
www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile
Development
Cookbook

90 practical recipes for creating cross-platform mobile
applications with the power of LiveCode

Dr Edward Lavieri

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile Development Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1050914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-882-7

www.packtpub.com

Cover image by Neha Rajappan (neha.rajappan1@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dr Edward Lavieri

Reviewers
Erik Beugelaar

Guanhua Chen

Cecil Costa

Theo Heselmans

Simon Sunatori

Commissioning Editor
Saleem Ahmed

Acquisition Editor
Sam Wood

Content Development Editor
Arvind Koul

Technical Editors
Veronica Fernandes

Anand Singh

Copy Editors
Aditya Nair

Stuti Srivastava

Project Coordinator
Priyanka Goel

Proofreaders
Ting Baker

Maria Gould

Joel T. Johnson

Indexer
Tejal Soni

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr Edward Lavieri is a veteran game designer and developer with a strong academic
background. He earned a Doctorate of Computer Science from Colorado Technical
University and three Masters of Science degrees in Management Information Systems
(Bowie State University), Education in Instructional Design (Capella University), and Operations
Management (University of Arkansas), thus demonstrating his passion for academic pursuits.
He has been developing and teaching computer-related courses since 2002. He retired from
the U.S. Navy after 25 years as an Intelligence specialist and Command master chief.

As the founder and creative director of three19, which is a software design and development
studio, Edward is constantly developing software. He uses LiveCode as one of his primary
prototyping and development tools. He focuses on developing adaptive learning systems,
educational games, and mobile apps.

He has authored LiveCode Mobile Development Hotshot, Packt Publishing; Software
Consulting: A Revolutionary Approach, CreateSpace; and was the technical editor of
Excel Formulas and Functions for Dummies, John Wiley & Sons, Inc. He has also
authored numerous computer science and information systems college courses.

My deepest appreciation goes to Brenda, my loving wife and partner in life.
Without her support, this book would not have been possible. I would also
like to thank the expert team at Packt Publishing including Arvind Koul, Sam
Wood, Sheetal Sarkar, the reviewers, the technical editors, the proofreaders,
the indexer, and the marketing team. It is a pleasure to have worked with
such an efficient team.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Erik Beugelaar is a programmer who is focused on visual developer tools, giving a
software designer the feeling that making software is an art because of the way the
graphical user interface is built using the visual toolset.

After trying many visual developer tools during the last 10 years, LiveCode got his special
attention in 2010. It was the natural language syntax that could express the way things could
be done, and more specifically, the writing of English-like sentences had become an art too.

Nowadays, he is using LiveCode to examine and analyze data for financial purposes.
As a developer of tools for other developers, he is looking forward to the Next Generation
version of LiveCode.

Along with his fulltime professional career, he is also actively involved in voluntary projects in
Kenya. Whenever possible, he promotes the educational value of using LiveCode in classes.

Guanhua Chen is a doctoral student at the University of Miami, majoring in Teaching and
Learning (specialization in Science, Technology, Engineering, and Mathematics). He gained
his Master's degree from the Learning, Design, and Technology program at the University of
Georgia. His research is focused on the intersection between technology and STEM education.
He is especially interested in utilizing various technologies as cognitive tools as well as
innovative assessment instruments in science education.

www.allitebooks.com

http://www.allitebooks.org

Cecil Costa is a freelance developer and founder of Conglomo Limited (www.conglomo.es),
which offers development and training programs. In his professional career, he has created
projects by himself and has also worked for a variety of companies from small to large ones,
such as IBM, Qualcomm, Spanish Lottery, and DIA%.

He develops in a variety of computer languages (such as C++, Java, Objective-C, JavaScript,
Python, and so on) in different environments (iOS, Android, Web, Mac OS X, Linux, Unity, and
so on) because he thinks that a good developer needs to learn every kind of programming
language in order to open his mind, and only then will he really know what development is.

He has worked with LiveCode, creating educational music games for Acción Piano School in
Spain. You can view some of his work at www.smartboardmusic.org.

I would like to thank Victoria López Messeguer for giving me the opportunity
to learn and use LiveCode.

Theo Heselmans is an IBM Champion for Collaboration Solutions. In 1993, he started
working as a Notes/Domino consultant with Version 3. He delighted (and still does) many
customers with custom applications (complex CRM systems, web content management
solutions, project and document management, reporting, and so on).

In 2001, he founded his own company, Xceed (www.xceed.be), which is now a proud
member of the Penumbra Group.

Since 2009, he has been responsible for Engage (also known as BLUG). During their
events, he gives users, speakers, IBMers, and business partners the opportunity to share
information, collaborate, and network. Theo visits other LUGs regularly and has been to
19 Connect/Lotusphere conferences.

He is an avid believer in all things social.

He loves to talk about Notes, mobile development (preferably with LiveCode), user experience,
Excel, and iPad (and wine)! You can follow him at @theoheselmans.

www.allitebooks.com

www.conglomo.es
www.smartboardmusic.org
www.xceed.be
http://www.allitebooks.org

Simon Sunatori, P.Eng./ing., M.Eng. (Engineering Physics), F.N.A.,
IEEE-SM, WFS-LM, is a computer programmer who has written Unix and IBM mainframe
software programs, such as microelectronics device characterization, hypertext search facility,
electronic democracy and voting groupware, idiot-proof push-button automation, integrated
version control and configuration management, and intelligent workflow automation systems.
He also wrote Apple Macintosh applications such as HyperInfo Intelligent Knowledge Object
Organisation System, which organizes and processes information as knowledge objects
and Multi-Lingual Food Nutrition Knowledge Matrix, which organizes hundreds of foods and
nutrients in a simple and consistent manner in both English and French. He has written CGI
scripts such as Electronic Commerce Transaction Processing, Multi-Lingual Presentation from
a Single Database, and Printable Calendar Generator. He has reported more than 2,000
bugs for Apple Mac OS X and more than 1,000 bugs for RunRev LiveCode. He wrote a script
to generate both a biography and an obituary from a single source with the push of a button,
using various text-processing techniques in LiveCode. His biography and obituary can be
found at http://www.hyperinfo.ca/GS.Sunatori/HomePage_Biography.html and
http://www.hyperinfo.ca/GS.Sunatori/HomePage_Obituary.html, respectively.

www.allitebooks.com

http://www.hyperinfo.ca/GS.Sunatori/HomePage_Biography.html
http://www.hyperinfo.ca/GS.Sunatori/HomePage_Obituary.html
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: LiveCode Mobile Basics	 5

Introduction	 5
Setting up your mobile environment for iOS development	 6
Setting up your mobile environment for Android development	 8
Defining icons and images for iOS development	 12
Defining icons and images for Android development	 16
Configuring standalone application settings for iOS applications	 19
Configuring standalone application settings for Android applications	 23
Using the simulator	 28
Saving a standalone mobile app	 29

Chapter 2: Human-computer Interfaces	 31
Introduction	 32
Creating a new main stack	 32
Displaying web pages in your app	 33
Masking user passwords	 35
Including glow effects on buttons	 36
Including state graphics on buttons	 39
Getting an object's properties	 40
Setting custom properties	 41
Aligning interface objects	 44
Dynamically displaying interface objects	 46
Getting the user input	 46
Recording user actions	 47
Restricting the user input	 50
Using mobile keyboards	 51
Using a date picker	 52
Using a time picker	 54

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Using effects between cards	 55
Using buttons for navigation	 57

Chapter 3: Loops and Timers	 59
Introduction	 59
Implementing a countdown timer	 59
Implementing a count-up timer	 61
Pausing a timer	 62
Resuming a timer	 64
Using a loop to count	 66
Using a loop to iterate through a list	 67

Chapter 4: Managing Text	 69
Introduction	 69
Reading the user input	 70
Searching text	 71
Replacing text	 74
Combining text	 74
Encrypting text	 76
Writing text	 80
Reading text	 82
Sorting text	 83
Formatting text	 85
Appending text	 86
Translating text into Pig Latin	 87

Chapter 5: Communications	 89
Introduction	 89
Initiating a phone call	 89
Sending an e-mail	 90
Formatting an e-mail	 92

Chapter 6: Data Structures	 97
Introduction	 97
Using arrays	 97
Using multidimensional arrays	 102
Saving external data	 104
Loading external data	 105
Reading XML	 106
Writing XML	 109
Using SQLite	 111
Using MySQL	 118

iii

Table of Contents

Chapter 7: External Media	 121
Introduction	 121
Loading an image	 121
Capturing an image from a mobile device's camera	 123
Resizing an image	 124
Playing a movie	 125
Controlling the movie playback	 127
Playing an audio file	 128

Chapter 8: Using MobGUI	 131
Introduction	 131
Setting up MobGUI	 131
Using a navigational bar	 135
Using a button	 137
Using a navigational button	 139
Using a slider	 143
Using a toggle button	 144
Using a list button	 146
Using a progress bar	 148

Chapter 9: Using Animation Engine	 151
Introduction	 151
Setting up Animation Engine	 152
Moving objects along a line	 154
Moving objects along a polygonal path	 157
Moving objects along an elliptical path	 160
Moving objects along a circular path	 162
Stopping a moving object	 164
Calculating the distance between two points	 167
Using speed	 171
Using collision listeners	 174
Simulating gravity	 178

Chapter 10: Miscellaneous	 181
Introduction	 181
Adding numbers	 182
Subtracting numbers	 186
Multiplying numbers	 190
Dividing numbers	 193
Using advanced math	 197
Randomizing numbers	 208
Opening a web page	 213
Querying web data	 216

iv

Table of Contents

Using the geometry manager	 220
Using invisible objects	 227
Taking snapshots of a card	 229
Taking snapshots of an area on a card	 231
Detecting the operating system	 233

Index	 235

Preface
LiveCode is a powerful programming environment with an easy-to-use scripting language.
As a development environment, LiveCode has the capability to publish apps for both Android
and iOS mobile devices. This, coupled with its ability to publish to desktop computers, makes
LiveCode a multiplatform development environment.

The number of available mobile development tools continues to increase. Despite the
growing number of options, LiveCode's English-like programming language makes mobile
app development a more efficient process than that of other development tools. The speed
at which we can prototype and provide final apps with LiveCode is impressive.

You'll find this book's recipes a great tribute to LiveCode and, hopefully, a useful reference
for you.

What this book covers
Chapter 1, LiveCode Mobile Basics, introduces you to the concepts and steps that are
required to set up your computer to develop Android and iOS applications using LiveCode.
You'll learn how to set up your development environments, what icons and images are
required for the apps you create, how to use the mobile simulator, how to run your apps
on physical devices, and how to get your apps into the global marketplace.

Chapter 2, Human-computer Interfaces, demonstrates a variety of human-computer interface
objects and how they can be used in your mobile apps. In addition to learning about buttons,
cards, input boxes, dialog windows, and geometric shapes, you'll explore password masking,
card navigation, and how to change an object's properties.

Chapter 3, Loops and Timers, has you examine the LiveCode scripting required to implement
and control count-up and countdown timers. You'll also learn how to use loops to count and
iterate through a list.

Chapter 4, Managing Text, offers you a complete coverage of how to manage text to include
reading the user input, searching, replacing, combining, encrypting, writing, reading, sorting,
formatting, and appending. As a bonus example, this chapter includes the LiveCode scripting
required to create the Pig Latin text.

Preface

2

Chapter 5, Communications, shows you how to initiate a phone call from within your mobile
apps. You will also learn how to format and send an e-mail.

Chapter 6, Data Structures, explores how to use advance data structures to include arrays
(both one- and multidimensional), XML, SQLite, and MySQL.

Chapter 7, External Media, covers everything you need to know about external media for
your mobile apps. You'll learn how to load an external image, how to capture an image from
a mobile device's camera, how to resize an image, and how to play movie and audio clips.

Chapter 8, Using MobGUI, provides an introduction to using the MobGUI LiveCode plugin to
accelerate your mobile app development. This chapter provides hands-on recipes using all
of MobGUI's interface objects.

Chapter 9, Using Animation Engine, presents 10 recipes that explore the power of the
Animation Engine plugin's capabilities. You'll learn how to move objects, stop objects,
change the speed of objects, simulate gravity, and more.

Chapter 10, Miscellaneous, introduces you to LiveCode's mathematical computation abilities.
In addition to gaining hands-on experience with math operations, you'll learn how to open and
query a web page, how to use the geometry manager, how to use invisible objects, how to
detect the user's mobile operating system, and how to take snapshots of cards and specific
areas on a card.

What you need for this book
To complete the recipes in this book, you will need to download and install a current license of
LiveCode. You can use either a community or professional license version 6.x or higher.

In order to develop mobile apps for Android devices, you'll need to download and install the
latest Android SDK. If you are using a Windows computer, you'll also need to have the Java SDK.

If you are developing iOS mobile apps, you'll need to download the Apple iOS SDK and Xcode.
Both of these tools are available to you as an Apple developer.

Configuring your computer for use with LiveCode is pretty straightforward when you are
developing for iOS devices. This is true for Windows, Mac, and Linux machines. When
developing for Android devices, the configuration process can be a bit more difficult on a PC
running Windows than on a Mac. Please consult the LiveCode documentation if you run into
any problems.

To complete the recipes in Chapter 8, Using MobGUI, you'll need to have a copy of the MobGUI
LiveCode plugin. For Chapter 9, Using Animation Engine, you'll need a copy of the Animation
Engine plugin.

Chapter 1, LiveCode Mobile Basics, will help you download and install these software tools on
your development computer.

Preface

3

LiveCode is available for Mac OS, Windows, and Linux based computers. The user interface for
each version is slightly different. The examples and images in this book are from Mac OS.

Who this book is for
This book is written for anyone who wants to get started with developing mobile apps using
LiveCode. Some knowledge of the LiveCode integrated development environment (IDE) and
scripting language is assumed, although the recipes were written in a manner that allows pure
novices, as well as experienced developers, to follow the steps. No experience with developing
mobile apps is required to start using this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a text entry field and name it fldUsername."

A block of code is set as follows:

go to card "Main"
go to card 3
go to next card

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

answer quote & englishWord & quote & " is " "e & pigLatinWord & quote\

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Select Mobile Support
from the left navigation pane of the Preferences window."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

Preface

4

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
LiveCode Mobile Basics

In this chapter, we will cover the following recipes:

ff Setting up your mobile environment for iOS development

ff Setting up your mobile environment for Android development

ff Defining icons and images for iOS development

ff Defining icons and images for Android development

ff Configuring standalone application settings for iOS applications

ff Configuring standalone application settings for Android applications

ff Using the simulator

ff Saving a standalone mobile app

Introduction
In this chapter, you will learn how to accomplish tasks related to working with iOS and
Android apps and their respective mobile application marketplaces. You will learn how to set
up your development environments, what icons and images are required for apps, how to
use the simulator, how to run the apps on your devices, and how to get your apps in the
global marketplace.

LiveCode Mobile Basics

6

Setting up your mobile environment for iOS
development

LiveCode enables us to create mobile applications for iOS devices such as the iPad, iPhone,
and iPod Touch. Before we can start developing for these devices, we need a few things from
Apple, which is the creator of iOS. This recipe details how to accomplish this.

Getting ready
Before you can complete this recipe, you will need to be a certified Apple Developer and have
your account information (username and password) available. See https://developer.
apple.com for more information.

How to do it...
Once you have your Apple Developer account and LiveCode installed on your development
computer, you are ready to get started with this recipe.

1.	 Log in to your Apple Developer account.

2.	 Download the iOS SDK.

3.	 Download and install Xcode.

Xcode downloads are several gigabytes in size and can
take a long time to download depending upon your Internet
connection speed. Do not worry if the download takes longer
than you anticipated.

4.	 Select Preferences... from the LiveCode drop-down menu.

https://developer.apple.com
https://developer.apple.com

Chapter 1

7

5.	 Select Mobile Support from the left navigation pane of the Preferences window.

6.	 Use the Add entry button to navigate to the location of Xcode on your development
computer. When this is done correctly, you will see version numbers listed under
Available device SDKs and Available simulators.

www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile Basics

8

How it works...
In this recipe, we used our Apple Developer account to download and install the latest iOS
SDK and Xcode software. Next, we configured LiveCode so that LiveCode's IDE is linked with
our iOS development SDK. This will now allow us to develop iOS applications with LiveCode.

There's more...
It is important to ensure that you do not have any conflicts with your computer's operating
system, version of the SDK, or Xcode. For example, if you are running Mountain Lion or
Mavericks on your Mac development computer, it is recommended that you use Xcode 5.0.2
and SDK 7.0. Consult the latest LiveCode release documentation for updated information.

See also
ff The Setting up your mobile environment for Android development recipe
ff The Configuring standalone application settings for iOS applications recipe

Setting up your mobile environment for
Android development

There are a lot of devices made by a multitude of mobile hardware devices that run the
Android operating system. In order for us to develop for Android devices, we must have the
Android SDK installed on our development computer. In addition, we must configure LiveCode
so that it knows where the SDK is installed.

Getting ready
Unlike developing for iOS, you do not need a developer account to obtain the Android SDK.

Chapter 1

9

How to do it...
Setting up your development environment so that you can develop Android apps using
LiveCode is accomplished by the following steps:

1.	 Download the latest Android SDK from the following site:

http://developer.android.com/sdk/index.html

You should only have to download the Android SDK
once. The SDK Manager gives you the flexibility to install
additional packages as well as future updates.

2.	 If you are using a Windows or Linux based computer to develop your Android app,
you will also need to download and install the Java SDK from the following site:
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

3.	 Double-click on the Android SDK compressed file (it will be named similar to
adt-bundle-mac-x86_64-20140321.zip) to uncompress/unzip the package.

4.	 Install the Android SDK and, if you are using a PC, the Java SDK. On Mac, navigate to
the newly installed Android SDK folder. Run the android program by navigating to sdk
| tools. This loads the Android SDK Manager.

http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

LiveCode Mobile Basics

10

5.	 Using the Android SDK Manager, ensure that you have the desired tools and
documentation installed. Most developers do fine with the defaults; your situation
might be different. Also, you should install any available updates.

6.	 Ensure that you install the Android 2.2 (API 8) SDK platform tools. If you fail to do this,
you will run into an error when trying to configure LiveCode for Android development.
The Android SDK Manager will handle downloading, unzipping, and installing the
tools and updates you select.

7.	 Select Preferences... from the LiveCode drop-down menu.

Chapter 1

11

8.	 Select Mobile Support from the left navigation pane of the Preferences window.

9.	 Use the … button to navigate to the location of the Android SDK on your development
computer. When this is done correctly, you will see your specific path listed after JDK
Path on the Preferences dialog window.

LiveCode Mobile Basics

12

How it works...
In this recipe, we downloaded and installed the latest Android SDK. Next, we configured
LiveCode so that LiveCode's IDE is linked to our Android development SDK. This will now
allow you to develop Android applications with LiveCode.

There's more...
If you run into any installation problems, as with any online software, it is a good idea to check
the software documentation instructions. Typically, there is a readme text file in the directory
with the installation files.

Configuring your computer for use with LiveCode is pretty straightforward when you are
developing for iOS devices. This is true for Windows, Mac, and Linux machines. When
developing for Android devices, the configuration process can be a bit more difficult on a PC
running Windows than on a Mac. Please consult the LiveCode documentation if you run into
any problems.

See also
ff The Setting up your mobile environment for iOS development recipe

ff The Configuring standalone application settings for Android applications recipe

Defining icons and images for iOS
development

When we develop apps for iOS devices, we must provide specifically formatted icon and splash
screen images. Because of the different orientations (portrait and landscape) and screen
sizes, several different versions of each image (icon and splash screen) are required.

Getting ready
You will require software to create the original graphics as well as to export them in the
proper sizes.

How to do it...
The icons and images for iOS development are defined using the following steps:

1.	 Select the Standalone Application Settings... option from the File drop-down menu.

Chapter 1

13

2.	 Click on the icon in the top row of the Standalone Application Settings
dialog box.

LiveCode Mobile Basics

14

3.	 Ensure that the checkbox next to the iOS build option is checked. Once you select this
option, a checkmark will appear in the box and the remaining options will be editable.
Until you select this option, all options are disabled. Also, once you indicate that
you will be saving mobile versions, any selected desktop deployment options will
be deselected automatically.

4.	 Use the … buttons to the right of each icon / splash screen entry to upload
your images.

Chapter 1

15

5.	 Ensure that your icon images have been exported with the following pixel dimensions:

Icon Image size
iPhone 57 x 57
Hi-Res iPhone 114 x 114
iOS 7 Hi-Res iPhone 120 x 120
iPad 72 x 72
Hi-Res iPad 144 x 144
iOS 7 iPad 76 x 76
iOS 7 Hi-Res iPad 156 x 156

6.	 Ensure that your splash screen images have been exported with the
following dimensions:

Splash screen Image size
iPhone 320 x 480
Hi-Res iPhone 640 x 960
4 Inch iPhone 640 x 1136
iPad Portrait 768 x 1024
iPad Landscape 1024 x 768
Hi-Res iPad Portrait 1536 x 2048
Hi-Res iPad Landscape 2048 x 1536

How it works...
Pointing the file-selection window to each specific icon and splash screen is easy work. If you
attempt to upload an image that does not have the correct dimensions, LiveCode will present
you with an error message. The files you select are embedded in your app's binary and are
used when uploading it to the App Store.

There's more...
If you only enable one orientation, you will not be required to upload images to support the
other orientation. For example, if your mobile app only supports the portrait orientation,
you do not need to upload landscape splash screens.

LiveCode Mobile Basics

16

See also
ff The Setting up your mobile environment for iOS development recipe

ff The Defining icons and images for Android development recipe

Defining icons and images for Android
development

When we develop apps for Android devices, we must provide specifically formatted icon and
splash screen images. Because of the different orientations (portrait and landscape) and
screen sizes, several different versions of each image (icon and splash screen) are required.

Getting ready
External graphic creation and editing software is required to create the original graphics as
well as to export them in the proper sizes.

How to do it...
The icons and images for Android development are defined using the following steps:

1.	 Select the Standalone Application Settings... option from the File drop-down menu.

Chapter 1

17

2.	 Click on the icon on the top row of the Standalone Application Settings
dialog box.

www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile Basics

18

3.	 Ensure that the checkbox next to the Android build option is checked. Once you select
this option, a checkmark will appear in the box and the remaining options will be
editable. Until you select this option, all options are disabled.

4.	 Use the … buttons to the right of the Icon and Splash boxes to upload your images.

5.	 Ensure that your icon image is 72 x 72 and in the PNG format.

6.	 You only need to upload a splash screen image if you are using a personal or
educational LiveCode license. If you are using a commercial license, you do not need
to upload a splash screen image. If the image is required, it should be a 600 x 600
PNG file. This splash image will be displayed on the Android screen for 5 seconds
when a personal or educational license is used to develop the app.

How it works...
Pointing the file-selection window to the icon and splash screen is easy work. LiveCode does
not present you with an error message if you attempt to upload an image with incorrect
dimensions. So, be careful to upload the properly sized images. The files you select are
embedded in your app's binary and are used when uploading it to the Google Play and
Amazon Appstore.

Chapter 1

19

See also
ff The Setting up your mobile environment for Android development recipe

ff The Defining icons and images for iOS development recipe

Configuring standalone application settings
for iOS applications

There are several configuration settings to be considered when creating an iOS application.
These settings are entered and recorded via the Standalone Application Settings dialog
window. The dialog window is organized into seven sections: basic application settings, status
bar, orientation options, requirements and restrictions, icons, splash screens, and custom
URL scheme. This recipe addresses each setting with the exception of icons and splash
screens, which are covered in other recipes in this book.

How to do it...
To configure standalone application settings for iOS applications, follow the given steps:

1.	 Select the Standalone Application Settings... option from the File drop-down menu.

LiveCode Mobile Basics

20

2.	 In the top section of the dialog window, ensure that the checkbox labeled iOS
(see the following screenshot) is checked.

3.	 Referring to the previous screenshot, select which device(s) your app will support.
Your options are iPod, iPhone and iPad, iPod and iPhone, and iPad.

4.	 Referring to the previous screenshot again, select the minimum operating system
that the target device(s) must have. At the time of writing this book, the options are
as follows:

�� 4.3 or later

�� 5.0 or later

�� 5.1 or later

�� 6.0 or later

�� 6.1 or later

�� 7.0 or later

�� 7.1 or later

Selecting earlier iOS versions will expand your potential target
audience, while selecting later iOS versions will restrict a portion
of your audience pool but will give you access to advanced
features and functions.

5.	 Using the following screenshot as a reference, configure the settings on the Basic
Application Settings page:

Chapter 1

21

The settings are explained as follows:

�� Display Name: This is what is displayed on the SpringBoard (also referred to
as the home screen) under the app's icon.

�� Version: Your app's version number.

�� Internal App ID: This is a universal and unique identifier that must match
what you entered when you established the app's App ID in the Apple
Developer portal. The format is com.company.appname.

�� Profile: Select the provisioning profile you downloaded from the Apple
Developer portal.

�� Externals: Select any of the LiveCode externals (revZip, revXML, SQLite,
MySQL, PDF Printing, and Encryption) based on the externals that your
app requires.

6.	 Using the following screenshot as a reference, configure the settings on the Status
Bar page:

The settings are explained as follows:

�� iPhone Status Bar: You can have the status bar visible or hidden

�� iPad Status Bar: You can have the status bar visible or hidden

�� Status Bar Style: Your options here are Default, Black Opaque,
and Black Translucent

7.	 Using the following screenshot as a reference, configure the settings on the
Orientation Options page:

LiveCode Mobile Basics

22

The settings are explained as follows:

�� iPhone Initial Orientation: You can select Portrait, Portrait Upside-Down,
Landscape Left, or Landscape Right as the orientation for your app
to display

�� iPad Supported Initial Orientations: Here, you have the same selections as
the previous setting, but you are able to select any/all of the orientations

8.	 Using the following screenshot as a reference, configure the Requirements and
Restrictions settings:

The settings are explained as follows:

�� Select whether or not your app requires persistent Wi-Fi connectivity

�� Select whether or not your app requires iTunes' File Sharing feature to
be enabled

�� Select whether or not your app can receive push notifications

9.	 Select Required, Prohibited, or n/a for each of the options shown in the following
screenshot. Selecting Required for a function or feature means that that function or
feature must be present in order for the app to launch. Selecting Prohibited means
that if that function or feature is present, the app will not get launched.

Chapter 1

23

10.	 Enter, if applicable, the name of your URL scheme that was used to uniquely
reference your app. Custom URL schemes can be used to enable apps to
communicate with one another in order to provide services. More information
on this concept can be found in Apple's iOS Developer Library.

How it works...
Using the Standalone Application Settings dialog window, we can configure a large number of
settings that are relevant to our mobile application.

See also
ff The Defining icons and images for iOS development recipe

ff The Configuring standalone application settings for Android applications recipe

Configuring standalone application settings
for Android applications

There are several configuration settings to be considered when creating an Android
application. These settings are entered and recorded via the Standalone Application Settings
dialog window. The dialog window is organized into five sections: basic application settings,
in-app purchasing, requirements and restrictions, application permissions, and user interface
options. This recipe addresses each setting.

LiveCode Mobile Basics

24

How to do it...
To configure standalone application settings for Android applications, follow the given steps:

1.	 Select the Standalone Application Settings... option from the File drop-down menu.

2.	 In the top section of the dialog window, ensure that there is a check in the checkbox
labeled Android.

3.	 Referring to the following screenshot, determine the appropriate values for
each setting:

Chapter 1

25

The settings are explained as follows:

�� Label: This is what is displayed on the launcher screen under the app's icon.

�� Identifier: This is a universal and unique identifier that uses the reverse
domain name format (com.company.appname).

�� Version Name: This is your app's version number.

�� Version Code: This code is for internal version validation.

�� Icon: This is the path to the app's icon image.

�� Splash: This is the path to the app's splash screen image.

�� Signing: This is where you tell LiveCode whether the APKs are to be signed
with your personal key, are signed with your development key, or not at all.

�� Key: When using the Sign with my Key signing option, this Key field points
to the key-store file.

�� Install Location: Here, you select how the app is installed on a mobile
device. The options are Internal Storage Only, Allow External Storage,
and Prefer External Storage.

LiveCode Mobile Basics

26

�� Externals: Select any of the LiveCode externals (revZip, revXML, SQLite,
MySQL, and SSL & Encryption) based on the externals your app requires.

�� Custom URL Scheme: If applicable, enter the name of your custom URL
scheme that is used to uniquely reference your app.

�� Push Sender ID: This is a unique project number associated with your app.
This ID is used when you are using push notifications.

�� Status Bar Icon: Here, you will upload your status bar icon.

4.	 Select whether your app will use in-app purchasing by selecting the In App
Purchasing checkbox. If you select this option, you must identify which in-app
purchasing store your app uses: Google, Samsung, or Amazon. There is additional
data required if you are using Google (Public Key) or Samsung [Item Group ID and
Mode (Production, Test Success, or Test Failure)].

5.	 Select what the minimum operating system the target device(s) must have. At the
time of writing this book, the options are as follows:

�� 2.2 – Froyo

�� 2.3 – Gingerbread

�� 2.3.3

�� 3.0 – Honeycomb

�� 3.1

For our example, we have selected 2.2 – Froyo.

Selecting earlier Android versions will expand your potential
target audience, while selecting later Android versions will
restrict a portion of your audience pool but give you access to
advanced features and functions.

6.	 Select Required, Used, or n/a for each of the options shown in the following
screenshot. Selecting Required means that that function or feature will be visible to
users with devices that support the feature or function. Selecting Used will inform the
user that your app uses the function or feature.

Chapter 1

27

7.	 Select which permissions your app requires regarding the mobile device.

8.	 Select Portrait or Landscape as an initial (on launch) orientation.

9.	 Select whether you want the status bar to be visible or hidden.

How it works...
Using the Standalone Application Settings dialog window, we can configure a large number of
settings relevant to our mobile application.

www.allitebooks.com

http://www.allitebooks.org

LiveCode Mobile Basics

28

See also
ff The Defining icons and images for Android development recipe

ff The Configuring standalone application settings for iOS applications recipe

Using the simulator
Software simulators are used when we want to quickly test a mobile app or a specific
function of an app in progress. Using software simulators saves a lot of time during the
development process.

How to do it...
The following steps will take you through the usage of a simulator:

1.	 Select the test device from the available software simulators using the Test Target
option of the Development drop-down menu.

2.	 Click on Test, which is the last icon on the LiveCode toolbar.

Chapter 1

29

3.	 Once the simulator is running, you will have access to a Hardware pull-down menu,
which provides you with additional options to interface with the simulator. When you
select Device, you will be able to switch hardware devices to test.

How it works...
Software simulators are programs that allow us to simulate actual hardware devices.

See also
ff The Setting up your mobile environment for iOS development recipe

ff The Setting up your mobile environment for Android development recipe

Saving a standalone mobile app
Saving a standalone mobile application involves creating the app's binary file and a supportive
file-folder structure.

Getting ready
Before saving a standalone version of your mobile app, you will need to review and configure
options presented to you via the Standalone Application Settings dialog window.

LiveCode Mobile Basics

30

How to do it...
To save a standalone mobile app, follow the given steps:

1.	 Save your LiveCode project with the Save option under File, or use the keyboard
shortcut Command + S (Mac) or Control + S (Windows).

2.	 Select the Save as Standalone Application... menu option.

3.	 Next, you will be prompted to select a location for the standalone application.
The result will be a folder with subdirectories for each targeted distribution platform.

How it works...
Saving a standalone application is relatively straightforward. The important thing to remember
is to review the settings in the Standalone Application Settings dialog window. When your
LiveCode project is compiled, key information is taken from the selections you indicated
in the aforementioned dialog window.

See also
ff The Configuring standalone application settings for iOS applications recipe

ff The Configuring standalone application settings for Android applications recipe

2
Human-computer

Interfaces

In this chapter, we will cover the following recipes:

ff Creating a new main stack

ff Displaying web pages in your app

ff Masking user passwords

ff Including glow effects on buttons

ff Including state graphics on buttons

ff Getting an object's properties

ff Setting custom properties

ff Aligning interface objects

ff Dynamically displaying interface objects

ff Getting the user input

ff Recording user actions

ff Restricting the user input

ff Using mobile keyboards

ff Using a date picker

ff Using a time picker

ff Using effects between cards

ff Using buttons for navigation

Human-computer Interfaces

32

Introduction
In this chapter, you will learn how to create and control human-computer interface objects.
These objects include buttons, cards, input boxes, dialog windows, and geometric shapes. You
will learn how to mask passwords and how to read, create, and change an object's properties.
In addition, you will learn how to allow users to navigate between your app's cards.

Creating a new main stack
One of the most fundamental tasks in LiveCode is to create a new main stack. Every LiveCode
app has a main stack, at least one card, objects, and code. In this recipe, you will learn the
steps required to create a new main stack.

How to do it...
To create a new main stack, follow these steps:

1.	 Open LiveCode.

2.	 From the pull-down menu, select File, and then select New Main Stack.

3.	 You now have a new main stack that you can start using for your mobile app. The
next step is to set the stack's size properties to match the mobile environment your
app will support. Using the property inspector, select Size & Position, and make the
necessary adjustments based on the following table:

Target device Resolution
iPhone 3GS 320 x 480
iPhone 4S 640 x 960
iPhone 5 1136 x 640
iPad (1st and 2nd Gen) 1024 x 768
iPad (3rd Gen) 2048 x 1536
iPad Mini 1024 x 768
Android (Small screen) 426 x 320
Android (Normal screen) 470 x 320
Android (Large screen) 640 x 480
Android (X-Large screen) 960 x 720

Chapter 2

33

How it works...
Setting the height and width via the Size & Position section of the property inspector
establishes the size boundaries of your mobile app. By swapping the height and width
values, you can designate landscape or portrait orientation.

There's more...
Mobile device screen resolutions are subject to change with new devices, so it is important
that you check what resolutions your target device supports. This information is usually
available via the Apple and Android development sites.

Displaying web pages in your app
If you need to display a live web page in your mobile app, then this recipe is for you. In this
recipe, you will learn how to create a display area in your app, retrieve web data, and display
that data.

How to do it...
Follow these steps to display web pages in your app:

1.	 Create a new main stack.

2.	 Select the stack's card and drag an image area to display the web information.

3.	 Select the image and then select the Group icon on the toolbar to make the
image a group.

4.	 Select the group and set the following properties:

�� Name: Browser

�� Width: 312

�� Height: 390

�� Location: 160, 225

5.	 At the card level, enter the following code:
local browserID

6.	 Create a preOpenCard handler with the following code:
 on preOpenCard
 mobileControlCreate "browser"
 put the result into browserID
 mobileControlSet browserID, "visible", \

Human-computer Interfaces

34

 "true"
 mobileControlSet browserID, "url", \
 "http://www.packtpub.com"
 end preOpenCard

The preOpenCard message is sent to a card when you first go
to the card and before the openCard message is sent. Using
the on preOpenCard handler allows you to manipulate a card
before it is visible to the user.

7.	 Create a text field to display the URL. Name the field fld_URL.

8.	 Next, create the following handler:
 on browserFinishedLoading pURL
 put pURL into field "fld_URL"
 end browserFinishedLoading

The output is as follows:

Chapter 2

35

How it works...
With only two objects and a few lines of code, we are able to retrieve and display web pages
from the Internet directly in our mobile apps.

Masking user passwords
When users enter their password, it should not be visible to anyone who might happen to be
looking over the user's shoulder. This is an expected level of security. As shown in the following
screenshot, not masking the password is unacceptable. This recipe shows you a method of
masking the user's password as it is entered.

How to do it...
To accomplish our task, we will create two labels (one for the username and one for the
password), three text entry fields (one for the username, a second for the unmasked
password, and the third for the masked password). The masked password is the one
we want displayed on the screen:

1.	 Create a Username: label for content.

2.	 Create a Password: label for content.

3.	 Create a text entry field and name it fldUsername.

4.	 Create a text entry field and name it fldMaskedPassword.

5.	 Create a text entry field and name it fldUnmaskedPassword. Set this field's visible
property to false.

Human-computer Interfaces

36

6.	 Add the following code to the fldMaskedPassword field:
on keydown pKey
 put the text of fld "fldUnmaskedPassword" into tRaw
 put the text of fld "fldMaskedPassword" into tMask

 put tRaw & pKey into fld "fldUnmaskedPassword"
 put tMask & "*" into fld "fldMaskedPassword"
end keydown

7.	 When the user selects the Log In button, you will pull his/her username and
password with statements such as the following:
the text of fld "fldUsername"
the text of fld "fldUnmaskedPassword"

How it works...
To achieve our desired results, we created an invisible text field in order to hold the user's
actual password as it is entered. As each key was pressed, the key was echoed to the hidden
field and displayed as * in the visible password field.

There's more...
If you are implementing this password-masking function in your mobile apps, you will want
to thoroughly test it and ensure that you take into account user actions such as using the
Backspace, Delete, and other keys. Once you have it working the way you want it, you might
consider asking your friend to bug test it for you. It can be fun for people to "try and break"
your app.

Including glow effects on buttons
Adding glow effects to buttons is a good way of calling attention to them and differentiating
them from other buttons on your app's interface.

Chapter 2

37

How to do it...
To include glow effects, perform the following steps:

1.	 Drag a button to your card.
2.	 Right-click on the button and select Property Inspector.
3.	 On the property inspector, select Graphic Effects from the pull-down menu

(Basic Properties is the default selection).
4.	 Select the type of glow you desire (inner or outer).
5.	 Set the properties associated with the outer glow as detailed in the following table:

Property name Property reference Options
Color color Color palette
Blend Mode blendMode Normal, Multiply, or Color dodge
Opacity opacity 0 – 255
Filter filter Gaussian, Box (1, 2, or 3 passes)
Spread spread 0 – 255
Size size 0 – 255

The following screenshot gives you an overview of these properties:

www.allitebooks.com

http://www.allitebooks.org

Human-computer Interfaces

38

6.	 Set the properties associated with the inner glow as detailed in the following table:

Property name Property reference Options
Color color Color palette
Blend Mode blendMode Normal, Multiply, or Color dodge
Opacity opacity 0 – 255
Filter filter Gaussian, Box (1, 2, or 3 passes)
Spread spread 0 – 255
Size size 0 – 255
Source source Edge or Center

The following screenshot gives you an overview of these properties:

How it works...
By using the Graphic Effects section of the property inspector, we can easily change the
outer and inner glow properties for buttons. We can also do this programmatically by directly
referencing the property reference name. For example, to change the opacity of a button,
we simply use the following code:

set the opacity of btn "myButton" to 119

Chapter 2

39

Including state graphics on buttons
Buttons have six states in LiveCode: enabled, highlighted, disabled, visited, armed, and
hover. Each of these states can have an associated icon to help us communicate with our
users. In this recipe, you will learn how to include state graphics on your buttons.

How to do it...
To include graphics on buttons, perform these steps:

1.	 Create a new main stack.

2.	 Drag a button to the stack's card.

3.	 Select, with a single click, the button you want to modify.

4.	 Right-click on the button and select Property Inspector.

5.	 Using the property inspector, select, Icons & Border. This will bring up the interface
shown in the following screenshot:

Human-computer Interfaces

40

6.	 Select the button state you want to modify. An explanation of each state is in the
following table:

Button State Graphic reference This state exists when…
Enabled Icon The button is available for use.
Highlighted Hilite icon The button is being depressed.
Disabled Disabled icon The button is not available for use.
Visited Visited icon The button has already been used by

the user.
Armed Armed icon The mouse pointer moves into the button.
Hover Hover icon The mouse pointer is over the button.

7.	 If you know the object ID number of the graphic you want to use, enter it directly.
Otherwise, you can use the browse tool to the right of the text entry field.

How it works...
We can tell LiveCode which images are to be used for each button state by referring to the
graphic's object ID. As the button's state changes, so will its graphic (icon).

Getting an object's properties
LiveCode's development environment comes with several basic types of objects: button,
checkbox, tab panel, label, field, data grid, menu, progress and scrollbar, slider, image, and
graphic. For some of these basic types, there are several subtypes (for example, for menus,
there is: dropdown, option, pop-up, and combo box). It is often necessary to obtain specific
properties for evaluation in our apps. This recipe shows us how this is done.

How to do it...
Perform the following steps to get an object's properties:

1.	 Use the get command in LiveCode to obtain an object's property. For example,
use the following code to get a button's label:
get the label of btn "myButton"

2.	 To use a property, you can put it into a temporary variable for later use:
local tText
put the label of btn "myButton" into tText

Chapter 2

41

3.	 You can also get an object's property as part of a conditional statement such as in
the following example that evaluates a button's label:
if the label of btn "myButton" is "Sally" then
 // do something
else
 // do something else
 end if

How it works...
All of LiveCode's objects have multiple properties. In order to determine what properties
exist, we need to refer to the property inspector. When we hover over a property in that
interface, we are provided with the property's name via a tooltip. When using the property
inspector, remember that there are several sections (Basic, Icons & Border, Colors &
Patterns, Geometry, Graphic effects, Blending, Property profiles, Size & Position,
and Text formatting).

See also
ff The Including glow effects on buttons recipe

ff The Setting custom properties recipe

Setting custom properties
LiveCode's objects come with an impressive number of properties that help us control
how they look and function. We can also add our own properties to objects called custom
properties. This provides us with a tremendous amount of flexibility.

How to do it...
Follow these steps to set the custom properties:

1.	 Create a main stack.

2.	 Drag any object onto the stack's card (for example, a button).

3.	 Select an object that you wish to add custom properties to.

4.	 Right-click on the object and select Property Inspector.

Human-computer Interfaces

42

5.	 Using the property inspector, select Custom Properties. You should see an interface
similar to the one displayed in the following screenshot:

6.	 Click on the plus sign to add a new custom property:

7.	 Enter a name for the custom property and click on OK. For example, you might
want to use a button to represent a book in a game. Add the custom properties,
bookTitle, bookYear, bookAuthor, bookPublisher, until your display
matches the following screenshot:

Chapter 2

43

8.	 Next, we will add content to the custom properties. There are two ways to do this:
direct entry and programmatically. We can use the property inspector interface
to directly enter the content by selecting the custom property and then typing the
content in the Property Contents area (see the following screenshot).

Human-computer Interfaces

44

9.	 Alternatively, you can add the content to the custom properties via code:

 set the bookPublisher of btn "testButton" to "Packt"

How it works...
We used the property inspector to create custom properties and add content. This content can
be changed during an app's execution via code as we demonstrated in step 9.

See also
ff The Getting an object's properties recipe

Aligning interface objects
The mobile apps we develop can have several objects on the screen simultaneously. It is
important that these objects line up and not look haphazard. LiveCode provides us with
tools to make aligning our objects relatively easy.

How to do it...
Perform the following steps to align interface objects:

1.	 Create a new main stack.

2.	 Drag two or more objects on the stack's card. For example, drag two button objects
to the card.

3.	 Select the objects you want to align. To do this, click on the first object, and then,
while holding the Shift key, click on the remaining objects you want to align. When
you are finished selecting the objects, release the Shift key.

When selecting multiple objects to align, it is important that
you ensure the first object you select is the one you want to use
as a reference. For example, you might want to align selected
objects by the left ledge of the first object you selected.

4.	 Click on the icon on the toolbar. This will bring up the property inspector.

Chapter 2

45

5.	 Select the Align Objects section of the property inspector:

6.	 Select one or more of the six alignment buttons (top, bottom, left, right, middle,
or center) to align your objects.

How it works...
Aligning the objects via the property inspector saves us time when creating and laying out the
human-computer interface.

Human-computer Interfaces

46

Dynamically displaying interface objects
Oftentimes, we will create interface objects and only have them appear on the screen when
appropriate. For example, you might have a graphic indicator that the user has unread system
messages. If the value is 1 or higher, then you might have the graphic visible; otherwise, you
might hide it. This recipe shows you how to accomplish this task.

How to do it...
Perform the following steps to dynamically display interface objects:

1.	 Create a new main stack.

2.	 Drag a button to the stack's card.

3.	 Change the name of the new button to testButton.

4.	 To make an object, such as a button, visible, use the following syntax:
 set the visible of <object type> <"object name"> to true

So, for example, if you have a button named testButton, your code will be
as follows:
 set the visible of btn "testButton" to true

5.	 To hide the example button from step 4, enter the following code:
 set the visible of btn "testButton" to false

6.	 To toggle a button's visibility, add the following code to the button:
 if the visible of me is true then
 set the visible of me to false
 else
 set the visible of me to true
 end if

How it works...
We can use an object's visible property to dynamically display or hide the object by setting
visible to true or false.

Getting the user input
We want users to interact with our mobile apps. This means that we must provide the
opportunity for the user to provide input, we must capture that input, and we must process
it. This recipe focuses on capturing the user input via the mobile keyboard.

Chapter 2

47

How to do it...
The following steps will help you get the user input:

1.	 Create a new main stack.

2.	 Drag a new button to the stack's card.

3.	 Assign the following code to the new button:
on mouseUp
 ask "What is your name?" with "Type here" \
 titled "getting your input"
end mouseUp

4.	 Execute the code to see the results.

How it works...
We used the ask command to provide the prompt (What is your name) and default text
(Type here). The results are put into the it variable. This provides us the opportunity to
evaluate and manipulate the user's input. If the user selects the Cancel button, no value
is put into the it variable. You can test this by using the if it is empty line of code.

Recording user actions
Some applications are better served when you record the user's actions. In this context, a user
action refers to an in-app behavior such as clicking on/touching a button or moving a slider.
In this recipe, we will create a user action log and program a button to record user actions.

How to do it...
To record user actions, perform the following steps:

1.	 Create a new main stack for a mobile application.

2.	 Add three buttons across the top named Safe, Secure, and Restricted.

3.	 Add a button named Reset Log at the bottom-center of the card.

www.allitebooks.com

http://www.allitebooks.org

Human-computer Interfaces

48

4.	 Create a scrolling text field named fldLog to fill the remainder of the card.

5.	 Set the background color of the fldLog field to black.

6.	 Set the foreground color of the fldLog field to yellow. This will be the color of the text
entered into the log.

7.	 Set text size of the fldLog field to 14.

8.	 Set the traversalOn property to false (deselect the Focusable checkbox in the
Basic Properties section of the property inspector).

9.	 When you complete steps 1 to 5, your interface should look similar to the following
screenshot. Make any adjustments to your four buttons and the scrolling text field
before moving on to step 7.

Chapter 2

49

10.	 Add the following code to the card that contains your interface:
global logLine

on preCardOpen
 put 1 into logLine
end preCardOpen

on updateLog msg2log
 put msg2log into line logLine of fld "fldLog"
 add 1 to logLine
end updateLog

11.	 Add the following code to the Reset Log button:
on mouseUp
 global logLine

 put 1 into logLine
 put empty into fld "fldLog"
end mouseUp

12.	 Add the following code to the Safe, Secure, and Restricted buttons:
on mouseUp
 updateLog(short name of me & ": mouseUp")
end mouseUp

on mouseDown
 updateLog(short name of me & ": mouseDown")
end mouseDown

on mouseEnter
 updateLog(short name of me & ": mouseEnter")
end mouseEnter

on mouseLeave
 updateLog(short name of me & ": mouseLeave")
end mouseLeave

Human-computer Interfaces

50

13.	 Test your application. It should look similar to the following screenshot:

How it works...
By creating listeners (also known as handlers), we can record user actions in our apps.
Depending upon your application, you might want to create a system log for security
purposes or even to provide a display (as we did in our example) for users to review.

Restricting the user input
There is an old saying: garbage in and garbage out. This refers to users entering invalid data
into a computerized system. Fortunately, we have some control over what users can input.
This recipe shows you how this is done.

Chapter 2

51

How to do it...
To restrict user input, perform the following steps:

1.	 Create a new main stack.

2.	 Drag a text input box to the stack's card.

3.	 Add the following code to the text input box:
on keyDown theKey
 if theKey is in "abcdefghijklmnopqrstuvwxyz" then
 pass keyDown
 else
 beep
 end if
 end keyDown

How it works...
By evaluating the user's input prior to allowing it to pass to the next level in the message
chain, we can selectively accept or reject it.

There's more...
In this recipe, we intercepted messages from the keyboard using our on keyDown handler.
In LiveCode, messages are triggered by events such as the mouseDown message being sent
when the user selects/clicks on an object. In this example, the event was the clicking of the
object and mouseDown was the message. Messages have an informational path in that they
are first heard or are available at the object, group (if applicable), card, stack, and finally,
at the LiveCode Engine level.

Using mobile keyboards
In order to enable a mobile keyboard, we often just need the user to touch an input area.
For example, if a user taps on a username input field, the keyboard will automatically
appear. This recipe covers options regarding mobile keyboard activation.

How to do it...
Follow the given steps to use mobile keyboards:

1.	 Create a new main stack.

2.	 Drag a text input field to the stack's card.

Human-computer Interfaces

52

3.	 Enter one of the following lines of code, at the card level, depending upon which type
of keyboard you want displayed:
mobileSetKeyboardType "alphabet"
mobileSetKeyboardType "numeric"

4.	 On the text input field, ensure that the Focusable checkbox is checked (set
traversalOn to true).

5.	 Test the code in the simulator or on an actual device.

How it works...
The iOS and Android operating systems support autokeyboard activation. LiveCode
takes advantage of this. So, all you need to do is to identify which type of keyboard
you want displayed.

Using a date picker
It is easier for users to input dates via a date picker where they are presented with scroll
wheels. This has become a standard user interface object and is expected by users. This
recipe shows you how to use a date picker in LiveCode.

How to do it...
To use a date picker, follow the given steps:

1.	 Create a new main stack.

2.	 Drag a button to the stack's card and assign the following properties:

�� Name: Launch Date Picker

�� Width: 184

�� Height: 23

�� Location: 200, 33

3.	 Add the following code to the new button to initiate a date picker, as displayed in the
given screenshot:
on mouseUp
 mobilePickDate "date"
end mouseUp

Chapter 2

53

The output will be as follows:

4.	 When the user selects the date (month, day, year) and taps Done, you will want to
ensure that you have a way to capture the date. LiveCode puts the user's selection
into the the result system variable. You can test this by adding one line of code to
the mobilePickDate command:

on mouseUp
 mobilePickDate "date"
 answer the result
end mouseUp

The output will be as follows:

How it works...
We used the mobilePickDate command to instantiate the date picker on a mobile device.
We are provided with the user's selection in the the result system variable. This allows us
to analyze and manipulate the input.

Human-computer Interfaces

54

See also
ff The Using a time picker recipe

Using a time picker
It is easier for users to input the time via a time picker where they are presented with
scroll wheels. This has become a standard user interface object and is expected by
users. This recipe shows you how to use a time picker in LiveCode.

How to do it...
To use a time picker, follow the given steps:

1.	 Add the following code to initiate a date picker, as displayed in the given screenshot:
on mouseUp
 mobilePickDate "time"
end mouseUp

The output will be as follows:

2.	 When the user selects the time (hours, minutes, a.m./p.m.) and taps Done, you will
want to ensure that you have a way to capture the time. LiveCode puts the user's
selection into the the result system variable. You can test this by adding a line
of code to the mobilePickDate command:

on mouseUp
 mobilePickDate "time"
 answer the result
end mouseUp

Chapter 2

55

The output will be as follows:

How it works...
We used the mobilePickDate command to instantiate the time picker on a mobile device.
We are provided with the user's selection in the the result system variable. This allows us
to analyze and manipulate the input.

See also
ff The Using a date picker recipe

Using effects between cards
LiveCode allows us to use visual effects between cards. There are several transition effects
that can provide your app with a desirable visual effect.

How to do it...
To use effects between cards, follow the given steps:

1.	 Create a new main stack.

2.	 Change the name of the stack's card to Blue.

3.	 Add a second card and name it Red.

4.	 Change the background color of the Blue card to blue.

5.	 Change the background color of the Red card to red.

6.	 Drag a new button to the Blue card.

7.	 Add the following code to the new button on the Blue card:
on mouseUp
 visual effect dissolve
 go to card "Red"
end mouseUp

Human-computer Interfaces

56

8.	 Add a button to the Red card.

9.	 Add the following code to the new button on the Red card:
on mouseUp
 visual effect push up
 go to card "Blue"
end mouseUp

10.	 Run the app in the simulator to see the results.

How it works...
To implement visual transitions between cards, we use the following syntax:

visual effect <effect>
go to card <card>

When we call the visual effect command, we are telling LiveCode what visual
transition we want on the next card transition. There are many visual effects available,
including the following:

ff Push up
ff Push down
ff Push right
ff Push left
ff Reveal up
ff Reveal down
ff Reveal left
ff Reveal right
ff Scroll up
ff Scroll down
ff Scroll left
ff Scroll right
ff Curl up
ff Curl down
ff Flip left
ff Flip right

We can also add speed (very slow, slow, normal, fast, or very fast) to our visual effect
command. For example, the following code:

 visual effect dissolve very fast

Chapter 2

57

There's more...
Normally, a mobile app will only use one or two transition effects. Using too many transition
effects might result in a less-than-polished-looking app.

Using buttons for navigation
Buttons are frequently used to navigate between cards. Standard buttons include ones
labeled Back and Next. This recipe shows you how to program these buttons.

How to do it...
To navigate using buttons, follow the given steps:

1.	 Create a new main stack.

2.	 Drag a new button to the stack's card.

3.	 Change the name of the new button to Next and add the following code to it:
go to next card

4.	 Create a button named Back and add the following code to it:
go back 1

How it works...
Card navigation in LiveCode is relatively simply. All of the following commands will work:

go to card "Main"
go to card 3
go to next card
go back 1

www.allitebooks.com

http://www.allitebooks.org

3
Loops and Timers

In this chapter, we will cover the following topics:

ff Implementing a countdown timer

ff Implementing a count-up timer

ff Pausing a timer

ff Resuming a timer

ff Using a loop to count

ff Using a loop to iterate through a list

Introduction
In this chapter, you will learn how to use timers and loops in your mobile apps. Timers can
be used for many different functions, including a basketball shot clock, car racing time, the
length of time logged into a system, and so much more. Loops are useful for counting and
iterating through lists. All of this will be covered in this chapter's recipes.

Implementing a countdown timer
To implement a countdown timer, we will create two objects: a field to display the current timer
and a button to start the countdown. We will code two handlers: one for the button and one
for the timer.

Loops and Timers

60

How to do it...
Perform the following steps to create a countdown timer:

1.	 Create a new main stack.

2.	 Place a field on the stack's card and name it timerDisplay.

3.	 Place a button on the stack's card and name it Count Down.

4.	 Add the following code to the Count Down button:
on mouseUp
 local pTime

 put 19 into pTime
 put pTime into fld "timerDisplay"
 countDownTimer pTime
end mouseUp

5.	 Add the following code to the Count Down button:
on countDownTimer currentTimerValue
 subtract 1 from currentTimerValue
 put currentTimerValue into fld "timerDisplay"
 if currentTimerValue > 0 then
 send "countDownTimer" && currentTimerValue to me
 in 1 sec
 end if
end countDownTimer

6.	 Test the code using a mobile simulator or an actual device.

How it works...
To implement our timer, we created a simple callback situation where the countDownTimer
method will be called each second until the timer is zero. We avoided the temptation to use a
repeat loop because that would have blocked all other messages and introduced unwanted
app behavior.

There's more...
LiveCode provides us with the send command, which allows us to transfer messages to
handlers and objects immediately or at a specific time, such as this recipe's example.

Chapter 3

61

See also
ff The Implementing a count-up timer recipe

ff The Pausing a timer recipe

ff The Resuming a timer recipe

Implementing a count-up timer
To implement a count-up timer, we will create two objects: a field to display the current timer
and a button to start the upwards counting. We will code two handlers: one for the button
and one for the timer.

How to do it...
Perform the following steps to implement a count-up timer:

1.	 Create a new main stack.

2.	 Place a field on the stack's card and name it timerDisplay.

3.	 Place a button on the stack's card and name it Count Up.

4.	 Add the following code to the Count Up button:
on mouseUp
 local pTime

 put 0 into pTime
 put pTime into fld "timerDisplay"
 countUpTimer pTime
end mouseUp

5.	 Add the following code to the Count Up button:
on countUpTimer currentTimerValue
 add 1 to currentTimerValue
 put currentTimerValue into fld "timerDisplay"
 if currentTimerValue < 10 then
 send "countUpTimer" && currentTimerValue to me
 in 1 sec
 end if
end countUpTimer

6.	 Test the code using a mobile simulator or an actual device.

Loops and Timers

62

How it works...
To implement our timer, we created a simple callback situation where the countUpTimer
method will be called each second until the timer is at 10. We avoided the temptation to use a
repeat loop because that would have blocked all other messages and introduced unwanted
app behavior.

There's more...
Timers can be tricky, especially on mobile devices. For example, using the repeat loop control
when working with timers is not recommended because repeat blocks other messages.

See also
ff The Implementing a countdown timer recipe
ff The Pausing a timer recipe
ff The Resuming a timer recipe

Pausing a timer
It can be important to have the ability to stop or pause a timer once it is started. The
difference between stopping and pausing a timer is in keeping track of where the timer was
when it was interrupted. In this recipe, you'll learn how to pause a timer. Of course, if you
never resume the timer, then the act of pausing it has the same effect as stopping it.

How to do it...
Use the following steps to create a count-up timer and pause function:

1.	 Create a new main stack.
2.	 Place a field on the stack's card and name it timerDisplay.
3.	 Place a button on the stack's card and name it Count Up.
4.	 Add the following code to the Count Up button:

on mouseUp
 local pTime
 put 0 into pTime
 put pTime into fld "timerDisplay"
 countUpTimer pTime
end mouseUp

Chapter 3

63

5.	 Add the following code to the Count Up button:
on countUpTimer currentTimerValue
 add 1 to currentTimerValue
 put currentTimerValue into fld "timerDisplay"
 if currentTimerValue < 60 then
 send "countUpTimer" && currentTimerValue to me
 in 1 sec
 end if
end countUpTimer

6.	 Add a button to the card and name it Pause.

7.	 Add the following code to the Pause button:
on mouseUp
 repeat for each line i in the pendingMessages
 cancel (item 1 of i)
 end repeat
end mouseUp

In LiveCode, the pendingMessages option returns a list of
currently scheduled messages. These are messages that have
been scheduled for delivery but are yet to be delivered.

8.	 To test this, first click on the Count Up button, and then click on the Pause button
before the timer reaches 60.

How it works...
We first created a timer that counts up from 0 to 60. Next, we created a Pause button
that, when clicked, cancels all pending system messages, including the call to the
countUpTimer handler.

See also
ff The Implementing a countdown timer recipe

ff The Implementing a count-up timer recipe

ff The Resuming a timer recipe

Loops and Timers

64

Resuming a timer
If you have a timer as part of your mobile app, you will most likely want the user to be able to
pause and resume a timer, either directly or through in-app actions. See previous recipes in
this chapter to create and pause a timer. This recipe covers how to resume a timer once
it is paused.

How to do it...
Perform the following steps to resume a timer once it is paused:

1.	 Create a new main stack.

2.	 Place a field on the stack's card and name it timerDisplay.

3.	 Place a button on the stack's card and name it Count Up.

4.	 Add the following code to the Count Up button:
on mouseUp
 local pTime

 put 0 into pTime
 put pTime into fld "timerDisplay"
 countUpTimer pTime
end mouseUp
on countUpTimer currentTimerValue
 add 1 to currentTimerValue
 put currentTimerValue into fld "timerDisplay"
 if currentTimerValue < 60 then
 send "countUpTimer" && currentTimerValue to me
 in 1 sec
 end if
end countUpTimer

5.	 Add a button to the card and name it Pause.

6.	 Add the following code to the Pause button:
on mouseUp
 repeat for each line i in the pendingMessages
 cancel (item 1 of i)
 end repeat
end mouseUp

7.	 Place a button on the card and name it Resume.

Chapter 3

65

8.	 Add the following code to the Resume button:
on mouseUp
 local pTime

 put the text of fld "timerDisplay" into pTime
 countUpTimer pTime
end mouseUp

on countUpTimer currentTimerValue
 add 1 to currentTimerValue
 put currentTimerValue into fld "timerDisplay"
 if currentTimerValue <60 then
 send "countUpTimer" && currentTimerValue to me
 in 1 sec
 end if
end countUpTimer

9.	 To test this, first, click on the Count Up button, then click on the Pause button before
the timer reaches 60. Finally, click on the Resume button.

How it works...
We first created a timer that counts up from 0 to 60. Next, we created a Pause button that,
when clicked, cancels all pending system messages, including the call to the countUpTimer
handler. When the Resume button is clicked on, the current value of the timer, based on the
timerDisplay button, is used to continue incrementing the timer.

In LiveCode, pendingMessages returns a list of currently scheduled
messages. These are messages that have been scheduled for delivery
but are yet to be delivered.

See also
ff The Implementing a countdown timer recipe

ff The Implementing a count-up timer recipe

ff The Pausing a timer recipe

Loops and Timers

66

Using a loop to count
There are numerous reasons why you might want to implement a counter in a mobile app.
You might want to count the number of items on a screen (that is, cold pieces in a game), the
number of players using your app simultaneously, and so on. One of the easiest methods of
counting is to use a loop. This recipe shows you how to easily implement a loop.

How to do it...
Use the following steps to instantiate a loop that counts:

1.	 Create a new main stack.

2.	 Rename the stack's default card to MainScreen.

3.	 Drag a label field to the card and name it counterDisplay.

4.	 Drag five checkboxes to the card and place them anywhere. Change the names
to 1, 2, 3, 4, and 5.

5.	 Drag a button to the card and name it Loop to Count.

6.	 Add the following code to the Loop to Count button:
on mouseUp
 local tButtonNumber

 put the number of buttons on this \
 card into tButtonNumber
 if tButtonNumber > 0 then
 repeat with tLoop = 1 to tButtonNumber
 set the label of btn value(tLoop) to \
 "Changed " & tLoop
 end repeat
 put "Number of button's changed: " & \
 tButtonNumber into fld "counterDisplay"
 end if
end mouseUp

7.	 Test the code by running it in a mobile simulator or on an actual device.

How it works...
In this recipe, we created several buttons on a card. Next, we created code to count the
number of buttons and a repeat control structure to sequence through the buttons and
change their labels.

Chapter 3

67

See also
ff The Using a loop to iterate through a list recipe

Using a loop to iterate through a list
In this recipe, we will create a loop to iterate through a list of text items. Our list will be a to-do
or action list. Our loop will process each line and number them on screen. This type of loop
can be useful when you need to process lists of unknown lengths.

How to do it...
Perform the following steps to create an iterative loop:

1.	 Create a new main stack.

2.	 Drag a scrolling list field to the stack's card and name it myList.

3.	 Change the contents of the myList field to the following, paying special attention
to the upper- and lowercase values of each line:

�� Wash Truck

�� Write Paper

�� Clean Garage

�� Eat Dinner

�� Study for Exam

4.	 Drag a button to the card and name it iterate.

5.	 Add the following code to the iterate button:
on mouseUp
 local tLines

 put the number of lines of fld "myList" into tLines
 repeat with tLoop = 1 to tLines
 put tLoop & " - " & line tLoop of fld
 "myList"into line tLoop of fld "myList"
 end repeat
end mouseUp

6.	 Test the code by clicking on the iterate button.

Loops and Timers

68

How it works...
We used the repeat control structure to iterate through a list field one line at a time.
This was accomplished by first determining the number of lines in that list field, and
then setting the repeat control structure to sequence through the lines.

See also
ff The Using a loop to count recipe

4
Managing Text

In this chapter, we will cover the following recipes:

ff Reading the user input

ff Searching text

ff Replacing text

ff Combining text

ff Encrypting text

ff Writing text

ff Reading text

ff Sorting text

ff Formatting text

ff Appending text

ff Translating text into Pig Latin

Introduction
A large number of mobile applications require us to deal with text in various formats.
For example, we might need to read and evaluate user input to ensure that they entered a
valid e-mail address, or we might use user text for searching other text. LiveCode provides
a tremendous ability for us to work with text. In this chapter, you will learn how to accomplish
tasks related to working with text. You will learn how to read user input and how to replace,
combine, and encrypt text. You will also learn how to write, read, sort, format, and append
text. Lastly, you will learn how to translate text into Pig Latin.

Managing Text

70

Reading the user input
In this recipe, you will learn how to prompt the user for input and how to read that input.
This can be useful in many situations. To accomplish this task, we will ask the user for
his/her name, read his/her input, and output a greeting to let the user know that we
were paying attention.

How to do it...
Reading the user input is a fundamental function of most mobile apps. Follow the given steps
to learn how to prompt the user for text and then read it:

1.	 Create a new main stack in LiveCode.
2.	 Drag a button to the main card.
3.	 Name the new button getName.
4.	 Change the label of the button to Enter Name.
5.	 Set the background color (fill color) of the new button to white.
6.	 Add the following code to the button:

on mouseUp
 ask question "Please enter your name:" titled
 "Name Entry"
end mouseUp

7.	 When you run the application in the mobile simulator, you should see the interface
shown in the following screenshot:

Chapter 4

71

8.	 Now, let's modify the button's code to read the input and display it in a message to
the user. Change the getName button's code to match the following:
on mouseUp
 local userName

 ask question "Please enter your name:" titled
 "Name Entry"
 put it into userName
 answer "Thank you, " & userName with "Okay"
end mouseUp

9.	 When you run the application in the simulator, you should see a pop-up dialog that
includes the user's name:

How it works...
We used both the ask and answer commands in our recipe. First, the ask command
prompted the user for input. The resultant input was placed in the it variable. We copied
the input into our own variable (userName) and used it with the answer command.

See also
ff The Restricting the user input recipe in Chapter 2, Human-computer Interfaces

Searching text
In this recipe, we will prompt the user for some text and then prompt him/her for text to
search for. We will evaluate the first set of text to determine if the second bit of text is
contained within the first. We will provide the user with the results.

Managing Text

72

How to do it...
Follow this recipe's steps to create functionality that asks for input of the text that is to be
searched for and the text that is to be analyzed with the search criteria:

1.	 Create a new main stack in LiveCode.

2.	 Drag a button to the card.

3.	 Add the following code to the new button:
on mouseUp
 local sourceText, searchText

 ask question "Enter text to search:" titled "SOURCE TEXT"
 put it into sourceText
 --
 ask question "Enter text to search for:" titled
 "SEARCH TEXT"
 put it into searchText
 --
 if searchText is among the words of sourceText then
 answer "text found"
 else
 answer "text not found"
 end if
end mouseUp

4.	 Run the application in a simulator and enter the text shown in the
following screenshot:

Chapter 4

73

5.	 After clicking on OK, enter the text shown in the following screenshot:

6.	 After clicking on OK on the search text dialog, you should see the results as
illustrated in the following screenshot:

How it works...
Searching for text within text can be relatively straightforward using LiveCode. In our recipe,
we used the is among the words code to search for text in another string of text.

There's more...
You might also wish to designate the caseSensitive property to true or false.
This property determines if string comparisons are case-sensitive or case-insensitive.
The default setting is false. To set the property to true, use:

set the caseSensitive to true

To set the property to false, use:

set the caseSensitive to false

Managing Text

74

Replacing text
In this recipe, you will learn how to replace portions of text based on a search and match
schema. We will use the replace command to accomplish this task.

How to do it...
Replacing sections of text can be a powerful part of a mobile app. Follow this recipe's steps to
perform a global find-and-replace operation:

1.	 Create a new main stack in LiveCode.
2.	 Drag a new button to the card.
3.	 Name the new button replaceText.
4.	 Add the following code to the button:

on mouseUp
 local tempText
 put "EMP001, EMP002, EMP003, EMP004, EMP005" into
 tempText
 replace "EMP" with "EMP#:" in tempText
 answer tempText
end mouseUp

How it works...
We created a local variable (tempText) to hold our original text. Next, we used the replace
command to change all occurrences of EMP to EMP#:. We then used the answer command to
display the results.

Combining text
In this recipe, you will learn how to take two text values and combine them into one.

How to do it...
Follow this recipe's steps to take two user-entered bits of text and combine them into one:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the stack's card to black.

3.	 Add a first label with the following properties to the card:

�� Name: fldFirst

Chapter 4

75

�� foregroundColor: Yellow

�� Contents: First Name

4.	 Add a second label with the following properties to the card:

�� Name: fldLast

�� foregroundColor: Yellow

�� Contents: Last Name

5.	 Add a third label with the following properties to the card:

�� Name: fldCombined

�� Width: 200

�� foregroundColor: Yellow

�� Contents: Combined Text

6.	 Add a first text input field to the card with the following properties:

�� Name: firstName

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

7.	 Add a second text input field to the card with the following properties:

�� Name: lastName

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

8.	 Create a button named Combine.

9.	 Layout the three labels, the two text input boxes, and one button as illustrated in the
following screenshot:

Managing Text

76

10.	 Add the following code to the Combine button:
on mouseUp
 local fName, lName, newCombinedName

 put the text of fld "firstName" into fName
 put the text of fld "lastName" into lName
 put fName && lName into newCombinedName
 put newCombinedName into fld "fldCombined"
end mouseUp

11.	 Run the application in the mobile simulator and enter the values Bruce and Lee for
the first and last name respectively. You should see the same results as shown in the
following screenshot:

How it works...
We used the && operator to combine two strings and automatically add a space in between
them. If we simply used the & operator, then the first and last name would have been run
together, without a space. Of course we could have alternatively used the following:

put fName & " " & lName into newCombinedName

Encrypting text
LiveCode includes several cyphers that allow us to encrypt and decrypt data. In this recipe,
you will select a cipher, assign a password, and encrypt data. You will also decrypt that data
using the same cypher and password.

Chapter 4

77

How to do it...
Follow this recipe's steps to encrypt and decrypt text:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the stack's card to black.

3.	 Add a label with the following properties:

�� Name: fldPlain

�� Width: 175

�� foregroundColor: Yellow

�� contents: Plain Text

4.	 Add a second label with the following properties:

�� Name: fldEncrypted

�� Width: 175

�� foregroundColor: Yellow

�� Contents: Encrypted Text

5.	 Add a scrolling text field with the following properties:

�� Name: plainText

�� traversalOn (Focusable): Keep it unchecked

�� showFocusBorder (Focus border): Keep it unchecked

�� borderWidth: 0

�� foregroundColor: Black

�� backgroundColor: White

�� Contents: The lazy dog jumped over the quick brown fox.

�� Size of text: 18

6.	 Add a second scrolling text field with the following properties:

�� Name: encryptedText

�� traversalOn (Focusable): Keep it unchecked

�� showFocusBorder (Focus border): Keep it unchecked

�� borderWidth: 0

�� foregroundColor: Black

�� backgroundColor: White

�� Size of text: 18

Managing Text

78

7.	 Add a button with the following properties:

�� Name: btnEncrypt

�� Label: Encrypt Text

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

8.	 Layout the labels, the text fields, and the button as shown in the following screenshot:

9.	 Access the Standalone Application Settings dialog from the File drop-down
menu. Ensure that there is a check in the Encryption checkbox, as shown in
the following screenshot:

Chapter 4

79

When working with Android apps, select the SSL & Encryption
checkbox in the Standalone Application Settings dialog.

10.	 Add the following code to the BtnEncrypt button:
on mouseUp
 local tCypherList, sourceText

 put the cipherNames into tCypherList
 put the text of fld "plaintext" into sourceText
 encrypt sourceText using rc4 with password coolbeans
 put it into fld "encryptedText"
end mouseUp

11.	 Run the application in the mobile simulator and click on the button labeled Encrypt
Text. The results should be similar to what is shown in the following screenshot:

12.	 Add a second button to the right of the current btnEncrypt button with the
following properties:

�� Name: btnDecrypt

�� Label: Decrypt Text

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

Managing Text

80

13.	 Add the following code to the btnDecrypt button:
on mouseUp
 local tCypherList, encryptedText

 put the cipherNames into tCypherList
 put the text of fld "encryptedText" into encryptedText
 decrypt encryptedText using rc4 with password coolbeans
 put it into fld "encryptedText"
end mouseUp

14.	 Run the application in the mobile simulator and click on the button labeled Decrypt
Text. The results should be similar to what is shown in the following screenshot:

How it works...
In this recipe, we encrypted and decrypted text using a cipher and password. The cipher came
from the list of cyphers available via the system variable cipherNames. In step 9, we marked
the encryption external to ensure that external is bundled with the standalone versions of your
mobile app.

Writing text
When coding mobile applications, you might have the need to write text to the screen or
external files, such as displaying a level completion message or posting a new high score on
a leaderboard. In this recipe, you will learn how to write text to the screen of a mobile device.

Chapter 4

81

How to do it...
Follow the steps in this recipe to write text on the user's screen:

1.	 Create a new main stack in LiveCode.

2.	 Add a label field to the card with the following properties:

�� Name: userInput

�� Width: 300

�� foregroundColor: Yellow

�� Align text left

�� Size of text: 18

3.	 Add the following code to the card:
on openCard
 put the long date & tab & the long time into fld
 "userInput"
end openCard

4.	 Run the app in the mobile simulator. Your results should be similar to what is
displayed in the following screenshot:

How it works...
In this recipe, we used the put command to put data on the screen using a text field. The
same command can be used to put data in objects such as buttons, text fields, and so on.

See also
ff The Reading text recipe

Managing Text

82

Reading text
In this recipe, you will learn how to read text that is present on the mobile device such as data
entered by the user.

How to do it...
Follow this recipe's steps to read text from the mobile device's screen:

1.	 Create a new main stack in LiveCode.

2.	 Add a label field to the card with the following properties:

�� Name: userInput

�� Width: 300

�� foregroundColor: Black

�� Align text left

3.	 Add a button to the card with the following properties:

�� Name: btnRead

�� Label: Read Text

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

4.	 Add the following code to the btnRead button:
on mouseUp
 answer the text of fld "userInput" with "Correct" \
and "Incorrect" titled "I Read Your Text"
end mouseUp

5.	 Run the app in the mobile simulator. Enter Hunger is easily solved with
food. in the input text field. Your results should match what is displayed in the
following screenshot:

Chapter 4

83

How it works...
In this recipe, we read the text entered by the user as part of the answer command using the
statement the text of fld.

See also
ff The Writing text recipe

Sorting text
LiveCode provides us with the ability to easily sort data in both ascending and descending
order. In this recipe, we will sort a list of US states in ascending order.

How to do it...
Follow the steps in the recipe to sort text:

1.	 Create a new main stack in LiveCode.

2.	 Add a button to the card with the following properties:

�� Name: btnSort

�� Label: Sort

Managing Text

84

�� foregroundColor: Black

�� backgroundColor: White

�� borderWidth: 0

3.	 Add the following code to the btnSort button:
on mouseUp
 local someStates
 put "Connecticut" into line 1 of someStates
 put "California" into line 2 of someStates
 put "Washington" into line 3 of someStates
 put "Florida" into line 4 of someStates
 put "Rhode Island" into line 5 of someStates
 sort lines of someStates ascending text
 answer someStates titled "Sorted"
end mouseUp

4.	 Run the app in the mobile simulator. As illustrated in the following screenshot,
the states have been properly sorted in ascending order:

How it works...
We used the sort command to sort the lines of our data. We provided three parameters to
the command: container, direction, and type of sort. The container was our someStates
variable, which consisted of five lines of text. The direction was ascending and the type of
sort was text. It is simply a matter of changing ascending to descending in the script if
you want to sort in the descending order.

Chapter 4

85

Formatting text
In this recipe, you will learn how to format text displayed on a screen. By following this recipe's
steps, you will change the entire text, sections, and subsections of text.

How to do it...
Follow the given steps to format the onscreen text:

1.	 Create a new main stack in LiveCode.

2.	 Drag a scrolling text field to the card.

3.	 Name the new field myText.

4.	 Enter three or more paragraphs of text in the contents of the field.

You can autogenerate dummy text at
http://www.lipsum.com/feed/html.

5.	 Now that the text is in place, let's change the background color to yellow. In the
message box (accessible via the Tools drop-down menu), type in the following code
and press Enter:
set the backgroundColor of fld "myText" to yellow

6.	 Next, we will change the background color of the first paragraph to red. Enter the
following code in the message box:
set the backgroundColor of line 1 of fld "myText" to red

7.	 Let's add a left and right indentation to the second paragraph by entering the
following code in the message box:
set the leftIndent of line 2 of fld "myText" to 25
set the rightIndent of line 2 of fld "myText" to 25

8.	 Next, we will add a black border of size 3 to the third paragraph. Execute the following
code in the message box:
set the bordercolor of line 3 of fld "myText" to black
set the borderwidth of line 3 of fld "myText" to 3

9.	 Lastly, we will change the background color of words 5 through 10 of the second
paragraph to violet. We will do this with the following code in the message box:
set the backgroundColor of word 5 to 10 of line 2 of fld
 "myText" to violet

http://www.lipsum.com/feed/html

Managing Text

86

How it works...
Text can be viewed in a similar way to objects in LiveCode, in that they have properties
that can be changed. In this recipe, we changed the following properties of the text:
backgroundColor, borderColor, borderWidth, leftIndent, and rightIndent.

Appending text
In this recipe, we will learn how to add text to the end of the existing text. In our context,
appending text refers to adding text after the existing text, or at the end of the text.

How to do it...
Appending text in LiveCode is a very simple task. Follow the given two steps to append one
string (text) with another.

1.	 Open the message box and enter the following code:
put "test one" into pText; put " two" after pText; put
 pText

2.	 When you execute the code in the message box, you should see the following result:

How it works...
To accomplish our task of appending text, we used the after keyword. LiveCode made the
task easy by allowing us to, simply put, "place this after that".

Chapter 4

87

Translating text into Pig Latin
In this recipe, you will learn how to translate standard text into Pig Latin. To accomplish this
task, you will ask the user for an English word, determine if the word starts with a vowel or
not, and then convert the word to Pig Latin in two steps.

Pig Latin words are formed by modifying English words. The first consonant of
an English word is moved to the end of the word and "ay" is added as a suffix.
If the word begins with a vowel, then it is modified only by adding the suffix
"ay." So, "LiveCode" would become "iveCodelay".

How to do it...
While you might never need to use Pig Latin in the mobile apps you develop, this recipe shows
some of LiveCode's powerful text controls:

1.	 Create a new main stack in LiveCode.

2.	 Create a button with the name pigLatin.

3.	 Add the following code to the pigLatin button:
on mouseUp
 local englishWord, pigLatinWord, tLetter

 ask question "Enter an English word" titled "Word Entry"
 put it into englishWord
 put englishWord into pigLatinWord
 # check if word starts with a vowel
 if char 1 of pigLatinWord is not among the chars \
 of "aeiou" then
 // word does not start with a vowel
 put char 1 of pigLatinWord into tLetter
 delete char 1 of pigLatinWord
 put tLetter after pigLatinWord
 end if
 # Add "ay" to end of word
 put "ay" after pigLatinWord

 answer quote & englishWord & quote & " is " "e &
 pigLatinWord & quote \
 & " in Pig Latin." with "Cool"
end mouseUp

Managing Text

88

4.	 Test your code in the mobile simulator and enter nix for your English word.
Your results should be the same as shown in the following screenshot:

How it works...
To translate English words to Pig Latin, we first evaluated the user input to determine
whether the first letter of his/her word began with a vowel or a consonant. If it started with a
consonant, then we recorded the first character, deleted it from the word, and added it to the
end. Next, we added the "ay" suffix. Lastly, we provided output to the user, showing him/her
the original word and the new Pig Latin word.

There's more...
In this recipe, we created code that handles English words that start with a vowel or a
single consonant. For complete and accurate translations, all leading consonants should
be moved to the end of the word prior to adding the "ay" suffix. So, the word "style" would
become "estylay".

5
Communications

In this chapter, we will cover the following topics:

ff Initiating a phone call

ff Sending an e-mail

ff Formatting an e-mail

Introduction
In this chapter, you will learn how to initiate a phone call, send an e-mail, and format an
e-mail using LiveCode. These tasks have become common features of most mobile apps.
The recipes in this chapter will arm you with all you need to integrate this functionality into
your own mobile apps.

Initiating a phone call
You might be developing a mobile application that requires users to be able to make a phone
call to a specific number. For example, you might have a hotline for animal abuse. In this
recipe, you will learn how to use LiveCode to instantiate the mobile device's phone software
and dial a number.

How to do it...
Perform the following steps to prepare your mobile app to initiate a phone call:

1.	 Create a new LiveCode main stack.

2.	 Set the background color of the default card to black.

Communications

90

3.	 Drag a new button to the card and set the following properties:

�� Name: btn_callHotline
�� Label: Call Hotline
�� Width: 144
�� threeD: Keep it unchecked
�� showBorder: Keep it unchecked
�� hiliteBorder: Keep it unchecked
�� backgroundColor: White

4.	 Add the following code to the btn_callHotline button:
on mouseUp
 launch url "tel:+19998887777"
end mouseUp

5.	 Test this application on an actual device.

How it works...
We just need to make a call to the launch url command and pass it the telephone number
and tel: prefix.

There's more...
Most simulators will not simulate the use of a telephone, so you will need to compile this
app and save it as a standalone application. You can then test it on an actual device.

Sending an e-mail
Mobile devices often support e-mail clients. We can use LiveCode to interact with the mobile
device's e-mail system. This recipe illustrates the relative ease in sending an e-mail from
within a mobile app developed with LiveCode.

How to do it...
Follow the given steps to send an e-mail:

1.	 Create a new LiveCode stack.
2.	 Set the background color of the default card to black.
3.	 Drag a new button to the card and set the following properties:

�� Name: btn_sendEmail
�� Label: Send Email

Chapter 5

91

�� Width: 144

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

4.	 Add the following code to the btn_sendEmail button:
on mouseUp
 revMail
end mouseUp

5.	 When you run the app in the simulator and click on the Submit button, you should
see the e-mail client appear, as illustrated in the following screenshot:

How it works...
LiveCode makes our work easy when it comes to invoking the e-mail client. We made a call to
the revMail command and the e-mail client's New Message dialog was instantiated.

Communications

92

See also
ff The Formatting an e-mail recipe

Formatting an e-mail
It can be helpful to users if you prepopulate e-mails before presenting the user with the
mobile operating system's e-mail dialog interface. You might, for example, want to create an
e-mail message highlighting an in-game achievement of your users. This recipe will show you
how to format an e-mail using the To address, CC address, e-mail subject, and e-mail body.

How to do it...
By performing the following steps, you can have your mobile app prepopulate some e-mail
properties so that it is preformatted or prefilled for your user:

1.	 Create a new LiveCode stack.

2.	 Set the background color of the default card to black.

3.	 Drag a new label to the card and set the following properties:

�� Name: lbl_toAddress

�� foregroundColor: White

�� textSize: 14

�� Text style: Bold

�� Contents: To Address

4.	 Drag a new label to the card and set the following properties:

�� Name: lbl_ccAddress

�� foregroundColor: White

�� textSize: 14

�� Text style: Bold

�� Contents: CC Address

5.	 Drag a new label to the card and set the following properties:

�� Name: lbl_subject

�� foregroundColor: White

�� textSize: 14

�� Text style: Bold

�� Contents: Subject

Chapter 5

93

6.	 Drag a new label to the card and set the following properties:

�� Name: lbl_body

�� foregroundColor: White

�� textSize: 14

�� Text style: Bold

�� Contents: Body

7.	 Drag a new Text Entry Field to the card, to the right of the lbl_toAddress label.
Set the following properties:

�� Name: fld_toAddress

�� textSize: 14

�� Text style: Bold

�� showBorder: Keep it unchecked

�� backgroundColor: White

8.	 Drag a new Text Entry Field to the card, to the right of the lbl_ccAddress label.
Set the following properties:

�� Name: fld_ccAddress

�� textSize: 14

�� Text style: Bold

�� showBorder: Keep it unchecked

�� backgroundColor: White

9.	 Drag a new Text Entry Field to the card, to the right of the lbl_subject label.
Set the following properties:

�� Name: fld_subject

�� textSize: 14

�� Text style: Bold

�� showBorder: Keep it unchecked

�� backgroundColor: White

10.	 Drag a new Scrolling Field to the card, just under the lbl_body label. Name the
field fld_body.

11.	 Drag a new button to the card and set the following properties:

�� Name: btn_sendEmail

�� Label: Send Email

�� Width: 144

Communications

94

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

12.	 Add the following code to the btn_sendEmail button:
on mouseUp
 local tAddress, tCC, tSubject, tBody

 put the text of fld "fld_toAddress" into tAddress
 put the text of fld "fld_ccAddress" into tCC
 put the text of fld "fld_subject" into tSubject
 put the text of fld "fld_body" into tBody

 revMail tAddress, tCC, tSubject, tBody
end mouseUp

13.	 Align your objects so that the layout is similar to what is illustrated in the
following screenshot:

14.	 Run the app in the simulator and add information in the text input fields, as shown in
the following screenshot:

Chapter 5

95

15.	 Click on the Send Email button and the mobile device's e-mail client should
launch and be prepopulated with the data you entered, as illustrated in the
following screenshot:

Communications

96

How it works...
LiveCode makes our work easy when it comes to invoking the e-mail client. We made a call
to the revMail command and the e-mail client's New Message dialog was instantiated.
We passed four parameters to revMail: the To e-mail address, CC e-mail address, e-mail
subject, and e-mail body.

See also
ff The Sending an e-mail recipe

6
Data Structures

In this chapter, we will cover the following recipes:

ff Using arrays
ff Using multidimensional arrays
ff Saving external data
ff Loading external data
ff Reading XML
ff Writing XML
ff Using SQLite
ff Using MySQL

Introduction
In this chapter, you will learn how to accomplish tasks related to working data that are both in
memory and external to your mobile app. External data can be very important to apps and can
be structured in many different ways. The recipes in this chapter address data structured in
arrays, pure text, XML, and databases.

Using arrays
Arrays are sets of data that are arranged in a specific pattern. A one-dimension array can be
viewed as an ordered list of items. For example, we might have a list of players on our sports
team, and can illustrate this as a simple list, as shown:

1.	 Peter Sebastian
2.	 Sol Gladman
3.	 Jonas Mathling

Data Structures

98

In our previous example, position 2 in our array is "Sol Gladman". This recipe will teach you
how to create and use a one-dimensional array.

How to do it...
Perform the following steps to create and use a one-dimensional array:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the default card to black.

3.	 Drag a new label to the card and set the following properties:

�� Name: lbl_title
�� foregroundColor: White
�� Width: 130
�� Height: 30
�� Size of text: 18
�� Select bold
�� Contents: AGE RANGE

4.	 Drag a new label to the card and set the following properties:

�� Name: lbl_low
�� foregroundColor: White
�� Width: 50
�� Height: 21
�� Size of text: 14
�� Select bold
�� Contents: LOW

5.	 Make a copy of the lbl_low label and change the following properties:

�� Name: lbl_avg
�� Contents: AVG

6.	 Make a copy of the lbl_low label and change the following properties:

�� Name: lbl_high
�� Contents: HIGH

7.	 Make a copy of the lbl_low label and change the following properties:

�� Name: lbl_lowValue
�� foregroundColor: Yellow
�� Contents: 0

Chapter 6

99

8.	 Make a copy of the lbl_lowValue label and change the name of the new label
to lbl_avgValue.

9.	 Make a copy of the lbl_lowValue label and change the name of the new label
to highValue.

10.	 Drag a new button to the card and set the following properties:

�� Name: btn_reset

�� Label: Reset

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

11.	 Align your objects so that the layout is similar to what is illustrated in the
following screenshot:

12.	 Add the following code to the btn_reset button to set up local variables:
on mouseUp
 local aAges, tLen, tKeys
 local aSortedAges, tIndex, tIncrement
 local tAvg
end mouseUp

13.	 Add the following additional code to the btn_reset button to clear the
onscreen values:
 set the text of fld "lbl_lowValue" to 0
 set the text of fld "lbl_avgValue" to 0
 set the text of fld "lbl_highValue" to 0

Data Structures

100

14.	 Add the following additional code to the btn_reset button to determine the length
of the array:
 put the number of lines of keys of aAges into tLen

15.	 Add the following additional code to the btn_reset button to sort the
array numerically:
 get the keys of aAges
 sort lines of it by aAges[each]
 split it by return
 put it into tIndex

16.	 Add the following additional code to the btn_reset button to create a new array with
the sorted results:
 put 1 into tIncrement
 repeat for each element tIndex in it
 put aAges[tIndex] into aSortedAges[tIncrement]
 add 1 to tIncrement
 end repeat

17.	 Add the following additional code to the btn_reset button to determine the average
age of those listed in the array:
 put 0 into tAvg
 repeat with x = 1 to tLen
 add aSortedAges[x] to tAvg
 end repeat
 put tAvg / tLen into tAvg

18.	 Add the following additional code to the btn_reset button to display the results on
the screen:
 set the text of fld "lbl_lowValue" to aSortedAges[1]
 set the text of fld "lbl_avgValue" to tAvg
 set the text of fld "lbl_highValue" to aSortedAges[tLen]

19.	 Ensure that your final code matches what is provided next:

This code has several comments (preceded by the # symbol)
that help organize and make sense of the code.

on mouseUp
 local aAges, tLen, tKeys
 local aSortedAges, tIndex, tIncrement
 local tAvg

 # clear on-screen values

Chapter 6

101

 set the text of fld "lbl_lowValue" to 0
 set the text of fld "lbl_avgValue" to 0
 set the text of fld "lbl_highValue" to 0

 # populate the array
 put 25 into aAges[1]
 put 44 into aAges[2]
 put 13 into aAges[3]
 put 33 into aAges[4]
 put 42 into aAges[5]
 put 52 into aAges[6]
 put 34 into aAges[7]
 put 22 into aAges[8]
 put 32 into aAges[9]

 # determine length of array
 put the number of lines of keys of aAges into tLen

 # sort the array numerically
 get the keys of aAges
 sort lines of it by aAges[each]
 split it by return
 put it into tIndex

 # create a new array for the sorted results
 put 1 into tIncrement
 repeat for each element tIndex in it
 put aAges[tIndex] into aSortedAges[tIncrement]
 add 1 to tIncrement
 end repeat

 # get avg value
 put 0 into tAvg
 repeat with x = 1 to tLen
 add aSortedAges[x] to tAvg
 end repeat
 put tAvg / tLen into tAvg

 # update screen values
 set the text of fld "lbl_lowValue" to aSortedAges[1]
 set the text of fld "lbl_avgValue" to tAvg
 set the text of fld "lbl_highValue" to aSortedAges[tLen]
end mouseUp

Data Structures

102

20.	 Run your app in the mobile simulator.

21.	 Click on or tap the btn_reset button. You should see results that are identical to what
is illustrated in the following screenshot:

How it works...
We experimented with one-dimensional arrays by first creating and populating an array of
numeric values (ages). We calculated the number of values and sorted the array numerically.
We took the newly sorted information and populated a new, sorted array. When we have
large data in the memory, it can be much quicker to access that information if it is sorted in
a manner that is relevant to our app. We next retrieved specific values for onscreen display.

See also
ff The Using multidimensional arrays recipe

Using multidimensional arrays
One-dimensional arrays are simple lists of information. Multidimensional arrays can hold
related data in columns and rows such as with a spreadsheet. This recipe will show you
how to create, populate, and retrieve information from a multidimensional array.

How to do it...
Perform the following steps to create and use multidimensional arrays:

1.	 Create a new main stack in LiveCode.

2.	 On the stack or card, create the following code to create a two-dimensional array and
populate it with three rows of information:
command makemyarray
 local aMyArray

Chapter 6

103

 put "J" into aMyArray[1][1]
 put "Jones" into aMyArray[1][2]
 put "United States" into aMyArray[1][3]
 --
 put "R" into aMyArray[2][1]
 put "Smith" into aMyArray[2][2]
 put "United Kingdom" into aMyArray[2][3]
 --
 put "T" into aMyArray[3][1]
 put "Johnson" into aMyArray[3][2]
 put "Canada" into aMyArray[3][3]

end makemyarray

3.	 Use the following line of code to retrieve a specific piece of information. In this case,
we are looking for the third column of the third row:

put aMyArray[3][3]

The previous line of code can be placed inside the
makeMyArray code, preceding the end makeMyArray
statement. For testing in the LiveCode IDE, you can simply
type the line of code in the message box to obtain the results.

How it works...
To create a multidimensional array, we envision our data as being in a matrix such as a
spreadsheet. If we have two columns, then each cell will be viewed as myArray[1][1] and
myArray[1][2]. We can target specific cells such as myArray[5][4] for the fifth row and
fourth column.

There's more...
Sometimes, it can be helpful to evaluate a variable to determine whether it is an array or not.
To do this, we can use the simple put aMyArray is an array command. This statement
will be evaluated as true or false.

See also
ff The Using arrays recipe

Data Structures

104

Saving external data
There are many reasons you might want your app to be able to save information on a mobile
device such as saving scores, game progress, settings, and more. This recipe demonstrates
how to save data to a mobile device. While this specific example is for iOS devices, the same
principles apply to Android-based devices.

Getting ready
Writing files on physical devices is more complex with mobile devices as opposed to desktop
applications. All files are confined to the app's home folder or subordinate folder. Here are the
initial folders that are created with a standalone mobile app:

Folder Use Sync'd by iTunes
cache Transient data (preserved

between app launches)
No

documents Documents Yes
engine App's binary files and

bundled resources
Yes

home The home folder for the app
and supporting files

Yes

temporary Data not needed in between
app launches

No

So, before you get started, you need to know where you will save your external files.

How to do it...
Follow the steps in this recipe to create a tryit.txt file and save it to your mobile
device's filesystem:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the main card to black.

3.	 Drag a new button to the main card.

4.	 Add the following code to the new button:
on mouseUp
 set the defaultFolder to specialFolderPath("documents")

 put "This is a test" into URL("file:tryit.txt")
end mouseUp

Chapter 6

105

How it works...
We changed our default folder to the documents folder with the special folder path. This
points the system to the documents folder, which is a subordinate of our app folder on the
mobile device. Also, if the tryit.txt file already existed, our code would have overwritten it.

See also
ff The Loading external data recipe

Loading external data
There are many reasons you might want your app to be able to retrieve information from
a mobile device, such as reading scores, game progress, settings, and more. This recipe
demonstrates how to read data that was previously saved to a mobile device. While this
specific example is for iOS devices, the same principles apply to Android-based devices.

Getting ready
This recipe references a file named tryit.txt, which was created with the Saving external
data recipe. You will need to use this recipe prior to using the following one.

How to do it...
Use the following steps to read a file from your mobile device:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the main card to black.

3.	 Drag a new button to the main card and set the following properties:

�� backgroundColor: White
�� showBorder: Keep it unchecked
�� hiliteBorder: Keep it unchecked
�� threeD: Keep it unchecked

4.	 Drag a new label to the main card and name it results.

5.	 Add the following code to the new button:
on mouseUp
 set the defaultFolder to specialFolderPath("documents")

 put URL ("file:tryit.txt") into field "results"
end mouseUp

Data Structures

106

When reading information from an external file, you can put the results
directly to the screen via a pop up, in a field, or you can put it into memory for
further manipulation. In the example of this recipe, the results are echoed to
the screen via the results field.

How it works...
We changed our default folder to the documents folder with the special folder path. This
points the system to the documents folder, which is a subordinate of our app folder on the
mobile device.

See also
ff The Saving external data recipe

Reading XML
XML (Extensible Markup Language) files represent an organized method to save and quickly
read information from files.

How to do it...
Use the following steps to read the XML data:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the main card to black.

3.	 Drag a new button to the card and assign the following properties:

�� Name: btn_readXML
�� Label: Read XML
�� threeD: Keep it unchecked
�� showBorder: Keep it unchecked
�� hiliteBorder: Keep it unchecked
�� backgroundColor: White

4.	 Create a text file with the following text. Save the file as sample.xml into the
documents folder on your mobile device:
<sample>
 <language>English</language>
 <timeZone>ET</timeZone>
</sample>

Chapter 6

107

5.	 Assign the following code to the btn_readXML button:
on mouseUp
 local xmlTree, tLanguage

 # Read XML File into memory
 put readXMLtoTree() into xmlTree

 # Retrieve specific piece of information
 put revXMLNodeContents(xmlTree, "sample/language") into
 tLanguage

 # Release memory
 revDeleteXMLTree xmlTree
end mouseUp

private function readXMLtoTree
 local xmlFile, xmlData, xmlTree

 answer file "Select your XML file"
 if the result is not "Cancel" then
 put it into xmlFile
 end if
 put url ("file:" & xmlFile) into xmlData

 # new XML tree
 put revCreateXMLTree(xmlData, false, true, false) into
 xmlTree

 return xmlTree
end readXMLtoTree

The answer file function is not available for mobile operating
systems currently. It is used in this recipe for illustrative purposes.

6.	 Open the Standalone Application Settings dialog box and click on the iOS tab.

Data Structures

108

7.	 Check the revXML checkbox by navigating to Basic Application Settings | Externals.
See the following screenshot for reference:

8.	 Open the Standalone Application Settings dialog box and click on the Android tab.

9.	 Check the revXML checkbox by navigating to Basic Application Settings | Externals.
See the following screenshot for reference:

How it works...
This recipe illustrated how to read from an XML file. We created a private function called
readXMLtoTree that retrieves the XML file and populates a new XML tree in the memory.
We then used put revXMLNodeContents(xmlTree, "sample/language") in the
tLanguage statement to extract the language out of the XML tree.

Chapter 6

109

See also
ff The Writing XML recipe

Writing XML
XML files represent an organized method to save and quickly read information from files.

Getting ready
Since XML is a marked language used for organizing and nesting data, you must first
determine what type of data you have and how you want it organized. For example,
you might simply have vehicle makes and models, so your XML file structure would be
<vehicle><make><model> and might look something like the following code:

<vehicle>
 <ford>
 <car>Taurus</car>
 <truck>F-350</truck>
 <van>E-150</van>
 </ford>

How to do it...
Use the following steps to create and write an XML data structure:

1.	 To write XML data, use a function to write each line of text such as with the
following code:
function createXML theTag, theText
 local theXML

 put "<" & theTag & ">" into theXML
 put theText after theXML
 put "</" & theTag & ">" after theXML
 return theXML
end createXML

2.	 Once the entire XML file is constructed in the memory, you can save it to a physical
storage medium (see the Saving external data recipe for details).

Data Structures

110

How it works...
XML is a tagged language, so we can easily add the <value> and </value> open and
closing tags to text values. While the fundamentals of XML are easily understood, the
implementation of XML is a bit more complex and requires precise coding.

There's more...
This recipe demonstrated how to write XML data without using any of LiveCode's built-in
XML commands. If you use these built-in commands, then you will want to ensure that you
select revXML by navigating to Basic Application Settings | Externals under the Standalone
Application Settings dialog box.

Take a look at the following screenshot for iOS:

Take a look at the following screenshot for Android:

Chapter 6

111

See also
ff The Reading XML recipe

Using SQLite
Databases are advanced data repositories known as relational database management
systems. SQLite is an embedded database that can be used in your LiveCode mobile apps,
giving you tremendous capability to store, retrieve, and manipulate data. Unlike MySQL
databases, SQLite databases do not require a server. In this recipe, we will create a mobile
app that uses five SQLite functions:

1.	 Connect to a database.

2.	 Add a table to the database.

3.	 Add data to the database table.

4.	 Retrieve data from the database.

5.	 Close the database.

How to do it...
Use the following steps to create a mobile app that instantiates a SQLite database and add
and retrieve information from it:

1.	 Create a new main stack in LiveCode.

2.	 Set the background color of the main card to black.

3.	 Open the Standalone Application Settings dialog box and click on the iOS tab.

4.	 Check the SQLite checkbox by navigating to Basic Application Settings | Externals.
See the following screenshot for reference:

5.	 Open the Standalone Application Settings dialog box and click on the Android tab.

Data Structures

112

6.	 Check the SQLite checkbox by navigating to Basic Application Settings | Externals.
See the following screenshot for reference:

7.	 Drag a new button to the card and assign the following properties:

�� Name: btn_Connect

�� Label: 1 – Connect

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

�� Width: 130

�� lockLoc: Keep it checked

8.	 Drag a second button to the card and assign the following properties:

�� Name: btn_AddTable

�� Label: 2 – Add Table

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

Chapter 6

113

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

�� Width: 130

�� lockLoc: Keep it checked

9.	 Drag a third button to the card and assign the following properties:

�� Name: btn_AddData

�� Label: 3 – Add Data

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

�� Width: 130

�� lockLoc: Keep it checked

10.	 Drag a fourth button to the card and assign the following properties:

�� Name: btn_RetrieveData

�� Label: 4 – Retrieve Data

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

�� Width: 130

�� lockLoc: Keep it checked

11.	 Drag a fifth button to the card and assign the following properties:

�� Name: btn_Close

�� Label: 5 – Close

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� hiliteBorder: Keep it unchecked

�� backgroundColor: White

�� Width: 130

�� lockLoc: Keep it checked

Data Structures

114

12.	 Drag a scrolling field to the card and assign the following properties:

�� Name: fld_output

�� Width: 170

�� Height: 154

�� traversalOn: Keep it unchecked

�� showFocusBorder: Keep it unchecked

�� threeD: Keep it unchecked

�� showBorder: Keep it unchecked

�� backgroundColor: White

�� lockLoc: Keep it checked

13.	 Align the six onscreen objects so that they are laid out as illustrated in the
following screenshot:

14.	 Next, we need to connect to the database. If the database does not already exist,
then we will create one as part of the connection process. Add the following code
to the btn_Connect button:
on mouseUp
 global dbID
 local dbPath

 put specialFolderPath("documents") & \
 "/packtcookbook.sqlite" into dbPath
 put revOpenDatabase("sqlite", dbPath,,,,) \
 into dbID

 put "Database ID " & dbID & " created" \
 into fld "fld_output"
 set the enabled of me to false
end mouseUp

Chapter 6

115

15.	 Now, let's code the fifth button so that we can have the ability to close an open
database. This will free up the system memory. Add the following code to the
btn_Close button:
on mouseUp
 global dbID

 revCloseDatabase dbID

 put "Database ID " & dbID & " closed" \
 into fld "fld_output"
 set the enabled of btn "btn_Connect" to true
end mouseUp

16.	 Next, we will add a functionality to add a table to the database. We will add a table to
hold the account information. Add the following code to the btn_AddTable button:
on mouseUp
 global dbID
 local tmpSQL

 put "CREATE TABLE account_data (bank char(20),
 password char(10))" into tmpSQL
 revExecuteSQL dbID, tmpSQL

 put quote & "account_data" & quote & \
 " table created" into fld "fld_output"
end mouseUp

17.	 We are now ready to add data to our table. We'll add information regarding three
bank accounts. Add the following code to the btn_AddData button:
on mouseUp
 global dbID
 local tmpSQL

 put "INSERT into account_data VALUES ('19th
 Bank','99TA4509');" into tmpSQL
 put "INSERT into account_data VALUES ('Bank
 of the Poor','3309942');" after tmpSQL
 put "INSERT into account_data VALUES ('Blue
 Feet Bank','0000445');" after tmpSQL
 revExecuteSQL dbID, tmpSQL

 put "Three records added." into fld "fld_output"
end mouseUp

Data Structures

116

18.	 Our last task is to query the database and display the results. Add the following code
to the btn_RetrieveData button:
on mouseUp
 global dbID
 local theRecords, tmpSQL

 put "SELECT * from account_data" into tmpSQL
 put revDataFromQuery(tab,return,dbID,tmpSQL) \
 into theRecords
 put theRecords into fld "fld_output"
end mouseUp

19.	 Now, you are ready to test the application in a mobile simulator or on your actual
device. Run the application in a simulator (or an actual device).

20.	 Click on the button labeled 1 – Connect. You should see the output reflected in the
following screenshot:

21.	 Click on the button labeled 2 – Add Table. You should see the output reflected in the
following screenshot:

Chapter 6

117

22.	 Click on the button labeled 3 – Add Data. You should see the output reflected in the
following screenshot:

23.	 Click on the button labeled 4 – Retrieve Data. You should see the output reflected in
the following screenshot:

24.	 Click on the button labeled 5 – Close. You should see the output reflected in the
following screenshot:

Data Structures

118

How it works...
We took a five-step process towards using SQLite in LiveCode. We started by creating and
connecting to the database. Next, we added a table and then some data. Then, we retrieved
and displayed the database data. Lastly, we closed the database.

We used several commands built into the LiveCode engine and ensured that we would be
using the SQLite external.

There's more...
There are some excellent SQLite IDEs available, such as SQLite Expert, SQLite Designer,
SQLite Administrator, SQLite Database Browser, and SQLiteSpy, that can be used to create
and edit a SQLite database. It is recommended that you design and populate your SQLite
database using one of these or another tool and then create your LiveCode mobile app to
interface with that database. This approach saves you the time required to script your own
SQLite functionality.

See also
ff The Using MySQL recipe

ff The Loading external data recipe

ff The Saving external data recipe

Using MySQL
MySQL databases are relational data management systems that require a server to reside
in. We interface with these databases with user accounts established by the database
administrator. We use MySQL syntax, which is a specific query language, to read, write, and
modify the database. In this recipe, you will learn how to connect to a MySQL database, how
to read it, and how to modify it.

Getting ready
You will need to know the specific address of your database, the username, the password,
and the port number.

Chapter 6

119

How to do it...
Use the following information to integrate the MySQL database interaction into your
mobile app:

1.	 To connect to a MySQL database, we use the following code. Be sure to replace each
_____ with your actual data:
global dbID
local dbAddress, dbName, dbUser, dbPassword

put "_____" into dbAddress
put "_____" into dbName
put "_____" into dbUser
put "_____" into dbPassword

put revOpenDatabase("MySQL", dbAddress, dbName, dbUser,
 dbPassword) into dbID

2.	 Our second major function is to retrieve information from the database. We will need
to know what tables your database has. Use the following code to query the MySQL
database to retrieve all the data from a specific table. Be sure to replace _____
with your actual data. The results are housed in the theTableData local variable,
allowing you to manipulate or display the data:
global dbID
local dbTableName, tmpSQL, theTableData

put "_____" into dbTableName
put "SELECT * FROM " & dbTableName into tmpSQL
put revDataFromQuery(tab, cr, dbID, tmpSQL) into
 theTableData

3.	 Next, we will add a new record to the database. We require two items to
accomplish this task. We need a properly formed SQL query, and we must use the
revExecuteSQL command. Use the following code to add a record to your database.
Be sure to replace _____ with your actual data. This example assumes that the table
consists of fName and lname fields for the first and last names:
global dbID
local dbTableName, tmpSQL
local tmpFields, tmpFName, tmpLName

put "_____" into dbTableName
put "fname, lname" into tmpFields
put "Happy" into tmpFName
put "Jones" into tmpLName

Data Structures

120

put "INSERT INTO " & dbTableName & " (" & tmpFields &) VALUES
(:1, :2) into tmpSQL
revExecuteSQL dbID, tmpSQL, "tmpFName", "tmpLName"

4.	 To edit a record, you simply write a SQL statement using the UPDATE command.
Then, you use the revExecuteSQL LiveCode command.

5.	 To delete a record, you simply write a SQL statement using the DELETE FROM
command. Then, you use the revExecuteSQL LiveCode command.

6.	 The last thing we need to do is to disconnect from the database. We do this with the
following lines of code:
global dbID
revCloseDatabase dbID

How it works...
There are two key factors to using a MySQL database with LiveCode. First, you must have
precise information regarding the location (address), port, and user credentials (username
and password). Secondly, you must be able to write accurate SQL statements. There
are ample books and Internet resources that will help you learn the Structured Query
Language (SQL).

See also
ff The Using SQLite recipe

7
External Media

In this chapter, we will cover the following recipes:

ff Loading an image

ff Capturing an image from a mobile device's camera

ff Resizing an image

ff Playing a movie

ff Controlling the movie playback

ff Playing an audio file

Introduction
In this chapter, you will learn how to accomplish tasks related to working with external media
for your iOS and Android apps. You will learn how to load, display, and resize images. You will
learn how to play a movie and control playback by creating custom controls. You will also learn
how to play audio files from within your mobile apps.

Loading an image
Loading an image to a LiveCode stack is straightforward. In this recipe, you will learn how to
load an image from the mobile device's photo library.

How to do it...
This recipe provides details on how to load an image from a mobile device's library.

External Media

122

Use the following code to prompt the user to select an image from their device's image library:

on mouseUp
 mobilePickPhoto "library"
 if the result is empty then
 // do something
 end if
end mouseUp

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
For both iOS and Android devices, we can use the mobilePickPhoto command to prompt
the user to select an image from their device's image library. We accomplish this by passing
library as the parameter. Our code included a check to see whether the result was
empty. In this case, we are checking to see whether the selected image was loaded by
the mobilePickPhoto command.

There's more...
If you want to have the user select an image from the mobile device's camera roll,
then you simply use album as the parameter instead of library when invoking the
mobilePickPhoto command.

See also
ff The Capturing an image from a mobile device's camera recipe

ff The Resizing an image recipe

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 7

123

Capturing an image from a mobile device's
camera

In this recipe, you will learn how to take a picture using the mobile device's camera.

How to do it...
Use the following code to prompt the user to select an image from their device's image library:

on mouseUp
 mobilePickPhoto "camera"
 if the result is empty then
 // do something
 end if
end mouseUp

How it works...
For both iOS and Android devices, we can use the mobilePickPhoto command to prompt
the user to snap a photo using the device's camera. We accomplish this by passing camera
as the parameter.

There's more...
For iOS devices only (not Android), we can use rear camera or front camera as the
parameter to specify which camera is to be used. Also, as you might assume, we cannot
test a mobile device's camera in the simulator.

See also
ff The Loading an image recipe

ff The Resizing an image recipe

External Media

124

Resizing an image
Resizing images can be a useful utility in some mobile apps. This is especially important if
your app allows the user to capture or import images. This recipe will show you how to resize
an image in a mobile app.

How to do it...
Follow the steps in this recipe to resize an image using the LiveCode script:

1.	 To adjust the height of an image, enter the following code:
set the height of img "myPhoto" to 200

Note, that myPhoto should be the name of your actual image. Also, the value 200
should be replaced with the actual height (in pixels) that you want the image to have.

2.	 To adjust the width of an image, enter the following code:

set the width of img "myPhoto" to 250

Note, that myPhoto should be the name of your actual image. Also, the value 250
should be replaced with the actual width (in pixels) that you want the image to have.

How it works...
LiveCode makes resizing images very easy. We simply need to set the height and width
properties to have the image resized.

There's more...
When images are resized, it is a good idea to set the lockLoc parameter of the image to
true. This will prevent the image from reverting to its original size. This can be accomplished
with the following line of code:

set the lockLoc of img "myPhoto" to true

See also
ff The Loading an image recipe

ff The Capturing an image from a mobile device's camera recipe

Chapter 7

125

Playing a movie
In this recipe, we will create a card that automatically plays an embedded movie when the
card is loaded.

Getting ready
The sample.mov video file is provided on the book's website.

How to do it...
Follow the steps in this recipe to create the necessary controls that can play a movie
using LiveCode:

1.	 Create a new main stack in LiveCode with the following properties:

�� Height: 360

�� Width: 480

�� backgroundColor: Black

2.	 Use the Standalone Application Settings dialog window and select the icon.

3.	 Use the Add Files dialog box to upload the sample.mov file. Once this is done, your
dialog window should look similar to the following screenshot:

External Media

126

4.	 Close the Standalone Application Settings dialog window.

5.	 Add the following code to the card:
on openCard
 mobileControlCreate "player", "myController"

 mobileControlSet "myController", "filename",
 specialFolderPath("engine") & "/sample.mov"
 mobileControlSet "myController", "visible", true
 mobileControlSet "myController", "rect",
 "1,1,481,361"

 mobileControlDo "myController", "play"
end openCard

6.	 Add the following code to the card so the mobile control is deleted when the card
is closed:
on closeCard
 mobileControlDelete "myController"
end closeCard

7.	 Test the app in the mobile simulator. You should see the video playing as shown:

Chapter 7

127

How it works...
For iOS and Android mobile device apps, we use the mobileControlSet,
mobileControlCreate, mobileControlDelete, mobileControlDo,
and mobileControlTarget commands to display and control the video.

See also
ff The Controlling the movie playback recipe

Controlling the movie playback
If your app contains video files and you want your users to be able to control certain aspects
of it, then this recipe is for you. In this recipe, you will learn how to control the movie player on
mobile devices.

How to do it...
Follow the given steps to play, pause, and stop a movie clip's playback in a mobile app written
in LiveCode:

1.	 To start playing a video, use the following command:
 mobileControlDo "myController", "play"

2.	 To pause a video, use the following command:
 mobileControlDo "myController", "pause"

3.	 To stop playing a video, use the following command:
 mobileControlDo "myController", "stop"

For all of these steps, remember to replace myController with the name of the mobile
controller you created using the mobileControlCreate command.

How it works...
To control a mobile movie controller, we make use of the mobileControlCreate command.

External Media

128

See also
ff The Playing a movie recipe

Playing an audio file
In this recipe, we will create a card that automatically plays an embedded audio file when the
card is loaded.

Getting ready
The sample.aiff audio file is provided on the book's website.

How to do it...
Use the following steps to load and play an audio file in a mobile app:

1.	 Create a new main stack in LiveCode with the following properties:

�� Height: 360

�� Width: 480

�� backgroundColor: Black

2.	 Use the Standalone Application Settings dialog window and select the icon.

3.	 Use the Add Files dialog box to upload the sample.aiff file. Once this is done,
your dialog window should look similar to the following screenshot:

Chapter 7

129

4.	 Close the Standalone Application Settings dialog window.

5.	 Add the following code to the card:
on openCard
 play specialFolderPath("engine") & "/sample.aiff"
end openCard

6.	 Test the app in the mobile simulator. You should hear the audio playing.

How it works...
LiveCode allows us to use the play command to play embedded audio files on mobile
devices. For this recipe, we made a single call to the audio file we added to our app via
the Copy Files section of the Standalone Application Settings dialog window.

8
Using MobGUI

In this chapter, we will cover the following recipes:

ff Setting up MobGUI

ff Using a navigational bar

ff Using a button

ff Using a navigational button

ff Using a slider

ff Using a toggle button

ff Using a list button

ff Using a progress bar

Introduction
In this chapter, you will learn how to leverage the power of MobGUI, which is a LiveCode
plugin, to accelerate your mobile app development. The MobGUI plugin is a commercial
product that comes with a commercial or community LiveCode license. The plugin can be
purchased from the LiveCode store. In addition, a free demo version can be downloaded at
www.mobgui.com/download.php.

Setting up MobGUI
This recipe will walk you through the steps that are required to download and install
the MobGUI plugin on your computer so that you can use it with all of your mobile app
development projects using LiveCode.

www.mobgui.com/download.php

Using MobGUI

132

Getting ready
Before starting with this recipe, you will need to decide whether you want to purchase the
MobGUI plugin or simply download the demo version to experiment with. Once you make
this decision, you will be ready for this recipe.

How to do it...
Follow this recipe's steps to download and install MobGUI on your development computer:

1.	 Download the MobGUI plugin from the LiveCode store (if purchasing it). If you are
not making the purchase, then you can download the demo version directly from the
MobGUI website. Select one of these options and download the file.

2.	 Unzip/decompress the downloaded file. This step will result in a single file named
revMobGUI.livecode:

If you are downloading the demo version, the filename will
be MobGUIDemo.livecode.

3.	 Drag the revMobGUI.livecode file to the Plugins folder/directory on your
development computer as shown in the following screenshot:

Chapter 8

133

4.	 Open LiveCode and create a new main stack.

5.	 From the Development menu, navigate to Plugins | revMobGUI, as shown in the
following screenshot:

6.	 The following screenshot shows you the main MobGUI interface that appears
following the previous step of this recipe. On this interface, click on the second
icon on the interface's banner. The second icon is a play button.

Using MobGUI

134

7.	 Next, you will see the interface illustrated in the following screenshot. You can use
this interface to drag controls to cards in your LiveCode stack.

How it works...
In this recipe, we downloaded and installed the MobGUI plugin. We placed the plugin in the
Plugins folder of our LiveCode application. This enables us to use the plugin for all LiveCode
mobile apps.

There's more...
When you install new versions of LiveCode, you will need to manually copy and paste the
revMobGUI.livecode file into the new version's Plugins folder.

Chapter 8

135

See also
ff The Using a navigational bar recipe

ff The Using a button recipe

ff The Using a navigational button recipe

ff The Using a slider recipe

ff The Using a toggle button recipe

ff The Using a list button recipe

ff The Using a progress bar recipe

Using a navigational bar
Navigational bars are typically rectangular bars that are located along the top of your app's
user interface. It is common to have, as appropriate, Back and Next buttons on the left and
right edges, respectively. In this recipe, you will learn how to create and use a navigational bar
by using MobGUI.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Follow the steps in this recipe to create a navigational bar for your mobile app.

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, select Plugins | revMobGUI.

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface.

Using MobGUI

136

4.	 Drag the icon from the MobGUI interface to your stack. This will result in a
group being added to your stack.

5.	 Click on the new NavBar group so that it is selected.

6.	 In the MobGUI interface, change the name of the NavBar group to
Navigational Bar.

7.	 In the MobGUI interface, change the label of the navigational bar to Navigate.
Your stack should look like the following screenshot:

How it works...
The Navigational Bar group consists of a rectangle and a label. MobGUI uses a default color
palette, and you have complete control of color properties. When you drag a Navigational Bar
group to a card, it is autofitted to the top and center of that card.

There's more...
As illustrated in the following screenshot, there are additional settings that can be changed for
your navigational bar. These include the background color, text color, color of the background
when touched, color of the text when touched, 3D text effect, 3D text color, where to locate
the bar (top or bottom), and where to position the text within the bar.

Chapter 8

137

See also
ff The Setting up MobGUI recipe

Using a button
In this recipe, you will learn how to use a button from the MobGUI plugin. MobGUI buttons
are different from regular buttons. The buttons created using MobGUI are groups that contain
graphics and a label.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

Using MobGUI

138

How to do it...
Use the following steps to create a button for mobile apps using MobGUI:

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, navigate to Plugins | revMobGUI.

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface.

4.	 Drag the icon from the MobGUI interface to your stack. This will result in a
group being added to your stack.

5.	 Right-click on the new Button group and select Edit Script from the pop-up menu.
You will see the following script shell assigned to the Button group:

on touchEnd pId
 mobGUIUntouch the long id of me
 #visual effect push left very fast
 #go card "yourCard"
 #go prev card
 #go next card
end touchEnd

on touchRelease pId
 mobGUIUntouch the long id of me
end touchRelease

on touchStart pId
 mobGUITouch the long id of me
end touchStart

on mouseUp
 if the environment = "development" then touchEnd 1
end mouseUp

on mouseRelease

Chapter 8

139

 if the environment = "development" then touchRelease 1
end mouseRelease

on mouseDown
 if the environment = "development" then touchStart 1
end mouseDown

How it works...
MobGUI provides button groups with some prescripting for use in your mobile apps. The
scripts can easily be deleted or modified to suit the needs of your specific app. The scripts
provided with the button object account for several user initiated actions: touch start, touch
release, touch end, mouse down, mouse release, and mouse up.

See also
ff The Setting up MobGUI recipe

ff The Using buttons for navigation recipe in Chapter 2, Human-computer Interfaces

Using a navigational button
In this recipe, you will create two navigational buttons to switch between cards.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Use the steps in this recipe to create a navigational button that will be placed on a
navigational bar of a mobile app:

1.	 Create a new main stack in LiveCode.

2.	 Change the name of the stack's card to Home using the property inspector.

3.	 From the Development menu, navigate to Plugins | revMobGUI.

Using MobGUI

140

4.	 Click on the play button, shown in the following screenshot, from the icons on
the MobGUI interface:

5.	 Drag the icon from the MobGUI interface to the Home card. This will result in
a group being added to the card.

6.	 Click on the new NavBar group so that it is selected.

7.	 In the MobGUI interface, change the name of the NavBar group to
Navigational Bar.

8.	 In the MobGUI interface, change the label of the navigational bar to Navigate.

9.	 Using the MobGUI interface, drag a Right button to the Home card and place it on
the right-hand side section of the navigational bar.

10.	 Click on the new button so that it is selected.

11.	 Using the MobGUI interface, change the label of the Right button group to Next.
Your interface should match the following screenshot:

Chapter 8

141

12.	 Create a second card and name it Final.

13.	 Copy the navigational bar from the Home card and paste it on the Final card.

14.	 Using the MobGUI interface, drag a Left button to the Final card and place it on the
left-hand side section of the navigational bar.

15.	 Click on the new button so that it is selected.

16.	 Using the MobGUI interface, change the label of the Left button group to Prev.
Your interface should match the following screenshot:

17.	 Edit the script of the Next button on the Home card with the following code:
on mouseUp
 go to card "Final"
end mouseUp

18.	 Edit the script of the Prev button on the Final card with the following code:
on mouseUp
 go to card "Home"
end mouseUp

19.	 Test the app in a simulator or on an actual device.

Using MobGUI

142

How it works...
When a navigational button is added to a stack using MobGUI, the button is usually used
to navigate between cards. The script shell provided by MobGUI for these buttons is listed
as follows:

on touchEnd pId
 mobGUIUntouch the long id of me
 #visual effect push right very fast
 #go card "yourCard"
 #go prev card
end touchEnd

on touchRelease pId
 mobGUIUntouch the long id of me
end touchRelease

on touchStart pId
 mobGUITouch the long id of me
end touchStart

on mouseUp
 if the environment = "development" then touchEnd 1
end mouseUp

on mouseRelease
 if the environment = "development" then touchRelease 1
end mouseRelease

on mouseDown
 if the environment = "development" then touchStart 1
end mouseDown

See also
ff The Setting up MobGUI recipe

ff The Using buttons for navigation recipe in Chapter 2, Human-computer Interfaces

Chapter 8

143

Using a slider
In this recipe, you will learn how to use a MobGUI slider. Sliders can be used to show a range
of values.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Follow the steps in this recipe to create a slider that can be used to select a numeric value:

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, navigate to Plugins | revMobGUI.

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface:

4.	 Drag the slider icon from the MobGUI interface to the card. This will result in a group
being added to the card.

5.	 Using the property inspector, position the slider so that it is at location 155,58.

6.	 Click on the new slider group so that it is selected.

7.	 In the MobGUI interface, change the name of the slider to mySlider.

8.	 Drag a standard label from the LiveCode Tools palette and set the following properties:

�� Location: 155,24

�� Align text center

�� Name: myLabel

9.	 Edit the slider's script to match the following:
on sliderDrag pValue
 set the text of fld "myLabel" to pValue
on sliderDrag pValue
 set the text of fld "myLabel" to pValue
end sliderDrag end sliderDrag

Using MobGUI

144

10.	 Run the app in a simulator and experiment with the slider's position. The label should
be updated every time the slider is moved, as shown in the following screenshot:

How it works...
The MobGUI slider is a group of three graphics: letfBar, rightBar, and a button that
makes up a mobile-ready slider. Like other MobGUI controls, the slider comes with script
shells to make programming the object easier.

See also
ff The Setting up MobGUI recipe

Using a toggle button
In this recipe, you will learn how to use a MobGUI toggle button, which is also referred to as a
switch. You will create a mood toggle to display how you are feeling.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Follow the steps in this recipe to create a toggle button and allow the user to select between
mood values of Happy and Sad:

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, navigate to Plugins | revMobGUI.

Chapter 8

145

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface:

4.	 Drag the icon from the MobGUI interface to the card. This will result in a
group being added to the card.

5.	 Using the property inspector, change the width to 128.

6.	 Using the property inspector, change the position of the group so that it is at location
160,58.

7.	 Click on the new toggle group so that it is selected.

8.	 In the MobGUI interface, change the name of the toggle to myMood.

9.	 In the MobGUI interface, change the labels to Happy and Sad.

10.	 Run the app in your IDE, a simulator, or an actual device to test your new toggle.
You should be able to switch between the two moods as illustrated in the following
two screenshots, with the first screenshot showing you the Sad mood:

The following screenshot shows you the Happy mood:

How it works...
The MobGUI toggle/switch is a group of four objects: right group, left group, button group,
and a border graphic. These objects make up the mobile-ready toggle. MobGUI permits us to
change the name, labels, colors, and more, giving us great design and programmatic control.

Using MobGUI

146

See also
ff The Setting up MobGUI recipe

Using a list button
In this recipe, you will learn how to use a MobGUI list button. This button can be used as a
mobile interface object. For this recipe, you will create a list button that allows the user to
select a shipping option.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Follow the steps in this recipe to create a list button for a mobile app:

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, select Plugins | revMobGUI.

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface.

4.	 Drag the icon from the MobGUI interface to the card. This will result in a group
being added to the card.

5.	 Using the property inspector, change the width to 320.

6.	 Using the property inspector, change the position of the group so that it is at
location 160,74.

7.	 Click on the new list button group so that it is selected.

8.	 In the MobGUI interface, change the name of the list button to myButton.

9.	 In the MobGUI interface, change the label to Select a Color.

10.	 In the MobGUI interface, change the text color to black.

Chapter 8

147

11.	 Run the app in your IDE, a simulator, or an actual device (see the following screenshot):

How it works...
When a list button is added to a stack using MobGUI, the button is usually used to navigate
to another card where options related to the list button's label are presented to the user.
The script shell provided by MobGUI for these buttons is listed as follows:

on touchEnd pId
 mobGUIUntouch the long id of me
 #visual effect push left very fast
 #go card "yourCard"
 #go next card
end touchEnd

on touchRelease pId
 mobGUIUntouch the long id of me
end touchRelease

on touchStart pId
 mobGUITouch the long id of me
end touchStart

on mouseUp
 if the environment = "development" then touchEnd 1
end mouseUp

on mouseRelease
 if the environment = "development" then touchRelease 1
end mouseRelease

on mouseDown
 if the environment = "development" then touchStart 1
end mouseDown

Using MobGUI

148

There's more...
You can use the on touchEnd command to indicate which card you want the app to display
when the user swipes or touches the list button.

See also
ff The Setting up MobGUI recipe

Using a progress bar
Progress bars are great for presenting the user with a visual status such as load time. MobGUI
provides a nice slider that is mobile ready. In this recipe, you will learn how to use a MobGUI
progress bar.

Getting ready
Before using this recipe, you will need to have the MobGUI plugin downloaded and installed
on your development computer. See the Setting up MobGUI recipe discussed earlier in
this chapter.

How to do it...
Follow the steps in this recipe to create a progress bar using MobGUI:

1.	 Create a new main stack in LiveCode.

2.	 From the Development menu, navigate to Plugins | revMobGUI.

3.	 Click on the play button, shown in the following screenshot, from the icons on the
MobGUI interface:

Chapter 8

149

4.	 Drag the icon from the MobGUI interface to the card. This will result in a group
being added to the card.

5.	 Click on the new slider group so that it is selected.

6.	 In the MobGUI interface, change the name of the slider to myProgressBar.

7.	 You can change the value of the progress bar with the following line of code:

 set the uValue of grp "myProgressBar" to 75

How it works...
The progress bar in MobGUI is a group of several objects. This group has custom properties
that you can set and change in your mobile apps. These custom properties include uValue,
which you used in this recipe.

See also
ff The Setting up MobGUI recipe

9
Using Animation Engine

In this chapter, we will cover the following recipes:

ff Setting up Animation Engine

ff Moving objects along a line

ff Moving objects along a polygonal path

ff Moving objects along an elliptical path

ff Moving objects along a circular path

ff Stopping a moving object

ff Calculating the distance between two points

ff Using speed

ff Using collision listeners

ff Simulating gravity

Introduction
In this chapter, you will learn how to harness the power of Animation Engine 5, which is a
LiveCode extension, to animate objects and employ the game and simulation functionality in
your mobile apps. The Animation Engine 5 extension is a commercial product that does not
come with a commercial or community LiveCode license. The extension can be purchased
from the LiveCode web store.

Using Animation Engine

152

Setting up Animation Engine
This recipe walks you through downloading, installing, and setting up Animation Engine so that
you can use it within your LiveCode mobile applications.

How to do it...
Follow the steps in this recipe so that Animation Engine is available for you within LiveCode as
you develop your mobile applications:

1.	 Download the Animation Engine extension from the LiveCode store.
You should now have the animationEngine5.1.zip compressed file
on your development computer.

2.	 Open the animationEngine5.1.zip compressed file so that the file contents are
revealed (see the following screenshot):

3.	 Open the LiveCode application package to show contents.

4.	 Move the animationEngine.livecode stack to the LiveCode Externals
folder/directory, as shown in the following screenshot:

Chapter 9

153

5.	 Open LiveCode.

6.	 Create a new main stack.

7.	 Next, open the animationEngine stack you previously downloaded to
your development computer. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file in the LiveCode
Externals folder/directory.

Using Animation Engine

154

8.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

How it works...
We downloaded the Animation Engine stack and placed it in the required directory/file folder
so that LiveCode knows where to find it. When we open the Animation Engine external when
running LiveCode, it works alongside your mobile app. Once you open the animationEngine
stack, you will have full access to its functionalities.

Animation Engine 5 requires LiveCode Version 5.0 or higher.

See also
ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Moving objects along a line
In this recipe, you will learn how to animate an object by moving it along a straight line.
To accomplish our goal, we will create an oval and two buttons. The first button will animate
the oval, and at its end state, change its background color. The second button will reset the
oval to its original position and color.

Chapter 9

155

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to create and animate a graphic:

1.	 Open LiveCode.

2.	 Create a new main stack.

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myButton1

�� Label: Animate

�� Location: 106, 29

6.	 Drag a second button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myButton2

�� Label: Reset

�� Location: 254, 29

Using Animation Engine

156

7.	 Drag an oval graphic to the stack's card, and set the following preferences:
�� Name: myOval
�� Opaque: Keep this checked
�� Height: 34
�� Width: 34
�� Location: 35, 85
�� backgroundColor: Green

8.	 Add the following code to the myButton1 button (Animate):
on mouseUp
 aeMoveTo the name of graphic "myOval",300,85,1000
 set the backgroundColor of grc "myOval" to red
end mouseUp

9.	 Add the following code to the myButton2 button (Reset):
on mouseUp
 set the loc of grc "myOval" to 35,85
 set the backgroundColor of grc "myOval" to green
end mouseUp

10.	 Test your mobile app in a simulator or on an actual device. The next two screenshots
illustrate the beginning and ending animation states.

The following screenshot illustrates the beginning animation state:

The following screenshot illustrates the ending animation state:

Chapter 9

157

How it works...
We used the aeMoveTo handler to animate our oval along an imaginary line. The aeMoveTo
handler has the following syntax:

aeMoveTo controlName, x,y, duration, [easingEffect]

The handler's parameters consist of the following:

ff controlName: This is a reference to a control or stack (that is, the name of the
myOval graphic)

ff x,y: This is the parameter for the (x, y) coordinates that the control or stack is
to be moved to

ff duration: This tells you how long, in milliseconds, the move should take from start
to finish

ff easingEffect: This optional parameter can be in, out, inOut, bounce,
or overshoot

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Moving objects along a polygonal path
In this recipe, you will create a graphic and write a LiveCode script, using Animation Engine,
to move the graphic along a polygonal path.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

Using Animation Engine

158

How to do it...
Follow the steps in this recipe to create a graphic and, using the LiveCode script and
Animation Engine, move it along a polygonal path:

1.	 Open LiveCode.

2.	 Create a new main stack.

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the preceding steps, you will see the animationEngine window
with a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myMPButton

�� Label: Move Polygonal

�� Width: 126

�� Location: 77, 41

6.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myDot

�� Opaque: Keep this checked

�� Height: 15

�� Width: 15

�� Location: 67, 111

�� backgroundColor: Red

7.	 Add the following code to the myMPButton button:
on mouseUp
 if the flag of me is empty then set the flag of me
 to false
 set the flag of me to not the flag of me

Chapter 9

159

 moveDot
end mouseUp

on moveDot
 if the movePolygonal["moveDone"] of grc "myDot" is
 true then
 set the loc of grc "myDot" to the
 movePolygonal["endpoint"] of grc "myDot"
 set the movePolygonal["moveDone"] of grc "myDot" to
 false
 else
 if the flag of me then
 send "movePolygonal" to grc "myDot"
 send "moveDot" to me in 5 milliseconds
 end if
 end if
end moveDot

8.	 Test the code in the simulator or on an actual device. You'll see that when the button
is depressed, the myDot graphic moves along a polygonal path.

How it works...
The movePolygonal handler has a set of seven custom properties that you refer to using the
array notation as we did in the code provided in step 7 of the previous section. The custom
properties are as follows:

ff current: This is the current point along the polygonal path

ff endpoint: This is the end point (position) of the current line

ff isDistance: This tells you how many pixels the object has moved along the
current line

ff moveDone: This will be true or false depending upon whether the object
completed the move

ff pointList: This is each (x,y) point of the line

ff startPoint: This is the (x,y) point of the start of the line

ff step: This gives you the direction and speed of the object that moves along the path

The button labeled Move Polygonal serves as a toggle to start
and stop the animation.

Using Animation Engine

160

See also
ff The Setting up Animation Engine recipe
ff The Moving objects along a line recipe
ff The Moving objects along an elliptical path recipe
ff The Moving objects along a circular path recipe
ff The Stopping a moving object recipe
ff The Calculating the distance between two points recipe
ff The Using speed recipe
ff The Using collision listeners recipe
ff The Simulating gravity recipe

Moving objects along an elliptical path
In this recipe, you will create a graphic and write a LiveCode script, using Animation Engine,
to move the graphic along an elliptical path.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to create a graphic and, using the LiveCode script and
Animation Engine, move it along an elliptical path:

1.	 Open LiveCode.
2.	 Create a new main stack.
3.	 Open the animationEngine stack. With LiveCode already running, you can simply

double-click on the animationEngine.livecode file.
4.	 Once you complete the previous steps, you will see the animationEngine window with

a Use me! checkbox (see the following screenshot). Check that box.

Chapter 9

161

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myMEButton

�� Label: Move Elliptical

�� Width: 126

�� Location: 77, 41

6.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myDot

�� Opaque: Keep this checked

�� Height: 15

�� Width: 15

�� Location: 67, 111

�� backgroundColor: Red

7.	 Add the following code to the myMEButton button:
on mouseUp
 if the flag of me is empty then set the flag of me
 to false
 set the flag of me to not the flag of me
 moveDot
end mouseUp

on moveDot
 send "moveElliptical" to grc "myDot"
 if the flag of me then
 send "moveDot" to me in 5 milliseconds
 end if
end moveDot

8.	 Test the code in the simulator or on an actual device. You'll see that when the button
is depressed, the myDot graphic moves along an elliptical path.

How it works...
The moveElliptical handler has a set of six custom properties that you refer to using the
array notation as we did in the code provided in step 7 of the previous section. The custom
properties are as follows:

ff centerX: This is the specific (x) point of the center point

ff centerY: This is the specific (y) point of the center point

Using Animation Engine

162

ff isAngle: This is the center angle degree of the ellipse

ff radiusX: This is the ellipse's x radius

ff radiusY: This is the ellipse's y radius

ff step: This is the direction and speed of the object that moves along the path

The button labeled Move Elliptical serves as a toggle to start and
stop the animation.

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Moving objects along a circular path
In this recipe, you will create a graphic and write a LiveCode script, using Animation Engine,
to move the graphic along a circular path.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to create a graphic and, using the LiveCode script and
Animation Engine, move it along a circular path:

1.	 Open LiveCode.

2.	 Create a new main stack.

Chapter 9

163

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myMCButton

�� Label: Move Elliptical

�� Width: 126

�� Location: 77, 41

6.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myDot

�� Opaque: Keep this checked

�� Height: 15

�� Width: 15

�� Location: 67, 111

�� backgroundColor: Red

7.	 Add the following code to the myMCButton button:
on mouseUp
 if the flag of me is empty then set the flag of me to
 false
 set the flag of me to not the flag of me
 moveDot
end mouseUp

on moveDot
 send "moveCircular" to grc "myDot"
 if the flag of me then
 send "moveDot" to me in 5 milliseconds
 end if
end moveDot

Using Animation Engine

164

8.	 Test the code in the simulator or on an actual device. You'll see that when the button
is pressed, the myDot graphic moves along an elliptical path.

How it works...
The moveCircular handler has a set of five custom properties that you refer to using the
array notation, as we did in the code provided in step 7 of the previous section. The custom
properties are as follows:

ff centerX: This is the specific (x) point of the center point

ff centerY: This is the specific (y) point of the center point

ff isAngle: This is the center angle degree of the ellipse circle

ff isRadius: This is the radius of the circle

ff step: This is the direction and speed of the object that moves along the path

The button labeled Move Circular serves as a toggle to start and
stop the animation.

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Stopping a moving object
In this recipe, we will create a graphic object and three buttons. The first button will animate
the graphic object, the second will stop it, and the third will reset the graphical object to its
original position.

Chapter 9

165

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to create, animate, and stop an object:

1.	 Open LiveCode.

2.	 Create a new main stack.

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myStartButton

�� Label: StartMoving

�� Width: 126

�� Location: 73, 25

6.	 Drag a second button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myStopButton

�� Label: Stop Moving

�� Location: 203, 25

Using Animation Engine

166

7.	 Drag a third button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myResetButton

�� Label: Reset

�� Location: 313, 25

8.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myOval

�� Opaque: Keep this checked

�� Height: 34

�� Width: 34

�� Location: 35, 85

�� backgroundColor: Green

9.	 Add the following code to the myStartButton button (Start Moving):
on mouseUp
 aeMoveTo the name of graphic "myOval",300,85,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

10.	 Add the following code to the myStopButton button (Stop Moving):
on mouseUp
 aeStopMoving the name of grc "myOval"
end mouseUp

11.	 Add the following code to the myResetButton button (Reset):
on mouseUp
 set the loc of grc "myOval" to 35,85
 set the backgroundColor of grc "myOval" to green
end mouseUp

12.	 Test your mobile app in a simulator or on an actual device.

How it works...
The aeStopMoving handler can stop an object that is currently being moved by the
aeMoveTo handler. In this recipe, we used the aeStopMoving handler to immediately
stop the movement of grc "myOval".

Chapter 9

167

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Calculating the distance between two points
In this recipe, you will create two graphics using LiveCode and Animation Engine. You will also
create a button that animates the graphics. Finally, you will create a button that calculates the
distance between the two graphics. Being able to calculate the distance between two objects
can come in handy for game and simulation applications.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to calculate the distance between two points:

1.	 Open LiveCode.

2.	 Create a new main stack.

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

Using Animation Engine

168

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myMoveItButton

�� Label: Move It

�� Width: 100

�� Location: 60, 27

6.	 Drag a second button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myStopItButton

�� Label: Stop It

�� Width: 100

�� Location: 168, 27

7.	 Drag a third button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myResetItButton

�� Label: Reset It

�� Width: 82

�� Location: 265, 27

8.	 Drag a fourth button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myCalculateButton

�� Label: Get Distance

�� Width: 210

�� Location: 115, 51

Chapter 9

169

9.	 Drag a label field to the stack's card, and set the following preferences using the
property inspector:

�� Name: myDistanceLabel

�� Width: 78

�� Location: 263, 51

�� Contents: 0

�� Align text center

�� Set the text style as bold

10.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myOval

�� Opaque: Keep this checked

�� Height: 34

�� Width: 34

�� Location: 35, 85

�� backgroundColor: Green

11.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myDot

�� Opaque: Keep this checked

�� Height: 15

�� Width: 15

�� Location: 67, 111

�� backgroundColor: Red

Your interface should resemble the following screenshot:

Using Animation Engine

170

12.	 Add the following code to the myMoveItButton button (Move It):
on mouseUp
 aeMoveTo the name of graphic "myOval",300,85,5000
 set the backgroundColor of grc "myOval" to red
 --
 if the flag of me is empty then set the flag of me to
 false
 set the flag of me to not the flag of me
 moveDot
end mouseUp

on moveDot
 send "moveCircular" to grc "myDot"
 if the flag of me then
 send "moveDot" to me in 5 milliseconds
 end if
end moveDot

13.	 Add the following code to the myStopItButton button (Stop It):
on mouseUp
 aeMoveTo the name of graphic "myOval",300,85,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

14.	 Add the following code to the myResetItButton button (Reset It):
on mouseUp
 set the loc of grc "myOval" to 35,85
 set the backgroundColor of grc "myOval" to green
 --
 set the loc of grc "myDot" to 67,111
end mouseUp

15.	 Add the following code to the myCalculateButton button (Get Distance):
on mouseUp
 get distance (the loc of grc "myOval", the loc of grc
 "myDot")
 put it into fld "myDistanceLabel"
end mouseUp

16.	 Test your mobile app in a simulator or on an actual device. The myDistanceLabel
field will be updated each time the myCalculateButton button is depressed.

Chapter 9

171

How it works...
The get distance function calculates the distance between two objects. This function can
be used to automatically update an onscreen display, or it can be used in other calculations
such as when an enemy's weapon is within range (gaming reference).

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Using speed recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Using speed
In this recipe, you will animate a graphic by alternating between three buttons. Each button
will animate the graphic in a linear motion but each at a different frame rate. The default
frame rate for all animations is 25 frames per second (FPS). Depending upon your animation
needs, you might need to decrease or increase the speed of selected animations in your
mobile apps.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to change the speed of animations using Animation Engine:

1.	 Open LiveCode.

2.	 Create a new main stack.

Using Animation Engine

172

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag a button to the stack's card, and set the following preferences using the
property inspector:

�� Name: btn10

�� Label: 10 FPS

�� Width: 80

�� Location: 48, 21

6.	 Drag a second button to the stack's card, and set the following preferences using the
property inspector:

�� Name: btn25

�� Label: 25 FPS

�� Width: 80

�� Location: 48, 47

7.	 Drag a third button to the stack's card, and set the following preferences using the
property inspector:

�� Name: btn50

�� Label: 50 FPS

�� Width: 80

�� Location: 48, 73

8.	 Drag a fourth button to the stack's card, and set the following preferences using the
property inspector:

�� Name: myReset

�� Label: Reset

�� Width: 80

�� Location: 48, 99

Chapter 9

173

9.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myOval

�� Opaque: keep it checked

�� Height: 34

�� Width: 34

�� Location: 35, 85

�� backgroundColor: Green

10.	 Add the following code to the btn10 button (10 FPS):
on mouseUp
 aeSetFrameRate 10
 aeMoveTo the name of graphic "myOval",300,133,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

11.	 Add the following code to the btn25 button (25 FPS):
on mouseUp
 aeSetFrameRate 25
 aeMoveTo the name of graphic "myOval",300,133,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

12.	 Add the following code to the btn50 button (50 FPS):
on mouseUp
 aeSetFrameRate 50
 aeMoveTo the name of graphic "myOval",300,133,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

13.	 Add the following code to the myReset button (Reset):
on mouseUp
 aeSetFrameRate 10
 aeMoveTo the name of graphic "myOval",300,133,5000
 set the backgroundColor of grc "myOval" to red
end mouseUp

14.	 Test the code in the simulator or on an actual device. You'll notice that the speed of
the animation decreases as the FPS setting is increased.

Using Animation Engine

174

How it works...
The aeSetFrameRate handler only works with objects that are being moved with the
aeMoveTo handler. In this recipe, we used the aeSetFrameRate handler to change
the FPS setting, which impacted the speed of the animation.

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using collision listeners recipe

ff The Simulating gravity recipe

Using collision listeners
A collision listener is a type of physics software that detects the collisions between two
objects. In this recipe, you will create two graphics and listen for collisions between them.
Detecting collisions (we do this by "listening" for them) in a mobile app can be very useful
when developing games and simulations. As a game example, your hero shoots an arrow
at an enemy; we want to know whether the arrow collided with the enemy's armor or body.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded
and available on your development computer. See the Setting up Animation Engine recipe
discussed earlier in this chapter.

How to do it...
Follow the steps in this recipe to create two objects and add the necessary script to detect
collisions between them:

1.	 Open LiveCode.

2.	 Create a new main stack.

Chapter 9

175

3.	 Open the animationEngine stack. With LiveCode already running, you can simply
double-click on the animationEngine.livecode file.

4.	 Once you complete the previous steps, you will see the animationEngine window with
a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: gr1

�� Opaque: Keep this checked

�� Height: 50

�� Width: 50

�� Location: 183, 155

�� backgroundColor: Red

6.	 Drag a second oval graphic to the stack's card, and set the following preferences:

�� Name: gr2

�� Opaque: Keep this checked

�� Height: 34

�� Width: 34

�� Location: 241, 155

�� backgroundColor: Red

7.	 Drag a button to the stack's card, and set the following preferences:

�� Name: collisionButton

�� Label: Start

�� Width: 94

�� Location: 51, 19

Using Animation Engine

176

8.	 Drag a label field to the stack's card, and set the following preferences using the
property inspector:

�� Name: myOutputLabel

�� Width: 230

�� Location: 121, 48

�� Contents: <blank>

�� Align text left

�� Set the text style as bold

9.	 Add the following code to the card:
on aeCollision pObjects
 put the short name of the target && "collided with
 graphic ID " & word 3 of pObjects into fld
 "myOutputLabel"
end aeCollision

on constrainRectangularCallBack
 local tmpObjects
 put aeCollidingObjects() into tmpObjects
 if the keys of tmpObjects is empty then
 put empty into fld "myOutputLabel"
 end if
end constrainRectangularCallBack

10.	 Add the following code to the collisionButton button:
on mouseUp pMouseBtnNo
 aeStopListeningForCollisions
 local grcList
 set the flag of me to not the flag of me
 if the flag of me then
 set the constrainRectangular of grc "gr1" to the rect
 of this card
 set the constrainRectangular of grc "gr2" to the rect
 of this card
 --
 put the long id of graphic 2 after grcList
 set the aeListenForCollisionsWith of graphic 1 to
 grcList
 aeStartListeningForCollisions
 set the label of me to "Stop"
 else

Chapter 9

177

 aeStopListeningForCollisions
 set the label of me to "Start"
 end if
end mouseUp

11.	 Test your application in the simulator or on an actual device. You will note that the
app listens for collisions as you move one or both graphic objects, as shown in the
following screenshot:

How it works...
For this recipe, we created two graphics and ensured that their opaque value was set to true.
We also constrained their movement to the confines of the card. These steps ensured that the
graphics were draggable. Next, we created a list (grcList) of objects for our listener to check
collisions with.

There's more...
When you download a copy of Animation Engine, you receive full documentation as well as
sample stacks to include a Collision Listener Demo stack.

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

Using Animation Engine

178

ff The Using Speed recipe

ff The Simulating gravity recipe

Simulating gravity
Animation Engine makes simulating gravity in mobile apps an easy task. In this recipe, we will
create an orange circular graphic and a button. The button will contain a LiveCode script that
will animate the graphic to simulate a bouncing ball.

Getting ready
Before using this recipe, you will need to have the Animation Engine external downloaded and
available on your development computer. See the Setting up Animation Engine recipe earlier
in this chapter.

How to do it...
Follow the steps in this recipe to create objects and a script to simulate gravity in a
mobile application:

1.	 Open LiveCode.
2.	 Create a new main stack.
3.	 Open the animationEngine stack. With LiveCode already running, you can simply

double-click on the animationEngine.livecode file.
4.	 Once you complete the previous steps, you will see the animationEngine window with

a Use me! checkbox (see the following screenshot). Check that box.

5.	 Drag an oval graphic to the stack's card, and set the following preferences:

�� Name: myBall
�� Opaque: Keep this checked
�� Height: 50
�� Width: 50
�� Location: 175, 27
�� backgroundColor: Orange

Chapter 9

179

6.	 Drag a button to the stack's card, and set the following preferences:

�� Name: myButton
�� Label: Bounce
�� Width: 82
�� Location: 57, 23

7.	 Add the following code to the myButton button:
on mouseUp
 set the loc of grc "myBall" to 175,27
 aeMoveTo the name of grc "myBall", 175,460, 2000, "bounce"
end mouseUp

8.	 Test the app in a simulator or on an actual device. When you press the
Bounce button, the ball will start at the top of the screen, fall to an imaginary
line, and bounce until it comes to a stop (see the following screenshot):

Using Animation Engine

180

How it works...
We simulated gravity with a bouncing ball. We did this with two lines of code: one native to
LiveCode and one specific to Animation Engine. The first line of code resets the location of the
graphic to the top of the screen. The second line of code uses the aeMoveTo handler with the
optional easing effect parameter of bounce.

See also
ff The Setting up Animation Engine recipe

ff The Moving objects along a line recipe

ff The Moving objects along a polygonal path recipe

ff The Moving objects along an elliptical path recipe

ff The Moving objects along a circular path recipe

ff The Stopping a moving object recipe

ff The Calculating the distance between two points recipe

ff The Using speed recipe

ff The Using collision listeners recipe

10
Miscellaneous

In this chapter, we will cover the following recipes:

ff Adding numbers

ff Subtracting numbers

ff Multiplying numbers

ff Dividing numbers

ff Using advanced math

ff Randomizing numbers

ff Opening a web page

ff Querying web data

ff Using the geometry manager

ff Using invisible objects

ff Taking snapshots of a card

ff Taking snapshots of an area on a card

ff Detecting the operating system

Introduction
In this chapter, you have access to several mathematics-related recipes to include simple
math operations, advanced math, and random number generation. In addition, there are
several other miscellaneous recipes that did not concisely fit into other chapters. These
include the Opening a web page recipe, the Querying web data recipe, the Using invisible
objects recipe, the Using the geometry manager recipe, and more. Also, in this chapter,
you will learn how to take screen snapshots.

Miscellaneous

182

Adding numbers
Adding numbers using LiveCode is a simple task. To demonstrate how to add two numbers,
we will create a user interface that accepts two numbers and, when the equals sign is
selected, the sum of the two numbers will be displayed.

How to do it...
Follow the steps in this recipe to gain experience in adding two numbers with a mobile
app written in LiveCode:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to black.

3.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

�� Location: 194, 53

�� Font: Courier

�� Text size: 18

�� Align text right

4.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2

�� Width: 88

�� Height: 31

�� Location: 194, 95

�� Font: Courier

�� Text size: 18

�� Align text right

5.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3

�� Width: 88

�� Height: 31

Chapter 10

183

�� Location: 194, 151

�� Font: Courier

�� Text size: 18

�� Align text right

6.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Operator

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 95

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: +

7.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Equals

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 151

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

8.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line

�� Opaque: Keep this checked

�� foregroundColor: White

Miscellaneous

184

�� backgroundColor: White

�� Width: 178

�� Height: 4

�� Location: 177, 124

With all your objects on the card, your interface should look like the
following screenshot:

9.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"
 put empty into fld "fld_nbr3"
end openCard

10.	 Add the following LiveCode script to the fld_Equals field:
on mouseUp
 local nbr1, nbr2, nbr3

 put the text of fld "fld_nbr1" into nbr1
 put the text of fld "fld_nbr2" into nbr2

 put (nbr1 + nbr2) into nbr3
 put nbr3 into fld "fld_nbr3"
end mouseUp

Chapter 10

185

11.	 Test your application in the simulator or on an actual device. When you run your
mobile application, enter 19 in the first field and 300 in the second, and select the
equals sign. You should see results as shown in the following screenshot:

How it works...
For this recipe, we created two input text fields so that the user could enter two numbers that
could be added together (summed). We added a script to the card using the on openCard
handler to clear values from the three text fields. When the equals sign is selected, the two
values are added using the plus (+) mathematical operator.

There's more...
We individually took the input values from the interface and put them into local variables
(nbr1 and nbr2). We then added the two numbers together, putting their sum into a third
local variable, which is nbr3. Our last step was to put the value of nbr3 into the fld_nbr3
field. We could have simplified this with a single line of code:

put the text of fld "fld_nbr1" + the text of fld "fld_nbr2" into
 fld "fld_nbr3"

This line of code seems a bit long. So, in this recipe, we have broken down the code into
component pieces, making it easier to read.

See also
ff The Subtracting numbers recipe

ff The Multiplying numbers recipe

ff The Dividing numbers recipe

ff The Using advanced math recipe

ff The Randomizing numbers recipe

Miscellaneous

186

Subtracting numbers
Subtracting numbers using LiveCode is a simple task. To demonstrate how to subtract one
number from another, we will create a user interface that accepts two numbers, and when
the equals sign is selected, the results will be displayed.

How to do it...
Follow the steps in this recipe to create an interface and LiveCode script that subtracts one
number from another:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to black.

3.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

�� Location: 194, 53

�� Font: Courier

�� Text size: 18

�� Align text right

4.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2

�� Width: 88

�� Height: 31

�� Location: 194, 95

�� Font: Courier

�� Text size: 18

�� Align text right

5.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3

�� Width: 88

�� Height: 31

Chapter 10

187

�� Location: 194, 151

�� Font: Courier

�� Text size: 18

�� Align text right

6.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Operator

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 95

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: -

7.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Equals

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 151

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

8.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line

�� Opaque: Keep this checked

�� foregroundColor: White

Miscellaneous

188

�� backgroundColor: White

�� Width: 178

�� Height: 4

�� Location: 177, 124

With all your objects on the card, your interface should look like the
following screenshot:

9.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"
 put empty into fld "fld_nbr3"
end openCard

10.	 Add the following LiveCode script to the fld_Equals field:
on mouseUp
 local nbr1, nbr2, nbr3

 put the text of fld "fld_nbr1" into nbr1
 put the text of fld "fld_nbr2" into nbr2

 put (nbr1 - nbr2) into nbr3
 put nbr3 into fld "fld_nbr3"
end mouseUp

Chapter 10

189

11.	 Test your application in the simulator or on an actual device. When you run your
mobile application, enter 600 in the first field and 281 in the second, and select
the equals sign. You should see results as shown in the following screenshot:

How it works...
For this recipe, we created two input text fields so that the user could enter two numbers—the
second to be subtracted from the first. We added a script to the card using the on openCard
handler to clear values from the three text fields. When the equals sign is selected, the second
value is subtracted from the first using the minus (-) mathematical operator.

There's more...
We individually took the input values from the interface and put them into local variables
(nbr1 and nbr2). We then subtracted the second number from the first, putting the result
into a third local variable, which is nbr3. Our last step was to put the value of nbr3 into the
fld_nbr3 field. We could have simplified this with a single line of code:

put the text of fld "fld_nbr1" - the text of fld "fld_nbr2" into
 fld "fld_nbr3"

This line of code seems a bit long. So, in this recipe, we have broken down the code into
component pieces, making it easier to read.

See also
ff The Adding numbers recipe

ff The Multiplying numbers recipe

ff The Dividing numbers recipe

ff The Using advanced math recipe

ff The Randomizing numbers recipe

Miscellaneous

190

Multiplying numbers
Multiplying numbers using LiveCode is a simple task. To demonstrate how to multiply two
numbers, we will create a user interface that accepts two numbers, and when the equals
sign is selected, the product of the two numbers will be displayed.

How to do it...
Follow the steps in this recipe to use LiveCode to multiply two numbers:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to black.

3.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

�� Location: 194, 53

�� Font: Courier

�� Text size: 18

�� Align text right

4.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2

�� Width: 88

�� Height: 31

�� Location: 194, 95

�� Font: Courier

�� Text size: 18

�� Align text right

5.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3

�� Width: 88

�� Height: 31

�� Location: 194, 151

�� Font: Courier

Chapter 10

191

�� Text size: 18

�� Align text right

6.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Operator
�� foregroundColor: White
�� Width: 46
�� Height: 32
�� Location: 119, 95
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text center
�� Contents: x

7.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Equals
�� foregroundColor: White
�� Width: 46
�� Height: 32
�� Location: 119, 151
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text center
�� Contents: =

8.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line

�� Opaque: Keep this checked

�� foregroundColor: White

�� backgroundColor: White

�� Width: 178

�� Height: 4

�� Location: 177, 124

Miscellaneous

192

With all your objects on the card, your interface should look like the
following screenshot:

9.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"
 put empty into fld "fld_nbr3"
end openCard

10.	 Add the following LiveCode script to the fld_Equals field:
on mouseUp
 local nbr1, nbr2, nbr3

 put the text of fld "fld_nbr1" into nbr1
 put the text of fld "fld_nbr2" into nbr2

 put (nbr1 * nbr2) into nbr3
 put nbr3 into fld "fld_nbr3"
end mouseUp

11.	 Test your application in the simulator or on an actual device. When you run your
mobile application, enter 29 in the first field and 11 in the second, and select the
equals sign. You should see results as shown in the following screenshot:

Chapter 10

193

How it works...
For this recipe, we created two input text fields so that the user could enter two numbers to
be multiplied. We added a script to the card using the on openCard handler to clear values
from the three text fields. When the equals sign is selected, the two values are multiplied
using the multiplication (*) mathematical operator.

In computer science, the asterisk (*) is the mathematical operator
for multiplication and not an "x".

There's more...
We individually took the input values from the interface and put them into local variables
(nbr1 and nbr2). We then multiplied the two numbers, putting their product into a third local
variable, which is nbr3. Our last step was to put the value of nbr3 into the fld_nbr3 field.
We could have simplified this with a single line of code:

put the text of fld "fld_nbr1" * the text of fld "fld_nbr2" into
 fld "fld_nbr3"

This line of code seems a bit long. So, in this recipe, we have broken down the code into
component pieces, making it easier to read.

See also
ff The Adding numbers recipe

ff The Subtracting numbers recipe

ff The Dividing numbers recipe

ff The Using advanced math recipe

ff The Randomizing numbers recipe

Dividing numbers
Dividing numbers using LiveCode is a simple task. To demonstrate how to divide numbers,
we will create a user interface that accepts two numbers, and when the equals sign is
selected, the result of division will be displayed.

Miscellaneous

194

How to do it...
Follow the steps in this recipe to use the LiveCode script to divide numbers:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to black.

3.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

�� Location: 194, 53

�� Font: Courier

�� Text size: 18

�� Align text right

4.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2

�� Width: 88

�� Height: 31

�� Location: 194, 95

�� Font: Courier

�� Text size: 18

�� Align text right

5.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3

�� Width: 88

�� Height: 31

�� Location: 194, 151

�� Font: Courier

�� Text size: 18

�� Align text right

Chapter 10

195

6.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Operator

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 95

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: /

7.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Equals

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 119, 151

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

8.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line

�� Opaque: Keep this checked

�� foregroundColor: White

�� backgroundColor: White

�� Width: 178

�� Height: 4

�� Location: 177, 124

Miscellaneous

196

With all your objects on the card, your interface should look like the
following screenshot:

9.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"
 put empty into fld "fld_nbr3"
end openCard

10.	 Add the following LiveCode script to the fld_Equals field:
on mouseUp
 local nbr1, nbr2, nbr3

 put the text of fld "fld_nbr1" into nbr1
 put the text of fld "fld_nbr2" into nbr2

 put (nbr1 / nbr2) into nbr3
 put nbr3 into fld "fld_nbr3"
end mouseUp

11.	 Test your application in the simulator or on an actual device. When you run your
mobile application, enter 638 in the first field and 2 in the second, and select the
equals sign. You should see results as shown in the following screenshot:

Chapter 10

197

How it works...
For this recipe, we created two input text fields so that the user could enter two numbers to be
divided. We added a script to the card using the on openCard handler to clear values from
the three text fields. When the equals sign is selected, the two values are divided using the
division (/) mathematical operator.

There's more...
We individually took the input values from the interface and put them into local variables
(nbr1 and nbr2). We then divided the two numbers (the first by the second), putting the
results into a third local variable, which is nbr3. Our last step was to put the value of nbr3
into the fld_nbr3 field. We could have simplified this with a single line of code:

put the text of fld "fld_nbr1" / the text of fld "fld_nbr2" into
 fld "fld_nbr3"

This line of code seems a bit long. So, in this recipe, we have broken down the code into
component pieces, making it easier to read.

See also
ff The Adding numbers recipe
ff The Subtracting numbers recipe
ff The Multiplying numbers recipe
ff The Using advanced math recipe
ff The Randomizing numbers recipe

Using advanced math
In this recipe, you will learn how to use multiple math operations in a single line of LiveCode
script. You will use operator precedence and nested operations. To facilitate this, we will use
the common math trick where a person is asked to choose a number, and then perform the
following operations on that number, the result always being 3:

1.	 Choose a number.
2.	 Add 5.
3.	 Double the result.
4.	 Subtract 4.
5.	 Divide the result by 2.
6.	 Subtract the number you started with.

The result is always 3

Miscellaneous

198

How to do it...
Follow the steps in this recipe to program a multiple-step mathematical operation:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to black.

3.	 Drag a button to the card and set the following properties:

�� Name: btn_GetNumber

�� Label: Choose a Number

�� Width: 122

�� Height: 23

�� Location: 71, 29

�� threeD: Keep this unchecked

�� backgroundColor: White

4.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

�� Location: 276, 23

�� Font: Courier

�� Text size: 18

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: Keep this unchecked

�� backgroundColor: White

5.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2

�� Width: 88

�� Height: 31

�� Location: 276, 64

�� Font: Courier

�� Text size: 18

Chapter 10

199

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: False

�� backgroundColor: White

6.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3

�� Width: 88

�� Height: 31

�� Location: 276, 104

�� Font: Courier

�� Text size: 18

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: Keep this unchecked

�� backgroundColor: White

7.	 Drag a fourth text entry field to the card and set the following properties:

�� Name: fld_nbr4

�� Width: 88

�� Height: 31

�� Location: 276, 141

�� Font: Courier

�� Text size: 18

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: Keep this unchecked

�� backgroundColor: White

8.	 Drag a fifth text entry field to the card and set the following properties:

�� Name: fld_nbr5

�� Width: 88

�� Height: 31

�� Location: 276, 179

�� Font: Courier

Miscellaneous

200

�� Text size: 18

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: Keep this unchecked

�� backgroundColor: White

9.	 Drag a sixth text entry field to the card and set the following properties:

�� Name: fld_nbr6

�� Width: 88

�� Height: 31

�� Location: 276, 217

�� Font: Courier

�� Text size: 18

�� Align text center

�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

�� threeD: Keep this unchecked

�� backgroundColor: White

10.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Operator1

�� foregroundColor: White

�� Width: 118

�� Height: 26

�� Location: 67, 66

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text left

�� Contents: Add 5 (+5)

11.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Operator2

�� foregroundColor: White

�� Width: 160

�� Height: 26

Chapter 10

201

�� Location: 88, 104

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text left

�� Contents: Double Result (x2)

12.	 Drag a third label field to the card and set the following properties:

�� Name: fld_Operator3

�� foregroundColor: White

�� Width: 174

�� Height: 26

�� Location: 95, 141

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text left

�� Contents: Subtract 4

13.	 Drag a fourth label field to the card and set the following properties:

�� Name: fld_Operator4

�� foregroundColor: White

�� Width: 174

�� Height: 26

�� Location: 95, 178

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text left

�� Contents: Divide by 2

14.	 Drag a fifth label field to the card and set the following properties:

�� Name: fld_Operator5

�� foregroundColor: White

�� Width: 174

Miscellaneous

202

�� Height: 36
�� Location: 95, 215
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text left
�� Contents: Subtract the number you started with
�� dontWrap: Keep this unchecked

15.	 Drag a sixth label field to the card and set the following properties:

�� Name: fld_Explain
�� foregroundColor: Yellow
�� Width: 218
�� Height: 32
�� Location: 171, 249
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text left
�� Contents: The result is always 3

16.	 Drag a seventh label field to the card and set the following properties:

�� Name: fld_Equals1
�� foregroundColor: White
�� Width: 46
�� Height: 32
�� Location: 209, 66
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text center
�� Contents: =

17.	 Drag an eighth label field to the card and set the following properties:

�� Name: fld_Equals2

�� foregroundColor: White

�� Width: 46

�� Height: 32

Chapter 10

203

�� Location: 209, 104

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

18.	 Drag a ninth label field to the card and set the following properties:

�� Name: fld_Equals3

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 209, 141

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

19.	 Drag a tenth label field to the card and set the following properties:

�� Name: fld_Equals4

�� foregroundColor: White

�� Width: 46

�� Height: 32

�� Location: 209, 178

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: =

20.	 Drag an eleventh label field to the card and set the following properties:

�� Name: fld_Equals5
�� foregroundColor: White
�� Width: 46

Miscellaneous

204

�� Height: 32
�� Location: 209, 215
�� Font: Courier
�� Text size: 18
�� Text style: Bold
�� Align text center
�� Contents: =

21.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line
�� Opaque: Keep this checked
�� foregroundColor: White
�� backgroundColor: White
�� Width: 301
�� Height: 4
�� Location: 172, 212

With all your objects on the card, your interface should look like the
following screenshot:

22.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"

Chapter 10

205

 put empty into fld "fld_nbr3"
 put empty into fld "fld_nbr4"
 put empty into fld "fld_nbr5"
 put empty into fld "fld_nbr6"
end openCard

23.	 Add the following LiveCode script to the btn_GetNumber button:
on mouseUp
 local tOriginal, tNbr

 ask "Choose a Number" titled "Your Answer is going to be
 3."
 put it into tOriginal
 put tOriginal into tNbr
 put tNbr into fld "fld_nbr1"
 --
 put tNbr + 5 into fld "fld_nbr2"
 --
 put (tNbr + 5) * 2 into fld "fld_nbr3"
 --
 put ((tNbr + 5) * 2) - 4 into fld "fld_nbr4"
 --
 put (((tNbr + 5) * 2) - 4) / 2 into fld "fld_nbr5"
 --
 put ((((tNbr + 5) * 2) - 4) / 2) - tOriginal into fld
 "fld_nbr6"
end mouseUp

24.	 Test your application in the simulator or on an actual device. When you run your
mobile application, you will see a pop up (shown in the following screenshot).
Enter 12 and select OK.

Miscellaneous

206

You should see results as shown in the following screenshot:

How it works...
For this recipe, we created a button that asked us for user input. Once the number is
retrieved, we put that number into two local variables: one to store the original value
(tOriginal), and the other for operational use. As we perform each step in the math trick,
we do not modify the latest results; instead, we perform calculations from the beginning. To
ensure that our calculations are accurate, we use open and close parentheses pairings to
isolate each mathematical operation.

There's more...
You might be familiar with the order of operators or operator precedence from your early
school years. Now is the time to brush up on that area of mathematics. Let's examine
the mathematical equation of 10 + 6 / 3. If we process the equation left to right we get
10 + 6 = 16 divided by 3, which results in 5.333333. This is the incorrect solution.

If we remember that we should divide before we add, we would divide 6 by 3 with a result
of 2, and then add it to 10 with a result of 12. This is the correct solution.

It becomes very clear that we cannot simply perform calculations programmatically without
specific knowledge of the order of precedence.

Chapter 10

207

The following table shows you the proper operator order of precedence:

Precedence Name Symbol Explanation

1 Grouping () Expressions in parenthesis are evaluated
first. When nested, the innermost dataset
is evaluated first.

2 Unary not

bitNot

there is a

there is no

Unary operations act on a single
operand only.

3 Exponent ^ Also referred to as the power of a
number.

4 Multiplication/
Division

*

/

div

mod

Each of these has the same order of
precedence. If more than one is used
in an equation, they are computed left
to right.

5 Addition/
Subtraction

+

-

Both of these have the same order of
precedence. If more than one is used
in an equation, they are computed left
to right.

6 Concatenation &

&&

,

These are string operators (join strings).

7 Comparison <

>

<=

>=

contains

is/is not among

is/is not in

is/is not within

is/is not a

These operators compare two values.

Miscellaneous

208

Precedence Name Symbol Explanation

8 Equality =

is

<>

!=

is not

These operators compare two values for
equality.

9 bitAnd bitAnd
10 bitXOr bitXOr

11 bitOr bitOr
12 And and
13 Or or
14 Function calls This is the lowest priority operator.

See also
ff The Adding numbers recipe

ff The Subtracting numbers recipe

ff The Multiplying numbers recipe

ff The Dividing numbers recipe

ff The Randomizing numbers recipe

Randomizing numbers
There can be a number of reasons you will want your mobile app to generate random
numbers. You might create a slot or another gambling app or simply want enemy robots in
a game to come from random vectors. Regardless of your need, LiveCode makes it easy to
generate random numbers.

How to do it...
In this recipe, you will create a user interface that allows the user to enter upper and lower
limits and then generate a random number within those limits.

1.	 Open LiveCode and create a new main stack.

Chapter 10

209

2.	 Drag a new label field to the card and set the following properties:

�� Name: fld_Lower

�� foregroundColor: Yellow

�� Width: 158

�� Height: 32

�� Location: 87, 64

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: Set Lower Limit:

3.	 Drag a second label field to the card and set the following properties:

�� Name: fld_Upper

�� foregroundColor: Yellow

�� Width: 158

�� Height: 32

�� Location: 259, 64

�� Font: Courier

�� Text size: 18

�� Text style: Bold

�� Align text center

�� Contents: Set Upper Limit:

4.	 Drag a new text entry field to the card and set the following properties:

�� Name: fld_nbr1

�� Width: 88

�� Height: 31

Miscellaneous

210

�� Location: 87, 89
�� Font: Courier
�� Text size: 18
�� Align text center
�� backgroundColor: White

5.	 Drag a second text entry field to the card and set the following properties:

�� Name: fld_nbr2
�� Width: 88
�� Height: 31
�� Location: 258, 89
�� Font: Courier
�� Text size: 18
�� Align text center
�� backgroundColor: White

6.	 Drag a third text entry field to the card and set the following properties:

�� Name: fld_nbr3
�� Width: 88
�� Height: 31
�� Location: 258, 145
�� Font: Courier
�� Text size: 18
�� Align text center
�� backgroundColor: White
�� traversalOn: Keep this unchecked (Keep Focusable unchecked)

7.	 Drag a new button to the card and set the following properties:

�� Name: btn_Seed
�� Label: Reset Random Seed
�� Width: 171
�� Height: 23
�� Location: 90, 29
�� Font: Courier
�� Text size: 12
�� Align text center
�� backgroundColor: White
�� threeD: Keep this unchecked

Chapter 10

211

8.	 Drag a second button to the card and set the following properties:

�� Name: btn_GetRandomNumber

�� Label: Get Random Number

�� Width: 171

�� Height: 23

�� Location: 90, 147

�� Font: Courier

�� Text size: 12

�� Align text center

�� backgroundColor: White

�� threeD: Keep this unchecked

9.	 Click on the rectangular graphic in the toolbar palette, and then draw a rectangular
graphic on your card. Next, set the following properties:

�� Name: grc_Line

�� Opaque: Keep it checked

�� foregroundColor: White

�� backgroundColor: White

�� Width: 311

�� Height: 4

�� Location: 171, 186

With all your objects on the card, your interface should look like the
following screenshot:

Miscellaneous

212

10.	 Add the following LiveCode script to the card:
on openCard
 put empty into fld "fld_nbr1"
 put empty into fld "fld_nbr2"
 put empty into fld "fld_nbr3"
 --
 send "mouseUp" to btn "btn_Seed"
end openCard

11.	 Add the following LiveCode script to the btn_Seed button:
on mouseUp
 set the randomSeed to the long seconds
end mouseUp

12.	 Add the following LiveCode script to the btn_GetRandomNumber button:
on mouseUp
 local lowerLimit, upperLimit

 put text of fld "fld_nbr1" into lowerLimit
 put text of fld "fld_nbr2" into upperLimit

 put random(upperLimit - lowerLimit + 1) + lowerLimit -1
 into fld "fld_nbr3"
end mouseUp

13.	 Test your application in the simulator or on an actual device. When you run your
mobile application, you will need to enter both a lower and an upper limit. In the
following screenshot, 25 was entered as a lower limit, 500 was entered as an upper
limit, and the random number generated was 156:

Chapter 10

213

How it works...
Our code in this recipe accomplished four things. First, when the card is opened for the first
time, the fld_nbr1, fld_nbr2, and fld_nbr3 fields are cleared. Our on openCard
handler also sends the mouseUp message to our btn_Seed button. This ensures that the
random seed is fresh each time the card is opened. Secondly, we created a btn_Seed button
so that the user can generate a new random seed whenever they choose to. Thirdly, we allow
the user to input both upper and lower limit values. Lastly, we calculate a random number
between the upper and lower limits.

There's more...
A random seed is a number that is randomly generated and is used to instantiate a new
random number. It is important to use a unique random seed each time you need to generate
a random number. While LiveCode uses a new random seed each time the application is
started, it is a good habit to always generate a new random seed each time you need a
random number. Using a function such as long seconds is a good technique. The long
seconds function returns the number of seconds since midnight, January 1, 1970 (GMT).

See also
ff The Adding numbers recipe

ff The Subtracting numbers recipe

ff The Multiplying numbers recipe

ff The Dividing numbers recipe

ff The Using advanced math recipe

Opening a web page
There could be a need for you to open a web page within your mobile app. You are not likely
to create a new mobile browser using LiveCode; however, LiveCode does provide basic
functionality for you to be able to display web pages in your mobile apps. In this recipe, you
will learn how to open and display a web page within your mobile application using LiveCode.

How to do it...
Follow the steps in this recipe to create a mobile app that opens a web page:

1.	 Open LiveCode and create a new main stack.

2.	 Using the Standalone Application Settings dialog window, enable the landscape
rotation of your selected mobile device.

Miscellaneous

214

3.	 Create a group on your card with the following specifications:

�� Name: Browser

�� Width: 312

�� Height: 390

�� Location: 160, 225

4.	 Create a text input field on your card with the following specifications:

�� Name: fld_URL

�� Width: 312

�� Height: 23

�� Location: 160, 15

5.	 Add the following code to the card:
local browserID

on preOpenCard
 mobileControlCreate "browser"
 put the result into browserID

 mobileControlSet browserID, "visible", "true"
 mobileControlSet browserID, "url",
 "http://www.packtpub.com/livecode-mobile-development-
 cookbook/book"
 resizeStack
end preOpenCard

on closeCard
 mobileControlDelete browserID
end closeCard

on resizeStack
 set the rect of field "fld_URL" to the left of field
 "fld_URL", the top of field "fld_URL", the width of
 this card - 4, the bottom of field "fld_URL"
 set the rect of group "Browser" to the left of group
 "Browser", the top of group "Browser", the width of
 this card - 4, the height of this card - 4
 mobileControlSet browserID, "rect", the rect of group
 "Browser"
end resizeStack

on browserFinishedLoading pUrl
 put pUrl into fld "fld_URL"
end browserFinishedLoading

Chapter 10

215

6.	 Test your application in the simulator or on an actual device. You should see the
Packt Publishing website displayed as shown in the following screenshot. If the
website you have displayed differs a bit, that is okay. The content and layout of
websites change frequently.

7.	 If you are using a simulator to test your mobile application, click on the screen to
scroll up and down. Otherwise, use your finger to scroll. As you can see from the
following screenshot, the entire web page is loaded. If the website you have displayed
differs a bit, that is okay. The content and layout of websites change frequently.

Miscellaneous

216

How it works...
We started this recipe by creating a local variable named browserID. This provides us
with a reference ID for the browser instantiation. Using the on preOpenCard handler, we
created a browser control (mobileControlCreate "browser") and put the result into
our browserID variable. Also, in the preOpenCard handler, we set the browser control to
visible (mobileControlSet browserID, "visible", "true"), set the initial URL
(mobileControlSet browserID, "url", "http://www.packtpub.com/livecode-
mobile-development-cookbook/book"), and made a call to the resizeStack handler.

The resizeStack handler does a good job of resizing the fld_URL field and the Browser
group. This is especially nice to use when multiple orientations (portrait and landscape)
are supported.

The browserFinishedLoading message is sent once the web page has been loaded.
So, our handler puts the loaded URL in the fld_URL field.

The last thing our code does is that it deletes the instantiated browserID as a good memory
steward using the on closeCard handler.

See also
ff The Querying web data recipe

Querying web data
In this recipe, we will load a web page into the memory and search for specific text to be
displayed. Specifically, we will load this book's web page to the Packt Publishing website
and find the Who this book is for section.

How to do it...
Follow the steps in this recipe to pull data from a web page, format it, and display it to the user
in your mobile app:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the stack's card to black.

3.	 Drag a button to the card and set the following properties using the property inspector:

�� Name: btn_Start
�� Label: Start
�� Width: 82
�� Height: 23

Chapter 10

217

�� Location: 57, 37
�� backgroundColor: White
�� threeD: Keep this unchecked
�� border: Keep this unchecked

4.	 Drag a scrolling field to the card and set the following properties using the
property inspector:

�� Name: fld_output
�� Width: 294
�� Height: 392
�� Location: 161, 256
�� backgroundColor: White

5.	 Add the following code to the btn_Start button:
on mouseUp
 local pageData, tLines
 put empty into fld "output"
 put URL "http://www.packtpub.com/livecode-mobile-
 development-cookbook/book" into fld "output"
end mouseUp

6.	 Test the app in a simulator or on an actual device. What you will see (as shown in the
following screenshot) is that the text of the web page is displayed. This does us little
good. In the following steps, we will call out the specific text we are looking for.

Miscellaneous

218

7.	 Next, we will search for the Who this book is for text. Change the btn_Start
button's code to the following:
on mouseUp
 local pageData, tLines
 put empty into fld "output"
 put URL "http://www.packtpub.com/livecode-mobile-
 development-cookbook/book" into pageData
 put the number of lines of pageData into tLines
 repeat with i = 1 to tLines
 If line i of pageData contains "Who this book is for"
 then
 put line i +2 of pageData into fld "output"
exit mouseUp
 end if
 end repeat
end mouseUp

8.	 Test your application in the simulator or on an actual device. You will see
that we have the right text, but it still needs to be cleaned up a bit, as shown
in the following screenshot:

9.	 Next, we'll add scripting to clean up the text, and then we will display the results.
Change the btn_Start button's code to the following:
on mouseUp
 local pageData, tLines
 put empty into fld "output"
 put URL "http://www.packtpub.com/livecode-mobile-
 development-cookbook/book" into pageData
 put the number of lines of pageData into tLines
 repeat with i = 1 to tLines

Chapter 10

219

 If line i of pageData contains "Who this book is for"
 then
 put line i +2 of pageData into fld "output"
 cleanItUp
 exit mouseUp
 end if
 end repeat
end mouseUp

command cleanItUp
 local tText
 put the text of fld "output" into tText
 put empty into fld "output"

 put "Who this book is for" into line 1 of fld "output"
 replace "<p>" with "" in tText
 replace "</p>" with "" in tText
 replace tab with "" in tText
 put tText into line 3 of fld "output"
end cleanItUp

10.	 Test your application in the simulator or on an actual device. As shown in the
following screenshot, the text still needs to be cleaned up a bit. You'll want to
add necessary code to remove unwanted text.

How it works...
In this recipe, we queried a specific website that we were familiar with. This means that we
knew what type of content we were looking for and how it was presented on the web page.
This allowed us to load the web page data into the memory, and then keep only the section
we were interested in.

Miscellaneous

220

See also
ff The Opening a web page recipe

Using the geometry manager
In this recipe, you will learn about and gain experience with LiveCode's geometry manager.
Specifically, you will load an image to a new stack and create links between the image and
the right edge of the stack. You will select how the image behaves as the stack is resized.

How to do it...
Follow the steps in this recipe to learn how to use the geometry manager to enhance your
mobile apps:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the default card to white.

3.	 Add an image to the card by selecting the File pull-down menu, then select
Import As Control, and finally, select Image File..., as shown in the
following screenshot:

Chapter 10

221

4.	 Select the robot.png file from your filesystem.

The robot.png image file can be downloaded from this book's
page on the Packt Publishing website (www.packtpub.com).

5.	 Change the name of the imported image to robot.

6.	 Set the location of the robot image to 59, 83.

7.	 Test the app in a simulator or on an actual device. You will see the robot,
as shown in the following screenshot:

www.packtpub.com

Miscellaneous

222

8.	 With the robot image selected, select Geometry from the property inspector's
pull-down menu as shown in the following screenshot:

Chapter 10

223

9.	 As shown in the previous screenshot, there are three main functions of the Geometry
interface: scale or position the selected object, prevent object-clipping text, and limit
the object. The first set of radio buttons allows us to select how we want the image to
behave when a stack is resized. The first option is to have the scale adjusted, and the
second is to have the position adjusted. The default is to have the position adjusted.
Select the Position selected object radio button so that the image's scale will not be
adjusted; rather, the position will be adjusted when the stack is resized, as shown in
the following screenshot:

Miscellaneous

224

10.	 Next, we will click on the gray bar that extends to the right from the right-hand side of
the box labeled Selected object in the geometry manager, as shown in the following
screenshot. This results in the image remaining a fixed number of pixels from the
right edge of the stack, regardless of what dimensions the stack is resized to.

11.	 Test the application in the IDE on your desktop. Resize the stack manually to illustrate
the effects of the previous step.

You can resize stacks and cards programmatically or manually in the
IDE (short for Integrated Development Environment). For this recipe,
it is much quicker to test the resizing manually in the IDE.

Chapter 10

225

12.	 Next, in the geometry manager, click on the solid bar that is extended from the box
labeled Selected object. Now, the line should be wavy, as shown in the following
screenshot. This results in the image being moved relative to the size of the stack as
it is resized. In other words, the image will remain a specific percentage of the card's
total width from the edge of the card.

13.	 Test the application in the IDE to see the effects of the previous step.

How it works...
The geometry manager is a powerful tool that can be used when your stack size changes
at runtime. While this might not be common for mobile apps, it is an important functionality
that one should know of.

Miscellaneous

226

There's more...
LiveCode's geometry manager also lets us assign scaling and positioning links between
two objects and not just between an object and the stack/card boundary. In the geometry
manager, there are drop-down menus (see the following screenshot) that allow you to select
from objects on the current card.

Chapter 10

227

Using invisible objects
Objects in LiveCode have the ability to be on screen but not visible. We can create invisible
objects so that they provide a layer above underlying objects. This can benefit our efforts to
develop mobile apps in several ways in order to include providing a method of capturing user
input and the ability to add a script to the invisible object instead of multiple, underlying objects.

How to do it...
Follow the steps in this recipe to create an invisible object and assign the LiveCode script to it:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the stack to white.

3.	 Add nine rectangles to the stack with the following basic properties:

�� Width: 70

�� Height: 64

�� Opaque: Keep it checked

4.	 Name and position the nine rectangles as indicated in the following table:

Rectangle name Location
rect1 63, 84
rect2 160, 84
rect3 258, 84
rect4 63, 188
rect5 160, 188
rect6 258, 188
rect7 63, 292
rect8 160, 292
rect9 258, 292

Miscellaneous

228

You should now see nine identical rectangles aligned as shown in the
following screenshot:

5.	 Next, we will create an invisible object that will overlap six of the nine rectangles.
Create a rectangle with the following properties:

�� Name: invisible

�� Width: 180

�� Height: 292

�� Location: 210, 190

�� Opaque: Keep this checked

�� Blend Level: 100 percent

6.	 Add the following script to the invisible graphic:
on mouseUp
 set the backgroundColor of grc "rect2" to black
 set the backgroundColor of grc "rect3" to black
 set the backgroundColor of grc "rect5" to black
 set the backgroundColor of grc "rect6" to black
 set the backgroundColor of grc "rect8" to black
 set the backgroundColor of grc "rect9" to black
end mouseUp

Chapter 10

229

7.	 Test your application in the simulator or on an actual device. As illustrated in the
following screenshot, once the invisible button is selected, the underlying six
rectangles have their background color changed from white to black:

How it works...
Setting the blend level to 100 percent allows an object to be present on the screen but not
seen. This is different from setting the visible property of an object to false. In that case,
the object would not be available for user interaction.

Taking snapshots of a card
LiveCode is capable of capturing screen images of a stack. This means that you can capture
what your LiveCode mobile app displays on the screen. This can be useful for allowing the
user to take screenshots of in-app accomplishments such as with a drawing app. The number
of uses of this type of functionality is seemingly limitless. In this recipe, you will learn how to
create an image by taking a snapshot of a stack.

How to do it...
Follow the steps in this recipe to create a LiveCode script that creates a snapshot of
the screen:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the stack to white.

3.	 Add nine rectangles to the stack with the following basic properties:

�� Width: 70
�� Height: 64
�� Opaque: Keep this checked

Miscellaneous

230

4.	 Name and position the nine rectangles as indicated in the following table:

Rectangle name backgroundColor Location
rect1 White 63, 84
rect2 Black 160, 84
rect3 Black 258, 84
rect4 Black 63, 188
rect5 White 160, 188
rect6 Black 258, 188
rect7 Black 63, 292
rect8 Black 160, 292
rect9 White 258, 292

You should now see nine identical rectangles aligned as shown in the
following screenshot:

5.	 With the following line of code, you can create an image of the screen:

import snapshot

Chapter 10

231

How it works...
The import snapshot command can create an image from a screen snapshot.
This command places the image in the center of the current card. It can be easily missed
since the image is visually the same as the card beneath it. You then have the flexibility to
do what you want to with the new image.

There's more...
The import snapshot command is capable of creating an image from a specific portion of
the screen by assigning additional parameters to the command. This will be covered in the
following recipe.

See also
ff The Taking snapshots of an area on a card recipe

Taking snapshots of an area on a card
LiveCode is capable of capturing an image of a specific area of a stack. This can be useful when
creating certain mobile apps. The number of uses for this type of functionality is seemingly
limitless. In this recipe, you will learn how to create an image of a specific area of a stack.

How to do it...
Follow the steps in this recipe to create an image by taking a screenshot of a specific area
of a stack:

1.	 Open LiveCode and create a new main stack.

2.	 Set the background color of the stack to white.

3.	 Add nine rectangles to the stack with the following basic properties:

�� Width: 70

�� Height: 64

�� Opaque: Keep this checked

Miscellaneous

232

4.	 Name and position the nine rectangles as indicated in the following table:

Rectangle name backgroundColor Location
rect1 White 63, 84
rect2 Black 160, 84
rect3 Black 258, 84
rect4 Black 63, 188
rect5 White 160, 188
rect6 Black 258, 188
rect7 Black 63, 292
rect8 Black 160, 292
rect9 White 258, 292

You should now see nine identical rectangles aligned as shown in the
following screenshot:

5.	 With the following line of code, you can create an image that encompasses the last
two columns of rectangles:

import snapshot from rectangle 120,44,300,336 of this card

Chapter 10

233

How it works...
The import snapshot command can create an image by taking a snapshot of the
entire screen or a part of a screen. You then have the flexibility to do what you want with
the created image.

See also
ff The Taking snapshots of a card recipe

Detecting the operating system
In this recipe, you will learn how to determine what operating system your user has installed
on their device.

How to do it...
Perform the following steps to detect the installed operating system:

1.	 Open LiveCode and create a new main stack.

2.	 Add the following code to the stack's card:
on preOpenCard
 local tPlatform, tVersion

 put the platform into tPlatform
 put the systemVersion into tVersion

 answer tPlatform & tab & tVersion titled "Your OS"
end preOpenCard

3.	 Test your application in the simulator or on an actual device. See the following
screenshot for a sample result:

Miscellaneous

234

How it works...
In this recipe, we used two functions to determine the user's device platform and operating
system version. The first function, platform, will return either iphone or android,
depending on the mobile device being used. The second function, systemVersion,
returns the numeric and decimal (that is 7.0.1) version of the user's OS.

Index
Symbols
& operator 76
&& operator 76

A
additional settings, navigational bar 136
advanced math

using 197-206
aeMoveTo handler, parameters

controlName 157
duration 157
easingEffect 157
x,y 157

aeSetFrameRate handler 174
aeStopMoving handler 166
Android applications

standalone application settings,
configuring for 23-27

Android development
icons, defining for 16-18
images, defining for 16-18
mobile environment, setting up for 8-12

Android SDK
URL, for downloading 9

Animation Engine
setting up 152-154

Animation Engine 5 151
animations

speed, modifying of 171-174
answer command 71, 83
app

web pages, displaying in 33-35
Apple Developer

URL 6

area, on card
snapshots, taking of 231, 232

arrays 97
ask command 47, 71
audio file

playing 128, 129

B
buttons

creating, for mobile app 137-139
glow effects, adding to 36-38
state graphics, including on 39, 40
using 139
using, for navigation 57

C
cards

effects, using between 55, 56
snapshots, taking of 229-231

caseSensitive property 73
circular path

objects, moving along 162-164
collision listeners

about 174
using 174-177

configuration, standalone application settings
for Android applications 23-27
for iOS applications 19-23

count
loop, implementing for 66

countdown timer
creating, steps 60
implementing 59, 60

countDownTimer method 60

236

count-up timer
creating 62, 63
implementing 61

countUpTimer method 62
custom properties

setting 41-44

D
databases 111
date picker

using 52, 53
distance

calculating, between two points 167-171

E
effects

using, between cards 55, 56
elliptical path

objects, moving along 160, 161
e-mail

formatting 92-96
sending 90, 91

Extensible Markup Language. See XML
external data

loading 105
saving, on mobile device 104

F
file

reading, from mobile device 105

G
geometry manager

using 220-225
glow effects

adding, to buttons 36-38
gravity

simulating, in mobile apps 178-180

H
human-computer interface

about 32
buttons, using for navigation 57

custom properties, setting 41-44
date picker, using 52, 53
effects, using between cards 55, 56
glow effects, adding to buttons 36-38
interface objects, aligning 44, 45
interface objects, displaying dynamically 46
main stack, creating 32, 33
mobile keyboards, using 51
object, obtaining of properties 40, 41
state graphics, including on buttons 39, 40
time picker, using 54, 55
user actions, recording 47-50
user input, obtaining 46, 47
user input, restricting 50
user passwords, masking 35, 36
web pages, displaying in app 33-35

I
icons

defining, for Android development 16-18
defining, for iOS development 12-15

images
capturing, from mobile device camera 123
defining, for Android development 16-18
defining, for iOS development 12-15
loading, from mobile device's

photo library 121, 122
resizing, LiveCode script used 124

import snapshot command 231-233
Integrated Development

Environment (IDE) 224
interface objects

aligning 44, 45
displaying, dynamically 46

invisible objects
using 227-229

iOS applications
standalone application settings,

configuring for 19-23
iOS development

icons, defining for 12-15
images, defining for 12-15
mobile environment, setting up for 6-8

iterative loop
creating 67

237

J
Java SDK

URL, for downloading 9

L
launch url command 90
line

objects, moving along 154-157
Lipsum

URL, for auto generating dummy text 85
list button

creating, for mobile app 146, 147
using 147

LiveCode
about 63
used, for resizing image 124

loop
about 59
implementing, for count 66
used, for iterating through list 67

M
main stack

creating 32, 33
MobGUI

setting up 131-134
URL, for downloading free demo version 131
used, for creating progress bar 148, 149

MobGUI slider
creating 143, 144

mobile app
button, creating for 137-139
creating, SQLite used 111-118
gravity, simulating in 178-180
list button, creating for 146, 147
MySQL database interaction,

integrating into 119, 120
navigational bar, creating for 135, 136
preparing, for phone call initiation 89, 90

mobile device
external data, saving on 104
file, reading from 105

mobile device camera
image, capturing from 123

mobile device's photo library
image, loading from 121, 122

mobile environment
setting up, for Android development 8-12
setting up, for iOS development 6-8

mobile keyboards
using 51

mobilePickDate command 53-55
mobilePickPhoto command 122-123
mobile screen

text, reading from 82, 83
text, writing to 80, 81

moveCircular handler, parameters
centerX 164
centerY 164
isAngle 164
isRadius 164
step 164

moveElliptical handler, parameters
centerX 161
centerY 161
isAngle 162
radiusX 162
radiusY 162
step 162

movePolygonal handler, parameters
current 159
endpoint 159
isDistance 159
moveDone 159
pointList 159
startPoint 159
step 159

movie
playing 125, 126

movie playback
controlling 127

moving object
stopping 164-166

multidimensional arrays
creating 102, 103
using 102, 103

multiple-step mathematical operation
programming 198-206

MySQL 118

238

MySQL database interaction
integrating, into mobile app 119, 120

N
navigation

buttons, using for 57
navigational bar

about 135
creating, for mobile app 135, 136
using 136

navigational button
creating 139-142
using 142

numbers
adding 182-185
dividing 193-196
multiplying 190-192
randomizing 208-212
subtracting 186-189

O
objects

moving, along circular path 162-164
moving, along elliptical path 160, 161
moving, along line 154-157
moving, along polygonal path 157-159
properties, obtaining of 40, 41

one-dimensional array
creating 98-102
using 98-102

on touchEnd command 148
operating system

detecting 233
operator

order of precedence 207, 208

P
pause function

creating 62, 63
pendingMessages option 63-65
phone call

initiating 89, 90
Pig Latin

text, translating into 87, 88

play command 129
polygonal path

objects, moving along 157-159
preOpenCard message 34
progress bar

about 148
creating, MobGUI used 148, 149
using 149

properties
obtaining, of object 40, 41

put command 81

R
random seed 213
relational database management

systems 111
repeat control structure 68
repeat loop control 62
replace command 74
revMail command 91, 96

S
SDK 7.0 8
send command 60
simulator

using 28, 29
slider, MobGUI

creating 143, 144
snapshots

taking, of area on card 231, 232
taking, of card 229, 230

software simulators 28
sort command 84
speed

modifying, of animations 171-174
SQL 120
SQLite

about 111
mobile app, creating 111-118

SQLite Administrator 118
SQLite Database Browser 118
SQLite Designer 118
SQLite Expert 118
SQLiteSpy 118

239

standalone application settings
configuring, for Android applications 23-27
configuring, for iOS applications 19-23

Standalone Application Settings
dialog window 27

standalone mobile app
saving 29, 30

state graphics
including, on buttons 39, 40

Structured Query Language. See SQL

T
text

appending 86
combining 74-76
encrypting 76-80
formatting 85
reading, from mobile screen 82, 83
replacing 74
searching 71-73
sorting 83, 84
translating, into Pig Latin 87, 88
writing, to mobile screen 80, 81

time picker
using 54, 55

timer
about 59
pausing 62, 63
resuming 64, 65

toggle button
creating 144
using 145

U
user actions

recording 47-50
user input

obtaining 46, 47
reading 70, 71
restricting 50

user passwords
masking 35, 36

W
web page

displaying, in app 33-35
opening 213-216
querying 216-219

X
Xcode 5.0.2 8
XML 106, 110
XML data

creating 109
reading 106-108
writing 109
writing, without LiveCode's built-in

XML commands 110

Thank you for buying
LiveCode Mobile
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

LiveCode Mobile Development
Beginner's Guide
ISBN: 978-1-84969-248-9 Paperback: 246 pages

Create fun-filled, rich apps for Android and iOS
with LiveCode

1.	 Create fun, interactive apps with rich media
features of LiveCode.

2.	 Step-by-step instructions for creating apps
and interfaces.

3.	 Dive headfirst into mobile application
development using LiveCode backed with clear
explanations enriched with ample screenshots.

LiveCode Mobile Development
Hotshot
ISBN: 978-1-84969-748-4 Paperback: 300 pages

Create your own exciting applications with
10 fantastic projects

1.	 Create your own mobile games and apps
using LiveCode.

2.	 Develop user interfaces for mobile devices.

3.	 Use databases and advanced features of
LiveCode.

Please check www.PacktPub.com for information on our titles

Creating Mobile Apps with
jQuery Mobile
ISBN: 978-1-78216-006-9 Paperback: 254 pages

Learn to make practical, unique, real-world sites that
span a variety of industries and technologies with the
world's most popular mobile development library

1.	 Write less, do more: learn to apply the jQuery
motto to quickly craft creative sites that work on
any smartphone and even not-so-smart phones.

2.	 Learn to leverage HTML5 audio and video,
geolocation, Twitter, Flickr, blogs, Reddit,
Google maps, content management system,
and much more.

3.	 All examples are either in use in the real world or
were used as examples to win business across
several industries.

Xamarin Mobile Application
Development for Android
ISBN: 978-1-78355-916-9 Paperback: 168 pages

Learn to develop full featured Android apps using your
existing C# skills with Xamarin Android

1.	 Gain an understanding of both the Android and
Xamarin platforms.

2.	 Build a working multi-view Android app
incrementally throughout the book.

3.	 Work with device capabilities such as location
sensors and the camera.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: LiveCode Mobile Basics
	Introduction
	Setting up your mobile environment for iOS development
	Setting up your mobile environment for Android development
	Defining icons and images for iOS development
	Defining icons and images for Android development
	Configuring standalone application settings for iOS applications
	Configuring standalone application settings for Android applications
	Using the simulator
	Saving a standalone mobile app

	Chapter 2: Human Computer Interfaces
	Introduction
	Creating a new main stack
	Displaying web pages in your app
	Masking user passwords
	Including glow effects on buttons
	Including state graphics on buttons
	Getting an object's properties
	Setting custom properties
	Aligning interface objects
	Dynamically displaying interface objects
	Getting the user input
	Recording user actions
	Restricting the user input
	Using mobile keyboards
	Using a date picker
	Using a time picker
	Using effects between cards
	Using buttons for navigation

	Chapter 3: Loops and Timers
	Introduction
	Implementing a countdown timer
	Implementing a count-up timer
	Pausing a timer
	Resuming a timer
	Using a loop to count
	Using a loop to iterate through a list

	Chapter 4: Managing Text
	Introduction
	Reading user input
	Searching text
	Replacing text
	Combining text
	Encrypting text
	Writing text
	Reading text
	Sorting text
	Formatting text
	Appending text
	Translating text into Pig Latin

	Chapter 5: Communications
	Introduction
	Initiating a phone call
	Sending an e-mail
	Formatting an e-mail

	Chapter 6: Data Structures
	Introduction
	Using arrays
	Using multidimensional arrays
	Saving external data
	Loading external data
	Reading XML
	Writing XML
	Using SQLite
	Using MySQL

	Chapter 7: External Media
	Introduction
	Loading an image
	Capturing an image from a mobile device's camera
	Resizing an image
	Playing a movie
	Controlling the movie playback
	Playing an audio file

	Chapter 8: Using MobGUI
	Introduction
	Setting up MobGUI
	Using a navigational bar
	Using a button
	Using a navigational button
	Using a slider
	Using a toggle button
	Using a list button
	Using a progress bar

	Chapter 9: Using Animation Engine
	Introduction
	Setting up Animation Engine
	Moving objects along a line
	Moving objects along a polygonal path
	Moving objects along an elliptical path
	Moving objects along a circular path
	Stopping a moving object
	Calculating the distance between two points
	Using speed
	Using collision listeners
	Simulating gravity

	Chapter 10: Miscellaneous
	Introduction
	Adding numbers
	Subtracting numbers
	Multiplying numbers
	Dividing numbers
	Using advanced math
	Randomizing numbers
	Opening a web page
	Querying web data
	Using the geometry manager
	Using invisible objects
	Taking snapshots of a card
	Taking snapshots of an area on a card
	Detecting the operating system

	Index

