the way I'm
going to do this so that you can easily find any file in the book's
supporting file's projects.
Take this into account that if you compare your code with the
source code of project that comes with the book, they might
have different physical layout for the files. However, the groups
and files organization within groups will be identical, so you can
always just open the Cocohunt.xcodeproj project and
review the code in Xcode.

8.	 This should create the GameScene.h and GameScene.m files in the Scenes group,
as you can see in the following screenshot:

9.	 Now, switch to the AppDelegate.m file and remove the following header imports
at the top:
#import "IntroScene.h"
#import "HelloWorldScene.h"

Rendering Sprites

[62]

It is important to remove these #import directives or we
will get errors as we removed the files they are referencing.

10.	 Import the GameScene.h header as follows:
#import "GameScene.h"

11.	Then find the startScene: method and replace it with following:
-(CCScene *)startScene
{
 return [[GameScene alloc] init];
}

12.	Build and run the game. After the splash screen, you should see the already familiar
black screen as follows:

You can find a snapshot of the project at this point in the book's supporting
files in Chapter_04/Cocohunt_Creating_GameScene. You
can download book's supporting files from the Packt website; just visit
http://www.packtpub.com/support and follow the instructions.

http://www.packtpub.com/support

Chapter 4

[63]

What just happened?
We've just created another project using the Cocos2D template. Most of the steps should
be familiar as we have already done them in the past.

After creating the project, we removed the unneeded files generated by the Cocos2D
template, just as you will do most of the time when creating a new project, since most
of the time you don't need those example scenes in your project.

We're going to work on this project for some time and it is best to start organizing things
well right away. This is why we've created a new group to contain our game scene files.
We'll add more groups to the project later.

As a final step, we've created our GameScene scene and displayed it on the screen at the
start of the game. This is very similar to what we did in our HelloWorld project, so you
shouldn't have any difficulties with it.

If you do have difficulties, just compare your project with the one that comes
with the book's supporting files. I will provide several snapshots of the project
during each chapter so that you can compare it with yours in case of any issues.

Adding sprites to your game
A sprite is just a two-dimensional image used in the game. A sprite can represent a player
character, an enemy, or even a background image. The following is a sample of a sprite:

The player character sprite

Rendering Sprites

[64]

A sprite can represent a tiny player character that is moved and animated, but at the same
time, a sprite can be just a static image that we use to cover the whole background. The
following is an example of this:

A background sprite

As you can see, sprites can come in different shapes and sizes depending on what they
represent on the screen.

In Cocos2D, a sprite is represented by the CCSprite class that we already used in the
past when we displayed the earth image on the screen in the HelloWorld project.
The CCSprite class has everything you need to load the sprite image from the disk,
position it, and draw it on the screen.

Let's start by adding a background image to our game scene.

Time for action – adding the background sprite
We will start by adding a good-looking background image instead of a boring black screen by
performing the following steps:

1.	 Open the Cocohunt project in Xcode if you've closed it.

2.	 Before we can add background sprite to our game scene, we need to add an image
file with the background to our project.

3.	 Right-click on the Resources group in the Xcode Project Navigator on the left of
the screen and choose the New Group option in the menu to create a subgroup.
Call this group Backgrounds.

Chapter 4

[65]

4.	 Open the Chapter_04/Assets/Backgrounds folder and drag the following files
(all files in the folder) over to the Backgrounds group that you just created:

�� game_scene_bg.png

�� game_scene_bg-hd.png

�� game_scene_bg-iphone5hd.png

Refer to the following screenshot:

5.	 In the Choose options for adding these files dialog that appears after you release
the mouse button, make sure that Copy items into destination group's folder
(if needed) is checked and in Add to targets list the Cocohunt target is selected.
Then, click on the Finish button. You should see all three files nicely added into
Backgrounds group.

6.	 Now open the GameScene.m file and import the cocos2d.h header file at the top,
right below the #import "GameScene.h" line as follows:
#import "cocos2d.h"

7.	 After this, add the following addBackground method between the
@implementation and @end parts in the GameScene.m file as follows:
-(void)addBackground
{
 //1
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 //2
 CCSprite *background =

Rendering Sprites

[66]

 [CCSprite spriteWithImageNamed:@"game_scene_bg.png"];

 //3
 background.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.5f);

 //4
 [self addChild:background];
}

8.	 However, adding the addBackground method is not enough to get it executed. Add
the following init method that will call the addBackground method:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 }

 return self;
}

9.	 Build and run the game. You should see the following nice background image
instead of the black screen:

GameScene with the background sprite

Chapter 4

[67]

Looks better than the black screen, doesn't it? This clearly shows how significant sprites are
in any modern game. Most of the objects on the screen are sprites!

What just happened?
As you can see, displaying a big background image wasn't any different from displaying an
image of the earth in the HelloWorld project. All we did was add a background image to
the Xcode project and then add a background sprite to the GameScene scene.

Let's review each step in detail.

Adding the background image to the Xcode project
You should already know how to add image files to the project and how to create groups
in Xcode. We've combined both of these actions and added images into the Resources
subgroup. In real games, you have dozens or even hundreds of sprites, so keeping all of
them in one Resources group will lead to a total mess.

The interesting part is that this time we've added three versions of the same image. Let's
briefly review each one as follows:

�� The game_scene_bg.png file: This is the basic background image used on older
devices; in our case, it is used when a game is running on the iPhone 3GS device or
the iPhone simulator (non-Retina). Several years ago, before the iPhone 4 (Retina)
was introduced, the game_scene_bg.png file would be the only file that we need
to add. This is why it comes without any suffix.

�� The game_scene_bg-hd.png file: This image is designated to iPhones with the
Retina display, this means the image can be used on iPhone 4 or newer versions,
including iPhones with 4-inch displays (for example, iPhone 5S).

�� The game_scene_bg-iphone5hd.png file: This image is intended only for iPhones
with 4-inch Retina display, such as iPhone 5 or newer.

Note that there is no such suffix as –iphone5shd
or –iphone5chd for iPhone 5S or iPhone 5C.
Instead, for all 4-inch displays, you should use the
-iphone5hd suffix.

If you remember, we had only the earth.png and earth-hd.png images when we created
the HelloWorld project. You are probably wondering how our HelloWorld project worked
on iPhone Retina (4-inch) simulator without the earth-iphone5hd.png image?

Rendering Sprites

[68]

The answer is in the way Cocos2D searches for the images. Let's review what happens when
you write [CCSprite spriteWithImageNamed:@"earth.png"] and then execute this
code on an iPhone 5 device or an iPhone Retina (4 inch) simulator in the following steps:

1.	 Cocos2D detects that the game is currently running on an iPhone device with 4-inch
display and the corresponding suffix for that device is -iphone5hd. So, it adds this
suffix to the original file name that you've provided and the file name becomes
earth-iphone5hd.png.

2.	 Then, Cocos2D searches for this file, and if the file is found, it uses it. If the file is not
found, Cocos2D tries the next most appropriate suffix, which is -hd, as this is still a
Retina device suffix.

3.	 Cocos2D searches for the file named earth-hd.png and if it finds the file, it uses
this file, even though we're running on an iPhone device with a 4-inch display.

This was the case in our HelloWorld project, and it is
often used to provide one set of images for 3.5-inch and
4-inch displays. We'll discuss this later in the chapter.

4.	 If the file is not found, Cocos2D searches for the original file name that we've
specified, which is earth.png, and if it can find this file, it uses the file with no
suffix. After all, it is better than nothing.

5.	 If the original file with no suffix is also not found, then an error occurs and an
exception is thrown.

If you're not handling this error in your code, it will mean that
the game will crash at this point.

This is a simplified version of what is happening internally in Cocos2D, but it describes
everything close enough to understand how images are searched.

Here is a little explanation of why it is done this way. If you're developing a game that supports
both iPhone 4 (with 3.5-inch display) and iPhone 5 or a newer version (4-inch display), in most
cases, you will still use the same set of sprites for both. Using separate sprites will make your
game heavier (as you include two versions of each image) and you will also have to adjust your
game logic and layout to support slightly different sizes of the images (for example, when you
are checking collisions between them or positioning them on the screen).

Chapter 4

[69]

Knowing that Cocos2D will fall back to the –hd suffix allows us to save some traffic and
space on the player's disk and use the same images for the 3.5- and 4-inch displays, when
appropriate, by specifying the –hd suffix. We will see this in action very soon, but first let's
review the rest of changes we've made to the project.

Adding a background sprite to the GameScene
The only difference from the HelloWorld project aside using another image is that we've
added the addBackground method and called it from the init method, instead of just
adding the code to create a sprite straight into the init method.

This is done simply because adding all the code to the init method makes it harder to update
the method in the future, and we're going to do a few more things in the init method.

I assume the code in the addBackground method looks familiar, but let's review it line by
line as follows:

1.	 This line of code gets the size of the current view.

2.	 A background sprite is created using one of the game_scene_bg*.png images,
depending on the screen size of the device or the simulator as described earlier.

3.	 Then the created sprite is positioned at the center of the screen.

Don't forget that setting the sprite position property sets
the position of the center of the sprite by default. It is easy to
forget this at first.

4.	 Finally, the sprite is added to the scene. The scene now owns (retains) the sprite,
so it won't be deallocated.

This is a typical list of actions required to add a sprite: create the sprite, set its properties,
and finally add it to the scene. We'll be doing this sequence a lot of times.

Time for action – adding the player character
Now that we have added the background image, let's add our hunter character. There will be
two images, as we're going to split our character in the following two halves:

�� Torso

�� Legs

This will allow us to rotate the torso (the upper body) when aiming. It will get clearer in
a moment.

Rendering Sprites

[70]

It is a good idea to group these two images into one Cocos2D node to have the ability to
operate with both of them as a single game object. Also, we're going to add some code to
implement the properties and behavior of our hunter character game object, so we'll need
a class for it anyway.

To add the hunter to our game, we need to do the following:

1.	 Create a new group for our game objects so that we can separate game object
classes from the rest of the classes in the project. Go ahead and create a group
called GameObjects next to the Scenes group.

2.	 Then, right-click on the GameObjects group and click on the New File… option.

3.	 Create a new Objective-C class. Name the class Hunter and make it a subclass of
CCSprite.

4.	 Save the file in the Xcode project folder.

5.	 Before we can use the images in our code, we need to add the image files of the
hunter to the project. Create a subgroup in the Resources group and name it
Hunter, just as we created the Backgrounds group earlier.

6.	 Open the book's supporting files available in Chapter_04\Assets\Hunter and
drag all of the files from this folder into the Hunter group that we've just created.

7.	 Make sure that the Copy items to destination group's folder (if needed) option and
the Cocohunt target in the Add to targets list are checked.

All of the options mentioned above should be selected by
default, but it is always a good idea to check them just to be
on the safe side. Bugs that appear due to incorrect settings
are hard to detect and often appear only after some time,
making you wonder what recent changes lead to the bug
you're experiencing right now.

8.	 After you've performed all the actions, you should see something like the following
screenshot in your Project Navigator panel on the left.

Chapter 4

[71]

The Hunter class and images inside their corresponding groups

9.	 Finally, it is time to display the character on the screen. Open the Hunter.m file and
replace its contents with the following:
#import "Hunter.h"

//1
#import "cocos2d.h"

@implementation Hunter
{
 //2
 CCSprite *_torso;
}

-(instancetype)init
{
 //3

Rendering Sprites

[72]

 if (self = [super initWithImageNamed:@"hunter_bottom.png"])
 {
 //4
 _torso =
 [CCSprite spriteWithImageNamed:@"hunter_top.png"];

 //5
 _torso.anchorPoint = ccp(0.5f, 10.0f/44.0f);
 _torso.position = ccp(self.boundingBox.size.width/2.0f,
 self.boundingBox.size.height);

 //6
 [self addChild:_torso];
 }

 return self;
}

@end

10.	Now, open the GameScene.m file and import the following Hunter.h header:
#import "Hunter.h"

11.	Then, add the following _hunter instance variable:
@implementation GameScene
{
 Hunter *_hunter;
}

12.	After this, add the following addHunter method below the
addBackground method:
-(void)addHunter
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 //1
 _hunter = [[Hunter alloc] init];

 //2
 float hunterPositionX =
 viewSize.width * 0.5f - 180.0f;

 float hunterPositionY =
 viewSize.height * 0.3f;

 _hunter.position = ccp(hunterPositionX,

Chapter 4

[73]

 hunterPositionY);

 //3
 [self addChild:_hunter];
}

13.	Add a call to the addHunter method inside the init method as follows:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];

 [self addHunter];

 }

 return self;
}

@end

14.	Build and run the project. You should see our hunter standing on the cliff, as shown
in the following screenshot:

Rendering Sprites

[74]

You can find a snapshot of the project at this point in the book's supporting files
in the Chapter_04/Cocohunt_Adding_Player_Character folder.

What just happened?
We've performed one more step towards a complete game and added the hunter character
to our game scene. So that you understand it better, we will split everything that we did into
several steps.

Preparations step
In this step, we created a stub class for our hunter character and added images of the
hunter into the Xcode project. A separate class will allow us to gather the code related to the
character in that class, implement the behavior of the hunter, and allow GameScene to work
with our hunter as an object. Also, if you have several similar game scenes or levels, you can
reuse the Hunter class in all of them.

Creating a class and adding resources should be something that we've done several times
in the past, so we'll review different and interesting topics. Why did we split our character
image into two images?

A picture is worth a thousand words they say. Well, the following is a screenshot
demonstrating the benefits of having the torso separated from the legs:

Different poses of the hunter by rotating its torso

As you can see, applying a slight rotation to the torso part will allow us to show where the
hunter is aiming. This will make shooting from a bow at a different angle look much more
realistic compared to the hunter just standing still, aiming straight forward. However, when
he shoots, the arrow will fly in a different direction.

Chapter 4

[75]

Another thing worth mentioning is that we don't have the special images for 4-inch iPhone
devices and the simulator (the -iphone5hd suffix). This demonstrates the technique I've
mentioned before when we can have the same resource for 4 and 3.5-inch displays and thus
save some space.

In most cases, you can have the same images for non-fullscreen sprites on the
screen (for example, player character, enemies, buttons, and so on); you will
just show a bit more of the world on wider screens.

Adding images to the hunter character
The fact that our character consists of two images isn't all that good. It makes our life a bit
harder, as this means that we need two CCSprite objects to display both images. As this is
one character after all, we'll have to write the code to make it behave like one character so
that we don't end up with the situation where the legs are separated from the body.

We can create two separate CCSprite objects in the GameScene scene and manage them
separately, but it is more convenient to group them into one object. This way we can work
with the hunter as with one object; for example, we can set its position, add, or remove it
from the scene.

A common way to group objects in Cocos2D is to add a node as a child node of the other
node. For example, you can add a hand as a child sprite of the body sprite, or in our case,
we can add a torso as a child node of the legs' sprite, as it sits on top of the legs, or in other
words, it grows out from the legs if we can say it this way.

The reason why we put the torso as the child of the legs and not vice versa is that when
we're rotating a parent node, it rotates all of the children contained in it as well and we
don't want the legs to be rotated when we rotate the torso.

In many cases, you may want to group several objects into one. For
example, you might want your character to have different hats, weapons,
or even body parts. Of course, you can do this by drawing several different
characters, but there can be many combinations, which can lead to a lot of
work for the designer and will take a lot of space to store. We will discuss
this in more detail in Chapter 7, Animations and Particle Systems.

Since we're not only grouping the objects but are also going to write some code to manage
these objects (hunter's methods and properties), it is a good idea to make our class inherit
from CCSprite and put all the code into this class. This is exactly what we've done in our
code. We've inherited our class from CCSprite to extend it and make it a more specific
Hunter class.

Rendering Sprites

[76]

Let's review each code block marked by the comment with the number in the Hunter.m file
as follows:

1.	 The first thing we did was import the cocos2d.h header file so we can use the
different Cocos2D classes.

2.	 Next, we added an instance variable to hold the reference to the torso sprite,
as we're going to manipulate it later.

3.	 The init method uses the super class's initWithImageNamed: method to
initialize itself with the legs' image. This current sprite will be the parent to the
torso sprite, but as we've inherited the CCSprite class, we can also use it to
display the legs' image. This way the Hunter class itself will be a container for
the torso and will display the legs. Two birds with one rock!

4.	 A separate sprite for the torso was created and stored in the _torso
instance variable.

5.	 After the sprite was created, its anchor point and position are changed.

When we set the position of the child node, such as the torso,
we set the position relative to its parent node. There is a good
figure demonstrating the coordinates system a few pages later.

6.	 Finally, the torso was added as the child to the current legs' sprite.

There is a tricky point in the code block marked with the number 5. Here, we calculated
the position and the anchor point. Let's review it more carefully starting with the anchor
point part.

An anchor point is the point around which all transformations and positioning manipulations
are made. When we set the position of the sprite and any other node, we actually move the
sprite using the anchor point as the pivot for the sprite. When we rotate the object, it rotates
around the anchor point. Remember I mentioned that when we set the position for the
sprite, we actually set where the center of the sprite will be by default. This is because the
anchor point is set to the center of the sprite by default.

This is only true for sprites and shouldn't be assumed for
scenes and nodes.

Imagine a sheet of paper that you pierced with a needle. When you move this needle,
a sheet of paper follows. When you pin this needle on the board, you pin the whole sheet
of paper in the position of the needle, although it might not be at the center of the sheet
of paper. When you rotate this sheet of paper, it rotates around the needle. This is what
an anchor point is.

Chapter 4

[77]

In Cocos2D, the anchor point is normalized; this means that it goes from 0 to 1 for each
side of the image and (0,0) is the left-bottom corner whereas (1,1) is the top-right corner.
It doesn't depend on the actual size of the image; it is always 0 to 1.

Anchor point values independent of the image size

Another important note is that you can set an anchor point out of the (0,0) – (1,1) range; for
example, you can set it to (-1,-1), which is outside the sprite rectangle. This will make the sprite
rotate around that point outside itself. It might be quite useful when you want to rotate one
object around another object; you just set the anchor point of the object to be rotated to the
center of the object it should rotate around and then it will rotate around this object.

If you do this, don't forget that the anchor point is still in the local
sprite coordinates, and you should first find the position of other
node in the local coordinates of current sprite.

Back to our hunter. We're going to change its default anchor point, as we don't want to
rotate around the center of the torso. We want to rotate around the point that is situated
around the waist as is demonstrated in the following screenshot:

Rotating torso around an anchor point instead of the center of the image

Rendering Sprites

[78]

You can clearly see that x=0.5 (as it is the center of the image's width) and y is about 10
points from the bottom edge of the image, while the whole image is about 44 points high,
which gives us y=10/44. Now this line of code that we added to the init method of the
Hunter class should be much clearer:

_torso.anchorPoint = ccp(0.5f, 10.0f/44.0f);

The remaining changes that we've made to the Hunter.m file set the position of the torso.
This should be quite simple when we remember that we set the position using the anchor
point. We want our hunter's anchor point (which is in the middle of the waist, as shown
earlier) to be at the middle of the top edge of the legs' image.

Instead of hardcoding the coordinates, we used the boundingBox property. This property
gives us the size of the legs' sprite rectangle. We can use it to calculate the position of the
middle point of the top edge of the legs' image.

Don't forget that we set the position relative to the legs' image sprite because the torso is
the child node of the legs. And as you remember, each node is positioned relatively to its
parent and not relative to the global origin. This means that from the torso's point of view,
the bottom-left corner of the legs' image is (0,0), and we want our anchor point to be
positioned at (width / 2.0, height). Refer to the following screenshot:

Placing the torso image relative to the parent sprite using an anchor point

It might seem strange that we placed our child sprite outside of the parent, but this is totally
normal in the Cocos2D world. The only downside of this approach is that when we want to
move the whole hunter object, we need to remember that we should position the center of
the legs' sprite, not the center of the whole hunter.

Chapter 4

[79]

This can be fixed if we change the anchor point of the legs to (0.5, 1).
The anchor points (legs and torso) will then be at one point. But since
we won’t move the hunter after placing it we can leave everything as is.

Adding the hunter object to our game scene
As the final step, let's review the updated code in the game scene. The only thing we've done
here is add our hunter object to the scene.

To do this, we imported the Hunter.h header file, added the addHunter method, and
called it from the init method. Let's review the code in the addHunter method as follows:

1.	 We created the instance of the hunter and stored it in our instance variable.
2.	 We calculated the position of the hunter by calculating the x component relative

to the screen center, instead of the left part of the screen. More on this will be
explained later.

3.	 Finally, we added the hunter to the scene.

Again, there is a small tricky part with the x component of the hunter's node position. We
need to calculate the position relative to the center of the screen. This allows us to place our
hunter's node at the same position relative to the background on the 4-inch display as well
as on older devices. If you have tested the game on different simulators, you've probably
noticed that the background image differs on a 4-inch simulator and it has extra space on the
sides. These outer edges of the image are cropped on 3.5-inch displays, and the central part
of the background image stays the same on all devices. Refer to the following screenshot:

Distance from the center and left side of the screen on a 4-inch display and older devices

Rendering Sprites

[80]

In the preceding image, you can see that because new 4-inch display screens are wider
than older devices. We need to provide a wider background image (a little extra beyond the
rectangle), but we still want to position our character on the same place in the world. So,
we're calculating the distance from the center and not from the left edge of the screen.

A set of such tricks that allow you to avoid hardcoding positions and use relative values will
help you position your objects on the screen much easier and avoid using a lot of switch
and if conditions to calculate the position depending on the current screen size.

Time for action – fixing z-order
If you were highly attentive and have a sharp eye, you might have noticed a little issue with our
hunter's legs and torso. The issue is that the torso is displayed above the belt part of the pants.

The current z-order and the correct z-order

It is hard to notice since the character is pretty small, but if you zoom in (Ctrl + mouse
wheel,) you will be able to see the issue. Let's fix this using the following steps, and then
I'll explain why this is happening:

1.	 Open the Hunter.m file to find the following line in the init method:
[self addChild:_torso];

2.	 Make the following change:
[self addChild:_torso z:-1];

3.	 Now, build and run the project. You should see the torso behind the legs, as it
should be.

What just happened?
First of all, we need to understand what z-order is. With Cocos2D, we're living in
a two-dimensional (2D) world, but we all know there is a third dimension, and this
dimension can be quite useful to resolve the order of the things in the Cocos2D world.

Imagine that you have two overlapping images, such as that of the legs and torso of our
hunter. We want to make sure that the torso image is behind the legs' image. This is when
z-order comes to the rescue.

Chapter 4

[81]

You might wonder why the torso should be curved and behind the legs. The
answer is simple. If we just cut the hunter body into two halves by a straight
line and then rotate the torso part around its anchor point, we will get a gap
on one side of the waist. This happens because the real body stretches, while
our image does not.

Each node has an integer property called zOrder, which is defined all the way up the
hierarchy in the CCNode class. Cocos2D sorts the nodes using this property and then renders
them. This way all nodes (sprites, labels, and so on) with low z-order values are rendered
first and those with high z-order values are rendered last, and overwrite everything that is
drawn before.

Imagine you're drawing in some kind of painting program. You draw a red rectangle and then
draw a blue rectangle that overlaps the red one. The overlap of two rectangles will be blue
because you've drawn the blue rectangle last. This is exactly how z-order works if the red
rectangle has a lower z-order than the blue one.

You might wonder how the hunter is displayed over the background when we didn't set any
z-order in our GameScene.

Here is how. If you don't specify a value for z-order, it will be set by default to 0, so all of
our elements had the same z-order set to zero. Then, if there are two nodes with the same
z-order, their order on the screen is determined by the order in which they were added.
In our case, we first added the background and then the hunter; this way the hunter was
on top of the background.

The z-order only works within the current parent node. It means you can only order nodes
that are at the same level. That is why setting z-order of the torso to -1 only puts it behind
the parent legs' sprite and not behind the background image, which has z-order set to a
default value of 0 because the background image is on another level.

At the time of writing this chapter, there are plans to change this behavior
and switch to global z-order of nodes and their child nodes. In this case,
setting z-order for the torso to -1 will put it under the background that has
z-order of 0, even though the torso sprite is a child of the legs sprite, which
is on top of background. If Cocos2D switches to global z-order to make
things work, you will need to assign the correct value of z-order to all nodes.
For example, set background to 0, legs to 2, and torso to 1.

It will get clearer when we'll use zOrder later in the book to order other elements.

Rendering Sprites

[82]

Adding more sprites and moving them
Now that we have our hunter standing with the tense bow, we need to add some targets.

Time for action – adding birds
In this game, the hunter will hunt birds, so let's create a bird object by performing the
following steps:

1.	 Open Xcode and create a new subgroup in the Resources group, next to the
Hunter and the Backgrounds groups. Call this new group Birds.

2.	 Open the Chapter_04/Assets/Birds folder and drag all images into the new
Birds group in Xcode. Make sure that copy option is checked.

3.	 Create a new Objective-C class in the GameObjects group. Name this class Bird
and make it a subclass of CCSprite.

4.	 Open the Bird.h file and replace its contents with the following code:
#import "CCSprite.h"

typedef enum BirdType
{
 BirdTypeBig,
 BirdTypeMedium,
 BirdTypeSmall
} BirdType;

@interface Bird : CCSprite

@property (nonatomic, assign) BirdType birdType;

-(instancetype)initWithBirdType:(BirdType)typeOfBird;

@end

5.	 Open the Bird.m file and add the following implementation of the
initWithBirdType: method listed:
-(instancetype)initWithBirdType:(BirdType)typeOfBird
{
 //1
 NSString *birdImageName;

 switch (typeOfBird) {
 case BirdTypeBig:
 birdImageName = @"bird_big.png";

Chapter 4

[83]

 break;
 case BirdTypeMedium:
 birdImageName = @"bird_middle.png";
 break;
 case BirdTypeSmall:
 birdImageName = @"bird_small.png";
 break;
 default:
 CCLOG(@"Unknown bird type, using small bird!");
 birdImageName = @"bird_small.png";
 break;
 }

 //2
 if (self = [super initWithImageNamed:birdImageName])
 {
 //3
 self.birdType = typeOfBird;
 }

 return self;
}

6.	 Open the GameScene.m file and import the Bird.h header file at the top,
as shown in the following code:
#import "Bird.h"

7.	 Add the following _bird instance variable to hold our bird object, next to the
_hunter instance variable that we added earlier:
@implementation GameScene
{
 Hunter *_hunter;
 Bird *_bird;
}

8.	 Then, add the following addBird method:
-(void)addBird
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 _bird = [[Bird alloc]
			 initWithBirdType:BirdTypeSmall];

 _bird.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.9f);
 [self addChild:_bird];
}

Rendering Sprites

[84]

9.	 Add a call to the following addBird method in the init method, after calling the
methods that add the background and the hunter:
-(instancetype)init
{
 if (self = [super init])
 {
 //…skipped…

 [self addBird];
 }

 return self;
}

Note that some part of the code that it is already there is skipped. I will
mark the skipped parts of the methods with //..skipped.. comment,
so that you don't have to guess if you need to delete everything that is not
shown in the listing.

10.	Now build and run the game. You should see a bird in the top center of the screen.

Chapter 4

[85]

What just happened?
We've just added one more game object to our game scene. In fact, we wrote the code that
allows us to add birds of three different types. Let's review step-by-step how we did so much
with so little code.

Just as with the hunter and the background sprites, we started by adding images of the birds
to our Xcode project.

Then, after creating the empty Bird class, we defined the BirdType enum type that will
allow us to use one single class for three different bird types. This is quite convenient, as the
behavior of all the birds will be almost identical and they will only differ by their image and
maybe by a few other properties.

After adding a property, which we'll use later, we created a special init method named
initWithBirdType:. This method expects a type of bird we want to create as a parameter
and picks the corresponding image. Let's review the implementation of this method in the
following points:

1.	 Depending on the typeOfBird parameter, a corresponding image is selected.

Note that we added a default: case to our switch
statement, which logs a warning that this is an unknown type
of bird, but still uses a small bird image. You might change the
code to throw an exception and crash the game so that you
surely don't miss the log message.

2.	 As the Bird class is a subclass of the CCSprite, it uses the parent
initWithImageNamed: method to initialize itself with the selected image based
on the bird type.

3.	 The type of the bird parameter is saved in the property. This is required if we need
to know which bird type this is.

Finally, we created the bird object and added it to the scene in the GameScene scene so that
we could see it.

Rendering Sprites

[86]

Time for action – making the bird move
It is nice to have a cute bird on the screen, but our hunter can't shoot an unmoving bird,
as this is simply not sportsman-like. So, before we give our hunter the ability to shoot,
we're going to make the bird fly.

1.	 Open the GameScene.m file and add the following update: method below all
other methods:
-(void)update:(CCTime)dt
{
 //1
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 //2
 if (_bird.position.x < 0)
 _bird.flipX = YES;

 //3
 if (_bird.position.x > viewSize.width)
 _bird.flipX = NO;

 //4
 float birdSpeed = 50;
 float distanceToMove = birdSpeed * dt;

 //5
 float direction = _bird.flipX ? 1 : -1;

 //6
 float newX = _bird.position.x + direction * distanceToMove;
 float newY = _bird.position.y;

 //7
 _bird.position = ccp(newX, newY);
}

2.	 Now build and run the game. You should see the bird moving from the left edge of
the screen to the right edge and then back.

You can find the snapshot of the project at this point
in the book's supporting files in the Chapter_04/
Cocohunt_Making_Bird_Move folder.

Chapter 4

[87]

What just happened?
This was a small bit of code, but the changes we see are quite significant. Our static image
on the screen is starting to become an actual game. We'll review the code shortly, but before
we review the body of the update: method line by line, let's get to know what this update:
method is all about.

Meeting the update: method
In the real world, we have no frames or update intervals. When we see a bird flying, we
don't think of it as a set of position points, instead we see its trajectory as an absolutely
continuous line. Refer to the following screenshot:

The issue with the real-life trajectory is that it is infinitely subdividable. This means that
there is an infinite number of positions between the start and finish positions of the bird.
Of course, we cannot provide an infinite number of positions for a finite time interval in our
game. Just like how a one-hour movie cannot have an infinite number of frames.

However, while the movie is just a finite set of frames; when we watch the movie, we see
movements just like in real life. This happens because if we supply a sufficient amount of
frames per second, our brain does the rest of the job.

Video games work in a similar way. We just update our objects and render the scene to
the current frame. Then, we update them once again and render another frame. The goal
is to simulate the seamless action on the screen by providing a sufficient amount of frames
per second.

Rendering Sprites

[88]

This is where the update: method comes on stage. This method is called once per frame,
and we have the ability to update objects on the screen, just like an animator who draws the
frames of a cartoon one-by-one. Then, after we run the update: method, Cocos2D draws
everything on screen for us.

When we reviewed the code in AppDelegate, there was the CCSetupAnimationInterval
configuration option, which defaults to 1.0/60.0. I've said that this is the desired amount of
frames per second. The value of 1.0/60 means that we want to run 60 frames per second
(FPS), and in an ideal world, this would mean that the update: method will be called 60 times
per second.

This way, we would know for sure that 1/60th of the second has passed since the last
update: call. However, we should get back to the cruel real world where we cannot
guarantee that the game will run at 60 FPS and the update: method will be called once
each 1/60th of a second.

There can be many reasons for this. We can perform many heavy calculations in the
update: method that take more than 1/60th of a second, and Cocos2D will wait until the
previous call to update: method completes before it calls it again. So, obviously more time
will pass between calls. There can be some other background processes in iOS (for example,
SMS or push notifications) that will eat up some of the processor time and our game will
have to wait a little extra before the update: method will be called the next time.

It might seem that there is no issue with this, but that's not entirely true. Imagine that
we want our bird to spend 10 seconds flying from one edge of the screen to another.
Calculations are quite simple in this case. We take the width of the screen (let's take the
3.5-inch screen width of 480 points for this sample) and divide it with the number of
seconds and we get that the bird should fly 480/10=48 points per second.

Given that update: is called 60 times per second, we can think that each time update: is
called, the bird should move 48/60=0.8 points. Now, imagine that in addition to moving the
bird, we perform some actions in update: that take a lot of time and our game actually runs
only about 30 frames per second. This means that the update: method is called only 30
times per second, and our bird only moves 0.8*30=24 points per second, or 240 points per
10 seconds. Thus, instead of moving completely from one side of the screen to another, the
bird only flies half of the way due to the lower frame rate. Refer to the following screenshot:

Chapter 4

[89]

Frame dependence

To solve this frame dependence issue, the following is the extra parameter in the
update: method:

-(void)update:(CCTime)dt

The dt parameter means delta time. Basically, it is just a float parameter that holds the
amount of time passed since the last update call. If in the preceding bird example, we'd used
this dt parameter instead of a constant value, we would've had no frame dependence issues.

Let's see how we used it and review the full code of our update: method.

Reviewing bird movement in the update: method
Let's review each code block marked by comment in the following points:

1.	 We get the size of the screen. We then use this size to detect when the bird reaches
the screen bounds.

2.	 This code block checks whether the bird has passed the left edge of the screen and
flips the bird around if the condition is true. We've used a property of the sprite
called flipX. This property allows us to mirror the sprite image over the x axis. The
bird image is designed in a way that it looks to the left, so setting flipX to YES will
make it look to the right. This is exactly what we want as the bird is about to move
to the right and we don't want it to fly backwards.

Rendering Sprites

[90]

If you want to flip the sprite over the y axis,
you can use the flipY property.

3.	 Next, there is another check to see whether the bird has passed the right edge of
the screen, and then flip it around to make it head to the left.

Remember that, by default, the sprite's position property
is where the center of the sprite is, because the anchor point is
set to the center. This is why our bird flies with half of its body
outside the screen before turning around.

4.	 The distance that the bird flew since the last update: call is calculated. Refer to the
following points:

�� The birdSpeed parameter: This is the distance in points that the bird
should fly in 1 second. We could use any value but 50 works well.

�� The dt parameter: This is the time passed since the last update: call.

5.	 When we multiply the distance per second with the number of seconds passed,
we get the actual distance. As we use dt instead of a constant value, we get a frame
independent movement of the bird.

Note that distanceToMove contains the absolute
distance. This means that it contains the length of the
flight, but not the direction.

After the absolute distance is calculated, we need to understand where to move, to
the left or to the right. If flipX is set to YES, then the bird moves to the right. In this
case, we should add the traveled distance to the current position x coordinate, as the
x axis extends to the right. If flipX is set to NO, then the bird moves to the left and
we should subtract the traveled distance from the current position's x coordinate.

6.	 Finally, the bird's new position is calculated.

7.	 Then, this new position is assigned to the bird and the bird moves on the screen.
As this process is repeated for each frame, the bird moves a little in each frame.
This way we're simulating seamless movement of the bird.

Chapter 4

[91]

That's all we have to do to make the bird move.

Although we've made our code frame independent by using the dt
parameter instead of the fixed position delta, it is still very important to
try to keep the frame rate high. If the frame rate drops below 30-40 FPS,
the game might look jerky, even if you're using the dt parameter, just
because the changes between the frames will be too significant and our
brain will notice this.

Understanding debug FPS labels
Now, when we know that the frame rate is important, let's have a look once again at those
debug labels that are displayed in the left bottom corner. Refer to the following screenshot:

The following explains each numbered line shown in the preceding screenshot:

1.	 The number of OpenGL draw calls per frame: Each call to the OpenGL draw function
has a performance cost. We have four objects in our scene: background, bird, hunter's
torso, and his legs. This gives us four OpenGL draw calls. If you add one more bird to
the scene, this number will increase to five and so on. Soon, I will show you how to
draw several objects in one call and increase performance.

2.	 Time required to render one frame.

3.	 The average framerate (FPS) the game is currently running.

You should try to keep the FPS around 60.0 when testing
on actual device. Don't worry if you get a lower FPS when
running on the simulator; this might only mean that you
should test on an actual device, as the simulator doesn't
have hardware acceleration. This is why you need an
actual device to test the performance.

Rendering Sprites

[92]

Knowing the meaning of each number will let you monitor the basic performance of your
game. Of course, if you want more information about your game performance, it is better
to use special tools such as the Instruments tool that comes with Xcode.

If you want to disable debug labels, simply change the CCSetupShowDebugStats
configuration option to NO while calling the setupCocos2dWithOptions: method
in the AppDelegate.m file.

Have a go hero
Before we move to our next topic, you have a chance to experiment with the current project.
I encourage you to copy the project somewhere, to keep the original project safe and
untouched as we're going to build on it, and try to do the following:

1.	 Try changing the position of the hunter and the bird.

2.	 Place the hunter on the footpath on the right side of the background and make him
look to the left using the flipX property.

3.	 Change the type of the bird.

4.	 Add more birds to the scene and make them fly. You might want to add an array to
store all birds and enumerate it in the update: method.

5.	 Change the bird's fly trajectory by applying a function to the x and y coordinates
calculation in the update: method. For example, you can try changing the newx
and newy calculation formula to the following:
float newX = _bird.position.x + direction * distanceToMove;
float newY = viewSize.height * 0.9f +
 10 * sinf(_bird.position.x / 20.0f);

Spritesheets and animation
We've learnt that Cocos2D provides a convenient way to display sprites on the screen using
the CCSprite class. However, we must understand that no matter what wrapper classes are
provided by the game engine for rendering, they are just hiding all the technical details from
us and making our life easier. In the end, it all comes down to interacting with the graphics
drivers. In the case of iOS and many other mobile platforms, this means using the OpenGL
ES API internally, because this is as close as you can get to the metal.

OpenGL ES is a topic for a separate book, and you don't need to know it to start making
games, but there is one aspect that is worth mentioning. When we render sprites using
Cocos2D, it is like saying to OpenGL, "hey, we have an image, please draw this whole
image in this rectangle area on the screen". Refer to the following screenshot:

Chapter 4

[93]

Rendering an image to the rectangle area on the screen

Each render of the image takes one call to the OpenGL ES function, and each such call has a
performance cost. So, if you have to render 100 images, it will mean 100 calls per frame and
the frame rate might drop making the game slow and jerky.

There is a technique to avoid this. Instead of making one OpenGL call per image, we can
make one call per several images by gathering them into one big image. This way, instead of
rendering the whole image into the rectangular area on the screen, we can ask OpenGL to
render the part of the image in one rectangle, then another part of the image into another
rectangle and so on. The following image illustrates this technique:

Rendering parts of the big image into the different rectangle areas on the screen

You might ask why this is faster than rendering each image separately. Well, this is quite
hard to explain without getting into the details of OpenGL, so for now we can just think
that switching between images is an expensive operation.

Rendering Sprites

[94]

The preceding image is called a spritesheet or texture atlas. Using spritesheets is a very
common practice in game development on any platform as well as in other software
development areas. A good thing to know is that there are many tools that will allow
you to use spritesheets in your Cocos2D game almost effortlessly.

We're going to use the TexturePacker tool as I find it the most user friendly for beginner
developers. Also, you can use the basic functionality of TexturePacker for free, and this
basic functionality is more than enough for a good start.

Time for action – creating a spritesheet
Let's create our first spritesheet that will contain all of the images that we've used before
and the new images that we'll be using very soon as follows:

1.	 Of course, before we create spritesheet, we need to install TexturePacker. Visit
http://www.codeandweb.com/texturepacker/download and download the
latest version of TexturePacker.

2.	 When the download completes, open the downloaded .dmg file and it will mount
a new drive called TexturePacker. It should open in Finder straight away.

3.	 Drag the TexturePacker.app in the Applications shortcut and you have
TexturePacker installed. Now, we're ready to create the spritesheet itself.

4.	 Open the TexturePacker application (by navigating to Applications | TexturePacker.
app). It will create a blank project at the start.

5.	 Open the book's supporting files at the Chapter_04/Assets/Spritesheet/hd
folder in Finder. This folder contains the Retina version of the images that we're
going to use in our game. We're going to generate a spritesheet containing all of
these images.

As we're supporting both Retina and non-Retina displays,
we'll need to create two spritesheets; this is why there are
two sets of images. The hd folder inside the Chapter_04/
Assets/Spritesheet/ folder contains Retina images and
the sd folder the non-Retina ones. We'll start by creating the
spritesheet for Retina, and then you'll repeat the process to
create the non-Retina spritesheet.

6.	 Select all images in the Chapter_04/Assets/Spritesheet/hd folder and drag
them into the TexturePacker application's right panel called Sprites. They should
appear in this panel list on the right as it is shown in the following screenshot:

http://www.codeandweb.com/texturepacker/download

Chapter 4

[95]

A Texture Packer project with images added on the right

7.	 After adding the images, we need to set some TexturePacker options on the left in
the TextureSettings panel, which are as follows:

�� Make sure Data Format is set to cocos2d

�� Change Algorithm in Layout section to Basic

�� Change Trim mode also in Layout section to None

8.	 Navigate to File | Save or press command + S shortcut and save the project
anywhere you like. Name the project file Cocohunt-hd.tps.

9.	 After we've saved the project, we can publish it and get the big image and the
.plist file with technical information. Navigate to File | Publish or use the
command + P shortcut and name the published file Cocohunt-hd.plist. Save this
file near the .tps file we saved previously. This will also create a PNG image, named
in the same way as .plist, except that it has the .png extension.

10.	At this point, you should have these files: Cocohunt-hd.tps, Cocohunt-hd.
plist, Cocohunt-hd.png. Now we need to repeat this process to create the
non-Retina version of the spritesheet.

Rendering Sprites

[96]

11.	Create a new TexturePacker project and repeat steps 4 to 9, but this time, take the
images from the Chapter_04/Assets/Spritesheet/sd folder.

12.	Save the TexturePacker project as Cocohunt.tps (without the –hd suffix) and
publish the spritesheet as Cocohunt.plist (also without the –hd suffix).

13.	At the end, you should have six files, three for the Retina display and three for the
non-Retina display.

You can find all the resulting files in the Chapter_04/
Assets/Spritesheet/result folder.

What just happened?
It might seem hard to follow all these steps, but believe me, once you do them a couple of
times, it will be quite easy. All we had to do is create a TexturePacker project, add images
that we want to put in our spritesheet, set some options and publish the spritesheet.

As we are using a free version of TexturePacker, we had to repeat this for
the non-Retina image. If we used the TexturePacker Pro version, then we
could have used the AutoSD option and got two spritesheets from the set
of images for the Retina display.

Let's review the files that we got in the result. Open the folder where you saved the project
file and published the spritesheet. Check whether you have following files:

The Spritesheet projects and published files

First of all, the Cocohunt.tps and Cocohunt-hd.tps files are the project files of the
TexturePacker application. Each file contains the settings, list of the images used, and other
internal information used by TexturePacker. This file is only used to create a spritesheet and
later to modify this spritesheet if we need to. We don't need to add it to the Xcode project.

Chapter 4

[97]

Next are the two pairs of .plist and .png files. Each pair describes one spritesheet. This is
because each spritesheet consists of two files: .plist and .png.

The .plist file contains coordinates of the images that we've used to create the spritesheet
within the generated spritesheet's PNG image. Without this file, Cocos2D won't be able to
separate sprites from that big image.

The .png file is the resulting big image for Retina or non-Retina that contains all of the
images we've packed. You can open it using the Preview application or your any favorite
image viewer and see it yourself.

I encourage you to actually take a look at the image files and open the
.plist files in some text editor to understand what they contain.

We need to add both the .plist and .png files to the Xcode project so that Cocos2D can
use the spritesheet. It is important to understand that without the .plist file, the .png file
is just one big image.

Ok, we have two files per spritesheet and we have two spritesheets, one for the Retina
display defined by the Cocohunt-hd.plist and Cocohunt-hd.png files and the other
for the non-Retina display defined by the Cocohunt.plist and Cocohunt.png files.
This is why we have four files to add to the project in total.

The few settings that we had to change were the Algorithm and Trim mode in the Layout
section. This is the restriction in the free version of TexturePacker. We can only use the
basic algorithm and can't trim the whitespace around images, but it will do the work in
many cases!

Using the MaxRect algorithm and enabling trimming can decrease the size
of the final image. A better algorithm can save some space by positioning
sprites better, while trimming will remove the whitespace around the sprites
and pack them tighter. Later when the sprites will be loaded into Cocos2D,
that whitespace will be restored, so the size of the sprites won't change. This
is important, especially if you store animation frames. We will discuss this in
Chapter 7, Animations and Particle Systems.

Rendering Sprites

[98]

Time for action – modifying the game to use spritesheets
Now that we've generated the spritesheet, let's modify our Cocohunt game to use it instead
of the single sprites by performing the following steps:

1.	 Let's remove the Birds and the Hunter groups with all their contents from the
Resources group in Xcode.

You can either right-click on the group and select Delete or just
select the group(s) and press the delete key on the keyboard.

2.	 In the remove dialog, you can select Move to Trash, as we're not going to use those
images anymore.

3.	 After removing the images, let's add our spritesheet. Create a new group inside the
Resources group and call it Spritesheets.

4.	 Open the folder with the files that you've published from TexturePacker and add
the following files to the Spritesheets group by dragging them into this group as
usual. You'll need to add the following files:

�� Cocohunt.plist

�� Cocohunt.png

�� Cocohunt-hd.plist

�� Cocohunt-hd.png

If, for some reason, you don't have the files generated
in TexturePacker, you can take the files from the
Chapter_04/Assets/Spritesheet/result folder.

5.	 Open the GameScene.m file and add an instance variable for the spritesheet batch
node as follows:
@implementation GameScene
{
 CCSpriteBatchNode *_batchNode;

 Hunter *_hunter;
 Bird *_bird;
}

Chapter 4

[99]

6.	 In the GameScene.m file, add the createBatchNode method as follows:
-(void)addBird
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 _bird = [[Bird alloc]
 initWithBirdType:BirdTypeSmall];
 _bird.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.9f);

 [_batchNode addChild:_bird];
}

7.	 Then, add a call to it in the init method, before the hunter and the bird are added
to the scene, as follows:
-(instancetype)init
{
 if (self = [super init])
 {
 [self createBatchNode];

 [self addBackground];
 [self addHunter];
 [self addBird];
 }

 return self;
}

8.	 Then, change the code at the end of the addHunter method to add the hunter to
the batch node instead of the scene as follows:
-(void)addHunter
{
 //..skipped..

 [_batchNode addChild:_hunter];
}

Rendering Sprites

[100]

9.	 Do the same at the end of the addBird method. Also, add it to the batch node
instead of the scene, as shown in the following code:
-(void)addBird
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 _bird = [[Bird alloc]
 initWithBirdType:BirdTypeSmall];

 _bird.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.9f);

 [_batchNode addChild:_bird];
}

10.	Open the Hunter.m file and find the following line:
_torso = [CCSprite spriteWithImageNamed:@"hunter_top.png"];

Change the previous line of code to the following:

_torso = [CCSprite
 spriteWithImageNamed:@"hunter_top_0.png"];

11.	Then, open the Bird.m file and make the following changes in the
initWithBirdType: method:
-(instancetype)initWithBirdType:(BirdType)typeOfBird
{
 NSString *birdImageName;

 switch (typeOfBird) {
 case BirdTypeBig:
 birdImageName = @"bird_big_0.png";
 break;
 case BirdTypeMedium:
 birdImageName = @"bird_middle_0.png";
 break;
 case BirdTypeSmall:
 birdImageName = @"bird_small_0.png";
 break;
 default:
 CCLOG(@"Unknown bird type, using small bird!");
 birdImageName = @"bird_small_0.png";
 break;
 }

 if (self = [super initWithImageNamed:birdImageName])

Chapter 4

[101]

 {
 self.birdType = typeOfBird;
 }

 return self;
}

12.	Build and run the project. You should see the exact same result as you saw earlier.

You can find a snapshot of the project at this point
in the book's supporting files in the Chapter_04/
Cocohunt_Using_Spritesheet folder.

What just happened?
You should see no visible changes, a hunter standing on the cliff and the bird moving from
one side of the screen to another. However, you might notice that the number of the draw
calls in the left-bottom corner has decreased to only two although we're still drawing the
background, hunter's torso and legs, and bird.

What we've done is combined the hunter's torso and his legs and the bird into one image
and drawing them using one call. If we add more birds or hunters, we won't increase the
number of calls.

Let's review the changes that we've made. As I've mentioned before, we need both the
.plist and .png files to use a spritesheet in our game, and we also have Retina (with
the –hd suffix) and non-Retina versions. So, the first thing we did is add these files to our
Xcode project and remove the old separate images as we don't need them. After adding
spritesheets, we needed to modify the code to use them.

Changes in GameScene
Let's start reviewing from the changes in the GameScene.m file. We've added the
_batchNode instance variable and the createBatchNode method to initialize the
batch node and add it to the scene.

Let's review the code of the method in the following points:

1.	 The first thing we did is load the frames' information into the
CCSpriteFrameCache class. Cocos2D uses this class to load and cache sprite
frames. In our case, it loads the information about the sprites from the .plist
file of the spritesheet files pair.

Rendering Sprites

[102]

2.	 Then, we created a special node called CCSpriteBatchNode. This is the node
that will draw all of our sprites from the spritesheet in one call. It won't require us
to make a lot of changes. The only thing we need to do is add all of the sprites that
use the spritesheet as child nodes of this batch node, instead of adding them to the
scene directly.

3.	 The batch node itself is added to the scene so that it could draw. The important
thing to note is that we add the batch node with z-order set to 1. Refer to the
following code:
[self addChild:_batchNode z:1];

This way we make sure that it is displayed above the background, which has z-order set to 0
by default.

Then, we need to call the createBatchNode method in the init method before we create
the hunter and the bird. The reason for this is that all sprites that use the spritesheet must
be added as children of the batch node. Only then will the batch node be able to draw all of
them in one draw call.

As the batch node renders all of its children with one draw call, you can only
add sprites from the spritesheet used to create this batch node as child nodes.
In other words, if you have a sprite from another spritesheet or a sprite that
uses a separate image, you will get the following error if you try to add it to
the batch node:
CCSprite is not using the same texture id.

Before the changes, the hunter and the bird were added directly to the scene in the
addHunter and the addBird, respectively. We modified these methods, and now we
add the hunter and the bird to the batch node instead of the scene directly.

Note that the batch node can only have sprites as its children, and children of
its children, and so on. If you try to add any object other than CCSprite or
its descendants, you will get the following error:
CCSpriteBatchNode only supports CCSprites as children.
Adding the Bird and Hunter classes works fine as they inherit from the
CCSprite class.

The following is a small to-do list on how to use the batch node in your game:

1.	 Create a spritesheet files pair (.plist and .png) in TexturePacker or any other tool.

2.	 Add these files to the Xcode project.

Chapter 4

[103]

3.	 Load the .plist information into CCSpriteFrameCache. It is important to do this
before adding any sprites from that spritesheet.

4.	 Create a CCSpriteBatchNode node and add all sprites within one spritesheet into
this batch node instead of the scene directly. Don't forget to add the batch node
itself to the scene.

Changes in the Hunter and Bird classes
Changes in the Hunter and Bird classes are mostly not related to our migration to
spritesheets. If you open the TexturePacker project, or just take a look at the filenames
of the images that we've packed in the spritesheet, you will see that there are no such
files as hunter_top.png, bird_small.png, bird_medium.png, and bird_big.png.

Instead, there are several numbered files for the hunter's torso and different bird types,
such as bird_small_0.png, bird_small_1.png, and so on. These are the animation
frames that we're going to use very soon.

We will talk about animation in the next section. For now, we just need to understand
that there is no reason to have a separate image for the hunter's torso and the birds if
it is the same image as one of the frames of the animation. For example, the following
is the animation of our hunter shooting:

Hunter shooting animation

As you can see, the first frame of the animation is exactly what we had in the hunter_top.
png image that we've used before (just a hunter standing still and aiming). So, there is no
reason to have a separate identical image in the spritesheet.

However, since the frames have slightly different names with numbers in them, we needed
to update the code. This is what we've done in the Hunter.m and Bird.m files.

If we use the same image names in the spritesheet as we've used before when they were
separate images, we will not make any changes at all in the Bird and Hunter classes, just as
how we didn't change this line in the Hunter.m file. Refer to the following code:

if (self = [super initWithImageNamed:@"hunter_bottom.png"])

The image used for the hunter's legs is called the same way in the spritesheet as it was called
when it was a separate image. This is because we won't animate the hunter's legs and have
only one sprite for them.

Rendering Sprites

[104]

Understanding spritesheet's limitations
With all the great things about spritesheets, there are some limitations. The two main
limitations you should know about spritesheets are the maximum texture size limit and
the z-order issue.

The size of the spritesheet image is limited by the maximum size of the texture that can be
loaded by the device's graphics chip. For example, you can only have a 2048 x 2048 texture
size on the devices such as iPhone 3GS, iPhone 4, and iPad (1st generation). More recent
devices support 4096 x 4096 texture.

Although these are quite big images, when developing a complicated game, it is really easy
to get more images than one spritesheet can contain. So unfortunately, putting all of your
images in one spritesheet often is not an option.

This is why backgrounds are not usually packed within
a spritesheet.

Of course, we can organize the images into several spritesheets, but this gives us another
issue. In the current implementation of Cocos2D, z-order only works within one node level.
This means that you cannot place sprite A to be under sprite B if the spritesheet with the
sprite A is above the spritesheet with sprite B.

This z-order issue will be solved if Cocos2D starts using global z-order.
This, as I've mentioned earlier, is currently being discussed and probably
will be implemented in one of the upcoming Cocos2D versions.

Automatic batching
While making final changes to this chapter, the Cocos2D team revealed a few new features
that are planned to be added in Cocos2D v3.1. One of the features is automatic batching.
This means that you can use separate images just as we used before, and the spritesheet
will be created and configured by Cocos2D on the fly.

This will be a really great feature and theoretically you won't need to generate spritesheets
manually anymore. However, I decided not to remove this part of the chapter because
understanding how spritesheets work is important even if it is generated automatically.
Also, automatic batching might not always work in an optimal way, as in many cases you
know best how your sprites are used in the game.

Chapter 4

[105]

Time for action – animating the birds
Now that we have animation frames ready, we can animate our game objects. We're not
going to make a hunter shoot in this chapter, so let's start with the bird.

1.	 Open the Bird.m file and import the following headers at the top:
#import "cocos2d.h"
#import "CCAnimation.h"

2.	 Then, add the animateFly method, below the initWithBirdType: method
as follows:
-(void)animateFly
{
 //1
 NSString *animFrameNameFormat;

 switch (self.birdType) {
 case BirdTypeBig:
 animFrameNameFormat = @"bird_big_%d.png";
 break;
 case BirdTypeMedium:
 animFrameNameFormat = @"bird_middle_%d.png";
 break;
 case BirdTypeSmall:
 animFrameNameFormat = @"bird_small_%d.png";
 break;
 default:
 CCLOG(@"Unknown bird type, using small bird anim.!");
 animFrameNameFormat = @"bird_small_%d.png";
 break;
 }

 //2
 NSMutableArray *animFrames =
 [NSMutableArray arrayWithCapacity:7];

 //3
 for (int i = 0; i < 7 ; i++)
 {
 //4
 NSString *currentFrameName =
 [NSString stringWithFormat:animFrameNameFormat, i];

 //5

Rendering Sprites

[106]

 CCSpriteFrame *animationFrame =
 [CCSpriteFrame frameWithImageNamed:currentFrameName];

 //6
 [animFrames addObject:animationFrame];
 }

 //7
 CCAnimation* flyAnimation =
 [CCAnimation animationWithSpriteFrames:animFrames
 delay:0.1f];

 //8
 CCActionAnimate *flyAnimateAction =
 [CCActionAnimate actionWithAnimation:flyAnimation];

 //9
 CCActionRepeatForever *flyForever =
 [CCActionRepeatForever actionWithAction:flyAnimateAction];

 //10
 [self runAction:flyForever];
}

3.	 Add a call to this method inside the initWithBirdType: method as follows:
-(instancetype)initWithBirdType:(BirdType)typeOfBird
{
 //..skipped..

 if (self = [super initWithImageNamed:birdImageName])
 {
 self.birdType = typeOfBird;

 [self animateFly];
 }

 return self;
}

4.	 Build and run the game. Now, the bird will not just move from one side of the screen
to another like a static image, but it should flitter.

You can find the final project for this chapter in
the book's supporting files in the Chapter_04/
Cocohunt_04_Final folder.

Chapter 4

[107]

What just happened?
The most interesting part is the animateFly method. Apart from this method, we
only imported the required headers so that we can use all animation and actions in the
animateFly method. Also, we added the code to call the animateFly method in the
initWithBirdType: method to start the animation right when the bird is created.

So, we will spend our time reviewing this method in a very detailed manner in the
following points:

1.	 All of the bird's fly animations have seven frames each, but the name of the animation
depends on the bird type, as each bird has its own fly animation. In the block of code
under the first bullet point of the Time for action section, we detected the current bird
type and the corresponding format of animation frame names.

We've hardcoded the amount of frames (seven) for simplicity
so that we could review the entire code at once. However,
normally you should have created a constant or #define
with the number of frames somewhere in your game instead
of hardcoding this "magic-number".

2.	 This animFrames array is created to store all animation frames for the current
bird type.

3.	 This code is used to get all animation frames, which differ only by a number in
their name.

4.	 We've used the NSString's stringWithFormat: method to get the actual
frame name by substituting the %d parameter in animFrameNameFormat with
the current i value (for example, @"bird_big_0.png", @"bird_big_1.png",
@"bird_big_2.png").

5.	 After we got the name of the animation frame, we created CCSpriteFrame using it.
Note that you should add the spritesheet information into CCSpriteFrameCache
before you use frameWithImageNamed: as in the other case, it won't be able to find
this frame and will just search for the image with that name. We are doing this in the
createBatchNode method of the GameScene class that is executed before the
bird is created.

In fact, you can create animation without spritesheets. In this case,
you actually have to have separate images called bird_big_0.png,
bird_big_1.png, bird_big_2.png, and so on, but this will be
inefficient. With the use of a spritesheet, we will render all the birds in
one draw call.

Rendering Sprites

[108]

6.	 After we created the frame object, we added it to the array with the rest of
the frames.

7.	 When all frames were created and stored in the array, we created the flyAnimation
animation. The CCAnimation class is used to create animations in Cocos2D. This class
takes an array of animation frames and delay time between each frame. We used 0.1
seconds delay between the frames to get a smooth animation. Decreasing the delay
will make our bird flitter faster. Increasing the delay will make it flitter slower.

You should carefully increase or decrease the animation delay
in the code. Most often, you should think upfront about how
fast the animation is, how many frames per second you want,
and draw the required number of frame images. If you increase
the delay too much, you will get a "slide-show" instead of the
animation. If you decrease the delay too much, you might get
a situation where the game's overall FPS is slower than your
animation FPS. However, the latter case happens much less
often than the "slide-show" case.

8.	 In Cocos2D, you cannot just say to the sprite that it should run some animation,
instead you command the sprites using actions. There are different actions for
almost any kind of task. You can command the sprite to move over time to some
position, to show or hide gradually, and so on. We will speak about actions
later. For now, we just need to remember that there is a special action called
CCActionAnimate that commands the sprite to play the given animation.

9.	 The next good thing about actions is that you can group and stack them. You can
create a sequence of actions and command a sprite to execute this sequence or you
can command a sprite to repeat some action forever. However, as I've mentioned
before, you can only pass an action to the sprite. So, there is a special action called
CCActionRepeatForever and everything that it does it just waits for the given
action to complete and then starts it again. As we want our bird to keep flying, this
action is exactly what we need.

10.	 Finally, we commanded our sprite to execute the animation action and repeat
itself forever.

We will use animations more through the book and will discuss them in detail in Chapter 7,
Animations and Particle Systems, but at this point it should be clear that animating an object
is quite easy.

Chapter 4

[109]

Pop quiz – sprites
Q1. What will happen if you run the following code on iPhone 5S without adding
image-iphone5hd.png to the Xcode project, but will add the image.png and
image-hd.png images?

CCSprite *sprite = [CCSprite spriteWithImageNamed:@"image.png"];

1.	 The game will crash as iPhone 5S requires the image-iphone5hd.png image

2.	 The image.png file will be used as no image-iphone5hd.png image is provided

3.	 The image-hd.png file will be used as no image-iphone5hd.png image
is provided

4.	 The game won't crash, but nothing will be displayed on the screen

Q2. What is the maximum spritesheet image size you can use on iPhone 5?

1.	 2048 x 2048

2.	 1024 x 1024

3.	 4096 x 4096

4.	 512 x 512

Q3. You have a scene with three sprites, Sprite A, Sprite B, and Sprite C, which is a child of
Sprite A. Sprite A has zOrder set to 10 and Sprite B has zOrder set to 20.

Can you make Sprite C be displayed on top of Sprite B by setting its zOrder property?

1.	 Yes, by setting its zOrder to 21

2.	 Yes, by setting its zOrder to 1337

3.	 Yes, by setting its zOrder to -21

4.	 No, because z-order only works within the parent node and Sprite A is always
under Sprite B

Rendering Sprites

[110]

Summary
Wow, we've done a lot in this chapter. We've learned how to use sprites and change their
basic properties such as position, anchor point, and z-order. These properties are crucial to
understand if we want to make video games.

We created our main game objects, the hunter and the bird, and added them to the scene.
We made the bird move and even animated its flight in the end. Our game now uses
spritesheets and we know how to track the performance using debug labels.

In fact, we've done a good portion of a real game. In the next chapter, we're going to learn how
to add some action to our game, and we'll learn how to aim, shoot, and score points. We'll add
more birds and will get really close to completing the first playable level of the game.

5
Starting the Action

In this chapter, we're going to add some action in the game and at the end of
the chapter, we will be able to finally play the game. We will make our hunter
aim for the bird using a finger and gyroscope, shoot the arrow from the bow,
and make the arrow fly and hit the bird. Then we'll add more birds to the game
as well as the winning and losing conditions.

In this chapter, we will learn the following topics:

�� Detecting when the player touches the screen, moves, and lifts the finger

�� Rotating the hunter's torso to aim at the desired point

�� Detecting collisions between two sprites using bounding boxes

�� Using states to control objects and the game life cycle

�� Detecting winning and losing

�� Using device orientation to control the game

Making the hunter aim and shoot
We'll make the hunter shoot in several steps. Some people may just close their eyes and
shoot based on luck, but not our hunter; he will carefully aim first. We're going to use our
finger to direct him, so the first thing we need to do is to learn how to handle touch.

Starting the Action

[112]

Time for action – handling touches
Let's add the code that will allow us to handle touches:

In this and the subsequent chapters, we're going to build on top of the
Cocohunt project we started in the previous chapter. If you've completed the
code of the previous chapter, simply continue from the point where you left.
If you skipped some part of the book or don't have the code for some
reason, you can take the final project of the previous chapter from the
book supporting files. For this chapter, you can take the code from the
Chapter_04/Cocohunt_04_Final folder.
You can download the book's supporting files at http://www.packtpub.
com/support and follow the instructions.

Perform the following steps:

1.	 Open the Xcode project at the point where we left it at the end of the previous
chapter. After opening the project, open the GameScene.m file and add the
following methods below the update: method:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 CCLOG(@"finger down at : (%f, %f)",
 touch.locationInWorld.x,
 touch.locationInWorld.y);
}

-(void)touchMoved:(UITouch *)touch withEvent:(UIEvent *)event
{
 CCLOG(@"finger moving at : (%f, %f)",
 touch.locationInWorld.x,
 touch.locationInWorld.y);
}

-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 CCLOG(@"finger up at : (%f, %f)",
 touch.locationInWorld.x,
 touch.locationInWorld.y);
}

Chapter 5

[113]

2.	 Then, scroll at the top of the GameScene.m file and add the following line at the
beginning of the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 self.userInteractionEnabled = YES;

 //..skipped..
 }

 return self;
}

3.	 Build and run the game. You won't see any visual changes right now. However, if you
click inside the simulator window or touch your device screen with a finger, move
it a little, and then release it, you should see an output in the Xcode console. This
output should be similar to what is shown in the following screenshot:

The Xcode console output after touching and moving the finger

Starting the Action

[114]

What just happened?
Any CCNode or CCNode descendant can handle touches. In our case, we want to handle
touches not on some specific node, but anywhere on the screen, so we added touch
handling code to the scene itself.

To handle touches, we needed to enable user interaction by setting the
userInteractionEnabled property of the scene to YES. We did this in the init method
of the GameScene class.

After this, we added the following methods to the node to receive different touch notifications:

�� touchBegan:: This method is called when you put your finger on the screen. If you
want to handle touches, you must add this method, even if it will be empty. If you
don't add this method, none of the following methods will be called.

�� touchMoved:: This method is called when the finger moves. You can use this
method to track the movement of the finger.

�� touchEnded:: This method is called when you lift your finger from the screen. At
this point, you can consider the touch life cycle completed.

�� touchCancelled:: This method is called when the touch is cancelled. This can
happen when something interrupts the normal flow of touch life cycle.

There can be several reasons for the touchCancelled:
method to be called. The simplest one is if you touch the node
and move the finger outside of it without lifting it. A more
exotic example is if you touch the node and someone calls
your iPhone causing your game to go into the background so
that you can answer the call.

Right now, we are simply logging the touch coordinates using the CCLOG macro, but in the
next section, we're going to make the hunter aim at this point.

The CCLOG macro is a wrapper around the standard NSLog function and is very useful when
you need to output some debug values, as you cannot always use breakpoints and inspect
variables without breaking the flow of the game.

The CCLOG macro works similar to the stringWithFormat: function
of the NSString class, but instead of creating a new string and returning
it, CCLOG prints it into the debug console.

Chapter 5

[115]

Time for action – aiming at the touch position
Now that we can point where to shoot, let's make the hunter to aim at this point.

1.	 Open the Hunter.h file and add the aimAtPoint: method declaration:
#import "CCSprite.h"

@interface Hunter : CCSprite

-(void)aimAtPoint:(CGPoint)point;

@end

2.	 Then, open the Hunter.m file and add the following methods below the
init method:
-(CGPoint)torsoCenterInWorldCoordinates
{
 //1
 CGPoint torsoCenterLocal =
 ccp(_torso.contentSize.width / 2.0f,
 _torso.contentSize.height / 2.0f);

 //2
 CGPoint torsoCenterWorld =
 [_torso convertToWorldSpace:torsoCenterLocal];
 return torsoCenterWorld;
}

-(float)calculateTorsoRotationToLookAtPoint:
 (CGPoint)targetPoint
{
 //1
 CGPoint torsoCenterWorld =
 [self torsoCenterInWorldCoordinates];
 //2
 CGPoint pointStraightAhead =
 ccp(torsoCenterWorld.x + 1.0f,
 torsoCenterWorld.y);
 //3
 CGPoint forwardVector =
 ccpSub(pointStraightAhead, torsoCenterWorld);

 //4
 CGPoint targetVector =
 ccpSub(targetPoint, torsoCenterWorld);
 //5
 float angleRadians =
 ccpAngleSigned(forwardVector, targetVector);
 //6

Starting the Action

[116]

 float angleDegrees =
 -1 * CC_RADIANS_TO_DEGREES(angleRadians);
 //7
 angleDegrees = clampf(angleDegrees, -60, 25);
 return angleDegrees;
}

-(void)aimAtPoint:(CGPoint)point
{
 _torso.rotation =
 [self calculateTorsoRotationToLookAtPoint:point];
}

3.	 Finally, open the GameScene.m file and replace the touchBegan: and
touchMoved: methods with the following code:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 CGPoint touchLocation = [touch locationInNode:self];
 [_hunter aimAtPoint:touchLocation];
}

-(void)touchMoved:(UITouch *)touch withEvent:(UIEvent *)event
{
 CGPoint touchLocation = [touch locationInNode:self];
 [_hunter aimAtPoint:touchLocation];
}

4.	 Build and run the game. Touch the screen and move the finger or mouse to
see whether the hunter is aiming at the point you're pointing to. Refer to the
following screenshot:

Chapter 5

[117]

You can find a snapshot of the project at this point in the
Chapter_05/Cocohunt_05_Aiming folder.

What just happened?
Although we've added only one public method to the Hunter class interface, we've also
created several methods that we're using internally, and as it happens, they contain most of
the code. Let's review each method separately.

Start with the torsoCenterInWorldCoordinates method. We've used this method to
get the center point of the torso sprite in the world space coordinates.

We first encountered a difference between world space and node space when we positioned
the torso inside the legs sprite and had to set the torso position relative to its parent.

Sometimes, grasping world space versus node space can be difficult, so here is a real-world
example. Imagine a cup of tea placed right in the center of the table. Then, you take the
table and carefully move it. When you finish moving the table, the cup of tea still will be at
the center of the table. Well, at least if you moved the table carefully enough.

Starting the Action

[118]

The cup's local position relative to the table (node space) will not change. However, its global
(world space) position will change (relative to the room, earth, and so on).

A position in node space can match its position in world space. If the node (for
example, scene) is positioned at (0, 0) in world space, then all of its child nodes
have the same position in node space and world space.

Moreover, there can be several levels of nested node spaces (imagine a spoon in that cup of
tea, which changed position while you were moving the table). The following is a figure to
demonstrate some of the node spaces we have:

World space and node space

In the preceding figure, our scene is positioned at (0, 0), which is why
scene node space matches world space.

Chapter 5

[119]

However, to work with two points from different node spaces, we need to convert them into
one space.

In most cases, we want to convert both points to world space. However, in some
cases, you might want to convert one point to another point's node space.

This is why we need the center of the torso in world space, and this is what the
torsoCenterInWorldCoordinates method does. Refer to the following steps:

1.	 The torso image was specially drawn in a way so that the hand and the tail of the
arrow are at the center of the image for easy calculation. The designer had added
some extra whitespace on the left for this. Refer to the following figure:

This is why we took only half of the height and width of the image, as this is the
center in the torso's node space.

2.	 Then, we used the convertToWorldSpace: method of the torso sprite to convert
this point into world space.

There is a reverse method called convertToNodeSpace to
convert a point in world space to node space.

Starting the Action

[120]

This way, we got the center of the torso image, which as I've mentioned is the tail end of
the arrow. Let's review the calculateTorsoRotationToLookAtPoint: method to
understand why we needed this coordinate anyway.

1.	 We took the coordinate point of the tail of the arrow using the
torsoCenterInWorldCoordinates method described earlier.

2.	 Then, we added +1 to the x coordinate of this point and got the
pointStraightAhead point, which is a straight line to the right from the torso's
center. There is an illustration at the end of this list.

The next few steps assume that you're familiar with the basics
of vector algebra. If you feel uncomfortable with adding,
subtracting, and rotating vectors, you should refresh your
knowledge. To do this, you can watch this free course at Khan
Academy, https://www.khanacademy.org/math/
linear-algebra/vectors_and_spaces.

3.	 If we draw a line through torsoCenterWorld and pointStraightAhead, we'll
get a line that is parallel to the x axis, and the arrow lies on this line when the
torso is not rotated. Then, we used the ccpSub Cocos2D function that subtracts
torsoCenterWorld from the pointStraightAhead point, and we get the vector
pointed just like our arrow before any rotations (straight forward).

There are a lot of useful functions such as ccpSub,
ccpAdd, and ccpMult to subtract, add, or multiply vectors,
respectively. Also, there are dot and cross products, distance,
and many other useful functions that come with Cocos2D.
You can find a full list of functions and their description in the
CGPointExtension.h file in the Cocos2D distribution or
Cocos2D documentation.

4.	 Using the same ccpSub function, we created a vector that points from the tail of
the arrow to the target point. This is where we want our arrow to point when we
rotate the torso.

5.	 To rotate the torso, we calculated the angle between the vectors using the
ccpAngleSigned Cocos2D helper function, which returns the angle in radians.

6.	 As the sprite rotation property is in degrees, we needed to convert our radians to
degrees. Also, as rotations in Cocos2D are clockwise positive, and normally rotation
angles are counter-clockwise positive, we needed to change the sign of the angle.

Chapter 5

[121]

7.	 Our hunter is a human, so his waist cannot rotate 360 degrees. This is why we used
the clampf function to limit our rotation degrees. This function simply checks
whether the value is lower than the given minimum or higher than the given
maximum values and sets it to the minimum or the maximum value, respectively.
If the value is within given the minimum and maximum interval, then it is returned
unchanged. I believe the following figure will clarify the idea a bit more:

Calculating the torso rotation angle

Then, when we had the rotation angle, the only thing we needed to do was to assign it to
the torso rotation property in the aimAtPoint method. This way, we used another cool
property to transform sprites and other Cocos2D nodes.

Starting the Action

[122]

Finally, to make the hunter aim at the position of our finger, we needed to call the
aimAtPoint: method and specify the target point. We did this in both the touchBegan:
and touchMoved: methods, as we want the hunter to start aiming when we touch the
screen, but we also want the hunter to follow our finger while we move it.

The new method that we used in both the touchBegan: and touchMoved: methods is the
locationInNode: of UITouch. This method converts the touch location from world space
to the given node space.

Right now, our scene's node space is equal to world space, but this is not always the case. As
we want the hunter to target at a point in the scene even if we move it, we need to convert
the touch to the scene's node space.

To understand this, let's review what happens if we move the scene by 160 points to the
right, as shown in the following figure:

Consider that we want to spawn a bird at a position where the player touches the screen.

The player touches the screen at point 1, so we should spawn a bird to the left of the hunter,
that is, on the left edge of the scene. We would write the following code:

spawnedBird.position = touch.locationInWorld;

The bird's position will be (160, 160), as touch.locationInWorld will return
coordinates of point 1 in world space.

Don't be confused that the y component of the point is also 160. This is
just the half the height of the screen, which by coincidence matched the
x coordinate in my example.

However, as the bird is a child of the scene, setting its position to (160, 160) will place the
bird at point 2.

Chapter 5

[123]

To avoid this, with our hunter target, we've used the locationInNode method of the
UITouch class, which converts coordinates of point 1 to scene's node space and gives as a
point at (0, 160).

The locationInNode method is added to the UITouch class by Cocos2D
using the extension category. So, you won't find this method if you're developing
an iOS application without Cocos2D.

I hope you're not too tired from all that vector algebra. I know it is boring and doesn't feel
like you're making games when you're calculating all those angles and adding or subtracting
vectors. However, I must encourage you to refresh your knowledge of it. You don't have to be
a vector algebra or trigonometry expert to make cool and fun games, but you will definitely
benefit from it.

Time for action – shooting the arrow
Here is the fun part. We're going to shoot the arrow:

1.	 Open the Hunter.h header file and add the following method declaration after the
aimAtPoint: method declaration:
-(CCSprite*)shootAtPoint:(CGPoint)point;

2.	 Then, open the Hunter.m file and add the following implementation part of
this method:
-(CCSprite*)shootAtPoint:(CGPoint)point
{
 //1
 [self aimAtPoint:point];

 //2
 CCSprite *arrow =
 [CCSprite spriteWithImageNamed:@"arrow.png"];

 //3
 arrow.anchorPoint = ccp(0, 0.5f);

 //4
 CGPoint torsoCenterGlobal =
 [self torsoCenterInWorldCoordinates];
 arrow.position = torsoCenterGlobal;
 arrow.rotation = _torso.rotation;

 //5

Starting the Action

[124]

 [self.parent addChild:arrow];

 //6
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 CGPoint forwardVector = ccp(1.0f, 0);

 float angleRadians =
 -1 * CC_DEGREES_TO_RADIANS(_torso.rotation);
 CGPoint arrowMovementVector =
 ccpRotateByAngle(forwardVector,
 CGPointZero,
 angleRadians);
 arrowMovementVector = ccpNormalize(arrowMovementVector);
 arrowMovementVector = ccpMult(arrowMovementVector,
 viewSize.width * 2.0f);
 //7
 CCActionMoveBy *moveAction =
 [CCActionMoveBy actionWithDuration:2.0f
 position:arrowMovementVector];
 [arrow runAction:moveAction];

 //8
 return arrow;
}

3.	 Finally, open the GameScene.m file and make the following changes in the
touchEnded: method:
-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 CGPoint touchLocation =
 [touch locationInNode:self];

 [_hunter shootAtPoint:touchLocation];
}

4.	 Build and run the game. Wow, now we can shoot arrows!

You can find the project completed until this point in the
Chapter_05/Cocohunt_05_Shooting.

Chapter 5

[125]

What just happened?
Let's review the shootAtPoint: method in detail:

1.	 First of all, we're making sure our hunter is aiming at the point we're going to
shoot. This also calculates the up-to-date rotation of the torso, which we'll use
later in this method.

2.	 Then, we created the arrow sprite.

I'm sure you are wondering when we added this arrow image to the
project. We added the arrow image with the rest of the images when we
created the spritesheet. You can open the TexturePacker project
and review the list of the images currently in the spritesheet (and this
means you can use them in your project) if you haven't done this already,
or alternatively, you can take a look at images in the Chapter_04/
Assets/Spritesheet/hd folder. All of them are packed in the
spritesheet we're using.

3.	 Set the arrow's anchor point to the tail of the arrow. We need to rotate it around the
tail and set the position of the arrow's tail to the center of the torso image, where
the hunter's hand is. This is why we set the anchor point to the arrow's tail so that
all transformations were made around that point.

We discussed the anchorPoint property in detail in
Chapter 4, Rendering Sprites.

4.	 Set the arrow's position to the center of the torso and set the rotation to the same
angle as the torso. This made the arrow to be directed at the point where the hunter
is currently aiming.

5.	 Then, we added the arrow to the parent of the current sprite. Don't be confused
and don't forget that the current sprite (self) is the legs sprite and not the torso.
The parent of the legs is CCSpriteBatchNode in the scene. This way, adding the
arrow to the parent node will put it in the batch node.

6.	 This block of code might seem hard to understand, but all we did is calculate the
trajectory for the arrow. We took a unit vector that is collinear to the x axis, and
then we rotated this vector to the same angle as the arrow and multiplied it with
the value equal to the double width of the screen to set its length. This way, we
made sure its endpoint is off the screen and that our arrow will definitely leave the
screen when following along that vector.

Starting the Action

[126]

7.	 Here, we used another Cocos2D action called CCActionMoveBy. It takes the
distance it should move the sprite by and the time it should take to travel to the
endpoint. This will make our arrow fly off screen in two seconds, which sets a good
speed for the arrow, that is not too fast, but fast enough.

8.	 At the end of this method, we returned the arrow sprite as the return value.
The GameScene class that calls this method does not use it just yet, but it will
be used soon.

Apart from the shootAtPoint: method itself, we've only added a small portion of the
code to the GameScene class, to trigger this method the moment we lift the finger from the
screen. The code in the touchEnded: method should be pretty straightforward, so we're
not going to stop and review it.

Adding more birds to the GameScene class
Soon, we will write the code to hit the bird with the arrow, but it won't be very interesting if
there is only one bird flying around, so we'll add more birds before shooting them.

Time for action – adding more birds
We are going to add more Bird objects to fly around. To do this, we're going to replace our
_bird variable with an array and write some code to spawn the birds:

1.	 Open the GameScene.m file and remove the _bird variable. Instead, add two new
instance variables to the GameScene class, as shown in the following code:
@implementation GameScene
{
 CCSpriteBatchNode *_batchNode;

 Hunter *_hunter;

 float _timeUntilNextBird;
 NSMutableArray *_birds;
}

2.	 Add following method somewhere below the update: method:
-(void)spawnBird
{
 //1
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 //2
 int maxY = viewSize.height * 0.9f;

Chapter 5

[127]

 int minY = viewSize.height * 0.6f;
 int birdY = minY + arc4random_uniform(maxY - minY);
 int birdX = viewSize.width * 1.3f;
 CGPoint birdStart = ccp(birdX, birdY);

 //3
 BirdType birdType = (BirdType)(arc4random_uniform(3));

 //4
 Bird* bird = [[Bird alloc] initWithBirdType:birdType];
 bird.position = birdStart;

 //5
 [_batchNode addChild:bird];

 //6
 [_birds addObject:bird];

 //7
 int maxTime = 20;
 int minTime = 10;
 int birdTime =
 minTime + (arc4random() % (maxTime - minTime));
 CGPoint screenLeft = ccp(0, birdY);

 //8
 CCActionMoveTo *moveToLeftEdge =
 [CCActionMoveTo actionWithDuration:birdTime
 position:screenLeft];
 CCActionFlipX *turnaround =
 [CCActionFlipX actionWithFlipX:YES];
 CCActionMoveTo *moveBackOffScreen =
 [CCActionMoveTo actionWithDuration:birdTime
 position:birdStart];

 //9
 CCActionSequence *moveLeftThenBack =
 [CCActionSequence actions: moveToLeftEdge,
 turnaround,
 moveBackOffScreen,
 nil];
 //10
 [bird runAction:moveLeftThenBack];
}

Starting the Action

[128]

3.	 Replace the contents of the update: method with the following code:
-(void)update:(CCTime)dt
{
 //1
 _timeUntilNextBird -= dt;

 //2
 if (_timeUntilNextBird <= 0)
 {
 //3
 [self spawnBird];

 //4
 int nextBirdTimeMax = 5;
 int nextBirdTimeMin = 2;
 int nextBirdTime = nextBirdTimeMin +
 arc4random_uniform(nextBirdTimeMax - nextBirdTimeMin);

 _timeUntilNextBird = nextBirdTime;
 }
}

4.	 Scroll to the init method and add the following code at the start:
-(instancetype)init
{
 if (self = [super init])
 {
 _timeUntilNextBird = 0;
 _birds = [NSMutableArray array];

 //..skipped..
 }

 return self;
}

5.	 Remove the addBird method and the call to it from the init method, as we're
now going to spawn birds in the update: method.

6.	 Build and run the game. We should now have plenty of birds on the screen, as
shown in the following screenshot:

Chapter 5

[129]

What just happened?
We've made several big changes at once. First of all, we've replaced our single _bird
instance variable with the _birds array, as we're going to have many birds and not just one.

Then, we created a method to spawn a bird at a random altitude and make it fly to the left-
hand side of the screen and then back. This time, instead of updating the bird position for
each frame in the update: method, we used an action in the spawnBird method to set the
bird's movement, so we don't need the code in the update: method anymore.

Instead of that old code, we've added the code to spawn the birds at some interval of time,
this is why we need the _timeUntilNextBird instance variable.

Let's review the code for each method. We'll start with spawnBird:

1.	 We need the size of the screen to set the initial position of the bird off screen. This
way, we can create it off screen and then make it fly from the left edge of the screen
instead of it just magically appearing on the screen.

2.	 Instead of constant altitude for all of our birds, we added some variation by setting
values for the minimum and maximum starting height. This code block just randomizes
the initial y coordinate and sets the starting position for the bird off screen.

Starting the Action

[130]

To randomize values, we use the arc4random_uniform(N)
function that returns a value from 0 to N (excluding N).
In places where we need a value from M to N, we use the
M + arc4random_uniform(N - M) code.

3.	 Also, we want random bird types. Our enum has 3 items, so we just took a random
integer from 0 to 2 and cast it to BirdType enum.

4.	 Here, we just created the bird instance with the random type and the position that
we've generated before.

5.	 We added the bird to the scene batch node.

6.	 We added the bird to the _birds array. This is also very important as we're going to
work with those birds a little later, so we want to keep a reference of them.

7.	 We want to make our game as random as possible, so randomizing the speed of the
birds is also a good idea. Instead of the speed itself, we randomized the time it will
take for the bird to fly from its starting position to the left edge of the screen. Also,
we calculated the coordinates of the left-hand side of the screen as the same height
as the initial height of the bird.

8.	 We created a set of actions: move to the left edge of the screen, flip the bird sprite
horizontally, and then fly back to the initial position off screen.

9.	 We used a special action called CCActionSequence that takes a list of actions
and runs them one by one.

10.	 Finally, we commanded the sprite to run the sequence of the actions we
created before.

Before we review the new code of the update: method, let's stop for a second to discuss
the CCActionSequence action.

What any action does is simply allow you to write less code. Most actions
change some property of the node over time or instantly. For example, the
CCActionMoveTo action moves a node to a given point within given interval.
You could simply add some code in the update: method and move the node
yourself, just as we did with our bird before. However, it is much easier to create
the action and order the bird to run it, especially taking into account that you can
stack, group, or create the sequence of actions.
To get a full list of possible actions, simply read the Cocos2D API documentation
and search for classes starting with CCAction, available at http://www.
cocos2d-iphone.org/docs/api/index.html.

Chapter 5

[131]

Some of you might wonder why we should create a CCActionSequence action and how it
is different from running each action one by one using the following code:

 [bird runAction:moveToLeftEdge];
 [bird runAction:turnaround];
 [bird runAction:moveBackOffScreen];

The reason to use the CCActionSequence action is that the runAction: method doesn't
wait for the action to complete. It returns immediately, simply scheduling what a sprite should
do over some time or right away if we're using some instant action such as CCActionFlipX.
This way, we will try to execute three actions at the same time. You can try this and see what
happens, but I can assure you that this will be far from what we wanted to do.

Using the CCActionSequence action and adding actions into it makes the sprite run each
action only after the previous action completes. This way, the bird flies all the way to the left,
and only after this does it flip horizontally, and after flipping, it flies all the way back.

As I've said before, actions are quite convenient and there is an action almost for any kind
of task.

You can run the action and forget about it. However, if you need to, you can stop
all actions that are currently running using the stopAllActions method of
the CCNode class, or you can stop individual action using the stopAction: or
stopActionByTag: methods. In the first case, you need to save the action in
some variable and pass it as parameter; and in the second case, you need to set
the action's tag property to be able to stop it from using its tag. This is especially
useful with actions such as CCActionRepeatForever, which we'll use later,
as you don't need to know the number of repeats and can schedule an action to
repeat forever and stop it at the required moment.

However, we should go back to reviewing the code, and the final thing we need to review for
this part is the code of the update: method:

1.	 Here, we decreased the amount of time until we need to spawn a new bird by the
delta time passed since the last call. When the time runs out, we'll spawn a new bird
and reset this variable.

2.	 We checked whether it is time to spawn a new bird.
3.	 We spawned the bird using the spawnBird method we've reviewed before.
4.	 We then added a bit of randomness here and calculated the time until the next bird

should be spawned.

Now, we're ready to detect whether the arrow will hit the bird.

Starting the Action

[132]

Time for action – detecting if the arrow hits the bird
To make the arrow hit the bird, we need to check that the arrow and the bird are
intersecting. After we have found an intersection, we need to remove the bird and the arrow.
Let's add the code to perform this:

1.	 Open the Bird.h file and add the following method declaration:
-(void)removeBird:(BOOL)hitByArrow;

2.	 Then, open the Bird.m file and add its implementation:
-(void)removeBird:(BOOL)hitByArrow
{
 if (hitByArrow)
 {
 CCLOG(@"Bird hit by arrow");
 }
 else
 {
 CCLOG(@"Bird flew away");
 }

 [self removeFromParentAndCleanup:YES];
}

3.	 Open the GameScene.m file and add the _arrows array instance variable as follows:
@implementation GameScene
{
 //..skipped..
 NSMutableArray *_arrows;
}

4.	 Scroll to the init method and add the following array initialization code at the top:
-(instancetype)init
{
 if (self = [super init])
 {
 _arrows = [NSMutableArray array];

 //..skipped..
 }

 return self;
}

Chapter 5

[133]

5.	 Find the touchEnded: method and update its contents as follows:
-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 CGPoint touchLocation = [touch locationInNode:self];

 CCSprite *arrow =
 [_hunter shootAtPoint:touchLocation];

 [_arrows addObject:arrow];
}

6.	 Add following code to the end of the update: method:
//1
CGSize viewSize = [CCDirector sharedDirector].viewSize;
CGRect viewBounds = CGRectMake(0,0,
 viewSize.width, viewSize.height);

//2
for (int i = _birds.count - 1; i >= 0; i--)
{
 Bird *bird = _birds[i];

 //3
 BOOL birdFlewOffScreen =
 (bird.position.x + (bird.contentSize.width * 0.5f)) >
 viewSize.width;

 //4
 if (bird.flipX == YES && birdFlewOffScreen)
 {
 [_birds removeObject:bird];
 [bird removeBird:NO];

 continue;
 }

 //5
 for (int j = _arrows.count - 1; j >= 0; j--)
 {
 CCSprite* arrow = _arrows[j];

 //6
 if (!CGRectContainsPoint(viewBounds,
 arrow.position))
 {
 [arrow removeFromParentAndCleanup:YES];
 [_arrows removeObject:arrow];

Starting the Action

[134]

 continue;
 }

 //7
 if (CGRectIntersectsRect(arrow.boundingBox,
 bird.boundingBox))
 {
 [arrow removeFromParentAndCleanup:YES];
 [_arrows removeObject:arrow];

 [_birds removeObject:bird];
 [bird removeBird:YES];

 break;
 }
 }
}

7.	 Build and run the game. Now, when you hit the bird with the arrow, the bird
disappears from the screen and you get an output in the console similar to
the following:
Cocohunt[75440:70b] Bird hit by arrow

8.	 Also, when you let the bird fly away from the screen, you get an output in the
console similar to this:

Cocohunt[75440:70b] Bird flew away

You can spend some time shooting the birds, and then we'll review the code that we've
added to make this work.

You can find a snapshot of the project at this point in the
Chapter_05/Cocohunt_05_Hitting_Birds folder.

What just happened?
If you spent some time shooting the birds, you must have noticed that it feels unnatural. This
is because sometimes the bird is hit before the arrow image actually touches the bird image.
The reason for this is that we're checking the intersection of the bounding boxes, instead of
actual bird and arrow.

All of our images are just rectangles with transparency areas from Cocos2D point of view,
so all we can check with default sprites is that their bounding boxes intersect. Refer to the
following figure:

Chapter 5

[135]

Bounding boxes intersect while images don't

As you can see in the preceding image, bounding boxes intersect, but the arrow didn't hit the
bird just yet. This is why it feels unnatural.

There are different techniques that can help you to get more realistic collision detection; we
will review them later in the book when we review physics engines.

There are ways to create pixel-perfect collision detection without a physics
engine. However, they require deeper knowledge and are not very beginner
friendly. Also, they don't always perform well. I would suggest use bounding
boxes for simple collision detection; if this is not enough, use a physics engine
just for collision detection, especially as it is very easy to with new Cocos2D
v3.0 integrated physics.

Now back to the code. We've added the removeBird: method to our Bird class so that we
can remove the bird. It is called in two cases: when the bird is hit by the arrow and when the
bird flies away from the screen.

For now, in both cases, we're just removing the bird sprite from the scene using the
removeFromParentAndCleanup: method, which removes the node from its parent node.

You can add sprites to the parent node using addChild:. Then, when you
want to remove sprites, you use removeFromParentAndCleanup:
or simply removeFromParent, which is equal to calling
removeFromParentAndCleanup: and passing YES.

Then, we're modifying the touchEnded: method, and this time, we get the arrow sprite
returned by the shootAtPoint: method. We store it in the _arrows array that we've just
added and initialized.

Starting the Action

[136]

At this point, we have two arrays: _birds and _arrows. It is time to check whether any
arrow that is in the air intersects with the bird. In addition to this, we need to check whether
the arrow or the bird is off the screen and remove it in that case, as it is not going to
participate in the game anymore. We don't want to waste our resources on objects we are
not going to use anymore.

Let's review the code block that we've added into the update: method in more detail:

1.	 First, we took the size of the screen and created a rectangle representing the bounds
of the screen. If the point is inside this rectangle, then it is on screen, and if it is not,
then it is outside the screen.

2.	 Then, we iterated the birds in reverse order, as we might need to remove the birds
from the array as we go, which will change the size of the array.

It is a common technique to iterate the array in the reverse
order if there is a chance that you will remove elements as you
go. As an alternative, you can iterate a copy of the array and
remove its elements from the original array.

3.	 We checked whether the bird is beyond the screen bounds.

4.	 If the bird is off screen and also if it is flying to the right, we need to remove this
bird as it flew away without being shot. It is important to check both conditions (off
screen and flipX), otherwise we'll remove a spawned bird that just didn't fly onto
the screen yet.

Note the continue; operator, as we don't want to process
the bird that we've already removed. By calling continue, we
are moving to the next for iteration without processing the
remaining code. Also, note the fact that we're passing NO to the
removeBird: method, as the bird wasn't hit by an arrow.

5.	 At this point, we know that the bird is still on the screen, so we need to check
whether any arrow is hitting the bird at the moment.

6.	 While we are iterating through arrows, we can also check whether the arrow is still
on the screen, and if it is, we should remove it. We don't allow the arrow to hit the
bird beyond the screen edge.

7.	 If the arrow's bounding box intersects the bird's bounding box, we remove both
the arrow and the bird. However, this time, we pass YES to the removeBird:
method, as the bird did not just fly away, but was hit by an arrow. This will allow us
to perform some additional actions later.

Chapter 5

[137]

It was easier than it looked, wasn't it? There is one more thing that we need to know about this
approach. Currently, we're using a discrete collision detection algorithm to check whether the
arrow and the bird are currently intersecting at each frame. This can lead to a situation when
there is no intersection at the current frame and no intersection at the next frame although the
arrow has clearly passed through the bird. This can happen because the arrow moves so fast
that it travels each frame a distance bigger than the object it should collide with.

Tunneling effect

This effect is often called the tunneling effect. Due to this effect, not only can an arrow or
a bullet fly through the object without hitting it, but also your character can be stuck to the
wall or in the ground because it passes the surface edge in one frame.

After learning the last fact about this basic collision detection, you might think that you're
doomed if you're going to use it. Well, it is not that bad, and this basic algorithm can serve
you well in many cases.

Winning, losing, and other states
Shooting birds infinitely will get you bored at some point. You have to be able to win or
lose the game to make it interesting. Also, our hunter shoots the arrows too fast. We should
fix these issues before we can call our game minimally playable.

A good way to fix all of our issues is by introducing states. It is very common in game
development to think about game objects or even the whole game itself as state machines.

To use states, you need to think upfront what states can your object be in and write the
code to transition from one state to another. Then, you can check the current state of the
object and understand what it can or should do in its current state. It will get clearer when
we do this for our game objects.

Starting the Action

[138]

Time for action – using states for the bird's life cycle
We're going to give our hunter several tries to hit the bird. This means that the bird will fly
on the screen, then fly away, and then return. This sequence will repeat several times. This
means we won't be able to use the flipX property to understand whether our bird is flying
away completely or just making another pass.

Instead of using the flipX property as a flag, we're going to introduce a state's enum and
change the bird's state during the bird's life cycle. Then, when we'll apply some action to the
bird. We're going to check whether the bird is in the correct state for this action. Perform the
following steps:

1.	 Open the Bird.h file and make the following changes to add the new BirdState
enum, new birdState property, and a turnaround method declaration:
#import "CCSprite.h"

typedef enum BirdType
{
 BirdTypeBig,
 BirdTypeMedium,
 BirdTypeSmall
} BirdType;

typedef enum BirdState
{
 BirdStateFlyingIn,
 BirdStateFlyingOut,
 BirdStateFlewOut,
 BirdStateDead
} BirdState;

@interface Bird : CCSprite

@property (nonatomic, assign) BirdType birdType;

@property (nonatomic, assign) BirdState birdState;

-(instancetype)initWithBirdType:(BirdType)typeOfBird;

-(void)removeBird:(BOOL)hitByArrow;

-(void)turnaround;

@end

Chapter 5

[139]

2.	 Then, switch to the Bird.m file and add a new instance
variable called _timesToVisit as follows:
@implementation Bird
{
 int _timesToVisit;
}

3.	 Add the following lines at the start of the if block in the
initWithBirdType: method:
-(instancetype)initWithBirdType:(BirdType)typeOfBird
{
 //..skipped..

 if (self = [super initWithImageNamed:birdImageName])
 {
 _timesToVisit = 3;
 self.birdState = BirdStateFlyingIn;

 //..skipped..
 }

 return self;
}

4.	 Find the removeBird: method and replace it with following code:
-(void)removeBird:(BOOL)hitByArrow
{
 [self removeFromParentAndCleanup:YES];

 if (hitByArrow)
 {
 self.birdState = BirdStateDead;
 }
 else
 {
 self.birdState = BirdStateFlewOut;
 }
}

Starting the Action

[140]

5.	 While still in the Bird.m file, add the turnaround method implementation as
shown in the following code:
-(void)turnaround
{
 self.flipX = !self.flipX;

 if (self.flipX)
 _timesToVisit--;

 if (_timesToVisit <= 0)
 self.birdState = BirdStateFlyingOut;
}

6.	 Open the GameScene.m file and in the update: method, inside the for cycle
where we check that the bird is off screen, find the following condition:
if (bird.flipX == YES && birdFlewOffScreen)

7.	 Replace this condition with the following code:
if (bird.birdState == BirdStateFlyingOut && birdFlewOffScreen)

8.	 Then, scroll to the spawnBird method and replace the part where we create
and run the actions, which is after the line where we calculate the screenLeft
position, with the following:
-(void)spawnBird
{
 //..skipped..

 CGPoint screenLeft = ccp(0, birdY); //<-- after this line

 CCActionMoveTo *moveToLeftEdge =
 [CCActionMoveTo actionWithDuration:birdTime
 position:screenLeft];

 //1
 CCActionCallFunc *turnaround =
 [CCActionCallFunc actionWithTarget:bird
 selector:@selector(turnaround)];

 CCActionMoveTo *moveBackOffScreen =
 [CCActionMoveTo actionWithDuration:birdTime
 position:birdStart];

 //2
 CCActionSequence *moveLeftThenBack =
 [CCActionSequence actions: moveToLeftEdge,
 turnaround,
 moveBackOffScreen,

Chapter 5

[141]

 turnaround,
 nil];

 //3
 CCActionRepeatForever *flyForever =
 [CCActionRepeatForever
 actionWithAction:moveLeftThenBack];

 [bird runAction:flyForever];
}

9.	 Build and run the game. Wow, that's a lot of birds!

Maybe, even too many to test the changes that we've made. To make it easier to test
everything, it is better to limit the bird to one.

To do this, open the GameScene.m file and find the following line inside the update: method:

_timeUntilNextBird = nextBirdTime;

Change this to the following one:

_timeUntilNextBird = 10000; //nextBirdTime;

You should see one bird visiting the screen three times (because we set the _timesToVisit
variable to 3).

Don't forget to revert the temporary change and change the line back to have many birds.

You can find a snapshot of the project at this point in the
Chapter_05/Cocohunt_05_Bird_States folder.

What just happened?
As we can see now, our bird can leave the screen several times and come back later. We
cannot rely on just testing the flipX property and the fact that the bird is off screen.
Instead we've introduced states of the bird.

Our bird can be in four states as follows:

�� BirdStateFlyingIn: This is the state when the bird flies onto the screen area and
it doesn't matter if the bird is doing this for the first time or returning.

�� BirdStateFlyingOut: This is the state when the bird has already completed the
required number of tries and it is going to fly away from the screen for good.

Starting the Action

[142]

�� BirdStateFlewOut: This is the state when the bird made it and left the game
field unharmed.

�� BirdStateDead: This is the state when the bird didn't make it and was hit by
an arrow.

To store the current state, we've added the birdState property. In addition to this,
we've added a counter for the number of times the bird should visit the screen called
_timesToVisit and the turnaround method that updates this counter and changes
the state to BirdStateFlyingOut when the bird visited the screen the required
number of times.

Later, we'll use the counter to determine the number of points scored when the hunter hits
the bird. If the hunter hits the bird on its first visit, he gets more points than if the bird is
visiting for the second or the third time.

Irrespective of whether the bird was hit by the arrow or flew away, it ends its
life in the removeBird: method. Then, we remove it from the scene using the
removeFromParentAndCleanup: method, which stops all running actions and
removes the bird.

We've made several changes to the GameScene.m file. We've changed the condition inside
the update: method to check the correct state of the bird when it is leaving the screen and
not just the flipX property.

Finally, we've made changes to the spawnBird method, which we'll review in detail:

1.	 First of all, we've changed the CCActionFlipX action to the CCActionCallFunc
action, as we need to do more than just flip the sprite horizontally. This action calls
the given method on a given target.

2.	 Then, we've added one more turnaround at the end of the sequence so that the bird
turns around again when it is about to enter the screen for the second time. This
way the sequence will be: move to the left edge, call the turnaround method, move
to the starting point, and call the turnaround method.

3.	 Finally, we've wrapped the sequence into the CCActionRepeatForever action,
as we don't know the number of repeats just yet. Instead of specifying the exact
number of repeats, the bird will be removed after _timesToVisit becomes 0 in
the update: method.

It might seem overcomplicated to have states on such a simple object as a bird. We can just
add a property called isFlyingOut and use it instead of the states. However, the goal was
to demonstrate how to use states. Also, as it often happens, when you start with one flag
property, then add another one, and another. In the end, you've got a total mess where you
should check several combinations of these properties to understand the state of the object.
States allow you to control your game much better.

Chapter 5

[143]

Time for action – animating the shooting and limiting the
shooting rate

We will continue to add states to the game objects, and this time, we will update the
Hunter class. We're going to animate the process of reloading the arrow and will limit the
shooting rate. Let's do this using the following steps:

1.	 Open the Hunter.h file and add HunterState enum right after the last
#import directive:
typedef enum HunterState
{
 HunterStateIdle,
 HunterStateAiming,
 HunterStateReloading
} HunterState;

2.	 Then, add a property called hunterState to the Hunter class as follows:
@property (nonatomic, assign) HunterState hunterState;

3.	 Add a declaration of the method called getReadyToShootAgain using the
following line of code:
-(void)getReadyToShootAgain;

4.	 Switch to the Hunter.m file and import the CCAnimation.h header as follows:
#import "CCAnimation.h"

5.	 Then, initialize the hunter state to the HunterStateIdle state inside the if block
in the init method as follows:
self.hunterState = HunterStateIdle;

6.	 Scroll down and add the implementation of the getReadyToShootAgain method
as shown in the following code:
-(void)getReadyToShootAgain
{
 self.hunterState = HunterStateIdle;
}

Starting the Action

[144]

7.	 Then, directly below this method, add the reloadArrow method as shown in the
following code:
-(void)reloadArrow
{
 //1
 self.hunterState = HunterStateReloading;

 //2
 NSString *frameNameFormat = @"hunter_top_%d.png";
 NSMutableArray* frames = [NSMutableArray array];
 for (int i = 0; i < 6; i++)
 {
 NSString *frameName =
 [NSString stringWithFormat:frameNameFormat, i];
 CCSpriteFrame *frame =
 [CCSpriteFrame frameWithImageNamed:frameName];
 [frames addObject:frame];
 }

 //3
 CCAnimation *reloadAnimation =
 [CCAnimation animationWithSpriteFrames:frames
 delay:0.05f];
 reloadAnimation.restoreOriginalFrame = YES;
 CCActionAnimate *reloadAnimAction =
 [CCActionAnimate actionWithAnimation:reloadAnimation];

 //4
 CCActionCallFunc *readyToShootAgain =
 [CCActionCallFunc actionWithTarget:self
 selector:@selector(getReadyToShootAgain)];

 //5
 CCActionDelay *delay =
 [CCActionDelay actionWithDuration:0.25f];

 //6
 CCActionSequence *reloadAndGetReady =
 [CCActionSequence actions:reloadAnimAction,
 delay,
 readyToShootAgain,
 nil];
 //7
 [_torso runAction:reloadAndGetReady];
}

Chapter 5

[145]

8.	 Add the call to the reloadArrow: method at the end of the shootAtPoint:
method as shown in the following code:
-(CCSprite*)shootAtPoint:(CGPoint)point
{
 //..skipped..
 [self reloadArrow];

 return arrow;
}

9.	 Then, switch to the GameScene.m file and add the following method somewhere
below the touchEnded:
-(void)touchCancelled:(UITouch *)touch
 withEvent:(UIEvent *)event
{
 [_hunter getReadyToShootAgain];
}

10.	Also, add the following code to the beginning of the touchBegan: method:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (_hunter.hunterState != HunterStateIdle)
 {
 [super touchBegan:touch withEvent:event];
 return;
 }

 CGPoint touchLocation = [touch locationInNode:self];
 [_hunter aimAtPoint:touchLocation];
}

11.	Build and run the game. The good part is that our hunter is nicely animated while
reloading the arrow, but it looks like he cannot shoot very fast anymore. This will
make playing the game more interesting, as the player will need to aim more
carefully rather than just shooting the bow as if it is a tommy gun.

If you've limited the number of birds to one, by setting a big time interval in the update:
method, don't forget to change the line _timeUntilNextBird = nextBirdTime; back.

You can find a snapshot of the project at this point in the
Chapter_05/Cocohunt_05_Hunter_States folder.

Starting the Action

[146]

What just happened?
Our hunter is a bit different from the bird. He has different states and the goals that we
pursue when we add these states are different. What we wanted to do is separate three
different states of the hunter and make sure that he can only shoot while idle.

This solves several important issues. We've added animation of hunter reloading the
arrow and don't want to allow our hunter to shoot while he reloads the arrow. It would
be strange if he could shoot while reloading. Also, now we can limit the rate of fire using
CCActionDelay, to make the game more competitive.

Let's review all changes that we've made. I will omit the part where we added the enum and
the hunterState properties, as this should be clear by now.

The getReadyToShootAgain method just resets the hunter. It is used after the animation
and delay actions complete and is used in the touchCancelled: method. Without the call
to this method, if touches are cancelled (for example, someone calls the player and the game
goes to the background), we can get stuck in the aiming state forever.

The code that we've added into the touchBegan: method ignores all touches if we're not
in the idle mode. This means that if the player touches the screen while reloading, we simply
ignore that touch. Note the following line of code:

[super touchBegan:touch withEvent:event];

This line tells Cocos2D that we don't want to process this touch and should pass it to the
underlying node. After the call to this method, the touchMoved: and touchEnded:
methods won't get called for this particular touch. This is why we don't check the hunter
state in these methods, as we only get to them when in the correct state.

The unprocessed touch is passed to the underlying node. All touches are
processed in the reverse render order, are regulated by z-order, and the order
in which they were added. So, if our node is on top of some other node (that
is rendered after it), it first has a chance to handle the touch, but if we pass
the touch to the super class, it means we don't want to process this touch
and it can be passed to underlying node. In our case, we don't have any
underlying nodes that handle touches and we don't process this touch either,
so it is simply left unhandled.

Chapter 5

[147]

Finally, let's have a closer look at the most interesting part, that is, the reloadArrow:
method that we call at the end of the shootAtPoint: method, right after we shoot
the arrow:

1.	 Set the hunter state to the reloading state. This disables shooting until the
reloading completes.

2.	 Here we loaded the animation frames. If you have a look at our spritesheet, you will
find that we've added images called hunter_top_0.png and hunter_top_1.
png. These are the frames of reload animation. We are using the same technique
with the stringWithFormat: method to form an actual frame name as we did
with the flying bird animation.

3.	 We created the animation and corresponding action. Note the following line
of code:
reloadAnimation.restoreOriginalFrame = YES;

Without setting restoreOriginalFrame to YES, the animation action just leaves
our sprite displaying the last frame of the animation. This works just fine for our
birds, as animation is repeated forever. However, with our hunter, we don't want to
leave it at the last frame; we want to reset the image back to the first frame where
the hunter is aiming. You can comment out this line and see the difference.

4.	 We created the action that will call the getReadyToShootAgain method and will
reset our hunter state to idle when he finishes reloading the arrow.

5.	 We created a special action called CCActionDelay. This action is very useful when
used in sequence with other actions. It allows you to pause between two actions
in a sequence or add a delay at the beginning of the sequence, before the first
action that actually does something. The action itself does absolutely nothing; it just
wastes some time.

6.	 We created the sequence of actions that we want the hunter to do to reload the
arrow. We want to play animation, and then make a small delay to decrease the rate
of fire, and finally reset the hunter and allow making the next shot.

7.	 Run the sequence on a torso sprite. It is important to remember that we run most
actions on the torso sprite, not the whole hunter.

Now, when we have the behavior of the hunter and bird's objects close to what we want,
we can concentrate on the winning and losing conditions of the game.

Starting the Action

[148]

Time for action – winning or losing the game
In most games, we can win or lose. This makes the game interesting. In our game, we will win
the game if we avoid losing. To be more specific, we will lose if we allow some number of the
birds to fly away, for example, 3 birds out of 20. If we'll hit more than 17 birds, then we'll win.

Let's add the code to win and lose the game:

1.	 Open the GameScene.h file and add enum with game states and a property to hold
the current state, as shown in the following code:
#import "CCScene.h"

typedef enum GameState
{
 GameStateUninitialized,
 GameStatePlaying,
 GameStatePaused,
 GameStateWon,
 GameStateLost

} GameState;

@interface GameScene : CCScene

@property (nonatomic, assign) GameState gameState;

@end

2.	 Switch to the GameScene.m file and add the following instance variables:
@implementation GameScene
{
 //..skipped..
 int _birdsToSpawn;
 int _birdsToLose;
}

3.	 Initialize the state property and the variables that we've added before in the init
method as follows:
-(instancetype)init
{
 if (self = [super init])
 {

 self.gameState = GameStateUninitialized;

 _birdsToSpawn = 20;

Chapter 5

[149]

 _birdsToLose = 3;

 //..skipped..
 }

 return self;
}

4.	 Add the following method below the init method:
-(void)onEnter
{
 [super onEnter];
 self.gameState = GameStatePlaying;
}

5.	 Add the three following methods below the update: method:
-(void)checkWonLost
{
 if (_birdsToLose <= 0)
 {
 [self lost];
 }
 else if (_birdsToSpawn <= 0 && _birds.count <= 0)
 {
 [self won];
 }
}

-(void)lost
{
 self.gameState = GameStateLost;
 CCLOG(@"YOU LOST!");
}

-(void)won
{
 self.gameState = GameStateWon;
 CCLOG(@"YOU WON!");
}

6.	 Make the following changes in the update: method:
-(void)update:(CCTime)dt
{
 if (self.gameState != GameStatePlaying)
 return;

 _timeUntilNextBird -= dt;
 if (_timeUntilNextBird <= 0 && _birdsToSpawn > 0)

Starting the Action

[150]

 {
 [self spawnBird];
 _birdsToSpawn--;

 //..skipped..
 }

 //..skipped..

 for (int i = _birds.count - 1; i >= 0; i--)
 {
 //..skipped..

 if (bird.birdState == BirdStateFlyingOut &&
 birdFlewOffScreen)
 {
 _birdsToLose--;

 [bird removeBird:NO];
 [_birds removeObject:bird];
 continue;
 }

 //..skipped..

 }

 [self checkWonLost];
}

7.	 Scroll down to the part where we handle touches and make the following changes
to the touchBegan: method:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (_hunter.hunterState != HunterStateIdle
 || self.gameState != GameStatePlaying)
 {
 [super touchBegan:touch withEvent:event];
 return;
 }

 //..skipped..
}

Chapter 5

[151]

8.	 Then, make a similar change to the touchEnded: method as follows:
-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (self.gameState != GameStatePlaying)
 return;

 //..skipped..
}

9.	 Build and run the game. Play a little, and win and lose the game to check whether
everything works correctly. For now, you should only get the console output when
you win or lose, we will improve this in the next chapters.

You can find a snapshot of the project at this point in the
Chapter_05/Cocohunt_05_Wining_and_Losing folder.

What just happened?
We finally got something completely playable. Of course, the game would benefit from a few
improvements, which we'll do in the rest of this chapter and in the next few chapters, but
you can already play around right now. Here is an explanation of what we just did; we started
adding states to our GameScene class. Let's review each state:

�� GameStateUninitialized: This is a special state that we use as an initial value. It
is required so that the game doesn't start earlier than we want.

�� GameStatePlaying: This is the main state of the game. In this state, all the action
happens. We have several checks that the game must be in this state to make some
actions. For example, we spawn birds and allow shooting only in this state.

�� GameStatePaused: This state is not used yet, but later when we add a pause
button to our game, this state will mean that the game is temporarily paused.

�� GameStateWon: This is the final state of the game if we win.

�� GameStateLost: This is the final state of the game if we lose.

In addition to states, we've added two counter variables, _birdsToSpawn and
_birdsToLose, that we use to count the number of the birds we've already spawned and
the birds that we didn't hit and flew away. We've set them to some test values, but you can
tweak them as you like, as long as _birdsToLose is less than _birdsToSpawn; otherwise
the player will always win.

Starting the Action

[152]

We use the onEnter method to start the game. This will start the game as soon as our
game scene will be displayed on the screen. The onEnter method is called when the scene
is already displayed on the screen in contrast to the init method, which is called when we
create the scene. We will discuss the onEnter method in more detail in Chapter 9, User
Interface and Navigation.

We can do without this method and add some kind of a Play button to
start the game, but starting the game straight away works just fine.

The checkWonLost, lost, and won methods are used to handle win and lose scenarios in
the game. In the checkWonLost method, we check whether we've missed more birds than
allowed and lost the game. In addition to this, we check whether we've spawned all the birds
and there are no birds on screen. In the latter case, we can assume that we won the game.
The lost and won methods are very simple for now; they are mostly stubs for the code that
we'll add later.

The changes in the update: method are quite straightforward. We added a check that we're
in the GameStatePlaying state, and if not, we just exit the update: method straight
away, as everything that we do in the update: method assumes that the game is running.

Then, we added the code to decrease the number of birds to spawn when we spawn one.
Finally, after we check the intersections of birds and arrows and remove all the birds hit by
an arrow or those that flew away from the screen, we can check if we won or lost the game
at the very end of the update: method.

Then, as a finishing touch, we updated our touch handling methods so that we don't shoot
the birds when the game is not in the GameStatePlaying state. We don't want to waste
arrows in despair when we've lost, neither do we want to waste arrows to celebrate winning,
and more importantly, we don't want to allow shooting when the game has not yet started
or is paused.

Improving the gameplay
At this point, we can play the game, but is it competitive enough? Let's add a few more
changes that will make our game better.

Chapter 5

[153]

Time for action – limiting the aiming range
Currently, we can just tap on the bird and the hunter will hit it. This is not very competitive; it
would be harder to hit the bird if we needed to touch the screen closer to the hunter. We're
going to limit the distance from the hunter where you can tap to aim.

At the end of the previous chapter, we added a bunch of images that we're going to
use. There is one special image called power_meter.png, which we will use to show the
aiming range.

The power_meter.png image represents an arrow colored in white.
Don't worry if you can't see it in the finder thumbnails or in preview, as
you just can't see white image on a white background. If you want to see
the image, you can open power_meter.png from the Chapter_04/
Assets/Spritesheet/hd folder in the preview application. Later, it
will become clear why we've used the white color.

Now, we're going to use this image in the code. Follow these steps to display the aiming
indicator and limit the aiming range:

1.	 Open the GameScene.m file and add following instance variables:
@implementation GameScene
{
 //..skipped..

 int _maxAimingRadius;
 CCSprite *_aimingIndicator;
}

Starting the Action

[154]

2.	 Now, add the setupAimingIndicator method:
-(void)setupAimingIndicator
{
 //1
 _maxAimingRadius = 100;

 //2
 _aimingIndicator =
 [CCSprite spriteWithImageNamed:@"power_meter.png"];
 _aimingIndicator.opacity = 0.3f;
 _aimingIndicator.anchorPoint = ccp(0,0.5f);
 _aimingIndicator.visible = NO;

 //3
 [_batchNode addChild:_aimingIndicator];
}

3.	 Call this method from the init method as follows:
-(instancetype)init
{
 if (self = [super init])
 {

 //..skipped..

 [self setupAimingIndicator];
 }

 return self;
}

4.	 Add the following method somewhere near the end of the GameScene.m file:
-(BOOL)checkAimingIndicatorForPoint:(CGPoint)point
{
 //1
 _aimingIndicator.position =
 [_hunter torsoCenterInWorldCoordinates];
 _aimingIndicator.rotation = [_hunter torsoRotation];

 //2
 float distance =
 ccpDistance(_aimingIndicator.position, point);
 BOOL isInRange = distance < _maxAimingRadius;

 //3
 float scale =
 distance/_aimingIndicator.contentSize.width;

Chapter 5

[155]

 _aimingIndicator.scale = scale;

 //4
 _aimingIndicator.color =
 isInRange ? [CCColor greenColor] : [CCColor redColor];

 //5
 return isInRange;
}

5.	 Add the following code in the touchBegan: and touchMoved: methods:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 //..skipped..

 _aimingIndicator.visible = YES;
 [self checkAimingIndicatorForPoint:touchLocation];
}

-(void)touchMoved:(UITouch *)touch withEvent:(UIEvent *)event
{
 //..skipped..

 [self checkAimingIndicatorForPoint:touchLocation];
}

6.	 Replace the touchEnded: method with following code:
-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (self.gameState != GameStatePlaying)
 return;

 CGPoint touchLocation = [touch locationInNode:self];

 BOOL canShoot =
 [self checkAimingIndicatorForPoint:touchLocation];
 if (canShoot)
 {
 CCSprite* arrow =
 [_hunter shootAtPoint:touchLocation];
 [_arrows addObject:arrow];
 }
 else
 {
 [_hunter getReadyToShootAgain];
 }

 _aimingIndicator.visible = NO;
}

Starting the Action

[156]

7.	 Open the Hunter.h file and add the following method declarations:
-(CGPoint)torsoCenterInWorldCoordinates;
-(float)torsoRotation;

8.	 Then, switch to the Hunter.m file and add the implementation of the
torsoRotation method below the torsoCenterInWorldCoordinates:
method (that already exists, and we've only made public by adding declaration in
the header) as follows:
-(float)torsoRotation
{
 return _torso.rotation;
}

9.	 Build and run the game. Now, you can only shoot at the birds when the arrow is
green, and it is green only if it is close enough to the hunter character. If the arrow
is red, then you're too far from the hunter and you should tap/click closer to the
hunter. Refer to the following screenshot:

The red aiming arrow indicates that we're tapping too far from the hunter

I'm sure the birds are happy with the last change, as it will be harder to hit the birds now.

You can find a snapshot of the project at this point in the Chapter_05/
Cocohunt_05_Limiting_Aiming_Range folder.

Chapter 5

[157]

What just happened?
Let's start our review from the GameScene class. As you've probably guessed, two variables
that we added are the maximum aiming range and the aiming indicator (arrow) sprite.

Let's review the code of the setupAimingIndicator method:

1.	 Set the maximum aiming radius to 100 points. It should be hard enough to hit the
bird if we can only tap closer than 100 points to the hunter. As we're using this
variable later in the code, we can always adjust this value here.

2.	 We created the aiming indicator sprite using the white arrow image. The following
are a few interesting properties we set:

�� Setting the opacity property to 0.3f makes our aiming indicator
semitransparent. The opacity property takes values from 0 to 1, where 0
means completely transparent and 1 means completely opaque.

�� Setting the anchorPoint property to (0, 0.5) moves the anchor point
to the middle of the left edge of the sprite rectangle. This has several
interesting effects. First of all, when we set the position of the aiming
indicator, we set the position of the tail, just like we did when we added
the arrow that we shoot from the bow. Second, when we rotate the aiming
indicator, it rotates around the anchor point, similar to what we've seen
before with the arrow. Finally, the aiming indicator scales relative to the
anchor point; we'll see this in a moment.

�� Setting visible to NO makes our aiming indicator invisible. As we don't want
to show it always, but we only show it when we're aiming with our finger.

3.	 Added the aiming indicator sprite to the batch node, as it is also a part of
our spritesheet.

Now it is time to review the most interesting method,
checkAimingIndicatorForPoint:. This method checks whether we tapped close
enough to the hunter and decides whether we can shoot or are too far away. In addition to
this, it changes the color of the aiming indicator to red or green depending on whether we
can make this shot:

1.	 We started by setting the aiming indicator to the same position where the hunter is. It
is required in case we move our hunter sprite. Also, when the torso rotates, its center
moves a bit. In addition to this, we also set the rotation of the aiming indicator to the
same rotation value as the torso, as this way it will point to the target point.

2.	 Now, we calculated the distance from the torso to the target point (the point we're
currently clicking by mouse or touching finger) and checked whether it is closer than
the maximum allowed distance.

Starting the Action

[158]

3.	 We calculated the scale value that we need to set our aiming indicator image to so
that it touches the target point with its tip.

The scale property is used to make nodes bigger or smaller.
To make the node bigger, you set it to the value higher than
1.0; to make it smaller, you set it to a value lower than 1.0.
Setting the scale to values close to 0 will make the node so
small that you won't see it. If you need to scale the object
only horizontally or vertically, you can use the scaleX or
scaleY property.

An important point to note is that scaling is relative to the anchor point. As our
anchor point is set to one side of the aiming indicator image, it scales from that
anchor point, making the aiming indicator grow in the direction of our target point
without moving the tail. If we left the anchor point in the center (ccp(0.5, 0.5)),
it would move both the tail and the tip away from the center where the anchor
point is, as it scaled up. We don't want that.

4.	 Here, we used a little trick that allows us to have one white image instead of two
images for the green and red states of the aiming indicator. The color property sets
the tint color. What it actually means is that it multiplies this color on the color of
the each pixel of the sprite texture. The aiming indicator image is completely white,
and the white color is represented by 1 in each color component of RGB (that is,
(1,1,1)). This means that multiplying it with green (that is, (0,1,0)) will give us
(1*0, 1*1, 1*0) = (0,1,0)), which is green and multiplying with red (that is,
(1,0,0)) also gives plain red as a result. In other words, any color multiplied on a
white color just gives the original color.

5.	 We returned the result of the distance check so that we could decide whether the
hunter can shoot in the touchEnded: method.

The rest of the changes are simply showing and hiding the aiming indicator and checking
whether we can shoot in the touch-handling methods.

Time for action – alternative control using a gyroscope
It will be even more fun to control our hunter using a gyroscope.

A Gyroscope is a device that measures an iPhone's orientation. Using a
gyroscope, you can tell how your iPhone is positioned in the world. This way, if
you track the gyroscope information, you can track when the user tilts or rotates
a device in hands. A gyroscope is often used in racing games, where you can use
your iPhone as a steering wheel. We'll use it to control the hunter's aim.

Chapter 5

[159]

Unfortunately, only happy owners of the iOS devices and participants of the Apple iOS
Developer Program can test the code in this part of the chapter, as you cannot test a
gyroscope on the simulator.

You can still follow this chapter to learn information on how to use the
gyroscope. If you decide to skip this chapter, take the final project for
this chapter from the Chapter_05/Cocohunt_05_Final folder
as a starter project for the next chapter as we're going to build on it.

To get information about the device's orientation, we need to use the CoreMotion
framework. We can just add it to the project, but let's use the new @import feature
through the following steps:

1.	 Open the Cocohunt project properties by clicking on the Cocohunt project in the
Project Navigator pane on the left.

2.	 Switch to Build Settings tab and type enable modules in the search box. You
should see only one option named Enable Modules (C and Objective-C) under
Apple LLVM 5.0 – Language – Modules section.

3.	 Set Enable Modules (C and Objective-C) to YES. Take a look at the following
screenshot if you have any difficulties finding this option:

Enabling modules in Xcode's project settings

4.	 After enabling modules, let's use them and write the code to use the gyroscope
to control the hunter. Open the GameScene.m file and import the CoreMotion
framework. Below all #import directives, write the following line of code (make
sure that you use @import and not #import):
@import CoreMotion;

5.	 Add two new instance variables as follows:
@implementation GameScene
{
 //..skipped..
 BOOL _useGyroToAim;
 CMMotionManager *_motionManager;
}

Starting the Action

[160]

6.	 Add the initializeControls method below the init method as follows:
-(void)initializeControls
{
 if (_useGyroToAim)
 {
 _motionManager = [[CMMotionManager alloc] init];
 _motionManager.deviceMotionUpdateInterval = 1.0/60;
 [_motionManager startDeviceMotionUpdates];
 }

 self.userInteractionEnabled = YES;
}

7.	 Set _useGyroToAim to YES inside the init method as shown in the following code:
-(instancetype)init
{
 if (self = [super init])
 {
 _useGyroToAim = YES;

 //..skipped..
 }

 return self;
}

8.	 Add a call to the initializeControls method at the end of the onEnter method:
-(void)onEnter
{
 [super onEnter];
 self.gameState = GameStatePlaying;

 [self initializeControls];
}

9.	 Add the following two methods:
-(CGPoint)getGyroTargetPoint
{
 //1
 CMDeviceMotion *motion = _motionManager.deviceMotion;
 CMAttitude *attitude = motion.attitude;

 //2
 float pitch = attitude.pitch;

 //3
 float roll = attitude.roll;
 if (roll > 0)

Chapter 5

[161]

 pitch = -1 * pitch;

 //4
 CCLOG(@"Pitch: %f", pitch);

 //5
 CGPoint forward = ccp(1.0, 0);
 CGPoint rot =
 ccpRotateByAngle(forward, CGPointZero, pitch);
 CGPoint targetPoint =
 ccpAdd([_hunter torsoCenterInWorldCoordinates], rot);
 return targetPoint;
}

-(void)updateGyroAim
{
 if (!_useGyroToAim)
 return;

 CGPoint targetPoint = [self getGyroTargetPoint];
 [_hunter aimAtPoint:targetPoint];
}

10.	Add a call to the updateGyroAim method in the update: method:
-(void)update:(CCTime)dt
{
 if (self.gameState != GameStatePlaying)
 return;

 [self updateGyroAim];
 //..skipped..
}

11.	Changes in the touchBegan: method are quite significant; it is easier to replace the
whole touchBegan: method with the following code:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (self.gameState != GameStatePlaying)
 {
 [super touchBegan:touch withEvent:event];
 return;
 }

 if (_useGyroToAim)
 {
 if (_hunter.hunterState != HunterStateReloading)
 {
 CGPoint targetPoint =
 [self getGyroTargetPoint];

Starting the Action

[162]

 CCSprite* arrow =
 [_hunter shootAtPoint:targetPoint];
 [_arrows addObject:arrow];
 }

 [super touchBegan:touch withEvent:event];
 }
 else
 {
 if (_hunter.hunterState != HunterStateIdle)
 {
 [super touchBegan:touch withEvent:event];
 return;
 }

 CGPoint touchLocation = [touch locationInNode:self];
 [_hunter aimAtPoint:touchLocation];

 _aimingIndicator.visible = YES;
 [self checkAimingIndicatorForPoint:touchLocation];
 }
}

12.	Open the Hunter.m file and make the following changes to the
aimAtPoint: method:
-(void)aimAtPoint:(CGPoint)point
{
 if (self.hunterState != HunterStateReloading)
 self.hunterState = HunterStateAiming;

 _torso.rotation =
 [self calculateTorsoRotationToLookAtPoint:point];
}

13.	Select your iPhone as a target in the Xcode project instead of the simulator and run
the game. Tilt your iPhone to aim and touch the screen to shoot the arrow.

You can find the final project for this chapter in the
Chapter_05/Cocohunt_05_Final folder. As this project
can be used as a starter project for the next chapter by readers
who don't have access to a device and can't test aiming using
gyroscope, I've set the _useGyroToAim to NO; change it to
YES if you want to test aiming functionality using gyro.

Chapter 5

[163]

What just happened
It might seem strange to control the hunter's aim by tilting the phone, although I find it
pretty fun and more competitive than aiming with touches, but in some games, using
orientation of the device as a controller is almost a standard way to go. As I've mentioned
before, most racing games allow you to steer your wheel by tilting the iPhone.

When getting device orientation from a gyroscope, you should understand the meaning of
pitch, roll, and yaw values, which define the device rotation and come from aviation terms.
The following is a figure to demonstrate their original meanings:

It is quite hard to imagine these when you look at your iPhone. To see them in action to
better understand them, you can install a free app from the App Store called Gyroscope
(http://appstore.com/gyroscope). With the help of this app, you can see how roll,
pitch, and yaw change when you rotate your iPhone in your hands.

Before we could use the information about device orientation, we had to include the
CoreMotion framework. This is not a Cocos2D-specific framework, and you can use it
in any iOS application. We need it to be able to use CMMotionManager.

After importing the framework, we've added two instance variables. The _useGyroToAim
flag will allow us to switch easily between the touch and the tilt controls, and we'll use
_motionManager to get the device's orientation.

In the initializeControls method, we initialized our _motionManager instance,
set the refresh rate to 1/60th of a second, which should be enough even if we ran our game
at 60 FPS and started tracking the device motion.

Starting the Action

[164]

We won't rewrite the Hunter class behavior, except for one small change in the
aimAtPoint: method that is required, as when we use gyro, the hunter's torso rotation is
updated every frame. This is because we constantly update its aim to the gyro values and not
just when we touch and move the finger.

As we're not going to change the interface of the Hunter class, we still need a target point
to aim. This is why we need the getGyroTargetPoint method.

Here's how it works:

1.	 We started by taking the information on the device orientation. We're interested in
the pitch and roll values.

2.	 The pitch value is used for aiming. If you installed the gyroscope app I mentioned, it
should be clear why we take the pitch value. It is already in radians, so we can use it
without conversion.

3.	 We used the roll value to understand which side of the iPhone is up (the home
button is on the left or on the right).

4.	 We logged the pitch value to see that everything works.
5.	 We then calculated the target point that will make our hunter aim at the given

pitch angle.

To get the target point in the last code block, we take the vector pointed straight from the
hunter (collinear to the x axis) and then we rotate this vector using the pitch angle. After
rotating this vector, we take the point at the tip of this vector. This will be our target point,
just as if we touched this point with our finger, as shown in the following figure:

Getting a target point using pitch

Chapter 5

[165]

In other words, we're simulating a touch at the point that lies on the line rotated by the pitch
angle. This is done to minimize changes in the Hunter class.

After this, we only need to add a method to update the hunter's aim for each frame. This is
what the updateGyroAim method does when called from the update: method. We wrote
different code in the touch handling method to shoot when we touch the screen instead of
when we release the finger.

Have a go hero
There are many things to tweak in our Cocohunt game at this point. The following is a list of
things to try:

�� Change the number of birds spawned, their speed, and the initial altitude range
(the y coordinate)

�� Change the number of times each bird visits the screen. Make it a random value
between 1 and 5

�� Change the value of the hunter's maximum aiming range and make it smaller
and bigger

�� Change the color property of hunter and the birds to some color

�� Change the delay in the hunter's reload animation between frames

�� Change the getGyroTargetPoint method to use roll or yaw to aim

As always, it is better to copy the project before making any experiments to have the original
project untouched.

Pop quiz – geometry and actions
Q1. Which function will you use to check whether two sprites collide with their
bounding boxes?

1.	 CGRectContainsPoint

2.	 CGRectIntersectsRect

3.	 CGRectContainsRect

Q2. You have three actions. How will you make a sprite run these actions one after another?

1.	 Call the sprite's runAction: method three times with each action

2.	 Gather all actions in the CCActionSequence and run the sequence action

Starting the Action

[166]

Q3. You have CGPoint point = ccp(100,100) in node space, what coordinates will it
have in world space?

1.	 (100,100)

2.	 (0,0)

3.	 (200,200)

4.	 It depends on where the node is in world space

Summary
This was one of the cornerstone chapters of the book. Making the objects move and interact
with each other and allowing users to control the game is an essential part of any game.

Right now, the game might look like a simple tutorial demo, but even with just what we have
now and tweaking the number of birds, their spawn time and speed, the hunter's shooting
characteristics, and other parameters can turn this game into a fun and competitive one.

Of course, there are parts that beg for improvement. Logging into the console whether
we've won or lost, and not displaying the number of points that we have definitely won't do
compared to other games. Also, the collision detection is pretty rough, we have no sound,
and the birds just disappear when we hit them.

We'll learn how to fix all these in the next chapters, but for now, make sure that you've
learned how to add and remove sprites from the scene, how to store them in arrays, and
make them interact. It is also very important to understand the difference between the
world space and node space coordinates.

Handling user input (touches or device orientation) is also one of the main tasks you will
work on when creating games. Using actions to command sprites, grouping actions into
other actions to make sequences, and repeating them is what you're going to use very often.

Finally, using states to control the game flow will allow you to make complicated games
without losing yourself in a mess of code.

It is very important to understand all of these before we continue. I wouldn't be lying if I told
you that these topics are the main things you need to understand from this whole book.

In the next chapter, you're going to learn how to render text. We will display the current
score, number of lives left, and a better indication of winning and losing.

6
Rendering Text

Displaying text in games is almost as important as displaying images and
animations. In fact, some time ago many games were purely text-based.
We're not going to go hardcore and make the player type "shoot 30 degrees"
and get the "you've missed the bird" message as a result, but the game will
definitely benefit from adding some text.

In this chapter, we are going to review the following topics:

�� Adding text to the game using True Type font labels

�� Updating labels, text, and performance considerations

�� Creating and using bitmap fonts

�� Using actions to create text effects

The easy way – CCLabelTTF
We've already used the CCLabelTTF class to display the text on the screen. It was pretty
easy, wasn't it? We only specified the font name, the size, and the text itself, and here it
was displayed on the screen. But there is a price for that simplicity.

Unfortunately, it is not that simple to draw text using OpenGL (which is used by Cocos2D
internally). There is simply no built-in functionality that takes the text and renders it on
the screen. We have to render the text manually by drawing each letter separately in
its place using primitives (lines and triangles), and doing this for every frame badly
affects performance.

Rendering Text

[168]

To optimize this, Cocos2D renders the text only once, places the result into the texture, and
then displays this texture. In other words, it creates an image in memory with this text on
the fly, and then it easily renders this image using OpenGL.

This helps to optimize performance, but if we change any property of the label (font size,
alignment, color, and so on) and of course the text itself, Cocos2D has to regenerate this
texture. So if we plan to change the text often, we shouldn't use CCLabelTTF but use
CCLabelBMFont, which we'll discuss in the second part of this chapter.

Taking the preceding points into consideration, you shouldn't think that the CCLabelTTF class
is useless. It has several benefits, and the most important one is that we can easily use it. If we
don't change the text displaying each frame, then we won't notice a performance hit.

Time for action – adding labels
It would be nice to know how many birds we've spawned, how many birds we've hit, and
more importantly how many birds we've missed.

If you completed all code from the previous chapter, simply continue
building on top of your project. If you've skipped a part or don't have
the code for some reason, just take the final code of the project from
the previous chapter in the Chapter_05/Cocohunt_05_Final
folder and use it as a starter project.
You can download the book's supporting files by visiting www.
packtpub.com/support and following the instructions.

Let's display those labels on the screen:

1.	 Open the Cocohunt project at the point where we left it in the previous chapter.

2.	 Right-click on the Scenes group, click on New File, and then select the Objective-C
class. Name the class HUDLayer and make it a subclass of CCNode. Save the file.

3.	 Open the HUDLayer.m file and add the following code at the top of the file before
the @implementation part:
#import "cocos2d.h"

#define kFontName @"Noteworthy-Bold"
#define kFontSize 14

www.packtpub.com/support
www.packtpub.com/support

Chapter 6

[169]

4.	 Add three instance variables as follows—one for each label that we'll add to the code:
@implementation HUDLayer
{
 CCLabelTTF *_score;
 CCLabelTTF *_birdsLeft;
 CCLabelTTF *_lives;
}

5.	 After that, add the init method to create and position labels:
-(instancetype)init
{
 if (self = [super init])
 {
 //1
 _score = [CCLabelTTF
 labelWithString:@"Score: 99999"
 fontName:kFontName
 fontSize:kFontSize];
 _birdsLeft = [CCLabelTTF
 labelWithString:@"Birds Left: 99"
 fontName:kFontName
 fontSize:kFontSize];
 _lives = [CCLabelTTF
 labelWithString:@"Lives: 99"
 fontName:kFontName
 fontSize:kFontSize];

 //2
 _score.color =
 [CCColor colorWithRed:0 green:0.42f blue:0.03f];
 _birdsLeft.color =
 [CCColor colorWithRed:0.84f green:0.49f blue:0.08f];
 _lives.color =
 [CCColor colorWithRed:0.64f green:0.06f blue:0.06f];

 //3
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 float labelsY = viewSize.height * 0.95f;
 float labelsPaddingX = viewSize.width * 0.01f;

 //4
 _score.anchorPoint = ccp(0, 0.5f);
 _score.position = ccp(labelsPaddingX, labelsY);

 //5
 _birdsLeft.anchorPoint = ccp(0.5f, 0.5f);

Rendering Text

[170]

 _birdsLeft.position = ccp(viewSize.width * 0.5f,
 labelsY);

 //6
 _lives.anchorPoint = ccp(1, 0.5f);
 _lives.position =
 ccp(viewSize.width - labelsPaddingX, labelsY);

 //7
 [self addChild:_score];
 [self addChild:_birdsLeft];
 [self addChild:_lives];
 }

 return self;
}

6.	 Open the GameScene.m file and add the following code at the top of the file before
the @implementation part:
#import "HUDLayer.h"

typedef NS_ENUM(NSUInteger, Z_ORDER)
{
 Z_BACKGROUND,
 Z_BATCH_NODE,
 Z_HUD
};

7.	 Scroll down to the addBackground method and change the final line, where we
add the background to the scene to this:
[self addChild:background z:Z_BACKGROUND];

8.	 Make a similar change in the createBatchNode method as follows:
[self addChild:_batchNode z:Z_BATCH_NODE];

9.	 Add the _hud instance variable:
@implementation GameScene
{
 //..skipped..

 HUDLayer *_hud;
}

Chapter 6

[171]

10.	Then add the following method after the init method:
-(void)initializeHUD
{
 _hud = [[HUDLayer alloc] init];
 [self addChild:_hud z:Z_HUD];
}

11.	Add a call to the initializeHUD method at the end of the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 //..skipped..

 [self initializeHUD];
 }

 return self;
}

If you don't want to use gyroscope for aiming, make sure
you change the _useGyroToAim to NO while in the init
method. If you don't have a device and are testing on the
simulator, this is your only option unfortunately.

12.	Finally remove the CCLOG(@"Pitch: %f", pitch); line from the
getGyroTargetPoint method, since it produces too much noise in
the console.

13.	Build and run the game. You should see three colored labels in the top part
of the screen as shown in the following screenshot:

Rendering Text

[172]

What just happened?
Most of the time, it is a good idea to create modular code. In our case, we've decided
to separate the labels into a different layer. In the current game, there won't be much
happening in the HUD layer, but we still will have some code related just to HUD labels
at the end. It is nice to have it in a separate source file, and not to grow our GameScene
into an enormous monster.

HUD is a term often used in game development. It originated from the
military aviation and means heads-up display. If you watched movies such
as Top Gun or any other movie about military planes, you must remember
those crosses, numbers, and other system information displayed directly
on the windshield.

The following screenshot shows the HUD:

Let's start reviewing from the HUDLayer class. It is a descendant of the CCNode, and we
just used this class as a container for our HUD elements. Think of it as an additional layer
on top of the main game layer represented by sprite batch node. Both layers exist in the
GameScene class.

In addition to the obvious benefits of splitting the code, this offers a lot of
flexibility. For example, we can also easily move the whole HUD layer to
position it at the top or bottom of the screen, with only one line of code to
hide and show all HUD elements at once, and so on.

Chapter 6

[173]

Currently our HUDLayer class contains three labels, which we create in the init method.
Let's review this method:

1.	 Here, we created three labels with the stub text. It will be later replaced by actual
values. Since all of our labels use one font and one font size, we've created a #define
constant for both values, to be able to quickly change it for all labels at once.

It is a good idea to use the stub text that contains the
maximum value you plan for the label. This way you will
see if a label overlaps some other UI element, doesn't fit
in its placeholder, and so on.

2.	 We set the color for each label. The CCColor object represents the color in
Cocos2D. We've created three different colors passing different RGB components.
Each color component can have values ranging from 0 to 1.

3.	 We calculated variables that will help us to position our labels. We want one label to
be on the left-hand side, one in the center, and one on the right-hand side. We don't
want our side labels to be very close to the edge of the screen; this is why we're
calculating the labelsPaddingX value.

4.	 We created the scores label. We want to place this label using its left edge; this is
why we set the anchor point to the midpoint of the left edge (0, 0.5). This will
also make the label to extend to the right when we add more text, and the left edge
will stay in its place. In other words, setting the anchor point to the left edge makes
the label left-aligned.

5.	 We added the label with the number of birds still waiting to be spawned. In this
case, we set the anchor point to the center. This way, the label will expand on both
the right-hand side and the left-hand side and will be center-aligned.

6.	 Finally, we added the lives label. We made it right-aligned so that it expands itself to
the left-hand side, making sure we don't cross the right edge of the screen.

7.	 We added all labels as a child of our HUDLayer node.

After creating the HUDLayer node, all we needed to do is add it as a child of the GameScene
class. We also used this opportunity for a little housekeeping and defined z-order for all
direct child nodes of the scene. This way the background will be in the back, and then there
will be the batch node with the hunter, birds, and arrows inside of it. Then as a top layer,
there will be the HUDLayer layer.

Using enum for z-order values is quite convenient. This way
it is very easy to rearrange them.

Now we have the labels on the screen, we need to update them to the actual values.

Rendering Text

[174]

Time for action – updating labels
Let's go ahead and add the code to keep the current game stats and display them using labels:

1.	 Create a new group called Common.

2.	 Right-click on this group and click on New File; it will be Objective-C class. Name it
GameStats and make it a subclass of NSObject. Save the file.

3.	 Open the GameStats.h file and add the following properties:
@property (nonatomic, assign) int score;
@property (nonatomic, assign) int birdsLeft;
@property (nonatomic, assign) int lives;

4.	 Then open the GameStats.m file and add the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 self.score = 0;
 self.birdsLeft = 0;
 self.lives = 0;
 }

 return self;
}

5.	 Open the HUDLayer.h file and import the GameStats.h header at the top, like this:
#import "GameStats.h"

6.	 Then add the following method declaration:
-(void)updateStats:(GameStats *)stats;

7.	 Switch to the HUDLayer.m file and add the implementation of this method below
the init method:
-(void)updateStats:(GameStats *)stats
{
 _score.string =
 [NSString stringWithFormat:@"Score: %d",
 stats.score];
 _birdsLeft.string =
 [NSString stringWithFormat:@"Birds Left: %d",
 stats.birdsLeft];
 _lives.string =
 [NSString stringWithFormat:@"Lives: %d",
 stats.lives];
}

Chapter 6

[175]

8.	 Open the Bird.h file and change the removeBird: method declaration to return
an integer (int) value:
-(int)removeBird:(BOOL)hitByArrow;

9.	 Switch to the Bird.m file and make following changes to the removeBird: method:
-(int)removeBird:(BOOL)hitByArrow
{
 [self removeFromParentAndCleanup:YES];

 int score = 0;

 if (hitByArrow)
 {
 self.birdState = BirdStateDead;
 score = (_timesToVisit + 1) * 5;
 }
 else
 {
 self.birdState = BirdStateFlewOut;
 }

 return score;
}

10.	Open the GameScene.m file and add an instance variable to contain the current
game stats:
@implementation GameScene
{
 //..skipped..

 GameStats *_gameStats;
}

11.	Add the following initializeStats method below the initializeHUD method:
-(void)initializeStats
{
 _gameStats = [[GameStats alloc] init];
 _gameStats.birdsLeft = _birdsToSpawn;
 _gameStats.lives = _birdsToLose;

 [_hud updateStats:_gameStats];
}

Rendering Text

[176]

12.	Add a call to this initializeStats method at the end of the init method
as follows:
[self initializeStats];

It is important to add a call to the initializeStats
method after the [self initializeHUD]; line
since we need already initialized HUDLayer before we can
initialize stats.

13.	Find the update: method and search for the if block where we spawn the new
bird. Add the following code to the end of this block:
 if (_timeUntilNextBird <= 0 && _birdsToSpawn > 0)
 {
 //..skipped..

 _gameStats.birdsLeft = _birdsToSpawn;
 [_hud updateStats:_gameStats];
 }

14.	Still in the update: method, scroll down and find this line:
_birdsToLose--;

15.	Add the following two lines right below it:
_gameStats.lives = _birdsToLose;
[_hud updateStats:_gameStats];

16.	There is one more place in the update: method to add to the stats update code.
Scroll down and find the place where we remove the bird and the arrow after their
collision (bird hit by the arrow case). Change the code inside the if block as follows:
 if (CGRectIntersectsRect(arrow.boundingBox,
 bird.boundingBox))
 {
 [arrow removeFromParentAndCleanup:YES];
 [_arrows removeObject:arrow];

 int score = [bird removeBird:YES];
 [_birds removeObject:bird];

 _gameStats.score += score;
 [_hud updateStats:_gameStats];

 break;
 }

Chapter 6

[177]

17.	Build and run the game. Now you should see actual stats in labels as shown in the
following screenshot:

You can find a snapshot of the project at this point in the
Chapter_06/Cocohunt_06_Stats_Labels folder.

What just happened?
First of all, we added a new class called GameStats to hold the current game stats. We could
have created separate variables and/or partially reuse already existing ones, but we'll add
more stats later and will pass this whole class instance to the other scene where we'll display
the game stats after each round, so it is a good idea to have everything wrapped in one class.

Then we updated the HUDLayer class to take this GameStats class instance and update the
labels using stats.

After that, we made one interesting change to the removeBird: method of the Bird class.
Now it returns the number of scored points, depending on how many times the bird already
visited the game field. The faster the hunter hits the bird, the more points he gets.

The rest of the changes are simply initializing stats and updating their values when something
happens. We decrease the amount of birds left when we spawn one, decrease lives when we
let the bird fly away from us, and increase points when we hit the bird using the amount of
points returned by the removeBird: method. There are lots of places to add the code, but
the code itself is very straightforward.

Rendering Text

[178]

Using bitmap fonts for better performance
As we've seen before, CCLabelTTF is very easy to use, but we also must be aware of its
drawbacks; the biggest one of which is its poor performance. Fortunately, we have an
alternative way of rendering text with the help of bitmap fonts and the CCLabelBMFont
class in Cocos2D.

What are bitmap fonts? Well, since OpenGL can't draw text natively, but it surely can draw
images very well, it is obvious that we can use images to represent our text. We can simply
create an image containing all letters, and then when we need to write some text, we just
draw each letter in its place on the screen.

To visualize this process, just recall some movie where an evil guy
cuts letters from newspapers and magazines to create anonymous
threating letters. The only difference is that we have an unlimited
number of each letter because nothing is really cut.

Also, as we already know drawing images one by one is a pretty expensive operation, so it
would be better to group letter images in some kind of spritesheet just as we did with normal
images and draw all the text at once. This approach is much faster than what CCLabelTTF
does behind the scenes.

Let's see how to create a bitmap font.

Choosing a bitmap font generator
As I've mentioned before, a bitmap font is very similar to a spritesheet. Each font is
represented by two files:

�� The first one is an image file (usually .png) that contains images of all the letters
of this font.

We're speaking about the letters since most of the time
when we say text, we think about words and letters, but
the font can contain any symbol just like a usual font does
(for example, the ",!() symbols are often included in
bitmap fonts).

�� The second one is an .fnt file, which functions very similar to a .plist file
in spritesheet's files pair. This .fnt file is usually a plain text file that contains
information about each letter, such as the position in the spritesheet and
spacing before and after this letter.

Chapter 6

[179]

There are different variations (such as binary .fnt format), but most of the time the bitmap
font is just a .png image and an .fnt text file. The .fnt format is quite simple. You can find
information about it on the Internet, but the easiest way is just to get some .fnt file and the
corresponding image and review them using your favorite text editor and image viewer apps.

Although the .fnt format is quite simple, and you can create it manually in any text editor
(I've done this myself a few times), it is much easier to use a tool to generate the bitmap font.

There aren't many utilities that allow you to create bitmap fonts easily, but the Glyph Designer
application is a definite favorite here. It is not free, but it is totally worth the money.

If you just cannot afford Glyph Designer, you can try to use alternatives listed
in the CCLabelBMFont class description at http://www.cocos2d-
iphone.org/docs/api/Classes/CCLabelBMFont.html
(shortened to: http://bit.ly/1iPXnfH). Search for the bitmap font
generator on the Web or find already-made free bitmap fonts.

My advice is to download the trial version of Glyph Designer and work with it. It will not allow
you to export the result, but I've provided the published files, so you will be able to complete
this chapter and learn everything you need about bitmap fonts. Later, you will be able to
decide which utility to use or even create the .fnt file manually.

Time for action – creating a bitmap font using Glyph Designer
First of all, we will need to download and install Glyph Designer. Go to http://71squared.
com/glyphdesigner to download and install the Glyph Designer application.

We're going to create three different fonts:

�� A font for the "You win!" label that will appear when you win the game

�� A font for the "You lose!" label that will appear when you lose the game

�� A font for points that will float out of the bird when we hit it with the arrow

Let's start with the font for the "You win!" label:

1.	 Open the Glyph Designer application and save the empty project anywhere you like.
Name the project WinFont.GlyphDesigner.

2.	 Select the Chalkduster font from the list of fonts on the left.

You can start typing Chalkduster in the search
area at the top of the fonts list to save time searching
for the font.

http://www.cocos2d-iphone.org/docs/api/Classes/CCLabelBMFont.html
http://www.cocos2d-iphone.org/docs/api/Classes/CCLabelBMFont.html
http://bit.ly/1iPXnfH
http://71squared.com/glyphdesigner
http://71squared.com/glyphdesigner

Rendering Text

[180]

3.	 Set the size of the font at the bottom to 64. You can use the slider or type the font
size by hand, which is much faster.

4.	 On the right-hand side of Glyph Designer find the Glyph Fill section. Leave the drop-
down value at Gradient. Change the gradient angle to 185. Click on the left-hand
side slider, set it to a light green color (RED:0 GREEN:201 BLUE:68), click on the
right-hand side slider, and set it to an orange color (R:254 G:98 B:0).

5.	 If you have a full version of Glyph Designer, then find the Export button on the top-
right corner and click on it. Name the file win. This will create the win.png and
win.fnt files. If you have a trial version, just remember that we've exported the
font at this point.

6.	 Now change the font size to 128 and export the bitmap font, but this time name it
win-hd. This will create two files win-hd.png and win-hd.fnt.

7.	 Save the project file, since we're going to copy it shortly.

If you have the trial version, then you won't be able to complete steps 5 and
6 since export is disabled in the trial version. Don't worry about that, it is only
important to remember the settings that we set and that we've exported the
font two times with different sizes.
You can find the resulting fonts in the book's supporting files at
Chapter_06/Assets/BitmapFont and the Glyph Designer project files
at Chapter_06/Assets/BitmapFont/GlyphDesignerProjects.

That's it for the win font. The Glyph Designer project should look similar to the
following screenshot:

Chapter 6

[181]

It is time to create the font for the "You lose!" label. It will be very similar to the win label
font—only the colors will be different— so we're going to copy the project and just tweak
the colors.

1.	 Copy WinFont.GlyphProject and rename it to LostFont.GlyphProject.
Then open this new LostFont.GlyphProject project.

2.	 Find the Glyph Fill section on the right-hand side and change the left-hand side
slider color to a deep red (R:201 G:0 B:75).

3.	 The font size should be set at 128 as we left it in the WinFont project that we've
copied. Click on Export to export the font and name it lost-hd. This will create
the lost-hd.png and lost-hd.fnt files.

4.	 Change the font size to 64 and export the font named lost. This will create the
lost.png and lost.fnt files.

Rendering Text

[182]

That's it for the losing font. We need one more font for the points. Refer to the following steps:

1.	 Create a new Glyph Designer project and save it as Points.GlyphProject.

2.	 Set the font to Superclarendon and font size to 16.

3.	 Set the Glyph Fill options. Set the gradient angle to 185. Then set the left-hand side
slider color to a dark blue (R:0 G:6 B:201) and the right-hand side slider color to
something close to cyan (R:104 G:228 B:254).

4.	 Below the Glyph Fill section, find the Included Glyphs section, and instead of all
those symbols only enter the digits 0123456789.

5.	 Make sure the font size is set to 16 and export the font. Name it points. This will
create the points.png and points.fnt files.

6.	 Then change the font size to 32 and export the font once again, but this time name
it points-hd. This will create the points-hd.png and points-hd.fnt files.
That's it. We have all the fonts we need.

As I've mentioned before, you can find the resulting fonts in
the book's supporting files in the Chapter_06/Assets/
BitmapFont folder and in the Glyph Designer project
files in the Chapter_06/Assets/BitmapFont/
GlyphDesignerProjects folder.

What just happened?
Creating the bitmap font with Glyph Designer was quite easy, especially compared to manual
creation of the bitmap font. To create the bitmap font, we selected the basic font, selected
its properties such as color, shadow and so on, and then we just exported the .png image
and the .fnt file.

There are a few tricky parts. The first one is exporting the font two times with different sizes.
This is required to have two bitmap fonts: one for non-Retina and the second one for Retina.
Since the bitmap font is only an image, we need to provide two images to support both
screen types.

The second trick is that we've only used the digits 0123456789 for the points font, while
with the win and lose labels, we've included all the characters. This is because we might
change our mind and instead of "You win", present a label like "Congratulations!",
so we need to be sure that we can use any standard symbols in the labels. On the other
hand, with the points font, we're sure that we will only display numbers. This means we
don't need any other characters or symbols and can save some disk space and memory by
not including them in the font image.

Chapter 6

[183]

As you can see, the –hd versions of the fonts are quite heavy, for example
win-hd.png is about 1 MB. Be sure to include only symbols that you'll use
and reuse the font.

I encourage you to have a look at the images that we've generated and open the .fnt files
in your favorite text editor. If you open any .fnt file (points.fnt or points-hd.fnt
will be easiest to read since they don't have a lot of symbols) you will see that everything it
contains is just coordinates and rectangles of each letter in the image file, and information
about offset and spacing between letters.

Using the bitmap font in the game
Using the bitmap font in the game is very easy. To do this, you just need to use the
CCLabelBMFont class instead of the CCLabelTTF class for all your fonts.

However, you must not forget that the bitmap font is generally an
image, so you won't be able to create one font and use it for all your
sizes of labels in your game because scaling the font down or up too
much will make it look bad.

Time for action – adding hit points
Okay, let's add a point floating from the bird we hit with an arrow:

1.	 The first thing we need to do is to add the fonts to the Xcode project. We're going to
add all fonts at once, not only the points font. There are a lot of files, so it would
be better to create a group for them. Go ahead and create a subgroup called Fonts
in the Resources group.

2.	 Add all the font files that we've created to that group. You should have a total of 12
files: two files (.png and .fnt) per font, 2 font variations (Retina and non-Retina),
and total of 3 fonts. This gives us 2 * 2 * 3 = 12.

If you have the trial version of Glyph Designer or some issues
with exporting files, you can just take all the font files from the
Chapter_06/Assets/BitmapFont folder in the book's
supporting files.

Rendering Text

[184]

3.	 After adding the font files, open the Bird.m file, and add the following method:
-(void)displayPoints:(int)amount
{
 //1
 NSString *ptsStr = [NSString stringWithFormat:@"%d", amount];
 CCLabelBMFont *ptsLabel =
 [CCLabelBMFont labelWithString:ptsStr
 fntFile:@"points.fnt"];
 ptsLabel.position = self.position;

 //2
 CCNode *batchNode = self.parent;
 CCNode *scene = batchNode.parent;
 [scene addChild:ptsLabel];

 //3
 float xDelta1 = 10;
 float yDelta1 = 5;
 float yDelta2 = 10;
 float yDelta4 = 20;
 ccBezierConfig curve;
 curve.controlPoint_1 =
 ccp(ptsLabel.position.x - xDelta1,
 ptsLabel.position.y + yDelta1);
 curve.controlPoint_2 =
 ccp(ptsLabel.position.x + xDelta1,
 ptsLabel.position.y + yDelta2);
 curve.endPosition =
 ccp(ptsLabel.position.x,
 ptsLabel.position.y + yDelta4);

 //4
 float baseDuration = 1.0f;

 //5
 CCActionBezierTo *bezierMove =
 [CCActionBezierTo actionWithDuration:baseDuration
 bezier:curve];

 //6
 CCActionFadeOut *fadeOut =
 [CCActionFadeOut actionWithDuration:baseDuration * 0.25f];

 //7
 CCActionDelay *delay =
 [CCActionDelay actionWithDuration:baseDuration * 0.75f];

 //8

Chapter 6

[185]

 CCActionSequence *delayAndFade =
 [CCActionSequence actions:delay, fadeOut, nil];

 //9
 CCActionSpawn *bezieAndFadeOut =
 [CCActionSpawn actions:bezierMove,
 delayAndFade,
 nil];

 //10
 CCActionRemove *removeInTheEnd = [CCActionRemove action];

 //11
 CCActionSequence *actions =
 [CCActionSequence actions:bezieAndFadeOut,
 removeInTheEnd,
 nil];

 //12
 [ptsLabel runAction:actions];
}

4.	 Then find the removeBird: method and add a call to this displayPoints:
method in case the bird is hit by an arrow. Also, while in this method, move the call
to the removeFromParentAndCleanup: method to the end of the removeBird:
method since we only need to remove self after displaying the points label. This
will be explained later:
-(int)removeBird:(BOOL)hitByArrow
{
 [self stopAllActions];

 //remove the removeFromParentAndCleanup: from here

 int score = 0;
 if (hitByArrow)
 {
 self.birdState = BirdStateDead;
 score = (_timesToVisit + 1) * 5;

 [self displayPoints:score];
 }
 else
 {
 self.birdState = BirdStateFlewOut;
 }

 [self removeFromParentAndCleanup:YES];
 return score;
}

Rendering Text

[186]

5.	 Build and run the game. You should see floating labels with points when you hit a
bird, as shown in the following screenshot:

Floating points in place of the bird that we've just hit by an arrow

What just happened?
Apart from adding the font files to the project, which should be an obvious thing to do since
we need to add the fonts before we can use them, we've only added one huge method to
display those floating points and a call to this method in case an arrow hits the bird.

The big method might look scary at first, but it won't be after we review it. However before
reviewing the method, I'd like to explain what we want to achieve with this method.

What we want is to add a label using our points font, we then want them to float up using
the curvy trajectory, and at some point, we want them to start fading out but still move until
they totally fade away. The last part means that at some point two actions must be running
for our label (move and fade out) simultaneously.

Now let's review each code block marked with a number. Refer to the following points:

1.	 We created the CCLabelBMFont label using the points.fnt file and the string
with the amount of points we need to display. Set the label position to the same
position as the bird that is being hit.

Chapter 6

[187]

2.	 We added the label to the scene. This might be a bit tricky. Here is how we access
the scene: our label is the child of the batch node, and the batch node is the child
of the scene. So when we take the parent of the label, we take the batch node,
and when we take the parent of the batch node, we get the scene itself.

We cannot add the label as a child node of the bird or the
child node of the bird's parent node, which is a batch node.
The reason for this is that the batch node can only have
children that use the sprite frame (image) from its spritesheet.
Our font is not a part of the spritesheet, and this means we
cannot add it as a child node to batch node. Also, since we're
referencing a parent property of the bird, we moved the
removeFromParentAndCleanup: method to the end of
the removeBird: method.

3.	 This scary code block just configures the Bézier curve that the label will move along.

Bézier curves are commonly used to define a continuous,
curvy trajectory with only a few points.

4.	 This is the duration that the label is visible on the screen—from the moment we
add and show it until it completely fades out. It is important to understand that this
duration includes the interval when the label starts to fade out and disappears.

5.	 We created the action that will move our label along the Bézier curve. It will move
the label during the whole baseDuration time interval.

6.	 Then we created the action that will fade out our label (make it invisible). We want
this action to last 25 percent of the time of the label life (baseDuration). This
means that the label will move along 75 percent of the curve line completely visible
before it even starts to fade away.

7.	 Since we don't want our label to start fading right after appearing on the screen,
we needed to delay the fading action by 75 percent of the label's lifetime.

8.	 We created a sequence that contains a delay action, and then delayed the fade
action. This sequence just does nothing for 75 percent of baseDuration and then
will fade out within 25 percent (baseDuration * 0.25) of the time.

9.	 Here comes the interesting part. We need to run the action that moves our label
along the curve and the sequence that waits and then fades out simultaneously.
If we run both actions at the same time, then the label will be moving all the time,
and after 75 percent of the movement is complete, it will start to fade out, but
will still be moving. The CCActionSpawn action allows multiple actions to fire
simultaneously, so we're using it in our final sequence.

Rendering Text

[188]

10.	 We want to remove our label at the end, so we created an action that will remove
the label.

11.	 Then we formed a final sequence. This will start the label movement and the wait
and fade actions simultaneously, as shown in the following diagram, and then after
executing both actions, it will call the action that removes the label.

12.	 We ran the sequence.

Here is a diagram that will help you understand the sequence of actions:

Chronology of actions applied on the points label

As you can see, we can easily create complicated scenarios using the actions.

Time for action – adding the win and lose labels
It is time to use our win and lose fonts. Perform the following steps:

1.	 Open the GameScene.m file, and add another z-order value at the top:
typedef NS_ENUM(NSUInteger, Z_ORDER)
{
 Z_BACKGROUND,
 Z_BATCH_NODE,
 Z_LABELS,
 Z_HUD
};

2.	 Scroll down and add the displayWinLoseLabelWithText: method below the
won and lost methods:
-(void)displayWinLoseLabelWithText:(NSString *)text
 andFont:(NSString *)fontFileName
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 CCLabelBMFont *label =

Chapter 6

[189]

 [CCLabelBMFont labelWithString:text
 fntFile:fontFileName];

 label.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.75f);

 [self addChild:label z:Z_LABELS];
 label.scale = 0.01f;

 CCActionScaleTo *scaleUp =
 [CCActionScaleTo actionWithDuration:1.5f
 scale:1.2f];
 CCActionEaseIn *easedScaleUp =
 [CCActionEaseIn actionWithAction:scaleUp
 rate:5.0];
 CCActionScaleTo *scaleNormal =
 [CCActionScaleTo actionWithDuration:0.5f
 scale:1.0f];

 CCActionSequence *scaleUpThenNormal =
 [CCActionSequence actions:easedScaleUp, scaleNormal, nil];

 [label runAction:scaleUpThenNormal];
}

3.	 Add a call to this method inside the lost and won methods instead of the CCLOG
macro:
-(void)lost
{
 self.gameState = GameStateLost;
 [self displayWinLoseLabelWithText:@"You lose!"
 andFont:@"lost.fnt"];
}

-(void)won
{
 self.gameState = GameStateWon;
 [self displayWinLoseLabelWithText:@"You win!"
 andFont:@"win.fnt"];
}

4.	 These are the main actions to display the labels themselves, but let's adjust our
game speed to make testing, winning, and losing easier. Find the update: method
and adjust the maximum and minimum intervals to spawn birds:
int nextBirdTimeMax = 3;
int nextBirdTimeMin = 1;

Rendering Text

[190]

5.	 Then, inside the spawnBird method, adjust the minimum and maximum speeds of
the bird:
int maxTime = 6;
int minTime = 4;

6.	 Scroll all the way up to the init method and change the number of birds to spawn
and the number of birds we can let go before we lose:
_birdsToSpawn = 10;
_birdsToLose = 1;

7.	 Finally, switch to the Bird.m file and change the initial value of _timesToVisit
to 1 inside the initWithBirdType: method. This will make it more interesting:
_timesToVisit = 1;

8.	 Build and run the game. It should be relatively easy to lose and win to see the
corresponding labels. If you have any difficulty winning, you can adjust some of
the preceding parameters.

When you develop the game, you often need to check the game's reaction in different
situations that require you to make a series of actions to trigger. Instead of actually
winning and losing to test how the label looks, it would be easier just to put a call to
displayWinLoseLabelWithText: somewhere inside the onEnter method and check
that the label is positioned correctly, actions run okay, and so on. If you will be performing
the additional tasks described in the Have a go hero section, I encourage you to do just that
instead of spending time on winning and losing, or even hitting the bird.

You can find the final project of this chapter in the
Chapter_06/Cocohunt_06_Final folder in
the book's supporting files.

What just happened?
It is much better to see the labels on the screen rather than monitoring the console output
to check whether you won or lost the game; here, I am not referring to the actual players
who won't even see the console output on their devices.

The code of the displayWinLoseLabelWithText: method should be pretty
straightforward, except the part with easing actions. Easing actions help you to run your
action using nonlinear functions. You can either speed up or slow down the action at the
beginning or at the end.

We'll talk about easing actions later in the book. In our case, we're using easing to slow down
our label's scaling at the beginning to make it pop out of the screen, instead of boringly
scaling out.

Chapter 6

[191]

Have a go hero
Since this chapter is about rendering text, I encourage you to experiment with labels and fonts:

�� For example, you can change the font used for the labels in the HUD, maybe even
use a different font and font size for each label.

If you wonder what fonts are available, you can use the UIFont class's
familyNames with the fontNamesForFamilyName method
to list all the fonts available. Alternatively, you can visit the website
http://iosfonts.com/ for font availability information.

�� Try repositioning labels on the screen or pick different colors.
�� Add shadows to the Score, Birds Left, and Lives labels using the shadowColor

property, which sets the color of the shadow and shadowOffset, which in turn
sets offset for the shadow.

�� Set the outline for the Score, Birds Left, and Lives labels using the outlineColor
and outlineWidth properties.

�� In addition to simple strings, you can create a label using an attributed string, just
as you can in a usual iOS application (iOS 6 or higher). To do this, you can use the
attributedString property of the CCLabelTTF class or construct labels using
labelWithAttributedString: constructor.

�� If you have a full version of Glyph Designer, you can create different fonts for win, lost,
and points fonts. If you have a trial version, I still encourage you to play with different
options and use the Preview button in Glyph Designer to see how your font looks.

You can also search the Web for free bitmap fonts and use them for
the labels. There is a list of websites with fonts you can use at the end
of Chapter 12, Standing Out – Integrating Game Center and In-App
Purchases. Alternatively, you can use some free tools listed in the
CCLabelBMFont class description at http://www.cocos2d-
iphone.org/docs/api/Classes/CCLabelBMFont.html
(shortened: http://bit.ly/1iPXnfH). The only reason that I've
used Glyph Designer is that it has a beginner-friendly interface and
allows you to understand the main aspects of creating bitmap fonts. Also,
it is the most commonly used tool as far as I know. When you understand
this, you can use other tools or even create the .fnt file manually.

�� I also think you can create a better action sequence for the "You win!" and "You
lose!" labels' appearance. Why don't you rotate them while they are popping out?
Maybe instead of popping out, you can make them slide from the side or the bottom
edge of the screen?

http://iosfonts.com/
http://www.cocos2d-iphone.org/docs/api/Classes/CCLabelBMFont.html
http://www.cocos2d-iphone.org/docs/api/Classes/CCLabelBMFont.html
http://bit.ly/1iPXnfH

Rendering Text

[192]

Pop quiz – labels
Q1. What label class should you use if you plan to update the text of the label very frequently?

1.	 CCLabelTTF

2.	 CCLabelBMFont

Q2. Can you use attributed string with CCLabelTTF?

1.	 Yes, using the attributedString property

2.	 Yes, using the attributedString property, but only on iOS 6 or higher

Q3. Can you rotate and scale the CCLabelBMFont and CCLabelTTF labels?

1.	 Yes, but only CCLabelTTF

2.	 Yes, but only CCLabelBMFont

3.	 No, you can't rotate and scale both

4.	 Yes, you can rotate and scale both

Q4. Can you use actions (for example, CCActionMoveTo) with labels?

1.	 Yes, but only with CCLabelTTF

2.	 No, you can't use actions with labels

3.	 Yes, with both CCLabelTTF and CCLabelMBFont labels

Summary
Text is a very important component almost in any game. Especially, as you can see when
we say text, we don't necessarily mean black and white strict text. Using a bitmap font,
we can create cool-looking fonts while still generating generic text on the fly.

In addition to learning how to render text, we've seen that labels are not very different
from sprites or other Cocos2D nodes. They have same properties, such as scale, rotation,
and opacity. You can manipulate the labels using actions and create cool effects.

In the next chapter, we're going to talk about how to liven up the game using more
animations and particle systems.

7
Animations and Particle Systems

We have already seen several ways to animate our game objects. We have
moved the bird from one side of the screen to another, we've animated the
birds' wings, and finally we've animated the hunter reloading the arrow and
the arrow flying after it was shot.

These are all examples of animations. In fact, there are many ways you can animate your
object and you don't always need multiple images to animate it. As an alternative, you can
just change its position, scale, rotation, or other properties over time to bring the static
image to life. By the way, this is exactly how animation is translated from Latin—the act of
bringing to life. Your goal as a game developer is to make the player believe that the object is
alive, irrespective of how you achieve this.

In this chapter, we will cover the following topics:

�� Frame-based animation

�� Animating objects by changing their properties over time, using Cocos2D actions

�� Reviewing the skeletal animation

�� Creating a particle system from scratch

�� Using predefined particle systems that come with Cocos2D

�� Using Particle Designer and shared particle systems

Animations and Particle Systems

[194]

Using frame-based animation
Specifying multiple images (frames) is very common and in many cases, the most
realistic way to animate your game objects. So we will start this chapter by speaking
about frame-based animation.

Frame-based animation is quite simple from a developer's point of view. You just have
multiple images that are called frames, where each frame depicts your game object at
some point in time during the animation. For example, if you shoot an arrow, you might
have the following frames:

Hunter shooting and reloading the arrow

In the preceding image, frame 1 is our initial frame with the arrow still in the bow. We use
this frame as a still image when aiming. In frame 2, the arrow is shot and disappears from
the hunter's game object as it is now a separate object. Frames 3 to 6 depict the hunter
taking another arrow and putting it in the bow. Then we return to frame 1 and it looks like
the hunter tenses the bow (when we go from frame 6 to frame 1).

This way we get a looped animation. This is possible because the last frame depicts our game
object in position, right before the first frame. It is very important to meet this condition, in
case you want your animation to repeat seamlessly, just like animating the bird flying.

Time for action – exploding coconut
We are going to add one more animation that demonstrates more aspects of frame-based
animation. For this, we are going to create a new scene that will appear during the start of
the game. This scene is what is often called as a splash screen.

1.	 Open the Xcode project where we left it in the previous chapter.

Chapter 7

[195]

As always, if you don't have the code after completing the previous
chapter, you can find the code in the Chapter_06/Chapter_06_
Final folder in the book's supporting files and use it as a starter project.
You can download book's supporting files by visiting the www.
packtpub.com/support page and following the instructions.

2.	 Let's add the frames of our animation to our Xcode project. Create a new subgroup
in the Resources group and call it ExplodingCoconut.

3.	 Open the book's supporting files available in the Chapter_07/Assets/
ExplodingCoconut/Animation folder and select all files (command + A). Drag all
the images to the ExplodingCoconut group in Xcode and add them to the project.

4.	 Then open the Chapter_07/Assets/ExplodingCoconut/StartupScreen
directory (next to the Animation directory). You will see the following files:

�� Default.png

�� Default@2x.png

�� Default-568h@2x.png

Before adding these files to the Xcode project, you should remove the files named in
the same way that already exist in the Xcode project. They were added by default by
the Cocos2D template. Find them in the Xcode project and remove them (make sure
you select Move to Trash).

5.	 After removing the generated Default*.png files in Xcode, drag those three files
listed earlier to the Resources group and add them to the project.

6.	 Now, when we have added all the required files, it is time to create the scene.
Right-click on the Scenes group and click on New File. Select the Objective-C class,
name it IntroScene, and make it a subclass of CCScene. Then save the file.

7.	 Open the IntroScene.m file and import the following three header files:
#import "GameScene.h"
#import "cocos2d.h"
#import "CCAnimation.h"

8.	 Then add an instance variable:
@implementation IntroScene
{
 CCSprite* _explodingCoconut;
}

Animations and Particle Systems

[196]

9.	 And finally add the following methods that will set up and play the animation:
-(instancetype)init
{
 if (self = [super init])
 {
 CGSize viewSize =
 [CCDirector sharedDirector].viewSize;

 _explodingCoconut =
 [CCSprite spriteWithImageNamed:@"Exploding_Coconut_0.png"];
 _explodingCoconut.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.5f);

 [self addChild:_explodingCoconut];
 }

 return self;
}

-(void)onEnter
{
 [super onEnter];
 [self animateCoconutExplosion];
}

-(void)animateCoconutExplosion
{
 NSMutableArray *frames = [NSMutableArray array];
 int lastFrameNumber = 34;
 for (int i =0; i <= lastFrameNumber; i++)
 {
 NSString *frameName =
 [NSString stringWithFormat:@"Exploding_Coconut_%d.png", i];
 CCSpriteFrame *frame =
 [CCSpriteFrame frameWithImageNamed:frameName];
 [frames addObject:frame];

Chapter 7

[197]

 }

 CCAnimation *explosion =
 [CCAnimation animationWithSpriteFrames:frames delay:0.15f];
 CCActionAnimate *animateExplosion =
 [CCActionAnimate actionWithAnimation:explosion];
 CCActionEaseIn *easedExplosion =
 [CCActionEaseIn actionWithAction:animateExplosion rate:1.5f];

 CCActionCallFunc *proceedToGameScene =
 CCActionCallFunc *proceedToGameScene =
 [CCActionCallFunc actionWithTarget:self
 selector:@ selector(proceedToGameScene)];
 CCActionSequence *sequence =
 [CCActionSequence actions:easedExplosion, proceedToGameScene,
 nil];
 [_explodingCoconut runAction:sequence];
}

-(void)proceedToGameScene
{
 [[CCDirector sharedDirector]
 replaceScene:[[GameScene alloc] init]];

}

10.	Now we need to display this scene in the beginning of the application. Open the
AppDelegate.m file and import the IntroScene.h header at the top as follows:
#import "IntroScene.h"

11.	Then, while still in the AppDelegate.m file, scroll down to the startScene
method and make the following changes to run the IntroScene class as the first
scene of the game:
-(CCScene *)startScene
{
 return [[IntroScene alloc] init];
}

Animations and Particle Systems

[198]

12.	Build and run the game. You should see a lonely coconut that explodes after some
time. The animation starts when the debug labels appear on the bottom-left
corner, since this is the time when we get control from the iOS. Refer to the
following screenshot:

Exploding coconut as the splash screen

What just happened?
In addition to using frame-based animation that should already be pretty familiar, we have
done a few new things. We have added one more scene as a splash screen and we have
used CCDirector to replace the currently running scene.

We will review the coconut explosion and adding the splash screen process in detail. However,
we are going to leave the CCDirector class-related code until the Chapter 9, User Interface
and Navigation, later in the book. In fact, the only important thing we did using CCDirector
is switched to the GameScene class after the explosion animation finished playing.

Coconut explosion animation
Exploding the coconut should be very familiar. We loaded the frames, set up animation,
and added an easing action, which we'll discuss in a moment.

However, there are a few important things to take note of.

Chapter 7

[199]

The first thing is that we didn't use a spritesheet to store the animation frames. Instead, we
just used separate images for each animation frame. This is not the best approach, but you
will see why we had to do this in a moment.

The second thing is that we have a significant amount of frames. Each frame is quite big.
Every frame covers the full screen and a little more in the case of a 3.5 inch Retina display
(for example, iPhone 4S), since we've used the same animation for 3.5 inch and 4 inch
Retina displays.

This is the reason we didn't use a spritesheet to store all the frames, since we have a limit
on a maximum texture size that I mentioned before.

As you see from this exploding coconut example, it is important to keep the
right amount of frames and maintain minimum frame size when creating
frame-based animation because otherwise you can easily end up wasting
lots of memory and encounter performance issues.
We've seen some better examples of animation before and we'll see more
of them later in the book. With this exploding coconut, I wanted to stress
the features of frame-based animation by overemphasizing them.

And even with all the animation of the frames, the image still looks jerky. This is because the
coconut's fragments move very fast and if we wanted to start our animation with some kind
of slow-motion visual effect, we had to provide many frames in the beginning.

You might wonder why we needed to use such big images, especially in early frames when
the coconut takes up only a small portion on the screen. The reason for this is that the
animation frame is always at the center of the sprite, and you have to be very careful when
you specify frames of different size. Here is an illustration of what can happen:

Incorrect and correct animation of frame image sizes

Animations and Particle Systems

[200]

I've created a small project that you can find at Chapter_07/
FrameSizeIssues that demonstrates the issue with a jumping
bird sprite because I've cropped each image, and thus the center
of the bird is not at the same position for each frame anymore.

In the preceding image, the dotted line shows the common bounding box of all frames of the
animation. In other words, no animation frame exceeds the bounds marked by the dotted
line. The bold line shows the size of the frame image. The horizontal line shows the center
of the sprite.

As you can see in the first incorrect case (in the preceding image), we have tried to save
some space by cropping the frames. Since every frame is placed in the center of the sprite,
each frame will bounce up and down to position itself centered vertically.

If we create all frames of the same size, as it is shown in the correct case, the bird won't
jump up and down and only the wings will move—even with a price of some of the unused
space in each image.

Some of the tools such as TexturePacker can trim the empty space around
the image in the spritesheet to get a smaller resulting image. However,
they save the original size of image internally. Then, when the sprite is
created from the spritesheet, its original size is restored, by simply adding
all the removed whitespace at runtime. This would have worked if we had
a small explosion, but since most of the coconut explosion frames are very
big, we still cannot fit all of them in one spritesheet.

You can make the situation better or worse by specifying a different anchor point,
compensating the position change, and using other techniques, but you should always keep
in mind such behavior. Sometimes, it is just easier to create all frames of the same size. Of
course, our explosion animation is only an example and normally, I would not recommend
creating fullscreen animations.

Other than different considerations when creating animation frames, you can only control
the delay between the frames using an animation delay parameter.

However, you don't always want to have the same delay between all frames of animation.
This is where you can use easing actions to make the animation slower or faster in the end
or at the start or even provide a more complicated easing function.

Easing actions
Easing actions that we've used several times already are just a way to modify the linear
property change (such as delay between animation frames or position change when using
the CCActionMoveTo action) from linear to nonlinear.

Chapter 7

[201]

For example, when you want to add a stone falling from the point A in the air to the point
B on the ground using CCActionMoveTo, you don't want it to move at a constant speed.
Instead you want it to accelerate while falling. Refer to the following diagram:

In the preceding image, it is shown how the stone would move from point A to point B using
a linear function (for example, simply running CCActionMoveTo). In this case, this falling
stone simply traveled the exact same amount each frame, but this wouldn't look like falling.

To get more visual representation of different easing actions,
please visit http://kirillmuzykov.com/cocos2d-
iphone-easing-examples/.

However, if we wrap the CCActionMoveTo action in the CCActionEaseIn easing action,
we will change the linear movement to a more realistic movement (slow at the beginning
and faster in the end).

Easing actions work with a variety of other actions, not just with
CCActionMoveTo, since all they do is just modify the time passed
to the inner action. This way we can even use some actions such as
CCActionEaseBounceOut to bounce out from the ground after
falling by making time run backwards, without adding extra actions
or arguments to the simple CCActionMoveTo action.

There are lots of easing actions in Cocos2D; you can find all of them in the Cocos2D
documentation (http://www.cocos2d-iphone.org/docs/api/index.html)
by searching classes starting with CCActionEase.

Adding a splash screen
Adding a splash screen is not related to animations, but since we are playing an animation
on it, let's review one trick that can make your animation on the splash screen shine.

The trick is to set the default image that is displayed by iOS to the first frame of your
animation. This way while your application is loaded by iOS and even before you get the
control in the code, you display a static image.

http://kirillmuzykov.com/cocos2d-iphone-easing-examples/
http://kirillmuzykov.com/cocos2d-iphone-easing-examples/

Animations and Particle Systems

[202]

The player sees the static image that comes to life when our game is fully loaded by iOS.
This is much nicer than just a flicker that changes the default image to the splash screen or
even a straight to the menu scene.

Our splash screen is just an example. In real-world games, you could animate the menu
appearing on the screen or something much showier. And while this animation is playing,
you could preload some resources, such as the sound effects, music, or images without
making the player stare some static Loading label.

When to use frame-based animation
As you can see, frame-based animation does not give too much room for a developer's
imagination and creativity. Designer draws the animation and all you need to do is to turn
it on or off, maybe switch between animations in the corresponding moment, and control
its speed if required.

If you need to animate something at a very slow rate, such as a slow motion movement
or simply some character slowly moving his hand, you will have to provide a lot of frames
so that it doesn't look jerky.

Don't forget that animation frames take disk space and memory and
we're pretty limited on memory on mobile devices. So if you use too
much memory and ignore the memory warning, your game will be
simply terminated by iOS.

However, even with all that said, frame-based animation is still the best way to animate your
game objects in most cases. It is as close as you can get to realistic animation, if you create a
sufficient amount of frames. All other animation techniques sometimes look too unnatural,
although it is not always a bad thing. However, if you want most realistic animations, then
frame-based animation is your choice.

Sometimes you don't even have a choice, for example, a character that
is 64 x 64 pixels walking across the screen. The character is too small to
apply any form of Cocos2D property animation other than position, so you
simply have to resort to frame-based animation to show that it is walking.

Animating using actions
Although frame-based animation looks really cool, sometimes you don't want to use it.
Maybe you want to save some memory or you just don't have a designer friend and if you
are as bad at drawing as I am, then maybe it is better not to try to draw the animation
by yourself.

Chapter 7

[203]

Besides that, in some cases, using frame-based animation is complete overkill. Remember
our bird flying around from one side of the screen to another? We could create an animation
with each frame equal to the width of the screen and move the bird, just like we did with
exploding coconut pieces.

Fortunately, instead of doing this, we can just change the bird's position property or use
the CCActionMoveTo action. We will achieve the same effect with less effort and without
wasting any disk or memory space.

In game development, it is always a good idea to think about the best way to
achieve the desired goal with minimum efforts. Being a good game developer
is sometimes similar to being a good illusionist. You just need the player to
see what you want him to see, and not necessarily do this as in real life.
For example, if we'd wanted to show the bird flying, we could use real
physics, simulating the air and the bird's wings movement that make the bird
fly, but it would be too complicated. Instead, we have created an animation of
the bird flittering its wings and moving the bird from one side of the screen to
another using just the position property.

If you remember any really old game, you might notice that there are many places when a
hero or an enemy is animated by just scaling or rotating. The reason to use such animation
technique is that at that time there were heavy hardware limitations. You could not just
create dozens of animations at that time, since they would not fit in device memory.
However, it looked cool anyway. We are going to create similar old-school animations.

Time for action – hitting the bird animation
Currently, when the hunter hits the bird, it just disappears from the screen. This does not
look very realistic. I mean the hunter does not have some kind of disintegrator blaster or
something like that, and the last time I checked the arrow does not work this way.

Let's fix this by adding falling and rotation animation:

1.	 Open the Bird.m file and add the following method right below the
animateFly method:
-(void)animateFall
{
 CGPoint fallDownOffScreenPoint =
 ccp(self.position.x, -self.boundingBox.size.height);

 CCActionMoveTo *fallOffScreen =
 [CCActionMoveTo actionWithDuration:2.0f
 position:fallDownOffScreenPoint];

 CCActionRemove *removeWhenDone = [CCActionRemove action];

Animations and Particle Systems

[204]

 CCActionSequence *fallSequence =
 [CCActionSequence actions: fallOffScreen,
 removeWhenDone,
 nil];

 [self runAction:fallSequence];

 CCActionRotateBy *rotate =
 [CCActionRotateBy actionWithDuration:0.1
 angle:60];

 CCActionRepeatForever *rotateForever =
 [CCActionRepeatForever actionWithAction:rotate];
 [self runAction:rotateForever];
}

2.	 Then find the removeBird: method and update it as follows:
-(int)removeBird:(BOOL)hitByArrow
{
 [self stopAllActions];

 int score = 0;
 if (hitByArrow)
 {
 self.birdState = BirdStateDead;
 score = (_timesToVisit + 1) * 5;

 [self displayPoints:score];

 [self animateFall];
 }
 else
 {
 self.birdState = BirdStateFlewOut;
 [self removeFromParentAndCleanup:YES];
 }

 return score;
}

That's it, only two changes are required.

Note that we've moved the
[self removeFromParentAndCleanup:YES];
call and now it is called only in case a bird flies away from the
screen. If you don't do this, the bird will disappear without
having the chance to fall and show this nice animation.

Chapter 7

[205]

3.	 Build and run the game, and then shoot some birds. You should see them spinning
while falling down off the screen.

You can find a snapshot of the project at this point in the
Chapter_07/Cocohunt_07_Splash_and_Birds folder.

What just happened?
Of course, this is not a Hollywood-quality video effect, but it is much better than the bird just
disappearing from the screen. The code to achieve this is quite simple.

When the arrow hits the bird, the animateFall method is called. This method sets up two
actions to run simultaneously. The first action moves the bird down the screen and removes
it in the end, while the second one rotates the bird forever. Well, not forever, but until it is
removed from the scene at the end of the first action sequence. However, it is convenient
to use the forever-lasting action, since we don't know the amount of rotations it will take
to completely fall off the screen.

This is a fast and easy way to add some animations to your game without having to draw all
the frames. Of course, it is not as good as frame-based animation, especially if you need
to show a lot of details and/or want to achieve a very realistic look and feel. However,
you can do a lot more than just rotating the bird with this technique and sometimes it is
better to prefer action-based animation to frame-based animation due to performance
and simplicity considerations.

Skeletal animation
The last animation technique that we'll briefly talk about will be skeletal animation.

There are also other techniques used for animation. However, the three
that we will be reviewing in this chapter are the most commonly used
ones. Also, we will be reviewing skeletal animation from the point of
view of 2D games. In the 3D games world, it is a bit different.

The skeletal animation technique is a try to get both of the two worlds: controlled movement
as in frame-based animation and ability to create any required amount of intermediate
frames as in the action-based technique.

Using this technique, you can create pretty complicated animations without lots of frame
images. Of course, you might still be able to create a better animation using frame-based
animation, but in some cases, when you simply cannot create frame-based animation for
every situation, skeletal animation is the only solution.

Animations and Particle Systems

[206]

Here is how it works. Instead of one image, you split your animated game object into
separate parts, like this:

Splitting a character into parts and creating different animation frames

Then, as you can see, using these body parts, you can create any frame of the animation. For
example, you can see frames from walking and running animations in the preceding image.

We have already used skeletal animation to some extent for our hunter to rotate the
torso when he is aiming. This is not exactly animation but the idea is the same. Of course,
there are many tools that allow you to create skeletal animation, export it in some format
(for example, XML), and then load it in Cocos2D, so you don't have to write a lot of code.
However, we won't cover this process since it is a quite advanced topic and doesn't fit in
the scope of this book.

I just hope that you have the big picture regarding skeletal animation and know that you can
use it when required.

The most popular tool to create 2D skeletal animation is Spine.
You can find more information on it, as well as some documentation
and tutorials, at http://esotericsoftware.com.

Chapter 7

[207]

Creating particle systems for advanced effects
A particle system is a special technique that uses many small particles (images or other
graphic objects) to simulate effects that are hard to get using other render techniques.
Examples are fire, rain, fog, explosion, and many others. Refer to the following image for
an example:

Fire particle system

Particle systems might look difficult at the first glance because of the amount of parameters
you can and often have to configure to create one, but the main concept is quite simple. You
have a particle, in most cases this is just a small image, and you have an emitter that emits
many copies of that particle.

Of course, there is not much sense in creating every particle at the same position, with the
same size and rotation, since these particles will just overlap (just like if you add the same
sprite many times in the same position) and all you will see is just one particle. This does not
seem like a lot of fun. However, if we set the different movement vector for each particle and
the different starting position relative to the emitter, this will immediately create that fuzzy
effect that we want. And if we go even further and use a different start and end color of the
particles, start and end size, and so on, it will add even more randomness. In fact, there are
many other configuration options for the particles that allow us to produce really cool effects.

Let's create one particle system and it will get much clearer.

Animations and Particle Systems

[208]

Time for action – adding the feathers explosion
We are going to add an explosion of feathers when the arrow hits the bird. We will create
about 100 feather particles at the bird's center point and then explode them in different
directions gradually fading away.

To do this, we are going to add a few methods into the Bird.m file and call it when an arrow
hits the bird. After that, we will just add our particle image to the project and we are done.
Refer to the following steps:

1.	 We will start by adding the method that creates a particle system. Go ahead
and open the Bird.m file, and add the following method right above the
removeBird: method:
-(void)explodeFeathers
{
 //1
 int totalNumberOfFeathers = 100;

 //2
 CCParticleSystem *explosion =
 [CCParticleSystem
 particleWithTotalParticles:totalNumberOfFeathers];

 //3
 explosion.position = self.position;

 //4
 explosion.emitterMode = CCParticleSystemModeGravity;

 //5
 explosion.gravity = ccp(0, -200.0f);

 //6
 explosion.duration = 0.1f;

 //7
 explosion.emissionRate =
 totalNumberOfFeathers/explosion.duration;

 //8
 explosion.texture =
 [CCTexture textureWithFile:@"feather.png"];
 explosion.startColor = [CCColor whiteColor];

Chapter 7

[209]

 explosion.endColor =
 [[CCColor whiteColor] colorWithAlphaComponent:0.0f];

 //9
 explosion.life = 0.25f;
 explosion.lifeVar = 0.75f;
 explosion.speed = 60;
 explosion.speedVar = 80;

 //10
 explosion.startSize = 16;
 explosion.startSizeVar = 4;
 explosion.endSize =
 CCParticleSystemStartSizeEqualToEndSize;
 explosion.endSizeVar = 8;

 //11
 explosion.angleVar = 360;
 explosion.startSpinVar = 360;
 explosion.endSpinVar = 360;

 //12
 explosion.autoRemoveOnFinish = YES;

 //13
 ccBlendFunc blendFunc;
 blendFunc.src = GL_SRC_ALPHA;
 blendFunc.dst = GL_ONE;
 explosion.blendFunc = blendFunc;

 //14
 CCNode *batchNode = self.parent;
 CCNode *scene = batchNode.parent;
 [scene addChild:explosion];
}

2.	 Then add a call to the preceding method in the removeBird: method as follows:
-(int)removeBird:(BOOL)hitByArrow
{
 [self stopAllActions];

 int score = 0;
 if (hitByArrow)

Animations and Particle Systems

[210]

 {
 self.birdState = BirdStateDead;
 score = (_timesToVisit + 1) * 5;

 [self displayPoints:score];
 [self animateFall];

 [self explodeFeathers];
 }
 else
 {
 self.birdState = BirdStateFlewOut;
 [self removeFromParentAndCleanup:YES];
 }

 return score;
}

3.	 Now we need to add the feather image to the project. To do so, create a group
called Feathers in the Resources group.

4.	 Then add the two files contained in the Chapter_07/Assets/Feathers folder
(feather.png and feather-hd.png) to the Xcode project in that Feathers group.

5.	 Build and run the game. Now when you hit the bird, you should see an explosion
of feathers as shown in the following screenshot:

Chapter 7

[211]

What just happened?
The explodeFeathers method can look quite scary with all those parameters. However,
it is just because the particle system has a lot of configuration options. We will review some
of them shortly but first let's discuss how the particle system works.

As I have mentioned before, each particle system has the emitter and the particles. Emitter
does exactly what the name suggests; it emits particles. The particles are the tiny images,
in our case, feathers. By setting all those properties, we configure how to emit our particles,
their speed, rotation, color, how long they will live, and so on.

Let's review each line of the code in the explodeFeathers method:

1.	 Maximum amount of particles sets the maximum amount of feathers there can
be at the same time.

2.	 This line of code creates a particle system with the specified amount of particles.

3.	 The position of the particle system is set to the bird's center position. In our case,
this will be the center point of our feather explosion.

4.	 The emitter mode is set to gravity.

There are two modes, gravity and radius. In the gravity mode,
particles move away or towards the gravity center. This is what we need
for a system such as explosion. The other mode radius is useful when
you want to rotate the particles around the emitter. The radius mode
can be used to create spiral effects.

5.	 This line sets the gravity value applied to the particles. Our feathers are going to
explode from the center in many directions, but we also want them to fall down
since they are affected by gravity.

6.	 This is the amount of time in which emitter should emit new particles. In our case,
we want this to be a short interval, since we are simulating explosions.

Sometimes, you want the emitter to emit new particles for a very long
time, even infinitely. For example, if you create a fire, you want it to
run infinitely. In this case, you can set the duration property to the
CCParticleSystemDurationInfinity constant.

7.	 This line sets the emission rate of the particles. It is very useful in conjunction with
infinite duration, since you can control how many particles per second you want
to create.

Animations and Particle Systems

[212]

8.	 This block of code sets the image to use as our particle and its start and end color.
You can open the feather.png image (or feather-hd.png to see the Retina
version) and see that there is a small white feather. This is the base image for our
particles. We have also set the starting color (when the particle is created) and the
end color (when the particle life is ended). We want our feathers to start completely
white and gradually fade away. Since we want our feather to remain white, we only
change the alpha of the end color using the colorWithAlphaComponent: method
that returns the same color, with only the alpha change to the given value.

Our feather image is white and we set the color to white. In most
cases, particle images are also white but the start and end colors are
not white. This works exactly as with our white arrow image used
as an aiming indicator that we're coloring green if we're inside the
shooting radius and red if we're outside. White color is just multiplied
on the required color and we can get our particle in different colors
using just one image. We will see our feathers change color in the next
section, where we'll use them as flame particles.

9.	 The life property sets how long each particle is going to live for after it is emitted.
The speed property sets how fast the particle will move. As you can see, we also set
the lifeVar and speedVar properties—these are the variance properties. Since
we didn't want all of our particles to live the same amount of time and to move with
the same speed, we added some randomness to each particle.

Almost every property of a particle system has a property
ending with Var. Setting this variance property will set
the range for the randomness.

10.	 Here we set the start and the end size of the particle. If the end size is bigger than
the start size, then the particles will grow, and if the end size is smaller than the
start size, the particles will shrink. In our case, we didn't want the feathers to shrink
or grow too much, but we still added some variance to make the effect of feathers
moving closer or farther while they move, to add some depth.

11.	 The starting angle variance is set to a full circle. Since we just want the particles
to move in all directions, we only set angle variance (angleVar) to full circle.
In addition, we added some start and end rotation variance, to make the feathers
spin a little.

12.	 The autoRemoveOnFinish property is set to YES. This tells the particle system
to remove itself when it is done. This is very useful since we don't need to keep
a reference to the particle system and check if it is finished to remove it from
the scene.

Chapter 7

[213]

13.	 This sets how the particles will blend with the background. Setting this property as
we did will make our feathers a little less transparent.

Blending is the process of mixing the current image (source or src) pixels
color with anything that was already rendered before (background or
destination or dst). The final color is calculated using the formula final
= (src * blendFunc.src) + (dst * blendFunc.dst). So,
by setting different blending functions, you can regulate how the particle
will blend with the background.
There is a great online tool by Anders Riggelsen that can help you to visualize
different blending modes at http://www.andersriggelsen.dk/
glblendfunc.php.
By the way, this property is not exclusive for particle systems and can be
used with many other Cocos2D nodes (sprites, labels, and so on).

Blending can be hard to understand at first but for now the important thing to
remember is that if you have a problem with how a particle system looks on a
particular background, you can try to tweak the blending function before changing
anything else.

14.	 Finally, we have added the particle system to the scene.

It might seem that particle systems are very complicated, but they are not. The reason for
such a long explanation is that particle systems have many configuration options. And you
don't have to know every value for every configuration property in advance. In fact,
creating particle systems is mostly a trial and error process when you tweak the particle
system configuration and check the result until you are happy with the look.

If you don't want to spend your time creating and tweaking your particle system from
scratch, you can either use one of the predefined particle systems that come with Cocos2D
or use a visual tool to see the changes made in real time.

Let's start by using a predefined particle system.

Time for action – adding a fire to the scene
We are going to add a campfire to our scene. We will add an image of the campfire base and
the fire burning on top of it. To do this, follow these steps:

1.	 Create a new group in Resources and call it Campfire.

2.	 Open the book's supporting files at Chapter_07/Assets/Campfire and add
the campfire.png and campfire-hd.png images to the Xcode project in the
Campfire group.

Animations and Particle Systems

[214]

3.	 Open the GameScene.m file and add the following method below the
onEnter method:
-(void)startFire
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 //1
 CCSprite *campfire =
 [CCSprite spriteWithImageNamed:@"campfire.png"];
 campfire.position = ccp(viewSize.width * 0.5,
 viewSize.height * 0.05f);
 [self addChild:campfire];

 //2
 CGPoint campfireTop =
 ccp(campfire.position.x,
 campfire.position.y +
 campfire.boundingBox.size.height * 0.5f);

 //3
 CCParticleFire *fire =
 [CCParticleFire particleWithTotalParticles:300];
 fire.position = campfireTop;

 //4
 fire.texture =
 [CCTexture textureWithFile:@"feather.png"];

 //5
 fire.scale = 0.3f;

 //6
 [self addChild:fire];
}

4.	 Then add a call to the preceding method at the end of the onEnter method
as follows:
-(void)onEnter
{
 [super onEnter];
 self.gameState = GameStatePlaying;
 [self initializeControls];
 [self startFire];
}

Chapter 7

[215]

5.	 Build and run the game. You will see a campfire burning in the bottom part of the
screen as shown in the following screenshot:

What just happened?
This time, instead of configuring all parameters of the particle system, we used the
predefined CCParticleFire class. This class simply inherits from the CCParticleSystem
class and sets some values that correspond to the fire particle system.

There are more predefined particle systems that come with Cocos2D. Just
start typing CCParticle and you will see them in the code completion
pop up, or search for them in the Cocos2D documentation at http://
www.cocos2d-iphone.org/docs/api/index.html.
Also, you can find the ParticleTest test in the cocos2d-tests-
ios.xcodeproj project that comes with Cocos2D distribution. We
reviewed it at the end of Chapter 2, Hello Cocos2D.

Let's review the startFire method:

1.	 Added background image for our campfire: This is not required for particle system,
but it looks nicer when the fire does not just start somewhere in the air.

2.	 We found the top-middle point of the campfire image: This is where we place our
particle system.

3.	 This time we have created the particle system with the maximum of 300 particles.

Animations and Particle Systems

[216]

4.	 This might look strange, but we have reused the feathers image as our particle. This
is done intentionally just to show you how our white feather image becomes a fire
particle with only start and end colors set by CCParticleFire.

5.	 The default CCParticleFire is a little too big. Instead of tweaking the particle
system properties, we just scaled it down to show that you can still apply Cocos2D
properties such as scale and rotation to a particle system.

6.	 Finally, we added the particle system to the scene.

As you can see, the fire burns infinitely. This is because CCParticleFire internally sets the
duration to CCParticleSystemDurationInfinity, so it emits particles all the time using
the emissionRate property unlike our feathers explosion, which emits for only a short
period of time.

Time for action – using Particle Designer
Predefined particle systems that come with Cocos2D are a good way to start, but in many
cases, you will want to create a custom particle system and tweak all the properties.
This way you will have to build and run the game after each change to test the particle
system. This is not very efficient.

There are a few tools that can help you to design a particle system and Particle Designer 2 is
definitely one of the best. Let's use it to add a sun to our game scene:

1.	 First of all, you need to download and install Particle Designer. Visit
http://71squared.com/en/particledesigner to download
and then install it.

2.	 Open the Particle Designer app and immediately press the cloud button in the
top-right corner as shown in the following screenshot:

The cloud button

Chapter 7

[217]

3.	 This will open the gallery with the shared particle systems (particle systems created
by other users and shared with you).

4.	 We are going to use one. Search for the Red Sun, click on it and you should
immediately see the sun particle system in the preview, as shown in the
following screenshot:

5.	 You can click the same button where the cloud was before (now there should be an
icon with sliders) and you will see settings for this particle system. You can change
them and see the changes immediately in the preview window.

6.	 If this was a full version of Particle Designer (not a trial), we could export this
particle system in a .plist file. For now, let's pretend we did that and let's take the
result file from the Chapter_07/Assets/Sun folder. Just open this folder and see
the file called sun.plist that contains all the information about particle systems.

7.	 Open Xcode and create a group called Sun in the Resources group. Add the
sun.plist file to that group.

8.	 Then open the GameScene.m file and add the following method after the
startFire method:
-(void)createTheSun
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 CCParticleSystem *sun =
 [CCParticleSystem particleWithFile:@"sun.plist"];

Animations and Particle Systems

[218]

 sun.position = ccp(viewSize.width * 0.05f,
 viewSize.height * 0.9f);
 [self addChild:sun];
}

9.	 Then add a call to the preceding method at the end of the onEnter method:
-(void)onEnter
{
 [super onEnter];
 self.gameState = GameStatePlaying;
 [self initializeControls];

 [self startFire];

 [self createTheSun];
}

10.	Build and run the game. You should see the sun shining in the upper-left corner,
below the score label as shown in the following screenshot:

Don't worry if your frame rate is low and the game is very slow. If you run the game on
the actual device, it will run 60 FPS without problems. Unfortunately, a simulator does
not always allow you to check how your game will actually perform on a real device due
to lack of hardware acceleration.

Chapter 7

[219]

After reading the following What just happened? section, if you wish to experiment with the
sun a little, please wrap the call to the createTheSun method in the following #if directive
that will only enable the particle system on the actual device:

#if !TARGET_IPHONE_SIMULATOR
[self createTheSun];
#endif

This is so that we can continue testing on the simulator.

You can find the final project for this chapter in the
Chapter_07/Cocohunt_07_Final folder.

What just happened?
We have just added a particle system with three lines of code. Of course, we didn't create it
from scratch and just used a ready particle system, but it is still very impressive.

So how does this work? I am sure you have already understood that Particle Designer
immediately visualizes all the particle system property changes, just like if you'd change
a line of code, and then build and run the game. Of course, it is much faster to do this in
Particle Designer.

Then, when you have designed the particle system, you just export it in the .plist file,
which contains all the properties and even the embedded particle texture. After that,
you only need to load this file in Cocos2D, which supports this file format.

Have a go hero
This is one of the most creativity-rewarding Have a go hero sections in the book. Here are a
few things that you can try:

�� Change the bird falling animation: You can make it jump a little and scale when hit.
Rotate it in different directions; maybe even randomize direction and rotation speed.

�� Tweak the feather explosion animation parameters: Change the number of feathers.
Change the radius of the explosion by tweaking the life of the particle parameters.

�� Tweak the feather color depending on the bird type: Currently all feathers are always
white, but our birds are in different colors. You can use the birdType property to
adjust the start and end colors of the feathers depending on the bird type.

Animations and Particle Systems

[220]

�� Tweak the fire particle system: Add some smoke. Create and use a new particle
in any graphics editor and use it as a fire particle. This is a very useful experience.

�� Create a radial particle system: You can create your own radial system.

�� Change the splash screen animation: You can try to draw the animation yourself!
Even if you absolutely cannot draw (like me), you can draw a few frames of animation.
Alternatively, you can find free animation on the Web. Please refer to the end of
Chapter 12, Standing Out– Integrating Game Center and In-App Purchases, for a list of
websites where you can find free animations.

�� Create your own particle system in Particle Designer: Try creating snowflakes,
a fountain, and a ring of fire. You won't be able to export these but you will
understand all the main properties and can even try to recreate it in the code.

Pop quiz – animations and particle systems
Q1. How would you animate a cannonball shot from the cannon?

1.	 Create frame-based animation for the whole trajectory of the ball

2.	 Used Cocos2D actions to move the single ball sprite along the trajectory

Q2. What parameter of the particle system using gravity mode do you need to change to
get a bigger explosion?

1.	 endSize

2.	 duration

3.	 life

4.	 endColor

Summary
In this chapter, we have reviewed different animation techniques and learned when to use
a certain type of animation taking into account its pros and cons.

While learning about animations, we have added a nice old-school bird fall animation, so it
no longer just disappears from the screen.

In the second part of the chapter, we met particle systems, which are really cool and can
add some very nice effects to your game. We created one from the ground up, used the
predefined particle system provided by Cocos2D, and took a short look at some tools that
allow you to create particle systems in almost no time.

Chapter 7

[221]

Just as with animations, we had a chance to add a particle system to our game and added a
feather explosion when the arrow hits the bird. This way all of our objects have corresponding
reactions on different game events and our Cocohunt game scene is currently very close to a
simple but complete level.

In the chapters ahead, we will add sound and a user interface and it will look even nicer.
In fact, we are going to add sound and music to the game already in the next chapter. You
will see that this will immediately take the game to another level.

8
Adding Sound Effects and Music

Sound effects and music are very important in modern games. I am sure you
can remember some recent popular game where the "Better with headphones"
sign appears on the splash screen.

Many games just would not be that good without the atmosphere created with sound effects
and music. In this chapter, we will learn how to add them to our game. We will add sound
effects when we shoot the arrow, hit the bird, and in other places where you would expect to
hear sounds in the real world. In addition to this, we are going to make our game even cooler
by adding some background music.

In this chapter, we will cover the following topics:

�� Playing sound effects

�� Playing music and background sounds

�� Switching between music tracks

�� Making use of stereo headphones

�� Finding sound effects for our game

�� Adding sound effects and preloading them

Adding Sound Effects and Music

[224]

Creating AudioManager and playing sound effects
You can play sound effects and music on iOS without using any game engine in many
different ways, but as I have mentioned before, one of the goals of the game engine such
as Cocos2D is to make our lives easier.

This is why Cocos2D uses a great library called ObjectAL that provides a nice interface to
the underlying OpenAL framework. A good thing about using ObjectAL is that it provides
different levels of control.

For example, there is a class called OALSimpleAudio, which provides a very simple interface
to play audio and requires absolutely no knowledge of how things work internally. This class
is suitable for most games and provides all the required features to play background and
foreground audio files.

On the other hand, you can always go deeper and use some lower-level class that will be
more complex, but will also give you more control.

We will start with the basic OALSimpleAudio functionality and will build on top of it along
the way.

Time for action – adding the AudioManager class
We are going to create a simple singleton class and put all the code related to the audio
playback into it.

Although we could play any sound effect with just a single line of code
by using OALSimpleAudio, we are going to create a special class
called AudioManager. This will allow us to keep the audio playback
code separate from the rest of our code.
This is a good idea as it allows you to tweak the playback in one place
and even switch to some other audio framework without going through
all the code and searching and replacing the code. It also decentralizes
the access to the audio playback, which means the main screen, game
screen, and cut scenes can all control audio.

We will start from almost an empty class, and we will fill it with code as we complete the
tasks of adding sound effects and music to our game by performing the following steps:

1.	 Open the Cocohunt Xcode project at the point where we left it in the
previous chapter.

Chapter 8

[225]

If you have completed the previous chapter, you can continue
working with your project. Alternatively, you can take the
included final project from the previous chapter and use it as
a starter project. You can find the final project for the previous
chapter at the Chapter_07/Chapter_07_Final folder
in the book's supporting files, which can be downloaded from
www.packtpub.com/support and follow the instructions.

2.	 Right-click on the Common group and create a new Objective-C class. Call it
AudioManager and make it a subclass of NSObject.

3.	 Open the AudioManager.h file and add the following method declarations:
-(void)playSoundEffect:(NSString *)soundFile;

+(instancetype)sharedAudioManager;

4.	 Then, open the AudioManager.m file and import the OALSimpleAudio.h header
file at the top as follows:
#import "OALSimpleAudio.h"

5.	 Add the following implementation of the methods we declared earlier:
-(void)playSoundEffect:(NSString *)soundFile
{
 [[OALSimpleAudio sharedInstance] playEffect:soundFile];
}

+(AudioManager *)sharedAudioManager
{
 static dispatch_once_t pred;
 static AudioManager * _sharedInstance;
 dispatch_once(&pred, ^{
 _sharedInstance = [[self alloc] init];
 });
 return _sharedInstance;
}

Don't worry about the sharedAudioManager method implementation. It is
a standard and recommended way to create a singleton. We will discuss this in
a moment.

6.	 That is it! Build the game and check whether there are any errors. There is no reason
to run the game right now as you will see no visual changes. However, you should
always build the game and check that there are no errors before continuing.

www.packtpub.com/support

Adding Sound Effects and Music

[226]

What just happened?
We have not done much yet, but we have laid out a good foundation for our future code.
We have created a singleton class that we will be able to use at any point in the game and
we have created a method that plays sound effects using the given sound file name.

As I've mentioned in one of the previous chapters, singletons are quite useful if you want to
have a globally accessible decentralized instance. In our case, we want to be able to control
audio playback from any scene in our game; this is why we need this global object.

The sharedAudioManager method simply creates the only singleton instance when you
first access this method. This is why we used the dispatch_once_t predicate.

You can find out more about using Grand Central Dispatch (GCD) from
Apple's documentation at https://developer.apple.com/
library/mac/documentation/performance/reference/
gcd_libdispatch_ref/Reference/reference.html (short
link: http://bit.ly/1hISyQ0).

Don't worry about this singleton-related code. The only thing you need to understand that
a singleton will be globally accessible and as there will be only one instance, we can use
instance variables to store the data shared between all scenes of the game.

Although you will do completely fine if you simply remember how to create a
singleton and when to use it, learning at least a bit more about singletons as
well as about other design patterns can be quite useful.

Now, back to the audio playback-related code. The following is the declaration of the method
that is used to play sound effects in the OALSimpleAudio.h file:

- (id<ALSoundSource>) playEffect:(NSString*) filePath

It takes the audio file path and returns the strange id<ALSoundSource> value as a return
value. You can think of this return value as a currently played sound identifier or a reference
to the sound that you have just played. This value can be used to identify the sound, for
example, if you want to stop the looped playback.

You might notice that there are not many options in the playEffect: method shown
earlier. This is because this simple method just calls the more general playEffect: method
that has more parameters as shown in the following code:

- (id<ALSoundSource>) playEffect:(NSString*) filePath
 volume:(float) volume
 pitch:(float) pitch
 pan:(float) pan
 loop:(bool) loop;

https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/performance/reference/gcd_libdispatch_ref/Reference/reference.html
http://bit.ly/1hISyQ0

Chapter 8

[227]

In the preceding code, you see you can set the sound effect to loop and change other
options. The following is some brief information about each parameter:

�� filePath: This is the path to the audio file to play.

�� volume: This is the level of the volume to play at, where 0 means no sound and 1.0
is the original volume.

�� pitch: This is the pitch to play at, where 1.0 is the original sound. Passing a higher
pitch value makes the sound play at a higher note. Passing a lower pitch will make
the effect sound lower.

�� pan: This is the pan that affects stereo playback. Passing -1.0 will play the sound at
the far left (almost no sound in the right headphone), while passing +1.0 will play
the sound at the far right.

�� loop: If set to YES, this sound effect will be looped.

Of course, it is hard to understand all these parameters without examples. We will see how
to use them later in this chapter, but first we need to find some sound effects and add them
to our game.

Time for action – finding and playing our first sound effect
Now that we have the basic code to play sound effects ready, I am sure you are eager to try
it. We are going to find some sound effects, add them to the game, and even play one.

There are many places on the Web where you can find some free sound effects
for your game. You can find a bigger list of websites with free sound effects and
music at the end of the book in Chapter 12, Standing Out– Integrating Game
Center and In-App Purchases. This final chapter can be downloaded for free
from the Packt website at www.packtpub.com/support, as it does not fit
in the print book.

You can choose any sound effects you like. The only thing you need to take into account is
the supported audio formats.

You can find detailed information about iOS supported formats at https://
developer.apple.com/library/ios/documentation/
AudioVideo/Conceptual/MultimediaPG/UsingAudio/
UsingAudio.html (short link: http://bit.ly/RLfmsx).

www.packtpub.com/support
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/MultimediaPG/UsingAudio/UsingAudio.html
http://bit.ly/RLfmsx

Adding Sound Effects and Music

[228]

Most of the files on the Web are in the .wav or .mp3 formats and should work just fine.
Perform the following steps:

1.	 Let's download some sound effects from the Web. Open the http://freesound.
org/ website and search for the sound effects that we should play in the
following situations:

�� When the hunter shots the arrow from the bow
�� When the arrow hits the bird
�� When you win the game
�� When you lose the game

This is not important for this sample case, but if you are
making a real project, note the license of the each audio file
you download. For example, you cannot use an audio file
licensed under the noncommercial license in the game you
are going to sell.

2.	 When you find several candidates for each sound effect, save them somewhere
on the disk and name the files corresponding to the situation (for example,
arrow_shot.wav).

If you cannot find the good sound effects or don't want to
spend time searching right now, you can use the files I've
prepared for you. To do this, open the book's supporting files
folder available at Chapter_08/Assets/SoundEffects,
and here, you will find four files: arrow_shot.wav,
bird_hit.mp3, lose.wav, and win.wav.

3.	 Create a new group in the Resources group and call it Sound. Add all the four
audio files that you have found or have taken from the book's supporting files to
this group.

It is very important to check that the Add to targets list has
Cocohunt checked, as Xcode can unselect this checkbox
for some audio formats that are supported, but have less
common extensions, and will not include this sound file in
the app bundle. Make sure you have settings as shown on
the following screenshot:

http://freesound.org/
http://freesound.org/

Chapter 8

[229]

4.	 Now it is time to play some sound effects. We will start with the sound of shooting
the arrow. Open the Hunter.m file and import the AudioManager.h header at the
top as follows:
#import "AudioManager.h"

5.	 Then, find the shootAtPoint: method and add the following code at the
beginning of the method:
-(CCSprite*)shootAtPoint:(CGPoint)point
{
 [[AudioManager sharedAudioManager]
 playSoundEffect:@"arrow_shot.wav"];

 //..skipped..
}

Note that my audio file is named arrow_shot.wav; if you
have not used the files that come with the book, then you have
to specify the name of your file.

6.	 Build and run the game. You should hear a sound every time the hunter shoots
an arrow.

What just happened?
We have just played the first sound effect in our game. I hope you are happy with the sound
effect that you have chosen or with the file I selected if you used the file from the book's
supporting files. The player will hear this sound very often, so you have to make sure it is
not annoying.

If the sound is not playing, check whether you have mistyped the file name
and selected the Add to targets checkbox when adding the file. You can check
whether the file is included in the app bundle by going to the project properties,
selecting the Cocohunt target from the TARGETS list on the left of the screen,
then switching to the Build Phases tab and checking whether your sound file is
present in the Copy Bundle Resources list, as shown in the following screenshot:

Adding Sound Effects and Music

[230]

If you have spent time searching for sound effects, you must have realized that it takes a lot of
time to find a good sound, while playing it using our AudioManager and OALSimpleAudio
methods is less time consuming.

Let's play the rest of the sound effects.

Time for action – playing the remaining sound effects
We have added all the sound effects files to our project previously, so what we are going
to do now is just add some code to play them. We need to add the code in three places:
when the arrow hits the bird, when we lose, and when we win the game.

Let's start making changes by performing the following steps:

1.	 Open the Bird.m file and import the AudioManager.h header file at the top
as follows:
#import "AudioManager.h"

2.	 Next, find the removeBird: method and add the corresponding sound effect that
will be played when the bird is hit by an arrow:
-(int)removeBird:(BOOL)hitByArrow
{
 //..skipped
 if (hitByArrow)
 {
 //..skipped..

 [[AudioManager sharedAudioManager]
 playSoundEffect:@"bird_hit.mp3"];
 }
 //..skipped..
}

Note that I have used the file named bird_hit.mp3 (which
is in the .mp3 file format); if your file is named differently,
then you have to adjust that line of code.

3.	 The final file we need to change is the GameScene.m file. Open it and import the
AudioManager.h header file at the top using the following line of code:
#import "AudioManager.h"

Chapter 8

[231]

4.	 Then, scroll down and find the lost and won methods. Add the code to play the
corresponding sound at the beginning of each method as follows:
-(void)lost
{
 [[AudioManager sharedAudioManager]
 playSoundEffect:@"lose.wav"];

 self.gameState = GameStateLost;
 [self displayWinLoseLabelWithText:@"You lose!"
 andFont:@"lost.fnt"];
}

-(void)won
{
 [[AudioManager sharedAudioManager]
 playSoundEffect:@"win.wav"];

 self.gameState = GameStateWon;
 [self displayWinLoseLabelWithText:@"You win!"
 andFont:@"win.fnt"];
}

Don't forget to change the audio file names if you aren't using
the files that come with the book.

5.	 That's it! Build and run the game and enjoy the sounds. Win and lose the game to
make sure that the corresponding sound is played.

You can find snapshot of the project at this stage in the
Chapter_08/Cocohunt_08_Sound_Effects folder.

What just happened?
We have added the code to play three remaining sound effects that we added earlier. The
code itself should be very simple, so I am not going to cover it.

The other thing that just happened is that you have probably just used several files under
some license. In my case, it was the Creative Commons Attribute license, so I must give the
credit to the people who created these sound effects.

Adding Sound Effects and Music

[232]

I say probably because if you did not use the files that came with the book, you might have
used sound files under the Creative Commons Public Domain license and don't have to
attribute anyone, but I think it is always a good idea to attribute a person who helped you
to make your game.

Later, we are going to add an About scene to the game, and normally, I put the
credits there, but as I'm writing a book, I'll put some credits right in the text.
This book and the sample game use the following sounds from Freesound:
arrow_shot.wav by EverHeat at http://freesound.org/people/
EverHeat/sounds/205563/

bird_hit.mp3 by haydensayshi123 http://freesound.org/people/
haydensayshi123/sounds/138678/

lose.wav by Benboncan http://freesound.org/people/
Benboncan/sounds/73581/

win.wav by bone666138 http://freesound.org/people/
bone666138/sounds/198874/

Thank you!

Have a go hero
There is no limit to perfection. This is totally about picking the sound for the game. The
following are some thoughts about how you can improve your skills and the game:

�� If you have not searched for the sound and just used the files that came with the
book, I strongly encourage you to do a search and maybe change some files. When
you spend some time searching, you will learn to estimate the time required to find
the corresponding sound effects.

�� If you have searched but are still unhappy with any sound, try to find a better one.
Searching for the exact sound effect (for example, the bird hit by an arrow) does
not always work. For example, I've used a melon squash sound for a zombie head
explosion effect in one of my games, so you have to think what sound can be close
to what you want.

�� You can add a sound of a falling bird, a sound when you lose one life or a sound
when a new bird is spawned. Just don't add a sound that plays for a long duration or
the game will end up as a cacophony.

http://freesound.org/people/EverHeat/sounds/205563/
http://freesound.org/people/EverHeat/sounds/205563/
http://freesound.org/people/haydensayshi123/sounds/138678/
http://freesound.org/people/haydensayshi123/sounds/138678/
http://freesound.org/people/Benboncan/sounds/73581/
http://freesound.org/people/Benboncan/sounds/73581/
http://freesound.org/people/bone666138/sounds/198874/
http://freesound.org/people/bone666138/sounds/198874/

Chapter 8

[233]

Music and background sounds
I hope you agree that the game is so much better now that it has sounds. Let's add some
background sounds and music to make it even better.

Time for action – adding background sounds
First, we are going to add some background sounds because it is too quiet in our tropical
forest. We are going to generate some sound and then use it in the game by performing the
following steps:

1.	 We are going to use an online sound generator website. Visit the http://
naturesoundsfor.me and create a new sound. I've set this up by adding Fire
by navigating to Nature | Fire, Forest Ambient by navigating to Nature | Forest
Ambient (both at 20 percent volume), and Grasshopper by navigating to Other
Animals | Grasshopper at 10 percent volume, but set the grasshopper track to
play intermittently (there is a dropdown for that at the bottom). Refer to the
following screenshot:

My nature sound settings

2.	 Then, click on the Export to File button in the bottom-right corner and select the
length of 1 minute. After processing the file, it will allow you to save the file in
the .ogg format.

http://naturesoundsfor.me
http://naturesoundsfor.me

Adding Sound Effects and Music

[234]

3.	 The bad news is that the .ogg format is not supported. So, we need to convert
it. You can use your favorite audio converter to convert the file to .mp3. I have
used the media.io online converter, which is available at http://media.
io. Alternatively, you can just grab the naturesounds.mp3 file from the
Chapter_08/Assets/BackgroundSound folder. If you converted the file
yourself, call the resulting file naturesounds.mp3.

4.	 Add the naturesounds.mp3 file to the Sound group next to the other sound effects.

5.	 Switch to AudioManager.h and add the following method declaration above the
sharedAudioManager class method:
-(void)playBackgroundSound:(NSString *)soundFile;

6.	 Then, open the AudioManager.m file and add the implementation of this method
as follows:
-(void)playBackgroundSound:(NSString *)soundFile
{
 [[OALSimpleAudio sharedInstance] playBg:soundFile
 loop:YES];
}

7.	 Finally, open the GameScene.m file and add a call to this method in the end of the
onEnter method as follows:
-(void)onEnter
{
 //..skipped..
 [[AudioManager sharedAudioManager]
 playBackgroundSound:@"naturesounds.mp3"];
}

8.	 This step is optional. If you have not done this already, go to the GameScene.m file,
and in the init method, change the number of the birds to spawn and the number
of lives to be somewhere near the following values. This will allow you to hear more
of the background sound without losing or winning the game:
_birdsToSpawn = 30;
_birdsToLose = 5;

9.	 Build and run the game. It should now feel much more like a campfire in a forest.

You can find snapshot of the project at this point in the
Chapter_08/Cocohunt_08_Ambient folder.

http://media.io
http://media.io

Chapter 8

[235]

What just happened?
You have to be prepared that if you're a one-man studio and are creating games yourself, you
will have to learn about different sound file formats and how to convert them from the initial
format to the required format.

In the first part, we used one of the many online tools that allow you to generate the sounds
and convert them. There are many helpful websites, so try searching one every time you
need something.

Back to the code; let's review the code we have used to play the background sound
as follows:

[[OALSimpleAudio sharedInstance] playBg:soundFile loop:YES];

You might have noticed that we've used the playBg: method instead of the playEffect:
method. The playBg: method is intended for playing background audio files more
efficiently, but this comes at a price that you can only play one background track at a time.

The iPhone supports only one audio track using hardware acceleration,
while all other audio tracks are played on CPU. So, the practice is to
play the background song in MP3 (heavily compressed audio) and
sound effects (which are smaller and less frequently used) in a lightly
compressed format (for example, CAF) in CPU. You can use the afconvert
tool in OS X to convert your audio files.

Just as with playEffect:, we have used a simplified method with only two parameters,
as we only wanted to loop it. All the playBg: methods in the end just call the following
method using the default parameters:

-(bool) playBg:(NSString*) filePath
 volume:(float) volume
 pan:(float) pan
 loop:(bool) loop

So, if you need more control, you can use this method.

Adding Sound Effects and Music

[236]

Time for action – adding music
Background ambient sound is good, but not for our kind of game. What we really need is
some music. Let's add the code to play the music, and as we don't want one song playing
over and over again, we're going to implement switching between the tracks by performing
the following steps:

1.	 First of all, we will need some music. Create the group called Music in
the Resources group. Then, open the book's supporting files available at
Chapter_08/Assets/Music and add all the music files into this group.

You can use your favorite music instead of the music that comes
with the book, just name the files the same way or make sure
you adjust the code. Also, don't forget about the licenses if
you're going to upload the game into the App Store.

2.	 Open the AudioManager.h file and import a module using the following
@import directive:
@import AVFoundation.AVAudioPlayer;

Note that we're using @import and not #import,
as we are importing a module.

3.	 Then, make the AudioManager class conform to the AVAudioPlayerDelegate
protocol by changing its declaration line as follows:
@interface AudioManager : NSObject<AVAudioPlayerDelegate>

4.	 The last change in the AudioManager.h file is to add the following two
method declarations:
-(void)playMusic;

-(void)stopMusic;

5.	 Now, switch to the AudioManager.m file and add the following instance variables:
@implementation AudioManager
{
 NSArray* _musicFiles;

 OALAudioTrack *_currentTrack;
 OALAudioTrack *_nextTrack;
}

Chapter 8

[237]

6.	 Then, add the init method as shown in the following code:
-(instancetype)init
{
 if (self = [super init])
 {
 _musicFiles = @[@"track_0.mp3", @"track_1.mp3",
 @"track_2.mp3", @"track_3.mp3",
 @"track_4.mp3", @"track_5.mp3"];

 _currentTrack = nil;
 _nextTrack = nil;
 }

 return self;
}

7.	 Add the playMusic method implementation below the init method as follows:
-(void)playMusic
{
 //1
 if (_currentTrack)
 {
 NSLog(@"The music is already playing");
 return;
 }

 //2
 int startTrackIndex = arc4random() % _musicFiles.count;
 int nextTrackIndex = arc4random() % _musicFiles.count;
 NSString *startTrack =
 [_musicFiles objectAtIndex:startTrackIndex];
 NSString *nextTrack =
 [_musicFiles objectAtIndex:nextTrackIndex];

 //3
 _currentTrack = [OALAudioTrack track];
 _currentTrack.delegate = self;
 [_currentTrack preloadFile:startTrack];
 [_currentTrack play];

 //4
 _nextTrack = [OALAudioTrack track];
 [_nextTrack preloadFile:nextTrack];
}

Adding Sound Effects and Music

[238]

8.	 Then, after the playMusic method, add the nextTrack method as follows:
-(void)nextTrack
{
 //1
 if (!_currentTrack)
 return;

 //2
 _currentTrack = _nextTrack;
 _currentTrack.delegate = self;
 [_currentTrack play];

 //3
 int nextTrackIndex = arc4random() % _musicFiles.count;
 NSString *nextTrack =
 [_musicFiles objectAtIndex:nextTrackIndex];
 _nextTrack = [OALAudioTrack track];
 [_nextTrack preloadFile:nextTrack];
}

9.	 Now, add the following audioPlayerDidFinishPlaying: method, which is a
part of the AVAudioPlayerDelegate protocol:
- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
 successfully:(BOOL)flag
{
 dispatch_async(dispatch_get_main_queue(), ^{
 [self nextTrack];
 });
}

10.	Then, add the last method (for now), the stopMusic method, in the
AudioManager.m file, as shown in the following code:
-(void)stopMusic
{
 if (!_currentTrack)
 {
 NSLog(@"The music is already stopped");
 return;
 }

 [_currentTrack stop];
 _currentTrack = nil;
 _nextTrack = nil;
}

Chapter 8

[239]

11.	 It is time to play the music. Open the GameScene.m file and replace the following
line in the onEnter method:
[[AudioManager sharedAudioManager]
 playBackgroundSound:@"naturesounds.mp3"];

12.	Replace the preceding line of code with the following:
[[AudioManager sharedAudioManager] playMusic];

13.	Don't forget that we also need to stop the music when the game stops. Find the
lost and won methods and add the following line at the beginning of each method:
-(void)lost
{
 [[AudioManager sharedAudioManager] stopMusic];
 //..skipped..
}

-(void)won
{
 [[AudioManager sharedAudioManager] stopMusic];
 //..skipped..
}

14.	Build and run the game. Now, instead of the ambient background sound, you should
hear some music! I hope you like my pick or have managed to change the music to
your favorite tracks and are now enjoying them.

All sound tracks are taken from the http://www.
nosoapradio.us website. This site has old-school music
that you can use in your games. Thanks DST (also known as
Night Driver)!

Make sure that you play the game long enough to hear the change of the
music tracks.

You can either again change the _birdsToSpawn and
_birdsToLose settings in the init method or just find
some shorter audio tracks.

http://www.nosoapradio.us
http://www.nosoapradio.us

Adding Sound Effects and Music

[240]

What just happened?
That was quite a lot of code to play some music! Let's start with a bird's eye view on
what we've done and why we had to write all this code instead of using the good old
playBg: method.

The issue with using the playBg: method is that it can play or preload only one file at a
time. This means that if you are playing one music track and then trying to play or even
preload the next one, the first music track stops. We don't want that!

This is only true for the background tracks and the playBg: method,
you can still play several (up to 32) sound effects simultaneously using the
playEffect: method. This is why there are no issues when you shoot the
arrow and the previous arrow hits the bird at the same moment. Two sound
effects are played at the same time without any problems.

We could just wait until the first file completes and starts preloading another one, but it
takes some time to preload a file and we will experience a small period of silence when one
music track has already stopped and the next one has not yet started playing.

Here is how we solve it. We have created two separate OALAudioTrack objects to play the
_currentTrack music track and keep the preloaded _nextTrack music track ready. Then,
when the _currentTrack music track has finished playing, we immediately start playing
the _nextTrack track.

At this point, we don't need the _currentTrack music track anymore, but need to preload
the next file and store it somewhere. This is why we put the _nextTrack music track in
the _currentTrack variable, as it will actually play now and load the new track in the _
nextTrack variable. Then, we keep repeating this process.

Now, after a brief review, let's review each method in detail. We'll start with the following
playMusic: method:

1.	 The first thing this method checks is whether there is any music already playing.
The _currentTrack file is used as an indicator in several places.

2.	 After this, the two random indexes are picked. These indexes are used to pick two
random music tracks. Right now, this can be the same music track (same index),
and this is not very good, but I will leave it up to you to fix this.

3.	 This is where the current track is created. Note that there are two important
things. First, we set the delegate property to self, as we want to get a
notification when this file finishes playing. This is why we have made the
AudioManager class conform to the AVAudioPlayerDelegate protocol,
to be able to get notifications. The second important thing is that we start
to play the track immediately.

Chapter 8

[241]

4.	 The next track is created. Unlike the current track, we don't set the delegate
property and don't play the file just yet.

Okay, now there is one music track playing and another one preloaded and ready
to play. The AudioManager class does nothing from this point and waits until the
audioPlayerDidFinishPlaying: method of the AVAudioPlayerDelegate
protocol is called.

If you are not familiar with the delegate concept of Objective-C, I suggest
that you visit https://developer.apple.com/library/ios/
documentation/general/conceptual/CocoaEncyclopedia/
DelegatesandDataSources/DelegatesandDataSources.html
(short link: http://bit.ly/1spzRWT).

In the audioPlayerDidFinishPlaying: method, we simply call the nextTrack method,
but we want to call it outside the delegate thread on the main queue, as we're going to
change delegate; this is why we use dispatch_async.

Now, let's review the nextTrack method, but very briefly, as it is quite easy and does
almost the same as the second part of the playMusic method:

1.	 It checks whether there is a current track to make sure that the next track is never
called when the music is stopped.

2.	 The next track becomes current. Note that we set delegate of this track, as we
now want a notification from it.

3.	 A random number for the next track is generated and the actual next track is created
and preloaded.

This is how we change tracks until we win or lose. Then, we just stop the music and free the
current and preloaded next tracks.

By creating several separate OALAudioTrack objects, you can play several
background tracks simultaneously. You can even do cross-fade and other
mixing effects by gradually decreasing volume of one track while increasing
the volume of another one.

https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/general/conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
http://bit.ly/1spzRWT

Adding Sound Effects and Music

[242]

Enhancing Cocohunt sound effects
Now that we know how to play sound and music, we will see how we can optimize our code
and use some of the more advanced sound effect parameters.

Time for action – preloading sound effects
Sound effects are typically much smaller than music files, and using formats such as Core
Audio Format (CAF) will decrease the time used to decode the on-disk file into memory and
prepare it for playing.

Remember that sound effects are decoded and played on CPU, so we should
avoid using too many heavily compressed formats such as MP3 for sound effects.
This is why I mention different formats such as CAF. Such formats take more
space on the disk, but are easier to decode. Of course, for a simple game like
ours, we don't have to worry about this.

However, if you want to make sure that there is no delay when the sound effect is played for
the first time, you need to preload it. Let's perform the following steps:

1.	 Open the AudioManager.h file and add the following #define statements at the
top, right above the @interface declaration as follows:
#define kSoundArrowShot @"arrow_shot.wav"
#define kSoundBirdHit @"bird_hit.mp3"
#define kSoundWin @"win.wav"
#define kSoundLose @"lose.wav"

2.	 Then, add the following method declaration:
-(void)preloadSoundEffects;

3.	 After this, switch to the AudioManager.m file and add the _soundEffects
instance variable as follows:
@implementation AudioManager
{
 NSArray* _soundEffects;
 //..skipped..
}

4.	 Initialize this variable inside the init method as follows:
-(instancetype)init
{
 if (self = [super init])
 {
 _soundEffects = @[kSoundArrowShot,

Chapter 8

[243]

 kSoundBirdHit,
 kSoundLose,
 kSoundWin];
 //..skipped..
 }

 return self;
}

5.	 Then, add the following implementation of the preloadSoundEffects method
that we've declared in the header file:
-(void)preloadSoundEffects
{
 for (NSString *sound in _soundEffects)
 {
 [[OALSimpleAudio sharedInstance]
 preloadEffect:sound
 reduceToMono:NO
 completionBlock:^(ALBuffer *b)
 {
 NSLog(@"Sound %@ Preloaded", sound);
 }];
 }
}

6.	 Switch to the IntroScene.m file and import the AudioManager.h header at the
top as follows:
#import "AudioManager.h"

7.	 Then, in the end of the onEnter method, add a call to the preloadSoundEffects
method as follows:
-(void)onEnter
{
 [super onEnter];
 [self animateCoconutExplosion];

 [[AudioManager sharedAudioManager]
 preloadSoundEffects];
}

8.	 Finally, search for all calls to the AudioManager class's playSoundEffect:
method and replace hardcoded strings with the #define values as follows:

�� In the Hunter.m file, in the shootAtPoint: method:
[[AudioManager sharedAudioManager]
 playSoundEffect:kSoundArrowShot];

Adding Sound Effects and Music

[244]

�� In Bird.m, in the removeBird: method:
[[AudioManager sharedAudioManager]
 playSoundEffect:kSoundBirdHit];

�� In GameScene.m, in the lost method:
[[AudioManager sharedAudioManager]
 playSoundEffect:kSoundLose];

�� Again, in GameScene.m, in the won method:
[[AudioManager sharedAudioManager]
 playSoundEffect:kSoundWin];

9.	 Build and run the game. It will be hard to notice any difference except for the
output that appears in the console before the exploding coconut animation is even
complete. Refer to the following code:

Cocohunt[70370:70b] Sound arrow_shot.wav Preloaded
Cocohunt[70370:70b] Sound bird_hit.mp3 Preloaded
Cocohunt[70370:70b] Sound lose.wav Preloaded
Cocohunt[70370:70b] Sound win.wav Preloaded

These lines mean that even before we leave the splash screen, all sound effects are
preloaded and ready to be played.

What just happened?
We have just learned two things. The first is how you can preload your sound files and the
second is how splash screen animation can hide the loading process.

I don't think the code needs a lot of explanation. The preloadEffect: method
asynchronously preloads the sound effects and caches them. Putting this code in the splash
or intro screen is a common technique, and you can use this approach to preload your other
resource such as textures and data files.

Just don't preload everything because you can. If you have many sound effects that are played
in different scenes or in different levels, you shouldn't load all of them at the beginning of the
game. Don't forget that you have limited memory, especially on mobile devices.

Chapter 8

[245]

Time for action – playing a sound at position
We are going to use the pan parameter of the playEffect: method to play the sound
effect when a bird is hit at the position where the bird was actually hit. For example, when
the bird is on the left-hand side of the screen and if it is hit, the sound will be louder in the
left headphone, and when the bird is on the right-hand side of the screen and if it is hit, the
sound will be played louder in the right headphone. The farther the bird is from the center of
the screen, the higher the volume will be of the sound in the corresponding headphone. To
test this, you will require headphones. Now perform the following steps:

1.	 Open the AudioManager.h file and add the following method declaration:
-(void)playSoundEffect:(NSString *)soundFile
 withPosition:(CGPoint)pos;

Then, open the AudioManager.m file and import the cocos2d.h header at the top
as follows:
#import "cocos2d.h"

2.	 After this, add the following implementation of the
playSoundEffect:withPosition: method:
-(void)playSoundEffect:(NSString *)soundFile
 withPosition:(CGPoint)pos
{
 float pan =
 pos.x / [CCDirector sharedDirector].viewSize.width;
 pan = clampf(pan, 0.0f, 1.0f);
 pan = pan * 2.0f - 1.0f;

 [[OALSimpleAudio sharedInstance] playEffect:soundFile
 volume:1.0
 pitch:1.0
 pan:pan
 loop:NO];
}

3.	 Finally, switch to the Bird.m file and in the removeBird: method, change the
code to use the new version of the playSoundEffect: method as follows:
[[AudioManager sharedAudioManager]
 playSoundEffect:kSoundBirdHit withPosition:self.position];

4.	 This is an optional step. To hear the changes more clearly, open the GameScene.m
file and comment out the line where we start playing the music.

Adding Sound Effects and Music

[246]

5.	 Build and run the game. If you have headphones, you can plug them into your Mac
or run the game on the device and plug headphones into it. Now, if you hit the bird
at the right edge of the screen, then the sound is louder in the right headphone and
if you hit the bird near the left edge, the sound is louder in the left headphone.

You can find the final project for this chapter in the
Chapter_08/Cocohunt_08_Final folder in the
book's supporting files.

What just happened?
This is what you get almost for free when you use a game engine and an audio framework.
We have used the pan parameter to make a better use of the stereo headphones.

If you set pan to -1.0, then the sound is played only in your left headphone, and if you set
pan to +1.0, then the sound is played only in the right one. What we have done is used the
left-hand side of the screen as the -1.0 value for the pan and the right edge of the screen as
1.0. This way, the sound comes from the point where the bird was hit.

What we have done is a very simplified technique to create positional
audio. In positional audio, you can hear sounds from any direction in
three-dimensional spaces, including behind, in front of, above, or below
you. You can use positional audio if you use the lower-level ALSource
class and its position and referenceDistance properties, but
this is out of the scope of this book.

Have a go hero
As I have mentioned before, there is no limit to perfection, but we must stop and continue to
the next chapters. The following is another list of improvements you can try to apply to the
Cocohunt game:

�� Currently, the arrow sound is a bit too quiet. Of course, we can fix this by modifying
the audio file, but why don't we use the volume parameter of the playEffect:
method, just as we did with pan?

�� There is a technique that is used in many games where you collect coins. If you
collect a streak of coins, each next collected coin sounds a bit different. You can do
the same with the birds; just increase the pitch parameter for every bird hit within
a time interval and reset the pitch parameter if the player is too slow and the
streak has ended.

Chapter 8

[247]

You can learn more about ObjectAL and check out some more
advanced demos at http://kstenerud.github.io/
ObjectAL-for-iPhone/.

Pop quiz – playing audio
Q1. Can you play several sound effects simultaneously using the playEffect: of the
OALSimpleAudio class?

1.	 Yes

2.	 No

Q2. Can you play several background tracks simultaneously using the playBg: method of
the OALSimpleAudio class?

1.	 Yes

2.	 No

Q3. Can you play several background tracks simultaneously using several separate
OALAudioTrack objects?

1.	 Yes

2.	 No

Summary
In this chapter, we learned to play sound effects and music. In addition to this, we reviewed
several resources where you can find or generate the audio files. With this knowledge, you
will be able to make your game much better. In the next chapter, we are going to move on
from level one to a more complete game and will add some more scenes and learn how to
switch between them.

http://kstenerud.github.io/ObjectAL-for-iPhone/
http://kstenerud.github.io/ObjectAL-for-iPhone/

9
User Interface and Navigation

Almost every game these days makes good use of different user interface
elements such as buttons, sliders, and menus. And of course, most of the
games consist of more than one game scene. In this chapter, we're going
to review how Cocos2D can help us build a good user interface and
navigate between scenes.

In this chapter, we are going to review the following topics:

�� Adding buttons, and handling events when a player taps them
�� Creating toggle buttons to represent on/off switches
�� Animating the user interface's appearance using Cocos2D actions
�� Creating more scenes and navigating between them using transitions
�� Using the scroll view to fit more contents in a single scene
�� Using the table view to represent table data
�� Using the text field to get the user text input

Using buttons
Creating a good user interface and convenient navigation is very important! Equally important
is to take into account that we want the player to stay in our game scene for most of the time
and actually play the game. If the game has a bad or obscure user interface or navigation, the
player might not even stay in the game for long enough to actually play it.

If the player needs to tap ten times to restart the game after each failure, then the player
won't play the game for long. This will be pretty evident; if you open the App Store, you can
read all the negative reviews of any game with a bad user interface.

User Interface and Navigation

[250]

After labels, the second most commonly used user interface controls are buttons. They are
used everywhere, and it is logical that we will start our review of Cocos2D controls by adding
some buttons, which are represented by the CCButton class.

Time for action – adding menu buttons
In this section, we are going to add a new scene with a vertical menu. This will be a typical
main menu scene, which is present in many games. When we complete this scene, a player
will be able to start the game, read more about the game itself, or view highscores.

First things first, we will add a scene with a basic menu to see how you can create and align
buttons in Cocos2D:

1.	 Open the Cocohunt project from where we left it in the previous chapter.

Just as always, you can continue working on the project from the
place we left it at the end of the previous chapter, or take the
final project from the book's supporting files at Chapter_08/
Cocohunt_08_Final and use it as a starter project.
You can download the book's supporting files by visiting
www.packtpub.com/support and following the instructions.

2.	 Right-click on the Scenes group and create a new Objective-C class. Call this class
MenuScene and make it a subclass of the CCScene class.

3.	 Open the MenuScene.m file and import the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"
#import "GameScene.h"

4.	 Then, add the _menu instance variable as follows. It will contain all of the buttons of
our menu:
@implementation MenuScene
{
 CCLayoutBox *_menu;
}

Chapter 9

[251]

5.	 Add the addBackground method where we'll just set up a nice background image
as follows:
-(void)addBackground
{
 CCSprite *bg = [CCSprite
 spriteWithImageNamed:@"menu_bg.png"];
 bg.positionType =
 CCPositionTypeMake(CCPositionUnitNormalized,
 CCPositionUnitNormalized,
 CCPositionReferenceCornerBottomLeft);
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];
}

6.	 Then, add the addMenuButtons method, which will actually create the menu
buttons, align them, and add them to the scene:
-(void)addMenuButtons
{
 //1
 CCSpriteFrame *startNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_start.png"];

 //2
 CCSpriteFrame *startHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_start_pressed.png"];

 //3
 CCButton *btnStart = [CCButton buttonWithTitle:nil
 spriteFrame:startNormalImage
 highlightedSpriteFrame:startHighlightedImage
 disabledSpriteFrame:nil];

 //4
 [btnStart setTarget:self
 selector:@selector(btnStartTapped:)];

 CCSpriteFrame *aboutNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_about.png"];
 CCSpriteFrame *aboutHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_about_pressed.png"];
 CCButton *btnAbout =
 [CCButton buttonWithTitle:nil
 spriteFrame:aboutNormalImage
 highlightedSpriteFrame:aboutHighlightedImage
 disabledSpriteFrame:nil];

User Interface and Navigation

[252]

 [btnAbout setTarget:self
 selector:@selector(btnAboutTapped:)];

 CCSpriteFrame *highscoresNormalImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_highscores.png"];
 CCSpriteFrame *highscoresHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_highscores_pressed.png"];
 CCButton *btnHighscores =
 [CCButton buttonWithTitle:nil
 spriteFrame:highscoresNormalImage
 highlightedSpriteFrame:highscoresHighlightedImage
 disabledSpriteFrame:nil];
 [btnHighscores setTarget:self
 selector:@selector(btnHighscoresTapped:)];

 //5
 _menu = [[CCLayoutBox alloc] init];
 _menu.direction = CCLayoutBoxDirectionVertical;
 _menu.spacing = 40.0f;

 //6
 [_menu addChild:btnHighscores];
 [_menu addChild:btnAbout];
 [_menu addChild:btnStart];

 //7
 [_menu layout];

 //8
 _menu.anchorPoint = ccp(0.5f, 0.5f);
 _menu.positionType =
 CCPositionTypeMake(CCPositionUnitNormalized,
 CCPositionUnitNormalized,
 CCPositionReferenceCornerBottomLeft);
 _menu.position = ccp(0.5f, 0.5f);

 [self addChild:_menu];
}

7.	 Then, we need to call the addBackground and addMenuButtons methods from
the init method in order to run them when the scene is created. Add the following
init method to do this:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];

Chapter 9

[253]

 [self addMenuButtons];
 }

 return self;
}

8.	 Then, we need to add the methods that we have specified in the @selector
parameter as the button targets. They will be called when we tap the corresponding
button. Go ahead and add the following methods, which right now are just stubs
for the future code (except the btnStartTapped: method, which opens the
GameScene scene):
-(void)btnStartTapped:(id)sender
{
 CCLOG(@"Start Tapped");

 [[CCDirector sharedDirector]
 replaceScene:[[GameScene alloc] init]];
}

-(void)btnAboutTapped:(id)sender
{
 CCLOG(@"About Tapped");
}

-(void)btnHighscoresTapped:(id)sender
{
 CCLOG(@"Highscores Tapped");
}

9.	 As you can see from the previous steps, we are using some images in our code.
We use images as a background scene and for normal and highlighted button's
states. Of course, this means we need to add them to the Xcode project. To do this,
create a subgroup in the Resources group and call it Menu. Then, open the book's
supporting files in Chapter_09/Assets/Menu and add all images from that folder
to the Menu group.

10.	Now, when we are done with our MenuScene class, we need to display it. Open the
IntroScene.m file and import the MenuScene.h file as follows:
#import "MenuScene.h"

11.	Then, find the proceedToGameScene method and change the scene to run the
MenuScene class instead of the GameScene class:
-(void)proceedToGameScene
{
 [[CCDirector sharedDirector]
 replaceScene:[[MenuScene alloc] init]];
}

User Interface and Navigation

[254]

12.	 In addition, while we are in the IntroScene class, we will disable the exploding
coconut animation in the beginning since it takes a lot of time, and we don't want
to wait for it at the start of every game. Find the onEnter method and make the
following changes:
-(void)onEnter
{
 [super onEnter];
 //[self animateCoconutExplosion];
 [self proceedToGameScene];

 [[AudioManager sharedAudioManager] preloadSoundEffects];
}

13.	Build and run the game. Now, you should see the menu scene with three buttons on
a nice background, as shown in the following screenshot:

In addition, if you tap on any button, you should see the output in the console, which is
similar to what is shown in the following code. Moreover, you should notice that the buttons
are actually pushed down when tapped.

Cocohunt[37217:70b] Start Tapped
Cocohunt[37217:70b] About Tapped
Cocohunt[37217:70b] Highscores Tapped

Chapter 9

[255]

What just happened?
In addition to adding buttons, we have used a few other important features of Cocos2D. Let's
review all of them.

Adding buttons
We have just used some buttons to handle the user input. All of that looks nice, but wait a
second, we have already handled user input when we handled touches to aim and shoot.
What is the difference between that and the CCButton class?

The answer is that there is no big difference. The CCButton class is just a node that contains
the title label and the image for the background. It handles the image change when the
button state changes (normal, highlighted, or disabled) and notifies us when the button is
tapped by calling the callback that we have passed to the setTarget: method.

Nothing stops you from creating your own button class. However, if you take a look at the
CCButton.m file in Cocos2D source code, I am sure you will quickly come to the conclusion
that you don't want to repeat all that code, unless you have a significant reason to do that
(for example, you need a button that behaves completely differently, you want to handle
some additional events, or you want to animate a button differently).

Now, when we know that there is no magic behind the still very useful CCButton
class, let's review the code we wrote to create the menu. I think we should only review
the addMenuButtons method since everything else (creating a scene, displaying the
background, adding images, and so on) should be clear by now.

So here we go, the addMenuButtons method:

1.	 The CCButton object has three states: normal, highlighted, and disabled. You can
specify an image for each state. In this line, we have loaded the btn_start.png
image to be used for the background of the button as its normal state background.

2.	 This code simply loads another image that is to be used when the button is in its
highlighted state (for example, when you tap on it).

I encourage you to take a look at the images that we have
added in order to see the difference. In fact, we are going to
add a lot of images in this chapter. I believe it will help you
understand if you review each image that we are using.

User Interface and Navigation

[256]

3.	 Here, we created the button using the buttonWithTitle: factory method with
most parameters. Let's take a closer look at each parameter:

�� title: This parameter displays a text on the label (CCLabelTTF) that is
over the button's background. Since we have the text on the button image
itself, we're not going to use this property, and therefore we will set it to nil.
We will use this property later in this chapter for a different kind of button.

�� spriteFrame: This parameter displays an image as the button's background
when the button is in its normal state (neither pressed, nor disabled).

�� highlighted: This parameter displays an image when the button is in its
highlighted state. The button will be in this state when you press it, until
you release your finger, or when the button is used as a toggle button (can
be on and off). We will see how to use the toggle buttons shortly.

�� disabled: This parameter displays an image when the button is disabled.
It can be useful if you want to show that there is a button, but the player
cannot press it just yet. For example, the player should complete an action
before pressing this button.

4.	 After the button is created, we set its target. For the button, this specifies which
method to call when the button is pressed.

All user interface controls in Cocos2D are subclasses of the
CCControl class. By setting the target of the control, you
specify the method to be called when the action is triggered
by the control. Every control calls this method in its specific
case. For example, the button calls this method when clicked,
the slider when dragged, and so on, but you always set the
target when you want to get notified by the control.

5.	 After two more buttons were created in a similar way, we used another
interesting class of Cocos2D called CCLayoutBox. The CCLayoutBox class is an
implementation of the abstract class called CCLayout. Layout classes are used to
manage the layout of their child nodes. To use them, you add the child nodes to the
layout class instance and then call the layout method. The CCLayoutBox class can
lay out its children in vertical or horizontal rows.

There can be other implementations of the CCLayout
class that lay out their children differently, for example, in
a grid. You can subclass CCLayout and create your own
implementation to lay out our nodes.

Chapter 9

[257]

This is exactly how we want our buttons to be. In this code, we created the layout
class, set its direction to vertical, and specified the spacing between the buttons.

6.	 Then, we added the buttons. Note that we added each button as a child node of the
layout. This was not required; we could add them directly to the scene and lay them
out manually, but adding them to CCLayoutBox and using its layout method saves
us from having to calculate button positions and does everything for us.

You can use CCLayout* classes to lay out any nodes (for
example, sprites, labels, and so on), not only the buttons.

7.	 Then, we called the layout method that created our nice menu, which we saw in
the earlier screenshot.

8.	 As a final step, we positioned the menu at the center of the screen and added it to
the scene.

Using normalized coordinates
There is one interesting thing described in the final step. We didn't use [CCDirector
sharedDirector].viewSize this time to calculate the menu position relative to the
center of the screen. Instead, we used the positionType property to specify that we want
to use normalized units in the position property.

Normalized coordinates use values from 0 to 1 instead of points or pixels in a way similar
to the anchor point. However, anchorPoint specifies the point in the node itself, while
position specifies the point in the parent node. Since the parent for _menu is the scene
itself, setting the normalized position to (0.5, 0.5) puts it right in the center of the scene.

The positionType property takes the CCPositionType structure as a value. Here is how
it is defined in Cocos2D:

typedef struct _CCPositionType
{
 CCPositionUnit xUnit;
 CCPositionUnit yUnit;
 CCPositionReferenceCorner corner;
} CCPositionType;

User Interface and Navigation

[258]

We use a helper function called CCPositionTypeMake that creates this structure from three
parameters, where each parameter is simply assigned to the corresponding structure field:

�� xUnit: This parameter specifies the unit type for the x axis. On iOS, it can be either
normalized units or points (default) that we have used many times before.

�� yUnit: This parameter specifies the unit type for the y axis. Yes, you can specify
different units for the x and y axes. For example, you can specify positionType
like this:
CCPositionTypeMake(CCPositionUnitPoints,
 CCPositionUnitNormalized,
 CCPositionReferenceCornerBottomLeft);

Then, specify the x coordinate in points and the y coordinate as normalized, (like
ccp(320, 0.5)) to align the node at 320 pixels horizontally on all devices, but also
make sure it is centered vertically on all devices.

�� corner: This parameter is a reference corner to use when calculating coordinates.

I know it is quite difficult to get this straight away, so here is an example. Let's imagine we
want to position our node in the center of the x axis and in the middle of the lower half of
the parent.

If we use normalized coordinates for both the x and y axes, and set the reference corner to
the bottom-left corner (CCPositionReferenceCornerBottomLeft), then we need to set
the position of the child node to the (0.5, 0.25) point, as shown in the following figure:

Setting the position using normalized coordinates with the bottom-left reference corner

Chapter 9

[259]

Note that we use a small node, possibly a sprite, with an anchor point
at the center of the node.

However, if we use the top-right corner as a reference corner
(CCPositionReferenceCornerTopRight), then we need to set the position of the same
node to (0.5, 0.75). Note the vector displaying how we calculate the position in the
following figure:

Setting the position using normalized coordinates with the top-right reference corner

Don't worry if you still don't fully understand this concept and where to use it. It will become
much clearer when we use normalized coordinates to position buttons and other elements
throughout this chapter. Also, you will be perfectly fine using only the bottom-left corner
or not using the normalized coordinates at all and calculating the position as we did before.
However, in this case, you will deprive yourself from a very convenient feature.

Replacing the currently running scene
We've already discussed different methods of CCDirector related to scene management in
Chapter 3, Cocos2D – Under the Hood. It is time to use them in practice.

User Interface and Navigation

[260]

In fact, we've already used the replaceScene: method before, when we
switched to the game scene after the coconut explosion. However, I promised
to provide a more detailed explanation in this chapter.

When the game starts, Cocos2D automatically runs the scene returned from the
startScene method in AppDelegate. However, as we discussed previously, games usually
consist of several scenes.

The replaceScene: method is one of the methods you can use to switch to a new scene.
When we call the replaceScene: method with a new scene, Cocos2D terminates the
currently running scene and starts running the provided scene. So the function does exactly
as it is says; that is, it replaces the currently running scene with a new one.

We will use more of this and other methods related to scene management through this
chapter, so it will become much clearer. Now, let us return to the buttons.

Time for action – toggling sound and music
It is a common task in many games to provide the ON and OFF switch. The most common
scenario that I always come across is turning sound and music on and off. We are going to
use the same CCButton class to add buttons to the MenuScene class to allow a user to turn
the sound and music on and off. To do this, perform the following steps:

1.	 Create the group named SoundButtons in the Resources group. Then, open the
book supporting files at Chapter_09/Assets/SoundButtons and add the button
images to that newly created group.

2.	 Open the AudioManager.h file and add the following two properties that we'll
use to check if the sound and music is enabled, and set the initial state of the
buttons as follows:
@property (nonatomic, readonly) BOOL isSoundEnabled;
@property (nonatomic, readonly) BOOL isMusicEnabled;

3.	 While still in the AudioManager.h file, add two more method declarations:
-(void)toggleSound;
-(void)toggleMusic;

Chapter 9

[261]

4.	 After that, open the AudioManager.m file and add two instance variables that will
be used internally by the properties we added before:
@implementation AudioManager
{
 //..skipped..

 BOOL _isSoundEnabled;
 BOOL _isMusicEnabled;
}

5.	 Initialize them at the end of the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 //..skipped..

 _isSoundEnabled = YES;
 _isMusicEnabled = YES;
 }

 return self;
}

6.	 Scroll down and add the implementations of the toggleSound and toggleMusic
methods that we declared in the header file:
-(void)toggleSound
{
 _isSoundEnabled = !_isSoundEnabled;
}

-(void)toggleMusic
{
 _isMusicEnabled = !_isMusicEnabled;
 if (!_isMusicEnabled && _currentTrack)
 {
 [self stopMusic];
 }
}

User Interface and Navigation

[262]

7.	 Now, we need to add checks in both variants of the playSoundEffect: method
and in the playMusic method. Please find these methods and add checks as listed
in the following code to the corresponding method:
-(void)playMusic
{
 if (!_isMusicEnabled)
 return;

 //..skipped..
}

-(void)playSoundEffect:(NSString *)soundFile
{
 if (!_isSoundEnabled)
 return;

 [[OALSimpleAudio sharedInstance] playEffect:soundFile];
}

-(void)playSoundEffect:(NSString *)soundFile
 withPosition:(CGPoint)pos
{
 if (!_isSoundEnabled)
 return;

 //..skipped..
}

8.	 Then, when we're done with AudioManager, open the MenuScene.m file and
import the AudioManager.h header at the top:
#import "AudioManager.h"

9.	 Add two instance variables for the sound and music toggle buttons:
@implementation MenuScene
{
 CCLayoutBox *_menu;

 CCButton *_btnSoundToggle;
 CCButton *_btnMusicToggle;
}

Chapter 9

[263]

10.	Scroll down and add the addAudioButtons method, which will create the buttons,
right beneath the addMenuButtons method:
-(void)addAudioButtons
{
 //1
 CCSpriteFrame *soundOnImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_sound.png"];
 CCSpriteFrame *soundOffImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_sound_pressed.png"];
 _btnSoundToggle = [CCButton buttonWithTitle:nil
 spriteFrame:soundOnImage
 highlightedSpriteFrame:soundOffImage
 disabledSpriteFrame:nil];
 //2
 _btnSoundToggle.togglesSelectedState = YES;

 //3
 _btnSoundToggle.selected =
 [AudioManager sharedAudioManager].isSoundEnabled;

 //4
 _btnSoundToggle.block = ^(id sender){
 [[AudioManager sharedAudioManager] toggleSound];
 };

 //5
 _btnSoundToggle.positionType = CCPositionTypeNormalized;
 _btnSoundToggle.position = ccp(0.95f, 0.1f);
 [self addChild:_btnSoundToggle];

 //6
 CCSpriteFrame *musicOnImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_music.png"];
 CCSpriteFrame *musicOffImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_music_pressed.png"];
 _btnMusicToggle = [CCButton buttonWithTitle:nil
 spriteFrame:musicOnImage
 highlightedSpriteFrame:musicOffImage
 disabledSpriteFrame:nil];
 _btnMusicToggle.togglesSelectedState = YES;
 _btnMusicToggle.selected =
 [AudioManager sharedAudioManager].isMusicEnabled;

User Interface and Navigation

[264]

 _btnMusicToggle.block = ^(id sender){
 [[AudioManager sharedAudioManager] toggleMusic];
 };

 //7
 float musicButtonOffset =
 _btnSoundToggle.boundingBox.size.width + 10;
 CGPoint soundButtonPosInPoints =
 _btnSoundToggle.positionInPoints;

 _btnMusicToggle.positionType =
 CCPositionTypeMake(CCPositionUnitPoints,
 CCPositionUnitNormalized,
 CCPositionReferenceCornerBottomLeft);

 _btnMusicToggle.position =
 ccp(soundButtonPosInPoints.x - musicButtonOffset, 0.1f);

 [self addChild:_btnMusicToggle];
}

11.	Finally, call the addAudioButtons method from the init method as follows:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addMenuButtons];
 [self addAudioButtons];
 }

 return self;
}

12.	Build and run the game. You should see two round buttons to enable and disable
sound in the game at the bottom-right corner. You can toggle them, and then run
the game and check if there is sound and music in the game. Refer to the following
screenshot:

Chapter 9

[265]

The state of the buttons and audio settings are not saved across application
launches because we don't store them anywhere in the persistent storage
(for example, on the disk). To fix this, we need to save and load their values in
NSUserDefaults in AudioManager. We'll do this in a moment.

What just happened?
With only small changes, the buttons behaved differently. Now, you can use buttons to
toggle the state in your game on and off.

Our changes in AudioManager were quite trivial. We just added the isSoundEnabled
and isMusicEnabled properties to check if the music and sound were enabled, the
toggleSound and toggleMusic methods to toggle these properties, and a few checks to
ensure that the sound or music is enabled when we want to play them.

Note that the properties are readonly. This way, we only allow reading the
value, while we set the underlying instance variables (that are used by the
properties) in the toggle methods. Thereby, we can make some other actions
while toggling the property. For example, we can stop the music if it is playing
in the toggleMusic method.

User Interface and Navigation

[266]

The interesting part is once again in the method that adds the buttons to the scene. Let's
review the addAudioButtons method in detail:

1.	 The method starts in a familiar manner. We loaded two images for the normal and
highlighted states, just as we did with menu buttons, and created the button.

2.	 However, when we set togglesSelectedState to YES, we told the button that
the image for the normal state should be used as the OFF indicator and the image
for the highlighted state should be used as the ON indicator.

3.	 In a real game, audio settings will be stored somewhere in the persistent storage, so
we need to load the current value and set the button to the correct state.

4.	 This is the alternative to set the target by the setTarget method. The block is
executed when you tap the button, and when the button is tapped, we simply
execute the toggleSound method of AudioManager.

You can read more about blocks at https://developer.
apple.com/library/mac/Documentation/Cocoa/
Conceptual/Blocks/Articles/00_Introduction.
html (shortened: http://bit.ly/1jR7lYZ).

5.	 We set the position of the sound toggle button by using the normalized coordinates
again. This time, instead of calling the CCPositionTypeMake function, we used a
predefined value. The CCPositionTypeNormalized class is defined as follows:
#define CCPositionTypeNormalized CCPositionTypeMake(
CCPositionUnitNormalized, CCPositionUnitNormalized,
CCPositionReferenceCornerBottomLeft)

So, this is just a shorter way of writing the same thing that we did before. Also, this
time, we didn't use any layout classes, and added the button to the bottom-right
corner of the scene directly.

6.	 Here, we created the music toggle button in exactly the same way as we created the
sound toggle button.

7.	 However, we positioned the music button a bit differently. The reason to do this is
that if we place the sound button at (0.95, 0.1) and the music button at (0.8,
0.1) using normalized coordinates, we will achieve almost the same result as we
did here, but on different resolutions, the distance between the buttons will be
different. This will happen since the distance is 0.95 – 0.8 = 0.15 of the width,
so it depends on the screen width. We don't want that, so instead, we use points for
the x axis while still using normalized coordinates for the y axis. We set the position
of the music button at 10 points to the left, relative to the sound button. The
positionInPoints property always returns the position in points (independent of
positionType used), which can be quite useful sometimes.

Chapter 9

[267]

Time for action – storing settings in NSUserDefaults
Right now, the audio settings are not saved across the game launches because we only
save them in instance variables in memory. To fix this, we're going to save them in
NSUserDefaults and load them when the game starts, as follows:

1.	 Open the AudioManager.m file and add the following #define statements to
define the keys we'll use to save and load the corresponding audio setting:
#define kSoundKey @"AudioManager_Sound"
#define kMusicKey @"AudioManager_Music"

2.	 Scroll down to the toggleSound method and add the code to save the sound
setting at the end of the method, right after it's changed:
-(void)toggleSound
{
 _isSoundEnabled = !_isSoundEnabled;

 [[NSUserDefaults standardUserDefaults]
 setBool:_isSoundEnabled forKey:kSoundKey];

 [[NSUserDefaults standardUserDefaults]
 synchronize];
}

3.	 Also, add the code to save the music setting at the end of the toggleMusic
method:
-(void)toggleMusic
{
 //..skipped..

 [[NSUserDefaults standardUserDefaults]
 setBool:_isMusicEnabled forKey:kMusicKey];

 [[NSUserDefaults standardUserDefaults]
 synchronize];
}

4.	 Now, we need to load the saved settings in the init method instead of just setting
them to YES. Find the following code inside the init method:
_isSoundEnabled = YES;
_isMusicEnabled = YES;

5.	 Replace the preceding code with the following line:
[self loadSettings];

User Interface and Navigation

[268]

6.	 And of course, add the loadSettings method as follows:
-(void)loadSettings
{
 //1
 NSUserDefaults *userDefaults =
 [NSUserDefaults standardUserDefaults];

 //2
 NSDictionary *audioDefaults = @{kSoundKey : @YES,
 kMusicKey : @YES};
 [userDefaults registerDefaults:audioDefaults];

 //3
 _isSoundEnabled = [userDefaults boolForKey:kSoundKey];
 _isMusicEnabled = [userDefaults boolForKey:kMusicKey];
}

7.	 Build and run the game. Toggle the sound or music (or both), and restart the game.
This time, the audio setting should be saved.

You can find a snapshot of the project at this point in the
Chapter_09/Cocohunt_09_Menu_and_Audio folder.

What just happened?
If you have some iOS development experience, then I'm afraid you haven't learned anything
new and can skip to the following Have a go hero section.

If not, then here is what is going on.

The NSUserDefaults class is used to store the user settings that you want to persist
between the game launches. It works really simply. There are several methods such as
setBool:forKey:, setInteger:forKey:, or setObject:forKey:, which you can
use to save the data to user defaults.

You can only store NSData, NSString, NSNumber, NSDate, NSArray,
or NSDictionary using the setObject:forKey: method. So, if you
have a custom type, you might need to serialize it to NSData first or save
each of its fields separately. However, this might be the sign that you need to
choose a different persistent storage type.

Chapter 9

[269]

After setting the values, we've used the synchronize method that forces the
NSUserDefaults to write itself to the disk.

I say "forces" because the synchronize method is automatically invoked
at periodic intervals. So normally, you should use this method only if you
cannot wait for the automatic synchronization or want to make sure the
data is written to the disk without any chance of losing it.
Calling the synchronize method frequently may result in reduction of
game performance.

Of course, in addition to saving these settings in the toggleSound and toggleMusic
methods, we need to load them. This is what we did in the loadSettings method that is
called from the init method.

Don't forget that AudioManager is a singleton, so we load the
settings only once.

Let's review the loadSettings method in detail:

1.	 Here, we just saved ourselves from retyping [NSUserDefaults
standardUserDefaults] each time.

2.	 When we first run the game, we have no audio settings saved since we didn't call
the toggleSound and toggleMusic methods yet. However, we want to make
sure our game starts with the sound and music on; after all, we spent so much time
searching for all those sound effects.

3.	 To do this, we specified default values for our keys using the registerDefaults:
method. This method registers the default values from a provided dictionary, and
later, in case it doesn't find the saved settings, it will use defaults.

Note that the registerDefaults: method doesn't write
anything to the disk, so you should call it every time the
game starts.
You can call it from multiple classes (each class sets its own
defaults that are appended) or from AppDelegate, and
specify all defaults at once (for example, loaded from the
Plist file stored in your game bundle or received from a
web service).

4.	 Here, we just get either default values or values saved using setBool:forKey: if
we toggled the sound or music at least once before.

User Interface and Navigation

[270]

Of course, this is only one of the ways you can store the data. There are some books
completely dedicated to how to store data in iOS, so I'm not going to cover this topic in the
book. After all, you might already be familiar with storing data in iOS and only want to know
how to create games using Cocos2D.

You can find out more about this topic at https://developer.
apple.com/library/ios/documentation/Cocoa/
Conceptual/UserDefaults/AccessingPreferenceValues/
AccessingPreferenceValues.html (shortened: http://bit.
ly/1lDXY03).

Have a go hero
Here is the list of things that you can try in order to consolidate your knowledge:

�� Add a sound effect when you tap a button

�� Change the spacing between the buttons

�� Lay out the menu buttons horizontally

�� Place the sound and music toggle buttons at the top-left corner using
normalized coordinates

Navigating between scenes
Now, when we have all those buttons on the menu scene, we should make them work. In
the early chapters of the book, we discussed the significance of the CCDirector class. We
have already used some of its properties, and of course, we have used the replaceScene:
method to load the game scene when you tap on the Start button.

With replaceScene:, everything should be quite clear. You create a new scene and pass
it to the replaceScene: method, and now, this new scene is running and the old one is
terminated and deallocated.

In this part of the chapter, we are going to use another method of the CCDirector class called
pushScene. This method can be used to display the scene without deallocating the currently
running scene. In addition, we are going to use the CCTransition class for a smooth
transition between scenes, and of course, we are going to add more scenes to our game.

Chapter 9

[271]

Time for action – pushing AboutScene
Imagine that you have just finished the game and are about to release it. I am sure you want
to tell the world something about yourself or your game studio, give a link to your website,
and so on. Even if you don't want a lot of attention, putting a link to your website with
information about your other games is a good idea from the marketing point of view. In this
way, players can discover your other games or applications.

You can do all of this in AboutScene, so we are going to add one:

1.	 First, we are going to add some images to the project. Create a new group in
the Resources group and call it About. Open the book's supporting files available
in Chapter_09/Assets/About and add all images to the About group in the
Xcode project.

2.	 Create a new scene called AboutScene in the Scenes group.

3.	 Open the AboutScene.m file and import the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"
#import "MenuScene.h"

4.	 Then, add the init method, which calls the methods that we'll add shortly:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addText];
 [self addBackButton];
 [self addVisitWebSiteButton];
 }

 return self;
}

5.	 Add a method to add a background image as follows:
-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"about_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];
}

User Interface and Navigation

[272]

6.	 Add a method that adds a label with some stub text. Set the aboutText variable to
a long text:
-(void)addText
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 NSString *aboutText = @"Put some long text here!";
 NSString *aboutFont = @"AppleSDGothicNeo-Medium";
 float aboutFontSize = 14;
 CGSize aboutTextRect = CGSizeMake(viewSize.width * 0.8f,
 viewSize.height * 0.6f);

 CCLabelTTF *aboutLabel =
 [CCLabelTTF labelWithString:aboutText
 fontName:aboutFont
 fontSize:aboutFontSize
 dimensions:aboutTextRect];

 aboutLabel.positionType = CCPositionTypeNormalized;
 aboutLabel.position = ccp(0.5f, 0.3f);

 aboutLabel.color = [CCColor orangeColor];
 aboutLabel.shadowColor = [CCColor grayColor];
 aboutLabel.shadowBlurRadius = 1.0f;
 aboutLabel.shadowOffset = ccp(1.0f,-1.0f);
 [self addChild:aboutLabel];
}

7.	 Now, add a method that adds a button to visit the website. Remember that all these
methods are called from the init method:
-(void)addVisitWebSiteButton
{
 CCSpriteFrame *normal =
 [CCSpriteFrame frameWithImageNamed:@"btn_9slice.png"];
 CCSpriteFrame *pressed =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_9slice_pressed.png"];

 CCButton *btnVisitWebsite =
 [CCButton buttonWithTitle:@"Visit Web Site"
 spriteFrame:normal
 highlightedSpriteFrame:pressed
 disabledSpriteFrame:nil];
 btnVisitWebsite.positionType = CCPositionTypeNormalized;
 btnVisitWebsite.position = ccp(0.5f, 0.1f);

 btnVisitWebsite.horizontalPadding = 12.0f;

Chapter 9

[273]

 btnVisitWebsite.verticalPadding = 4.0f;
 btnVisitWebsite.label.fontName = @"HelveticaNeue-Bold";
 btnVisitWebsite.label.fontSize = 10.0f;

 btnVisitWebsite.block = ^(id sender)
 {
 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:@"http://packtpub.com"]];
 };

 [self addChild:btnVisitWebsite];
}

8.	 Finally, add a method that adds a back button, and a method that handles when the
player taps on it:
-(void)addBackButton
{
 CCSpriteFrame *backNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_back.png"];
 CCSpriteFrame *backHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_back_pressed.png"];
 CCButton *btnBack =
 [CCButton buttonWithTitle:nil
 spriteFrame:backNormalImage
 highlightedSpriteFrame:backHighlightedImage
 disabledSpriteFrame:nil];

 btnBack.positionType = CCPositionTypeNormalized;
 btnBack.position = ccp(0.1f, 0.9f);

 [btnBack setTarget:self selector:@selector(backTapped:)];
 [self addChild:btnBack];
}

-(void)backTapped:(id)sender
{
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];
 [[CCDirector sharedDirector]
 popSceneWithTransition:transition];
}

9.	 Then, open the MenuScene.m file and import the AboutScene.h header:
#import "AboutScene.h"

User Interface and Navigation

[274]

10.	Find the btnAboutTapped: method and replace it with the following:
-(void)btnAboutTapped:(id)sender
{
 AboutScene *aboutScene = [[AboutScene alloc] init];
 CCTransition *aboutTransition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];

 [[CCDirector sharedDirector] pushScene:aboutScene
 withTransition:aboutTransition];
}

11.	 Build and run the game. In the main menu scene, click on the About button and you
should see AboutScene appearing. Clicking on the back button at the top-left corner
of the screen will take you back to the main menu. Refer to the following screenshot:

You can get dummy text from the website http://www.lipsum.com.
The text it has is in Latin and is often used as a stub to test how the label will
look with a long text, without the need to come up with some real text.

Although Latin text looks strange, don't worry, it is not summoning a demon
or something like it.

Chapter 9

[275]

What just happened?
Although AboutScene can hardly be the most important scene in the game, we took the
chance to experiment and used several new Cocos2D features. Let's start from the final step
where we made the changes to the MenuScene class, and then we will review each method
in AboutScene.

Displaying AboutScene using the pushScene: method
The only change in the MenuScene.m file, apart from importing the AboutScene.h header,
is in the btnAboutTapped: method. In this method, we made two significant changes
compared to how we loaded scenes before. They are as follows:

�� We used the CCTransition class to make a smoother transition between the
scenes. If we don't use a transition, a new scene just appears on the screen.
Although this works, it doesn't look very nice. With CCTransition, we can animate
the transition between two scenes while switching between them. We will use more
transitions in the next section and will discuss them in more detail.

�� We used the pushScene: method of the CCDirector class for the first time in the
book. We have discussed the pushScene: method in Chapter 3, Cocos2D – Under
the Hood, but let me briefly refresh the difference between the pushScene: and
replaceScene: methods:

�� The replaceScene: method deallocates the currently running scene
and runs the specified scene, so you have one scene running at a time,
while pushScene: only suspends (but not destroys) the currently running
scene and pushes it back on the stack. Then, when you use the popScene:
method, the pushed scene is removed and the original scene is restored
with all of its state preserved.

�� Although pushScene: can be quite useful, you have to remember that the
price is the memory taken up by all suspended scenes on the stack. You can
use transitions with both the replaceScene: and pushScene: methods.
There is also the popSceneWithTransition: method.

The pushScene: method can be useful if you only want to
show some other scene for a short time but then return to the
original scene right where you left it. For example, a player
can play a game for some time, score some points, travel
some distance, and so on. You might want to display another
scene, but you don't want to restart the game and lose the
player progress. To achieve this, you just suspend the current
game scene and push another scene using the pushScene:
method instead of the replaceScene: method.

User Interface and Navigation

[276]

Okay, so the only thing we did in the MainScene class is used a nice transition and pushed
AboutScene for display, while suspending MainScene. We did not have any significant
reasons to use pushScene: for AboutScene, so this is just to demonstrate how you can use
this method.

Using 9-slice scaling on AboutScene
Now that we've reviewed the code in the MenuScene class, let's take a look at all of the code
that we've added to AboutScene.

As you can see, we have added four methods in the init method:

�� addBackground: This simply adds a background sprite. There should be nothing
new here, so we are not going to review this method.

�� addBackButton: This adds a button that uses the popSceneWithTransition:
method to pop AboutScene and return to the MenuScene class. Again, there is
nothing interesting to review.

�� addVisitWebSiteButton: This method adds the Visit Web Site button at the
bottom of AboutScene. The interesting part about this method is that it uses the
CCSprite9Slice image and a label instead of the text that is hardcoded right in
the image. We're going to review this method.

�� addText: This adds a rectangular text area. We're going to briefly review this
method right after the addVisitWebSiteButton method.

So let's start with the addVisitWebSiteButton method. As I have already mentioned,
this code is interesting because it does not use the button image with the text already on it.
Instead, it uses a label of the CCButton and an image that is scaled using the 9-slice scaling
technique. This technique allows us to have one single image at design time and then stretch
it as we need to at runtime without losing the appearance quality.

First of all, why do we need it? Well, it allows you to have one background image for all
buttons and save a lot of disk and memory space. Don't forget that you might want to
localize your game on several languages, and having a separate image for each button can
waste a lot of space.

Now you might wonder why we need some kind of technique to stretch the image. Why
can't we just create a simple background and stretch it the way we want? The answer is that
we want the buttons to look good, and it is hard to design a good-looking button that will
stretch without looking awful. Here is a demonstration of what happens when you simply
stretch the button:

Chapter 9

[277]

Stretching the button without using 9-slice

As you can see, the button only has four circles on the corners, and after stretching, it does
not look nice. So how can we avoid this? Instead of stretching the whole image, we can
stretch only some portions of it and only in some directions. The following diagram shows
the same example using the 9-slice technique:

Scaling using the 9-slice technique

User Interface and Navigation

[278]

Now, the stretched image looks much better. Of course, this does not work with all images,
but it works very well for buttons and other user-interface elements. The good thing is that
you don't have to write any additional code to use it with the CCButton class. Just pass it as
a normal image and the button will stretch it automatically to fit the label.

You might want to add some padding just as we did, so that the
label has some space around it.

This happens because the CCButton class uses the CCSprite9Slice class to draw the
button's background. You can also use CCSprite9Slice in your code to create sprites that
will stretch nicely.

Creating rectangular multiline labels
The final thing we will review in AboutScene is the addText method. There are some
instances when you need to create multiline labels to display long text. Sometimes, you
don't even have the text to display at that moment, but just have a rectangular area where
it should be displayed later. In this case, you can use the CCLabelTTF dimensions
parameter (or the dimensions property).

Let's review this code in the addText method:

 CGSize aboutTextRect = CGSizeMake(viewSize.width * 0.8f,
 viewSize.height * 0.6f);
 CCLabelTTF *aboutLabel = [CCLabelTTF
 labelWithString:aboutText
 fontName:aboutFont
 fontSize:aboutFontSize
 dimensions:aboutTextRect];

As you can see, this time, we passed an additional parameter called dimensions. This is the
size of the rectangle that the label should fit in. If the label is too big, it will be clipped. You
can test this by entering a long text or increasing the font size.

Sometimes, it might be useful to know that you don't need to specify the dimensions of both
the width and height. You can create CGSize with the height as zero (CGSizeMake(width,
0)) and this will only limit the width of the label area.

Time for action – using more transitions
The cross-fade transition that we used for the AboutScene to appear looks nice, but there
are more transitions that come with Cocos2D, and we need to add more scenes to our game.
In this section, we are going to add the scene for highscores and for level selection.

Chapter 9

[279]

Both scenes will be empty for now, but in the next few sections, we are going to fill them
with different controls. The HighscoresScene class will display the table with the highest
scored points, and the LevelSelectScene class will display a scrollable view where you
can select a level to play. Currently, we only have one level, but that is going to change in the
next chapter, so we must be prepared. Refer to the following steps:

1.	 Open the Xcode project and create two new scenes in the Scenes group. Name the
scenes HighscoresScene and LevelSelectScene.

2.	 Create two new groups in the Resources group: Highscores and LevelSelect.

3.	 Open the book supporting files and add all the images from Chapter_09/
Assets/Highscores to the Highscores group. Then, add all the images from
Chapter_09/Assets/LevelSelect to the LevelSelect group.

As I have mentioned before, it is better to review all the
images that we add every time. For example, in this case,
we added background images for HighscoresScene and
LevelSelectScene. We are going to use them straight
away, but in addition, we added few more images that we are
going to use later in the same scenes. We did it just for the
sake of keeping things in one place and because I'm sure you
already know very well how to add images to the project and
are probably already tired of me explaining this step in detail
every time.

4.	 Open the HighscoresScene.m file and replace its contents with the following code:
#import "HighscoresScene.h"

#import "cocos2d.h"
#import "cocos2d-ui.h"
#import "MenuScene.h"

@implementation HighscoresScene

-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addBackButton];
 }

 return self;

User Interface and Navigation

[280]

}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"highscores_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f,0.5f);
 [self addChild:bg];
}

-(void)addBackButton
{
 CCSpriteFrame *backNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_back.png"];
 CCSpriteFrame *backHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_back_pressed.png"];
 CCButton *btnBack =
 [CCButton buttonWithTitle:nil
 spriteFrame:backNormalImage
 highlightedSpriteFrame:backHighlightedImage
 disabledSpriteFrame:nil];

 btnBack.positionType = CCPositionTypeNormalized;
 btnBack.position = ccp(0.1f, 0.9f);

 [btnBack setTarget:self selector:@selector(backTapped:)];
 [self addChild:btnBack];
}

-(void)backTapped:(id)sender
{
 CCTransition *transition =
 [CCTransition
 transitionPushWithDirection:CCTransitionDirectionUp
 duration:1.0f];
 MenuScene *scene = [[MenuScene alloc] init];
 [[CCDirector sharedDirector] replaceScene:scene
 withTransition:transition];
}

@end

5.	 Open the LevelSelectScene.m file and replace its contents with the
following code:
#import "LevelSelectScene.h"

#import "cocos2d.h"

Chapter 9

[281]

#import "cocos2d-ui.h"
#import "MenuScene.h"

@implementation LevelSelectScene

-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addBackButton];
 }

 return self;
}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"level_select_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f,0.5f);
 [self addChild:bg];
}

-(void)addBackButton
{
 CCSpriteFrame *backNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_back.png"];
 CCSpriteFrame *backHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_back_pressed.png"];
 CCButton *btnBack =
 [CCButton buttonWithTitle:nil
 spriteFrame:backNormalImage
 highlightedSpriteFrame:backHighlightedImage
 disabledSpriteFrame:nil];

 btnBack.positionType = CCPositionTypeNormalized;
 btnBack.position = ccp(0.1f, 0.9f);

 [btnBack setTarget:self selector:@selector(backTapped:)];
 [self addChild:btnBack];
}

-(void)backTapped:(id)sender

User Interface and Navigation

[282]

{
 CCTransition *transition =
 [CCTransition
 transitionPushWithDirection:CCTransitionDirectionDown
 duration:1.0f];

 MenuScene *scene = [[MenuScene alloc] init];
 [[CCDirector sharedDirector] replaceScene:scene
 withTransition:transition];
}

@end

6.	 Open the MenuScene.m file and import the headers of the scenes that we've
just created:
#import "LevelSelectScene.h"
#import "HighscoresScene.h"

7.	 Scroll down and find the btnStartTapped: method, and replace it with the
following code:
-(void)btnStartTapped:(id)sender
{
 LevelSelectScene *levelSelectScene =
 [[LevelSelectScene alloc] init];
 CCTransition *transition =
 [CCTransition
 transitionPushWithDirection:CCTransitionDirectionUp
 duration:1.0f];
 [[CCDirector sharedDirector] replaceScene:levelSelectScene
 withTransition:transition];
}

8.	 Then, find the btnHighscoresTapped: method and also replace its contents with
the following code:
-(void)btnHighscoresTapped:(id)sender
{
 HighscoresScene *hsScene = [[HighscoresScene alloc] init];
 CCTransition *hsTransition =
 [CCTransition
 transitionPushWithDirection:CCTransitionDirectionDown
 duration:1.0f];

 [[CCDirector sharedDirector] replaceScene:hsScene
 withTransition:hsTransition];
}

9.	 Build and run the game. Now, when you press the Start and Highscores buttons,
you should see our new scenes appearing.

Chapter 9

[283]

What just happened?
Although there is a significant amount of code required to add these two scenes, almost
everything should be clear. In each scene, we added the background image and the back
button, just as we did in AboutScene. However, this time, we used another kind of
transition between the scenes.

Here is a screenshot to demonstrate our intentions:

Navigation between the scenes

User Interface and Navigation

[284]

As you can see, we have three separate scenes, but for the player, it looks like a seamless
world. When the player taps the Highscores button, he just looks up to the sky, and when
the player taps the Start button, he looks down and prepares to get back on earth and
start hunting.

This is just one of the examples on how you can improve your game navigation with
transitions. And this is only a basic one. I am sure you can come up with even better ideas
using other transitions.

To find other transitions, just open the CCTransition.h header from Cocos2D sources
(you can just hit command + Shift + O and start typing to search within the project), or you
can just start typing [CCTransition transition… and the autocomplete feature will
suggest different types of transitions for you.

If this is still not enough and you cannot find a transition that you think will fit your game;
ideally, you can always create your own transition. However, this is a bit more advanced
and we won't cover it in this book.

Time for action – using the scroll view to select levels
It is nice to have good transitions from the menu, but currently, we can't even start the game
since we display almost an empty scene for level selection. The reason for this whole scene
is that in some games, you have multiple levels. I'm sure you can remember some popular
game where you scroll between levels or game types.

Sometimes, the game can have so many levels that they don't fit on one screen. Of course,
we could create different scenes and plan transitions just as we did on the menu scene,
but in most cases, we just need a scroll view. This is exactly what we're going to do now;
we're going to add a scroll view. Refer to the following steps:

1.	 Open the LevelSelectScene.m file, and import the GameScene.h header since
we're going to navigate to this scene for one of our levels:
#import "GameScene.h"

2.	 Right after the #import directives, add two #define statements. These will be our
level names to distinguish them in the scroll view later:
#define kLevelHunting @"hunting"
#define kLevelDodging @"dodging"

3.	 Then, add the addScroll method, which will create the scroll view, and add it to
the scene:
-(void)addScroll
{
 //1

Chapter 9

[285]

 int levels = 10;

 //2
 CCNode *scrollViewContents = [CCNode node];
 scrollViewContents.contentSizeType = CCSizeTypeNormalized;
 scrollViewContents.contentSize = CGSizeMake(levels, 1);

 for (int i =0; i < levels; i++)
 {
 //3
 CCButton *level = nil;
 if (i % 2 == 0)
 {
 CCSpriteFrame *levelImage =
 [CCSpriteFrame
 frameWithImageNamed:@"hunting_level.png"];
 level = [CCButton buttonWithTitle:nil
 spriteFrame:levelImage];
 level.name = kLevelHunting;
 }
 else
 {
 CCSpriteFrame *levelImage =
 [CCSpriteFrame
 frameWithImageNamed:@"dodging_level.png"];
 level = [CCButton buttonWithTitle:nil
 spriteFrame:levelImage];
 level.name = kLevelDodging;
 }

 level.positionType = CCPositionTypeNormalized;
 level.position = ccp((i + 0.5f)/levels, 0.5f);

 //4
 [level setTarget:self
 selector:@selector(levelTapped:)];

 //5
 [scrollViewContents addChild:level];
 }

 //6
 CCScrollView *scrollView =
 [[CCScrollView alloc]
 initWithContentNode:scrollViewContents];

 //7
 scrollView.pagingEnabled = YES;

 //8

User Interface and Navigation

[286]

 scrollView.horizontalScrollEnabled = YES;
 scrollView.verticalScrollEnabled = NO;

 [self addChild:scrollView];
}

4.	 Then, add the levelTapped: method, which will be called when any level button
is tapped:
-(void)levelTapped:(id)sender
{
 NSString *levelName = ((CCButton*)sender).name;
 if ([levelName isEqualToString:kLevelHunting])
 {
 GameScene *scene = [[GameScene alloc] init];
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];

 [[CCDirector sharedDirector] replaceScene:scene
 withTransition:transition];
 }
 else
 {
 CCLOG(@"Level not implemented: %@", levelName);
 }
}

5.	 Finally, add the call to the addScroll method in init:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addBackButton];
 [self addScroll];
 }

 return self;
}

6.	 Build and run the game. Press the Start button and scroll the screen with
your finger or mouse to see different levels (only two for now). Refer to the
following screenshot:

Chapter 9

[287]

Scrolling levels

You can find a snapshot of the project at this point in the
Chapter_09/Cocohunt_09_Navigating folder.

What just happened?
We don't have a lot of different levels in our game. Soon, we are going to add a second one,
but for now, we only have one.

Scrolling between two levels is not fun. This is why we have generated ten identical buttons,
where even buttons lead to hunting levels that we have already created, and odd buttons are
reserved for the new level that we will add shortly.

We could not fit all the buttons on the screen at once, especially with the spacing that we
intentionally made between them. This was done to make each level centered on its own
page, and even more importantly, to demonstrate the paging.

Since we need more space, we used CCScrollView to add a scroll view. The scroll view
consists of two nodes: the scroll view node itself and the content node.

User Interface and Navigation

[288]

The scroll view node has a fixed size and is typically smaller than its content node. By default,
the scroll view fills its parent node, and in our case, this is what we need since we want the
scroll view's size to be equal to the scene size (screen size). However, you can set its size to
any portion of the screen.

The content node can be of any size. In our case, it is ten screens wide and one screen high.

You can think about the scroll view node as a window through which you can see only a
small portion of the content node. When you scroll the scroll view, it just moves the
underlying content node that is inside. This way, we see a different part of the content
node through this window, as shown in the following figure:

Moving the content node under the scroll view window

In the case displayed in the top half of the image, we see the leftmost part of the content
node. Then, we scroll with our finger to the left and move the underlying content node. The
result is shown at the bottom part of the figure. We see a different part of the content node.

After understanding the main concept of the scroll view, let's review the addScroll method
in detail:

1.	 We set the amount of levels to 10. In a real game, this will be the actual number of
levels or pages with levels if you have several levels on the same page.

2.	 Here, we created the content node and set its size using normalized size units.
Normalized size units work in a very similar way to normalized coordinates that we
have reviewed before. This means the content node size will be 10 times the width
(number of levels) and one time the height of its parent, which will be the scroll
view. The scroll view size will be equal to the screen size, as I've mentioned before,
so if our content node size is 10 screens wide and 1 screen high, its size will be
(viewSize.width * 10.0f, viewSize.height * 1).

Chapter 9

[289]

3.	 This code block creates the button with the hunting_level.png image for even
buttons and the button with the dodging_level.png image for odd buttons. In
addition, we set different names for different button types to distinguish them later
using the name property. Then, we set the position of the button in the content node.

4.	 Here, we set the target for all buttons. As you can see, we use the same method to
handle all button types. This is why we needed to set the name of the buttons, so
that we could distinguish them in the handler method.

5.	 The button is added to the content node of the scroll view.

6.	 Then, after all buttons are added to the content node, the scroll view itself is created
using this content node.

7.	 The paging is then enabled, and we can scroll exactly one page in any direction. If we
scroll enough, then the scroll view will do the rest of the job, and if we do not scroll
enough, the scroll view will reset its position to the original page.

It is very easy to understand the difference by turning the
paging on and off.

8.	 Since we only want horizontal scrolling, we enable it and disable the vertical scrolling.

That's it. The scroll view does the rest of the job.

When we tap on the button, a levelTapped: method is called, and a button that was
tapped is passed as a sender argument. The code in the levelTapped: method uses the
name property of the button to check what level should be loaded. For now, it works only for
the buttons with the Hunting level.

Now, we can start the game again. This is good since we are going to add some dialogs to the
game scene itself.

Have a go hero
Here is a list of things to try:

�� Try all different transitions

�� Write the code with the pushScene: method to push scenes until the game crashes
and count how many scenes you have managed to push until it crashed

�� Change the label's font size, position, and displayed text in AboutScene

User Interface and Navigation

[290]

�� Change the back button arrow to point down in HighscoresScene (using the
rotation property) and point up in LevelSelectScene

�� Use Cocos2D actions (for example, CCMoveBy) to set up a button floating around
the screen

Don't forget to back up your project in case you break something.
Also, changes from this list might not be compatible with the code
that we add later.

Creating modal dialogs and using text input
Often, there are moments in the game when you need to display a dialog and require the
user to choose an option before continuing. For example, you might want to prompt for the
player's name when they achieve a highscore.

Of course, you can just use the pushScene: method and display the whole new scene.
However, sometimes, these dialogs are so small and you want them to cover only a small
portion of the underlying scene.

Also, sometimes, you don't want to suspend the running scene while showing the dialog.
There are tons of other cases when you might want to show a modal dialog without a
separate scene.

In this chapter, we are going to create several custom dialogs and use the built-in
UIAlertView class. We are going to create a pause dialog, a dialog to enter the highscore,
and a dialog that is displayed after you win or lose the game.

Time for action – pausing the game with a pause dialog
We will start with adding a pause dialog to allow the player to pause the game:

1.	 Create a new group in Resources and call it Dialogs. Then, open the book's
supporting files in Chapter_09/Assets/Dialogs and add all the images to
that group.

2.	 Create a new Objective-C class in the Scenes group. Name the class PauseDialog
and make it a subclass of CCNode.

Note that it is a subclass of CCNode not CCScene. We have
used a similar approach when we created the HUDLayer class.
You can read Chapter 6, Rendering Text, to refresh your memory.
We are going to use CCNode as a base class for all dialogs.

Chapter 9

[291]

3.	 Open the PauseDialog.h file and add the following property. It will allow the
object, which creates the dialog to be notified when the dialog is closed.
@property (nonatomic, copy) void(^onCloseBlock)(void);

If you are unfamiliar with blocks, I suggest that you read Apple's
documentation at https://developer.apple.com/
library/ios/documentation/cocoa/Conceptual/
Blocks/Articles/00_Introduction.html. I am sure
you will love them.

4.	 Switch to the PauseDialog.m file and import the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"

5.	 Then, add the init method, which calls the methods to set up the modal dialog
and lay out all the user interface elements, that we'll add shortly:
-(instancetype)init
{
 if (self = [super init])
 {
 [self setupModalDialog];
 [self createDialogLayout];
 }

 return self;
}

6.	 Add a method that will set up the required node properties in order to make it work
as a modal dialog:
-(void)setupModalDialog
{
 self.contentSizeType = CCSizeTypeNormalized;
 self.contentSize = CGSizeMake(1, 1);
 self.userInteractionEnabled = YES;
}

7.	 Add the createDialogLayout method, which creates and positions all the user
interface elements:
-(void)createDialogLayout
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"pause_dialog_bg.png"];
 bg.positionType = CCPositionTypeNormalized;

User Interface and Navigation

[292]

 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];

 CCSpriteFrame *closeNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_close.png"];
 CCSpriteFrame *closeHighlighgtedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_close_pressed.png"];
 CCButton *btnClose =
 [CCButton buttonWithTitle:nil
 spriteFrame:closeNormalImage
 highlightedSpriteFrame:closeHighlighgtedImage
 disabledSpriteFrame:nil];
 btnClose.positionType = CCPositionTypeNormalized;
 btnClose.position = ccp(1,1);
 [btnClose setTarget:self
 selector:@selector(btnCloseTapped:)];
 [bg addChild:btnClose];

 CCSpriteFrame *restartNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_restart.png"];
 CCSpriteFrame *restartHighLightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_restart_pressed.png"];
 CCButton *btnRestart =
 [CCButton buttonWithTitle:nil
 spriteFrame:restartNormalImage
 highlightedSpriteFrame:restartHighLightedImage
 disabledSpriteFrame:nil];
 btnRestart.positionType = CCPositionTypeNormalized;
 btnRestart.position = ccp(0.25f, 0.2f);
 [btnRestart setTarget:self
 selector:@selector(btnRestartTapped:)];
 [bg addChild:btnRestart];

 CCSpriteFrame *exitNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_exit.png"];
 CCSpriteFrame *exitHighLightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_exit_pressed.png"];
 CCButton *btnExit =
 [CCButton buttonWithTitle:nil
 spriteFrame:exitNormalImage
 highlightedSpriteFrame:exitHighLightedImage
 disabledSpriteFrame:nil];
 btnExit.positionType = CCPositionTypeNormalized;

Chapter 9

[293]

 btnExit.position = ccp(0.75f, 0.2f);
 [btnExit setTarget:self
 selector:@selector(btnExitTapped:)];
 [bg addChild:btnExit];
}

8.	 Add the following methods to handle buttons:
-(void)btnCloseTapped:(id)sender
{
 if (self.onCloseBlock)
 self.onCloseBlock();

 [self removeFromParentAndCleanup:YES];
}

-(void)btnRestartTapped:(id)sender
{
 CCLOG(@"Restart");
}

-(void)btnExitTapped:(id)sender
{
 CCLOG(@"Exit");
}

9.	 Add the touchBegan: method to swallow all touches outside the dialog window to
make it modal:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 CCLOG(@"Touch swallowed by the pause dialog");
}

10.	Now, open the GameScene.m file and import the PauseDialog.h and
cocos2d-ui.h headers:
#import "PauseDialog.h"
#import "cocos2d-ui.h"

11.	Then, add two more z-order values for the pause button and the dialogs:
typedef NS_ENUM(NSUInteger, Z_ORDER)
{
 Z_BACKGROUND,
 Z_BATCH_NODE,
 Z_LABELS,
 Z_HUD,
 Z_PAUSE_BUTTON,
 Z_DIALOGS
};

User Interface and Navigation

[294]

12.	Scroll down and add the following two methods:
-(void)addPauseButton
{
 CCSpriteFrame *pauseNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_pause.png"];
 CCSpriteFrame *pauseHighlightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_pause_pressed.png"];

 CCButton *btnPause =
 [CCButton buttonWithTitle:nil
 spriteFrame:pauseNormalImage
 highlightedSpriteFrame:pauseHighlightedImage
 disabledSpriteFrame:nil];
 btnPause.positionType = CCPositionTypeNormalized;
 btnPause.position = ccp(0.95f, 0.05f);
 [btnPause setTarget:self
 selector:@selector(btnPauseTapped:)];

 [self addChild:btnPause z:Z_PAUSE_BUTTON];
}

-(void)btnPauseTapped:(id)sender
{
 if (_gameState != GameStatePlaying)
 return;

 _gameState = GameStatePaused;

 for (Bird *bird in _birds)
 bird.paused = YES;

 for (CCSprite *arrow in _arrows)
 arrow.paused = YES;

 PauseDialog *dlg = [[PauseDialog alloc] init];
 dlg.onCloseBlock = ^{

 _gameState = GameStatePlaying;

 for (Bird *bird in _birds)
 bird.paused = NO;

 for (CCSprite *arrow in _arrows)
 arrow.paused = NO;

 };
 [self addChild:dlg z:Z_DIALOGS];
}

Chapter 9

[295]

13.	Finally, add a call to the addPauseButton button method to the end of the
init method:
-(instancetype)init
{
 if (self = [super init])
 {
 //..skipped..

 [self addPauseButton];
 }

 return self;
}

14.	Build and run the game. Start the game and then click on the Pause button.
Close the pause dialog using the close (X) button. The Exit and Restart buttons
should currently only output their names to the console.

What just happened?
Our pause dialog works pretty simply. The dialog itself is just a node that is displayed in the
game scene. This works in a very similar way as our HUDLayer. However, there are a few
interesting techniques that we used when creating this dialog.

Using a background image as a container for UI elements
Since we don't want to cover the whole screen, we added a small image to the PauseDialog
node that works as a pause dialog background, as shown in the following screenshot:

The pause_dialog_bg.png image is used as a pause dialog background

User Interface and Navigation

[296]

Since all the buttons of the pause dialog are inside this small image, we added them as child
nodes of this background sprite instead of the node itself.

In Chapter 3, Cocos2D – Under the Hood, we discussed that every CCNode
descendant can have child nodes. We're using this right now to position all
elements relative to the background image.

Let's review the piece of code in the createDialogLayout method:

 btnClose.positionType = CCPositionTypeNormalized;
 btnClose.position = ccp(1,1);

This piece of code creates the close button. As you can see, we used normalized coordinates
with the bottom-left reference corner (this is how CCPositionTypeNormalized is
defined) and set the position of the close button to (1,1). This is the top-right corner of the
parent node.

Since we add the button to the background and the button's anchor point is (0.5, 0.5), we
set the button's center to the top-right corner of the pause dialog, exactly where we wanted.

The rest of the createDialogLayout method creates other buttons and sets the methods
that will be called when the buttons are pressed.

Swallowing touches
Even though our game is on pause, since we change _gameState to GameStatePaused in
the btnPauseTapped: method, we don't want to think what happens if the player touches
the game scene outside the small pause dialog. There can be some other buttons or controls
in your game, and it is much easier to know that the player just cannot do anything until they
resume or exit the game.

Fortunately, there is an easy way to solve this. In the setupModalDialog method,
we set the size of our node to cover the whole game scene, and by setting the
userInteractionEnabled property to YES, we are letting Cocos2D know that our
node wants to handle touches.

As we know by now, touches are handled in a reverse render order. In other words,
the nodes on the top (high z-order) will get a chance to handle, and more importantly,
cancel the touch before the underlying nodes.

Our PauseDialog is the topmost node right now because we added it to the scene with
the following line (where Z_DIALOGS is the highest z-order we have):

[self addChild:dlg z:Z_DIALOGS];

Chapter 9

[297]

This way, when the player touches the screen anywhere outside the button's rectangles of
the pause dialog, the touchBegan: method of the PauseDialog class is called before all
other nodes even have a chance to know that the player touched the screen.

The buttons in the pause dialog still work because they are children of the
PauseDialog node and are thus rendered on top of it. Even though
we didn't set their z-order, they have the zOrder property set to 0 by
default. The node renders everything in three steps: renders children with
zOrder < 0, renders itself in case it is a render node, and finally renders
children with zOrder >= 0.

Our implementation of the touchBegan: method in the PauseDialog class simply
swallows the touch by not processing it and not calling the touchBegan: method on
super class to pass the touch to the underlying nodes.

Pausing and resuming the game
The pausing and resuming of the game both happen in the btnPauseTapped: method in
the GameScene.m file.

When the pause button is tapped, we check that we are in a valid state to pause the game.
If we already won, lost, or the game has not yet started, we don't want the player to pause
the game.

If the game is in the correct game state, then we set _gameState to GameStatePaused. This
will disable shooting, bird spawning, and so on, everything except the objects that are moved
using Cocos2D actions (for example, CCActionMoveTo). To pause the birds and the arrows,
we need to iterate through arrays that contain them and set their pause property to YES.

Instead of iterating through the _birds and _arrows arrays and pausing all objects, we
could just use the scene's pause property and this would stop all of its child nodes too.

However, this would also stop the fire from burning, and could stop some other actions
that you may still want to run. For example, you might want the pause dialog to not simply
appear on the screen immediately but appear using some animation. Setting the pause
property of the scene would stop this animation from running too because the pause dialog
is the child node of the scene.

Another elegant solution is to keep all the game objects in a separate node
and not in the scene directly. This way, you can simply pause this node.

User Interface and Navigation

[298]

After pausing everything, we display PauseDialog and assign its onCloseBlock property
to the block that will resume the game. This block is executed from the btnCloseTapped:
method in the PauseDialog.m file at the moment we tap the close button. This is done
right before the dialog is removed from the game scene.

Time for action – restarting and exiting the game
There are still two buttons in the pause dialog that currently simply output to the console
instead of actually doing something. Let's add the code for the Exit and Restart buttons. In
addition, we are going to create a LoadingScene class, which will help us to avoid memory
errors and will use UIAlertView to confirm the exit from the game.

Looks like a lot of work, so let's start:

1.	 Open the Xcode project and create a new scene named LoadingScene in the
Scenes group.

2.	 Then, open the PauseDialog.m file and import the LoadingScene.h and
MenuScene.h headers:
#import "LoadingScene.h"
#import "MenuScene.h"

3.	 Find the btnRestartTapped: method and replace its contents with the
following code:
-(void)btnRestartTapped:(id)sender
{
 LoadingScene *loadingScene = [[LoadingScene alloc] init];
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];

 [[CCDirector sharedDirector] replaceScene:loadingScene
 withTransition:transition];
}

4.	 Then, find the btnExitTapped: method and replace its contents with the
following code:
-(void)btnExitTapped:(id)sender
{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@"Exit confirmation"
 message:@"Are you sure?"
 delegate:self
 cancelButtonTitle:@"No"
 otherButtonTitles:@"Yes", nil];
 [alert show];
}

Chapter 9

[299]

5.	 Right below the btnExitTapped: method, add the alertView:
clickedButtonAtIndex: method, as shown in the following code. It will be
called automatically when the player taps any button in the alert dialog.
- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 1)
 {
 MenuScene *menuScene = [[MenuScene alloc] init];
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];
 [[CCDirector sharedDirector] replaceScene:menuScene
 withTransition:transition];
 }
}

6.	 Then, switch to the PauseDialog.h header and make the PauseDialog
class conform to the UIAlertViewDelegate protocol since this is required
to use UIAlertView:
@interface PauseDialog : CCNode<UIAlertViewDelegate>

7.	 Open the GameScene.m file and add the onExit method right after the
onEnter method:
-(void)onExit
{
 [super onExit];
 [[AudioManager sharedAudioManager] stopMusic];
}

8.	 Finally, switch to the LoadingScene.m file and replace its contents with the
following code:
#import "LoadingScene.h"

#import "cocos2d.h"
#import "GameScene.h"

@implementation LoadingScene

-(instancetype)init
{
 if (self = [super init])
 {
 CCLabelTTF *loading =
 [CCLabelTTF labelWithString:@"Loading..."
 fontName:@"Georgia-BoldItalic"
 fontSize:24];
 loading.anchorPoint = ccp(0.5f, 0.5f);

User Interface and Navigation

[300]

 loading.positionType = CCPositionTypeNormalized;
 loading.position = ccp(0.5f, 0.5f);
 [self addChild:loading];
 }

 return self;
}

-(void)onEnterTransitionDidFinish
{
 [super onEnterTransitionDidFinish];

 CCTransition *transition =
 [CCTransition
 transitionRevealWithDirection:CCTransitionDirectionDown
 duration:1.0f];
 GameScene *scene = [[GameScene alloc] init];
 [[CCDirector sharedDirector] replaceScene:scene
 withTransition:transition];
}

@end

9.	 Build and run the game. Now, you should be able to restart and exit the game from
the pause dialog.

What just happened?
Most of the code we added should be clear. We added the code to navigate to the
MenuScene class in case the player taps the Exit button. But before that, we displayed
UIAlertView to make sure the player didn't accidentally tap the Exit button.

We also added the code to restart the game. To restart the game, we simply create a new
GameScene class (via LoadingScene) when the player taps the Restart button. Of course,
we could add a restart method to the GameScene class, which will reset the state to the
initial one, but sometimes, the simpler way is just to recreate the GameScene class.

The reason for using LoadingScene and not creating a new GameScene right in the
btnRestartTapped: method is pretty simple. We need to do this to avoid memory errors.

When the btnRestartTapped: method is executed, we have one instance of GameScene
running, since PauseDialog is just a node in it. If we create one more GameScene instance,
we'll have two GameScene instances in memory at the same time.

Chapter 9

[301]

Typically, the GameScene class is the heaviest scene in the game. This means it loads
a lot of resources and consumes a lot of memory. So, instead of having two instances
of it simultaneously, we first switch to the lightweight LoadingScene and let the
current GameScene class be deallocated. Then, we create a new GameScene class in
onEnterTransitionDidFinish and switch to it.

Currently, nothing bad will happen if we don't use the LoadingScene
technique since our GameScene is not that heavy. However, I wanted
to show you this trick so that you could use it in case you need it in a
real-life game.

One last change we made is that we added the onExit method to the GameScene class.
This method is declared in CCNode and is thus present in all of its descendant nodes, such as
our scene.

This method is called when the node leaves the stage. In our case, we use it to stop the
music when the current GameScene is replaced with MenuScene on exit or another instance
of the GameScene on restart.

There are four methods that can be used to execute the code at some point of the node
lifecycle. They are as follows:

�� onEnter: This is called when the node enters the stage, for example, when you
display a scene using the replaceScene: or pushScene: method. Also, if you use
transition, then onEnter is called when the transition starts.

�� onEnterTransitionDidFinish: This is the same as onEnter, but it is called
when the enter transition is completed. Add a code in this method if you want to
wait while the transition completes, before starting some action.

For example, it is a good idea to start the game timer when
the transition completes, so that the players don't think it is
unfair to count time when they can't play the game. By the
way, it is also a good idea to let the player start playing after
the transition completes.

�� onExit: This is called when the node leaves the stage. If you use the transition,
then this method is called when the transition finishes.

�� onExitTransitionDidStart: This is called when the exit transition starts.

User Interface and Navigation

[302]

The loose term "enters the stage" or "leaves the stage" is used because
there are several scenarios when this happens, and this term describes
all of them very well. For example, the scene enters the stage when it
is displayed using CCDirector, while other CCNode descendants,
such as CCSprite, enter the stage when they are added to the scene
and leave the stage each time they are removed from the scene. Since
we can remove the node without destroying it and add it again to
the scene, the node's onEnter and onExit methods can be called
multiple times for the same node.

The onEnter method is also a good candidate to place the initialization code, the one that
we have right now in the init method. The reason for this is that the onEnter method is
called when the current scene starts running and the previous scene is deallocated (if you
use replaceScene: not pushScene: of course). This way, you won't get two heavy scenes
in memory at the same time.

Here's how we could avoid using the extra loading scene. If we placed all the code of the
GameScene class in the onEnter method, we could easily create one more instance of
GameScene right in the btnRestartTapped: method instead of creating the intermediate
LoadingScene.

This would have just created an empty scene, since no initialization code (loading sprites,
creating labels, and so on) would run because it is not in the init method. Then, when we
call the replaceScene: method, Cocos2D will remove the current scene and only after that
call the onEnter method on the second instance. This way, we would not get two scenes
with all the sprites, labels, and other resources in memory at the same time.

A very important thing to remember when using any of those methods is to
call its super (for example, [super onEnter]); otherwise, you most
likely will get hard-detectable bugs.

Time for action – displaying stats when losing and winning
There are a few more dialogs that we need to add quickly. The first one is the dialog that is
displayed when we win or lose the game. In this dialog, we will display the gathered statistics
and again the same buttons to restart or exit the game. Otherwise, you cannot do anything
when you win or lose.

1.	 Open an Xcode project and create a new CCNode subclass called WinLoseDialog. It
is better to place this too in the Scenes group in order to keep things more organized.

Chapter 9

[303]

2.	 Open the GameStats.h file and add the timeSpent property; we will use it to
count the time that the player spent to beat or lose the level:
@property (nonatomic, assign) float timeSpent;

3.	 Open the GameStats.m file and initialize this property to 0 inside the init method:
self.timeSpent = 0;

4.	 Open the GameScene.m file and find the update: method. Add the following line,
right after the line where we check that the game state is GameStatePlaying:
-(void)update:(CCTime)dt
{
 if (self.gameState != GameStatePlaying)
 return;

 _gameStats.timeSpent += dt;

 //..skipped..
}

This will add time to the timeSpent property when the player is actually playing
the game.

5.	 Open the WinLoseDialog.h file and import the GameStats.h header:
#import "GameStats.h"

6.	 Then, add the initWithGameStats: method declaration:
-(instancetype)initWithGameStats:(GameStats *)stats;

7.	 After that, open the WinLoseDialog.m file and add the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"

#import "MenuScene.h"
#import "LoadingScene.h"

8.	 Then, add the following #define statements to define common font properties for
the stats labels:
#define kKeyFont @"HelveticaNeue"
#define kKeyFontSize 12
#define kKeyX 0.2f

#define kValueFont @"HelveticaNeue-Bold"
#define kValueFontSize 12
#define kValueX 0.8f

#define kLine1Y 0.7f
#define kMarginBetweenLines 0.08f

User Interface and Navigation

[304]

9.	 Add the following instance variable:
@implementation WinLoseDialog
{
 GameStats *_currenStats;
}

10.	Then, add the init method as follows:
-(instancetype)initWithGameStats:(GameStats *)stats;
{
 if (self = [super init])
 {
 _currenStats = stats;

 [self setupModalDialog];

 [self createDialogLayout];
 }

 return self;
}

11.	Add the following methods to set up a modal dialog and add the user
interface elements:
-(void)setupModalDialog
{
 self.contentSizeType = CCSizeTypeNormalized;
 self.contentSize = CGSizeMake(1, 1);
 self.userInteractionEnabled = YES;
}

-(void)createDialogLayout
{

 CCSprite *bg =
 [CCSprite spriteWithImageNamed:
 @"win_lose_dialog_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg];

 NSDictionary *stats =
 @{ @"Score" :
 [NSString stringWithFormat:@"%d", _currenStats.score],
 @"Lives Left" :
 [NSString stringWithFormat:@"%d", _currenStats.lives],
 @"Time Spent" :
 [NSString stringWithFormat:@"%.1f s",

Chapter 9

[305]

 _currenStats.timeSpent] };

 float margin = 0;
 CCColor *fontColor = [CCColor orangeColor];

 for (NSString *key in stats.allKeys)
 {
 CCLabelTTF *lblKey =
 [CCLabelTTF labelWithString:key
 fontName:kKeyFont
 fontSize:kKeyFontSize];
 lblKey.color = fontColor;
 lblKey.anchorPoint = ccp(0.0f, 0.5f);
 lblKey.positionType = CCPositionTypeNormalized;
 lblKey.position = ccp(kKeyX, kLine1Y - margin);
 [bg addChild:lblKey];

 CCLabelTTF *lblValue =
 [CCLabelTTF labelWithString:[stats objectForKey:key]
 fontName:kValueFont
 fontSize:kValueFontSize];
 lblValue.color = fontColor;
 lblValue.anchorPoint = ccp(1.0f, 0.5f);
 lblValue.positionType = CCPositionTypeNormalized;
 lblValue.position = ccp(kValueX, kLine1Y - margin);
 [bg addChild:lblValue];

 margin += kMarginBetweenLines;
 }

 CCSpriteFrame *restartNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_restart.png"];
 CCSpriteFrame *restartHighLightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_restart_pressed.png"];
 CCButton *btnRestart =
 [CCButton buttonWithTitle:nil
 spriteFrame:restartNormalImage
 highlightedSpriteFrame:restartHighLightedImage
 disabledSpriteFrame:nil];
 btnRestart.positionType = CCPositionTypeNormalized;
 btnRestart.position = ccp(0.25f, 0.2f);
 [btnRestart setTarget:self
 selector:@selector(btnRestartTapped:)];
 [bg addChild:btnRestart];

 CCSpriteFrame *exitNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_exit.png"];

User Interface and Navigation

[306]

 CCSpriteFrame *exitHighLightedImage =
 [CCSpriteFrame
 frameWithImageNamed:@"btn_exit_pressed.png"];
 CCButton *btnExit =
 [CCButton buttonWithTitle:nil
 spriteFrame:exitNormalImage
 highlightedSpriteFrame:exitHighLightedImage
 disabledSpriteFrame:nil];
 btnExit.positionType = CCPositionTypeNormalized;
 btnExit.position = ccp(0.75f, 0.2f);
 [btnExit setTarget:self
 selector:@selector(btnExitTapped:)];
 [bg addChild:btnExit];
}

12.	Add methods to handle the tapped buttons and swallow touches as follows:
-(void)btnRestartTapped:(id)sender
{
 LoadingScene *loadingScene = [[LoadingScene alloc] init];
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];

 [[CCDirector sharedDirector]
 replaceScene:loadingScene withTransition:transition];
}

-(void)btnExitTapped:(id)sender
{
 MenuScene *menuScene = [[MenuScene alloc] init];
 CCTransition *transition =
 [CCTransition transitionCrossFadeWithDuration:1.0f];

 [[CCDirector sharedDirector]
 replaceScene:menuScene withTransition:transition];
}

-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 //do nothing, swallow touch
}

Chapter 9

[307]

13.	Then, open the GameScene.m file and import the WinLoseDialog.h header:
#import "WinLoseDialog.h"

14.	After that, update the won and lost methods and add the following lines at the end
of each method:
 -(void)lost
{
 //..skipped..

 WinLoseDialog *wlDialog =
 [[WinLoseDialog alloc]
 initWithGameStats:_gameStats];
 [self addChild:wlDialog];
}

-(void)won
{
 //..skipped..

 WinLoseDialog *wlDialog =
 [[WinLoseDialog alloc]
 initWithGameStats:_gameStats];
 [self addChild:wlDialog];
}

15.	Now, find the displayWinLoseLabelWithText: method and adjust the height at
which the label appears, or it will appear on top of the dialog:
label.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.85f);

16.	Finally, for easier testing, find the place where you set the number of birds to spawn
and number of birds to lose, and set both the values to 1:
_birdsToSpawn = 1;
_birdsToLose = 1;

User Interface and Navigation

[308]

17.	Build and run the game. Win and lose the game by hitting the only bird or letting it
fly away and you should see the new dialog. Refer to the following screenshot:

You can find a snapshot of the project at this point in the
Chapter_09/Cocohunt_09_Dialogs folder.

What just happened?
Now, we can start the game, play it until we win or lose, get some statistics, and finally exit
or restart the game instead of staring at the screen forever.

Currently, the statistics only show how much time we spent by completing the level or how
long we lasted. However, I'm sure you've got the idea of gathering statistics.

What we did is we just created a class where we can keep all the different variables that the
user might be interested in. In fact, we already created this GameStats class quite some
time ago, keeping in mind how we will use it later.

After that, we found a place where we can update the stats. In our particular case, this was
the update: method in the GameScene class. Finally, we displayed everything we gathered
in the final dialog.

It might seem strange, but players love different stats. They love it even more if it is linked to
some kind of achievement. For example, there can be an achievement if you beat the level
for five seconds, or hit three birds within one second, and so on.

Chapter 9

[309]

In the final chapter of this book, we are going to learn how to integrate
Game Center and will add several achievements based on different stats.

The final thing we are left with in this chapter is to complete our highscores scene.

Entering and displaying highscores
I have a feeling you are already tired of creating all those dialogs and buttons. Unfortunately,
creating games is not only the fun of creating a great gameplay prototype. When you are
about to release your game, you suddenly remember that it would be nice if users could
compete using a highscores table, and if they could pause and restart the game since they
don't have a Stop button in Xcode.

We will take a small break and will complete our HighscoresScene class, and then we will
create the final dialog for this chapter and for the whole book.

Time for action – displaying highscores with CCTableView
Tables are great for displaying data. We are going to use a table control provided by Cocos2D
to display a list of the highest scored points by our players. The table will contain a list of
player names and their scores.

Since we are not prompting for the player's name just yet, we are going to display dummy
data, and in the next section, we are going to replace it with real highscores.

Let's start:

1.	 Open the HighscoresScene.h file and import the cocos2d-ui.h header:
#import "cocos2d-ui.h"

2.	 Then, make the HighscoresScene class conform to
CCTableViewDataSource:
@interface HighscoresScene: CCScene<CCTableViewDataSource>

3.	 After that, switch to the HighscoresScene.m file and define the constants
of the row height and font properties:
#define kHighscoreRowHeight 32
#define kHighscoreFontName @"Helvetica"
#define kHighscoreFontSize 12

User Interface and Navigation

[310]

4.	 Scroll down and add the addHighscoresTable method as follows:
-(void)addHighscoresTable
{
 //1
 CCTableView *highscoresTable = [[CCTableView alloc] init];

 //2
 highscoresTable.rowHeight = kHighscoreRowHeight;

 //3
 highscoresTable.anchorPoint = ccp(0.5, 1.0f);

 //4
 highscoresTable.positionType = CCPositionTypeNormalized;
 highscoresTable.position = ccp(0.5f, 0.65f);
 highscoresTable.contentSizeType = CCSizeTypeNormalized;
 highscoresTable.contentSize = CGSizeMake(1, 0.4f);

 //5
 highscoresTable.userInteractionEnabled = NO;

 //6
 [self addChild:highscoresTable];

 //7
 highscoresTable.dataSource = self;
}

5.	 Then, add the call to the addHighscoresTable method in the init method:
-(instancetype)init
{
 if (self = [super init])
 {
 [self addBackground];
 [self addBackButton];
 [self addHighscoresTable];
 }

 return self;
}

6.	 Now, we need to implement the CCTableViewDataSource protocol
methods to fill the table. To do this, add the following two methods:
- (CCTableViewCell*) tableView:(CCTableView*)tableView
nodeForRowAtIndex:(NSUInteger) index
{
 //1

Chapter 9

[311]

 NSString *playerName =
 [NSString stringWithFormat:@"Player #%d", index];
 int score = 100 - index;

 //2
 CCTableViewCell * cell = [[CCTableViewCell alloc] init];
 cell.contentSizeType =
 CCSizeTypeMake(CCSizeUnitNormalized, CCSizeUnitPoints);
 cell.contentSize = CGSizeMake(1, kHighscoreRowHeight);

 //3
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"table_cell_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [cell addChild:bg];

 //4
 CCLabelTTF *lblPlayerName =
 [CCLabelTTF labelWithString:playerName
 fontName:kHighscoreFontName
 fontSize:kHighscoreFontSize];
 lblPlayerName.positionType = CCPositionTypeNormalized;
 lblPlayerName.position = ccp(0.05, 0.5f);
 lblPlayerName.anchorPoint = ccp(0, 0.5f);
 [bg addChild:lblPlayerName];

 //5
 NSString *scoreString =
 [NSString stringWithFormat:@"%d pts.", score];
 CCLabelTTF *lblScore =
 [CCLabelTTF labelWithString:scoreString
 fontName:kHighscoreFontName
 fontSize:kHighscoreFontSize];
 lblScore.positionType = CCPositionTypeNormalized;
 lblScore.position = ccp(0.95f, 0.5f);
 lblScore.anchorPoint = ccp(1, 0.5f);
 [bg addChild:lblScore];

 //6
 return cell;
}

- (NSUInteger) tableViewNumberOfRows:(CCTableView*) tableView
{
 return 5;
}

User Interface and Navigation

[312]

7.	 Build and run the game. Tap the Highscores button in the main menu, and you
should see the test data displayed in our highscores table, as shown in the
following screenshot:

The highscores table

What just happened?
The scene in the preceding screenshot is looking much better than the empty background
with a back button. Let's start our review from the addHighscoresTable method. Please
follow the numbered comments in the method:

1.	 First of all, we created a CCTableView instance, which we are going to add to our
scene and fill with highscores.

2.	 After the table was created, we set the properties to display our table as we want.
We used the table_cell_bg.png image as a cell background. This image is 28
points high, so setting the row height to 32 will add a margin of two points on the
top and at the bottom. Of course, we will need to center the image in the cell.

3.	 It is easier to position our table using its top edge. So we changed the anchor point
to be in the middle of the top edge.

4.	 Then, we set the position and size using normalized units.

Chapter 9

[313]

5.	 We disabled the user interaction since we don't want the table to scroll. The table
is based on the scroll view, but we won't show more than five elements in it, so we
don't need the scrolling.

You can easily check how the table is scrolled by setting the
userInteractionEnabled property to YES and adjusting
the number of elements in the table by returning a larger number
of rows from the tableViewNumberOfRows: method.

6.	 We then added the table to the scene.

7.	 Remember we made the HighscoresScene to conform to the
CCTableViewDataSource protocol. This is the line that explains why we did it. We
are going to use the HighscoresScene class as dataSource for the table view.
This means that the table view will call the methods on the HighscoresScene
scene to get the data for the table. Hold on a second and I will explain this further.

The CCTableView protocol works in a similar way to UITableView.

If you are unfamiliar with UITableView, then think of it this way. You
tell the table view which object has the data by setting the dataSource
property. Since this can be any object, the table view needs to know how
to get data from this object. The simplest way to do this is to guarantee
that there are some methods with known names that can be called by
the table view to get the data. This is exactly what conforming to the
CCTableViewDataSource protocol guarantees.

Here is how the CCTableViewDataSource protocol is declared:

@protocol CCTableViewDataSource <NSObject>

(CCTableViewCell*) tableView:(CCTableView*)tableView
 nodeForRowAtIndex:(NSUInteger) index;
- (NSUInteger) tableViewNumberOfRows:(CCTableView*) tableView;

@optional

(float) tableView:(CCTableView*)tableView
 heightForRowAtIndex:(NSUInteger) index;

@end

User Interface and Navigation

[314]

As you can see, there are two methods that are required, tableView:nodeForRowAtIndex:
and tableViewNumberOfRows:. The tableViewNumberOfRows: method simply returns
the number of rows present in the table, and the tableView:nodeForRowAtIndex:
method returns a table cell for the specified row index.

For now, we have hardcoded the number of rows to 5, so let's review the
tableView:nodeForRowAtIndex: method as follows:

1.	 Here, we generated the test data that we will change to the actual player name and
score in the next section.

2.	 The table cell that we need to return from this method is created. This time, we mix
the unit points and normalized units to set the width and height of the cell.

3.	 The table_cell_bg.png image is used as the background for the cell and is
added as a child of the cell. The text label is much more visible on a background.
Also, the whole table will look better with the cell background rather than just text
hanging in the air.

4.	 The player-name label is positioned on the left side of the cell. The text in the label
is left aligned using anchorPoint.

5.	 The score is placed on the right-side and is right-aligned. Both labels are added as
a child of the background in order to position them vertically at the center of the
background image.

6.	 The cell is returned and added to the table with all of its contents.

This is everything that is required to add a table to your game and fill it with data.

Time for action – using the text field
What's the purpose of the highscores table if you can't beat any of the highscores? Let's
change that and replace the test data with the actual highscores. To do this, we're going to
need the player to enter their name when they beat a highscore:

1.	 Create a new Objective-C class in the Common group. Name the class
HighscoreManager and make it a subclass of NSObject.

2.	 Open the HighscoreManager.h file and replace its contents with the
following code:
#import "GameStats.h"

#define kMaxHighscores 5

@interface HighscoreManager: NSObject

-(NSArray *)getHighScores;

Chapter 9

[315]

-(BOOL)isHighscore:(int)score;

-(void)addHighScore:(GameStats *)newHighscore;

+(HighscoreManager *)sharedHighscoreManager;

@end

3.	 Then, open the HighscoreManager.h file and replace its contents with the
following code:
#import "HighscoreManager.h"

@implementation HighscoreManager
{
 NSMutableArray *_highScores;
}

-(instancetype)init
{
 if (self = [super init])
 {
 _highScores = [NSMutableArray
 arrayWithCapacity:kMaxHighscores];
 }

 return self;
}

-(BOOL)isHighscore:(int)score
{
 return (score > 0) && ((_highScores.count < kMaxHighscores)
 || (score > [_highScores.lastObject score]));
}

-(void)addHighScore:(GameStats *)newHighscore
{
NSAssert([newHighscore.playerName length] > 0,
 @"You must specify player name for the highscore!");

 for (int i=0; i < _highScores.count; i++)
 {
 GameStats *gs = [_highScores objectAtIndex:i];
 if (newHighscore.score > gs.score)
 {
 [_highScores insertObject:newHighscore atIndex:i];

 if (_highScores.count > kMaxHighscores)

User Interface and Navigation

[316]

 [_highScores removeLastObject];

 return;
 }
 }

 if (_highScores.count < kMaxHighscores)
 {
 [_highScores addObject:newHighscore];
 return;
 }
}

-(NSArray *)getHighScores
{
 return _highScores;
}

+(HighscoreManager *)sharedHighscoreManager
{
 static dispatch_once_t pred;
 static HighscoreManager * _sharedInstance;
 dispatch_once(&pred, ^{ _sharedInstance = [[self alloc] init];
 });
 return _sharedInstance;
}

@end

4.	 Open the GameStats.h file and add a new property called playerName to
store the player name in addition to the score in the game stats:
@property (nonatomic, copy) NSString *playerName;

5.	 Now, it is time to create a dialog that will ask the player to enter their name if
they get a highscore. Create a new CCNode subclass in the Scenes group and call
it HighscoreDialog.

6.	 Open the HighscoreDialog.h file and replace its contents with the
following code:
#import "CCNode.h"
#import "GameStats.h"

@interface HighscoreDialog : CCNode

@property (nonatomic, copy) void(^onCloseBlock)(void);

-(instancetype)initWithGameStats:(GameStats *)stats;

@end

Chapter 9

[317]

7.	 Then, open the HighscoreDialog.m file and import the following headers:
#import "cocos2d.h"
#import "cocos2d-ui.h"
#import "HighscoreManager.h"

8.	 Then, add the following instance variables:
@implementation HighscoreDialog
{
 GameStats *_currentStats;

 CCTextField *_playerNameInput;
 CCLabelTTF *_validateResult;
}

9.	 Add the initWithGameStats: method:
-(instancetype)initWithGameStats:(GameStats *)stats
{
 if (self = [super init])
 {
 _currentStats = stats;
 [self createDialogLayout];
 }

 return self;
}

10.	Add the createDialogLayout method to add and position all the user
interface elements:
-(void)createDialogLayout
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 CCSprite *background =
 [CCSprite spriteWithImageNamed:@"highscore_dialog_bg.png"];
 background.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.5f);
 [self addChild:background];

 CCSpriteFrame *textFieldFrame =
 [CCSpriteFrame
 frameWithImageNamed:@"highscore_dialog_textfield.png"];
 _playerNameInput =
 [CCTextField textFieldWithSpriteFrame:textFieldFrame];
 _playerNameInput.string = @"Player1";

 _playerNameInput.preferredSize = textFieldFrame.rect.size;
 _playerNameInput.padding = 4.0f;

User Interface and Navigation

[318]

 _playerNameInput.fontSize = 10.0f;

 _playerNameInput.positionType = CCPositionTypeNormalized;
 _playerNameInput.anchorPoint = ccp(0.5f, 0.5f);
 _playerNameInput.position = ccp(0.5f, 0.7f);
 [background addChild:_playerNameInput];

 _validateResult = [CCLabelTTF labelWithString:@""
 fontName:@"Helvetica"
 fontSize:8];
 _validateResult.color = [CCColor redColor];
 _validateResult.positionType = CCPositionTypeNormalized;
 _validateResult.position = ccp(0.5f, 0.6f);
 [background addChild:_validateResult];

 CCSpriteFrame *okNormalImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_ok.png"];
 CCSpriteFrame *okHighlightedImage =
 [CCSpriteFrame frameWithImageNamed:@"btn_ok_pressed.png"];

 CCButton *btnOk = [CCButton buttonWithTitle:nil
 spriteFrame:okNormalImage
 highlightedSpriteFrame:okHighlightedImage
 disabledSpriteFrame:nil];
 btnOk.positionType = CCPositionTypeNormalized;
 btnOk.position = ccp(0.5f, 0.2f);
 [btnOk setTarget:self selector:@selector(btnOkPressed:)];
 [background addChild:btnOk];
}

11.	Add the btnOkPressed method to handle the OK button tap:
-(void)btnOkPressed:(id)sender
{
 NSString *playerName = _playerNameInput.string;
 if ([self validatePlayerName:playerName])
 {
 _currentStats.playerName = playerName;
 [[HighscoreManager sharedHighscoreManager]
 addHighScore:_currentStats];

 if (self.onCloseBlock)
 self.onCloseBlock();

 [self removeFromParentAndCleanup:YES];
 }
}

Chapter 9

[319]

12.	Add a method used to validate the player name as follows:
-(BOOL)validatePlayerName:(NSString *)playerName
{
 BOOL isEmpty = ([playerName length] != 0);

 if (!isEmpty)
 {
 _validateResult.visible = YES;
 _validateResult.string = @"Player name cannot be empty!";
 }
 else
 {
 _validateResult.visible = NO;
 }

 return isEmpty;
}

13.	Finally, add a method to swallow touches:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 //swallow touch
}

14.	Now, open the WinLoseDialog.m file and import the
HighscoreDialog.h and HighscoreManager.h headers:
#import "HighscoreDialog.h"
#import "HighscoreManager.h"

15.	 After that, add the code to display the highscore dialog, in case the player beats
someone's score. To do this, update the initWithGameStats: method as follows:
-(instancetype)initWithGameStats:(GameStats *)stats;
{
 if (self = [super init])
 {
 _currenStats = stats;

 [self setupModalDialog];

 if ([[HighscoreManager sharedHighscoreManager]
 isHighscore:_currenStats.score])
 {
 HighscoreDialog *hsDialog =
 [[HighscoreDialog alloc]

User Interface and Navigation

[320]

 initWithGameStats:_currenStats];

 hsDialog.onCloseBlock = ^{
 [self createDialogLayout];
 };
 [self addChild:hsDialog];
 }
 else
 {
 [self createDialogLayout];
 }
 }

 return self;
}

16.	 As a final change, we need to display highscores from HighscoreManager
rather than test data in the HighscoresScene class. First of all, open the
HighscoresScene.m file and import the HighscoreManager.h header:
#import "HighscoreManager.h"

17.	 Then, make the following changes in the tableView:nodeForRowAtIndex: and
tableViewNumberOfRows: methods:
- (CCTableViewCell*)tableView:(CCTableView*)tableView
nodeForRowAtIndex:(NSUInteger) index
{
 //1
 GameStats *highscore =
 [[[HighscoreManager sharedHighscoreManager]
 getHighScores] objectAtIndex:index];
 NSString *playerName = highscore.playerName;
 int score = highscore.score;

 //..skipped..
}

- (NSUInteger) tableViewNumberOfRows:(CCTableView*) tableView
{
 return [[HighscoreManager sharedHighscoreManager]
 getHighScores].count;
}

18.	Build and run the game. Play several times and make some highscores. Then, check
the highscores table and try to beat them!

Chapter 9

[321]

Of course, it is hard to score different amount of points if you adjusted _birdsToSpawn in
the GameScene class to spawn only one bird for WinLoseDialog testing. You can adjust
this value to a different number as well as other parameters such as the time between the
birds spawned and their speed, until you are pleased with the game difficulty.

You can find the final project for this chapter in the
Chapter_09/Cocohunt_09_Final folder.

What just happened?
We have just added everything that is required to create a local highscores table. Later in the
book, in Chapter 12, Standing Out – Integrating Game Center and In-App Purchases, we will
see how to use Game Center to share your highscores online, but for now, let's review the
changes we've made to each file.

We added the HighscoreManager class to store and manage the highscores. It is a
common practice to create a singleton to manage some specific data of the game. The
methods in the HighscoreManager class should be very self-explanatory, but let's view a
short description of what each method does:

�� getHighScores: This method returns all highscores that are currently on record.
Currently, we store a maximum of five highscores, but this can be easily changed.
Also, right now, all highscores are removed when the game is restarted, but we're
not going to fix this since we'll switch to Game Center anyway.

�� isHighscore: This method checks if the current score is the highscore. We used
this method to check if we should display the dialog to enter a new highscore.

�� addHighScore: This method adds a new highscore while keeping the highscores
table ordered and limiting the highscore's count.

After we created a class to manage the highscores, we needed to create a dialog to enter the
new highscores. This is why we have created the HighscoreDialog dialog.

In this dialog, we only have a text field and an OK button. To display the text field, we have
used the CCTextField class. I am sure you are already more than familiar with how we
created the button, so let's concentrate on the CCTextField class.

User Interface and Navigation

[322]

This control creates a text field, which you can use to ask a player to enter some text
information. Since, by default, a text field has no background design, we used the
highscore_dialog_textfield.png image as a background. We also used the size
of the image to set the size of the text field.

Adding some padding is required to make the text look better. Don't interfere
with the edges of the background image.

To get or set the text field's value, we used the string property. Since we require the player
to enter a name, we set it to the Player1 value initially and also validate that the player
does not try to submit an empty string as a player name. In this case, we show an error label.

The final change was made in WinLoseDialog. We simply checked if the current
score is a highscore, and then, before displaying WinLoseDialog itself, we displayed
HighscoreDialog to add the player's name. This time, we also used the onCloseBlock
block to be notified when HighscoreDialog is closed, and we then continued and
displayed the WinLoseDialog dialog.

Have a go hero
There are lots of things you can try to improve in the current look and feel of the game. Here
is a list of some of them that come to mind:

�� Currently, dialogs just pop up immediately on the screen. Make them appear by
animating their movement with Cocos2D actions. For example, make them scale up,
such as the win and lose labels, or slide from the left- or right-side of the screen.

To make the dialog slide from the top, just create it offscreen
and run CCActionMoveTo to move it to the desired position.
To make it pop out, create the initial dialog with scale set to
0.01f and use CCActionScaleTo just as we did with the
You Win! label. In both cases, using an easing action can make
the animation much more realistic.

�� Display the No Highscores label instead of the table view when there are no
highscores to display.

To do this, simply add a label with the No Highscores text and check
the highscores count inside the init method. If there are no
highscores, display the label and hide the table view, and if there are
some highscores, hide the label and display the table view.

Chapter 9

[323]

�� Save the name that the player entered somewhere in the HighscoreManager
class. Next time, set the text field in HighscoreDialog to it, instead of the
Player1 name always appearing.

You can save the name in an instance variable in
HighscoreDialog or even save it in user defaults to
persist the player name between the game restarts.

�� Gather some additional statistics about the player. For example, you can gather how
many consecutive birds the player hits before missing (hot streak!).

Pop quiz
Q1. Which properties can be set using normalized units?

1.	 position

2.	 contentSize

3.	 position and contentSize

4.	 None, you can only specify position and contentSize in points

Q2. What is the best method of the scene to start spawning enemies, make the player
character run, and so on, if you are using a transition to display the scene?

1.	 onEnter

2.	 onExitTransitionDidStart

3.	 onEnterTransitionDidFinish

4.	 init

Q3. How many states with different background images can have CCButton?

1.	 0

2.	 1

3.	 2

4.	 3

User Interface and Navigation

[324]

Summary
In this chapter, we spent a lot of time reviewing Cocos2D classes that can help your game
make a two-way dialog with the player. After completing all sections of this chapter, you
should be more than familiar with the main Cocos2D user interface controls and know how
to combine them to create a convenient user interface.

You should never underestimate the significance of creating convenient user interfaces in
your game. Just as I mentioned earlier, it is almost as important as your game's mechanics.
Of course, we didn't spend too much time polishing things and working on the user interface
in this chapter since we already spent a lot of time on it in the previous chapters.

However, I would say that the reward is that after all the changes we have made in this
chapter, this looks like a completed game! It may be a simple one; nonetheless, it has all
the basic components in place. Of course, it requires some polishing, and there are lots of
things to improve, but after completing the game so far, you can say that you can create
Cocos2D games.

In the next chapter, we are going to review physics engine integration in order to make more
complicated games. However, many popular games in App Store don't use anything outside
of the scope that we have already covered.

10
Physics

There are many games that are great without any physics or with some basic
or completely unrealistic physics. However, there is something attractive
in games that have realistic physics. In this chapter, we're going to review
how to integrate a physics engine in our game and get some nice physics
almost effortlessly, well, at least when compared to implementing the physics
simulation yourself.

In this chapter, we're going to review following topics:

�� Creating a physics node and physics bodies

�� Using physics bodies properties

�� Handling and filtering collisions

�� Using joints to connect physics objects

�� Applying forces and impulses

Creating a physics world
In this part of the chapter, we're going to create a new level where the hunter will regret that
he made the birds angry for shooting some arrows at them. In this level, the birds will drop
stones and the hunter will need to dodge them.

We will use a Cocos2D-integrated physics engine called Chipmunk to simulate the physics,
handle collisions, and so on. However, first things first. To create physics objects and simulate
physics, we need to create a physics world, or a physics node as it is called in Cocos2D.

Physics

[326]

The previous versions of Cocos2D supported two physics engines: Box2D and Chipmunk.
In the third version (v3), the choice was made in favor of Chipmunk. This allowed making a
tighter integration, and now it is much easier to start using physics in your Cocos2D game.
However, the main concepts covered in this chapter are similar to all physics engines, so
don't worry, you can decide later which physics engine to use in your games.

You can find out more about the Chipmunk physics engine at
https://chipmunk-physics.net.

Time for action – creating a game level with physics
Let's start by creating a new level in our game. To do this, we'll need to add one more scene
to the project and add some resources that we're going to use in this scene. Perform the
following steps:

1.	 Open the Cocohunt Xcode project and create a new group in Resources group
called PhysicsLevel.

You can continue adding code to the project you have after completing
the previous chapter or take the final project of the previous
chapter from the book's supporting files in the Chapter_09/
Cocohunt_09_Final folder and use it as a starter project.
You can download book's supporting files from www.packtpub.
com/support.

2.	 Then, open the book's supporting files from the Chapter_10/Assets/
PhysicsSpritesheet/result folder and add the .png and .plist files in the
PhysicsLevel group. These are the two spritesheets (Retina and non-Retina) that
contain all the sprites we're going to use in this chapter.

The .tps files are the TexturePacker project files and are
provided only for reference, so you can ignore them. If you want, you
can create spritesheets yourself; just use the files from the hd folder
to create the physics_level-hd spritesheet and the files from
the sd folder to create the physics_level spritesheet.

3.	 Create a new scene in the Scenes group and call it PhysicsScene.

4.	 Open the PhysicsScene.h file and import the cocos2d.h header file:
#import "cocos2d.h"

Chapter 10

[327]

5.	 After this, open the PhysicsScene.m file and add the following instance variables:
@implementation PhysicsScene
{
 CCPhysicsNode *_physicsNode;
 CCSpriteBatchNode *_batchNodeMain;
}

6.	 Add the createPhysicsNode method using the following code:
-(void)createPhysicsNode
{
 //1
 _physicsNode = [CCPhysicsNode node];

 //2
 _physicsNode.gravity = ccp(0,-250);

 //3
 _physicsNode.debugDraw = YES;

 //4
 [self addChild:_physicsNode];
}

7.	 We need to create a sprite batch node to be able to use spritesheets. To do this,
add the createBatchNodes method using the following code:
-(void)createBatchNodes
{
 [[CCSpriteFrameCache sharedSpriteFrameCache]
 addSpriteFramesWithFile:@"physics_level.plist"];

 _batchNodeMain = [CCSpriteBatchNode
 batchNodeWithFile:@"physics_level.png"];

 [_physicsNode addChild:_batchNodeMain];
}

8.	 Now, let's add a few sprites, but before this, let's define the z-order for them to
ensure that everything is displayed correctly. To do so, add the following #define
statements right before the @implementation line:
#define kBackgroundZ 10
#define kObjectsZ 20

In this chapter, we're going to use the #define statement for the
z-order values as they are also used sometimes, so you should be
aware of this if you read other people's code.

Physics

[328]

9.	 Scroll down and add a method that adds a background image called
addBackground, as shown in the following code:
-(void)addBackground
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"physics_level_bg.png"];
 bg.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.5f);
 [_batchNodeMain addChild:bg z:kBackgroundZ];
}

10.	Then, we will add a method that will spawn a stone. Add a method called
spawnStone, as shown in the following code:
-(void)spawnStone
{
 //1
 CCSprite *stone =
 [CCSprite spriteWithImageNamed:@"stone.png"];

 //2
 float radius = stone.contentSizeInPoints.width * 0.5f;

 //3
 CCPhysicsBody *stoneBody = [CCPhysicsBody
 bodyWithCircleOfRadius:radius
 andCenter:stone.anchorPointInPoints];

 //4
 stoneBody.mass = 10.0f;

 //5
 stoneBody.type = CCPhysicsBodyTypeDynamic;

 //6
 stone.physicsBody = stoneBody;

 //7
 [_batchNodeMain addChild:stone z:kObjectsZ];

 //8
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 stone.position = ccp(viewSize.width * 0.5f,
 viewSize.height * 0.9f);
}

Chapter 10

[329]

11.	Of course, we need to call all the methods that we've just added. To do this, add the
onEnter and onEnterTransitionDidFinish methods at the top, before all the
other methods, as shown in the following code:
-(void)onEnter
{
 [super onEnter];

 [self createPhysicsNode];
 [self createBatchNodes];
 [self addBackground];
}

-(void)onEnterTransitionDidFinish
{
 [super onEnterTransitionDidFinish];

 [self spawnStone];
}

12.	 To see our scene, we need to add the code to load the scene from the level
selection screen. Open the LevelSelectScene.m file and import the
PhysicsScene.h header using the following line of code:
#import "PhysicsScene.h"

13.	Then, make the following changes to the levelTapped: method:
-(void)levelTapped:(id)sender
{
 NSString *levelName = ((CCButton*)sender).name;
 if ([levelName isEqualToString:kLevelHunting])
 {
 //..skipped..
 }
 else if ([levelName isEqualToString:kLevelDodging])
 {
 PhysicsScene *scene =
 [[PhysicsScene alloc] init];
 CCTransition *transition =
 [CCTransition
 transitionCrossFadeWithDuration:1.0f];
 [[CCDirector sharedDirector] replaceScene:scene
 withTransition:transition];
 }

Physics

[330]

 else
 {
 CCLOG(@"Level not implemented: %@", levelName);
 }
}

14.	Build and run the game. Press Start and then select the Dodging level. You should
see a stone falling from the top of the screen, as shown in the following screenshot:

The falling stone

I encourage you to check the spritesheet image that we've added
into the PhysicsLevel group in Resources and see that
there is no red circle around the stone here. What is shown in the
preceding screenshot is the result of the debug draw that we've
activated. We will discuss this in a moment.

What just happened?
We've just added one more level to our game. In this level, we're going to use some physics,
and have already seen some of it in action. As you can see, we didn't write the code that
changes the position of the stone, but it falls down due to gravity.

Let's start with a simplified explanation on how physics engines are integrated with Cocos2D.

Understanding physics bodies
The most important thing to understand at the beginning is that a physics engine works
separately from a rendering engine. This means that while Cocos2D works with nodes, sprites,
and so on, a physics engine such as Chipmunk works with shapes, bodies, forces, and collisions.

Chapter 10

[331]

Think of a physics world as an alternate reality where each object is
linked with its visual representation (for example, a sprite).

This makes much more sense if you remember that all sprites are just rectangles with
transparent areas in them. This means that even if you have some complicated object
displayed on the screen, it is not easy to automatically understand the shape of the actual
object. The following is a figure from Chapter 5, Starting the Action:

It is easy for us humans to see the actual shape of the bird, but it is quite hard to detect the
correct shape of the bird automatically. Even if we create the actual pixel-perfect shape, it will
be very complicated and will be hard to detect collisions with.

An auto-traced bird shape in the PhysicsEditor application

Physics

[332]

This is why, instead of detecting shapes from images, we simply leave Cocos2D to work with
rectangles and specify physics bodies using simplified shapes. For example, we can use an
oval shape to represent the bird, as shown in the following figure:

A much more simplified shape to simulate the bird

Just imagine how much easier it is to check whether two birds collide (intersect) using the
simplified shape instead of the auto-traced one. Also, the arrow won't hit the bird's wings,
beak, or tail, and that's okay in most cases. If we need a more accurate physics body, we can
create it using a polygon shape (still not pixel perfect, but closer to the image) or even create
a body that consists of several different shapes.

Linking physics bodies with Cocos2D nodes
So, we have physics bodies represented by shapes and Cocos2D sprites (or other nodes).
However, we want changes that are applied to physics bodies to be applied to sprites and
vice versa. For example, when the physics body is falling, we want the stone sprite to fall
too; when the stone body is rotating, we want the stone sprite to rotate too. In addition,
when we move the stone sprite to some position, we want the physics body to move to
that position too.

To do this, we created the CCPhysicsBody class and assigned it to the physicsBody
property of the sprite. This way, when we change the position or rotation of the sprite, it will
update its physicsBody correspondingly. On the other hand, when we add the sprite to the
special node called CCPhysicsNode, we start simulating the physics body and the sprite will
also be updated using the physics body information.

Chapter 10

[333]

The following is a diagram that illustrates this point:

Note that steps 2 and 3 occur almost simultaneously, so normally the physics body
and the node have the same transform (position and rotation). I just wanted to
show the order of things.
Of course, if you change the sprite position using its position property, then
things work the other way around, and the position of the physics body is updated.

As you can see, a physics engine works with its own objects, and in fact, they are not
visualized in any way and are simply results of calculations, matrices, vectors, and so on.
Unless you don't enable debug drawing, which will simply draw everything, the physics
engine normally just stores in variables.

I hope this makes things at least a bit clearer and we can return to our code.

Physics

[334]

Let's review the spawnStone method, where we created the stone sprite and the stone
physics body:

1.	 Here, we created the sprite as we did many times before.

2.	 To simulate the stone, we used the circle shape, as it is very close to the actual stone
shape. Here, we've calculated the radius. The radius will be half the width of the
stone sprite. This will create a circle inscribed within the bounding box of a sprite.

3.	 We used the bodyWithCircleOfRadius: method to construct a physics body
using the radius and the center of the circle. Note that the center point we specified
is in node space and uses points.

4.	 We set the body of the stone to 10 units. Physics in Cocos2D doesn't use an
international system of units (SI), units such as meters or kilograms. Instead,
you only set values relative to another objects.

What this means is that instead of calculating everything in some
absolute units, you just set things relative to some other objects. For
example, if you have a car with a mass of 100 units, then you should
set the human weight to something around 5.5 units (if a car is around
1500 kg, then a typical man is around 80 kg). In most cases, you just
play with these values until it feels realistic.

5.	 We set the body type to the CCPhysicsBodyTypeDynamic type. This means
that our body is affected by forces such as gravity and collisions with other objects.
We will discuss body types in the Detecting and filtering collisions section.

6.	 We assigned a physics body to the sprite. This way, we've attached the sprite and
the physics body.

7.	 We added the sprite to the batch node, as the stone sprite is contained in the
spritesheet. However, if we check the createBatchNodes method, we will
see that the batch node was added to _physicsNode, as follows:
[_physicsNode addChild:_batchNodeMain];

This makes the stone sprite an indirect descendant of the physics node, which is
totally okay.

As we can see, the node with the physics body doesn't have to be a
direct child of CCPhysicsNode. However, if we try to add the node
that has the physics body to the node without the physics node as
ancestor, we'll get an error: A CCNode with an attached CCPhysicsBody
must be added as a descendant of a CCPhysicsNode.

Chapter 10

[335]

At this point, we should have a stone with the physics body added to the batch node, which
in turn is added to the physics node.

It is time to review the createPhysicsNode method, which created the physics node itself.
The method is very small and should be pretty straightforward. This is why we left it for
the end:

1.	 We created the physics node using the node factory method. You probably
remember that this is same as if we'd used alloc and init, but is just a
little shorter.

2.	 We set the gravity vector to point down and have a magnitude of 250 units. The
value of 250 was just picked after some experimenting. I assume it is clear why the
gravity vector is pointing down.

3.	 Set the debug draw. Setting the debugDraw to YES enables drawing of the physics
bodies and other physics objects. The red circle that you see above the stone in
the earlier screenshot which shows that the stone falling is the circle body that we
created using the bodyWithCircleOfRadius: method and is attached to the
stone sprite.

4.	 We then added the physics node to the scene. This will be the only direct child of
the scene. We're going to add batch nodes to the physic node and sprites to batch
nodes, but no other nodes will be added to the scene itself.

Don't worry if something is unclear. The only thing important to understand right now is that
there is a special node called CCPhysicsNode. If you want physics simulation, you have to
create this node, add it to the scene, and add all the sprites that you want to have physics in
to this node. To enable physics for the sprite, you have to create a physics body and attach it
to the sprite before adding the sprite to the physics node.

Time for action – adding ground to the scene
Most of the times you'll want your object to stay on the screen instead of falling into the
abyss. So, let's add some ground that will stop the stone from falling further. Refer to the
following steps:

1.	 Open the PhysicsScene.m file and add the _ground instance variable:
@implementation PhysicsScene
{
 //..skipped..

 CCSprite *_ground;
}

Physics

[336]

2.	 Then, before adding the ground sprite, add one more z-order #define statement,
between kBackgroundZ and kObjectsZ as shown in the following code:
#define kBackgroundZ 10
#define kGroundZ 15
#define kObjectsZ 20

3.	 Now, add the addGround method as follows:
-(void)addGround
{
 //1
 _ground = [CCSprite spriteWithImageNamed:@"ground.png"];

 //2
 CGRect groundRect;
 groundRect.origin = CGPointZero;
 groundRect.size = _ground.contentSize;

 //3
 CCPhysicsBody *groundBody =
 [CCPhysicsBody bodyWithRect:groundRect cornerRadius:0];

 //4
 groundBody.type = CCPhysicsBodyTypeStatic;

 //5
 groundBody.elasticity = 1.5f;

 //6
 _ground.physicsBody = groundBody;

 //7
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 _ground.anchorPoint = ccp(0.5f, 0);
 _ground.position = ccp(viewSize.width * 0.5f, 0);

 //8
 [_batchNodeMain addChild:_ground z:kGroundZ];
}

4.	 Add a call to the addGround method at the end of the onEnter method as shown
in the following code:
-(void)onEnter
{
 //..skipped..

 [self addGround];
}

Chapter 10

[337]

5.	 Open the AppDelegate.m file and import the PhysicsScene.h header using the
following line of code:
#import "PhysicsScene.h"

6.	 Replace the startScene method with the following code:
-(CCScene *)startScene
{
 return [[PhysicsScene alloc] init];
}

This last step is optional, but it will save us a few seconds at each
game launch by displaying the PhysicsScene class without the
need to start and select it. You often want to make the scene you're
currently working on as the start scene so that you don't have to
navigate through the menu and level selection scenes at each launch.
Of course, before releasing, you need to set your real start scene.

7.	 Build and run the game. This time, the ground stops the stone from falling into
the abyss.

You can set the _physicsNode.debugDraw property to NO in the
PhysicsScene.m file to see the stone and the ground without the
red circle and rectangle over them. However, you should turn it on after
each new object is added to see whether the physics body is added and
positioned correctly.

What just happened?
Okay, we've created the stone and the ground, and it took us less than seven days.
Pretty good!

The only interesting part is the addGround method, so let's review it:

1.	 Once again, we started by creating a sprite.

2.	 This time we wanted the physics body shape to be exactly as the ground image
rectangle, so we created a rectangle using contentSize of the ground sprite.

3.	 We created the physics body using the bodyWithRect: method, which can be used
to create rectangle-shaped bodies. You can also set the corner radius if you want a
rounder rectangle.

Physics

[338]

The bodyWithRect: method takes the CGRect parameter, which not
only has the size of the rectangle but also the origin point. This is why we
had to create the groundRect variable in the previous step.

4.	 We then set the body type to the CCPhysicsBodyTypeStatic type. This means
that a force or collision with other object does not affect the body. In other words, it
is immovable unless you change its position manually.

5.	 We set the ground to elasticity to make the stone bounce when it hits
the ground.

6.	 We attached the physics body to the ground sprite.

7.	 We positioned the ground at the bottom of the screen.

8.	 Finally, we added the ground to the batch node.

This was very similar to adding the stone, except that we used a rectangular shape and
set a few properties to other values.

As CCPhysicsBody is used to represent all physics bodies; it has many properties to configure
the body and make it different from other bodies. By modifying the properties (for example,
mass, density, friction, and so on), you can modify the body's behavior during the
simulation. All properties are described really well in the Cocos2D documentation, so I'm not
going to repeat them here, except a few important ones such as the type property.

You can access the Cocos2D documentation right from the Xcode project by
selecting Documentation and API Reference in the Help panel right within
Xcode. Then, you can search for the CCPhysicsBody class reference.
Alternatively you can visit the link: http://www.cocos2d-iphone.
org/docs/api/Classes/CCPhysicsBody.html.

The type property can be either static (CCPhysicsBodyTypeStatic) or dynamic
(CCPhysicsBodyTypeDynamic). The static body is immovable. Static bodies are often
used to represent ground, walls, platforms, and so on. The dynamic body is affected by
forces, gravity, and collisions. A good example of dynamic bodies is bowling pins, falling
stones, and so on.

In some physics engines, there is a third type called kinematic. Kinematic
bodies are not affected by forces, gravity, or collisions, but are moved using
the code (for example, you change their position in the update: method).
In other words, if you take the static body and make it move from the code,
you can call it a kinematic body.

Chapter 10

[339]

In our case, we have the dynamic stone, which falls down due to the gravity, and the static
ground, which is not affected by the gravity and doesn't move an inch when it is hit by
the stone.

Have a go hero
It might seem that there can be no fun playing with only stone and ground, but the following
is a list of things that you can do with only these two objects:

�� You can repeat Galileo's experiments and throw stones with different mass from the
same height and see if they really fall at the same speed.

�� Change the elasticity property of the ground and the stone. Create several stones
with different elasticity.

�� Increase the radius of the stone physics body three times. This will help you see that
a physics body can be completely different from the sprite it's attached to.

�� Add the code to spawn the stone at the point where you touch the screen. Build a
pile of stones.

�� Add a second ground at the top and set both grounds' elasticity to some high values
so that the stone bounces between the two grounds.

Time for action – adding the hunter
It is time to add the hunter back to the game. However, this time the birds will have fun.
So, instead of shooting the birds, the hunter will be running around and dodging the stones
that they throw at him.

There will be quite a lot of code to add, so here is a brief explanation of what we want to
do. We want to create a new class for our hunter, as we cannot reuse the old Hunter class.
Our new hunter class, PhysicsHunter, will have two animations: idle and running. We will
control the hunter by touching the screen. When we touch the screen on the left-hand side,
the hunter will run to the left, and when we touch the right-hand side of the screen, the
hunter will run to the right. When we don't touch the screen, the idle animation should be
played. Let's start:

1.	 Create a new Objective-C class in the GameObjects group. Name the class
PhysicsHunter and make it a subclass of CCSprite.

2.	 Open the PhysicsHunter.h file and replace its contents with following code:
#import "cocos2d.h"

typedef NS_ENUM(NSUInteger, PhysicsHunterState)
{

Physics

[340]

 PhysicsHunterStateIdle,
 PhysicsHunterStateRunning,
 PhysicsHunterStateDead
};

typedef NS_ENUM(NSInteger, PhysicsHunterRunDirection)
{
 PhysicsHunterRunDirectionLeft,
 PhysicsHunterRunDirectionRight
};

@interface PhysicsHunter : CCSprite

@property (nonatomic, readonly) PhysicsHunterState state;

-(void)runAtDirection:(PhysicsHunterRunDirection)direction;

-(void)stop;

@end

3.	 Then, open the PhysicsHunter.m file and replace its contents with the
following code:
#import "PhysicsHunter.h"
#import "CCAnimation.h"

#define kHunterMovementSpeed 90.0f

@implementation PhysicsHunter
{
 CCAnimation *_runAnimation;
 CCAnimation *_idleAnimation;

 PhysicsHunterState _state;
 PhysicsHunterRunDirection _runningDirection;
}

-(instancetype)init
{
 if (self =
 [super initWithImageNamed:@"physics_hunter_idle_00.png"])
 {
 _state = PhysicsHunterStateIdle;

 [self createAnimations];
 [self createPhysicsBody];
 }

Chapter 10

[341]

 return self;
}

-(void)onEnter
{
 [super onEnter];
 [self playIdleAnimation];
}

-(void)createAnimations
{
 NSMutableArray *runFrames = [NSMutableArray array];
 for (int i = 0; i < 10; i++)
 {
 CCSpriteFrame *frame =
 [CCSpriteFrame frameWithImageNamed:
 [NSString
 stringWithFormat:@"physics_hunter_run_%.2d.png",i
]];
 [runFrames addObject:frame];
 }
 _runAnimation = [CCAnimation
 animationWithSpriteFrames:runFrames
 delay:0.075f];

 NSMutableArray *idleFrames = [NSMutableArray array];
 for (int i = 0; i < 3; i++)
 {
 CCSpriteFrame *frame =
 [CCSpriteFrame frameWithImageNamed:
 [NSString
 stringWithFormat:@"physics_hunter_idle_%.2d.png",i
]];
 [idleFrames addObject:frame];
 }
 _idleAnimation = [CCAnimation
 animationWithSpriteFrames:idleFrames
 delay:0.2f];
}

-(void)createPhysicsBody
{
 CGPoint from = ccp(self.contentSizeInPoints.width * 0.5f,
 self.contentSizeInPoints.height * 0.15f);

Physics

[342]

 CGPoint to = ccp(self.contentSizeInPoints.width * 0.5f,
 self.contentSizeInPoints.height * 0.85f);
 CCPhysicsBody *body = [CCPhysicsBody
 bodyWithPillFrom:from
 to:to
 cornerRadius:8.0f];
 body.allowsRotation = NO;

 self.physicsBody = body;
}

-(void)runAtDirection:(PhysicsHunterRunDirection)direction;
{
 if (_state != PhysicsHunterStateIdle)
 return;

 _runningDirection = direction;
 _state = PhysicsHunterStateRunning;

 [self playRunAnimation];
}

-(void)stop
{
 if (_state != PhysicsHunterStateRunning)
 return;

 _state = PhysicsHunterStateIdle;
 [self playIdleAnimation];
}

-(void)playRunAnimation
{
 [self stopAllActions];

 if (_runningDirection == PhysicsHunterRunDirectionRight)
 self.flipX = NO;
 else
 self.flipX = YES;

 CCActionAnimate *animateRun =
 [CCActionAnimate actionWithAnimation:_runAnimation];
 CCActionRepeatForever *runForever =
 [CCActionRepeatForever actionWithAction:animateRun];

Chapter 10

[343]

 [self runAction:runForever];
}

-(void)playIdleAnimation
{
 [self stopAllActions];

 CCActionAnimate *animateIdle =
 [CCActionAnimate actionWithAnimation:_idleAnimation];
 CCActionRepeatForever *idleForever =
 [CCActionRepeatForever actionWithAction:animateIdle];
 [self runAction:idleForever];
}

-(void)fixedUpdate:(CCTime)dt
{
 if (_state == PhysicsHunterStateRunning)
 {
 CGPoint newVelocity = self.physicsBody.velocity;

 if (_runningDirection ==
 PhysicsHunterRunDirectionRight)
 newVelocity.x = kHunterMovementSpeed;
 else
 newVelocity.x = -1 * kHunterMovementSpeed;

 self.physicsBody.velocity = newVelocity;
 }
}
@end

4.	 Now, open the PhysicsScene.m file and import the PhysicsHunter.h header
using the following line of code:
#import "PhysicsHunter.h"

5.	 Then, add the _hunter instance variable:
@implementation PhysicsScene
{
 //..skipped..
 PhysicsHunter *_hunter;
}

Physics

[344]

6.	 Add the createHunter method as follows. Note that we enable the user
interaction here to handle touches:
-(void)createHunter
{
 _hunter = [[PhysicsHunter alloc] init];

 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 _hunter.anchorPoint = ccp(0.5f, 0);
 _hunter.position = ccp(viewSize.width * 0.5f,
 _ground.contentSizeInPoints.height + 10);

 [_batchNodeMain addChild:_hunter z:kObjectsZ];

 self.userInteractionEnabled = YES;
}

7.	 Then, add a call to the createHunter method in the
onEnterTransitionDidFinish method, as shown in the following code:
 -(void)onEnterTransitionDidFinish
{
 //..skipped..
 [self createHunter];
}

8.	 Finally, add the touchBegan and touchEnded methods, as shown in the
following code:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 CGPoint touchLocation = [touch locationInNode:self];
 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 if (touchLocation.x >= viewSize.width * 0.5f)
 [_hunter
 runAtDirection:PhysicsHunterRunDirectionRight];
 else
 [_hunter runAtDirection:PhysicsHunterRunDirectionLeft];
}

-(void)touchEnded:(UITouch *)touch withEvent:(UIEvent *)event
{
 [_hunter stop];
}

Chapter 10

[345]

9.	 Build and run the game. Control the hunter by touching the left- or right-hand side
of the screen to run in the corresponding direction.

If you set _physicsNode.debugDraw to NO in the past, it will be
better if you set it to YES now to see the pill shape of the hunter.

What just happened?
Phew, that was a lot of code. Don't worry, we're going to review it in detail. Let's start from
the PhysicsHunter class.

This class has four instance variables. The _runAnimation and _idleAnimation variables
will just store the animation data so that we don't have to load it each time.

The _state variable holds the current state of the hunter. The hunter can run, standstill,
or be dead. The _runningDirection variable simply contains the direction in which the
hunter is running—to the left or to the right.

In the init method, we used the super class's initWithImageNamed: method,
as PhysicsHunter is a subclass of CCSprite. We used one of the frames of animation
to initialize the hunter. In addition to this, we loaded the animations and created the
physics body.

In onEnter, we simply started playing the idle animation, which was already loaded using
the createAnimations method. The createAnimations method should be very familiar,
so we won't review it.

The createPhysicsBody method should be also very similar to what we've done before,
but in this case we used the pill shape, which works better for the player's character. Also,
we set the allowsRotation property to NO as we don't want our hunter to fall during the
physics simulation. This is a very useful property when you don't want your object rotated
due to some forces or after colliding with other objects.

Physics

[346]

Here is the reason why the pill form works better to move characters. Refer to the
following screenshot:

In the case of a rectangular body, the character will just stop pushing into the lower staircase
rectangle because he can't rotate and fall, as he would normally do. While with a pill-shaped
body, the character will move up along the stairs. Okay, let's get back to our code.

The runAtDirection: method is called when we touch the screen. In this method, we
check whether we're in the correct state to switch to the running state. The only valid
state is PhysicsHunterStateIdle, as we can't switch to the running state from the
PhysicsHunterStateDead state. We're not filming the Running Dead, are we?

The only thing the runAtDirection: method does after checking the state is that it
remembers the direction in which to run and starts playing the running animation.

The stop method is opposite to the runAtDirection: method. It is called when we lift
the finger and simply changes the state to idle and starts playing the idle animation.

The playRunAnimation and playIdleAnimation methods simply stop all the running
actions (the other animation) and start playing the corresponding animation. The only thing
that playRunAnimation does in addition to this is flip the sprite horizontally to face the
direction the hunter is running.

We're going to review the fixedUpdate: method later, so let's switch to the
PhysicsScene.m file. There is not much to review.

In the PhysicsScene.m file, we added the code to create the PhysicsHunter class instance
and add it to the scene. I doubt whether there is something that we didn't do before.

Chapter 10

[347]

In the touchBegin: method, we check which side of the screen the player touches and
call the runAtDirection: method to run in the corresponding direction, while in the
touchEnded: method, we make the hunter stop.

Understanding the fixedUpdate: method
The fixedUpdate: method looks very familiar to the update: method, which we've used
several times before. In fact, they are pretty similar. So, what is the difference?

The difference between them is that the update: method is called once per frame and the
fixedUpdate: method is called at a constant rate. Don't see the difference? Let me explain.

The time passed between the update: method calls is variable, as it depends on the current
frame rate. In other words, it can be 1 millisecond after the last update: call or 5 seconds in
the case of a really bad frame rate.

The variable time step is okay if you're simply drawing something on the screen, but generally
doesn't work well if you perform a physics simulation.

Imagine that in your game, you're shooting a bullet at a wall and you simulate physics using
a variable time step. Each bullet is fired absolutely the same way (for example, the same
starting speed, same angle, and so on; I mean that they are completely identical).

You fire your first bullet and it hits the wall. Then, you fire your second bullet, but this time,
your frame rate drops for some reason (for example, a system process or even another
thread in your game eats up some of your CPU time).

This leads to a big delay between the update: calls. Your second bullet just flies through
the wall without hitting it because in the previous update: call, the bullet wasn't hitting
the wall, and in the next update: call, the bullet has already passed the wall. Refer to the
following diagram:

Physics

[348]

This is not what you expected. You expected that the two identically shot bullets will hit the
wall at the same time and in the same place, but instead, the second bullet didn't even hit
the wall.

Imagine this happening in a network game, where each instance of the game on different
devices has its own simulation, and Bullet #1 is simply simulated on your device, while
Bullet #2 is the same bullet simulated on your opponent's device.

Using the fixed time step makes your game much more reliable. Of course, it doesn't solve
all the problems, but your physics simulation becomes much more consistent and repeatable
(that is, if you record your actions when you win the level, you can play back them and will
always win it).

Using a bullet as an example might not be the best idea. Your fixed time step
might be still too big if your bullet is moving really fast. This is why for things
such as bullets and lasers, it is often better to use the raytracing technique (that
is, calculate the vector at the time of shooting the bullet to detect collision).

This is why there is a fixedUpdate: method. The fixedUpdate: method is called at a
constant rate, and you should use this method to manipulate the physics object instead of
the update: method.

The dt parameter of the fixedUpdate: method will have the same
value at each call, even if your game freezes for a time longer than
the fixed update interval. However, the exact value depends on the
CCSetupFixedUpdateInterval configuration parameter that you can
adjust in AppDelegate.

In other words, unless you change the CCSetupFixedUpdateInterval
configuration option, the dt parameter will always be 0.016667 (1/60 of a
second, which is the default value of CCSetupFixedUpdateInterval),
and if your game freezes for a longer time, the fixedUpdate: method will
be called multiple times to catch up.

Now that the existence of the fixedUpdate: method is a bit clearer, let's review what
we're doing in our fixedUpdate: method in the PhysicsHunter class.

There is a great article about fixed time step at http://gafferongames.
com/game-physics/fix-your-timestep/.

The code of the fixedUpdate: method is quite simple. We're just setting a new velocity for
the hunter depending on the direction the hunter is running.

Chapter 10

[349]

Setting the velocity is visually almost the same as updating the position of the hunter over
time (for example, newPosition += speed * dt). After all, we've moved a bird by
incrementing its position in one of the earlier chapters.

However, changing positions doesn't impact the properties of the physics body, and
therefore, the physics engine doesn't understand that the body is in motion. For example,
this means that the body won't move by inertia when you stop changing its position
property, while we can clearly see that right now, the hunter moved using his velocity
property and slides for some time due to inertia even after we lift our finger.

When dealing with physics bodies, you should always try to manipulate them
using physics properties (for example, set the velocity, apply forces and impulses,
and so on).

I'm sure you've noticed a couple of problems with our hunter. If you run to the edge of the
edge, he simply runs off the ground and falls into the abyss. Also, when you lift your finger
(or release your mouse button), the hunter slides for some time due to inertia, as we've just
discussed. Let's fix this.

Time for action – fixing the hunter movement
The good thing that comes from the fact that physics simulation and rendering are
independent is that we can create physics bodies with just a few lines of code without any
images, using just the CCNode class.

In this section, we're going to add the addBoundaries method, which will add two invisible
physics bodies to the sides of the screen so that the hunter doesn't fall off the screen. In
addition to this, we're going to adjust the friction of the hunter's physics body so that he
doesn't slide too much.

1.	 Open the PhysicsScene.m file and add the addBoundaries method, as shown in
the following code:
-(void)addBoundaries
{
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 CGRect boundRect =
 CGRectMake(0, 0, 20, viewSize.height * 0.25f);

 CCNode *leftBound = [CCNode node];
 leftBound.position =
 ccp(0, _ground.contentSize.height + 30);
 leftBound.contentSize = boundRect.size;

Physics

[350]

 CCPhysicsBody *leftBody =
 [CCPhysicsBody bodyWithRect:boundRect cornerRadius:0];
 leftBody.type = CCPhysicsBodyTypeStatic;
 leftBound.physicsBody = leftBody;

 [_physicsNode addChild:leftBound];

 CCNode *rightBound = [CCNode node];
 rightBound.contentSize = boundRect.size;
 rightBound.anchorPoint = ccp(1.0f, 0);
 rightBound.position = ccp(viewSize.width,
 leftBound.position.y);

 CCPhysicsBody *rightBody =
 [CCPhysicsBody bodyWithRect:boundRect cornerRadius:0];
 rightBody.type = CCPhysicsBodyTypeStatic;
 rightBound.physicsBody = rightBody;

 [_physicsNode addChild:rightBound];
}

2.	 Then, add a call to the addBoundaries method at the end of the
onEnterTransitionDidFinish method, as shown in the following code:
-(void)onEnterTransitionDidFinish
{
 //..skipped..
 [self addBoundaries];
}

3.	 Now, let's fix the hunter sliding. Open the PhysicsHunter.m file and find the
createPhysicsBody method. Set the body friction as shown in the following
line of code:
body.friction = 3.0f;

4.	 That's it. Build and run the game. Note that the hunter no longer slides too much
when he stops running. Also, note the red rectangles on the sides of the level.
Remember to enable _physicsNode.debugDraw to see them. As there are no
images drawn, we only see physics bodies.

You can find a snapshot of the project at the this point in the
Chapter_10/Cocohunt_10_Physics_Scene folder.

Chapter 10

[351]

What just happened?
We've just added two physics bodies without any visible part. Note that the hunter's physics
body penetrates the boundaries if you don't stop running. If we had made the boundaries
too thin, the hunter would have overrun them at some point.

You can check this yourself by decreasing the width of boundRect.

Setting the friction property to a higher value decreased the slide time of the hunter.
I think that's pretty obvious, and this is exactly what you would expect in the real world.

The friction between two colliding bodies is calculated by multiplying
their frictions. This way, setting 0 as the friction for a body will mean zero
friction with any other bodies.

For now, I think we've reviewed enough information about adding physics bodies, so let's
continue to the fun part—collisions!

Detecting and filtering collisions
If we start the game right now and don't move the hunter, the stone will fall straight on his
head. As we're not creating a game about some superhero, this should lead to some bad
consequences for the hunter.

To be able to react to the stone falling on the hunter's head, we need to detect the collision
between the hunter and the stone. Fortunately, it is quite easy to do so.

Time for action – detecting and ignoring collisions
It is time to detect when the stone hits the hunter. When the stone collides with the hunter,
the player will lose.

In addition to this, we're going to detect when the stone hits the ground. In this case, we're
going to ignore the collision and let the stone fall through the ground. We need to do this
to avoid a lot of stones lying on the ground and hurting the hunter's legs. Just joking, he has
shoes, right? The real reason is that the large number of stones on the level will simply block
our hunter at some point. Refer to the following steps:

1.	 Open the PhysicsHunter.m file and in the createPhysicsBody method, set the
body.collisionType property to @"hunter", as shown in the following code:
-(void)createPhysicsBody
{

Physics

[352]

 //..skipped..

 body.collisionType = @"hunter";

 self.physicsBody = body;
}

2.	 Then, add the die method, which will be called when the stone hits the hunter,
as shown in the following code:
-(void)die
{
 if (_state != PhysicsHunterStateDead)
 {
 CCParticleExplosion *explode =
 [CCParticleExplosion node];

 explode.texture =
 [CCTexture textureWithFile:@"feather.png"];
 explode.positionType = self.positionType;
 explode.position = self.position;
 [[CCDirector sharedDirector].runningScene
 addChild:explode];

 [self removeFromParentAndCleanup:YES];
 }

 _state = PhysicsHunterStateDead;
}

3.	 Switch to the PhysicsHunter.h header file and add the die method declaration
so that we can call it from PhysicsScene, using the following line of code:
-(void)die;

4.	 After this, open the PhysicsScene.h file and make the PhysicsScene class
conform to the CCPhysicsCollisionDelegate protocol, using the following line
of code:
@interface PhysicsScene : CCScene<CCPhysicsCollisionDelegate>

5.	 Switch to the PhysicsScene.m file and add the following line to the
createPhysicsNode method:
-(void)createPhysicsNode
{
 _physicsNode = [CCPhysicsNode node];

Chapter 10

[353]

 _physicsNode.gravity = ccp(0,-250);

 _physicsNode.collisionDelegate = self;

 _physicsNode.debugDraw = YES;

 [self addChild:_physicsNode];
}

6.	 After this, find the addGround method. Set the collisionType property of
groundBody to the @"ground" value, as shown in the following code:
-(void)addGround
{
 //..skipped..

 CCPhysicsBody *groundBody =
 [CCPhysicsBody bodyWithRect:groundRect cornerRadius:0];

 groundBody.collisionType = @"ground";

 groundBody.type = CCPhysicsBodyTypeStatic;

 //..skipped..
}

7.	 Then, in the spawnStone method, set the stoneBody.collisionType property
to @"stone", as shown in the following code:
-(void)spawnStone
{
 //..skipped..

 CCPhysicsBody *stoneBody = [CCPhysicsBody
 bodyWithCircleOfRadius:radius
 andCenter:stone.anchorPointInPoints];

 stoneBody.collisionType = @"stone";

 stoneBody.mass = 10.0f;

 //..skipped..
}

Physics

[354]

8.	 Add the following two methods, which will be called when collisions occur:
-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 stone:(CCNode *)stone
 ground:(CCNode *)ground
{
 return NO;
}

-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 hunter:(CCNode *)hunter
 stone:(CCNode *)stone
{
 [_hunter die];
 return YES;
}

9.	 The final step is to add the ability to restart the scene after the hunter dies so that
we can experiment without the need to relaunch the game. Find the touchBegan:
method and add the following code right at the start of the method:
-(void)touchBegan:(UITouch *)touch withEvent:(UIEvent *)event
{
 if (_hunter.state == PhysicsHunterStateDead)
 {
 [[CCDirector sharedDirector]
 replaceScene:[PhysicsScene node]];
 return;
 }

 //..skipped..
}

10.	Build and run the game. Stand still and let the stone hit the hunter. After this, restart
the game by tapping anywhere on the screen and run away from the falling stone to
see it falling through the ground.

You can find a snapshot of the project at this point in the
Chapter_10/Cocohunt_10_Collisions folder.

Chapter 10

[355]

What just happened?
Don't pay too much attention to the explosion particle system. We could have created some
sort of animation or made the hunter blink and disappear, but as we already know how to
do this, I have decided not to waste time on this and just use something to show that the
hunter was hit.

Let's concentrate on the collision detection. Here's what we've done:

�� We assigned different collision types to all of our objects using the
collisionType property.

�� We made PhysicsScene to conform to the CCPhysicsCollisionDelegate
protocol and added two methods, one to handle the collisions between the hunter
and the stone and the other for the collisions between the stone and the ground.

�� We set _physicsNode.collisionDelegate to self (PhysicsScene) in
order to get notified about collisions. This is also the reason to conform to
CCPhysicsCollisionDelegate protocol.

All the three steps are required to be able to detect collisions. Let's start reviewing from the
part where we set the _physicsNode.collisionDelegate to self.

_physicsNode.collisionDelegate = self;

The previous line of code tells the physics node that it should call the PhysicsScene
method to notify it about collisions. To ensure that PhysicsScene can respond to the
following methods, we made it conform to the CCPhysicsCollisionDelegate protocol.

This protocol has four optional methods, which are as follows:

�� The ccPhysicsCollisionBegin: method that is called once when two bodies
begin colliding. Here is its signature:
(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 typeA:(CCNode *)nodeA
 typeB:(CCNode *)nodeB;

If you return NO from this method, the collision will be ignored. We've done this in
the case of the stone and ground collision, as we don't want the stone to collide
with the ground.

�� The ccPhysicsCollisionPreSolve: method that is called at every fixed step
while two bodies are in contact. This method runs before the physics solver. If you
return NO from this method, the collision is ignored for current time step. Refer to
the following code:
-(BOOL)
ccPhysicsCollisionPreSolve:(CCPhysicsCollisionPair *)pair

Physics

[356]

 typeA:(CCNode *)nodeA
 typeB:(CCNode *)nodeB;

�� The ccPhysicsCollisionPostSolve: method also runs at every fixed step while
bodies are in contact. The only difference is that it runs after the physics solver.
Refer to the following code:
-(void)
ccPhysicsCollisionPostSolve:(CCPhysicsCollisionPair *)pair
 typeA:(CCNode *)nodeA
 typeB:(CCNode *)nodeB;

�� The ccPhysicsCollisionSeparate: method is called when two bodies stop
colliding. Refer to the following code:
-(void)
ccPhysicsCollisionSeparate:(CCPhysicsCollisionPair *)pair
 typeA:(CCNode *)nodeA
 typeB:(CCNode *)nodeB;

Imagine the ball is thrown at the wall. When the ball touches the wall for the first time, the
ccPhysicsCollisionBegin: method is called. This method is called only once.

Then, for the entire time the ball touches the wall, and this can last a few moments, the
ccPhysicsCollisionPreSolve: and the ccPhysicsCollisionPostSolve: methods
are called. These methods can be called multiple times during the time the ball collides with
the wall.

Finally, when the ball bounces back off the wall, the ccPhysicsCollisionSeparate:
method is called. This completes the life cycle of the collision.

It might seem strange that there are two different methods called while
two bodies are colliding, the pre-solve and the post-solve methods.
The pre-solve method is called before the physics solver runs, in other
words, before the collision outcome is calculated. In the pre-solve
method, you can influence the collision outcome by adjusting properties
such as density and friction. As you probably guessed, the
post-solve method is called after the physics solver runs. You cannot
adjust the collision outcome anymore, but instead, you can get some
of the calculated values such as the totalKineticEnergy and
totalImpulse properties of CCPhysicsCollisionPair. For more
information, you can take a look at the CCPhysicsNode.h header file
in the Cocos2D sources or in the Cocos2D documentation.

Chapter 10

[357]

If you were very attentive, you might have noticed two strange things: we have two
ccPhysicsCollisionBegin: methods and both have a slightly different signature. The
following are our methods (notice the highlighted parameter names):

-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 stone:(CCNode *)stone
 ground:(CCNode *)ground
{
 return NO;
}

-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 hunter:(CCNode *)hunter
 stone:(CCNode *)stone
{
 [_hunter die];
 return YES;
}

The following is the signature of the original ccPhysicsCollisionBegin: method:

-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 typeA:(CCNode *)nodeA
 typeB:(CCNode *)nodeB;

Do you see the difference? Both of our methods have different parameter names. Instead of
typeA and typeB, one method has the stone and the ground parameters and the other
has the hunter and the stone parameters.

If you set a breakpoint in each method, you will see that one method is only called when the
stone and the ground collide, and the other one only when the hunter and the stone collide.
How does Cocos2D know about the stone, ground, and hunter collision types?

The answer is in the question itself. If you remember, we set the collision types of our
objects, which are as follows (each line in its own method):

body.collisionType = @"hunter"; //in PhysicsHunter.m
stoneBody.collisionType = @"stone"; //in spawnStone (PhysicsScene)
groundBody.collisionType = @"ground";//in addGround (PhysicsScene)

This is where we set which body has which collision type and which method should be called
when they collide. This might look tricky, especially if you haven't seen this technique before,
but it is quite convenient.

Physics

[358]

If you have one object that collides with anything and you don't want to
create a special method for each pair of possible collisions, you can use
a wildcard parameter name as the last parameter (for example,
…stone:(CCNode*)stone wildcard:(CCNode*)wildcard).
This method will be called every time the stone collides with something.

Let's summarize. If you want to detect collisions between two objects, you must set the
collisionType properties of their physics bodies to some string values. Then, you need
to create a method with parameters named in the same way as the values you set the
collisionType properties. Finally, you need to set the physics node collisionDelegate
property so that that the method is called when the collision occurs (don't forget to make
your scene conform to the CCPhysicsCollisionDelegate protocol).

Sensors
Sometimes, you still need to detect collision, but don't want the collision to affect your
object. A good example is when your character is collecting coins. You want to know when
the character is colliding with coin, to collect it, but you don't want your character to bounce
back if he runs into the coin.

To achieve this, you can use the sensor property of the CCPhysicsBody class. If you set
the sensor property to YES, you will still be notified about collisions, but physics bodies
will pass through the sensor just as if the collision was ignored.

Time for action – filtering collisions using a collision mask
In the previous section, we learned how to detect and ignore collisions. However, creating
a special method for each collision pair and returning NO to ignore each collision is not the
best way, especially if you want to completely ignore the collision between two object types.

The approach shown previously works much better if you only need to filter
some of the collisions. Then, you can have some kind of an if statement and
return NO only for some object pairs.

So, let's see how we can filter collisions in a different way. We're going to set the
collisionCategories property for the ground and the hunter and the collisionMask
property for the stone physics bodies. Perform the following steps:

1.	 Open the PhysicsScene.m file and remove the following
ccPhysicsCollisionBegin: method for the stone and the ground pair,
the one where we return NO:
-(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair *)pair
 stone:(CCNode *)stone
 ground:(CCNode *)ground

Chapter 10

[359]

Make sure that you leave a method that calls [_hunter die];.

2.	 Find the addGround method and set the groundBody.collisionCategories
property as follows, right after where we set the collision type:
groundBody.collisionType = @"ground";
groundBody.collisionCategories = @[@"obstacles"];

3.	 Then, in the spawnStone method, set the stoneBody.collisionMask
as follows:
stoneBody.collisionType = @"stone";
stoneBody.collisionMask = @[@"hunters"];

4.	 Finally, open the PhysicsHunter.m file and in the createPhysicsBody method,
add the collisionCategories property, right after the line where we set the
collision type:
body.collisionType = @"hunter";
body.collisionCategories = @[@"hunters"];

5.	 Build and run the game. Everything should work the same way; the stone should
hit the hunter, but it should fall through the ground. The hunter should still not fall
through the ground.

You can find a snapshot of the project at this point in the
Chapter_10/Cocohunt_10_CollisionMasks folder.

What just happened?
We've used one more way to filter collisions. This time, instead of ignoring the collision in
collision handler, we've set up a filter using collisionMask and collisionCategories.

Here's how it works. The collisionCategories property takes an array of categories
(max 32) and makes the physics body a member of these categories. When you set the
collisionMask property, you set the categories that you want to collide with.

In our case, we've put the hunter in the hunters category and the ground in the
obstacles category. We also set the collision mask of the stone only to the hunters
category. This way, the stone will collide with the hunter, but not with the ground.

An important thing to note is that by default, collisionCategories is set to nil, which
means that the physics body is the member of all possible categories. So, if you remove the
following line of code, the stone will start colliding with the ground because the ground will
be a member of all categories, including the hunters category:

 groundBody.collisionCategories = @[@"obstacles"];

This might not be what you expected, so keep this in mind.

Physics

[360]

Time for action – filtering collisions using collision groups
Sometimes, setting up collision categories and collision masks can be a little bit more than
you need, especially when you only need to filter the collision between two object types;
just like in our case!

Let's quickly review one more method to filter collisions using the collisionGroup property:

1.	 First of all, we need to remove the code that sets collision categories and the
collision mask. In the PhysicsHunter.m file, find the createPhysicsBody
method and remove the following line:
body.collisionCategories = @[@"hunters"];

2.	 Then, open the PhysicsScene.m file and remove the following line from the
addGround method:
groundBody.collisionCategories = @[@"obstacles"];

Also, remove the following line of code from the spawnStone method:
stoneBody.collisionMask = @[@"hunters"];

This will remove the collision filtering that we've added in the previous Time for
action section.

3.	 Now, it is time to implement collision filtering using the collision group. In the
PhysicsScene.m file, add following instance variable:
@implementation PhysicsScene
{
 //..skipped..
 NSObject *_stoneGroundCollisionGroup;
}

4.	 Then, add the following code at the beginning of the onEnter method, right after
the call to super onEnter:
-(void)onEnter
{
 [super onEnter];

 _stoneGroundCollisionGroup =
 [[NSObject alloc] init];

 //..skipped..
}

Chapter 10

[361]

5.	 Then, set the collisionGroup property of groundBody in the addGround
method to _stoneGroundCollisionGroup:
groundBody.collisionGroup = _stoneGroundCollisionGroup;

6.	 Set the collisionGroup property of stoneBody in the spawnStone method of
_stoneGroundCollisionGroup:
stoneBody.collisionGroup = _stoneGroundCollisionGroup;

7.	 Build and run the game. Once again, everything works just as before. The stone hits
the hunter but falls through the ground. The hunter is still standing on the ground
and not falling through.

You can find a snapshot of the project at this point in the
Chapter_10/Cocohunt_10_CollisionGroup folder.

What just happened?
This is the simplest way to filter a collision between two object types. The rule here is that
the two bodies don't collide if they share the same collisionGroup. This is why we just
set the collisionGroup property of the stone and the ground bodies to the same object.

It might seem strange that we needed to create this NSObject instead of using strings just
as we did before. Well, we can do without creating the _stoneGroundCollisionGroup
object and just write the following:

groundBody.collisionGroup = @"someString";

We have to further write this:

stoneBody.collisionGroup = @"someString";

However, you must be careful and completely understand why you can do this. The preceding
code works because @"someString" is the same object in both cases. This happens because
the compiler creates one instance of that string literal to save some memory and just puts a
reference to that one instance everywhere you type @"someString".

So, although the preceding code with the string literals is working, it won't work if you set
the collisionGroup like the following:

groundBody.collisionGroup = [NSString stringWithFormat:@"%d",1];
stoneBody.collisionGroup = [NSString stringWithFormat:@"%d",1];

Physics

[362]

Note that in both cases, collisionGroup will contain the @"1" string, but it will be
different objects and collision filtering won't work. Also, note that you're responsible for
retaining the collision group object.

To better understand this, you can have a look at how the
collisionGroup property is declared: @property(nonatomic,
assign) id collisionGroup;. Note that this is the assign
property. This means that it doesn't retain its value. So, you need to
make sure that the object you use as collisionGroup lives after
you assign it.

Applying forces and impulses and using joints
Currently, we know how to create bodies and set their different parameters. We know how
to detect or ignore collisions. However, all we can do right now is place everything in the
physics node and let gravity do the work. Let's change this and take more control.

Time for action – launching stones
It doesn't take too much time to win our game right now. Just take one step to the left or
right and the stone will fall without hitting the hunter. If this is the punishment for shooting
birds, then our hunter isn't going to learn anything.

It is time to throw more stones and make them fall at different places to make the hunter
run around the level to avoid being hit by stones. Perform the following steps:

1.	 Open the PhysicsScene.m file, add _timeUntilNextStone, and add the
_stones array instance variables, as shown in the following code:
@implementation PhysicsScene
{
 //..skipped..
 float _timeUntilNextStone;
 NSMutableArray *_stones;
}

2.	 Add the following code to initialize the array and the time counter in the onEnter
method, right below the [super onEnter]; line:
-(void)onEnter
{
 [super onEnter];

 _stones = [NSMutableArray array];

Chapter 10

[363]

 _timeUntilNextStone = 2.0f;

 //..skipped..
}

3.	 Then, add the fixedUpdate: method with the following code to spawn and
remove stones:
-(void)fixedUpdate:(CCTime)dt
{
 for (CCSprite *stone in [_stones copy])
 {
 if (stone.position.y < -10)
 {
 [_stones removeObject:stone];
 [stone removeFromParentAndCleanup:YES];
 }
 }

 if (_hunter.state != PhysicsHunterStateDead)
 {
 _timeUntilNextStone -= dt;
 if (_timeUntilNextStone <= 0)
 {
 _timeUntilNextStone = 0.5f +
 arc4random_uniform(1.0f);
 [self spawnStone];
 }
 }
}

4.	 Remove the code where we set the stone position at the end of the spawnStone
method and replace it with following code:
-(void)spawnStone
{
 //..skipped..
 [_batchNodeMain addChild:stone z:kObjectsZ];

 [_stones addObject:stone];
 [self launchStone:stone];
}

Physics

[364]

5.	 Finally, add the launchStone: method right below the spawnStone method,
as shown in the following code:

-(void)launchStone:(CCSprite *)stone
{
 //1
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 stone.position = ccp (viewSize.width * 0.5f,
 viewSize.height * 0.9f);

 //2
 float xImpulseMin = -1200.0f;
 float xImpulseMax = 1200.0f;
 float yImpulse = 2000.0f;
 float xImpulse = xImpulseMin +
 2.0f * arc4random_uniform(xImpulseMax);

 //3
 [stone.physicsBody applyImpulse:ccp(xImpulse, yImpulse)];
}

6.	 Build and run the game that looks much closer to the apocalypse, as you can see in
the following screenshot:

You can find a snapshot of the project at this point in the
Chapter_10/Cocohunt_10_Impulses folder.

Chapter 10

[365]

What just happened?
To make the game more interesting, we're spawning not one stone but an infinite number of
stones at some interval. In addition to this, we applied some impulse to the stone so that it
didn't just fall down due to gravity, but was launched instead.

The code in the fixedUpdate: method related to spawning, and removing stones is very
similar to what we did when we spawned birds, so we're not going to discuss it here.

Note that we stop spawning stones when the hunter dies. For the sake of
simplicity, we don't have the game state and we just use the hunter state.
Sometimes, this is enough and you don't have to overload your game
objects with states.

The interesting part is that instead of just placing the stone and letting it fall, we use the
launchStone: method to launch the stone. Let's review the launchStone: method
in detail:

1.	 We set the stone at its starting point. All stones will be launched from here and their
end position (point where they intersect with ground) will depend on the impulse
we apply to them.

2.	 Here, we calculated the random value for the x component of the impulse. Take a
look at the next diagram to get a better understanding.

3.	 Finally, after all the calculations are done, we apply the calculated impulse to the
stone using the applyImpulse: method. This method simply takes a vector that
contains the direction and magnitude of the impulse. Refer to the following diagram:

Physics

[366]

As you can see in the preceding diagram, we've picked the xImpulseMin and xImpulseMax
values in a way that picking any random value in between will cause the stone to fall
between the left and right edges of the screen.

All the three values, xImpulseMin, xImpulseMax, and yImpulse, are
simply picked using the trial and error method for this sample. The drawback of
this method is that it won't work for different screen sizes. You can solve this by
adding the code to calculate the values depending on the screen size.

Impulses versus forces
There are several ways to make the physics body move. Of course, the most straightforward
one is just to change its position, but this will be more like teleporting the physics body.
Another way is to set the velocity of the physics body, but the body rarely moves with a
constant velocity and manually calculating the velocity doesn't seem too fun.

So, the most common way to make the physics engine do your work is applying forces and
impulses to the bodies. This way, the physics engine will take care of acceleration, slowdown,
and other properties.

You might wonder what the difference between applying forces and impulses is. The forces
act gradually over time, while impulses act instantly. In other words, you need to apply a
force for some time to move something, and applying an impulse will change the velocity of
the body immediately.

Imagine a railroad car standing on the rails. You can slowly drive a locomotive next to it and
start pushing. The railroad car will slowly accelerate. This is force applied.

Now, imagine a locomotive driving at the full speed into the railroad car, making it move
instantly. This is impulse applied.

You can see what happens if you change the code in the launchStone: method to use the
applyForce: method instead of the applyImpulse: method, as shown in the following
line of code:

[stone.physicsBody applyForce:ccp(xImpulse, yImpulse)];

The stone will simply fall down because you applied a force for a short time interval.
Don't forget to change this line back.

Both methods have their purpose and you don't need to rule out either of them.

Chapter 10

[367]

Have a go hero
The following are few things that you can try:

1.	 Right now, stones are colliding with the left and right boundaries (the invisible
physics bodies), but you know enough about filtering collisions to stop this because
it is strange when the stones collide with some invisible objects.

To fix this, you can use any of the techniques to filter or ignore collisions that we've
discussed before. The simplest way will be to set the collision group of the boundaries
created in the addBoundaries method to _stoneGroundCollisionGroup. This
way, the stones will fall through them just as they fall through the ground.

2.	 You can also move the starting point at which the stones are launched to the left, to
the right, lower and higher, and see how this affects the point where they intersect
with the ground line.

3.	 Change the rate of stones spawned by adjusting the _timeUntilNextStone
variable in the fixedUpdate: method. You can count how many stones were
already spawned or the time passed since the start of the level and decrease the
interval, making it harder to play as time goes by.

Time for action – adding angry birds
At the moment, the stones are just launched from the air. Of course, if we move the stone's
spawning point above the screen, we can imagine that there are some birds flying high and
dropping the stones.

In fact, we placed the launch point below the screen edge so that you can see
them being launched.

However, wouldn't it be cooler to see your enemy, to look them in the eyes? Let's do this and
add some birds that are dropping stones.

What we're going to do is to spawn a bird off the screen. The bird will carry a stone using
a joint.

Joints are constraints that used to simulate interaction between objects.
For example, you can simulate one object tied with a rope to another one.
It will become clear in a moment.

Physics

[368]

This bird will fly into the level and will drop the stone at the target point.

1.	 To keep things organized, create a new Objective-C class in the GameObjects
group. Name the class PhysicsBird and make it a subclass of our Bird class,
as we're going to reuse some of the code.

2.	 Open the PhysicsBird.h file and replace its contents with following code:
#import "Bird.h"

@interface PhysicsBird : Bird

@property (nonatomic, weak) CCSprite *stoneToDrop;

-(void)flyAndDropStoneAt:(CGPoint)point
 stone:(CCSprite*)stone;

@end

3.	 Then, switch to the PhysicsBird.m file and replace its contents with following code:
#import "PhysicsBird.h"
#import "cocos2d.h"

typedef NS_ENUM(NSUInteger, PhysicsBirdState)
{
 PhysicsBirdStateIdle,
 PhysicsBirdStateFlyingIn,
 PhysicsBirdStateFlyingOut
};

@implementation PhysicsBird
{
 PhysicsBirdState _state;
 CGPoint _targetPoint;

 CCPhysicsJoint *_stoneJoint;
}

-(instancetype)initWithBirdType:(BirdType)typeOfBird
{

Chapter 10

[369]

 //1
 if (self = [super initWithBirdType:typeOfBird])
 {
 //2
 _state = PhysicsBirdStateIdle;

 //3
 CCPhysicsBody *body =
 [CCPhysicsBody
 bodyWithCircleOfRadius:self.contentSize.height*0.3f
 andCenter:self.anchorPointInPoints];
 body.collisionType = @"bird";
 body.type = CCPhysicsBodyTypeDynamic;
 body.mass = 30.0f;
 self.physicsBody = body;
 }

 return self;
}

-(void)flyAndDropStoneAt:(CGPoint)point stone:(CCSprite*)stone
{
 //1
 _state = PhysicsBirdStateFlyingIn;
 _targetPoint = point;
 self.stoneToDrop = stone;

 //2
 self.stoneToDrop.physicsBody.collisionMask = @[];
 self.physicsBody.collisionMask = @[];

 //3
 float distanceToHoldTheStone =
 self.contentSize.height * 0.5f;
 self.stoneToDrop.position =
 ccpSub(self.position, ccp(0, distanceToHoldTheStone));

 //4
 _stoneJoint =
 [CCPhysicsJoint
 connectedDistanceJointWithBodyA:self.physicsBody
 bodyB:stone.physicsBody
 anchorA:self.anchorPointInPoints
 anchorB:stone.anchorPointInPoints];

Physics

[370]

}

-(void)fixedUpdate:(CCTime)dt
{
 //1
 float forceToHoldBird =
 -1 * self.physicsBody.mass * self.physicsNode.gravity.y;

 //2
 if (_state == PhysicsBirdStateFlyingIn)
 {
 //3
 float forceToHoldStone =
 -1 * self.stoneToDrop.physicsBody.mass *
 self.physicsNode.gravity.y;

 //4
 float forceUp = forceToHoldBird + forceToHoldStone;

 //5
 [self.physicsBody applyForce:ccp(-1500, forceUp)];

 //6
 if (self.position.x <= _targetPoint.x)
 {
 _state = PhysicsBirdStateFlyingOut;
 [self dropStone];
 }
 }
 else if (_state == PhysicsBirdStateFlyingOut)
 {
 //7
 float forceUp = forceToHoldBird * 1.5f;

 //8
 [self.physicsBody applyForce:ccp(0, forceUp)];

 //9
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 if (self.position.y > viewSize.height)
 {
 [self removeFromParentAndCleanup:YES];
 }
 }

Chapter 10

[371]

}

-(void)dropStone
{
 self.stoneToDrop.physicsBody.collisionMask = nil;
 [_stoneJoint invalidate];
}

@end

4.	 After we have the bird, we need to launch it. However, before we can use the
bird images in this scene, we need to add another sprite batch node, as the bird
frames are in another spritesheet. Open the PhysicsScene.m file and add the
_batchNodeBirds instance variable, as shown in the following code:
@implementation PhysicsScene
{
 //..skipped..

 CCSpriteBatchNode *_batchNodeBirds;
}

5.	 Then, in the end of the createBatchNodes method, add the code to initialize and
add a new batch node to the physics node. It is important to add the code at the
end of the method, as we're not going to use z-orders for simplicity and will simply
add a new batch node after the existing one to make sure it is on top of it. Add the
following code:
-(void)createBatchNodes
{
 //..skipped.. _batchNodeMain created and added here

 [[CCSpriteFrameCache sharedSpriteFrameCache]
 addSpriteFramesWithFile:@"Cocohunt.plist"];

 _batchNodeBirds =
 [CCSpriteBatchNode
 batchNodeWithFile:@"Cocohunt.png"];

 [_physicsNode addChild:_batchNodeBirds];
}

6.	 The final step before we can launch the bird is import the PhysicsBird.h header
using the following line of code:
#import "PhysicsBird.h"

Physics

[372]

7.	 Now, when we have everything prepared to launch the bird, add the
launchBirdWithStone: method right below the launchStone: method,
as shown in the following code:
-(void)launchBirdWithStone:(CCSprite *)stone
{
 //1
 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 PhysicsBird *bird = [[PhysicsBird alloc]
 initWithBirdType:BirdTypeBig];
 bird.position = ccp(viewSize.width * 1.1f,
 viewSize.height * 0.9f);
 [_batchNodeBirds addChild:bird];

 //2
 CGPoint targetPosition = _hunter.position;

 //3
 [bird flyAndDropStoneAt:targetPosition stone:stone];
}

8.	 To use another method to launch stones, find the spawnStone method and find the
following line of code in it:
[self launchStone:stone];

Replace the previous line of code with the following:

[self launchBirdWithStone:stone];

9.	 There are a few more steps. Remove the call to spawnStone from the
onEnterTransitionDidFinish method, or at least place it after the hunter
is created. Otherwise, the first bird won't have a target. This is shown in the
following code:
-(void)onEnterTransitionDidFinish
{
 [super onEnterTransitionDidFinish];

 [self createHunter];
 [self spawnStone];

 [self addBoundaries];
}

Chapter 10

[373]

10.	The final step we need to perform in the fixedUpdate: method is to adjust the
minimum time interval between two birds; otherwise there will be too many birds
on the screen. Find the following line in the fixedUpdate: method:
_timeUntilNextStone = 0.5f + arc4random_uniform(1.0f);

Adjust the minimum time interval; for example set it to be 1 second, as shown in the
following line of code:
_timeUntilNextStone = 1.0f + arc4random_uniform(1.0f);

11.	Build and run the game. You should see a pack of birds carrying stones and trying to
drop them on the hunter, as shown in the following screenshot:

If you have _physicsNode.debugDraw enabled, you can safely disable it here (set to NO).
As this is the last change to the level, you can now sit back and watch everything without the
debug information drawn on screen.

You can find code of the final project for this chapter in the
Chapter_10/Cocohunt_10_Final folder.

What just happened?
Once again, it takes some code to add a new fully functional class to the game. However,
most of the code is only to glue everything together. We're going to review everything and
it will then become much clearer.

Physics

[374]

Creating the PhysicsBird class and giving it the stone
Let's start from the end and review the changes in the PhysicsScene class first.

The bird images are contained in the Cocohunt spritesheet. To use them, we needed to
create another CCSpriteBatchNode and add it to the scene. Only after this could we
create sprites or animations that use the sprite frames from this spritesheet.

This way, we have two batch nodes in our scene at the same time. The _batchNodeMain
batch node draws all sprites from the physics_level spritesheet. The _batchNodeBirds
batch draws all the sprites from the Cocohunt spritesheet, although we need only the bird's
animation from it. Each sprite is added as a child to the corresponding batch node, and both
batch nodes are added to the physics node.

We take this approach because we want to reuse the bird's images that
were contained in another spritesheet. In a real game, you can also
have multiple batch nodes if all your sprites don't fit on one spritesheet.
Remember that there is a limit on the maximum texture size, which we
discussed in Chapter 4, Rendering Sprites.

The second change that we've made to the PhysicsScene.m file is that we used the
launchBirdWithStone: method instead of the launchStone: method. This method
spawns a bird off the screen and tells it to drop the stone at targetPosition.

Let's review the code of the launchBirdWithStone: method:

1.	 We created an instance of the PhysicsBird class. We set its position offscreen
and added to the _batchNodeBirds batch node, as the PhysicsBird class uses
birds images.

2.	 We then set the target to the hunter position.

3.	 We commanded the bird to fly to the target point and drop the stone. Note that we
passed the stone, which we created earlier to the bird.

All changes made in the PhysicsScene.m file can be described in one sentence. We
created and positioned a bird and commanded it to take the stone and drop it at the
target point.

The rest is done in the PhysicsBird class, which we're going to review now.

Chapter 10

[375]

The PhysicsBird class – using joints and applying force
The PhysicsBird class was created to contain the code to manage both the bird and the
stone when they are together and when the bird is flying away. We could have created the bird
sprite in the PhysicsScene class and written the code to manage both the bird and the stone
in the PhysicsScene class, but this would lead to less maintainable and reusable code.

So, what do we want from the bird? We want it to display the flying bird animation, take the
stone, fly to some point, drop this stone, and fly away. Let's review how each of the methods
in PhysicBird class solve its task.

We'll start with the initWithBirdType: method. The code in this method sets the
animation, sets the initial state of the bird to the PhysicsBirdStateIdle state, and
creates the physics body. Refer to the following points:

1.	 The task of displaying the flying bird is fully solved by inheriting our class from
the Bird class and reusing its initWithBirdType: method, which starts
the animation.

You can go back to Chapter 4, Rendering Sprites, to see where we
created this method.

2.	 We need the _state variable to control our bird's state. There are three states that
the bird can be in. The bird can only move to the next state (for example, it can't
go from PhysicsBirdStateFlyingOut to PhysicsBirdStateFlyingIn). The
three states are as follows:

�� The PhysicsBirdStateIdle state means that the bird is just created.
This is the state we set in the initWithBirdType: method.

�� The PhysicsBirdStateFlyingIn state means that the bird is
flying towards the target point. After changing to this state, the bird
starts moving.

�� The PhysicsBirdStateFlyingOut state means that the bird dropped
the stone and is flying out. When we switch to this state, the bird should
drop the stone and fly away.

3.	 The final part of the initWithBirdType: method is a creation of the physics body.
The physics body is required as we're going to apply forces to the bird to move it.
Also, we will attach a stone to the bird's body using a joint.

Physics

[376]

Now, let's review the flyAndDropStoneAt: method where we give the stone to the bird
and tell the bird where to drop this stone:

1.	 Here, we set the current state of the bird to PhysicsBirdStateFlyingIn. This
will cause the bird to start moving in the direction of the target point. We also saved
the target point and the reference to the stone the bird is carrying.

2.	 The collisionMask properties of both the bird and the stone are set to an empty
array. This means that we don't want them to collide with anything. As the bird is
carrying a stone, it shouldn't collide with other birds or stones falling from the sky.

By default, collisionMask is set to nil, which means that the
body wants to collide with everything. Setting it to an empty array has
a different meaning. We provide an empty list of categories that we
want to collide with; thus, it won't collide with anything.

3.	 Here, we positioned the stone to be under the bird. In the
distanceToHoldTheStone variable, we calculated the distance at which we
want the bird to hold the stone. Then, we used the ccpSub function to subtract
this distance from the bird's position, and as a result, we got the initial position
for the stone.

4.	 We created the distance joint that will connect the stone and the bird.

If you haven't used a physics engine before, the word "joint" might be completely new and
unclear. Let's spend some time reviewing what joints are.

Joints are used to connect the bodies together. However, just as in the real world, two bodies
can be connected in several ways.

Think of how glue sticks two objects together and they almost become one object. No
matter how you manipulate one of the objects, the distance between them stays constant.
You cannot rotate one of the objects without rotating the other and so on.

Now, think about tying two objects together with a rope at some distance, such as a dog
on a leash. The dog can move freely around the human, who holds the leash; it can rotate
without rotating the human. However, the dog has a maximum distance it can move away
from the human.

This and other examples show how you can use joints to connect your bodies. In our
case, we're using a distance joint to connect the stone to the bird. A distance joint simply
maintains the distance between two objects. This is exactly what we want as we want
to simulate the bird carrying the stone on some kind of a non-stretchable rope.

Chapter 10

[377]

Launch the game and watch how the stone is swinging a little while the bird
carries it. If you increase the value of distanceToHoldTheStone, it
will swing even more. An example of this would be a helicopter transporting
something using the long cable.

To create a joint, you first need to add both bodies to the physics node, and only after this
can you create the joint using the CCPhysicsJoint class, which is used to create different
joint types.

The final method to review is the fixedUpdate: method:

1.	 First, we calculated what force is required to hold the bird in the air. Our bird is
affected by gravity force, which is calculated as F = m * g. To keep our bird in the
air, we need to apply the same force in the opposite direction (that is, up), which is
why we multiply by -1.

2.	 Then, we determined the state of the bird as the bird has different behavior when
carrying a stone and when flying away.

3.	 If the bird is in the PhysicsBirdStateFlyingIn state, it means that the bird is
carrying a stone. This means that we also need to add force to hold the stone.

4.	 The forceUp holds the total force required to hold the bird and the stone in the air.
The joint doesn't have any weight.

5.	 Here, we applied the force to the bird, and there are a few things to note about this:

�� We applied force to the bird, but as the stone is attached to the bird via the
joint, it will not fall.

�� Applying a force of -1500 in the x axis all the time will make the bird
accelerate more and more. You can already see this. If the bird flew a
little longer, the value of its velocity would be high as there are no
forces to resist it.

6.	 If the bird passed its target point, it should drop the stone and switch to the
PhysicsBirdStateFlyingOut state.

7.	 If the bird is in the PhysicsBirdStateFlyingOut state, then the bird is not
carrying a stone anymore. This means that no additional force is required, but as
we want the bird to fly upwards on its way out, we multiplied the force by 1.5 to
overcome gravity and fly up.

8.	 Note that zero force is applied in the x axis, but the bird still moves forward due
to inertia.

9.	 If the bird has left the screen, it is removed. This is important because if we don't
remove unused objects, it will reduce our game's performance over time.

Physics

[378]

The final method to review is the dropStone method. In this method, we reset the stone
collisionMask, as the stone has to collide with the hunter.

The second thing that we did is invalidate the joint using the invalidate method. When
you invalidate the joint, it is disabled and removed. In our case, we can think of it as the rope
breaking and the stone falling down.

After you invalidate the joint, you cannot reuse it.

That's it. These are all the methods that make our peaceful bird from the first part of the
book into a bloodthirsty monster.

Have a go hero
The following is a list of things that can make this level much more interesting:

�� Call the launchStone: and launchBirdWithStone: methods randomly or
even spawn two stones each time and use both methods simultaneously.

�� Make the bird target the hunter more precisely. To do this, the bird must release
the stone at some distance before the target point, as the stone is moving forward
due to inertia.

�� Make the bird fly to the level from the left-hand side of the screen as well.

�� Apply force to the hunter instead of setting the hunter's velocity.

Pop quiz – physics
Q1. How will you shoot the arrow from a bow?

1.	 By calling the applyForce: method on the arrow body once

2.	 By calling the applyImpulse: method on the arrow body once

3.	 By setting the arrow body's velocity property once

4.	 By setting the arrow body's velocity property in the fixedUpdate:
method each time step

Chapter 10

[379]

Q2. How will you implement the acceleration of a car using the gas pedal?

1.	 By applying force using the applyForce: method all the time while the gas pedal
is pressed

2.	 By applying impulse using the applyImpulse: method all the time while the gas
pedal is pressed

3.	 By setting the velocity property to a constant value when the gas pedal is pressed

4.	 By setting the velocity to a constant value when the gas pedal is pressed and
changing the value of velocity to 0 when the gas pedal is released

Q3. Which method should you use to update your physics objects?

1.	 update:

2.	 fixedUpdate:

3.	 constantUpdate:

4.	 physicsUpdate:

Summary
In this chapter, we've learned the basics of using a physics engine in your game. Although we
learned how to create and manipulate physics bodies, detect collisions, and apply forces and
impulses, we barely scratched the surface of what you can do with a physics engine.

We haven't created more complicated physics bodies using polygon shapes or even
multi-shape bodies. We didn't use sensors and haven't created complicated mechanisms
using joints.

However, I think that information presented in this chapter might be already too
overwhelming, especially if you have only just begun to learn how to use physics in your
games. Nonetheless, I'm sure this chapter has everything you need to know to start creating
physics-enabled games and continue learning advanced topics. I can assure you that the
result of learning will be totally worth it!

In the next chapter, we will see how to create larger worlds using tile maps.

11
Working with Tile Maps

Some of the games require really large worlds. Just imagine an RPG where the
whole dungeon should fit in one screen. This will be a very small dungeon, not
larger than a dressing room of some celebrity. Alternatively, you will have to
scale everything down so that your game will be pixels fighting other pixels.

The solution is pretty obvious: create a larger world and follow the player, just as
the camera follows the actor during the movie shooting. However, creating and
managing a large world manually can be quite a task. This is where tile maps
come to the rescue and make creation and usage of large levels much easier.

In this chapter, we are going to create a new bigger level using a tile map and will
demonstrate some techniques to move your character through this world.

In this chapter, we will cover the following topics:

�� Creating the tileset from a set of separate images

�� Creating a tile map that contains several layers

�� Making the tile map support both the Retina and non-Retina displays

�� Scrolling the level

�� Using parallax scrolling for more realistic scrolling

Working with Tile Maps

[382]

Creating tile maps
When we use tile maps, we create a large world using a set of reusable small tiles. A set
of such tiles is called a tileset. Here is a tileset that we are going to create and use in our
new level:

Here is a part of the level created using the tiles from this tileset:

As you have probably guessed, each tile from the set is placed on a grid that forms a tile
map. The tile map can be very big, while still not consuming all of your memory since only
the visible part is displayed.

Creating a tile map usually takes two steps. First, you create a tileset image and then you
arrange tiles to form a tile map. Let's start by creating a tileset.

Chapter 11

[383]

Time for action – creating a tileset
Before we can create a tile map, we need to create a tileset. This is quite easy to do using the
TexturePacker app that we have used before. Once again, the free version will be enough for
our tasks.

We will create a special spritesheet that we are going to use as a tileset. Perform the
following steps:

1.	 Open the TexturePacker application. You should have installed it during Chapter 4,
Rendering Sprites. A new project is created by default, but create one if required.

2.	 Open the book's supporting files in the Chapter_11/Assets/Tilemap/Images/
sd folder and select all images. Drag those images to the TexturePacker app.

To download the book's supporting files, please visit www.
packtpub.com/support and follow the instructions.

3.	 Set the TextureSettings option in the left-hand side pane of TexturePacker
as follows:

�� Algorithm: Select Basic

�� Sort by: Select Name

�� Border padding: Enter 2

�� Shape padding: Enter 2

�� Allow rotation: Select Uncheck

�� Trim mode: Select None

It is very important to set paddings and remember those
values, since you'll need to specify them later. Otherwise,
your tileset image won't be split into tiles correctly and/or
you will get gaps or overlapping tiles.

After adjusting the settings, you should see an image in the preview pane identical
to the sample tileset image shown at the beginning of this chapter.

4.	 Save the TexturePacker project as tilemap.tps in some folder. We will put all the
files in this folder, so please create a special folder.

5.	 Publish the spritesheet to this folder by selecting Publish in the File menu or using
the command + P shortcut. Name the spritesheet tilemap.plist.

www.packtpub.com/support
www.packtpub.com/support

Working with Tile Maps

[384]

What just happened?
At this point, you should have the following three files:

�� tilemap.tps: This is just a TexturePacker project. We saved it just in case and
won't use it in the future.

�� tilemap.png: This is the tileset image. This is the only file we need and we've
done all the previous actions only to create it.

�� tilemap.plist: This is the .plist part of the spritesheet. As you remember,
it contains the information about the individual sprite positions within the
spritesheet image. However, we won't need it to create a tile map, so you can
simply ignore this file.

So the only file we need is the tilemap.png image, since tile maps don't use a .plist
file and instead just require images in the tileset to be positioned using the grid. This is why
we've set so many options in the TexturePacker project.

Instead of using TexturePacker, you could create a tileset image in your
favorite graphics editor, such as Photoshop or GIMP. Each tile image is 32 x
32 pixels so you could just create a grid of the tiles, adding some constant
padding value between the tiles. Using the TexturePacker project does
this automatically, even though it is not designed to create tilesets and
produces the unneeded .plist file.

Now, when we have the tileset image, it is time to create a tile map.

If you have any issues creating a tileset image or for some reason you cannot
create it right now, you can use the tilemap.png image in the Chapter_11/
Assets/Tilemap/Result folder. You can also compare this file with the one
that you have created to check whether they are identical.

Time for action – creating a tile map
One of the best applications to create a tile map is a free app called Tiled created by
Thorbjørn Lindeijer. We are going to use the app to create a simple level using the tileset that
we have just created. Perform the following steps:

1.	 Open the http://www.mapeditor.org/ website and download the Tiled
application. You will need Tiled for OS X. When the download completes, open the
.dmg file and copy the Tiled.app into the Applications folder on your Mac.

http://www.mapeditor.org/

Chapter 11

[385]

2.	 Run the Tiled.app and create a new project by selecting the New option in the
File menu. Set the new project options as follows:

�� Orientation: Select Orthogonal

�� Layer format: Select Base64 (zlib compressed)

�� Tile size: Set both Width and Height to 32 px

�� Map size: Set Width to 64 tiles and Height to 10 tiles

The resulting Map Size should be 2048 x 320 pixels.

3.	 Select the New Tileset option from the Map menu. Name the tileset anyway you
like, as it is irrelevant (I have named it Jungle). Click on the Browse button and
select the tilemap.png image that we have just created. Don't click on the OK
button just yet.

4.	 In the Tiles group, set Tile width and Tile height to 32 px. Set the Margin and
Spacing to 2 px. Leave the Drawing Offset at X:0 and Y:0. Now, you can click on
the OK button.

Here is how your New Tileset dialog should look:

5.	 Save the tiled map file to the same folder where the tilemap.png image is placed.
Name it tilemap.tmx.

Working with Tile Maps

[386]

6.	 In the Layers pane on the right-hand side, rename Tile Layer 1 (by double-clicking on
it) to Ground.

7.	 Use different ground tiles from the tileset to fill the bottom row of the tile map,
like this:

If you don't want to spend time placing tiles on the map,
you can take the final tilemap.tmx file from the
Chapter_11/Assets/Tilemap/Result folder.

8.	 After finishing with the ground row, select the Add Tile Layer option in the Layer
menu to create a new layer. Name the layer Trees. Select this layer in the Layers
pane on the right-hand side and click on the down arrow to move it below the
Ground layer.

9.	 Tiles are added to the currently selected layer, so make sure the Trees layer is
selected and then add trees to the level. To create a tree, you should place several
tiles on top of each other. There are total three parts of the trunk and two different
treetops. You can make shorter trees by skipping the lower parts of the trunk. Here
is an example:

Chapter 11

[387]

10.	Now let's add some bushes. Create new tile layer and call it Bushes. Use the down
arrow to move it below both the Ground and the Trees layers.

11.	Use the green bushes tiles to add some bushes to the level. The bushes also consists
of several parts that you can combine differently to create different bushes. Make
sure you select the Bushes layer before adding any bushes.

Don't be afraid to overwrite the tree tile if you want to place
the bush behind the tree. Since they are on different levels,
the bush tile will be added behind the tree tile in the same grid
cell. In other words, all the bushes (or any other objects in the
Bushes layer) will end up behind trees.

Working with Tile Maps

[388]

Here is an example of bushes (note the three different layers in the Layers pane on
the right-hand side):

12.	Save the tilemap.tmx file once again to save the latest changes and close the Tiled
application, since we have finished working with it.

What just happened?
With only a few tiles, we have created a much bigger world. In fact, we only limited ourselves
by 64 tiles width so that it didn't take too much time filling this sample tile map. We could
have easily created a much larger tile map.

Let's discuss some of the tile map creation process. First of all, let's review some of the
options that we've set while creating the tile map:

Chapter 11

[389]

�� Orientation: We have set this to orthogonal. The orthogonal tile maps are the most
often used tile maps in two-dimensional games. We have just seen them in action,
and they just represent a grid that consists of rectangular tiles. Another type of the
map is an isometric tile map. The isometric tile maps are used to create games with
an isometric view, but still staying in a two-dimensional world. When you use an
isometric tile map, you use diamond tiles instead of rectangular, and thus you create
an illusion of a three-dimensional view. Here is an example of a isometric tile map
(note that tile map is still two-dimensional grid, it is just a visual illusion of 3D):

You can find the tile map project file and images used to create this
sample in the Chapter_11/IsometricSample folder. The tileset
images were created by Indie Squid (http://indiesquid.com).

We won't cover creating isometric tile maps in this book, but the main idea behind
them is same as with orthogonal tile maps—use many small tiles to generate a
large world.

�� Layer format: The Base64 (zlib compressed) option means that the information
about each layer will be compressed to save some disk space.

�� Tile size: This is the size of the single tile in pixels. We use the 32 x 32 px square tiles,
but in some cases, you might want to use rectangular tiles (for example, 64 x 32 px).
This mostly depends on the size of the images used to create a tileset.

�� Map size: This is the size of the tile map in tiles. It is important to note that this size
is in tiles, not in pixels or points.

http://indiesquid.com

Working with Tile Maps

[390]

The values that we set when we added the tileset are pretty much the same as earlier. There
are few things to note:

�� The Tile width and Tile height value can be different from the Tile size value of the
tile map.

�� The Margin option is the Border padding setting that we set in the TexturePacker
project. The Spacing option is the Shape padding setting in the TexturePacker
project. These settings are very important, since if you set them wrong, your tileset
will be imported incorrectly. Here is an example of what will happen if we set the
Margin option and the Spacing option to 0 instead of the 2px that we've actually
used. Refer to the following screenshot:

As you can see, the grid is calculated incorrectly. White lines over the ground tiles show
how the tileset was sliced by the Tiled application because of the incorrect Margin and
Spacing values.

Time for action – creating the Retina version of the tile map
Just as with many other resources used in Cocos2D games, you need to have several versions
to support non-Retina and Retina displays. Luckily, we don't have to create a separate tile
map for 3.5-inch Retina and 4-inch Retina displays. Also, we won't have to repeat all the
steps and recreate a tile map using a different tileset.

Chapter 11

[391]

You need to understand that tile maps for Retina and non-Retina displays will
only differ by size of images used in them, and the layout of the tiles should
be the same; of course, if you don't want to display different levels for Retina
and non-Retina displays.
However, normally, you'd have to create two versions by simply repeating all
your work and placing all tiles in the same places.
Just as if you had an image and you needed a 2x image and instead of scaling
it in graphics editor, you redraw it from scratch. The following technique
allows you to get a Retina version of the same tile map without re-working.

What we need to do is to create a different tileset image and adjust some settings in the tile
map file. Perform the following steps:

1.	 Let's start by creating a tileset. Open the TexturePacker project and create new
spritesheet. This time use images from the Chapter_11/Assets/Tilemap/
Images/hd folder.

2.	 Before publishing, set TextureSettings in TexturePacker to the same values as
previously, consider the following aspects:

�� Algorithm: Select Basic

�� Sort by: Select Name

�� Border padding: Enter 2

�� Shape padding: Enter 2

�� Allow rotation: Select Uncheck

�� Trim mode: Select None

You can save the TexturePacker project in the same folder where the previous
TexturePacker project and tilemap.tmx files are present. Name it tilemap-hd.
tps. We won't need it, but just in case, it is better to save it.

3.	 Now publish the TexturePacker project by navigating to the Publish option in the
File menu or by using command + P. Name the spritesheet tilemap-hd.plist. This
will create the tilemap-hd.png image. Once again, this is the only file we need.

4.	 Fortunately, we won't have to create a new tile map and place all tiles once again.
Instead, we're going to copy the existing tile map and adjust some values. Before
we continue, make sure these three files tilemap.png, tilemap.tmx, and
tilemap-hd.png are in the same folder. Then copy the tilemap.tmx file and
rename it to tilemap-hd.tmx.

Working with Tile Maps

[392]

5.	 Open the tilemap-hd.tmx file in your favorite text editor and make highlighted
changes in the top part of the file. Refer to the following code:
<?xml version="1.0" encoding="UTF-8"?>
<map version="1.0" orientation="orthogonal" width="64"
 height="10" tilewidth="64" tileheight="64">
 <tileset firstgid="1" name="Jungle" tilewidth="64"
 tileheight="64" spacing="2" margin="2">
 <image source="tilemap.png" width="256"
 height="512"/>
 </tileset>

When the rest of the file is skipped, don't delete the rest
of the file!

The changes you've made have simply doubled tilewidth and tileheight in
two places and doubled the size of the tileset image.

It is not an error that we didn't change the source property
of the image tag to <image source="tilemap-hd.
png"… />. Cocos2D will automatically load the –hd version
just as with a normal image.

6.	 Save and close the tilemap-hd.tmx file. At this point, you should have four files,
tilemap.png, tilemap.tmx, tilemap-hd.png, and tilemap-hd.tmx in the
same folder that we've just created.

It is important to work within one folder so that tile map file
doesn't have a relative path to the tileset image (for example,
<image source="../src/tilemap.png") because
Cocos2D won't be able to load the tileset image in this case.

Chapter 11

[393]

You can have additional files in the folder such as the .tps and .plist files, but the four
files mentioned earlier are all we need to add the tile map to our game.

You can find all four files in the Chapter_11/Assets/Tilemap/Result
folder to compare with your files or use them if for some reason you didn't
create those files.

What just happened?
Fortunately, we didn't have to repeat all the steps to create a tile map duplicate for the
Retina display.

It might seem that we didn't save ourselves from a lot of work. After all,
recreating such small tile map once again is not a problem. However, imagine a
really huge tile map that you've designed for several days. You placed obstacles,
enemies, and so on. Now, you need to create an identical one, but just chose a
different setting at the time when you created it. Also, think about maintaining
two versions of tile map after that.

All we had to do is create another tileset image using the TexturePacker project and create
another .tmx file with a few changes. The tileset-hd.png file is the same tileset as we
created before but just double-sized.

To make two tileset images identical, we set the same properties in the
TexturePacker project, including the Sort by property to make sure tiles are
placed in the same places within the tileset. This means that you need to have
the same names for the Retina and non-Retina images used to create a tileset;
otherwise, they will be placed in a different order and you will have to recreate
the tile map manually instead of changing a few parameters.

Since the tileset is double-sized, we also needed to double the size of the tiles in the
tileset-hd.tmx file.

Now, we have all the files we need to add the tileset to the game.

Working with Tile Maps

[394]

Using the tile maps
It is a good thing to know that adding tileset to the game is much simpler than creating it.
To demonstrate how to use tile maps in the Cocos2D game, we're going to create a new
scene where the bird will fly through the tile map level.

Time for action – creating TilemapScene
Let's start by creating the new scene and loading our tile map. Perform the following steps:

1.	 Open the Cocohunt project and create new group in the Resources group
called Tilemap.

You can continue working on the project you have after
completing the previous chapter or take the final code from
the previous chapter in the book's supporting files and use it
as a starter project. You can find the final code for the previous
chapter in the Chapter_10/Cocohunt_10_Final folder.

2.	 Add the tilemap.png, tilemap.tmx, tilemap-hd.png, and tilemap-hd.tmx
files to that group. You can use the files that you created or take the files from the
Chapter_11/Assets/Tilemap/Result folder.

3.	 In addition to the tile map files, add two background image files from the
Chapter_11/Assets/Background folder. We will use them as the background
image for the scene.

4.	 After adding all resources, create a new scene called TilemapScene.

5.	 Open the TilemapScene.m file and import the cocos2d.h file and the Bird.h
headers as follows:
#import "cocos2d.h"
#import "Bird.h"

6.	 After all the #import directives, but before the @implementation line, add the
following enum to specify z-order values that we'll use:
typedef NS_ENUM(NSUInteger, zOrder)
{
 zOrderBackground,
 zOrderTilemap,
 zOrderObjects
};

Chapter 11

[395]

7.	 Add the following instance variables:
@implementation TilemapScene
{
 float _worldSize;
 CCTiledMap *_tileMap;
 Bird *_bird;
 CCSpriteBatchNode *_batchNode;
}

8.	 Then add the following methods to add everything to the scene:
-(void)onEnter
{
 [super onEnter];

 [self createBatchNode];

 [self addBackground];
 [self addTilemap];
 [self addBird];
}

-(void)createBatchNode
{
 [[CCSpriteFrameCache sharedSpriteFrameCache]
 addSpriteFramesWithFile:@"Cocohunt.plist"];
 _batchNode = [CCSpriteBatchNode
 batchNodeWithFile:@"Cocohunt.png"];
 [self addChild:_batchNode z:zOrderObjects];
}

-(void)addBackground
{
 CCSprite *bg =
 [CCSprite spriteWithImageNamed:@"tile_level_bg.png"];
 bg.positionType = CCPositionTypeNormalized;
 bg.position = ccp(0.5f, 0.5f);
 [self addChild:bg z:zOrderBackground];
}

-(void)addTilemap
{
 _tileMap = [CCTiledMap tiledMapWithFile:@"tilemap.tmx"];
 _worldSize = _tileMap.contentSizeInPoints.width;
 [self addChild:_tileMap z:zOrderTilemap];
}

-(void)addBird
{

Working with Tile Maps

[396]

 CGSize viewSize = [CCDirector sharedDirector].viewSize;

 _bird = [[Bird alloc] initWithBirdType:BirdTypeSmall];
 _bird.flipX = YES;
 _bird.position = ccp(viewSize.width * 0.2f,
 viewSize.height * 0.2f);
 [_batchNode addChild:_bird];
}

9.	 Now, we need to run this scene. Open the AppDelegate.m file and import the
TilemapScene.h header as follows:
#import "TilemapScene.h"

10.	Then find the startScene method and change it to return the
TilemapScene instance:
-(CCScene *)startScene
{
 return [[TilemapScene alloc] init];
}

11.	Build and run the game. You should see a part of our tile map level and a bird flying
but not moving, as shown in the following screenshot:

Chapter 11

[397]

What just happened?
We created a scene that contains a background image, a tile map, and a bird.

The background image represents some mountains far away. When the bird moves,
they will remain still; this is why we only need the image to be of the screen size.

To display the bird, we needed to create a batch node, since we are reusing the bird
from our initial GameScene class. This is also why we needed to set flipX to YES in the
addBird method, since the bird is facing left by default and we need it to face right.

The only new thing is the code in the addTilemap method. Just as I told you earlier,
adding a tile map to the game is much easier than creating it.

To display the tile map, we used the CCTiledMap class, which is a CCNode subclass.
In other words, this is just a usual node, just as sprite, label, and so on are. The only
difference is that it loads the tile map .tmx file and displays tiles on the screen.

Tiles are simple sprites and are loaded on demand. If required, you can move, rotate,
scale, and change other properties of the individual tile.

It will become clear in a moment why we save the size of the tile map in the
_worldSize variable.

Time for action – moving and following the bird
What is the purpose of the big world if we can see only a small portion of it? Let's make
the bird fly forward and see the whole tile map. Perform the following steps:

1.	 Open the TilemapScene.m file and add the update: method to move the tile map
as follows:
-(void)update:(CCTime)dt
{
 float distance = 150.0f * dt;

 CGPoint newTilemapPos = _tileMap.position;
 newTilemapPos.x = newTilemapPos.x - distance;
 _tileMap.position = newTilemapPos;
}

Working with Tile Maps

[398]

2.	 You can build and run the game right now, but you will see that the bird isn't
stopping when we reach the end of the tile map. So let's change the update:
method to the following code:
-(void)update:(CCTime)dt
{
 float distance = 150.0f * dt;

 CGPoint newTilemapPos = _tileMap.position;
 newTilemapPos.x = newTilemapPos.x - distance;

 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 float endX = -1 * _worldSize + viewSize.width;

 if (newTilemapPos.x > endX)
 _tileMap.position = newTilemapPos;
}

3.	 Build and run the game. Now the bird should fly through the tile map.

You can find a project snapshot at this point in the
Chapter_11/Cocohunt_11_Tilemap folder.

What just happened?
It might seem strange that we're moving the tile map and not the bird. However, if we would
move the bird, we would also need to move the background image, since it should seem that
it is not moving.

This is another example to demonstrate that sometimes it is more convenient to make the
player believe that something happened instead of actually making it happen.

Right now the bird simply stops at the end. In the real game, you can add
obstacles or enemies and if the bird reaches the end of the level, then you
can consider that the player completed this level.

So what we're doing is moving the tile map to the left by decreasing its position's x component.
However, since we don't want the bird to fly when it reaches the end of the tile map, we're
using endX to check whether the bird can still fly forward.

We need to add viewSize.width to -1 * _worldSize, since the tile map anchor point
is in the bottom-left corner (0, 0) and we need to stop when the tile map's bottom-right
corner reaches the bottom- right corner of the view.

Chapter 11

[399]

You can remove + viewSize.width to see what happens
and understand why we need it.

It is nice to see the bird flying or to be more precise, the tile map moving, but we can make it
look much more realistic using the parallax scrolling technique.

Time for action – using parallax scrolling
The parallax scrolling technique adds depth to your game by moving different layers placed
one above each other at different speed. Let's use it in our TilemapScene class and you'll
see what I'm talking about. Perform the following steps:

1.	 Open the TilemapScene.m file and add the following instance variable:
@implementation TilemapScene
{
 //..skipped..

 CCParallaxNode *_parallaxNode;
}

2.	 Then find the addTilemap method and replace it with the following code:
-(void)addTilemap
{
 _tileMap = [CCTiledMap tiledMapWithFile:@"tilemap.tmx"];
 _worldSize = _tileMap.contentSizeInPoints.width;

 //1
 CCTiledMapLayer *bushes = [_tileMap layerNamed:@"Bushes"];
 CCTiledMapLayer *trees = [_tileMap layerNamed:@"Trees"];
 CCTiledMapLayer *ground = [_tileMap layerNamed:@"Ground"];

 //2
 _parallaxNode = [CCParallaxNode node];

 //3
 [bushes removeFromParentAndCleanup:NO];
 [trees removeFromParentAndCleanup:NO];
 [ground removeFromParentAndCleanup:NO];

 //4
 [_parallaxNode addChild:bushes z:0
 parallaxRatio:ccp(0.2, 0)
 positionOffset:ccp(0,0)];

Working with Tile Maps

[400]

 [_parallaxNode addChild:trees z:1
 parallaxRatio:ccp(0.5, 0)
 positionOffset:ccp(0,0)];
 [_parallaxNode addChild:ground z:2
 parallaxRatio:ccp(1,0)
 positionOffset:ccp(0,0)];

 //5
 [self addChild:_parallaxNode z:zOrderTilemap];
}

3.	 Finally, find the update: method and change the code to move _parallaxNode
instead of _tileMap, as follows:
-(void)update:(CCTime)dt
{
 float distance = 150.0f * dt;

 CGPoint newPos = _parallaxNode.position;
 newPos.x = newPos.x - distance;

 CGSize viewSize = [CCDirector sharedDirector].viewSize;
 float endX = -1 * _worldSize + viewSize.width;

 if (newPos.x > endX)
 _parallaxNode.position = newPos;
}

4.	 Build and run the game. You should see that the ground is moving fast, the trees are
a bit slower, and the bushes are moving even slower than the trees. This should look
much more realistic.

You can find the final code for this chapter in the
Chapter_11/Cocohunt_11_Final folder.

What just happened?
We just used one more class from the Cocos2D collection: the CCParallaxNode class.
The CCParallaxNode class is a special node that moves its child nodes at a different speed,
depending on the parallaxRatio parameter passed when you add the child node.

Let's see the code in the addTilemap method to see how we created CCParallaxNode
and added the child nodes:

Chapter 11

[401]

1.	 On this line, we got the reference for each separate layer we created in the tile map.
You must remember that we created three different layers when we created the
tile map: Bushes, Trees, and Ground layers. When we loaded the tile map using the
CCTiledMap class, it created a separate CCTiledMapLayer node for each tile map
layer. The CCTiledMapLayer node is a subclass of the CCSpriteBatchNode class
and has a very similar function. It displays the tiles in one layer in one draw call.
After the tile map is loaded, we can get a reference to the CCTiledMapLayer node
directly, and further, we can use it outside and without the tile map.

To use the CCParallaxNode, you don't necessarily have to use
tile maps, you can add different child nodes, such as sprites, labels,
and so on, and it will work with them. However, since we have a tile
map with three different layers, it is much easier to use them.

2.	 At this point, we created the parallax node. The parallax node will manage the
layers, so we needed the tile map just to load the layers; once loaded, we do not
need the tile map. We could have loaded the tile map in the local variable, got the
layers, added the layers to the parallax node, and let the tile map local variable
be deallocated.

3.	 At this point, the layers are still children of the CCTiledMap instance. To be able
to add them to _parallaxNode, we should remove them from _tileMap first,
since the node can be a child of only one node at a time. However, it is important
to remember that we don't want them to be deallocated. This is why we passed
the NO parameter to the removeFromParentAndCleanup: method.

4.	 After the layers were removed from the tile map, we add them to the parallax node.
Note that we specify different parallaxRatio and z-order. The parallaxRatio
parameter will specify how fast the layer is moved compared to the parallax node
movement. Also, note that this parameter takes a CGPoint since you might want
to move up and down in addition (or instead) of moving left and right. We specified
that the ground should move as fast as the parallax node, the trees should move at
50 percent speed and the bushes should move at 20 percent speed.

The parallaxRatio values that we used are just sample
values. You should pick actual values for your game depending
on how deep the layer is. The deeper the layer, the less is its
movement speed.

5.	 Finally, we added the parallax node to the scene. As I mentioned earlier, the tile map
becomes unneeded at this point, so as you can see, we don't add it to the scene.

Working with Tile Maps

[402]

The code in the update: method didn't change much; we are simply moving
_parallaxNode instead of _tileMap. However, we definitely can see the difference.
Moving the parallax node doesn't move all the layers at the same speed, thus making
it more realistic.

Have a go hero
To really see the tile map in action, you can create a much bigger tile map (for example,
200 – 300 tiles in width). A good idea is to add a few more layers with trees and bushes and
assign them a different parallaxRatio. This will definitely help you to understand how
the parallax node works.

Pop quiz – tile maps
Q1. What tile size should you use when creating a tile map if the images used to
create tileset have a size of 128 x 128 pixels?

1.	 64 x 64 px

2.	 32 x 32 px

3.	 128 x 128 px

4.	 256 x 256 px

Q2. What units are used to specify map size when creating the tile map in the
Tiled application?

1.	 Points

2.	 Pixels

3.	 Tiles

4.	 Inches

Q3. Can you rotate a single tile of the tile map (CCTiledMap) at runtime?

1.	 Yes

2.	 No

Chapter 11

[403]

Summary
This chapter demonstrated the basics of creating and using tile maps in your games. Using
tile maps is good, and in many cases, is the only way to create really large worlds for your
game. Using techniques such as parallax scrolling will make your games much more realistic.

You will discover that tile maps come in different types and flavors. There are different tile
sizes, orthogonal and isometric tile maps, and many ways to use layers. However, I'm sure
that knowing the process from creating a tileset from separate images to the moment
you load and use a completed tile map in your game will help you better understand the
difference and even more importantly, the similarities between the different ways of creating
and using tile maps.

In the final chapter of the book, we will review the additional features such as Game Center
integration or In-App purchases you can add to your game. Also, we will review a list of tools
and resources that will help you develop games.

Note that Chapter 12, Standing Out – Integrating Game Center and In-App
Purchases, is a downloadable chapter that can be downloaded for free by visiting
http://www.packtpub.com/support and following the instructions.

http://www.packtpub.com/support

Pop Quiz Answers

Chapter 2, Hello Cocos2D

Pop quiz – hello quiz

Q1 2

Q2 1

Chapter 3, Cocos2D – Under the Hood

Pop quiz – under the hood

Q1 2

Q2 1

Q3 4

Pop Quiz Answers

[406]

Chapter 4, Rendering Sprites

Pop quiz – sprites

Q1 3

Q2 3

Q3 4

Chapter 5, Starting the Action

Pop quiz – geometry and actions

Q1 2

Q2 2

Q3 4

Chapter 6, Rendering Text

Pop quiz – labels

Q1 2

Q2 2

Q3 4

Q4 3

Pop Quiz Answers

[407]

Chapter 7, Animations and Particle Systems

Pop quiz – animations and particle systems

Q1 2

Q2 3

Chapter 8, Adding Sound Effects and Music

Pop quiz – playing audio

Q1 1

Q2 2

Q3 1

Chapter 9, User Interface and Navigation

Pop quiz

Q1 3

Q2 3

Q3 4

Pop Quiz Answers

[408]

Chapter 10, Physics

Pop quiz – physics

Q1 2

Q2 1

Q3 2

Chapter 11, Working with Tile Maps

Pop quiz – tile maps

Q1 3

Q2 3

Q3 1

Index
Symbols
9-slice scaling

using, on AboutScene 276
.fnt file 178
.plist file 178

A
AboutScene

9-slice scaling, using on 276
displaying, pushScene: method used 275
pushing 271-274

actions
used, for animations 202, 203

addAudioButtons method
reviewing 266

addBackButton method 276
addBackground method 276
addGround method

reviewing 337, 338
addHighScore method 321
addMenuButtons method 251, 255
addText method 276
addVisitWebSiteButton method

about 276
reviewing 276-278

animateFall method 205
animating, with actions

about 202
bird animation, hitting 203-205
skeletal animation, reviewing 205, 206

animation
performing, actions used 202, 203

AppDelegate class
reviewing 48-50

Apple iOS Developer Program
URL 23

AudioManager class
creating 224-227

audio settings
storing, in NSUserDefaults 267, 268

automatic batching feature 104
autoRemoveOnFinish property 212

B
background image

adding, to Xcode project 67, 68
using, as container for UI elements 295, 296

background sounds
about 233
adding 233-235

background sprite
adding, to game 64-67
adding, to GameScene 69

BADLAND 12
benefits, Cocos2D 10, 11
Bézier curves 187
bird animation

hitting 203-205
Bird class

modifications 103

[410]

bird object
adding, to GameScene class 126-131
creating 82-85

birds
animating 105-108

BirdStateDead state 142
BirdStateFlewOut state 142
BirdStateFlyingIn state 141
BirdStateFlyingOut state 141
bitmap font

creating, Glyph Designer used 179-183
using, for better performance 178
using, in game 183

bitmap font generator
selecting 178, 179

blending 213
blocks

URL, for documentation 266
bodyWithCircleOfRadius: method 334
Box2D 326
buttons

menu buttons, adding 250-254
using 249

buttonWithTitle: method 256

C
calculateTorsoRotationToLookAtPoint: method

reviewing 120
campfire

adding, to scene 213-215
CCActionEaseBounceOut action 201
CCActionMoveTo action 201
CCActionSequence action 131
CCButton class 250, 255
CCButton object 255
CCColor object 173
CCDirector class

about 32, 49
methods 54
reviewing 53, 54

CCLabelBMFont class 168, 178, 179
CCLabelTTF class 45, 167, 168, 178
CCLayoutBox class 256
CCLayout class 256
CCLOG macro 114

CCNode class
about 45, 46
children property 46

CCParallaxNode class 400
CCPhysicsBody class

about 332
physicsBody property 332

ccPhysicsCollisionBegin: method 355
CCPhysicsCollisionDelegate protocol

ccPhysicsCollisionBegin: method 355
ccPhysicsCollisionPostSolve: method 356
ccPhysicsCollisionPreSolve: method 355
ccPhysicsCollisionSeparate: method 356

ccPhysicsCollisionPostSolve: method 356
ccPhysicsCollisionPreSolve: method 355
ccPhysicsCollisionSeparate: method 356
CCPositionTypeMake function 258
CCScene class

about 46
game, organizing with 45

CCScreenModeFlexible mode 51
CCSetupAnimationInterval 51
CCSetupDepthFormat parameter 51
CCSetupFixedUpdateInterval parameter 51
CCSetupMultiSampling parameter 52
CCSetupNumberOfSamples parameter 52
CCSetupPixelFormat parameter 50
CCSetupPreserveBackbuffer parameter 52
CCSetupScreenOrientation 51
CCSetupShowDebugStats parameter 50
CCSetupTabletScale2X parameter 51
CCSprite class 44, 92
CCTableView

used, for displaying highscores 310-314
children property 46
Chipmunk 325
Cocohunt project

aiming range, limiting 153-158
angry birds, adding 367-373
arrow hit, detecting 132-137
arrow, shooting 123-126
Bird objects, adding to GameScene

class 126-131
code, for win or lose 148-152
forces, applying with joints 362-365
hit points, adding 183-188

[411]

hunter, adding to 339-347
hunter, aiming at touch position 115-123
hunter, controlling with gyroscope 158-165
hunter movement, fixing 349-351
impulses, applying with joints 362-365
labels, adding to screen 168-173
labels, updating 174-177
modifying, for spritesheets usage 98-101
physics world, creating 325
shooting, animating 143-147
shooting rate, limiting 143-147
sound effects, enhancing 242-244
sound effects, playing 224
states, using for bird's lifecycle 138-142
touches, handling 111-114
win and lose labels, adding 188-190

Cocohunt Xcode project
creating 58, 59

coconut explosion animation 198-200
Cocos2D

about 7-9
benefits 10, 11
configuration options 50-52
developing, from scratch 44
game life cycle 48
installing 18, 19
integrating, with Xcode 18
physical engines, integration with 330-332
reviewing 43, 44
things, rendering on screen 44, 45
URL, for documentation 201
URL, for downloading 18
URL, for list of classes 47

Cocos2D distribution
content, reviewing 38
tests, running 39, 40

Cocos2D games
about 12
BADLAND 12
Feed Me Oil 2 13
Lep's World 2 14
URL 14

cocos2d-HTML5 7
Cocos2D nodes

physics bodies, linking with 332-334
cocos2d-x 7

collision groups
used, for filtering collisions 360, 361

collision mask
used, for filtering collisions 358, 359

collisions
detecting 351-358
filtering 351, 358
filtering, collision groups used 360, 361
filtering, collision mask used 358, 359

container, for UI elements
UI elements, using as 295, 296

content
reviewing, of Cocos2D distribution 38

Core Audio Format (CAF) 242
createAnimations method 345
createPhysicsBody method 345
createPhysicsNode method

reviewing 335
cross-fade transition 278

D
debug FPS labels 91, 92
device

project, testing on 22, 23
displayWinLoseLabelWithText: method 190
Don't Repeat Yourself principle

(DRY principle) 45

E
earth-hd.png file 68
easing actions 200, 201
explodeFeathers method 211

F
falling animation 203
features, Cocos2D

buttons, adding 255-257
currently running scene, replacing 259, 260
normalized coordinates, using 257-259

Feed Me Oil 2 13
fixed time step

URL, for article 348
fixedUpdate: method

overview 347-349
reviewing 377, 378

[412]

forces
applying, joints used 362-365
versus impulses 366

frame-based animation
coconut explosion animation 198-200
considerations, for using 202
easing actions 200, 201
splash screen, adding 201
splash screen, creating 194-198
using 194

frames per second (FPS) 88
functionalities, game engine

rendering 8
sound 9
user input 8

G
game

background sprite, adding to 64-67
bird movement, reviewing in

update: method 89-91
bird object, creating 82-85
bitmap font, using in 183
exiting 298-301
hunter character, adding to 69-74
movement, providing to birds 86
organizing, with CCScene 45
pausing 297
pausing, with pause dialog 290-295
player character, adding to 69-74
restarting 298-301
resuming 297
sprites, adding to 63, 64

game engine
about 8
functionalities 8

game level
creating, with physics 326-330

game life cycle, Cocos2D
about 48
AppDelegate class, reviewing 48-50
configuration options 50-52
further life 52

gameplay
improving 152

game project
Cocohunt Xcode project, creating 58, 59
creating 58
GameScene, creating 59-63

game scene
hunter object, adding to 79, 80

game_scene_bg-hd.png file 67
game_scene_bg-iphone5hd.png file 67
game_scene_bg.png file 67
GameScene class

background sprite, adding to 69
Bird objects, adding 126-131
creating 59-63
modifications 101, 102

games, Cocos2D
about 12
BADLAND 12
Feed Me Oil 2 13
Lep's World 2 14

GameStateLost state 151
GameStatePaused state 151
GameStatePlaying state 151
GameStateUninitialized state 151
GameStateWon state 151
getHighScores method 321
Glyph Designer

about 179
used, for creating bitmap font 179-183

Grand Central Dispatch (GCD)
URL 226

ground
adding, to scene 335-338

Gyroscope
URL 163

H
heads-up display. See HUD
Hello World project

creating 20, 21
image, displaying of earth 28-34
modifying 25
scene, creating 25-27
text, displaying 28-34
welcome label, displaying 34-36

highscores
displaying 309

[413]

displaying, with CCTableView 309-314
HUD 172
HUDLayer class 173
hunter character

adding, to Cocohunt game 339-347
adding, to game 69-74
images, adding to 75-78

Hunter class
modifications 103
reusing 74

hunter movement
fixing 349-351

hunter object
adding, to game scene 79, 80

I
images

adding, to hunter character 75-78
impulses

applying, joints used 362-365
versus forces 366

initWithImageNamed: method 345
installation, Cocos2D 18, 19
Integrated Development Environment (IDE) 17
iOS supported formats

URL 227
isHighscore method 321

J
joints

used, for applying forces 362-365
used, for applying impulses 362-365

K
Khan Academy

URL 120

L
launchBirdWithStone: method

reviewing 374
launchStone: method

reviewing 365
Lep's World 2 14

levels
selecting, scroll view used 284-289

life property 212
limitations, spritesheets 104
loadSettings method

reviewing 269
locationInNode method 123

M
MaxRect algorithm 97
menu buttons

adding, to scene 250-254
methods, AboutScene class

addBackButton 276
addBackground 276
addText 276
addVisitWebSiteButton 276

methods, CCDirector class
popScene 54
popToRootScene 54
pushScene 54
replaceScene 54
runWithScene 54

methods, for touch notifications
touchBegan: 114
touchCancelled: 114
touchEnded: 114
touchMoved: 114

methods, HighscoreManager class
addHighScore 321
getHighScores 321
isHighscore 321

modal dialogs
creating 290

music
about 233
adding 236-241

N
nextTrack method

reviewing 241
normalized coordinates

using 257-259
NSUserDefaults

audio settings, storing in 267, 268

[414]

O
OALSimpleAudio class 224
ObjectAL 224
onEnter method 301, 302
onEnterTransitionDidFinish method 301
onExit method 301
onExitTransitionDidStart method 301
ON/OFF switches

adding, to game 260-265
OpenAL framework 224
OpenGL 9, 167
OpenGL ES 92
options, for tile map creation

layer format 389
map size 389
orientation 389
tile size 389

options, sound
filePath 227
loop 227
pan 227
pitch 227
volume 227

P
parallax scrolling

about 399
using 399-401

parameters, buttonWithTitle: method
disabled 256
highlighted 256
spriteFrame 256
title 256

parameters, CCPositionTypeMake function
corner 258
xUnit 258
yUnit 258

Particle Designer
URL, for downloading 216
using 216-219

particle systems
about 207
campfire, adding to scene 213-215
creating, for advanced effects 207
explosion of feathers, adding 208-213

pause dialog
game, pausing with 290-295

physics
game level, creating with 326-330

PhysicsBird class
creating 374
joints, used for applying force 375-377

PhysicsBirdStateFlyingIn state 375
PhysicsBirdStateFlyingOut state 375
PhysicsBirdStateIdle state 375
physics bodies

about 330
linking, with Cocos2D nodes 332-334

physics engine, Chipmunk
URL 326

physics engines
integration, with Cocos2D 330, 332

physics world
creating 325

physics world, in game
ground, adding to scene 335-338
hunter, adding to game 339-347

playBg: method 240
player character

adding, to game 69-74
playIdleAnimation method 346
playRunAnimation method 346
popScene method 54
popToRootScene method 54
project

creating, from template 20, 21
running, on simulator 23-25
testing, on device 22, 23
testing, on simulator 22, 23

pushScene: method
about 54, 275, 290
used, for displaying AboutScene 275

R
real Cocos2D

moving to 47
rectangular multiline labels

creating 278
removeBird: method 177, 187
removeFromParentAndCleanup: method 187
replaceScene: method 54, 260, 275

[415]

Retina version
creating, of tile map 390-393

RGB565 (kEAGLColorFormatRGB565) 51
RGBA8 (kEAGLColorFormatRGBA8) 51
rotation animation 203
runAtDirection: method 346
runWithScene method 54

S
scene

campfire, adding to 213-215
ground, adding to 335-338
navigating between 270

Scene class 46
scroll view

used, for selecting levels 284-289
sensors 358
setupAimingIndicator method

code, reviewing 157
setupCocos2dWithOptions: method

about 49
working 49, 50

sharedAudioManager method 226
shootAtPoint: method

reviewing 125, 126
simulator

project, running on 23-25
project, testing on 22, 23
URL, for documentation 22

Singleton 53
skeletal animation

reviewing 205, 206
sound

adding, to game 260-265
options 227
playing, at position 245, 246

sound effects
enhancing 242
finding 227-229
playing 224-231
preloading 242-244

spawnStone method
reviewing 334

speed property 212
Spine 206
splash screen 194

sprites
about 63
adding 82
adding, to game 63, 64

spritesheet
creating 94-97
limitations 104

startFire method
reviewing 215, 216

stats
displaying, on winning and losing 302-308

T
tables 309
template

project, creating from 20, 21
terms, Cocos2D distribution

AUTHORS 38
Cocos2D 38
cocos2d-ui 38
externals 38
tests 38

tests
running 39, 40

text field
using 314-322

text input
using 290

TexturePacker tool 94, 200
Tiled app 384
tile maps

birds, following 397, 398
birds, moving 397, 398
creating 382-388
Retina version, creating of 390-393
using 394

TilemapScene
creating 394-397

tileset
about 382
considerations 390
creating 383, 384

toggle buttons
creating, for representing ON/OFF

switches 260-265
torsoCenterInWorldCoordinates method 117

[416]

touchBegan: method 114
touchCancelled: method 114
touchEnded: method 114
touches

handling 296
touchMoved: method 114
transitions

using 279-284

U
update: method

about 87, 88, 176
bird movement, reviewing in 89-91

X
Xcode

about 17
Cocos2D, integrating with 18
URL, for downloading 18

Xcode project
background image, adding to 67, 68

Z
z-order

fixing 80, 81

Thank you for buying

Learning iPhone Game Development
with Cocos2D 3.0

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Cocos2d-x by Example Beginner's Guide
ISBN: 978-1-78216-734-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1.	 Learn to build multi-device games in simple, easy
steps, letting the framework do all the heavy lifting.

2.	 Spice things up in your games with easy-to-apply
animations, particle effects, and physics simulation.

3.	 Quickly implement and test your own gameplay
ideas, with an eye for optimization and portability.

AndEngine for Android Game Development
Cookbook
ISBN: 978-1-84951-898-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
examples to get to grips with the powerful
capabilities of AndEngine and GLES 2

1.	 Step-by-step detailed instructions and information
on a number of AndEngine functions, including
illustrations and diagrams for added support
and results.

2.	 Learn all about the various aspects of AndEngine
with prime and practical examples, useful for
bringing your ideas to life.

3.	 Improve the performance of past and future game
projects with a collection of useful optimization tips.

Please check www.PacktPub.com for information on our titles

iOS 7 Game Development
ISBN: 978-1-78355-157-6 Paperback: 120 pages

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

1.	 Pen your own endless runner game using Apple's
new Sprite Kit framework.

2.	 Enhance your user experience with easy-to-use
animations and particle effects using Xcode 5.

3.	 Utilize particle systems and create custom
particle effects.

iPhone Game Blueprints
ISBN: 978-1-84969-026-3 Paperback: 358 pages

Develop amazing games, visual charts, plots,
and graphics for your iPhone

1.	 Seven step-by-step game projects for you to build.

2.	 Cover all aspects from graphics to game ergonomics.

3.	 Tips and tricks for all of your iPhone programming.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: All About Cocos2D
	Game engines
	So what is a game engine?
	So what is this all about?

	Why Cocos2D?
	Cocos2D is easy
	Cocos2D is free
	Cocos2D is popular
	Cocos2D is open source
	Want more?

	Games created with Cocos2D
	BADLAND
	Feed Me Oil 2
	Lep's World 2
	Other games

	Summary

	Chapter 2: Hello Cocos2D
	Starting with Xcode
	Integrating Cocos2D with Xcode
	Time for action – downloading and installing Cocos2D
	Creating a Hello World project
	Time for action – creating a new project from a template
	Testing your projects on a device and simulator

	Time for action – running the project on the simulator
	Modifying the project
	Time for action – creating a new scene
	Time for action – displaying the world
	Time for action – displaying the welcome label
	Reviewing Cocos2D distribution
	Time for action – running tests
	Summary

	Chapter 3: Cocos2D – Under the Hood
	Reviewing Cocos2D
	Have Cocos2D your way
	Rendering on the screen and the birth of CCNode
	Organizing the game with CCScene
	Children of CCNode
	Back to real Cocos2D

	Cocos2D game life cycle
	Reviewing the AppDelegate class
	Cocos2D configuration options
	Further life of the game

	Reviewing the CCDirector class

	Summary

	Chapter 4: Rendering Sprites
	Creating the game project
	Time for action – creating the Cocohunt Xcode project
	Time for action – creating GameScene
	Adding sprites to your game
	Time for action – adding the background sprite
	Time for action – adding the player character
	Time for action – fixing z-order
	Adding more sprites and moving them
	Time for action – adding birds
	Time for action – making the bird move
	Understanding debug FPS labels
	Spritesheets and animation
	Time for action – creating a spritesheet
	Time for action – modifying the game to use spritesheets
	Time for action – animating the birds
	Summary

	Chapter 5: Starting the Action
	Making the hunter aim and shoot
	Time for action – handling touches
	Time for action – aiming at the touch position
	Time for action – shooting the arrow
	Adding more birds to the GameScene class
	Time for action – adding more birds
	Time for action – detecting if the arrow hits the bird
	Winning, losing, and other states
	Time for action – using states for the bird's life cycle
	Time for action – animating the shooting and limiting the shooting rate
	Time for action – winning or losing the game
	Improving the gameplay
	Time for action – limiting the aiming range
	Time for action – alternative control using a gyroscope
	Summary

	Chapter 6: Rendering Text
	The easy way – CCLabelTTF
	Time for action – adding labels
	Time for action – updating labels
	Using bitmap fonts for better performance
	Choosing a bitmap font generator

	Time for action – creating a bitmap font using Glyph Designer
	Using the bitmap font in the game

	Time for action – adding hit points
	Time for action – adding win and lose labels
	Summary

	Chapter 7: Animations and Particle Systems
	Using frame-based animation
	Time for action – exploding coconut
	Animating using actions
	Time for action – hitting the bird animation
	Skeletal animation
	Creating particle systems for advanced effects
	Time for action – adding feathers explosion
	Time for action – adding a fire to the scene
	Time for action – using Particle Designer
	Summary

	Chapter 8: Adding Sound Effects and Music
	Creating AudioManager and playing sound effects
	Time for action – adding the AudioManager class
	Time for action – finding and playing our first sound effect
	Time for action – playing the remaining sound effects
	Music and background sound
	Time for action – adding background sounds
	Time for action – adding music
	Enhancing Cocohunt sound effects
	Time for action – preloading sound effects
	Time for action – playing a sound at position
	Summary

	Chapter 9: User Interface and Navigation
	Using buttons
	Time for action – adding menu buttons
	Time for action – toggling sound and music
	Time for action – storing settings in NSUserDefaults
	Navigating between scenes
	Time for action – pushing AboutScene
	Time for action – using more transitions
	Time for action – using scroll view to select levels
	Creating modal dialogs and using text input
	Time for action – pausing the game with a pause dialog
	Time for action – restarting and exiting the game
	Time for action – displaying stats when losing and winning
	Entering and displaying highscores
	Time for action – displaying highscores with CCTableView
	Time for action – using text field
	Summary

	Chapter 10: Physics
	Creating a physics world
	Time for action – creating a game level with physics
	Time for action – adding ground to the scene
	Time for action – adding the hunter
	Time for action – fixing the hunter movement
	Detecting and filtering collisions
	Time for action – detecting and ignoring collisions
	Time for action – filtering collisions using collision mask
	Time for action – filtering collisions using collision groups
	Applying forces and impulses and using joints
	Time for action – launching stones
	Time for action – adding angry birds
	Summary

	Chapter 11: Working with Tile Maps
	Creating the tile maps
	Time for action – creating a tileset
	Time for action – creating a tile map
	Time for action – creating the Retina version of the tile map
	Using the tile maps
	Time for action – creating TilemapScene
	Time for action – moving and following the bird
	Time for action – using parallax scrolling
	Summary

	Pop Quiz Answers
	Index

