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Preface

Machine vision and automated visual inspection are domains of automation technology
with a steadily increasing economical relevance. Although the related industry is notably ex-
panding since the past two decades, only a part of today’s visual inspection tasks have been
automated. This is why there is a great potential for economization in high income countries
which may lead to both reduced costs and increased quality of the produced goods.

As visual perception is the main human sensation, the automation of visual inspection is
somehow fascinating—at least for the authors of this book. When talking about the automa-
tion of visual inspection one might easily think that it cannot be that hard to teach a technical
visual inspection system to perceive what a human can easily see with only a glimpse. Ac-
tually, users often state: ‘As humans can see that instantly, it can’t be that hard to achieve the
same using a machine’. The answer is not easy at all but it depends on the individual case:
for humans, some things represent easy tasks which however are difficult to automate—on
the contrary, many other things can be done more precisely and particularly more reliably
by machines, if an automation is possible.

Automated visual inspection is a complex and multi-disciplinary topic involving optics,
mechanical and electrical engineering, mathematics and computer science. Systems for au-
tomated visual inspection are usually more or less complex mechatronic systems, which can
only achieve the requested performance in an economical way, if all the necessary disciplines
collaborate.

Everything starts with a visual inspection task that is to be carried out using an auto-
mated approach. In this context, image acquisition plays an important role: loss of informa-
tion during that step can hardly be compensated during later image processing steps. The
success of a visual inspection solution depends heavily on the quality of this first step.

Fortunately, when designing an automated visual inspection system, one usually has the
benefit of several degrees of freedom, in order to obtain image data with sufficient quality
and significance. This is why the suitability of the image acquisition for a given problem at
least partly depends on the engineer. In order to exploit those degrees of freedom at the best,
this book draws particular attention to image acquisition and the acquisition constellation,
consisting of the test object, the illumination and the acquisition system.

This book has the ambition to thoroughly introduce the reader into the terms of auto-
mated visual inspection. For this purpose, the Chapters 2 to 6 of the book’s first part deal
with the physics of image formation and the required optical principles and techniques in
an adequately extensive way. Based on that foundations, image acquisition for automated
visual inspection will be treated in Chapter 7. In this key chapter, a multitude of different
techniques for image acquisition will be explained in a systematic way, as well as important
hints and tricks will be shown which are indispensable for a good visual inspection system.

In order to enable automated analysis of images in a computer, the analog image signals
have to be transformed into digital signals. The underlying theory of signal processing and
the effects of local sampling and quantization will be extensively discussed, especially in
terms of system theory. Among others, Chapter 8 is devoted to the basics of digital process-
ing of analog signals and prepares the reader for the second part of the book, which focuses
on image analysis. Chapters 9 to 15 cover methods, which form the individual steps leading
to a final inspection result based on the acquired image data.
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VIII Preface

The depth of the explanations of all covered subjects is chosen to provide the reader with
insight into the respective motivation and backgrounds. No facts are supposed ‘to appear
from nowhere’; the underlying concepts should be thoroughly understood. Some theorems
however will not be proven in a strict mathematical way. In fact, there will be sketches of the
proofs, which will present their essential idea and help to understand important concepts.
For an application-oriented reader who is nevertheless interested in what happens behind
the scenes, consciously omitting technically flawlessly led proofs increases the book’s read-
ability and leads to a handy amount of pages.

The book on hand is partially based on lectures held by the author J. Beyerer at the Karls-
ruhe Institute of Technology (KIT, formerly University of Karlsruhe) since 1994 and by the
author F. Puente León, initially at Technische Universität München (TUM) since 2003 and at
KIT since 2008. It addresses itself to students studying in the fields of engineering science,
computer science, physics and mathematics. As all needed concepts and methods are intro-
duced in a sufficiently exhaustive way, it should be possible for advanced bachelor students
to clearly understand the presented content. Furthermore, scientists, PhD students and es-
pecially master students dealing with automated visual inspection can profit from reading
the book as its topics are appropriately elaborated.

Besides theory, practice is not missed out. The authors’ industrial experience, which is in-
corporated into many topics of the book, brings benefits even to practically oriented readers
who seek for robust and economic solutions for concrete visual inspection tasks. Nonethe-
less, the book does not loose itself into superficial recipes but yields enough substance for a
deep understanding of the presented content.

The authors want to particularly thank their following colleagues for supporting them in
the creation of this book:

Dr. Ulrich Breitmeier (Breitmeier Messtechnik GmbH, Ettlingen, Germany) for an exam-
ple image of a cylindric scanner
Dr. Michael Fried (University of Erlangen, Germany) for an example of the Mumford-
Shah-Method
Dr. Jan Horn (Department of Measurement and Control, Karlsruhe Institute of Technol-
ogy) for an image of camera based velocity measurement
Dr. Udo Netzelmann and Dr. Günter Walle (Fraunhofer IZFP, Saarbrücken, Germany) for
example images of the impulse thermography
Arne Nowak (Fraunhofer IIS, Erlangen, Germany) for example images acquired with the
POLKA camera
Dirk Nüßler (Fraunhofer FHR, Wachtberg, Germany) for example images of inspection
using terahertz radiation
Prof. Dr. Wolfgang Osten (University of Stuttgart, Germany) for images of interferometric
methods
Prof. Dr. Jerry L. Prince (Johns Hopkins University, Baltimore, USA) for examples of ac-
tive contours
Dr. Andreas Purde (Institute for Measurement Systems and Sensor Technology, TUM,
Germany) for an example for the pyramid linking method
Dr. Anna Remelli and Dr. Claudio Sedazzari (Opto Engineering, Mantova, Italy) for ex-
amples of the hypercentric perspective
Dr. Norman Uhlmann (Fraunhofer EZRT, Fürth, Germany) for example images of X-ray
inspection
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Preface IX

Bernhard Schmitt M.A. (ONUK, Karlsruhe, Germany) for an aerial photograph of the
Karlsruhe Palace
Dirk vom Stein and Thomas Winkel (Inspectomation GmbH, Mannheim, Germany) for
example images showing the inspection of casting cores and brake discs as well as tele-
centric images
Dr. Marco Kruse (Institute of Industrial Information Technology IIIT, Karlsruhe Institute
of Technology KIT) for the image of the checkerboard-shadow illusion as well as for ex-
ample images concerning the restoration of uniform motion blur
Mario Lietz (IIIT, KIT) for example images showing the division by a reference image
Dr. Ioana Gheţa (Vision and Fusion Laboratory IES, Institute for Anthropomatics, Karls-
ruhe Institute of Technology) for examples concerning the analysis of spectral image se-
ries
Dr. Robin Gruna (IES, KIT) for images recorded with inverse illumination
Dr. Matthias Michelsburg (IIIT, KIT) and Dr. Robin Gruna for hyperspectral images of
food
Thomas Stephan (IES, KIT) for images recorded with a light-field camera and for exam-
ples showing the restoration of participating media
Dr. Matthias Hartrumpf (Fraunhofer Institute for Optronics, System Technologies and
Image Exploitation IOSB, Karlsruhe, Germany) for example images showing photoelas-
ticity and the inspection of glass preforms
Prof. Dr. Michael Heizmann (Fraunhofer IOSB) for examples of texture analysis as well
as shape from shading
Christian Negara (Fraunhofer IOSB) for examples of the graph cut method
Johannes Pallauf (IIIT, KIT) for the example of image restoration for uniform motion blur
Günter Saur and Wolfgang Roller (Fraunhofer IOSB) for supplying TerraSAR-X images
Günter Struck and Dr. Kai-Uwe Vieth (Fraunhofer IOSB) for examples of fluorescence
spectroscopy
Chen-Ko Sung (Fraunhofer IOSB) for example images of inspection based on flatbed
scanners
Dr. Stefan Werling (Fraunhofer IOSB) for deflectometric images
Dr. Alexander Schwarz and Martina Richter (Fraunhofer IOSB) for images showing an
example BRDF measurement
Dr. Miro Taphanel (IES, KIT) for images concerning the CCT sensor
Johannes Meyer (IES, KIT) for example images acquired with a Schlieren setup
Dr. Yaokun Zhang (IPR, KIT) and Johannes Meyer (IES, KIT) for example OCT images

Special thanks go to Johannes Meyer (IES, KIT) for the incorporation of numerous exten-
sions into the German version of this book (‘Automatische Sichtprüfung’) and for translat-
ing it into English. A big contribution to the contents presented in this book has been made
especially by Dr. Stefan Werling, Dr. Christoph Lindner, Dr. Ana Pérez Grassi, Dr. Robin
Gruna, Sebastian Höfer and Dr. Michael Teutsch by assisting the mentioned lectures. The
authors would like to also thank all the students who were involved in creating images and
diagrams. In addition, numerous students have sent in valuable suggestions for improving
the book’s didactic component.

Special thanks are directed to Andrey Belkin, Yvonne Fischer, Peter Frühberger, Dr.
Robin Gruna, Jan Hendrik Hammer, Pilar Hernández Mesa, Christian Herrmann, Sebas-
tian Höfer, Chettapong Janya-Anurak, Mahsa Mohammadi Kaji, Dr. Marco Kruse, Achim
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Kuwertz, Ding Luo, Thomas Nürnberg, Dr. Alexey Pak, Johannes Pallauf, Julius Pfrommer,
Chengchao Qu, Matthias Richter, Masoud Roschani, Lars Sommer, Thomas Stephan, Dr.
Miro Taphanel, Dr. Michael Teutsch, Sebastian Vater, Markus Vogelbacher, Dr. Stefan Wer-
ling, Philipp Woock and Mathias Ziebarth for valuable comments and proofreading of the
manuscript. Finally we would like to thank our publisher Springer for the excellent cooper-
ation.

Karlsruhe, Summer 2015 Jürgen Beyerer
Fernando Puente León

Christian Frese
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1 Introduction
Machine vision and automated visual inspection are rapidly finding their way into indus-
trial measurement and quality control in the technical and engineering sectors. This de-
velopment especially benefits from increasingly powerful computers and reasonably priced
camera components.

This book provides insight into the fascinating and very up-to-date topic of automated
visual inspection and image processing. An extensive content is presented in an easily com-
prehensible way and is explained using various examples. No particular previous knowl-
edge is required.

1.11.1 Visual inspection
Nearly all industrially produced goods are more or less intensively visually inspected. For-
merly, this task was either carried out by special personnel, appropriately trained for this,
or by normal employees in addition to their usual duty. But ever since the 1970s, automated
visual inspection systems have continued to spread in industry and related sectors, with
double-digit percentage annual growth for decades.

Visual inspection means inspecting by looking. On the one hand, visual inspection is
supposed to ensure specific quality characteristics of intermediate or final goods, and on the
other hand, it can be used to detect and analyze variations of a manufacturing process.

The individual tasks of visual inspection can be divided into the following inspection
categories:

Completeness: Recognition of known objects, patterns
– e.g., at an assembly site: are all components assembled?
– e.g., charging: is the package filled completely?
– e.g., assembly of circuit boards: have all components been placed?

Correctness of position and orientation
– e.g., at an assembly site: are all components at the right place and oriented correctly?

Persistence of dimensions, shape and angles of components and tools
– determination of measurements
– are all necessary specifications and tolerance agreements fulfilled?

Surface condition, texture
– is the surface condition as intended?
– is the surface homogeneous and does it meet the specific tolerance limits?

Optical properties
– color
– reflection behavior

Identification of materials
– e.g., automated sorting of different synthetic materials
– e.g., detecting and removing impurities from bulk goods streams (food, synthetic

granulates, etc.)

Defects: Both aesthetic and technical defects:
– e.g., detection of varnish runs on varnished surface (aesthetic defect)
– e.g., detection of scratches on optical components (technical defect)

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_1,
© Springer-Verlag Berlin Heidelberg 2016
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Although the human visual system, consisting of eyes and brain, has numerous astonishing
capabilities which nowadays cannot be provided by a machine with a competitive perfor-
mance, visual inspection carried out by humans comes with some severe disadvantages.
Among others, manual visual inspection is:

monotonous,
laborious,
fatiguing,
subjective,
lacking in good reproducibility,
costly to document in detail,
too slow in many cases,
expensive.

The automation of visual inspection promises relief. An adequate automated system works
without fatigue, yields impartial and reproducible results, and allows a complete and de-
tailed documentation.

It is not always reasonable to aim for a fully automated solution. Many successfully im-
plemented visual inspection systems have technically solved the part of the task that can
well be automated. Everything else, particularly what can be done especially well by a hu-
man, will be done manually and thus, a human–computer system is established, combining
the strengths of technology with those of a human in a symbiotic way.

Possible examples are automated visual inspection systems detecting defects which are
configured to be relatively sensitive, in order to ensure a high detection rate (i.e., the count
of detected defects in relation to the actual amount of occurring defects), so that as few
defects as possible remain undetected. Such a high detection sensitivity will inevitably lead
to a high rate of false alarms (i.e., the detection of defects which actually are not present),
which would lead to many discarded test objects. If those test objects that were potentially
affected by a defect later undergo manual visual inspection by a human, a hybrid visual
inspection system with different advantages has been created. On the one hand, the number
of test objects which have to be inspected by a human are significantly reduced by employing
the automated pretest, which will save labor costs. On the other hand, such a two-step
procedure and the complementary strengths of technology and humans usually leads to a
significantly increased quality of inspection.

Table 1.1 compares humans and technical visual inspection systems with respect to their
sensor systems and data processing [11].

In contrast to technical visual inspection systems, the human visual system can easily
be fooled when viewing optical illusions, which shows directly that the two systems work
quite differently. The following example, which goes back to Adelson, shows the difficulties
of humans in absolutely capturing two colors, here, two shades of gray [1].

For a human observer, it is hard to believe that the zones ‘A’ and ‘B’ of the checkerboard
in Fig. 1.1 have the same gray value. But it can be verified quickly by covering the figure with
a consistently colored piece of paper having holes at exactly the positions of the respective
zones.

The checkerboard’s digital image is represented by a matrix of gray values. A technical
visual system would just compare the values corresponding to the two zones, notice their
equality, and would not be fooled.
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Table 1.1. Comparison of humans and machines with respect to their special abilities concerning visual inspection.

Human visual system (eyes and
brain)

Technical visual inspection
system (image device and
computer)

Sensors: – Low optical resolution;
– Intensity values and dimensions

cannot be captured absolutely
as there is no geometric or
radiometric standard;

– Limited to visible light;
– Spectral perception with three

channels.

– High optical resolution;
– Absolute intensity values

and dimensions can be
captured;

– Light outside of the visible
part of the spectrum can be
used;

– Multichannel spectral reso-
lution is possible.

Image processing
and analysis:

– Huge amount of parallel, highly
interconnected, and slow neurons;

– ‘Programmed’ by learning from
examples.

– One or more powerful
processors;

– Algorithms usually need to
be explicitly designed.

Special
abilities:

– Experience and background
knowledge;

– Adaptability and learning apti-
tude;

– Active vision by immediately
varying the inspection setup
(visual control loop);

– Enormous cognitive capabilities;
– Intuition.

– Precise calculations;
– High processing speed;
– Lossless saving of large

amounts of data
(‘photographic memory’).

A

B

A

B

Figure 1.1. Checkered shadow illusion, adapted from Adelson [1]. The right image proves that zones ‘A’ and ‘B’
have the same gray value.
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Furthermore, humans do not have a ‘photographic memory’ for hues and color intensi-
ties. For example, if one wants to do a mending job and thus needs to buy the same color in
which the object to be repaired is painted, one will certainly fail and buy the wrong color if
one only uses one’s memory of the desired color.

With a technical system, hues and color intensities can be quantitatively compared with-
out any difficulty if the corresponding images have been acquired under the same condi-
tions.

Not only can the human visual system be fooled in radiometric terms, but also in geo-
metric terms, as it is illustrated in Fig. 1.2. Further optical illusions can be found, e.g., in
[1–3].

Finally, Figs. 1.3 and 1.4 show the enormous cognitive capabilities of the human visual
system [10].

(a) (b)

Figure 1.2. Optical illusions: (a) It is hard to believe that the horizontal lines are parallel and straight. (b) The
circles in the middle of the two rosettes are equally sized [14]. In a digital image, this can easily be calculated by a
computer, which cannot be fooled.

(a) (b)

Figure 1.3. Nontrivial visual interpretation tasks which can be easily done by humans: (a) Without any hesitation,
a human can recognize the character ‘5’. A computer would have to first discriminate between the two textures,
recognize connected areas, and then classify the dotted area as a ‘5’ by comparing it with known patterns. (b) Hu-
mans, thanks to their cognitive capabilities and intuition, come to recognize a triangle partially covering all three
circles.
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Figure 1.4. A human can spontaneously recognize the flaw in the
textile patch. For an automated recognition, the anomaly has to be
adequately described in order to formulate a computational detec-
tion method (source: Brodatz [7]).

Those examples clearly show that a human solves certain visual tasks quickly and with-
out any problems. However, a human does not know how it is actually being done. Humans
are not conscious of the underlying process: they are not aware of their algorithms.

For the development of technical visual inspection systems, usually a concrete coding is
necessary. A common misconception in the practical field of automated visual inspection is
the idea that if a problem is easy to solve for a human, it has to be particularly easy to create
equivalent automated programs.

Recent approaches try to avoid the explicit formulation of algorithms by employing ma-
chine learning methods [9, 11, 15].

A human inspects actively. If one believes that one is not able to see well enough what
one is being looking for while examining a test object, a human will more or less specifically
vary their ‘image acquisition’ by changing the perspective and/or the illumination in order
to optimize their view of the current task, or will use other optical means (mirrors, magni-
fiers, etc.). The technical emulation of this process is called ‘active vision’ or ‘active visual
inspection’ in terms of this book. Important examples include robot-based visual inspection
systems that make use of a robot in order to systematically change the image acquisition
configuration of the test object, the illumination, and the camera [4, 8, 12, 16].

1.21.2 Optical capturing of test objects
Of course, when using automated visual inspection, only those object properties can be in-
spected that can be optically acquired. Such properties can be divided into different classes.
In addition, light has various parameters, which are altered by the test object in a character-
istic way, so that they can be used to draw a conclusion about the object’s properties. This
section will sketch which of a test object’s properties can be acquired using which optical
method. This topic will be thoroughly covered in later chapters, as soon as the required
terms and formalisms have been introduced.

Light, emitted by a light source, illuminates the test object. Because of the interaction
with the test object, the irradiated light will be partly absorbed, partly altered, partly re-
flected, and partly dispersed. By receiving a part of the light sent off by the test object with
an optical observing instrument (e.g., a camera), data can be acquired that contains informa-
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light source
+ optics

Test object
Microscopic

shape:
roughness

Macroscopic
shape

by the test object

optics + sensor
+ A/D converter

Figure 1.5. Optically acquiring information about a test object.

tion about the test object (Fig. 1.5). The following image processing methods try to regain
that information.

In terms of information technology, the light emitted by a light source can be seen as a
carrier signal that gets modulated by placing the test object in its path. Thus, the modulated
light contains information about the test object. This modulation of the information can be
based on various physical phenomena. This is why the light may encode the information
about the test object in different ways. In a manner of speaking, those physical phenomena
create diverse optical information channels:

Distribution of the light intensity with respect to position and orientation;
Spectrum (distribution of the intensity with respect to the wavelength);
Polarization (the distribution of the directions of the electric field vectors perpendicular
to the direction of propagation of the light);
Coherence (the light wave’s temporal and spatial relations);
Phase (the current state of the oscillation in the direction of propagation);
Time dependence (the dependence of the value of the intensity and other parameters on
time).

These physical parameters of the light will be covered in detail in Chap. 2.
The irradiated light is influenced by the spatial shape and effective optical material prop-

erties of the test object. This is why one can only expect to get information about the test
object’s shape and optical properties by evaluating the observed light.

When testing transparent or partially transparent objects, which are permeable to light,
the interaction not only takes place on the surface of the object but also inside the object.
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However, opaque objects, which are not transparent and where the interaction with the light
mainly takes place on the object’s surface, play an important role in automated visual inspec-
tion.

The interaction of the test object and the irradiated light can pragmatically be described
by a suitable reflection function, which can cover more or less the physical properties with
respect to the relevant phenomena. Basically, the irradiated light is multiplicatively related
to the reflection function. The result is a description of the emission of the modified light
into the surrounding space. Depending on the definition of such a reflection function, only
optical material properties or additional shape-based effects, like a dispersion of the light
caused by the surface’s roughness, are captured.

Chapter 4 will cover models for reflectance functions. Image acquisition methods for
acquiring an object’s properties will discussed in Chap. 7.

1.31.3 Formation and definition of an image
The task of imaging each of the test object’s points of interest to just a single point on the sen-
sor is, for the purpose of automated visual inspection, solved by the imaging optics (e.g., the
camera lenses). This means that every divergent beam of light (bundle of rays) coming from
a test object point G should be converted into a convergent beam focused at a single point B
on the sensor by the imaging optics (Fig. 1.6). If imaging optics yield such a point-to-point
correspondence B′ = A{G}, the imaging is called sharp (see Chap. 3). In the image plane,
the convergent beams form an image of the observed object space, which can be viewed
using a screen, for example.

A digital camera uses a two-dimensional sensor placed in the image plane. The transfor-
mation of the irradiated light on the sensor into a digital signal is performed on the sensor
and by the downstream electronic components (Chap. 6). This two-dimensional signal rep-
resents the image of the observed objects.

Sensor

Imaging
optics

Test object

Light
source

Image 
signal

Figure 1.6. The imaging optics establish a correspondence between the points of the object and the image points
located on the sensor.
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1.1 Definition 1.1: Image
Mathematically speaking, an image can be modeled as a function

g : Ωg → RQ , Ωg ⊆ R2 (1.1)

assigning an image value g to every position x within the image:

g(x) =

⎛⎜⎜⎜⎜⎝
g1(x)

g2(x)
...

gQ(x)

⎞⎟⎟⎟⎟⎠ with x =

(
x

y

)
. (1.2)

In general, the function g is vectorial. Usually, its domain is rectangular and can thus be
written as a Cartesian product of two intervals, Ωg = [0,M) × [0, N). The dimension Q of
the space of the image values can be interpreted as the number of image channels. �

Example 1.1 (Gray-scale image): A gray-scale image has only one channel (Q = 1) and
g(x) = g(x) represents the gray value at position x.

Distance and topographical data can also be considered as an image, with a one-
dimensional domain, and are usually called range images. In this case, g(x) represents
the distance or the height of the relief at point x.

Example 1.2 (Color image): The usual color image has three channels (Q = 3). For example,
g1(x) represents the red component, g2(x) the green component, and g3(x) the blue com-
ponent at the point x. Color images will be discussed in detail in Chap. 5.

But even higher dimensions can be used to represent the spectrum of visible and invis-
ible light, leading to a higher spectral resolution. In this case, each of the Q > 3 channels
corresponds to a certain band of the spectrum. Such an image is called a multispectral
image. For large Q (usually in three digits) and the resulting fine spectral resolution, the
image is a so-called hyperspectral image.

For the computational processing of an image, what is used is not the continuous image
signal g(x) but a digital signal gmn that is the result of spatially sampling g(x). Furthermore,
the image values are quantized into K steps, resulting in a digital signal gmn with

(m,n) ∈ {0, 1, 2, . . .M − 1} × {0, 1, 2, . . . , N − 1} ⊂ Z2 ,

gmn ∈ {0, 1, 2, . . . ,K − 1}Q ⊆ ZQ .
(1.3)

These M × N discrete image points are called pixels (picture elements). The mathematical
description of continuous and discrete image signals will be covered in detail in Chap. 8.

1.4 1.4 Machine vision
Typical machine vision systems consist of the structure shown in Fig. 1.7, which is to be read
bottom-up. This figure is deliberately shaped like a pyramid based on the process of image
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Image acquisition:
illumination, test object, optics + sensor

Digitization:
sampling, quantizing, storing

Preprocessing:
image improvement, 

Compression and extraction of information:
   segmentation, feature extraction 

Decision:

interpretation

Action

Electrical signal
(analog image) 

Raw data
(digital image)

Improved data
(digital image)

Extracts

Predictions

Figure 1.7. The processing chain of machine vision systems.

acquisition. The suitability and quality of this level is crucial for the whole chain of visual
inspection tasks.

The amount and quality of information that is contained in the acquired image data de-
pends entirely on the step of image acquisition. Information that is not acquired during this
step can be recovered only with difficulty, or even not at all, by subsequent image process-
ing steps, regardless of how much effort is spent on them. Many visual inspection systems
failing in practice did not adhere to this simple rule.

The light that is emitted by the light source interacts with the test object, passes through
the imaging optics, and finally reaches the sensor, where it is transformed into an electrical
signal. This analog signal, which is usually an electrical voltage, is discretized and limited
with respect to space and amplitude. In such a representation, it can be saved as a dig-
ital image and processed by a computer. But besides the information relevant for visual
inspection, this raw data usually contains disturbing and irrelevant components, such as
noise, inhomogeneities, and so on. The subsequent image restoration process tries to retain
the relevant information and compensate for the irrelevant signal components. As a result,
improved image data is obtained, which is separated into meaningful regions (segmenta-
tion, see Chap. 11) and/or is processed so as to extract the parameters relevant for the task
(features). Finally, decisions can be made on the basis of this condensed information: such
decisions can be detection (e.g., of a defect), classification (e.g., of different objects) or in-
terpretation (e.g., inference of production parameters), depending on the visual inspection
task.

A subsequent action can then be taken, depending on and adapted to that decision, such
as discarding or keeping the test object, or selectively altering production parameters, for
example.

It cannot be stressed sufficiently often that a well-considered image acquisition system
can have an enormous impact on the capabilities of an automated visual inspection system.
The huge amount of optical and geometrical degrees of freedom of the image acquisition
setup (light source, test object, optics, and sensors) offers a huge design space whose oppor-
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(a) (b) (c)

Figure 1.8. Inspection of the plastic lens of a rain sensor used for controlling windshield wipers: (a) Comparison of
the rain sensor’s size with the size of a one-cent coin. (b) Macro-image of the lens with homogeneous illumination.
(c) A deformed stripe pattern reflected by the lens.

tunities, however, can only be systematically exploited with the necessary knowledge and a
concept adequately adjusted to the problem at hand. Effort spent at this stage usually turns
out to be a good investment in the final capabilities of the visual inspection system. For
some tasks, it is even possible to obtain images during the image acquisition phase that are
so expressive and easily interpretable, that the subsequent image processing steps are nearly
trivial. The following three examples will illustrate this.

Example 1.3 (Plastic lens): Figure 1.8(a) shows the plastic optics of an infrared rain sensor
used for controlling windshield wipers in automobiles. There is a transfer-molded lens
mounted on top, which has a little depression caused by cooling; a defect which has to
be detected.

Figure 1.8(b) shows a macro-image of the lens region with spatially homogeneous
illumination. With some effort, one might spot the defect on the right side. As the dust
particles are visible as prominently as the defect, this image would not be suitable for a
reliably working automated visual inspection.

With the so-called deflectometric image acquisition (see Sec. 7.3.5) where the image of
a stripe pattern mirrored by the lens is observed, the defect is clearly visible (Fig. 1.8(c)).
The depression results in an increased contrast, caused by a distinct local deformation of
the stripe pattern, which constitutes the foundation for a very reliable automated defect
detection.

Example 1.4 (Brake disks): Nowadays, the brake disks of most automobiles are internally
ventilated for cooling reasons, see Fig. 1.9(a). Brake disks are usually made out of gray
iron. The cavities are formed by sand cores whose fixation is destroyed after the metal’s
solidification, so that the sand can be removed from the cavities. These sand cores are
more or less breakable. Broken sand cores result in partially or completely closed venti-
lation channels, rendering a brake disk unusable. Quite often, the castings are manually
or visually inspected by humans. Because of the radially placed channels, the worker
has to rotate the brake disk in order to check whether all channels are free. Considering
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(a) (b)

(c)

Figure 1.9. Automated visual inspection of the ventilation channels of a brake disk: (a) Sketch of an internally
ventilated brake disk with radially arranged ventilation channels; (b) Result of the image acquisition; (c) The section
of the acquired image that is relevant for the inspection transformed into polar coordinates (source: inspectomation
GmbH).

that such castings may have a weight of between 15 and 50 kg and are produced in one-
second cycles, it becomes clear that this duty puts a heavy burden on a human worker.

This inspection task can be automated very well. In this example, a method is em-
ployed that yields an extremely high-contrast image that can be used to simultaneously
check whether all ventilation channels are free. This is achieved by transforming the
conic bunch of the camera’s rays of sight into a radial bunch of beams using a cone-
shaped mirror, which offers a view through all channels; for details see Sec. 7.3.10. The
image acquisition results in a binary image (black and white image), which makes the
further analysis nearly trivial and thus extremely reliable; see Fig. 1.9(b).

As this image only contains useful information along a narrow circular ring, that
structure can be cut out and transformed into a polar coordinate system, where it will
have a stripe-like shape and can hence be visualized on a display in a space-efficient
way; see Fig. 1.9(c).

Example 1.5 (Puncture needle): For the drop-wise blood collection from a fingertip for rapid
medical tests, puncture needles with a facetedly sharpened tip are used; see Fig. 1.10. In
the context of quality control, the needle’s facets (planar, smoothened surfaces) should be
inspected. If that task is to be automated, the borders between the different facets in the
image have to be found computationally. When using an image like Fig. 1.10, this will
only be achievable if one accepts certain errors, as the left and upper facet appear to be
almost identical.

The images of Fig. 1.11 show that this can be done considerably better [13]. By using
nearly parallel (collimated) light coming from certain directions, the single facets and the
needle’s contour are accentuated, which makes the successive image analysis quite easy
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Figure 1.10. Puncture needle for blood collection with a faceted tip. The needle’s diameter is approximately 0.8 mm.

(a) (b) (c)

(d) (e) (f) (g)

Figure 1.11. Tip of a puncture needle illuminated with parallel light coming from different directions with different
intensities: (a)–(c) Images on which the illumination direction was chosen in such a way that the light was mainly
directly reflected into the camera by one of the facets. Only the corresponding facet appears bright. (d)–(f) Ad-
ditionally, the camera can be overdriven by increasing the intensity, yielding nearly binary images of the facets,
which are well-suited for measuring the facets’ geometry. (g) Under back-light conditions, the needle is visible as a
high-contrast silhouette.
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(a) (b)

Figure 1.12. Analysis of the images from Fig. 1.11: (a) Contours of the facets derived from the images; (b) Synthesized
image out of the original image series. The texture of every facet shows high-contrast.

and promises reliable results. It is clear that given such an image series, one can easily
synthesize expressive intermediate results, as shown in Fig. 1.12, or one can perform the
measurements of the extracted contours of the test object.

These three examples show quite clearly the potential of an elaborated image acquisition
that is adapted to the concrete problem. In contrast to the other sectors, one has a huge
influence on the image acquisition process in the domain of automated visual inspection.
When composing automated visual inspection systems, one usually has many degrees of
freedom in designing the setup of the illumination, the test object, the optics, and the sensors.
In order to be able to use these in a creative way, a solid understanding of the relevant
physical background is needed, of course.

It is not always possible to acquire all the necessary aspects for solving a visual inspec-
tion task in a single image. If enough inspection time is available, multiple images can be
acquired while selectively varying the image acquisition setup. In an extreme case, one
could use an optimal image recording setup for each single aspect of interest and combine
the analysis of the single images into an overall test result. But in most cases, the benefits
of such brute force methods are at odds with the economic, temporal, and spatial restric-
tions on the visual inspection system, so that usually the images have to be captured, which
simultaneously cover multiple aspects of the visual inspection task in equal quality.

1.51.5 Practical approach for performing machine vision projects
Concerning a practical machine vision project, there are numerous questions which are im-
portant for a reliably functioning system, as well as for a successful project execution be-
tween the user (customer) and the system supplier, which cannot be covered within the
scope of this book.
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How is the machine vision task specified? A specification sheet usually answers ques-
tions like ‘what’ and ‘why.’ On that foundation, the so-called functional specifications are
derived, describing ‘how’ and ‘by what means’ the task is to be solved. Both documents can
be written collaboratively, however, usually the specification sheet is the concern of the user
and the functional specifications belong to the domain of the system supplier.

There are important questions concerning the selection of the examples (the training set
and the test sets) based on which the system is to be developed and tested later on and, of
course, the required performance of the system for being acceptable to the customer. A good
overview of everything that should be kept in mind when developing an automated visual
inspection system can be found in [5, 6, 17, 18].
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2 Light

2.12.1 The phenomenon of light
Optical image acquisition and measurement methods rely on the properties of light. Light
can be described physically in two very different ways: as a wave or as a particle. Depend-
ing on the concrete physical scenario in question, the one or the other perspective is more
useful for describing an observed effect. Both of them are legitimate, but neither explains all
observed phenomena. This is often referred to as the wave–particle duality.1

In the particle model, light consists of photons (light quanta). In a vacuum, these mass-
less light particles move in straight lines with a constant velocity of c ≈ 300,000 km/s. Matter
can absorb photons and absorb their energy; conversely, energy can be emitted in the form
of light. An effect which can only be explained by the particle model is quantization: for a
fixed wavelength, there exists a minimum amount of energy below which light of a certain
wavelength cannot fall. That amount corresponds to the energy of a single photon. The
quantizing of light and its consequences are covered in Sec. 2.3. The model of electromag-
netic waves describes visible, as well as invisible light, as a wave spreading in space. The
wave is characterized by its wavelength λ or, alternatively, by its frequency ν, with

ν =
c

λ
. (2.1)

The wavelength of light visible to humans is in the range of 380 nm up to 780 nm. In the
particle model, different frequencies correspond to different energies:

E = h ν (2.2)

with Planck’s constant h ≈ 6.626 · 10−34 Js, which is a fundamental physical constant.
Wave-optical effects usually occur when the size of the present objects is close to the wave-
length of the light, as can be the case for suitably narrow slits, for example. Interference and
diffraction are two prominent examples of phenomena that can only be explained by the
wave model. They will be covered in Sec. 2.2. Section 7.3.16 describes optical measurement
methods which rely on the wave characteristics of light.

At many points of this book, the conditions of geometric optics are assumed to be sat-
isfied, so that the following simplification can be applied: light is described by rays and
bundles of rays which propagate in a straight line. When hitting objects, they get dispersed,
refracted, or reflected. Wave-optical effects can be neglected in this case. However, this as-
sumption only holds as long as all relevant geometrical structures, such as the objects and
object distances, are significantly larger than the light’s wavelength. The consequences of
wave-optical effects on the imaging systems covered here will be analyzed in Sec. 2.2.6.1.

2.1.1 The electromagnetic spectrum
Visible light accounts for only a small part of the whole electromagnetic spectrum (see
Fig. 2.1). It covers the wavelength range of about 380 nm to 780 nm [39]. Although auto-

1A unified treatment is possible within the theory of quantum electrodynamics, which is beyond
the scope of this book.
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Figure 2.1. The electromagnetic spectrum (μW = microwaves, THz = Terahertz-radiation, IR = infrared, UV = ultra-
violet).

mated visual inspection and image processing are not limited to the visible spectrum, it is
crucial that suitable light sources and sensors are available (see Sec. 2.7, and Chap. 6 and
Chap. 7).

Depending on the excitation energies of the possible vibrations of the molecule and
transfers of inner and outer electrons, photons can be emitted or absorbed in the corre-
sponding spectral range (Fig. 2.1). A photon’s energy is specified in eV. One electron volt,
1 eV ≈ 1.602 · 10−19 J, is the kinetic energy received by an electron passing through an elec-
tric field with a potential difference of 1 V.

2.2 2.2 Light as an electromagnetic wave

2.2.1 Maxwell’s equations
Maxwell’s equations are a set of linear partial differential equations describing light and all
other electromagnetic phenomena in a macroscopic way with respect to SI units [32]:

rotH = J+
∂D

∂t
, (2.3)

rotE = −∂B

∂t
, (2.4)

divB = 0 , (2.5)

divD = ρ . (2.6)
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All electromagnetic phenomena are solutions of those equations under certain initial and
boundary conditions.2

Maxwell’s equations cover the magnetic field strength H in units of Am−1, the electric
field strength E in units of Vm−1, the magnetic flux density B in units of T = Vsm−2, and the
electric flux density D in units of Asm−2. The vector J denotes the electric current density
specified in Am−2, and ρ is the electric charge density specified in Asm−3. The field strengths
and flux densities are vectors in a three-dimensional space: H = (Hx, Hy, Hz)

T; similarly,
this also applies for the other quantities.

The first of Maxwell’s equations, (2.3), shows that both an electric current and a so-called
displacement current caused by a change of the electric flux density can induce a magnetic
field H. Conversely, an electric field E is induced by a time-varying magnetic flux density B,
cf. (2.4). The third equation, (2.5), states that magnetic field lines do not come from so-called
monopoles, but form closed curves. Hence, there are no magnetic charges. Finally, Equation
(2.6) says that electric charges ρ are the sources of an electric field E [35]. The field strengths,
flux densities, and current densities are related as follows:

D = εE , (2.9)

B = μH , (2.10)

J = σE . (2.11)

The permittivity ε, the magnetic permeability μ, and the specific electrical conductance σ are
properties of the medium containing the field.3 The specific conductance is the reciprocal
of the specific resistance. Materials with σ ≈ 0 do not conduct any current. They are called
isolators or dielectrics. A material’s permittivity or dielectric constant ε can be expressed as
the product of the vacuum permittivity ε0 and the material’s relative permittivity εr:

ε = ε0 εr . (2.12)

2This formulation uses the vectorial differential operators, curl and divergence, which are defined
as follows for a vector-valued function F : R3 → R3:

rotF :=

⎛
⎜⎝

∂Fz
∂y

− ∂Fy

∂z
∂Fx
∂z

− ∂Fz
∂x

∂Fy

∂x
− ∂Fx

∂y

⎞
⎟⎠ , (2.7)

divF :=
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
. (2.8)

3In anisotropic media, tensors have to be used instead of the scalar coefficients ε, μ and σ [17].
For high field strengths, the linear equations (2.9) and (2.10) are no longer valid. In terms of describing
light transport, such high electric field strengths are relevant for focused laser light, for example [20]. In
some materials, also lower field strengths might cause saturation effects, leading to nonlinear behavior
which can be technically exploited for frequency multiplication of light, for example. Nd:YAG lasers
use this principle to transform infrared light of the wavelength λ = 1064 nm into visible green light
with λ = 532 nm (see Sec. 2.7.4).
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The permittivity of the vacuum4 is

ε0 ≈ 8.854 · 10−12 As

Vm
. (2.13)

Similarly, the magnetic permeability μ can be expressed as a product of the vacuum perme-
ability μ0 and the relative permeability μr of the material:

μ = μ0 μr . (2.14)

For a vacuum, μr = 1 and εr = 1. The vacuum permeability5 is given by

μ0 = 4π · 10−7 Vs

Am
. (2.15)

The relative permeability depends on whether the material is magnetic or not. For non-
magnetic materials, μr ≈ 1; for magnetic substances it is possible that μr � 1.

2.2.1.1 Wave equations of the electric field
Electromagnetic waves in a non-conducting, infinitely wide, and homogeneous medium will
now be considered. Here, σ = 0 (dielectric), ε and μ are constant with respect to the position
x. There are no free charge carriers, implying ρ = 0. The elimination of H, B and D from
Maxwell’s equations (2.3) to (2.6) yields the wave equation:

2.1 Theorem 2.1: Wave equation
The wave equation of the electric field in a dielectric, infinitely spread, homogeneous
medium is given by6

ΔE = ε μ
∂2E

∂t2
. (2.17)

Its simplest solution is

E(x, t) = E e1 w

(
t− eT3 x

v

)
(2.18)

with7

v2 =
1

ε μ
. (2.19)

4The constant ε0 is also referred to as the electric field constant.
5The constant μ0 is also referred to as the magnetic field constant.
6With the vectorial Laplace operator Δ:

ΔF :=

⎛
⎜⎜⎝

∂2Fx
∂x2 + ∂2Fx

∂y2 + ∂2Fx
∂z2

∂2Fy

∂x2 +
∂2Fy

∂y2 +
∂2Fy

∂z2

∂2Fz
∂x2 + ∂2Fz

∂y2 + ∂2Fz
∂z2

⎞
⎟⎟⎠ . (2.16)

7In many books the argument of w in (2.18) is expressed as t ± eT3 x

v
. However, the sign can be

included in the direction vector e3, which can be arbitrarily chosen.
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Here, w( · ) is an arbitrary, twice differentiable function, E is the amplitude8 and ei ∈ R3,
i ∈ {1, 2, 3} are unit vectors defining a rectangular coordinate system:

‖ei‖ = 1 , eTi ek = δki , e1 × e2 = e3 . (2.20)

Inserting this electric field into Maxwell’s equations yields the following magnetic field
strength:

H(x, t) =
√

ε
μ E e2 w

(
t− eT3 x

v

)
. (2.21)

The factor Z :=
√

μ
ε is called the wave impedance of the medium. In vacuum, Z0 =

√
μ0

ε0
=

376.73 Ω. �

The solution given by (2.18) and (2.21) describes a plane transverse electromagnetic
wave. The meaning of this statement is as follows.

The only variable factor occurring in the wave function is the function w( · ). Its argument
t− eT

3 x
v is called the phase or propagator of the electromagnetic wave. The function w( · ) has

a certain value w0, whenever the propagator is constant:

t− eT3 x

v
= const. ⇒ w0 = w

(
t− eT3 x

v

)
= const. (2.22)

As t− eT
3 x
v = const. is the equation of a plane, a plane wave is at hand.

Differentiating (2.22) with respect to the time t yields

v = eT3 ẋ ⇔ ẋ = v e3 , (2.23)

where ẋ := d
dtx denotes the derivative of the vector x with respect to time. According to the

last equation, the wave’s propagation velocity is v e3; this is also called the phase velocity.9

According to (2.19) the velocity is v = 1√
εμ and the propagation direction of the wave is

given by the unit vector e3.
The velocity of light waves propagating through a medium can be expressed as follows,

using (2.12) and (2.14):

v =
1
√
εμ

=
1

√
ε0 εr μ0 μr

=
1

√
ε0 μ0

1
√
εr μr

=
c

n
, (2.24)

with

c =
1

√
ε0 μ0

= 299,792,458m/s (2.25)

8The amplitude is the maximum deflection of a wave function with respect to the arithmetic mean.
9The phase velocity describes the velocity of the propagation of the phase front (the sets of positions

with the same phase). However, the transport of energy and information through a wave is described
by another kind of velocity, the so-called group velocity, which is identical to the phase velocity in
special cases.
In example 8.28 in Sec. 8.4, the Fourier transform is used to define and explain the group velocity.
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denoting the speed of light in vacuum [20], and n denoting the index of refraction of the
medium,

n :=
√
εr μr (2.26)

The index of refraction indicates to what extent the light propagates more slowly in the
medium than in vacuum. The light’s wavelength in the medium is λ0

n , where λ0 is its wave-
length in vacuum.
With (2.18), (2.21) and (2.20), the following holds for electromagnetic waves:

E ‖ e1 ⊥ e3 , (2.27)

H ‖ e2 ⊥ e3 . (2.28)

Hence both the electric and the magnetic field strength are perpendicular to the propagation
direction e3. This property of electromagnetic waves is called transversality. If an electro-
magnetic wave is spatially strictly constricted, as in a single-mode fiber10 for example, the
exclusive transversality is no longer guaranteed and the solutions to the wave equation will
also contain longitudinal field components.

In this book, what will be used for explaining optical phenomena is mainly geomet-
ric optics, in terms of ‘light rays’ (see Sec. 2.4 and Chap. 3). Light rays are an idealized
and demonstrative concept for describing the spatial propagation of electromagnetic waves.
They propagate perpendicularly to the surfaces of constant phase of the electromagnetic
wave.

Example 2.1 (Plane wave): A plane wave w(t − eT
3 x
v ) propagates rectilinearly in space. The

light rays propagate parallel to the propagation direction e3. The wave fronts, which
form the surfaces of constant phase, are perpendicular to the direction of propagation,
see Fig. 2.2(a).

Example 2.2 (Spherical waves): Spherical waves are also solutions of the wave equation (2.17).
Then, w( · ) in Equation (2.18) turns into

1

r
w

(
t− xTer

v

)
=

1

r
w
(
t− r

v

)
, (2.29)

with r = ‖x‖ =
√
x2 + y2 + z2. In contrast to a plane wave, the propagation direction

er =
x

‖x‖ (2.30)

depends on the position. Originating from a common point of origin, the light rays
spread in all spatial directions. The surfaces of constant phase are concentric spheres
around that point, Fig. 2.2(b). The field strength decreases proportionally to 1

r , so that

10In a single-mode fiber, only the fundamental mode, that is, the mode with the lowest frequency,
is propagable. A mode is a field corresponding to an eigenfunction of the boundary value problem of
Maxwell’s equations. The diameter of the core of a single-mode fiber, which carries the wave, is only
a few multiples of the light’s wavelength. For higher diameters, multiple wave modes can propagate
simultaneously. As different modes propagate with different velocities, single-mode fibers yield the
lowest signal distortions for optical information transfer [25].



2.2 Light as an electromagnetic wave 29

Light rays

Surfaces of constant phase
(wave fronts)

e3

(a)

Light
rays

Surfaces of constant 
phase 

(b)

Figure 2.2. Relation between the wave model and the particle model of light: (a) A plane wave, (b) A spherical wave.

the energy remains constant for the phase surfaces increasing with r2. The light rays are
perpendicular to the wave fronts and thus form a concentric bundle of rays.

Diffraction is caused by the wave properties of light, and cannot be explained using the
geometric ray model (see Sec. 2.2.6). However, it is possible to use light rays as a model for
electromagnetic waves as long as diffraction effects are neglected.

In the following, only harmonic waves will be considered, i.e., for which the function
w( · ) of (2.18) takes the special form

w

(
t− eT3 x

v

)
= e j(ω t−kTx+ϕ) , (2.31)

with the imaginary unit j :=
√
−1, the angular frequency ω = 2πν, the electromagnetic

wave’s frequency ν in Hz = s−1, the wave vector k = 2π
λ e3 = 2πν

c e3, the angular wave
number11 k = ‖k‖ = 2π

λ , the wavelength λ in m, and the constant ϕ describing the initial
phase. Thus, the electric and magnetic field strengths have to be expressed as complex-
valued functions:12

E(x, t) = E e1 e
j(ω t−kTx+ϕ) , (2.32)

H(x, t) =
√

ε
μ E e2 e

j(ω t−kTx+ϕ) . (2.33)

The ‘real’ fields—in the physical sense—are obtained by taking the real part using Euler’s
formula e jϕ = cosϕ+ j sinϕ:

E(x, t) = �{E(x, t)} = E e1 cos(ω t− kTx+ ϕ) , (2.34)

H(x, t) = �{H(x, t)} =
√

ε
μ E e2 cos(ω t− kTx+ ϕ) . (2.35)

Chapter 8 will show that any wave can be derived from harmonic waves by means of Fourier
synthesis. This is why considering the special case of harmonic waves is a sensible option.

11Henceforth called the wave number.
12The complex-valued formulation allows an elegant mathematical description of harmonic waves,

but without a concrete physical correspondence. Henceforth, complex-valued field strengths are de-
noted by underscored E, H.
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As Maxwell’s differential equations are linear, a linear superposition of harmonic solutions
will also yield a solution of the system of differential equations. Also, harmonic waves con-
stitute a basis for the function space of arbitrary wave functions w( · ).

For illustrative purposes, the following coordinate system is usually used:

e1 := ex =

⎛⎜⎝1

0

0

⎞⎟⎠ , e2 := ey =

⎛⎜⎝0

1

0

⎞⎟⎠ ⇒ e3 = ez =

⎛⎜⎝0

0

1

⎞⎟⎠ . (2.36)

Additionally, ϕ := 0 is assumed, resulting in the propagator of ω t − kTx. Figure 2.3 shows
such an electromagnetic wave. The wave propagates in the direction of the coordinate sys-
tem’s z-axis, the electric field oscillates in the x,z-plane, perpendicular to the magnetic field
oscillating in the y,z-plane (transversality).

x

y

z

H

E

Figure 2.3. Illustration of an electromagnetic wave.

The electromagnetic wave’s energy flux is described by the Poynting vector [20, 32]:

P := E×H . (2.37)

The surface power density or intensity of the electromagnetic radiation can be expressed as
a function of time

‖P‖ =
√

ε
μ E2 cos2(ω t− kTx+ ϕ) , (2.38)

and is in W/m2 units. The Poynting vector P is oriented in the direction of the energy
transport, which is the propagation direction of the wave. Image sensors and the human eye
usually capture the light’s intensity by observing it for a period of time which is significantly
longer than the duration of one oscillation of the visible electromagnetic waves. Thus, the
measured value is an average of the intensity over time, and is proportional to the square of
the amplitude of the electric field strength E [20]:

I = ‖P‖ = 1

2

√
ε

μ
E2 =

1

2Z
E2 . (2.39)
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The electric field’s periodic change, the direction of the field vectors and the wave’s phase
cannot be directly captured by image sensors.

To simplify matters, only the electric field E will be considered from now on. This is not
a restriction as the magnetic field H of the electromagnetic wave clearly results from E by
means of Maxwell’s equations.

2.2.2 Polarization
Until now, the vector of the electric field strength E has been part of a plane like the x,z-plane
in Fig. 2.3. In this case, the light is said to be linearly polarized.
As the wave equation is linear, the sum of two solutions

E(x, t) = E1 e1 cos(ω t− kTx+ ϕ1) + E2 e2 cos(ω t− kTx+ ϕ2) (2.40)

is also a solution. The electric field strengths in the directions of e1 and e2 are shifted in
phase if ϕ1 �= ϕ2.

W.l.o.g. e1 = ex, e2 = ey and k = 2π
λ ez are assumed. Then, (2.40) takes the following

form:

E(x, t) =

⎛⎜⎝Ex(x, t)

Ey(x, t)

Ez(x, t)

⎞⎟⎠ =

⎛⎜⎝E0x cos(ω t− k z + ϕx)

E0y cos(ω t− k z + ϕy)

0

⎞⎟⎠ . (2.41)

Now, the vector E of the electric field strength does not only oscillate within a plane, it
also rotates around the z-axis (Fig. 2.4). The rotation is characterized by the wave’s angular
frequency ω. Hence, one rotation is completed after the period t = 2π

ω = 1
ν .

Propagation
direction

x

y

z

z

k z

E

H

Polarization
ellipse

Figure 2.4. Spatial position of the field vectors of a right-handed elliptically polarized light wave for a fixed point of
time t = const. [20].

2.2.2.1 The polarization ellipse
In order to get a geometric view of the electromagnetic wave’s polarization, the electric field
vector (2.41) is projected onto a plane perpendicular to the propagation direction and thus
parallel to the x,y-plane. W.l.o.g. z = ϕx

k is assumed to represent this plane.

Ex(x, t)|z=ϕx
k

=: Ex = E0x cos(ω t) , (2.42)

Ey(x, t)|z=ϕx
k

=: Ey = E0y cos(ω t− ϕx + ϕy) = E0y cos(ω t+ δ) , (2.43)
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with δ := ϕy − ϕx. Using cos(ω t+ δ) = cosω t cos δ − sinω t sin δ, Ex

E0x
= cosω t and sinω t =

√
1− cos2 ω t =

√
1−
(

Ex

E0x

)2
, the time parameter t can be eliminated, yielding an implicit

description of the curve in terms of Ex and Ey :

Ey = E0y
Ex

E0x
cos δ − E0y

√
1− E2

x

E2
0x

sin δ (2.44)

⇔ Ey

E0y
− Ex

E0x
cos δ = −

√
1− E2

x

E2
0x

sin δ . (2.45)

Squaring this equation results in the so-called polarization ellipse [5]:

E2
x

E2
0x

+
E2

y

E2
0y

− 2Ex Ey

E0x E0y
cos δ = sin2 δ . (2.46)

During the wave’s propagation, E rotates around the z-axis. If it is projected onto the plane
perpendicular to the propagation direction, the end of the electric field strength’s vector
rotates on the polarization ellipse (Fig. 2.5).
The following holds with respect to the direction angle ψ and the ellipticity angle χ:

tan 2ψ =
2E0x E0y

E2
0x − E2

0y

cos δ , 0 ≤ ψ ≤ π , (2.47)

sin 2χ =
2E0x E0y

E2
0x + E2

0y

sin δ , −π
4 ≤ χ ≤ π

4 . (2.48)

The direction angle ψ denotes the angular displacement of the polarization ellipse, and the
ellipticity angle χ quantifies its ellipticity (Fig. 2.5). The ellipticity angle χ and the ellipse’s
semi-axes a and b are related as follows:

tanχ = ∓ b

a
. (2.49)

The parameters ψ and χ indeed provide a descriptive characterization of the polarization el-
lipse, but are hard to measure in practice. This is why other parameters are more commonly
used to describe the polarization of electromagnetic waves.

x

y

ξ

η

ab

χ

ψ

2E0x

2
E

0
y

Figure 2.5. Illustration of the polarization ellipse with the semi-axes a and b, the direction angle ψ and the ellipticity
angle χ. The z-axis protrudes from the plane of the paper.
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2.2.2.2 Stokes parameters
The Stokes parameters13 provide a complete description of the polarization state of light
by means of measurable quantities [6, 30]. As explained in Sec. 2.2.1.1, only time-averaged
values of the field strengths can be measured. These are expressed by the following notation:

E(t) := lim
T→∞

1

T

T∫
0

E(t) dt . (2.50)

The Stokes parameters, which constitute a four-dimensional vector S ∈ R4, are defined as
follows with respect to Ex(x, t) and Ey(x, t) from (2.41) [19, 20]:

S =

⎛⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎠ := 2

⎛⎜⎜⎜⎝
E2

x(x, t) + E2
y(x, t)

E2
x(x, t)− E2

y(x, t)

2Ex(x, t)Ey(x, t) cos δ

2Ex(x, t)Ey(x, t) sin δ

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
E2

0x + E2
0y

E2
0x − E2

0y

2E0x E0y cos δ

2E0x E0y sin δ

⎞⎟⎟⎟⎠ (2.51)

=(E2
0x + E2

0y)

⎛⎜⎜⎜⎝
1

cos 2χ cos 2ψ

cos 2χ sin 2ψ

sin 2χ

⎞⎟⎟⎟⎠ . (2.52)

The last transformation is obtained using (2.47), (2.48), and trigonometric identities. The
components Si, i ∈ {0, 1, 2, 3} of the Stokes vector are physically observable properties of
polarized light:

S0 is proportional to the light’s intensity according to (2.39) [30].
S1 denotes the domination of the horizontal component over the vertical component, i.e.,
of the linear horizontal polarization (LHP) over the linear vertical polarization (LVP).

S2 denotes the domination of the component oriented at 45◦ over the component oriented
at −45◦ (L+45P over L-45P).

S3 denotes the domination of the circular components rotating clockwise over the com-
ponents rotating counterclockwise (right circularly polarized RCP over left circularly po-
larized LCP).

The following three degenerate polarization states for light of intensity I0 are typical special
cases [6]:

LHP: linearly, horizontally polarized

SLHP = 2Z I0

⎛⎜⎜⎜⎝
1

1

0

0

⎞⎟⎟⎟⎠ �� E0y = 0 , ψ = 0 , χ = 0 , (2.53)

where Z =
√

μ
ε denotes the medium’s wave impedance, cf. (2.21), (2.39).

13Named after George Gabriel Stokes (1819–1903).
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LVP: linearly, vertically polarized

SLVP = 2Z I0

⎛⎜⎜⎜⎝
1

−1
0

0

⎞⎟⎟⎟⎠ �

�
E0x = 0 , ψ = π

2 , χ = 0 (2.54)

L+45P: linearly polarized with an angle of 45◦ between the polarization plane and the
coordinate system

SL+45P = 2Z I0

⎛⎜⎜⎜⎝
1

0

1

0

⎞⎟⎟⎟⎠ �
�
��

�

E0x = E0y = E0 ,

δ = 0 , ψ = π
4 , χ = 0

(2.55)

L-45P: linearly polarized with an angle of −45◦ between the polarization plane and the
coordinate system

SL−45P = 2Z I0

⎛⎜⎜⎜⎝
1

0

−1
0

⎞⎟⎟⎟⎠ 	
	
	


� E0x = E0y = E0 ,

δ = π , ψ = 3
4π , χ = 0

(2.56)

RCP: right circularly polarized (clockwise rotation)

SRCP = 2Z I0

⎛⎜⎜⎜⎝
1

0

0

1

⎞⎟⎟⎟⎠ ��

��
�

E0x = E0y = E0 ,

δ = π
2 , ψ = 0 , χ = π

4

(2.57)

LCP: left circularly polarized (counter-clockwise rotation)

SLCP = 2Z I0

⎛⎜⎜⎜⎝
1

0

0

−1

⎞⎟⎟⎟⎠ ��

��

�
E0x = E0y = E0 ,

δ = −π
2 , ψ = 0 , χ = −π

4

(2.58)

In the case of a circularly polarized light wave, the field strength vectors have the shape of
a screw for a fixed point of time t = const. (cf. Fig. 2.4). When time proceeds, this screw
is moved along the direction of propagation (positive z-direction). This is why the field
strength vector rotates around the z-axis in a plane perpendicular to the direction of prop-
agation. The direction of rotation14 of the circularly polarized light is related to the time-
dependent states of the electric field strength vector in a plane z = const. for a view in the
reverse direction of propagation, i.e., in the direction of the negative z-axis [20, 34].

For the general case of elliptically polarized light, the light is neither linearly nor circu-
larly polarized. In (2.40), the two components of the electric field strength in the directions
of e1 and e2 have fixed relations with respect to their phase and amplitude. Both subfields

14The terms right-handed and left-handed are not uniquely defined in the literature [22, 32].
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are said to be coherent.15 The resulting polarized light (usually polarized elliptically) is then
called completely polarized.

For unpolarized light, there is no consistent relation between the phase and the ampli-
tude of the two field strengths: they are incoherent. This is why the two terms S2 and S3 of
the Stokes vector (2.52), which contain combinations of both fields, vanish when temporally
averaged. If in addition the electric field does not have a predominant direction, S1 will be
zero as well. Therefore, unpolarized light is described by the following Stokes vector:

Sunp =

⎛⎜⎜⎜⎝
S0

0

0

0

⎞⎟⎟⎟⎠ = 2Z I0

⎛⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎠ . (2.59)

In unpolarized light, all polarization states occur with equal probability.
Partly polarized light is a mixture of completely polarized and unpolarized light:

Steilp =

⎛⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎠ = (1− p)

⎛⎜⎜⎜⎝
S0

0

0

0

⎞⎟⎟⎟⎠+ p

⎛⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎠ . (2.60)

The factor p ∈ [0, 1] is called the degree of polarization and is defined as the amount of
intensity of completely polarized light Ipol with respect to the total intensity Itotal:

p :=
Ipol
Itotal

=

√
S2
1 + S2

2 + S2
3

S0
. (2.61)

The following holds:

S2
0 ≥ S2

1 + S2
2 + S2

3 . (2.62)

The two terms are equal for completely polarized light.
An incoherent superposition of polarized light waves can be described by the sum of the

respective Stokes vectors [20].

2.2.2.3 The Poincaré sphere
Except for the total intensity, the angles ψ and χ in Sec. 2.2.2 completely characterize polar-
ized light. Depicting 2ψ and 2χ on the surface of a sphere provides a clear representation of
the whole state P of completely polarized light. This representation is called the Poincaré
sphere (Fig. 2.6). The azimuth or geographic longitude of a polarization state is 2ψ. Merid-
ians on the sphere represent polarization ellipses with equal orientations ψ and different
ellipticities χ. The elevation or latitude is 2χ. Latitudes represent polarization ellipses with
the same shape but different orientations ψ. The sphere’s radius S0 is the intensity of the
electromagnetic wave. The components S1, S2, S3 of the Stokes vector are the Cartesian
coordinates of the polarization state P.

The two intersections of a straight line passing through the center of the sphere with its
surface correspond to orthogonal polarization states:

15Inside a subfield, temporal coherence (see Sec. 2.2.4) is not strictly necessary; as for example, white
light can be linearly polarized.
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RCP

LCP

Equator:
linear

Northern hemisphere:
right elliptic

Southern hemisphere:
left elliptic

x

y

z

S0

S1

S2

S3

2ψ

2χ

Figure 2.6. Illustration of the polarization state on the Poincaré sphere.

at the equator: orthogonal linear polarization with a difference in the direction angle of
Δψ = π

2 ;
at the poles: left and right circular polarization;
elsewhere: elliptic polarization states with Δψ = π

2 and equal absolute ellipticity angles
χ with inverse direction of rotation.

2.2.2.4 Mueller matrices
The influence of optical elements on the polarization state can be described using the so-
called Mueller matrices.

A transformation between two polarization states represented by the Stokes vectors Sin

and Sout can be expressed as a multiplication by a Mueller matrix M:

Sout = MSin . (2.63)

The Mueller matrices of some optical elements are presented in [6, 12]. A linear polarizer is
a component which lets only light with a certain polarization direction pass. By means of
a linear polarizer, polarized light can be obtained from unpolarized light. Linear polarizers
can be constructed out of wire grids or films absorbing electric fields parallel to the grid
structure and allowing the orthogonally polarized components to pass through [31].
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Ideal linear polarizer with forward direction x (horizontal):

MH =
1

2

⎛⎜⎜⎜⎝
1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ . (2.64)

Ideal linear polarizer with forward direction y (vertical):

MV =
1

2

⎛⎜⎜⎜⎝
1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ . (2.65)

The effect of multiple optical elements located in sequence along the light path can be cal-
culated by multiplying the corresponding Mueller matrices. The matrix belonging to the
optical element next to the light source is on the right hand side of the multiplication. As a
first example, the concatenation of a horizontal and a vertical linear polarizer is considered:

M = MV MH = 0 . (2.66)

Such ‘crossed’ linear polarizers do not let any light pass through.
Rotator by the angle γ:

MRot(γ) =

⎛⎜⎜⎜⎝
1 0 0 0

0 cos 2γ − sin 2γ 0

0 sin 2γ cos 2γ 0

0 0 0 1

⎞⎟⎟⎟⎠ . (2.67)

By a rotator, the polarization ellipse is rotated by the angle γ without its ellipticity χ being
modified [6]:

ψ �→ ψ + γ , (2.68)

χ �→ χ . (2.69)

Besides the rotation, a rotator does not induced further changes in the polarization state.
Some materials, such as quartz crystals with a certain orientation, as well as certain so-
lutions, lead to a rotation of the polarization state. There are both left and right rotating
materials. The rotation angle increases in proportion to the layer thickness and addition-
ally in proportion to the concentration of the solution. Materials rotating the polarization
state are called optically active. This property can be used to optically measure the con-
centration of the corresponding solutions, e.g., of certain sugars.
When an optical element with the Mueller matrix M0 is rotated around the z-axis by the
angle γ relative to the x-axis, its Mueller matrix M(γ) can be calculated as follows [12]:

M(γ) = MRot(γ)M0 MRot(−γ) . (2.70)
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For a linear polarizer MH rotated by γ = π
4 (45◦), this expression yields

ML+45P =
1

2

⎛⎜⎜⎜⎝
1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

⎞⎟⎟⎟⎠ . (2.71)

Equivalently, a linear polarizer MH rotated by γ = −π
4 (−45◦) around the z-axis is given

by

ML−45P =
1

2

⎛⎜⎜⎜⎝
1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

⎞⎟⎟⎟⎠ . (2.72)

The Mueller matrix of a linear polarizer MH rotated by γ can be expressed generally as

MLin(γ) =
1

2

⎛⎜⎜⎜⎝
1 cos 2γ sin 2γ 0

cos 2γ cos2 2γ sin 2γ cos 2γ 0

sin 2γ sin 2γ cos 2γ sin2 2γ 0

0 0 0 0

⎞⎟⎟⎟⎠ . (2.73)

Surprisingly, the following equation is no contradiction to (2.66),

MV ML+45P MH =
1

8

⎛⎜⎜⎜⎝
1 1 0 0

−1 −1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ �= 0 . (2.74)

Thus, the insertion of an additional linear polarizer rotated by 45◦ allows light to pass
through the optical system of two crossed linear polarizers, which before had been com-
pletely absorbing [41].

Another optical element changing the polarization state is the so-called retardation plate,
which is also called retarder or waveplate. Certain optically anisotropic materials, e.g., crys-
tals, have the property of being birefringent or birefractive. If such a material is aligned
in the right way with respect to the incoming light, birefringence causes linearly polarized
light of a certain orientation ψ to pass the material at a higher speed than linearly polarized
light with the orthogonal orientation ψ + π

2 . The first orientation is therefore called the ‘fast
axis’ and the latter one, the ‘slow axis’. The respective refraction indices of the medium are
denoted by nf and ns. Arbitrarily polarized light can be decomposed into a linearly polar-
ized component parallel to the fast axis and a linearly polarized component parallel to the
slow axis. The different speeds of the two components while passing the medium result in
a shift of phase,

Δϕ = 2π
d (ns − nf)

λ
, (2.75)

where d denotes the medium’s layer thickness and λ the light’s wavelength in vacuum. In
this case, the thickness is measured along the direction of propagation of the light, i.e., it
corresponds to the optical path the light propagated inside the medium. The propagation
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velocities of the two components are vf =
c
nf

and vs =
c
ns

. As defined, it is vf > vs, implying
nf < ns. Thus, the optical path difference is d (ns − nf) > 0.

Example 2.3 (Quarter-wave plate): According to (2.75), a retardation plate with Δϕ = π
2 causes

a path difference of a quarter wavelength: d (ns − nf) = λ
4 . This is why such a plate is

called λ
4 -plate or quarter-wave plate (QWP). Now assume that linearly vertically polar-

ized light hits a quarter-wave plate. The propagation direction of the light is assumed to
be perpendicular to the drawing plane in Fig. 2.7.

– 1st case: the polarization direction matches with the plate’s fast axis, see Fig. 2.7(a).
The LVP-light passes through the plate with a speed of vf . Because of the alignment,
the polarization component in the direction of the slow axis is zero. This is why the
light stays linearly vertically polarized after passing the plate.

– 2nd case: the polarization plate is assumed to be rotated by an angle of α = π
4 in

relation to the polarization plane; see Fig. 2.7(b). The linearly vertically polarized
light can now be expressed as a sum of the components Ef and Es parallel to the fast
or the slow axis, respectively. For α = π

4 , both components have the same absolute
value: ‖Es‖ = ‖Ef‖. When passing the retardation plate, Es will receive a phase
delay of one-quarter of a wavelength Δϕ = π

2 . Because ‖Ef‖ = ‖Es‖, one must have
χ = π

4 in (2.48). Hence, according to (2.57), a QWP transforms LVP-light into circularly
polarized light.

– 3rd case: for angles of α �= 0, α �= (2k+1)π4 , k ∈ Z, between the retardation plate’s fast
axis and the polarization plane of the incoming light, LVP-light will be transformed
into elliptically polarized light.

Slow
axis

Fast axis

Linearly, vertically
polarized light

Retardation
plate

(a)

Slow axisFast
axis

Linearly, vertically
polarized light

(b)

Figure 2.7. λ
4

-retardation plate: (a) if the polarization direction of the linearly polarized light is equal to the fast axis
of the retardation plate, the polarization state remains unchanged. (b) If the polarization direction does not equal
the axes of the retardation plate, the electric field strength can be expressed as the sum of the components Es and
Ef . For α = π

4
, the linearly polarized light is transformed into circularly polarized light.

The Mueller matrix of a retardation plate is

MWP(Δϕ) =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cosΔϕ sinΔϕ

0 0 − sinΔϕ cosΔϕ

⎞⎟⎟⎟⎠ . (2.76)
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The following convention is used for the alignment of the plate: the fast axis is along the
x-axis of the coordinate system and the slow axis is along the y-axis [12]. The Mueller matrix
of a retardation plate which has been rotated by an arbitrary angle γ can be calculated ac-
cording to (2.70), by multiplying the Mueller matrices of the rotator. Of particular technical
relevance is the quarter-wave plate. Its Mueller matrix can be obtained by inserting Δϕ = π

2

into (2.76):

MQWP =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

⎞⎟⎟⎟⎠ . (2.77)

The QWP transforms linearly polarized light with a polarization plane tilted by 45◦ with
respect to the fast axis into circularly polarized light, and vice versa.

The following generally holds: by using a QWP and a linear polarizer in the correct
alignment, it is possible to obtain completely polarized light with an arbitrary polarization
state (ψ, χ) from unpolarized light (Fig. 2.8). A linear polarizer rotated by an angle γ around
the optical axis in combination with a QWP rotated by α results in:

S = MRot(α)MQWP MRot(−α)MLin(γ)Sunp (2.78)

=
1

2

⎛⎜⎜⎜⎝
1

cos2 2α cos 2γ + cos 2α sin 2α sin 2γ

sin 2α cos 2α cos 2γ + sin2 2α sin 2γ

sin 2α cos 2γ − cos 2α sin 2γ

⎞⎟⎟⎟⎠ (2.79)

=
1

2

⎛⎜⎜⎜⎝
1

cos 2α cos(2α− 2γ)

sin 2α cos(2α− 2γ)

sin(2α− 2γ)

⎞⎟⎟⎟⎠ . (2.80)

The last equation is obtained using the trigonometric addition theorems. It can be used to
calculate the rotation angles α and γ which have to be set in order to obtain polarized light
with the Stokes vector S. Because S2

1 + S2
2 + S2

3 = S2
0 and (2.62), completely polarized light

is created.

Linear polarizer

Linearly polarized light

Elliptically polarized light

Incident light

λ
4
−plate

γ

Figure 2.8. Transformation of unpolarized light into elliptically polarized light using a linear polarizer and a λ
4

-plate.
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A λ
2 -plate or a half-wave plate (HWP) with Δϕ = π has the Mueller matrix

MHWP =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎠ . (2.81)

The HWP inverts the angles of the orientation and the ellipticity of the polarization el-
lipse [6]:

ψ �→ π
2 − ψ , (2.82)

χ �→ χ− π
2 . (2.83)

According to (2.59), unpolarized light Sunp stays unpolarized after passing a retardation
plate:

MWP(Δϕ)Sunp = Sunp . (2.84)

If polarized light is reflected by inhomogeneous layers (such as milk glass, for example) or
by diffusely scattering surfaces (especially if there happen to be multiple reflections), many
small single reflections with effectively stochastic phasing are superposed to form the re-
flected light, which is therefore partially depolarized (see Fig. 2.9) [30]. The change of the
polarization state after a reflection is caused by the rotation of the coordinate system of the
transversal wave with respect to the direction of propagation (Fig. 2.9) and by the differ-
ent intensities of the reflection of light that is polarized parallel and perpendicular to the
incidence plane (cf. Sec. 2.6.5).

Figure 2.9. Change of polarization direction
caused by multiple reflections. Linearly po-
larized light with a direction of incidence par-
allel to the x-axis is firstly reflected in y-direc-
tion, then in z-direction and finally in x-direc-
tion again.

2.2.2.5 Measuring the polarization state
By means of a combination of retardation plates and polarizers, the Stokes vector, and thus
the polarization state, of the irradiated light can be measured. At first, the light of interest
passes a Δϕ retardation plate having its fast axis aligned along the x-axis of the coordinate
system. Then, it passes a linear polarizer whose forward direction is tilted by the angle γ

with respect to the x-axis. The remaining light intensity I(γ,Δϕ) is measured by a detector
(Fig. 2.10).
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polarizer
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y
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I(γ,Δϕ)

S

Retardation
plate

Figure 2.10. Measuring the Stokes vector S.

In the mathematical model, the intensity is obtained as the Stokes vector’s first coordinate
after multiplying the incoming light S with the Mueller matrices of the retardation plate and
the polarizer:

I(γ,Δϕ) = 1
2Z

(
1 0 0 0

)
MLin(γ)MWP(Δϕ)S (2.85)

= 1
2Z

(
1 0 0 0

)
(2.86)

1

2

⎛⎜⎜⎜⎝
1 cos 2γ sin 2γ cosΔϕ sin 2γ sinΔϕ

cos 2γ cos2 2γ sin 2γ cos 2γ cosΔϕ sin 2γ cos 2γ sinΔϕ

sin 2γ sin 2γ cos 2γ sin2 2γ cosΔϕ sin2 2γ sinΔϕ

0 0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎠
= 1

4Z (S0 + S1 cos 2γ + S2 sin 2γ cosΔϕ+ S3 sin 2γ sinΔϕ) . (2.87)

By varying γ and Δϕ in the right way, a system of linear equations can be obtained whose
solution determines the components of the Stokes vector of the light of interest. A possible
choice is γ ∈ {0, π

4 ,
π
2 } and Δϕ ∈ {0, π

2 }which yields [6]:

S0 = 2Z
(
I(0, 0) + I(π2 , 0)

)
, (2.88)

S1 = 2Z
(
I(0, 0)− I(π2 , 0)

)
, (2.89)

S2 = 4Z I(π4 , 0)− S0 , (2.90)

S3 = 4Z I(π4 ,
π
2 )− S0 . (2.91)

2.2.2.6 The Jones calculus
Besides the Stokes vectors and Mueller matrices, the Jones calculus is an alternative rep-
resentation of the polarization state [6, 12, 20]. Jones vectors are compact: they are two-
dimensional but complex-valued. Jones vectors can only be used to describe the polarization
state of completely polarized light. In contrast, Stokes vectors can also represent unpolarized
or partly-polarized light.

If a polarized light wave is described as in (2.41),

Ex(x, t) = E0x cos(ω t− k z + ϕx) , (2.92)

Ey(x, t) = E0y cos(ω t− k z + ϕy) , (2.93)
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the corresponding Jones vector (sometimes called Maxwell vector or Maxwell column) is
given by

E :=

(
E0x e

jϕx

E0y e
jϕy

)
∈ C2 . (2.94)

In contrast to the Stokes vector, which contains intensity values, the Jones vector uses ampli-
tude and phase values to describe the light wave. The light intensity can be obtained from
the norm of the Jones vector:

I =
1

2Z
‖E‖2 =

1

2Z
(E∗)T E =

1

2Z
(E2

0x + E2
0y) , (2.95)

with E∗ denoting the complex conjugate of E.
The considerations of Sec. 2.2.2.2 directly result in the Jones vectors for degenerate polar-

ization states:

ELHP =

(
1

0

)
, ELVP =

(
0

1

)
, (2.96)

EL+45P = 1√
2

(
1

1

)
, EL−45P = 1√

2

(
1

−1

)
, (2.97)

ERCP = 1√
2

(
1

j

)
, ELCP = 1√

2

(
1

−j

)
. (2.98)

The superposition of two light waves corresponds to the sum of their Jones vectors, as the
complex-valued amplitudes are added during the superposition. This is true for coherent
as well as for incoherent superposition. Conversely, the sum of two Jones vectors always
yields another Jones vector representing a valid polarization state. So in contrast to the
Stokes vectors, the set of Jones vectors is closed under addition. The Jones calculus can be
used to describe interference phenomena as the Jones vectors contain the phase information
of the superposed waves.

A polarizing optical element is modeled with a Jones matrix J ∈ C2×2. The polarization
state Eout of an incoming light wave Ein that passes the optical element can be obtained
similarly to (2.63):

Eout = JEin . (2.99)

The Jones matrices for linear polarizers, rotators and retardation plates are

JH =

(
1 0

0 0

)
, JRot(γ) =

(
cos γ − sin γ

sin γ cos γ

)
, (2.100)

JV =

(
0 0

0 1

)
, JLin(γ) =

(
cos2 γ sin γ cos γ

sin γ cos γ sin2 γ

)
, (2.101)

JQWP =

(
1 0

0 −j

)
, JWP(Δϕ) =

(
1 0

0 e−jΔϕ

)
. (2.102)

Multiple optical elements aligned in a row can be expressed by multiplying their Jones ma-
trices.
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2.2.3 Huygens’ principle
The propagation of waves can be explained descriptively and nevertheless exactly by means
of Huygens’ principle.

The spatial propagation of a wave in an interval [t, t+Δt] can be interpreted as follows:
at time t, every point of the wave front emits a spherical wave with radius vΔt at time
t + Δt. At time t + Δt, the envelope of all these spherical waves is the wave front, which
has by now propagated over the duration of time Δt (Fig. 2.11). Hence, Huygens’ principle
represents a connection between the Examples 2.1 and 2.2: a plane wave can be expressed
as a composition of an infinite number of spherical waves.

Wave

Wave front
at time t

Wave front
at time t+Δt

vΔt

Figure 2.11. Propagation of a wave according to Huygens’ principle.

2.2.4 Coherence
Coherence describes the property of light having fixed phase and amplitude relations in
different locations and points of time. A characteristic value for the temporal coherence is
the coherence length

dK =
c

Δν
. (2.103)

The frequency bandwidth Δν is the difference between the highest and the lowest occurring
light frequencies. The speed of light in vacuum is denoted by c. In contrast to monochro-
matic or laser light, white (broadband) light has a small coherence length (see Table 2.1).

In order to clarify the term coherence length, consider a plane wave propagating in the
direction of the z-axis. Light with a spectral bandwidth Δν is assumed, so that ν ∈ [ν0 −
1
2Δν, ν0 + 1

2Δν]. The differences in phase of the components with the highest and lowest
frequencies are obtained by insertion into the propagator ω t− k z = 2π ν t− 2π

λ z of (2.31):

Δϕ(z, t) = 2π (ν0 − 1
2Δν) t− 2π

λ1
z −
(
2π (ν0 +

1
2Δν) t− 2π

λ2
z

)
(2.104)

with λ1 =
c

ν0 − 1
2Δν

and λ2 =
c

ν + 1
2Δν

. (2.105)

Table 2.1. Bandwidth and coherence length of white and monochromatic light [30].

Δν dK
dK

λ

White light 2 · 1014 Hz 1.5 μm 3

Frequency stabilized helium-neon laser, λ = 633 nm 5 · 106 Hz 60 m 108
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λ1

λ2z = 0

z
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ν0 − 1
2
Δν

λ1

ν0 +
1
2
Δν

λ2

Frequency:

Frequency:

Frequency:

Figure 2.12. Illustration of the connection between the coherence length dK and the frequency bandwidth Δν.

The coherence length dK is the length over which high-frequency waves have to propagate
in order to be exactly one period ahead of the low-frequency waves and to oscillate in an-
tiphase to the center frequency ν (Fig. 2.12). Assuming t = 0 in Equation (2.104) leads to the
following definition:

2π

λ2
dK −

2π

λ1
dK = 2π (2.106)

⇔
(

1

λ2
− 1

λ1

)
dK = 1 (2.107)

⇔ Δν

c
dK = 1 (2.108)

⇔ dK =
c

Δν
. (2.109)

This relation can be shown more elegantly using the Fourier transform as shown in Sec. 8.4.
Coherence can only occur if the considered light is emitted by the same light source, as

the stochastic processes of different physical sources are not related to each other [30]. For
light of one single source, temporal coherence means that the phases of light waves emitted
at different points of time share a fixed relation: given the phase at a certain point of time,
the phase corresponding to a future point of time can be predicted. The coherence length
is the period of time or the distance for which that relation remains valid. The fraction
dK

λ represents the number of successive coherent wavelengths. In contrast, spatial coherence
regards fixed phase correlations along a wave front, and hence perpendicular to the direction
of propagation.
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Some wave-optical phenomena can only occur if coherent light is present. In the domain
of automated visual inspection, such effects can either be exploited and used as measure-
ment techniques or they can be disturbing, as is the case for the speckle noise affecting tri-
angulation. Whether coherent or incoherent illumination is more suitable depends on the
particular inspection task. The following sections will further discuss the mentioned wave-
optical effects.

2.2.5 Interference
Interference occurs if two or more electromagnetic waves superpose each other. The inten-
sity of the resulting wave does not necessarily have to be the sum of the intensities of the
superposed waves. In fact, constructive interference might yield a higher intensity, and de-
structive interference can result in a reduced intensity or even in a complete extinction of the
waves.

Source 2

Source 1

r1

r2

P

Figure 2.13. Coherent superposition of two light waves at the point P.

As an example of the mathematical description of interference, consider a scalar field of
two coherent light sources (Fig. 2.13). The electric field strengths E1(r1, t) and E2(r2, t) of
the two idealized light waves with identical wavelengths λ will be assumed to be given by

E1(r1, t) =E01 cos 2π

(
t

T
− r1

λ
− δ1

)
, (2.110)

E2(r2, t) =E02 cos 2π

(
t

T
− r2

λ
− δ2

)
, (2.111)

with the wave amplitudes E01 and E02, respectively.
The superposition of the two waves at a point P yields the electric field strength

E = E1(r1, t) + E2(r2, t) . (2.112)

The light’s intensity I is equal to the time average E2 of the squared field strength,

I =
1

Z
E2 , (2.113)

E2 :=
1

t2 − t1

t2∫
t1

E2dt , (2.114)
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with Z denoting the wave impedance of the medium (see Sec. 2.2.1.1). The intensities I1 and
I2 of the irradiated wave are

Ii =
1

2Z
E2

0i , i = 1, 2 . (2.115)

The intensity of the waves interfering at point P is

I =
1

Z
(E1(r1, t) + E2(r2, t))2 (2.116)

=
1

Z

(
E2

01

(
cos 2π

(
t

T
− r1

λ
− δ1

))2

+ E2
02

(
cos 2π

(
t

T
− r2

λ
− δ2

))2

+ 2E01E02 cos 2π

(
t

T
− r1

λ
− δ1

)
cos 2π

(
t

T
− r2

λ
− δ2

))
(2.117)

=
1

2Z

(
E2

01+E2
01 cos 4π

(
t

T
− r1

λ
−δ1
)
+E2

02+ E2
02 cos 4π

(
t

T
− r2

λ
−δ2
)

+ 2E01E02 cos 2π

(
r2 − r1

λ
+ δ2 − δ1

)

+ 2E01E02 cos 2π

(
2t

T
− r2 + r1

λ
− δ2 − δ1

))
. (2.118)

The last equation is obtained using the trigonometric addition theorems. Assuming
t2−t1

T →∞ results in

I =
1

2Z

(
E2

01 + E2
02 + 2E01E02 cos 2π

(
r2 − r1

λ
+ δ2 − δ1

))
(2.119)

I = I1 + I2 + 2
√
I1I2 cos 2π

(
r2 − r1

λ
+ δ2 − δ1

)
. (2.120)

Hence, the total intensity is given by the sum of the single intensities, I1 and I2, and the
interference term.
In the case of coherent light, the interference term is maximal if δ1 = δ2 = 0 for

cos 2π

(
r2 − r1

λ

)
= 1 ⇒ 2π

r2 − r1
λ

= 2π n , (2.121)

This occurs if the difference Δd := r2 − r1 between the lenghts of the two paths from each
light source to the point P is an integer multiple of the wavelength λ:

2π
Δd

λ
= 2π n ⇔ Δd = nλ , n ∈ Z . (2.122)

In this case, both waves have exactly the same phase and superpose with each other con-
structively.

A minimum is obtained if

cos 2π

(
r2 − r1

λ

)
= −1 ⇒ 2π

r2 − r1
λ

= π + 2π n (2.123)

2π
Δd

λ
= (2n+ 1)π ⇔ Δd =

2n+ 1

2
λ , n ∈ Z . (2.124)
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The two waves hit each other with a displacement of one-half of the wavelength, which
is why their electric fields neutralize each other. If the intensities I1 and I2 are equal, the
intensities of the resulting minima will be I = 0.

The contrast16 of an interference pattern is defined as

V :=
Imax − Imin

Imax + Imin
, (2.125)

with the intensity Imax of its maximum and Imin of its minimum. If the path difference be-
tween the two interfering light waves equals the coherence length, Δd = dK, a contrast of
V = 1

e results [27]. If incoherent light is present, no interference effects can be observed,
as the relations between the phases of the wave are completely random, and therefore con-
structive and destructive coherence neutralize themselves because of the temporal averag-
ing. This is why the interference term in (2.120) vanishes and one has, instead,

I = I1 + I2. (2.126)

Such an addition of intensities is only valid for incoherent light. For coherent light, the
electric field strengths have to be added.

2.2.6 Diffraction
Diffraction of electromagnetic waves is another effect that can only be explained by means
of the wave properties of light. Light does not travel in a straight line through a slit or
an aperture without changing direction. Rather, it creates a diffraction pattern. The object
causing the diffraction is usually called ‘the obstacle’ H . Diffracted light can also reach
areas lying in the shadow of the obstacle that would not be reachable according to geometric
optics. For a physical description of diffraction, two cases have to be considered:

Fresnel diffraction, also called near-field diffraction: the distance between the obstacle
and the light source and/or the observation point is finite. In this case, spherical waves
have to be used as a model.

Fraunhofer diffraction or far-field diffraction: The distance between the obstacle, the light
source and the observation point is very large—ideally, infinite. Then, plane waves can
be used as a model. Fraunhofer diffraction is a special case of Fresnel diffraction, since
plane waves can be considered as spherical waves with an infinite radius [20].

In general, diffraction can be quantitatively described using Kirchhoff’s diffraction formula
[5]. But in the following, only Fraunhofer diffraction will be considered, as the distances
involved in many optical systems used for automated visual inspection are large enough
to justify this approximation. There are, in fact, some particular optical systems achieving
higher resolutions by measuring the near-field, such as special micro- or spectroscopes, for
example [4]; but for automated visual inspection, they are only used in exceptional cases.

Assume now that there is an aperture that is illuminated by plane waves from an in-
finitely far light source. The term aperture denotes the opening of a diaphragm limiting the
expansion of the observed light bundle (see also Sec. 3.4.3). The resulting electric field is
observed on the opposite side of the aperture, at a great distance (called ‘the far distance’).

According to Huygens’ principle, each of the aperture’s points (x, y) emits an ‘elementary
wave’ in the shape of a spherical wave. The electric field at the aperture can be described by

16In this context, the contrast is also called the visibility.
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the aperture function P (x, y) as a complex amplitude:

P (x, y) = |P (x, y)| e jϕ(x,y) . (2.127)

One area element dA of the aperture corresponds to the following part dE of the electric
field at position B in the observation space:

dE(X,Y, Z) = P (x, y) dA
1

r
e j(2πfr−ωt) . (2.128)

The first factor is the aperture function, the last one represents the wave function of the
spherical wave emitted at the point (x, y). The aperture’s coordinates are denoted by the
lower case letters (x, y) and the coordinates of space by the capital letters (X,Y, Z). The z-
axis of the coordinate system is located in the optical axis perpendicular to the aperture. The
distance r between the aperture and the point B is

r =
√
(X − x)2 + (Y − y)2 + Z2 . (2.129)

The spatial frequency of the light is f = 1
λ = 1

2π‖k‖ in units of m−1, where k ∈ R3 is the
wave vector. The angular frequency is ω = 2πν. The frequency is ν = 1

T = c
λ , in units of

Hz = s−1.
The distance to the center of the aperture is denoted by R =

√
X2 + Y 2 + Z2. In the

Fraunhofer case, R� X,Y � x, y and R ≈ Z, so that

r ≈
√
X2 − 2xX + Y 2 − 2yY + Z2 (2.130)

≈
√
R2 − 2 (xX + yY ) (2.131)

= R

√
1− 2

xX + yY

R2
. (2.132)

Now, the function R
√

1− 2 χ
R2 can be expanded in a Taylor series around χ = 0 and cut off

after the first term:

r ≈ R

(
1− xX + yY

R2

)
. (2.133)

This expression can now be inserted into (2.128):17

dE(X,Y, Z)|Z≈R ≈ P (x, y) dA
1

r
e j(2πfR(1− xX+yY

R2 )−ω t) . (2.134)

The whole electric field at the point (X,Y, Z) can be obtained by integrating this equation
over the aperture:

E(X,Y, Z)|Z≈R ≈
1

R
e j(2πfR−ωt)

∫∫
P (x, y) e−j2πf xX+yY

R dx dy . (2.135)

17Since the far field is considered, R → ∞ and hence r ≈ R can be employed in the denominator be-
cause of (2.133). In contrast, the phase of the electromagnetic wave is calculated in the exponent, so that
distances in the order of one wavelength are relevant, which is why the more precise approximation
(2.133) has to be used in the exponent.



50 2. Light

P (x, y)

dE(X,Y )
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Figure 2.14. Geometric configuration used to derive the diffraction pattern.

Figure 2.14 uses the following trigonometric equations:

X

R
= sinφ = cosα , (2.136)

Y

R
= sin θ = cosβ . (2.137)

Hence, the spatial frequencies fx, fy in the image plane can be expressed as

fx = f cosα = f sinφ = f
X

R
, (2.138)

fy = f cosβ = f sin θ = f
Y

R
. (2.139)

The exponent of the integrand from (2.135) can now be rewritten as

−j2πf xX + yY

R
= −j2π (fxx+ fyy) (2.140)

and the electric field strength can be expressed as a function of the spatial frequency:

E(fx, fy, R) =
1

R
e j(2πfR−ωt)

∫∫
P (x, y) e−j2π(fxx+fyy) dx dy (2.141)

=
1

R
e j(2πfR−ωt) E(fx, fy) (2.142)

with

E(fx, fy) :=

∫∫
P (x, y) e−j2π(fxx+fyy) dx dy (2.143)

=F{P (x, y)} . (2.144)
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This double integral is equivalent to the operator F{ · } of the two-dimensional Fourier trans-
form (cf. Chap. 8). Thus, the electric field of the diffraction is the Fourier transform of the
aperture function:

2.2Theorem 2.2: Fraunhofer diffraction
The field distribution E(fx, fy) in the image plane in a distance of R to the aperture plane
is the spatial Fourier transform of the aperture function P (x, y). Conversely, the aperture
function can be calculated as the inverse Fourier transform of the electric field in the image
plane:

E(fx, fy) = F{P (x, y)} =
∫∫

P (x, y) e−j2π(fxx+fyy) dx dy , (2.145)

P (x, y) = F−1{E(fx, fy)} =
∫∫

E(fx, fy) e
j2π(fxx+fyy) dfx dfy . (2.146)

�

Similar to the reciprocity of the Fourier transform, the following quantitative relation holds
for the size of the aperture and the diffraction pattern:

A small aperture, e.g., a pinhole diaphragm or a narrow slit, results in a wide Fourier
transform. The electric field in the image plane extends to large values of X and Y , i.e.,
large angles φ, θ. For small apertures, the diffraction effects are significantly stronger.

A big aperture, e.g., a lens or a wide slit, results in a spatially narrow diffraction pattern.
The influence of diffraction is reduced for larger apertures, and can finally be neglected.

In order to be able to observe Fraunhofer diffraction from a limited distance to the aperture,
a special optical setup is needed since the necessary infinite distance cannot be directly re-
alized. Figure 2.15 shows such a setup. A point source of light is located in the focus of a
collecting lens L1, illuminating the aperture plane with parallel waves. A second lens, L2,
images the Fraunhofer diffraction pattern from infinity to the screen. This screen is posi-
tioned at a distance equal to the focal length of the lens (cf. Chap. 3). The electric field in the
focal plane is the Fourier transform of the aperture function.

The diffraction patterns of some apertures will now be treated.

Example 2.4 (Single-slit diffraction): The simplest aperture is a single slit. The slit is assumed
to be parallel to the y-axis, to be infinitely spread in the y-direction, and to have a width
of d in the x-direction (Fig. 2.16). Then, the aperture function is given by18

P (x, y) = P0 rect
(x
d

)
1(y) . (2.147)

18For this and the following examples, both the aperture function P (x, y) and the electric field
E(x, y) are assumed to be real-valued and are thus written without underscores.
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Aperture function 

L1 L2

Focal plane of L2:

f1 f2

Figure 2.15. Optical realization of the Fourier transform using the principle of diffraction.

L2

Figure 2.16. Single-slit diffraction. The diffraction pattern is visualized on a screen at a finite distance by the lens L2.

The electric field after the diffraction caused by the single slit is obtained by calculating
the Fourier transform of the aperture function:

E(fx, fy) = F{P (x, y)} = P0 d sinc(d fx)︸ ︷︷ ︸
E(fx)

δ(fy) , (2.148)

E(fx) = P0 d
sin(π d fx)

π d fx
. (2.149)

Supposing

γ := π d fx = π d f sinφ , (2.150)
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the previous equation can be rewritten as

E(γ) = P0 d
sin γ

γ
. (2.151)

The intensity is proportional to the square of the electric field strength

I(γ) = I0

(
sin γ

γ

)2

. (2.152)

Minima of intensity are observed for

sin γ = 0 ∧ γ �= 0 ⇒ γ = nπ , n = ±1,±2,±3, . . . , (2.153)

so, because of (2.150) and f = 1
λ , for

sinφ = n
λ

d
. (2.154)

The maxima are not directly obvious. Therefore, the derivative of I(γ) is calculated using
the quotient rule, and its zeros are found:

0 =
dI(γ)

dγ
= I0

2 sin γ (γ cos γ − sin γ)

γ3
. (2.155)

A maximum is obtained for γ = 0. As shown, the remaining solutions of sin γ = 0 are
minima of the intensity. Further maxima are given by

γ cos γ − sin γ = 0 ⇔ tan γ = γ , (2.156)

which can only be solved numerically. A good approximation for higher order diffrac-
tions n is given by

γ ≈ (n+ 1
2 )π , n = ±1,±2,±3, . . . (2.157)

sinφ ≈ (n+ 1
2 )

λ

d
. (2.158)

Figure 2.17 shows the curve of intensities calculated according to (2.152). The inten-
sities are maximal for γ = 0; ±1.43π; ±2.46π; ±3.47π; . . ., and the zeros are located at
γ = ±π; ±2π; ±3π; . . .

Equations (2.154) and (2.158) show that the angles φ of the diffraction maxima tend
towards zero for d� λ, and that the extent of the diffraction becomes negligible. Hence,
for a slit that is wide compared to the wavelength, diffraction effects only occur very
close to the image point, so the imaging methods of geometric optics are a good approx-
imation. For slits with a width of d on the order of the wavelength λ, diffraction effects
occur even under very large angles φ, which is why wave-optical effects can no longer be
neglected.

The Dirac delta function δ(fy) in (2.148) shows that when using the setup from
Fig. 2.15, there can only be a diffraction pattern for fy → 0 (see Sec. 8.2.2 for a further
description of Dirac delta functions). The Fraunhofer diffraction pattern is emitted under
an angle of θ = 0, is thus parallel to the optical axis, and is focused on the fx-axis by the
lens (see Fig. 2.16).

The single slit also yields a descriptive explanation of the diffraction effect. Light hav-
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Figure 2.17. Distribution of intensities resulting from single-slit diffraction.

(a)

λ

(b)

Figure 2.18. Single-slit diffraction: (a) Central maximum of intensities, all rays are in phase; (b) Minima of intensities:
Rays that are d

2
apart from each other in the aperture plane are in antiphase [20].

ing a propagation direction parallel to the irradiated light wave is in phase and forms the
central maximum (Fig. 2.18). The first zero of the intensities occurs for sinφ = λ

d . If Huy-
gens’ principle is applied and light leaves the single slit in this direction, with an angle
of φ, the phases of the marginal ray and of the central ray (cf. Chap. 3) are shifted by λ

2 ,
which results in destructive interference. Equivalently, for any other ray of the bundle,
there exists another ray passing through the slit at a distance of d

2 from it and having a
relative phase shift of λ

2 . In total, all pairs of rays extinguish each other, which is why
there is an intensity minimum in the direction of φ.

Example 2.5 (Diffraction caused by a rectangular aperture): A rectangular aperture of size c×d

can be interpreted as a two-dimensional generalization of the single slit. The aperture
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function is

P (x, y) = P0 rect
(x
c

)
rect
(y
d

)
. (2.159)

The Fourier transform yields the electric field in the image plane

E(fx, fy) = F{P (x, y)} = P0 c d sinc(c fx) sinc(d fy) . (2.160)

The intensities of the diffraction pattern are given by

I(γ, η) = I0

(
sin γ

γ

)2(
sin η

η

)2

(2.161)

with

γ = π c fx = π c f sinφ , (2.162)

η = π d fy = π d f sin θ . (2.163)

Figure 2.19 shows the resulting diffraction pattern.
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Figure 2.19. Distribution of intensities for diffraction caused by a rectangular aperture.

Example 2.6 (Pinhole diffraction): As most imaging systems in practice use circular lenses
and apertures, diffraction caused by a circular aperture is quite important. The aperture
function of a pinhole aperture with diameter D is given by

P (x, y) = P0 rect

(
‖x‖
D

)
=

{
P0 if

√
x2 + y2 ≤ 1

2D

0 otherwise
. (2.164)
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In order to be able to calculate the diffraction pattern, at first a coordinate transformation
into polar coordinates is performed both for the position and for the spatial frequency
(cf. Fig. 2.14):

x = r cosϕ , y = r sinϕ , (2.165)

fx = fr cosκ , fy = fr sinκ . (2.166)

This yields

P (r, ϕ) = P0 rect
( r

D

)
=

{
P0 if r ≤ 1

2D

0 otherwise
. (2.167)

The Fourier transform of this aperture function is given by

E(fr, κ) = F{P (r, ϕ)} =

1
2D∫
0

2π∫
0

P0 e
−j2πfrr cos(ϕ−κ) dϕ r dr , (2.168)

The argument of the exponential function is obtained from (2.165) and (2.166) by means
of the trigonometric addition theorems.

The function P (r, ϕ) is rotationally symmetric, as it does not depend on ϕ. Hence,
E(fr, κ) is also rotationally symmetric, i.e., constant with respect to κ. This is why it is
sufficient to evaluate the integral for a single κ. Here, κ = 0 is chosen.
The integral is given by the Bessel functions of the first kind, which are defined by

Jn(z) =
j−n

2π

2π∫
0

e j(z cos ξ+nξ) dξ (2.169)

and satisfy

Jn(−z) = (−1)nJn(z) (2.170)

as well as
x∫

0

ξ J0(ξ) dξ = xJ1(x) . (2.171)

For the electric field strength in the case of pinhole diffraction, this implies

E(fr) = P0

1
2D∫
0

2π∫
0

P0 e
−j2πfrr cosϕ dϕ r dr (2.172)

= P0

1
2D∫
0

2π J0(2πfrr) r dr , (2.173)

where the sign of the exponent can be omitted because of (2.170). Using (2.171) results in

E(fr) = 2π P0
D

2

J1(πfrD)

2πfr
. (2.174)
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Setting

γ := π fr D =
π

λ
D sinψ (2.175)

with the angle ψ between the wave vector k and the optical axis, as shown in Fig. 2.14,
results in

E(γ) =
π

2
P0 D

2 J1(γ)

γ
. (2.176)

Squaring that expression yields the intensity of the pinhole diffraction pattern [20]:

I(γ) = 4 I0
J2
1 (γ)

γ2
. (2.177)

The main maximum of the intensity is reached for γ = 0. A numerical approximation for
the first minimum is γ ≈ 3.83 and

ψ ≈ sinψ ≈ 3.83
λ

πD
≈ 1.22

λ

D
. (2.178)

Figure 2.20 shows the diffraction pattern of a circular aperture. The circular intensity
structures are called Airy disks.
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Figure 2.20. Distribution of intensities for pinhole diffraction.

Babinet’s principle states that complementary apertures lead to the same diffraction pattern
[5,20]. Two apertures are called complementary if the first aperture is opaque exactly where
the second aperture is transparent and vice versa. If both apertures are aligned behind each
other in a row, no light can pass them [5]. W.l.o.g. the two apertures P1(x) and P2(x) are
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assumed to be given by

P1(x) : R
2 → {0, 1} , (2.179)

P2(x) = 1− P1(x) . (2.180)

Their Fraunhofer diffraction patterns can be obtained by means of the Fourier transform:

F{P2} = F{1} − F{P1} (2.181)

⇔ E2(f) = δ(f)− E1(f), with f = (fx, fy)
T . (2.182)

Except for the origin f = 0, it holds

E2(f) = −E1(f) . (2.183)

As the intensity is proportional to the square of the electric field strength, the diffraction
patterns of an aperture and its complement match each other except for the difference in the
origin, which is the direct component [41].

An application of diffraction is the spectral decomposition of light. The positions of the
diffraction maxima depend on the wavelength, as given by (2.158). This is why gratings can
be used to redirect the light to different directions depending on the respective wavelengths
[30, 35]. Then, the spatial distribution of the intensities can be used to infer the spectral
distribution of the intensities (see Sec. 7.2.4).

2.2.6.1 Resolution of imaging systems
The resolution of an optical system is its ability to create different images out of different
objects. The minimum observation angle under which two objects can still be discriminated
in the image, is a measure for the resolution. Usually, a small observation angle implies that
two objects are close to each other, as in microscopic images for example. However, this does
not necessarily have to be true, as when capturing distant objects with a telescope.

The physically possible resolution of an optical system, as well as its sharpness, are lim-
ited by diffraction.

When an image is formed, the diffraction patterns of all the object points are additively
superposed on each other on the image plane. In the following, two point light sources are
considered (Fig. 2.21). Additionally, a circular aperture with a diameter D is assumed, as is
common for practical imaging systems. According to Ex. 2.6, both objects cause rotationally
symmetric diffraction patterns, the so-called Airy disks. When using white light, the Airy
disks of the different wavelengths are superposed on each other. As the extent of the diffrac-
tion patterns depends on the wavelength, no sharp minima or maxima will be visible. In
fact, the point-shaped object appears as a blurred disk.

Usually, diffraction patterns have an infinite extent but their intensities decay quickly
after the first order diffraction. This is why, for large observation angles of the two objects,
the diffraction patterns are practically completely separated in the image plane. The two
images can be resolved without any problems.

Decreasing the angle Δϕ between the two objects will eventually lead to a significant
overlap of the two diffraction patterns. Nevertheless, they might still be resolvable if the
distance between the two main maxima is large enough; see Fig. 2.22(a). There are different
criteria concerning this limit [20]. One possibility is the so-called Rayleigh criterion: two
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Camera aperture

Airy disks of the 
object points in
the image plane

Figure 2.21. Superposition, in the image plane, of the diffraction patterns of two object points.
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Figure 2.22. Resolution of imaging systems for two superposed Airy diffraction patterns: (a) Clearly resolvable
diffraction patterns; (b) Rayleigh criterion; (c) Sparrow’s resolution limit; (d) Diffraction patterns which can no
longer be resolved.
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images are said to be barely resolvable, if the center of the first Airy disk is located at the
position of the second diffraction pattern’s first minimum, see Fig. 2.22(b). In this case, the
following holds for an observation angle Δϕ:

Δϕ = ψmin , (2.184)

with ψmin denoting the angle of the first diffraction minimum according to (2.178). This
implies

Δϕ ≈ 1.22
λ

D
. (2.185)

The resolving power is then quantified by the reciprocal of the latter expression:

1

Δϕ
∝ D

λ
. (2.186)

Hence, there are two possible ways to increase the resolving power: increasing the aperture
diameter D, and using light of a shorter wavelength λ. However, both alternatives are tech-
nically limited and involve other disadvantages, e.g., a reduced depth of field (see Sec. 3.4.4).

Diffraction is an insuperable physical limitation to the maximum possible resolving
power of an imaging system. An optical system is called diffraction limited if all geometrical
aberrations can be neglected in comparison to diffraction, so that the system’s resolution and
sharpness is mainly limited by diffraction effects.

Sparrow’s resolution limit describes the absolute limit of resolving two diffraction pat-
terns when seen by a human observer. Two Airy disks cannot be distinguished if the in-
tensity between the two main maxima does not decrease, see Fig. 2.22(c). Mathematically
formulated, Sparrow’s criterion is satisfied if the second derivative of the intensity is equal
to zero in the center between the two image points [20]. For two object points of the same
brightness, this is the case for

Δϕ ≈ 0.95
λ

D
. (2.187)

Further improvements of the resolution limitation caused by diffraction can be achieved by
means of image restoration methods: by applying suitable image filters, diffraction effects
can be mitigated to a certain extent (see Chap. 10). The success of such an image restoration
depends, among other things, on the noise contained in the image signal and on the precision
of the employed diffraction and imaging models.

2.2.7 Speckle
If coherent light is scattered by randomly positioned surface points, a spatially irregular
and temporally stable interference pattern appears, which is called Speckle. For example,
speckle can be observed if coherent light is reflected by a rough surface (Fig. 2.23).

According to Huygens’ principle, each surface point emits a spherical wave with the
phase of the irradiated light. If the surface’s structure is irregular, then the interference
pattern will also have an irregular, grainy structure.

The roughness R is defined by the fluctuations of the surface relief. There are different
characteristic values used for quantifying roughness. A simple choice is the difference Rt

between the maximum and the minimum of the surface relief (cf. Fig. 2.23).
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Figure 2.23. Formation of speckle caused by the reflection of a co-
herent light wave by a rough surface.

If R � λ, then the light’s phases are approximately uniformly distributed on [0, 2π)

because of the light’s periodicity in λ.
If the reflections are observed using a camera, each object point will lead to a diffraction

pattern of the imaging optic on the image plane around the geometric image of the object.
If the optics are diffraction limited and if the aperture is circular, the diffraction pattern will
be an Airy disk. The diffraction patterns interfere with each other and the image sensor
captures an intensity image showing the speckle (Fig. 2.24). The mean diameter μd of the
speckle grains is equal to the diameter of the central maximum of the Airy disk [24],

μd = 2ψmin b ≈ 2.44
λ

D
b , (2.188)

where λ is the wavelength, D is the imaging optic’s diameter limiting the light, and b is
the so-called image distance (cf. Fig. 2.23 and Chap. 3). ‘Stopping down,’ i.e., reducing D

or increasing the f -number O := f
D , increases the diameter of the observed speckle grains

because of the increasing diffraction.
The probability of the speckle’s intensity I being inside the interval [I0, I0 + dI] can be

calculated by means of the assumed uniform distribution of the phase shifts between the
coherent elementary waves [14], yielding an exponential distribution:

Pr{I ∈ [I0, I0 + dI]} = fI(I0) dI =
1

E{I} e
− I0

E{I} , I0 ≥ 0 , (2.189)

with E{I} denoting the expected value of the intensity. Thus, the standard deviation is given
by √

Var{I} = E{I} . (2.190)

Therefore, the intensity fluctuations of the speckle are of the same order of magnitude as
the mean value. In addition, the probability density fI reaches its maximum for I = 0 and
decreases exponentially for higher intensities. Hence, the intensity ‘black’ is most likely. In
all, speckle is a very high contrast pattern. Because of the intensity’s positivity and (2.190),
the fluctuations of speckle can be modeled in a signal theoretical sense as multiplicative noise
with a correlation length of about μd (for a mathematical description of noise, see Sec. 8.5.3).

2.32.3 Light as a quantum phenomenon
By means of the model of an electromagnetic wave, light’s propagation phenomena, espe-
cially diffraction and interference effects, can be correctly described and calculated. But the
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(a) O = 32 (b) O = 2.8

(c) O = 32 (d) O = 2.8

Figure 2.24. Speckle seen when observing the scattered light of a laser with the wavelength λ = 660 nm on a dull
white surface: (a) Laser line of width 1 mm, imaged with a small aperture; (b) Laser line for a large aperture;
(c), (d) Laser ray widened to an area of about 5 cm × 5 cm. The focal distance of the camera lens is f = 100 mm.
The object distance is approximately g ≈ 500 mm.

electrodynamic model of Maxwell’s equations cannot explain how light is measured using
a detector. If a metal surface is irradiated with light, electrons might be freed, which is the
so-called photo-electric effect. For a long period of time it was not clear why the photo-
electric effect only takes place for light of a certain wavelength and does not depend only
on the intensity of the light. On the basis of Max Planck’s quantum hypothesis of 1900, it
was possible for Albert Einstein to logically explain the photo-electric effect in 1905. For this
discovery he was awarded the Nobel Prize in 1921.

In order to be able to satisfactorily explain all phenomena of light, it has to be consid-
ered to have wave characteristics and particle characteristics simultaneously (wave–particle
duality). The ‘light particles’ are the quanta of light, and are called photons. For questions
concerning light propagation, the wave model is suitable, but in order to be able to under-
stand the detection of light, the particle model has to be used. Both perspectives are joined
in the field of quantum electrodynamics, which is beyond the scope of this book [40].

As the electric field of light oscillates at a very high frequency, it cannot be directly mea-
sured. Instead, only the energetic impact of the light caused by the incoming photons and
their energy can be measured. The product of the photon energy and the number of absorbed
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photons per time and per detector area is equivalent to the intensity (power per area), which
is proportional to the square of the electric field strength in the electromagnetic perspective.

In terms of quantum physics, the electric field strength can be interpreted as a probabil-
ity amplitude for photons [41]. The resulting intensity (the squared absolute value) can be
interpreted as a probability density for finding photons in the electromagnetic wave. In the
domain of quantum physics, the wave model and the particle model are related in a stochas-
tic way. This is why the measurement of light intensity, as it is done by every light detector,
is a process that has to be described statistically.
Photons have no rest mass. Their energy depends on the frequency ν of the light:

EPhoton = h ν =
h c

λ
. (2.191)

The constant of proportionality h ≈ 6.626 · 10−34 Js is called Planck’s constant [20]. As
before, the speed of light in vacuum is denoted by c and the corresponding wavelength is
denoted by λ.

Equation (2.191) implies that a light wave of a certain energy has to consist of a finite
number of photons. As a light wave has to consist of at least one single photon, it cannot fall
below the frequency-dependent energy of a single photon. In the perspective of the particle
model, the distribution of light cannot be exactly described by continuous functions and
without considering quantization. Continuous functions like the electric field distribution
of a diffraction pattern (2.149) have to be replaced by probability density functions of the
position of the photons.

In the following, the influence of quantization on the image acquisition process is de-
scribed. To this end, monochromatic light with a wavelength λ is assumed. If a sensor
with a linear characteristic is used, the intensity which is measured by the image sensor and
which results in the image value g of an image point is proportional to the product of a
camera pixel’s area A, the irradiance E (see Chap. 4), and the exposure time T :

g ∝ E AT . (2.192)

Equivalently, a difference in the irradiance of ΔE causes an image value difference Δg:

Δg ∝ ΔE AT . (2.193)

Dividing the right hand side by the energy EPhoton of a single photon results in the number
of photons. However, an image sensor does not detect every single photon. The image
sensor’s quantum efficiency α ∈ [0, 1] describes what fraction of the incoming photons is
really registered. Thus, the average number of effective photons μn contributing to an image
value difference Δg is given by:

μn =
ΔE AT

EPhoton
α =

ΔE AT λ

h c
α . (2.194)

As it is the aim of an image sensor to transform light energy into electric energy, the mean
number of effective photons μn is equivalent to the number of generated electrons.
The photon count n is a random variable with the expected value μn:

E{n} = μn . (2.195)
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If the radiation field is unlimited to a certain extent—which is usually the case in the practice
of automated visual inspection—the random variable n is approximately Poisson distributed
with the expected value μn [23, 28]:

n ∼ PPoisson(μn) = e−μn
(μn)

n

n!
, (2.196)

Var{n} = E{(n− μn)
2} = μn . (2.197)

The parameter μn of the Poisson distribution is equivalent to both the distribution’s expected
value and to its variance. In terms of the image acquisition process, the stochastic distribu-
tion of the photon count results in the measured image values being superposed with a noise
signal. A surface of equal brightness is not always mapped to the same image value but is
affected by variations. These quantum effects can affect two neighboring pixels of a homo-
geneous area as well as the values of a pixel corresponding to pictures of an image series
taken of a constant scene which might show significant differences in their image values.

A measure of the impact of these random effects on the image signal is given by the
signal-to-noise ratio:

SNR =
E{n}2
Var{n} = μn . (2.198)

Thus, a higher mean number of effective photons μn results in a better quality of the image
signal. According to (2.194), this can be achieved by

providing a high irradiance E, e.g., by means of a bright illumination and a big aperture
diameter D;
using an image sensor with large pixel areas A;
using an image sensor with a high quantum efficiency α;
setting a long exposure time T ;
or by means of long-wave light with low-energy photons.

Example 2.7 (Quantum effects on the image sensor): The effects of quantum statistics on the
image acquisition process will be explained by means of the example of the CCD sensor
DALSA FT18 (cf. Chap. 6). A wavelength λ = 550 nm and an exposure time T = 40 ms

are assumed. The sensor has pixels with size 7 μm × 7 μm and a quantum efficiency of
α = 0.22. The saturation charge of a pixel is 4.5 · 104 electrons. When using a quantization
of 256 image values, the image value of 255 is equivalent to the maximum brightness of
the image: μn = 45,000 electrons. The associated number of incoming photons is 204,545
and is obtained by dividing by α. An image value difference of Δg = 1 is, on average,
equivalent to 176 electrons or 802 photons.

According to (2.191), a single photon has an energy of EPhoton = 3.61 · 10−19 J. The
saturation irradiance equivalent to a maximum image value g = 255 is given by

ESaturation =
μnEPhoton

AT α
≈ 0.038 W/m2 , (2.199)

using (2.194). Compared to the irradiance of the sun, which is about 1,000 W/m2 over
the whole electromagnetic spectrum, this value is rather small [37].
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(a) γ = 10−4 (b) γ = 10−3 (c) γ = 10−2 (d) γ = 10−1

(e) γ = 100 (f) γ = 101 (g) γ = 102 (h) γ = 103

Figure 2.25. Simulation of the Poisson distributed photon count during image acquisition.

Example 2.8 (Poisson process): The effects of light quantization on image acquisition can be
simulated by a Poisson process. Therefore, a known gray-scale image g(x) is used. For
every image pixel x, a Poisson process PPoisson(γ g(x)) is simulated. The resulting gray
values are scaled by the factor 1

γ and again form an image gγ(x). The parameter γ is
equivalent to the mean number of photons resulting in a gray value difference of Δg = 1.
For different values of γ = 10i, different images are obtained, in accordance with

gγ(x) :=
n(x)

γ
, n(x) ∼ PPoisson(γ g(x)) . (2.200)

Figure 2.25 shows a series of images for which the Poisson distributions of the photon
count with different parameters have been simulated. It is obvious that the standard
deviation of the gray values decreases for increasing γ. According to (2.198), the signal-
to-noise ratio is SNR = γ g(x) and increases linearly with γ. For γ = 1, the expected
value of the Poisson process is equal to g(x). In this case, a single photon causes a gray
value difference of Δg = 1. For γ = 103, 1,000 photons are necessary to reach the next
quantization interval. 255,000 photons cause a saturation at the maximum gray value
of 255. The latter case approximately corresponds to the image sensor of the previous
example.

2.42.4 The ray model of geometrical optics
Compared to wave optics, the ray model of light is quite simplified. It is a usable approxi-
mation if all relevant dimensions are significantly greater than the light’s wavelength. The
ray model can be used to describe optical imaging systems consisting of lenses and mirrors,
using only elementary geometric equations (see Chap. 3).
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Table 2.2. Suitability of the different models of light.

Dimensions Number of Geometric Wave Photon

photons optics optics statistics

l� λ
ΔE AT λα

h c
� 1 ×

l� λ × ×
ΔE AT λα

h c
� 1 ×

× ×

As described in Sec. 2.2.1.1, a light ray is parallel to the direction of propagation of the
electromagnetic wave, and therefore perpendicular to the wave fronts. Light rays travel in
straight lines inside a homogeneous medium.

Geometric optics neglects the wave properties of light, and assumes a straight-line prop-
agation of the light rays. This is why the imaging process can be described using no more
than elementary geometry. Therefore, the intercept theorem is the most important tool. It is
explained in Appendix A.1.

2.5 2.5 Summary
This chapter has introduced the reader to different models explaining light. Each model
describes the reality only partially and approximately. The suitability of the approximation
depends on the specific application. In this context, the following two criteria are especially
relevant:

Is the smallest relevant dimension l of the optical system greater than the light’s wave-
length λ? If yes, geometric optics can be used as a suitable model. Otherwise, wave-
optical effects should be taken into consideration.
What is the number of photons, according to (2.194)? If the number of photons is too
small, photon statistics have to be taken into account. Otherwise, they can be neglected.

Table 2.2 summarizes the criteria regarding the applicability of the different perspectives on
optical phenomena.

2.6 2.6 Interaction of light and matter
When light hits matter, different interactions might take place, yielding a variety of optical
phenomena. Light can be absorbed and transformed into heat; it can be reflected, or diffusely
scattered. Transparent and partially transparent materials let a part of the light pass through
(this is called transmission), however, it usually does not propagate in a straight line across
the interface between the materials (refraction).
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2.6.1 Absorption
Matter can absorb light and transform it into heat or, rarely, into other forms of energy [16].
Absorption can be based on different processes. For example, electrons can be elevated to
higher energy levels by the energy of the photon, or the molecules and the lattice can be
set into oscillations, which are also energetically quantized. Furthermore, liquids and gases
possess material-dependent and quantized rotation states, which can also be activated by
absorbing photons. After absorption, the photons either get emitted again with a lower
energy and thus a longer wavelength, or their energies are completely transformed into
heat without emitting any radiation, because of further interactions, e.g., collisions. The
transformation into heat is called dissipation. In the case of conductive materials, an electric
current caused by the electric field of the irradiated light can arise, which will also lead to a
loss of radiation energy.

As according to (2.191), the photon energy depends on the frequency, the absorption
often varies with the light’s frequency. The spectral components which are absorbed and the
amount of absorbed energy depends on the physical and chemical properties of the atoms,
molecules, or solid state bodies.

Selective absorption of certain spectral components and a simultaneous reflection of the
remaining light causes an object to appear colored. If an object absorbs the whole of visible
light, it appears black. As is known, such objects are heated most intensely under irradiation.

2.6.2 The law of reflection
If light is reflected at an interface, part of the irradiated light is emitted back in the medium
with a fixed angle of reflection, without crossing the boundary. The direction of the reflec-
tion only depends on the relation between the direction of incidence and the normal to the
surface. The reflected light ray is located in the plane spanned by the incident light ray and
the surface normal.

The law of reflection can be derived using Huygens’ principle. For that purpose, the
ideal case of an infinitely spread plane wave is considered. As the reflected wave moves in
the same medium as the incident wave, both waves propagate with the same speed. If the
incident wave front which runs through point A in Fig. 2.26, reaches point B after propagat-
ing for the distance l1, the wave coming from point A has also propagated for a distance of
lr = l1, which results in

lr = l1 ⇒ θr = θ1 . (2.201)

Hence in the case of reflection, the angle of incidence is equal to the angle of reflection. The
angle of incidence is the angle between the surface normal n and the direction of incidence
of the incident light rays. Similarly, the angle of reflection is between the surface normal
and the direction of propagation of the outgoing light ray. The following holds for the wave
vector kr of the reflected wave:

kr = (I− 2nnT)k1 , (2.202)

with k1 denoting the wave vector of the incident light wave, n denoting the normal vector
of the interface and I denoting the identity matrix [1, 29]. On the one hand, this vectorial
formulation of the law of reflection states that the angle of incidence is equal to the angle of
reflection, and on the other hand it implies that the wave vectors of the incident wave and of
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the reflected wave are coplanar to the normal vector of the interface, so that all three vectors
are located in the plane of incidence.

2.6.3 The law of refraction
Inside matter, light propagates with a speed v, which is slower than the speed of light in
vacuum c. From (2.24) and (2.26) it follows that

v =
c

n
. (2.203)

The index of refraction n depends on the material and on the wavelength. If two materials,
referred to as 1 and 2, have respective refraction indices n1 > n2, material 1 is called the
optically denser medium and material 2 is called the less optically dense medium.

In general, light does not go through two media of different refraction indices in a straight
line, but is refracted at the interface. This phenomenon can be explained by means of Huy-
gens’ principle (see Sec. 2.2.3). A wave front of an incoming electromagnetic wave tilted at
some angle to the interface reaches point A on the interface in Fig. 2.26 at time t. Then, point
A emits a spherical wave into medium 2, which propagates with reduced speed, and at time
t+Δt reaches a distance of l2. At this time, the incoming wave front reaches point B, which
emits another spherical wave. The superposition of all spherical waves in medium 2 emit-
ted by the points of the interface forms a plane wave front of the transmitted electromagnetic
wave. Because of the different propagation velocities, this wave does not propagate in the
same direction as the incident wave.

n

θ2

θ1 θr

kr

k1

k2

θ1 θr

θ2

Figure 2.26. Deriving the laws of reflection and refraction by applying Huygens’ principle in the plane of incidence.
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Figure 2.26 yields the following quantitative relation:

Δt =
l1
v1

=
l2
v2

. (2.204)

Equation (2.203) implies

l1 n1 = l2 n2 . (2.205)

The angle θ1 between the normal vector of the interface and the direction of propagation
of the incident wave is called the angle of incidence. The corresponding angle θ2 of the
transmitted wave is called the angle of refraction [3]. The following relations can be derived
from the geometry of Fig. 2.26:

sin θ1 =
l1
a
, (2.206)

sin θ2 =
l2
a
. (2.207)

Snell’s law of refraction is the result of replacing l1 and l2 in (2.205) by inserting these
relations.

2.3Theorem 2.3: Snell’s law of refraction
For the transition of light from a medium with the index of refraction n1 into a medium with
the index of refraction n2, the following holds for the angle of incidence θ1 and the angle of
refraction θ2:

n1 sin θ1 = n2 sin θ2 . (2.208)

The refracted light ray is located in the plane of incidence spanned by the incident light ray
and the surface normal. When moving to a optically denser medium, the light is refracted
towards the normal to the surface. In the case of a less optically dense medium, it is refracted
away from the normal to the surface. Incoming light in the direction of the surface normal
is not refracted at all: θ1 = 0 ⇒ θ2 = 0. �

The law of refraction can also be expressed using vectors. The unit vectors s1 and s2 in
the directions of the wave vectors k1 and k2 of the incoming or of the refracted wave, can be
derived from Fig. 2.26 [13]:

s2 =
n1

n2

⎛⎝s1 − n

⎛⎝sT1 n+

√(
n2

n1

)2

− 1 +
(
sT1 n
)2⎞⎠⎞⎠ (2.209)

with

k1 =
2π

λ1
s1 , ‖s1‖ = 1 , k2 =

2π

λ2
s2 , ‖s2‖ = 1 . (2.210)

Because of

n1 λ1 = n2 λ2 (2.211)
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the wave vector k2 of the refracted wave is given by

k2 =
n2

n1

2π

λ1
s2 (2.212)

=
2π

λ1

(
s1 − n

(
sT1 n+

√(
n2

n1

)
− 1 +

(
sT1 n
)2))∣∣∣∣∣

s1=
λ1
2π k1

(2.213)

= k1 − n

⎛⎝kT
1 n+

√(
2π

λ1

)2(
n2
2

n2
1

− 1

)
+
(
kT
1 n
)2⎞⎠ . (2.214)

The law of refraction is the foundation for the construction of optical imaging systems (see
Chap. 3), such as lenses [29].

As the index of refraction varies with the wavelength of the light, it has to be inter-
preted as a function of the wavelength if a high precision is desired: n = n(λ). The effect
of wavelength-dependent refraction is called dispersion [41]. The magnitude of this effect
depends on the specific material. It can be used in order to investigate the spectrum of the
observed light (Sec. 7.2.4). For example, a prism can decompose light into different color
components. However, dispersion is often an undesired effect of optical systems, as it might
cause imaging errors, the so-called aberrations (Sec. 3.4.8.2).

2.6.4 Scattering
Besides reflection, transmission and absorption, real surfaces redirect a varying amount of
the incident light to other directions. This light is called scattered light.

2.1 Definition 2.1: Scattered light
Scattered light is the light that is emitted by an illuminated surface and whose direction
is not equal to the direction of reflection or transmission obtained via the law of reflection
(2.201) or the law of refraction (2.208). �

Different phenomena can cause light scattering [23,36]. On rough surfaces with microscopic
irregularities with sizes on the order of the wavelength of the light, the local surface orien-
tation differs from the macroscopic shape. Therefore, the incident light might be reflected in
other directions than that predicted by the law of reflection. It is also possible that the light
is repeatedly reflected by surface elements with randomly distributed orientations. The ex-
treme case of perfectly diffuse reflection is the Lambertian radiator, for which the emitted
radiance is equal in all spatial directions. It appears to be equally bright when seen from
every spatial direction (see Chap. 4). Often, mixtures of scattering and reflection can be
observed, e.g., the weak specular reflection, which occurs for emission directions slightly
different from the direction of the law of refraction (Fig. 2.27). Another phenomenon is the
so-called subsurface scattering in partially transparent materials: light crosses the interface
with a certain probability and is then reflected into a stochastically distributed direction.

Scattering might also be caused by particles located in gases, such as in the air [16]. As
such phenomena are of no particular importance for automated visual inspection, they are
not covered any further in this book. The occurrence of scattering can depend on the wave-
length.
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(a) (b)

(c) (d)

Figure 2.27. Different kinds of scattering caused by surfaces: (a) Perfectly specular reflection; (b) Lambertian reflec-
tion; (c) Weakly specular reflection; (d) Volume scattering.

Figure 2.28. Plane of incidence for reflection and re-
fraction at an interface. The illustration shows the
components polarized parallel and perpendicular
to the plane of incidence, respectively, for the inci-
dent wave Ep

i , Es
i , the reflected wave Ep

r , Es
r and

the transmitted wave Ep
t , Es

t. Additionally, the cor-
responding coordinate systems are depicted.

2.6.5 The Fresnel coefficients for reflection and transmission
The Fresnel coefficients give a quantitative measure for the amount of light reflected or trans-
mitted after hitting a interface.

For the quantitative description of the reflection of an electromagnetic wave by the inter-
face between two media, two different polarizations have to be distinguished (Fig. 2.28):

1. The electric field strength Es is directed perpendicular to the plane of incidence.
2. The electric field strength Ep is directed parallel to the plane of incidence.

The following assumptions are made:

There is no surface current density on the interface, so no current flows.
There are no charges deposited on the interface, so its surface charge density is zero.
The infinite half-space behind the interface, as observed by the light source, is completely
filled by the second medium.

The incident wave, the reflected wave, and the transmitted wave are assumed to be plane
waves. The following constraints, which can be used to calculate the laws of reflection and
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refraction and the coefficients for reflection and refraction, can be derived from Maxwell’s
equations:

The tangential components of E and H are continuous at the interface.
The normal components of D and B are continuous at the interface [32].

2.4 Theorem 2.4: Fresnel coefficients of reflection and transmission
The Fresnel coefficients of reflection and transmission rs12, rp12, ts12 and tp12 are defined as
the quotients of the reflected amplitude (respectively, of the transmitted amplitude) by the
incident amplitude of the electric field strengths denoted by Er, Et and Ei. This implies the
following for the components that are polarized perpendicularly to the plane of incidence
[5, 35]:

rs12 =
Es

r

Es
i

=
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, (2.215)

ts12 =
Es

t

Es
i

=
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
. (2.216)

If the electric field of the incoming light is polarized parallel to the plane of incidence, the
coefficients are

rp12 =
Ep

r

Ep
i

=
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

, (2.217)

tp12 =
Ep

t

Ep
i

=
2n1 cos θ1

n2 cos θ1 + n1 cos θ2
. (2.218)

In any case, the law of refraction holds for the incidence angle θ1 and the refraction angle θ2:
that is, n1 sin θ1 = n2 sin θ2. If the coefficient of reflection is negative, the phase of the re-
flected wave is shifted by π with respect to the incoming wave. �

In order to describe the reflection and transmission of arbitrarily polarized light, the elec-
tric field strength E is represented in the plane perpendicular to the propagation direction.
In a coordinate system with a basis vector ep parallel to the plane of incidence and a basis
vector es perpendicular to the plane of incidence, one has E = Ep

i ep + Es
i es and the po-

larization components Ep
i , Es

i can be multiplied by the Fresnel coefficients of reflection and
transmission in order to obtain the reflected and transmitted components.

Using (2.39) and (2.26), the intensities of the incoming wave, the reflected wave, and the
transmitted wave at the interface19 are given by

Ii =
1
2 c ε0 n1 E

2
i , (2.219)

Ir =
1
2 c ε0 n1 E

2
r , (2.220)

It =
1
2 c ε0 n2 E

2
t . (2.221)

The energy flux of the electromagnetic wave, described by the Poynting vector (2.37), is
directed in the direction of propagation. The intensity given by the surface power density
has to be measured perpendicularly to the direction of propagation of the light (Fig. 2.29).

19To simplify matters, only the relevant case of non-magnetic materials is considered (μr = 1). The
general formulations for μr �= 1 can be found in [5, 20] for example.
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Figure 2.29. Determining the intensities of the incident, reflected,
and refracted electromagnetic wave as surface power densities
perpendicular to the respective propagation direction.

The reflectance R (respectively, the transmittance T ) describes the quotient of the re-
flected (respectively, the transmitted) intensity by that of the incoming radiation. As the
intensity is proportional to the squared absolute value of the electric field strength, the Fres-
nel coefficients have a quadratic influence on the reflectance and the transmittance:

R12 =
Ir cos θ1
Ii cos θ1

=
Ir
Ii

=

∣∣∣∣E2
r

E2
i

∣∣∣∣ = |r12|2 , (2.222)

T12 =
It cos θ2
Ii cos θ1

=

∣∣∣∣E2
t

E2
i

∣∣∣∣ n2

n1

cos θ2
cos θ1

=
n2 cos θ2
n1 cos θ1

|t12|2 . (2.223)

These equations can now be applied to the components of the light that are parallelly or
perpendicularly polarized with respect to the plane of incidence [20]:

Rs
12 = |rs12|

2
, Rp

12 = |rp12|
2
, (2.224)

T s
12 =

n2 cos θ2
n1 cos θ1

|ts12|2 , T p
12 =

n2 cos θ2
n1 cos θ1

|tp12|
2
. (2.225)

One always has T s
12 ≤ T p

12 and Rs
12 ≥ Rp

12.
The intensity of the light polarized perpendicularly to the plane of incidence is given by

Isr cos θ1 + Ist cos θ2 = 1
2 c ε0 n1 (E

s
r)

2 cos θ1 +
1
2 c ε0 n2 (E

s
t)

2 cos θ2 (2.226)

= 1
2 c ε0 n1R

s
12 (E

s
i )

2 cos θ1 +
1
2 c ε0 n1T

s
12 (E

s
i )

2 cos θ1 (2.227)

= 1
2 c ε0 n1 (E

s
i )

2 cos θ1 = Isi cos θ1 . (2.228)

As regards reflectance and transmittance, this implies

Rs
12 + T s

12 = 1 . (2.229)

Similarly, for light polarized in parallel to the plane of incidence,

Rp
12 + T p

12 = 1 . (2.230)

The energy of the incoming light is distributed without loss over the reflected and the trans-
mitted light of the same polarization. As no energy is exchanged between the two polariza-
tion components, they can be examined independently [5]. For n1 → n2, it is R → 0 and
T → 1, which means that a homogeneous medium transmits light without reflection.
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Figure 2.30. Reflection at the interface of air n1 = 1 and glass n2 = 1.5. (a) Fresnel coefficients of reflection;
(b) Reflectances.

Reversing the path of the light causes the coefficients of reflection and transmission to
change in the following way [35]:

rs21 = −rs12 , ts21 =
n2 cos θ2
n1 cos θ1

ts12 =
1− (rs12)

2

ts12
, (2.231)

rp21 = −rp12 , tp21 =
n2 cos θ2
n1 cos θ1

tp12 =
1− (rp12)

2

tp12
. (2.232)

The phenomena which might occur when light is reflected or refracted at an interface differ
according to whether there is a transition from a more to a less optically dense medium or
from a less to a more optically dense medium.

First, the case n1 < n2 will be considered. Figure 2.30 shows the Fresnel coefficients for
reflection and the reflectance for an interface between air and glass with n1 = 1, n2 = 1.5

with respect to the angle of incidence θ1.
For dielectric media (non-conductors) 1 and 2, rp12 and also Rp

12 have a zero at the so-
called Brewster’s angle θ1 = θ1B. For this angle, the directions of the reflected wave and the
transmitted wave are perpendicular: θ2B = π

2 − θ1B. Therefore,

cos θ2B = sin θ1B . (2.233)

By means of the trigonometric addition theorems and the law of refraction, it can be verified
that rp12 = 0 for θ1B. Now, (2.217) results in an equation, which allows the determination of
Brewster’s angle:

tan θ1B =
n2

n1
. (2.234)

Light reflected through Brewster’s angle is completely linearly polarized, perpendicular to
the plane of incidence, as all of the parallel polarized light is transmitted. This effect can
be used in order to obtain linearly polarized light. Another application is the suppression
of reflections: if an image is acquired at an angle equal to Brewster’s angle, only the per-
pendicularly polarized component of the reflected light is observed. If the perpendicularly
polarized light is suppressed by a polarizing filter, the reflected light is completely blocked.
The image will only contain light that has been diffusely scattered by the surface or which
has been transmitted through the medium from the other side [16, 35].
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Figure 2.31. Reflection at the interface of glass, n1 = 1.5, and air, n2 = 1. (a) Fresnel coefficients of reflection;
(b) Reflectances.

If light propagates from a more to a less optically dense medium, other phenomena can
be observed [20, 25]: for n1 > n2, one has θ1 < θ2 according to the law of refraction (2.208).
Therefore, the angle of incidence can be so large that sin θ2 would have to be larger than 1.
Such an angle of refraction is physically impossible. The maximum possible angle of refrac-
tion is θ2 = 90◦. If the corresponding angle of incidence is exceeded, no light is transmitted
into the second medium. Instead, all the light is reflected. This phenomenon is called to-
tal internal reflection. Total internal reflection occurs whenever the angle of incidence θ1
exceeds the critical angle θ1C:

θ2 = π
2 ⇒ n1 sin θ1C = n2 ⇔ θ1C = arcsin

n2

n1
. (2.235)

For θ1 ≥ θ1C, the Fresnel reflectances are equal to 1. The phases of the components polarized
parallel and perpendicular to the plane of incidence are shifted. The actual phase shift can
be calculated from the Fresnel coefficients of reflection by using the complex trigonometric
functions [18]. Figure 2.31 gives an example for the case of the interface between glass (with
n1 = 1.5) and air (with n2 = 1).

Total internal reflection is used for constructing optical fibers and fingerprint scanners
for instance. For the latter, total internal reflection is disturbed at the spots where the finger
is in contact with the device, so that they are clearly visible in the observed camera image.
This principle is called frustrated total internal reflection.

For the case n1 > n2, there also exists a polarization angle θ′1P for which rp12 has a zero.
This polarization angle is the equivalent of Brewster’s angle θ1B (which was for the case
n1 < n2). One has θ′1P + θ2P = π

2 , with θ2P denoting Brewster’s angle for an incident wave
originating from medium 2.
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The reflection at the interface between two materials is described by the following
Mueller matrix [6]:

MRefl =
1

2

(
tan(θ1−θ2)
sin(θ1+θ2)

)2
·

⎛⎜⎜⎜⎝
c2p+c2m c2p−c2m 0 0

c2p−c2m c2p+c2m 0 0

0 0 −2cpcm 0

0 0 0 −2cpcm

⎞⎟⎟⎟⎠

=
1

2

⎛⎜⎜⎜⎝
Rp

12 +Rs
12 Rp

12 −Rs
12 0 0

Rp
12 −Rs

12 Rp
12 +Rs

12 0 0

0 0 2
√
Rp

12R
s
12 0

0 0 0 2
√

Rp
12R

s
12

⎞⎟⎟⎟⎠ (2.236)

with

cp := cos(θ1 + θ2) , (2.237)

cm := cos(θ1 − θ2) . (2.238)

The matrix can be expressed as a function of either the angles of incidence and refraction θ1
and θ2, or of the reflectances Rs

12 and Rp
12. The refraction indices are indirectly included by

the law of refraction n1 sin θ1 = n2 sin θ2 or by the calculation of the coefficients of reflection.
In the employed convention for naming coordinates, the x-axis corresponds to a polarization
parallel to the plane of incidence an the y-axis corresponds to a polarization perpendicular
to the plane of incidence (cf. Fig. 2.28). For example, the Stokes vector SLHP from (2.53) for
linearly horizontally polarized light describes light that is polarized parallel to the plane of
incidence [11, 34].

2.6.6 Electromagnetic waves in conductive media
Until now, only non-conductive materials, i.e., materials satisfying σ = 0, have been consid-
ered. Now, a homogeneous, conductive medium with σ = const. > 0 is considered. Hence,
the conductivity is constant with respect to space and time.
In this case, the wave equation (2.17) is given by

ΔE = ε μ
∂2E

∂t2
+ σ μ

∂E

∂t
. (2.239)

A complex harmonic ansatz results in the following equation of a plane monochromatic
wave for the angular frequency ω:

E(x, t) = E e−ηeT
3 x e j(ωt−keT

3 x) , ‖e3‖ = 1 . (2.240)

This equation describes an electromagnetic transverse wave propagating in the direction e3.
The field’s amplitude E is perpendicular to the direction of propagation e3.20 In conductive
media, the so-called attenuation describes the increasing decay of the wave in the direction of
its propagation, which is governed by the additional factor e−ηeT

3 x (see [32]). The wavelength

20Actually, in the case of conductive materials, E ⊥ e3 is only an approximation, as there is a small
longitudinal component [20, p. 110].
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is denoted by λ = 2π
k , the phase velocity by v = ω

k , the attenuation factor by

η = ω

√
μ ε
2

(√
1 + σ2

ω2ε2 − 1

)
(2.241)

and the wavenumber by

k = ω

√
μ ε
2

(√
1 + σ2

ω2ε2 + 1

)
. (2.242)

2.6.6.1 Complex index of refraction
Formally, a complex-valued index of refraction n ∈ C can be introduced in order to describe
the optical properties of conductive media [20, 25]:

n = n− jd , (2.243)

n =
λ0

2π
k =

c

ω
k =

c

v
, (2.244)

d =
λ0

2π
η =

c

ω
η . (2.245)

The speed of light in vacuum is denoted by c, the vacuum wavelength by λ0. The real part of
the index of refraction represents the decrease of the phase velocity of a wave in the medium
compared to the vacuum velocity. The imaginary part describes the medium’s attenuation
characteristics21.

W.l.o.g. the vector e3 = (0, 0, 1)T is chosen such that eT3 x = z and the amplitude E is
parallel to the x,y-plane. Then, (2.240) yields

E(x, t) = E e j(ωt−k0nz) (2.246)

with k0 = 2π
λ0

.
The intensity (power per area) I(x) of the wave is proportional to the time-averaged

square of the real part ‖�{E(x, t)}‖2 of the field strength:

I(x) = I0 e
−az = I0 e

−2ηz with I0 =
‖�{E(x, t)}‖2

Z

∣∣∣∣∣
x=0

=
‖E‖
2Z

. (2.247)

The intensity of the wave decreases exponentially in the direction of propagation. The ab-
sorption coefficient a is given by

a = 2η =
4π

λ0
d . (2.248)

The absorption coefficient and the complex index of refraction only describe the absorp-
tion caused by the conductivity but not the dissipative absorption, which was covered in
Sec. 2.6.1.

21The real part and the imaginary part of the complex index of refraction depend on the frequency
of the light. However, if considered as functions of the frequency, the two components are not inde-
pendent from each other. In fact, they are related via an integral transform by the so-called Kramers–
Kronig relations, and can be calculated from each other [41].
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Table 2.3. Complex refraction indices n2 = n − jd, penetration depths δ, and reflectances R for the medium air
(n1 = 1) and light with a wavelength of λ = 589 nm coming in perpendicularly (θ1 = θ2 = 0) for selected
materials [20, 25].

Material n d δ R

Vacuum 1 0 →∞ 0

Air ≈ 1 0 →∞ 0

Glass 1.5 0 →∞ 0.04

Aluminum 1.44 5.23 8.96 nm 0.83

Silver 0.18 3.64 12.90 nm 0.95

Iron 2.27 3.37 13.90 nm 0.59

Copper 0.62 2.63 17.80 nm 0.74

Tin 1.5 5.30 8.84 nm 0.83

The distance δ in the medium after which the energy of the wave is reduced to I0 e
−1, i.e.,

by ≈ 63%, is called the penetration depth. Hence, by (2.247), it is a δ = 1:

δ :=
1

a
=

1

2η
=

λ0

4π d
. (2.249)

After reaching a depth of about 4 to 5 times the penetration depth, the intensity is reduced
to 1.8% or 0.67%, respectively. Therefore, only surface layers down to a depth of 4 to 5 times
the penetration depth can be examined optically by means of automated visual inspection.
Deeper areas remain optically hidden. Table 2.3 shows the complex refraction indices and
penetration depths for some materials.

Snell’s law of refraction and the formulas of the Fresnel coefficients are also valid for
conductive materials with complex refraction indices. In general, this results in complex
angles and angle functions, which are indeed hard to imagine but can still be mathematically
handled.

Example 2.9 (Complex refraction index): At the interface between air, having a real-valued
index of refraction n1 = 1, and a conductive medium 2, having a complex-valued index
of refraction n2 ∈ C, the law of refraction is as follows:

sin θ1 = n2 sin θ2 . (2.250)

Because sin θ1 ∈ R and n2 ∈ C\R, the term sin θ2 has to be complex as well.

The following holds for complex-valued trigonometric functions as well as for their real-
valued pendants:

sin2 ϕ+ cos2 ϕ = 1 . (2.251)

Hence, the following expression for cos θ2 is inserted into the Fresnel coefficients for the
important case of n1 being real and n2 being complex:

cos θ2 =

√
1− sin2 θ2 =

√
1−
(
n1 sin θ1
n2 − jd2

)2

. (2.252)
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Example 2.10 (Perpendicular reflection): For perpendicularly incident light, θ1 = 0 = θ2 by
the law of refraction. Here, n1 = 1 is assumed for air or a vacuum and n2 = n2 − jd2 is
assumed to be complex. This results in the following reflectance [3],

R12 := Rp
12 = Rs

12 =

∣∣∣∣1− n2 + jd2
1 + n2 − jd2

∣∣∣∣2 =
(1− n2)

2 + d22
(1 + n2)2 + d22

. (2.253)

It is not necessary to distinguish between light which is polarized parallel or perpen-
dicularly with respect to the plane of incidence if it is coming in perpendicularly to the
interface.22 Intensively absorbing materials, e.g., metals, have a high values of d22, which
results in high reflectance values (see Table 2.3).

For d �= 0, the Fresnel coefficients are complex, but their squared absolute values, which are
the reflectances, remain real. The reflectance Rp of conductive materials can never have a
zero, since the real part and the imaginary part of the numerator cannot be zero simultane-
ously. Nevertheless, rp typically has a minimum at the so-called principal angle θ∗1 . This
difference in the reflection behavior can be used to classify materials into metals and dielec-
tric materials [38].

Example 2.11 (Reflectance of tantalum): Figure 2.32 shows the Fresnel reflectances of an ex-
ample of the interface between air (with n1 = 1) and the metal tantalum (with n2 =

1.72− j 2.09) at a wavelength of λ = 632.8 nm.
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θ∗1 Figure 2.32. The Fresnel reflectances for the transition from air to
tantalum with respect to the angle of incidence θ1 [35, P. 18].

The real part of the index of refraction only weakly depends on ν for non-conductive ma-
terials (dielectrics, σ = 0) as it depends on εr and μr and hence only indirectly on the fre-
quency ν. This dependency is notably increased for conductive materials, as the angular
frequency ω = 2πν explicitly influences n and d. This effect can be exploited to classify
unknown materials by acquiring images at different wavelengths (see Sec. 7.2.1).

Although metals are highly absorbing, the energy of an electromagnetic wave is only
slightly reduced by a reflection. Silver, for example, absorbs only approximately 5% of a

22Generally rs12 = −rp12 for perpendicular reflections (cf. (2.215), (2.217), Fig. 2.30(a)). The different
sign of the coefficients of reflection is caused just by a rotation of the coordinate system, whose z-
axis is always directed along the propagation direction of the transversal wave. This is why the x-
axis (parallel polarization) is rotated by 180◦ for a perpendicular reflection and the direction of the y-
axis (perpendicular polarization) remains unaffected (so-called Verdet convention [22], cf. Fig. 2.28). In
contrast, with respect to a stationary coordinate system located on the reflecting surface, the parallel
and perpendicular polarized components are subject to the same changes of phase.
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wave’s energy at a wavelength λ = 589 nm, leaving the remaining energy to the reflected
wave. Because of the low penetration depth, which is much smaller than the wavelength, the
wave only touches very few electrons, whose motions (electric currents) cause the absorption
[20].
Transparent material layers are thin compared to the penetration depth δ.

The reflection at metal surfaces notably depends on the surface’s quality, which is af-
fected by roughness, contaminations, oxide layers, etc.

2.7 2.7 Light sources
The illumination of the test object plays an important role in the field of automated visual
inspection. A suitable illumination can highlight the object’s properties of interest, and thus
facilitate image processing. Illumination and image acquisition methods will be covered in
Chap. 7. This section will briefly discuss the physical and technical foundations of artificial
light sources [9, 15].

One can distinguish between thermal and luminescent radiators, based on the physical
principles used to create the light. Inside a thermal radiator, a local thermal equilibrium
is present. The radiation power and its spectrum depend only on the radiating body and
its temperature. The energy necessary for emitting light is supplied in the form of heat.
The thermal radiator’s state of matter can be either solid or gaseous. This principle is used
by incandescent and halogen lamps, where the heat is generated from an electric current.
Sunlight is also a form of thermal radiation [16].

A luminescent radiator directly transforms the supplied energy into radiation. The en-
ergy is not available in the form of heat but as potential energy, and there is no thermal
equilibrium. Gas-discharge lamps, light-emitting diodes, and lasers are examples of lumi-
nescent radiators.

2.7.1 Thermal radiators

2.7.1.1 Physical principles
Matter spontaneously emits electromagnetic radiation. The energy of that radiation comes
from the movements of the molecules, atoms, and electrons. It is these very movements on
which the concept of temperature is based. This is why more radiation is emitted when the
temperature rises. The ideal thermal radiator is the so-called blackbody radiator [30].

2.5 Theorem 2.5: Planck’s law
The spectral radiance of a blackbody is described by Planck’s law [9]:

Lλ(λ) =
2h c2

λ5

1

exp
(

h c
k λT

)
− 1

. (2.254)

The temperature in Kelvin of a blackbody radiator is denoted by T , while λ is the wave-
length of the emitted light, c denotes the speed of light in vacuum, h is Planck’s constant
(see Sec. 2.3), and k ≈ 1.38 · 10−23 J/K is Boltzmann’s constant. �
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A so-called gray-body radiator only reaches a lower radiance, which however is propor-
tional to (2.254). A light source’s correlated color temperature is the temperature a blackbody
radiator must have in order to emit light of an apparent color equivalent to that of the light
source [39]. The term color temperature can be used for the color characterization of light
even if it is not emitted by a thermal radiator. In this case, the color temperature does not
depend on the physical temperature of the light source.

The total radiation power of a half-space (factor π) and for all wavelengths is given by
the surface power density described by the Stefan–Boltzmann law:

∞∫
0

π Lλ(λ) dλ =
2π k4

15h3 c2
T 4 ≈ 5.67 · 10−8 W m−2K−4 T 4 . (2.255)

Hence, the radiation power, which is the product of the surface power density and the
area A, increases with the fourth power of the temperature. Simultaneously, for increasing
temperature, the maximum of the spectral radiance is shifted towards shorter wavelengths
(Fig. 2.33). The wavelength of maximum emission is given by Wien’s displacement law:

λmax ≈
2.898 · 10−3 K m

T
. (2.256)

The apparent color of a blackbody radiator shifts from red to yellow to white for increasing
temperatures (see also Sec. 5.2.4).

Thermal radiators emit a continuous spectrum over a wide range of wavelengths. For
technically feasible temperatures, the largest part of the radiation power is emitted as in-
frared light (Fig. 2.33). The amount of radiation power in the visible part of the spectrum is
relatively small. This is why light sources based on the principle of thermal radiation only
have a small light yield23 but a high heat dissipation.

Only for higher temperatures does the maximum intensity of a blackbody radiator shift
into the visible part of the spectrum. As the total intensity increases with the temperature’s
fourth power, by (2.255), the spectra of different temperatures can only be visualized using
a double logarithmic scale as in Fig. 2.34.

2.7.1.2 Incandescent lamps and halogen lamps
Incandescent lamps and halogen lamps are thermal radiators which can be physically mod-
eled as gray-body radiators. A current-carrying wire heated due to its electric resistance
serves as a radiator. This filament consists of tungsten (also known as wolfram), which is
the metal with the highest melting point: 3,683K [2]. Nevertheless, the melting point is the
limiting factor for the maximum temperature and thus also for the performance of incandes-
cent lamps. The slow vaporization of the tungsten limits the lifetime of the lamp. In order
to increase the stability of the tungsten filament, the bulb is filled with an noble gas, like
nitrogen for example. The operating temperature of incandescent lamps filled with gas is
between 2,600K and 3,000K (see [30]).

Halogen lamps allow higher temperatures from 3,000K up to 3,400K, so that more of the
emitted radiation belongs to the visible part of the spectrum, and so the lamp’s light yield

23Light yield is the relation between the amount of the emitted luminous flux Φl and the absorbed
electrical power P . Luminous flux is a measure of the energy of the visible part of electromagnetic
radiation; see Chap. 4.
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is increased (cf. Fig. 2.33). This is achieved by using halogen compounds inside the gas,
which react with the vaporized tungsten and transport it back to the filament. This process
is called the halogen cycle. The regeneration of the filament results in a longer lifetime of the
lamp. Halogen lamps are much more compact than incandescent lamps, in order to ensure
the required temperature to prevent the tungsten halogenide from condensing on the bulb.
Usually iodine is used as a halogen.

The operating data of incandescent and halogen lamps mainly depend on the tempera-
ture. As the filament’s temperature is caused by an electric current, it can be manipulated by
altering the operating voltage. The operating data can usually be approximated by power
laws depending on the relation of the operating voltage U to the nominal voltage UN of the
lamp [30]. Figure 2.35 and Table 2.4 show these operating laws for a light flux of Φl, an
electric power consumption of P , current I , light yield η, and lifetime Z, for the example of
a halogen lamp. Overvoltage severely reduces the lamp’s lifetime. Conversely, the lifetime
can be significantly increased by lowering the operating voltage, which will cause only a
slightly decreased light yield. Incandescent and halogen lamps can be operated with either
direct or alternating current.

Z

I

P

1000

100

10

80 90 100 110 120

Figure 2.35. Operating laws for halogen lamps plotted using a logarithmic scale [30].

2.7.2 Gas-discharge lamps
Gas-discharge lamps use the principle of electroluminescence: atoms are excited or ionized
in a strong electric field when they are hit by accelerated particles (electrons or ions). The
absorbed energy is released in the form of light.

In high pressure discharge lamps, the energy is supplied by arc discharges. Ions enable
an electric current to flow between both electrodes. Other atoms get hit by the ions, are
excited, and also emit light. Such lamps can be filled with gases, especially noble gases, and
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Table 2.4. Operating laws for incandescent and halogen lamps as functions of the relation between the operating
and the nominal voltage Ur =

U
UN

[30].

Incandescent lamp Halogen lamp

Current I ∝ U0.5
r I ∝ U0.6

r

Electric power P ∝ U1.5
r P ∝ U1.6

r

Light flux Φl ∝ U3.8
r Φl ∝ U3.0

r

Light yield η ∝ U2.3
r η ∝ U1.4

r

Temperature T ∝ U0.4
r T ∝ U0.34

r

Lifetime Z ∝ U−14
r Z ∝ U−14

r if U > UN

Z ∝ U−14
r up to U−10

r if U < UN
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Figure 2.36. Spectra of mercury-vapor high pressure lamps [8].

metallic vapors. Metals only start to vaporize when the temperature rises after the gas fill
has been ignited.

Typically, the spectrum of a gas-discharge lamp is wider and smoother for higher oper-
ating pressures (Fig. 2.36). Different physical mechanisms contribute to this effect, which
widens the lines in the spectrum that are usually rather thin because of the discrete ex-
cited states of the molecules: Doppler broadening, bremsstrahlung and radiative recombi-
nation [9]. Doppler broadening is based on the collisions between the gas molecules moving
with a continuously distributed velocity. Their kinetic energy is increased for higher tem-
peratures and pressures. Bremsstrahlung occurs whenever charged particles hit matter and
are strongly decelerated. The wavelengths of the emitted light depend on the velocity of
the particles, which is continuously distributed. If positive ions and electrons combine to
form electrically neutral atoms, also a continuous spectrum is emitted as the recombination
partners have randomly distributed kinetic energies.

Furthermore, increasing the operating pressure leads to an increased luminance, which
means that the geometric extent of the light emission can be spatially narrowed. High pres-
sure discharge lamps are usually very compact and are a nearly perfect point light source.
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Figure 2.37. Schematic of a xenon short-arc lamp (based on a drawing of Osram AG).

These properties are even more marked for super high pressure lamps, e.g., the xenon short-
arc lamps (Fig. 2.37). In the visible domain, the spectrum of these lamps is very similar to the
spectrum of daylight. But much of the energy is emitted in the near infrared region of the
spectrum, so that the light yield of the xenon short-arc lamp is not as high as it is for other
gas-discharge lamps. Another disadvantage is the necessary safety precautions, because of
the explosion hazard caused by the high pressure.

For electroluminescent lamps, usually mercury is used. Metal halide compounds24 can
be added to mercury-vapor high pressure lamps in order to influence the emitted spectrum.
Depending on the mixture, the result might be a higher light yield or a smoother spectrum.
A broadband spectrum, which is similar to the spectrum of daylight, is especially useful for
color rendering. The electric power P of mercury-vapor high pressure lamps ranges between
35 and 3,500W, and the light yield η ranges from 65 to 120 lm/W. The lamp’s mean lifetime
is about 6,000 operating hours.

Low pressure discharge lamps emit line spectra corresponding to the atoms’ discrete
excited states. A broad spectrum can only be achieved using luminescent material. The
walls of fluorescent lamps are coated with such fluorescent materials (see Sec. 7.2.2 for flu-
orescence). They absorb the light of short wavelengths, like the ultraviolet radiation of the
gas discharge for example, and emit light of longer wavelengths. However, a considerable
amount of energy is lost during this process, in the form of heat. Figure 2.38 shows the
setup of a fluorescent lamp. The so-called energy-saving lamps are compactly constructed
mercury-vapor fluorescent lamps.

The pressure inside of low pressure discharge lamps is between 1 and 103 Pa, which is
much less than the pressure of the surrounding air. These lamps are usually operated with
mercury-vapor or sodium-vapor. The line spectra of the gas-discharge processes depend on
the structure of the energy levels of these elements. Among others, the spectral lines of the
mercury-vapor lamp are at 184.9; 253.6; 296.7; 365.0; 435.8; 546.1 and 577 nm, which partly
correspond to the ultraviolet part of the spectrum [21]. Thus, the efficient generation of light
is only possible if luminescent materials are used. The discharge of low pressure sodium-
vapor produces a narrow-band spectrum around 590 nm. This light is visible and appears to

24This is why such lamps are also called ‘metal-halide lamps’ — however, they rely on a different
principle than the halogen lamps introduced in Sec. 2.7.1.2.
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Figure 2.38. Schematic of a mercury-vapor fluorescent lamp.

be colored in the range from yellow to orange. Therefore, sodium-vapor lamps can be used
without luminescent materials and reach a high light yield. They are often used if a higher
light yield is more important than complete color rendering, as is the case for street-lights,
for example. Both low pressure and high pressure discharge lamps can be operated with
sodium-vapor.

Mercury and sodium are suitable for discharge lamps as they offer low ionization ener-
gies, suitable excitation energies for optical radiation, and high vapor pressures. Besides, the
cross section25 for electron excitation is about three to four times higher than for noble gases.

Gas-discharge lamps are typically operated with alternating current. As the electric re-
sistance decreases for an increasing discharge current, operating a gas-discharge lamp with
constant voltage would lead to severe instabilities and finally to the lamp’s destruction.
Therefore, all gas-discharge lamps have to be operated with an electrical ballast. Current
sources26 limit the current while operating the lamp, so that the lamp’s nominal power can-
not be exceeded. Additionally, they control the ignition of the gas-discharge by preheating
the electrodes and stabilizing the electric arc. As the temperature and pressure have to be
established first, gas-discharge lamps need some minutes to reach their specified spectrum
and their full luminosity. They cannot be operated in a pulsed way. The number of power
cycles negatively affects the lifetime of the lamp. Operating gas-discharge lamps with a com-
mon 50 Hz alternating current might result in stroboscopic effects of about 100 Hz, which can
lead to significant differences in the brightness of acquired images if a short exposure time is
chosen. Modern lamps usually avoid this effect by using high frequency ballasts. Especially
xenon lamps can also be used as flashlights.

2.7.3 Light-emitting diodes
Light-emitting diodes or LEDs are semiconductors which also use the principle of electrolu-
minescence to emit light. LEDs have been available since the 1960s. At first, their efficiency
was very low, so that they were mainly used as signal or warning lamps. Nowadays, the
development of LEDs has come so far that they can be used for illumination purposes.

25The cross section of an atom is a measure of the probability of electron excitation. It can be inter-
preted as the atom’s virtual cross-sectional area.

26In the domain of electrical engineering, the terms voltage and current source have to be distin-
guished. A voltage source supplies an approximately constant voltage and has a low internal resis-
tance. Current sources, on the other hand, provide an approximately constant current and have a high
internal resistance.
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Figure 2.39. Band model of a light-emitting diode [9].

Table 2.5. Bandgaps Egap and emitted wavelengths λ of III-V-compound semiconductors for light-emitting diodes
[9].

Compound Egap in eV λ in nm

AlN (aluminum nitride) 6.02 206
GaN (gallium nitride) 3.34 371
GaAs (gallium arsenide) 1.35 918
InN (indium nitride) 2.0 620
InP (indium phosphide) 1.27 976
InAs (indium arsenide) 0.36 3,400
InSb (indium antimonide) 0.163 7,610

LEDs are diodes operated in forward current. The electric voltage supplies the elec-
trons with energy, so that they can move from the valence band to the conduction band. By
moving back from the semiconductor’s n-doped conduction band to the energetically lower
p-doped material, energy is freed, which is released in the form of photons. The number
of photons emitted per unit of time is approximately proportional to the number of charge
carriers running through the LED per unit of time, and thus to the electric current. The pho-
ton energy h ν nearly equals the bandgap: Egap ≈ h ν (Fig. 2.39). The spectrum of LEDs is
narrow-band. The wavelength is in the visible, the ultraviolet or in the near infrared part of
the spectrum, depending on the semiconductor material and the doping.

A common choice for LEDs is the so-called III-V-compound semiconductors. These ma-
terials are compounds of elements of the periodic system’s third main group, like aluminum,
gallium or indium for example, and of the fifth main group, like nitrogen, phosphor, arsenic
or antimony for example. Table 2.5 shows some III-V-semiconductors with their correspond-
ing bandgaps and wavelengths. By using mixed crystals, the complete spectrum can nowa-
days be covered (see Fig. 2.40(a)). White LEDs can be constructed on the basis of blue LEDs.
In order to achieve a broadband spectrum, a luminescent material is used, which fluoresces
in the spectrum’s yellow part (see Fig. 2.40(b)). Mixing the blue and yellow light leads to a
white color impression.

Alternative materials for LEDs are organic semiconductors (OLEDs) and II-VI-
semiconductor compounds. Some of these materials are still under development or being
researched.

As the static electric resistance of a diode decreases with increasing current, LEDs may
only be operated using a current source delivering a constant current. An LED must not be
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Figure 2.40. Spectra of light-emitting diodes: (a) Narrow-band spectra of different light-emitting diodes (adapted
from [9]); (b) Spectra of white light-emitting diodes with different color temperatures (adapted from [7]).

directly connected to a voltage source because then the current would increase uncontrol-
lably, leading to the destruction of the LED. Voltage sources delivering a constant voltage U0

can be approximately transformed into current sources by connecting them in series with an
ohmic resistor R (Fig. 2.41). Let UF be the voltage drop across the diode and I0 the desired
current. Then, for U0 � UF, the required resistor R is calculated by

R =
U0 − UF

I0
. (2.257)
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Figure 2.41. Circuit for operating a light-emitting diode.

Because U0 � UF, a change of UF only leads to a small change of I :

ΔI ≈ − 1

R
ΔUF = − I0

U0 − UF
ΔUF . (2.258)

Because of much power being dissipated across the resistor, this circuit is not suitable for
illumination purposes. Some LEDs come with already integrated constant current sources.

Compared to other light sources, LEDs offer a very high durability. Common LEDs op-
erate for about 100,000 hours and even high performance diodes can reach a durability of
30,000–50,000 hours. The light’s intensity slowly decreases with increasing age of the diode.
The sudden failure of an LED is unusual. As mentioned earlier, LEDs show a narrow-band
emission, so that no energy is emitted in the infrared and ultraviolet part of the spectrum,
which leads to a high light yield. LEDs can be pulsed with high frequencies and modulated
by a time dependent current. Besides, LEDs are unable to implode, mechanically robust, and
immune to shocks and vibrations, a characteristic which is highly desirable in the domain of
automation technology. As the light-emitting crystal can be chosen to be very small, an LED
approximately represents a point light source.

A major disadvantage of LEDs is that a huge number of LEDs is needed to reach the
light intensity of a single conventional light source. This results in additional effort for de-
signing appropriate circuit boards carrying LED arrays, which then are no longer a point
light source. LEDs have to be operated at a low voltage using a current source, and cannot
be directly connected to the mains voltage. Their efficiency and spectrum depend on the
operating temperature.

2.7.4 Laser
Besides the spontaneous emission of photons of energy h ν21 = E2 −E1, a stimulated emis-
sion can be observed when excited atoms change from an energy level E2 to a lower energy
level E1 < E2.27 During stimulated emission, a photon with the frequency ν21 triggers an
atom at the energy level E2 to emit a photon of equal frequency, phase, direction, and polar-
ization [26]. Hence, the emitted photon is coherent with the triggering photon. Lasers rely

27This effect can only be explained using quantum mechanics. It was first described by Albert
Einstein [10].
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Figure 2.42. Principle of a laser.

on this process.28 ‘Laser’ is an abbreviation for ‘Light Amplification by Stimulated Emission
of Radiation.’

If light with a frequency of ν21 is sent into a material offering enough atoms at the energy
level E2 > E1, so that stimulated emissions can occur with a sufficiently high probability,
the light can be coherently amplified. Such a material is an optical amplifier of light.

If an amplifier is fed back with the output signal and if the amplification exceeds the
losses, the system starts to oscillate. This principle is well known in terms of the acoustic
feedback generated by the system microphone–amplifier–speaker.

The feedback for a laser is achieved by using mirrors that reflect the amplified light back
into the excited material (Fig. 2.42). Thus, a laser is a light oscillator.

The amplifier: In thermal equilibrium, the occupation numbers Ni of the energy levels Ei,
i = 1, 2 comply with the Boltzmann distribution

N2 = N1 e
−E2−E1

k T = N1 e
−h ν21

k T , (2.259)

with T the absolute temperature in Kelvin, k Boltzmann’s constant, and h Planck’s constant
[26]. For room temperature, T = 300 K, the occupation numbers for an optical photon of
E2 − E1 ≈ 2.5 eV comply with N2

N1
≈ 4 · 10−44, which means that the higher energy level E2

is weakly populated compared to E1. That difference decreases for increasing temperature,
but nevertheless N2 < N1.

A usable amplification by stimulated emission can only be achieved if a so-called popu-
lation inversion N2 > N1 is present, which is not possible in thermal equilibrium.

To establish the disequilibrium necessary for a population inversion, energy has to be
supplied. This process is called pumping, and can be achieved by optical, chemical, or elec-
trical means.

Together, the light-amplifying medium and the pump source form the amplifier. De-
pending on the kind of laser, gases, liquids or solids can be used as active media. A light-
amplifying medium which is activated by a pump is called an active medium.

28The first laser was built by T. Maiman in 1960. Earlier, in the 1950s, C. Townes, A. Prokhorov and
N. Basov developed the so-called Maser (microwave-laser) for which they were awarded the Nobel
prize (Physics) in 1964.
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The amplification of light of the frequency ν21 which propagates through the active
medium caused by stimulated emission increases exponentially with increasing propaga-
tion.

Feedback: Light propagating in parallel to the optical axis (Fig. 2.42) is amplified by a
factor > 1 each time it passes through the active medium, so that the light intensity increases
exponentially with the number of iterations. Because some of the light is extracted through
the semitransparent mirror, but mainly because of the limited supply of pumping energy,
the amplification and thus also the laser’s intensity become saturated. Only light travelling
parallel to the optical axis is amplified. Light in other directions will quickly leave the optical
resonator, which consists of the two mirrors. There are also types of resonators with curved
mirrors.

Traveling along the different paths through the medium between the mirrors produces
a path-dependent phase shift, which depends on the frequency and the length of the path.
Due to this phase shift, those frequencies are preferred, that reenter the medium with equal
phase, leading to the production of a standing wave. The two mirrors act as an extreme
narrow-band bandpass filter, like a so-called Fabry-Pérot interferometer [20, 41]. Actually,
not only photons of the exact frequency ν21 are amplified, but also frequencies in a certain
range Δν around ν21, caused by line spreading effects. The resonator then selects the fre-
quencies, resulting in a standing wave.

Hence, the mirror system of the optical resonator causes a feedback and also a narrow-
band selection of frequencies and directions.

Starting the oscillation: The optical resonator begins to oscillate because of the transition
from the pumped energy level to the lower one, which results in a spontaneous emission
of photons, which have a frequency ν21 and propagate parallel to the optical axis. Other
spontaneously emitted photons, which do not comply with these conditions, will not be
sufficiently amplified or fed back. Only the photons with a frequency of about ν21 and a
propagation direction approximately parallel to the optical axis will be massively amplified,
and will dominate all other light in the resonator.

Practical realization: Usable lasers make use of further energy levels. Practically relevant
lasers usually work with four energy levels E3 > E2 > E1 > E0. Starting from E0, level
E3 is excited by pumping. Because of a so-called relaxation, some atoms change to level
E2 while emitting the energy difference in the form of heat. Now there is a population
inversion for E2 with respect to E1, which is used for the stimulated emission of photons
with the frequency ν21. Also by relaxation, the excitation state E1 is reduced to the level E0

(Fig. 2.43).
Level E3 is necessary to optically pump the laser. If E1 is weakly populated compared

to E0 in the case of a thermal equilibrium, significantly less pumping effort is necessary to
establish a population inversion between E2 and E1, as would be necessary for the system
of E2 and E0 [26, 41].

The most important lasers for the field of automated visual inspection that are commer-
cially available are:

Semiconductor lasers (laser diodes), which are pumped by an electric current.

Nd:YAG-lasers are solid-state lasers where neodymium ions are embedded in an yttrium
aluminum garnet crystal. Nd:YAG-Lasers are optically pumped. Initially, they yield light
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Figure 2.43. Energy system consisting of four levels of atoms in an active medium of a laser.

Table 2.6. Maximum values of laser parameters that can currently be reached [41].

Shortest wavelength 3.6 nm

Maximum power (commercial, continuous wave, non-
pulsed operation)

30,000W

Maximum intensity (pulsed and focused) 1026 W/m2

Highest pulse energy (with a duration of ca. 3 ns and a wave-
length λ = 1.06 μm)

120,000 J

Minimum frequency bandwidth, relative frequency band-
width and maximum coherence length

– Dye laser (dyes used as active media, wavelength is ad-
justable)

Δν = 0.5 Hz, Δν
ν ≈ 10−15

– Helium-neon and solid-state lasers Δν = 10−3 Hz

Shortest impulse duration and length tP = 4.5 fs = 4.5 · 10−15 s,
lP = c tP = 1.3 μm

with the wavelength λ = 1064 nm. Nonlinear optical effects can double the frequency,
leading to green light with the wavelength λ = 532 nm.

Laser light is sharply bundled, nearly monochromatic, has long coherence lengths, and can
yield very high intensities. Table 2.6 shows the maximum performance characteristics that
can nowadays be achieved by lasers. But not all of these characteristics can be realized
simultaneously in a single laser.

The use of lasers in automated visual inspection will be discussed in Chap. 7. As laser
light can be harmful for the human eye because of the high radiation intensity, safety pre-
cautions are necessary, depending on the actual power and the spectral range (see also
Sec. 7.2.3.4).

Remark: If lasers and other light sources are compared to electric signal sources, the
laser is the equivalent to a sine wave oscillator and the other light sources represent noise
generators.
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2.7.5 Summary
Table 2.7 summarizes the important properties of some light sources, such as the lifetime, the
possibility of being operated in a pulsed way, and the spectrum. For good color rendering, a
broad spectrum similar to the spectrum of daylight is necessary, as is emitted by a blackbody
radiator, for example. In contrast to all other light sources, lasers can emit linearly polarized
light with a long coherent length. So for some applications, e.g., interferometry, laser light is
needed (see Sec. 7.3.16.1). A disadvantage of coherent light is the occurrence of speckle.

The luminances of some natural light sources are shown in Table 2.8. Apart from lasers,
the highest luminances can be achieved using xenon short-arc lamps, whereas the lumi-
nances of fluorescent lamps is rather low. Having a high luminance is important if an illu-
mination method needs a well-defined control of the light rays, which is only possible with
a point light source.

The extent to which image acquisition is influenced by the spectrum of the illumination
depends on the light source as well as on the spectral sensitivity of the sensors used (see
Chap. 6). The product of the two wavelength dependent functions and the sensor-specific
integration over the wavelength ranges determines the measured intensity (also compare to
Chap. 5).
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3.13.1 Introduction
Ideally, the imaging optics of an automated visual inspection system images every relevant
point of the test object to exactly one point on the sensor. In other words, the diverging
light bundle coming from a point G of the test object is transformed into a light bundle
converging at some point B on the sensor. Such a correspondence of two points B = A{G}
yields a sharp optical imaging.

An ideal imaging optic A{ · } transforms every homocentric beam1 into another beam
whose rays intersect in the sensor plane (Fig. 3.1). Such optics can sharply image every
visible point to the sensor. Physically feasible optics can only approximate an ideal imaging
optic.

Sensor

Imaging optics

Test object

Light source

Figure 3.1. The role of the imaging optics in capturing a test object.

Propagation, diffraction, and interference of light are thoroughly described by Maxwell’s
equations and their solutions. Maxwell’s equations are a set of partial differential equations.
In order to use them to solve a given optical task, the task’s physical conditions have to be
formulated as boundary values (see Chap. 2). In combination with Maxwell’s equations,
these boundary values constitute a boundary value problem which has to be solved. For
simple conditions, such as planar, infinitely spread surfaces, or homogeneous materials, the
boundary values can be easily formulated and the corresponding equations can be solved
analytically.

Unfortunately, that is not possible for realistic visual inspection tasks. Let a test object
have the dimensions length × width × height = 10 cm × 10 cm × 1 cm and suppose that
the shortest wavelength is λ = 500 nm. Then, it would be necessary to provide boundary
values, such as the electric field strength, polarization, and relevant material properties, for

1A bundle of light rays intersecting in a single point.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_3,
© Springer-Verlag Berlin Heidelberg 2016
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each point on a grid spaced more finely than the wavelength. The values in the case of this
example would require 8 · 1014 points. For an opaque object, it would indeed be sufficient to
consider only a thin layer of the surface, but this would still result in a tremendous number
of boundary values: about 1011. It is apparent that this approach is unsuitable for practi-
cal visual inspection tasks. So, an extensive simplification is needed that would still allow
deriving valid results and performing sufficiently accurate calculations.

A substantial but practically still very useful and descriptive simplification is the use
of geometric optics, where the light is described by rays. Formally, the transition from
Maxwell’s equations to geometric optics can be achieved by letting the wavelength approach
zero [22]. In a practical sense this means that all relevant dimensions of the optical system
have to be significantly larger than the wavelength of the light used if the task is to be ade-
quately handled with geometric optics.

The light rays correspond to the Poynting vector (2.37) of an electromagnetic wave. How-
ever, a single light ray in the sense of an isolated light transport along a straight line or a
curve is a contradiction in terms. An infinitesimally small light ray would violate just those
suppositions of geometric optics, that all dimensions have to be larger than the wavelength.
Therefore, light rays are always light bundles with a finite extent, which has to be wide
compared to the wavelength.

For geometric optics, the laws of reflection and refraction are important, as well as the
straight propagation of light in homogeneous media. Aside from Maxwell’s equations (see
Sec. 2.6), these laws can also be derived using geometric optics and Fermat’s principle. Ac-
cording to this famous principle, which can be deduced from Maxwell’s equations, prop-
agating light always takes the path of the least optical distance (the optical distance is the
product of the refraction index and the geometric distance) [22]. The propagation of light
rays in inhomogeneous media can also be described using this principle.

In this chapter, models for optical imaging using lenses and lens systems will be de-
scribed on the basis of geometric optics. The following topics will be covered:

The easiest optical imaging system: the pinhole camera,
imaging with a lens,
telecentric imaging,
the lens systems which are used in cameras, microscopes or projectors.

On the one hand, these models will serve for the qualitative comprehension of the different
imaging systems and the selection of the optical system suitable for the actual task. On the
other hand, they provide a quantitative description of the image acquisition process. For the
latter, the model parameters have to be known with sufficient precision. The determination
of these parameters can be conducted using calibration methods, which are also covered in
this chapter.

3.2 3.2 Imaging with a pinhole camera, central projection
The simplest model of a camera is the pinhole camera. An ideal pinhole camera consists of a
diaphragm, with an infinitesimally small hole, that is parallel to an image plane (see Fig. 3.2).
It accepts exactly one light ray of a light bundle coming from an object point. The distance
between the aperture and the image plane is called the image distance and is denoted by b.
In the case of a pinhole camera, the optical mapping of an object point xc to an image point



3.2 Imaging with a pinhole camera, central projection 101

Image pointImaging optic:
Pinhole diaphragm

Object point

Coordinate transformation Image coordinatesCamera coordinates

xc

yc

zc g b

x

y

xc, yc, zc: x, y:

Figure 3.2. Pinhole camera.

x can be mathematically described using a central projection:

R3 → R2 , (3.1)⎛⎜⎝xc

yc
zc

⎞⎟⎠ �→ (x
y

)
= − b

zc

(
xc

yc

)
. (3.2)

The intercept theorem A.1 (see Fig. 3.2) directly leads to these equations. As the mapping
comes with a point reflection in the projection center, an inverted image is created in the
xc,yc-plane. The ratio of the image size to the object size is V = − b

zc
, with the negative sign

denoting the inversion of the image.
The origin of the coordinate system (xc, yc, zc)

T is located in the center of the aperture,
which coincides with the xc,yc-plane. The zc-axis, which is the optical axis of the pinhole
camera, is perpendicular to the aperture, runs through the center of the pinhole, and is di-
rected away from the camera. Hence, the coordinate system is set by the spatial position
of the camera and is therefore called the camera coordinate system. The coordinates with
respect to the image plane are called the image coordinates and are denoted by (x, y)T.2

Now, it is beneficial to introduce an alternative mathematical description of the central
projection, which allows an elegant representation in the form of a linear mapping. This is

2In this book, image coordinates are always related to right-handed coordinate systems. However,
for digitally representing images, often left-handed coordinate systems are used, having the origin in
the upper left corner with the y-axis pointing downwards. The transformation between these coordi-
nate systems and the image coordinates used for this book is given by:

[0,M − 1]× [0, N − 1] → [0,M − 1]× [0, N − 1] ,

(
x
y

)
�→

(
x

N − 1− y

)
. (3.3)

This coordinate transformation might have to be taken into account when implementing image pro-
cessing algorithms.
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why points are expressed by their homogeneous coordinates. The transformation from the
Cartesian coordinates of a point x1, . . . , xN to homogeneous coordinates x′

1, . . . , x
′
N is done

by appending an additional coordinate w:

(x1, . . . , xN )T �→ (x1 w, . . . , xN w,w)T =: (x′
1, . . . , x

′
N , w)T . (3.4)

The reverse transformation is done by dividing by w:

(x′
1, . . . , x

′
N , w)T �→

(
x′
1

w
, . . . ,

x′
N

w

)T

= (x1, . . . , xN )T . (3.5)

Therefore, one must always have w �= 0 for homogeneous coordinates.
Using homogeneous coordinates, the central projection can now be expressed as [4]⎛⎜⎝x′

y′

w

⎞⎟⎠ =

⎛⎜⎝−b 0 0 0

0 −b 0 0

0 0 1 0

⎞⎟⎠
⎛⎜⎜⎜⎝
x′
c

y′c
z′c
wc

⎞⎟⎟⎟⎠ . (3.6)

In homogeneous coordinates, the central projection is a linear mapping, whereas in Carte-
sian coordinates a division is required.

The central projection (3.2) is not injective and thus is not invertible. Every object point
positioned on a line of sight running through the optical center is mapped to the same im-
age point (see Fig. 3.3). Hence, the reconstruction of a transparent or a partly transparent
object from a single picture is impossible. However, even opaque objects, which are not
transparent, suffer a loss of information: indeed, each image point is the result of exactly
one object point but the size of the object and its distance to the camera cannot be extracted
from the image signal. The magnification V = − b

zc
of the central projection depends on the

distance and thus the mapping does not preserve lengths. For each image point, only the
line of sight, on which the corresponding object has to lie, is known. The line of sight is a
straight line emerging from the image point and running through the projection center of
the camera. Sectors of the scene lying behind an opaque object are hidden in the perspective
of the camera and therefore are not visible in the image.

Object

Surface

Occluded
region

Occluded
region

(a)

B

Projection center

(b)

Figure 3.3. Visualization of the loss of information caused by the central projection: (a) Occlusion of remote object
points; (b) All shown objects (blue) lead to the same image (red).
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Theoretically, the pinhole camera has an unlimited depth of field3. This is possible, since
for an ideal pinhole camera, only one of the light bundles coming from an object point is
accepted. For sharp imaging, the aperture diameter D would need to be chosen to be very
small. But in that case, only a little light would reach the sensor and so long exposure times
would be necessary. Therefore, the optical imaging of a pinhole camera is called faint. For
a practical realization of a pinhole camera, of course an aperture diameter of D > 0 has to
be chosen, which allow light bundles with a certain extent pass the aperture. Hence, the
optical imaging cannot be ideally sharp. In order to ensure that the simplification of using
the model of light rays is valid, it is even necessary to choose an aperture diameter of D > λ

(see Sec. 2.2.6).

3.33.3 The camera model and camera calibration
Although it is only an approximation, the pinhole camera is often used to model real cam-
eras. Then the task of estimating the model parameters for a given camera has to be carried
out. This task is called camera calibration. The whole set of camera parameters consists
of the intrinsic and the extrinsic camera parameters. The intrinsic parameters describe the
properties of the imaging optics and the image sensor inside the camera. The extrinsic pa-
rameters represent the camera’s position and orientation in space.

Before the actual camera calibration will be explained, the model (3.2) has to be appro-
priately extended. Besides the image and camera coordinate systems, the world coordinate
system is introduced and will be denoted by (xw, yw, zw)

T. The spatial position and ori-
entation of the world coordinate system are arbitrary but fixed. The transformation from
world coordinates to camera coordinates can be expressed by a rotation and a subsequent
translation:⎛⎜⎝xc

yc
zc

⎞⎟⎠ = R

⎛⎜⎝xw

yw
zw

⎞⎟⎠+ t , (3.7)

where t ∈ R3 is the translation vector and R ∈ R3×3 an orthogonal rotation matrix. Together,
R and t encode the extrinsic camera parameters with 6 degrees of freedom. A matrix R is
called orthogonal if RTR = I.

In homogeneous coordinates (3.4), the rotation and translation can be combined into a
single linear mapping:⎛⎜⎜⎜⎝

x′
c

y′c
z′c
wc

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝ R t

0 0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x′
w

y′w
z′w
ww

⎞⎟⎟⎟⎠ . (3.8)

Up to this point, the pinhole camera has been described only in terms of the image dis-
tance b. Now, the image sensor is also modeled (see Chap. 6). The pixel sizes in the x- and
y-directions are denoted by (sx, sy)

T. Besides, the origin of the image coordinate system can
be displaced by an offset (ox, oy)T with respect to the intersection of the optical axis and the

3The depth of field is the part of the object space that can be mapped sharply onto the image plane
(see Sec. 3.4.4).
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image plane. So, the mapping between camera and image coordinates is given by(
x

y

)
= − b

zc

(
xc

sx
yc

sy

)
+

(
ox
oy

)
(3.9)

and, expressed in homogeneous coordinates,⎛⎜⎝x′

y′

w

⎞⎟⎠ =

⎛⎜⎝−
b
sx

ss ox 0

0 − b
sy

oy 0

0 0 1 0

⎞⎟⎠
⎛⎜⎜⎜⎝
x′
c

y′c
z′c
wc

⎞⎟⎟⎟⎠ . (3.10)

For the sake of completeness, the parameter ss is included, which allows modeling a
system of skew coordinates. For the sensors of today’s cameras, ss = 0 can be assumed.

Inserting (3.8) in (3.10) yields⎛⎜⎝x′

y′

w

⎞⎟⎠ =

⎛⎜⎝−
b
sx

ss ox 0

0 − b
sy

oy 0

0 0 1 0

⎞⎟⎠
⎛⎜⎜⎜⎝ R t

0 0 0 1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

=: P

⎛⎜⎜⎜⎝
x′
w

y′w
z′w
ww

⎞⎟⎟⎟⎠ . (3.11)

The matrix P ∈ R3×4 is called the projection matrix or camera matrix of the camera. It
completely describes the imaging process of a pinhole camera. Its 12 degrees of freedom
can be interpreted as the 6 extrinsic parameters, the 5 intrinsic parameters b

sx
, b

sy
, ss, ox,

and oy , and the free scaling parameter belonging to the transformation into homogeneous
coordinates.

Finally, the transformation from world coordinates to image coordinates is given by (ss =
0)

x = − b

sx

r11xw + r12yw + r13zw + t1
r31xw + r32yw + r33zw + t3

+ ox , (3.12)

y = − b

sy

r21xw + r22yw + r23zw + t2
r31xw + r32yw + r33zw + t3

+ oy . (3.13)

The process of acquiring these parameters or the matrix P is called camera calibration.
The common calibration methods can be divided into two steps:

1. Determination of a set of corresponding world and image points i.e., of pairs
((xwi, ywi, zwi)

T, (xi, yi)
T), i = 1, . . . ,m;

2. Calculating the camera parameters using these corresponding points.

The first step is done by capturing multiple configurations of a calibration object. The world
coordinates of some distinguished points have to be known—either from the construction
of the calibration object, or by exact measurements. Then, these points have to be identified
and localized in the captured images, preferably in an automatic fashion. Hence, regular
and clearly visible structures, such as a checkerboard, are very suitable. The corners and
edges of the board’s squares are detected using image processing methods (see Sections 14.4
and 11.2).

It is not sufficient to use the corresponding points of a single plane of the object space,
since the resulting system of equations would be underdetermined. Therefore, a three-
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dimensional calibration object is used or multiple spatially different configurations of a flat
calibration pattern are captured [21]. A calibration object should consist of multiple planar
surfaces with different distances from the camera, like a dice. The captured calibration im-
ages must contain enough corresponding points, so that the resulting system of equations
has a unique solution and is numerically well-conditioned.

In the second step, suitable mathematical and numerical methods are used to solve the
system of equations:

(x′
i, y

′
i, wi)

T ∝ P (x′
wi, y

′
wi, z

′
wi, wwi)

T i = 1, . . . ,m . (3.14)

As the transformation into homogeneous coordinates is not completely unique because of
the scaling factor, only the proportionalities of the vectors on both sides of the equation can
be demanded. As a possible interpretation, the vectors (xi, yi, wi)

T and Pxwi are parallel
and the cross product of parallel vectors has to be equal to the zero vector: (xi, yi, wi)

T ×
Pxwi = 0. With the vector pT

j representing row j of the matrix P, one has [8]:⎛⎜⎝pT
2 wi − pT

3 yi
pT
3 xi − pT

1 wi

pT
1 yi − pT

2 xi

⎞⎟⎠xwi = 0 (3.15)

⇔

⎛⎜⎝ 0T wix
T
wi −yixT

wi

−wix
T
wi 0T xix

T
wi

yix
T
wi −xix

T
wi 0T

⎞⎟⎠
︸ ︷︷ ︸

∈ R3×12

⎛⎜⎝p1

p2

p3

⎞⎟⎠
︸ ︷︷ ︸
=:p∈R12

= 0 . (3.16)

This equation is linear with respect to the unknown entries of the matrix P, in contrast to the
non-linear dependencies in (3.12), (3.13). However, the equations are linearly dependent, so
that one of them can be omitted. Thus each pair of points yields two equations. In order to
determine the 11 degrees of freedom, at least 6 corresponding points are necessary. A set of
m corresponding points, leads to the system of equations Ap = 0 with A ∈ R2m×12. This
overdetermined system of linear equations can be used to estimate the entries of p by using
the method of least squares, which minimizes the algebraic error

ε = ‖Ap− 0‖ = ‖Ap‖ . (3.17)

A numerical solution of this estimation problem can be achieved using the singular value
decomposition of the system of equations. Then, the singular vector corresponding to the
smallest singular value represents the solution sought.

In order to increase the numerical stability of this method, the image points should be
scaled appropriately [8].

Usually, more than the necessary 6 pairs of points are used in order to allow for pos-
sibly inaccurate measurements of the world and image coordinates. In addition, wrongly
matched pairs of points can lead to critical outliers in the set of corresponding world and
image points. If enough correct pairs of points are available, the influence of any outliers
can be reduced by using stable estimation methods such as RANSAC or ‘least median of
squares’ [8].

The projection matrix can be used to calculate that line of sight of an image point x on
which the captured object point is located [8]. A point xw lying on the line of sight can be
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obtained by inverting the projection x = Pxw using the pseudoinverse matrix

xw = PT (PPT)−1 x . (3.18)

The second known point on the line of sight is the projection center c, which is the eigenvec-
tor of the eigenvalue 0 of the projection matrix:

Pc = 0 . (3.19)

So, the points lying on the line of sight are given by the line

(1− λ)xw + λ c (3.20)

with the free parameter λ.
For special lens systems and for the sake of very high precision, it might be necessary

to abandon the model of the pinhole camera. Then, the lines of sight do not intersect each
other in a single point but are characterized by their intersections with two parallel planes.
Related calibration methods can be found in [7] for example.

3.4 3.4 Optical imaging using a single lens
As mentioned earlier, the practical use of pinhole cameras is very limited because of their
low light yield. In order to obtain a well lit image, it is necessary to sharply capture a bigger
segment of the light bundle coming from an object point on the image plane. This can be
achieved by using imaging optics like those used in cameras. Usually, the imaging optics
have several lenses. A lens is an optical component made out of glass or plastic. Precise
refraction of the incoming light is achieved by its bent shape (Fig. 3.5(a)). Incoming light
rays parallel to the optical axis are refracted in such a way that they intersect at the focal
point of the lens (Fig. 3.4). The focal length f (the distance between the lens and the focal
point) and the radius of curvature R of the two surfaces of the lens are related as follows:

R = 2f
n2 − n1

n1
, (3.21)

with n2 denoting the the refraction index of the lens material and n1 that of the surrounding
medium [9, 22].

At first, optical imaging with a single lens will be described. Most of the important effects
can be described using this setup.

ff

Focal point

Figure 3.4. Incoming light, parallel to the axis, is focused on the focal plane of the lens.
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(a)

(b)

Figure 3.5. Optical imaging with a thin converging lens: (a) Refraction of the light on the curved interfaces of the
lens; (b) Idealized refraction of spherical lenses in the sense of Gaussian optics.

Alternatively, the imaging optics can be constructed by using curved mirrors [15].
Whether mirrors or lenses are more suitable often depends on construction limitations: big
lens systems, for telescopes used in astronomy for example, would be too heavy and might
be deformed by their own weight.

3.4.1 The paraxial approximation and Gaussian optics
Most lenses and lens systems have rotational symmetry. The axis of symmetry is called
the optical axis. Imaging systems where the light coming from the observed objects is ap-
proximately parallel to the optical axis are of great importance: as the angles α between the
incoming light ray and the optical axis are small in this case, the approximation sinα ≈ α

can be employed. The result is a linear formulation of the law of refraction (2.208) from
Sec. 2.6.3:

n1 sin θ1 = n2 sin θ2 � n1 θ1 ≈ n2 θ2 . (3.22)

This linearization is called the paraxial approximation. Here, spherical interfaces transform
homocentric bundles into bundles that are also homocentric (Fig. 3.5(b)). A bundle is called
homocentric if all of its light rays intersect in one common point.

By applying the paraxial approximation, one can elegantly calculate, using matrix op-
erations, the imaging properties of systems with many lenses that are centered around the
same optical axis [5, 9]. Refracting surfaces as well as the the propagation paths of the light
are described by 2×2 matrices. The light rays are modeled as two-dimensional column vec-
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tors, which essentially represent their direction and their distance from the optical axis. The
propagation of rays through the system is calculated by successive multiplications of their
vectors by the matrices of the optical elements.

The paraxial model is only an approximation: real lenses produce aberration. If spheri-
cal lenses4 were ideal imaging systems, one lens would be sufficient for image acquisition.
High-quality lens systems are constructed out of several lenses in order to correct the aber-
rations of the single lenses. Thus, the construction of complicated optical systems offers
many degrees of freedom, such as the radii of curvature, the positions, and the materials
(i.e., refraction indices), which can be precisely adjusted in order to minimize aberration.
The simplified equations obtained by the paraxial approximation still hold for such cor-
rected lens systems. This practice, which is called Gaussian Optics, is the main one to be
used throughout this book. The aberration of real lenses and lens systems are covered in
Sec. 3.4.8.

3.4.2 Thin lens equation
A sufficiently large amount of the light reaching the camera from an object point has to be
collected and focused on preferably one single point on the light sensitive sensor. This is
achieved, for example, by a thin converging lens, which will now be used to describe the
basic principles of imaging optics. In this context, ‘thin’ means that the focal length f of the
lens is significantly greater than its thickness. In this case, the optical imaging can be well-
approximated by refraction on a plane. This plane is called the principal plane of the lens.
The model of a thin lens allows approximating the real refraction on the interface between
the lens and the surrounding medium by the refraction on the principal plane (Fig. 3.5).
As this approximation is sufficient for most applications in the field of automated visual
inspection, the model of the thin lens is the one chiefly used in this book.

Figure 3.6 shows a thin, circularly shaped lens, focusing the light rays which originate
from an object point and then pass through the lens to hit the image plane that contains the
sensor at a single point.

The incoming light parallel to the optical axis is focused on the focal point by a converg-
ing lens. The focal point is located on the optical axis. Its distance from the optical center
of the lens is called the focal length and denoted by f . The optical path can be constructed
based on the following consideration: a light ray which comes in perpendicularly to the lens
plane is refracted and then passes through the focal point (ray 2 in Fig. 3.6). Due to the
intercept theorem, one has

G

f
= − B

b− f
. (3.23)

The image size B and the object size G describe the distance of an image or object point from
the optical axis. As they are signed, the inverted image produced by the central projection
leads to either G ≥ 0, B ≤ 0 or G ≤ 0, B ≥ 0, so the negative sign of (3.23) is necessary.
The object distance g and the image distance b are also signed: a positive image distance
has a positive value of zc and is therefore placed on the left side of the lens by convention—
however, a positive image distance has a negative value of zc and hence is located on the
right side of the lens. Therefore, g > 0, b > 0 for the most frequent setups of real imaging

4Parts of the interfaces of spherical lenses are parts of spherical surfaces. They are much more easy
to produce than aspherical lenses, and are thus significantly cheaper.



3.4 Optical imaging using a single lens 109

Thin lens

Image plane
Object

Image

x
f

g b

G

B

xc

2

1

3

f

Figure 3.6. Optical imaging with a lens. The extent of the pictured bundle is colored in red. The rays, which are used
to graphically construct the imaging system, are drawn in blue (1: principal ray, 2, 3: parallel rays).

systems with a converging lens. The conventions for the signs of the variables are summa-
rized in Table 3.1.

Rays passing through the center of the lens are not refracted (ray 1 in Fig. 3.6). As with
the pinhole camera (3.2), this leads to

G

g
= −B

b
. (3.24)

If all light rays passing from G through the lens intersect in the image plane b, the object
point G is displayed as a single sharp image point B. That condition has to hold especially
for the parallel and principal ray, i.e., Equations (3.23) and (3.24) have to hold simultane-
ously. Manipulations of this system of equations result in the thin lens equation:

3.1Theorem 3.1: Thin lens equation
For a focused optical imaging with object distance of g, an image distance of b and a thin
lens with focal length f , it holds

1

f
=

1

g
+

1

b
. (3.25)

�

Hence, a lens with focal length f can only achieve a sharp imaging on the image plane b of
the plane at the distance g = bf

b−f . In contrast to the pinhole camera, the depth of field is
limited (cf. Sec. 3.4.4), but the light yield is significantly better.

In order to sharply image an object plane that is perpendicular to the optical axis and is
at a distance g from the lens plane, the image distance has to be chosen as follows:

b =
gf

g − f
=

f

1− f
g

. (3.26)
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Table 3.1. Conventions for the signs of the quantities of an optical imaging with a single lens [22].

Variable positive value negative value

Focal length f image-side focal point on the
right side of the lens

image-side focal point on the
left side of the lens

Object distance g object point G on the left side of
the lens

object point G on the right side
of the lens

Image distance b image point B on the right side
of the lens

image point B on the left side of
the lens

Object size G object point G above the optical
axis

object point G beneath the
optical axis

Image size B image point B above the optical
axis

image point B beneath the
optical axis

Adjusting a camera’s image distance with respect to the object distance is called focusing.
For increasing object distances, the image distance decreases. The extreme case g →∞ leads
to b→ f . As with the pinhole camera, the magnification depends on the distance:

V =
B

G
= − b

g
(3.27)

= − f

g − f
= − 1

g
f − 1

. (3.28)

For a constant object distance g, the magnification increases with increasing focal length f .
For capturing remote objects, telephoto lenses with long focal lengths can be used. Wide-
angle lenses with shorter focal lengths have a low magnification but are able to capture a
wider angular range of the object space. However, images captured with a wide-angle lens
are more intensely affected by distortions of perspective. Zoom lenses allow adjusting the
focal length by shifting the relative positions of the different lenses in the system.

Before the lens camera can be further investigated, two important terms have to be intro-
duced.

3.1 Definition 3.1: Aperture stop
The aperture stop is the diaphragm with the maximum limiting influence on the ray bundle
of the optical system (see also Sec. 3.4.3). �

3.2 Definition 3.2: Principal ray
The principal ray is that ray which connects an object point with the corresponding image
point and intersects the optical axis in the plane of the aperture stop. The principal ray
determines the magnification factor, particularly in the case of defocused imaging. �

In Fig. 3.6, the lens itself limits the ray bundle of the optical system. So, the aperture stop is
circularly shaped with diameter D and is aligned in the lens plane.

The following remarks summarize the considerations concerning optical imaging sys-
tems using a single lens.
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Figure 3.7. Construction of the optical path for a thick lens 1: principal ray, 2, 3: parallel rays, H1, H2: principal
planes).

� The magnification factor |V | = −B
G = b

g depends on the object distance g. If the magnifi-
cation factor is unknown or if the object distance is variable, no quantitative information
can be acquired about the lateral dimensions of the imaged object. The imaging does not
preserve lengths.

� In contrast to a pinhole camera, when a lens is used for optical imaging, the depth of field
is limited.

⊕ The amount of light received by the sensor increases for larger aperture stops and can
thus be adjusted within a certain range. Especially for large D, optical imaging systems
using a lens have a significantly higher light yield than a pinhole camera.

� Spherical lenses are affected by aberration and have unfavorable properties in several as-
pects. Among others, they suffer from geometric distortions and focus errors. However,
some of these drawbacks can be minimized by stopping down, i.e., reducing the aperture
diameter D (see Sec. 3.4.8).
In order to reduce aberration, high-quality lens systems have several lenses. When con-
structing such lens systems, the optical effects of one of the installed lenses are exploited
to (at least partially) neutralize the aberration due to the remaining lenses, and vice versa.

Up to this point, only the x,z-plane has been considered. However, this simplification is not
too severe because of the rotational symmetry around the z-axis. An arbitrary object point
could be moved into the x,z-plane by a suitable rotation of the coordinate system around the
z-axis (cf. Fig. 3.2). Thus, the listed equations also hold for the three-dimensional case.

In the thin lens model, the refraction is considered to take place at a plane and not at
the two interfaces of the surrounding media. This model is refined by the thick lens model,
describing the refraction by using two principal planes H1, H2 and the focus length f [2,17].
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As before, when constructing the optical path, parallel rays run through the focal point5

on the other side of the lens (see Fig. 3.7). When entering the space between the principal
planes, the principal ray is located on the optical axis; when leaving, its angle to the optical
axis equals its angle of incidence [17, 19]. Between the principal planes, all rays are parallel
to the optical axis.

Actually, in the context of the paraxial approximation, the thick lens model can be used to
exactly describe complicated imaging systems consisting of several axially centered lenses.
Therefore, compound lens systems, as are often used in commercially available cameras,
can also be handled with the thin lens equation (3.25). The only important difference is that
‘object distance’ and ‘image distances’ now refer to the corresponding principal plane (see
Fig. 3.7). The distance l between the principal planes does not have to be taken into account
in the thin lens equation.

Depending on the object distance and the imaging optic, the resulting image can be of
two kinds:

3.3 Definition 3.3: Real image
A real image results if the light rays reflected by an object point indeed intersect in one image
point. If a screen is placed at that position, the image will become visible. �

Usually, a real image can be directly observed, i.e., without the need of an additional optical
system. All the optical imaging methods covered up to this point, which employ a converg-
ing lens and for which g > f , produce a real image.

3.4 Definition 3.4: Virtual image
In the case of a virtual image, no physically real light rays intersect at the image point. The
light rays rather diverge or are parallel. Only from the perspective of an observer do the
light rays seem to intersect in a common point. A virtual image cannot be visualized using
a screen. �

If a virtual image is produced, the imaging optic is usually located between the image and
the observer [22]. An everyday example is an image of an object in a plane mirror.

A converging lens produces a virtual image if the captured object is closer to the lens than
its focal point: g < f . The light rays coming from the object diverge instead of intersecting
in a real image point. However, for an observer, a virtual image, which seems to be located
behind the object, is visible, because the diverging light rays are focused on an image plane
by the lens of the human eye. In order to geometrically construct the image point, the ray
passing through the focal point on the image side is extended back into the object space until
it intersects with the principal ray (Fig. 3.8). This principle is used by magnifiers.

In contrast to the convex lenses covered up to this point (which have been converging
lenses, i.e., positive lenses) concave lenses (negative lenses) can only produce virtual images.
The virtual image is closer to the lens than the object and is therefore reduced in size. A
parallel ray is refracted in such a way that it seems to be coming from the focal point located

5Assuming that the media on either side of the lens have the same refraction index, something
which is often true, as for a lens surrounded by air. Otherwise, the focal lengths of the two sides of the
lens would differ, which would have to be taken into account when constructing the optical path [17].
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Figure 3.8. Constructing a virtual image for a convex lens (1: principal ray, 2: parallel ray, H: principal plane).
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Figure 3.9. Imaging with a concave lens (1: principal ray, 3: parallel ray, H: principal plane).
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Table 3.2. Imaging using a lens.

Case no. Lens Object Image

in Fig. 3.10 type position g type position b orientation relative size

1 convex 2f <g<∞ real f <b<2f upside down demagnified

2 convex g = 2f real b = 2f upside down equally sized

3 convex f <g<2f real 2f <b<∞ upside down magnified

convex g = f b→∞ image in infinite distance

4 convex 0<g<f virtual b < −g upright magnified

concave 0<g<∞ virtual |b| < g, upright demagnified

|b| < |f |

on the object side of the lens (Fig. 3.9). Formally, this corresponds to a negative focal length f .
A common use for concave lenses are eyeglasses for people suffering from near-sightedness.

Table 3.2 summarizes the different cases of real and virtual images. Figure 3.10 shows the
relation between image distance and object distance for convex lenses: the image distance is
drawn as a function of the object distance. Both quantities are expressed as multiples of the
focal length.

3.4.3 Bundle limitation
In terms of geometric optics, construction rays and light bundles are distinguished. Con-
struction rays were used in the previous section in order to geometrically determine the
image point corresponding to an object point. Light bundles describe the radiant power
passing through the optical system and can be used to give information about the bright-
ness, aberration, resolution, and depth of focus of the image.

Basically, two physical stops limit the transport of the light through an optical system
(see Fig. 3.11):

1. The aperture stoplimits the size of the ray bundles.
2. The field stop limits the field of view.

The aperture stop (see Def. 3.1) limits the angle of aperture 2α of the ray bundle coming
from the axial object point [12]. Therefore, the aperture stop is critical for the light yield of
the optical system.

3.5 Definition 3.5: Field stop
The field stop limits the field of view. It determines which part of the object space is captured.

�

Based on these principles, further terms can be defined [6]:
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Figure 3.10. Relation between object and image distance for an optical imaging using a convex lens [6]. The part of
the hyperbola for g > f corresponds to an imaging process producing a real image, the part g < f represents an
imaging process resulting in a virtual image. The numbers identify the different cases in Table 3.2.

3.6Definition 3.6: Entrance pupil
The entrance pupil is the image of the aperture stop on the object side. �

In order to determine the entrance pupil6, the image of the aperture, which is the result of
the optical elements aligned between the aperture stop and the captured object, is identified.
This image might also be a virtual image on the image side of the aperture stop, as shown in
Fig. 3.13. If there are no lenses on the object side of the aperture stop, the entrance pupil is
equal to the aperture stop.

3.7Definition 3.7: Exit pupil
The exit pupil is the image of the aperture stop on the image side. �

3.8Definition 3.8: Entrance window and exit window
The entrance window is the image of the field stop in the object space. The exit window is
the image of the field stop in the image space. �

6The term ‘pupil’ originates from the fact that the visible pupil of the human eye is the object-side
image of the aperture of the iris and acts as the eye’s aperture, limiting the amount of light received.
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Figure 3.11. Aperture stop and field stop.

The exit pupil is the image of the entrance pupil when the optical system as a whole is
considered. Similarly, the exit window is the image of the entrance window. The pupils of
an optical system are never equal to the windows of the system [17].

The principal ray (see Def. 3.2) of a light bundle runs through the center of the aperture
stop. So it passes through the center of the entrance pupil on the object side and the center
of the exit pupil on the image side (cf. Figures 3.12 and 3.13).

3.9 Definition 3.9: Marginal ray
The marginal ray runs from the axial object point to the border of the aperture and finally to
the corresponding axial image point. One-half of the angle of aperture α of the marginal ray
is an indicator for the light yield of the optical system. �

In order to determine which physical element represents the aperture stop for a given optical
system, the images, on the object side, of all stops and lens mounts have to be constructed
[5]. Now, the light bundle is further investigated, that comes from the point on the optical
axis belonging to the plane in the object space that should be sharply captured. The image
of a stop that limits this light bundle most of all, i.e., is visible under the smallest angle from
the perspective of the origin of the light bundle, is the entrance pupil. The corresponding
stop or lens mount is the optical system’s aperture stop [12, 17]. Its image on the image side
is the exit pupil. An equivalent approach can be used to determine the field stop of a given
optical system: at first, the images on the object side of all limiting optical elements, such
as the stops, lens mounts, and the image sensor, are constructed. Then, one considers the
principal rays that originate from the intersection of the optical axis and the plane of the
entrance pupil and are directed into the object space. The image on the object side that most
limits those principal rays is the entrance window (Fig. 3.12). The corresponding optical
element is the field stop. The exit window is the image on the image side of the field stop.
In the case of a camera, the image sensor is usually both the field stop and the exit window.

Figures 3.12 and 3.13 show different configurations of the aperture and field stops. In
either case, the aperture stop is closer to the lens than the focal point, leading to pupils
represented by virtual images. Figure 3.14 shows an example of a system having several
lenses.
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Figure 3.12. Aperture stop between object and lens.

Light bundles can be used to explain the effect of vignetting: The light bundle of non-
axial object points might be further limited in composite lens systems, for example by lens
mounts (see Fig. 3.15). This limitation of the effective aperture for non-axial object points is
called vignetting. The maximum diameter of non-axial light bundles is smaller than for axial
light bundles. This results in the image’s getting darker towards the periphery. Vignetting
can be minimized by reducing the aperture, so that all light bundles are limited to the same
diameter.

3.4.4 Depth of field
According to the thin lens equation (3.25), exactly one object plane perpendicular to the
optical axis is captured sharply on the image plane. All objects which are not located exactly
at that distance from the camera will appear blurred. As the dimensions of the light sensitive
elements on a semiconductor sensor are finite, a certain blur corresponding to a specific
range of object distances can be tolerated.7

In this section, a relation between the tolerable blur and the depth of field is derived in
terms of the parameters of the camera.

3.10Definition 3.10: Depth of field
The depth of field of an optical system is the length of the interval with respect to zc contain-
ing objects which are captured with tolerable sharpness. �

Let D be the diameter of the circularly shaped entrance pupil and O := f
D the so-called

focal ratio or f -number. The diameter of the entrance pupil determines the extent of the
light bundle on the object side that reaches the image plane after passing the aperture.

7Besides the dimensions of the light sensitive elements of a sensor, the acceptable defocus blur also
depends on the size of the blur caused by aberration (see Sec. 3.4.8), which will not be discussed here.
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Figure 3.13. Aperture stop between lens and image.
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Figure 3.14. Aperture stop between two lenses (visualization of the principle: not true to scale; AS = aperture stop,
EnP = entrance pupil, ExP = exit pupil).
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Figure 3.15. Vignetting caused by lens mounts. The maximum diameter of the non-axial ray bundle is reduced by
Δ1 +Δ2 with respect to the diameter of the axial ray bundle.
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Figure 3.16. Defocused optical imaging with a thin converging lens. In this case, the lens mount is the aperture stop
and also the entrance and exit pupil.

From a geometric point of view, a blurred object point is captured on the image plane as
a disk having the shape of the aperture (see Fig. 3.16). From now on, the diameter of this
blur disk will be denoted by ε.

The maximum tolerable diameter εmax can be chosen depending on the application in
view. Usually, εmax is comparable to the distances between the pixels of the image sensor.
Only for bigger blur disks, one object point has a significant influence on more than one
sensor element.

Next, an object point at a distance of Δg from the sharply captured plane zc = g will be
considered. According to the thin lens equation (3.25), it will be sharply captured on a plane
with distance Δb from the image plane:

1

f
=

1

g +Δg
+

1

b−Δb
. (3.29)
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In addition, applying the intercept theorem to Fig. 3.16 yields

ε

D
=

Δb

b−Δb
. (3.30)

In order to obtain an expression for the depth of field Δg in terms of the blur disk’s
diameter ε, at first, Equations (3.25) and (3.29) are solved for b and b−Δb:

b =
f g

g − f
, (3.31)

b−Δb =
f (g +Δg)

g +Δg − f
. (3.32)

Subtracting the second equation from the first leads to a formula for Δb:

Δb =
f g

g − f
− f (g +Δg)

g +Δg − f
. (3.33)

Inserting (3.32) and (3.33) into (3.30) and solving the resulting equation for Δg yields

ε

D
=

(
f g

g − f
− f (g +Δg)

g +Δg − f

)
g +Δg − f

f (g +Δg)
(3.34)

⇔ ε

D
=

g (g +Δg − f)

(g − f) (g +Δg)
− 1 (3.35)

⇔ ε (g − f) (g +Δg) = D(g(g +Δg − f)− (g − f) (g +Δg)) (3.36)

⇔ (ε(g − f)−Df)Δg = D(g(g − f)− (g − f)g)− ε (g − f) g (3.37)

⇔ Δg =
ε g (g − f)

Df − ε (g − f)
. (3.38)

Canceling the last denominator by (g−f) finally results in the desired formula for the depth
of field:

Δg = Δg(ε) =
ε g

D f
g−f − ε

. (3.39)

Now, let the tolerable blur disk have a diameter of εmax > 0. Inserting ε = εmax into (3.39)
yields the tolerable difference of the focal plane in the direction away from the camera:
Δgfar = Δg(εmax) > 0. The plane of focused imaging has a distance of zc = −b from the
lens and is located in the image space as shown in Fig. Fig. 3.16. The expression ε = −εmax

leads to the tolerable difference Δgnear = Δg(−εmax) < 0 of the focal plane with respect to
the direction of the camera’s line of sight. The negative sign indicates that the focal plane
is located behind the image plane zc = −b. Thus, the depth of field surrounding the plane
zc = g is given by [g + Δgnear, g + Δgfar]. Object points located inside that interval are
considered to be captured with sufficient sharpness.

In the case of εmax � D f
g−f , the following approximation can be used:

Δgfar,near ≈ ±εmax
g (g − f)

Df
= ±εmax O

g (g − f)

f2
. (3.40)

In practice, the aperture is the main free parameter. Stopping down, i.e., increasing the
f -number O or reducing the aperture diameter D, increases the depth of field but simul-
taneously reduces the light yield. The extreme case D → 0 results in the pinhole camera.
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Figure 3.17. Illustration of the definition of the numerical aperture NA and the f -number O for a thin lens. Here,
the lens mount is both the aperture stop and entrance pupil.

Common lens systems usually allow selecting an f -number from among the following pow-
ers of

√
2: 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, and 45. Each step halves the area of the

aperture.
As the f -number O is most suitable for describing the limitation of light bundles for

objects far away from the lens, g � f , another quantity is used for objects located near the
lens: the numerical aperture NA. It is defined as the product of the sine of one-half of the
aperture angle α of a light bundle coming from an axial object point, and the refraction index
n of the medium between object and the lens (Fig. 3.17):

NA :=n sinα (3.41)

=n
D
2√(

D
2

)2
+ g2

. (3.42)

Therefore, the numerical aperture depends on the object distance. For microscope lens sys-
tems, which are preferably used if g ≈ f and b � f , the numerical aperture NA, instead of
the f -number O, is used to describe the bundle limitation. In this case, the two quantities
are related as follows:

b� f � g =
b f

b− f
=

f

1− f
b

≈ f , (3.43)

g ≈ f � NA ≈ n
D
2√(

D
2

)2
+ f2

, (3.44)

O =
f

D
⇒ NA ≈ n√

1 + 4O2
, (3.45)

O ≈ 1
2

√( n

NA

)2
− 1 . (3.46)

Three examples will show to what extent the depth of field can vary for different imaging
situations.

Example 3.1 (Longshot): First, a longshot will be considered. In this case one has g � f , so
that the approximation (3.40) is no longer valid and the exact equation (3.39) has to be
used to calculate the depth of field.
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Let the light sensitive elements of a CCD sensor (see Chap. 6) have dimensions of
10 μm. Therefore, εmax = 10 μm is chosen. In addition, the following parameters are
given: the f -number is O = 11, the object distance is g = 2 m, and the focal length is
f = 15 mm. Inserting those values into the equation for the depth of field yields

ε = +10 μm ⇒ Δgfar ≈ +66 m , (3.47)

ε = −10 μm ⇒ Δgnear ≈ −1 m , (3.48)

and in all,

g ∈ [1 m, 68 m] ⇒ |ε| ≤ 10 μm . (3.49)

The depth of field is very asymmetric and is large compared to the object distance of 2
meters.

Example 3.2 (Macro shot): On the other hand, for a macro shot with g ≈ b ≈ 2f and a magni-
fication of V ≈ 1, the depth of field is dramatically reduced. In this case, the approxima-
tion (3.40) can be used and simplifies to the following expression because of the special
relation between the object distance, the image distance, and the focal length:

Δgfar,near ≈ ±2 εO . (3.50)

Because εmax = 10 μm and O = 11, the resulting depth of field Δgfar,near ≈ ±0,2mm is
symmetric.

Example 3.3 (Microscope image): Finally, a microscope image is considered. Because of the
enormous magnification8 |V | = b

g � 1, but g ≈ f , so the thin lens equation becomes the
following:

b =
f2

g − f
. (3.52)

The depth of field is obtained from (3.40):

Δgfern,nah ≈ ±εmax O
g

b
= ±εmax O

|V | . (3.53)

The depth of field is extremely small for microscope images, as can be exemplified by
supposing the lens system has a magnification of |V | = 20 and a numerical aperture
NA = 0.4, which are common values for such systems. In the case of air (n ≈ 1), one
has O ≈ 1.15 according to (3.46). For εmax = 10μm, the depth of field is Δgfar,near ≈
±0.57μm.

8Microscope lens systems are usually labeled by their magnification |V | and their numerical aper-
ture NA (see also Sec. 3.5.2). The relations with the usual quantities of a camera lens systems (focal
length f and f -number O) are given by (3.45), (3.46) and (3.43), leading to

|V | = b− f

f
⇔ f =

b

V + 1
. (3.51)
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3.4.5 Telecentric imaging
For a usual lens system, the magnification depends on the distance: |V | = b

g . This circum-
stance often complicates the analysis of the captured images. Especially for measurement
applications, one would like to have a constant magnification that does not depend on the
object distance.

This goal is achieved by the principle of telecentric imaging. Inside a telecentric system
with diameter D, a stop with diameter D′ � D is placed, perpendicular to the optical axis,
in the plane of the image-side focal point. This stop is called a telecentric stop. As it limits
the optical ray bundle of the system the most, it also constitutes the aperture stop. The
telecentric stop requires all principal rays to pass through the focal point on the image side.
Because of the geometry of the optical path, the only rays to reach the image plane are those
that are approximately parallel to the optical axis on the object side (see Fig. 3.18). These rays
lead to a practically parallel projection of the object space, which is why the magnification no
longer depends on the object distance. According to the intercept theorem, the magnification
for this optical imaging system is

V =
B

G
= −b− f

f
. (3.54)

For a constant image distance b, the magnification is independent of the object distance g.
Therefore, telecentric imaging preserves lengths and can be used to measure object dimen-
sions.
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Figure 3.18. Principle of telecentric imaging.

Example 3.4 (Telecentric image acquisition): The constant magnification of a telecentric sys-
tem can be demonstrated by Fig. 3.19. The observed scene consists of two aluminum
profiles with equal cross sections but different lengths, and therefore different distances
from the camera (Fig. 3.19(a)). Therefore, when one of the usual lens systems is used,
the aluminum profile at the bottom appears to be larger (Fig. 3.19(b)). In contrast, the
magnification of a telecentric system is independent of the object distance, leading to two
equally sized silhouettes (Fig. 3.19(c)).

However, telecentric systems also have some disadvantages: as only light that enters in
parallel can reach the image plane, only objects placed directly in front of the lens are visible.
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(a) (b) (c)

Figure 3.19. Images captured with a telecentric system: (a) Two aluminum profiles captured from the right side by
a camera, (b) Images captured by a usual (entocentric) system, (c) Images captured by a telecentric system.

Thus, the lateral operating range of a telecentric system is smaller than the diameter D of the
lens. In particular, no objects larger than D can be captured. Therefore, telecentric systems
with large entrance lenses are necessary for many applications. Nowadays, such lenses with
diameters up to 30 cm are available (cf. Fig. 7.76(a) on p. 299).

The narrow telecentric stop leads to a considerable loss of captured light. At the same
time, the small aperture diameter yields an increased depth of field.

High quality telecentric systems consist of several lenses in order to reduce aberration.
An entrance lens with a large diameter is combined with a standard lens system whose
entrance pupil represents the telecentric stop [13]. The typical parameters of such a system
are the operating distance g, the lateral object-side operating range, and the size of the sensor
onto which the complete operating range is to be mapped. Both the size of the sensor and the
operating range define the magnification. An important parameter influencing the system’s
quality is the telecentric range. If an object point is moved parallel to the optical axis inside
the telecentric range, the corresponding image point will be laterally moved by no more than
some tolerable limit (typically 1μm).

3.4.5.1 Defocused telecentric imaging
With telecentric systems, as is the case with all optical imaging systems using a lens, only
one plane of the object space can be captured exactly in focus. Object points which are not
part of that particular plane are captured with the same magnification but appear in the
form of a symmetric blur disk instead of a single sharp point. The position of the center
of the blur disk is exactly where the point would be located if the corresponding object
point was moved, in parallel to the optical axis, to the focused plane. This characteristic of
telecentric systems, which is very beneficial for measurement applications, is demonstrated
by Fig. 3.18: the center of the blur disk is defined by the intersection of the image plane and
the principal ray of the light bundle [12]. As the principal ray is parallel to the optical axis
on the object side, its path is independent of the object distance. Therefore, also the center of
the blur disk is invariant to changing object distances. However, it is important to note that
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adjusting the focus configuration changes the magnification (see (3.54)). The magnification
is only constant when the parameters f and b are held constant.

Now, an equation for the depth of field Δg(ε) of a telecentric system is derived, similarly
to the approach in Sec. 3.4.4. As before, Equations (3.25), (3.29), and their transformations
(3.32) and (3.33), hold.

Applying the intercept theorem in Fig. 3.18 leads to

ε

D′ =
Δb

b− f −Δb
. (3.55)

According to (3.33) and (3.32), respectively, Δb and b−Δb are inserted:

ε

D′ =

fg
g−f −

f (g+Δg)
g+Δg−f

f(g+Δg)
g+Δg−f − f

=

g
g−f −

g+Δg
g+Δg−f

g+Δg
g+Δg−f − 1

(3.56)

=

g (g+Δg−f)
g−f − (g +Δg)

f
(3.57)

=
g2 + gΔg − f g − g2 − gΔg + f g + f Δg

(g − f) f
=

Δg

g − f
. (3.58)

This finally yields the following expression for the depth of field of a telecentric imaging
system:

Δg = Δg(ε) =
ε

D′ (g − f) . (3.59)

3.4.5.2 Double-sided telecentric systems
Up to this point, object-side telecentric systems have been considered, where the light rays
on the object side are parallel to the optical axis. However, for image-side telecentric systems,
the optical path between the lens and the image plane is parallel to the optical axis. This is
achieved by placing a telecentric stop at the focal point on the object side of the lens [17, 18].
This setup has the advantage that the magnification is independent of the image distance:
|V | = |BG | =

f
g−f .

Both principles can be combined, to make a double-telecentric system, if two lenses are
arranged in such a way that the telecentric stop is simultaneously located at the image-side
focal point of the first lens and at the object-side focal point of the second lens (Fig. 3.20).
Then, the principal rays are parallel to the optical axis on both sides of the system. This
configuration is used inside telescopes in order to magnify objects that are infinitely far-
away, and image them onto an infinitely far-away image plane. However, there is only a
limited range of distances within which a real image is obtained: for equal focal lengths
f1 = f2 it can be up to twice the focal length g ∈ (0, 2f1). Figure 3.20 shows the special
case when the object is closer to the object-side lens than its focal point, leading to a virtual
intermediate image B′. An advantage of image-side telecentric systems is the independence
of the magnification from the image distance: according to the intercept theorem, V = B

G =

− f2
f1

in Fig. 3.20. Therefore, focusing is possible without changing the magnification [12, 20].

3.4.6 Perspective
This section describes, in a more general context, the difference between ordinary lens sys-
tems and telecentric systems. Three perspectives are distinguished for optical imaging:
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Figure 3.20. Double-telecentric imaging [12, 20]. The lens L1 produces the virtual image B′
2 of the object G2. This

virtual image is mapped to the real image B2 by the lens L2. The magnification V = B
G

of double-telecentric
imaging is independent of the image distance and the object distance, as can be seen by comparison with the point
pair G1 and B1.
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Figure 3.21. Optical paths for different perspectives: (a) Entocentric; (b) Telecentric; (c) Hypercentric (AS = aperture
stop).

Entocentric perspective: The aperture stop is located in front of the image-side focal
point (see Fig. 3.21(a)). This applies to the ordinary lens systems. The perspective center
is located between the object and the observer. Therefore, more remote objects appear
smaller than less remote ones (see Fig. 3.22).
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Figure 3.22. Projection for an entocentric perspective.

Object space Image plane

Projection center

Figure 3.23. Projection for a telecentric perspective (visualization without considering the image inversion because
of the central projection, compare Sec. 3.2).

Object space
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Projection 
center

Figure 3.24. Projection for a hypercentric perspective (visualization without considering the image inversion).

Telecentric perspective: The aperture stop is placed at the image-side focal point. As
described in Sec. 3.4.5, the magnification is then independent of the object distance. As
the perspective center is located at an infinite distance, its optical imaging is that of a
parallel projection (Fig. 3.23).

Hypercentric perspective: The aperture stop is located between the image-side focal
point and the image plane. For this kind of imaging and from the perspective of the cam-
era, the perspective center is located in the object space behind the object (see Fig. 3.24).
Therefore, remote objects appear larger than near objects. Thus, surfaces which are ar-
ranged in parallel to the optical axis and are oriented away from it can be captured—such
as the outer sides of a die or a cylinder (see Fig. 3.26). This unusual characteristic of hy-
percentric systems can be useful for some applications in the field of automated visual
inspection. However, as can be seen in Fig. 3.21(c), the lenses of a hypercentric lens sys-
tems have to be larger than the objects to be captured. The hypercentric perspective is
typical for X-ray images (see Sec. 7.4.2).

Depending on the perspective of the optical imaging, different parts of an object’s surface
are visible or occluded (Fig. 3.25).

The arrangement of the aperture stop has no influence on the position of the focused
plane, the corresponding image plane, or the magnification. The thin lens equation (3.25)
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Figure 3.25. Visibility and occlusion of parts of the object space for different perspectives. The surfaces visible in the
camera image are highlighted in different colors.
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Figure 3.26. Hypercentric lens: (a) Imaging configuration; (b) Camera image. Both the cap and the outer surface
of the cylindrically shaped test object are captured in the image, making it possible to measure, e.g., the object’s
diameter and height (source: Opto Engineering srl).

holds, independent of the position of the aperture stop. The stop partly blocks the light
bundle coming from an object point. For a sharp image produced by an ideal lens system,
this has no influence on the position of the image, as all the rays of the light bundle intersect
at the same image point. Therefore, the methods of Sec. 3.4.2 for geometrically determining
the image point remain valid, even if the principal and parallel rays are not able to pass the
stop [12]. However, for a blurred image, the light bundle produces a blur disk in the image
plane. If now the aperture stop blocks a notable amount of the light bundle, the position of
the center of the blur disk might vary considerably. Its position depends on the principal ray
of the remaining light bundle, whose optical path is clearly different in the three perspectives
(Fig. 3.21).

3.4.7 Imaging of tilted planes
Up to now, the lens plane was assumed to be parallel to the image plane and therefore the
focused plane was also parallel to those two planes. Now, the general case is considered,
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where the image plane and the focused plane might be tilted with respect to the lens plane.
The conditions which are now necessary for the formation of a sharp optical imaging will be
developed.

Object plane Image plane

g

f

b

x

z

x0

xw

zw

xw = x0
g
zw + x0

Figure 3.27. Imaging with tilted object planes.

At first, the problem is examined in the x,z-plane of the camera coordinate system. The
object points (xw, zw), which are located on the line

xw =
x0

g
zw + x0 (3.60)

are to be sharply captured (see Fig. 3.27). So, the geometrical position of their sharp images
(x, z) are of interest. By using this variable, the thin lens equation (3.25) becomes

1

f
=

1

−zw
+

1

z
⇔ zw =

z f

f − z
. (3.61)

Applying the intercept theorem to Fig. 3.27 yields

xw

x
=

zw
z

⇔ xw =
zw
z

x . (3.62)

Inserting zw and xw into (3.60) results in

x = x0

(
1

g
− 1

f

)
z + x0 . (3.63)

Hence, the image points are also part of a line going through the point (x0, 0). This leads
to the following consideration for the three-dimensional case: in order to map two planes
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sharply to each other, their line of intersection has to be part of the lens plane. This necessary
condition is called the Scheimpflug condition [16].

3.2 Theorem 3.2: Imaging of tilted planes
If the line of intersection of two planes is located in the lens plane (the Scheimpflug con-
dition) and if the thin lens equation (3.25) holds for a point on the object plane and the
corresponding point on the image plane, the entire two planes are sharply imaged to each
other.9 �

Proof 3.1 (Imaging of tilted planes): As usual, the z-axis is assumed to be equal to the optical
axis and the origin is assumed to be located in the center of the lens. So, the principal
plane of the lens is given by

E0 = {x = (x, y, z)T | z = 0} . (3.64)

Suppose the object-side plane E1 and the image-side plane E2 are given in general form
by

E1 = {x = (x, y, z)T | a1x+ b1y + c1z + d1 = 0} , (3.65)

E2 = {x = (x, y, z)T | a2x+ b2y + c2z + d2 = 0} . (3.66)

Suppose the intersection of those two planes is a line in the lens plane E0. This implies

E1 ∩ E0 = E1 ∩ E2 = E0 ∩ E2 . (3.67)

The line of intersection E1 ∩ E0 is described by the system of equations

z = 0 (3.68)

a1x+ b1y + d1 = 0 . (3.69)

Similarly, the line of intersection E0 ∩ E2 is characterized by

z = 0 (3.70)

a2x+ b2y + d2 = 0 . (3.71)

Because of (3.67), the coefficients of both representations are equal, except for a scaling
factor:

d2 := d1, b2 = b1, a2 = a1 . (3.72)

Suppose the lens has a focal length f > 0. Let x1 ∈ E1 and x2 ∈ E2 be the assumed pair
of points complying with the thin lens equation. Hence, the two construction rays (the
principal ray and the parallel ray) for x1 intersect at x2. Because of the choice of origin,
x2 = λx1 for a suitable λ ∈ R. Inserting that expression into the thin lens equation results

9In the strict sense, only the part of the plane on the object side that is located in the half space
z < −f is mapped to a real image.
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in
1

f
=

1

−z1
+

1

z2
= − 1

z1
+

1

λz1
. (3.73)

Solving that equation for λ yields

λ =
f

z1 + f
, if z1 �= −f . (3.74)

With (3.72), the assumption x2 ∈ E2 can be expressed as

a1λx1 + b1λy1 + c2λz1 + d1 = 0 (3.75)

⇔ a1x1 + b1y1 + c2z1 + d1
z1 + f

f
= 0 (3.76)

⇔ a1x1 + b1y1 +

(
c2 +

d1
f

)
z1 + d1= 0 (3.77)

x1 ∈ E1 leads to

a1x1 + b1y1 + c1z1 + d1 = 0 . (3.78)

Subtracting that equation from (3.77) yields(
c2 +

d1
f
− c1

)
z1 = 0 . (3.79)

Assuming z1 �= 0 (necessary for optical imaging) leads to

c2 +
d1
f
− c1 = 0 . (3.80)

This results in the following representation of the plane on the image side:

E2 =

{
x = (x, y, z)T

∣∣∣∣ a1x+ b1y +

(
c1 −

d1
f

)
z + d1 = 0

}
(3.81)

Now, let x1 ∈ E1 be an arbitrary point on the object-side plane. For its sharp image x2,
one has

1

f
=

1

−z1
+

1

z2
(3.82)

⇒ z2 =
f

z1 + f
z1 . (3.83)

As x2 is located on a line of sight passing through the origin of the coordinate system and
x1,

x2 =
f

z1 + f
x1 . (3.84)
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It now remains to prove that x2 ∈ E2. Inserting (3.84) into the plane of Equation (3.81)
and multiplying by z1+f

f yields

a1x1 + b1y1 +

(
c1 −

d1
f

)
z1 + d1

z1 + f

f
= 0 (3.85)

⇔ a1x1 + b1y1 + c1z1 + d1 = 0 . (3.86)

The last equation holds since x1 ∈ E1. As x1 was chosen arbitrarily, every point of E1 is
sharply mapped to a point of E2.

Equation (3.81) describes how to choose the tilted image plane for a given object plane.
For tilted planes, (3.61) shows that the magnification depends on the position:

V =
x

xw
=

z

zw
= 1− z

f
=

f

f + zw
. (3.87)

Because the object plane is tilted, zw is spatially variable. The depth of field is also spatially
variable, as it depends on the distance zw between the lens plane and the object point. The
depth of field also depends on the position, as it is connected to the distance between the
lens plane and the object point via (3.39).

Ordinary cameras can be considered as a limiting case of Theorem 3.2: In this case, the
image and object planes are parallel and thus intersect each other at infinity. As soon as the
thin lens equation (3.25) holds for one pair of points, the entire planes are sharply mapped
to each other.

An application for imaging of tilted planes according to the Scheimpflug condition is
laser triangulation, see Sec. 7.3.1 and 7.3.2.

Example 3.5 (Focused imaging of tilted planes): Some special lenses, like a so-called tilt-shift
lens (Fig. 3.28(a)), allow tilting the optical axis of the lens with respect to the image plane.
By means of theorem 3.2 it is therefore possible to tilt the focused plane in the object
space with respect to the image plane, so that the focused plane can be adjusted for the
imaged object. As an example, Fig. 3.28(b) shows an image of a printed circuit board

(a) Tilt-shift lens (b) No tilt (c) Lens tilted

Figure 3.28. Focused imaging of tilted planes by means of a tilt-shift lens: (a) Tilted lens; (b) Image of a PCB without
tilting the lens; (c) Image of a PCB with a tilted lens. Both images were acquired with an opened stop.
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(PCB) without tilting the lens; here, a focused imaging is only achieved for the parts of
the object that are near to the camera. By tilting the focused plane in the object space it
was possible to obtain a focused imaging of nearly the whole PCB, as it can be seen in
Fig. 3.28(c).

3.4.8 Aberrations
Ideal optical imaging can only be approximated by real optical systems, which suffer from
so-called aberration [1, 9, 20]. This can partly be alleviated in appropriately designed lens
systems, if several lenses with different curvatures and material characteristics are employed
in combination. In addition, the effects of most kinds of aberration can be diminished by
decreasing the diameter of the aperture.

There is monochromatic aberration, caused by undesired variations of the optical path
depending on the angle with the optical axis, and there is chromatic aberration, caused by
dispersion. Some kinds of aberration lead to a blurred image (focus errors), others to a
systematic variation of the positions of the image points with respect to the ideal model
(position errors). Position errors are particularly important for measurement applications.
They either have to be avoided by using high-quality optical components or have to be
compensated for by a suitable calibration.

3.4.8.1 Seidel aberrations of spherical lenses
In Gaussian Optics, a linear approximation of the law of refraction is used (see Sec. 3.4.1). In
this case, the approximation error of the sine function is dominated by a third order term.
The aberration caused by neglecting the cubic term of the sine function in the law of refrac-
tion is called the Seidel aberrations (third-order image errors). This leads to different un-
desirable effects affecting optical imaging with spherical lenses, and are described in what
follows.

Spherical aberration: Because of spherical aberration , an incident homocentric light bundle
is not exactly focused on a single point. The intersections of the light rays are located at
different distances from the lens, making it impossible to achieve an exact focusing. Light
rays passing through the margin of a lens are refracted more intensely than in Gaussian
Optics, so that their intersections are closer to the principal plane than the intersections of
rays which are closer to the optical axis (Fig. 3.29(a)).

Aspherical lenses, whose surfaces are not parts of a spherical surface, can avoid spherical
aberration. However, they are much more costly to make.

Coma: An increasing absolute value of the angle of incidence leads to a change of the shape
of the blurred image [11]. The image of a point-shaped object might look like a comet with a
tail (Fig. 3.29(b)). Therefore, this effect is called coma.

Astigmatism: Astigmatism is also related to the angle of incidence of a light bundle. The
focus lengths of light rays in the tangential and the sagittal plane differ from each other.
The tangential plane of a light ray is spanned by the principal ray of the light bundle and
the optical axis. The sagittal plane contains the principal ray and is perpendicular to the
tangential plane. Light rays in the tangential plane are more intensely refracted by spherical
lenses, as the lens appears to be perspectively reduced in the tangential direction and thus
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Figure 3.29. Seidel aberrations: (a) Spherical aberration; (b) Coma.
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Figure 3.30. Astigmatism: The tangential light bundle is refracted to a larger extent than the sagittal light bundle.

appears to be more curved than in the sagittal direction. Therefore, the tangential focal
length of the lens is shorter than its sagittal focal length. In the tangential component of the
image distance, a point-shaped object is imaged as a line on the sagittal plane and in the
sagittal component of the image distance, it is imaged as a line on the tangential plane. In
between, a point-shaped object forms an image of a blurred ellipse (Fig. 3.30).

Curvature of field: In Gaussian Optics, a plane perpendicular to the optical axis in object
space is focused to a plane in image space. In the case of image field curvature, the imaged
points are not located on a planar surface but on a curved surface (Fig. 3.31). There is then
no way of adjusting the image plane to sharply capture the whole object plane.

An additional astigmatism leads to different surfaces of sharp images for rays of the
tangential and the sagittal planes.

Radial distortion: Distortion is caused by optics with spatially varying magnification. They
can cause straight lines in the object space to be mapped to curves in the image space. If the
degree of the distortion only depends on the distance between the object point and the op-
tical axis, the distortion is called radial. Then, lines intersecting the optical axis are mapped
to lines. Straight lines lying aside the optical axis are mapped to curved lines.
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Figure 3.31. The sharp image of an object plane is geometrically formed as a curved surface. Astigmatism leads to
different surfaces for the rays of the tangential and the sagittal planes.

(a) (b) (c)

Figure 3.32. Image deformations caused by radial lens distortion: (a) Ideal, free of distortion, a = 0; (b) Barrel-
shaped distortion, a < 0; (c) Pincushion distortion, a > 0 in (3.88).

If the magnification is reduced towards the image border, a barrel-shaped distortion is
caused (Fig. 3.32(b)). Many wide-angle lenses suffer from this aberration. On the other hand,
the distortion caused by an increase of magnification towards the image border is called
pincushion distortion (Fig. 3.32(c)). The kind and extent of the distortion are influenced by
the position of the aperture stop [14].

A radial distortion can be represented by the following model:(
xv

yv

)
=

(
x

y

)
+ a((x− ox)

2 + (y − oy)
2︸ ︷︷ ︸

= r2

)

(
x− ox
y − oy

)
. (3.88)

The coordinates of a distorted image point, (xv, yv)
T, are obtained by the sum of the ide-

alized image coordinates (x, y) of (3.12), (3.13), and an error term depending only on the
radial distance r from the image point to the intersection (ox, oy) of the optical axis with the
image plane. More detailed models also take higher powers of r into account. The distor-
tion parameter a can be estimated using calibration methods [10, 21]. The case a > 0 leads
to pincushion distortion and a < 0 to barrel-shaped distortion. When a = 0, one has ideal
distortion-free imaging.
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3.4.8.2 Chromatic aberration
As the refraction index of a material might depend on the wavelength of the light, light of
different wavelengths is refracted by different amounts by a lens (see Sec. 2.6.3). In the visible
part of the spectrum, the refraction index decreases with increasing wavelength. Therefore,
light of a shorter wavelength is more sharply refracted, so that the focal point is nearer to
the principal plane of the lens. Because of this chromatic aberration, light of different wave-
lengths cannot be sharply imaged simultaneously (Fig. 3.33(a)). This blur has to be taken
into account even if gray-scale sensors are used. For color sensors, there are additional color
distortions around the edges (the so-called color fringes) caused by the differently focused
color channels. If an optical system is not symmetric with respect to a principal plane per-
pendicular to the optical axis, the magnification can also depend on the wavelength [1]. This
is already the case for a simple system consisting of a single lens and a stop. Because of the
wavelength dependence of the focal length, the direction of the principal ray varies and thus
the magnification depends on the wavelength (Fig. 3.33(b)).

Chromatic aberration can be reduced by composing lens systems out of materials with
different dispersion. A system of two lenses with exactly equal focal points for two wave-
lengths is called an achromat. A system that corrects for chromatic aberration for three
wavelengths is called an apochromat. An apochromat usually consists of three lenses [17].

Image plane

f

(a)

Image plane

f

Object

Image
Aperture stop

(b)

Figure 3.33. Chromatic aberrations: (a) Axial / longitudinal aberration: Chromatic aberration causes the focal length
f of the lens and the image distance to vary with the wavelength of the light; (b) Transverse / lateral aberration:
The magnification of a system with several optical elements might depend on the wavelength.
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Chromatic aberration can be completely avoided by using mirror optics, as the direction of
reflection is independent of the wavelength. However, in some imaging optics, wavelength-
dependent focusing can be useful (see Sec. 7.3.13).

Finally, it has to be taken into account that all types of aberration can arise simultane-
ously. For example, Seidel aberrations occur to different extents for different wavelengths.

Diffraction limited lens systems are extremely high quality lens systems for which all
types of aberration are corrected up to the point that the influence of aberration is less than
the limitations caused by the wave nature of light.

3.53.5 Optical instruments with several lenses
This section introduces two particularly important optical instruments for automated visual
inspection, which contain several lenses: the projector and the microscope.

3.5.1 The projector
At first, an illumination system with two lenses, L1 and L2, will be considered (Fig. 3.34).
The light source is sharply mapped to the lens plane of L2. Then, L2 maps the plane of
its entrance window to the projection plane, so that structures positioned in its entrance
window are magnified and can be displayed on a screen. The structures of the light source,
which are visible in the plane of L2, vanish. The illuminance of the receiver depends only on
the aperture stop, and the size of the captured plane depends only on the field stop. Thus,
this lens system allows a homogeneous illumination (without visible structures of the light
source) with independent and variable adjustment of the illuminance and field size.

Besides the suppression of the spatial structure of the light source and the homogeniza-
tion of the illuminance in the projection plane, lens L1 has another important function: by
mapping the light source to L2, the whole light captured by L1 is used to illuminate the
projection plane. For a good light yield, the diameter of L1 should be large compared to the
distance between L1 and the light source.

Illumination plane
= entrance pupil

Projection plane
= exit window

Light
source

Field stop
= entrance window
   (with respect to L2)

Aperture stop
= exit pupil

L1 L2

Figure 3.34. Optical path of the imaging rays (black) and of the illumination (blue) for a projector.
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A famous application of this type of lens system is the slide projector. In this case, L1 is
the condenser, L2 is another lens system, and the exit window is given by the screen. The
slide is located in the entrance window of L2.

The same principle is used by many video projectors. Here, transparent liquid crystal
displays controlled by a computer are placed in the entrance window [3].

The projector is particularly important for automated visual inspection, as it can project
light patterns used for surface measurements with triangulation (Sec. 7.3.4) and as it is nec-
essary for inverse illumination (Sec. 7.6.2).

3.5.2 The microscope
The microscope is an optical instrument for magnifying very small objects [17]. With visible
light, useful magnifications of up to approximately |V | = 2000 are realizable. The maximum
magnification is limited by the wave nature of light.

A microscope for direct use by a human observer consists of two lenses (or two lens
systems): the objective lens and the ocular. The capturing lens leads to a real, inverted, and
magnified image of the object in the plane of the field stop. The field stop is placed in the
focal plane of the ocular on the object side. Therefore, the ocular produces a virtual image at
an infinite distance, allowing comfortable focusing for the human eye. The exit pupil of the
ocular is equal to the entrance pupil of the eye. The ocular uses the principle of a magnifying
glass. The aperture stop regulates the illuminance and the field stop adjusts the size of the
visible area. A measuring grid can be placed in the field stop.

Important parameters for a microscope lens are its magnification and numerical aperture.
The numerical aperture is defined as NA = n sinα, with α denoting one-half of the angle
of the aperture, and n denoting the refraction index of the material in between the object
and the lens (see Fig. 3.35). As microscopes are preferably used with g ≈ f , the numerical
aperture corresponds to the width of the light bundle and is used instead of the f -number O
(cf. (3.45)). In automated visual inspection, usually air is the medium between the lens and
the test object, so that the refraction index is n ≈ 1. As shown in Sec. 2.2.6.1, the diffraction-
limited resolution is improved for increasing D, and so according to (3.45) for an increasing
numerical aperture.

Field stop

Lens Ocular

Aperture stop
= entrance pupil

Eye

Image at

L2
L1

f2

n0

α

f1 f1

Figure 3.35. Optical path of the imaging rays (black) and the light bundle (blue) for a microscope.
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SensorField lens FL

Camera
lensObjective lens of

the microscope

L1 L2

Figure 3.36. Combination of microscope and camera.

The magnification of the microscope is given by the product of the magnifications of the
two subsequent optical imaging processes:

VMicroscope = VObjective VOcular . (3.89)

An important parameter of a microscope is the so-called tube length t, which is defined
as the difference between the image distance b1 of the capturing lens and the focal length f1:

t := b1 − f1 . (3.90)

Most microscopes use the standard tube length, t = 160 mm.
Of particular importance for automated visual inspection is the combination of a micro-

scope and an electronic camera (Fig. 3.36). The camera’s lens, which replaces the ocular,
receives the intermediate image Bz produced by the microscope lenses as a sharp image on
the sensor. Again, the overall magnification is the product of the magnifications of the single
optical elements.

For a better light yield and a more homogeneous image brightness, a field lens (dashed
lines in Fig. 3.36) can be placed in the plane of the intermediate image, which maps the exit
pupil of the microscope lens L1 to the entrance pupil of the camera lens L2.

For another important variant, the image plane of the microscope lens has infinite dis-
tance: g1 = f1, b1 → ∞. Here, the light originating from an object point is transformed into
a parallel bundle of rays with a defined direction. The focused plane of the camera lens is
then placed at infinity: g2 → ∞, b2 = f2. The resulting total magnification is obtained from
Fig. 3.37:

tan γ =
G

f1
, tan γ = −B

f2
, (3.91)

⇒ V =
B

G
= −f2

f1
. (3.92)
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Sensor

Camera
   lens

L1

L2

Objective lens of
the microscope

Figure 3.37. The image plane of the objective lens of the microscope is at infinite distance, resulting in a parallel light
bundle that reaches the camera.
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4.14.1 Radiometric quantities
The field of photometry is concerned with measuring the intensity and power of visible light
with respect to the sensitivity of the human eye (see Chap. 5). Visible light is only a part of
the whole electromagnetic spectrum (see Sec. 2.1.1). The respective wavelengths range from
about 380 nm to 780 nm. Of course, physical measurements of intensity, power, etc., can be
obtained for the whole electromagnetic spectrum without respect to the human eye, as is
done in the domain of radiometry or radiation physics.

The radiant flux Φ is the total amount of radiant power passing through some two-
dimensional surface A. If, for example, A is surrounding an isolated light source in the
absence of other sources, the radiant flux is the total power of the electromagnetic radiation
emitted by the source; see Fig. 4.2(a) on p. 147.

The electromagnetic field of the light and Φ are related via the Poynting vector P = E×H
(2.37):

Φ =

∫
A

P
T
n dA =

Δn

Δt
h ν , [Φ] = 1 W , (4.1)

with n denoting the normal vector perpendicular to the infinitesimal surface element of area
dA. The right hand side of (4.1) represents the photon model for monochromatic light with
photons of energy h ν (cf. Sec. 2.3). For a photon flux of Δn

Δt , Δn photons pass through the
area A in one direction during the period Δt.

The luminous flux Φl is the photometric quantity corresponding to the radiant flux, and
represents the measure of the radiant power which is perceived by the sensitivity of the
human visual perception of brightness. It is measured in lumens (lm); cf. Table 4.1 on p. 150.
A luminous flux of 683 lm corresponds to a radiant power of 1 W for a wavelength of 555 nm.
The relation between radiometric quantities and photometric quantities is further described
in Sec. 5.1.

In order to define further radiometric quantities, the concept of solid angle has to be
introduced.

4.1Definition 4.1: Solid angle
The solid angle ΩA of some surface A with respect to a point P is defined as the surface area
AK of the projection of A onto the unit sphere surrounding P (Fig. 4.1). In the same way one
defines the solid angle dΩA of an infinitesimal surface element dA. If θ denotes the angle
between the surface normal and the normal of the unit sphere at the intersection with the
line of sight towards P, and if r is the length of the line of sight from dA to P, then

dΩA =
dA cos θ

r2
. (4.2)

The unit of a solid angle is called a steradian (sr). �

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_4,
© Springer-Verlag Berlin Heidelberg 2016
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r = 1

n

r

Figure 4.1. Solid angle.

If a surface element in spherical coordinates is denoted by the polar angle [θ1, θ2] and the
azimuth [ϕ1, ϕ2], it covers the following solid angle when observed from P:

Ω =

ϕ2∫
ϕ1

θ2∫
θ1

sin θ dθ dϕ . (4.3)

A half-space has a solid angle of 2π:

ΩHalfspace =

2π∫
0

π
2∫

0

sin θ dθ

︸ ︷︷ ︸
= 1

dϕ = 2π . (4.4)

The solid angle can be interpreted as a three-dimensional generalization of the planar angle
from plane geometry [7]. In a plane, an angle is defined by two rays originating from a
point P. The angle is characterized by the length of the arc cut out of the unit circle around
P by the two lines. Equivalently, the solid angle is given by a homocentric bundle of rays
intersecting in P. A measure of the solid angle is the area of the surface cut out of the unit
sphere around P by the bundle of rays [9].

The radiant intensity I denotes the density of the power emitted in the direction r from
a point x (Fig. 4.2(b)):

I(r,x) =
dΦ

dΩ
(r,x) . (4.5)

Similarly, the luminous intensity Il is the density of the luminous flux emitted from x in the
direction r and is measured in units of candelas: 1 cd = 1 lm/sr.
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(a) (b)

θ

n

L

dA

dΩ

x

(c) (d)

Figure 4.2. Visualization of radiometric quantities: (a) Radiant flux Φ; (b) Radiant intensity I ; (c) Radiance L; (d)
Irradiance E.

The radiance L is the surface density of the radiant intensity emitted by the surface ele-
ment dA, projected in the propagation direction r (cf. Fig. 4.2(c)):

L(r,x) =
dI

dA cos θ
, (4.6)

with x denoting the position of the surface element dA and θ denoting the angle between
the surface normal of dA and the direction of the radiation r. Inserting (4.5) results in

L(r,x) =
d2Φ

dΩdA cos θ
. (4.7)

The corresponding photometric quantity is called the luminance Ll. Conversely, the radiant
flux can be obtained by integrating over the radiance [9]:

Φ =

∫
A

∫
Ω

L(r,x) cos θ dΩdA . (4.8)

Radiance describes the radiation intensity flowing through the surface element dA in the
direction r. It can be defined for surface elements of a light source as well as for any arbitrary
surface element in space [9].
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4.1 Theorem 4.1: Fundamental law of radiometry
Suppose that two surface elements dA1 and dA2, at a distance of r from each other, radiate
with a radiance of L1 and L2, respectively (Fig. 4.3). In order to calculate the radiant flux
between the two surface elements, to begin with, let dA1 be the sender and dA2 the receiver.
The differential radiant flux originating from dA1 and ending at dA2 is

d2Φ1→2 = L1 dA1 cos θ1 dΩ1 = L1
dA1 cos θ1 dA2 cos θ2

r2
. (4.9)

According to (4.2), the following holds for the solid angle dΩ1 under which dA2 is visible
from dA1:

dΩ1 =
dA2 cos θ2

r2
. (4.10)

Similarly, swapping the roles of sender and receiver results in the differential radiant flux
from dA2 to dA1:

d2Φ2→1 = L2 dA2 cos θ2 dΩ2 = L2
dA1 cos θ1 dA2 cos θ2

r2
. (4.11)

Hence, the differential flux exchanged between the two surface elements is given by

d2Φ1↔2 = (L1 − L2)
dA1 cos θ1 dA2 cos θ2

r2
. (4.12)

This equation describes the radiant flux between two surface elements and is called the fun-
damental law of radiometry [2, 9]. The corresponding relation between the photometric
quantities of luminous flux and luminance is called the fundamental law of photometry. �

Figure 4.3. Visualization of the fundamental law
of radiometry: Differential radiant flux d2Φ1→2

from dA1 to dA2, with θi denoting the angle be-
tween the normal to the surface and the ray of
sight (adapted from [2]).

The irradiance E is the surface density of the radiant flux arriving at point x on a surface
(Fig. 4.2(d)):

E(x) =
dΦ

dA
(x) . (4.13)

The irradiance E1 on the surface element dA1 that is caused by the radiance L2 of the surface
element dA2, can be calculated by integrating (4.11) over all spatial directions r by means of
(4.10):

E1(x) =
dΦ2→1(x)

dA1
=

∫
r

L2(r,x) cos θ1(r,x) dΩ1(r,x) . (4.14)

In photometry, the illuminance El is the surface density of the luminous flux incident at
point x. Its unit is lux: 1 lx = 1 lm/m2.
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Integrating the radiant flux over time results in the the radiant energy that has passed
through the respective surface:

Q =

t2∫
t1

Φ(t) dt . (4.15)

The corresponding photometric quantity is called the luminous energy. It is calculated by
integrating the luminous flux Φl.

Temporal integration of the irradiance results in the radiant exposure H :

H =

t2∫
t1

E(t) dt . (4.16)

It represents the radiant energy’s surface density:

H =

t2∫
t1

dΦ

dA
(t) dt =

dQ

dA
. (4.17)

The corresponding photometric quantity is called the luminous exposure Hl.
The radiant exposure is the quantity which is measured by an image sensor and which

is encoded in the image values (intensity values) of the resulting image. Equivalently, the
human eye is sensitive to the quantity of luminous exposure. Assuming a fixed observation
time and an irradiance that is approximately constant for the period of the observation, the
image values can also be interpreted as a representation of the irradiance.1

Table 4.1 summarizes the radiometric and photometric quantities and their units.
The spectral density Xλ of each radiometric quantity X can be written as a function of

the wavelength λ [9]:

Xλ(λ) =
dX

dλ
. (4.18)

The spectral density Xλ(λ) represents the component of the radiometric quantity X that is
caused by wavelengths within the interval [λ, λ + dλ]. For example, the spectral radiant
flux Φλ describes the distribution of the radiant power over the wavelengths of the spec-
trum. Thus, it characterizes the contributions of the different parts of the electromagnetic
spectrum to the total radiant flux Φ. The original radiometric quantity X can be obtained by
integrating the spectral density Xλ over the wavelength:

X =

∞∫
0

Xλ(β) dβ . (4.19)

1In the strict sense, one must distinguish between sensors measuring the real energy, e.g., a bolome-
ter (see Sec. 6.10.1), and sensors counting photons. If a large interval of wavelengths is captured, the
photon count is not equivalent to the energy, and therefore not to the irradiance, as the photon energy
depends on the wavelength.
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Table 4.1. Correspondences of radiometric and photometric quantities [2, 3, 9, 10].

Radiometric Symbol Symbol Photometric
quantity Unit

Formula
Unit quantity

Concerning Radiant flux Φ Φl Luminous flux
radiation W lm

field Radiant energy Q Ql Luminous energy
J

∫
Φdt

lm s

Concerning Radiant intensity I Il Luminous intensity
sender W/sr

dΦ
dΩ

cd

Radiance L Ll Luminance
W

m2sr

dI
dA cos θ

cd/m2

Concerning Irradiance E El Illuminance
receiver W/m2

dΦ
dA

lx

Radiant exposure H Hl Luminous exposure
J/m2

∫
E dt

lx s

Physical Physiological

4.2 4.2 The light field of a test object
As mentioned in Chap. 1, a test object introduces a characteristic modulation to the irradi-
ated light, so that one can obtain information about the test object from the emitted light. By
means of the radiometric quantities introduced in the previous section, this modulation can
now be mathematically modeled.

The radiation from a surface element in a spatial direction is quantified by the radiance
L in W

m2sr . The radiance of the light source LS is denoted by LLS, the radiance of the test
object’s surface SF is denoted by LSF, and the irradiance E on the surface is denoted by
ESF in W/m2. Points located on the light source and on the surface are denoted by world
coordinates: ξw and xw ∈ R3, respectively. The direction of the light rays is described by
pairs of angles α = (α1, α2), β = (β1, β2), γ = (γ1, γ2) with respect to the world coordinate
system. The notation of image coordinates is (x, y)T, as usual.

The radiance emitted by a point on the surface of some object is additively composed of
two components: the active self-radiation of the surface element and the (passively) reflected
light:2

L = Lactive + Lpassive . (4.20)

For light sources, the component LLS,passive corresponds to the light that is first reflected
back to the light source by the test object and the surroundings and then reflected again.
Compared to the self-radiation of the light source, this component can mostly be neglected.

Conversely, for illuminated test objects, the component LSF,active can mostly be ne-
glected. Exceptions are self-radiating test objects, such as hot and glowing objects producing
thermal radiation in the visible part of the spectrum (see Sec. 2.7.1.1). When imaging in the

2Additivity of radiance holds only for non-coherent light.



4.2 The light field of a test object 151

thermal infrared spectrum, one observes even a significant self-radiation from objects that
are commonly considered ‘cold’.

Each point of an object surface (whether of the test object, the light source, or another sur-
rounding object) is illuminated from and illuminates all object points which are visible from
its perspective. Because of the high speed of light, and since the radiance decreases exponen-
tially for an increasing number of reflections, a stationary state of the mutual illumination of
all objects is reached practically instantaneously3 after turning on a light source.

Depending on the application, the model used for describing the radiance can have dif-
ferent levels of detail. With

Li
LS(ξw,α, λ) , i = 0, 1, 2, 3 , (4.21)

the radiance of a light source at point ξw ∈ LS in the direction α for the wavelength λ

can be described with respect to the ith component of the Stokes polarization vector (see
Sec. 2.2.2.2).

The illumination of the test object by the light source produces a local irradiance ESF

on the test object’s surface, which depends on the direction of the illumination and on the
surface gradient, cf. (4.14). Some of the irradiated light is emitted back into space by the
surface. This passive illumination by the surface can be modeled as follows:

Lj
SF,passive(xw,β, λ

′, {Rij(xw,γ,β, λ, λ
′)}, {Li

LS(ξw,α, λ)}) , i, j ∈ {0, 1, 2, 3} . (4.22)

This formula is quite complicated. For example, fluorescent objects irradiated with light of
a certain wavelength λ may emit light at a longer wavelength λ′ > λ (see Sec. 7.2.2). The
light emitted in direction β from the surface point xw generally depends on the whole light
of the light source reaching the respective point. This dependency is expressed by means of
the curly braces { · }. Hence, Lj

SF is a functional of the functions Li
LS and Rij .

The reflection function Rij( · ) describes how the irradiance from the direction γ at point
xw is turned into an emission in direction β. The indices i and j denote the influence of the
ith component of the Stokes vector of the irradiated light on the jth component correspond-
ing to the emitted light. As, due to multiple reflections, the surface might illuminate itself,
e.g., in the case of illuminated cavities, the emitted radiance at xw depends on the reflectance
of the whole surface. This is why the reflection function Rij influences the functional Lj

SF as
a whole, as is denoted by the curly braces.

The light emitted by the test object can be measured by a sensor. Here, the sensor is
modeled as a camera consisting of a lens system and a sensor chip. If the surface point xw is
imaged by the lenses onto the image sensor, the light emitted by the test object is integrated
and results in the image value g(x, y).

Figure 4.4 illustrates the formulations mentioned. The effect of the test object’s reflecting
light back to the light source can mostly be neglected. In many of the practical applications
of automated visual inspection, also neglected are multiple reflections at the object surface.
Light reaching the surface from a certain direction γ is then emitted in the directions β

according to a multiplication with the reflectance R(. . . ,γ,β, . . .). This simplification results
in the bidirectional reflectance distribution function (BRDF), which will be introduced in
the following section. Due to this assumption, the dependence on the function {R( · )} as a
whole vanishes, and only the values of the function at (xw,γ) have to be considered.

3Temperature changes of the objects due to the absorption of radiation are neglected.
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Figure 4.4. Model of the formation of the light field by the reflection of the light emitted by the light source on the
object surface. The dotted transitions can mostly be neglected.

For a given scene of a test object and an illumination, the radiance Lj
SF( · ) is called the

light field or the plenoptic function [1]. The light field describes the set of all light rays
emitted by the test object and contains all information about the test object which can be
optically obtained, with respect to the chosen level of detail and the given illumination. The
light field determines the set of all possible images that could be acquired of the scene under
the given combination of illumination and test object.

In practice, a complete acquisition of the light field is not possible. Nevertheless, the light
field is a helpful concept and represents the basis for a new kind of camera: the so-called light
field cameras (see Sec. 7.3.9).

4.3 4.3 The bidirectional reflectance distribution function (BRDF)
The bidirectional reflectance distribution function (BRDF) [8] completely describes the re-
flection properties of a surface element dA. To simplify matters, any dependencies on the
wavelengths and polarization and any fluorescent effects are at first neglected in the follow-
ing considerations.

4.2 Definition 4.2: Bidirectional reflectance distribution function (BRDF)
The BRDF is defined using the differential reflection factor

ρ(θi, ϕi, θe, ϕe) =
dΦe

dΦi
=

dEe

dEi
=

dLe dΩe cos θe
dLi dΩi cos θi

, (4.23)

with the polar angle θi, the azimuthal angle ϕi, the solid angle Ωi, the radiant flux Φi, the
irradiance Ei, and the radiance Li of the incident light. The corresponding quantities of the
light emitted by dA are denoted by θe, ϕe, Ωe, Φe, Ee, and Le (cf. Fig. 4.5). The conversion is
carried out according to (4.7). The angles refer to the normal of the surface element.

The BRDF is given by

BRDF (θi, ϕi, θe, ϕe) :=
ρ(θi, ϕi, θe, ϕe)

dΩe cos θe
=

dLe(θe, ϕe)

dEi(θi, ϕi)
. (4.24)

Hence, the BRDF describes the reflectance of the surface with respect to the directions of the
incident and emitted light. �
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dΩi

dA

θi θe

dΩe

Figure 4.5. Illustration of the definition of the bidirectional reflectance distribution function (BRDF).

The intensity on the image plane of an optical imaging system is proportional to Le (see
Sec. 4.4.1). If the BRDF of the captured object, the angle of view, and the illumination param-
eters are known, the captured intensity can be calculated using

dLe(θe, ϕe) = BRDF (θi, ϕi, θe, ϕe) dEi(θi, ϕi) , (4.25)

by integrating over all directions (θi, ϕi) of the incident light and all directions (θe, ϕe) of
the emitted light which reach the image sensor. If the BRDF of a surface is considered as a
function of positions (x, y) and of the wavelength λ of the light (Fig. 4.6), it can be combined
with the surface relief z(x, y), which will yield an extensive description of the surface of an
opaque object o, which will be sufficient for many automated visual inspection tasks:

o :=

(
BRDF (xw, yw, θi, ϕi, θe, ϕe, λ)

z(xw, yw)

)
(4.26)

dLe(xw, yw, θe, ϕe, λ) =BRDF (xw, yw, θi, ϕi, θe, ϕe, λ) dEi(xw, yw, θi, ϕi, λ) (4.27)

By the Helmholtz reciprocity principle, the BRDF is symmetric, so that the directions of
incidence and reflection can be interchanged:

BRDF (θi, ϕi, θe, ϕe) = BRDF (θe, ϕe, θi, ϕi) . (4.28)

Hence, the propagation direction can be inverted, as is always the case for electromagnetic
waves.

Usually, completely measuring or modeling the four-dimensional BRDF is not practica-
ble. However, for many applications, simple special cases and their linear combinations are
sufficient. Two special cases will now be presented [5].

The Lambertian reflectance model describes a perfectly scattering surface: the incident
light is uniformly emitted into all directions of a half-space, independent of the direction of
incidence. The resulting BRDF is of the following form:

BRDF (θi, ϕi, θe, ϕe) =
R

π
, R ∈ [0, 1] . (4.29)
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ΦIllumination

Radiance

Opaque object

Irradiance

Figure 4.6. The radiance emitted by an opaque surface of an object can be calculated with the BRDF according to
(4.27), if the irradiance is known.

The material constant R is called the albedo and describes the ratio between the scattered
and incident radiation. The fraction equal to 1−R of the incident luminous flux is absorbed.
The case R = 1 represents total scattering and R = 0 total absorption. Perfectly specular
reflectance results in the following BRDF:

BRDF (θi, ϕi, θe, ϕe) = δ

(
n− e− i

‖e− i‖

)
, ‖n‖ = ‖e‖ = ‖i‖ = 1 , (4.30)

with n denoting the unit vector of the surface normal, e denoting the direction of the emit-
ted light, and i denoting the direction of the incident light. Incident light is reflected into
exactly one direction, which is the reflection of the direction of incidence at the surface nor-
mal within the plane of incidence (see Fig. 4.7). This can be validated by inserting Equation
(4.30) into the vectorial formulation of the law of reflection (2.202).

i

n

e

e− i

−i
Test object

Figure 4.7. Relation between the surface normal n, the di-
rection of incidence i, and the direction of the emitted
radiation e, for perfectly specular reflection.

Now, the concept of the BRDF will be used to review the considerations of Sec. 4.2 once
more. At the position xw, Equation (4.20) can be formulated as

L(xw, θe, ϕe) = Lactive(xw, θe, ϕe) (4.31)

+

∫
Ω+(xw)

BRDF (xw, θi, ϕi, θe, ϕe)L(xw, θi, ϕi) cos θi dΩi
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with Ω+(xw) denoting the upper hemisphere at the position xw, oriented in the direction of
the normal vector at that position. In this case, the consideration of the upper hemisphere
implies an opaque object.

Equation (4.31) again points out the recursive characteristics of the propagation of light
caused by multiple reflections at object surfaces. The awkward formulation of Equation
(4.31) can be improved by introducing an integral light transport operator T [6]:

TL =T{L}(xw, θe, ϕe) := (4.32)∫
Ω+(xw)

BRDF (xw, θi, ϕi, θe, ϕe)L(xw, θi, ϕi) cos θi dΩi .

By this means, Equation (4.31) can be expressed as

L = Lactive + TL . (4.33)

Recursively replacing the L of the right-hand side of this equation by the equation itself
leads to the infinite series [6]:

L =

∞∑
k=0

TkLactive . (4.34)

This clearly implies that the irradiance L at the position xw is caused by light that might be
actively emitted at that position (k = 0), together with light from the active light sources that
is reflected at that position for the first time (k = 1), by light that is reflected at that position
for the second time (k = 2), and so on.

4.3.1 BRDF and scattered light
By (4.27), the relation between the incident irradiance Ei(xw, θi, ϕi, λ) and the emitted
radiance Le(xw, θe, ϕe, λ) is given by the bidirectional reflectance distribution function
BRDF (xw, θi, ϕi, θe, ϕe, λ). The BRDF depends on the different physical properties of the
object:

1. Material properties described by the complex refraction index n(xw, λ), resulting in a
wavelength-dependent reflection (cf. Sec. 2.6.6.1).

2. Scattering of the light caused by inner microscopic structures of the material which are
smaller than the resolution of the sensor, e.g., turbidities or pigments.

3. Roughness of the surface, i.e., unresolved microstructure of the surface relief.

The BRDF depends on both the material and the relief. Eventually, the impact of the mi-
crostructure of the surface on the BRDF depends on the spatial resolution of the illumination
compared to the roughness of the surface. Similarly, the roughness influences the intensity
measured by the sensor of an optical imaging system capturing a surface, as the BRDF phe-
nomenologically relates the irradiated irradiance Ei to the reflected radiance Le.

For technically measuring the BRDF of the surface, the size of the illuminating bundle
of rays coming from the direction (θi, ϕi) plays an important role. The observed reflection
and scattering phenomenon is spatially averaged over the illuminated spot. Therefore, the
precision of an empirically measured BRDF always depends on the resolution of the mea-
surement system used.
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Now assume that the surface is uniformly illuminated from the direction (θi, ϕi) and the
resulting scattered light is imaged in the direction (θe, ϕe) on a sensor of finite size. This
time, spatial averaging takes place for the image on the sensor plane. Both cases show that
the spatial and angular resolution always have to be considered if the BRDF is to be used in
a practical application.

Depth of

Test object

(θi, ϕi)

d1
d2

p1

p2

τ0

dL

Figure 4.8. Relation between roughness and the scattering properties of a surface.

These considerations are now illustrated by means of Fig. 4.8. The diameter of the illu-
minated spot on the surface is denoted by dL. A possible characterization of the surface’s
roughness is the length τ0 for which the surface can be linearly approximated, so that the
mean difference from a plane does not exceed a certain threshold. The diameter of a sensor
element in the image plane is denoted by p1 and p2 respectively, with p1 < p2. Now, d1 and
d2 are assumed to denote the diameters of the images of these sensor elements on the sur-
face produced by an optical imaging. In order to allow the application of geometric optics,
d1, d2, dL, τ0 � λ is assumed.

Under these circumstances, the process of observation can be qualitatively described as
follows:

1. Scattering of the irradiated light on the object’s surface:
For the case dL > τ0, parallel irradiated light is scattered because of the material’s prop-
erties (pale blue cones in Fig. 4.8) as well as because of microscopic variations in the
directions of the surface normals (blue arrows) inside the illuminated spot. Both effects
contribute to the scattering of the light and thus to the BRDF.
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2. Image acquisition with a camera:
The following proportionality holds for the intensity g measured by a camera pixel:

g ∝
∫

APixel

∫
ΩLens

L(xw, θe, ϕe) dΩ(xw, θe, ϕe) cosα(xw) dA(xw) . (4.35)

Here, the area APixel of the light sensitive element and the lens’ solid angle ΩLens are
the integration domains and α(xw) denotes the angle between the normal of the surface
element dA and the observation direction.

a) The roughness is averaged by the sensor element’s image on the surface: d1 > τ0 (red
optical path in Fig. 4.8)
In this case, the contribution of the microstructure of the surface relief to the captured
intensity value is averaged over the object-sided image of the sensor. The surface’s
microstructure remains unresolved.

b) The object-sided image of the sensor elements are of sizes less than or equal to the size
of the spatial structures of the surface relief: d2 � τ0 (green optical path)
The surface’s microstructure is resolved.

These considerations, which take geometric and optical laws into account, show that the
BRDF is based neither solely on the material’s properties nor on the surface relief, and is
therefore a border case of the object’s optical properties and spatial shape. Hence, measuring
the scattered light provides information on both the test object’s optical properties and its
roughness (see Sec. 7.2.5).

Example 4.1 (Automated system for measuring the BRDF): Since even in its simplest form, the
BRDF has four arguments, obtaining a high-resolution measurement of the BRDF is very
time-consuming. Additionally, the BRDF has a high dynamic range especially for specu-
lar or partly specular surfaces, requiring sensitive sensors and surroundings that absorb
as much light as possible. Figure 4.9 shows a system realizing an automated measure-
ment of the BRDF and Fig. 4.10 shows the measurements obtained using that system.

4.44.4 Formation of image values

4.4.1 Application to a thin lens
In this section, the formation of an image value in a camera in the case of a focused optical
imaging will be modeled as a function of radiometric quantities [4, 11].

An image sensor is assumed, which measures the energy transported by incoming pho-
tons. Radiometrically speaking, the sensor integrates the illuminance over the exposure
time. The derived equations are valid for both gray and color values.

Let dΩ denote a solid angle element (equivalent to a surface element) of the ray bundle
with respect to the center of the lens. By (4.2), the surface elements dAG of the captured
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Figure 4.9. Automated system for obtaining BRDF measurements, at Fraunhofer-IOSB. In order to realize such a
system, a light source (right) is arranged so that the direction of incidence of the emitted light is (θi, ϕi). The test
object is placed on a rotary table in the middle of the setup, so that the azimuth ϕi can be varied. The robot shown
on the left allows arbitrary positions of the sensor with respect to the direction of observation (θe, ϕe).

object and of the image plane dAB are related as follows:

dΩ =
dAG cosβ(

g
cosα

)2 =
dAB cosα(

b
cosα

)2 (4.36)

with

cosα =
b

rB
=

g

rG
. (4.37)

The angle between the principal ray and the optical axis is denoted by α, the angle between
the object-sided surface element and the principal ray is denoted by β, the lengths of the
image-sided and object-sided lines of sight to the center of the lens are rB and rG; as usual,
the image distance is denoted by b, and g denotes the object distance (see Fig. 4.11). Refor-
mulating that equation and crossing out cos2 α results in

dAG

dAB
=

cosα

cosβ

(g
b

)2
. (4.38)

When seen from the perspective of the object point G, a circularly shaped lens with an area
of ALens and a diameter D has the solid angle

ΩLens =
ALens cosα

r2G
=

D2π

4

cosα(
g

cosα

)2 =
π

4

(
D

g

)2

cos3 α , (4.39)

as long as r � D holds. Let LG denote the radiance of the object’s surface, which is assumed
to be constant with respect to the directions of the light emitted to the lens. Then (4.7) yields
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Figure 4.10. Measuring the BRDF of a cylinder head. (a) A cast aluminum cylinder head. Some parts of its surface
were molded by a steel coquille and the other parts were molded by sand cores. (b) Two parts of its surface, which
have been carved out for obtaining BRDF measurements; top: the part molded by the coquille; bottom: the part
molded by the sand cores. (c) Section of the BRDF of the surface molded by the coquille as a function of (θe, ϕe)

for θi = 50◦, ϕi = 0◦. (d) Section of the BRDF of the surface formed by the sand cores as a function of (θe, ϕe) for
θi = 50◦, ϕi = 0◦. The cone of the scattering is wider, compared to (c).

the radiant flux dΦ of the surface element dAG through the lens:

dΦ = LG ΩLens dAG cosβ =
π

4

(
D

g

)2

cos3 α cosβ LG dAG . (4.40)

The irradiance at the surface element dAB on the image plane is

EB =
dΦ

dAB
=

π

4

(
D

g

)2

cos3 α cosβ LG
dAG

dAB
. (4.41)

Inserting (4.38) yields the equation sought:
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Figure 4.11. Calculation of the irradiance in the image plane of a thin lens.

4.2 Theorem 4.2: cos4 law
For an optical imaging with a thin lens of diameter D, an image distance b and an angle α

between the principal ray and the optical axis,

EB =
π

4

(
D

b

)2

cos4 αLG . (4.42)

Hence, the irradiance EB on the image sensor is proportional to the radiance LG on the
object’s surface. This equation is known as the cos4 law. �

The cos4 law (4.42) can be interpreted as follows:

The image value is proportional to the radiance LG of the object’s surface.
For a focused optical imaging, the image value is independent of the object distance g.
The image value increases with the squared diameter D of the lens and is therefore pro-
portional to the lens’s area (or to the aperture in general).
The image value decreases in the direction of the image boundary (EB decreases for in-
creasing α).
For optical systems consisting of multiple lenses, this effect is usually dominated by vi-
gnetting (Sec. 3.4.3).

For longshots, b ≈ f , and therefore

EB ≈
π

4
cos4 α

LG

O2
, (4.43)

with O := f
D denoting the f-number, which was introduced in Sec. 3.4.4. As expected, the im-

age value, and with it the brightness of the image, are inversely proportional to the squared
f-number. For a constant aperture size of D, the image’s brightness decreases reciprocally
with the squared focal length f .
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5.15.1 Photometry
In photometry, all quantities are with reference to the perception of brightness by the human
eye. The sensitivity of the human eye can be described by a function V (λ) of the wavelength.
This so-called luminosity function varies for different ambient conditions, such as photopic
vision or scotopic vision, for example (Fig. 5.1), which refer to human perception at day-
light or in darkness. The luminosity function of the light-adapted eye is used for defining
the photometric base system. It is scaled to have a maximum value of 1. The luminosity
function can be empirically measured using a psychophysical method similar to the method
described in Sec. 5.2.3. However, the perception of brightness of the human eye is not a
metric quantity: differences and ratios cannot be quantified by human perception. The cor-
responding conclusions for photometric quantities do not represent the human perception
of brightness [36].

380 480 580 680 780
0

0.2

0.4

0.6

0.8

1

Figure 5.1. Sensitivity of the human eye to brightness (adopted from [43]). V (λ): Range of photopic vision (light-
adapted eye), V ′(λ): Range of scotopic vision (dark-adapted eye).

Now the general connection between radiometric and photometric quantities will be de-
scribed. Let X be a radiometric quantity and Xλ(λ) its spectral density, so that integrating
over the whole range of wavelengths yields the quantity X (cf. Sec. 4.1):

X =

∞∫
0

Xλ(β) dβ , ∀λ Xλ(λ) ≥ 0 . (5.1)

Then the corresponding photometric quantity Xl is defined by

Xl = Km

λ2∫
λ1

Xλ(β)V (β) dβ , (5.2)

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_5,
© Springer-Verlag Berlin Heidelberg 2016
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with the constant Km linking the radiometric and photometric quantities and systems of
units. For the photometric base system, it is Km = 683 lm

W , λ1 = 380 nm and λ2 = 780 nm.
The sensitivity to brightness of the human eye rapidly decreases at the margins of the

visible part of the spectrum, so that the borders of the visible part cannot be exactly defined.
A sensitivity to brightness is verifiable for the range of 360 nm up to 830 nm [43]. Outside of
the interval from 410 nm to 720 nm, the sensitivity of the human eye is very low [24].

Example 5.1 (Luminous flux of a blackbody radiator): Let the blackbody radiator of Sec. 2.7.1.1
have a temperature of T = 2,500 K and an area of A = 1 mm2. Using (4.8) and (4.3)
in combination with Planck’s law (2.254) leads to the spectral radiant flux Φλ(λ) of the
blackbody radiator:

Φλ(λ) =

∫
A

∫
ΩHalfspace

Lλ(λ) cos θ dΩdA (5.3)

= A

2π∫
0

π
2∫

0

Lλ(λ) cos θ sin θ dθ dϕ (5.4)

= Aπ Lλ(λ) . (5.5)

Now, by (5.2), the luminous flux can be calculated by integration of the product
Φλ(λ)V (λ):

Φl = 683 lm/W

780 nm∫
380 nm

Φλ(λ)V (λ) dλ ≈ 17.7 lm . (5.6)

Figure 5.2 illustrates this calculation.
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Figure 5.2. The luminous flux of a blackbody radiator [28].
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5.25.2 Color perception and color spaces
Color is a sensation arising in the human brain caused by the electromagnetic radiation
perceived by the eye [42]. The perceived color depends on the spectrum of the observed
light and thus on the distribution of the intensity with respect to the wavelength. In addition,
other ambient conditions, such as previous color impressions or nearby color impressions,
affect the perception of color (cf. Chap. 1).

Color is neither a property nor a state of an object or a material, as one and the same
object might lead to varying color perceptions under different ambient conditions. The most
important parameter is the spectrum of the illumination. Color perception is mainly caused
by the interaction of

the spectrum and the direction of the illumination,
the spectral reflection, scattering, absorption and transmission properties of the observed
object (cf. Sec. 2.6)
and the biological properties of the observer.

Because of the central role played by the human observer in defining and measuring color,
the following section will cover the perception of color of the human1 eye. Then, the foun-
dations of the mixture of color will be covered. In addition, color spaces will be described,
which allow quantifying colors and color differences. Why color spaces are chosen to be
three-dimensional, and thus contain less information than a continuous electromagnetic
spectrum, will be motivated. Therefore, different spectra might lead to the same color im-
pression.

5.2.1 Color perception of the human eye
The human eye is constructed according to the principle of the pinhole camera (see Chap. 3):
Together, the cornea and the lens collect the incident light that reaches the retina after passing
the vitreous humor (the part of the eyeball between the lens and the retina, see Fig. 5.3). The
light is refracted mainly at the interface between the air and the cornea. The shape of the lens
can be adapted by muscular strength, which is why the eye can focus on different distances.
Five different kinds of light sensitive receptors are contained in the retina:

Rods for scotopic vision,
three kinds of cones for photopic vision,
photosensitive retinal ganglion cells for the circadian clock [6].

Rod cells (rods) are spread over the whole retina [15]. They are very sensitive to light and
allow sight under very low illumination, for example at dawn. Rods cannot induce a color
impression.

There are three kinds of cone cells (cones) which differ in their spectral sensitivity. They
enable the perception of color. The fovea, the central point of sharp vision that is located
near the optical axis, is mainly surrounded by cone cells. The rest of the retina, which is
used for peripheral vision, is dominated by rod cells (Fig. 5.4). The sensitivity to brightness
of the cone cells is very low, so that a color impression is not possible for a low illumination.

1For other creatures, the perception of color differs essentially from that of the human. Some an-
imals cannot perform a spectral resolution of light but can only perceive brightness; others possess
more than three types of color receptors and thus can tell two colors apart that cannot be distinguished
by humans because of their spectral composition. Besides, not the same part of the spectrum is visible
for all creatures. Some animals can even perceive ultraviolet radiation.
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Figure 5.3. Sketch of the human eye [29].
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Figure 5.4. Spatial distribution of rod and cone cells on the retina [17, 29, 34]).

Between scotopic and photopic vision, the spectral sensitivity V (λ) varies considerably. It is
shifted to shorter wavelengths for scotopic vision, as can be seen in Fig. 5.1.

Figure 5.5 shows the spectral sensitivity of the three types of cones, scaled to a maximum
of one. Depending on their part of the spectrum, the cones are called S-, M- and L-cones
(short, medium, long wavelengths). S-cones are sensitive to short-wave light in the violet
and blue part of the spectrum, M-cones to medium wavelengths corresponding to the green
part of the spectrum, and L-cones to long-wave green, yellow and red light. Therefore, the
three types of cones are sometimes referred to as blue, green, and red receptors, or as β, γ
and ρ cones. However, it is important to note that the receptors are not only sensitive to the
spectral range represented by their names. L-cones, for example, are even more sensitive to
yellow than to red light. The spectral ranges of γ and ρ lie quite close to each other. That is
why the human eye is able to resolve colors in the green and yellow part of the spectrum in
great detail [20].

The number of the three types of cones differ. Approximately 7% to 10% of the cones
located in the fovea are β receptors [12, 37]. The amounts of the two remaining types vary
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Figure 5.5. Spectral sensitivity of cone cells, scaled to a maximum of one [37]).
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Figure 5.6. Physiological processing of the sensory stimuli of the cones [37].

greatly, depending on the actual individual. On average there are about 31% γ and 61% ρ

receptors [30].
Three combined neural signals are formed from the sensory stimuli of the three kinds of

cones (Fig. 5.6). The perceived intensity of the γ and ρ receptors are summed up and yield the
luminance channel Y , responsible for the perceived brightness.2 The less frequent β recep-
tors play an unimportant role in the perception of brightness. In addition, two chrominance
channels are formed, which are responsible for color perception: The red-green-chrominance
is the difference R − G of the signals coming from the ρ and γ cones, and the blue-yellow-
chrominance is the difference between B − Y of the β signals and the luminance channel
[7, 17, 38]. Because of this kind of processing, a color cannot be simultaneously perceived as

2In the strict sense, the human perception of brightness and the photometric measurement of lu-
minance have to be kept separate, as the perceived brightness is not a metric quantity, for example
[14,35]. However, for the purposes of this book, the terms brightness and luminance correspond to the
photometric luminosity function of Sec. 5.1.
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blueish and yellowish or reddish and greenish, whereas smooth transitions between other
colors like yellow and green or blue and red are quite possible.

The number of different kinds of cones or the number of color channels of the human
visual system show that a physiological color impression can be definitely characterized
by three quantities. Such a three-dimensional vector is called a tristimulus. During visual
perception, a color stimulus, defined by the spectrum of the incident light, is converted into
a tristimulus. Mathematically speaking, the spectrum can be described as a function I(λ):
the light’s intensity as a function of the wavelength λ. Therefore the space of possible spectra
is infinite-dimensional. Thus, the spectrum cannot be uniquely reconstructed from the three-
dimensional tristimulus. In fact, different spectra can lead to the same color impression
and so to the same tristimulus. Two different color stimuli or spectra I1(λ) and I2(λ) with
one and the same tristimulus are called metameric. Thus, a tristimulus can be defined as
set of all metameric color impressions I(λ) leading to that tristimulus. This results in an
equivalence relation, inducing a partition of the set of all color impressions.

Example 5.2 (Metameric color impressions): Figure 5.7 shows two spectra which are
metameric for the CIE standard observer (see Sec. 5.2.3). Only for two narrow lines are
the two spectra not equal to zero. Those lines do not overlap, but still, the colors of the
two spectra perceived by the human eye equal each other: they are perceived as blue.
So, generally, the tristimulus does not contain any information about the distribution of
intensities in a spectral range.
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Figure 5.7. Two metameric narrow-band spectra I1(λ) (blue) and I2(λ) (red) with disjoint supports [43].

If the colors of two objects are compared, it is important to note that the observed tristimulus
also depends on the spectrum of the illumination. Therefore, the tristimulus varies depend-
ing on the light source. A very impressive example of this effect is the mineral alexandrite.
In daylight, it leads to a greenish and, in the case of an incandescent lamp, to a reddish color
impression.
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For a certain illumination, two metameric objects might look the same and for another
illumination they might look different. Only if the spectral reflectances of the two objects are
equal, do they produce the same color impression for every arbitrary illumination. Those
color impressions are said to be isometric. However, there are also metameric pairs that look
the same for many different light sources. The same is true for the case of different observers:
as the physiological perception of color can have individual differences, metameric color
impressions can be equal for one observer and differ for another observer. Isometric color
impressions with equal spectra are perceived as equal by all observers [5].

Human perception can partially compensate for the influences of illumination [17, 38]—
especially for broadband spectra of illumination like the sunlight for different times of the
day or direct and indirect (shadow) daylight, for example (cf. Fig. 1.1 on p. 5). The different
adaptation of the color perception to the ambient light can, to a first order approximation, be
modeled as a linear transformation (vector space homomorphism) of the space of tristimuli
[8, 43]. In the field of photography too, methods are used to make color rendering indepen-
dent of the spectrum of the illumination [13,26]. Such methods are related to the term white
balance or color balance.

5.2.2 Color mixing
The two fundamentally different principles of color mixing are additive and subtractive
color mixing. The incoherent superposition of light of different colors is called additive
color mixing. Physically, the spectra of the intensities of the two light waves I1(λ) and I2(λ)

are added according to (2.126):

I(λ) = I1(λ) + I2(λ) . (5.7)

The resulting spectrum I(λ) represents a color impression, leading to a perceived tristimu-
lus. Grassmann’s laws represent a connection between the tristimuli of the summands and
the resulting tristimulus:

1. Three primary colors and an additional color impression are considered. Then the inten-
sities of the three primary colors can be chosen in such a way that two identical color
impressions are created by inner or outer color mixing. For inner color mixing, the three
primary colors are mixed with each other with varying intensities and result in the fourth
color. For outer color mixing, one or two of the three primary colors are mixed with the
fourth color, resulting in the mixture of the remaining colors.

2. In additive color mixing, each color can be replaced by a metameric color, without chang-
ing the color impression.

3. All color mixings are continuous.

These empirical laws were formulated in 1853 [4, 19]. The three primary colors correspond
to the three dimensions of the space of the tristimuli and to the number of different kinds
of color receptors of the human eye. However, it is not always possible to reproduce an
arbitrary color by mixing the three primary colors. In fact, there are cases where only the
additive mixture of one or two of the primary colors with the fourth color can to lead to a
match with the mixture of the remaining primary colors. This issue will be further discussed
in the following section.

The continuity of the color mixture corresponds to the linear superposition of the spectra
of the intensities. Continuously changing a primary color leads to a continuous change of
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(a) (b)

Figure 5.8. Color mixing with three primary colors: (a) Additive, (b) Subtractive.

the mixed color. Uniformly mixing the primary colors leads to a white color impression
(Fig. 5.8 (a)). If no visible light is emitted by an object, it appears black.

There are arbitrarily many bases of mixture components, which can be used to mix a
given color. Therefore a base system has to be defined. The chosen primary colors have
to meet the condition that none of them can result from the mixture of the remaining pri-
mary colors [43]. For additive color mixing, usually red, green and blue are chosen as the
primary colors. Additive color mixing is used in displays and projectors, for example (see
Sec. 5.2.6.2).

Subtractive color mixing occurs if colorants are mixed. A colorant is a coloring material
like a pigment or soluble dye, for example. The effect of colorants is based on a wavelength
dependent absorption: in some parts of the spectrum, a certain amount of the incident light
is absorbed, in other parts it is reflected or transmitted. The color impression is caused
by the spectrum that remains after the absorption. If two colorants are mixed with each
other, the spectral parts of absorption are combined and so less light is reflected. Thus, a
certain part of the observed spectrum is removed, which is why this kind of color mixing is
called subtractive. The resulting color impression also depends on the illumination. White
corresponds to a complete reflection without any absorption and thus cannot be achieved
by subtractive color mixing of two or more colorants. If a colorant is added, the absorption
is always increased.

For subtractive color mixing, cyan, magenta and yellow are usually chosen as the pri-
mary colors. Mixing these three colorants results in gray or black (Fig. 5.8 (b)). For economic
reasons, black is usually not produced by mixing colors but is provided as an additional
colorant. The resulting color system is called CMYK (cyan, magenta, yellow, key) and is
a common color system in the field of color printing (see Sec. 5.2.6.5). The combination of
different color filters is also a form of subtractive color mixing (Sec. 5.3).

The subtractive mixing of absorbing colorants can be approximately described by using
the Lambert–Beer law of absorption [5]. The absorption ACol(λ) of a colorant as a function
of the wavelength is the product of the material dependent absorption constant aCol(λ), the
thickness of the coating dCol, and the chemical concentration cCol of the colorant:

ACol(λ) = aCol(λ) dCol cCol . (5.8)
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If two colorants with known concentrations cCol1 and cCol2 are mixed in a common, homo-
geneous layer of thickness dCol, the absorptions are added:

ACol(λ) = ACol1(λ) +ACol2(λ) (5.9)

= aCol1(λ) dCol cCol1 + aCol2(λ) dCol cCol2 . (5.10)

If the illumination’s spectrum is ILight(λ), the transmitted spectrum of the colorant is expo-
nentially dependent on the absorption:

ICol(λ) = ILight(λ) e
−ACol(λ) = ILight(λ) e

−(ACol1(λ)+ACol2(λ)) . (5.11)

Besides absorption, scattering is also important for most colorants. Often, the scattering is
caused by a white colorant or a base material (color printing or textiles for example), whereas
the remaining colorants of the mixture do not exhibit notable scattering [5]. A model for
subtractive color mixing that pays attention to scattering is the so-called Kubelka–Munk
theory [41]. If two colorants with concentrations cCol1 and cCol2 are mixed, the quotient of
the absorption aCol(λ) and the scattering sCol(λ) is given by:

aCol(λ)

sCol(λ)
=

cCol1 aCol1(λ) + cCol2 aCol2(λ)

cCol1 sCol1(λ) + cCol2 sCol2(λ)
. (5.12)

The spectral reflectance RCol(λ) of a colorant is connected to its absorption and scattering as
follows:

aCol(λ)

sCol(λ)
=

(1−RCol(λ))
2

2RCol(λ)
, (5.13)

RCol(λ) = 1 +
aCol(λ)

sCol(λ)
−

√(
aCol(λ)

sCol(λ)

)2

+ 2
aCol(λ)

sCol(λ)
. (5.14)

The resulting spectrum of intensities is given by

ICol(λ) = ILight(λ)RCol(λ) . (5.15)

In order to reduce the influence of specular reflections, an additional correction of the spec-
tral reflectance can be performed [5]. In general however, the resulting equations only ap-
proximately model subtractive color mixing [41].

5.2.3 CIE color spaces
The already mentioned tristimulus is the fundamental term for colorimetry. If two color
impressions I(λ) cannot be distinguished when compared two each other or other colors,
they have exactly the same tristimuli. A tristimulus can be measured by comparing it to
a mixture of three primary colors, which are distinctively defined by their spectra. So the
tristimulus is defined by a psychophysical measurement method, that allows a quantitative
measurement. A tristimulus is an objective quantity inasmuch as it is independent of the
color impression caused by the corresponding color stimulus.

The process for measuring the tristimulus of a light source was standardized in 1931
by the CIE3 [11]. The observer simultaneously views the light of the sample light source
and the incoherent superposition of three light sources of three primary colors (Fig. 5.9). The

3Commission Internationale de l’Éclairage – International Commission on Illumination
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Red light source (700.0 nm)

Green light source (546.1 nm)

Blue light source (435.8 nm)
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Figure 5.9. Experiment for empirically determining the color of a light source in terms of the CIE primary colors [5].

intensities of the light sources emitting the primary colors are adjusted, so that their additive
superposition cannot be distinguished from the sample light source. The color coordinates
of the tristimulus of the sample light source are now given by the chosen ratios of the three
light sources.

In order to make the experiment as objective as possible, the test conditions were exactly
defined. The observer simultaneously views the sample light source and the mixture of the
three primary colors on an untextured surface. The surface is illuminated under an angle of
approximately 45◦ and is observed under an angle of about 0◦ with allowed differences of 5◦

or 10◦ respectively [14].4 The bundle of rays of illumination and observation are supposed
to be parallel, with a maximum difference of 5◦ in the direction of the principal ray [43].
The field of view has an extent of 2◦, so that the illuminated surface is imaged on the fovea
of the eye.5 The measurement is done by an observer with a relaxed, normal eye (neither
shortsighted nor farsighted), that is light adapted. Only one eye is used for the observation.

Nearly monochromatic light sources with wavelengths of 700 nm (red), 546.1 nm (green)
and 435.8 nm (blue) are used for the comparison.6 The measured ratios of these three CIE
primary light sources are called the color values.

Figure 5.10 shows the empirically determined color values of the spectral colors. A spec-
tral color or a monochromatic color is a spectrum having only a narrow maximum for a
certain wavelength λ0 and having values equal to zero otherwise. Color values as a function

4For alternative configurations of illumination and observation, see [43].
5As the distribution of receptors differs for the fovea and the remaining retina, the color impression

depends on whether the image is imaged on the fovea or on the periphery. Therefore an additional
standard with a field of view of 10◦ was defined later on [5, 43].

6The latter two wavelengths correspond to the spectral lines of a mercury-vapor lamp and can thus
be generated at low cost [14].
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Figure 5.10. Color values of the monochromatic spectral colors with respect to the CIE primary colors (adopted from
[43]).

of the wavelength λ of the monochromatic light are denoted by r̄(λ), ḡ(λ) and b̄(λ). The
color values of an arbitrary spectrum I(λ) can be calculated by multiplying the spectrum by
these functions and then integrating:

RCIE =

∫ 780 nm

380 nm

I(λ) r̄(λ) dλ ,

GCIE =

∫ 780 nm

380 nm

I(λ) ḡ(λ) dλ , (5.16)

BCIE =

∫ 780 nm

380 nm

I(λ) b̄(λ) dλ .

These functions were scaled so that a white color stimulus leads to three identical color
values RCIE = GCIE = BCIE [43]. A white color stimulus is a spectrum having a constant
intensity for all wavelengths belonging to the visible part of the spectrum:

IE(λ) =

{
1 if 360 nm ≤ λ ≤ 830 nm

0 otherwise
. (5.17)

Now, the condition RCIE = GCIE = BCIE becomes∫ 780 nm

380 nm

r̄(λ) dλ =

∫ 780 nm

380 nm

ḡ(λ) dλ =

∫ 780 nm

380 nm

b̄(λ) dλ . (5.18)

This condition sets the relative scaling of the three spectral functions. This absolute scaling
ensures that the area under the curves is equal to the area under the luminosity function
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V (λ) of Fig. 5.1 [14]:∫ 780 nm

380 nm

r̄(λ) dλ =

∫ 780 nm

380 nm

ḡ(λ) dλ =

∫ 780 nm

380 nm

b̄(λ) dλ =

∫ 780 nm

380 nm

V (λ) dλ . (5.19)

Because of this scaling, the weights r̄, ḡ, b̄ do not correspond to the radiation intensity of the
three primary light sources. In fact, the weight ḡ = 1 corresponds to an intensity of the green
primary light source that is 1.3791 times higher than the intensity of a blue primary light
source with a weight of b̄ = 1. For a red primary light source, the weight r̄ = 1 corresponds
even to 72.0962 times the intensity of b̄ = 1, as the sensitivity of the human eye to brightness
decreases extensively for λ = 700 nm (cf. Fig. 5.1).

However, not all colors can be mixed from the three CIE primary light sources under
the described test conditions. Sometimes it is necessary to mix the sample light source with
one of the primary light sources, in order to achieve equal colors. In this case, a negative
component is assigned to the respective primary light source. Figure 5.10 shows that this is
the case for the red CIE primary light source and a spectral color of wavelength 500 nm. In
fact, ḡ(λ) is negative until 440 nm and b̄(λ) is negative starting from 550 nm.

Therefore, a transformed color space was defined, where no negative weights are possi-
ble. As computers were not that powerful in former times, the transformation should also
reduce the costs for calculating the integrals (5.16) [14, 43]. In addition, one of the result-
ing standard color values was supposed to be equal to the luminosity function, making the
additional calculation of the brightness of a color stimulus.

The transformed color space is called the CIE XYZ color space. Its coordinates are the
tristimulus values X , Y , Z. The transformed color value functions of the monochromatic
spectral colors are called the color matching functions x̄(λ), ȳ(λ), z̄(λ). The transformation
of the color space (RCIE, GCIE, BCIE)

T of the CIE primary light sources to the CIE XYZ color
space (X,Y, Z)T of the virtual primary colors is a vector space homomorphism:⎛⎜⎝X

Y

Z

⎞⎟⎠ = A

⎛⎜⎝RCIE

GCIE

BCIE

⎞⎟⎠ A ∈ R3×3 . (5.20)

This equation also transforms the color value functions:⎛⎜⎝x̄(λ)

ȳ(λ)

z̄(λ)

⎞⎟⎠ = A

⎛⎜⎝r̄(λ)

ḡ(λ)

b̄(λ)

⎞⎟⎠ . (5.21)

The degrees of freedom in the choice of the matrix A were used according to the following
criteria [5, 14]:

The tristimulus values X , Y , Z of all real color stimuli are nonnegative:

X ≥ 0 , Y ≥ 0 , Z ≥ 0 . (5.22)

The real color stimuli preferably occupy an extensive area in the plane X + Y + Z = 1 of
the nonnegative tristimulus values.

The tristimulus value Y corresponds to the photopic brightness V of a color stimulus.
Therefore, the color matching function ȳ(λ) has to be equal to the photopic luminosity
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function V (λ). Thus, the following has to hold for suitable weights LR, LG, LB:

∀λ : V (λ) = ȳ(λ) = LRr̄(λ) + LGḡ(λ) + LBb̄(λ) . (5.23)

Thus, two color stimuli having identical tristiumli in the CIE XYZ color space also have
the same brightness. This is an advantage for image processing, as the Y -channel of
transformed color image equals the corresponding gray-scale image [27].

Still, the white color stimulus (5.17) is given by three equal XYZ values X = Y = Z.
Therefore, in analogy to (5.18), the following has to hold for the color matching functions
x̄(λ), ȳ(λ) and z̄(λ):∫ 780 nm

380 nm

x̄(λ) dλ =

∫ 780 nm

380 nm

ȳ(λ) dλ =

∫ 780 nm

380 nm

z̄(λ) dλ . (5.24)

The white point (RCIE, GCIE, BCIE)
T = (1, 1, 1)T is mapped to (X,Y, Z)T = (1, 1, 1)T

[14].

The color matching function z̄(λ) is equal to zero, starting from a preferably low maxi-
mum wavelength λz̄max:

∀λ ≥ λz̄max : z̄(λ) = 0 . (5.25)

The transformation is invertible.

The following transformation matrix A was chosen to meet these conditions to a large extent
[14]:

A =

⎛⎜⎝ 0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99

⎞⎟⎠ . (5.26)

The factors LR = 0.17697, LG = 0.81240, LB = 0.01063 for the construction of the luminosity
function of (5.23) are located in the second row of the matrix. The contribution of the short-
wave B-channel to the luminosity function is very low. Figure 5.11 shows the CIE color
matching functions for monochromatic light that result from the transformation of the color
matching functions of the CIE primary light sources of Fig. 5.10.

The inverse transformation is given by⎛⎜⎝RCIE

GCIE

BCIE

⎞⎟⎠ = A−1

⎛⎜⎝X

Y

Z

⎞⎟⎠ (5.27)

with

A−1 ≈

⎛⎜⎝ 2.365 −0.8965 −0.4681
−0.5152 1.426 0.08876

0.005204 −0.01441 1.009

⎞⎟⎠ . (5.28)

The basis vectors of the CIE XYZ color space are called virtual primary colors. Their coordi-
nates with respect to the CIE primary light sources are given by the columns of the inverse
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Figure 5.11. CIE color matching functions for monochromatic light of wavelength λ (adopted from [43]).

transformation matrix A−1:

Xprim =

⎛⎜⎝ 2.365

−0.5152
0.005204

⎞⎟⎠ , Yprim =

⎛⎜⎝ −0.89651.426

−0.01441

⎞⎟⎠ , Zprim =

⎛⎜⎝−0.46810.08876

1.009

⎞⎟⎠ . (5.29)

The vector space homomorphism corresponds to a change of basis from the primary light
sources to the virtual primary colors. The basis vectors of the virtual primary colors are more
spread than those of the primary light sources, so that all real colors can be described with
positive tristimulus values (Fig. 5.12). Whereas the basis vector Yprim corresponds to the
brightness of a color stimulus, the brightness of the virtual primary colors Xprim and Zprim

is zero.
The color matching functions can be used to calculate the tristimulus values X , Y , Z for

a given color stimulus I(λ):

X = k

∫ 830 nm

360 nm

I(λ) x̄(λ) dλ , (5.30)

Y = k

∫ 830 nm

360 nm

I(λ) ȳ(λ) dλ , (5.31)

Z = k

∫ 830 nm

360 nm

I(λ) z̄(λ) dλ , (5.32)

k =
100∫ 830 nm

360 nm
Iachromatic(λ) ȳ(λ) dλ

. (5.33)

The color matching functions are defined on the interval from [360 nm, 830 nm] [43]. How-
ever, on the boundary of their domain, they take on very small values, as the human eye
is not sensitive to wavelengths there. Therefore, it has nearly no effect on the tristimulus
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Yprim

Xprim

Zprim

Figure 5.12. Position of the virtual primary colors in the color space of the CIE primary light sources. The colored
vectors are the basis vectors of the CIE primary light sources.

values, if in (5.30)–(5.33) a smaller integration interval, like [380 nm, 780 nm], is chosen. The
function Iachromatic(λ) describes a reference spectrum of a white color impression, like the
standard illuminant D65. Because of the scaling factor k, the chosen white color stimulus is
assigned the brightness Y = 100. If the XYZ tristimulus values of two light sources with the
spectra I1(λ), I2(λ) are equal to each other, i.e., X1 = X2, Y1 = Y2, Z1 = Z2, then they appear
to have equal colors and brightnesses to a healthy human eye.

In order to characterize a color without paying attention to brightness, a two-dimensional
space is sufficient. For this purpose, the normalized color values x, y and z can be calculated
from the tristimulus values X , Y and Z:

x =
X

X + Y + Z
,

y =
Y

X + Y + Z
, (5.34)

z =
Z

X + Y + Z
.

This transformation corresponds to a central projection of the point (X,Y, Z)T onto the plane
X+Y +Z = 1, with the projection center being located at the origin of the coordinate system.
Because x + y + z = 1, one of the three normalized color values is redundant, so that z can
be omitted. This corresponds to an additional parallel projection of the plane X +Y +Z = 1

to the plane Z = 0 [8, 14].
The normalized color values x and y characterize a color independently of its brightness,

and are therefore often referred to as chromaticity coordinates. Together with the brightness
or luminance channel Y , they describe a unique tristimulus. The inverse transformation of
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the triplet (x, y, Y ) to the CIE XYZ color space given by

X =
x

y
Y ,

Y �→ Y , (5.35)

Z =
z

y
Y =

1− x− y

y
Y .

A linear transformation of the color values corresponds to a non-linear projective trans-
formation of the normalized color values. For example the normalized color values rCIE =

RCIE

RCIE+GCIE+BCIE
, gCIE = GCIE

RCIE+GCIE+BCIE
, bCIE = BCIE

RCIE+GCIE+BCIE
, which are calculated from

the color values RCIE, GCIE, BCIE according to (5.16) and the analog of (5.34), are connected
to the normalized color values x, y, z as follows [43]:⎛⎜⎝x

y

z

⎞⎟⎠ =
1

0.66697 rCIE + 1.1324 gCIE + 1.20063 bCIE
A

⎛⎜⎝rCIE

gCIE

bCIE

⎞⎟⎠ . (5.36)

The coefficients of the denominator are given by the column sums of the matrix A from
(5.26).
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With the components x and y, a color is described independent of its brightness. The
drawing of the colors in the x,y-plane is called the CIE chromaticity diagram (Fig. 5.13). All
possible coordinates are located inside the triangle x ≥ 0, y ≥ 0, x+ y ≤ 1. However, not all
points inside this triangle correspond to a real color impression. The spectral colors lie on a
closed curve that partly represents the border of perceivable colors. A part of that region’s
border cannot be described by pure spectral colors and is called the line of purples. Because
of (5.24), the white point is located at x = y = 1

3 . The saturation decreases along a line from
the border of the chromaticity diagram to its center, the achromatic component of the color
increases, and the color fades. However, the hue remains unchanged. It is characterized
by the intersection of the line and the curves of the spectral colors. The wavelength corre-
sponding to that intersection is called the dominant wavelength of the hue if the intersection
and the color are on the same side of the white point. There is no dominant wavelength for
colors between the white point and the line of purples. Instead, the complementary wave-
length can be specified, which lies on the opposite side of the white point and is given by the
intersection of the line with the curve of the spectral color on the opposite side of the white
point.

These lines of constant hues are crossed by curves of constant saturation, on which only
the hue is variable. The colors of maximum saturation are located on the border of the chro-
maticity diagram. There are no metameric color stimuli for these fully saturated colors, i.e.,
the spectrum is fully described by the tristimulus. The tristimuli on the curve of spectral
colors are caused by monochromatic line spectra. For all colors inside the chromaticity di-
agram, there are infinitely many metameric spectra. The probability that a spectrum that
is randomly chosen from a uniform distribution is metameric to a given color increases for
decreasing saturation and has its maximum for the white point [43].

The chromaticity diagram directly shows which colors can be composed from given base
colors by additive color mixing:

5.1Theorem 5.1: Additive color mixing
Let (xi, yi), i = 1, . . . , N be the (x, y) chromaticity coordinates of N colors inside the chro-
maticity diagram. Additive color mixing of these colors with arbitrary weighting factors αi

results in all colors that lie inside the convex hull of the points (xi, yi) in the chromaticity
diagram. In particular:

N = 2: Out of two colors, all colors that lie on their connecting line can be composed by
using additive color mixing.
N = 3: Out of three colors, all colors that lie inside a triangle in the chromaticity diagram,
whose corners consist of the original three colors, can be composed by using additive
color mixing of those three colors. �

Proof 5.1 (Additive color mixing): First consider the case N = 2. Let the two base colors
have the chromaticity coordinates (x1, y1)

T, (x2, y2)
T in the chromaticity diagram. Let

(X1, Y1, Z1)
T, (X2, Y2, Z2)

T be the XYZ tristimuli of the corresponding light sources. By
(5.7), the additive mixture of the two light sources in combination with the weighting
factors α1 and α2 corresponds to the weighted sum of their spectra of intensities in accor-
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dance with (5.7):

I(λ) = α1I1(λ) + α2I2(λ) . (5.37)

Because of the linearity of the integral in (5.30)–(5.32), the tristimuli are added with the
same weighting factors:

X = α1X1 + α2X2 , Y = α1Y1 + α2Y2 , Z = α1Z1 + α2Z2 .

This leads to the chromaticity values

x =
α1X1 + α2X2

α1(X1 + Y1 + Z1) + α2(X2 + Y2 + Z2)
(5.38)

=
X1 +

α2

α1
X2

X1 + Y1 + Z1 +
α2

α1
(X2 + Y2 + Z2)

, (5.39)

y =
α1Y1 + α2Y2

α1(X1 + Y1 + Z1) + α2(X2 + Y2 + Z2)
(5.40)

=
Y1 +

α2

α1
Y2

X1 + Y1 + Z1 +
α2

α1
(X2 + Y2 + Z2)

. (5.41)

These color values lie on a line through (x1, y1)
T and (x2, y2)

T:

y − y1
x− x1

=
y2 − y1
x2 − x1

. (5.42)

For a fixed α2 and α1 → 0, it follows that (x, y)T → (x2, y2)
T, and for α1 →∞, it follows

that (x, y)T → (x1, y1)
T.

Conversely, suppose that a mixed color (βx1 + (1 − β)x2, βy1 + (1 − β)y2)
T lies on

the connecting line, with 0 ≤ β ≤ 1. This mixed color is obtained by combining the
two corresponding light sources with weighting factors α1 = β(X2 + Y2 + Z2) and α2 =

(1 − β)(X1 + Y1 + Z1). Colors not lying on that line cannot be mixed from the two light
sources.

The last statement can be generalized to explain the case for N = 3: it is clear that two
colors can be combined to mix a color on their connecting line. Now, this mixed color
can be added to the third base color. With this procedure, an arbitrary point inside the
triangle can be constructed.

An analogous induction step results in the proof for general N .

For two or three base colors, their mix ratios are set by the sought-for mixed color. For more
than three colors, the mix ratios are no longer unique, but for suitable base colors, a larger
area of the chromaticity diagram can be covered.

As the chromaticity diagram is convex, for each mixed color there is always a correspond-
ing real color stimulus. Two colors are called complementary colors if their connecting line
goes through the white point [19]. The color white can be produced by an additive mixture
of two complementary colors. If two complementary colors are maximally saturated, at least
one of them has to be a pure spectral color.

Color spaces that are produced by a projective transformation of the chromaticity dia-
gram, like (5.36) for example, also have these properties of additive color mixing, as a pro-
jective transformation always maps lines to lines [43]. An example for such a color space is
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the CIELUV color space with the coordinates L∗, u∗ and v∗, which will not be covered in this
book.

The coordinates of the virtual primary colors Xprim, Yprim, Zprim in the x, y chromatic-
ity diagram are (1, 0)T, (0, 1)T and (0, 0)T. Although they do not correspond to real color
stimuli, all real colors can be mixed from these virtual base colors, as they are part of the
corresponding triangle. This also shows that it is not possible in general to obtain all colors
by mixing three real base colors. This is because all mixable colors lie inside a triangle and
the special shape of the chromaticity diagram can never be contained in a triangle having
real colors as corners. This consideration explains why it is not possible to obtain all real
colors by mixing the CIE primary light sources. In the chromaticity diagram, the CIE pri-
mary light sources are located on the border of the real colors at (x, y)T = (0.73; 0.27)T,
(0.27; 0.72)T and (0.17; 0.0089)T, which can be calculated using (5.26) and (5.34) (Fig. 5.15).
Certain shades of green and blue cannot be mixed from these light sources. For monochro-
matic colors, this is the case if there are negative color values in Fig. 5.10.

In contrast to the additive case, subtractive color mixing cannot be explained so easily
using the chromaticity diagram. This is because the chromaticity diagram is defined over
the additive color mixing used in the empirical experiment Fig. 5.9 for measuring colors.
In order to calculate the subtractive mixture of two colorants, the Lambert–Beer law or the
Kubelka–Munk equations of Sec. 5.2.2 have to be applied to their absorption and scatter.
Then, the spectrum of the mixed color can be used to calculate its tristimulus value. A direct
calculation based on the tristimulus values of the base colors is not possible. For subtractive
color mixing, the mixed color is generally not part of the line connecting the base colors in
the chromaticity diagram. The set of possible mix colors is usually not given by the induced
triangle7 but by an area bordered by nonlinear curves. It is often possible that colors outside
the triangle can be obtained by subtractive color mixing [5]. However, it is not possible to
obtain all perceivable colors by combining only a few colors with subtractive color mixing.
This is why the print of this book is limited to a reduced set of colors, so that all printed
chromaticity diagrams and visualizations of color spaces have to be considered as rough
approximations of the actual colors.

The visualization of colors in the chromaticity diagram is limited by the following con-
straints8:

The tristimulus values x, y do not correspond to intuitive coordinate axes, like hue and
saturation for example.

The distance between two colors is not characterized by the distance between the corre-
sponding points in the chromaticity diagram. For example, green colors are resolved in
much more detail than blue colors. The distance between two colors that can barely be
distinguished by the human eye is described by the MacAdam ellipses in the chromatic-
ity diagram or the (x, y, Y ) space. They are considerably larger for shades of green than
for shades of red, violet and especially blue. Besides, the ellipses are very eccentric, which
means that a distance in the x-direction in the chromaticity diagram corresponds to a dis-
tinctively smaller visually perceived difference between colors than the same distance in
the y-direction, or vice versa.

7Or a polygon, if more than three base colors are used.
8Besides, it is very unpleasant that the position of perfect black X = Y = Z = 0 in the chromaticity

diagram is not well-defined according to (5.34) [5].
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Because of these limitations, other color spaces are more suitable for some applications than
is the chromaticity diagram. A possibility for constructing a color space with clear coordinate
axes and consistent color distances is given by the opponent-process theory. Here, colors
are circularly arranged around the white point, so that opposed colors always exclude each
other. This process conforms to the physiological theory of color perception sketched in
Sec. 5.2.1 (cf. Fig. 5.6).

The CIELAB color space with coordinates L∗, a∗ and b∗ is based on the opponent-process
theory. The brightness is denoted by L∗ and is obtained from the cube root of the tristimulus
value Y . This transformation ensures that equal differences in L∗ approximately correspond
to equal differences in the perceived brightness [5]. The definition of the CIELAB coordinates
a∗ and b∗ is based on empirical observations, resulting in an approximately equidistant color
space. The a∗-axis describes the difference between the red and green components of the
color, so that negative values correspond to green and positive values to red colors. Similarly,
negative values on the b∗-axis describe blue and positive values yellow colors (Fig. 5.14). The
white point is located at L∗ = 100, a∗ = b∗ = 0. All points on the line a∗ = b∗ = 0 correspond
to achromatic colors, and perfect black is located at L∗ = 0.

−a∗ +a∗

−b∗

+b∗

Cab

hab

L∗ = 100

L∗ = 0

Figure 5.14. The CIELAB color space with the coordinates L∗, a∗, b∗ as well as the polar coordinates Cab, hab.

The coordinate transformation is defined with respect to the white point (XN, YN, ZN)
T

in the XYZ color space. The triplet (XN, YN, ZN)
T represents the tristimulus value of the

white light source or its reflection on an ideally matte white material. This point of the XYZ
color space is mapped to the white point of the CIELAB space. Because of (5.33), YN = 100.
Furthermore, XN ≈ 95.0 and ZN ≈ 108.8 for the standard illuminant D65.

Transformations between the XYZ and the CIELAB color space are made by using the
following equations [5, 8, 43]:

L∗ = 116 f

(
Y

YN

)
− 16 (5.43)

a∗ = 500

(
f

(
X

XN

)
− f

(
Y

YN

))
(5.44)

b∗ = 200

(
f

(
Y

YN

)
− f

(
Z

ZN

))
(5.45)
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f(χ) =

{
3
√
χ if χ > 0.008856

7.787χ+ 16
116 if χ ≤ 0.008856

(5.46)

Y = YN f−1

(
L∗ + 16

116

)
(5.47)

X = XN f−1

(
a∗

500
+ f

(
Y

YN

))
(5.48)

Z = ZN f−1

(
− b∗

200
+ f

(
Y

YN

))
(5.49)

f−1(α) =

{
α3 if α > 0.207
α− 16

116

7.787 if α ≤ 0.207
(5.50)

As this is a nonlinear, non-projective transformation, lines in the XYZ color space are not, in
general, mapped to lines in the CIELAB space [43].

Another color space is obtained by using polar coordinates for the CIELAB coordinates
a∗ and b∗. In this case, the angle is called the hue angle hab. The radius is called the chroma
Cab and is a measure of the distance to the achromatic point, like the saturation [5].

hab = arctan
b∗

a∗
∈ [0, 2π) , (5.51)

Cab =
√
a∗2 + b∗2 . (5.52)

The coordinates L∗, Cab and hab yield a clearly interpretable color space.

5.2.4 Spectrophotometry for color measurement and color distance computation
The definition of the XYZ color space is based on the results of empirical experiments for
measuring a color by determining the corresponding mix ratios of three base colors (Fig. 5.9).
For automated inspection of colors in terms of quality inspection, usually another measure-
ment method is used: the spectrum of intensity is spectrometrically measured and then the
tristimulus is calculated. This method is called spectrophotometry. For most applications, it
is sufficient to discretely sample the spectrum, with distances of about 10 nm, for example. In
this case, the integrals needed for the calculation of the tristimulus values are approximated
by sums [5].

The spectrum of the intensity is measured by splitting the light into its wavelength com-
ponents based on dispersion or diffraction (see Chap. 2). Depending on the wavelength,
the light is deflected in different directions. Then, spatially arranged detectors allow a spec-
trally resolved measurement (see also Sec. 7.2.4). The result is a spectrum of intensities I(λ)
of the incident light, which can be inserted into (5.30)–(5.32) for the calculation of the tris-
timulus values. The tristimulus values (or corresponding coordinates of other color spaces)
characterize the color of the observed light source.

However, often the color of a test object is of interest, instead of the color of a light source.
In this case, the object is illuminated with broadband light and the diffusely reflected light
is measured using a spectrometer. As the spectrum of the illumination can be measured
separately, a compensation can be used to obtain the spectral reflectance R(λ) of the test
object, which will be independent of the illumination [33].

An alternative to broadband illumination is a series of illuminations with monochro-
matic light of different wavelengths. Monochromatic light can be generated by dispersion
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or diffraction followed by the use of a stop that lets only a small part of the spectrum pass
through it. Then, a usual broadband detector can be used for capturing the reflected light.
By using a camera, the reflectance can be measured in a spatially resolved way, for which a
scanning process would be necessary in the case of the spectrometrical method.

Monochromatic illumination has the advantage of avoiding fluorescent excitation, so that
for fluorescent materials the reflectance not caused by fluorescence can be measured. How-
ever, if the fluorescent color is of interest, a broadband illumination, with a spectrum in the
range of the required fluorescent excitation, has to be used.

For the reflectance of a non-fluorescent object, one always has9

∀λ : 0 ≤ R(λ) ≤ 1 . (5.53)

The perceived color of an object not only depends on its reflectance, but also on the
illumination. The intensity I(λ) of the light emitted by the object is the product of the illu-
mination’s intensity Ilight(λ) and the object’s reflectance R(λ):

I(λ) = Ilight(λ)R(λ) . (5.54)

Now, this intensity I(λ) can be inserted into (5.30)–(5.32), in order to obtain the object’s color
with respect to the illumination Ilight(λ) and the CIE normal observer. The set of realizable
object colors is called the Roesch color solid. For a given illumination, not all perceivable
colors can be emitted, as an object color might achieve only limited brightness even for ideal
reflection, as the spectrum of the illumination is multiplied by parts of the spectrum of low
intensity [43].

The intensity Ilight(λ) of the illumination used for the calculation does not have to be
equal to the real light source used for measuring the spectrum of the reflectance. In fact,
different virtual and idealized illuminations can be used for the same spectrophotometric
measurement of the reflectance, which meet the requirements of the inspection task. If, for
example, the visual impression of the test object is to be tested, usually a spectrum similar to
daylight is suitable for the illumination. For such applications, the standard illuminant D65
was standardized by the CIE. It represents the spectrum of daylight with a correlated color
temperature of approximately 6,500 K which corresponds to the spectrum of a blackbody ra-
diator of a temperature of 6,500 K. Differences from Planck’s law are caused by absorption
and scattering effects of the Earth’s atmosphere. However it is important to note that the
spectral composition of daylight might vary considerably because of clouds or the position
of the sun. The standard illuminant D65 corresponds to daylight for a cloudy sky. It cannot
be directly emitted by an artificial light source but is mainly used for calculations. Fig-
ure 5.16 shows the D65 spectrum together with the spectrum of the CIE standard illuminant
A, which corresponds to an incandescent lamp and is therefore similar to Planck’s radiation
curve (2.254), as well as spectrum E of (5.17), that is constant with respect to the wavelength.
As the standard illuminant A has a color temperature of 2,856 K, it has a considerably higher
level of red components and lower blue components than the daylight spectrum (Fig. 5.15).
The spectra are standardized except for a constant scaling factor. The intensities of the invis-
ible ultraviolet part of the spectrum are also defined, as they are important for fluorescent

9In contrast, fluorescent materials might emit more light for certain wavelengths than is irradiated
(see Sec. 7.2.2).
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Figure 5.15. The color of a blackbody radiator with respect to its temperature as well as the position of the CIE
primary light sources and the sRGB gamut in the chromaticity diagram.

excitation (see Sec. 7.2.2). The suitability of a light source for the measurement of colors can
be judged by its color rendering index [43].

Example 5.3 (Spectrophotometric color measurement and metamerism): Figure 5.17 shows
three hypothetical spectral reflectance distributions Ri(λ), i = 1, 2, 3 [43]. The cor-
responding tristimulus values and normalized color values for an illumination with
the standard illuminant D65 are to be calculated. Therefore, the spectra of intensity
Ii(λ) = ID65(λ)Ri(λ) are calculated using (5.54) and are inserted into (5.30)–(5.33). The
limits for all integrals in this example are set to the interval from [380 nm, 760 nm], for
which reflectance data are available. This leads to the following results for the three ob-
jects::

kD65 ≈
1

105.68 nm
, (5.55)

X ≈ 29.6 , Y ≈ 30.2 , Z ≈ 35.7 . (5.56)

All three objects have the same tristimulus values. For a human observer, they are
metameric under D65 illumination, although their reflectance spectra Ri(λ) differ con-
siderably from each other.
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Figure 5.16. Relative spectra of intensities of the CIE standard illuminants D65, A and E [10, 43].

Using (5.34), the calculation of the normalized color values leads to

x ≈ 0.31 , y ≈ 0.32 . (5.57)

These values correspond to a pale blueish gray.

A spectrum that is metameric to a given color impression can be constructed using the calcu-
lus of variations [40]. Usually, the spectral reflectance curves of two metameric objects have
at least three intersections, with two of them located near the maxima of absorption of the
three types of cones of the human eye. Metameric colors can also be designed in such a way
that they are metameric for more than one type of light [43].

Besides the spectrum of the illumination, also its direction and the direction of the ob-
servation might influence the resulting color impression. This effect can be modeled by the
wavelength dependent BRDF from Sec. 4.3. In everyday life, directional color impressions
can be observed for so-called fickle textiles.

The phenomenon of metamerism can not only arise for different light sources but also
for different observers. Although two colors might be metameric for one observer, another
observer might be able to distinguish them even under the same conditions of illumination
and observation. The CIE standard observers are the result of an average of a comparatively
small number of test subjects. The individual perception of colors can differ from this aver-
age, even if no color blindness is present. An especially important physiological difference
is given by the yellow staining of the lens of an aged eye [5].

An important application of color measurement in automated visual inspection is the
verification of the colors of products. For example, the difference of the color of a test object
from the color of a reference object should be within a tolerable interval [41]. In order to
quantitatively specify this inspection task, a distance function for colors is needed. The color
difference is defined in a color space where equal distances of coordinates approximately
correspond to color differences that are visually perceived as equal. Then, the color differ-
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Figure 5.17. Spectral reflectance of three metameric objects, appearing equal to each other when illuminated with
the standard illuminant D65 [43].

ence ΔE can be defined as the Euclidean distance between two points in this color space.
For the CIELAB color space, this leads to

ΔE =
√
(ΔL∗)2 + (Δa∗)2 + (Δb∗)2 (5.58)

=
√
(L∗

1 − L∗
2)

2 + (a∗1 − a∗2)
2 + (b∗1 − b∗2)

2 , (5.59)

with the CIELAB coordinates (L∗
1, a

∗
1, b

∗
2)

T and (L∗
2, a

∗
2, b

∗
2)

T of the two colors of interest [43].
Color differences on the order of ΔE ≈ 1 are visually perceivable. However, the CIELAB
color space is only approximately equidistant, so that the comparability of color differences
in remote regions of the color space is limited, especially for notably different hues [5]. There-
fore the Euclidean color difference can be modified by different correction factors [31].

Besides, it is preferable that the color difference can be decomposed into brightness, sat-
uration and hue, as in many cases there are different tolerances for these different quantities.
The brightness difference ΔL∗ and the chroma difference10 ΔC can be calculated as follows:

ΔL∗ = L∗
1 − L∗

2 , (5.60)

ΔC = C1 − C2 . (5.61)

The remaining part of ΔE is the hue difference ΔH [41]:

ΔH = sgn(a∗2b
∗
1 − a∗1b

∗
2)
√
(ΔE)2 − (ΔL∗)2 − (ΔC)2 . (5.62)

The connection between differences in the hue angle h and in ΔH is as follows:

ΔH = 2
√
C1 C2 sin

(
Δh

2

)
≈
√
C1 C2 Δh , Δh = h1 − h2 . (5.63)

10At this point, the subscripts of Cab and hab are omitted, as only the CIELAB color space is consid-
ered.
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This approximation is valid for small hue differences.
The color difference ΔE of two metameric spectra can be interpreted as the degree

of metamerism with respect to the chosen light source. If, for a given light source, the
reflectance spectra R1(λ) and R2(λ) have identical tristimuli and thus a color difference
ΔE = 0, their color difference ΔE′ for a second light source is called their metamrism index
with respect to a change of the light source. The metamerism indices for different typical
light sources can be used to judge the degree of metamerism of two metameric objects [43].

Example 5.4 (Color difference and the metamerism index): The three metameric reflectance
spectra Ri(λ) from Ex. 5.3 will now be examined for the CIE standard illuminant A. (5.54)
and (5.30)–(5.33) lead to

kA ≈
1

107.90 nm
(5.64)

X1 ≈ 28.6 Y1 ≈ 31.0 Z1 ≈ 10.4 (5.65)

X2 ≈ 37.1 Y2 ≈ 30.3 Z2 ≈ 11.7 (5.66)

X3 ≈ 34.0 Y3 ≈ 30.5 Z3 ≈ 11.4 (5.67)

If illuminated with the standard illuminant A, the colors of three objects differ, whereas
they were metameric when illuminated with D65.

By employing (5.34), the normalized color values are

x1 ≈ 0.41 y1 ≈ 0.44 (5.68)

x2 ≈ 0.47 y2 ≈ 0.38 (5.69)

x3 ≈ 0.45 y3 ≈ 0.40 (5.70)

These values also represent shades of gray, this time, however, with nuances of yellow
and orange. This is because the standard illuminant A has a higher intensity of the long-
wave, yellow to red part of visible light than does D65, and a lower intensity for the
short-wave blue light.

In order to measure the color difference between the three metameric objects, their
tristimulus values are transformed in the CIELAB color space using (5.43)–(5.46):

YN = 100 XN ≈ 109.83 ZN ≈ 35.55 (5.71)

L∗
1 ≈ 62.5 a∗1 ≈ −19.1 b∗1 ≈ 2.7 (5.72)

L∗
2 ≈ 61.9 a∗2 ≈ 12.4 b∗2 ≈ −3.8 (5.73)

L∗
3 ≈ 62.1 a∗3 ≈ 1.8 b∗3 ≈ −2.4 (5.74)

Figure 5.17 can be used to qualitatively verify that, for example, R1(λ) in fact has a higher
green component (negative a∗1) and R2(λ) has a higher red component (positive a∗2).

Now, the CIELAB coordinates will be used in combination with (5.58) and (5.60) to
calculate the color differences ΔEij of the reflectance spectra Ri(λ) and Rj(λ) for the
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standard illuminant A as well as the corresponding brightness differences ΔL∗
ij :

ΔE12 ≈ 32.2 ΔL∗
12 ≈ 0.59 (5.75)

ΔE13 ≈ 21.6 ΔL∗
13 ≈ 0.45 (5.76)

ΔE23 ≈ 10.7 ΔL∗
23 ≈ −0.13 (5.77)

These color differences are considerably higher than the perception threshold. As ex-
pected, the color difference of the spectra R1(λ) from the R2(λ), which has extensive
maxima for different wavelengths, is higher than that from the uniformly distributed
spectrum R3(λ). At the same time, the color differences ΔEij are the metamerism indices
corresponding to the change from the standard illuminant D65 to standard illuminant A.

In order to calculate the other components of the color difference, first the opponent-
process components will be transformed into the polar coordinates’ chroma (5.52) and
hue angle (5.51):

C1 ≈ 19.3 h1 ≈ 3.00 (5.78)

C2 ≈ 13.0 h2 ≈ 5.98 (5.79)

C3 ≈ 3.1 h3 ≈ 5.36 (5.80)

The approximately uniformly distributed spectrum R3(λ) has a considerably lower
chroma C than the two other spectra with extensive maxima.

Next, the chroma differences and the hue differences can be calculated using (5.61)
and (5.62) respectively:

ΔC12 ≈ 6.3 ΔH12 ≈ −31.6 Δh12 ≈ −2.98 (5.81)

ΔC13 ≈ 16.3 ΔH13 ≈ −14.2 Δh13 ≈ −2.36 (5.82)

ΔC23 ≈ 9.9 ΔH23 ≈ 3.9 Δh23 ≈ 0.62 (5.83)

Using the approximation of (5.63) for determining the hue difference Δhij is only sen-
sible for the last pair (R2(λ), R3(λ)), as the other hue differences are so large that the
approximation is no longer sufficiently precise.

5.2.5 Color order systems
In a color order system, the colors are systematically ordered according to specified criteria
[5, 41]. An example of such criteria are the axes hue, saturation, and brightness (Fig. 5.18).
The criteria do not necessarily have to be numerically quantified. The colors can be chosen
in such a way that two neighboring colors will always have the same visually perceived
difference. Often, color order systems contain physically real colored material samples and
are specially designed for certain materials and product lines. Color order systems can be
used to specify the tolerance for a product. For this purpose, the maximum differences from
the preferred product color are marked for each direction of the color order system. If an
automated quality assessment is to be used, the limits obtained by the color order system
can be used to derive thresholds for the color difference ΔE from the reference color.

A common color order system is the Munsell color system with the criteria of value,
chroma, and hue [4, 5, 32].
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Figure 5.18. Brightness, saturation, and hue in the sense of a color order system.

5.2.6 Other color spaces
The CIE color spaces of Sec. 5.2.3 are used for describing and measuring colors and their dis-
tances. There are many other color spaces which have been defined for special applications,
such as the rendering of colors on computer and television screens by the additive color
mixing of certain base colors, as well as color rendering by subtractive mixing of colorants
for printing methods, for example.

Figure 5.19 shows a classification of these color spaces based on the criteria of the appli-
cation and from the physiological and technical viewpoints [37].

Special applications

HSIRGB,
CMY(K)

CIELAB,
CIELUV

CIE XYZ

General application

Physiological,
psychological
point of view

Technical,
physical
point of view

Figure 5.19. Criteria for classifying the different color spaces.

5.2.6.1 Gamma correction
For displaying images, on displays for example, usually image values are used which are
not proportional to the observed intensities. This approach compensates for the nonlinear
human perception of intensities, as well as the nonlinear characteristics of displays, cameras,



5.2 Color perception and color spaces 193

etc. Gamma correction is therefore used for different color spaces which are especially used
for rendering colors on displays.

The adaption to the human perception of brightness is done by transforming the physical
intensity I to the image value g as follows:

g = fγ(I) = Iγ , I ∈ [0, 1] . (5.84)

Initially, the intensity values are scaled to the interval [0, 1]. The gamma corrected image
values are also located within the interval [0, 1], with fγ(0) = 0 and fγ(1) = 1. The transfor-
mation is monotonic and invertible. The inverse transformation is

I = f−1
γ (g) = g

1
γ . (5.85)

In practice, the inverse transformation is affected by a quantization error, as the image values
are usually quantized. Gamma correction allows a much better exploitation of the available
quantization intervals in accordance with the human perception of brightness. Gamma cor-
rection can be applied to a gray-scale image as well as to each of the channels of a color
image.

For low intensities I ≤ I0, the modified gamma correction changes the transformation
characteristic curve to form a line, in order to avoid a too steep or too flat curve [9]. It is
defined as follows:

fγ,I0(I) :=

{
(1 + d) Iγ − d if I0 < I ≤ 1

s I if 0 ≤ I ≤ I0
(5.86)

with

d :=
1

Iγ0 (γ − 1) + 1
− 1 , (5.87)

s :=
γ

I0 (γ − 1) + I1−γ
0

. (5.88)

The inverse transformation is given by

f−1
γ,I0

(g) =

⎧⎨⎩
(

g+d
1+d

) 1
γ

if s I0 < g ≤ 1

g
s if 0 ≤ g ≤ s I0 .

(5.89)

5.2.6.2 RGB color spaces
Technical color spaces describe the colors that can be rendered by a certain device. Usually,
not all perceivable colors can be expressed in these color spaces. The set of colors that can
be rendered is called the gamut of the device [8]. For additive color mixing, the gamut
corresponds to a triangle in the chromaticity diagram (Sec. 5.2.3). The base colors of common
displays, projectors, and cameras are red, green and blue. In RGB color spaces, the ratios of
these three base colors are described by a vector (R,G,B)T ∈ [0, 1]3 (Fig. 5.20). Generally,
the RGB color spaces and gamuts of different devices do not match each other, as different
base colors are used.
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Figure 5.20. The RGB color space, as a cube.

The sRGB color space is a device-independent RGB standard [8, 39]. It is based on three
reference light sources with the following normalized color values (Fig. 5.15):

xR = 0.64 xG = 0.30 xB = 0.15 (5.90)

yR = 0.33 yG = 0.60 yB = 0.06

The linear sRGB color values Rs, Gs, Bs are the result of a linear transformation of the nor-
malized color values X , Y , Z:⎛⎜⎝Rs

Gs

Bs

⎞⎟⎠ = AsRGB

⎛⎜⎝X

Y

Z

⎞⎟⎠ (5.91)

with

AsRGB =

⎛⎜⎝ 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570

⎞⎟⎠ . (5.92)

The sRGB color values Rs, Gs, and Bs are within the range [0, 1]. If negative values arise
in (5.91), they are set to 0; values greater than 1 are set to 1. The corresponding colors cannot
be displayed in the sRGB color space. For such colors, the transformation cannot be inverted.

Subsequent to the linear transformation, a nonlinear gamma correction is performed in
order to correct the color rendering on typical displays (see Sec. 5.2.6.1). For γ = 1

2.4 and
I0 = 0.00304, Equation (5.86) leads to the following formula for the nonlinearly gamma
corrected sRGB color values R′

s, G′
s, B′

s:⎛⎜⎝R′
s

G′
s

B′
s

⎞⎟⎠ =

⎛⎜⎝fγ,I0(Rs)

fγ,I0(Gs)

fγ,I0(Bs)

⎞⎟⎠ , (5.93)

fγ,I0(x) =

{
1.055x

1
2.4 − 0.055 if x > 0.00304

12.92x if x ≤ 0.00304 .
(5.94)
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The nonlinearly gamma corrected sRGB color values are also within the range [0, 1]. Usu-
ally these color values are used for saving images, as in the JPEG standard, for example. So
the color values of a color image do not correspond to the radiometric intensities and should
thus be inversely transformed before performing any further processing that assumes a lin-
ear relation between the color values and the intensities.

Usually, an additional scaling and quantization is performed in order to save images to
files. For the typical 8-bit resolution per color channel, the sRGB values are multiplied by
28 − 1 = 255 and quantized to integer values.

For the inverse transformation to CIE normalized color values, first the scaling has to be
undone, leading to the nonlinearly gamma corrected sRGB color values R′

s, G′
s, B′

s within
the interval [0, 1]. Then, the gamma correction is reversed:⎛⎜⎝Rs

Gs

Bs

⎞⎟⎠ =

⎛⎜⎝f−1
γ,I0

(R′
s)

f−1
γ,I0

(G′
s)

f−1
γ,I0

(B′
s)

⎞⎟⎠ , (5.95)

f−1
γ,I0

(x) =

{(
x+0.055
1.055

)2.4 if x > 0.03928
x

12.92 if x ≤ 0.03928 .
(5.96)

Now, the tristimulus values X , Y , Z can be calculated from the linear sRGB color values Rs,
Gs and Bs:⎛⎜⎝X

Y

Z

⎞⎟⎠ = A−1
sRGB

⎛⎜⎝Rs

Gs

Bs

⎞⎟⎠ (5.97)

with the inverse transformation matrix

A−1
sRGB =

⎛⎜⎝ 0.4124 0.3576 0.1805

0.2126 0.7152 0.0722

0.0193 0.1192 0.9505

⎞⎟⎠ . (5.98)

The columns of the matrix A−1
sRGB represent the tristimulus values X , Y , Z of the sRGB base

colors of (5.90). Further, the white point (Rs, Gs, Bs)
T = (1, 1, 1)T is identical to the CIE

standard illuminant D65.

5.2.6.3 HSI and HSV
The RGB color values can be transformed into further color spaces with clearly interpretable
coordinates, such as brightness, hue, and saturation. Among these color spaces there are
HSV, HSL (HLS), and HSI, which pursue similar goals but are not identical [9]. In the fol-
lowing, the transformation into the HSI color space will be discussed [18]. The coordinates
of this color space correspond to the hue HHSI, the saturation SHSI, and the intensity IHSI.
Similar to the polar coordinates of the CIELAB color space, the hues are represented by an
angle, but are located within a triangle instead of a circle.

HSI color spaces can be defined on the basis of device dependent or of standardized RGB
colors with or without gamma correction. The following equations give the transformation
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from gamma corrected sRGB coordinates to HSI coordinates:

HHSI = arctan

√
3 (G′

s −B′
s)

2R′
s −G′

s −B′
s

(5.99)

IHSI =
1
3 (R

′
s +G′

s +B′
s) (5.100)

SHSI = 1− min{R′
s, G

′
s, B

′
s}

IHSI
(5.101)

As the intensity coordinate IHSI uses equal weights for all three color channels, it does not
correspond to the human perception of brightness. For the inverse transformation from the
HSI space to the sRGB space, different cases have to be considered, depending on the sector
of the color triangle in which the hue H is located:

h := HHSI − 2
3π

⌊
3HHSI

2π

⌋
(5.102)

p := IHSI (1− SHSI) (5.103)

q := IHSI

(
1 +

SHSI cosh

cos(π3 − h)

)
(5.104)

t := 3IHSI − p− q (5.105)

(R′
s,G

′
s, B

′
s)

T =

⎧⎪⎪⎨⎪⎪⎩
(q, t, p)T if 0 ≤ HHSI <

2
3π

(p, q, t)T if 2
3π ≤ HHSI <

4
3π

(t, p, q)T if 4
3π ≤ HHSI < 2π

(5.106)

The coordinates of the HSV color space are the hue value HHSV, the saturation value
SHSV, and the brightness value VHSV. They are calculated from the RGB values, which are
within the range [0, 1], as follows [9]:

m := min{R′
s, G

′
s, B

′
s} , (5.107)

VHSV := max{R′
s, G

′
s, B

′
s} , (5.108)

SHSV :=

{
VHSV−m
VHSV

if VHSV �= 0

0 if VHSV = 0 ,
(5.109)

HHSV :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π
3

(
G′

s−B′
s

VHSV−m

)
if VHSV = R′

s

π
3

(
B′

s−R′
s

VHSV−m + 2
)

if VHSV = G′
s

π
3

(
R′

s−G′
s

VHSV−m + 4
)

if VHSV = B′
s .

(5.110)

The hue HHSV is undefined for achromatic colors with VHSV = R′
s = G′

s = B′
s = m.

5.2.6.4 YUV and YCBCR

Distinct color spaces have been defined for encoding television signals. The RGB coordinates
are transformed into a brightness coordinate and two chroma coordinates. The gamma cor-
rected brightness coordinate Y ′ was chosen to correspond to the signal of black-and-white
television, so that color television would be backwards compatible when it was introduced.
The chroma coordinates can be compressed more densely, as the resolution of the human
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eye is higher for brightness than it is for chroma. The transformation formulas are applied
to the sRGB space as well as to device dependent RGB color spaces.

The European PAL television color encoding system uses the YUV color space. The
brightness coordinate Y ′ is given by the weighted sum of the gamma corrected RGB color
values [35]:

Y ′ = 0.299R′
s + 0.587G′

s + 0.114B′
s . (5.111)

The chroma coordinates U and V are defined as follows:

U = 0.492 (B′
s − Y ′) , (5.112)

V = 0.877 (R′
s − Y ′) . (5.113)

As this is a linear transformation, it can be expressed by matrix multiplication as in (5.91)
and (5.92). The inverse transformation is performed by multiplication by the inverse trans-
formation matrix. The YIQ color space is a variant of the YUV color space [9].

The YCBCR color space is used for encoding digital image and video data—as in the JPEG
standard, for example. The chroma coordinates CB and CR are defined as follows:

CB = 0.564 (B′
s − Y ′) , (5.114)

CR = 0.713 (R′
s − Y ′) . (5.115)

Again, this transformation is linear and can thus be expressed by matrix multiplication [9].
Furthermore, the standard ITU BT.601 contains suggestions for how to apply that transfor-
mation to quantized signals [23].

5.2.6.5 Color printing and CMYK
The CMYK color space is used for color printing. For subtractive color mixing, the base
colors cyan, magenta and yellow are used, which are complementary to the additive base
colors red, green and blue: Cyan pigments absorb red light, magenta absorbs green, and
yellow absorbs blue. Therefore, the RGB and CMY color values are, ideally, connected as
follows:⎛⎜⎝C

M

Y

⎞⎟⎠ =

⎛⎜⎝1

1

1

⎞⎟⎠−
⎛⎜⎝R

G

B

⎞⎟⎠ . (5.116)

In general, however, the additive as well as the subtractive base colors are device dependent,
so that these equations are only an approximation. Additionally, the spectra of absorption
of the subtractive base colors often overlap each other, so that in the strict sense, the three
components C, M and Y cannot be considered to be independent of each other. In fact, the
nonlinear laws of subtractive color mixing of Sec. 5.2.2 have to be applied. Generally, the
gamut of printers does not match that of computer screens.

As, in practice, the mixture of the three subtractive base colors does not yield a perfect
black, color printers use a black pigment as an additional base color. This is also sensible for
reasons of economy. The black coordinate in the color space space is denoted by K (for Key).
It can be chosen as the minimum of the other three color values:

K = min{C,M, Y } . (5.117)
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In this case, the components C, M and Y can be reduced, which can be done using different
formulas [9]. The resulting process is called the four color process. Additional base colors
can be added in order to extend the gamut of the printer.

The transformation between different device dependent color spaces can be done by us-
ing color profiles [8, 22]. They either specify transformation matrices like (5.92) for the base
colors of the device, or extensive tables for color conversion which might also contain non-
linear relations. In particular, such tables contain information on how colors that are outside
of the gamut can best be approximated by the device.

5.3 5.3 Filters
Color filters, also called spectral filters, are optical elements which let only a certain range of
wavelengths pass through them. Mounting such filters in front of a single channel, broad-
band, gray-scale camera, yields a sensor which is sensitive to a certain spectral range [25]. If
particular object’s properties of interest are present in this spectral range, then, for example,
two materials might be better discriminable in a single image of the filtered light than in an
image acquired without a spectral filter, where the influences of other spectral ranges could
be disturbing. Common RGB cameras also use filters in order to capture the three color
channels (see Sec. 6.9). By using more cameras with their respective filters, the spectrum can
be sampled more finely. Filters can also be used to suppress extraneous light by illuminating
and observing the test object under a certain spectral range. For illumination with a partic-
ular spectral range, spectral filters can be mounted in front of a light source. However, for
reasons of efficiency, light sources that emit the desired spectrum by themselves should be
preferred, such as light emitting diodes of the respective color, for example (see Sec. 2.7).

Selective transmission is either based on absorption or on interference. Absorption filters
contain colorants absorbing certain ranges of wavelengths. For absorption filters, the laws
of subtractive color mixing apply (Sec. 5.2.2). According to the Lambert–Beer law (5.10),
(5.11), absorption increases exponentially with the thickness of th filter [43]. The variety of
absorption filters is limited by the available colorants. The absorption leads to a heating of
the filter, which can be a problem if the filter is placed directly in front of a light source.

Interference filters consist of a series of thin layers which are separated by defined dis-
tances of a few wavelengths [21, 45]. At these layers, multiple reflections occur. The dis-
tances between the layers are chosen in such a way that there is constructive interference
for light of the wavelength of interest and destructive interference for all other wavelengths
(cf. Sec. 2.2.5). In contrast to absorption filters, interference filters appear in the complemen-
tary color of the transmitted spectrum if they are viewed under daylight, as the reflected
components of the light are dominant.

Multiple degrees of freedom for the design of these filters are given by the thickness, the
optical material’s characteristics, and the refraction indices of the layers used. The different
parts of the waves that are reflected or transmitted at the interfaces interfere with each other
and result in the spectral transmission characteristics. There are variants with dielectric
layers and with thin metal coatings.

Interference filters can be constructed for nearly every arbitrary transmission character-
istic, and allow steep edges in the transmitted spectrum. As the filtered light is not absorbed
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but reflected, heating is low even under intensive illumination. Therefore, their durability is
high even for high radiant fluxes.

However, there is a major disadvantage: depending on the angle of incidence to the
optical axis, the path that the light takes between the reflecting layers varies, changing the
maximum of the constructive interference. Therefore, interference filters are only suitable for
approximately perpendicularly incoming light. In contrast, the wavelength corresponding
to the spectral maximum of transmission of absorption filters is independent of the angle of
incidence. Only the absolute value of the absorption increases, according to the Lambert–
Beer law, because of the increased optical path for diagonally incident light.

A fundamental disadvantage of spectral filters is the loss of light caused by unwanted
reflections.

Example 5.5 (Spectral filters): Figure 5.21 shows an series of images of a scene, captured by
a gray-scale camera and different spectral filters. The nine interference filters have a
transmission bandwidth of approximately 50 nm and nearly completely cover the visible
spectrum up to the near infrared. The scene consists of multiple orange colored objects,
whose colors are barely distinguishable in a single RGB image. However, the colors of
the different objects are metameric, so that the intensities captured in the image series
vary markedly. The wooden block, for example, has a lower reflectance at 400 nm than
the plastic model of the industrial robot, whereas it is the other way round for 500 nm.
The spectral image series can accordingly be used to segment and classify the colorants
or the objects. Methods for the further processing and analysis of the image series are
described in Sec. 8.7.

This image series was sequentially captured with a camera by exchanging the filters in
front of the camera between the single recordings (cf. Sec. 7.2.4). For some applications it
might be necessary to simultaneously capture the images, as the available time might be
limited or moving objects have to be captured. Then, multiple gray-scale cameras with
different spectral filters can be organized in an array. However, the imaging geometry
will then be different for the single images because of the stereo effect, which can severely
complicate the analysis of the image series. On the other hand, additional information
about the 3D shape of the observed objects is gained [16].

5.45.4 Acquisition and processing of color images
For many applications of automated visual inspection, recording and analyzing gray-scale
images is sufficient. However, in some cases, the consideration of multiple color or spec-
tral channels can bring considerable advantages. Examples are the detection, segmentation,
and classification of objects which mainly differ because of their color or their spectral re-
flectance (see Sec. 7.2.2, 7.6.2) as well as color encoding of patterns for 3D shape capturing
(Sec. 7.3.4.1). The color of a test object can be important for different reasons: for food, it
provides information on condition and quality; for some technical products, it has to be in-
spected for aesthetic reasons, and in other applications printed color codings are used to
identify electrical components or pharmaceuticals, for example [1–3, 27]..

As RGB image sensors (see Sec. 6.9) are cheap and common components, the use of such
sensors is suitable as long as their attainable spectral resolution is sufficient for the particular
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(a)

(b) 400 nm (c) 450 nm (d) 500 nm

(e) 550 nm (f) 600 nm (g) 650 nm

(h) 700 nm (i) 800 nm (j) 850 nm

Figure 5.21. Examples of image acquisition with spectral filters. (a) RGB camera image of a scene with model robot,
a wooden cube and an orange background; (b)–(j) Images of the same scene with a gray-scale camera and different
spectral filters with a transmission bandwidth of approximately 50 nm and the specified transmission wavelength.

application. Such cameras produce images with three channels. The three color values of
a pixel represent the coordinates in a device dependent RGB color space or ideally in the
sRGB color space. By using the transformations described in this chapter, the RGB images
can be transformed into other color spaces, like the HSI color space if a color classification
independent of brightness is needed. The RGB image can be converted into a gray-scale
image by using (5.111) if that is sufficient for some steps of the processing chain [8].

For other inspection tasks, a finer resolution of the spectrum might be necessary, for ex-
ample if metameric colors have to be distinguished or if spectral channels outside the visible
part of the spectrum are needed. In this case, gray-scale cameras with the corresponding fil-
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ters (Sec. 5.3) or spectrophotometers (Sec. 7.2.4) can be used to capture the spectral channels.
A fine sampling of the spectrum can be used to obtain color and color difference measures
for monitoring production processes, as described in Sec. 5.2.4 [14].

Many algorithms originally used for processing gray-scale images can be directly used
for color images by applying them separately to the single channels of the color image. Ex-
amples are linear filters for smoothing (see Chap. 9), where the separate processing of each
channel is equivalent to a vectorial processing [18]. Other operations, such as the compu-
tation of gradients or the median filter, cannot be applied to color images that way [30, 44].
For many segmentation and classification methods, the vector of a pixel’s color values can
be used as a multidimensional feature vector (cf. Chap. 11).
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6 Sensors for Image Acquisition
The image of a scene that has to be inspected is imaged to the image plane by imaging optics.
For further processing of the resulting image, the spatial distribution of the irradiance is first
converted into an analog electrical signal, which is then spatially and temporally sampled,
quantized, and finally stored.

A system for digitizing images has to be able to spatially divide the captured image into
separate elements (pixels), to address these elements individually, to integrate the irradiance
over a defined period of time, and then to measure, quantize, and save the image value of
each pixel. Therefore, it has to provide the following five components:

1. A sampling aperture, which can address a single pixel and ignore the rest of the image.
This aperture determines the size of the pixels.

2. A scanning mechanism, which moves the sampling aperture over the image, in order to
provide access to the different pixels. The scanning mechanism determines the distances
between the pixels.1

3. A light sensor using the sampling aperture to determine the irradiance for each pixel, and
subsequently producing an electrical output signal. For this purpose there can be used,
e.g., light sensitive resistors, photodiodes, phototransistors, CCD sensors, and CMOS
sensors.

4. A quantizer—also called an analog to digital converter—which samples the image values
(gray or color values).

5. A storage unit, which stores the single image values for further processing.

Usually, components 1 to 3 are realized inside the camera and components 4 and 5 are pro-
vided by an additional device, called the frame grabber, inside a computer.

However, nowadays, there are several cameras available which already contain all these
components and can directly provide a computer with digital images.

6.16.1 Point, line and area sensors
There are many ways of capturing the whole area of an image:

An area sensor yields an image pixel for each sensor element. The image size is set by the
physical number of the sensor’s rows and columns. Usually, all pixels are simultaneously
exposed for a certain period of time. CCD and CMOS chips as well as the formerly used
image tube cameras are examples of area sensors.

A line-scan sensor is composed of a single line of pixels. Therefore, for each recording
cycle, only a single line of the image can be captured. A two-dimensional image is created
by moving the test object with respect to the sensor and subsequently assembling the
captured lines to form the whole image.

A point sensor can only capture a single intensity value in one recording cycle. In order
to obtain a two-dimensional image, a laminar scan in column and row directions has to
be performed.

1Hence, the pixel distances Δx and Δy do not have to be equal to the pixel size. For example,
for the CCD sensor that is presented later on in this chapter, the pixel size is usually smaller than the
distance between pixels.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_6,
© Springer-Verlag Berlin Heidelberg 2016
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6.2 6.2 Image tube cameras
Historically, image tube cameras have been the first electronic cameras. They were devel-
oped for the domain of television, but are not used anymore. An electromagnetically steered
electron ray is used to capture line by line the image formed on a special semiconductor
photo layer by the charge carriers which are generated by the incoming photons. The sam-
pling aperture is given by the diameter of the electron ray, Δx corresponds to the sampling
rate of a connected analog-to-digital converter, and Δy is the minimum possible distance
between the scanning lines. Drawbacks of this kind of cameras are their sensitivity to elec-
tromagnetic fields as well as their large size and power consumption.

6.3 6.3 Photomultipliers
Similar to image tube cameras, a photomultiplier consists of a vacuum tube with a photo-
cathode. Typically, alkali metals are used for the photocathode, as its work function, i.e., the
energy needed to strike out an electron, is notably low. Cesium alloys are especially suit-
able, and can detect light with a maximum wavelength of approximately 900 nm [21]. The
electrons of the photocathode, which are emitted because of the photoelectric effect, are at-
tracted by a positively charged metal tile which is called the dynode (Fig. 6.1). The impact
on the dynode produces further electrons, which are accelerated in the direction of the next
dynode [5, 7, 11]. A cascade of multiple dynodes with increasing positive voltage results in
an exponential amplification of the electron count. The electrons that finally reach the anode
discharge over a resistor and produce a voltage which is proportional to the rate of photons.
The rate of photons Δn

Δt denotes the number of photons Δn arriving at the photocathode
during the period of time Δt.

− +

Dynodes

Measure-
ment
output

Secondary
electrons

Acceleration voltage

Photon

Photo
electron

Photocathode

R R R R R R R

Anode

Figure 6.1. Schematic of a photomultiplier.

Photomultipliers are very sensitive. They can be used to detect single photons. They are
primarily used in physical measuring instruments [9] as well as for visual inspection tasks,
where only little light is available, like for fluorescence effects, for example (see Sec. 7.2.2).
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6.3.1 Image intensifiers
The principle of a photomultiplier can also be used for area sensors in the form of the so-
called image intensifiers. They can capture scenes even for very small rates of photons,
and are used in X-ray inspection systems or night vision devices, for example. In an im-
age intensifier, the photocathode is succeeded by a so-called micro-channel plate, which
is a semiconductor plate with periodically arranged, cylindrical holes called channels; see
Fig. 6.2(a). The channels are slightly tilted with respect to the direction of incidence of the
electrons, so that the electrons hit the walls of the channels many times and strike out further
electrons; see Fig. 6.2(b). These electrons are accelerated by a voltage drop along the chan-
nels and finally hit a special semiconductor detector or a screen, where again photons are
created which can be viewed with a common image sensor. The resistors R1, R2 and R3 in
Fig. 6.2(c) represent a voltage divider, which determines the voltage over the three regions of
the space between the photocathode and the micro-channel plate, inside the micro-channel
plate, and between the micro-channel plate and the anode.
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Figure 6.2. A micro-channel plate used for image intensification: (a) Schematic; (b) Principle of electron multiplica-
tion; (c) Wiring. [21]

6.46.4 Photodiodes
A photodiode is a semiconductor element that can transform light energy into electrical
energy [1, 16]. A single photodiode can be considered as a point sensor. Its principle is
similar to that of the pixels of line and area sensors (see Sections 6.6 and 6.7).

In semiconductors such as silicon, gallium, and compound semiconductors, for example,
only a few electron–hole pairs are present, so that the conductivity is very low. An applied
voltage leads to the flow of only a very low current.
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In order to produce electron–hole pairs, at least the energy Egap of the bandgap between
the valence band and the conduction band has to be provided. The difference between the
energies of the valence and the energetically higher conduction band is referred to as the
bandgap. If an electron is lifted to the conduction band, a so-called hole remains in the
valence band. Electrons or holes, which are located in the conduction or the valence band,
are movable and can thus contribute to a current flow.

With a certain probability, irradiated photons can produce electron–hole pairs inside the
semiconductor, which leads to an increased conductance of the material. This probability is
the quantum efficiency of the semiconductor. In order to lift an electron from the valence
to the conduction band, the energy h ν of the irradiated photon has to be greater than the
bandgap Egap (cf. Sec. 2.3).

This is called the inner photoelectric effect, as the generated charge carriers do not leave
the material, in contrast to the normal photoelectric effect. In addition, no work function
is needed and thus the necessary photon energy h ν can be lower, or the cutoff wavelength
λmax can be longer.

By doping the semiconductor, i.e., by contaminating the pure semiconductor with atoms
of other elements in a defined way, selective holes (p-type doping) can be made in the va-
lence band or electrons (n-type doping) can be inserted into the conduction band. A pn
junction acts like a diode, and so a significant current can flow only in one direction. Ar-
ranging such a pn junction in the reverse direction, i.e., attaching the negative pole to the
p-type doped part and the positive pole to the n-doped part, results in a very small reverse
current, which—in the case of a photodiode—is also called dark current. Irradiated pho-
tons can produce electron–hole pairs which are attracted by the electric field and produce an
electrical current which is proportional to the rate of photons.

If this current runs through a resistor, the voltage drop can be measured (Fig. 6.3). For
many applications of automated visual inspection, the dark current Idark is much smaller
than the photocurrent Iphoto.

Cathode (n)

Anode (p)

Diode

Light

Rate of
photons

Voltage
source

Figure 6.3. Wiring of a photodiode for operation in reverse direction.

In order to increase the quantum efficiency, photodiodes are usually realized as p–i–n
diodes (Fig. 6.4). The wide and undoped intrinsic region, which is located between the p-
type doped and the n-type doped region, is less conductive and leads to a reduced dark
current. The larger width increases the probability of an incoming photon’s producing an
electron–hole pair before leaving the material.

Besides the pairs of charge carriers which are generated by exploiting the bandgap, the
energy gap between the doping levels and the conduction band can be also be used for the
photon-triggered generation of pairs of charge carriers. With special dopings, very small
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Figure 6.4. Photodiode: Structure of the semiconductor with p-type and n-type doping as well as intrinsic regions
and the corresponding band model [16].

differences of energy levels can be achieved, allowing the detection of infrared light, which
has longer wavelengths than visible light. According to the Boltzmann statistics [17], small
differences in the energy levels EDiff , which are proportional to e−

EDiff
k T , result in a thermally

filled conduction band, even for room temperature. Therefore, semiconductors to be used
for the detection of long-wave light have to be cooled.

The bandgaps and the corresponding cutoff wavelengths of different semiconductor ma-
terials are listed in Table 6.1.

Table 6.1. Bandgap Egap and cutoff wavelength λmax of different semiconductors [21].

Compound Egap in eV λmax in nm

CdS (Cadmium sulfide) 2.42 510
CdSe (Cadmium selenide) 1.70 730
CdTe (Cadmium telluride) 1.56 790
GaAs (Gallium arsenide) 1.42 880
Si (Silicon) 1.12 1,100
Ge (Germanium) 0.66 1,880
PbS (Lead sulfide) 0.41 3,020
InSb (Indium antimonide) 0.17 7290
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6.5 6.5 Position sensitive detectors (PSD)
A position sensitive detector is a sensor that can measure the location of an incident bundle
of light rays [11]. For some applications, it is therefore an alternative to a line-scan camera,
which consists of multiple linearly arranged light sensitive elements.

The detector has a p–i–n surface composition and is operated in the inverse direction,
like a photodiode. It is elongated perpendicular to the p–i–n junction (Fig. 6.5). On both
ends, the p-type doped layer is equipped with electrodes, A and B respectively. The n-type
doped layer on the backside is thoroughly metallized and connected by the electrode C.

Light sensitive region

Connector B

Electrode BElectrode A

Incoming
light bundle

Connector A

Electrode BElectrode A

Counter electrode

Intrinsic
silicon

p-Silicon

n-Silicon
Connector C

D

a b

Figure 6.5. A position sensitive detector for one-dimensional position measurements. The ends of the light sensitive
region D are linked to connectors A and B. The whole n-type doped silicon layer on the backside is connected to
the electrode C and serves as the counter electrode for applying the bias voltage.

An incoming ray of light produces pairs of charge carriers mainly in the undoped intrin-
sic layer, which are siphoned off by the field of the bias voltage and produce a current flow
to the connectors A and B. As the same voltage falls on both sides, UAC = UBC, the total
current flowing through C is divided by the reciprocals of the resistors RA and RB. On the
other hand, the resistors are proportional to the distances a and b; see Fig. 6.6.

Then, Ohm’s law U = RI results in

UAC = UBC ⇔ RA IA = RB IB (6.1)

⇔ IA
IB

=
RB

RA
=

b

a
=

D − a

a
=

D

a
− 1 (6.2)

⇒ a = D
IB

IA + IB
. (6.3)

This simple calculation of the one-dimensional position a of the incoming light from the
measured currents IA and IB can be realized by a simple analog circuit. There are also two-
dimensional PSD sensors, which can measure the x and y position of the incoming ray of
light [15]; see Fig. 6.7.
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Figure 6.6. Equivalent circuit diagram for the position sensitive detector of Fig. 6.5. The illuminated point on the
light sensitive layer serves as a photodiode and thus as a photocurrent generator PhG with a parallel circuit of an
ideal diode Di, an internal resistance Ri, and the junction capacitance Cj, which do not have any influence on the
ratio IA

IB
. The two regions a and b, which are not illuminated, act like two resistors RA and RB dividing the total

current I0 into two signal currents IA and IB.

Irradiated
point of light

Figure 6.7. Sketch of a two-dimensional PSD sensor seen from above.

6.66.6 Charge-coupled device (CCD)
Nowadays, it is mostly CCD cameras that are used for image acquisition. A charge-coupled
device (CCD) sensor consists of a geometrically very exact grid of light sensitive cells, as in
Fig. 6.8. The photons striking the semiconductor material produce electron–hole pairs. The
electrons are accumulated in a space-charge region. The single pixels do not directly touch
each other, but are separated by bars (bold lines in Fig. 6.8(b)) and potential barriers in order
to prevent the charge carriers from reaching adjacent cells.

The dark-gray elements represent horizontal and vertical shift registers, which allow a
charge transport on the chip. Therefore, at least one of the three single elements, which are
denoted by the thin lines in Fig. 6.8(b), forms a potential barrier (three-phase shift regis-
ter). By appropriately driving the device, the potential barriers can be moved and the single
charges can be read out in the form of an analog shift register (bucket-brigade circuit); see
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Figure 6.8. Schematic of an interline-transfer sensor: (a) A single pixel viewed from the side; (b) The complete sensor,
viewed from above.
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Figure 6.9. Operation of an interline-transfer sensor.
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Table 6.2. Common characteristics of commercially available cameras for machine vision.

Number of pixels 640× 480 – 4800× 3200

Size of pixel ca. 2× 2 μm2 – 10× 10 μm2

Electronic shutter speed ca. 10 μs – several seconds
(exposure time) (long-exposure)

Frame rate (decreases for increasing image size) ca. 3 Hz – 200 Hz

SNR 50 dB – 60 dB

Fig. 6.9: after the sensor has been exposed for a specified period of time and the produced
charge carriers have been integrated, the collected charge of all the pixels is transferred to
the adjacent, shaded vertical readout registers. Afterwards, the charges are moved into the
shaded horizontal shift register line by line, which is then read out step by step [9]. After
each complete flushing of the horizontal readout register, it is filled again by vertical shifting
the next row until the sensor is completely read out.

The described chip is an interline-transfer sensor [12]. It is afflicted with the disadvan-
tage that about one-half of the area is covered by the non light-sensitive shift registers. In
contrast, for full-frame sensors, nearly the whole area of the chip serves as a photo detec-
tor. For the readout process, the charges are shifted through the light sensitive elements.
Therefore, an exposure during the readout process distorts the captured image. Thus, the
control of the exposure time is not realized electronically on the chip (electronic shutter), but
by a mechanical stop. The proportion of the whole area of the chip ocuppied by the light
sensitive regions is called the fill factor.

The advantages of CCD sensors are their small size, low weight and price, the very accu-
rate geometry of the pixels, and their robustness to shocks and electromagnetic fields.

Table 6.2 shows the usual characteristics for commercially available CCD cameras that
are used in machine vision. Besides these, there are special CCD chips with very extreme
properties: up to about 100 megapixels, even shorter exposure times, higher SNR due to
active cooling, and so on.

In contrast to other integrated circuits (ICs), a further miniaturization of camera chips is
counterproductive: the size of the pixels and their distance have to be significantly larger
than the wavelength. Smaller pixels will yield no additional information. Besides, the light
sensitivity is proportional to the pixel area, so that miniaturization would lead to a reduced
sensitivity and increased quantum noise (cf. Sec. 2.3).

6.76.7 Complementary metal-oxide-semiconductor (CMOS) sensors
The relevance of CMOS cameras is steadily increasing for automated visual inspection as
well as for optical measurement. CMOS is an abbreviation for ‘complementary metal oxide
semiconductor,’ a common design principle for semiconductor circuits. By using the same
cost-efficient manufacturing process, the controlling and processing electronics can be in-
tegrated in the CMOS camera chip, whereas separate control units are necessary for CCD
sensors.
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Figure 6.10. Schematic of a CMOS sensor chip with address lines and a separate amplification step per pixel [3].

The detection of photons is based on the same principle as in CCD sensors. However,
the readout methods are different: the charge storages of the single pixels can be directly
controlled by transistors and address lines (Fig. 6.10). This allows the readout of an arbitrary
image region with a higher frequency. There is no need for shift registers. Often, there is
already an amplification circuit inside the pixel as a first processing step. However, this
might also be a drawback, as the amplification factors of the single pixels can be different
because of manufacturing tolerances.

The main advantages of CMOS image sensors over CCD image sensors are the free and
random access to the pixels, the large temperature range, the low power consumption, the
low production costs, the need for only one operating voltage, the absence of blooming,
smear, or time lag, and the possibility of integrating electronic circuits on-chip.

The technical characteristics of common CMOS camera sensors are quite equal to those
of CCD cameras (Table 6.2).

High-dynamic range CMOS sensors
With help of the CMOS technology, sensors with a significantly larger dynamic range can
be realized. Such high dynamic range CMOS (HDRC) sensors are especially suitable for
outdoor applications, where the light’s intensity might vary notably between direct sunlight
and shadows. But there are also tasks in automated visual inspection that need a high dy-
namic range (i.e., a large range of values), as for the online control of welding processes, for
example. For HDRC sensors, the relation between the number of absorbed photons and the
output signal of the sensor is no longer linear, but has a logarithmic characteristic. This is
achieved by letting the photo current induced by the light drain off over a pn junction in
the forward direction. As with diodes, the current increases exponentially with the voltage
on the one hand and the voltage is logarithmically related to the photo current on the other
hand. A dynamic range of about 120 dB can be typically achieved with HDRC sensors.
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6.86.8 Line-scan cameras
Line-scan cameras only use a single line of photosensitive elements, where the sampling
aperture is given by the size of the light sensitive area and Δx by the distance between the
single elements. Scanning in the y direction (column direction) is carried out by moving the
object relative to the sensor, e.g., for the observation of conveyor belts in assembly lines with
a fixed line-scan camera or for the scanning of photographic material with a moving line in
a flatbed scanner. The row distance Δy is given by the relative speed of the object and the
sensor, as well as by the rate at which the lines are read out.

Example 6.1 (Image acquired by a line-scan camera): Figure 6.11 shows an image of a cylinder
wall of a combustion engine, which has been acquired with a ‘cylinder scanner’ perform-
ing an rotational azimuthal movement of the line-scan camera at a constant distance from
the cylinder wall.

Figure 6.11. Image of a cylinder wall of a combustion engine, captured with a line-scan camera (source: Breitmeier
Messtechnik GmbH).

With a line-scan camera, high resolutions of typically up to 16,384 pixels can be achieved,
as they usually have a higher number of pixels than a single line of an area sensor. Besides,
it is easier to provide a targeted and homogeneous illumination [20]. Hence, the use of
line-scan cameras is especially suitable for the automated visual inspection of continuous
products on conveyor belts. The camera can be clocked by an incremental encoder, which
measures the speed of the conveyor belt. By this means, a single image line always corre-
sponds to the same spatial movement independently of the belt’s speed. If an area camera is
used for such an application, the captured images have to be registered after the recording.

Multiline-scan cameras are also commercially available: they contain several lines lo-
cated near each other. The lines are equipped with different optical filters, in order to gain
multichannel information such as multispectral or hyperspectral images. There are also hy-
perspectral line-scan cameras, with several hundred lines.

Similar to area sensors (see Sections 6.6 and 6.7), line-scan cameras can be realized with
either CCD or CMOS technology.

6.96.9 Color sensors and color cameras
Common color cameras provide the three color channels red, green and blue for every image
pixel. For such cameras, usually a color filter is placed in front of the camera chip, letting
only one of the three base colors pass for each pixel. The colors are arranged so that they
are located close to each other on the CCD or CMOS chip. The commonly used Bayer filter
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Figure 6.12. Color cameras. (a) Arrangement of colors for a Bayer filter; (b) 3-Chip color camera with dichroic beam
splitters.

uses a 2×2 section of the pixel matrix to form a macro pixel; see Fig. 6.12(a). A macro pixel
contains two green pixels, one red pixel, and one blue pixel, since the human eye is more
sensitive to green light. So actually, only one color channel per pixel is captured. The other
two channels have to be interpolated from neighboring pixels, which is called demosaicing
[14]. For line-scan cameras, it is sensible to use a separate line per color channel.

The disadvantages of macro pixel color cameras are their lower lateral resolution and
the loss of light caused by the color filters. Thus, premium cameras sometimes use another
principle for recording colors. The incident light is split into the three color components by
using dichroic beam splitters [2, 10]. Some wavelengths are reflected by these beam split-
ters, and others are transmitted. The dichroic effect is based on the interference on multiple
thin dielectric layers. By using suitable prisms, each color component is directed to its cor-
responding detector; see Fig. 6.12(b). There is no need for an interpolation. The camera’s
optics and mechanics have to be manufactured and adjusted in a very precise way, so that
the positions of the pixels of the three components match exactly.

6.10 6.10 Infrared cameras
Cameras for the infrared part of the spectrum can mainly be realized by means of the fol-
lowing two principles: as an array of thermometers (bolometer cameras), or as quantum
detectors analogous to the camera sensors for visible light (photonic cameras).

The infrared spectrum can be further divided into several bands; see Table 6.3. The near
infrared is directly adjacent to the visible light and can still be detected with silicon image
sensors. For longer wavelengths, other materials have to be used for quantum detectors.
Finally, the far infrared is followed by the THz-part of the spectrum.

An important application of infrared images is measuring the temperature distribu-
tion of an object with so-called thermographic cameras in the medium-wavelength infrared
(MWIR) and the long-wavelength infrared (LWIR) (see Table 6.3). Any object emits infrared
radiation, with increasing intensity for higher temperatures (see Sec. 2.7.1.1). Thus, an in-
frared image can be used to calculate the spatial temperature distribution of the observed



6.10 Infrared cameras 217

Table 6.3. Different wavelength regions of the infrared spectrum.

Description Abbreviation λ in μm

Near infrared NIR 0.75 – 1.4

Short-wavelength infrared SWIR 1.4 – 3.0

Medium-wavelength infrared MWIR 3.0 – 8.0

Long-wavelength infrared LWIR 8.0 – 15.0

Far infrared FIR 15.0 – 1000

Table 6.4. Typical operating characteristics of uncooled bolometer cameras [8].

Number of pixels 640× 480

Size of pixel 20× 20 μm2 – 50× 50 μm2

NETD ca. 70 mK – 100 mK

Material VOx (Vanadium oxide), Si (Silicon), Ti (Titanium)

object, if its material properties are known. Some manufacturing errors can be detected by
the use of this temperature distribution [19].

6.10.1 Bolometer cameras
The measuring principle of bolometers is based on the temperature dependency of the elec-
tric resistance. The black detector area is heated by the absorption of electromagnetic radi-
ation (cf. Sec. 2.6.1). The measured quantity is the electric resistance of a metal or a semi-
conductor inside the detector [5]. The measurement gives information on the intensity of
the incident radiation. Hence, in contrast to quantum detectors, bolometers are based on an
indirect principle of operation (Fig. 6.13). Point sensors as well as area sensors can be con-
structed that employ the principle of the bolometer. The sensor’s temperature is regulated
to the desired value, which can be on the order of room temperature. Each of the thermal
resistors is supplied with a constant current, so that the temperature dependent change of
its resistance leads to a proportional change of the voltage. Because of their principle of op-
eration, bolometers suffer from a certain lag, and neighboring pixels might influence each
other (crosstalk) because of heat conductance.

Bolometers are broadband sensors, which do not have a cutoff wavelength and can cap-
ture the spectrum from the near infrared up to THz radiation. They can be operated without
active cooling, so that they can be used to produce cheap infrared cameras. Instead of the
SNR, the so-called NETD (noise equivalent temperature difference) is commonly used to
judge the signal quality of infrared cameras [8]. Table 6.4 shows the typical operating char-
acteristics of an uncooled bolometer camera.

6.10.2 Infrared quantum detector cameras
An alternative to bolometers in the near and medium-wavelength infrared is given by semi-
conductor sensors that—among other principles—use the inner photoelectric effect to detect
electromagnetic radiation. Special semiconductor materials with special dopings allow even
infrared photons with low energies to produce electron–hole pairs [8, 19]. The principle of
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Figure 6.13. Indirect principle of operation of a bolometer sensor compared to the direct principle of operation of a
quantum detector [8].

operation is the same as that of photodiodes: absorbed IR photons lead to an electric current
proportional to the number of photons, because of the inner photoelectric effect.

Since at room temperature there are many charge carriers which are generated thermally,
the sensors have to be intensively cooled. For the detection of medium-wavelength infrared
(MWIR), temperatures of about 140 K are necessary and even 80 K for long-wavelength in-
frared (LWIR). The cooling is performed with liquid nitrogen or electrically driven Stirling
engines, which are cheaper and operationally safer.

Depending on the application, semiconductor materials with different cutoff wave-
lengths are available (Table 6.5). Some materials can be combined to form a dual band
sensor, so that two different spectral ranges can be measured simultaneously, resulting in
a two-channel image [6]. As an example, the combination of gallium arsenide and alu-
minum gallium arsenide can be used to detect medium- and long-wavelength infrared. For

Table 6.5. Properties of infrared quantum detector cameras: Cutoff wavelength λmax, NETD for an object tempera-
ture of 300 K, distance of pixel in μm, available array size (according to [8]).

Material λmax NETD/mK Pixel distance Number of pixels

HgCdTe (Mercury cadmium
telluride)

12.0 μm 10 15–40 1280× 1024

InSb (Indium antimonide) 5.0 μm 20 15–50 1024× 1024

GaAs/AlGaAs (Gallium
arsenide)

9.5 μm 10 / 30 25–50 640× 512

PtSi (Platinum silicide) 5.4 μm 60 20–25 800× 512
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Figure 6.14. Theoretical and real sensitivity of quantum detectors with respect to the wavelength [4].

a constant quantum efficiency, the sensitivity of quantum detectors increases with the wave-
length, because then a constant intensity results in more flowing photons (Fig. 6.14).

6.116.11 Quality criteria for image sensors
There are numerous criteria that can be used to judge the performance of image sensors, and
especially semiconductor sensors [9, 18]. Some of these criteria are presented here:

Quantum efficiency: the quantum efficiency is the relation of produced electrons to the
number of striking photons.

Full well capacity: the full well capacity denotes the maximum number of electrons that
can be collected by a single pixel (cf. Sec. 2.3).

Fill factor: ratio of the area of the light sensitive regions to the area of the entire chip (cf.
Sec. 6.6).

Noise ratio: there are different sources of electrical noise in image sensors. Noise can be
produced during the transport of charges or inside the readout amplifier. The noise can
be quantified as the relation of the output signal to its standard deviation.

Dark current: the dark current is the signal of the image sensor without any illumination.
An ideal sensor would produce a dark current that is equal to zero, which is not the case
for real sensors, especially because of thermal noise. The dark current can be significantly
reduced by actively cooling the sensor [9].

Dynamic range: a sensor’s dynamic range is the relation of the maximum output signal
to the standard deviation of the dark current.

Homogeneity: ideally, all pixels of a sensor behave identically. However, manufacturing
tolerances result in different amplifications and noise performances (fixed pattern noise).

Artifacts: depending on the construction principle of the image sensor, disturbing arti-
facts can arise in the image under certain circumstances.

Blooming is an effect where the charges of overexposed pixel flow to neighboring pixels,
which will then produce an output signal which is too high.

Smear consists of stripes in the image which are caused by the shift registers of the CCD
chips.
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Addressing: some sensors allow a high frequency readout of selected image regions.
Other sensors allow aggregating neighboring pixel on the level of charges, resulting in
an undersampled image.

Power consumption.

It is not easy to compare CMOS and CCD sensors in terms of these criteria, as the original
disadvantages of these technologies have more and more been overcome because of fur-
ther development [13]. CMOS sensors have the advantage in terms of power consumption,
addressing, and dynamic range (especially HDRC sensors), and are less prone to artifacts,
blooming, and smear, due to their construction. CCD chips stand out for a higher homo-
geneity and a lower dark current.
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7.17.1 Introduction
This chapter covers different methods for image acquisition in automated visual inspection.
Selecting the appropriate acquisition method depends on the properties of interest of the
investigated object (Fig. 7.1):

optical properties like reflectance, color, texture, and index of refraction as a function of
position, or
geometrical properties like the three-dimensional shape of the object.

Methods for measuring the reflectance, such as homogeneous illumination methods as well
as laser and flatbed scanners, will be covered in Sec. 7.2. In addition, the measurement of the
complex index of refraction will be discussed, which can be used for material classification
(Fig. 7.2).

There are numerous methods for capturing the 3D shape of an object; they rely on three
different measurement principles (Fig. 7.3):

Triangulation,
intensity, or
length of the optical path (i.e., time of flight).

Section 7.3 covers the capturing of 3D shapes, and is structured according to the above list-
ing. The triangulation methods are further divided into passive (especially stereo) and active
methods. The latter use targeted and sometimes patterned illumination in order to capture
the object’s shape.

Intensity based methods detect changes in the intensity of the scattered and transmit-
ted light in order to reconstruct the object’s shape. Examples include silhouette capturing,
capturing the shape from shading, focus sensors, and confocal microscopy.

Time of flight methods measure the period of time it takes for the light to reach the object
and return to the detector. The elapsed time is used to calculate the distance to the object.

Object
properties

Optical
properties

Spatial
appearance
(3D shape)

BRDF

Complex
refraction index

Fluorescence

Figure 7.1. Object properties that can be optically measured.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_7,
© Springer-Verlag Berlin Heidelberg 2016
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Figure 7.2. Taxonomy of methods for capturing optical properties.

Instead of directly measuring the time of flight, the resulting shift of phase can be measured.
This can be done, e.g., by exploiting interference effects, which have been covered in Sec. 2.2.

Besides an object’s macroscopic 3D shape, sometimes also its inner structures are of inter-
est. Methods like thermal imaging, terahertz and X-ray imaging, as well as photoelasticity,
allow the detection of defects in the interior of an object (Sec. 7.4). Later on, some special
image acquisition and illumination methods will be covered in Sec. 7.5.

Finally, Sec. 7.6 will present some common principles which can be used for reflectance
measurements as well as for 3D shape capturing. These include inverse illumination meth-
ods and approaches compensating for the background illumination.

7.2 7.2 Measuring optical properties
The optical properties of an object are determined by its interaction with light in accordance
with the phenomena described in Sec. 2.6. To begin with, the measurement of the complex
index of refraction will be covered; this relies on the physical basics from Chap. 2. By means
of the complex index of refraction, the investigated material can be classified and layer thick-
nesses can be determined. Afterwards, fluorescence will be briefly discussed, which can also
be used for material classification.

Section 7.2.3 presents methods for measuring the reflectance that can be used for defect
detection, for example. Readers who are mainly interested in that topic may at first skip
Sections 7.2.1 and 7.2.2, as they are not necessary for understanding the subsequent content.
Finally, Sec. 7.2.5 covers methods based on scattered light that give information about an
object’s reflectance as well as about its microscopic structure, and thus about its 3D shape.
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Figure 7.3. Taxonomy of methods for capturing 3D shape.
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7.2.1 Measurement of the complex index of refraction
As described in Sec. 2.6.6.1, the index of refraction of electrically conducting materials can
be considered as a complex number. The complex index of refraction n is a characteristic
material property. Thus, by measuring the complex index of refraction, especially metals
can be classified and sorted.

7.2.1.1 Reflectometry
Reflectometry is a method for measuring layer thicknesses and indices of refraction. For
spectroscopic reflectometry, the Fresnel reflectances, which describe the relation between
the reflected and the incident intensities, are obtained for different wavelengths. As a gener-
alization of the definition in Sec. 2.6.5, the absolute reflectance can be measured, describing
the relation between the reflected and incident intensities of light for an object with several
(boundary) layers. The wavelengths used can range from ultraviolet light up to infrared
light: λ ∈ [200 nm, 2000 nm]. The parameter estimation is done by using a layer model con-
taining the thicknesses and the indices of refraction of the layers as parameters. By adjusting
the method to conform with the measured data, the quantities sought can be estimated by a
regression analysis.

Typical reflectometers illuminate and observe the surface of interest perpendicularly.
Therefore, the distinction between s and p waves is omitted, as the Fresnel reflectances
of perpendicular and parallel polarization are equal for an angle of incidence of θ = 0◦:
Rs

12 = Rp
12 (see Ex. 2.10). Therefore, the mathematical relations are simplified because of the

perpendicular orientation with respect to the surface.

Example 7.1 (Layer model): A layer model might be defined as follows (Fig. 7.4): the air be-
tween the measurement instrument and the object’s surface is the first layer. Its index of
refraction is n1 = n1 ≈ 1. The thickness of the adjacent layer consisting of medium 2 is
denoted by h and its complex index of refraction by n2. The next material is medium 3,
with a complex index of refraction n3. The observation direction is perpendicular to the
surface, so that the angles of incidence are θ1 = θ2 = θ3 = 0.

Medium 1
Medium 2

Medium 3

h

Figure 7.4. Layer model for reflectometry.

If cameras are used as the detectors, a spatially resolved reflectometry is possible. Figure 7.5
shows a setup for reflectometry with two cameras. The scene is illuminated by a monochro-
matic light source providing parallel light of intensity I(x, λ), whose wavelength λ can be
adjusted. A beam splitter causes half of this light to be transmitted and the other half to be
reflected. The reflected part of the light illuminates the test object with intensity 1

2I(x, λ).
The light that is reflected by the object is captured by a camera with a telecentric lens sys-
tem. The measured intensity is denoted by I1(x, λ). The part that is transmitted by the beam
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Figure 7.5. Measurement setup for spatially resolved reflectometry.

splitter directly reaches a second camera with a telecentric lens system, which measures the
intensity I2(x, λ) =

1
2I(x, λ). Radiometrically calibrating those two cameras, so that the mea-

sured gray values can be interpreted as intensity values, results in the following formula for
the absolute reflectance:

R(x, λ) = 2
I1(x, λ)

I2(x, λ)
. (7.1)

There are two alternatives to the described setup:

The second camera is omitted. The intensity I1 of the test object is compared to the
intensity I1,Ref measured for a reference sample. Then, the relative reflectance can be
calculated:

Rrel(x, λ) =
I1(x, λ)

I1,Ref(x, λ)
. (7.2)

Instead of monochromatic light, broadband light can be used in combination with a spec-
trally resolving camera (hyperspectral camera), see Sec. 7.2.4. However, only one line of
the object’s surface can then be investigated per image. For a complete investigation, the
surface has to be scanned in a direction perpendicular to this scan line.

The reflection caused by the described layer model can be quantitatively modeled. Between
the two interfaces, the light can be reflected multiple times and its phase shifted by β when
passing layer 2. This results in a total phase shift of 2β, as the layer is traversed twice. The
superposition of the phase shifted, reflected light waves can be calculated by means of a
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geometric series [166]. For light coming in perpendicularly, this results in

R =

∣∣∣∣ r12 + r23 e
−j2β

1 + r12 r23 e−j2β

∣∣∣∣2 , (7.3)

β := 2π
h

λ
n2 , (7.4)

where the rij denote the Fresnel coefficients of reflection in accordance with Eqs. (2.215) and
(2.217) in Chap. 2.

The absolute reflectance R = R(x, λ, h, n2, n3) is a function of the model parameters h,
n2 and n3. These parameters are estimated by means of a regression analysis:

(ĥ, n̂2, n̂3) = argmin
h,n2,n3

λmax∑
λ=λmin

(Rmeasured(x, λ)−Rmodel(x, λ, h, n2, n3))
2 . (7.5)

The spectral sampling is done for discrete wavelengths λ ∈ [λmin, λmax]. If n2 or n3 is known,
the regression analysis can be simplified accordingly. The special case of a single dielectric
layer n2 surrounded by air with n1 ≈ 1 yields

R =

(
n2 − 1

n2 + 1

)2

(7.6)

with the closed-form solution [84]

n2 =
1 +
√
R

1−
√
R

. (7.7)

Example 7.2 (Reflectance): We now introduce a model for a silicon dioxide layer (SiO2) with
a thickness of h = 2 μm on a silicon crystal (Si) [166, S. 59].

Medium 1 Air n1 = 1

Medium 2 SiO2 n2 = n2 = 1.46

Medium 3 Si n3 = 3.88− j 0.02 (for λ = 633 nm)
Figure 7.6 shows the reflectance R in accordance with (7.3) for this model with respect to
the wavelength λ.

The measured reflectance varies periodically with respect to the wavelength (Fig. 7.6). The
maxima (minima) of the intensity are caused by constructive (destructive) interference of the
waves reflected by the two interfaces. In the case of real-valued indices of refraction n1 = n1,
n2 = n2 and n3 = n3 and in accordance with (2.121), there are maxima for

cos 2β = 1 , β = kπ , k ∈ Z , (7.8)

and minima for cos 2β = −1, β = kπ + π
2 . These maxima (minima) are located on the upper

(lower) envelope Ru(λ) (Rl(λ)) of the reflectance:

Ru(λ) =

∣∣∣∣n3 − n1

n3 + n1

∣∣∣∣2 , (7.9)

Rl(λ) =

∣∣∣∣n1 n3 − n2
2

n1 n3 + n2
2

∣∣∣∣2 . (7.10)
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Figure 7.6. Reflectance for the model of Ex. 7.2 as well as the upper and lower envelope with respect to the wave-
length λ.

These formulas hold for the practically relevant case of n1 < n2 < n3. For the case of
n1 < n3 < n2, the locations of the minima and maxima as well as the upper and lower
envelope are interchanged [72].

If medium 1 is air, with n1 ≈ 1, the following simplification results:

Ru(λ) =

∣∣∣∣n3 − 1

n3 + 1

∣∣∣∣2 , (7.11)

Rl(λ) =

∣∣∣∣n3 − n2
2

n3 + n2
2

∣∣∣∣2 . (7.12)

The upper envelope corresponds to the reflection on medium 3 in the absence of layer 2.
The indices of refraction n2 and n3 depend on the wavelength λ. For common materials,

the indices of refraction are well known functions of the wavelength [106, 129].
For a dielectric medium 2 with n2 = n2, Eq. (7.8) yields the following simple formula for

two consecutive maxima (minima) of the reflectance with wavelengths λi and λi+1,

2
h

λi+1
n2 = k , (7.13)

2
h

λi
n2 = k + 1 , (7.14)

resulting in the following approximation for the thickness h of the layer:

h ≈ λi λi+1

2n2 (λi+1 − λi)
(7.15)

The formula would be exact if n2 and n3 did not depend on λ [166].
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7.2.1.2 Ellipsometry
Ellipsometric methods can be used to determine the complex index of refraction n of a mate-
rial [140, 165, 166]. In addition, the thickness h of thin layers can be measured together with
their complex indices of refraction. The layers are required to be thinner than about 4 times
the penetration depth (see Sec. 2.6.6.1): h < 4δ.

The investigated material is illuminated with light of known polarization. Afterwards,
the polarization state of the reflected light1 is measured. The change of the polarization state
can be used to calculate the material’s complex index of refraction.

Ellipsometry measures the complex quotient

ρ :=
rp12
rs12

(7.16)

of the Fresnel reflection coefficients rp12 and rs12 for light polarized parallel or perpendicu-
larly with respect to the plane of incidence (see Sec. 2.6.5). The complex number ρ can be
expressed in polar coordinates:

ρ = tanΨ e jΔ (7.17)

with

Ψ := arctan
|rp12|
|rs12|

Ψ ∈ [0, π
2 ) (7.18)

Δ := Δϕi −Δϕr Δ ∈ [0, 2π) , (7.19)

where Δϕi denotes the difference of phase of the p and s waves of the incident light and
Δϕr is the corresponding phase difference of the reflected wave [166]. The quantities Ψ

and Δ describe the change of the polarization ellipse caused by the reflection. In the field
of ellipsometry, they are usually determined by numerically solving a system of nonlinear
equations.

For the identification of materials, an angle of incidence of θi > 0 is necessary, as for
perpendicularly incident light one has rp12 = rs12 and therefore in (7.16), ρ = 1 independently
of the material’s index of refraction. The ellipsometer has to be carefully adjusted so that
the angle of incidence is equal to the observation angle, θi = θr. Furthermore, the angle of
incidence has to be known, in order to make possible the determination of the properties of
the material and the thicknesses of the layers. This is why the surface normal correspond-
ing to the point of observation has to be known. Hence, the usual ellipsometers can only
investigate planar surfaces. Completely capturing arbitrarily shaped objects requires the
simultaneous measurement of the surface relief [117].

For material classification under uncontrolled geometric conditions, as in sorting bulk
goods, the reflectometric or ellipsometric analysis of single bright reflections can be suffi-
cient. For complex surfaces, such reflections arise whenever the local surface normal, the
direction of incidence, and the direction of observation fulfill the law of reflection. Then, the
geometric constellation is known for the corresponding points and an ellipsometric analysis
is possible. This partial information might be beneficial for the identification of materials,
even if no completely controlled ellipsometry or reflectometry can be performed.

1Related methods observe the light that is transmitted by thin layers.
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Different measurement setups and methods are common for ellipsometry. Now, two
possibilities will be presented:

The null ellipsometer: The null ellipsometer uses a monochromatic, unpolarized light
source. The incident light goes through a linear polarizer with an adjustable angle of ro-
tation γ1 and a retardation plate, typically a λ

4 plate. After being reflected by the test object,
the light goes through another linear polarizer with an angle of rotation of γ2 to reach a
detector (Fig. 7.7). This second polarizer is called the analyzer.

Light source
(unpolarized)

Linear
polarizer

Linear polarizer
(analyzer)

Detector

Sample

θi θr

Linearly
polarized

light

Linearly
polarized

light

Elliptically
polarized

light

Figure 7.7. Setup of a null ellipsometer (adapted from [166]).

For the ellipsometric measurement, the angles of rotation γ1 and γ2 are adjusted, so that
no more light reaches the detector. As the resulting intensity measured by the detector is
null, this method is called ‘null’ ellipsometer.

The combination of a linear polarizer and a λ
4 plate can be used to produce light with

an arbitrary polarization state (ψ, χ) (Sec. 2.2.2.4). In general, the null ellipsometer uses
light which is elliptically polarized in such a way that it becomes linearly polarized by the
reflection at the object’s surface. The polarization direction can then be determined with the
analyzer.

The calculus of Mueller matrices of Sec. 2.2.2.4 leads to the following description of the
null ellipsometer:

MLin(γ2)MObj(Ψ,Δ)MQWP(α)MLin(γ1)Sunp = 0 . (7.20)

Here, the Mueller matrices MLin(γ) of the linear polarizers are given by (2.73), the Mueller
matrix MQWP(α) of the rotated retardation plates by (2.77) and (2.70), and the Stokes vector
Sunp of the unpolarized light source by (2.59). The reflection at the test object is modeled
by the Mueller matrix MObj(Ψ,Δ). This matrix is obtained as the product of the matrix
MWP(Δ) from (2.76), describing the retardation effect of the conducting material, with the
matrix MRefl(R

s
12, R

p
12) from (2.236), describing the reflection of the light intensity at the

object’s surface [35, 165]:

MObj(Ψ,Δ) = MWP(Δ)MRefl(R
s
12, R

p
12) = MRefl(R

s
12, R

p
12)MWP(Δ)

=
1

2

⎛⎜⎜⎜⎝
Rs

12 +Rp
12 Rp

12 −Rs
12 0 0
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12 Rs
12 +Rp

12 0 0
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√
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12R
p
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=
Rs

12

2

⎛⎜⎜⎜⎝
1+tan2 Ψ −1+tan2 Ψ 0 0

−1+tan2 Ψ 1+tan2 Ψ 0 0

0 0 2 tanΨ 0

0 0 0 2 tanΨ

⎞⎟⎟⎟⎠ MWP(Δ) (7.21)

=
Rs

12

2

⎛⎜⎜⎜⎝
1+tan2 Ψ −1+tan2 Ψ 0 0

−1+tan2 Ψ 1+tan2 Ψ 0 0

0 0 2 tanΨ cosΔ 2 tanΨ sinΔ

0 0 −2 tanΨ sinΔ 2 tanΨ cosΔ

⎞⎟⎟⎟⎠ (7.22)

These equations are obtained by means of the definition of Ψ from (7.18). The parameters
Ψ and Δ are the only unknowns in (7.20), as the common pre-factor Rs

12 can be eliminated.
Therefore, the system of equations (7.20) leads to a formula for calculating the sought for
parameters Ψ and Δ. If the retardation plate is rotated by an angle of α = −45◦ with respect
to the optical axis, the following simple formulas apply for the angles of rotation γ1 and γ2
of the linear polarizer [117, 165, 171]:

Ψ = |γ2| , (7.23)

Δ = 2γ1 +
π
2 . (7.24)

These equations can be verified by insertion into (7.20).

An ellipsometer with a rotating analyzer: For an ellipsometer with a rotating analyzer,
a series of measurements of intensities is recorded for discrete angles of rotation γi of the
analyzer. The setup consists of a monochromatic light source yielding unpolarized light and
a fixed linear polarizer, so that the investigated material sample is illuminated with linearly
polarized light of a fixed polarization plane (Fig. 7.8). The reflected light reaches the detector
by passing through the rotating analyzer. The intensities I(γi) measured at the points of time
ti, i = 1, . . . , N correspond to the different angles γi = γ(ti) of the analyzer.

Light source
(unpolarized)

Polarizer Analyzer
(rotating)

Detector

Sample

θi θr

Linearly
polarized

light Linearly
polarized

light

Elliptically
polarized

light

γ(t)

Figure 7.8. Setup of an ellipsometer with rotating analyzer (adapted from [166]).

The Mueller matrices lead to the following system of equations

(1, 0, 0, 0)MLin(γi)MObj(Ψ,Δ)SLin = I(γi) i = 1, . . . , N, N ≥ 2 .

As with the null ellipsometer, the Mueller matrices of the analyzer MLin(γi) and of the reflec-
tion MObj(Ψ,Δ) are given by (2.73) and (7.22), respectively. The Stokes vector SLin describes
the linearly polarized light leaving the polarizer (cf. Sec. 2.2.2.2). The multiplication by the
row vector (1, 0, 0, 0) models the measurement of the intensities, which are encoded in the
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first component S0 of the resulting Stokes vector S. For the null ellipsometer, again only the
intensity S0 is measured, but because of (2.62), S0 = 0 already implies S = 0.

For N ≥ 2 measurements, the resulting system of nonlinear equations is over-
determined, so that the parameters Ψ and Δ can be numerically calculated. A disadvan-
tage of the ellipsometer with rotating analyzer is the reduced measurement sensitivity for
Δ ≈ k π, k ∈ Z, as the quantities of interest are related via cosΔ to the measurements and
the minimum gradient of the cosine function is located at those positions. Unfortunately,
exactly those regions are of particular interest for the identification of materials (Fig. 7.9).
The null ellipsometer avoids that problem by using the retardation plate [117, 166].

For both variants of ellipsometers shown, a camera can also be used as a detector, so that
Ψ and Δ can be obtained as a function of position. In this case, the result is a two-channel
image with a Ψ and a Δ channel. This method is called imaging ellipsometry [171]. The
imaging lens is placed between the test object and the analyzer.

Application to material classification: The measured quantities Ψ and Δ are connected with
the Fresnel coefficients of reflection rs12, rp12 as follows:

tanΨ =
|rp12|
|rs12|

, (7.25)

tanΔ =
�
{

rp12
rs12

}
�
{

rp12
rs12

} . (7.26)

The coefficients of reflection are related with the complex indices of refraction n1, n2 as
described in Sec. 2.6.5. Therefore, the two parameters n, d of a complex index of refraction
can be obtained by numerically solving a system of nonlinear equations involving the two
measured quantities Ψ and Δ. A known n1 (in many applications it is n1 = n1 ≈ 1 for air)
results in the following conditional equation for n2 [166]:

n2 = n1 tan θ1

√
1− 4ρ sin2 θ1

(ρ+ 1)2
. (7.27)

Here, θ1 is the angle of incidence and ρ = tanΨ e jΔ is defined in by (7.17).
As the complex index of refraction is a characteristic material property, ellipsometry can

be of great use for material identification, especially for different metals. Possible applica-
tions might be related to the semiconductor industry as well as to sorting recyclable mate-
rials. Figure 7.9 and Table 7.1 show the material constants of different materials and com-
pounds.

For the reflection at non-conductive materials with real-valued indices of refraction, the
phase state of the light remains unchanged: for real-valued n, the Fresnel coefficients of
reflection are also real-valued, leading to Δ = 0 in (7.26).

Determination of layer thicknesses: Ellipsometry allows the simultaneous determination
of the thicknesses of the layers and of their complex indices of refraction.

Here, the simplest case of a single layer with a thickness of h and a complex index of
refraction n2 on a substrate with complex index of refraction n3 is considered (Fig. 7.10). A
medium is called a substrate if no reflections of its lower interface reach the measurement
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Figure 7.10. Multiple reflections at the boundaries of thin layers [166].
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Table 7.1. Complex index of refraction n = n − jd and characteristic ellipsometric quantities Ψ, Δ in degrees for
different metals, compounds and semiconductors (chemical elemental formula and name) for a wavelength of
λ = 633 nm. The provided values of Ψ and Δ are valid for an angle of incidence of θ1 = 70◦ in air, n1 = n1 ≈ 1

[166].

Material n d Ψ Δ

W (Tungsten) 3.64 2.91 24.62 134.13

Fe (Iron) 2.43 3.30 29.51 120.77

Pt (Platinum) 2.33 4.15 33.33 126.99

Cu (Copper) 0.25 3.41 43.14 107.90

Ag (Silver) 0.13 3.99 44.20 115.63

SiC (Silicon carbide) 2.63 0.00 1.40 0.00

TiO2 (Titanium oxide) 2.20 0.00 7.39 0.00

Si3N4 (Silicon nitride) 2.02 0.00 10.30 0.00

Al2O3 (Aluminum oxide) 1.77 0.00 14.84 0.00

SiO2 (Silicon dioxide) 1.46 0.00 21.67 0.00

AlAs (Aluminum arsenide) 3.11 0.00 3.95 180.00

InP (Indium phosphide) 3.54 0.31 8.45 161.95

Si (Silicon) 3.88 0.02 10.57 179.23

InAs (Indium arsenide) 3.96 0.61 12.35 159.24

InSb (Indium antimonide) 4.28 1.80 19.19 146.40

instrument. This is the case for an absorbing material, for example, as soon as the layer
thickness exceeds one multiple of the penetration depth.

Multiple reflections arise inside layer 2. Their sum can be calculated by a complex ge-
ometric series [166]. Irradiation originating from the medium with the complex index of
refraction n1 results in the following total coefficients of reflection:

rp123 =
rp12 + rp23 e

−j2β

1 + rp12 r
p
23 e

−j2β
, (7.28)

rs123 =
rs12 + rs23 e

−j2β

1 + rs12 r
s
23 e

−j2β
, (7.29)

β : =
2πh

λ
n2 cos θ2 , (7.30)

n1 sin θ1 = n2 sin θ2 . (7.31)

For a real n2, the coefficients of reflection and thus the characteristic ellipsometric quantities
are periodic with respect to the layer thickness h (Fig. 7.9). The period length is obtained for
β = π. In order to estimate the sought for quantities, several ellipsometric measurements
with light of different wavelengths are necessary. This method is called spectroscopic ellip-
sometry. The ellipsometric measurements Ψ(λ) and Δ(λ) for different vacuum wavelengths
λ provide sufficiently many equations so that n2, n3 and h can be numerically determined.
For a deeper discussion of spectroscopic ellipsometry, see [165, 166].



240 7. Methods of Image Acquisition

Reflectometry as well as ellipsometry can be used to measure layer thicknesses and com-
plex indices of refraction [9]. Reflectometry stands out for its low time demand and high
spatial resolution because of the perpendicular observation. Ellipsometry allows the mea-
surement of thin layers and is robust to rough surfaces, which can cause errors for the reflec-
tometric measurement of the coefficients of reflection, as the light that is scattered by rough
surfaces cannot be captured. Spectroscopic ellipsometry is superior for complicated tasks
with several layers of unknown materials [166].

7.2.2 Fluorescence
Another effect used for material classification is fluorescence: after being suitably excited,
some materials emit light with a characteristic spectrum.

In fluorescence, photons with a wavelength of λ are absorbed by the material and excite
bound electrons in such a way that they reach a higher energy level because of energy from
the absorbed light. The excited electrons do not immediately go back to their original energy
level, but take on an intermediate energy level at first. Therefore, photons are emitted that
are of a lower energy and thus of a longer wavelength λF. In this case, there occurs the
Stokes shift:

λF > λ . (7.32)

However, the excited electron states are also partially dissipated into thermal energy. Thus,
fewer photons are emitted than absorbed. This can be quantitatively expressed using the
quantum efficiency:

n(λF)

n(λ)
< 1 . (7.33)

Here, n(λ) denotes the number of absorbed photons of wavelength λ and n(λF), the number
of emitted photons of wavelength λF.

The emission is distributed omnidirectionally and uniformly, i.e., on average, the same
number of photons are emitted in every direction (Fig. 7.11).

Fluorescent
material

Excitation Emission

λ

λF

Figure 7.11. After an excitation with the wavelength λ, some mate-
rials omnidirectionally emit a characteristic fluorescence spectrum
of wavelengths λF > λ.

In fact, the transition does not take place between only two energy levels but between
energy bands, especially for liquids and solids. Even for monochromatic excitation, this
results in fluorescence spectra that can be temporally and spectrally investigated in order to
identify materials. This method is called fluorescence spectroscopy. The intensity spectrum
can be expressed as a sum of the spectra of the non-fluorescent reflection and the fluorescent
emission [178]. Thus, by using a monochromatic illumination, exclusively the fluorescence
spectrum is measured outside the wavelength of the illumination.
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After turning off the exciting light source, the fluorescent light does not instantly vanish,
but typically fades exponentially with time constants between 10−7 s and 10−8 s. For longer
time constants, the effect is called phosphorescence. There are materials with time constants
of minutes or even hours, which can be used to produce phosphorescent paint [73]. These
coatings save the absorbed light energy for a longer period of time and fluoresce in the
absence of illumination. Even under daylight, luminous paints can appear as very bright if
they emit more light in a certain spectral range than they absorb in the respective section of
the spectrum. This is possible, as incident short-wave light is converted into another spectral
range via fluorescence [66].

The fluorescent light has a notably lower intensity than the exciting light, because of the
omnidirectional emission on the one hand and the quantum efficiency on the other hand.

As the spectrum of the emitted fluorescent light depends on the material, it can be used
for material classification. An application is the sorting of minerals. Fig. 7.12 shows the
fluorescence colors of different minerals in the CIE XYZ color space (see Sec. 5.2.3). The
example from Fig. 7.13 shows that usually fluorescent light is not monochromatic, so that a
spectrally resolved measurement can further improve the classification results [118].

For material classification, short-wave light, e.g., blue, violet or ultraviolet (UV) light
or X-rays, are used for excitation because of (7.32). Figure 7.14 shows the fluorescence of
leaded glass under UV illumination. Depending on the amount of lead oxide, the observed
fluorescence effect is present with different intensities.
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Figure 7.12. Fluorescent colors of minerals [118]. In some cases, different samples of the same mineral from different
locations show notably different fluorescent colors. Besides, a material’s fluorescence can vary with the spectrum
of the exciting light. This figure shows measurements of short-wave UV light (SW, maximum of intensity for
λ = 254 nm) and long-wave UV light (LW, λ = 365 nm), that corresponds to the spectral lines of a mercury vapor
lamp.



242 7. Methods of Image Acquisition

 R
el

at
iv

e 
in

te
ns

ity
 (i

n 
%

)

450 480 510 540 570 600
0

20

40

60

80

100

Wavelength (in nm)

Figure 7.13. Fluorescence spectrum of the mineral liebigite [118].

(a) (b)

Figure 7.14. Shards of lead glass with varying amounts of lead oxide. (a) Image under white light illumination.
(b) Fluorescence under UV illumination, here UV-C illumination of wavelength λ = 254 nm (mercury line) and an
irradiance of 3 mW

cm2 .

7.2.3 Methods for measuring the reflectance
The reflectance properties of an object can be described by the bidirectional reflectance distri-
bution function (BRDF) with respect to all directions of incidence of light and all directions
of observation (see Sec. 4.3). However, for most applications, a subset of the information
contained in the BRDF is sufficient: in extreme cases, even a single reflection factor which
completely connects the irradiated light and the light captured by the sensor can be suffi-
cient. In general, the reflectance at different points of the object can differ, and even vary
with the wavelength of the light, so that it has to be considered as a function of position and
wavelength.

This section covers image acquisition and illumination methods that can be used to cap-
ture images which are mainly influenced by the position-dependent reflectance of a test
object’s surface.

For capturing the reflectance, methods allowing a homogeneous illumination of the
whole test object are needed in order to achieve a constant influence of the illumination
on the observed image. These include diffuse illumination, bright field illumination, and
dark field illumination, which will be covered in the following sections [14, 88].

Besides camera systems, laser scanners and flatbed scanners can also be used for captur-
ing the reflectance.

7.2.3.1 Diffuse illumination
Diffuse light has no distinct preferred direction and illuminates the scene homogeneously
from all directions.
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For example, diffuse illumination can be realized by an areal light source or the light scat-
tered by an illuminated homogeneous plane. For automated visual inspection, a diffusely
scattering screen in the shape of a hemisphere, which is illuminated by circularly arranged
light sources and reflectors, can be used, for example (see Fig. 7.15).

Light

Di usely

Figure 7.15. Diffuse illumination using a screen in the shape of a hemisphere (adapted from [14]).

In contrast to direct illumination, diffuse illumination causes no shadows. Even for in-
tensely reflecting surfaces, there are nearly none of the highlights that can be caused by the
direct reflection of the light source into the camera. However, there are still highlights at
positions where the surface normal, the illumination direction, and the sensor position obey
the law of reflection, but only with a significantly reduced contrast. Also, structures caused
by the surface relief only yield a low contrast, as the intensity of the illumination and thus
the luminance of the object only depend on the range of the solid angle through which a
point on the object’s surface can see the light source. Figure 7.17 compares directional and
diffuse illumination for an application to forensic science.

7.2.3.2 Bright-field illumination
For bright-field illumination, the luminous flux (cf. Chap. 4) of the light source is directly
aimed at the camera. A high light yield can be achieved by reflections of the illumination at
the test object’s surface, for example, see Fig. 7.16(a).

Object

Light
Camera

(a)

Camera

Semi-transparent mirror

Collimated
Light

Test object

(b)

Figure 7.16. Capturing reflectance in bright-field: (a) Principle of bright-field illumination; (b) Coaxial bright-field
illumination using a semi-transparent mirror [14].

A semi-transparent mirror can be used to realize a coaxial bright-field illumination. The
light is mirrored into the observation light path, allowing an unshadowed view into cavities,
see Fig. 7.16(b). Such semi- or partially transparent mirrors, as well as beam splitters, are
often needed for setting up image acquisition systems. They reflect half of the incoming
light (or some other fixed ratio) and transmit the remaining part.

Alternatively to mirroring the optical path, the camera can be aimed directly at the light
source. The test object is located between the light source and the camera, so that shad-
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(a) Directional illumination (b) Directional illumination

(c) Directional illumination (d) Diffuse illumination

Figure 7.17. Images of the mark left by a firing pin on the back of a bullet casing, taken for automatically identifying
firearms: (a)–(c) Directional illumination; (d) Diffuse illumination.

ows are captured. This setup can be used to detect defects in the object’s silhouette (see
Sec. 7.3.10).

7.2.3.3 Dark-field illumination
For dark-field illumination, the luminous flux coming from the light source is not targeted
on the camera. Only scattered light reaches the camera (Fig. 7.18).

Light with an an angle of incidence of nearly 90◦ yields high-contrast images of fine
surface structures.

Fig. 7.19 shows dark-field illuminated images of mirrors. The illumination reaches the
camera neither directly nor by reflections at the mirror. Only the light scattered by scratches
on the mirror reaches the camera, so that defects are made clearly visible as bright regions
in the image.
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Figure 7.19. Dark field illuminated images of wing mirrors for the detection of scratches: (a) Reference object; (b) Test
object with scratches.

Example 7.3 (Multi-channel inspection of transparent objects): A further example of an applica-
tion is the inspection of transparent objects like glass blanks (Fig. 7.20(b)). Typical defects
of such objects are:

– Differences in transparency,
– scratches and bubbles as well as
– scattering particles on the surface (dust, imprinting or pressure).

In order to detect such defects, the illumination conditions have to be optimized in de-
pendence on the actual defect class. Since in this case, color information is of no special
importance, multiple narrow-band light sources can be used to simultaneously realize
different illumination setups that can be separately captured by a multispectral camera
(e.g., an RGB camera).

Figure 7.20(a) shows such a setup, where a transmission image is obtained in the red
channel of the camera by means of a coaxial bright-field illumination (red LEDs) and a
retroreflective foil [68]. The green channel is used to capture scattering particles on the
surface of the test object, which are illuminated by a low-angle dark-field illumination.
By means of the blue illumination, which is also arranged in a dark-field setup, fluffs,
scratches and bubbles appear in high contrast.

Figure 7.20(c) shows an example image of a glass blank with two enclosed bubbles
appearing in blue. The red channel is used to realize a further inspection in transmis-
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Figure 7.20. Simultaneous inspection of glass in bright field and dark field by means of color multiplex.

sion. The low intensity values of the green channel indicate that there are no scattering
particles on the object’s surface.

7.2.3.4 Laser scanners
Scanning systems provide an alternative for area image acquisition with a single camera.
This is possible for the acquisition of the reflectance considered here, as well as for the mea-
surement of the 3D structure, based on, for example, the principle of triangulation. It is
sufficient to use the combination of a directional laser illumination and a single point sen-
sor, like a photodiode, for example, or a photomultiplier, for capturing the brightness (see
Chap. 6). An area sensor is not necessary.

Laser scanners use a deflected laser beam to sequentially illuminate all points along a line
on the object. The laser beam can be controlled by a galvanometer-driven rotating mirror or a
rotating polygonal wheel. As usual in the field of automated visual inspection, first surface
mirrors are used, i.e., mirrors having only a single reflecting layer. In contrast, the usual
second surface mirrors have a glass plate mounted in front of the mirroring layer, which
already reflects part of the light. This additional reflection is superposed with the intended
reflection, causing a perturbed image.
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Figure 7.21. Visual inspection of continuous products with a scanning image acquisition: (a) Flying-spot scanner;
(b) Flying-image scanner (adapted from [49]).

In combination with a suitable detector, the reflectance of the test object can be detected,
as the high irradiance of the laser allows a suppression of extraneous light. Line-by-line
scanning is especially suitable for continuous products on a conveyor belt. Such sensors
are often (see Fig. 7.21(a)), but not exclusively (see Fig. 7.21(b)), operated using laser light.
Telecentric scanners are also possible Fig. 7.22). Here, the laser beam originates from the
same direction for all object positions and all surface points are observed from the same
direction. This results in a spatially homogeneous sensitivity of the sensor, as the incident
angle and the reflection angle remain unchanged: θi and θe in Fig. 7.22 are constant with
respect to the position. Only the solid angle through which the sensor appears, from the
perspective of the illuminated spot, is still position-dependent. To realize the optical paths
of illumination and observation for telecentric laser scanners, parabolic reflectors as well as
cylindrical lenses can be used [49].

In the ideal case, the sensitivity with respect to the reflectance should be independent of
the position of the scanned point. However, this cannot be attained by any real setup. The
remaining position dependence can be further reduced by a calibration, i.e., by measuring
and computationally compensating for the dependencies.

The laser scanners presented here use a bright field illumination. Alternatively, laser
scanners can also be operated with dark field illumination or triangulation (Sec. 7.3.1, 7.3.2).
In addition, lasers are used for time of flight measurements operated in scanning mode
(Sec. 7.3.15).

The monochromatic, directional laser light allows a rather easy realization of diffraction
limited imaging optics (i.e., optics for which the size of the light spot is only limited by
diffraction, not by geometrical aberration, see Sec. 2.2.6.1). Because of the high luminance,
a small aperture diameter can be used, resulting in a high depth of field. At the same time,
stopping down reduces aberration (cf. Sec. 3.4.8). Due to the monochromaticity of laser
light, no chromatic aberration can arise in the optical path of either the illumination or the
observation (see Sec. 3.4.8.2). This allows the use of inexpensive optics, as, for example, a
single lens is often sufficient . Besides, an effective suppression of extraneous light is possible
by placing narrow-band filters in front of the detector. The small movable elements of the
scanning optics allow high sampling rates.
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Figure 7.22. Setup of a telecentric laser scanner with two parabolic reflectors (adapted from [49]).

Its disadvantages are the interference effects (speckle patterns) of the coherent laser light
(see Sec. 2.2.7). In addition, the monochromatic illumination does not allow the acquisition
of color features. As the use of laser light can be hazardous to the human eye, appropriate
preventive safety measures are required [43–45, 158].

7.2.3.5 Flatbed scanners
A flatbed scanner consists of a line-scan camera which is moved by a linear actuator perpen-
dicularly to the direction of the sensor line. The object that has to be scanned, which often is
a printed paper (or a slide), is placed on a glass plate covering the scanning unit. The linear
motion of the line camera produces a two-dimensional image of the object.

For automated visual inspection, flatbed scanners can be used to obtain images of objects
with planar surfaces (Fig. 7.23). This image acquisition method allows the measurement
of the respective side of the object, as the planar surface is imaged without any geometrical
distortions. Another application is checking the completeness of construction kits (Fig. 7.24).
The line sensor of a flatbed scanner can achieve very high resolutions.

7.2.4 Spectral sensors
Some applications require a finer resolution of the spectrum than can be achieved using
color cameras. The principle of construction of color cameras (see Sec. 6.9) cannot be directly
applied to the problem of spectral measurements. Spectral sensors need to sample a three-
dimensional space consisting of two spatial and one spectral dimension. As a color camera
only has a two-dimensional image sensor, further spectral channels placed on that sensor
would inevitably reduce the spatial resolution and yield only a low spectral resolution. Two
possible principles for spectral sensors will be presented:

Multiple images are taken sequentially with a gray-scale camera, where a certain filter is
placed in front of the lens for each image. The filters can be mounted on a wheel, which
is automatically rotated into the corresponding position before acquiring the image. This
principle can only be used to capture static scenes.
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Figure 7.23. Image of a metal flange with a diameter of about 15 cm, acquired with a flatbed scanner. The magnifi-
cation on the right shows that the image has a high resolution and fine details, e.g., scratches are clearly visible.

(a) (b)

Figure 7.24. Checking the completeness of a toy construction kit: (a) Camera image; the analysis is complicated by
perspective distortions and reflections; (b) This image of the same scene taken by a flatbed scanner is homoge-
neously illuminated and free of distortions.

A spectrally resolving camera provides the spectrum of an image line (Fig. 7.25). A
diffraction optic achieves a wavelength-dependent deflection of the light, so that each
line of the image sensor corresponds to a certain narrow spectral band. Because of a
slit shaped stop, only a single plane of the object space is imaged. One coordinate axis
of the resulting image corresponds to the wavelength of the measured intensity values
and the other axis represents the spatial position of the inspected image point, as usual.
Two-dimensional surfaces can be investigated by performing a scan perpendicular to the
imaged plane. This so-called push broom technique is especially suitable for continuous
products on a conveyor belt.
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Figure 7.25. Spectrally resolving line camera.

Possible applications for spectral measurement are the observation of coloring processes
and especially the classification of materials: different materials are characterized by differ-
ent spectra of absorption, so that their spectra of reflectance differ from each other. Such
materials can be distinguished by spectral measurements. Hence, the described imaging
techniques can be used for sorting plastics, minerals, or glasses, as well as to detect contam-
inants in food (see Sec. 7.6.2) and for recycling processes [7].

This measurement principle can also be used outside the visible spectrum, of course. The
energy levels of molecular oscillations are mainly in the infrared region of the spectrum. As
chemical compounds have characteristic levels of molecular oscillations, molecular materi-
als can be well classified by using the spectrally resolved absorption in the infrared spectrum
[25]. The measured intensity values of different parts of the spectrum can be combined to
form a feature vector which serves as input for a classifier. An example is the sorting of
plastics by using the measured spectrum in the range of the near infrared [117]. As an ex-
ample, Fig. 7.26 shows mean point spectra of different plastics. The infrared spectrum is not
suitable for classifying atomic materials, as their excitation states can only be reached with
higher energies and with shorter wavelengths.
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Figure 7.26. Mean point spectra of different plastics.
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Example 7.4 (Hyperspectral sorting of food): As an example of hyperspectral material clas-
sification, the separation of dried onions from contaminants like stones or packaging
materials (wood, paper, etc.) is considered [113]. Figure 7.27(a) shows an RGB image of
the mentioned materials; Fig. 7.27(b) shows the corresponding mean spectra in the near
infrared (1000 nm–2500 nm). For certain regions of wavelengths, the differences between
the NIR spectra of onions and contaminants are especially large, which is why these re-
gions can be used for classification.

Figure 7.28(a) shows an RGB image of a sample consisting of onions and contami-
nants that have to be separated. To the naked eye, everything seems to be identical. A
hyperspectral camera has been used to acquire 237 images of the same sample with wave-
lengths in the region of 1000 nm up to 2500 nm. Figures 7.28(b)–(g) show six channels of
the hyperspectral image. By combining three of these images into a false color image (cf.
Sec. 9.1.3), the contaminants can be visually detected in the resulting image (Fig. 7.28(h))
without any problems.
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(a) RGB image (b) Mean point spectra

Figure 7.27. Dried onions mixed with different contaminants (paper, cork, cords, plastics, stones, wood): (a) RGB
image; (b) mean point spectra of the materials.

7.2.5 Light scattering methods and the inspection of surface roughness
In automated visual inspection, light scattering methods allow a characterization of the mi-
crostructure of the surface, based on the distribution of the angles of the scattered light
[29, 74]. Microscopic surface properties, like roughness, are important quality criteria for
certain products. Different parameters exist for characterizing the surface roughness, which
are obtained by mechanically touching the surface [117]. However, the microscopic surface
structure can also be investigated with optical methods, like the measurement of the scatter-
ing characteristics of the surface, for example (cf. Sec. 2.6.4).

For light scattering methods, the surface is usually illuminated with a monochromatic
light beam—for example, a laser light beam—on an area A through the angles of incidence
θi, ϕi (Fig. 7.29). Depending on the surface’s structure, the light is scattered through angles
which have a certain distribution (see Sec. 2.6.4). The intensities of the scattered light are
measured on a planar sensor with respect to the angle of incidence. The measurement is re-
solved for the polar angle θs and the azimuth angle ϕs with respect to the plane of incidence.
The polar angle at which the scattered light is observed with respect to the test object’s nor-
mal, is called the scattering angle θs [60]. By the law of reflection, the following applies for
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(a) RGB image (b) λ = 1064 nm (c) λ = 1318 nm (d) λ = 1572 nm

(e) λ = 1826 nm (f) λ = 2081 nm (g) λ = 2335 nm (h) False color image

Figure 7.28. Example of a hyperspectral image of dried onions mixed with contaminants: (a) RGB image; (b)–(g)
channels of the hyperspectral image corresponding to different wavelengths; (h) false color image whose red chan-
nel corresponds to 1064 nm, whose green channel corresponds to 1572 nm and whose blue channel corresponds to
2081 nm.

Fig. 7.29:

θr = θi , (7.34)

ϕr = ϕi + π . (7.35)

If the reflective properties of the surface are described by the bidirectional reflectance
distribution function BRDF (θi, ϕi, θe, ϕe, λ) (see Sec. 4.3), then

θe = θs , (7.36)

ϕe = ϕi + π + ϕs . (7.37)

With respect to the area element ΔΩ of a solid angle, the following applies to the intensity
I(x, y) of the scattered light on the screen:

I(x, y) ∝ BRDF (θi, ϕi, θs, ϕi + π + ϕs, λ)ΔΩ , (7.38)

x = x(ρ, θs, ϕs) , (7.39)

y = y(ρ, θs, ϕs) , (7.40)

with ρ denoting the distance between the test object and the screen (see Fig. 7.29). Hence,
a two-dimensional section of the BRDF is measured by the scattering light method. The
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Figure 7.29. Setup for measuring scattered light.

measurement result provides information about the microscopic structure of the surface.
As optical properties of the material, such as the complex index of refraction as well as the
microscopic shape of the object, influence the BRDF, it is not possible to clearly separate the
measurement of the optical properties from the capturing of the test object’s shape.

Preferably, the screen should be a Lambertian radiator, so that the irradiated light is om-
nidirectionally scattered. Then, the distribution of intensities on the screen could be imaged
by a camera and quantitatively analyzed in terms of the geometric constellation of the test
object and the image plane.

The properties of the object are observed only locally inside the region A. This is sensible
for representatively inspecting homogeneous 3D textured surfaces. The area A should be
considerably larger than the coarsest structure of the surface.

The distribution of the scattered light can be used to produce texture features based on
a local and/or weighted integral of I(x, y). Under certain conditions, parameters de-
scribing the 3D roughness of the 3D microstructure can also be estimated from I(x, y)

[60, 155].

Light scattering methods are described by the norm ISO 13696 [42].

Surface structures produce characteristic scattered light images, which can be exploited for
automated visual inspection. Even without performing a quantitative analysis of scattered
light images, they can be used to check for the constancy of a surface forming process. If the
comparison of the scattered light image with a reference image shows significant differences,
the surface structure produced might have changed.

Example 7.5 (A light scattering method): Figure 7.30 shows a possible setup for acquiring light
scattering images. The surface is illuminated at an angle of θi = 45◦ using a laser beam
with a diameter of 1 mm, a wavelength of 405 nm, and a power of 5 mW. The scattered
light is observed on a planar screen of size 200× 300 mm2, which is located ρ = 100 mm

behind the sample. The normal of the screen is contained in the plane spanned by the
optical axis of the camera and the laser beam. Figure 7.31 shows light scattering images
of different materials, acquired with the described setup.
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Figure 7.30. Example of a setup for capturing scattered light images.

(a) (b) (c)

(d) (e)

Figure 7.31. Light scattering images of different surfaces: (a) Sandblasted steel; (b) Smoothed steel surface with a set
of grooves; (c) Ground steel with two series of rills intersecting under an angle of 90◦; (d) Aluminum foil, rough
side (e) Aluminum foil, smooth side.

The described scattering light method captures a section of the BRDF of the illuminated
surface point for a selected direction of illumination (θi, ϕi). By varying the direction of
illumination, as well as the position of the screen and the camera, additional function values
of the BRDF can be sampled, so that it can finally be approximated by a suitable function
class [82].

7.3 7.3 3D shape capturing
In terms of automated visual inspection, image acquisition can provide at least two kinds
of information about the test object: its optical properties and its shape. While the previous
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sections covered the determination of its optical properties, methods for capturing its three-
dimensional shape will now be discussed.

7.3.1 Triangulation (point-by-point scanning)
Triangulation is a method for measuring distances. It is based on the geometry of planar
triangles. Such a triangle is explicitly defined by two angles and the length of one side.
For triangulation, the length of one of the sides of the triangle is determined—the so-called
base—as well as the two adjacent angles (Fig. 7.32). The remaining quantities can now be
calculated, especially the distance between the measured point and the sensor. In the case of
laser triangulation, one angle and one side’s length are known because of the construction
of the setup; then the second angle is measured. In contrast, for stereo reconstruction, the
two angles are measured and the length of the base is known.

For the triangulation method considered here, the test object is illuminated with a laser
beam. The laser beam, scattered on the object’s surface, is observed with a detector. There-
fore, it is necessary that the surface be neither an ideal mirror nor an ideal absorber, but
scatter some of the light in the direction of the detector (Fig. 7.33(b)). For triangulation,
opaque materials are best suited—transparent or partially transparent materials widen the
beam spot on the surface because some of the light is scattered by the inner structures, which
results in an increased measurement uncertainty (Fig. 7.33(a)). In order to completely cap-
ture the object’s shape using triangulation, the gradient of the surface has to be limited in
order to avoid shadowing effects (Fig. 7.33(c)).

For the setup illustrated in Fig. 7.34, the Scheimpflug condition (see Sec. 3.4.7) is satisfied,
so that the illuminated point is focused on the detector regardless of the object distance if the
lens system is focused for a single point located on the laser beam. Because of the known
position of the detector and the laser, the position of the object can be calculated: there is
a bijective mapping between the depth z of the object point and the displacement x of the
scattered laser light on the detector. A line camera or a position sensitive detector can be
used as a detector (cf. Sec. 6.8 and 6.5).

If a line-scan camera is used in combination with a suitable model and a suitable inter-
polation, the imaged laser point can be localized with sub-pixel accuracy [127]. In addition,
the quality of the image B of a point G can be judged. If necessary, the measurement error
can be reduced by suitable methods of signal processing. For example, if the light spot is

Base

Distance to
    the object 
       point

Object point

Figure 7.32. Principle of range measurement by triangulation: The sought distance to the object can be calculated
from the measured base length and the measured angles α and β.
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Figure 7.33. Problems that might arise for the triangulation of an object point: (a) Widening of the light spot because
of a partially transparent object; (b) No (or too little) light reaches the detector because of a perfectly specular (par-
tially specular) surface; (c) The surface relief causes shadowing effects obstructing the optical path of observation;
(d) Multiple reflections on the object lead to additional image points.

widened on a partially transparent surface, the center of the intensities measured on the line
camera can be estimated. Multiple reflections caused by a extensively specular surface can
be detected and discarded during the 3D reconstruction (Fig. 7.33(d)). A position sensitive
detector allows a greater frequency of measurement and the suppression of extraneous light
by modulation [45, 117].

Example 7.6 (Triangulation setup): The mapping x �→ z for the geometry of Fig. 7.35 will now
be explicitly determined, cf. [45, 117, 121]. The base length l, the angle β, and the focal
length f of the lens are assumed to be known because of the construction or calibration
of the sensor. The image coordinate x is measured. The origin of the x-axis and the z-axis
(laser beam) is considered to be located at their intersection O with the lens plane.

The triangle ORB results in the following formula for calculating the image distance



7.3 3D shape capturing 257

detector

Laser beam

Lens

Position
sensitive

Test object

z

x

Figure 7.34. Pointwise laser triangulation (adapted from [45]).
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Figure 7.35. Geometry of a triangulation setup.

b from the measurement x:

b = x cosϕ . (7.41)

As usual, the object distance g of the sharp imaging is calculated by using (3.25):

g =
bf

b− f
=

x f cosϕ

x cosϕ− f
. (7.42)
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Now, the triangle OGQ yields the object distance z:

z =
g

sinβ
=

x f cosϕ

(x cosϕ− f) sinβ
. (7.43)

As the Scheimpflug condition is fulfilled by this setup, the angle ϕ is uniquely determined
by the dimensions of the setup (see Sec. 3.4.7). For Fig. 7.35, the object distance g0 and the
image distance b0 of the sharp imaging on the optical axis result in

tanβ =
g0
l
, (7.44)

tanϕ =
l

b0
. (7.45)

The thin lens equation (3.25) yields

1

b0
=

1

f
− 1

g0
. (7.46)

Hence,

tanϕ = l

(
1

f
− 1

g0

)
=

l

f
− 1

tanβ
, (7.47)

cosϕ =
1√

1 +
(

l
f −

1
tan β

)2 , (7.48)

and finally

z =
x f(

x− f

√
1 +
(

l
f −

1
tan β

)2)
sinβ

. (7.49)

So the relation between x and z is nonlinear. This is caused by the tilt of the planes
which are subject to the imaging process [45]. Among other things, this nonlinear rela-
tion results in a variable sensitivity of the triangulation if a detector with homogeneous
resolution along the x-axis is used.

The sensitivity of this measurement principle is improved for increasing triangulation angles
θ, as the same difference of height Δz results in an increasing difference of the position Δx on
the sensor (Fig. 7.36). However, there must not be any occlusions, neither in the optical path
of the illumination nor in the optical path of the observation. For a large θ, this condition
limits the allowed surface gradient and therefore the class of possible test objects. Thus,

Figure 7.36. The sensitivity −dx
dz

increases monotonically with the triangulation angle θ.
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a tradeoff between the objectives of sensitivity and of occlusion avoidance has to be made
during the design process of the setup.

Triangulation methods can attain a measurement uncertainty on the order of 1 μm. How-
ever, for non-ideally opaque test objects, the resolution is correspondingly lower.

A triangulation measurement yields only a single point of the surface relief. If the whole
surface is to be captured, a time consuming scanning has to be performed.

7.3.2 Light-section methods (line scanning)
Light-section methods also use the principle of triangulation, but capture a one-dimensional
section of the object with each measurement. Light is projected in the shape of a fan on the
surface, mostly by using a laser. The light scattered by the object is captured by an area
camera (a 2D sensor). Cylindrical lenses placed in front of the laser are a simple way of
producing the light fan. Better results are achieved by using special optics that can offer a
nearly constant intensity along the projected line.

In the ideal case, the light fan, the imaging optics, and the sensor satisfy the Scheimpflug
condition, so that all the points on the light fan can be sharply imaged, see Fig. 7.39(b).
However, for standard cameras and lens systems, the planes of the sensor and the imaging
optic are parallel, so that the geometry required by the Scheimpflug condition cannot be
realized. Therefore, the lens system would need to be tilted with respect to the sensor, for
example, with a bellows. In practice, this is sometimes omitted (for reasons of cost, among
others)—as in the following example.

The setup of Fig. 7.37 results in a depth value for each image column, describing a one-
dimensional relief of the surface in total. By performing a scan perpendicular to the direction

Laser

Light fan

Test object

Telecentric
lens

Camera

θ

Figure 7.37. Light-section sensor with telecentric observation, used for depth measurement based on the principle
of triangulation.
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Figure 7.38. Calculation of the height difference for the light-section method.

of observation, a two-dimensional surface can be reconstructed. Therefore, a conveyor belt
can be used to move the test objects past the light-section sensor, similar to the acquisition
of intensities with line cameras (cf. Sec. 6.8).

For the setup of Fig. 7.38, the height difference h of the test object can be calculated as
follows using the lateral displacement d of the detected light fan and the triangulation angle
θ:

h =
d

tan θ
. (7.50)

Example 7.7 (Capturing the 3D shape of a cylinder head): Figure 7.40 shows the 3D capture of
a cylinder head by employing an illumination with a fan-shaped laser and an evaluation
based on triangulation (light-section method).

7.3.3 The measurement uncertainty of triangulation
The lower limit of the measurement uncertainty of triangulation methods is limited by sev-
eral factors:

1. Imaging quality of the pattern projection;
2. Imaging quality of the optics used for imaging the distorted pattern onto the sensor;
3. Resolution of the sensor;
4. Speckle caused by the light’s coherency (see Sec. 2.2.7). Speckle can be modeled as mul-

tiplicative noise.
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Figure 7.39. Extension of the pointwise triangulation method to line sampling and area sampling (adapted from
[121]). (a) For point-by-point triangulation, the laser beam, imaging optics and 1D sensor satisfy the Scheimpflug
condition, so that the triangulated object point can be sharply imaged, regardless of its distance. (b) For line scan-
ning triangulation (light-section method), the light fan, imaging optics, and 2D sensor satisfy the Scheimpflug
condition, so that all object points on the light fan can be sharply imaged, regardless of their distance. (c) For the
quasi simultaneous capturing of the object’s surface by using a stripe projection method, only an intermediate plane
of the surface can fulfill the Scheimpflug condition together with the 2D sensor. Only the regions surrounding that
plane are located in the depth of field.
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Figure 7.40. Capturing the 3D shape of a cylinder head (CH) by means of the light-section principle: (a) Cast alu-
minum cylinder head. Its surface is bare, rough, and intensely reflecting. The exact shape of the combustion
chambers and the location of the inlet port and the outlet port are of particular importance. (b) The laser fan, which
illuminates the surfaces, is skew with respect to the surface. The camera observes the scene from above. The intense
reflectance might cause multiple reflections (denoted by the cones of scattered light in the image), which have to
be suppressed during image processing. (c) In the perspective of the camera, the laser line seems to be deformed
by the shape of the surface. By means of the lateral displacement of the laser line, the height of the relief can be
determined for every point of the line.

This applies to all methods using active illumination: point, line and stripe projection and
general pattern projection.

The measurement uncertainty is typically specified as the standard deviation of the mea-
sured value [85]. Concerning triangulation, one distinguishes between the lateral measure-
ment uncertainty σl parallel to the test object’s surface and the vertical measurement uncer-
tainty σv perpendicular to the surface.

Manufacturers of triangulation sensors often specify only the sensor’s resolution, which
must not be mixed up with the measurement uncertainty. Generally, the measurement un-
certainty is markedly higher than the sensor’s resolution, which is specified as the relation
of the vertical size of the measurement range and the sampling intervals of the sensor.

The best case of uncertainty factors (1) and (2) is achieved by diffraction limited imaging
optics. For such optics, all aberrations (see Sec. 3.4.8) are corrected, so that they can be
neglected. Then, the smallest points of the projected pattern are imaged in the shape of
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diffraction patterns, which depend on the aperture of the optics used and on the wavelength
(see Sec. 2.2.6.1). Diffraction results in a systematic error of the measurement. In principle,
image restoration methods can be used to compensate for diffraction effects in the image
(see Chap. 10). However, noise often limits the possible improvement.

Besides the imaging optics, also the characteristics of the light source are important,
which often differ significantly from the often assumed ideal case, e.g., of a point light
source.

The resolution of the sensor (3) can at least be nominally as fine as desired if continuous
sensors like PSDs (Sec. 6.5) are used.

Speckle (4) leads to a stochastic distortion and mainly depends on the coherence proper-
ties of the light used.

The roughness of many common surfaces has an amplitude R which is significantly
larger than the wavelength λ of the used light. The term ‘roughness’ refers to the microstruc-
ture of the surface relief that is superposed on the nominally desired or expected surface
during manufacturing [41].

Roughness leads to scattered light, which is necessary for triangulation methods. The
lateral measurement uncertainty is mainly determined by the spatial resolution w of the pro-
jected light pattern: σl ∼ w. It is not sensible to ask for a vertical measurement uncertainty
much smaller than R.

According to Huygen’s principle, every surface point inside the illuminated region acts
like a point source of a spherical waves with the phase of the light incident at that point (see
Sec. 2.2.3). The microstructure of a rough surface is irregular, so that the emitted spherical
waves have quasi-stochastic differences of phase and are superposed on each other to pro-
duce a spatially irregular, temporally constant interference pattern. For coherent light, e.g.,
that from a laser, this interference pattern shows extensive contrasts between spatially adja-
cent points with constructive and destructive interference if the coherence length is greater
than the surface’s roughness R. This phenomenon is called speckle.

If the light pattern is imaged onto a sensor, speckle causes a multiplicative spatial noise
on the sensor plane.

As all triangulation methods rely on the measurement of the projected pattern’s image,
which is affected by speckle, speckle increases the measurement uncertainty of all triangu-
lation methods.

For several optical measurement methods, the theoretical lower bounds for the minimum
possible measurement uncertainty have been derived in the form of standard deviations
[46, 71]. For projection based triangulation methods with coherent light, this lower bound
for the vertical measurement uncertainty is given by

σv =
λ

2π sinα sin θ
(7.51)

with the wavelength λ, the triangulation angle θ, and the angle bisector α of the object-sided
aperture (see Fig. 7.35). For λ = 660 nm, θ ∈ [45◦, 60◦] and 2α ∈ [6◦, 18◦], σv is approximately
in the range of 0.8 μm < σv < 2.8 μm. Increasing θ as well as increasing α decreases the
lower bound of the measurement uncertainty σv.

The use of white light, i.e., incoherent light or light with a coherence length that is signif-
icantly smaller than R, avoids or reduces the speckle effect and lowers the theoretical lower
bound by a factor of up to 10.
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Technically achievable measurement uncertainties are about 5 times higher than the the-
oretical lower bound [127].

7.3.4 Structured illumination
Pointwise triangulation results in the 3D coordinates of a single point for each measure-
ment; with a light-section sensor, a line on the test object along the intersection with the
two-dimensional light fan can be simultaneously measured. In order to measure a three-
dimensional surface relief without moving the sensor or the test object, the principle of the
light-section can be generalized by projecting several light fans on the test object at once.
However, the identification of the single stripes in the observed image might be problematic,
especially on object edges. In order to achieve a unique assignment between the projected
stripes and the stripes observed in the image, specially designed heterogeneous light pat-
terns can be used instead of a simple stripe pattern. The selected pattern has to ensure that
there are no ambiguities between the projected and the observed stripes, so that the triangles
needed for the distance measurement are well-defined. The patterns can either be generated
by a laser with the appropriate optics, or by a video projector controlled by a computer. In
contrast to pointwise triangulation and to the light-section method, the Scheimpflug con-
dition cannot be fulfilled for the whole surface, but only for a single plane, which is most
reasonably chosen to be at the medium object distance (Fig. 7.39(c)). Thus, the measurement
range and the resolution are limited by the depth of field of the observation.

Methods of this kind are summarized by the term structured illumination. An inhomo-
geneous light pattern b(x) is projected on the object’s surface in order to acquire a surface
relief z(x). If the scene is observed with a camera, the pattern appears to be distorted if the
camera and the projection do not share the same perspective. The distortion is caused by
the locally varying displacements of the pattern due to the object’s geometry. The relief can
be quantitatively reconstructed from the observed signal bdist(x) (Fig. 7.41). Alternatively,
a qualitative analysis without explicit reconstruction can also be performed, for example
to detect defects, which are highlighted by a local difference of the observed pattern from
a reference pattern. Often, stripe patterns are used, which will be covered in detail in the
following section.

Projection and
image

acquisition

Image
analysis

Geometrically

Illumination 

Relief

         :
reconstructed relief,
quantitative analysis

Defect detection,
qualitative analysis

ẑ(x)

Figure 7.41. Signal model of pattern projection.

As only the pattern’s geometric displacement and distortion is measured, and not its
intensity, the measurement is largely independent of the surface’s optical properties (color,
reflectance, scatter). The only requirement is that a part of the light is scattered to the sensor.
Therefore, the surface must be neither an ideal mirror nor an ideal absorber (see Sec. 7.3.1
and Fig. 7.33(b)). For specular surfaces, deflectometric methods can be used, which will be
covered later on in Sec. 7.3.5.
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7.3.4.1 Stripe projection
For the areal application of the principle of triangulation to complex objects, the problem
of ambiguous correspondences between the observed image points and the points of the
illumination pattern arises. A unique identification of a point can be achieved by using en-
coded illumination sequences where every illumination beam is assigned an unambiguous
code word (Fig. 7.42). For example, the x coordinate of a light spot of the projector or the
screen can be represented in the Gray code, as illustrated in Fig. 7.43. The mth image cor-
responds to the mth bit of the encoded image coordinates. A projector pixel is displayed as
white if the mth bit of its coordinate is equal to 1 and black if it is 0.

Vertical series Horizontal series

Figure 7.42. Image series used for binary coding the pixel position in the projected pattern.

This bitwise representation can be composed to form an encoded image series. The num-
ber of images corresponds to the number of bits of the discretization of the coordinate values.
Another image series can be used to encode the y position, so that a unique two-dimensional
correspondence is established. In general, the number Q of projector patterns needed for the
M ·N binary represented projector beams (projector pixels) is

Q = �ld(M ·N)� = �ldM + ldN� . (7.52)

In contrast to binary numbers, the adjacent code words of the Gray code only differ from
each other in exactly one bit. The code word corresponding to a binary number x can be
calculated using a binary XOR operation:

x �→ x XOR
⌊
x
2

⌋
. (7.53)

The Gray code is more robust than using binary numbers: a faulty decoding inside the tran-
sition from a black to a white stripe leads to the neighboring code word of the Gray code,
so that the actual influence of the decoding error in this quite frequently arising situation
is limited. As the code words of spatially adjacent pattern points differ only in one bit per
coordinate, there is only one image in the whole image series with a white–black transition
between the adjacent pattern points. Another advantage of the Gray code is the minimum
stripe width of two pixels, in contrast to binary numbers, where stripes with a width of one
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Figure 7.43. Decoding a pixel coordinate from successive Gray code images.

pixel can arise for the coding of the least significant bit [64]. For a robust decoding, the addi-
tional projection of a complete black and a complete white image allows the determination
of an individual binarization threshold for each image pixel [122]. This leads to a decoding
that is robust to variations in the surface’s reflectance.

Besides binary coding, also n-adic codes can be used, which offer n different values and
not only black and white [139]. In the actual pattern, those values can be represented either
by n different gray values or n different colors. An important advantage of n-adic codes
is the reduced number Qn < Q of necessary patterns that have to be projected: the binary
logarithm ld in (7.52) can be replaced by the logarithm to the base n:

Qn = �logn M + logn N� . (7.54)

Unfortunately, it is harder to reliably distinguish the n values in the camera image. Depend-
ing on the test object’s reflectance and geometry, some projected colors or gray values might
appear very similar in the image. Colored objects can even change the spectral composition
of the reflected light, which can complicate or hinder the decoding of color patterns. For
example, a white surface illuminated by a red light source might look exactly the same as
a red surface illuminated by a white light source. For test objects which are largely homo-
geneous and of which the reflectance properties are known a priori, the used patterns can
be appropriately adjusted, in order to avoid such ambiguities. This problem is quite serious
if the characteristics of the test object are unknown or inhomogeneous. In such a case, the
system usually has to undergo a calibration of colors [139].

Phase-shifting methods are an alternative to Gray code sequences. They use periodic
patterns and multiple images to reconstruct the phase of the observed pattern. Typically,
sine waves of the form gx,ϕx(x) =

1
2 (1 + sin(fxx+ ϕx)) and gy,ϕy (x) =

1
2 (1 + sin(fyy + ϕy))

are used. A single image is not sufficient for uniquely determining the phase. At least three
different images with differently moved patterns are necessary. Additional images increase
the method’s robustness. The different patterns can be generated by varying the offset of
the phase ϕx or ϕy . Often, phase-shifting methods with four images are used. In such a
case, the values of k π

4 , k = 0, 1, 2, 3 can be used for the offset (see also Sec. 7.3.16.1). As
only the relations of intensities are used for the analysis, phase-shifting methods are also
independent of the absolute properties of reflectance of the investigated surface.
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Phase-shifting methods allow a decoding at the sub-pixel level and can also be used for
blurred images: as a sine pattern has no higher harmonics, its form remains unchanged
even for the defocused imaging which corresponds to a low pass filter in the sense of system
theory (see Chap. 8). Only the amplitude and thus the contrast is reduced. On the other
hand, the phase information allows no unambiguous correspondence between the image
coordinates and the pattern coordinates, as equal phase values arise several times in the
pattern. For continuous surfaces, a phase unwrapping can be used to estimate a globally
unambiguous correspondence [59, 157]. Alternatively, many pattern sequences with differ-
ent frequencies fx, fy can be used to calculate a unique assignment. Combining this method
with a Gray code sequence is also possible [95].

Besides a temporally sequential coding in an image series, a spatial coding could be con-
sidered [139]. Therefore, the position’s codeword is distributed over a neighborhood of the
pattern points. As a matter of principle, the correspondence can only be established for a
region of the pattern and not for single points of the pattern, leading to a reduced spatial res-
olution compared to the temporally sequential coding. Furthermore, a spatially distributed
codeword is mapped to different image regions if it is projected on an edge of the object.
In this case, a correct decoding is hardly possible, leading to incomplete correspondences
and therefore to an incomplete 3D reconstruction. An advantage of the spatial coding is the
reduced number of patterns that have to be projected, leading to a reduction of the time
consumed by the inspection process. In the extreme case, a single pattern is sufficient for
capturing the 3D surface, so that even moving objects can be measured. The coding of the
spatial patterns is usually based on sequences of pseudorandom numbers. Hence, patterns
can be constructed where each region of a fixed size is globally identified and thus encodes
the position in the pattern without any ambiguity. Again, the pattern can be represented by
binary values, by multiple gray values or by different colors (Fig. 7.44).

Figure 7.44. Projection of a periodic pattern of colored
stripes on a sample scene consisting of a cup placed
upside down on a sheet of paper. Some colors like
white, yellow and blue occur multiple times in one pe-
riod, but can be unambiguously identified because of
the neighboring stripes.

As another alternative, the coordinates can be directly encoded by an intensity value or
by a certain wavelength. The resulting projected image shows a gradient of gray values or of
monochromatic colors. However, the variant based on intensities is very prone to noise and
thus cannot achieve the same robustness and resolution as does the temporally sequential
pattern projection [139]. The disadvantages of direct encoding are especially severe for test
objects with inhomogeneous reflectance or color.
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An additional constraint which can be used for 3D reconstruction based on projected
pattern sequences results from the epipolar geometry between the projector and the camera
(cf. Sec. 7.3.8).

As soon as the correspondence between image points and projector points is established,
the surface relief sought can be calculated similarly to the methods of triangulation and light
section (Sec. 7.3.1).

Example 7.8 (Inspection of cylinder heads): Figure 7.45 shows the application of the stripe
projection method to reconstructing the 3D relief of a diesel engine. The holes for the

(a) (b)

(c) (d)

(e)

Figure 7.45. Inspection of the combustion chamber of a cylinder head: (a)–(d) Single images of the projected se-
quence of stripe patterns; (e) 3D reconstruction (source: inspectomation GmbH).
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two valves are clearly visible. The horizontal and vertical positions are both encoded
by a sequence of stripe images. In order to reduce occlusions, images taken from two
different perspectives are necessary.

7.3.5 Deflectometry
The projection methods considered until now are mostly independent of the optical proper-
ties of the objects, e.g., color, reflectance and scattering characteristics, as they rely on the
deformation of the projected pattern by the surface relief. However, they require the surface
to scatter at least some of the light back to the sensor. Hence, the surface must neither absorb
all the light, nor be an ideal mirror.

In fact, for specular surfaces, the related method deflectometry can be applied. This
method is based on the human approach of inspecting specular surfaces: one observes the
mirror image of the surrounding environment in the surface and searches for local distor-
tions in order to detect defects.

For deflectometry, a camera observes the image of a pattern which is mirrored in the
object surface (see Fig. 7.46). Here, the pattern is generated on a screen or on a display
(Fig. 7.47). In the following, the term pattern generator will be used to denote the screen
or the display of the deflectometric setup. In contrast to stripe projection, the pattern is not
projected (i.e., imaged) onto the surface.

Unlike stripe projection, where the camera is focused on the image of a projection onto
the object surface, the camera directly observes the pattern generator. This is the reason for
the main difference between the two methods regarding their sensitivity with respect to the
surface gradient: stripe projection is locally insensitive to a varying surface gradient, as it
relies on scattered light. In contrast, deflectometry is very sensitive to local differences in
the surface gradient, as a change of the surface normal implies a change of the optical path
of the reflection (Fig. 7.48). Therefore, deflectometry is suitable for detecting surface defects
affecting the surface gradient.

For defect detection, often a single image with a suitable pattern is sufficient. This is
illustrated by Fig. 7.49 by means of an example of a plastic lens for infrared light, which is

Figure 7.46. Setup of pattern generator and camera for deflectometry.
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(a) (b)

Figure 7.47. Deflectometric setup for the inspection of a coated car door: (a) Setup of pattern generator, test object
and camera; (b) When observing the reflected stripe pattern, a defect is clearly visible.
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Figure 7.48. Comparison of the optical paths of stripe projection and deflectometry [20]: (a), (b) As the pattern is
imaged onto the surface and the camera is focused on the surface, the stripe projection method is locally insensitive
to the surface gradient; (c), (d) As the camera is focused on the pattern generator, deflectometry is locally sensitive
to the surface gradient.

opaque for the illumination used for image acquisition. The local irregularity of the observed
stripe pattern clearly represents the defect, whereas dust particles dominate the defect under
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(a) (b)

Figure 7.49. Inspection of a plastic lens with a diameter of about 1 cm: (a) Image acquired under diffuse illumination;
(b) Image acquired with deflectometry.

(a) Horizontal stripe pattern (b) Vertical stripe pattern

Figure 7.50. Image of a transparent object acquired using deflectometry and transmitted light.

diffuse illumination. An inverse pattern which has been specifically adapted to the reference
object could be a possible choice, see Sec. 7.6.2.

For the inspection of transparent objects, deflectometry can also be performed in trans-
mission: the refraction at the surface of the transparent object causes the pattern to be dis-
torted depending on the object geometry [13]. Figure 7.50 shows an example.

In order to achieve a further inspection and reconstruction of the surface geometry, an
assignment between the image points of the camera and of the pattern generator is required.
In order to obtain this assignment, the pattern sequences described in Sec. 7.3.4.1 can be
used (Fig. 7.51). For the Gray code method, the camera must be focused on the pattern
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 7.51. Deflectometric inspection of a glazed plate: (a) Image of the test object; (b) Deflectometric reconstruc-
tion of the local surface gradient; (c)—(h) Observed reflection of some stripe patterns of the horizontal Gray code
sequence.

generator in order to allow a reliable decoding. However, this reduces the lateral resolution
on the object surface (Fig. 7.52): the observed intensity value is an average of a region on
the test object surface. As phase-shifting methods are not susceptible to blur, the camera can
be focused on the object surface [173]. Thus, a better detection of spatially limited defects
can be achieved. Now, the observed intensity value is an average of a region on the pattern
generator, which is why the resolution of the surface gradient is higher if the camera is
focused on the pattern generator. The sensitivity to the surface gradient is further improved
by a greater distance between the pattern generator and the surface. However, an increased
distance reduces the captured measurement field and the range of measurable gradients.

In the following, a mathematical description of the deflectometry problem will be de-
rived. The notation employed is introduced by means of Fig. 7.53. Let O denote the origin
of the camera coordinate system, let S denote the observed surface point, and let L denote
the point on the pattern generator that is reflected in S. The vectors σs and l denote the posi-
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Figure 7.52. Different focus adjustments of a camera in deflectometry: (a) Focusing the surface of the test object;
(b) Focusing the pattern generator; (c) Reconstruction of the plate of Fig. 7.51(a) when focusing the surface; (d) Re-
construction of the plate when focusing the pattern generator.

tion vectors corresponding to S and L with respect to O. The unit vector s in the observation
direction is known by means of the calibration of the camera. Similarly, l can be determined
via a calibration of the system and from the assignment of the camera point to a pattern gen-
erator point obtained by decoding the image sequence. The distance σ of the point S from
the origin O, the reflection vector ρ r, and the surface normal n of the point S are unknown.
The vector ρ r consisting of the unit vector r and length ρ describes the reflected ray running
from L to S.

With regard to this notation, the vectorial law of reflection (2.202) is given by

r = s− 2nnTs , ‖n‖ = 1 , ‖r‖ = 1 , ‖s‖ = 1 . (7.55)

Furthermore, in Fig. 7.53, we have

l = σ s+ ρ r . (7.56)

This results in

l− ρ (s− 2nnTs)− σs = 0 . (7.57)

This system of equations is under-determined. Hence, the deflectometric reconstruction
problem has no unique solution when considering single points.

Considering all rays yields the following system of equations:

lij − ρij(sij − 2nij n
T
ij sij)− σij sij = 0 , i ∈ {0, . . . , I − 1} , j ∈ {0, . . . , J − 1} .

(7.58)
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Figure 7.53. Notation for the principle of deflectometric measure-
ment [11, 20].

Here, i and j enumerate the camera pixels or the corresponding rays of sight sij . This system
of equations is under-determined too.

An alternative approach to solving the deflectometric reconstruction problem is possible
using the concept of normal fields. By means of a deflectometric measurement, which for
every ray of sight sij determines the corresponding vector lij by obtaining the decoded as-
signment, it is possible to calculate, for every point in the three-dimensional measurement
range, the respective normal that would correspond to a specular surface if this surface con-
tained this very point (Fig. 7.54). For every point in the field of view, a normal vector is
obtained that obeys the law of reflection together with the rays of sight corresponding to the
pair (sij , lij) of the deflectometric measurement.

Rays of sight

Figure 7.54. Normal field of a deflectometric measurement.

The calculation of the normals is based on an alternative formulation of the law of reflec-
tion [11]. The considered 3D point is unambiguously characterized by its sight vector σs.
The tangent plane to a specular surface at this point is spanned by two orthogonal vectors
a(σs) and b(σs). The vector a(σs) is located in the reflection plane which contains the rays
of sight s and r (Fig. 7.55). It is defined as

a(σs) := s+ r(σs) = s+
l(σs)− σs

‖l(σs)− σs‖ . (7.59)
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Figure 7.55. The vectors a and b span the tangent plane to the surface.

These equations are obtained using (7.56). This vector is perpendicular to the corresponding
surface normal:

a(σs)Tn(σs) = (s+ r(σs))
T 1

‖n(σs)‖ (r(σs)− s) (7.60)

=
1

‖n(σs)‖ (s+ r(σs))T(r(σs)− s) (7.61)

=
1

‖n(σs)‖ (s
Tr(σs)− 1 + 1− (r(σs))Ts) = 0 . (7.62)

The second basis vector is chosen to be perpendicular to the reflection plane:

b(σs) := l(σs)× σs . (7.63)

Thus, this vector is also orthogonal to a(σs) and to n(σs):

(a(σs))Tb(σs) = 0 , (7.64)

(b(σs))Tn(σs) = 0 . (7.65)

This implies that the tangent plane sought is in fact spanned by a(σs) and b(σs). Now, the
corresponding normal vector can be calculated, as it is the unit vector perpendicular to the
basis vectors:

n(σs) =
a(σs)× b(σs)

‖a(σs)× b(σs)‖ . (7.66)

Together with (7.59) and (7.63), this equation describes the normal field of the deflectomet-
ric measurement. For each ray of sight s and for each assumed distance σ to the specular
surface, i.e., for each position vector σs, the deflectometric measurement can be evaluated
using the assignment l(σs) encoded by the illumination series. Hence, for every length σ of
the observation vector σs, a corresponding surface normal can be found. Therefore, the for-
mulation of deflectometric measurement using the normal field again shows that no unique
solution exists (Fig. 7.56). If a continuous and differentiable surface is assumed, the solution
set of this system of equations is a one-dimensional manifold [11]. For every ray of sight s,
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Figure 7.56. Fitting a surface model to the measured normal field for the reconstruction of specular surfaces.

there exists a one-dimensional space of infinitely many pairs of distances σ and surface nor-
mals n which reflect the ray of sight to the same pattern point and therefore result in the
same observation by the camera. In order to obtain a unique solution for the constructed
surface, additional information is required.

The following provides a formal specification of the reconstruction problem: a surface S

is to be obtained, whose normals nS are as close to the normal field n of the deflectometric
measurement as possible:

J(S) =

∫
S

‖nS − n‖2ds , (7.67)

Sopt = argmin
S

J(S) . (7.68)

As mentioned above, this is an ill-posed problem (cf. Appendix A.2), as there does not exist
a unique solution. The space of possible solutions is one-dimensional. This is why the deter-
mination of a single parameter is sufficient to regularize the problem and to reconstruct the
surface. In general, this parameter has to be obtained by an additional measurement [12].
For this purpose, an additional deflectometric image can be acquired by varying the position
of the camera or of the pattern generator (stereo deflectometry). For partially specular sur-
faces, other methods for 3D shape capturing, e.g., the laser triangulation of a single surface
point or shading methods, can also yield the required additional information (see Sec. 7.3.1
and 7.3.11).

By means of this additional information, the surface can be reconstructed by integrating
the normal field. A possible approach is a regular surface (x, y, f(x, y)) with surface relief
z = f(x, y), so that the normal can be written as [12]:

n =

(
−∂f

∂x
, −∂f

∂y
, 1

)T

. (7.69)
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The orthogonality (7.62), (7.65) of the basis vectors a(x) = (ax, ay, az)
T, b(x) = (bx, by, bz)

T

of the tangent plane yields the following quasilinear partial differential system of equations:

ax(x, y, f)
∂f

∂x
+ ay(x, y, f)

∂f

∂y
= az(x, y, f) , (7.70)

bx(x, y, f)
∂f

∂x
+ by(x, y, f)

∂f

∂y
= bz(x, y, f) . (7.71)

This system can be solved by means of the method of characteristics expansion [11]. A single
known 3D point of the surface obtained by a regularization method can be used as the initial
condition. The result of the integration is a surface S = {(x, y, f(x, y))T}which corresponds
to the measured normal field.

In general, a deflectometric measurement covers only a small section of the specular sur-
face, as depending on the curvature of the surface, the observed pattern is visible only in a
small region of the camera image. This region is enlarged for larger pattern generators. For
some applications, a spherically shaped pattern generator might be beneficial [95]. However,
for automated visual inspection of larger objects, usually multiple deflectometric measure-
ments have to be combined. For a possible realization, the pattern generator and the camera
can be combined into a single sensor head, which can be arbitrarily positioned and aligned
by an industrial robot [173].

7.3.5.1 Open research questions regarding deflectometry
By means of differential geometric methods, recent research [108] has shown that nearly
all surfaces can be unambiguously reconstructed by a deflectometric measurement (7.58),
without the need for regularization or additional data. However, additional regularizing
information can significantly increase the precision of the reconstruction [128].

Current research is especially focused on the question, for which subset of all surfaces
does the reconstruction problem remain ambiguous, and for which subset is it unique. Ap-
parently it would be sufficient if a surface could be locally unambiguously reconstructed
from the deflectometric measurement. Starting from this local reconstruction, the normal
field could be integrated, so that the uniqueness could be propagated to the whole surface
[128].

7.3.6 The moiré method

7.3.6.1 The moiré effect
The moiré effect can be caused by two superposed regular structures. Patterns can observed,
that have significantly lower spatial frequencies than the original structures. An example of
the moiré effect is that caused by two regular stripe structures with slightly different periods,
shown in Fig. 7.57(a). Microscopic differences in the grid structure can lead to macroscopic
effects. In everyday life, such effects are often caused by the superposition of two identical
fences at different distances. In this case, the apparent differences of the periods are caused
by the distance-dependent magnification of the optical imaging. Other grid structures can
also generate moiré effects, see Fig. 7.58. Besides varying stripe spaces and different magni-
fications, also the relative rotation of the two grids can cause a moiré effect, see Fig. 7.57(b).
In this case, the moiré stripes are parallel to the angle bisector of the rotation [47, 145].
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(a) (b)

Figure 7.57. Moiré effect caused by the superposition of two stripe structures: (a) Different stripe distances; (b) Ro-
tated stripe pattern.

Figure 7.58. Moiré effect caused by the superposition of two triangle patterns with slightly different scales.
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For application to automated visual inspection, a grid on the test object’s surface is ob-
served together with a reference structure. The resulting moiré image contains information
about the surface relief and about possible defects. Generally, methods using the multi-
plicative superposition of projected light structures and reference structures are called moiré
methods. Moiré methods can also be used to measure the mechanical stress inside strained
components (cf. Sec. 7.4.6).

For other situations of image acquisition, the moiré effect can be an undesired phe-
nomenon. Together with the grid structures contained in the observed scene, the image
sensor’s grid structure (see Chap. 6) might lead to moiré patterns. This can often be seen on
photos or TV recordings of striped or checkered clothes.

7.3.6.2 Mathematical model of the moiré effect
The transparency of a structure can be described by a transparency function p(x) of the
position x, with 0 ≤ p(x) ≤ 1. For completely transparent regions, p(x) = 1; for lightproof
regions, p(x) = 0. The observed irradiance Ee is given by the product of the incident light
Ei and the transparency function p:

Ee(x) = p(x)Ei . (7.72)

Here, the illuminance Ei is assumed to be constant with respect to the position. If two grids
are superposed, their transparency functions p1(x) and p2(x) are multiplied [80]:

Ee(x) = p2(x) p1(x)Ei . (7.73)

Periodic stripe patterns can be characterized by their density of stripes fk, which is de-
fined as the quotient of the number of stripes Nk by the pattern’s length lk in the direction
of the periodicity:

fk =
Nk

lk
, k = 1, 2 . (7.74)

A moiré effect, as in Fig. 7.57(a), is created by patterns with different densities of stripes:
f1 �= f2.

Moiré stripes of maximum brightness can arise at positions where the transparent regions
of the two grids overlap: p1(x) = 1 = p2(x). Between two bright moiré stripes, one of the
two structures has exactly one additional stripe [10, 47]. For f1 > f2, this results in

N1 = N2 + 1 . (7.75)

Let lM denote the distance between two adjacent moiré stripes with maximum brightness.
In combination with Eq. (7.74), this results in

lMf1 = lMf2 + 1 . (7.76)

Therefore, the following holds for the density of stripes fM of the moiré pattern:

fM =
1

lM
= f1 − f2 . (7.77)

Hence, the density of stripes fM of the moiré pattern is the difference between the densities
of the stripes of the two real patterns [66]. This also applies if the transparency functions
are given by trigonometric oscillations. Assuming a sine pattern in the x-direction, pk(x) =
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Figure 7.59. Moiré effect caused by the multiplicative superposition of two sine waves. The base frequency of the
moiré oscillation corresponds to the difference between the two original frequencies, in accordance with (7.77) and
(7.78).

1
2 (1 + sin(2πfix)) 1(y), k = 1, 2, (7.73) yields:2

Ee(x) =
1
4 (1 + sin(2πf2x) + sin(2πf1x) + sin(2πf2x) sin(2πf1x)) 1(y)Ei

= 1
4 (1 + sin(2πf2x) + sin(2πf1x)

+ 1
2 (cos(2π(f1 − f2)x)− cos(2π(f1 + f2)x))) 1(y)Ei . (7.78)

This expression is obtained using the trigonometric addition formulas [31]. The moiré pat-
tern is described by the sum of several trigonometric wave functions. The frequency of the
low-frequency component is given by the difference between the two original frequencies:
fM = f1 − f2. This oscillation is additively superposed on components with higher frequen-
cies (Fig. 7.59).

7.3.6.3 Telecentric stripe projection
As an example of the moiré method used for automated visual inspection, the analysis of the
special case of parallel projected periodic structures (Fig. 7.60) will now be performed. The
periodic structure is projected onto the investigated surface by a telecentric illumination. For
image acquisition, a telecentric system of optics is also used, so that the magnification of the
pattern’s distortion is independent of the distance of the object.

Let α denote the angle between the optical path of the illumination and the z-axis. It is
assumed that no occlusions can occur: ∂z(x)

∂x > − cotα. In the plane z = 0, the illuminance
of the desired illumination pattern is

b(x) = E p(2πf0x) 1(y) , (7.79)

2Two waves with slightly different frequencies are multiplied. The multiplicative superposition
does not correspond to the additive superposition, which leads to the so-called beats. The moiré pat-
terns are also based on a multiplicative superposition and not on an additive superposition like the
interference patterns described in Sec. 2.2.5
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Figure 7.60. Parallel projection of periodic line or stripe structure (TCS = telecentric stop).

where p has period T :

∀x : p(2πf0x) = p(2πf0(x+ T )) . (7.80)

Here, f0 = 1
T is the spatial repetition rate and has the unit 1

m . The constant amplitude of the
irradiance E is in units of W

m2 . Because of the relief z(x), the pattern appears to be distorted:

bdist(x, y) = b(x+Δx, y) (7.81)

= E p(2πf0x+ 2πf0z(x) tanα) , (7.82)

with Δx = z(x) tanα. Now, let p(2πf0x) := 1+cos(2πf0x+ϕ0), i.e., the constant component
of the first harmonic of the stripe pattern is considered. This results in

bdist(x) = E (1 + cos(2πf0x+ 2πf0z(x) tanα+ ϕ0︸ ︷︷ ︸
=: ϕ(x)

)) . (7.83)

Hence, the relief z(x) linearly modulates the phase ϕ(x) of the distorted pattern.

Parenthesis 7.1 (Spatial frequency): A temporal harmonic oscillation is described by an equa-
tion of the form

h(t) = cos(2πft+ ϕ0) . (7.84)

Here, ϕ0 is a constant, f the oscillation’s frequency, and T = 1/f its period. The frequency
is in units of s−1.

If f = f(t) is a function of the time that changes slowly with respect to the period 1/f ,
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it is called the instantaneous frequency at the time t. It arises from the partial derivative
of the phase term with respect to the time:

f(t) =
1

2π

∂(2πf(t)t+ ϕ0)

∂t
(7.85)

Similarly, a spatial harmonic oscillation dependent of the position x = (x, y)T can be
expressed by the following equation:

h(x) = cos(2πfTx+ ϕ0) = cos(2π(fxx+ fyy) + ϕ0) . (7.86)

Here, f = (fx, fy)
T denotes the vector of the spatial frequency. The units of fx, fy are

m−1. Then,

‖f‖ =
√
f2
x + f2

y , T =
1

‖f‖ , γ = arctan
fy
fx

, (7.87)

Tx =
T

cos γ
, Ty =

T

sin γ
, Tx =

1

fx
, Ty =

1

fy
, (7.88)

see Fig. 7.61. The special case γ = 0 yields

h(x) = cos

⎛⎝2π

(
f0
0

)T(
x

y

)⎞⎠ = cos(2πf0x) 1(y) , (7.89)

i.e., the oscillation is constant with respect to y.
The local spatial frequency is defined in the same fashion:

f(x) =

(
fx(x)

fy(x)

)
:=

1

2π
grad ϕ(x) =

1

2π

(
∂ϕ(x)
∂x

∂ϕ(x)
∂y

)
. (7.90)

Figure 7.61. Definition of the spatial frequency.
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In accordance with (7.90), the local spatial frequency for bdist(x) can be calculated using
(7.83):

f(x) =

(
f0 + f0 tanα

∂z
∂x

f0 tanα
∂z
∂y

)
=

(
f0
0

)
+ f0 tanα grad z(x) . (7.91)

So the ‘local density of stripes’ is a linear function of the relief’s gradient. It would now
be beneficial to suppress the additive carrier frequency (f0, 0)

T. Therefore, the principle of
‘coherent demodulation’ is applied: after a multiplication with the carrier wave cos(2πf0x),
a moving averaging is performed:

b̃(x) :=
1

T

∫ x+T

x

bdist(ξ, y) cos(2πf0ξ) dξ (7.92)

=
E

T

∫ x+T

x

cos(2πf0ξ) dξ︸ ︷︷ ︸
= 0

(7.93)

+
E

T

∫ x+T

x

cos(2πf0ξ + 2πf0 tanαz(ξ, y) + ϕ0) cos(2πf0ξ) dξ

=
E

2T

∫ x+T

x

cos(2πf0 tanαz(ξ, y) + ϕ0)︸ ︷︷ ︸
≈ const. for ξ ∈ [x, x+ T ]

dξ

+
E

2T

∫ x+T

x

cos(4πf0ξ + 2πf0 tanαz(ξ, y) + ϕ0) dξ︸ ︷︷ ︸
≈ 0

.

(7.94)

The last equation is obtained using the trigonometric equation

cos v cosw =
1

2
(cos(v − w) + cos(v + w)) (7.95)

which is a result of the addition formulas [31]. Assuming that z(x) changes slowly with re-
spect to x compared to cos(2πf0x), the second integral can be omitted and the first integrand
is nearly constant for ξ ∈ [x, x+ T ]. This leads to the following approximation:

b̃(x) ≈ E

2
cos(2πf0 tanαz(x) + ϕ0︸ ︷︷ ︸

=: ψ(x)

) . (7.96)

Inserting the phase ψ(x) of the latter expression into the definition of the local spatial fre-
quency results in

f(x) =
1

2π
grad ψ(x) = f0 tanα︸ ︷︷ ︸

= const.

grad z(x) . (7.97)

So the ‘local density of stripes’ is proportional to the gradient of the relief and the stripes cor-
respond to contour lines. However, the gradient’s direction in the contour map is ambiguous.
This problem is solved by moving the test object in z-direction and acquiring and analyzing
multiple images.
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For this example, there are basically two methods than can be used for the coherent
demodulation and thus for the transformation of the projected stripe image into a contour
map:

computationally processing the stripe image bdist(x),
optical interference with a reference stripe pattern (moiré effect). The reference stripe
pattern represents the carrier oscillation, with which the observed stripe pattern has to
be multiplied. The defocused optical imaging and the limited spatial resolution of the
sensor represent kind of a low-pass filter, which carries out the local spatial averaging.
The demodulation is done optically and thus without any loss of time.

The camera images can be immediately visually interpreted, as the visible stripes correspond
to contour lines of the object. Most of the other methods for 3D shape capturing do not
have a similar characteristic. The coherent demodulation of the stripe image allows to infer
information about the test object’s microscopic shape properties from the macroscopic stripe
structure.

7.3.6.4 Shadow moiré
For shadow moiré, a grid is placed immediately above the surface of the investigated object.
The setup is illuminated by a point light source with an incidence angle of α (Fig. 7.62).
A camera observes the resulting moiré pattern. The camera’s direction of observation is
chosen to be as perpendicular as possible to the surface, in order to minimize perspective
distortions [102]. Parallel light is not used for this method as it would require large lenses or
mirrors. Instead, a point light source is placed at a distance (preferably a large distance) from
the surface. This increases the lateral range of the investigated surface, as the incident light
can be assumed to be approximately parallel, resulting in an acquisition of the surface with
an acceptable measurement uncertainty. However, a real light source always has a finite
dimension, resulting in blurred shadows: regions of attenuated shades arise on the surface,
from where the light source is only partially occluded (Fig. 7.63). Only inside the umbra is
the light source completely hidden. The irradiated light intensity I decreases gradually from
the brightly illuminated regions towards the umbra [51, 66].

α

Light source

Camera

Grid

Depth of

Test object

Figure 7.62. Shadow moiré system [102].
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Figure 7.63. Blurred shadows in the case of a real light source.

The model of the multiplicative transparency function from (7.73) can only be approxi-
mately realized: the distance of the grid to the surface can only be reduced up to a certain
extent, which leads to blurred shadows and a limited depth. Besides, the projection of the
stripe pattern and the entocentric observation are affected by perspective distortions. There-
fore, the moiré stripes can only be interpreted as ‘qualitative contour lines.’

7.3.6.5 Projection moiré
For projection moiré, a grid structure is projected onto the surface (cf. Sec. 3.5.1). A reference
grid is placed in front of the camera [80]. By this means, test objects can be investigated at
greater distances. The optical setup has to be adjusted so that the optical imaging between
the two grids and the surface is focused (Fig. 7.64). The reference grid can also be placed
directly on the camera chip [79], see Fig. 7.65.

The entocentric projection of the grid onto the surface causes perspective distortions.
Therefore, the moiré stripes do not correspond to the surface’s contour lines if periodic grids
are used. This effect can be compensated for, by using special irregular grids or by perform-
ing a post processing with respect to calibration images [102].

Test object

Camera

Imaging lens

Reference grid

Light source

Condensor

Grid

Projection lens

(Video-)
projector

Depth of

Figure 7.64. System for projection moiré [102].
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Figure 7.65. Image sensor with reference grid [102].

In general, the surface relief cannot be uniquely reconstructed from the contour map.
However, this can be achieved using projections of multiple phase shifted grid structures
[102, 132] (cf. Sec. 7.3.4.1 and 7.3.16.1).

7.3.7 Final remark on structured illumination
Whether structured or homogeneous illumination is indicated mainly depends on the prop-
erties of interest of the object: while structured illumination is useful for acquiring its surface
relief, homogeneous illumination can be used to obtain optical properties such as color, tex-
ture, or reflectance.

7.3.8 Stereo images
If an object point is viewed from two different viewpoints, its object distance, i.e., its distance
to the camera, can be calculated using the principle of stereo imaging.

This will now be shown for the simplest case of two cameras with coplanar image planes
(Fig. 7.66). Let g denote the object distance sought, G the object size (with respect to the
marked coordinate axis), b the image distance of the two cameras, B1 and B2 the image sizes
(with respect to the optical axes of the respective camera), and a the distance between the
optical centers of the cameras. The parallax (or disparity) p is defined as p := B1 − B2. The
intercept theorem implies

B1

b
=

a
2 −G

g
, (7.98)

−B2

b
=

a
2 +G

g
. (7.99)

Adding these two equations followed by some simple arithmetic yields

g =
a b

p
. (7.100)

Hence, the distance is inversely proportional to the parallax.
If the two cameras are not parallel, the necessary information about their relative posi-

tion has to be acquired by a calibration process. In this case, the so-called reconstruction
problem, i.e., the determination of the three-dimensional coordinates of an object point with
known image coordinates, leads to a system of linear equations depending on the camera
parameters (cf. Sec. 3.3).
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Figure 7.66. Principle of stereo images with cameras arranged in parallel.
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Figure 7.67. Epipolar geometry: The possible corresponding points x2 in the right image are located on a line l2
running through the intersection of the epipolar plane and the image plane [51]. The image planes are mirrored by
the optical centers marked in red. This way of representation is common in projective geometry.

The second important aspect of stereo image analysis is the so-called correspondence
problem: which image point of the second camera corresponds to a given image point of
the first camera? The geometry of the central projection implies that an object point xw,
together with its two image points x1, x2, has to be part of a common plane. Except for some
degenerate cases, this plane is unambiguously defined by the image point of the first camera
and the two optical centers of the projection. It is called the epipolar plane, and it intersects
the image plane of the second camera in a line called the epipolar line (see Fig. 7.67). The
corresponding image point has to be located on this epipolar line. In the simple case of
coplanar image planes, the epipolar lines are always axis-parallel. Otherwise, they can be
calculated by a simple matrix multiplication if the image point of one camera is given. The
required matrix is called the fundamental matrix of the stereo setup, and it can be estimated
using the already mentioned calibration method.

7.3.8.1 Derivation of the fundamental matrix
Epipolar geometry is the intrinsic geometry of the central projection with respect to two
camera perspectives. It does not depend on the scene, but only on the cameras and their
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spatial arrangement. This intrinsic geometry is algebraically embodied by the fundamental
matrix F [67, Chap. 9].

7.1Theorem 7.1: The fundamental matrix
For a given stereo setup of two cameras, there exists a fundamental matrix F ∈ R3 such
that the following equation applies for every point correspondence x′

1 ↔ x′
2, expressed in

homogeneous image coordinates:

x′
2
T Fx′

1 = 0 . (7.101)

The vector of coefficients l2 of the epipolar line l2 of image 2 containing the corresponding
point x2 for a given image point x1 of image 1 is defined by

l2 ∝ Fx′
1 . (7.102)

Thus, the epipolar line is defined by the equation x′
2
T l2 = 0. Conversely, the normal form

of the epipolar line l1 in image 1 for a given image point x2 of image 2 is obtained by

l1 ∝ x′
2
T F . (7.103)

All epipolar lines of an image i intersect in a single point, the so-called epipole ei. The
epipoles e1 of image 1 and e2 of image 2 are the solution of the system of linear equations

Fe′1 = 0 , e′2
T F = 0 . (7.104)

�

Proof 7.1 (The fundamental matrix): Suppose two cameras with the projection matrices P1,
P2 (see Sec. 3.3) and assume a point correspondence x′

1 ↔ x′
2 given in homogeneous

image coordinates. Within the scope of this proof, in contrast to the usual notation, the
components of the homogeneous vector will be marked by numeral indices :

x′
i = (x′

i, y
′
i, wi)

T =: (x′
i1, x

′
i2, x

′
i3)

T , i = 1, 2 . (7.105)

Both points are images of the same spatial point with the homogeneous world coordi-
nates x′

w = (x′
w, y

′
w, z

′
w, ww)

T. Denoting the rows of the projection matrices by pT
1i, p

T
2i,

we obtain the following system of equations [67, Sec. 17.1]:{
x′
1 ∝ P1 x

′
w

x′
2 ∝ P2 x

′
w

(7.106)
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⇔
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= 0 . (7.108)

Here, αi �= 0 are suitable scaling factors for the representation in homogeneous coordi-
nates. The 6×6 matrix A is singular and thus detA = 0, as it maps the vector v �= 0 to 0

in (7.108). The Laplace expansion [30, 37] of this determinant along the last two columns
results in a sum where each term is the product of exactly one component of x′

1, one
component of x′

2, and a 4×4 determinant that is independent of x′
i:

3∑
k=1

3∑
l=1

φkl x
′
1l x

′
2k = 0 . (7.109)

The coefficients φkl result from the 4×4 minors of the first four columns of A with suitable
signs, and only depend on the projection matrices [48,67]. The matrix F = (φkl) ∈ R3×3 is
the fundamental matrix of the cameras P1 and P2. Equation (7.109) can now be expressed
as a matrix equation:

x′
2
T Fx′

1 = 0 . (7.110)

The epipolar line l2 in image 2 corresponding to the point x1 in image 1 can be expressed
in normal form by x′

2
T l2 = 0. A comparison of this equation with (7.101) leads to l2 ∝

Fx′
1. Equivalently, the epipolar line l1 in image 1 corresponding to the point x2 can be

obtained in accordance with the formula l1 ∝ FT x′
2.

The epipole e2 is the intersection of all epipolar lines l2 in image 2, i.e., mathematically
speaking, 0 = e′2

T l2 = e′2
T Fx′

1. As this equation applies for all x′
1, we have e′2

T F = 0.
Equivalently, the epipole e1 corresponds to the right eigenvector of F with eigenvalue 0:
Fe′1 = 0.

As the epipoles are the eigenvectors of the fundamental matrix with eigenvalue 0, the fun-
damental matrix has to be singular: detF = 0. Together with the arbitrary scaling factor of
the homogeneous coordinates, this constraint implies that a fundamental matrix has seven
degrees of freedom [48, 67].

Accordingly, at least seven point correspondences x1,k ↔ x2,k, k = 1, . . . , 7 are necessary
to estimate the fundamental matrix. These point correspondences lead to equations of the
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form

x′
1
T
,k Fx′

2,k = 0 , (7.111)

which, as in (7.109), are linear with respect to the entries of the fundamental matrix. Nu-
merical methods for solving the resulting system of equations are known as the seven-point
algorithms or the the eight-point algorithms if exactly seven or eight or more point corre-
spondences are used. The numerical stability can be improved using suitable normalization
methods [48, 67].

Epipolar geometry not only applies to the two cameras of a stereo setup, but also to the
projector and the camera of a pattern projection system (see Sec. 7.3.4.1). A given projector
point has to be mapped to its corresponding epipolar line in the camera image, regardless of
the observed test object. This can be used to verify the assignment resulting of the decoded
pattern sequence, given a suitable calibration of the projector–camera setup [40, 86].

7.3.8.2 Stereo correspondence algorithms
Although the correspondence problem is reduced to a one-dimensional search by the epipo-
lar conditions, its solution is still challenging. First of all, finding the correct correspondence
is complicated by the fact that the same object usually appears differently in the two images.
On the one hand, the observed shape and size of the object differ, depending on the camera
position, because of the perspective imaging. Further, certain parts of the scene might be
occluded in the perspective of one of the two cameras. On the other hand, the measured
intensities are only equal if Lambertian reflection is used. Especially surfaces with specu-
lar reflections can lead to completely different images, so that a correct correspondence can
hardly be found. In order to achieve identical intensities, differences between the imaging
optics and the image sensors of the cameras have to be avoided or compensated for by cali-
bration.

Besides, ambiguities can prevent a successful search for correspondences. Thus, the
achievable quality mainly depends on the observed scene: if there are only periodic, faint,
or even no structures along the epipolar line, a correct local assignment is hardly possible.
Therefore, many methods try to regularize the problem by implicitly assuming a spatially
smooth surface [77]. However, this is disadvantageous for the lateral resolution.

There are numerous algorithms for the stereo correspondence problem, which differ
significantly concerning quality and computational complexity. Examples are correlation
methods, dynamic programming, minimization of energy functions, and diffusion methods
based on differential equations. A comparison of these methods can be found in [141], and,
for multi-view stereo systems, in [148].

An alternative for the determination of a dense relief are feature-based stereo correspon-
dence methods, which only find the correspondences for some image features, which can
be well identified and localized. For example, edges or corners can be used as features (cf.
Sec. 14.4). Besides the reduced computation time, these methods stand out because the fea-
tures used can be localized with sub-pixel accuracy, which results in a better accuracy of the
depth reconstruction. It is also possible to combine feature-based and dense correspondence
algorithms [57].
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Figure 7.68. Stereo reconstruction: Generally, the lines of sight of two corresponding image points x1 ↔ x2 do not
exactly intersect [51].

7.3.8.3 Stereo reconstruction
If a camera is intrinsically calibrated, the line of sight for every image point is quantitatively
known in terms of the camera coordinate system (cf. Sec. 3.3). If a pair of corresponding
points are found in a pair of two intrinsically and extrinsically calibrated cameras, the in-
tersection of the corresponding lines of sight yields the object point sought. Thus, the 3D
coordinates of an object point corresponding to two image points can be calculated.

Generally, the two lines of sight do not exactly intersect because of noise and a limited
resolution [51]. Therefore, the point x̂w in the three-dimensional space is used as an estimate
for the object point xw that is closest to the two lines of sight (Fig. 7.68). The homogeneous
coordinates of this point are obtained by applying the least squares method to the system of
equations

x′
1 ×P1 x̂

′
w = 0 , (7.112)

x′
2 ×P2 x̂

′
w = 0 , (7.113)

with x′
1 ↔ x′

2 denoting the pair of corresponding image points in homogeneous coordinates
and P1, P2 denoting the projection matrices of the cameras.

A detailed mathematical formulation of reconstruction and calibration methods can be
found in the textbooks [48, 67].

7.3.8.4 Multi-camera systems
By using more than two cameras, the search for correspondences as well as the reconstruc-
tion can be improved. Using several images reduces the ambiguities in the sought for as-
signments of the correspondence problem. Also the problems of occlusion are less severe
than for only two cameras.

The idea of the fundamental matrix can be generalized to three cameras and, with certain
limitations, also for systems with four and more cameras [48, 67]. This leads to the so-called
trifocal tensor of size 3× 3× 3 for three cameras.

The precision of the reconstruction can be improved using bundle adjustment [110,
Sec. 4.3]. Let M object points xw,j , j = 1, . . . ,M be observed by N cameras with projec-
tion matrices Pi, i = 1, . . . , N . Each point yields 2N equations of the form (3.12), (3.13),
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resulting in a total of 2N M equations. As the coordinates of the object points represent 3M
unknowns, the system of equations is already overdetermined for N ≥ 2 cameras. The least
squares method can be used to find a solution with minimum error [67, Sec. 18.1].

If the extrinsic camera parameters are unknown but enough point correspondences are
available, they can be considered to be additional unknowns and can be estimated simulta-
neously. As each calibration method is affected by different errors and as the camera param-
eters can vary with time, it might be useful to also estimate the intrinsic parameters at the
same time. In this case, a total of 11N unknown camera parameters have to be estimated.

For bundle adjustment, a huge system of nonlinear equations has to be solved. For this
case, special numerical methods are suitable, which exploit the system’s sparse structure
[110].

7.3.8.5 Monocular stereo
For a static scene, it makes no difference if it is viewed by N cameras simultaneously or if a
single camera is subsequently moved to the N positions. However, in the case of a moved
camera, it is often necessary to estimate the extrinsic camera parameters at the same time, as
the movement cannot be reproduced with a sufficient accuracy. This can be done similarly
to what was described in the previous section [39]. For some applications, the movement
of the camera is a side effect, for example, if it is mounted on a mobile robot. The stereo
reconstruction based on such image sequences is also referred to by the term ‘structure from
motion’.

7.3.9 Light-field cameras
A light-field camera or plenoptic camera is a special camera which is able to capture a sec-
tion of the light field. The light field L(xw,β) introduced in Sec. 4.2 describes the radiance of
all light rays coming from a point xw of the test object in the direction β under conditions of
constant illumination [3, 4]. To simplify matters, the light field’s dependencies on the wave-
length and the polarization state of the light are omitted in this introduction to the light-field
camera. Furthermore, the test object is assumed to be opaque, and the medium surrounding
the object is assumed to be optically transparent, so that there are no interactions, such as
scatter, between the light field and the medium.

The light field L(xw,β) is a five-dimensional function of the position xw =

(xw, yw, zw)
T ∈ R3 and the direction β = (β1, β2). If L(xw,β) is known for all of the surface’s

points xw ∈ SF, then the light field L(u,β), u ∈ R3 induced by the test object is uniquely
defined for the surrounding space. The light field L(u,β) describes the radiance of all light
rays running through the point u in the direction β, and thus denotes the distribution of
directions of the radiance in every spatial point (Fig. 7.69).

Although the light field’s argument (u,β) is five-dimensional, a four-dimensional rep-
resentation is sufficient. As long as no occlusions arise, the light field is intrinsically four-
dimensional, as the radiance along a line is constant in that case and thus independent of
the object distance (cf. Sec. 4.4.1). A line in space is unambiguously determined by four pa-
rameters, for example by its intersection (xw, yw)

T with the plane zw = 0, together with the
azimuthal and polar angles [104].

Hence, to a certain extent, the light field L(u,β) contains all possible images of the test
object that can be captured under the given constellation of test object and light source. A
camera acquires a part of the light field in the form of a two-dimensional image. The image
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Figure 7.69. Light field of a test object.

of a camera with arbitrary extrinsic and intrinsic parameters is uniquely determined by the
light field. Thus, the light field is also called the plenoptic function.3

As it is hardly practical to capture the whole light field, it is mainly used in a conceptual
sense. If it was completely available, the images for all possible camera perspectives and
camera parameters could be calculated. For hypothetically measuring the whole light field,
pinhole cameras could be placed at every point in space, recording images from two opposed
directions. In fact, because of the four-dimensional argument of the function L(u,β) and
because of the assumptions made above, it would be sufficient to capture the light field on
an infinitely large plane.

With a light field camera or a plenoptic camera it is possible to measure a section of
the light field on a plane. It can be constructed from a main lens, a microlens array, and
an image sensor, see Fig. 7.70(a). The main lens’s focal length is assumed to be f and the
aperture diameter to be D. The main lens achieves a sharp imaging of a plane of the object
space onto the microlens array [120]. Each microlens sharply images the main lens plane to
the image sensor. The microlens array consists of N ′ ×N ′ lenses arranged in an equidistant
rectangular grid. To simplify matters, the number of microlenses is assumed to be quadratic,
which is not necessary in general. The focal length of each microlens is assumed to be f ′ and
the aperture diameter to be D′. The sensor chip is assumed to be a square as well and to
have N ×N pixels.

At first, the optical imaging performed by the main lens is assumed to yield a sharp
image of the object on the plane of the microlens array. In the case of a conventional camera,
the camera chip would replace the microlens array and integrate the light rays coming from
the object, and thus the information about the rays’ directions would be lost. However, in a
light-field camera, the light rays reach the image sensor behind the microlens array, which
has a higher spatial resolution than the microlens array: N > N ′.

The intensity of the light coming from the object is measured with respect to the direction.
The pixel positions beneath a microlens correspond to the direction of the incident light.
Therefore, a section of the light field can be captured.

3Plenus is the Latin word for ‘complete.’ The concept of the plenoptic function was already men-
tioned by Leonardo da Vinci [103]. He said that every illuminated body fills the surrounding space
with a continuum of latent images. He used the term ‘pyramid’ for the bundle of rays coming from an
object and running through a certain point in space.
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Figure 7.70. Setup of a light-field camera: (a) Optical imaging by the main lens; (b) Optical imaging by the microlens
array.
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(a) (b) (c) (d)

Figure 7.71. Image of the top of a drop action pencil recorded with a light-field camera: (a) Raw data of the im-
age sensor; (b) Section of the pencil’s top, the regions of the single microlenses are clearly visible; (c), (d) Images
synthesized from the raw data with horizontally displaced perspectives.

For an optimal setup, the images generated by the microlenses on the sensor chip must
neither overlap nor have too big gaps between each other, which would give away some of
the directional resolution [120]. This is fulfilled if

D

b
=

D′

b′
. (7.114)

In this case, an image that is imaged from the main lens to the sensor chip by a microlens
covers approximately η :=

(
N
N ′

)2
pixels. Thus, the direction of the incident light is captured

(sampled) at η discrete values.
The N2 pixels of the image sensor can be divided into (N ′)2 fields, cf. Fig. 7.71(a). Each

field corresponds to a microlens and captures the locally incident light intensity with respect
to the direction, cf. Fig. 7.71(b).

For acquiring the direction, a reduction of the spatial resolution has to be accepted. A
discrete image with (N ′)2 pixels is recorded, in which the light’s direction is captured at
each pixel in η steps.

In order to describe the light-field camera, an alternative set of parameters is used for the
light field. Each ray of light is unambiguously described by its intersections (v, w) and (r, s)

with two parallel planes. The principal plane of the main lens is chosen to be the (v, w)-plane
and the (r, s)-plane is assumed to be the plane of the microlens array. So, the light field can
expressed as L(v, w, r, s) inside the section captured by the camera.

The pixel A on the image sensor in Fig. 7.70(b) is mapped to the main plane by the mi-
crolens in front of it. Only light going through the main lens’s region denoted by C reaches
pixel A. Hence, the pixel A is assigned a partial aperture C on the main lens. For rectan-
gular pixels and rectangular microlenses, this describes a four-dimensional cuboid in the
(v, w, r, s)-space which is integrated by the pixel A. In the system theoretical sense, this cor-
responds to a moving average over a four-dimensional interval with the size of this cuboid,
and a subsequent sampling.

The other microlenses also image the partial aperture on a certain pixel of the sensor
chip, for example on pixel B. All these pixels capture light coming from the object space
through the partial aperture C. The result is an image of (N ′)2 pixels, imaged by the partial
aperture C.
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On the other hand, each of the η pixels illuminated by the same microlens as A, corre-
sponds to another partial aperture of the main lens. Thus, the main lens is divided into η

partial apertures which, in the ideal case, do not overlap.
Hence, the light-field camera simultaneously captures η images from different perspec-

tives with (N ′)2 pixels per image. As the perspectives correspond to the partial apertures,
they are located on the main lens. The resulting images can be analyzed using multiocular
stereo methods, in order to reconstruct the 3D shape of the test object. Therefore, a light-field
camera is also a 3D camera [4]. The maximum available stereo base is given by the diameter
D of the main lens. Thus, the 3D reconstruction is well-conditioned, especially for closeup
and macro images, which are typical for many visual inspection tasks.

Inside the captured section of the light field, not only can the perspective be changed, but
also virtual cameras with arbitrary synthetic perspectives and aperture can be positioned
and the images that they would capture can be calculated, cf. Fig. 7.71(c), (d).

Based on the captured section of the light field, the depth of field and the focused plane
of synthesized images can be changed afterwards within a certain range, by calculating the
images of virtual cameras. The subsequent focusing can be calculated by the addition of
displaced partial apertures [119, 120].

The possibility of capturing images with increased depth of field is of particular impor-
tance for automated visual inspection. The relevant aperture for the images on the sensor
chip is the diameter D′ of a microlens, which is significantly smaller than the diameter of the
main lens. As stopping down increases the depth of field, the captured light field has the
potential of producing images with increased depth of field (cf. Sec. 3.4.4). In fact, it can be
shown that the depth of field of a suitably synthesized image of a light-field camera is about
N
N ′ times larger than for a conventional camera with an aperture stop of the same diameter
D [120].

The captured section of the light field is limited by the main lens’s aperture in the v,w-
plane, and by the dimension of the microlens array in the r,s-plane. So a higher depth of
field can be achieved using a light-field camera without stopping down and without losing
light. This also leads to a significantly higher signal-to-noise ratio than conventional cameras
have [120].

Meanwhile, the first light-field cameras are commercially available. They have the fol-
lowing technical data and operating characteristics:

Prototype of Stanford University [120]:
– Sensor chip with N ≈ 4, 000 (16 megapixels), pixel distance Δx = 9 μm,
– microlens array with N ′ = 296, D′ = 125 μm, focal length f ′ = 500 μm, f-number

O′ = f ′

D′ = 4,
– effective resolution: 292× 292 in the r,s-plane (spatial resolution), η2 ≈ 14× 14 in the

v,w-plane (directional resolution),

microlens array with N ′ = 1080 [50],

few microlenses, thus a high directional resolution,

lens array with neighboring microlenses of different focal lengths,

focusing of the microlenses on the sharply imaged plane of the main lens, so that each
microlens generates a sharp miniature image on the image sensor [58].
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7.3.10 Silhouette capturing
The bright field and dark field illumination setups covered in Sec. 7.2.3 can be used not only
for capturing the reflectance but also for inspecting the silhouette of a test object. An object’s
silhouette is the projection of its 3D structure onto a plane. Inspecting the silhouette can
detect differences in shape which influence the captured silhouette. Often, the inspection of
the silhouette from only a few directions is sufficient for detecting the relevant defects of the
component. A complete 3D reconstruction is not necessary for this kind of application.

Figure 7.72 shows the principle of silhouette capturing using a bright field setup. The
camera is aimed straight at a planar light source. The test object is placed between the light
source and the camera, generating shadows. In the camera image, the edges between the
shadows and the light source’s image correspond to the object’s silhouette.

Camera

Planar light source

Object

Shadow

Figure 7.72. Silhouette capturing with bright field illumination.

Example 7.9 (Brake disk inspection): A complicated example of an application of bright field
silhouette capturing is shown in Fig. 7.73: the automated visual inspection of ventilated
brake disks [23]. The ventilation channels of the brake disk are arranged radially, see
Fig. 7.73(b). All ventilation channels have to be checked for contaminants which might
hinder the airflow. A cone-shaped mirror is used to radially illuminate the test object. A
cylindrical retroreflector is placed inside the brake disk (see Sec. 7.3.10.3). The reflected
light reaches the camera by traversing the same optical path and an additional semi-
transparent mirror. In the resulting image, faultless ventilation channels form circularly
arranged bright regions, see Fig. 7.73(c). For partially or completely blocked channels, the
corresponding regions remain dark. The image produced can be considered as a binary
image, and thus is easy to analyze.

Laser scanners (see Sec. 7.2.3.4) can also be operated in bright field mode to produce shadows
for silhouette capturing (Fig. 7.74). A rotating mirror or polygonal wheel is used to direct
the laser onto different positions on the test object in order to achieve a sequential sampling.
The period of time during which the detector receives no signal is used to calculated the test
object’s diameter.

Dark-field methods can also be used for silhouette capturing. An exemplary application
is the visual inspection of transparent objects like glass or plastic bottles [14]. The planar
illumination is occluded with a mask which is slightly larger than the camera’s field of view
(Fig. 7.75). Because of the scattered light, the edges of the transparent object appear espe-
cially bright in the camera image while the background remains dark. This setup can also
be used to highlight differences in reflectance and scratches.
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Figure 7.73. Automated visual inspection of a brake disk’s ventilation channels: (a) Setup of the inspection system;
(b) Sketch of a ventilated brake disk; (c) Resulting image (source: inspectomation GmbH).
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Figure 7.74. Using a telecentric laser scanner for silhouette capturing in accordance with the principle of shadow
casting [163]).
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Figure 7.75. Dark-field illumination used for capturing the silhouette of transparent objects: (a) Principle [14];
(b) Dark-field image; (c) Bright-field image of the same object.

7.3.10.1 Telecentric silhouette capturing
Figure 7.76(a) shows an image acquisition system with a telecentric lens used for silhouette
capturing. A light box (left) realizes a planar bright-field illumination. For small objects, a
telecentric illumination would also be possible.

7.3.10.2 Illumination for telecentric imaging
For optical measurement, the use of diffuse illumination in combination with telecentric
lenses can lead to faulty measurement results: for example, a non-parallel illumination
(marked red in Fig. 7.77) might lead to a an object’s diameter being systematically measured
too small.

A possible solution to this problem is a telecentric illumination [109]. As can be seen in
Fig. 7.78, the light source is positioned at the focal point of a second lens. Therefore, the
optical path of illumination is also parallel to the optical axis of the telecentric lens and the
object’s diameter will be correctly measured. However, it is quite costly to precisely set up
the two optical elements to have exactly parallel optical paths.

Another way to achieve parallel illumination is given by the setup shown in Fig. 7.79,
where a semi-transparent mirror is used in combination with a retroreflector. Together with
the lens, the light source and the semi-transparent mirror lead to a coaxial illumination that is
parallel to the optical axis, as long as the length along the optical path from the light source
to the lens exactly equals the focal length. As the light is reflected by the retroreflector, it
reaches the lens parallel to the optical axis. The use of a retroreflector instead of a mirror is
advantageous, as there is no need for an arrangement exactly parallel to the optical axis.
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(a)

(b) (c)

Figure 7.76. Silhouette inspection using bright-field illumination: (a) Image acquisition system with bright field illu-
mination and telecentric lens; (b) Silhouette of a reference object (crank shaft); (c) Test object with defects (marked
red) (source: inspectomation GmbH).
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Figure 7.77. Telecentric imaging using diffuse illumination.
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Figure 7.78. Telecentric illumination.
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Figure 7.79. Telecentric illumination using a retroreflector.

7.3.10.3 Retroreflectors
A retroreflector mirrors an incoming ray of light so that it takes the optical path where it came
from but in reverse direction [137]. In contrast to a plane mirror, a rotation of the retroreflec-
tor does not change the direction of reflection. For some applications of automated visual
inspection, this insensitivity is advantageous, as an exact adjustment of the reflector becomes
unnecessary. Retroreflectors are mainly known for their use in transportation, where they
are used in vehicles, bicycles, reflector posts, and clothes. If a retroreflector is illuminated
in darkness by a headlamp of a car, for example, the light is reflected back to the car and is
highly visible to the driver.

Here, two possibilities for constructing retroreflectors are presented (Fig. 7.80). Small
glass spheres embedded in a carrier material reflect the incident light on their backsides. A
second possibility is given by rectangular tetrahedra with three specular sides and one open
side. In both cases, there is a small displacement Δ between the incoming and the reflected
ray of light, which depends on the size of the individual retroreflecting elements.



7.3 3D shape capturing 301

Δ
Glass 
spheres

Embedding material

(a) (b)

Figure 7.80. Structure of retroreflectors: (a) Glass spheres; (b) Triple mirrors: the three mirrors are arranged to be
pairwise perpendicular.

7.3.11 Shape from shading
The radiance L emitted by the surface partly depends on the surface normal and the di-
rection of illumination (cf. Sec. 4.3). The method shape from shading tries to exploit this
dependency in order to calculate the surface normal for known illumination parameters and
to reconstruct the object’s 3D shape by integration.

Often, the Lambertian model of reflectance (4.29) is assumed for the test object. Then, the
radiance Le observed by a camera is given by

Le(θe, ϕe) = BRDF (x, θi, ϕi, θe, ϕe)Ei(θi, ϕi) (7.115)

=
R(x)

π

dΦi

dA
(θi, ϕi) (7.116)

= max

{
0,

R(x)

π
Φi i

Tn(x)

}
. (7.117)

The collimated radiant flux emitted by the light source is denoted by Φi, i represents the
illumination direction, and n(x) denotes the surface normal for position x, with i and n(x)

being unit vectors. The inner product in Eq. (7.117) describes the projection of the parallel
light coming from direction i onto the surface. The maximization takes into account that the
light source might be located behind the surface: in this case, the surface is not illuminated
and there is a shadowing effect. If the illumination conditions are assumed to be known,
two mathematical problems have to be solved in order to reconstruct the surface relief:

1. Determination of the normal vector by solving (7.117) for an unknown reflectance c(x).

2. Reconstruction of the surface relief from the normal field n(x).

The normal field can be integrated as with deflectometry (see Sec. 7.3.5). As it is an ill-posed
problem, a stable numerical solution is rather hard to obtain. Therefore, methods related to
the calculus of variations can be used, for example [81, 169].

Another way to regularize the shading problem is to use several images with varying
illuminations (Fig. 7.81). This method is known by the term photometric stereo. The use of
specifically selected illumination directions allows a closed form mathematical solution [87].
For general directions of illumination, it is rather easy to solve Eq. (7.117) for the normal
field [76]. Each image yields an equation

gk(x) =
R(x)

π
Φi i

T
k n(x) k = 1, . . . , n , (7.118)
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(a) (b) (c)

(d) (e)

Figure 7.81. Example images of shape from shading: (a)–(c) Images of a packaging foil with different illumination
directions; (d) Calculated reflectance R(x); (e) Normal field n(x) in pseudo colors (cf. Sec. 9.1.3).

with ik denoting the illumination direction of the kth image. Here, the assignment between
the radiance Le and the measured image values gk(x), to which Le is proportional, is deter-
mined (cf. Sec. 4.4.1), and a shadow-free illumination is assumed. The scalar equations can
be arranged in a system of linear equations

g(x) =
R(x)

π
Φi B

Tn(x) (7.119)

with g := (g1, . . . , gn)
T and B := (i1, . . . , in). For n = 3, B is invertible if and only if the

illumination directions ik are not coplanar. In this case, a unique solution exists. For n > 3,
the pseudoinverse can be used to obtain a least squares solution of the system:

v(x) := n(x)R(x) = πΦ−1
i (BBT)−1 Bg(x) (7.120)

By means of this equation, the reflectance of the surface and the surface normal at point x
can be calculated:

R(x) = ‖v(x)‖ , (7.121)

n(x) =
v(x)

R(x)
. (7.122)

A color coded illumination sequence [87,107] can be used to detect the reflectance in different
spectral ranges. In the case of a known, wavelength-independent reflectance, the surface can
be simultaneously illuminated from different directions in different spectral ranges, so that
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a single image acquired with a color camera is sufficient for the reconstruction, and even
moving objects can be captured.

7.3.12 Autofocus sensors
In an autofocus sensor, the light of a laser diode is shed onto the investigated object by
a collimator and another, movable, lens [99, 131]. The reflected light reaches the detector
by going through a beam splitter (see Fig. 7.82). The lens is now moved to a position that
minimizes the blur disk on the sensor. For a cylindrical lens, the required direction in which
to move can be obtained by means of the blur disk’s shape. Depending on the sign of the
difference of intensities, (a + c) − (b + d), on the 4-quadrant detector in Fig. 7.83, the lens is
moved towards a focused imaging. The distance to the test object can be calculated from the
position of the correctly focused lens.

Control

Object

Laser

Focus
adjustment

Cylindrical lens

4-Quadrant
photodetector

Collimator

Coil current

Plunger coil
Magnet

Lens

Figure 7.82. Autofocus sensor: Optical path and electromechanic focus correction.

A plunger coil system can be used to vertically shift the lens, like moving the membrane
of a speaker. The lens is attached to a linear spring with a force F which is proportional
to the elongation in z-direction, F ∝ Δz. For a magnetic field that is homogeneous in the
z-direction, the current inside the coil is proportional to the elongation: I ∝ F ∝ Δz. Hence,
this current I is a signal which can be used to calculate the position of the lens and therefore
also of the object.

Due to its wide use in CD and DVD players, autofocus sensors represent a fully devel-
oped and inexpensive technique. However, a well-reflecting, non-scattering, and opaque
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Figure 7.83. Principle of astigmatic focus detection using a cylindrical lens and a 4-quadrant photo detector. (a) Dis-
tortion of the ray bundle in the case of a cylindrical lens; (b) Image on a 4-quadrant detector caused by an object
distance which is too low; (c) Focused imaging; (d) Distance too large.

surface is necessary. As autofocus sensors are point sensors, an areal inspection is relatively
time consuming.

The depth of field that can be achieved is about 10 to 25 nm. The measurement range is
approximately 1 mm. The lateral resolution depends on the size of the light spot on the test
object’s surface, and is about 1 to 10 μm [28, 99]. The measurement frequency is limited by
the dynamic properties of the electromechanic drive system as well as by the characteristics
of the investigated surface relief. It can reach up to 10 kHz [99].

7.3.13 Confocal microscopy
Example 3.3 showed that the depth of field of microscopes is very small. This effect can
be used for 3D reconstruction: only those structures are visible in the image that are very
close to the focused object plane. Other structures are nearly invisible, as they appear in-
tensely blurred. The distance between the test object and the lens is systematically varied,
and an image series with different object positions is acquired [142]. In this focus series, a
maximum of a suitable local image feature is determined for each pixel position. For this
feature, contrast measures can be used, which can be realized by a high-pass filter [133]. As
the imaging conditions of the single images are known, the 3D shape of the object can be
reconstructed.

In addition to focused observation, focused illumination is used for confocal microscopy
[114]. A light source is imaged to the test object via a beam splitter. On the reverse optical
path, the scattered light reaches the sensor (see Fig. 7.84). A pinhole allows only focused light
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Figure 7.84. Optical path in the case of confocal microscopy. The illumination rays are colored in blue, the optical
path of the optical imaging is drawn in red and green. The defocused light bundle, which is colored in green, can
hardly pass the diaphragm of the detector.

to reach the detector. In the case of refraction limited optics, the pinhole is manufactured to
have the size of an Airy disk (cf. Sec. 2.2.6).

Since the illumination and the image acquisition optics both are focused on a plane, an
even higher depth resolution in the nanometer range is possible [170]. The irradiance on
the object decreases proportionally to the square of the difference in depths, Δz, from the fo-
cused plane, as the illuminated area grows quadratically. Similarly, the irradiance emitted by
the object decreases quadratically with respect to Δz. Due to the pinhole, only the intensity
corresponding to a constant area of the diaphragm finally hits the detector. In all, the inten-
sity emitted by an object point G and which is measured by the detector is approximately
proportional to (Δz)−4.

Often, a laser is used as a light source and a photodiode or a photomultiplier serves as
a sensor [87]. The maximum intensity is observed if the object is located in the plane that is
focused in the object space. This maximum is found by moving the object along the optical
axis of the microscope. In contrast to the focus series method mentioned above, in this case
only a single object point can be measured with a series of images acquired in the z-direction.
In order to obtain the whole 3D structure, an additional two-dimensional scan in the lateral
direction has to be performed. For example, the confocal laser scanning microscopy uses
movable mirrors to sequentially scan the object [136].

Alternatively, suitable optical elements can be used for simultaneously measuring sev-
eral points. Both methods allow an areal depth measurement by recording an image series,
and the amount of time consumed is on the order of seconds.

A fast two-dimensional lateral scanning in the x,y-plane can be achieved by means of a
multi-pinhole diaphragm and a two-dimensional sensor array, see Fig. 7.85(a). This multi-
pinhole diaphragm can be realized as a so-called Nipkow disk, for example. For a Nipkow
disk, the pinholes are arranged spirally. The disk rotates at a fast speed and half of it is placed
in the optical path, see Fig. 7.85(b). Due to the simultaneous use of multiple pinholes and the
fast switching between the pinhole arrangements caused by the rotation, a fast lateral scan
can be attained.
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Figure 7.85. Confocal microscope with multi-pinhole diaphragm: (a) Optical path inside the microscope; (b) Nipkow
disk.

An alternative for the multi-pinhole diaphragm is a rotating microlens array [164]. The
microlenses replace the lenses one and two in the optical path. Compared to the multi-
pinhole stop, the microlens array offers a much better light yield.
There are different possibilities for vertical scanning:

Vertically moving the lens;
Vertically moving the test object;
Vertical oscillation of the object-sided focal point by oscillating optical elements in the
optical path [143];
Chromatic parallelization.

This last possibility will now be briefly described. The height z is mapped to the light’s
wavelength, so that the mechanical vertical scan can be replaced by a spectral analysis. Thus,
a fast simultaneous capturing of an interval in the z-direction is possible. A lens with exten-
sive chromatic aberration is used, so that the illumination is focused in different depths
depending on the wavelength (see Sec. 3.4.8.2). A diffraction grating is placed in front of
the image sensor, resulting in a spectral decomposition of the incident light (Fig. 7.86). Now,
the spatial maximum of intensities on the sensor corresponds to the wavelength of optimal
focus and thus to the object’s distance z.

Independent of its actual realization, the vertical scan yields a so-called confocal curve
for each point. The location of the maximum intensity corresponds to the z-position of the
surface point. The half width of the confocal curve mainly depends on the lens’ numerical
aperture. The maximum gets narrower for increasing numerical aperture. The minimum
width which can be reached is on the order of the wavelength of the light used. By matching
the curve for the discrete measurements using a regression analysis, the height z can be
determined with a resolution in the nm-range [170].

The main application of confocal microscopy is capturing the profile of technical surfaces
and the 3D microscopy of partially transparent objects, e.g., in biology or medicine.
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Figure 7.86. Chromatic parallelization of the vertical scan of a confocal microscope.

Besides the 3D structure, reflectance information can also be retrieved from the image
series. By means of image fusion, an image can be calculated showing all object parts in
focus [133]. In many cases, such an image cannot be realized by means of a single-shot
image.

7.3.14 Confocal chromatic triangulation
A confocal chromatic triangulation (CCT) sensor [159, 160] combines the principle of a con-
focal chromatic microscope with the principle of triangulation. With respect to the measure-
ment plane, the optical path of the illumination and the optical path of the observation are
tilted by an angle of θ. Such optics are also called a confocal θ-microscope [153] or dual-axes
confocal microscopy [172].

The CCT sensor is a line-scan sensor that captures the height z(x, y) of an object’s surface
in a one-dimensional scanning process. In order to enable directly adjacent measurements,
the confocal approach employs a slit in the y-direction as its aperture. The tilt of the optical
path of the illumination and of the optical path of the observation improves the vertical
resolving power and is especially beneficial for small numerical apertures [149]. Figure 7.87
shows the principle of the setup of a CCT sensor.

In confocal chromatic microscopy, the height z is encoded in the wavelength λ, which is
spectroscopically measured so that z can be estimated. In order to speed up the method, a
CCT sensor uses line cameras with Q channels instead of a spectroscopic estimation of the
wavelength. Each of the channels is equipped with specially optimized interference filters
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Figure 7.87. Setup principle of a CCT sensor.

[161], so that the Q observed intensity values allow a fast and sufficiently accurate estimation
of the wavelength.

In principle, this method allows the construction of very fast sensors. By employing a
line camera with Q channels, only a small amount of data has to be acquired, allowing a
high line rate and thus a high scanning speed.

7.3.15 Time-of-flight sensors
A further principle of 3D measurement is based on the light’s time of flight. If it takes time t

for the light to reach the object and to get back to sensor, the object distance d is given by

d = 1
2 c t (7.123)

with c denoting the velocity of light. Due to the high velocity of light, a highly resolved time
measurement is needed in order to achieve the desired precision. A point sensor using the
time of flight principle usually uses a pulsed laser as a light source. The time measurement
has to be synchronized with the clock of the laser. Alternatively, code sequences can be
modulated onto the light source, so that the time of flight can be obtained by searching for
the maximum of the cross correlation of the sent and the received signal [111].

A 2D section of the object space can be measured using a single scan. Such a sensor is
called a lidar sensor. This term refers to ‘light detection and ranging’, and has been chosen
analogously to ‘radar’ (radiowave detection and ranging). Usually, the scan is performed
with a rotating mirror. The result of a measurement is the distance of the object points
from the sensor, given as a function of the angle in the scanning plane. Typical operating
characteristics show a field of view of 90◦ with an angular resolution of 0.5◦, a maximum
range of 80 m, and a depth resolution of 1 cm [151]. Dynamic scenes can cause a distortion
of the measured object geometry, as the object points are not measured simultaneously. Lidar
sensors are often used in robotics.

In order to obtain information about the whole three-dimensional space, either an ad-
ditional scan or a rotational movement can be performed, or several laser scanners can be
aligned above each other, resulting in multiple rows in the depth image.
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In automated visual inspection, time of flight sensors can only be used for macroscopic
inspection scenarios with structures having sizes of centimeters or larger, because of the
sensor’s low resolution.

7.3.16 Phase-based methods
As an alternative to time of flight measurements, the light’s phase shift can be analyzed. An
important kind of measurement based on this principle is called interferometry.

7.3.16.1 Interferometry
The goal of interferometry is the exact measurement of the surface relief of a specular or
diffusely reflecting, smooth surface with a measurement uncertainty in the submicrometer
range. It is only sensible to demand such an accuracy if the surface’s roughness is of lower
or equal dimensions.

The measurement principle is based on the optical interference (see Sec. 2.2.5) of the
optical path of observation with a reference ray. Coherent, monochromatic light is split into
a ‘reference wave’ and a ‘measurement wave.’ The reference wave travels over a reference
path of known length, and the measurement wave travels along a path which includes the
test object. The optical difference between the two paths is called the optical path difference,
and produces a phase shift between the two waves.

If now both waves are superposed, an interference pattern arises and its intensity is mea-
sured. The interference pattern depends on the optical path difference and therefore on the
lengths of the two paths.

From the observation of one or more interference patterns, information about the test
object, e.g., about its surface relief, can be computationally extracted.

As the coherent light waves are periodic, the interference effects are also periodic with
respect to the optical path difference. Thus, the reconstruction of the surface based on the
interference pattern is an ill-posed inverse problem, which can generally only be uniquely
solved by using regularizations (see Appendix A.2). A possible regularization approach
can be given, e.g., by the previous knowledge that the variations of the surface relief are
limited. Another regularization method is based on additional measurements with varying
wavelengths. Both approaches will now be described.

Smooth surfaces with a roughness which is small compared to the wavelength λ result
in macroscopic interference patterns, which are characterized by interference stripes. This
effect is used for classic interferometry.

However, if the wavelength is small compared to the variations of the surface profile of
the test object, the observed interference patterns will be dominated by speckle. In this case,
speckle interferometry can be used, which is briefly described in Sec. 7.3.16.2.

A laser with wavelength λ can be used as a monochromatic light source for an interfer-
ometer. The laser’s coherence length should be larger than the dimensions of interest [135].
The laser light is split by a beam splitter (Fig. 7.88). The reference beam is mirrored by a
planar first surface mirror in order to reach the intensity detector. The measurement beam
is reflected by the test object, causing the length of the optical path to vary according to the
geometry of the object. The length of the measurement path between the beam splitter and
the test object is denoted by z, the length of the reference path between the beam splitter and
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Figure 7.88. Principle of interferometry.

the first surface mirror is denoted by ζ. As these paths are traveled by the incident and by
the reflected light, their optical lengths are twice as long: 2z, 2ζ.

The detector measures the interference between the light from the measurement path
and that which has travelled the reference path, cf. Fig. 7.98 on page 320. The reference
mirror and the test object need to have similar reflectances in order to yield clearly distinctive
interference stripes. In accordance with (2.122), the measured intensity I(z, ζ) is maximal if
the optical path difference is 2z − 2ζ = k λ for k ∈ Z. This is the case for constructive
interference. The intensity is minimal for destructive interference, i.e., if the optical path
difference is (k + 1

2 )λ. The intensity is periodic in λ
2 with respect to z and ζ:

I(z, ζ) = I(z + k λ
2 , ζ) = I(z, ζ + lλ2 ) , k, l ∈ Z . (7.124)

So only in the range z ∈ [z0, z0 +
λ
4 ], can the object distance z, which is sought, be obtained

without any ambiguities (Fig. 7.89).

Figure 7.89. Unambiguous range for distance measurement based on interferometry.

The range of distances which can be measured without ambiguities can be increased by
means of a long-wave light source. However, this approach is technically and economically
limited, so that only wavelengths up to the infrared range with wavelengths λ > 10 μm are
possible.

The use of several different wavelengths λ1, λ2, . . . allows performing interferometry
with synthetic wavelengths Λi, which can be significantly longer than the physical wave-
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lengths λ1, λ2, . . . [168]. Two wavelengths λ1 > λ2 lead to a synthetic wavelength

Λ =
λ1λ2

λ1 − λ2
. (7.125)

The resulting wavelength is longer than either of the two original wavelengths if

0 < λ2 < λ1 < 2λ2 ⇔ Λ > max{λ1, λ2} = λ1 . (7.126)

For λ1 ∈ (λ2, 2λ2] it holds Λ ∈ [λ1,∞).
The synthetic wavelength Λ increases the range of unambiguous distance measurement

to Λ
4 . So in principle, this range can be arbitrarily extended. Interferometry with multiple

wavelengths can be performed using time division multiplexing, by sequentially using λ1

and λ2 and computationally analyzing the two interference images. Alternatively, an opti-
cally parallelized measurement is also possible, as some of the computations can be done
optically and others electronically [168].

For capturing 3D images using interferometry, the surface’s roughness has to be small
compared to the wavelength: the variations in distance inside the measurement spot that
corresponds to the image of a camera pixel on the test object’s surface have to be small com-
pared to the wavelength. This applies to the physical wavelength λ for single wavelength
interferometry, as well as to the synthetic wavelength Λ for interferometry using several
wavelengths. So in the case of interferometry, the measurement uncertainty is in principle
limited only by the surface’s roughness [168].

For simultaneously capturing a surface relief z(x) using interferometry, the Twyman–
Green interferometer can be used, for example [24, 135]. Here, the test object’s surface relief
is simultaneously compared to a reference plane ζ(x) for each line of sight of the camera.
For the simplest case, a planar mirror arranged perpendicularly to the optical axis is used as
the reference plane, so that ζ(x) = ζ = const. (Fig. 7.90). The reference and measurement
beams interfere in the image plane, producing an interference image I(z(x), ζ,x).

In Fig. 7.90, a pinhole diaphragm is placed in the focal plane of the lens L1. The Fourier
transform of the incident laser beam appears in this plane (cf. Sec. 2.2.6). In the focal plane
of L1, the pinhole diaphragm acts like a low-pass filter: low spatial frequencies are allowed
to pass, whereas high spatial frequencies are blocked. Thus, the laser beam is homogenized
with respect to its cross section.

Typical interference images showing characteristic interference stripes for different sur-
face defects are represented in Fig. 7.99 on page 320. As the distances of the interference
stripes caused by the extrema of I(z(x), ζ,x) correspond to an optical path difference of
only half of a wavelength, interferometric methods are very sensitive.

For the reconstruction of a relief z(x) with a height difference of
|maxx{z(x)} −minx{z(x)}| > λ

4 , methods for phase unwrapping are necessary (cf.
Sec. 7.3.4.1). By assuming a certain smoothness of z(x), a continuous relief ẑ(x) can be
reconstructed.

Moving the reference surface in parallel results in an image series I(z(x), ζl,x), which
can be used to estimate the phase.
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Figure 7.90. Setup of a Twyman–Green interferometer.

In accordance with (2.120), and putting r1 = 2ζ, r2 = 2z and δ1 = δ2 = 0, we obtain

I = I1 + I2 + 2
√
I1I2 cosϕ , (7.127)

ϕ =
4π

λ
(z − ζ) , ϕ = ϕ(x) = ϕ(z(x)− ζ(x)) . (7.128)

As ϕ is a function of z and ζ, it is indirectly a function of the position x. As, in general, I1
and I2 are also functions of the position x,

I(z(x), ζ(x),x) = a(x) + b(x) cosϕ(x) . (7.129)

To simplify matters, this will now be written as

I = a+ b cosϕ . (7.130)

By deliberately varying the reference path’s length, specific phase shifts ψq can be realized:

Iq = a+ b cos(ϕ+ ψq) , ψq := q
2π

Q
, Q ∈ N , q = 0, . . . , Q− 1 . (7.131)

For Q ≥ 3, this yields a system of nonlinear equations with a unique solution, of which the
phase ϕ and also the quantity sought, z, can be calculated [36,95,101,124,156]. The function
Iq is periodic with respect to q and contains only harmonic oscillations, except for the direct
component. If the discrete Fourier transform is calculated for Iq (see Chap. 8), the argument
of that complex number results in the solution

ϕw = − arctan

∑Q−1
q=0 Iq sinψq∑Q−1
q=0 Iq cosψq

, Q ≥ 3 . (7.132)

As the tangent function has multiple branches, this equation is only valid for the main
branch and takes values in the interval (−π

2 ,
π
2 ). By considering the cases of positive and

negative signs of the numerator and denominator of the argument of the arctangent func-
tion, the two branches adjacent to the main branch can be used in order to extend the unam-
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biguous range to (−π, π). With respect to z, this corresponds to an unambiguous range of
length λ

2 .

Example 7.10 (Phase-shifting methods): Choosing Q = 4 leads to the simple formula

ϕw = − arctan
I1 − I3
I0 − I2

. (7.133)

Because of its high robustness compared to the case of the minimal Q = 3, this method is
frequently used.

Due to the ambiguities of the arctangent function, the calculated phase ϕw differs from the
actual phase ϕ, as all phase values are mapped to the interval (−π, π): they are said to be
‘wrapped’ by this interval, which is why the subscript ‘w’ has been chosen. Equality holds
only modulo 2π:

ϕw(x) =
4π

λ
(z(x)− ζ(x)) mod 2π . (7.134)

This can be rewritten as

ϕw(x) = ϕ(x) + 2π n(x) with n(x) ∈ Z . (7.135)

For interference stripes, n(x) is also called the order of interference [124]. For z(x), the
unambiguous range is (ζ(x)− λ

4 , ζ(x) +
λ
4 ).

By assuming z(x) and hence also ϕ(x) to be continuous and smooth, n(x) can be obtained
so that the reconstructed phase ϕ̂(x) no longer shows 2π-discontinuities. This approach is
called phase unwrapping [59]. Then, estimations of the depth values z(x) can be calculated
from the reconstructed phase:

ϕ̂(x) = ϕw(x)− 2π n̂(x) , (7.136)

ẑ(x) =
λ

4π
ϕ̂(x) + ζ(x) . (7.137)

White light interferometry uses broadband light with a short coherence length in con-
trast to the previously mentioned methods [15]. The constructive interference shows an
absolute maximum for z = ζ. The higher-order maxima are much smaller for short coherent
white light, as for some spectral parts of the white light there is constructive interference
and simultaneously there is destructive interference for other spectral parts. The result is a
spatially varying spectral composition of the observed interference image, depending on the
difference z − ζ, i.e., the acquired image represents a color encoding of the relief [1].

In a white light interferometer, the reference plane can be moved in order to calculate the
interference maximum for each pixel in the resulting image series (Fig. 7.91). Then, there is
a unique solution for the reconstruction of the surface relief.

In the white light interferometer shown in Fig. 7.92, the reference mirror is integrated into
the lens system, so that the same focusing optic can be used for both optical paths. To obtain
the image series, the test object is moved in the z-direction relative to the interferometer.
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Figure 7.91. Intensity I measured by a white light interferometer with respect to the object displacement z and the
mean wavelength λ0 of the white light.
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Figure 7.92. Setup of a white light interferometer.

7.3.16.2 Speckle interferometry for material inspection
Capturing a rough surface using an interferometer results in an interference pattern which
is dominated by speckle. This interference pattern is very sensitive to deformations of the
test object’s surface [45, 97, 176].

For speckle interferometry, intensity images of the unstressed and the mechanically
stressed test object are acquired by an interferometer and are denoted by g1(x) and g2(x).
The differences in the interference patterns visible in g1(x) and g2(x) can be used to compu-
tationally infer the surface’s deformation. Thus, deformations in the sub-wavelength range
can be detected.

Whereas there are no macroscopic interference stripes visible in the images g1(x) and
g2(x) of a rough surface, the difference g2(x) − g1(x) yields an image with a pattern of in-
terference stripes representing the shape differences of the object in the unstressed and the



7.3 3D shape capturing 315

Figure 7.93. Speckle interferogram of a disk that is mechanically stressed at its center (source: Prof. Dr. W. Osten
[125]).

stressed states [70]. Figure 7.93 shows such a speckle interferogram g2(x) − g1(x) of a disk-
shaped object, with g1(x) acquired in an unstressed state and g2(x) in a state of applied
mechanical stress.

Shearography is a special variant of speckle interferometry that is successfully used in
practice.

7.3.16.3 Shearography
Shearography is a coherent optical method using a special variant of speckle interferometry
[83] with the goal of visualizing the inner defects of a test object leading to a local deforma-
tion of the surface if mechanical force is applied. Deformations in the sub-wavelength range
can be detected and measured. Shearography can be used for partially specular as well as
for rough surfaces, which are present in many manufacturing processes. Surfaces with a size
up to 1 m2 can be inspected with a single image [94].

The test object is illuminated with coherent light, typically emitted by a laser. A shear
element is used to image two object points G and G′ to the same sensor point B (Fig. 7.94).
The amount of shear corresponds to the distance Δx between the two points G and G′ in the
x-direction. The light waves emitted by G and G′ interfere at the point B. Two displaced
coherent subimages are produced on the image sensor, which interfere with each other [45].

Successively, two images g1(x) and g2(x) of the unstressed and the stressed object are
captured. The stress can be produced mechanically or thermally.

The result of the image acquisition is the difference of the two intensity images g1(x) and
g2(x):

Δg(x) = g1(x)− g2(x) . (7.138)
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Figure 7.94. Principle of shearography.

This difference image is the basis for the following image analysis. The following approxi-
mation applies for small Δx [94]:

Δg(x) ≈ a(x) + b(x) sin

(
vT(x)

∂d(x)

∂x

πΔx

λ︸ ︷︷ ︸
=: ϕ(x)

)
. (7.139)

Here, the additive distortion term is denoted by a(x), the multiplicative distortion term by
b(x), the shear by Δx, the wavelength of the coherent light by λ, and the stress-caused,
relative displacement in 3D between the two object points that are imaged to the point x is
d(x). The vector field of the magnification v(x) depends on the constellation of the setup. If
a fixed x and a small Δx is assumed, so that the sine function can be linearly approximated,
the difference image Δg(x) represents the partial derivative of the displacement field d(x),
except for an additive constant and a multiplicative constant.

Shearography is a self-referencing image acquisition method because of the following
two characteristics: on the one hand, two coherent subimages are produced on the image
sensor; on the other hand, the images corresponding to the stressed and the unstressed state
are subtracted. Thus, the method is very insensitive to displacements of the test object,
which might happen due to an inaccurate positioning of the object. This insensitivity is
represented by (7.139) as follows: in the case of a translation, the displacement field remains
constant with respect to the position,

dRigid(x) = const. ⇒ ∂dRigid(x)

∂x
= 0 . (7.140)

As only a partial derivative of d(x) influences (7.139), a rigid translation of the whole test
object has no influence on the result.

Local depressions or bulges in the object’s surface caused by the stress are represented in
Δg(x) as characteristic stripe patterns, which are shaped slightly like a butterfly (Fig. 7.95)
[94, 125].

By rotating the shear element by 90◦ around the optical axis, information about the partial
derivative ∂d(x)

∂y in y-direction can be obtained equivalently.
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(a) (b)

Figure 7.95. Shearographic inspection of a stressed aircraft component: (a) The shearogram Δg(x) shows local de-
formations in the characteristic shape of a butterfly pattern, which are caused by cavities inside the object; here, the
stress has been thermally applied by heating the surface with a flash of light; (b) Demodulated phase image ϕ(x),
cf. (7.139) (source: Prof. Dr. W. Osten [125]).

7.3.16.4 Holography
Holography4 captures and stores the interference pattern of a reference wave and an object
wave. This recording is called a hologram. For a later readout, the hologram is illuminated
with the reference wave, resulting in the reconstruction of the object wave.

The light of the reference wave and of the object wave comes from a coherent light source
(e.g., laser light). The object wave is diffusely reflected by the investigated object. Together,
both waves produce an interference pattern which is saved inside the recording medium,
see Fig. 7.96(a). In accordance with (2.120), the interference pattern contains the phase in-
formation of the object wave. The recording of the phase information is a peculiarity of
holography, as usual camera setups can only capture the light’s intensity. This is indirectly
achieved by recording the intensity of the interference pattern [45]. Wet-chemical photo-
graphic plates can be used as recording media, which can be photographically processed to
a hologram after the exposure. However, there are also phase holograms where the infor-
mation is encoded in the thickness of a transparent layer.

If the processed hologram is illuminated only with the reference wave, the holographi-
cally reconstructed object wave is produced on side (2), see Fig. 7.96(b). This effect can be
explained as follows: if in Fig. 7.96(a) the object wave was subtracted in the whole space
while conserving the interference pattern, it would disappear on side (1), whereas it would
reappear on side (2) with a negative sign. As the wave’s sign is irrelevant for the intensity
captured by the camera, the holographic reconstruction would look exactly like the origi-
nally captured object.

Holographic interferometry can be used to compare arbitrarily shaped test objects hav-
ing a rough surface structure with a reference object [38, 145, 176]. The reference object and
test object can be physically different objects, whose difference has to be quantitatively de-
termined, or one and the same object in a stressed and an unstressed state.

4Holography—originating from ‘holos’ and ‘graphe,’ Greek for ‘whole’ and ‘drawing’—was in-
vented by Dennis Gábor in 1948, who was awarded the Nobel Prize in Physics in 1971 [55, 73].
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Figure 7.96. Principle of holography: (a) Recording the hologram; (b) Holographic reconstruction.

Arbitrarily shaped macroscopic test objects with a spatial structure longer than multiple
wavelengths λ would lead to very large variations in the optical path difference between the
reference and the object wave, which would produce an extremely dense pattern of inter-
ference stripes when using conventional interferometry: this would not be resolvable with
a camera. In this case, a holographic comparison can be successful. Holographic methods
allow the inspection of diffusely scattering surfaces of arbitrarily shaped objects [45].

The object wave of the reference object is saved inside a hologram on the basis of a pri-
mary reference wave. During the inspection process, the primary reference wave is used
to reconstruct the object wave of the reference object, which is now used as the secondary
reference wave. This wave contains the phase shift information in accordance with the relief
of the reference object.

During inspection, the primary reference wave is used to produce an object wave of the
test object by reflection. Additionally, the primary reference is used to read out the reference
object’s hologram producing the secondary reference wave.

The superposition of the object wave of the test object and the secondary reference wave
yields an interference pattern corresponding to the optical path difference in the size of the
relief differences between the test and reference object (desired relief).

Figure 7.97 shows a concrete setup for holographic interferometry. For hologram acqui-
sition, the reference object is illuminated with coherent light. Additionally, a beam splitter
is used to reflect the illuminating reference wave onto the recording medium, where it inter-
feres with the object wave, which is diffusely reflected by the reference object, see Fig. 7.97(a).
A wet-chemical photographic plate or a sensor array can be used as recording medium.

For automated visual inspection, the test object is placed at the same position that the
reference object was at before, see Fig. 7.97(b). The object wave of the test object and the
secondary reference wave, i.e., the holographically reconstructed object wave of the refer-
ence object, produce an interference pattern on the camera’s image sensor. The interference
pattern depends only on the difference between the reference and the test object. The cor-
responding phase differences and thus the optical path differences can be quantitatively
calculated from the interference pattern, so that a quantitative measurement of the differ-
ences between both objects is possible in the sub-wavelength range. However, holographic
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Figure 7.97. Automated visual inspection using holographic interferometry: (a) Recording a hologram of the refer-
ence object; (b) Interference of the secondary reference wave (object waves of the reference object) with the object
wave of the test object (sketch of the principle).

systems are usually quite space consuming, as the different optical paths of reference and
measurement have to be physically realized [70].

An example of the result of a holographic image acquisition is illustrated in Fig. 7.98.
The secondary reference wave used for generating the interference stripes is generated with
a hologram of the reference object, in this case of a cylinder having the desired geometry.
Thus, the interferogram only shows stripes resulting from the optical path differences and
therefore of the shape differences between the reference and the current test object. Such
differences can be measured in the sub-wavelength range. Defects of the test object cause
characteristic patterns of the interference stripes in the hologram (Fig. 7.99).

Instead of a wet-chemical film, also a sensor array, i.e., a camera chip without imaging
optics, can be used for recording a hologram. If that sensor array is replaced by a light mod-
ulator, i.e., a transparent display during inspection, which displays the recorded hologram,
an electro-optical realization of the holographic interferometry is realized.

An even more sophisticated alternative is given by digital holography [91]: the holo-
grams of the reference object and the test object are captured by the sensor array and are then
computationally evaluated. There is no physical interference between the two object waves.
In fact, the phases are reconstructed point-wise in accordance with Huygens’ principle and
are then subtracted from each other. The result can be used to quantitatively calculate the
difference between the reference and the test object.

For rough surfaces, the interference patterns show no stripe structure, as they are dom-
inated by speckle. However, interferometry can sill be used if there is the possibility of
deliberately shifting the phase of the reference and the measurement path. A series of at
least three recordings with different phase shifts is sufficient for a point-wise reconstruction
of the phase [45].

If a spatial light modulator is used instead of the hologram, synthetically produced holo-
grams of reference objects can be displayed. This is referred to as ‘computer generated holo-
grams’ (CGH).
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(a) (b)

Figure 7.98. Simulation of the recording of a cylinder using holographic interferometry: (a) Cylinder; (b) Holo-
graphic interferogram (source: Prof. Dr. W. Osten [125]).

(a) (b) (c) (d) (e)

Figure 7.99. Patterns in the hologram corresponding to different types of defects: (a) Bull’s eye; (b) Groove; (c) Bend;
(d) Displacement; (e) Compression; Upper row: Holographic interference patterns; Lower row: Schematic illustra-
tion of the characteristic stripes (source: Prof. Dr. W. Osten [125]).

An extensive description of automated visual inspection methods based on shearogra-
phy, interferometry and holography is given in [125].

7.4 7.4 Capturing interior object structures
Special inspection methods using electromagnetic waves can capture not only the surface of
opaque objects but also the structures within test objects. On the one hand, the radiation in
those parts of the spectrum can be used, for which the investigated objects are transparent,
e.g., X-rays or terahertz radiation (Sec. 7.4.2, 7.4.5). On the other hand, effects on the object’s
surface can be observed that are caused by inner structures. This is the case for thermogra-
phy, for example, which is covered in the following section.
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A typical inspection task is the detection of inner defects like cavities, delaminations,
inclusions of impurities, glue failures, etc.

7.4.1 Thermography
Thermography observes the heat radiation of a test object using a thermal imaging camera,
in order to detect defects on or beneath the surface. The heat radiation of objects at room
temperature (T ≈ 300 K) shows wavelengths in the infrared region above approximately
4 μm. In accordance with Planck’s law (2.254), each body with a temperature above absolute
zero emits electromagnetic radiation and is therefore luminous. In accordance with Wien’s
displacement law (2.256), the maximum emission is given at λmax ≈ 9.66 μm for a tempera-
ture of T = 300 K.

The emitted radiation of an object at room temperature can be captured by a thermal
imaging camera. For homogeneous materials, typically temperature differences of a few
10 mK can be resolved.

Most real objects emit less radiation than the ideal black body. This effect can be taken
into account by introducing a multiplicative factor ε,

Ireal(λ, T, θ, ϕ) = ε(λ, T, θ, ϕ) IPlanck,black(λ, T ) , ε ∈ [0, 1] , (7.141)

where ε usually depends on the wavelength λ, the absolute temperature T , and the direction
of the radiation (θ, ϕ). If this dependency can be neglected, i.e., if ε ≈ const., the object is
called a gray radiator.

The factor ε is called the emissivity, and depends on characteristics of the object’s sur-
face, especially on its roughness. For a known spectral emissivity, the measured intensity
values can be used to calculate the object point’s temperature using the formulas described
in Sec. 2.7.1.1.

In accordance with Kirchhoff’s law, the emissivity of an opaque object equals its absorp-
tivity. Absorptivity and reflectance R sum to 1, i.e., opaque objects absorb a certain ratio of
the incident light and reflect the remaining part. Together, this implies

ε = 1−R . (7.142)

In particular, extensively reflecting surfaces emit only a little thermal radiation.5 For ex-
ample, the mean emissivity of polished aluminum is only ε ≈ 0.05 for a temperature of
100 ◦C, whereas the reflectance is very high R ≈ 0.95. In contrast, for the same temperature,
anodized aluminum has a mean emissivity of ε ≈ 0.55 and a corresponding reflectance of
R ≈ 0.45. The emissivities of other materials are tabulated in [5].

Care must be taken during the thermal inspection of intensely reflecting surfaces, as the
ambient radiation reflected by the test object might be higher than its self-radiation and can
thus represent an immense perturbation.

Figure 7.100 shows a taxonomy of thermographic methods. Static thermography cap-
tures and analyzes the emitted radiation of a test object in a state of a temporally con-
stant, i.e., stationary temperature distribution. Passive static thermography records the
self-radiation of the surface. Illuminating the surface with thermal infrared and observ-
ing the reflected radiation is called active static thermography. If the surface has spatially

5Hence, perfect black objects, which do not reflect any light, have the maximum achievable emis-
sivity ε = 1. Thus, they are ideal thermal radiators (cf. Sec. 2.7.1.1).
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Thermography

Static

Dynamic:
Heat transfer

thermography

Passive

Active

Passive

Active

Figure 7.100. Taxonomy of thermographical methods. The active methods selectively illuminate or heat the test
object. Passive methods use no illumination or energy emission for the inspection task, but observe the object’s
self-radiation.

constant temperature for example, passive thermography can be used to detect and quantify
emissivity-dependent local variations or defects of the surface. In accordance with (7.142),
the variations depending on emissivity are equivalent to reflectance-dependent variations.

Heat transfer thermography is of particular importance for automated visual inspection
and nondestructive material inspection. It can be used to test components for inner defects,
which are not directly visible on the surface.

This method captures the transient heat conduction on the test object by using a tem-
porally resolved thermal imaging camera. Therefore, heat transfer thermography is also
referred to as dynamic thermography. Visual inspection exploits the effect of local defects
temporarily resulting in local contrasts in the thermal image of the transient heat conduction.

The method’s name is motivated by the effect of heat spreading to colder regions of the
object during transient heat conduction. If the transient heat conduction is not caused by the
inspection procedure but by a manufacturing-dependent heating for example, the method
is called passive heat transfer thermography.

Active heat transfer thermography is particularly important. Here, a heat distribution
is deliberately induced in the test object and the subsequent transient heat conduction is
observed by continuously measuring the emitted heat radiation. For example, the object
can be heated using a radiant heater, a flashbulb, ultrasound, microwave radiation, heated
media (air, water) or induction.

Transient heat conduction processes are described by the diffusion equation [6]. It is a
linear partial differential equation:

div(D grad (T )) = ρ c
∂T

∂t
(7.143)

with the temperature T = T (x, y, z, t) in K, the thermal conductivity D = D(x, y, z) (repre-
senting the diffusion coefficient in this case) in W K−1 m−1, the heat capacity c = c(x, y, z)

in Ws kg−1 K−1 and the volumetric mass density ρ = ρ(x, y, z) in kg m−3. For media with
anisotropic thermal conductivity, D is a tensor of order two, which can be represented by a
3× 3-matrix; also see Sec. 11.3.

In combination with boundary and initial conditions, the temperature field T (x, y, z, t)

can be calculated of the diffusion equation as a function of position and time.
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Defects resulting in spatial inhomogeneties of D, ρ or c, induce local temporary temper-
ature differences during heating or cooling processes. If these temperature differences are
captured by a thermal imaging camera with sufficient contrast, the defects can be detected
on basis of the measurement. Typical defects which can be identified with heat transfer
thermography include air inclusions, glue failures, delaminations and entrapped moisture.

Figure 7.101(a) shows an example setup for defect detection using heat transfer thermog-
raphy. At first, the test object is heated by a radiation source, for example a flashbulb. Then,
the infrared radiation emitted by the object is captured using a thermal imaging camera. Im-
mediately after the heating, a spatially homogeneous temperature gradient can be observed,
Fig. 7.101(c). Afterwards, the heat is transferred into the object’s interior. Defects inside the
object lead to irregularities during this process. For example, a cavity usually shows a lower
thermal conductivity than the material of the test object. Hence, the heat of the material
above the cavity is transferred more slowly, so that a locally raised temperature is visible on
the corresponding spot on the object’s surface during the cooling process, Fig. 7.101(d).

Cavity

Test object

Flashbulb

Thermal imaging
camera

x

T (x)

x

ΔT

T (x)

x

T (x)

x

(a)

(b)

(c)

(d)

Figure 7.101. Detection of defects using heat transfer ther-
mography: (a) Principle sketch of the setup, (b) Tempera-
ture distribution for the time t0, before the heating, (c) Tem-
perature distribution for the time t1, immediately after the
heating, (d) Temperature distribution for the time t2, during
image acquisition for defect detection. For this illustration
and to simplify matters, a spatially constant temperature rise
caused by the flashbulb is considered; this is not the case in
practice. Instead, at time t = t2, there would be a tempera-
ture gradient typical for the test object and the constellation
of illumination, which can be eliminated during image pre-
processing, so that only the difference image with respect to
the reference object is further analyzed.

Depending on the material and on the position and size of the defect, there is an optimal
time topt when the defect is visible with maximum thermal contrast in the temperature pro-
file T (x). The image should be taken exactly at this time. If typical defects arise at a known
depth in a component, for example, in the case of the lamination or adhesion of layers with a
known thickness, the optimal imaging time topt for observing the maximal thermal contrast
A(t) can be calculated by numerically solving the differential equation (7.143). Alternatively,
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this time can by empirically determined by observing the temporal gradient of the thermal
contrast of objects with typical defects.

The thermal contrast A(t) is defined as

A(t) :=
|ΔT (t)|
Tdefect(t)

=
|Tdefect(t)− Tdefect(t)|

Tdefect(t)
, (7.144)

with the spatially extremal temperature Tdefect in the region of the defect at time t and the
mean temperature Tdefect(t) around the defect at time t. Generally, the thermal contrast is
reduced for smaller and deeper defects.

For unknown and variable defect depths and sizes, an image series can be recorded dur-
ing the transient heat conduction and can be subsequently analyzed. Defects near (far from)
the surface show a maximum local thermal contrast in early (later) recordings of the image
series.

The most important variants of active heat transfer thermography are pulse thermogra-
phy and lock-in thermography. Pulse thermography heats the surface with a short pulse of
a high-performance heat source, for example by a flashbulb or a radiant heater. Then, the
cooling process is observed with a thermal imaging camera.

Figure 7.102 shows a thermal images of a steel ring with an inner nickel coating of a
thickness of 100 μm, which has to be inspected for adhesion errors between the steel and the
nickel [116]. Because of the high thermal diffusivity of nickel, the thermal diffusion time is
on the order of some milliseconds, so that a fast thermal imaging camera is needed. In the
pseudocolor image, blue colors correspond to room temperature, red colors to temperatures
which are some 10 K above room temperature. Approximately 30 up to 50 ms after the
heating by the flashbulb, temperature contrasts of badly adherent regions are visible, where

(a) before flashing (b) during flashing
(t = 0)

(c) after t = 25 ms (d) after t = 30 ms

(e) after t = 45 ms (f) after t = 55 ms (g) after t = 75 ms (h) after t = 150 ms

Figure 7.102. Inspection of the adhesion of nickel coated steel component by pulse thermography (source: U. Net-
zelmann, G. Walle, Fraunhofer IZFP [116]).
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the heat is only slowly being transferred. After about 150 ms, the temperature distribution
reaches the original state as it was before the heating.

Lock-in thermography periodically heats the test object’s surface, ideally with sinusodi-
ally modulated heating power,

P (t) = 1
2 Pmax (1 + sin 2πf0t) . (7.145)

The frequency f0 has to be adjusted in accordance with the specific time constants of the
test object’s heat transfer. A thermal imaging camera is used to capture an image series
{g(x, nΔt)}, n = 0, . . . , N − 1, and the hypothesis of the sampling theorem, Δt < 1

2f0
has to

be satisfied, i.e., two or more samples are required per period f−1
0 (see Sec. 8.3.2).

During the transient state of some periods f−1
0 , the image series is coherently demodu-

lated with the carrier signals sin(2πf0t), cos(2πf0t) and thus the amplitude and phase are
measured for each surface point (cf. Sec. 7.3.6.3). The low susceptibility of the lock-in princi-
ple leads to a higher sensitivity than with pulse thermography; however, a longer measure-
ment time of about 10 periods is necessary: 10f−1

0 .
The inspection of solar cells [100] or of composite materials [98] are examples of applica-

tions of lock-in thermography.

7.4.2 Imaging using X-rays
X-rays6 refers to electromagnetic radiation with wavelengths from about 10 nm down to
1 pm = 10−12 m. This corresponds to frequencies from approximately 2 · 1016 up to
5 · 1019 Hz and photon energies from about 100 eV up to some MeV. So the X-rays are adja-
cent to the shorter wavelengths of the UV region.

Because of their high photon energy E = h c
λ (2.191), X-rays are ionizing, and are thus

harmful to humans. Therefore, X-ray devices used in automated visual inspection have to
be adequately shielded. There are legal safety provisions for using X-rays [32].

X-rays have a high penetration of matter because of their high energy. This is reduced
with increasing mass density. The goal of using X-rays in automated visual inspection is the
visualization of structures and defects within components.

Generating X-rays: Inside a vacuum tube, an electron beam is accelerated by a high voltage
U and focused on a metal plate (typically consisting of tungsten, copper, or molybdenum)
[131]. The electrons are sharply decelerated inside the metal. As accelerated or deceler-
ated charges emit electromagnetic radiation, broadband X-rays are produced, which is called
bremsstrahlung7 [73]. The maximum photon energy is determined by the kinetic energy of
a single electron. During acceleration by the voltage U , an electron receives the kinetic en-
ergy E = eU , with e ≈ 1.602 · 10−19 C denoting the elementary charge of an electron. In
accordance with (2.191), this results in X-rays with a minimum wavelength of

λmin =
h c

eU
. (7.146)

Hence, the voltage U can be used to adjust the maximum photon energy and thus the min-
imum wavelength of the X-rays. Typically, the photon energy is denoted in eV for X-rays

6X-rays were discovered in 1895 by Wilhelm Conrad Röntgen.
7bremsen is the German word for ‘to decelerate’
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and corresponds to the acceleration voltage. One electron-volt 1 eV ≈ 1.602 · 10−19 J is the
kinetic energy an electron receives by an acceleration voltage of 1 V. Typical acceleration
voltages are in the range of some 10 kV up to some 100 kV.

The continuous spectrum of the bremsstrahlung is superposed with a line spectrum
which depends on the material of the anode and is caused by high-energy electron tran-
sitions of the atoms’ electron hull (characteristic X-rays).

A higher acceleration voltage and thus a higher energy of the photons results in a higher
penetration depth of the generated X-rays. The X-rays are said to be ‘harder’ for higher
voltage.

Imaging geometry for X-rays: Basically, electromagnetic rays can be influenced by refrac-
tion, reflection, or diffraction, using lenses, mirrors, or gratings (cf. Chap. 2).

For soft X-rays, which are defined as X-rays of a wavelength larger than the inter-atomic
distances in solids, matter acts like a homogeneous continuum. For hard X-rays, which
have wavelengths smaller than the inter-atomic distance, the matter’s discrete structure is
of importance. As the index of refraction of solids is nearly 1 for X-rays, no really effective
X-ray lenses or X-ray mirrors for steeply incoming rays can be produced. The surface of such
mirrors would need to have a roughness smaller than the wavelength, which is technically
infeasible. In the best case, mirrors for grazing X-rays can be achieved, as the ratio of the
reflected light increases up to total reflection8 (see Sec. 2.6.5). Existing X-ray lens systems
and telescopes use hyperbolic or parabolic reflectors, arranged in a grazing manner with
respect to the incoming radiation [73].

Resulting from the mentioned problems for directing the X-rays, usually simple project-
ing X-ray paths are used for automated visual inspection. Therefore, the most important
optical elements used in combination with X-rays are absorbing diaphragms made of dense
materials, like lead, for example.

Because of the very short wavelengths of X-rays compared to the typically relevant struc-
tures inside test objects, X-rays are well suited for the use of geometric optics. Diffraction
effects can usually be neglected.

Practical imaging systems with X-rays consist of a point source of the X-rays and a screen
which spatially measures the incident radiation which traversed the test object. Because of
the rays’ geometry, this corresponds to a central projection with the X-ray’s point source
being the center of the projection (cf. Sec. 3.2). In accordance with the intercept theorem that
has been applied to Fig. 7.103, the magnification is given by

V :=
B

G
=

a+ b

a
= 1 +

b

a
, V > 1 , (7.147)

with a denoting the distance between the source and the object, b denoting the distance
between the object and the image plane, and B and G denoting the image size and the object
size in the usual notation. The measurement uncertainty for measuring structures inside

8In accordance with Sec. 2.6.5, total reflection can only arise for the transition from a more to a less
optically dense medium. Some materials have a index of refraction n < 1 for X-rays, so that total
reflection can occur for the transition from vacuum or air into such a material. This phenomenon can
be used for constructing X-ray lenses [73].

By the way, the exceeding of the speed of light c in vacuum by the phase velocity in a medium with
n < 1 is no contradiction with the special theory of relativity, as the group velocity (see example 8.28),
which is the one relevant for the transport of energy and information, is always less than or equal to c.
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Figure 7.103. Image formation by X-ray projection and consequences of the source’s finite diameter D.

test objects depends on the diameter D of the X-ray source. A smaller focal spot of the
electrons on the X-ray tube’s tungsten plate allows imaging smaller structures (Fig. 7.103).
In accordance with the intercept theorem, the resulting geometric blur Δq is given by

Δq =
b

a
D = (V − 1)D . (7.148)

Microfocus X-ray tubes can achieve a minimal diameter of the focal spot of D = 1 μm [52].
Besides the diameter D of the X-ray source, the discretization Δs of the imaging sensor

also has an effect on the measurement uncertainty. In this case, the measurement uncertainty
is defined as the maximum deviation ΔG when determining G. It can be derived using the
maximum deviation ΔB in the image plane:

G+ΔG =
B +ΔB

V
, (7.149)

ΔB = Δq +Δs , (7.150)

⇒ ΔG =
Δq +Δs

V
=

V − 1

V
D +

Δs

V
. (7.151)

A high magnification V → ∞ implies ΔG → D and an insignificant influence of the dis-
cretization by the sensor. If the image plane is located close to the object, i.e., b → 0 and
V → 1, then ΔG→ Δs and the impact of the finite diameter of the source can be neglected.

The practically achievable resolution limit for test objects in the range of millimeters is
about 2.5 μm [52].

Radiometry: X-rays are attenuated when passing through matter. Measuring the remaining
X-rays gives information about the thickness and structure of the test object. The influence
of the test object on the X-rays is described by the absorption coefficient μ(x), which is a
function of the position x:

μ(x) : R3 → [0,∞) . (7.152)

Now, a point X-ray source is assumed to be located in the coordinate system’s origin O,
so that the distance r to the source is given by r = ‖x‖ =

√
x2 + y2 + z2 (Fig. 7.104). The
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Figure 7.104. Absorption of X-rays inside the test object.

X-rays’s intensity (power per area) I changes by dI if r is increased by dr:

dI = −I 2

r
dr − I μ dr . (7.153)

The first term results from the conservation of energy for spherical waves, the second de-
scribes the absorption inside the medium. Integration of this differential equation from r0 to
r yields

I(x) = I0
r20
r2

exp

(
−
∫ r

r0

μ

(
x

‖x‖ρ
)
dρ

)
, (7.154)

with r0 > 0 representing the radius of the X-ray source. The term r−2 explains the reduced
intensity due to the properties of a spherical wave and conservation of energy, as the sphere’s
surface grows quadratically with respect to the propagation radius. The exponential func-
tion corresponds to the Lambert–Beer law of absorption. Inside a homogeneous medium,
μ = const., the X-rays’ intensity decreases exponentially with r, as homogeneous layers of
equal density absorb the same proportion of radiation. If, for example, one-half of the radia-
tion is absorbed after travelling r1, the next half is absorbed in the adjacent layer of the same
thickness r1, so that one-quarter of the original intensity remains. A journey of 3r1 reduces
the intensity to one-eighth, resulting in an exponential decrease [19]. The absorption coeffi-
cient μ is approximately proportional to λ3Z3, with the X-rays’ wavelength λ and the atomic
number Z of the medium’s atoms [131].

Challenges of imaging using X-rays:

In practice, optical manipulation of the X-rays is extremely difficult. Unlike in the visible
spectrum, an optical point-to-point imaging can hardly be achieved.

The exponential damping of the X-rays, as in the Lambert–Beer law, leads to a very high
dynamic range of intensities, especially for test objects with large differences of densities.
This leads to high demands on the dynamic range of the sensor.

The X-rays are partly scattered on the outer electrons of the test object’s atoms. This
so-called Compton scattering changes the photons’ propagation direction and increases
their wavelength, as they lose some of their energy. This generates diffusely scattered
X-rays, which reduce the contrast of the resulting image.

The intensity measured in the image plane is the result of a line integral over the distance
covered by the light inside the test object. Structures along this line are superposed in
the intensity signal. Reconstructing the properties of the object μ(x) from the measured
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intensity I(x) is an inverse problem, which can only be satisfyingly solved by combining
the X-ray images acquired from different directions. This approach is used in tomogra-
phy [92].

Tomography: For simple visual inspection tasks, the analysis of a single X-ray image can
be sufficient. For more exact investigations of the test object’s geometry and inner struc-
tures, several images with different rotations have to be captured. Therefore, the object is
incrementally rotated around a fixed axis. The 3D reconstruction of the test object from the
intensity images corresponds to the inverse Radon transform, which is covered in Chap. 14.
It yields the absorption coefficient μ(x) as a three-dimensional function of the measured
volume. Then, arbitrary sectional images through the object’s interior can be calculated,
which is why the method is called tomography9. As the reconstruction is very complicated,
and has only become feasible because of efficient computers and algorithms, it is also-called
‘computed tomography’ [92, 93, 131].

Detection of X-rays: Area sensors for industrial applications mainly rely on the scintillation
principle [17, 131]. X-rays strike a scintillation layer, where they are converted into visible
light by fluorescence (cf. Sec. 7.2.2). This visible light is captured by an adjacent image sensor
or by a camera. So-called image intensifiers perform an electronic preamplification employ-
ing the principle of photomultipliers (cf. Sec. 6.3) before the conversion into an image.

Example 7.11 (Nondestructive material inspection using X-rays): X-ray images can reveal the
inner defects of components. For example, Fig. 7.105 shows the aluminum cast part of a
chassis component. The projected X-ray image in Fig. 7.105(b) was captured with a accel-
eration voltage of U = 140 kV, a tube current of 5 mA, and an exposure time of 500 ms. In
the image, defects are visible as slightly brighter spots compared to the surrounding, be-
cause the thickness of the material is reduced in the locations of these defects, and so the
X-rays are less attenuated. However, it is still hard for a human to see these defects in the

(a) (b) (c)

Figure 7.105. Inspection of a chassis component for inner defects: (a) Image of the aluminum cast part; (b) X-ray
image of the test object; (c) Difference image with respect to the image of a reference object (source: Dr. N. Uhlmann,
Fraunhofer EZRT).

9tomos is Greek for ‘section’
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X-ray absorption image. Thus, the difference image, i.e., the difference from a reference
image, is calculated for defect detection, see Fig. 7.105(c).

7.4.3 Optical coherence tomography
Optical coherence tomography (OCT) is a method for the detection of the inner structure of
an object, and is based on interference. Similar to white light interferometry (Sec. 7.3.16.1),
it uses a light source with a short coherence length. The light coming from a reference path
interferes with the light reflected by the object’s inner structure [54]. The known length of the
reference path, for which there is an interference maximum, can be used to infer the depth of
the observed object point. The intensity of that maximum gives information about the optical
properties of the material inside the object. Distortions because of multiple reflections and
scattered light are reduced, as there is no constructive interference because of the different
path lengths. Figure 7.106 illustrates this principle.

Broadband light source

Lens

Lens

Lens

Lens

Sample

Detector

Mirror

Reference path of
variable length

Measurement path

Figure 7.106. Principle of optical coherence tomography. The light source emits broadband light with a short co-
herence length, which is split by a beam splitter. The first half of the light traverses the so-called reference path,
which consists of an axially movable mirror. It subsequently reaches the beam splitter a second time, and is then
focused on the detector. The other half is focused onto the investigated sample, is eventually reflected by the inner
structures, is subsequently deflected by the beam splitter to be finally focused on the detector, where it interferes
with the reference light bundle (adapted from [54]).

In order to capture a whole volume, a lateral scanning can be performed or area image
sensors can be used. Different variants of the setup are possible [8, 144, 154]. Of particular
importance is the use of a spectral sensor to capture the interference pattern. The Fourier
transform can be used to calculate the interference curve from the spectrum, replacing the
time consuming mechanical movement of the reference mirror.

The achievable resolution in the longitudinal direction along the optical axis depends on
the coherence length of the illumination used, and is on the order of a few micrometers. The
lateral resolution is mainly determined by the imaging optics.
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Figure 7.107. OCT used for supporting a cochlea implantation: (a) Image of a two-dimensional OCT scan in the x,z-
plane showing the section of a titanium screw; (b) By combining several scans of different positions y, the surface
of the titanium screw and of the skull has been reconstructed; (c) Top view: the hexagonal socket of the titanium
screw (source: IPR Karlsruhe Germany).

Medical imaging is the most important application for optical coherence tomography.
By using an illumination in the near-infrared, penetration depths of some millimeters can be
achieved for tissues. The resolution is significantly higher than for alternative measurement
methods like ultrasonography [8].

Figure 7.107 shows images of an application in which OCT has been used to detect the
3D position and orientation of titanium screws placed in the skull of a patient to allow a
precise localization during a cochlea implantation.

In automated visual inspection, optical coherence tomography is used for the detection of
defects beneath the surface, for example, of ceramic components or silicon semiconductors
[65, 154].

7.4.4 Schlieren imaging and schlieren tomography
In media with an inhomogeneous index of refraction, i.e., one which is spatially varying,
light rays do not follow a straight line but are deflected depending on the gradient of the
index of refraction. The measurement of this effect can provide information about the
distribution of the index of refraction and thus about the corresponding properties of the
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(a) (b)

Figure 7.108. Schlieren images of a stream of butane gas. The nozzle, from which the gas is escaping, is located in
the center of the left image margin. (a) Laminar flow; (b) Turbulent flow.

Figure 7.109. Principle of schlieren imaging. The light of the light source LS, collimated by L1, illuminates a trans-
parent object. The lens L2 focuses the collimated light. A schlieren stop (SS) is placed at the focal point of L2, which
ideally halves the luminance if no object is present. Light rays that are deflected upwards (downwards) because of
the object pass the schlieren stop (are blocked) and result in a brightening (a darkening) on the sensor. The resulting
intensity structures are called ‘schlieren.’ Together, the lenses L2 and L3 realize a focused imaging of the object on
the sensor.

medium [147]. For transforming the deflection of the ray in an intensity image, a so-called
schlieren stop can be used, which is placed asymmetrically in the optical path. Therefore,
the changed direction of the deflected light rays result in structures of varying intensity—so-
called ‘schlieren’—on the image sensor. If the investigated medium is captured from differ-
ent projection directions, tomographic methods can be used to reconstruct the distribution
of the index of refraction inside the medium.

Schlieren imaging and schlieren tomography can be used to investigate flames, flows (see
Fig. 7.108), and transparent objects, for example.

Figure 7.109 shows the principle of the setup used for schlieren imaging.

7.4.5 Image acquisition using terahertz radiation
Electromagnetic radiation in the frequency range from 100 GHz up to 10 THz is called tera-
hertz radiation or THz radiation10 [138]. The definition of the frequency range is not stan-

101 THz = 1012 Hz
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dardized: some sources give the interval from 300 GHz to 3 THz [126]. This corresponds
to wavelengths in the range from 1 mm down to 0.1 mm, which is called the submillimeter
band.

THz radiation is located between the infrared and microwaves. This domain had re-
mained technically unused for a long time, as no industrially usable technologies for effi-
ciently generating and detecting THz radiation were available. The frequencies were too
high for high-frequency electronics while the quantum energies were too low for optical
sensors. This circumstance is referred to as the ‘terahertz gap.’

Modern laser technologies led to a breakthrough. THz imaging is a current area of re-
search, and the first commercial systems are now available for quality testing. There is still
a high development potential for this technology for automated quality testing.

Because of the low photon energy, THz radiation is not ionizing and is therefore consid-
ered to be harmless for humans.

THz radiation can penetrate nonconductive materials well, such as plastics, dry paper,
and dry wood. In contrast, THz radiation is absorbed by conductive materials, and espe-
cially by water. The moisture in the air already leads to a notable attenuation.

The photon energy of THz radiation is on the order of the excitation energies of the
molecular and lattice oscillations, so that substances can be identified by absorption spec-
troscopy using THz radiation. For example, a popular application is the detection of explo-
sives, which usually contain or consist of organic compounds with excitation energies in the
THz range.

In the field of automated visual inspection11, THz radiation can especially visualize inner
structures and defects that are not visible in other spectral ranges when viewed from the
outside. Here are some concrete sample applications:

Detection of contaminants in food, for example in chocolate [90].
Inspecting objects through paper and plastic packages, which are opaque for visible light.
Detection of cavities in ceramic and plastics [134].
Visualization of hidden items under clothes for security checks, e.g., in airports.
Detection of native metals12 in rocks in the field of automated sorting of bulk goods.

In accordance with Planck’s law (2.254), each object emits THz radiation depending on its
temperature. Due to Wien’s displacement law (2.256), the maximum intensity of the emit-
ted radiation for objects of low temperature is in the THz range (Table 7.2). Although the
maximum intensity is shifted into the infrared range for indoor temperatures, the intensity
of the emitted THz radiation increases further, as the self-radiation increases intensely in ac-
cordance with the Stefan–Boltzmann law (2.255) (cf. Fig. 2.34 on page 82). The radiation of
this thermal emission is incoherent and thus the emitter represents a noise generator in the
THz range. By the way, at room temperature, thermal self-radiation in the THz range can be
used to detect items covered by clothes.

As an alternative to the passive measurement of self-radiation, it is also possible to ac-
tively illuminate the test object with THz radiation. Mainly the transmitted radiation is ob-
served. As both variants are currently being researched, it is not yet known which method

11Or, rather, in the field of quality testing or nondestructive material inspection, since THz radiation
lies outside the visible part of the spectrum, there is no visual inspection in the strict sense.

12Chemical elements that are found in their pure form in nature are called native.
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Table 7.2. Wavelength and frequency of the intensity maxima of the thermal self-radiation of a black body radiator
in accordance with (2.256), (2.1).

Temperature T Wavelength λ Frequency ν

≈ 1 K 3 mm 100 GHz

≈ 10 K 0.3 mm 1 THz

≈ 100 K 30 μm 10 THz

will be used for which application in the future. In the following, active THz methods will
be described.
Among others, technically relevant methods for generating THz radiation are [126, 150]:

Electronic frequency multipliers using the nonlinearity of GaAs Schottky diodes. This
method generates coherent, narrow-band THz radiation in form of a continuous wave
(CW).
Difference-frequency generation of two lasers with frequencies that differ by the amount
of the sought for THz frequency, inside a nonlinear13 optical material. This principle can
be realized using a two-color diode laser [78]. Again, coherent narrow-band CW THz
radiation is generated.
An ultra-short laser pulse with a duration of from about 20 up to about 100 fs is sent
through a nonlinear optical material.14 Due to its short duration, such a pulse is broad-
band and has a high electric field strength.15 Because of the spectral ratios of the laser
with frequency differences in the THz range, a broadband THz pulse is generated in
nonlinear optical materials. These methods are called optical rectification. The broad-
band THz pulse is coherent with the generating laser pulse.
An ultra-short laser pulse strikes a semiconductor material (typically GaAs) connected
to a voltage source by two electrodes. There, the laser pulse creates short lived charge
carriers, which lead to an extremely short current pulse with a duration of some picosec-
onds16. Then, this current pulse generates a radiation pulse in the THz range. Such a
component is called a photoconductive antenna (PCA) [96]. The THz radiation gener-
ated is broadband and coherent with the generating laser pulse.

THz radiation can be imaged using metallic reflectors and special lenses made from THz-
transparent materials such as silicon (Si), for example.

The following possibilities, among others, exist for the detection of THz radiation [126]:

A photoconductive antenna can also be used as a detector. As a receiver, it is operated
as a source of a photocurrent. An ultra-short laser pulse generates short lived charge

13Inside a nonlinear optical medium, the propagation of light can no longer be described by using
linear differential equations, as certain material properties depend on the light’s intensity. The princi-
ple of superposition does not apply [130].

141 fs = 10−15 s (femtosecond)
15Because of the reciprocity of the Fourier transform (see Chap. 8), a short pulse has a broadband

spectrum. As the energy is concentrated in a short period of time, the laser pulse has a high instanta-
neous power and thus a high electric field strength.

161 ps = 10−12 s
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carriers, which are accelerated by the electric field of the simultaneously present THz
radiation and are extracted in the form of a current on the electrodes.
Freespace electrooptic sampling: A linearly polarized ultra-short laser pulse is sent
collinearly to the THz radiation through a certain material, which is birefringent in the
presence of THz radiation [34].
If no THz radiation is present, a λ

4 -plate is used to generate circularly polarized light from
the laser. Then, a Wollaston prism decomposes the polarized laser light into two equally
intense light rays, which are polarized perpendicularly towards each other and finally
reach two photodetectors. The resulting electrical signals are subtracted, so that a signal
value of zero results in the absence of THz radiation. Such detectors are therefore called
balanced detectors. If THz radiation is present, the polarization direction of the laser
is rotated and the λ

4 -plate generates elliptically polarized light. In this case, the balance
of the two detectors is disturbed and the resulting electrical signal is proportional to the
electric field strength of the THz radiation.
Bolometers (cf. Sec. 6.10.1): Matter is heated by THz radiation and therefore its electri-
cal resistance changes. Bolometers can be combined with area sensors, however they
are quite insensitive and are not suitable for a coherent detection unlike the triggered
methods mentioned above are.

Systems for THz imaging: Besides bolometer-based detection, which is quite insensitive,
THz detectors are inapplicable for practically usable arrays because of their cost. Thus, two-
dimensional scans have to be used to capture test objects, which is still very time consuming
[138].

The methods for generating and detecting THz radiation, which use ultra-short laser
pulses and for which there is a fixed temporal relation between the laser pulse and the THz
pulse, allow the realization of coherent THz imaging systems with extremely high signal-
to-noise ratios: up to 106 [138]. In this way, the synchronization between the laser and the
THz pulses as well as the possibility of optically clocking the detectors with the laser light
can be used. The ultra-short laser pulses have a typical duration between 20 and 100 fs for a
repetition rate of 10 to 100 MHz.

Figure 7.110 shows an example of the setup of a THz imaging system. The laser light is
split into two halves by a beam splitter. The first half generates the coherent THz radiation,
the second half is sent to the PCA acting as the receiver over a variable delay line, which
allows varying of the optical path length and thus the time of flight. Hence, the detector
and the THz pulses are synchronously activated for very short periods of time. As the laser
pulse is much shorter than the THz pulse, and as the laser pulse on the detector can be
shifted relative to the THz pulse by the variable delay line, the THz pulse can be temporally
sampled, so that the amplitude, the time of flight, and the spectrum of the THz pulse can be
measured.

Depending on the wavelength and the bandwidth of the THz radiation, the attainable
spatial resolution ranges from centimeters down to submillimeters [138, 162]. Figure 7.111
shows an example of an application where contaminants in chocolate are detected [123].

THz imaging using the compressed sensing approach: An alternative to the time-
sequential scanning with a mechanical movement of the test object and to a costly sensor
array is the compressed sensing approach [33, 175]. Figure 7.112 illustrates this principle.
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Laser Fiber optic

THz-Generation
PCA

THz-detection
PCA

Test object

Delay line

Displacement

Electrical signal

Lens for laser light
Lens for THz-radiation

(absorbes laser light)

Laser light

THz

Figure 7.110. Setup of a THz imaging system using PCAs.

Figure 7.111. THz image of chocolate bars. Left: Multiple contaminants of metal, glass, and plastics. Right: A
reference object without contaminants [123]. The pseudo colors show the spatial distribution of the absorption
coefficients, measured in transmission (source: D. Nüßler, Fraunhofer FHR [123]).

The test object is illuminated with THz radiation through a THz-transparent lens L1. An-
other lens L2 focuses the intensity i(x), which has passed through the test object, onto a
mask. This mask contains variable elements that can be set either to be transparent or ab-
sorbing. The radiation which is able to pass the mask through the transparent elements is
focused by the lens L3 onto a THz detector in the form of a point sensor. The scalar measure-
ment I corresponds to an integral over the intensities reaching L3 through the transparent



7.4 Capturing interior object structures 337

L1 L2 L3

Point sensor
for THz

radiation

Test object
Variable mask with

mit Transparenzfunktion tq(x)

Point source
THz radiation

Intensity behind the

f1 f2 f3

Iq

transparency function

Figure 7.112. Principle of THz imaging using compressed sensing approach.

elements of the mask. Compressed sensing uses many measurements with different config-
urations q = 1, . . . , Q of the mask. The resulting Iq-tuple of measurements gives information
about the properties of the test object.

As an alternative to the setup with lenses, reflectors can also be used to construct an
imaging system. The mask could as well be realized in the form of an array of addressable
micro-mirrors in combination with appropriately arranged reflectors.

Mathematically speaking, the process of the measurement can be described as follows:
i := col{i(x)} ∈ RN2

is assumed to be the column vector of the intensity which has
passed through the test object, and tq := col{tq(x)} ∈ [0, 1]N

2

the transparency vec-
tor of the variable mask in configuration q, in which an N ×N alignment of the image
points is employed. All configurations of the mask are represented by the transparency
matrix T := (t1, t2, . . . , tQ)

T ∈ [0, 1]Q×N2

. The measured intensities are denoted by
I = (I1, . . . , IQ)

T ∈ RQ. A measurement using the mask’s configuration q can now be
expressed as follows:

Iq ∝
∑
x

tq(x)i(x) = tTq i . (7.155)

The intensity vector I is given by

I = Ti . (7.156)

If the transparency vectors {tq | q = 1, . . . , Q} are linearly independent, they span a Q-
dimensional vector space. The formation of the intensity vector I corresponds to a projection
of the signal i(x) onto this vector space. Compressed sensing now chooses a Q � N2 and
achieves a sufficient reconstruction of the signal i(x) by choosing an adequate {tq}. The
reconstruction î can be calculated using the pseudoinverse TT(TTT)−1 from (7.156):

î = TT(TTT)−1I . (7.157)

The use of the pseudoinverse is required, as (7.156) is, when Q < N2, an underdetermined
system of equations for i.
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It is necessary to choose a basis of functions {tq(x) | q = 1, . . . , Q} that is appropriate for
the expected test objects, so that Q � N2 allows a suitable reconstruction. Instead of N2

scan iterations, only Q recordings are needed, without any mechanical movement. Only the
configuration of the transparent mask has to be varied.

Such a system is also called a single-pixel camera [33]. Of course, the principle of com-
pressed sensing can be applied to any other frequency band of the electromagnetic spectrum.

7.4.6 Photoelasticity
Methods based on photoelasticity are used for optically visualizing and measuring the me-
chanical states of stress in transparent materials. These methods have been known for quite
some time.17 Originally, transparent models of real structural components were qualita-
tively inspected under stress and their stress distributions was then quantitatively measured.
However, for quantitatively measuring the stress, the state of stress has to be biaxial.18 The
classical model-based visualization of tension has meanwhile been replaced by FEM calcu-
lations.19 These computed simulations have a significantly lower cost and are not limited to
biaxial states of stress.

Nowadays, photoelasticity methods are used in automated visual inspection for the fast
inspection of transparent components for internal stresses and tension distributions under
stress. Instead of designing models, the actual elements are inspected. In general, they
have neither biaxial states of stress nor prismatic geometries, so that things are much more
complicated.

Photoelasticity allows both a fast, qualitative inspection and a quantitative 3D recon-
struction of the stress state. During a qualitative inspection, high stress gradients (high ten-
sions) can be identified from the high density of stripes (i.e., a large number of stripes) in a
photoelasticity image, cf. Fig. 7.115 on page 342. The quantitative 3D reconstruction of a tri-
axial state of stress can be achieved by using the methods of tensor tomography [146,167]. As
these methods are very complicated, only the qualitative detection is covered in this book.

The principle of photoelasticity relies on the fact that certain transparent materials be-
come birefringent under mechanical stress, whereas they show homogeneous and isotropic
refraction in their unstressed state (see also Sec. 2.2.2.4 for birefringence). This effect is called
stress induced birefringence. For example, birefringence arises for glass, Plexiglas20 and
synthetic resin.

Instead of the scalar, spatially independent index of refraction n for the unstressed state,
a symmetric tensor N has to be used for the index of refraction in the stressed state:

N =

⎛⎜⎝ nx nxy nxz

nxy ny nyz

nxz nyz nz

⎞⎟⎠ . (7.158)

For isotropic refraction, the scalar index of refraction n corresponds to a refraction tensor
N = n I with I denoting the identity matrix.

17They were first described by the Scottish physicist David Brewster [26, 27].
18The total applied stress consists of two superposed tensions in perpendicular directions.
19The finite element method
20In Europe, Plexiglas R© is a registered trademark of Evonik Industries AG.
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The stress state in a three-dimensional body is described by the stress tensor S, which
can also be represented by a symmetric 3× 3 matrix [18]:

S =

⎛⎜⎝ σx τxy τxz
τxy σy τyz
τxz τyz σz

⎞⎟⎠ . (7.159)

The diagonal elements σi are called the normal stresses, and describe the stress state per-
pendicular to an intersecting plane with the normal vector ei, i ∈ {x, y, z}. The normal
stresses result from tensile tensions, pressure, or bending (Fig. 7.113). The shear stresses
τij are directed in the direction ej , tangential to the intersecting plane perpendicular to ei,
i, j ∈ {x, y, z}. They result from shear or torsion. The stresses describe the force affecting a
spatial element of the object per area, and are measured in units of N/m2. In the case of a bi-
axial stress state, all stresses perpendicular to a plane vanish, resulting in σz = τxz = τyz = 0

[177].
In general, the tensor S describes a triaxial stress state. By means of the principal axis

transformation (principal component analysis, see Sec. 8.7), S can be represented as a diag-
onal matrix. The tensor is transformed into the coordinate system of its eigenvectors. In this
coordinate system, all shear stresses disappear:

S̃ =

⎛⎜⎝σ1 0 0

0 σ2 0

0 0 σ3

⎞⎟⎠ . (7.160)

The eigenvalues σ1 ≥ σ2 ≥ σ3 are called the principal stresses. The corresponding eigen-
vectors ε1, ε2 and ε3 are directed along the principal axes. The normal stress reaches its
maximum σ1 (its minimum σ3) for the intersection plane with the normal vector ε1 (respec-
tively ε3).

The stress tensor S and the index of refraction tensor N have the same principal axes.
The two tensors are related as follows [2, 146, 167]:

N = n I+A trace(S) I+B S . (7.161)

Figure 7.113. Stress state of a volume element. The equilibrium
conditions of the torque around the coordinate axis result in
τxy = τyx, τxz = τzx, τyz = τzy .
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Here, n is the scalar index of refraction of the unstressed material and A and B are photoe-
lasticity material constants. Usually, the stress tensor S = S(x, y, z) as well as the index of
refraction tensor N = N(x, y, z) are functions of the position x = (x, y, z)T. Such spatially
variant tensors are called tensor fields. In accordance with (7.161), the stress tensor field can
be calculated from the index of refraction tensor field measured with photoelasticity meth-
ods [146].

For an illumination with a plane light wave propagating in the z-direction, only those
components of the index of refraction tensor are effective that are perpendicular to ez . In
this case, the refraction can be characterized by a reduced index of refraction tensor Nz ,
which can be written as a 2× 2 matrix:

Nz = (ex, ey)
T N (ex, ey) with eTi ej = δij , i, j ∈ {x, y, z} . (7.162)

The principal axis transformation of Nz yields the slow and fast axes of the birefringence in
the ex,ey-plane (cf. Sec. 2.2.2.4). The eigenvalues are the corresponding indices of refraction
ns and nf with ns > nf [2, 146, 167].

`Polarizer’ `Analyzer’

ForceMonochromatic
unpolarized
light

Linear
polarizer
`horizontal’

Linear
polarizer
`vertical’

Test object
with biaxial
stress state

Observation
d

x

y

z

Figure 7.114. Polariscope with crossed linear polarizers.

Classic photoelasticity requires a biaxial (‘planar’) stress state. These stresses only affect
the directions parallel to the x,y-plane and are independent of z. The inspection is carried
out in the z-direction. The simplest variant of a ‘polariscope’ as shown in Fig. 7.114 uses
dark-field illumination. The monochromatic illumination passes through the polarizer, the
transparent test object, the analyzer, and finally reaches the observer. In an unstressed state,
the test object does not change the linear polarization state of the incident light, so that it is
blocked by the analyzer which is rotated by 90◦ with respect to the polarizer. The result is
a homogeneous, dark image. Mechanically stressing the test object induces birefringence,
which usually transforms the linearly polarized light into elliptically polarized light. A part
of this light can now pass the analyzer, so that bright structures can be observed.

For a transmittance T with respect to the light intensity, the following holds for the po-
lariscope from Fig. 7.114 [56, 145]:

T ∝ sin2(2γ) sin2
(
C dπ

λ
(σ1 − σ2)

)
. (7.163)
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Here, C is another photoelasticity material constant, d the thickness of the object in the z-
direction, λ the wavelength of the monochromatic light, and γ is the angle between the
polarizer’s polarization direction and one of the two principal stress directions ε1 or ε2 [115,
145]. Because of sin2(2γ) = sin2(2(π2 −γ)) it is of no importance which of the two orthogonal
principal stress directions is chosen.

In the image, dark lines arise at positions where the transmittance T reaches zero, which
represent the zeros of one of the two sin2 terms:

Isoclines arise for

sin2(2γ) = 0 ⇔ 2γ = kπ ⇔ γ = k π
2 , k ∈ Z . (7.164)

Isoclines21 connect the points (x, y) where the principal stress direction ε1(x, y) equals the
direction of the polarizer and the principal stress direction ε2(x, y) equals the direction of
the analyzer, or vice versa. If the polarizer and the analyzer are in a crossed state, and are
simultaneously rotated, the isoclines move. Systematically moving the polarizer and the
analyzer while maintaining their crossed state allows capturing an image series that can
be used to reconstruct the field of directions of the principal stresses and thus the lines of
the principal stresses: for each point of an isocline, the principal stress direction is given
by the angle γ of the polarized light—and the second one is orthogonal [177].

Isochromates are given for

sin2
(
C dπ

λ
(σ1 − σ2)

)
= 0 (7.165)

⇔ C dπ

λ
(σ1 − σ2) = kπ (7.166)

⇔ σ1(x, y)− σ2(x, y) = k
λ

C d
, k ∈ Z . (7.167)

With an increasing gradient of the principal stress differences, the isochromates are spa-
tially denser. The isochromates represent the ‘contours’ of the ‘stress mountains’ [145].
By quantitatively evaluating the stripe pattern of the isochromates, the difference be-
tween the principal stresses σ1 − σ2 can be quantitatively determined. Therefore, the
isochromates are counted, starting from the ‘zero isochromate,’ which corresponds to the
unstressed state with k = 0. The principal stress difference is equal to the maximum
shear stress τmax (principal shear stress), which plays an important role in tests for stabil-
ity [177].
The isochromates remain unchanged if the polarizer and analyzer are simultaneously
rotated. Using white instead of monochromatic light leads to different stripe patterns for
each wavelength because of the wavelength dependence of (7.163). These stripe patterns
are superposed to a colored stripe image. This effect is the origin of the term isochromate.
Only the isochromate for k = 0 is independent of the wavelength and is thus visible as a
dark line also for white light.
If additional λ

4 retardation plates are placed behind the polarizer and in front of the an-
alyzer of the polariscope of Fig. 7.114, which are rotated by the angle α = π

4 around the

21Generally, isoclines and isochromates are defined as the lines of constant angle γ (constant differ-
ence between the principal stresses σ1 − σ2). But as the zeros of the two sin2 terms result in clearly
visible line structures, here isoclines and isochromates are defined as the zero lines of the two sin2

terms.
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polarizer’s polarization direction, circularly polarized light illuminates the test object.
Therefore, the factor sin2(2γ) in (7.163) is averaged to a nonzero constant, so that there
are no more isoclines and the isochromates remain isolated.

There are numerous other variants of polariscopes, which use linearly or circularly polarized
light, operate with transmitted or reflected light, and with dark field or bright field illumi-
nation [177]. For example, the polariscope from Fig. 7.114 can be used with bright field
illumination if the analyzer is rotated by 90◦, so that the forward directions of the polarizer
and the analyzer are equal.

In automated visual inspection, the analysis of stresses in transparent models of real com-
ponents is hardly interesting. Rather, the stresses caused by tensions or by internal stress in
transparent test objects consisting of birefringent material are to be visualized and evalu-
ated. Examples include components made out of glass or transparent plastics. However, in
general, these are triaxial stress states which are much harder to measure. The photoelas-
ticity effect in the direction of observation is integrated. Additional difficulties arise if the
test object does not possess a prismatic geometry. Then its interfaces cannot be arranged to
be perpendicular to the light rays, which means that the light is refracted. Thus, it will not
be parallel to the polariscope’s optical axis inside as well as outside the object. If the stress
states are supposed to be reconstructed for each point, tensor tomography has to be used
[2, 146, 167]. Here, the object has to be placed in an immersion bath with an index of refrac-
tion adequate to avoid refraction, and an image series of different rotations of the object has
to be recorded (cf. Sec. 7.4.2 and 7.5). Thus, a 3D reconstruction of the stress state is very
costly.

For a qualitative photoelasticity analysis, the stripe image of the test object can be com-
pared to stripe images of reference objects. Another possibility for defect detection is search-
ing for regions with a high local stripe density. To evaluate the stripe images of isoclines and
isochromates, methods similar to moiré methods can be used [10, 47].

Example 7.12 (Photoelasticity inspection of a lens): The lens blank of Fig. 7.115(a) is to be
inspected using photoelasticity. The image acquisition uses a scanning system that can

(a) (b) (c)

Figure 7.115. Inspection of a lens blank using photoelasticity: (a) Photograph of the test object together with a cm

scale in order to visualize the dimensions; (b) Total intensity of a photoelasticity image; (c) Photoelasticity images
for crossed polarizers.
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simultaneously capture the light for parallel and crossed polarizers. Monochromatic laser
light is used as illumination, which is linearly polarized by the polarizer. The image
7.115(b) is the result of the summed intensities for the parallel and crossed polarizers,
whereas Fig. 7.115(c) only shows the component of the crossed polarizer and analyzer,
as in the setup of Fig. 7.114. The asymmetric lines might be a sign of an inhomogeneous
stress distribution. In addition to the test for stress, defects like entrained bubbles or
inclusions can be detected in the intensity image.

Test object

Camera

Linear polarizer
forward direction 90°
(analyzer)

Linear polarizer
forward direction 0°

Observer

Unpolarized,
monochromatic
light

Semi-transparent
mirror

Figure 7.116. Polariscope for automated visual inspection.

Figure 7.116 shows a setup for a polariscope used in automated visual inspection for qual-
itative defect detection. The polariscope uses circularly polarized light, so that no isoclines
are visible and the dark lines correspond only to isochromates. In this case, reflections are
observed. Because of the retroreflector, which conserves the polarization (see Sec. 7.3.10.3),
the direction of the light on the observation side is parallel to the optical axis even for test
objects without a prismatic shape, as the light propagates back along the same optical path.
In this way, the refraction at the object’s borders is compensated for (cf. Sec. 7.5).

Example 7.13 (Camera with individual polarization filters per pixel): The so-called POLKA of
the Fraunhofer IIS is a CMOS camera having a linear polarization filter in front of every
single pixel. The polarization filters are oriented at 0◦, 45◦, 90◦ or 135◦; see Fig. 7.117.

In order to obtain the full resolution of 640×480 pixels for each of the four polarization
channels, a spatial interpolation is applied to compensate for the spatial displacements
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(a) (b)

Figure 7.117. (a) Principle of the camera chip of the polarization camera POLKA. Groups of four adjacent camera
pixels are equipped with individual linear polarization filters having the orientations of 0◦, 45◦, 90◦ and 135◦;
(b) Transmission image of a plastic bottle (PET bottle) for linearly polarized illumination. The four channels are
visualized as a false color image using CMYK color encoding. The polarization changes caused by mechanical
stress are clearly visible (source: A. Nowak, Fraunhofer IIS Erlangen, Germany).

of the pixels and for their disjoint arrangement. This camera is capable of acquiring 100
images per second, allowing to partially determine the polarization state of the captured
light; see Sec. 2.2.2.5.

7.5 7.5 Special image acquisition methods

Cone-shaped mirror

Test object

Inspection of cylindrical and radial struc-
tures using a cone-shaped mirror.
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Cone-shaped
mirrorTest object

Inspection of drill holes using a cone-
shaped mirror and bright-field illumina-
tion.

Cone-shaped
mirror

Test
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Radial inspection of the object’s outside
using a cone shaped mirror.
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Test object

Telecentric
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system
Telecentric measurement and inspection
of specific object regions using a suitable
setup of mirrors.
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Image

First surface
mirror

Camera

Test
object

Inspection of specific regions on different
sides of the test object by means of a spe-
cial setup of mirrors.

A

A’

A’’

B

B’

B’’

C

C’

C’’
D

D’

D’’ First surface mirror

Camera

Test object

Virtual
images

Plane mirror
Inspection of all sides of a test object using
mirrors. Two planar mirrors are placed
behind the test object, so that its back can
be imaged by the camera. Therefore, the
complete perimeter of the object can be
captured.

Object

Image

 Anamorphic
optics

Anamorphic imaging system consisting
of several lenses, including a cylindrical
lens. An anamorphic optics has different
magnifications in the x- and y-directions,
and thus long objects can be almost com-
pletely captured. Such an optic can be re-
alized with two cylindrical lenses which
are rotated by 90◦ with respect to each
other [145].

Lens

f

d1

Measurement of narrow slits by inspect-
ing the diffraction image. The distances
between the extrema are reciprocal to the
slit width d1.
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Lens

T
d2

f

Measurement of the diameter d2 of cylin-
drical objects. In accordance with Babi-
net’s principle, a slit and a diaphragm
shaped as the slit’s complement produce
the same diffraction image (see Sec. 2.2.6).
Here, the diffraction image is smaller than
in the previous example, because d1 < d2.

Computer

Test object

Display

Telecentric
lens system

Camera

Quasi-telecentric illumination using a
monitor which brightly displays the
slightly expanded contour of the test ob-
ject and is black apart from that. This
prevents systematic measurement errors
caused by a non-telecentric background il-
lumination and is much more inexpensive
for large lenses than a telecentric illumina-
tion (cf. Sec. 7.3.10.2).

Camera

Light source

Defect
Transparent

object

Retro-

Inspection of transparent test objects. The
influence of refraction is suppressed by
means of a retroreflector, as the light uses
the same optical path towards and away
from the reflector. This leads to images
with almost homogeneous intensity [69].

Immersion liquid
Light
source

Camera

Mount

Transparent
objectDefect Inspection of transparent test objects. The

test object is made invisible with respect
to refraction by placing it in an immersion
bath of a liquid having an index of refrac-
tion equal to that of the test object. Only
inner defects remain visible.
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Camera

Transparent
test object

Display as a variable
background illumination

Inspection of transparent or partially
transparent objects with variable back-
ground illumination using a display.

Together, N light sources with different il-
lumination directions illuminate the test
object and generate an image series with
different shadows. The image series can
be obtained by sequentially capturing sev-
eral images, or by using different colors
for the different illumination directions
[21, 22, 75]. The shadows contain the im-
plicit 3D information. The comparison
with reference images allows a robust de-
tection of break-offs and other 3D defects.

7.5.1 Image acquisition systems with variable illumination direction
For some inspection tasks, it is beneficial to vary the illumination direction. Figure 7.118
shows a possible system setup [62, 89]. The illumination is carried out by a video projector
which is controlled by a computer. The divergent projection rays are parallelized by a col-
lecting lens which is specifically arranged so that the projection center of the projector’s lens
system is located at the lens’ focal point. Because of the size required, the use of a Fresnel
lens as collecting lens is adequate. Such lenses are known from overhead projectors, which
were common before the introduction of computer controlled projectors.

After the collecting lens, the illumination reaches a reflector which has the shape of an
elliptic paraboloid. This reflector focuses the parallelized light to its focal point, where the
test object is located. The reflector does not have to be a perfect mirror, as it is only used
to redirect the light and not for the actual optical imaging. The illumination direction can
now be varied by selectively turning on the corresponding projector pixels and by setting
the remaining pixels to dark. In addition, an arbitrary light pattern can be projected, which
is transformed into the corresponding field of illumination directions. The azimuthal as well
as the elevation angle of the illumination direction are variable.

The camera is placed opposite to the projector and observes the object through a slit
in the reflector. Depending on the task, the use of a telecentric lens might be beneficial.
With this setup, image series with varying illumination directions can be captured with the
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Figure 7.118. Image acquisition system with variable illumination direction.

image frequency of the camera. An example of such an image series has already been shown
in Fig. 7.17. However, only objects that are small, compared to the projector’s size, can be
inspected in this way, as the intensity of the illumination drops rapidly outside the reflector’s
focal point.

Alternatively, variable illumination directions can be realized by means of arrays of light
emitting diodes or a bright computer display [75, 112, 133].

7.5.2 Endoscopy
An endoscope is a slim optical system which can be inserted into a test object in order to
capture images. Image acquisition is performed using a miniature camera inside the endo-
scope or by a camera which is placed outside and which receives the light through special
imaging optics. For example, endoscopes with a panoramic view can be used to inspect drill
holes [152]. Besides acquiring the image, often the endoscope has to also carry out the illu-
mination of the object’s interior. This can be achieved by including a light source within the
endoscope or by using a separate instrument (Fig. 7.119).
The following operating principles of an endoscope are possible:

‘Rigid’ endoscopes: the image is transferred by a lens system to a camera placed outside
the test object.
‘Flexible’ endoscopes: a bundle of optical fibers transfers the image through the endo-
scope to a camera placed outside the test object. The flexibility of the endoscope allows
the inspection of interior spaces with complcated shapes.
Endoscopes with a miniaturized camera: the camera is located directly on the top of the
endoscope. The image is transferred electronically. Therefore, such an endoscope is also
flexible. Because of the advancements in the miniaturization of cameras, such endoscopes
are currently gaining popularity.
Stereo endoscopes for capturing the 3D structures of interior spaces. However, stereo
reconstruction is complicated by the very short stereoscopic base length, which is limited
by the restrictions on the geometry of the endoscope (cf. Sec. 7.3.8). Another alternative
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Figure 7.119. Examples of endoscopes: (a) Endoscope with integrated illumination; (b) Additional instrument for
illumination; (c) Endoscope with panoramic view for the inspection of drill holes.

for 3D capturing is a stereo reconstruction from several images of a conventional endo-
scope undergoing specified displacements.

The necessary miniaturization of the optical elements and the tight spaces inside the in-
spected objects result in images with reduced quality. Especially endoscopes that are based
on optical fibers have low resolution.

Because of the constellation of the image acquisition, it is often useful to enhance the
image quality by a subsequent geometric correction (see Sec. 9.2.1). For example, a transfor-
mation into polar coordinates can be used in order to undistort panoramic images [152].

7.6 7.6 Universal principles

7.6.1 Suppression of extraneous light
Extraneous light constitutes a serious problem for the reproducibility and image quality of
image acquisition in automated visual inspection. For example, sunlight shining through the
windows of a workshop might cause overexposure and lead to unusable images, whereas
objects lying in the shadow can show poor contrast.

Consequently, it is always beneficial for automated visual inspection to provide a con-
trolled illumination that is adequate for the subsequent image processing steps. Therefore,
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uncontrolled extraneous light usually constitutes a source of noise and its influence should
be minimized.

Thus, the suppression of extraneous light is an important foundation for a robust visual
inspection system. The following methods can be used for the suppression of extraneous
light:

Isolation: by isolating the visual inspection system from sunlight or the ambient illumi-
nation, a specific and reproducible illumination can be achieved.

Modulation of the illumination and the corresponding demodulation at the sensor. Ex-
ample: by a temporal sinusodial modulation of the laser light source of a triangulation
setup with the frequency f0 and by using an appropriate narrow-band electronic band-
pass filter subsequent to the sensor, light not fluctuating with the frequency f0 is blocked.

High signal-to-noise ratio by means of a high-leveled wanted signal. This is achieved
by bright field illumination, for example. Another possibility is illumination with a flash
and the use of a synchronized shutter.

Narrow-band illumination (ideally, monochromatic) and narrow-band optical filters
placed in front of the camera (cf. Sec. 5.3). By concentrating the illumination energy on a
small wavelength band, a high signal-to-noise ratio can be achieved in that band. Optical
filters that let only the desired band pass can be used in front of the camera. However, it
is necessary that the test object have suitable reflectance properties in the chosen wave-
length range.

Reference image of the perturbations and consideration in the successive computational
processing. The influence of extraneous light has to be constant for the time between the
recording of the reference image and the actual image acquisition of the test object. If
necessary, a reference image has to be captured immediately before each image acquisi-
tion, in order to capture the current extraneous light.
In the case of targeted illumination with a light source that can be turned on and off, a
simple additional image can be captured with no artificial illumination in order to cap-
ture exclusively the extraneous light. Then the influence of the extraneous light on the
actual images can be compensated for computationally.
Another approach is the estimation of the changed illumination conditions on the basis
of the image data, without capturing special reference images.

An effective suppression of extraneous light usually facilitates further image processing
steps and improves the quality of the results.

7.6.2 Inverse illumination
A carefully designed illumination setup can considerably simplify the processing of the cap-
tured images. The principle of inverse illumination is a way to acquire images that are easy
to evaluate. Especially the differences between a test and a reference object can then be
detected very quickly.

Since both, illumination and image acquisition are well adapted for a reference object,
the resulting image gref(x) is easy to evaluate. This image can be characterized by a homo-
geneous intensity or a regular pattern, for example. Certain properties of the reference object
are neutralized to a certain extent by the illumination. Differences between the investigated
properties of the object result in significant variations in the observed image gtest(x), which
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can be robustly detected with simple image processing methods. In large part, feature ex-
traction is done during image acquisition, so that the computational complexity of the image
processing steps is reduced.

For certain objects, the dark field illumination of Sec. 7.2.3.3 can be considered as inverse
illumination. An example are the mirrors shown in Fig. 7.19: an intact mirror ideally results
in a homogeneous black image, whereas a scratch generates scattered light and is therefore
highlighted.

Another application of inverse illumination is the sorting of bulk goods. Contaminants
in bulk goods are to be detected and sorted out. The bulk good falls off a conveyor belt and
is observed during the flight phase by a line camera or a color sensor. Pneumatic-driven
nozzles are used for removing the contaminants. The nozzles are arranged in a line. If
a contaminant is detected, it is blown into a separate bin by the appropriate nozzle. The
nozzles have to be controlled in real time, while the material is falling. Thus, very efficient
image processing methods are needed.

Possible sorting criteria are mainly the shape, the size and the spectral reflectance (or
‘color’) of the particles. High contrast images of reflectance differences can be recorded
using inverse illumination: a line camera observes the bright field of a spectrally adjustable
light source, see Fig. 7.120(a). A simple way to realize such a light source is with a computer
display. The light source is configured to generate the same spectrum as the bulk goods with
the desired properties. Additionally, the falling bulk goods are illuminated by white light
from the observation direction. Ideally, the spectrum of the white light reflected by the bulk
goods equals the light of the background light source, resulting in a homogeneous image.
Contaminants with different reflectance are then clearly visible and can be much more easily
detected than without inverse illumination (Fig. 7.120). Example applications are the sorting
of food, plastic granulates, and minerals [16, 63].

For sorting bulk goods, a spatially homogeneous inverse illumination is used in order
to neutralize the spectral reflectance of the reference particles and therefore also their pres-
ence in the camera image. Besides, a spatially variant inverse illumination is possible, which

Bulk goods

Nozzles

Linescan camera

Adjustable
illumination

(a)

(b)

(c)

White light

Figure 7.120. Inverse illumination for sorting bulk goods: (a) Sorting site with inverse illumination; (b) White light
image of plastic granulates without adjusted background; (c) Image with inverse background illumination.
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Figure 7.121. Setup for variable, coaxial inverse illumination.

could neutralize the inhomogeneous reflectance of a reference object, resulting in a homoge-
neous camera image. This can be realized by means of a video projector that illuminates the
object through a semi-transparent mirror arranged coaxially to the camera (Fig. 7.121). The
projected illumination is iteratively adjusted to the reference object by minimizing the ob-
served difference from the desired homogeneous camera image [53, 61, 174]. Because of this
adapted inverse illumination, the reference object is observed as an area of homogeneous
intensity. Differences in the object’s reflectance are visible with a high signal-to-noise ratio
on this homogeneous area (Fig. 7.122).

Another degree of freedom of the illumination and image acquisition is the polarization.
The polarization state of the light being reflected by an object mainly depends on its material
properties (also see Sec. 7.2.1.2). The reflection of linearly polarized light on a metal surface
results in light with a defined polarization state. If such a metal surface is illuminated with
linearly polarized light, the reflected light remains linearly polarized. So the metal surface
appears dark if a polarizer is placed in front of the camera whose polarization direction is
perpendicular (‘crossed’) to the polarization direction of the reflected light, see Fig. 7.123(a).
In accordance with the principle of inverse illumination, the result is a homogeneous dark
image which can easily be tested for local anomalies. Especially non-metallic materials par-
tially depolarize the light because of multiple inner reflections. This light is then only par-
tially absorbed by the polarizer in front of the camera, so that non-metals appear bright in
the camera image, see Fig. 7.123(b).
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(a) (b) (c)

(d) (e) (f)

Figure 7.122. Examples of variable inverse illumination using the setup of Fig. 7.121: (a) Scene; (b) Projected inverse
illumination; (c) Camera image; (d) Modified scene; (e) Projected inverse illumination (identical to (b)); (f) Corre-
sponding camera image.
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Figure 7.123. Discrimination of metals from non-metals by using polarization effects: (a) Linearly polarized light
remains linearly polarized after being reflected by the surface of a metal and is therefore blocked by a crossed
polarizer; (b) Non-metals partially depolarize the reflected light, so that it can partly pass the crossed polarizer.
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Example 7.14 (Inspection of sand cores): An application of polarized inverse illumination is
shown in Fig. 7.124. For the inspection of sand cores used for casting the cylinder heads
of a four-valve engine, the metallic ring sockets of the valves have to be tested for con-
tamination with sand. The sockets, made of tempered steel, are placed on the sand core
before it is used to cast the cylinder head from aluminum. Thus, sand contaminants
might lead to an incomplete bonding between the steel and the cast aluminum.

Under unpolarized illumination, sand and metal can barely be distinguished, as re-
flections of the sand cores are visible in the metal surface. By using inverse illumination,
the metal surfaces appear dark and can be clearly separated from the sand. Sand fins on
the metal can easily be detected.

(a)

�
��

Sand fin���

Metal

(b)

Figure 7.124. Polarized illumination for the detection of sand fins in the sand cores of combustion chambers: (a) Im-
ages acquired using unpolarized light; (b) Images acquired with linearly polarized illumination, observed through
a polarizer crossed to the reflected light.

The principle of inverse illumination can also be applied to the 3D capturing that uses the
principle of triangulation. In this case, inverse patterns adjusted for the specific object are
used instead of the object-independent encoding sequences of the method of structured il-
lumination (see Sec. 7.3.4.1). An inverse pattern can be projected for an areal triangulation,
which appears as a regular stripe pattern in the perspective of the camera [105]. A similar
approach can also be used for deflectometry: the inverse pattern reflected by the reference
object appears as a regular stripe pattern. Defects result in a change in the regular structure,
which is easy to detect. The inverse pattern can be calculated from the correspondence be-
tween the camera points and the screen points of the reference object [173]. Fig. 7.125 shows
an example. The reflection of the inverse pattern (Fig. 7.125(d)) by an intact object with the
desired geometry shows a regular stripe pattern (Fig. 7.125(b))—but the reflection by a de-
fective, deformed object has distorted stripes (Fig. 7.125(c)). By computationally projecting
the observed image column-by-column, an easy evaluation and defect detection is possible
(Fig. 7.125(e), (f)). The vertical projection corresponds to the Radon transform for the angle
ϕ = 0, see Chap. 14.
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(a) (b) (c)

(d) (e) (f)

Figure 7.125. Inverse pattern for the deflectometric inspection of a magnifying mirror: (a) Reference object; (b) De-
flectometric image of the intact reference object; (c) Deflectometric image of a deformed object, here, an arched
mirror; (d) Inverse pattern displayed by the pattern generator; (e) Evaluation for the reference object, vertical pro-
jection of (b); (f) Evaluation for the deformed object, vertical projection of (c).

7.7 Summary
This chapter presented image acquisition methods for automated visual inspection. In order
to select the most appropriate method, the first question to answer is which of the object’s
properties are relevant for the inspection task: the optical properties like reflectance and the
complex index of refraction, or the object’s geometry?

Figure 7.126 shows the taxonomy of the optical methods for capturing 3D shapes. The
methods based on the principle of time of flight or focus have the advantage of allowing a
coaxial scanning, i.e., regions can be measured which can only be reached through a small
entrance, like a drill hole. This is not possible for triangulation or shading methods, as
the different perspectives of illumination and observation that are necessary require a suffi-
ciently large angle.

7.7
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Figure 7.126. Taxonomy of the methods for optically capturing 3D shapes.
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8.7 The Karhunen–Loève transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
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8 Image Signals

8.18.1 Mathematical model of image signals
An image signal g(x) acquired by the methods described in Chap. 7 is a function g : R2 →
RQ, which—in the general case—maps the whole image plane to vectorial values, where Q

denotes the number of channels (cf. Sec. 1.3). At first, both the domain and the range of the
image signal are considered to be continuous. In this case, g(x) is called a continuous image
signal or an analog image signal.

In order to store and process such signals using a computer, they have to be transformed
into an adequate representation. This transformation is called digitization and has to carry
out a discretization of the values of the function g and the positions x, as well as limit the
spatial domain to a finite section and the values of the function to a finite range. The resulting
digital signal is denoted by gmn. Figure 8.1 shows the effect of digitization on the example
of a one-dimensional, scalar image signal g(x) : R→ R.

Figure 8.1. Discretization of position and function values.

In general, digitization involves an enormous loss of information, as infinitely many dif-
ferent vector-valued functions g(x) are mapped to one and the same matrix gmn; obviously
this mapping is not invertible. On the one hand, a coarse discretization of the position and
the function values is beneficial, as it reduces the needed storage and and computing time.
On the other hand, a fine discretization results in less loss of information and in images of
higher quality, see Fig. 8.2. Thus, in practice it is a common problem to find an adequate
trade-off between coarse and fine discretization, so that the information necessary for the
actual application is preserved in the digital signal.

At first, the following qualitative and subjective approach can be used to solve this prob-
lem: in order to achieve a satisfying visual impression, detailed images require a fine spatial
discretization. On the other hand, for images with less details, a fine discretization of the
function values is necessary to avoid phantom edges. Figures 8.3 and 8.4 show a scalar

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_8,
© Springer-Verlag Berlin Heidelberg 2016
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Discretization of position and function values
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Figure 8.2. Consequences of the discretization of position and function values.

test image with different resolutions of position and function values and confirm this first
approach.

As a rule of thumb, the discretization of the image should result in at least 256× 256 pix-
els and 64 = 26 values per channel, especially if a satisfying visual impression is required.
The typical cameras used for visual inspection to capture two-dimensional images have ap-
proximately 5122–40962 image points and 28–216 values per channel. However, to obtain a
quantitative description of the effects of discretization, mathematical tools are needed, which
will be described in the following sections.

8.2 8.2 Systems and signals
In general, a set of interacting components executing a certain task is called a system. In
information technology, this is usually the transformation of certain input variables to a set
of output variables. Thus, a system will now be considered as a rule for transforming an
input signal g(x) to an output signal k(x). Mathematically, this rule is described by the
operator S{ · }:

k(x) = S{g(x)} . (8.1)

Such a system can be represented according to Fig. 8.5. The arrows show that the signals are
carried in a certain direction, i.e., that the output values do not influence the input values.
The system is therefore non-reactive.

Before covering some important mathematical tools for representing and analyzing sys-
tems, some criteria for classifying systems will be presented in the following subsection. To
simplify matters, scalar image signals are considered.

8.2.1 System characteristics
In this book, systems are generally considered to be deterministic, i.e., an input signal corre-
sponds to a unique output signal.

8.1 Definition 8.1: Linearity
A system S is called linear if the following equation holds for arbitrary signals g(x) and h(x)

and arbitrary constants a and b:

S{a g(x) + b h(x)} = a S{g(x)}+ b S{h(x)} . (8.2)
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(a) 256×256 (b) 128×128

(c) 64×64 (d) 32×32

(e) 16×16 (f) 8×8

Figure 8.3. Spatial discretization: Test image with different spatial resolutions.
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(a) 64 Gray values (b) 32 Gray values

(c) 16 Gray values (d) 8 Gray values

(e) 4 Gray values (f) 2 Gray values

Figure 8.4. Discretization of function values: Test image with different resolutions of gray values.
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Signal g(x) � S{ · } � Signal k(x) = S{g(x)}

Excitation System Response

Figure 8.5. Passing a signal through a system.

Accordingly, if an input signal is composed of the superposition of several signals, a linear
system produces an output signal which is the weighted sum of their corresponding output
signals (the superposition principle). �

8.2Definition 8.2: Shift invariance
A system S is called shift invariant if

S{g(x− x0)} = k(x− x0) with k(x) = S{g(x)} . (8.3)

So, the output signal corresponding to an input signal shifted by the vector x0 will be iden-
tical to the output signal of the original input signal except for the displacement x0. Hence,
the system is independent of the position x. �

Linear, shift invariant methods allow a simple mathematical treatment of numerous impor-
tant systems; for this reason, they have great practical relevance.

8.3Definition 8.3: Memoryless
A system S is called memoryless if

S{g(x)} = ν(g(x)) with ν : R→ R , (8.4)

i.e., if the output signal S{g(x)} depends only on the value of the input signal g(x) at the
position x. �

Example 8.1 (Moving average): As a first example system, consider the moving average:

S{g(x)} := 1

T 2

x+T
2∫

x−T
2

y+T
2∫

y−T
2

g(α) dα = k(x) . (8.5)

This system is linear, shift invariant, and not memoryless.

Example 8.2 (Exponentiation): Next, consider exponentiation:

S{g(x)} := gp(x) = k(x) . (8.6)

This system is non-linear, shift invariant, and memoryless.
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Example 8.3 (Ideal modulator): Finally, consider the ideal modulator:

S{g(x)} := m(x) · g(x) . (8.7)

This system is linear and memoryless. As

S{g(x− x0)} = m(x) · g(x− x0) (8.8)

�= m(x− x0) · g(x− x0) = k(x− x0) , (8.9)

the system is shift variant.

8.2.2 The Dirac delta function

8.2.2.1 Definition of the Dirac delta function
In contrast to functions, distributions are not defined by their values at the different positions
x or times t, but by their characteristics [6, 24]. Especially because of its ability to extract the
value of a given function g(x), the so-called Dirac Delta Function δ(x) (also called the δ-
distribution or ‘δ-function’) is of special importance in the field of signal analysis.

8.4 Definition 8.4: The Dirac delta function
The Dirac delta function is defined by

g(x0) =

∞∫
−∞

δ(x− x0) g(x) dx with g(x) continuous at x0 . (8.10)

Together with the integral, this results in the extraction of the value of g(x) at the position
x0. �

Apparently, the ‘δ-function’ is not a function in the usual sense but rather a distribution, as
δ(x) is defined by its effect on functions g(x) after multiplication and integration and not by
its function values.

As g(x) might have arbitrary values for x �= x0, one must have δ(x) = 0 for these x. In
addition, setting g(x) ≡ 1 in (8.10) immediately implies

∞∫
−∞

δ(x) dx = 1 . (8.11)

Thus, the Dirac delta function can be seen as a very narrow, impulse-shaped function with
an integral of one, which can be approximated by an appropriate function. Choosing a
rectangular impulse results in the following approximation:

δε(x) :=
1

ε
rect
(x
ε

)
(8.12)

with the rectangular function

rect
(x
ε

)
:=

{
1 if |x| < ε

2

0 otherwise
, (8.13)
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Figure 8.6. Approximation of the Dirac delta function by the rectangular function. The Dirac delta function is repre-
sented by an arrow and its weight (integral) by the length of the arrow.

where the width of the impulse is denoted by ε, see Fig. 8.6. For ε → 0, the approximation
δε(x) has the same characteristics as the Dirac delta function:

lim
ε→0

∞∫
−∞

δε(x− x0) g(x) dx = g(x0) , g(x) continuous in x0 , (8.14)

as the approximation g(x) ≈ g(x0) holds for a sufficiently small neighborhood of ε around
x0 because of the continuity of g(x), see Fig. 8.7. Therefore, the approximation δε(x) results
in the δ-distribution:

δε(x)
ε→0−−−−→ δ(x) . (8.15)

8.2.2.2 Characteristics of the Dirac delta function
The Dirac delta function has the following characteristics:

Even: The Dirac delta function acts like an even function, i.e., δ(x) is axially symmetric
to the line x = 0:

δ(x) = δ(−x) . (8.16)

Descriptive characterization: By (8.15), the Dirac delta function can be interpreted as an
infinitely narrow rectangular function of infinite height:

δ(x) ‘=’

{
0 for x �= 0

∞ for x = 0
. (8.17)

Figure 8.7. Transition δε(x) → δ(x).
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Table 8.1. Formulas for Dirac delta functions.

Definition

∞∫
−∞

δ(x− x0)u(x) dx = u(x0) with u(x) continuous at x = x0

Orthogonality

∞∫
−∞

δ(x− x1) δ(x− x2) dx = δ(x1 − x2)

Gating

characteristic
δ(x− x0)u(x) = δ(x− x0)u(x0)

Coordinate

transformation
δ(a(x)) =

N∑
i=1

|a′(xi)|−1
δ(x− xi)

with simple zeros
at a(xi) = 0

Similarity

transformation
δ(k x) = |k|−1

δ(x) with k real-valued �= 0

Convolution u(x) ∗ δ(x− x0) = u(x− x0)

n-dimensional

Dirac delta function
δ(x) = δ(x1, x2, . . . , xn) = δ(x1) δ(x2) . . . δ(xn) , x ∈ Rn

The unit step function as an integral: The integration of the Dirac delta function results
in the unit step function (also called the Heaviside function):

H(x) =

x∫
−∞

δ(ξ) dξ , (8.18)

which is defined as

H(x) :=

⎧⎪⎨⎪⎩
0 if x < 0
1
2 if x = 0

1 if x > 0

. (8.19)

Hence, the Dirac delta function δ(x) is the derivative of the unit step function H(x) in the
sense of distribution theory.

Table 8.1 summarizes the most important formulas concerning Dirac delta functions. In or-
der to demonstrate how to calculate using the Dirac delta function, the proof of the similarity
transformation will now be given as an example.

Proof 8.1 (The similarity transformation): In order to prove the formula for the similarity trans-
formation of Table 8.1, x0 = 0 is inserted into (8.10),

∞∫
−∞

g(x) δ(x) dx = g(0) , (8.20)
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and the approximation (8.15) is used:

∞∫
−∞

g(x) δ(k x) dx

Evenness

↓
=

∞∫
−∞

g(x) δ(|k|x) dx (8.21)

= lim
ε→0

∞∫
−∞

g(x)
1

ε
rect

(
|k|x
ε

)
dx (8.22)

=
1

|k| limγ→0

∞∫
−∞

g(x)
1

γ
rect

(
x

γ

)
︸ ︷︷ ︸

δγ(x)

dx with γ :=
ε

|k| (8.23)

=
1

|k| g(0) , (8.24)

which leads immediately to the similarity transformation

δ(k x) = |k|−1
δ(x) . (8.25)

See [6, 24] for a deeper insight into the theory of distributions.

8.2.3 Convolution

8.5Definition 8.5: Convolution
The convolution of two functions is defined by the following integral:

g(x) ∗ h(x) :=
∞∫

−∞

g(α)h(x− α) dα =

∞∫
−∞

g(x− α)h(α) dα . (8.26)

Figure 8.8 illustrates this operation. �

The convolution of an arbitrary function g(x) with the Dirac delta function shifted from x0

by δ(x− x0) corresponds to a displacement of g(x) by x0:

g(x) ∗ δ(x− x0) =

∞∫
−∞

g(α) δ(x− x0 − α︸ ︷︷ ︸
= 0 ⇔ α = x−x0

) dα = g(x− x0) . (8.27)

In particular, for x0 = 0, (8.27) implies

g(x) ∗ δ(x) = g(x) . (8.28)

Hence, the Dirac delta function δ(x) is the identity for the operation of convolution.
Next, a common linear and shift invariant system (LSI system) S{ · } will be considered.

Such a system operates on signals which depend on x. By (8.28), the response of the LSI
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Figure 8.8. Convolution.

system S{ · } to the input signal g(x) can be expressed using a convolution integral:

S{g(x)} = S{g(x) ∗ δ(x)} = S

⎧⎨⎩
∞∫

−∞

g(α) δ(x− α) dα

⎫⎬⎭ (8.29)

Linearity (8.2)

↓
=

∞∫
−∞

g(α) S{δ(x− α)}︸ ︷︷ ︸
h(x− α)

dα = g(x) ∗ h(x) . (8.30)

The response h(x) = S{δ(x)} of the LSI system S{ · } to the Dirac delta function is called the
impulse response of the system S{ · }. Hence, the response of a linear, shift invariant system
to an input signal g(x) is given by the convolution of g(x) with the impulse response h(x)

of the system. A system is completely characterized by its corresponding impulse response
h(x) [18].
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8.38.3 The Fourier transform

8.3.1 The one-dimensional Fourier transform

8.3.1.1 Definition of the Fourier transform
The Fourier transform1 transforms a one-dimensional, usually real-valued function g(x) into
a complex-valued function G(f) of the frequency f .

8.6Definition 8.6: The Fourier transform
The Fourier transform maps the function g(x) to a complex-valued function G(f) : R→ C

according to the following integral transform:

G(f) :=

∞∫
−∞

g(x) e−j2πfx dx =: F{g(x)} . (8.31)

The formula for the inverse transformation2 of the complex-valued Fourier transform G(f)

to the original function g(x) is given by [18]:

g(x) =

∞∫
−∞

G(f) e j2πfx df = F−1{G(f)} . (8.32)

The Fourier transform G(f) is called the spectrum of the signal g(x). �

As (8.31) and (8.32) represent a bijection, G(f) is just another representation of g(x). In order
to be able to better distinguish between these two domains, lower-case letters are used for
the spatial signals and capital letters for the transformed complex functions in the Fourier
domain. The variable f ∈ R is the frequency corresponding to x; its unit is: [f ] = [x]−1.
In order to distinguish it from a frequency of time, this frequency is called the “spatial fre-
quency.” In other definitions of the Fourier transform, often the angular frequency ω = 2πf

is used instead of the usual frequency f .
The use of the symbol of correspondence ◦−• is quite common. The expression

g(x) ◦−• G(f) (8.33)

states that the functions g(x) and G(f) are a pair of corresponding functions.
Because of Euler’s formula

e j2πfx = cos(2πfx) + j sin(2πfx) (8.34)

1Named after Jean-Baptiste Joseph Fourier, 1768–1830, French mathematician and physicist.
The reader might wonder why the Fourier transform is discussed instead of the Laplace transform.
This is because the Laplace transform of a two-dimensional image would result in a four-dimensional
parameter space [18], which would lead to unreasonably high costs for analyzing a two-dimensional
signal. Additionally, in a manner of speaking, the Fourier transform exists in nature and can be used
to explain some of the basic effects of physical systems (cf. Sec. 8.4).

2Strictly speaking, the set of functions g(x) would need to be restricted to ensure the validity of
(8.31) and (8.32), as jump discontinuities in g(x) for example would be transformed into the average of
the left- and right-hand limits after being transformed and inversely transformed. However, as such
functions have nearly no practical relevance, they are ignored for the rest of this book [11].
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the Fourier spectrum of a signal is, in general, complex-valued. Therefore, for each fre-
quency f , the spectrum can be expressed as a magnitude and a phase, or as a real part and
an imaginary part:

G(f) = |G(f)| · e jϕ(f) = �{G(f)}+ j�{G(f)} . (8.35)

The magnitude spectrum |G(f)| can be calculated from G(f) using the Pythagorean theo-
rem:

|G(f)| =
√
�{G(f)}2 + �{G(f)}2 . (8.36)

This shows which frequencies contribute to g(x) and to what extent.
The phase spectrum ϕ(f) corresponds to the angle or the argument of the complex num-

ber G(f):

ϕ(f) = ∠G(f) =

⎧⎪⎨⎪⎩
arctan

(
�{G(f)}
�{G(f)}

)
for �{G(f)} ≥ 0

arctan
(

�{G(f)}
�{G(f)}

)
− π for �{G(f)} < 0

. (8.37)

The inverse Fourier transform (8.32) allows a descriptive interpretation of the complex
Fourier spectrum: the signal g(x) is additively synthesized from uncountably many com-
plex harmonic oscillations, which are weighted by G(f). On the other hand, the Fourier
transform provides a related analysis: it decomposes a function g(x) into a continuum of
harmonic functions with different spatial frequencies. The fine details of g(x) correspond to
the high-frequency parts of the spectrum G(f). The coarse features, i.e., the parts of g(x) that
change slowly with respect to x, are represented by the low-frequency parts of G(f).

The Fourier transform is a global transform: for each frequency f , G(f) depends on the
whole function g(x).

The existence of the Fourier integral: As the Fourier integral (8.31) is an improper integral,
it does not necessarily exist for arbitrary functions g(x) [11]. Because∣∣∣∣∣∣

∞∫
−∞

g(x) e−j2πft dx

∣∣∣∣∣∣ ≤
∞∫

−∞

|g(x)| dx , (8.38)

the Fourier integral (8.31) converges if the the function g(x) is absolutely integrable3:

∞∫
−∞

|g(x)| dx <∞ . (8.39)

This is always the case for real, spatially limited functions.

8.3.1.2 Properties of the Fourier transform
In signal processing, the Fourier transform is an important analysis and design tool, which
can be used to concisely describe and treat many different issues and problems. However in

3However, this condition is only sufficient: it is not necessary. In fact, the Fourier transform will
also be calculated for some functions that do not comply with (8.39), e.g., for the complex harmonic
function g(x) = e j2πf0x, which has a constant magnitude: |e j2πf0x| ≡ 1, see (8.88). Then, the existence
of the Fourier transform G(f) has to be taken in the sense of the theory of distributions.
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practice, using the improper integrals (8.31) and (8.32) is unhandy. Instead, tables are used,
which provide common formulas and Fourier correspondences (cf. Appendix B). The most
important properties and formulas will now be derived.

8.1Theorem 8.1: Linearity
The Fourier transform (8.31) is a linear signal transformation. By (8.2),

F{a g(x) + b h(x)} = a G(f) + b H(f) (8.40)

for arbitrary constants a and b.
The same holds for the inverse Fourier transform (8.32). �

8.2Theorem 8.2: Scaling property
Multiplying the variable x by a constant k ∈ R\{0} results in a spatial scaling of the signal
g(x) [14]. The Fourier transform of the scaled signal g(k x) is given by

F{g(k x)} =
∞∫

−∞

g(k x) e−j2πfx dx

∣∣∣∣∣ τ = k x

dτ = k dx
(8.41)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

k

−∞∫
∞

g(τ) e−j2π f
k τ dτ for k < 0

1

k

∞∫
−∞

g(τ) e−j2π f
k τ dτ

︸ ︷︷ ︸
Fourier transform of g(x) at f

k

for k > 0
(8.42)

=
1

|k| G
(
f

k

)
with g(x) ◦−• G(f) . (8.43)

So, the two representations of the signal are reciprocal with respect to the coordinates x and
f in the spatial or in the spatial frequency domain respectively. Stretching g(x) by the factor
k results in shrinking the corresponding spectrum by the factor k in the direction of the
abscissa and scaling by |k|−1 in the direction of the ordinate. �

To demonstrate the convolution property of the Fourier transform, the convolution of the
signals g(x) and h(x) will be transformed into the spatial frequency domain:

F{g(x) ∗ h(x)} =
∞∫

−∞

∞∫
−∞

g(α)h(x− α) dα e−j2πfx dx (8.44)

=

∞∫
−∞

g(α)

∞∫
−∞

h(x− α) e−j2πfx dx dα . (8.45)
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The substitution β := x− α results in

F{g(x) ∗ h(x)} =
∞∫

−∞

g(α)

∞∫
−∞

h(β) e−j2πf(α+β) dβ dα (8.46)

=

∞∫
−∞

g(α) e−j2πfα dα

︸ ︷︷ ︸
G(f)

·
∞∫

−∞

h(β) e−j2πfβ dβ

︸ ︷︷ ︸
H(f)

. (8.47)

8.3 Theorem 8.3: Convolution theorem
The convolution of two functions is transformed by the Fourier transform into the multipli-
cation of their spectra:

g(x) ∗ h(x) ◦−• G(f) ·H(f) . (8.48)

In addition,

g(x) ·h(x) ◦−• G(f) ∗H(f) , (8.49)

holds [18]. So, multiplying two signals corresponds to convolving their Fourier spectra. �

Hence, the Fourier transform is a homomorphism, which can be used to transform the com-
paratively complicated operation of convolution into a much simpler one: multiplication.
So, convolution in the spatial domain can be realized by means of

g(x) ∗ h(x) = F−1
{
F{g(x)} ·F{h(x)}

}
. (8.50)

8.4 Theorem 8.4: Differentiation theorem
The differentiation of a signal g(x) can be expressed using the inverse Fourier transform
(8.32):

d

dx
g(x) =

d

dx

∞∫
−∞

G(f) e j2πfx df (8.51)

=

∞∫
−∞

j2πf G(f) e j2πfx df (8.52)

= F−1{j2πf G(f)} . (8.53)

So, differentiating results in multiplying the Fourier spectrum G(f) by the factor j2πf . By
(8.53), multiple differentiation implies the following correspondence:

dng(x)

dxn
◦−• (j2πf)

n
G(f) , n ∈ N . (8.54)

�
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Qualitatively, the derivative property states that the low-frequency parts are attenuated and
the high-frequency parts are amplified by differentiation. As is known, the derivative of an
additive constant is equal to zero. Such a constant can be considered as the so-called direct
(DC) component of the signal g(x), which is located at f = 0 in the spatial frequency domain
and is multiplied by j2π0 = 0 for a differentiation in the spatial domain.

8.5Theorem 8.5: The shift property (spatial displacement)
To demonstrate the shift property of the Fourier transform, the spatially shifted signal g(x−
x0) is transformed into the frequency domain:

F{g(x− x0)} =
∞∫

−∞

g(x− x0) e
−j2πfx dx

∣∣∣∣∣ α = x− x0

dα = dx
(8.55)

=

∞∫
−∞

g(α) e−j2πf(α+x0) dα (8.56)

= e−j2πfx0 G(f) . (8.57)

�

Because |e−j2πfx0 | = 1, the magnitude spectrum remains unchanged by a spatial displace-
ment: only the phase is affected. Later on, this will be interpreted as follows: the spatial
information of a signal is encoded in the phase of the corresponding Fourier transform, see
Sec. 8.3.9.3.

8.6Theorem 8.6: The modulation property (frequency displacement)
Analogously, shifting the spectrum by the frequency f0 results in

F−1{G(f − f0)} =
∞∫

−∞

G(f − f0) e
j2πfx df

∣∣∣∣∣ α = f − f0
dα = df

(8.58)

=

∞∫
−∞

G(α) e j2π(α+f0)x dα (8.59)

= e j2πf0x g(x) . (8.60)

An ideal modulation by the function e j2πf0x shifts the Fourier spectrum by f0. �

8.7Theorem 8.7: The central ordinate theorem
Using the inverse Fourier transform (8.32), the value of g(x) for x = 0 is

g(0) =

∞∫
−∞

G(f) e j2πfx df

∣∣∣∣∣
x=0

=

∞∫
−∞

G(f) df . (8.61)
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Equivalently, according to (8.31), the Fourier spectrum at f = 0 is

G(0) =

∞∫
−∞

g(x) e−j2πfx dx

∣∣∣∣∣
f=0

=

∞∫
−∞

g(x) dx . (8.62)

Here, G(0) denotes the DC component of the signal g(x). �

8.8 Theorem 8.8: Reflection
By (8.32), a reflection of the signal g(x) = g∗(x) ∈ R in the origin results in

g(−x) =
∞∫

−∞

G(f) e−j2πfx df . (8.63)

Complex conjugation results in the following formula:

g∗(−x) = g(−x) =
∞∫

−∞

G∗(f) e j2πfx df = F−1{G∗(f)} . (8.64)

In particular, the magnitude |G(f)| of the Fourier spectrum remains unchanged after a re-
flection. �

8.9 Theorem 8.9: The Fourier transform of real-valued signals
By complex conjugation, one obtains the following result for the Fourier transform of the
real-valued signal g(x) = g∗(x) ∈ R:

G∗(f) =

⎛⎝ ∞∫
−∞

g(x) e−j2πfx dx

⎞⎠∗

=

∞∫
−∞

g∗(x) e j2πfx dx (8.65)

=

∞∫
−∞

g(x) e−j2π(−f)x dx = G(−f) . (8.66)

This results in the symmetry of the magnitude (i.e., the magnitude spectrum is an even
function):

|G(f)| = |G(−f)| (8.67)

and the skew-symmetry of the phase (i.e., the phase spectrum is an odd function):

∠G(f) = −∠G(−f) . (8.68)

So the Fourier transform of a real-valued signal has a Hermitian symmetry. �
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To derive the Plancherel theorem, the Fourier transform of the complex conjugation of the
signal, g∗(x), is needed. By (8.31), it is

F{g∗(x)} =
∞∫

−∞

g∗(x) e−j2πfx dx =

⎛⎝ ∞∫
−∞

g(x) e j2πfx dx

⎞⎠∗

(8.69)

= G∗(−f) . (8.70)

8.10Theorem 8.10: The Plancherel theorem
The Plancherel theorem (often referred to as Parseval’s theorem) is of great practical impor-
tance. According to this theorem, certain operations—especially the inner product of signals
[18] and the calculation of the signal energy—can be performed equally well in the spa-
tial and the spatial frequency domain. To derive this theorem, the Fourier transform of the
product of the functions g(x) and h∗(x) will be calculated. By (8.49) and (8.70), it is

F{g(x)h∗(x)} = G(f) ∗H∗(−f) . (8.71)

Expressing the Fourier transform and the convolution as integrals,

∞∫
−∞

g(x)h∗(x) e−j2πfx dx =

∞∫
−∞

G(α)H∗(α− f) dα , (8.72)

and finally inserting f = 0 results in the general formulation of the Plancherel theorem:

∞∫
−∞

g(x)h∗(x) dx =

∞∫
−∞

G(f)H∗(f) df . (8.73)

This equation establishes an identity between the inner product4 of the signals g(x) and h(x)

in the spatial and spatial frequency domains [18].
An important special case of the Plancherel theorem arises for g(x) = h(x):

∞∫
−∞

|g(x)|2 dx =

∞∫
−∞

|G(f)|2 df =: Eg . (8.74)

According to this formula, the energy Eg of a signal g(x) can be obtained by calculating the
energy density via integration in the time domain |g(x)|2, as well as in the spatial frequency
domain |G(f)|2. As the signal g(x) and the spectrum G(f) contain the same amount of
energy, the law of conservation of energy applies for the Fourier transform. �

4Equation (8.73) is an inner product of so-called energy signals [18]. These signals are square-
integrable. As, in practice, image signals are always spatially restricted and have a limited amplitude,
they are square-integrable and can be handled with the Plancherel theorem.
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8.3.1.3 Fourier transforms of selected functions

Example 8.4 (Fourier transform of the rectangular function): The Fourier transform of a rectan-
gular function, scaled to have an area of one,

g(x) =
1

L
rect
( x
L

)
(8.75)

is given by

G(f) =
1

L

L
2∫

−L
2

e−j2πfx dx =
j

2πfL

(
e−jπfL − e jπfL

)︸ ︷︷ ︸
−2j sin(πfL)

(8.76)

=
sin(πfL)

πfL
= sinc(fL) . (8.77)

Here,

sinc(w) :=
sin(πw)

πw
(8.78)

is the so-called cardinal sine function or sinc function, and is illustrated in Fig. 8.9.

Figure 8.9. Sinc function.

Example 8.5 (Fourier transform of the Dirac delta function): For L → 0, (8.15), (8.75) and (8.77)
result in the following correspondence:

δ(x) ◦−• 1 = sinc(0) . (8.79)

Similarly, L→∞ implies

1 ◦−• δ(f) . (8.80)

Equations (8.79) and (8.80) illustrate the reciprocity of the spatial and the frequency do-
main.

Example 8.6 (Fourier transform of the sign function): The sign function sgn(x) is defined as

sgn(x) :=

⎧⎪⎨⎪⎩
+1 if x > 0

0 if x = 0

−1 if x < 0

. (8.81)
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In order to calculate the corresponding Fourier transform, the sign function is expressed
using the Heaviside function H(x) from (8.18):

sgn(x) = 2H(x)− 1 . (8.82)

Differentiating that expression results in

d

dx
sgn(x) = 2δ(x) , (8.83)

as the Dirac delta function is the derivative of the Heaviside function (see Sec. 8.2.2.2).
According to (8.54), the Fourier transform sought can be calculated:

j2πf ·F{sgn(x)} = 2 (8.84)

and so

sgn(x) ◦−• 1

jπf
. (8.85)

Example 8.7 (Fourier transform of the Heaviside function): The Heaviside function H(x) of
(8.19) can be expressed by the sign function of (8.81):

H(x) =
1

2
+

1

2
· sgn(x) . (8.86)

With (8.80) and (8.85) this immediately implies

H(x) ◦−• 1

2
δ(f) +

1

j2πf
(8.87)

Example 8.8 (Fourier transform of a complex harmonic): The Fourier transform of a com-
plex harmonic oscillation follows directly from the modulation property (8.60) and from
(8.80):

g(x) = e j2πf0x = 1 · e j2πf0x ◦−• δ(f − f0) . (8.88)

This is a Dirac delta function in the frequency domain at the position f0.

Example 8.9 (Fourier transform of the cosine function): Using Euler’s formula (8.34), the cosine
function can be expressed as

g(x) = cos(2πf0x) =
1

2

(
e−j2πf0x + e j2πf0x

)
. (8.89)

Together with (8.88), this immediately results in the following correspondence:

cos(2πf0x) ◦−• 1

2
(δ(f + f0) + δ(f − f0)) . (8.90)
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Compared to the spectrum of a complex harmonic oscillation, the Fourier transform of
the cosine function is composed of an additional Dirac delta function at the position−f0.
This confirms the symmetry property of the Fourier spectrum of real-valued signals dis-
cussed in Theorem 8.9.

Example 8.10 (Fourier transform of the impulse train): The impulse train and its Fourier trans-
form are of great importance for describing sampling processes. The impulse train g(x)

can be expanded in a Fourier series because of its periodicity [3, 4, 11, 18]:

g(x) =

∞∑
m=−∞

δ(x−mΔx)
!
=

∞∑
k=−∞

ak e
j2π k

Δx x . (8.91)

The coefficients ak of the Fourier series are calculated as follows [3]:

ak =
1

Δx

Δx
2∫

−Δx
2

g(x)︸︷︷︸
δ(x)

e−j2π k
Δx x dx =

1

Δx
. (8.92)

The following correspondence of the impulse train (8.91) results from (8.92) and (8.88):

g(x) =
1

Δx

∞∑
k=−∞

e j2π k
Δx x ◦−• 1

Δx

∞∑
k=−∞

δ

(
f − k

Δx

)
. (8.93)

So the Fourier transform of the impulse train is again an impulse train in the spatial
frequency domain:

∞∑
m=−∞

δ(x−mΔx) ◦−• f0

∞∑
k=−∞

δ(f − k f0) , f0 =
1

Δx
. (8.94)

The distances between the peaks of the Dirac delta functions in the spatial domain and
those in the spatial frequency domain are linked reciprocally.

Example 8.11 (Fourier transform of the Gaussian function): The Gaussian function

h(x) =
1√
2πσ

e−
x2

2σ2 (8.95)

is, for example, used as an impulse response for low-pass filtering, which is why its
Fourier transform is often useful (cf. Sec. 9.3.1.4). Applying the Fourier transform to
(8.95) results in

H(f) =

∞∫
−∞

h(x) e−j2πfx dx =
1√
2πσ

∞∫
−∞

e−
x2

2σ2 e−j2πfx dx (8.96)

=
1√
2πσ

∞∫
−∞

e
−
(

x2

2σ2 +j2πfx
)
dx . (8.97)
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By completing the square, the exponent of (8.97) can be expressed as

x2

2σ2
+ j2πfx =

(
x√
2σ

)2
+ 2

x√
2σ

jπ
√
2σf + (jπ

√
2σf)2 − (jπ

√
2σf)2 (8.98)

=

(
x√
2σ

+ jπ
√
2σf

)2
− (jπ

√
2σf)2 (8.99)

=
(x+ jπ2σ2f)2

2σ2
+ (π
√
2σf)2 . (8.100)

Using this expression in (8.97) results in

H(f) =
1√
2πσ

e−(π
√
2σf)2

∞∫
−∞

e−
(x+j2πσ2f)2

2σ2 dx . (8.101)

And, finally, by substituting u = x+ j2πσ2f and du = dx, it follows

H(f) =
1√
2πσ

e−(π
√
2σf)2

∞∫
−∞

e−
u2

2σ2 du = e−(π
√
2σf)2 . (8.102)

Here, the integral of the Gaussian function can be found in [5] for example. So the Fourier
transform of the Gaussian function is again a Gaussian function in the spatial frequency
domain. The widths of the functions h(x) and H(f) have a reciprocal relation.

8.3.2 The one-dimensional sampling theorem
Section 8.1 qualitatively discussed, by at least how many values a function should be sam-
pled, i.e., spatially discretized, so that not too much information of the signal is lost during
the digitization. The sampling theorem gives a quantitative answer to this problem and for-
mulates a concrete condition that ensures an error-free reconstruction of the function from
its samples.

8.11Theorem 8.11: The Nyquist-Shannon sampling theorem for one-dimensional signals
For a signal with limited bandwidth

g(x) ◦−• G(f) with G(f) = 0 if |f | ≥ F

2
(8.103)

an error-free reconstruction can be obtained from its samples g(mΔx), m ∈ Z by applying a
suitable low-pass filter if the sampling frequency fA = 1

Δx is chosen such that

fA ≥ F . (8.104)

�

If fA is fixedly specified, a low-pass filter (a so-called anti-aliasing filter for suppressing the
high-frequency components of the signal) has to be applied to g(x) before the sampling, in
order to restrict the frequency band to

(
− fA

2 , fA
2

)
.

Figure 8.10 illustrates the sampling theorem. The band-limited signal g(x) is sampled
via multiplication by an impulse train, which results in the sampled signal g∗(x). According
to the convolution theorem (8.49) of the Fourier transform, the multiplication of g(x) by
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Figure 8.10. The sampling theorem.

the impulse train corresponds to the convolution of the spectrum G(f) with the Fourier
transform of the impulse train—which, by (8.94), is again an impulse train—in the spatial
frequency domain, resulting in a periodic repetition of the spectrum by (8.27):

g(x) ·
∞∑

m=−∞
δ(x−mΔx) ◦−• G(f) ∗ fA

∞∑
k=−∞

δ(f − k fA) , (8.105)

g∗(x) ◦−• G∗(f) = fA

∞∑
k=−∞

G(f − k fA) (8.106)
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with

g∗(x) =
∞∑

m=−∞
g(mΔx) δ(x−mΔx) . (8.107)

The reconstruction is based on the suppression of the periodic repetition of the spectrum via
a multiplication by an ideal low-pass; in the spatial domain, this filtering corresponds to a
convolution with the sinc function:

g∗(x) ∗ sinc(fA x) ◦−• G∗(f) ·
1

fA
rect

(
f

fA

)
. (8.108)

If the condition fA ≥ F of the sampling theorem is met, this filtering yields the error-free
reconstruction of the signal

g(x) =

∞∑
m=−∞

g(mΔx) sinc(fA(x−mΔx)) ◦−• G(f) . (8.109)

As

sinc(fA(nΔx−mΔx)) = δmn =

{
1 if m = n

0 if m �= n
(8.110)

for the sampling positions x = nΔx, n ∈ Z, the resulting values at these positions directly
correspond to the samples and the values between these positions are interpolated without
errors.

However, if that condition is not met because the choice of sampling frequency fA was
too low, the spectra in G∗(f) will overlap each other. Then, no error-free reconstruction of
the original signal can be obtained.

Remarks:

The sampling theorem not only applies to the sampling of spatial signals g(x), but also to
the sampling of the Fourier transforms G(f) of spatially limited signals g(x) with g(x) = 0

if |x| ≥ L
2 . The corresponding condition is

(Δf)−1 ≥ L . (8.111)

A signal can be either spatially limited or band-limited, but not both at the same time. In
order to clarify this property, the windowing (i.e., multiplication) of an arbitrary signal
g(x) by the rectangular window function

w(x) = rect
( x
L

)
◦−• W (f) = L sinc(fL) (8.112)

will be considered. This windowing results in the spatial limitation of the signal g(x)
to the interval of [−L

2 ,
L
2 ] and corresponds to the convolution with a sinc function in the

frequency domain:

gw(x) = g(x) rect
( x
L

)
◦−• Gw(f) = G(f) ∗ L sinc(fL) . (8.113)

As the sinc function is infinitely spread, the convolution G(f) ∗ L sinc(fL) results in an
infinitely spread spectrum Gw(f), i.e., the windowed signal gw(x) is not band-limited.
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8.3.3 The discrete Fourier transform (DFT)

8.3.3.1 Definition of the DFT
As the digital representation of an unlimited continuous signal would consume infinitely
much storage, the Fourier transform (8.31) cannot be used in a computer. Thus, the discrete
Fourier transform (DFT), which is suitable for computers, is used as an approximation of the
Fourier transform and will now be explained. Based on the Fourier transform

G(f) =

∞∫
−∞

g(x) e−j2πfx dx (8.114)

the following approximation can be obtained by sampling the signal g(x), x = nΔx together
with a rectangular integration:

G(f) ≈
∞∑

n=−∞
g(nΔx) e−j2πfnΔx Δx . (8.115)

Limiting the summation to a limited region of the signal results in

G(f) ≈
N−1∑
n=0

g(nΔx) e−j2πfnΔx Δx . (8.116)

Finally, with f = lΔf , l ∈ Z and a discretization of the spatial frequency that corresponds
to a sampling in the spatial frequency domain with a frequency step size of Δf = fA/N =

1/(N Δx), we obtain

G(lΔf) ≈
N−1∑
n=0

g(nΔx) e−j2π nl
N

︸ ︷︷ ︸
=: Gl

Δx . (8.117)

8.7 Definition 8.7: The discrete Fourier transform (DFT)
The discrete Fourier transform (DFT) of a discrete signal gn is given by

Gl =

N−1∑
n=0

gn e
−j2π ln

N with gn := g(nΔx) . (8.118)

The spectrum Gl, with discrete frequencies, can be used to reconstruct the discrete signal by
performing the inverse DFT:

gn =
1

N

N−1∑
l=0

Gl e
j2π ln

N . (8.119)

The factor 1
N can be arbitrarily distributed between the forward transformation and the in-

verse transformation. Here, different definitions are common. �

Table 8.2 summarizes the relation between the position x together with the spatial frequency
f and their corresponding discrete quantities. In particular, the resolution of the frequency

Δf =
fA
N

=
1

N Δx
(8.120)
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Table 8.2. Relations between continuous and discrete quantities.

Continuous Discrete

Position x = nΔx

Δf = fA/N
Spatial frequency f = lΔf with

fA = (Δx)
−1

corresponds to the reciprocal of the signal length N Δx and is therefore completely deter-
mined by the size of the sampling steps Δx and the number N of samples.

Figure 8.11 illustrates the DFT schematically, based on a one-dimensional spatial signal
g(x) (a). The sampling corresponds to a multiplication of the signal g(x) by an impulse
train (b) and results in a periodic repetition of the spectrum G∗(f) (c) which, in this case,
is affected by an aliasing error, as the hypotheses of the sampling theorem were violated.
The multiplication by the rectangular window function (d) limits the number of samples of
the spatially discrete signal gn to N (e). In the Fourier domain, this windowing corresponds
to a convolution with a sinc function, resulting in a defocused spectrum (spectral leakage,
see Sec. 8.3.3.3). Finally, during the discretization of the frequency, the spectrum is sampled
via multiplication by an impulse train (f), causing a periodic repetition of the signal gn in
the spatial domain. The information contained in the resulting spectrum Gl is concentrated
in discrete frequencies, which is why this loss of information is also called the picket-fence
effect.

8.3.3.2 Properties of the DFT
In this subsection, the main differences between the continuous Fourier transform (8.31) and
the DFT (8.118) will be discussed. Because of the simultaneous discretization of the spatial
frequency and the position, the DFT periodically repeats the signals gn and Gl implicitly:

gn = gn + k N , (8.121)

Gl = Gl + k N . (8.122)

Therefore, the DFT spectrum Gl describes the signal gn only inside the so-called Nyquist
band [−fA/2, fA/2].

Although the spatially discrete signal gn is the result of the sampling of the continuous
signal g(x),

gn = g(x)
∣∣
x=nΔx

, (8.123)

in general, the DFT spectrum Gl is only an approximation to the samples G(f)|f=lΔf of the
continuous Fourier spectrum G(f):

Gl

generally
�= G(f)

∣∣
f=lΔf

. (8.124)

Besides the loss of information caused by the discretization of the frequency, the differences
between G(f) and Gl can be explained by overlapping bands (aliasing) and by the effect
of spectral leakage. The aliasing error resulting from the violation of the hypotheses of the
sampling theorem is practically inevitable, as image signals are generally spatially limited
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Figure 8.11. Discrete Fourier transform [4]. As G(f), G∗(f) and Gl are complex-valued, only their absolute values
are shown.

and hence cannot be simultaneously band-limited. The following section covers the effects
of spectral leakage and shows the possibilities which can be used to mitigate these effects.

8.3.3.3 Spectral leakage
Spectral leakage describes the impact of the spatial limitation of a signal on its Fourier trans-
form. Figures 8.11(c)–(e) already showed that multiplication of the spatial signal g∗(x) by a
rectangular windowing function w(x) = rect(x−x0

L ) results in the convolution of the spec-
trum G∗(f) with the Fourier transform W (f) of the spatial window and, thus to a blurring
of G∗(f). Now, two further interpretations of spectral leakage will be discussed.
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The periodic repetition (8.121) of the spatial signal gn usually results in discontinuities or
‘bends’ between the single repetitions. The description of such artefacts requires parts of
a broadband spectrum, which are represented by the spectral leakage.

The inverse DFT (8.119) corresponds to an approximation of the signal g(x) by a linear
combination of N periodic basis functions e j2πlΔfx, l = 0, . . . , N − 1, which span an
N -dimensional space of functions U . For g(x) ∈ U , g(x) can be approximated without
errors, i.e., it can be transformed without spectral leakage. For g(x) /∈ U , the DFT repre-
sents an orthogonal projection of g(x) onto U : the difference between the original and the
projection corresponds to the spectral leakage. In this case, usually all basis functions are
needed for the approximation.

As mentioned above, there are certain cases which are not affected by spectral leakage even
though the signal is windowed. In order to demonstrate this, the DFT of a harmonic oscilla-
tion will be considered in the following example.

Example 8.12 (DFT of a harmonic oscillation): The DFT of a harmonic function

g(x) = cos(2πf0x) (8.125)

of frequency f0 is considered, which has been sampled with N = 32 samples and a sam-
pling step distance of Δx = 1 (see Fig. 8.12). Employing (8.120), the frequency resolution
is given by

Δf =
1

N Δx
=

1

32
. (8.126)

If the ratio of the spatial frequency f0 and the frequency resolution Δf is an integer, there
is no spectral leakage [4, 18]. Figure 8.12 (top) shows an oscillation with the frequency
f0 = 1/8, which results in an integer ratio of f0/Δf = 4. Hence, the sampled signal
consists of exactly four periods of the oscillation, for which reason a periodic repetition
does not result in any change of the signal. Only the two Dirac delta functions, which
correspond to the cosine oscillation, are visible in the DFT spectrum, cf. (8.90).

However, this is not the case for the oscillation with the spatial frequency f0 =

1/9.143, shown in Fig. 8.12 (center). Here, the sampling signal covers f0/Δf = 3.5 peri-
ods of the oscillation, so that periodic repetitions show distinct discontinuities. The DFT
spectrum clearly shows the effect of spectral leakage.

In order to reduce spectral leakage, the sampling signal gn can be multiplied by a win-
dow function wn, which can smooth the discontinuities between the single repetitions.
However, it has to be accepted that the border regions of g(x) will not be represented in
the spectrum to their full extent [16]. Signals which are compact in the spatial frequency
domain are especially suitable window functions [14]. In Fig. 8.12 (bottom), a Hann win-
dow was used:

wn :=
1

2

(
1− cos

(
2πn

N

))
, x ∈ [0, N ] . (8.127)

The DFT spectrum of the windowed signal shows a notably reduced spectral leakage in
contrast to the DFT spectrum of the original signal.
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Figure 8.12. Spectral leakage: (top) DFT of an oscillation without spectral leakage; (center) DFT of an oscillation with
spectral leakage; (bottom) Reduction of spectral leakage by windowing [4].

8.3.3.4 The fast Fourier transform (FFT)
The DFT Gl has very high computational costs, as all signal values gn, n ∈ {0, . . . , N − 1}
have to be taken into account for the calculation of each frequency index l. The fast Fourier
transform represents a fast algorithm for the calculation of the DFT, which yields the same
result as the DFT but needs fewer operations [4, 8, 13]. Approximately

N2 complex additions and multiplications are needed by the DFT and
N ldN complex additions and multiplications are needed by the FFT.
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For the FFT, N is assumed to be a power of two, because this allows the most efficient im-
plementation of the FFT algorithm.

However, the speedup of the FFT with respect to the DFT first becomes noticeable for
signal lengths greater than N = 16. As an example, a signal of length N = 1024 will be
considered. In this case, the DFT would require N2 ≈ 106 complex additions and multipli-
cations; in contrast, the FFT would be finished after only N ldN ≈ 104 operations.

A detailed description of the FFT is given in the book [4].

8.3.3.5 The convolution theorem of the DFT
The convolution theorem (8.48) says that the convolution of two signals corresponds to the
multiplication of their Fourier transforms. If for performing a filtering operation, the con-
volution of a signal gn and a long impulse response hn has to be calculated, it might be
beneficial, in terms of computational complexity, to perform this operation in the spatial
frequency domain. Therefore, at first the signal gn and the impulse response hn are trans-
formed using the FFT algorithm. Then, the resulting DFT spectra Gl and Hl are multiplied
together, and the result is transformed back into the spatial domain using the FFT algorithm
again:

DFT−1{Gl ·Hl} =
N−1∑
ν=0

gν h(n−ν)modN = gn

cyclic
↓
∗ hn = kn . (8.128)

Here, it has to be taken into account that the DFT results in an N -periodic repetition of both
the signals gn, hn and the result of the convolution kn; so filtering in the DFT spectrum
results in a cyclic convolution. Hence, the index n−ν inside the convolution sum of (8.128)
has to be interpreted as modulo N .

To illustrate cyclic convolution, assume the original signal gn has length Q, and the im-
pulse response hn has length P . A convolution in the spatial domain without repetitions
would result in a signal of length P +Q − 1. Thus, the result of the cyclic convolution only
equals the convolution in the spatial domain if the following condition is met (see Fig. 8.13):

N ≥ P +Q− 1 . (8.129)

In order to ensure compliance with this condition, the length N of the signals gn and hn can
be increased by appending zeros (the so-called zero padding) before the actual transformation.
The error caused by disregarding this rule is the so-called end effect.

8.3.4 The two-dimensional Fourier transform

8.3.4.1 Definition of the two-dimensional Fourier transform
In order to use the Fourier transform for two-dimensional signals, the integral kernel e−j2πfx

in (8.31) has to be defined as a function of four variables, e−j2π(fxx+fyy) [1].

8.8Definition 8.8: The two-dimensional Fourier transform
The two-dimensional Fourier transform maps a two-dimensional function g(x) : R2 → C of
position x = (x, y)T to a two-dimensional function G(f) : R2 → C of spatial frequency
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. . .

. . .

. . .

Figure 8.13. Cyclic convolution resulting from the DFT.

f = (fx, fy)
T, according to the following integral transform:

G(f) = F{g(x)} :=
∞∫

−∞

∞∫
−∞

g(x) e−j2πfTx dx (8.130)

=

∞∫
−∞

⎛⎝ ∞∫
−∞

g(x) e−j2πfxx dx

⎞⎠ e−j2πfyy

︸ ︷︷ ︸
separability

dy (8.131)

with fTx = fx x+ fy y. Because

e−j2πfTx = e−j2πfxx · e−j2πfyy , (8.132)

the integral kernel of the Fourier transform can be factored, resulting in the separability
(8.131) of the Fourier transform: a two-dimensional Fourier transform can be achieved by
two one-dimensional Fourier transform. The vectorial formulation (8.130) can also be used
for the n-dimensional case x ∈ Rn, f ∈ Rn if the integration is done n times.

The inverse transformation of the Fourier transform G(f) to the original function g(x) is
performed according to the following formula:

g(x) = F−1{G(f)} =
∞∫

−∞

∞∫
−∞

G(f) e j2πfTx df . (8.133)

The Fourier transform G(f) is called the spectrum of the signal g(x). �

From now on, the symbol ◦=• will be used to denote two-dimensional Fourier correspon-
dences.
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Although the Fourier transform is defined for complex-valued signals g(x) : R2 → C, in
image processing, it is mostly applied to real-valued signals, i.e., g(x) : R2 → R.

8.3.4.2 Properties of the two-dimensional Fourier transform
In addition to Sec. 8.3.1, this subsection will present some further properties of the Fourier
transform, which are of great practical relevance, especially for the two-dimensional case.

8.12Theorem 8.12: The separation theorem
If the variables x and y of the function g(x) are separable, the function can be factored.
Because of the separability of the Fourier transform, the factors can be transformed indepen-
dently:

g(x) = g1(x) g2(y) ◦=• G(f) = G1(fx)G2(fy) (8.134)

with

g1(x) ◦−• G1(fx) and g2(y) ◦−• G2(fy) . (8.135)

So each factor is subject to a separate, one-dimensional transform. �

Example 8.13 (2D Fourier transform of a separable function): Consider the function given by

g(x) = δ(x) cos(2πfy0y) . (8.136)

According to the separation theorem (8.134), the Fourier transform is given by

G(f) = 1(fx)
1

2

(
δ(fy + fy0

) + δ(fy − fy0
)
)
. (8.137)

Here, the expression 1(fx) indicates that G(f) is independent5 of fx. Figure 8.14 illustrates
the function g(x) and its spectrum G(f).

Figure 8.14. Example of applying the separation theorem. The interpretation of this figure is not straightforward,
as the two graphs represent the weights of Dirac delta functions. Details of these so-called slice functions will be
given in Sec. 8.3.5.

5The function 1(u) : R → {1} or 1(u) ≡ 1 is constant with respect to its argument u and thus
represents a redundant factor. However, it is used as a mental note in signals with multidimensional
arguments, in order to allow especially a correct multidimensional Fourier transform.
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Example 8.14 (Fourier transform of the two-dimensional Gaussian function): The two-dimen-
sional Gaussian function h(x) can be expressed as a product of two one-dimensional
Gaussians as in (8.95):

h(x) =
1

2πσ2
e−

‖x‖2
2σ2 =

1√
2πσ

e−
x2

2σ2︸ ︷︷ ︸
h(x)

· 1√
2πσ

e−
y2

2σ2︸ ︷︷ ︸
h(y)

. (8.138)

The separation theorem (8.134) and equation (8.102) yield the Fourier transform H(f):

H(f) = H(fx)H(fy) = e−(π
√
2σfx)

2

e−(π
√
2σfy)

2

= e−2π2σ2‖f‖2

. (8.139)

H(f) is also a Gaussian function.

8.13 Theorem 8.13: Linear coordinate transformations
A linear coordinate transformation is the multi-dimensional analogon to one-dimensional
spatial scaling. Here, a linear transformation of the position vector x = (x, y)T by the invert-
ible 2×2 matrix A is considered:

ξ = Ax , detA �= 0 . (8.140)

The spectrum of the transformed signal g(ξ) = g(Ax) is given by

F{g(Ax)} =
∞∫

−∞

∞∫
−∞

g(Ax) e−j2πfTx dx with dξ = |detA| dx (8.141)

= |detA|−1

∞∫
−∞

∞∫
−∞

g(ξ) e−j2π((A−1)
T
f)

T
ξ dξ (8.142)

= |detA|−1
G
(
(A−1)

T
f
)
. (8.143)

As an example, Fig. 8.15 shows a rectangular signal that has been rotated, shrunk/stretched,
and sheared. The rotation is represented by the corresponding transformation matrix

A =

(
cosα sinα

− sinα cosα

)
, (8.144)

the shrinking and stretching is represented by

A =

(
k1 0

0 k2

)
(8.145)

and the shear by

A =

(
1 −a
0 1

)
. (8.146)

Figure 8.15(b) shows, in particular, that rotationally symmetric signals have rotationally
symmetric spectra. �
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Figure 8.15. Examples of linear coordinate transformations: (a) Original; (b) Rotation; (c) Shrinking/Stretching; (d)
Shear [1].



406 8. Image Signals

8.14 Theorem 8.14: The convolution theorem
As was the case for one dimension, the convolution of two multi-dimensional functions g(x)
and h(x) is also transformed into the product of their spectra by the Fourier transform:

k(x) = g(x) ∗∗ h(x) =
∞∫

−∞

∞∫
−∞

g(α, β)h(x− α, y − β) dα dβ (8.147)

◦
•

K(f) = G(f) ·H(f) . (8.148)

Here, the operator ∗∗ denotes a two-dimensional convolution. �

Example 8.15 (System-theoretical description of optical imaging): Optical imaging with a sin-
gle lens can be approximated by a linear, shift invariant system. The impulse response
h(x) represents the response of the system to a Dirac delta function δ(x), which can be
imagined as an input image of a bright point in front of a dark background (see Fig. 8.16).
Therefore, the impulse response h(x) is also called the point spread function (PSF).

The Fourier transform of the impulse response is called the optical transfer function
(OTF) H(f) of the imaging system.

In particular, this description also covers the case of a defocused optical imaging (cf.
Sec. 3.4.4):

h(x) = k rect

(
‖x‖
ε

)
◦=• H(f) = k

ε

2
· J1(πε‖f‖)‖f‖ . (8.149)

Here, Jn represents the nth order Bessel function of the first kind; cf. (2.169) [5]. Figure
8.17 shows the optical transfer function H(f) of the defocused optical imaging, which has
low-pass characteristics. The first zeros of H(f) are located on the circle ‖f‖ = 1.22 ε−1.
For the transition ε → 0 to sharp optical imaging, these zeros move towards infinity,
resulting in H(f) ≡ 1, which represents an ideal optical transfer function in the spatial
frequency domain and a Dirac delta function in the spatial domain.

Figure 8.16. System-theoretic view of optical imaging as a linear, shift invariant system.
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Figure 8.17. Optical transfer function of defocused optical imaging. Because of the rotational symmetry, the visual-
ization of a radial section of H(f) is sufficient. Qualitatively, this function resembles the sinc function.

8.3.5 Dirac delta functions in two-dimensional space
In the two-dimensional space, two important cases have to be considered regarding Dirac
delta functions. For a scalar argument x, the two-dimensional δ(x) is implicitly constant
with respect to the second spatial variable y. So, the Dirac delta function can be imagined to
be stretched in the y-direction to form an infinitely spread slice function (cf. Fig. 8.14 right
side). The following formula provides an explicit expression of these considerations:

δ(x) = δ(xTex) = δ(x) 1(y) ◦=• 1(fx) δ(fy) = δ(fy) = δ(fTey) . (8.150)

This slice function can be informally characterized as follows:

δ(x) ‘=’

{
∞ if x = 0, i.e., on the y-axis
0 otherwise

. (8.151)

By introducing basis vectors eϕ and eϕ⊥ that are rotated by an angle ϕ,

eϕ = (cosϕ, sinϕ)T , eϕ⊥ = (− sinϕ, cosϕ)T , (8.152)

and the distance d ∈ R to the origin, an arbitrarily positioned slice function can be described:

δ(xTeϕ − d) . (8.153)

The distance d can also be expressed via the vector

d := eϕd , (8.154)

so that (8.153) leads to:

δ(xTeϕ − d) = δ(xTeϕ − dTeϕ) = δ((x− d)Teϕ) . (8.155)

With (8.150), (8.154) and by means of the shift property (8.57), the following holds for an
arbitrarily positioned slice function:

δ((x− d)Teϕ) ◦=• δ(fTeϕ⊥) e
−j2πfTd = δ(fTeϕ⊥) e

−j2πfTeϕd . (8.156)

The slice function δ(fTeϕ⊥) runs through the origin of the spatial frequency domain and is
perpendicular to the slice function δ(xTeϕ − d) in the spatial domain.
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In the second important case, the Dirac delta function has a vectorial argument. Here,
the original definition (8.10) is extended to two dimensions.

8.9 Definition 8.9: The two-dimensional Dirac delta function
The two-dimensional Dirac delta function is defined as

∞∫
−∞

∞∫
−∞

δ(x− x0) g(x) dx = g(x0) with g(x) continuous at x0. (8.157)

As in the one-dimensional case, the two-dimensional Dirac delta function, if used as an
integral kernel, results in an extraction of the value of the function g(x) at the position x0. �

The two-dimensional Dirac delta function can be approximated as follows:

δε(x− x0) =
1

ε2
rect

(
x− x0

ε

)
rect

(
y − y0

ε

)
ε→0−−−−→ δ(x− x0) . (8.158)

According to (8.12), this corresponds to the product of the approximations δε(x) and δε(y) of
two one-dimensional Dirac delta functions, see Fig. 8.18.

Figure 8.18. Approximation of the two-dimensional Dirac delta function.

The following formula holds for the two-dimensional Dirac delta function:

δ(x) = δ(x) δ(y) , (8.159)

i.e., the two-dimensional Dirac delta function can be expressed by two orthogonally aligned
slice functions (a dyadic product). Furthermore,

∞∫
−∞

∞∫
−∞

δ(x) dx = 1 , (8.160)

g(x) ∗∗ δ(x− x0) = g(x− x0) . (8.161)

According to (8.158), the two-dimensional Dirac delta function can be imagined as an in-
finitely narrow function of infinite height:

δ(x) ‘=’

{
∞ if x = 0

0 otherwise
. (8.162)
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8.3.6 The two-dimensional Heaviside function
The two-dimensional Heaviside function allows the signal-theoretical modeling of so-called
step edges (see Sec. 11.2) in images.

A Heaviside function, which changes from zero to one at the transition from the left to
the right half-space of R2, can be expressed by

H(x) = H(x) 1(y) = H(xTex) 1(x
Tey) . (8.163)

Together, the separation theorem (8.134) and the correspondence for the one-dimensional
Heaviside function (8.87) allow the calculation of the Fourier transform of the two-dimen-
sional Heaviside function:

F{H(xTex) 1(x
Tey)} = F{H(fTex)} δ(fTey) (8.164)

=

(
1

j2πfx
+

1

2
δ(fx)

)
δ(fy) (8.165)

=
δ(fy)

j2πfx
+

1

2
δ(f) (8.166)

=
δ(fTey)

j2πfTex
+

1

2
δ(f) . (8.167)

Now, the orientation of the step edge will be generalized by a rotation. Therefore, the
coordinate system is rotated by an angle ϕ, resulting in the corresponding basis vectors
eϕ = (cosϕ, sinϕ)T and eϕ⊥ = (− sinϕ, cosϕ)T. Replacing the previous basis vectors in
(8.167) by these rotated basis vectors yields6 the Fourier transform of the step edge that runs
through the origin of the coordinate system and has been rotated by the angle ϕ:

F{H(xTeϕ)} =
δ(fTeϕ⊥)

j2πfTeϕ
+

1

2
δ(f) . (8.168)

A last generalization considers a distance of d to the origin:

H(xTeϕ − d) . (8.169)

So, the shift property (8.57) implies

H(xTeϕ − d) ◦=• F{H(xTeϕ)} e−j2πfTeϕd (8.170)

=

(
δ
(
fTeϕ⊥

)
j2πfTeϕ

+
1

2
δ(f)

)
e−j2πfTeϕd . (8.171)

See Fig. 8.19 for an additional illustration.

8.3.7 Sampling of two-dimensional signals
Similar to Sec. 8.3.2, the sampling of two-dimensional signals can mathematically be de-
scribed by a multiplication of the continuous signal g(x) by a two-dimensional impulse train

6It holds g(xTeϕ) = g(xTeϕ) 1(x
Teϕ⊥).
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(a)

(b) (c)

Figure 8.19. The Heaviside function: (a) Signal model for a step edge in an image: The blue half-plane of R2 is
assumed to have the image value 1 and the remaining half-plane has the value of 0; (b) Gray-scale image g(x)

with a step edge; (c) Two-dimensional Fourier transform of g(x), visualized as log (1 + |DFT{g(x)}|). For the
two-dimensional DFT, see Sec. 8.3.9. The spectrum is concentrated on a line, which runs through the origin and is
perpendicular to the step edge.

r(x), which acts as a sampling grid (cf. Fig. 8.20):

r(x) =

∞∑
m=−∞

∞∑
n=−∞

δ(x−mΔx ex − nΔy ey) (8.172)

=

( ∞∑
m=−∞

δ(x−mΔx)

)( ∞∑
n=−∞

δ(y − nΔy)

)
(8.173)

◦
•

R(f) =

(
1

Δx

∞∑
k=−∞

δ

(
fx −

k

Δx

))(
1

Δy

∞∑
l=−∞

δ

(
fy −

l

Δy

))
(8.174)

=
1

ΔxΔy

∞∑
k=−∞

∞∑
l=−∞

δ

(
f − k

Δx
ex −

l

Δy
ey

)
. (8.175)
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Here, the two-dimensional series of 2D Dirac delta functions (8.172) can be described by a
multiplication of two orthogonal series of slice functions (8.173). For the transition into the
frequency space, the separation theorem of the Fourier transform is used, so that the one-
dimensional transform of each of the two factors can be calculated. Hence, the Fourier trans-
form R(f) of the sampling grid r(x) is a two-dimensional impulse train too (cf. Fig. 8.20).

Figure 8.20. Two-dimensional sampling grid r(x) and Fourier transform R(f).

The sampling grid r(x) and R(f) are uniquely determined by the ‘grid vectors’ Δx ex
and Δy ey (or by ex

Δx and ey

Δy ). Except for a translation, each regular sampling grid can be
obtained by a linear coordinate transformation of the axis-parallel grid (8.172). According to
(8.140), the position vector x is multiplied by the invertible transformation matrix A:

r̃(x) =
∑
m

∑
n

δ(Ax−mΔx ex − nΔy ey) , detA �= 0 (8.176)

=
∑
m

∑
n

δ(A(x−mΔxA−1 ex︸ ︷︷ ︸
=:b1

− nΔyA−1 ey︸ ︷︷ ︸
=:b2

)) (8.177)

∝
∑
m

∑
n

δ(x−mb1 − nb2) . (8.178)

The locations of the Dirac delta functions are determined via the zeros of their arguments.
Because of the invertibility of A,

Aξ = 0 ⇔ ξ = 0 , (8.179)

which explains the transition from (8.177) to (8.178). The coefficient in (8.178) is omitted, as
only the location of the Dirac delta functions is of interest. The Fourier transform of (8.176)
results in:

R̃(f) ∝
∑
k

∑
l

δ
(
(A−1)

T
f − k

ex
Δx
− l

ey
Δy

)
(8.180)

=
∑
k

∑
l

δ
(
(A−1)

T
(
f − kAT ex

Δx︸ ︷︷ ︸
=:w1

− lAT ey
Δy︸ ︷︷ ︸

=:w2

))
(8.181)

∝
∑
k

∑
l

δ(f − kw1 − lw2) . (8.182)
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Figure 8.21. Basis vectors for describing a skew sampling grid r̃(x) and its spectrum R̃(f) [1].

Because of the coordinate transformation, the axis-parallel grid r(x) is generally turned into
a skew sampling grid r̃(x), which is determined by the grid vectors b1, b2 in the spatial
domain and by the grid vectors w1 and w2 in the frequency domain (cf. Fig. 8.21). The inner
products of the grid vectors result in

bT
1 w1 = Δx eTx (A−1)

T
AT︸ ︷︷ ︸

I

ex
Δx

= 1 , (8.183)

bT
1 w2 = Δx eTx (A−1)

T
AT︸ ︷︷ ︸

I

ey
Δy

= 0 , (8.184)

bT
2 w2 = 1 , (8.185)

bT
2 w1 = 0 . (8.186)

Here, I denotes the identity matrix. This implies the following formula expressed in matrix
notation:(

bT
1 w1 bT

1 w2

bT
2 w1 bT

2 w2

)
= (b1,b2)

T (w1,w2) = (w1,w2)
T (b1,b2) = I (8.187)

and thus

(w1,w2) =

(
bT
1

bT
2

)−1

, (b1,b2) =

(
wT

1

wT
2

)−1

. (8.188)

By using these equations, the sampling grid in the spatial frequency domain corresponding
to a sampling grid in the spatial domain can be calculated and vice versa. The sampling
grids of the two domains are related via the following reciprocity [1]:

det(b1,b2) =
1

det(w1,w2)
. (8.189)

So, the area of the parallelogram spanned by b1 and b2 is reciprocal to the area of the paral-
lelogram spanned by w1 and w2.



8.3 The Fourier transform 413

Finally, the sampling of a continuous signal can be described as follows, using the sam-
pling grid r̃(x):

g∗(x) = g(x) · r̃(x) ◦=• G∗(f) = G(f) ∗∗ R̃(f) (8.190)

or ∑
m,n

g(mb1+nb2) δ(x−mb1−nb2) ◦=• ∝
∑
k,l

G(f−kw1−lw2) , (8.191)

respectively. Now, the values of the sampling positions x = mb1 + nb2 yield the two-
dimensional, spatially discrete signal

gmn := g(mb1 + nb2) , m, n ∈ Z . (8.192)

Because of the sampling, the spectrum G(f) is periodically repeated according to the sam-
pling grid R̃(f). The convolution (8.190) causes each Dirac delta function R̃(f) to reproduce
the original spectrum G(f) at its position.

8.3.8 Sampling theorem for two-dimensional signals
The sampling condition (8.103) can be generalized to two-dimensional signals, so that a
complete and error-free reconstruction of the continuous signal g(x) can be calculated from
the discrete samples gmn.

8.15Theorem 8.15: Sampling theorem for two-dimensional signals
Let g(x) be band-limited, i.e., there is a finite region ΩG ∈ R2 such that

G(f) = 0 if f /∈ ΩG . (8.193)

The signal g(x) can be reconstructed without errors from its samples gmn, which were ob-
tained using a regular sampling grid, if no overlaps occur for the periodic repetition of the
spectrum G(f). �

For the reconstruction of the continuous signal g(x), an interpolation filter with the impulse
response iΩG

(x) can be used:

iΩG
(x) = F−1{IΩG

(f)} with IΩG
(f) :=

{
1 if f ∈ ΩG

0 otherwise
. (8.194)

The two-dimensional convolution of the discrete signal gmn with iΩG
(x) corresponds to the

multiplication of the spectrum G∗(f) by the transfer function IΩG
(f) in the spatial frequency

domain, and yields the following reconstruction:

g(x) =
∑
m

∑
n

gmn iΩG
(x−mb1 − nb2) ◦=• G(f) . (8.195)

In order to achieve the optimal sampling—i.e., as coarse as possible—of a signal g(x), the
periodically repeated spectra G(f − kw1 − lw2) in the frequency domain have to be located
as close as possible without overlapping each other. This is illustrated by the following
example.
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Example 8.16 (Optimal sampling): A band-limited image signal g(x) with the spectrum G(f)

is considered, according to Fig. 8.22 (top left). Now a sampling grid r(x) is required that
samples the image most sparsely. The closest arrangement of the spectra (Fig. 8.22 top
right) is used, to obtain the grid vectors w1,w2 of the optimal sampling grid R(f) in the
spatial frequency domain (Fig. 8.22 bottom right). Finally, the grid vectors b1,b2 of the
sampling grid r(x) can be calculated in the spatial domain using (8.188) (Fig. 8.22 bottom
left).

Figure 8.22. Construction of an optimal sampling grid r(x).

Example 8.17 (Image signals affected by aliasing): If the conditions of the sampling theorem
are violated by a two-dimensional signal, in general not only the magnitude of the im-
age’s frequency components is changed, but also the direction of the corresponding har-
monic functions (cf. Fig. 8.23). For band-limited signals (8.193), aliasing can be avoided
by choosing a sampling rate sufficiently high such that the sampling condition is met.
Alternatively, a low-pass filtering of the input image can be performed prior to the dis-
cretization, which can, for example, be realized by a defocused optical imaging, as in
(8.149).

8.3.9 The two-dimensional DFT
Obviously, the DFT (8.118) can be extended to two dimensions because of the separability of
the Fourier transform.
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Figure 8.23. Test image with concentric circles affected by aliasing: the upper left quadrant was sampled with
512×512 pixels, the upper right quadrant with 256×256 pixels, the lower left quadrant with 128×128 pixels, and
the lower right quadrant with 64×64 pixels. Test image (top left) on the basis of [12].

8.10Definition 8.10: The two-dimensional DFT
The two-dimensional discrete Fourier transform (2D-DFT) of a signal gmn is given by

Gkl :=

M−1∑
m=0

(
N−1∑
n=0

gmn e
−j2π nl

N

)
e−j2πmk

M (8.196)

=
M−1∑
m=0

N−1∑
n=0

gmn e
−j2π(mk

M +nl
N ) . (8.197)



416 8. Image Signals

The discrete spectrum Gkl can be used to reconstruct the discrete signal by using the inverse
2D-DFT:

gmn =
1

MN

M−1∑
k=0

N−1∑
l=0

Gkl e
j2π(mk

M +nl
N ) . (8.198)

Similarly to the DFT, gmn and Gkl are implicitly periodically repeated by the 2D-DFT in the
directions of each coordinate (cf. Fig. 8.24). �

The position vector x (the spatial frequency vector f ) and the corresponding indices
m, n (k, l) are related according to the following formulas:

x = (mΔx, nΔy)
T
, (8.199)

f =

(
k

M Δx
,

l

N Δy

)T

. (8.200)

8.3.9.1 Calculation of the 2-D DFT in practice
Because of the separability of the Fourier transform, the 2D-DFT (8.196) can be calculated
by a row-wise 1D-DFT and a subsequent column-wise 1D-DFT, or vice versa. The computa-
tional complexity is

N2M2 complex multiplications and additions for a direct calculation,
MN(ldM + ldN) complex multiplications and additions by using the 1D-FFT.

The frequencies of the section of the DFT spectrum resulting from the frequency limitation
are arranged in an unfamiliar way (hatched window in Fig. 8.24). The origin of the coordi-
nate system is located in the bottom left corner (k, l) = (0, 0) of the window; the center of
the window corresponds to the highest spatial frequencies of the image. By swapping the
four quadrants of the DFT window, the familiar arrangement of the DFT spectrum, where
the origin of the coordinate system is located at the position (M/2, N/2), can be obtained.
This consideration also applies to the spatial domain.

...

...

...

...

...

...

... ... ...

... ......

Figure 8.24. Periodic repetition of the spectrum G(f), as well as the section resulting from the DFT.
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8.3.9.2 The convolution theorem of the 2-D DFT
Also the two-dimensional convolution of two signals can often be realized more efficiently
using the spatial frequency domain and the FFT algorithm:

DFT−1{Gkl ·Hkl} = gmn ∗∗︸︷︷︸
cyclic convolution

hmn =
M−1∑
μ=0

N−1∑
ν=0

gμ,ν h(m−μ)modM, (n−ν)modN . (8.201)

As described in Sec. 8.3.3.5, this is a cyclic convolution. In order to avoid the end effect, the
image has to be enlarged in both dimensions by appending enough zeros (zero padding) (cf.
Fig. 8.25).

Figure 8.25. Avoiding the end effect by zero padding.

8.3.9.3 The meaning of magnitude and phase
As it is a complex-valued quantity, the DFT spectrum (8.196) can be separated into mag-
nitude and phase. Mostly, only the magnitude spectrum is presented: it describes which
spatial frequencies contribute to the image and to what extent. Hence, it describes whether
the image structures are long-wave (‘smooth’) or high-frequency (‘rough’).

However, according to the shift property (8.57), the phase spectrum contains the impor-
tant information about the position of this structures. So, a displacement of an image signal
g(x) by the vector x0 results in the following correspondence:

g(x− x0) ◦=• G(f) e−j2πfTx0 . (8.202)

Because |e−j2πfTx0 | = 1, only the phase of the spectrum but not its magnitude is changed by
a displacement of x0. The importance of the phase of the spectrum will be illustrated by the
following example.

Example 8.18 (Importance of the phase spectrum): The discrete Fourier transforms of the im-
ages g1(x) and g2(x) from Fig. 8.26(a) and (b) are calculated. Next, the phases ϕ1(f) and
ϕ2(f) of the two Fourier transforms are swapped. Then, the inverse DFT is applied to
both images, cf. Fig. 8.26(c) and (d). The results clearly show that the structures of the
original images were mainly contained in the phase spectrum. Therefore, a signal cannot
be reconstructed without the phase information.
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(a) g1(x) (b) g2(x)

(c) F−1{|G1(f)| e jϕ2(f)} (d) F−1{|G2(f)| e jϕ1(f)}
Figure 8.26. Example illustrating the meaning of magnitude and phase. The information about the position of image
structures is contained in the phase spectrum in the spatial frequency domain.

8.3.9.4 Examples of the two-dimensional DFT
In the examples of this section, the two-dimensional DFT will be applied to test signals and
to real images. For the definition of some important test signals, the spatially discrete Dirac
delta function has to be introduced first.

8.11 Definition 8.11: The spatially discrete Dirac delta function
The one-dimensional spatially discrete Dirac delta function is defined as follows:

δn :=

{
1 if n = 0

0 otherwise
. (8.203)
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The two-dimensional spatially discrete Dirac delta function is defined by

δmn := δm · δn =

{
1 if m = 0 and n = 0

0 otherwise
. (8.204)

�

Example 8.19 (DFT of a horizontal line): An image with a horizontal line can be mathematically
modeled by using a spatially discrete ‘slice function’

gmn = δn−n0
(8.205)

as in Fig. 8.27(a). The two-dimensional DFT yields

Gkl =
N−1∑
n=0

(
M−1∑
m=0

gmn e
−j2πmk

M

)
e−j2π nl

N (8.206)

=
N−1∑
n=0

δn−n0

M−1∑
m=0

e−j2πmk
M

︸ ︷︷ ︸
=M δk

e−j2π nl
N (8.207)

= M δk e
−j2π

n0l
N . (8.208)

The magnitude of the DFT spectrum

|Gkl| = M δk (8.209)

is independent of l and the vertical displacement n0 and corresponds to a line of Dirac
delta functions through the origin of the coordinate system that is perpendicular to the
original line, see Fig. 8.27(a, bottom). As the periodic repetition of the image gmn causes
no corruption of the signal, the DFT spectrum is not affected by spectral leakage despite
the spatial restriction.

Example 8.20 (DFT of a diagonal line): The image of the diagonal line in Fig. 8.27(b, top) can
be described for M = N by the function

gmn = δm+n−M+1 . (8.210)

A two-dimensional DFT yields

Gkl =
M−1∑
n=0

(
M−1∑
m=0

δm+n−M+1 e
−j2πmk

M

)
e−j2π nl

M (8.211)

=
M−1∑
n=0

e−j2π
(M−1−n)k

M e−j2π nl
M (8.212)

= e j2π k
M

M−1∑
n=0

e j2π n
M (k−l) (8.213)

= M δk−l e
j2π k

M . (8.214)
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(a) Horizontal line and
magnitude spectrum |Gkl|

(b) Diagonal line and
magnitude spectrum |Gkl|

(c) Shifted line and
magnitude spectrum |Gkl|

Figure 8.27. Examples of the two-dimensional DFT of line images: (top) Line images gmn; (bottom) Magnitude
spectra |Gkl|. For a better visualization of spectral leakage, the magnitude spectra in (c) have been transformed by
to log(1 + |Gkl|).

The DFT magnitude spectrum

|Gkl| = M δk−l (8.215)

corresponds to a line of Dirac delta functions which is perpendicular to the original line
in gmn. Together with Example 8.19, this is a confirmation of Theorem 8.13 and thus, a
rotation of the image results in a rotation of the Fourier spectrum by the same angle (cf.
Fig. 8.15). Also in this case, there is no spectral leakage, as the periodic repetition of the
image is free from discontinuities on its boundaries, see Fig. 8.27(b).

Although the DFT magnitude spectrum still represents a line after a displacement, as
in Fig. 8.27(c), the windowing results in a considerable spectral leakage (cf. Sec. 8.3.3.3).
For a better visualization of the spectral leakage, the logarithms of the magnitude spectra
are presented in Fig. 8.27(c).

Example 8.21 (DFT of a periodic groove texture): If a texture consists of straight, parallel
grooves, then, according to the Examples 8.19, 8.20 and because of the linearity of the
Fourier transform, the corresponding spectral components are concentrated along a line
that runs through the origin of the coordinate system and is perpendicular to the grooves.
If also the grooves are periodic, as shown in Fig. 8.28(a), the spectral components form
a weighted comb of Dirac delta functions (‘line spectrum’), see Fig. 8.28(b). A logarithm
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(a) Texture gmn (b) log(1 + |DFT{gmn}|)

(c) gmn ·wmn (d) log(1 + |DFT{gmn ·wmn}|)

Figure 8.28. The DFT of a periodic groove texture, affected by spectral leakage.

has been applied to the DFT magnitude spectrum, in order to reduce the dynamics, for
visualization reasons.

As the original image gmn is darkened towards the upper and left image borders, the
implicit periodic repetition of the image by the DFT causes brightness discontinuities,
which result in spectral leakage as explained in Sec. 8.3.3.3. Spectral leakage is clearly
visible in the form of the horizontal and vertical smear of the Dirac delta functions in
Fig. 8.28(b).

In order to reduce the spectral leakage, the original image is multiplied by a smooth,
rotationally symmetric window function wmn, see Fig. 8.28(c). In the corresponding DFT
magnitude spectrum Fig. 8.28(d), indeed, the horizontal and vertical lines are gone; how-
ever, the Dirac delta functions are slightly more blurred.
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Example 8.22 (DFT of a rectangle): Figure 8.29(a) shows an image gmn of a rectangle. In
the continuous case, such a signal can be represented by a product of two shifted, one-
dimensional rectangular functions (8.13):

g(x) =
1

Lx Ly
rect
(x− x0

Lx

)
rect
(y − y0

Ly

)
. (8.216)

By the shift property (8.57) and the separation property (8.134) of the Fourier transform,
the magnitude spectrum consists of the product of two sinc functions (cf. Fig. 8.9):

|G(f)| = |sinc(fx Lx)| · |sinc(fy Ly)| . (8.217)

Figure 8.29(b) shows the DFT magnitude spectrum |DFT{gmn}|, which has been calcu-
lated from the discrete signal gmn. The effects of shrinking or stretching a signal are
clearly visible. A wide rectangle yields narrow structures in the Fourier domain and a
narrow rectangle results in wide structures. This circumstance again confirms the reci-
procity of the Fourier transform. The more compact a function is in the spatial domain,
the wider its Fourier transform will be in the spatial frequency domain. In image process-
ing, this reciprocity is called the uncertainty principle of position and spatial frequency.

(a) gmn (b) |DFT{gmn}| (c) log(1+|DFT{gmn}|)

Figure 8.29. The two-dimensional DFT of a rectangle.

(a) gmn (b) |DFT{gmn}| (c) log(1+|DFT{gmn}|)

Figure 8.30. The two-dimensional DFT of a circular disk.
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Example 8.23 (DFT of a circular disk): Figure 8.30 shows an image gmn, which is the result of
the spatial discretization of the function of a circular disk

g(x) = rect

(
‖x‖
D

)
(8.218)

of diameter D. By (8.149), the Fourier transform

G(f) =
D

2
· J1(πD‖f‖)‖f‖ , (8.219)

shows circular structures, which are aligned around the origin of the coordinate system.
The square of the magnitude formally corresponds to the Airy disk in Fig. 2.20. These cir-
cular structures are clearly visible in the DFT magnitude spectrum shown in Fig. 8.30(b).
The application of the logarithm (Fig. 8.30(c)) reveals that the zeros do not form perfect
concentric circles anymore, because of the spatial discretization.

Example 8.24 (DFT of two circular disks): Figure 8.31 shows an image gmn of two spatially
discretized circular disks. By extending (8.218), this signal can be described as follows in
the continuous space:

g(x) = rect

(
‖x‖
D

)
∗∗
(
δ(x− x0) + δ(x+ x0)

)
(8.220)

= rect

(
‖x− x0‖

D

)
+ rect

(
‖x+ x0‖

D

)
. (8.221)

The convolution property of the Fourier transform yields the spectrum

G(f) = F

{
rect

(
‖x‖
D

)}
· 2 cos(2πfTx0) (8.222)

= D
J1(πD‖f‖)
‖f‖ cos(2πfTx0) . (8.223)

In contrast to the Fourier spectrum (8.219) of the circular disc, in this case the Fourier
spectrum is modulated by a cosine oscillation, as illustrated by the dark lines in the DFT

(a) gmn (b) |DFT{gmn}| (c) log(1+|DFT{gmn}|)

Figure 8.31. The two-dimensional DFT of two circular disks.
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(a) Color image g(x)=(gR(x), gG(x), gB(x))
T (b) |DFT{g(x)}|

(c) |DFT{gR(x)}| (d) |DFT{gG(x)}| (e) |DFT{gB(x)}|
Figure 8.32. The DFT of an aerial image of the Karlsruhe Palace (source: ONUK). The magnitude spectra have been
clipped to 1� of the maximum value.

magnitude spectrum shown in Fig. 8.31(b) and (c), which are perpendicular to the posi-
tion vector x0.

Example 8.25 (DFT of a color aerial image): Figure 8.32(a) shows an RGB color image g(x) of
the Karlsruhe Palace. To calculate the DFT magnitude spectrum shown in Fig. 8.32(b), the
DFT was applied to each of the three color channels separately. The (colored) results are
shown in Figs. 8.32(c)–(e). Because the three color channels are very similar, the spectra
shown in Figs. 8.32(c)–(e) only differ slightly. The line shaped structures of the original
image (mainly the wings of the building and the paths) produce orthogonal structures in
the magnitude spectrum, which run through the origin of the coordinate system (cf. Ex-
amples 8.19 and 8.20). Because of the periodic repetition of the image, the DFT spectrum
is affected by spectral leakage, which is especially visible due to the vertical line running
through the center of the coordinate system.

In addition, four weaker vertical structures can be seen on both sides of the center,
which describe the regular horizontal arrangement of the building’s windows, that can
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be approximated by a rectangular oscillation in the spatial domain. The lines located
closer to the origin correspond to the fundamental oscillation; the outer lines describe the
first odd-numbered harmonic with three times the spatial frequency.

8.48.4 Examples of use concerning system theory and the Fourier
transform

System theory provides methods that allow a consistent description of the behavior of var-
ious physical systems. In particular, these include the representation of systems in the fre-
quency domain by means of the Fourier transform. This section discusses exemplary appli-
cations of automated visual inspection from the perspective of system theory.

Example 8.26 (Moiré methods): The creation of moiré images, as shown in Sec. 7.3.6.4, can
graphically be described in the Fourier domain. If a parallel, spatially constant illumi-
nation is considered in Fig. 7.62, then the spatial frequency spectrum of the illumination
signal is proportional to a Dirac delta function, see Fig. 8.33(a). To simplify matters, a
cosine grid is assumed, so that the multiplication of the transparency function of the grid
and the constant illumination results in a cosine shaped modulation as in Fig. 8.33(b). A
phase modulation caused by the surface relief results in a widening of the spectral lines,
hence, the bandwidth of the resulting shadow image is widened (see Fig. 8.33(c)). The
observation by the camera results in another multiplication of the moiré pattern with the
cosine transparency function of the grid, resulting in a demodulation of the shadow im-
age as in Fig. 8.33(d). Finally, the limited spatial resolution of the captured image, which
might for example be caused by a defocused optical imaging, represents a low-pass fil-
ter (LP), which suppresses the high-frequency structures. The resulting low-pass signal
(Fig. 8.33(e)) corresponds to the captured moiré image [15].

Light source
(a)

Cosine grid
(b)

Cosine grid
(d)

Shadow image
(c)

Moiré image
(e)

Figure 8.33. System-theoretical description of shadow moiré: (a) Spatially coherent light; (b) Cosine-shaped mod-
ulation, multiplication of the transparency function of the grid with the constant illumination; (c) Surface relief
causes a phase modulation → widening of the spectral lines; (d) Second grid results in a demodulation by another
multiplication by the transparency function of the grid; (e) Limited spatial resolution of the camera results in a
low-pass filtering, i.e., suppression of high-frequency structures.

Example 8.27 (Defocused optical imaging): As in Example 8.15, a defocused optical imaging
(Fig. 8.34) can be approximated by an LSI system. For this purpose, incoherent light is
assumed, so that the image g(x) in the input plane as well as its imaging k(x) describe
intensities (i.e., power per area). By (2.126), the superposition of these images is free from
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Figure 8.34. Defocused optical imaging.

interference.
If, as in Fig. 3.16, all object points have a distance of Δg from the focused plane, they

are imaged to the image plane in the shape of blur disks with diameter ε(Δg). The output
image

k(x) = g(x) ∗∗ h(x) ◦=• K(f) = G(f)H(f) (8.224)

is the result of a two-dimensional convolution of the input image g(x) with the impulse
response

h(x) ≈ 4

πε2
rect

(
‖x‖
ε

)
. (8.225)

Because
∞∫

−∞

∞∫
−∞

h(x) dx = 1 , (8.226)

the optical imaging is lossless. Similar to (8.149), the Fourier transform of the point spread
function (8.225) yields the optical transfer function of the defocused imaging:

H(f) =
2

πε
· J1(πε‖f‖)‖f‖ . (8.227)

Defocused optical imaging has the characteristics of a low-pass filter (cf. Fig. 8.17), and
can therefore be used as an anti-aliasing filter for example.

In order to illustrate the effects of negative values of the transfer function of defo-
cused optical imaging (Fig. 8.17), a so-called Siemens star (Fig. 8.35(a)) is used. Figure
8.35(b) shows the result of the convolution of the Siemens star with a point spread func-
tion (8.225) in the shape of a circular disk. Towards the borders of the image, the white
and black sectors of the Siemens star appear to be defocused because of the limited res-
olution of the simulated optical imaging. Towards the center, i.e., for increasing absolute
spatial frequencies, the sectors change their polarity several times, according to the alter-
nating positive and negative values of the transfer function. In the center of the image, a
homogeneous gray region is visible, corresponding to the cutoff region of the filter.
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(a) Siemens star (b) Defocused imaging of (a)

Figure 8.35. Simulation of the impact of negative values of the transfer function H(f) of defocused optical imaging.
The contrast inversion caused by the defocused imaging can be directly seen in (a) if the image is viewed from a
very close distance, so that the eyes are not able to establish a focused optical imaging anymore.

Example 8.28 (Group velocity): Consider a wave packet with electric field

E(x, t) = Ey(x, t) ey , (8.228)

where

Ey(x, t) =

∞∫
−∞

Ey(ν) e
j(2πνt−k(ν)x) dν . (8.229)

So, Ey(x, t) is the result of the Fourier synthesis of infinitesimal harmonic waves
e j(2πνt−k(ν)x) dν, weighted by Ey(ν).

The spectrum Ey(ν) is assumed to be narrow-band, in the sense that∫
B

|Ey(ν)|2 dν �
∞∫

−∞

|Ey(ν)|2 dν −
∫
B

|Ey(ν)|2 dν (8.230)

with B :=
[
ν0 − Δν

2 , ν0 +
Δν
2

]
and Δν � ν0.

The wave number k(ν) is given by k(ν) = 2πnν
c and n = n(ν) may depend on the

frequency ν of the light. Calculating the derivative with respect to ν results in

k′(ν) =
dk

dν
=

2π

c

(
dn

dν
ν + n

)
. (8.231)

As the spectrum is assumed to be narrow-band, k(ν) can be linearly approximated with
sufficient precision. The substitution ν := ν0 + δ yields k(ν) ≈ k(ν0) + k′(ν0) δ.
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Then, Ey(x, t) can be approximated as follows.

Ey(x, t) ≈
∞∫

−∞

Ey(ν0 + δ) e j(2π(ν0+δ)t−(k(ν0)+k′(ν0)δ)x) dδ (8.232)

≈ e j(2πν0t−k(ν0)x) ·
∞∫

−∞

Ey(ν0 + δ)︸ ︷︷ ︸
=:W (δ)

e
j2π

(
t− k′(ν0)

2π x
)
δ
dδ (8.233)

≈ e j(2πν0t−k(ν0)x) ·w
(
t− k′(ν0)

2π
x

)
. (8.234)

Here, w( · ) ◦−•W ( · ).
As W (δ) is assumed to be narrow-band with respect to ν0, w(ξ) = F−1{W (δ)} with

ξ :=
(
t− k′(ν0)

2π x
)

is spatially broad because of the reciprocity of the Fourier transform.
I.e., the spatial extent of w(ξ) is much larger than the wavelength λ0 = 2π

k(ν0)
.

So, the result can be interpreted as follows:

Ey(x, t) = e j(2πν0t−k(ν0)x)︸ ︷︷ ︸
High-frequency
harmonic wave

with frequency ν0

· w
(
t− k′(ν0)

2π
x

)
︸ ︷︷ ︸

Low-frequency
wave compared to
the frequency ν0

. (8.235)

Both waves are linked via a multiplication. In order to obtain the propagation velocity of
the waves, the respective phase term is set to a constant and the derivative with respect
to the time is calculated:

2πν0t− k(ν0)x = const.
d
dt−→ ẋ =

2πν0
k(ν0)

= vPhase , (8.236)

t− k′(ν0)

2π
x = const.

d
dt−→ ẋ =

2π

k′(ν0)
= vGroup . (8.237)

The first term is the phase velocity, which is already known from Sec. 2.2. The wave
described by the second term propagates with the group velocity

vGroup =
2π

k′(ν0)
=

c

n(ν0) + n′(ν0) ν0
(8.238)

with n′ = dn
dν .

As can be seen, the group and phase velocities vPhase =
c

n(ν0)
equal each other in me-

dia with a refraction index n′(ν) ≡ 0 that is constant with respect to the frequency ν.
For n′ > 0 one has vGroup < vPhase, and for n′ < 0, one has vGroup > vPhase.
Figure 8.36 illustrates these considerations for the case n′ > 0, i.e., for vGroup < vPhase.
Media with n′ ≡ 0 are called dispersion-free. Media with frequency-dependent re-

fraction indices are called dispersive media.

Example 8.29 (Coherent optical image filtering): As shown in Sec. 2.2.6, the Fraunhofer diffrac-
tion image of an object illuminated by a plane wave corresponds to the Fourier transform
of the object. This effect can be exploited to realize a linear optical filtering of an image
g(x) in real-time. The use of coherent illumination, e.g., a laser, is necessary.
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Figure 8.36. A wave packet Ey(x, t) at two different times t1 and t2 for the case of vGroup < vPhase. While the high-

frequency wave propagates faster, the whole wave group moves with the speed of the envelope w
(
t− k′(ν0)

2π
x
)

drawn in red.

Figure 8.37 shows the setup used for coherent optical image filtering. The collimating
lens produces a plane wave from the monochromatic light of the laser, which illuminates
the input image g(x). This can be a stop, a grating, or a transparency function, for exam-
ple. As the system uses coherent light, all signals can be considered as electric fields.

Because of the lens L1, the far-field diffraction of g(x), which represents the Fourier
plane, is imaged to its focal plane, where it can be manipulated via a multiplication by an
optical filter H(f). Another lens L2 performs a second Fourier transform of the filtered
Fourier spectrum and images it to the output field k(x).

In order to understand how a lens performs a Fourier transform, consider a point of

Figure 8.37. Coherent optical image filtering.
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light placed in the input plane g(x) = δ(x). This point of light is focused by L1 and en-
sures a constant illumination G(f) = 1 in the Fourier plane. On the other hand, for a con-
stant illumination g(x) = c placed in the input plane, all parallel illumination rays are fo-
cused by the lens L1, resulting in a Dirac delta function in the Fourier plane G(f) = c δ(f).

Example 8.30 (Coherence length): Consider a plane electromagnetic wave which propagates
in x-direction and has the shape of a Gaussian envelope, so that its duration is approxi-
mately limited:

E(x, t) = ey E0 exp

(
−1

2

(
t− x

c

σt

)2
)

cos
(
2πf0

(
t− x

c

))
. (8.239)

Here, 2σt is a measure of its duration, and thus, for the length 2σx = 2σt c of the wave
packet, see Fig. 8.38(a).

Propagation

(a) Wave packet Ey(x, t) (b) Spectrum Ey(f) for x = 0

Figure 8.38. Relation between coherence length and bandwidth: (a) Wave packet Ey(x, t); (b) Spectrum
Ey(f) for x = 0.

As position and time are linearly linked in the propagator 2πf0(t − x
c ), the spectral

components of the wave can be obtained by calculating its Fourier transform with respect
to time for a constant x. Let x := 0 and furthermore, w.l.o.g., the coefficients are omitted:

Ey(t) = exp

(
−1

2

(
t

σt

)2
)
cos(2πf0t) (8.240)

◦
•

Ey(f) = F

{
exp

(
−1

2

(
t

σt

)2
)}
∗ 1
2

(
δ(f + f0) + δ(f − f0)

)
. (8.241)

Using

e−πt2 ◦−• e−πf2

, (8.242)

the similarity transform

g(at) ◦−• |a|−1 G

(
f

a

)
(8.243)
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and

a :=
1√
2πσt

, (8.244)

results in

exp

(
−1

2

t2

σ2
t

)
(8.245)

◦
•
√
2π σt exp

(
−1

2
(2πσtf)

2

)
=
√
2π exp

(
−1

2

f2

σ2
f

)
(8.246)

with

σf :=
1

2πσt
. (8.247)

Finally,

Ey(f) =

√
π

2
σt

(
exp

(
−1

2

(
f + f0
σf

)2
)

+ exp

(
−1

2

(
f − f0
σf

)2
))

. (8.248)

Here, 2σf is a measure of the bandwidth of the wave, see Fig. 8.38(b).
Multiplying the width in the time domain by the width in the frequency domain

yields

2σt · 2σf =
2

π
≈ 0.64 . (8.249)

Hence, there is a reciprocity between the temporal duration and the bandwidth, as
σt ∝ σ−1

f .
This can now be used to elegantly show the relation between the coherence length

dK and the spectral bandwidth Δν of the light (cf. Sec. 2.2.4). Consider a wave packet as
in Fig. 8.38(a) that is split into two halves by a beam splitter. After taking two different
paths, the two halves are joined again (for example, in an interferometrical setup as in
Sec. 7.3.16.1). Only if the optical path difference is smaller than the length dK of the wave
packet interference effects can occur. The maximum optical path difference which still
results in observable interference defines the coherence length, dK.

There are different possibilities for defining the length of a gradually decaying signal.
If 2σt is identified with the temporal duration of the wave, the length of the wave packet
is given by

dK ≈ 2σt c . (8.250)

If 2σf is identified with the bandwidth Δν of the wave,

Δν · dK ≈ c 2σt 2σf =
2c

π
(8.251)

and thus

dK ≈
c

Δν
, (8.252)

which corresponds to the result of Sec. 2.2.4.
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8.5 8.5 Image signals as stochastic processes
Many problems in the field of signal processing (and especially image processing) require
solutions which can be applied to whole classes of signals with certain properties and not
only to special single signals. The mathematical model for such a signal class is a so-called
stochastic process, also called a random process [9, 17, 19, 26].

8.12 Definition 8.12: Stochastic process
A stochastic process7 g(x, e) consists of a random experiment and an assignment of deter-
ministic functions g(x, eν), the so-called sample functions (or realizations) to the elementary
events eν of the random experiment (see Fig. 8.39). For each fixed position xi = const., the
stochastic process g(x, e) turns into a random variable g(xi, e), which can be described using
a probability distribution [17, 19]. �

.

.

.

Figure 8.39. Random process.

Remarks:

In the case of a stochastic process, the functions g(x, eν) which are assigned to the random
experiment are deterministic. Only the random experiment is affected by chance.

The quantities g, x and e can be continuous or discrete.

For image signals g(x), the position x ∈ R2 is usually two-dimensional and the image
g ∈ RQ is usually vectorial (here, the number of channels is denoted by Q). However, for
the remainder of this section, only scalar images g(x) ∈ R will be considered.

A random process g(x, e) has two parameters. Depending on whether these parameters are
assumed to be constant or variable, the following cases have to be considered (Table 8.3):

1. x is variable, e is variable:
g(x, e) is a random process, i.e., a set of sample functions. To simplify matters, the ele-
mentary event e is often omitted and just g(x) is used.

2. x is variable, e = eν is constant:
In this case, g(x, eν) is a single realization of the stochastic process and thus a determin-
istic sample function.

7Usually, random variables and random processes are denoted by capital letters and their real-
izations by lower-case letters. But in this book capital letters are used for frequency spectra, and so
random variables will be written in typewriter font, to allow a better discrimination.
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Table 8.3. Interpretations of a random process.

Elementary event e Position x

Constant Variable

Constant Value g(xi, eν) Sample function g(x, eν)

Variable Random variable g(xi, e) Random process g(x, e)

3. x = xi is constant, e is variable:
g(xi, e) is a random variable, assigning to each elementary event e the corresponding
value of the sample function. So, often just g(xi) is used and the elementary event e is
omitted.

4. x = xi is constant, e = eν is constant:
In this case, g(xi, eν) is a numerical value.

Example 8.31 (Radio station): A radio station can be considered as an example of a random
process. From the perspective of the listener, songs are played randomly from a collec-
tion. The titles contained in the collection represent the available elementary events. The
chosen song represents the sample function, which is obviously deterministic.

8.5.1 Moments of stochastic processes
For a constant position x = xi, a stochastic process g(x) turns into a random variable
g(xi). For a simultaneous consideration of two positions xi and xj , the description of
the corresponding random variables is no longer sufficient, as their joint statistical prop-
erties f(g(xi), g(xj)) also have to be taken into account, e.g., the random variables might
be stochastically dependent [9, 17, 19]. In general, a spatially discrete, stochastic process for
arbitrary, finite point sets {x1,x2, . . . ,xn}, n ∈ N, can be completely described by the joint
probability density function f(g(x1), g(x2), . . . , g(xn)).

In many practical cases, it is impossible or too costly to obtain the joint probability density
function. Instead, often the first-order and second-order probability density functions (i.e.,
n = 1, 2), as well as their moments, are used for a compact, approximate characterization of
a stochastic process.

8.13Definition 8.13: nth order statistic
If a statistical analysis of a random process g(x) considers n different positions
(x1,x2, . . . ,xn), it is called an nth order statistic, which is completely described by the joint
probability distribution function

fg(x1,x2, . . . ,xn) . (8.253)

�

The moments and moment-generating functions, such as the expected value, the autocorre-
lation function, etc., describe sample functions in terms of statistical averages and can all be
defined on the basis of expected values.
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8.14 Definition 8.14: The expected value of a stochastic process
The expected value of a stochastic process is calculated as follows:

E{g(x)} =
∞∫

−∞

g fg(x)(g) dg =: μg(x) . (8.254)

The expectation operator E{ · } results in an averaging over all sample functions for each
position x. Therefore, the result is in general a function of the position x. �

8.15 Definition 8.15: Moments of a stochastic process
The mth moment of a stochastic process g(x) is defined as follows:

μg,m(x) := E{gm(x)} =
∞∫

−∞

gm fg(x)(g) dg . (8.255)

The first moment is the expected value μg(x) and describes the mean local intensity of the
image. �

Higher moments are usually centered to the expected value [9, 17].

8.16 Definition 8.16: Central moments of a stochastic process
The mth central moment of a stochastic process g(x) is defined as

E{(g(x)− μg(x))
m} =

∞∫
−∞

(g − μg(x))
m
fg(x)(g) dg . (8.256)

Except for the centering to the expected value (8.254), this corresponds to the definition in
(8.255). �

8.17 Definition 8.17: Variance of a stochastic process
The variance of a stochastic process g(x) is defined as

Var{g(x)} = E{(g(x)− μg(x))
2} =

∞∫
−∞

(g − μg(x))
2
fg(x)(g) dg =: σ2

g(x) . (8.257)

So, the variance is the second central moment. �

8.18 Definition 8.18: The autocorrelation function of a stochastic process
The autocorrelation function (ACF) of a stochastic process g(x) is defined as

rgg(x1,x2) = E{g(x1) g(x2)} =
∞∫

−∞

∞∫
−∞

g1 g2 fg(x1)g(x2)(g1, g2) dg1 dg2 . (8.258)
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Writing x1 = x and x2 = x+ τ , the ACF can be expressed as

rgg(x, τ ) = E{g(x) g(x+ τ )} =
∞∫

−∞

∞∫
−∞

g1 g2 fg(x)g(x+τ )(g1, g2) dg1 dg2 (8.259)

with τ = (τx, τy)
T. Therefore, the ACF of a two-dimensional random process is a function

of a four-dimensional argument. �

It is very important to use two different terms for the order n of a statistic and for the order
of a moment. The latter denotes the power m in (8.255). Hence, the ACF is a second-order
moment of a second-order statistic.

8.19Definition 8.19: The cross-correlation function of a pair of stochastic processes
The cross-correlation function (CCF) of two stochastic processes g(x) and k(x) is defined
similarly to the ACF:

rgk(x, τ ) = E{g(x) k(x+ τ )} =
∞∫

−∞

∞∫
−∞

g k fg(x)k(x+τ )(g, k) dg dk (8.260)

with τ = (τx, τy)
T. �

8.20Definition 8.20: The autocovariance function and the cross-covariance function
The autocovariance function of a stochastic process g(x) is defined as

Cgg(x, τ ) = E{(g(x)− μg(x))(g(x+ τ )− μg(x+ τ ))} . (8.261)

Similarly, the cross-covariance function Cgk(x, τ ) is defined by

Cgk(x, τ ) = E{(g(x)− μg(x))(k(x+ τ )− μk(x+ τ ))} . (8.262)

Except for the centering around the expected value, these definitions correspond to (8.259)
and (8.260) respectively. �

The correlation is a measure of the linear stochastic dependency between two random vari-
ables, and in the case of an image signal, of the linear stochastic dependency between the
image intensities at a distance of τ . Correlation functions satisfy the following equations:

rgk(x, τ ) = Cgk(x, τ ) + μg(x)μk(x+ τ ) , (8.263)

rgg(x,0) = μ2
g(x) + σ2

g(x) . (8.264)

8.21Definition 8.21: Uncorrelatedness
Two stochastic processes g(x) and k(x) are said to be uncorrelated if

E{g(x) k(x+ τ )} = E{g(x)} ·E{k(x+ τ )} (8.265)

or

Cgk(x, τ ) = 0 (8.266)
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hold for arbitrary positions x and displacements τ = (τx, τy)
T. �

8.22 Definition 8.22: Stochastic independence
Two stochastic processes g(x) and k(x) are said to be stochastically independent if

fg(x)k(x+τ )(g, k) = fg(x)(g) · fk(x+τ )(k) (8.267)

holds for arbitrary positions x and displacements τ = (τx, τy)
T. �

The stochastic independence of two processes as in (8.267) immediately implies that they are
uncorrelated. The converse of this rule is only valid if these random processes are normally
distributed, as their whole statistics are then determined by the first two moments [17, 19].
For all other cases, two random processes might be uncorrelated and yet stochastically de-
pendent.

Example 8.32 (Stochastically-dependent and uncorrelated processes): Let a ∼ N (0, σ2
a) be a

normally distributed random variable with an expected value of zero and a variance of
σ2
a . Let b := a2 be another random variable, which is calculated by squaring a. Obviously,

a and b are stochastically dependent, as either one of them is sufficient for calculating the
value of the other.

The calculation of the covariance of a and b results in

E
{
(a− E{a}) (b− E{b})

}
= E{ab} = E

{
a3
}
= 0 . (8.268)

The first equality results from E{a} = 0 and the last one from the symmetry of the normal
distribution. In summary, a and b are uncorrelated but stochastically dependent.

8.5.2 Stationarity and ergodicity
In general, the probability distributions as well as the moments of a stochastic process de-
pend on the position. In particular, the moments of the first order statistic (e.g., the expected
value and the variance) are two-dimensional functions of the position; the moments of the
second order statistics (autocorrelation function and autocovariance function) are even four-
dimensional. Besides the high costs coming with such high-dimensional functions, their
calculation often fails, as only a single sample function is present, so that no average over
several functions can be obtained. However, for two important classes of random processes,
stationary processes and ergodic processes, the calculations can be performed in spite of
these difficulties.

8.23 Definition 8.23: Stationarity
A stochastic process is called (strictly) stationary if its statistical properties are invariant with
respect to spatial displacements. �

If only the first moment of the first order statistic and the second moment of the second order
statistic meet the stationarity condition, the process is called weakly stationary.
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8.24Definition 8.24: Weak stationarity
A stochastic process g(x) is called weakly stationary if its expected value μg(x) and its au-
tocorrelation function (ACF) rgg(x, τ ) are invariant with respect to spatial displacements,
i.e.:

μg(x) = μg = const. (8.269)

and

rgg(x, τ ) = rgg(τ ) . (8.270)

Then both moments are independent of x. Hence, the ACF of a two-dimensional, weakly
stationary process is a function of an argument which is only two-dimensional. �

For normally distributed random processes, weak stationarity implies strict stationarity.
For ergodic random processes, the moments can calculated by a spatial averaging instead

of an averaging over all sample functions. Practically, this is quite useful, as often only a
single sample function is available.

8.25Definition 8.25: Ergodicity
A stochastic process g(x) is called (strictly) ergodic8 if the spatial average of an arbitrary
sample function g(x, eν) equals, with a probability of one, the corresponding average over
all sample functions. �

A non-stationary random process cannot be ergodic, as its moments are position depen-
dent. Therefore, stationarity is a necessary condition for ergodicity.

8.26Definition 8.26: Weak ergodicity
A stochastic process g(x) is called weakly ergodic if the spatial averages for the first moment
and for the autocorrelation function calculated using an arbitrary sample function g(x, eν)

are, with a probability of one, equal to the corresponding averages over all sample functions,
and therefore if the conditions

lim
M→∞
N→∞

1

MN

M
2∫

−M
2

N
2∫

−N
2

g(x, eν) dx = E{g(x)} = μg (8.271)

and

lim
M→∞
N→∞

1

MN

M
2∫

−M
2

N
2∫

−N
2

g(x, eν) g(x+ τ , eν) dx = E{g(x) g(x+ τ )} = rgg(τ ) (8.272)

are met. The left sides of Equations (8.271) and (8.272) represent an integration of one single
arbitrary sample function g(x, eν), and thus a spatial averaging. The calculation of expected

8In practice, rigorously proving that a give stochastic process is ergodic is often impossible. There-
fore, ergodicity is often assumed and empirically validated. Details can be found in [9], for example.



438 8. Image Signals

values on the right sides of the equations represents an averaging over all sample functions
for a fixed position x. �

Remarks:

For weakly ergodic random processes, the whole process can be represented with respect
to the first two moments of the first and second order statistics, by any single sample
function.

A weakly ergodic process is also weakly stationary.

For the mean power of a weakly ergodic process, or the mean power of a single sample
function of the process, it holds

rgg(0) = μ2
g + σ2

g . (8.273)

If a random process cannot be assumed to be weakly ergodic, it might be possible that
there are still some sample functions—just not all—which are representative of the pro-
cess. In this case, an appropriate selection is necessary.

8.27 Definition 8.27: Power spectral density
The power spectral density (PSD) of a weakly stationary stochastic process g(x) is defined
as follows:

Sgg(f) := lim
M→∞
N→∞

E

{
|F{g(x) rect( x

M ) rect( y
N )}|2

M ·N︸ ︷︷ ︸
Periodogram

}
. (8.274)

The PSD shows to what extent the various frequencies contribute to the composition of a
sample function g(x, eν) on average. Then we have Sgg(f) ≥ 0 ∀ f . �

8.16 Theorem 8.16: The Wiener–Khinchin theorem
The power spectral density of a weakly stationary random process g(x) is the Fourier trans-
form of the autocorrelation function:

Sgg(f) = Fτ{rgg(τ )} =
∞∫

−∞

∞∫
−∞

rgg(τ ) e
−j2πfTτ dτ . (8.275)

I.e., the autocorrelation function and the power spectral density correspond to each other
via the Fourier transform:

ACF rgg(τ ) ◦=• PSD Sgg(f) . (8.276)

The corresponding random process has to be weakly stationary. �
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Proof 8.2 (Wiener–Khinchin theorem): The proof will only be presented for the one-dimen-
sional case. The inverse Fourier transform of the power spectral density

Sgg(f) := lim
M→∞

E

{
|F{g(x) rect

(
x
M

)
}|2

M

}
= lim

M→∞
E

{
GM (f) G∗M (f)

M

}
(8.277)

with

gM (x) := g(x) rect
( x

M

)
◦−• GM (f) (8.278)

is calculated as follows:

F−1{Sgg(f)} = lim
M→∞

E

{
F−1{GM (f) G∗M (f)}

M

}
(8.279)

= lim
M→∞

E

{
gM (x) ∗ gM (−x)

M

}
(8.280)

= lim
M→∞

E

{∫∞
−∞ gM (α) gM (α+ x) dα

M

}
(8.281)

= lim
M→∞

∫∞
−∞ E{g(α) g(α+x)} rect

(
α
M

)
rect
(
α+x
M

)
dα

M
(8.282)

= lim
M→∞

rgg(x)
∫∞
−∞ rect

(
α
M

)
rect
(
α+x
M

)
dα

M
(8.283)

= lim
M→∞

rgg(x) Λ
( x

M

)
(8.284)

= rgg(x) . (8.285)

Here, Λ( · ) represents the triangle function (9.35). Renaming x to τ immediately results
in the Wiener–Khinchin theorem, cf. (8.275).

In summary, there are two alternatives for spectral analysis, depending on the actual class
of the signal on hand [26]:

The harmonic analysis of a deterministic function g(x) uses the Fourier transform to
calculate its complex-valued spectrum G(f). This mapping is completely lossless and
can therefore be inverted.

Usually, the Fourier integral is not convergent for sample functions of a stationary pro-
cess g(x) [17, 19]. Alternatively, in such cases, the properties of the process can be cap-
tured by the autocorrelation function rgg(τ ), which can be used to calculate the power
spectral density Sgg(f). This so-called generalized harmonic analysis results in a loss of
information, as the phase spectrum is omitted. So, the sample functions g(x, eν) cannot
be reconstructed from the power spectral density Sgg(f) (cf. Example 8.18), and only an
average of the spectral composition of their signals can be obtained.
The mean power PB of a frequency band B is calculated via the corresponding integra-
tion:

PB =

∫
f∈B

Sgg(f) df . (8.286)
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The mean total power is given by an integration over all frequencies:

∞∫
−∞

∞∫
−∞

Sgg(f) df = rgg(0) . (8.287)

Again, by using the Wiener–Khinchin theorem and the properties of the Fourier trans-
form, rgg(0) represents the mean signal power.

8.5.3 Passing a stochastic process through an LSI system
In the spatial domain, what happens to a deterministic signal passing through an LSI system
is completely characterized by the impulse response h(x) of the system (cf. Sec. 8.2.3). In
the frequency domain, the system response is given by multiplying the system’s transfer
function H(f) by the Fourier transform G(f) of the input signal:

k(x) = h(x) ∗∗ g(x) ◦=• K(f) = H(f)G(f) . (8.288)

As with stationary random processes, the Fourier transform of the sample function con-
verges only in exceptional cases; so the effect of passing through an LSI system is described
by its moments.

g(x) � h(x) � k(x) = h(x) ∗∗ g(x)

Figure 8.40. Effect of passing a stochastic process g(x) through an LSI system.

Now consider a stochastic process g(x) which is the input to an LSI system having the
impulse response function h(x) (see Fig. 8.40):

k(x) = h(x) ∗∗ g(x) . (8.289)

The expected value μk(x) of the output process is given by

μk(x) = E{k(x)} = E

⎧⎨⎩
∞∫

−∞

∞∫
−∞

g(α)h(x−α) dα

⎫⎬⎭ (8.290)

=

∞∫
−∞

∞∫
−∞

E{g(α)}h(x−α) dα = μg(x) ∗∗ h(x) . (8.291)

If the input process g(x) is weakly stationary, μg(x) = μg implies

μk(x) = μg ∗∗ h(x) = μg

∞∫
−∞

∞∫
−∞

h(α) dα = μgH(0) . (8.292)

The constant DC component μg is transferred by the transfer function at the frequency zero.
The autocorrelation function rkk(τ ) of the output process is given by

rkk(τ ) = E{k(x) k(x+ τ )} (8.293)

= E

⎧⎨⎩
∞∫∫
−∞

h(α) g(x−α) dα ·
∞∫∫
−∞

h(β) g(x+ τ − β) dβ

⎫⎬⎭ (8.294)
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=

∞∫∫
−∞

∞∫∫
−∞

h(α)h(β) E{g(x−α) g(x+ τ − β)}︸ ︷︷ ︸
rgg(τ−β+α)

dα dβ (8.295)

=

∞∫∫
−∞

⎛⎝∞∫∫
−∞

h(α)h(α+ γ) dα

⎞⎠
︸ ︷︷ ︸

=:φhh(γ)

rgg(τ − γ) dγ (8.296)

= φhh(τ ) ∗∗ rgg(τ ) (8.297)

with γ := β −α. By (8.296), the function φhh(τ ) denotes the autocorrelation function of the
impulse response h(x), which is formally the result of spatial averaging. As the impulse re-
sponse is a deterministic function, in this case there is no stochastic correlation and therefore,
the term impulse correlation is used.

A comparison of (8.288) and (8.297) shows that when considering (weakly stationary)
stochastic processes instead of deterministic signals, the signals and the impulse responses,
are replaced by the corresponding correlation functions. Finally, the Fourier transform of
(8.297) yields a correspondence between the power spectral densities of the input process
and the output process9:

Skk(f) = |H(f)|2 ·Sgg(f) , (8.300)

which allows a description in the spatial frequency domain.

Example 8.33 (White noise): White noise denotes a stationary random process n(x) having a
power spectral density Snn(f) that is constant for all frequencies f :

Snn(f) = c = const. > 0 •=◦ rnn(τ ) = c δ(τ ) . (8.301)

This noise is called ‘white,’ as in white light, since all frequencies of the spectrum are
present with equal intensity.

The autocorrelation function rnn(τ ) shows that the values at two neighboring points
are uncorrelated, no matter how close they are. This signal model is idealized and is not
physically realizable, as it has an infinite mean power

rnn(0)→∞ . (8.302)

However, white noise is still a usable noise model, resulting in realizable signals when
passed through real systems, as will be shown in the following Example 8.34.

Figure 8.41(a) shows an example of a white noise process n(x). The autocorrelation
function r̂nn(τ ) of this random process is estimated by averaging over B = 10 sample
functions as well as by a spatial averaging (because of its ergodicity). Figure 8.41(b)

9One has

F
{
φhh(τ)

}
= F

{∫
h(α+ τ)h∗(α) dα

}
= F {h(τ) ∗ h∗(−τ)} (8.298)

= H(f)H∗(f) = |H(f)|2 . (8.299)
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(a) Realization of the process n(x) (b) Autocorrelation function r̂nn(τ )

Figure 8.41. A white noise process n(x).

shows the estimated function, which is a Dirac delta function. The origin of the coordi-
nate system is located in the center of the image.

Example 8.34 (Colored noise): So-called colored noise can be produced by linearly filtering a
white noise process n(x):

k(x) = h(x) ∗∗ n(x) , (8.303)

with h(x) denoting the impulse response of the filter. By (8.297) and (8.301), the auto-
correlation function and the power spectral density of the original process k(x) are given
by

rkk(τ ) = φhh(τ ) ∗∗ c δ(τ ) = c φhh(τ ) (8.304)
◦
•

Skk(f) = c |H(f)|2 . (8.305)

The term ‘colored noise’ is also motivated by light spectra but in this case with a non-
constant distribution of the spectral components.

The use of a rectangular filter with the impulse response function

h(x) =
1

L2
rect
( x
L

)
rect
( y
L

)
(8.306)

results in a low-pass filtering of the white noise:

rkk(τ ) = c φhh(τ ) = c ·Λ
(τx
L

)
Λ
(τy
L

)
(8.307)

◦
•

Skk(f) = c L2 sinc2(Lfx) sinc
2(Lfy) . (8.308)
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(a) Filtered realization of n(x) (b) Autocorrelation function r̂kk(τ )

Figure 8.42. Generation of a discrete, colored noise process k(x) by low-pass filtering of a white noise process n(x).

After this low-pass filtering, the process k(x) is correlated for τ ∈ (−L,L)2. The mean
power

rkk(0) = c <∞ (8.309)

of the original process is finite. Therefore, k(x) is a physically meaningful, realizable
stochastic process.

Figure 8.42(a) shows the result of the low-pass filtering of the sample function of
Fig. 8.41(a). Here, the image intensities of adjacent discrete positions are highly cor-
related, which can also be seen by considering the autocorrelation function shown in
Fig. 8.42(b), which is widened compared to Fig. 8.41(b).

Example 8.35 (Grinding texture as a stochastic process): After grinding the radial shaft seals
of automobiles, their macroscopic texture consists of short, stochastically placed grinding
grooves, which might be superposed with periodic scratches (see Fig. 8.43(a)). As these
scratches can cause leaks and dry runnings, their period lengths and extents have to be
inspected [20].

By rotating the component and by acquiring multiple images, different sections of the
surface texture can be captured, which can be considered as sample functions of the same
random process g(x) (see Fig. 8.43(b)). Like in Example 8.33, the autocorrelation function
r̂gg(τ ) and the autocovariance function Ĉgg(τ ) can be estimated. The autocorrelation
function Fig. 8.43(c) shows four different components [2]:

– In the center of the coordinate system, there is a spatially discrete Dirac delta function,
which represents the uncorrelated noise of the process.

– In the autocorrelation function, the periodic scratches induce structures with the same
orientation, which again are periodic. Periodic signals have periodic autocorrelation
functions [19].
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(a) Realization of the process g(x) (b) Realization of the process g(x)

(c) Autocorrelation function r̂gg(τ ) (d) Autocovariance function Ĉgg(τ )

(e) Periodogram Ŝgg(f) (f) Averaged periodogram Ŝgg(f)

Figure 8.43. Grinding texture as a stochastic process.



8.6 Quantization 445

– In the autocorrelation function, the stochastic grinding grooves produce a line through
the center of the coordinate system in the direction of the grooves. They have a finite
correlation length in the direction of the grooves, because of the finite longitudinal
extent of the grinding grooves.

– Finally, the autocorrelation function has a constant offset representing the mean inten-
sity of the process.

Because of the empirical calculation of the autocorrelation function from finitely sized
images, it decays towards the image boundaries [13]. Except for the mean intensity, the
autocovariance function in Fig. 8.43(d) describes the same components of the process.

By the Wiener–Khinchin theorem (8.275), the Fourier transform of the autocorrela-
tion function is the power spectral density of the random process. Alternatively, the
periodogram Ŝgg(f) calculated from a sample function can be used as an estimate of the
power spectral density (see Fig. 8.43(e)) employing (8.274). But the periodogram is a very
noisy estimator for the power spectral density, as the standard deviation of its error of es-
timation is in the same range as the quantity which is to be estimated [13, 17]. However,
if there are multiple sample functions of the random process as in the present case, the
mean Ŝgg(f) of the corresponding periodograms can be calculated [17, 19]. If an uncorre-
lated noise is assumed, the variance of the error of estimation can be reduced by a factor
of 1

B if B images are used. The resulting estimate of the power spectral density Fig. 8.43(f)
can be interpreted like a DFT magnitude spectrum, but with notably less distortion, as
in the present case the calculation is based on B = 120 images. As the grinding texture
consists of straight, parallel grooves, the corresponding power components in the spa-
tial frequency domain are concentrated on a line which is perpendicular to the grooves
and runs through the center of the coordinate system. Because of the periodicity of the
scratches, the corresponding spectral components are represented by an additional comb
of Dirac delta functions. The distance between the Dirac delta functions is reciprocal
to the period length; the height of the Dirac delta functions describes the extent of the
scratches and can therefore be considered as a quality measure for the inspected item.

8.68.6 Quantization
For representing images g(x) in a computer, the positions x and the image values g have
to be discretized. To simplify matters, for the rest of this section, any image g(x) will be as-
sumed to be scalar. The discretization of the image values (also called quantization) assigns
a quantized value g, chosen from a set of K discrete values10, to each image value g̃. It is
common to denote the resolution of the quantization by the number ldK of bits which are
needed to encode the values in binary numbers.

The characteristic curve of the quantization can be represented by a step function
(Fig. 8.44), mapping the continuous input image values from the interval

g̃ ∈ [g0, gK ] (8.310)

10Unlike the usual convention in this book, in this section, continuous image values will be denoted
by g̃ instead of g. By this means, the notation will remain consistent even if images with discrete image
values are used.
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Figure 8.44. Characteristic curve of quantization.

to K quantization steps

g ∈ {q0, q1, . . . , qK−1} . (8.311)

By means of the quantization thresholds gi, i ∈ {0, . . . ,K} and the operator Q{ · }, the quan-
tization can be described as follows:

Q{g̃} = qi if g̃ ∈ [gi, gi+1) . (8.312)

Here, Q{ · } is a non-linear, memoryless, shift invariant and irreversible operator (Fig. 8.45).
Despite the nonlinearity of this operation, it will be shown in Sec. 8.6.2 that the effect of
quantization on the statistics of the signal can be described and analyzed with linear system
theory.

g̃ � Q{ · } � g

continuous values Quantizer quantized values

Figure 8.45. Quantizer as a system.

8.6.1 Optimal quantization
In order to derive the characteristics of an optimal quantization, the continuous image val-
ues are modeled as random variables g̃ with a probability density function fg̃(g̃), which is
assumed to be known. The quantization thresholds gi and the quantization steps qi are ob-
tained by minimizing a quality criterion, which is usually the mean squared quantization
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error:

ε2 :=

K−1∑
l=0

gl+1∫
gl

(g̃ − ql)
2
fg̃(g̃) dg̃ = E

{
K−1∑
l=0

(g̃− ql)
2

}
!−→ Min. (8.313)

The number of quantization steps K, as well as the lower and upper quantization thresholds
g0 and gK , are assumed to be fixed.

First, the derivative of (8.313) with respect to the quantization thresholds gi is calculated:

∂ε2

∂gi
= (gi − qi−1)

2
fg̃(gi)− (gi − qi)

2
fg̃(gi)

!
= 0 . (8.314)

This results in the following condition for the thresholds gi:

gi =
qi−1 + qi

2
. (8.315)

So the optimal quantization thresholds gi are located in the center between the adjacent
quantization steps qi−1 and qi.

Differentiating (8.313) with respect to qi yields the following condition:

∂ε2

∂qi
= −2

gi+1∫
gi

(g̃ − qi) fg̃(g̃) dg̃
!
= 0 (8.316)

and solving for qi results in

qi =

gi+1∫
gi

g̃ fg̃(g̃) dg̃

gi+1∫
gi

fg̃(g̃) dg̃

. (8.317)

Accordingly, the quantization steps have to be placed at the centroid of the probability den-
sity function fg̃(g̃) inside the interval [gi, gi+1).

To define the characteristic curve of the optimal quantization, the condition (8.315) has
to be met for i ∈ {1, . . . ,K − 1} and (8.317) for i ∈ {0, . . . ,K − 1}. In summary, a system of
K − 1 linear and K nonlinear equations has to be solved (usually numerically) in order to
obtain the unknown parameters g1, . . . , gK−1 and q0, . . . , qK−1.

Example 8.36 (Optimal quantization for uniformly distributed image values): If the image values
can be assumed to be uniformly distributed

fg̃(g̃) =
1

gK − g0
= const. (8.318)

inside an interval g0 ≤ g̃ ≤ gK , the quantization steps can be calculated by using the
following linear formula (employing (8.317)):

qi =

gi+1∫
gi

g̃ dg̃

gi+1∫
gi

dg̃

=
1

2
·
g2i+1 − g2i
gi+1 − gi

=
gi+1 + gi

2
. (8.319)
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Inserting (8.319) into (8.315) yields

gi − gi−1 = gi+1 − gi , (8.320)

qi − qi−1 = qi+1 − qi . (8.321)

In this case, the quantization is called an equidistant quantization, as the optimal quan-
tization steps qi, as well as the optimal quantization thresholds gi, are equidistant. If the
distance between two adjacent quantization thresholds is denoted by

Δg =
gK − g0

K
, (8.322)

the mean squared quantization error (8.313) is given by

ε2 =
K

gK − g0

Δg∫
0

(
g̃ − Δg

2

)2

dg̃ (8.323)

=
1

Δg

[
1

3

(
g̃ − Δg

2

)3
]Δg

0

(8.324)

=
(Δg)

2

12
. (8.325)

This value corresponds to the variance of the so-called quantization noise, see Sec. 8.6.3.

Example 8.37 (Optimal equidistant quantization): Common analog-to-digital converters usu-
ally approximate an equidistant quantization of the input signal [22]. If, unlike Example
8.36, the continuous image values g̃ show no uniform distribution, the quantization re-
sults of the mean squared quantization error (8.313) are generally suboptimal.

In order to still achieve an optimal quantization, a nonlinear transformation T{ · }
can be applied to the signal values g̃, yielding values k which are uniformly distributed
within the interval [g0, gK ] (Fig. 8.46). Subsequent to the equidistant quantization Q{ · } of
the values k, the nonlinear transformation is reversed by T−1{ · }. The quantization steps
of the resulting quantization are closely spaced for those regions where the probability
density function fg̃(g̃) has high values.

Figure 8.46. Optimal quantization by using an equidistant quantizer.

8.6.2 The quantization theorem
Similar to the sampling of signals, which performs a discretization of the domain of the
signal, quantization corresponds to a discretization of the codomain of the function. The
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effects of sampling have been discussed in Sec. 8.3.2. By means of linear system theory,
the sampling theorem was derived, which provides a necessary condition for an error-free
reconstruction of continuous signals by their samples. So one might wonder whether there
exists a similar theorem for the ‘sampling’ of the signal values, i.e., if a condition can be
formulated, under which the continuous values g̃ can be reconstructed from their discrete
representatives g.

In the remaining part of this section, an answer to this question will be given for the
case of equidistant quantization. As quantization is a nonlinear operation, the methods of
linear system theory cannot be directly applied to the signals. However, linear system the-
ory can be used to analyze the probability density functions (PDF) of the quantized signals
(Fig. 8.47). Under certain assumptions, the probability density function of the continuous
signal can even be reconstructed from the probability density function of the quantized sig-
nal. This will be the main point of the following quantization theorem, which however is
not as powerful as the sampling theorem, inasmuch as it will not be possible to reconstruct
the original continuous values g̃ from the quantized values g without errors [25].

fg̃(g̃) � Q{ · } � fg(g̃)

PDF of the continuous values Quantizer PDF of the quantized values

Figure 8.47. Description of quantization by means of linear system theory.

As the quantization must have a finite resolution, the support of the probability density
function fg(g̃) of the quantized signal g is discrete. Hence, each input value is mapped to the
nearest quantization value qi in accordance with (8.312). Therefore, the resulting probability
density function fg(g̃) is an impulse train, weighted by the discrete probabilities of the corre-
sponding quantization intervals of the input probability density functions. The weights are
obtained by integrating fg̃(g̃) over the appropriate interval (cf. Fig. 8.48). So, quantization
represents an ‘area sampling’ of the probability density function.

Figure 8.48. Area sampling of the probability density function: (left) Quantization characteristics; (right) Probability
density functions fg̃(g̃) of the continuous values and fg(g̃) of the quantized values [25].

The ‘area sampling’ of the probability density function fg̃(g̃) can be equivalently ex-
pressed by a calculation of a moving average and a subsequent sampling. The whole pro-
cedure is illustrated in Fig. 8.49 (left). The moving average corresponds to a convolution of
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Figure 8.49. Area sampling of the probability density function fg̃(g̃) of the value range and the corresponding fre-
quency range (adapted from [25]).

fg̃(g̃) with the rectangular function

fn(g̃) =
1

Δg
rect

(
g̃

Δg

)
. (8.326)

The probability density function fg(g̃) of the quantized values is the result of a subsequent
multiplication by the impulse train r(g̃), yielding a series of Dirac delta functions, which are
weighted with the corresponding area component of the input probability density function
fg̃(g̃):

fg(g̃) =
(
fg̃(g̃) ∗ fn(g̃)

)
· r(g̃) (8.327)

=

(
fg̃(g̃) ∗

1

Δg
rect

(
g̃

Δg

))
·

∞∑
n=−∞

δ(g̃ − nΔg) (8.328)
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=
1

Δg

∞∑
n=−∞

∞∫
−∞

fg̃(α) rect

(
g̃ − α

Δg

)
dα · δ(g̃ − nΔg) (8.329)

=
1

Δg

∞∑
n=−∞

(n+ 1
2 )Δg∫

(n− 1
2 )Δg

fg̃(α) δ(g̃ − nΔg) dα (8.330)

=

∞∑
n=−∞

δ(g̃ − nΔg) · 1

Δg

(n+ 1
2 )Δg∫

(n− 1
2 )Δg

fg̃(α) dα . (8.331)

In order to derive the quantization theorem, the formulation of the area sampling has to be
transformed into the frequency domain. For this purpose, the so-called characteristic func-
tion of a random variable will now be introduced. This function can be used to determine
the moments of the random variable in an elegant way, see Theorem 8.17.

8.28Definition 8.28: The characteristic function
The characteristic function of a random variable g is defined by an expected value:

Γg(u) = E
{
e j2πug

}
(8.332)

=

∞∫
−∞

fg(g) e
j2πug dg = F−1{fg(g)} = F∗{fg(g)} . (8.333)

Obviously, the characteristic function (8.333) corresponds to the inverse Fourier transform
(8.32) of the probability density function fg(g). As fg(g) is real-valued, Γg(u) can also be
considered as the complex conjugate of the Fourier transform of fg(g). Therefore, in this
case, u can be interpreted as the frequency corresponding to g. In particular, the magnitude
of Γg(u) and the magnitude spectrum |F{fg(g)}| are equal. �

8.29Definition 8.29: Moments of a random variable
The nth moment of a random variable g is defined similar to (8.255):

μg,n := E{gn} =
∞∫

−∞

gn fg(g) dg . (8.334)

The first moment is the expected value μg of the random variable g. �

8.17Theorem 8.17: Moments of a random variable
The moments of a random variable g can be calculated by means of the characteristic func-
tion Γg(u) as follows:

μg,n = E{gn} = 1

(j2π)n
dnΓg(u)

dun

∣∣∣∣
u=0

. (8.335)

So, in order to calculate the moments, the characteristic function Γg(u) is only needed inside
a neighborhood of the point u = 0. �
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Proof 8.3 (Moments of a random variable): Equation (8.335) can be proved by means of the
derivative property (8.54) of the Fourier transform:

dnΓg(u)

dun
= F−1

{
(j2πg)

n
fg(g)

}
(8.336)

=

∞∫
−∞

(j2πg)
n
fg(g) e

j2πug dg . (8.337)

For u = 0, dividing (8.337) by (j2π)n immediately yields the defining equation (8.334) of
the nth moment.

The characteristic function (8.332) can now be used to express the process of area sampling
in the frequency domain. The convolution of fg̃(g̃) with the rectangular function (8.326)
corresponds to multiplying the characteristic function Γg̃(u) by the inverse Fourier transform
of (8.326):

F−1
{
fg̃(g̃) ∗ fn(g̃)

}
= Γg̃(u) Γn(u) = Γg̃(u) sinc(uΔg) , (8.338)

see Fig. 8.49(a)–(c). The reciprocal

Θ =
1

Δg
(8.339)

of the interval width of Δg is called the quantization frequency.
Similar to the sampling of signals (Fig. 8.10), the multiplication of the filtered density

fg̃(g̃) ∗ fn(g̃) by the impulse train r(g̃) in the original domain, results in a periodic repetition
of the product Γg̃(u) sinc(uΔg) in the frequency domain (see Fig. 8.49(c) right):

Γg(u) =
∞∑

l=−∞
Γg̃(u+ lΘ) sinc(Δg(u+ lΘ)) . (8.340)

Here, the frequency of the repetition equals the quantization frequency Θ, cf. Fig. 8.49(d)–(e).
This result immediately leads to the quantization theorem [25]. If the periodic repetition

(8.340) causes no overlap of the characteristic functions,

Γg̃(u) = F−1{fg̃(g̃)} = 0 if |u| ≥ Θ

2
=

1

2Δg
, (8.341)

the characteristic function of the continuous values g̃, as well as the corresponding probabil-
ity density function fg̃(g̃), can be reconstructed from Γg(u) without errors.

In practice, usually a less strict formulation of the quantization theorem is sufficient. By
(8.335), only the neighborhood u = 0 of the characteristic function Γg̃(u) is necessary for
the calculation of the moments g̃. Hence, the moments of the continuous values g̃ can be
calculated from the moments of the quantized values g if

Γg(u) = Γg̃(u) sinc(uΔg) for u = 0 , (8.342)

in other words, if, at the frequency u = 0, there is no overlap caused by the periodic repeti-
tion.
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8.18Theorem 8.18: The quantization theorem
If the probability density function fg̃(g̃) of the continuous signal values g̃ is band-limited,
i.e., if

Γg̃(u) = F−1{fg̃(g̃)} = 0 if |u| > Ξ

2
, (8.343)

then the moments (expected value, variance, and higher moments) of the continuous orig-
inal values g̃ can be determined without errors by means of the values g which have been
equidistantly quantized with the quantization step width Δg if the following condition is
satisfied:

Ξ

2
+ ε < Θ =

1

Δg
⇔ Δg <

(
Ξ

2
+ ε

)−1

, ε > 0 . (8.344)

So the quantization theorem states how finely a signal has to be quantized in order to pre-
serve all relevant signal components. �

If the conditions of the quantization theorem are satisfied, the moments of the continuous
image values g̃ can be extracted from the moments of the quantized image values g as fol-
lows:

E
{
g̃
}
= E
{
g
}
, (8.345)

E
{
g̃2
}
= E
{
g2
}
− 1

12
(Δg)2 , (8.346)

E
{
g̃3
}
= E
{
g3
}
− 1

4
E
{
g
}
(Δg)2 , (8.347)

E
{
g̃4
}
= E
{
g4
}
− 1

2
E
{
g2
}
(Δg)2 +

7

240
(Δg)4 . (8.348)

The correction needed for the higher-order moments, by means of the right terms in the
right-hand sides of (8.346)–(8.348), is, in the field of statistics, called Sheppard’s correction
[21].

8.6.3 Modeling of the quantization
Although quantization is a nonlinear operation, it can be equivalently described by a linear
additive model. In order to construct this model, first the addition of two random variables
will be studied.

8.19Theorem 8.19: Addition of stochastically-independent random variables
If two stochastically-independent random variables x and y are added,

z = x+ y , (8.349)

the probability density function fz(z) of the resulting random variable z is given by the
convolution

fz(z) = fx(z) ∗ fy(z) (8.350)

of the probability density functions of the random variables x and y. �
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Proof 8.4 (Addition of stochastically-independent random variables): As x and y are stochasti-
cally-independent, one has

fxy(x, y) = fx(x) fy(y) . (8.351)

By (8.351) and (8.349), the conditional probability density function of the sum z given y

is

fz|y(z|y) = fx(z − y) . (8.352)

If y is given, the difference of the random variables x and z is the additive constant y,
which yields the probability density function of z by shifting the probability density func-
tion of x by y. Hence, the joint density fzy(z, y) can be expressed by

fzy(z, y) = fz|y(z|y) fy(y) = fx(z − y) fy(y) . (8.353)

Marginalizing out (integrating out) y yields the marginal density fz(z):

fz(z) =

∞∫
−∞

fzy(z, y) dy =

∞∫
−∞

fx(z − y) fy(y) dy = fx(z) ∗ fy(z) , (8.354)

corresponding to the convolution (8.350).

The ‘area sampling’ of the probability density function fg̃(g̃) of the continuous image values
has been expressed as a convolution of two density functions in (8.327). By Theorem 8.19,
this convolution corresponds to the sum of two independent random variables g̃ and n, of
which the latter is uniformly distributed by (8.326). In this respect, the ‘area sampling’ and
therefore also the quantization procedure can be considered as an additive superposition of
an independent, uniformly distributed, zero-mean quantization noise n. This results in the
linear model for the quantization shown in Fig. 8.50.

+
+

Figure 8.50. Linear model of quantization.

In the case of equidistant quantization Q{ · }, the quantization noise n is characterized by
the uniform distribution (8.326), resulting in the expected value

μn = E{n} =
∞∫

−∞

g̃ fn(g̃) dg̃ =
1

Δg

Δg/2∫
−Δg/2

g̃ dg̃ = 0 (8.355)

and the variance

σ2
n = E

{
n2
}
=

∞∫
−∞

g̃2 fn(g̃) dg̃ =
1

Δg

Δg/2∫
−Δg/2

g̃2 dg̃ =
(Δg)

2

12
. (8.356)
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In addition, it can be shown that if the conditions of the quantization theorem are met, the
quantization noise can be described as a white noise process n(x), which is approximately
uncorrelated with the input g̃(x) of the quantizer [25]:

Cg̃n(τ ) = E{(g̃(x)− μg̃(x)) (n(x+ τ )− μn(x+ τ ))} (8.357)

= E{g̃(x) n(x+ τ )} − μg̃(x) E{n(x+ τ )} (8.358)

= rg̃n(τ ) ≈ 0 . (8.359)

As the quantization noise n(x) is broadband, in contrast to the typically band-limited input
g̃(x) of the quantizer, quantization errors can be reduced by performing a low-pass filter-
ing [19].

8.78.7 The Karhunen–Loève transform
For solving visual inspection tasks, often vectorial image signals g(x) and gmn are consid-
ered. These include RGB images, which represent the simplest case, but also multispectral
images or image series are used (e.g., see Figures 5.21(a) and 8.32(a)). Here, the different
channels or components of a vectorial image typically are highly correlated, and are thus
redundant to a certain extent.

Example 8.38 (Correlation between color channels): As an example, Fig. 8.51 shows the three
channels of the RGB image of Fig. 8.32(a), between which a correlation can even be visu-
ally suspected. In fact, the correlation coefficient of the red channel and the blue channel
is ρRB = 0.955, the correlation coefficient of the green channel and the blue channel is
ρGB = 0.931, and the correlation coefficient of the red channel and the green channel is
even ρRG=0.985.

(a) Red channel gR(x) (b) Green channel gG(x) (c) Blue channel gB(x)

Figure 8.51. Color channels of the RGB image in Fig. 8.32(a) of the Karlsruhe Palace, encoded as gray values: (a) red
channel gR(x); (b) green channel gG(x); (c) blue channel gB(x) (source: ONUK).

Hence, it is quite obvious that a transformation of the image which decorrelates the single
components might be sensible. This can be done by using the Karhunen–Loève transform,
which is also known as principal component analysis (PCA) or the Hotelling transform.
Because of its decorrelating properties, the Karhunen–Loève transform is often used for im-
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age fusion and for image compression. For the latter purpose, after performing the transfor-
mation, the components that contribute least to the signal energy are omitted or are encoded
lossily.

8.7.1 Definition of the Karhunen–Loève transform
In the context of the Karhunen–Loève transform, the vectorial image intensities are stochas-
tically described by the random vector g. The mean of the vector is given by the expected
value:

μg = E{g} . (8.360)

The covariance matrix of g is defined as follows:

Cgg = E
{
(g− μg)(g− μg)

T
}
. (8.361)

8.30 Definition 8.30: The Karhunen–Loève transform
The Karhunen–Loève transform is the linear transformation

k = K{g} = A (g− μg) (8.362)

of the vector g which is centered to the mean μg, and will from now on be denoted by the
operator K{ · }. Here, A is a matrix which contains the eigenvectors ei, i = 1, . . . , Q of the
covariance matrix Cgg as row vectors. The eigenvectors are aligned in decreasing order of
their corresponding eigenvalues λi ≥ λi+1 of the covariance matrix Cgg:

A = (e1, . . . , ei, . . . , eQ)
T . (8.363)

�

As the covariance matrix of a real-valued random vector g ∈ RQ has to be real-valued,
symmetric, and positive semidefinite by definition, all of its eigenvalues are nonnegative
λi ≥ 0. For the image signals that occur in practice, λi > 0, especially because of the noise
which is always present. Usually, the eigenvalues are distinct.

The following procedure is used for a practical implementation of the Karhunen–Loève
transform:

1. Estimate the mean vector μg and the covariance matrix Cgg, if applicable by spatial av-
eraging and by assuming an ergodic process gmn:

μ̂g =
1

MN

M−1∑
m=0

N−1∑
n=0

gmn , (8.364)

Ĉgg =
1

MN − 1

M−1∑
m=0

N−1∑
n=0

(gmn − μ̂g)(gmn − μ̂g)
T ; (8.365)

2. Solve the eigenvalue problem and sort the eigenvectors ei of Ĉgg in descending order of
their eigenvalues λi, in order to obtain the transformation matrix A as in (8.363);

3. Perform the transformation employing (8.362).
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In contrast to the DFT (Sec. 8.3.3) or the wavelet transform (Sec. 15.2), for example, there is
no fast algorithm for calculating the Karhunen–Loève transform, which is a drawback. Fur-
thermore, the Karhunen–Loève transform is not separable. However, it is a transformation
that is adapted to the signal, as the transformation matrix A and therefore also the basis
vectors ei used for representing the signal are calculated from the signal itself.

8.7.2 Properties of the Karhunen–Loève transform

8.20Theorem 8.20: Linearity
The Karhunen–Loève transform (8.362) is a linear signal transformation. As in (8.2),

K{ag1 + bg2} = a ·K{g1}+ b ·K{g2} (8.366)

for arbitrary constants a and b. �

8.21Theorem 8.21: Orthogonality
The Karhunen–Loève transform (8.362) is an orthogonal signal transformation. Hence,

A−1 = AT . (8.367)

This is because the transformation matrix A is constructed from the eigenvectors ei of the
covariance matrix Cgg, and because the eigenvectors of a symmetric, real-valued matrix Cgg

are always an orthogonal basis [7]. �

8.22Theorem 8.22: Invertibility
The invertibility of the Karhunen–Loève transform

g = K−1{k} = AT k+ μg (8.368)

is an immediate result of the defining equation (8.362) in combination with (8.367). �

8.23Theorem 8.23: Zero-mean
The result k of the Karhunen–Loève transform (8.362) is zero-mean:

E{k} = E
{
A (g− μg)

}
= A

(
E{g} − μg

)
= 0 , (8.369)

with 0 denoting the null vector. �

8.24Theorem 8.24: Uncorrelated components
The components of the vector k resulting from the Karhunen–Loève transform (8.362) are
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uncorrelated. Hence, the corresponding covariance matrix Ckk is a diagonal matrix:

Ckk = ACggA
T (8.370)

=

⎛⎜⎜⎜⎜⎝
λ1 0

λ2

. . .
0 λQ

⎞⎟⎟⎟⎟⎠ . (8.371)

As the transformation matrix A is orthogonal, by (8.367), it performs a unitary and thus en-
ergy preserving transformation of the covariance matrix Cgg into the diagonal matrix Ckk of
its eigenvalues. Therefore, the components λi = Var{ki} of the covariance matrix Ckk rep-
resent the signal energy, which is the contribution of the ith component of k to the contrast
of the vectorial image. As of

E
{
(ki − E{ki}) (kj − E{kj})

}
= E{ki kj} = λi δ

j
i , (8.372)

the components of k are pairwise uncorrelated.
For Gaussian processes, uncorrelated components are necessarily stochastically indepen-

dent. �

Proof 8.5 (Uncorrelated components): By (8.369), the covariance matrix Ckk of the transformed
vector k is

Ckk = E
{
kkT

}
= E
{
A(g− μg)(g− μg)

T AT
}

(8.373)

= AE{(g− μg)(g− μg)
T}AT = ACggA

T (8.374)

=

⎛⎜⎝ eT1
...
eTQ

⎞⎟⎠Cgg (e1, . . . , eQ) (8.375)

=

⎛⎜⎝ eT1
...
eTQ

⎞⎟⎠ (Cgg e1, . . . ,Cgg eQ) (8.376)

=

⎛⎜⎝ eT1
...
eTQ

⎞⎟⎠ (λ1 e1, . . . , λQ eQ) (8.377)

=

⎛⎜⎝λ1 e
T
1 e1 λ2 e

T
1 e2

λ1 e
T
2 e1

. . .
λQ eTQeQ

⎞⎟⎠ =

⎛⎜⎝λ1 0
. . .

0 λQ

⎞⎟⎠ . (8.378)

Hence, the eigenvector matrix A results in a diagonalization of the covariance matrix
Cgg.
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8.25Theorem 8.25: Best linear approximation
By using the Karhunen–Loève transform, a given random vector g of dimension Q can be
optimally approximated by a vector ĝ of dimension ν < Q, in the sense of the mean squared
error. In accordance with (8.368), the vector g is therefore represented by a series:

g = AT k+ μg =

Q∑
i=1

ei ki + μg . (8.379)

Using the first ν < Q terms of the series results in the following estimate of the vector g:

ĝ =

ν∑
i=1

ei ki + μg . (8.380)

In this case, the mean energy

E
{
ΔgTΔg

}
=

Q∑
i=ν+1

λi (8.381)

of the approximation error

Δg := g− ĝ (8.382)

is minimal. �

Because of its property of minimizing the energy (8.381) of the representation error, the
Karhunen–Loève transform performs an optimal signal compression. By scaling the eigen-
values λi, they can be formally interpreted as probabilities

ξi :=
E
{
k2i
}∑Q

i=1 E
{
k2i
} =

λi∑Q
i=1 λi

(8.383)

resulting in a minimal entropy

H = −
Q∑
i=1

ξi ld ξi . (8.384)

As the entropy of the variances λi is minimal, the Karhunen–Loève transform concentrates
the signal energy and, to a certain extent, also the information, into only a few components.

Proof 8.6 (Best linear approximation): Let e be an arbitrary vector with ‖e‖ = 1 and let k = gTe

be the projection of g to e. As it is part of the Karhunen–Loève transform, to subtract the
mean vector μg before the projection, the vector g is assumed to be zero-mean for this
proof. Therefore, the expected value of k is

E{k} = E
{
gTe
}
= E
{
gT
}
e = 0 . (8.385)
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The variance of k is

Var{k} = E
{
(k− E{k})2

}
= E
{
k2
}

(8.386)

= E
{
gTe ·gT e

}
= E
{
eTggTe

}
(8.387)

= eT E
{
ggT

}
e = eT Cgg e . (8.388)

Now, the vector e that maximizes the variance of k has to be determined. Obviously, the
term (8.388) is maximal if the vectors e and Cgg e are linearly dependent (i.e., parallel),
hence if

λ e = Cgg e . (8.389)

This equation holds if and only if e is an eigenvector of the covariance matrix Cgg, which
maps the vector e to a multiple λ e of itself [10]. The maximum possible variance of k
results from the greatest eigenvalue λ:

λ = eT Cgg e . (8.390)

After one has found the projection vector e that corresponds to a transformed component
k with maximum variance, the dimension spanned by e is separated,

g′ = g − e eTg , (8.391)

and the procedure is iteratively applied to g′. The result after Q iterations is a set of
variances

λ1 ≥ λ2 ≥ . . . ≥ λQ . (8.392)

Here, of all the projections in the ith iteration, λi yielded the maximum value. In total,
the mean energy (8.381) of the representation error is therefore minimal.

8.7.3 Examples of application of the Karhunen–Loève transform

Example 8.39 (Decorrelation of color channels): This example shows how the channels of the
RGB image of Fig. 8.32(a) can be decorrelated by the Karhunen–Loève transform. The
three components of the Karhunen–Loève transform are shown in Fig. 8.52. The distri-
bution of the eigenvalues λi shows that the first component conveys about 97.1 % of the
signal energy; in contrast, the contribution of the last component is only about 0.4 % of
the signal energy. Hence in this case, in order to compress the image, the last component
can be omitted, as no quality drawbacks have to be expected, which will be shown in the
following example.

Example 8.40 (Color compression): For seeing the quality of the color compression, the first
ν (ν ∈ {1, 2, 3}) components of the Karhunen–Loève transform have been used to re-
construct RGB images (Fig. 8.53). For ν = 1, the color space of the resulting image is
one-dimensional, which is why the reconstruction Fig. 8.53(a) corresponds to the first
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(a) λ1 = 7780 (b) λ2 = 204 (c) λ3 = 30

Figure 8.52. Components of the Karhunen–Loève transform of the RGB image Fig. 8.32(a) with the eigenvalues λi

(original image: ONUK).

(a) ν = 1 (b) ν = 2 (c) ν = 3

Figure 8.53. Reconstruction of the RGB color image Fig. 8.32(a) by using only the first ν components of the
Karhunen–Loève transform (original image: ONUK).

component Fig. 8.52(a) of the Karhunen–Loève transform, except for the dominant hue
of the original image. The use of two components (ν = 2) already yields a high-quality
reconstruction of the original, see Fig. 8.53(b). Only reddish regions of the original (red-
brown leaves of single trees, the porch roof, and the terrace of the palace), as well as the
cyan colored dome of the tower are not rendered in their true colors by this reconstruc-
tion. In the case of a reconstruction based on all ν = 3 components (Fig. 8.53(c)), there is
no difference from the original because of the invertibility of the Karhunen–Loève trans-
form.

Example 8.41 (Color compression for weakly correlated channels): Now, the color compression
resulting from the Karhunen–Loève transform will be discussed for an example with
weakly correlated color channels, see Fig. 8.54. Here, the correlation coefficient of the
red channel and the green channel is ρRG = 0.585, the correlation coefficient of the green
channel and the blue channel is ρGB = 0.700, and the correlation coefficient of the red
channel and the blue channel is ρRB = 0.318. In this case, the reconstruction of the color
image by using fewer than ν = 3 components obviously involves notable drawbacks
concerning color rendering.
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(a) ν = 1 (b) ν = 2 (c) ν = 3

Figure 8.54. Reconstruction of an RGB color image by using ν components of the Karhunen–Loève transform.

Example 8.42 (Decorrelation of multispectral images): For this example, the multispectral im-
age series of Fig. 5.21 is used. Multispectral images typically have high correlation coef-
ficients for spectrally adjacent channels. For the present case, the correlation coefficients
of the spectral channels are all inside the interval of 0.548 ≤ ρ ≤ 0.997. Hence, after per-
forming a Karhunen–Loève transform, 99.5 % of the signal energy can be represented by
the first three components Fig. 8.55(a)–(c). This circumstance can be used for compression
or for image fusion: from nine to three channels, as is shown in the following example.

Example 8.43 (Fusion of multispectral images): In order to perform an image fusion of multi-
spectral images, the components of the Karhunen–Loève transform of Example 8.42 will
be used, see Fig. 8.55. As already the first three components Fig. 8.55(a)–(c) represent
99.5 % of the signal energy, it is natural to fuse these three components by interpreting
them as a color image with three channels. For color rendering, different color spaces
can be used (Sec. 5.2): the images resulting from the fusion are so-called pseudo-color
images (cf. Sec. 9.1.3). Especially in the pseudo-color image Fig. 8.56(b), for which the
first three KLT components were interpreted as an HSV color image, the material of the
robot can be distinguished from the wooden block and from the background, which was
not possible in the original color image Fig. 5.21(a).
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(a) λ1 = 20829 (b) λ2 = 285 (c) λ3 = 143

(d) λ4 = 42 (e) λ5 = 35 (f) λ6 = 14

(g) λ7 = 11 (h) λ8 = 8 (i) λ9 = 3

Figure 8.55. Components of the Karhunen–Loève transform with eigenvalues λi.

(a) The first 3 KLT components interpreted as an
RGB image

(b) The first 3 KLT components interpreted as an
HSV image [23]

Figure 8.56. Encoding of the three components with the greatest eigenvalues of the Karhunen–Loève transform
(KLT) as channels of a color image.
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9 Preprocessing and Image Enhancement
The main aims of preprocessing and image enhancement are

to obtain visually informative images, as well as
to ease the subsequent signal processing and automated image evaluation steps.

The rather simple image enhancement techniques, which are covered in the following sec-
tion, are mainly used for improving the visual impression of an image. Section 9.2 introduces
methods which can reduce the influence of systematic perturbations caused by inhomoge-
neous illumination or by poor image acquisition, for example. Section 9.3 is devoted to the
suppression of random noise by using linear and nonlinear filters and finally, Sec. 9.4 dis-
cusses the topic of image registration.

9.19.1 Simple image enhancement methods

9.1.1 Contrast adjustment by histogram stretching
Contrast adjustment by histogram stretching manipulates the image values in order to ex-
ploit the whole range of the available values [q0, qK−1]. This is done by a linear stretch of the
probability density function (PDF)

fg(g) =

K−1∑
i=0

Pi δ(g − qi) (9.1)

of the quantized image values. Here, Pi denotes the probabilities of the quantized image
values qi (cf. Fig. 8.44). In practice, the probability density function of the image values is
estimated by the so-called histogram.

9.1Definition 9.1: Histogram
The histogram of a scalar image gmn is defined as follows:

P̂i =
1

MN

M−1∑
m=0

N−1∑
n=0

δqigmn
, i = 0, . . . ,K − 1 , (9.2)

with

δba :=

{
1 if a = b

0 if a �= b
(9.3)

denoting the Kronecker delta. �

Hence, the single values P̂i represent the estimated values of the discrete probabilities Pi of
the image values.

Histogram stretching is done by performing the following spatially-invariant transfor-
mation of the image values:

γ(g) = (g − gmin)
qK−1 − q0
gmax − gmin

+ q0 , gmin := min
m,n

gmn, gmax := max
m,n

gmn (9.4)

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_9,
© Springer-Verlag Berlin Heidelberg 2016
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Histogram
stretching

Figure 9.1. Histogram stretching.

with g, gmin, gmax ∈ {q0, . . . , qK−1}. The range of the transformed image values is given by
γ(gmin) = q0 and γ(gmax) = qK−1 (cf. Fig. 9.1). In the context of the transformation (9.4), it
has to be noted that in general

γ(gi) /∈ {q0, . . . , qK−1} , (9.5)

which is why the result γ(gi) of the transformation is usually rounded to the nearest qj .
Since the mean value as well as the scatter of the distribution of the image values is

changed by this transformation, the histogram stretching manipulates the first two moments
of the probability density function. The shape of the probability density function and hence
of the histogram remain unchanged.

Figure 9.2. Examples of histogram stretching: (left) Original; (right) Result of the histogram stretching. The corre-
sponding histograms are shown below.
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Example 9.1 (Histogram stretching): As an example of histogram stretching, Fig. 9.2 shows
the image of a microchip together with the result of the transformation and the corre-
sponding histograms. Although the same number of gray values are used before and
after the transformation, the resulting image appears to be much more detailed because
of the higher contrast.

9.1.2 Histogram manipulation
Usually, histogram manipulation is also used to achieve a contrast improvement, but in
contrast to the histogram stretching, the shape of the resulting histogram has to be provided
in the sense of a ‘desired histogram.’ The resulting transformation T{ · } is memoryless,
spatially invariant, and in general nonlinear (Fig. 9.3).

g � T{ · } � γ(g)

PDF fg(g) Desired PDF fγ(γ(g))

Figure 9.3. Histogram manipulation.

The probability distribution (cumulative probability) of the image values g which have
to be transformed are given by

Fg(g) =

g∫
−∞

fg(α) dα . (9.6)

This represents the probability of an image value of the input quantity being ≤ g (Fig. 9.4
top).

After the manipulation of the histogram, the transformed image values γ(g) are dis-
tributed according to the distribution function

Fγ(γ(g)) =

γ(g)∫
−∞

fγ(β) dβ , (9.7)

which represents the probability of an image value of the output quantity being ≤ γ(g)

(Fig. 9.4 bottom).
Now, at first the image values g are assumed to be continuously and the cumulative

distribution function Fγ(γ) is assumed to be strictly monotonically increasing. Accordingly,
the following approach is chosen for determining the histogram transformation:

Fg(g)
!
= Fγ(γ(g)) ⇔ γ(g) = F−1

γ (Fg(g)) . (9.8)

Here, the strict monotonicity of Fγ(γ) preserves the ordering of the image values.
By (9.8), the probabilities of intervals remain unchanged by the transformation T{ · }:

P ([g1, g2]) = P ([γ(g1), γ(g2)]) . (9.9)
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Figure 9.4. Probability density distributions before and after the histogram manipulation.

Example 9.2 (Histogram equalization): Histogram equalization is used to obtain an image
with uniformly distributed image values. The input image values are to be transformed
so that their probability density function fg(g) matches the desired probability density
function

fγ(γ) = c · (H(γ − γmin)−H(γ − γmax)) , (9.10)

with H(γ) denoting the Heaviside function (8.18). By (9.8), the corresponding cumulative
distribution functions are related as follows:

Fγ(γ(g)) =

γ(g)∫
−∞

fγ(β) dβ = c · (γ(g)− γmin) (9.11)

!
= Fg(g) if γ ∈ [γmin, γmax] (9.12)

⇒ γ(g) = c−1 ·Fg(g) + γmin . (9.13)

Figure 9.5 illustrates the process of histogram equalization.
Figure 9.6 shows two examples of histogram equalization. The histogram of the orig-

Figure 9.5. Histogram equalization.
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Figure 9.6. An application of histogram equalization: (left) Originals; (right) Results of the histogram equalization.
The corresponding histograms are shown below.
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inal image of a chip, which is shown in the top left corner, has two distinctive modes,
which are ‘merged’ by the histogram equalization. The resulting image is not visually
satisfying.

The histogram of the sonogram, which is shown in Fig. 9.6 (bottom), has a unimodal
distribution concentrated on dark gray values. In contrast to the previous example, the
histogram equalization of this image reveals new details, especially in the dark image
regions.

Because the image values are discrete, the resulting histograms do not appear to be
uniformly distributed. In fact, not the probability densities (and the corresponding his-
tograms) are present in (9.8), but their corresponding cumulative distribution functions.

By using an arbitrary target histogram for a histogram manipulation, the transformation
F−1
γ ( · ) in accordance with (9.8) cannot generally be calculated explicitly. An approach for

computationally solving this problem is to choose an assignment of discrete image values
γ(g) = qi which minimizes |Fγ(qi)− F̂g(g)|.

9.1.3 Pseudo-color and false-color images
In order to obtain visually revealing images, pseudo-color and false-color representations
can be used. This is particularly advantageous, as the human eye can distinguish consider-
ably more color values than gray values.

9.1.3.1 Pseudo-color images
Pseudo-color images are produced from scalar-valued images g(x) (typically gray-scale im-
ages) by performing a transformation such as

g �→

⎛⎜⎝ Red(g)
Green(g)
Blue(g)

⎞⎟⎠ (9.14)

of the image values. In general, the transformation characteristics for the single color chan-
nels are nonlinear. As the transformation is independent of the position x, it is memoryless
and spatially invariant.

Example 9.3 (Pseudo-color image): This is an example of the image value transformation for
producing a pseudo-color image that uses an additive mixture (employing (9.14)) of the
three color components Red(g), Green(g) and Blue(g) shown in Fig. 9.7. In particular, this
representation solves the problem of the relative perception of intensities (cf. Fig. 1.1), as
they are transformed into absolutely distinguishable hues.

Figure 9.8 shows an example of a pseudo-color representation according to Fig. 9.7.
Although some details are visible less clearly in the resulting color image than in the
original image, this representation allows a much better interpretation of the absolute
intensities.
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Figure 9.7. Image value transformation for creating pseudo-color images.

Figure 9.8. A pseudo-color representation: (left) Gray-scale image; (right) Pseudo-color image according to Fig. 9.7.

9.1.3.2 False-color images
In contrast to the creation of pseudo-color images, false-color images result from multi-
channel (i.e., vectorial) images g(x). The multi-spectral image series shown in Fig. 5.21 is
considered as an example. For producing false-color images, the vectorial image values are
transformed according to

g ∈ RQ �→

⎛⎜⎝ Red(g)
Green(g)
Blue(g)

⎞⎟⎠ . (9.15)

So in general, this is as well a nonlinear, memoryless and spatially-invariant transformation.
False-color images were already presented by the Examples 7.4 and 8.43 on pages 252,

respectively, 463, in the context of the fusion of multispectral images.

Example 9.4 (Change detection): Figure 9.9 shows another application of false-color images.
Changes affecting two subsequent observations of a scene, which were obtained at the
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g1(x) g2(x)

γ(x)

Figure 9.9. False-color representation for change detection: (top) Gray-scale images g1(x) and g2(x) corresponding
to two different points in time; (bottom) False-color image γ(x) (the blue channel and the green channel correspond
to g1(x); the red channel corresponds to g2(x)).

times t1 and t2 (t2 > t1), are to be detected. The corresponding gray-scale images are
denoted by g1(x) and g2(x). In order to highlight these changes in a false-color image,
the RGB color channels can be defined as follows:

γ(x) =

⎛⎜⎝g2(x)

g1(x)

g1(x)

⎞⎟⎠ =:

⎛⎜⎝r

g

b

⎞⎟⎠ . (9.16)

Changes of g2(x) with respect to g1(x) will now be highlighted in color in the false-color
image (cf. Fig. 9.9 bottom).

9.1.4 Image sharpening
Fine image details correspond to high spatial frequencies. Thus, by amplifying high spatial
frequencies, an image can be enhanced to visually appear more sharply. However, this am-
plifies high-frequency noise as well. It is furthermore required that the mean image value
remains unchanged by the image sharpening.
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Figure 9.10. Block diagram of the image sharpening.

Example 9.5 (Image sharpening): Figure 9.10 shows the block diagram of a system that per-
forms an image sharpening. First, the input image g(x) is filtered with a low-pass filter

h(x) ◦=• H(f) , H(0) = 1 , H(f) −−−−−→
‖f‖→∞

0 (9.17)

and damped by the factor α ∈ [0, 1); the result is then subtracted from the signal g(x).
Low-frequency signal components are thereby damped; high-frequency components re-
main unaffected. A subsequent multiplication by (1 − α)−1 > 1 ensures that the mean
image value remains unchanged by the process.

Thus, the transfer function of the image sharpening procedure is

V (f) :=
Γ(f)

G(f)
=

1− αH(f)

1− α
(9.18)

with Γ(f) := F{γ(x)} and G(f) := F{g(x)}. For the limiting cases of ‖f‖ → 0 and
‖f‖ → ∞, one has

V (0) = 1 , V (f) −−−−−→
‖f‖→∞

1

1− α
> 1 . (9.19)

Figure 9.11 shows an example of image sharpening. A binomial filter of size 11×11 was
used as the low-pass filter (cf. Sec. 9.3.1.1); the factor α = 0.75 causes an amplification
of high-frequency components by a factor of 4. In the resulting image, fine details ap-

Figure 9.11. Example of image sharpening: (left) MRT image of a human shoulder; (right) result after image sharp-
ening.
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pear much more clearly than in the original images, although the information content
remained the same. Additionally, any noise present in the image is amplified by the
image sharpening.

9.2 9.2 Reduction of systematic errors
Often, the acquisition of images is affected by unwanted systematic errors, e.g., errors caused
by the imaging optics, by inhomogeneities in the illumination, or by a spatially-dependent
sensitivity of the sensor used. This section covers methods for suppressing such perturba-
tions. These include methods for correcting geometric distortions which are discussed in
Sec. 9.2.1 and methods for reducing inhomogeneities of image intensities, which are pre-
sented in Sec. 9.2.2.

9.2.1 Geometric rectification
In the following, a geometric distortion, which might be caused by optical aberrations
(Sec. 3.4.8) or by perspective distortions (Sec. 3.4.6), will be denoted by the operator V. As
shown in Fig. 9.12, this operator assigns the image coordinates (x, y)T to the lateral object
coordinates (x̃, ỹ)T in accordance with a generally nonlinear mapping:(

x

y

)
= V

{(
x̃

ỹ

)}
. (9.20)

If the mapping V is known, a geometric rectification of the image g(x, y) can be performed.
Suppose that (ξ, η)T denotes the discrete image coordinates of the rectified image γ(ξ, η),
which are aligned in a regular pattern. Then, the image values g(x, y) of the distorted im-
age, which are indexed by (9.20), have to be assigned to the correct position of the rectified
image: γ(ξ, η) := g

(
V
{
(ξ, η)T

})
. Generally, however, the coordinates (x, y)T = V

{
(ξ, η)T

}
calculated by using (9.20) are located between the grid points of the x, y-plane, which is why
the image values g(x, y) located between the gmn have to be interpolated.

Object plane

Distortion

Coordi-

transfor-
mation

nate

Image plane
(discrete grid)

Figure 9.12. Geometric rectification.
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For a perfect reconstruction of the continuous image signal g(x, y), employing (8.194)
and fulfilling the sampling condition (8.193), an ideal interpolation filter with the impulse
response

iΩG
(x) = sinc

( x

Δx

)
sinc

(
y

Δy

)
(9.21)

should be used. Unfortunately, the impulse response of this filter is infinitely spread and
even the implementation of an approximation would be very costly. Therefore, practically
usable alternatives are needed:

Using nearest neighbor interpolation (zero-order interpolation), the sampling point
(x, y)T is assigned the nearest function value of the discrete signal gmn. For many cases
of image interpolation, the results of this method are not satisfying.

The bilinear interpolation (1st order interpolation) introduced in Sec. 9.2.1.1 is often suf-
ficient, especially if the input signal is oversampled.

Alternatively, higher order interpolations can be performed. In this case, often the bicu-
bic interpolation is used (a third-order interpolation), which is based on cubic splines.

Example 9.6 (Intended distortion): In some applications, geometric transformations can be
performed on purpose. An example for a practically relevant geometric distortion V is
the transformation from polar coordinates according to(

x

y

)
= V

{(
r

ϕ

)}
=

(
r cosϕ

r sinϕ

)
; (9.22)

see Fig. 9.13. By means of this transformation, radially arranged structures will be ar-
ranged in parallel. Information contained in concentric circles will be contained in hori-
zontal lines after the transformation.

An example of the use of a transformation into polar coordinates is presented in the
scope of the efficient calculation of the Radon transform (Sec. 14.3.1.3). Another applica-
tion of this transformation is shown in the following example.

Figure 9.13. Transformation to polar coordinates as a purposive distortion V.

Example 9.7 (Detection of defects affecting brake disks): Another example of using a purpo-
sive distortion is the inspection of the ventilation channels of brake disks of Example 1.4.
The useful information in the result of the image acquisition Fig. 1.9(b) is contained in a
narrow circular ring. After a transformation to polar coordinates, the information is con-
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tained in lines, which allow a spatially-invariant inspection of the ventilation channels,
see Fig. 1.9(c). Further details concerning the method can be found in Examples 1.4 and
7.9.

9.2.1.1 Bilinear interpolation
Bilinear interpolation approximates the function value ĝ(x, y) at the position x = (x, y)T ∈
R2 by performing a linear interpolation along two dimensions. Generally, x /∈ Z2, see
Fig. 9.14. To simplify matters, the image signal is assumed to be available for all integer
(whole-number) sampling points and that the sampling width is given by

Δx = Δy := 1 .

In the following, the discrete signal values of the sampling points adjacent to x will be de-
noted by

g00 = g(%x&, %y&) , (9.23)

g01 = g(%x&, �y�) , (9.24)

g10 = g(�x�, %y&) , (9.25)

g11 = g(�x�, �y�) , (9.26)

Figure 9.14. Bilinear interpolation.
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with %x& ∈ Z denoting the greatest integer which is less than or equal to x and

�x� := %x&+ 1 ∈ Z (9.27)

denoting the smallest integer which is greater than x. Finally,

x = %x&+ δx , (9.28)

y = %y&+ δy (9.29)

provide the distances δx and δy from %x& and %y& respectively. Now, the intermediate values

g0(y) = (g01 − g00) δy + g00 , (9.30)

g1(y) = (g11 − g10) δy + g10 (9.31)

can be linearly interpolated in the y-direction and by a subsequent linear interpolation in the
x-direction

ĝ(x) = Bilin{g(x)} = (g1(y)− g0(y)) δx+ g0(y) , (9.32)

the value of the function at the position x can be estimated. Here, the operator Bilin{ · }
represents the bilinear interpolation. The interpolation error is given by the difference
ĝ(x)− g(x) between the interpolated value ĝ(x) and the actual value g(x).

9.2.1.2 Interpolation in the context of system theory
In the case of equidistant sampling points, the function g∗(x) which is to be interpolated
can be expressed by multiplying a continuous function g(x) by a two-dimensional sampling
grid, in accordance with (8.190):

g∗(x) =
∞∑

m=−∞

∞∑
n=−∞

g(mΔx, nΔy) δ(x−mΔx ex − nΔy ey) . (9.33)

Certain interpolation methods can be expressed as a convolution of the discrete signal g∗(x)
with a linear, shift-invariant interpolation filter with the impulse response function i(x):

ĝ(x) =

[ ∞∑
m=−∞

∞∑
n=−∞

g(mΔx, nΔy) δ(x−mΔx ex − nΔy ey)

]
∗∗ i(x)

◦
•

Ĝ(f) =

⎡⎣ 1

ΔxΔy

∑
k,l

G

(
f − l

Δx
ex −

k

Δy
ey

)⎤⎦ · I(f) . (9.34)

The two-dimensional convolution of the sampled signal g∗(x) with the interpolation func-
tion i(x) corresponds to a multiplication in the frequency domain of the periodically re-
peated spectrum G∗(f) with the transfer function of the interpolation filter I(f). If the inter-
polation filter I(f) represents a suitable low-pass filter and if the sampling condition (8.193)
is met, the continuous signal can be reconstructed by the multiplication.
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Table 9.1. Comparison of interpolation methods.

Interpolation i(x) I(f)

Nearest-neighbor rect
( x

Δx

)
rect

(
y

Δy

)
ΔxΔy sinc(fxΔx) sinc(fyΔy)

Bilinear Λ
( x

Δx

)
Λ

(
y

Δy

)
ΔxΔy sinc2(fxΔx) sinc2(fyΔy)

Ideal sinc
( x

Δx

)
sinc

(
y

Δy

)
ΔxΔy rect(fxΔx) rect(fyΔy)

Table 9.1 shows an overview of simple interpolation methods and their impulse response
functions i(x) and transfer functions I(f). The employed triangular function is defined by

Λ
( x
B

)
:= rect

( x
B

)
∗ rect

( x
B

)
=

{
1−
∣∣∣ x
B

∣∣∣ if |x| < B

0 otherwise
. (9.35)

9.2.2 Suppression of inhomogeneities
Many common stochastic models of image signals—e.g., ‘autoregressive’ (AR), ‘moving av-
erage’ (MA), ‘autoregressive moving average’ (ARMA), and ‘Markov random field’ models
(MRF) [6]—as well as methods used for analyzing textures, like ‘co-occurrence’ methods
[4] or an eigenfilter [10], require homogeneous or stationary1 images. In some cases, these
methods can be adjusted to work for inhomogeneous or non-stationary images. However,
this is accompanied by a notable increase in the computational complexity.

This section begins with an introduction of the term ‘homogeneity of mth degree’ [2]. Be-
sides, methods will be introduced that allow a homogenization of first, second, and infinite
degree. Prior to that, the common approach of homomorphic filtering will be discussed.
And finally, the different methods will be compared by applying them to images of real
surfaces and their suitability for correcting image intensities will be judged.

9.2.2.1 Signal model
For this section, the image g(x)—i.e., the measured signal—is assumed to be the result of an
operation that combines the signal s(x) with an unwanted inhomogeneity b(x). The unde-
sired component is to be suppressed, in order to improve the signal s(x), which conveys the
information about a scene or a test object. The inhomogeneity b(x) is typically caused by,
e.g., an inhomogeneous illumination or a spatially-varying sensitivity of the image acquisi-
tion system.

For the following considerations, a simple signal model is most suitable:

g(x) = b(x) � s(x) , (9.36)

1In this case, the term ‘homogeneity’ only refers to the 1st order statistics. In contrast, stationarity
implies that the 2nd and higher order statistics are invariant with respect to the position x.
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with � denoting an arbitrary operator. In order to achieve a homogenization of the image
g(x), the inhomogeneity b(x) has to be suppressed. This is only possible if there is some
information about the differences between b(x) and s(x).

As commonly the inhomogeneity b(x) is given by the setup of image acquisition, b(x)
can sometimes be empirically determined: for example, see Example 9.8. Alternatively, b(x)
is often assumed to be a signal that varies slowly with respect to the position (low-pass
signal), whereas the signal s(x) is assumed to be a bandpass signal [3]. Then, ideally, the
Fourier transforms of both components B(f) = F{b(x)} and S(f) = F{s(x)} should have
disjoint supports:

supp{B(f)} ∩ supp{S(f)} = ∅ , (9.37)

supp{B(f)} := {f
∣∣ |B(f)| > 0} . (9.38)

Besides, for a successful suppression of b(x), suitable information or a plausible assumption
about the operator �, which links the two components, has to be available. For the following
sections, the operator � is considered to be compatible with the introduced term of homo-
geneity on the one hand, as well as to be suitable for developing powerful homogenization
methods on the other hand.

If the signal s(x) can be assumed to be homogeneous, it can be advantageous to ho-
mogenize the image g(x) in order to ease the subsequent image processing. Besides, such a
homogenization usually yields an enhanced image, which might facilitate the visual inter-
pretation of the image.

9.2.2.2 Homogeneity
For the definition of the term homogeneity of mth degree, the signal g(x) is assumed to be
the realization of a stochastic process [2].

9.2Definition 9.2: Homogeneity of mth degree
An image-generating stochastic process is called homogeneous of mth degree (or m-homo-
geneous, for short) if

gradx E{gν(x)} ≡ 0 ∀ ν : 1 ≤ ν ≤ m, ν ∈ N . (9.39)

In other words, a process is called m-homogeneous if its first m moments are independent
of the position x. �

Note that this kind of homogeneity only affects the 1st order statistics. Since the 2nd and
higher order statistics describe the relations between neighboring image points, they mainly
characterize the geometric composition of the image and should therefore not be subject to
a spatial homogenization. Homogeneity is a necessary condition for stationarity [11].

Before the homogenization of an image g(x) is covered, first some possible reasons for
the inhomogeneities of g(x) resulting from the image acquisition of the test object, which is
assumed to be homogeneous, will be thoroughly discussed. Possible reasons are:

1. a spatially-varying illumination of the surface,
2. the sensitivity of the image acquisition system being dependent on the cos4 α term (cf.

Sec. 4.4.1),
3. vignetting (cf. Sec. 3.4.3),
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4. a spatially-varying sensitivity of the camera sensor, as well as
5. a spatially-varying geometric constellation of surface relief, illumination and imaging

optics.

The inhomogeneities considered in points 1 to 4 can be described by a multiplicative signal
model:

g(x) = b(x) · s(x) . (9.40)

In this case, the inhomogeneity b(x) can be suppressed by a homomorphic filtering [3] or by
a division by a reference image, which is proportional to b(x) [16].

However, this approach is not applicable in the case no. 5. Here, the inhomogeneity can-
not be described by a simple multiplicative model. Although the relief of the end-milling
texture shown in Fig. 9.21(a) (page 488) is homogeneous and the illumination used for the
image acquisition is spatially constant, the captured image is obviously inhomogeneous be-
cause of the surface structure, even without the influence of factors 1 to 4. This is why ho-
mogenization methods using just a multiplicative model, e.g., homomorphic filtering, yield
unsatisfying results, see Fig. 9.21(b) on page 488 [2].

Example 9.8 (Multiplicative model): A multiplicative model as in (9.40) is assumed for the op-
erator in (9.36), so that the observed signal is a multiplication of the inhomogeneity b(x)

by the signal s(x). If b(x) is known, the inhomogeneity can be eliminated by division:

s(x) =
g(x)

b(x)
. (9.41)

Therefore, the inhomogeneity b(x) can be determined by, e.g., acquiring a reference im-
age of a structureless, diffusely scattering object, for which the signal s(x) is constant
[5, 16].

However, if the inhomogeneity b(x) cannot be further specified, a homomorphic fil-
tering is a possible approach for its suppression (Sec. 9.2.2.3).

Example 9.9 (Division by a reference image): Figure 9.15(a) shows an image of legumes, which
was obtained using an inhomogeneous illumination. After removing the test objects, the

(a) Original image (b) Background image (c) Division of (a) by (b)

Figure 9.15. Division by a reference image.
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reference image Fig. 9.15(b) was acquired, which primarily describes the spatial variation
of the illumination. Dividing image (a) by image (b) yields the result shown in Fig. 9.15(c),
where all objects are nearly identically illuminated.

9.2.2.3 Homomorphic filtering
For homomorphic filtering, a multiplicative model (9.40) is assumed for the inhomogeneity
b(x) and the signal s(x). In many practical scenarios, this assumption is physically reason-
able, especially if b(x) represents an inhomogeneous illumination and s(x) is the ‘reflectance’
of the surface [16].

In order to achieve a suppression of b(x) without having further information about it,
b(x) is assumed to vary slowly with respect to the position compared to s(x). Ideally, the
corresponding Fourier spectra B(f) and S(f) should have disjoint supports, as in (9.37).
Finally, g(x) is required to have positive values for all x.

Figure 9.16. A multiplication of the signal s(x) by the inhomogeneity b(x) corresponds to a two-dimensional con-
volution of the respective Fourier spectra S(f) and B(f) in the spatial frequency domain.

Figure 9.16 shows an example of two spectra S(f) and B(f) of a signal and an inho-
mogeneity respectively, for which the assumption of disjoint supports is correct. Accord-
ing to the convolution property (8.49), the multiplication of s(x) and b(x) corresponds to a
two-dimensional convolution of the respective spectra in the spatial frequency domain; cf.
Fig. 9.16 (right). Because of the spectral convolution, the components S(f) and B(f) can-
not be separated by a linear filter, as linear filters require an additive superposition of the
corresponding signal components.

Therefore, first the logarithm of the input signal g(x) is taken, so that the multiplication of
b(x) by s(x) is transformed into an additive superposition of their logarithms (cf. Fig. 9.17):

ln g(x) = ln b(x)︸ ︷︷ ︸
spatially

slowly-varying

+ ln s(x)︸ ︷︷ ︸
spatially

rapidly-varying

. (9.42)

Since the logarithm function is monotonic and smooth, ln b(x) remains a spatially slowly-
varying signal and ln s(x) remains a spatially rapidly-varying signal, so that ln b(x) can now

g(x) � ln � High-pass
H(f)

� exp � ŝ(x)

Figure 9.17. Homomorphic filtering.
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Figure 9.18. Transfer function H(f) of the high-pass filter (9.43) used for homomorphic filtering.

be suppressed using a linear high-pass filter H(f). A transfer function which is often used
for this purpose is

H(f) =

{
1 if f = 0

α− (α− β) exp
(
−‖f‖2

ρ2

)
otherwise

(9.43)

with α > β; a section through the rotationally symmetric function H(f) is shown in Fig. 9.18.
After the high-pass filtering, the effects of taking logarithms are reversed by applying the
exponential function (Fig. 9.17).

Example 9.10 (Suppression of illumination inhomogeneities by homomorphic filtering): Figure
9.19 shows an example of homomorphic filtering. As a part of the scene visible in the left
image is covered by shadows, only very few details are present. By performing a homo-
morphic filtering, these regions can be brightened and the visibility of image structures
can be increased. However, simultaneously, the brightness of the snow mountain in the
background is notably dampened, so that it appears gray in the result. Also the colors

(a) Original image (b) Homomorphic filtering

Figure 9.19. Homomorphic filtering: (a) Original RGB image; (b) Result of the homomorphic filtering (α = 1; β = 0;
ρ = 4), which has been separately applied to each channel.
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of the resulting image are rather weak. The homomorphic filtering has been separately
applied to each color channel.

9.2.2.4 Homogenization
This section covers methods that allow a homogenization of an image g(x). First, a set U will
be defined that describes a neighborhood of the x, y-origin of the image coordinate system.
This neighborhood is to be chosen sufficiently small, so that the inhomogeneity b(x) inside
the neighborhood U(x) of the position x

U(x) := {χ |χ = x+ ε, ε ∈ U} (9.44)

can be assumed to be approximately constant. On the other hand, U should be notably larger
than the greatest details of s(x). This can be at least partially achieved for an appropriate
choice of U , as (9.37) implies that b(x) changes only slowly with respect to s(x).

Furthermore, the stochastic process of the signal is assumed to be approximately ergodic:

E{sν(x)} ≈ 1

|U|

∫
U

sν(x+ ε) dε ∀ ν ∈ N , (9.45)

with |U| denoting the area of U . For such a stochastic process, homogeneity of mth degree
means also that the first m empirical moments on the right-hand side of (9.45) are spatially
constant.

In practice, often only a single image, i.e., a single realization of the stochastic process, is
available. In this case, (9.45) justifies checking for homogeneity and homogenizing the image
by using local neighborhood operators. In the following, Hm{ · } denotes a local neighbor-
hood operator making an image m-homogeneous.

Homogenization of first degree
Since (9.39) implies that homogeneity of first degree requires the expected value of g(x) to
be independent of the position x, an adequate homogenization should only affect the first
moment. Such a homogenization is appropriate if the following additive model applies to
the image values:

g(x) = b(x) + s(x) . (9.46)

The homogenization of first degree can be realized using a high-pass filter:

ŝ(x) = H1{g(x)} = g(x)− b̂(x) (9.47)

with

b̂(x) = LP{g(x)} . (9.48)

The low-pass filter LP{ · } can be realized by applying a weighted average to the neighbor-
hood U(x). Here, b(x) represents the local mean image value of g(x). Hence, (9.47) results in
a homogenization of the local mean image value.
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Homogenization of second degree
For some situations, e.g., for anisotropic textures, neither a pure multiplicative model nor a
pure additive model is sufficient to explain and describe the occurring inhomogeneities. In
this case, a homogenization of second degree can be useful, which equalizes the local mean
image value as well as the local contrast.

Since homogeneity of second degree requires the first two moments of g(x) to be inde-
pendent of the position x, the following signal model is assumed for the homogenization:

g(x) = σ(x) · s(x) + μ(x) . (9.49)

Here, the inhomogeneity b(x) has been separated into two spatially slowly-varying compo-
nents σ(x) and μ(x). The local mean image value is denoted by μ(x) and σ(x) > 0 ∀ x

refers to the local contrast. The rapidly-varying signal s(x) is assumed to be zero-mean in a
sufficiently large region U(x),

1

|U|

∫∫
U(x)

s(ξ) dξ ≈ 0 , (9.50)

and to have a spatially constant contrast:

1

|U|

∫∫
U(x)

s2(ξ) dξ ≈ constx . (9.51)

According to these assumptions, a homogenization of second degree can be performed by

ŝ(x) = H2{g(x)} =
g(x)− μ̂(x)

σ̂(x)
· constx , (9.52)

where

μ̂(x) = LP{g(x)} (9.53)

and

σ̂(x) =
√
LP{(g(x)− μ̂(x))2} (9.54)

are estimated by calculating the local spatial average. In (9.52), the subtraction of μ̂(x) cor-
responds to a homogenization of first degree and the division by σ̂(x) represents a homog-
enization of second degree. Afterwards, the mean image value of the homogenized image
ŝ(x) can be set to a spatially constant value μ0 and its contrast can be set to a spatially con-
stant value σ0 > 0:

γ(x) = σ0 · ŝ(x) + μ0 . (9.55)

Figure 9.20 is a flow chart illustrating the efficient implementation of the homogenization of
second degree in the spatial frequency domain.

Remarks:

Equation (9.52) represents a special case of the so-called Wallis operator [4, 17],

Wallis{g(x)} = b s

b σ̂(x) + s
[g(x)− μ̂(x)] + β m+ (1− β) μ̂(x) , (9.56)
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Figure 9.20. Realization of a homogenization of second degree in the spatial frequency domain.

where m and s are constants, and b ∈ [3; 25] and β ∈ [0; 2
5 ] are tuning parameters. This

operator is used as a tool for the image enhancement of scenic images. Except for an addi-
tive constant, (9.56) is (9.52) for β = 1 and b→∞. In fact, these parameter values, which
are untypical for the Wallis operator, result in an unwanted amplification of the fine de-
tails at the cost of the main features of the scenic data [8], but they are an appropriate
choice for enhancing images with textured surfaces.

The most eye-catching visual inhomogeneities are caused by spatial fluctuations of the
local mean image value and the local contrast. Therefore, in most cases, a homogeniza-
tion of second degree is sufficient to achieve a homogeneous appearance of an image. If a
homogenization of an even higher degree is desired, a homogenization of infinite degree
is proposed in [2], see page 490.

A homomorphic filtering of H1{ · } in accordance with

exp
(
F−1{H(f) ·F{logH1{g(x)}}}

)
(9.57)

is not suitable for generating H2{ · }, as the spatial average of g(x)− μ̂(x) is equal to zero.
Here, H(f) denotes the transfer function of the homomorphic high-pass filter. In order
to avoid negative arguments being passed to the logarithm function, g(x) − μ̂(x) could
be increased by a positive constant. However, in this case, there would no longer be a
multiplicative superposition of σ(x) and s(x) in the resulting image.

Example 9.11 (Homogenization of a milling texture): Figure 9.21(a) shows a homogeneously il-
luminated end-milling texture. Because of the interaction of the illumination, the surface
structure, and the direction of observation, a bright stripe appears in the image. After
performing a homomorphic filtering, the inhomogeneities are far less present but still
clearly visible, see Fig. 9.21(b). By applying a homogenization of first degree, only the
local mean gray value is equalized: the local contrast is still notably increased along the
stripe, compared to the image borders, see Fig. 9.21(c). In contrast, a homogenization of
the mean local gray value and of the local contrast yields a significantly enhanced image,
see Fig. 9.21(d), where details which were hidden before are now visible and without any
inhomogeneities.
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(a) Original image of an end-milling texture (b) Homomorphic filtering of (a)

(c) Homogenization of 1st degree of (a) (d) Homogenization of 2nd degree of (a)

Figure 9.21. Homogenization of an end-milling texture.

Example 9.12 (Homogenization of a planing texture): Figure 9.22(a) shows the image of a plan-
ing texture with a shadow in the upper left corner, which is caused by inhomogeneous
illumination. Again, the homomorphic filtering cannot completely suppress the inhomo-
geneity, see Fig. 9.22(c). By performing a homogenization of second degree, not only is
the shadow gone from the resulting image, but also the planing texture appears more
clearly than in the original, cf. Fig. 9.22(e).

Example 9.13 (Homogenization of a cork texture): As a last example of homogenization,
Fig. 9.22(b) shows a cork texture with an artificially applied inhomogeneity. The inho-
mogeneity consists of a smooth transition from a pure additive superposition on the left
image border to a pure multiplicative superposition on the right image border [2]. As
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(a) Original image of a planing texture (b) Original image of a cork texture

(c) Homomorphic filtering of (a) (d) Homomorphic filtering of (b)

(e) Homogenization of 2nd degree of (a) (f) Homogenization of 2nd degree of (b)

Figure 9.22. Suppression of inhomogeneities caused by the image acquisition.
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expected, the homomorphic filtering yields better results in the right half of the image,
where the multiplicative superposition dominates, cf. Fig. 9.22(d). On the other hand,
the left half of the image appears to have low contrast. On the contrary, the result of the
homogenization of second degree in Fig. 9.22(f) shows a consistently high contrast in the
whole image.

Homogenization of infinite degree
A homogeneity of infinite degree requires every moment of the first order statistics to be
independent of the position x. In other words, every local probability density function
fg(g;x) is required to be equal to the global, spatially-independent probability density func-
tion fg(g). Thus, a homogenization of infinite degree can be performed by equating all local
probability density functions.

The image values g have to be mapped to values γ(g;x) such that γ(g;x) is distributed
according to fγ(γ). Since the cumulative distribution functions Fγ(γ) and Fg(g;x) have to be
equal at γ(g;x) [3], in accordance with (9.8), the mapping sought is given by

Fγ(γ(g;x)) =

γ(g;x)∫
−∞

fγ(β) dβ
!
=

g∫
−∞

fg(β;x) dβ = Fg(g; x) (9.58)

⇒ γ(g;x) = F−1
γ (Fg(g; x)) . (9.59)

Here, Fg(g;x) performs a spatially-varying transformation of g to a random variable that is
uniformly distributed inside the interval [0; 1] and which is then mapped to another random
variable by F−1

γ ( · ), which is distributed according to fγ(γ), see Fig. 9.23.

Figure 9.23. Spatially-varying mapping of the image values g to γ(g;x).

In order to apply (9.59) to digital images, it has to be considered that the image values
(8.311) as well as the positions x are discrete. As local ergodicity is assumed as in (9.45), the
local probability density functions and distributions can be estimated by local histograms

h(g;x,U) = 1

|U|
∑
ε∈U

δgg(x+ε) (9.60)

and by local, cumulative histograms

H(g;x,U) =
g∑

γ=g1

h(γ;x,U) . (9.61)
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Now, the neighborhood set U is discrete and consists of |U| elements. An approximation of
the transformation (9.59) is given by

H∞{g(x);H(g)} = argmin
γ∈{q0,...,qK−1}

{|H(γ)−H(g;x,U)|} , (9.62)

where H(g) denotes a global, cumulative histogram, which can be arbitrarily set and to
which all local distributions of image values should be equal [1].

In some cases a result can be sought that is not only homogeneous but whose higher mo-
ments also have certain values. As an example, a homogeneous image could be considered
that should additionally have a histogram without skew. Therefore, [2] proposes applying a
homogenization of infinite degree and performing an Edgeworth approximation of the de-
sired global histogram. This approximation explicitly depends on the expected value, the
standard deviation, the skewness, and the kurtosis of the image values. By means of an
Edgeworth series, a fitting to the given data can be achieved (in order to reduce nonlinear
distortions [2]), as well as a specific manipulation of the mentioned specific statistic values.

9.39.3 Attenuation of random disturbances
Up to now, only methods for reducing systematic disturbances have been covered. Now, this
section will mainly focus on random disturbances. Random disturbances are modeled as a
stochastic process n(x), which is usually assumed to be weakly stationary and zero-mean:

E{n(x)} = 0 . (9.63)

Usually, the signal s(x) is assumed to be additively combined to the disturbance n(x):

g(x) = s(x) + n(x) , (9.64)

although other relations are possible in practice. It is often further assumed that the signal
s(x) and the noise n(x) are uncorrelated:

Cns(τ ) ≡ 0 . (9.65)

9.3.1 Linear filters
In image processing, often a linear filter is used, for which (8.2) always holds. In particular,
linear filter can mitigate noise if an additive disturbance n(x) is assumed as in (9.64) and the
spectral supports of the signal and the noise are disjoint:

supp
{
F{s(x)}

}
∩ supp

{
F{n(x)}

}
= ∅ . (9.66)

Furthermore, a linear filter can often produce an enhanced image, as is shown in the follow-
ing example, even when the spectra of the signal and the noise overlap.

Example 9.14 (Broadband noise): Consider a process g(x) as in (9.64) that consists of an ad-
ditive superposition of a low-pass signal s(x) and a zero-mean, broadband noise n(x).
If the two processes are weakly stationary, their essential properties can be described by
their autocorrelation functions, as described in Sec. 8.5.3. If s(x) and n(x) are uncorre-
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lated, then

rgg(τ ) = rss(τ ) + rnn(τ ) (9.67)
◦
•

Sgg(f) = Sss(f) + Snn(f) . (9.68)

Figure 9.24 illustrates the power spectral density of a possible signal and of some broad-
band noise. In fact, the noise cannot be completely suppressed by a linear filter, but
the shown (linear) low-pass filter with the transfer function H(f) at least eliminates those
components of the noise having frequencies greater than the highest frequency contained
in the signal.

Figure 9.24. Broadband noise.

The result of linear filtering is given by the convolution

k(x) = g(x) ∗∗ h(x) (9.69)

with the impulse response function h(x) of the filter; it follows from (8.300) that the result in
the spatial frequency domain is given by

Skk(f) = |H(f)|2 Sgg(f) . (9.70)

If the spectra of the signal and the noise overlap, the transfer function H(f) has to be cho-
sen to more intensely damp those frequency bands where the noise is dominant, and to be
transparent for the frequency bands dominated by the signal.

In order to obtain a quantitative formula for the design of such a filter, the quotient of the
signal-to-noise ratio after and before the filtering is used as a measure of the noise reduction:

SNR{k(x)}
SNR{g(x)} . (9.71)

Here, the signal-to-noise ratio2 is defined as the quotient of the power of the signal by the
power of the noise:

SNR :=
Signal power
Noise power

. (9.73)

2Often, signal-to-noise ratios are given in the dimensionless pseudo-unit decibel (dB):

SNR/dB = 10 log10(SNR) . (9.72)
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Therefore, the signal-to-noise ratio for the signal g(x) before the filtering is given by

SNR{g(x)} =
∫∫

Sss(f) df∫∫
Snn(f) df

. (9.74)

Similarly, the result k(x) of the filtering is given by

SNR{k(x)} =
∫∫

Sss(f) |H(f)|2 df∫∫
Snn(f) |H(f)|2 df . (9.75)

As (9.74) implies that SNR{g(x)} is independent of the transfer function H(f) of the filter,
an optimization of (9.75) is sufficient for a maximization of (9.71). The optimization has to
be performed by varying H(f) under suitable constraints, which avoid trivial results.

Before we describe linear and nonlinear filters systematically, first their potential will be
demonstrated by means of the following two examples.

Example 9.15 (Noise reduction using smoothing filters): To illustrate the effects of linear and
nonlinear smoothing filters, the reference image s(x) of the portrait (size 250×250) shown
in Fig. 9.25(a) will be used. Figure 9.25(b) shows the test image g(x), which has been
perturbed by an additive superposition of an artificial, normally distributed white noise
n(x) of variance σ2 = 900. Hence, the conditions of Example 9.14 are met.

A moving average filter, a cone low-pass filter, and a binomial low-pass filter of size
7×7 are used as linear smoothing filters, see Fig. 9.25(c)–(e). All filters will be thoroughly
introduced in Sec. 9.3.1.1. Clearly, filtering using a moving average results in the most
intense effect: abrupt differences in brightness are smoothed. The weakest smoothing is
performed by the binomial low-pass filter.

Figure 9.25(f) shows the result of using a median filter of size 7×7. The median filter is
a nonlinear method, which will be covered in Sec. 9.3.2.1. In spite of the extensive effect
of the filtering, this result still shows sharp transitions between bright and dark image
regions.

Example 9.16 (Quasiperiodic disturbances): Now, the signal

g(x) = s(x) + n(x) (9.76)

is assumed to be affected by an approximatively periodic disturbance

n(x) = a(x) cos(2πfT0 x+ φ) . (9.77)

The amplitude a(x) of the disturbance is assumed to be a narrow-band, weakly stationary
random process. The phase φ of the periodic disturbance is assumed to be a uniformly
distributed random variable, so that the PDF is given by

fφ(ϕ) =
1

2π
rect
( ϕ

2π

)
. (9.78)
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(a) Original image s(x) (b) Noisy image g(x)

(c) Moving average (d) Cone low-pass

(e) Binomial low-pass (f) Median filter (nonlinear)

Figure 9.25. Noise reduction using smoothing filters of size 7×7.
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Furthermore, the amplitude a(x) and the phase φ are assumed to be stochastically inde-
pendent. This immediately results in the disturbance n(x) being zero-mean:

E{n(x)} = E{a(x)} ·E{cos(2πfT0 x+ φ)}

= E{a(x)} · 1
2π

π∫
−π

cos(2πfT0 x+ ϕ) dϕ

︸ ︷︷ ︸
=0

= 0 . (9.79)

The autocorrelation function of the disturbance n(x) is given by

rnn(x, τ ) = E{a(x) a(x+τ ) cos(2πfT0 x+ϕ) cos(2πfT0 x+2πfT0 τ+ϕ)} (9.80)

= raa(τ ) ·
1

2π

π∫
−π

1

2

[
cos(2πfT0 τ ) + cos(4πfT0 x+ 2πfT0 τ + 2ϕ)︸ ︷︷ ︸∫

dϕ=0

]
dϕ (9.81)

= raa(τ ) ·
1

2
cos(2πfT0 τ ) (9.82)

= rnn(τ ) . (9.83)

Hence, the disturbance process n(x) is weakly stationary, which is why it can be described
using its power spectral density in the spatial frequency domain. A two-dimensional
Fourier transform of rnn(τ ) results in:

Snn(f) =
1

4
(Saa(f + f0) + Saa(f − f0)) . (9.84)

Figure 9.26 illustrates the power spectral density Sss(f) of a signal as well as the power
spectral density Snn(f) of an approximately periodic disturbance as in (9.84). Since the
disturbance is a band-pass signal, it can successfully be suppressed using a band-stop
filter (dashed curve in Fig. 9.26). The effect of the band-stop filter on the signal is in-
significant.

Figure 9.26. Attenuation of disturbances using a band-stop filter.

As a practical example of reduction of approximately periodic disturbances,
Fig. 9.27(a) shows the original image of a fingerprint on a regularly textured cotton cloth.
By suppressing the frequency components which mainly contribute to the formation of
the cloth texture (cf. Sec. 13.3.1), the result shown in Fig. 9.27(b) is obtained. In fact, this
method cannot completely suppress the disturbing texture, but the fingerprint can be
much better extracted after this filtering than before (see Fig. 9.27(a)). In order to make
this point clear, Figures 9.27(c) and (d) show the binary conversions of the upper images
when using a spatially constant threshold.



496 9. Preprocessing and Image Enhancement

(a) Original (b) Noise reduction

(c) Binary conversion of (a) (d) Binary conversion of (b)

Figure 9.27. Suppression of approximately periodic disturbances.

9.3.1.1 Low-pass filters for noise reduction
As high-pass, band-pass, and also band-stop filters can be easily constructed from low-pass
filters (see Sec. 9.3.1.6), some important linear low-pass filters will now be discussed. Suit-
able low-pass filters should meet the following requirements:

In order to leave the mean value of g(x) unaffected, the impulse response function h(x)

of spatially continuous filters has to meet the following condition:

∞∫
−∞

∞∫
−∞

h(x) dx = 1 = H(0) . (9.85)
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The equivalent condition for the discrete case hmn is

∞∑
m=−∞

∞∑
n=−∞

hmn = 1 = H00 . (9.86)

Furthermore, the impulse response function of the filter is required to be even, so that the
values on both sides of the origin have equal effects on the result of the filtering:

h(x) = h(−x) (9.87)

and for a spatially discrete filter,

hmn = h−m,−n . (9.88)

There are infinitely many filters meeting both requirements. The most important ones will
now be discussed.

9.3.1.2 Moving average filter
The moving average filter is defined by the following impulse response function:

h(x) =
1

D2
rect
( x

D

)
rect
( y

D

)
, (9.89)

where D denotes the lateral width of the window.

Properties:

⊕ Finite spatial extent: An outstanding property of the moving average is the finite extent
of its impulse response h(x), which is beneficial for the computational complexity in the
case of a spatially discrete implementation.

⊕ Separability: In many practical cases, the computational complexity of the filter-
ing of an image can be notably reduced if the corresponding impulse response func-
tion is separable—i.e., if it can be decomposed into a horizontal and a vertical one-
dimensional impulse response. Especially in the case of the moving average filter, the
two-dimensional convolution of an image g(x) with the impulse response function (9.89)
can be separated:

g(x) ∗∗ h(x) =
(
g(x)

x∗ 1

D
rect
( x

D

))
y∗ 1

D
rect
( y

D

)
, (9.90)

where
x∗ and

y∗ denote one-dimensional convolutions in the x-direction and the y-
direction, respectively.

� Secondary peaks of the transfer function H(f): ‘Good’ low-pass filters should have the
important property of more intensely suppressing high-frequency signal components
(corresponding to detailed structures in the spatial domain) than low-frequency signal
components (i.e., coarser spatial structures). This requirement is not met by the moving
average filter. According to (8.77), the transfer function of the one-dimensional moving
average filter is a sinc function. Similarly, the two-dimensional Fourier transform of (9.89)
is

H(f) = sinc(fx D) · sinc(fy D) . (9.91)
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As can be seen in Fig. 8.9, this function not only has secondary peaks, but also has neg-
ative values for certain spatial frequencies, resulting in an inversion of the contrast for
those spatial frequencies, similar to defocused optical imaging (cf. Fig. 8.35).

� Anisotropy: Furthermore, because of the unwanted anisotropy3 of the moving average,
neither its impulse response function nor its transfer function are rotationally symmetric.
This is why diagonal structures of the image are smoothened more strongly than axis-
parallel structures.

Discrete approximation of the moving average
The impulse response function (9.89) of the moving average filter can be approximated by
the following spatially discrete function, with D = LΔx = LΔy:

hmn,L =
1

L2
·
{
1 if |m|, |n| ≤ L−1

2

0 otherwise
. (9.92)

Here, the filter length L = 2K + 1, K ∈ N, is chosen to be odd, so that the center of the
impulse response is located on a point of the discrete spatial grid—this avoids displacing
the image. This filter carries out a homogeneous averaging of every image point inside a
square neighborhood of size L× L surrounding the point (m,n)T: the result of this filtering
is assigned to the center pixel (m,n)T.

The impulse response function (9.92) can be expressed in matrix notation by

hmn,L :
1

L2

⎛⎜⎝ 1 · · · 1
...

...
1 · · · 1

⎞⎟⎠
⎫⎪⎬⎪⎭︸ ︷︷ ︸

L

L =
1

L

⎛⎜⎝ 1
...
1

⎞⎟⎠
︸ ︷︷ ︸

hn,L

· 1

L

(
1 · · · 1

)
︸ ︷︷ ︸

hm,L

. (9.93)

This filter is separable, as hmn,L can be expressed as the matrix multiplication of the column
vector hn,L by the row vector hm,L.

The discrete Fourier transform of the impulse response function is the DFT transfer func-
tion. In the case of a one-dimensional impulse response function hm,3 of length L = 3, this
results in

Hk =
1

3

(
1 + e−j2π k

N + e−j2π
k(N−1)

N

)
(9.94)

=
1

3

(
1 + e−j2π k

N + e j2π k
N · e−j2πk︸ ︷︷ ︸

1︸ ︷︷ ︸
2 cos(2π k

N )

)
=

1

3
+

2

3
cos

(
2π

k

N

)
. (9.95)

The left side of Fig. 9.28 shows the DFT transfer function of the one-dimensional spatially
discrete moving average filter with length L ∈ {3, 5, 7}. The secondary peaks as well as the
negative values of the transfer function are clearly visible. For certain applications, the zeros
of the transfer function can be used to suppress strictly periodic noise, like power-line hum,
for example.

3Anisotropy means a dependence on the direction.
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Figure 9.28. DFT transfer function Hk of the one-dimensional spatially discrete moving average filter (left) and the
one-dimensional binomial low-pass filter (right). The frequency index N/2 corresponds to one-half of the sampling
frequency and therefore to the highest signal frequency which can be represented.

Figure 9.29. DFT transfer function Hkl of the moving average filter for impulse responses of sizes L×L = 3×3 (top)
and L×L = 7×7 (bottom).

Because of the separability of the moving average filter, (9.95) immediately supplies the
two-dimensional DFT transfer function of the filter of size 3×3 (cf. Fig. 9.29 top):

Hkl =
1

9

(
1 + 2 cos

(
2π

k

N

))(
1 + 2 cos

(
2π

l

N

))
. (9.96)
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Figure 9.29 shows the DFT transfer function Hkl of the moving average filter for impulse re-
sponses of sizes 3×3 (top) and 7×7 (bottom). Especially the latter shows a notable anisotropy
of the filter.

9.3.1.3 Cone low-pass filter
The cone low-pass filter is characterized by a cone-shaped impulse response function:

h(x) =
3

πD2
·Λ
(
2‖x‖
D

)
=

3

πD2
·

⎧⎨⎩ 1− ‖x‖
D

if ‖x‖ ≤ D

0 otherwise
, (9.97)

with Λ( · ) as defined in (9.35). In fact, it is rotationally symmetric and its transfer charac-
teristics are more beneficial than those of the moving average filter, but it is less practical,
as it is not separable and as the Gaussian low-pass filter is superior in almost every aspect.
Therefore, this filter will not be further discussed.

9.3.1.4 Gaussian low-pass filter
The impulse response function of the Gaussian low-pass filter is

h(x) =
1

2πD2
e−

1
2

‖x‖2
D2 (9.98)

and is shaped like a two-dimensional Gaussian ‘bell curve.’ Therefore, adjacent points are
taken more into account in the result of the averaging than distant points.

Properties:

⊕ Monotonicity of the transfer function: In contrast to the moving average filter, the Gaus-
sian low-pass filter has the beneficial property of more intensely suppressing finer struc-
tures. Hence, its transfer function

H(f) = e−
1
2D

2‖f‖2

(9.99)

which is also Gaussian, has no secondary peaks.

⊕ Isotropy: Furthermore, the filter is rotationally symmetric and therefore isotropic, i.e.,
independent of the direction.

⊕ Separability: Like moving average filtering, Gaussian low-pass filtering can be efficiently
implemented in several dimensions because of its separability.

⊕ Beneficial smoothing characteristics: The Gaussian low-pass filter has beneficial
smoothing characteristics, as no additional peaks are produced by the filtering but al-
ready existent extrema are damped [9]. However, in the strict sense, this only applies for
one dimension. Interestingly, the smoothing by a Gaussian low-pass filter is similar to
the process of cooling, which reduces local temperature differences, see Sec. 11.3.

⊕ Minimal product of width and bandwidth: Of all the low-pass filters, the Gaussian low-
pass filter has the lowest possible product of the spatial extent of its impulse response
function and its bandwidth in the spatial frequency domain4. Therefore it allows an
optimal localization of the image contents in the spatial domain and simultaneously in
the spatial frequency domain.

4This requires the spatial extent and the bandwidth of a signal to be appropriately defined, see,
e.g., [14].



9.3 Attenuation of random disturbances 501

� Infinite extent: A particular disadvantage of the Gaussian low-pass filter is its infinite
extent in both the spatial domain and the spatial frequency domain, which is why the
filter can only be implemented approximately. Therefore, abrupt borders are necessary,
which result in secondary peaks, that slightly impair the optimal characteristics of the
filter.

Discrete approximation: Binomial low-pass filter
In image processing, the binomial low-pass filter has evolved to be an efficient, spatially
discrete approximation of the Gaussian low-pass filter. The impulse response function of
the one-dimensional binomial filter is defined by

hm,L =
1

2L−1

(
L− 1

L−1
2 +m

)
, m ∈ {−L−1

2 , . . . , L−1
2 } , (9.100)

with L denoting the length of the impulse response function. The formula

D =

√
L− 1

2
Δx (9.101)

presents the relation between L and the standard deviation D of the Gaussian low-pass filter
(9.98).

Table 9.2. Pascal’s triangle used for the calculation of the binomial coefficients.

L Scaling factor Binomial coefficient Effective filter size

1 1 1 0

1/2 1 1 1

3 1/4 1 2 1
√
2

1/8 1 3 3 1
√
3

5 1/16 1 4 6 4 1 2

1/32 1 5 10 10 5 1
√
5

7 1/64 1 6 15 20 15 6 1
√
6

In accordance with Table 9.2, the binomial coefficients(
L− 1

L−1
2 +m

)
=

(L− 1)!

(L−1
2 +m)! (L−1

2 −m)!
(9.102)

can be calculated recursively using Pascal’s triangle. Hence, the binomial filter can be recur-
sively implemented. In particular,

hm,3 ∗ hm,L = hm,L+2 . (9.103)

So, for example, a filtering using the one-dimensional filter

hm,5 :
1

16

(
1 4 6 4 1

)
(9.104)
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can be equivalently performed by two successive applications of binomial filters of the form

hm,3 :
1

4

(
1 2 1

)
. (9.105)

Larger filters hm,L with L > 3 can be realized by repeated convolutions with hm,3.
Furthermore, the binomial low-pass filter can be separated, which results in

hmn,L = hm,L ·hn,L (9.106)

for the two-dimensional binomial filter. By this means, the computational complexity is
reduced. As an example, the separation of the two-dimensional binomial filter of size
L×L = 3×3 is

hmn,3 :
1

16

⎛⎜⎝ 1 2 1

2 4 2

1 2 1

⎞⎟⎠ =
1

4

⎛⎜⎝ 1

2

1

⎞⎟⎠
︸ ︷︷ ︸

hn,3

· 1

4

(
1 2 1

)
︸ ︷︷ ︸

hm,3

. (9.107)

The DFT transfer function of the one-dimensional binomial filter hm,3 of length L = 3 is

Hk =
1

2
+

1

4
e−j2π k

N +
1

4
e−j2π

k(N−1)
N︸ ︷︷ ︸

1
2 cos(2π k

N )

=
1

2
+

1

2
cos

(
2π

k

N

)
. (9.108)

The right diagram of Fig. 9.28 shows the transfer function Hk of the binomial low-pass filter
for sizes L ∈ {3, 5, 9, 17}. In every case, the frequency response is monotonically reduced
for increasing frequencies. In addition, because of the zero HN

2
= 0, the highest frequency

components of the signal are perfectly suppressed by the binomial low-pass filter.
Obviously, in contrast to the moving average filter, the Gaussian low-pass filter requires a

notably wider impulse response function in order to realize the same width of the passband.
This is caused by the square relating D and L in (9.101). In this regard, the comparison of
the moving average filter and the binomial filter with equally sized impulse responses in
Fig. 9.25(c) and (e) was not completely ‘fair.’

The DFT transfer function of the two-dimensional binomial filter of size L×L = 3×3 can
be obtained using (9.108):

Hkl =
1

4

(
1 + cos

(
2π

k

N

))(
1 + cos

(
2π

l

N

))
. (9.109)

Figure 9.30 shows the DFT transfer function Hkl for impulse responses of sizes L×L = 3×3
(top) and L×L = 5×5 (bottom). Although there is still a slight anisotropy for L = 3, the
transfer functions seem to be nearly isotropic for L ≥ 5.

As a final remark, it should be mentioned that it follows from the de Moivre–Laplace
theorem (which is a special case of the central limit theorem) that the binomial distribution
turns into a normal distribution for L → ∞ [11]. Hence, the binomial low-pass filter con-
verges asymptotically to the Gaussian low-pass filter as L→∞.

Example 9.17 (Noise reduction using low-pass filters): In order to demonstrate the effects of the
low-pass filters that have been presented, two test images were synthesized from the im-
age of the chip of Fig. 9.2(a), by adding artificial noise. Figure 9.31(a) shows the additive
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Figure 9.30. DFT transfer function Hkl of the binomial low-pass filter for impulse responses of sizes L×L = 3×3

(top) and L×L = 5×5 (bottom).

superposition of normally distributed white noise of variance σ2 = 400. For Fig. 9.31(b),
15 % of the pixels were selected randomly and were disturbed with impulse noise, the so-
called salt-and-pepper noise, i.e., the selected image points were set either to the value
255 (white) or to zero (black).

For the analysis of the moving average filter, an impulse response function of size
L×L = 5×5 has been selected. The result visible in Fig. 9.31(c) shows that this filter is
especially suitable for suppressing additive, normally distributed noise. However, ap-
plying this filter for reducing impulse noise results in an unsatisfying image, as can be
seen in Fig. 9.31(d).

Similar to the moving average filter, the binomial filter yields good results when used
to mitigate additive, normally distributed noise, see Fig. 9.31(e). In order to compare both
filters, the same effective filter width5 (L×L = 9×9) is used for the binomial filter, cf. Table
9.2 and Fig. 9.28. On the contrary, it is confirmed by Fig. 9.31(f) that linear filters are not
suitable for reducing impulse noise.

5For the definition of the effective filter width, the coefficients of the impulse response function are
considered as discrete probability values. The effective filter width is given by 2σ, where σ denotes the
standard deviation of the probability values.
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(a) Image with Gaussian noise (b) Image with impulse noise

(c) Moving average applied to (a) (d) Moving average applied to (b)

(e) Binomial filtering applied to (a) (f) Binomial filtering applied to (b)

Figure 9.31. Noise reduction using local low-pass filters.
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9.3.1.5 Ideal low-pass filters
The transfer function of the ideal low-pass filter is characterized by an abrupt transition from
the pass-band to the stop-band:

H(f) = rect

(
‖f‖
F

)
. (9.110)

Here, the bandwidth is denoted by F , and F/2 represents the cutoff frequency of the filter.
The corresponding impulse response is obtained by an inverse Fourier transformation:

h(x) =
F

2
· J1(πF‖x‖)‖x‖ . (9.111)

In this equation, J1 denotes the Bessel function of the first kind (cf. Sec. 2.2.6).

Properties:

⊕ Ideal suppression of high frequencies: As the transition from the pass-band to the stop-
band is infinitely steep, the ideal low-pass filter is able to perfectly suppress frequencies
greater than the cutoff frequency F/2.

⊕ Isotropy: Furthermore, this filter is independent of the direction, as its impulse response
function and its transfer function are rotationally symmetric.

� Impulse response of infinite length: As the impulse response function h(x) of the ideal
low-pass is infinitely long, its implementation costs are infinite. Spatially limiting the
impulse response function would impair the optimality of the filter’s frequency charac-
teristics.

� Overshoots at jump discontinuities: The application of the ideal low-pass filter to sig-
nals with jump discontinuities results in overshoots, so that such filters can hardly be
used in the context of many image processing tasks. This effect is also known as the
Gibbs phenomenon [14].

Discrete approximation of the ideal low-pass filter
As the impulse response function of the ideal low-pass filter is spatially infinite, an imple-
mentation in the spatial frequency domain using the DFT seems to be sensible. The DFT
transfer function of the ideal low-pass filter is given by

Hkl =

{
1 in the pass-band (low frequencies)
0 in the stop-band (high frequencies)

. (9.112)

Still, the intense end effect in the spatial domain caused by the weakly (∝ ‖x‖− 3
2 ) decaying

impulse response function (9.111) poses a problem. An improvement can be achieved by
smoothing the transfer function in the spatial frequency domain.

Example 9.18 (Ideal low-pass filtering using the DFT): The image of Fig. 9.32(a) shows distinct
lines and edges. After a strict band-limitation of the original image using an ideal low-
pass filter in the spatial frequency domain, the resulting image Fig. 9.32(b) shows notable
overshoots near every edge. These ringing artifacts are caused by the so-called Gibbs
phenomenon.
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(a) Original image (b) Ideal low-pass filtering

Figure 9.32. Ideal low-pass filtering: (a) Original image; (b) Result obtained by ideal low-pass filtering.

9.3.1.6 Constructing high-pass filters, band-stop filters, and band-pass filters from a
given low-pass filter

Up to now, only low-pass filters have been considered for noise reduction. By using so-
called filter transformations, high-pass filters, band-stop filters, and band-pass filters can
be constructed from a given low-pass filter. By this means, the design of all of these types of
filters can be reduced to the design of low-pass filters. According to the procedure illustrated
in Fig. 9.33, simple linear high-pass filters hHP(x), band-stop filters hBS(x), and band-pass
filters hBP(x) can be constructed from a given low-pass filter hLP(x).

LP: hLP(x) Impulse response

�

�

•

�

HP: hHP(x) = δ(x)− hLP(x) ◦=• HHP(f) = 1−HLP(f)

BS: hBS(x) = δ(x)− hBP(x) ◦=• HBS(f) = 1−HBP(f)

BP: hBP(x) = hLP(x) · 2 cos(2πfT0 x)

◦
•

HBP(f) = HLP(f − f0) +HLP(f + f0)

Figure 9.33. Creating simple linear high-pass filters, band-stop filters, and band-pass filters from a given low-pass
filter.

9.3.1.7 Excursus: The Z-transform
By applying the Z-transform, a series of values (a discrete signal) is turned into a complex
polynomial.
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9.3Definition 9.3: The Z-transform
The Z-transform Z{ · } maps the discrete signal gn ∈ R, n ∈ Z to a complex-valued polyno-
mial p(z) : C→ C according to the following formula:

Z{gn} := p(z) =

∞∑
l=−∞

gl z
−l, z ∈ C . (9.113)

�

The Z-transform is commonly used for analyzing discrete-time signals. It is rarely used
for analyzing images, which are spatially-dependent signals. On the one hand, the two-
dimensional generalization

Z{gmn} := p(z1, z2) =
∞∑

m=−∞

∞∑
n=−∞

gmnz
−m
1 z−n

2 , p(z1, z2) : C
2 → C , (9.114)

of the Z-transform is defined for the four-dimensional domain C2, which is not intuitive and
requires a great deal of space. On the other hand, there is no fundamental theorem of algebra
for two dimensions, that would ensure a factorization in terms of roots.

Nevertheless, the Z-transform will be covered briefly, since for separable signals gmn =

pm qn both factors can be analyzed with the one-dimensional Z-transform.
The examples used in this excursus will show that the discrete convolution of signals can

be expressed in the Z-domain by the multiplication of polynomials. Furthermore, longer
signals can be decomposed into a convolution of shorter signals in the Z-domain.

Example 9.19 (Z-transform of discrete signals): Suppose two discrete signals, cn and dn:

cn :=

⎧⎪⎨⎪⎩
−1 if n = 0

1 if n = 1

0 otherwise
, dn :=

⎧⎪⎨⎪⎩
1 if n = −1, n = 1

2 if n = 0

0 otherwise
. (9.115)

Now, applying the Z-transform to cn and dn yields

Z{cn} = pc(z) = −z0 + z−1 (9.116)

Z{dn} = pd(z) = z1 + 2z0 + z−1 . (9.117)

Informally, the inverse Z-transform can be performed by collecting the coefficients of the
corresponding polynomials—for example, consider the transitions from (9.116), respectively,
(9.117) to (9.115).

9.1Theorem 9.1: Convolution theorem of the Z-transform
The Z-transform of the convolution of two discrete signals gn, hn is equal to the product of
their Z-transforms:

Z{gn ∗ hn} = Z{gn} ·Z{hn} . (9.118)

The proof is given in [7], for example. �
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Example 9.20 (Convolution of two discrete signals): If the result of the convolution gn = cn ∗ dn
of the two signals cn and dn of Example 9.19 is sought, it can be obtained using their Z-
transforms pc(z), pd(z) and the convolution property (9.118):

Z{cn ∗ dn} = Z{cn} ·Z{dn} = pc(z) · pd(z) (9.119)

= (−1 + z−1)(z + 2 + z−1) = −z − 1 + z−1 + z−2 . (9.120)

The coefficients immediately yield the result of the convolution:

gn = cn ∗ dn =

⎧⎪⎨⎪⎩
−1 if n = −1, n = 0

1 if n = 1, n = 2

0 otherwise
. (9.121)

Example 9.21 (Decomposition of a signal using the Z-transform): Assume that a signal gn is
given by its Z-transform:

Z{gn} = pg(z) = −z − 1 + z−1 + z−2 . (9.122)

Suppose that gn is to be decomposed into a convolution of shorter signals. To this end,
pg(z) can be factored into a product of shorter polynomials:

pg(z) = −z − 1 + z−1 + z−2 =
−z3 − z2 + z + 1

z2
(9.123)

=
(z2 + 2z + 1)(1− z)

z2
=

(z + 1)2(1− z)

z2
(9.124)

= (z + 1)︸ ︷︷ ︸
=:Z{an}

(1 + z−1)︸ ︷︷ ︸
=:Z{bn}

(−1 + z−1)︸ ︷︷ ︸
=:Z{cn}

. (9.125)

Hence, a decomposition of gn into the signals

an =

⎧⎪⎨⎪⎩
1 if n = −1
1 if n = 0

0 otherwise
, bn =

⎧⎪⎨⎪⎩
1 if n = 0

1 if n = 1

0 otherwise
(9.126)

and

cn =

⎧⎪⎨⎪⎩
−1 if n = 0

1 if n = 1

0 otherwise
(9.127)

is possible:

gn = an ∗ bn ∗ cn . (9.128)

Accordingly, the Z-transform can be used to decompose a linear shift-invariant system into
a series of simpler systems of the same kind with shorter impulse responses.



9.3 Attenuation of random disturbances 509

9.3.2 Noise reduction using nonlinear filters
Most of the linear filters covered until now have a negative effect on the smoothing of images
that contain edges or impulse noise: because of their use of weighted averaging, low-pass
filters cause a ‘blurring’ of the spatial image information. In the case of abrupt transitions of
image values, even the whole neighborhood U(x) of the point x can be blurred.

Example 9.22 (Moving average filter): Consider the moving average filter

km =
1

5

2∑
ν=−2

gm−ν (9.129)

of the discrete one-dimensional signal shown in Fig. 9.34. In this example, the neighbor-
hood has a width of |U| = 5. If there is an impulse distortion gm → ∞ at the position m,
it will affect the whole neighborhood km−i →∞, i ∈ {−2,−1, 0, 1, 2} after the averaging.

. . .

Figure 9.34. Susceptibility of the moving average filter.

A completely different approach to smoothing images is based on sorting the values inside
the neighborhood U . This method allows the construction of edge-preserving smoothing
filters, which, however, have nonlinear transfer characteristics. An important class of non-
linear smoothing filters are the rank filters. These include the median filter, which represents
the most important filter of this class and will therefore be covered in the following.

9.3.2.1 The median filter
The median filter is based on sorting the image values inside a neighborhood Um of the
processed image point:

{gm−μ|μ ∈ U} −−−−→
Sorting

mg(−K) ≤ . . . ≤ mg(0)︸ ︷︷ ︸
Median

≤ . . . ≤ mg(K)
(9.130)

with

U := {−K,−K + 1, . . . , 0, . . . ,K} , K ∈ N . (9.131)

After the sorting, the median, i.e., the value in the middle of the resulting list, is selected:

km = medU{gm} = mg(0) . (9.132)
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Due to the sorting, potential outliers are moved to the borders of the list. If there are fewer
than K +1 positive outliers gm−μ →∞ and fewer than K +1 negative outliers gm−μ → −∞
inside the neighborhood Um, the resulting median km remains finite. In this case, the outliers
do not directly affect the km. In fact, the existent outliers affect the sorting process, but this
effect is practically rather insignificant compared to their impact on linear smoothing filters.

In order to realize a two-dimensional median filter, it is sufficient to define the neigh-
borhood U as a two-dimensional set of points. An example with the size L×L = 3×3 is
illustrated in Fig. 9.35.

Input image gmn Output image kmn

Sorted list

Sorting Selecting the median
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Figure 9.35. Median filter of size L×L = 3×3 (adapted from [5]).

Properties:

⊕ Edge-preserving: the median filter preserves image structures which are wider than K

pixels and especially step edges—i.e., jump discontinuities between two levels of image
values (cf. Sec. 11.2).

⊕ Optimal reduction of impulse noise: furthermore, the median filter allows an optimal
reduction for impulse noise (salt-and-pepper noise).

� Unsuitable for additive Gaussian noise: in the case of additive noise that is normally
distributed, linear filters should be chosen to achieve optimal noise reduction.

In order to point out the beneficial characteristics of the median filter with respect to the
reduction for impulse noise while preserving edges, Fig. 9.36 shows a comparison of the
moving average filtering with the median filtering.

Example 9.23 (Noise reduction using the median filter): Figure 9.37 shows the result of the me-
dian filtering of the noisy test images of Fig. 9.31(a) and (b). In the case of additive noise
that is normally distributed, the median filter only yields moderate results compared to
the linear smoothing filters, see Fig. 9.37(a). On the other hand, impulse noise is effec-
tively reduced by the median filter and the edge information is preserved, as can be seen
in Fig. 9.37(b). However, if there are many outliers, the median filter fails.

In-depth study of the median filter: As a nonlinear filter, the median filter cannot be ana-
lyzed by means of linear system theory. Nevertheless, in order to gain a deeper understand-
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. . .

. . .

. . .

Figure 9.36. Comparison of the moving average and the median filtering.

(a) Median filtering of 9.31(a) (b) Median filtering of 9.31(b)

Figure 9.37. Noise reduction using a median filter of size L×L = 3×3.

ing of this important filter, its optimality will be shown, in the sense of the minimum, mean
absolute difference from the filtered values, in other words, in the sense of minimizing an
l1-metric.

In contrast, it will be shown that the moving average filter introduced in Sec. 9.3.1.2 is
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optimal in terms of having the minimal mean squared distance, and is therefore optimal in
the sense of an l2-metric (Euclidean metric).

9.2 Theorem 9.2: Optimality of the median filter
Suppose a, b, gmn ∈ R, then one has

medU{gmn} = argmin
a∈Vmn

{
L∑

i=1

|a− ai|
}

(9.133)

with

Vmn := {gm−μ,n−ν |(μ, ν) ∈ U} , L := |Vmn| . (9.134)

�

Proof 9.1 (Optimality of the median filter): W.l.o.g., a fixed (m,n), i.e., a result of the median
filtering of the position (m,n), is assumed. Therefore, the subscripts (m,n) of V are omit-
ted, to simplify matters.

In this sketch of a proof, we assume ai �= aj for i �= j and L to be odd. The function
J(a) is defined as

J(a) :=

L∑
i=1

|a− ai| , a ∈ V = {a1, a2, . . . , aL} . (9.135)

Now, the following has to be shown:

argmin
a∈V

J(a) = medU{gmn} . (9.136)

Therefore, the derivative of J(a) will be calculated and set equal to zero. The required
derivative of the absolute value | · | can be expressed using the sign function sgn( · ) de-
fined in (8.81):

dJ(a)

da
=

L∑
i=1

sgn(a− ai) =
∑

{i|ai>a}
(−1) +

∑
{i|ai=a}

(0) +
∑

{i|ai<a}
(1) . (9.137)

Setting this expression equal to zero results in

dJ(a)

da

!
= 0⇔ |{i|ai > a}| = |{i|ai < a}| = L− 1

2
(9.138)

⇔ a = medU{gmn} . (9.139)

Hence, the size of the set of elements that are greater than the element sought has to be
equal to the size of the set of elements that are less than the element sought. This is why
the element sought has to be the median.

A possible generalization for vectorial values is given by

medU{gmn} = argmin
a∈RQ

{
L∑

i=1

‖a− ai‖1

}
, (9.140)
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with

ai ∈ Vmn := {gm−μ,n−ν |(μ, ν) ∈ U} , L := |Vmn| . (9.141)

For the sake of comparison, we will now consider the moving average that is the arithmetic
mean of the points of the set Vmn corresponding to the position (m,n).

9.3Theorem 9.3: Optimality of the moving average
One has

āU = argmin
a∈R

{
L∑

i=1

(a− ai)
2

}
(9.142)

with

āU :=
1

L

L∑
i=1

ai, ai ∈ Vmn := {gm−μ,n−ν |(μ, ν) ∈ U} , L := |Vmn| . (9.143)

�

Proof 9.2 (Optimality of the moving average): The function J(a) is defined by

J(a) :=

L∑
i=1

(a− ai)
2, ai ∈ V = {a1, a2, . . . , aL} . (9.144)

Now, it has to be shown that

āU = argmin
a∈R

J(a) . (9.145)

The proof is completed by finding the derivative of J(a) with respect to a and by calcu-
lating its zeros:

dJ(a)

da

!
= 0 ⇔ 2

L∑
i=1

(a− ai) = 0 (9.146)

⇔ a = āU =
1

L

L∑
i=1

ai . (9.147)

As the result of the moving average filter is quadratically affected by differences, single
outliers can have a notable impact on the filtering. In contrast, the median filter is only
linearly affected by differences, so that single outliers have less influence on the result of the
filtering. This is another explanation why the median filter is more robust to outliers than
the moving average.

9.3.2.2 Filters based on order statistics
Order statistics can be used as a basis for constructing filters that are not susceptible to out-
liers. Now we will introduce the trimmed mean filter, which—besides the median filter—is
another filter of this kind.
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The trimmed mean filter
Similar to the median filter, the first step of the trimmed mean filter is to sort the image
values of a neighborhood U . Here, the 2(K − J) most extreme values are considered as
outliers. All other image values are subject to a linear averaging:

mg(−K) ≤ . . . ≤ mg(−J) ≤ . . . ≤ mg(0)︸ ︷︷ ︸
Median

≤ . . . ≤ mg(J)

︸ ︷︷ ︸
Averaging

≤ . . . ≤ mg(K) . (9.148)

Therefore, the result of the trimmed mean filtering is given by

km =
1

2J + 1

J∑
−J

mg(i) . (9.149)

Trimmed mean filtering can be considered as a generalization of moving average filtering
on the one hand, and of median filtering on the other hand, as both represent special cases:

Choosing J = 0 results in the median filter.
Choosing J = K results in the arithmetic mean.

9.3.2.3 Bilateral filters
The bilateral filtering constitutes a powerful approach to edge-preserving smoothing [15].
Similar to linear low-pass filters, the bilateral filter is based on a weighted averaging of the
spatially adjacent image values. According to Sec. 9.3.1, this process can be represented by
convolving the input image with the filter h(x):

k(x) =

∞∫
−∞

∞∫
−∞

g(ξ)h(x− ξ) dξ

∞∫
−∞

∞∫
−∞

h(ξ) dξ

. (9.150)

Here, the factor in the denominator results in an unchanged mean value after the filtering,
cf. (9.85). In order to avoid the smoothing of edges by the filter, only image points having
similar image values are considered by the bilateral filter. This can be achieved by using an
additional filter kernel f(g):

k(x) =

∞∫
−∞

∞∫
−∞

g(ξ)h(x− ξ) f(g(x)− g(ξ)) dξ

∞∫
−∞

∞∫
−∞

h(x− ξ) f(g(x)− g(ξ)) dξ

. (9.151)

Again, the scaling caused by the denominator ensures that the resulting mean image value
remains unchanged. Often, Gaussian functions are used for the filter kernels h(x) and f(g).

As only similar image values are filtered, the bilateral filter is not suitable for reducing
impulse noise. However, very good results can be achieved in the case of Gaussian noise.
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By extending (9.151) to vectorial image signals g(x), even color images or multispectral
images can be processed by the bilateral filter:

k(x) =

∞∫
−∞

∞∫
−∞

g(ξ)h(x− ξ) f(g(x)− g(ξ)) dξ

∞∫
−∞

∞∫
−∞

h(x− ξ) f(g(x)− g(ξ)) dξ

. (9.152)

By performing the filtering of color images in the CIELAB color space, color deviations in the
transitions between different colors can be avoided [15]. In this case, the function f measures
the similarity between the image values by calculating the Euclidean distance in the CIELAB
color space.

However, directly evaluating the double integral in (9.151) and (9.152) is computationally
suboptimal. An efficient implementation of the bilateral filter is presented in [13]. One
should note that the filtering of a scalar spatial signal g(x) with a (nonlinear) bilateral filter
can be expressed via a linear filtering of a binary signal

b(x, g) = δgg(x) (9.153)

in a combined space of position x and value g [12].

Example 9.24 (Noise reduction using the bilateral filter): Figure 9.38 shows the results of the
bilateral filtering of the test image of Fig. 9.31(a), which is affected by additive noise. For
the four filtering results, different parameters were used for the filter kernels. Prior to
the filtering, the image values were scaled to the interval [0, 1]. Compared to the linear
filters of Fig. 9.31(c) and (e), the bilateral filter results in an effective reduction for the
noise while preserving the edge information.

Example 9.25 (Bilateral filtering of color images): Figure 9.39 shows the results of the bilat-
eral filtering of the RGB color images of Figs. 8.32(a) and 9.19(a). In order to avoid color
deviations along the edges, the filtering was performed in the CIELAB color space. Espe-
cially areas of weak intensity textures (grass, snow, river, facades) appear notably more
homogeneous in the result: distinct edges are still clearly visible.

9.49.4 Image registration
The registration of two images means the matching of two different images with respect to
spatial position and image values. Image registration is particular important for the fusion
of multiple images into a single image of high quality and/or a larger field of view.

W.l.o.g. two images g1 and g2 are assumed to at least partially show the same object or
the same scene. By determining corresponding pairs of image points, i.e., image points in g1
and g2 that show the same object point, a mapping can be constructed, which geometrically
and radiometrically maps the two images to each other. This procedure is called image
registration. Formally, two images can be registered by applying two transformations TI

and TG, which perform the mapping of the values and of the positions.
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(a) σh = 2, σf = 0.1 (b) σh = 2, σf = 0.3

(c) σh = 5, σf = 0.1 (d) σh = 5, σf = 0.3

Figure 9.38. Results of the filtering of the test image of Fig. 9.31(a) using bilateral filters with different filter widths.
For this example, Gaussian kernels h(x) and f(g) with standard deviations σh and σf were used.

The transformation formulas can be estimated by transforming one of the two images in
such a way that a certain distance D between the images is minimized.(

T̂I, T̂G

)
= argmin

TI,TG

{D(g1(x), TI[g2(TG[x])])} (9.154)

Example 9.26 (Registration of two images): Figure 9.40 shows two images of a cylinder head,
which have been registered to each other.

By means of the estimated transformations, the two images can then be exactly superposed
with respect to their values and to the positions, so that, for example, they can be subjected
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(a) σh = 5, σf = 0.1 (b) σh = 5, σf = 0.15

Figure 9.39. Results of the bilateral filtering of the color images of Fig. 8.32(a) and 9.19(a). The Gaussian kernels h(x)
and f(g) were used with the standard deviations σh and σf . The filtering was performed in the CIELAB color
space.

to a pointwise image fusion:

r(x) = Φ(g1(x), g̃2(x)) = Φ
(
g1(x), T̂I

[
g2

(
T̂G[x]

)]
︸ ︷︷ ︸

g̃2(x)

)
. (9.155)

Here, Φ ( · ) denotes a pointwise image fusion operator and r(x) denotes the result of the
image fusion.

Example 9.27 (Fusion of registered images): Figure 9.41 shows how a panoramic image can be
created by fusing two registered images of one and the same object.

Figure 9.40. Two images of one and the same object. By determining a set of pairs of image points that correspond
to the same object point, the two images can be registered, i.e., the required geometrical and radiometric mapping
can be constructed.
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(a) (b)

(c)

Figure 9.41. Fusion of a series of images of a milling cutter (a) in the radial direction (b), acquired for different angles
of rotation. The result of the fusion (c) is a panoramic image of the whole circumference of the milling cutter.
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10 Image Restoration
The image enhancement methods covered in Chap. 9 mainly considered subjective or qual-
itative criteria. In particular, the visual interpretability of the results was of greater impor-
tance than the ‘conservation of the original image traits’. This motivation resulted in mostly
heuristic methods, which even altered the images to form pseudo-color images or false-color
images (Sec. 9.1.3).

In contrast, image restoration tries to reconstruct an original image by using a signal
model of the image degradation (Sec. 10.1). An obvious approach is to use these signal
models in order to design an inverse filter, which allows an ‘inversion’ of the image degra-
dation (Sec. 10.2). However, better results can usually be achieved using the Wiener filter
(Sec. 10.3), the geometric mean filter (Sec. 10.4), or constraint filters (Sec. 10.5). In all cases,
mainly quantitative criteria for preserving the ‘original image traits’ are of importance and
are optimized in order to achieve an adequate reconstruction. Section 10.6 introduces matrix
notation for restoration problems and Sections 10.7 and 10.8 cover two special cases of image
restoration, the restoration for participating media and spatially varying image restoration,
respectively.

10.110.1 Signal model
Figure 10.1 shows the linear signal model on which the image restoration methods of this
chapter are based. The input is given by the original signal s(x), which might be an
idealization—i.e., a ‘perfect’ signal—which cannot be measured directly. By using an ideal
acquisition system, it would be possible to directly and faultlessly capture the original signal
s(x). Instead, in practice the signal s(x) is distorted by a non-ideal acquisition system, which
in most cases can be described by an LSI system having the impulse response function h(x).
For example, defocused optical systems (Example 10.1) as well as systems that produce a
blurred image because of a motion of the camera or of the object (Examples 10.2 and 10.3),
are non-ideal acquisition systems. Furthermore, the distorted signal is affected by additive
noise n(x), so that the signal g(x) that is actually observed by the acquisition system is given
by

g(x) = s(x) ∗∗ h(x) + n(x) . (10.1)

Now, the restoration problem posed is to use an adequate restoration filter with an impulse
response function of v(x) in order to extract an estimation ŝ(x) of the original signal out of

Figure 10.1. Signal model for image restoration.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_10,
© Springer-Verlag Berlin Heidelberg 2016
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the observed signal g(x). The estimation should approximate the original s(x) as good as
possible.

Figure 10.1 and (10.1) immediately result in

ŝ(x) = v(x) ∗∗ g(x) = v(x) ∗∗ (s(x) ∗∗ h(x) + n(x)) (10.2)

and by applying a two-dimensional Fourier transform,

Ŝ(f) = V (f)S(f)H(f) + V (f)N(f) . (10.3)

Typically, the transfer function H(f) of the non-ideal imaging system has zeros in the support
supp{S(f)} of the spectrum S(f). In general, it is therefore impossible to achieve an exact
restoration of s(x), even if n(x) ≡ 0.

The following examples will show different formations of non-ideal imaging.

Example 10.1 (Defocusing): Defocused optical imaging has already been covered in Sections
3.4, 8.3.4 and 8.4. In this case, a circularly shaped aperture is considered, see Fig. 10.2.
Additionally, diffraction effects are neglected. By assuming a lossless imaging, Equation
(8.227) results in the transfer function

H(f) =
2

πε
· J1(πε‖f‖)‖f‖ , (10.4)

with ε denoting the diameter of the blur disk in the image plane and J1 denoting the
Bessel function of the first kind, cf. (2.169). The transfer function H(f) of a defocused
optical imaging has its zeros on concentric circles, see Fig. 10.3.

Figure 10.2. Defocused optical imaging.

Example 10.2 (Motion blur): For the present example, the image sensor is assumed to be lin-
early, uniformly moved in the image plane, as is the case if the camera is moved perpen-
dicularly to the optical axis during image acquisition. These assumptions approximately
hold for the setup shown in Fig. 10.4, where a two-dimensional measurement of the ve-
locity is to be obtained [6]. The distance l covered in the image plane is given by

l := v ·T = ‖l‖ · e (10.5)
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Figure 10.3. Transfer function of defocused optical imaging. As it is rotationally symmetric, it is sufficient to consider
a radial section of H(f).

with

e =
l

‖l‖ and e⊥ :

{
‖e⊥‖ = 1

eTe⊥ = 0
, (10.6)

with v denoting the velocity in the image plane and T denoting the exposure time. For a
perfectly homogeneous motion, the corresponding non-ideal imaging is represented by
the following impulse response h(x) and transfer function H(f):

h(x) =
1

‖l‖ rect
(
xTe

‖l‖

)
· δ(xTe⊥) (10.7)

◦
•

H(f) = sinc(fTl) . (10.8)

Hence, the motion blur results in zeros located on parallel lines, see Fig. 10.5(d). By
evaluating the distances of the lines, the velocity v can be measured in two dimensions
(cf. Sec. 13.3) if the exposure time T is known.

Example 10.3 (Motion blur): By considering arbitrary, planar, translational motions, this ex-
ample presents a generalization of Example 10.2. During the exposure process t ∈ [0, T ],
the sensor is moved on the path x0(t) in the image plane. The observed image is given
by

g(x) = s(x) ∗∗ h(x) + n(x) =

T∫
0

s(x− x0(t)) dt+ n(x) . (10.9)

The transfer function of the imaging affected by motion blur can be expressed as follows:

H(f) = F

⎧⎨⎩
T∫

0

s(x− x0(t)) dt

⎫⎬⎭S(f)−1 . (10.10)
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Figure 10.4. Two-dimensional measurement of velocity
by capturing the motion of the vehicle relative to the
street (source: J. Horn [6]).

(a) No motion (ideal imaging) (b) Magnitude spectrum of (a)

(c) Moving street (distorted imaging) (d) Magnitude spectrum of (c)

Figure 10.5. Motion blur. In order to reduce the dynamics, logarithms have been applied to the magnitude spectra
(b) and (d) (source: D. vom Stein).
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Swapping the order of integration and Fourier transform and using the shift property
(8.57) of the Fourier transform results in

F

⎧⎨⎩
T∫

0

s(x− x0(t)) dt

⎫⎬⎭ =

T∫
0

F{s(x− x0(t))} dt (10.11)

=

T∫
0

S(f) e−j2πfTx0(t) dt . (10.12)

Finally, by inserting (10.12) into (10.10), the following result can be obtained for the trans-
fer function H(f) and the impulse response function h(x) of optical imaging affected by
motion blur:

H(f) =

T∫
0

e−j2πfTx0(t) dt (10.13)

•
◦

h(x) =

T∫
0

δ(x− x0(t)) dt . (10.14)

Example 10.7 demonstrates the restoration of an image affected by motion blur.

Example 10.4 (Atmospheric turbulence): If there is atmospheric turbulence between the imag-
ing optics and the scene which is to be imaged, high spatial frequencies are damped. For
a long exposure time, this damping can be described by an optical transfer function of
the following kind [7]:

H(f) = exp
(
−k ‖f‖

5
3

)
. (10.15)

As, in this case, the transfer function H(f) has no zeros, a restoration is much easier than
for a defocused imaging. The factor k is increased for increasing turbulence. In addition
to depending on the strength of the turbulence, k depends on the focal length and the
wavelength.

10.210.2 Inverse filter
The inverse filter is the result of minimizing the quadratic difference between the restoration
result ŝ(x) filtered with h(x) and the observation g(x):

∞∫∫
−∞

(ŝ(x) ∗∗ h(x)− g(x))
2
dx

=

∞∫∫
−∞

(g(x) ∗∗ v(x) ∗∗ h(x)− g(x))
2
dx

!−→ Min . (10.16)
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By applying the Plancherel theorem, this equation can be transformed into the spatial fre-
quency domain:

∞∫∫
−∞

|G(f)V (f)H(f)−G(f)|2 df !−→ Min . (10.17)

In order to minimize this integral, the integrand has to be as small as possible for every
spatial frequency f . This is the case if and only if the transfer function of the restoration filter
V (f) is chosen as

V (f) = H−1(f) . (10.18)

This transfer function immediately explains the term ‘inverse filter.’ This optimization ne-
glects the effect of the noise n(x) of the signal model shown in Fig. 10.1.

The Fourier transform of the restoration result is given by

Ŝ(f) = S(f) +
N(f)

H(f)
. (10.19)

Finally, an inverse Fourier transform yields

ŝ(x) = s(x) + F−1

{
N(f)

H(f)

}
. (10.20)

This equation shows that the zeros of the transfer function H(f) of the inverse filter greatly
amplify the noise affecting the corresponding spatial frequencies. If h(x) has low-pass char-
acteristics and if n(x) represents a broadband signal, the inverse filter results in an amplifi-
cation of the high-frequency noise. This is why, in practice, the following modified transfer
function is often used for the inverse filter:

V (f) =
H∗(f)

ε+ |H(f)|2 . (10.21)

Here, the parameter ε > 0 is used to limit the amplitude of the transfer function V (f). The
following cases can be considered.

If |H(f)|2 � ε, the modified filter operates like an inverse filter:

V (f) ≈ H−1(f) . (10.22)

If |H(f)|2 = ε, then

V (f) =
1

2
H−1(f) . (10.23)

If H(f) = 0, i.e., at the zeros of the transfer function, the modification (10.21) results in a
completely blocking restoration filter V (f):

V (f) = 0 . (10.24)

Section 10.3 shows that the modified inverse filter (10.21) can also be interpreted as a special
case of the Wiener filter for a constant signal-to-noise ratio.

The following examples demonstrate the effect of the inverse filter on RGB color images
g(x). In order to achieve an image restoration, the inverse filter V (f) has to be applied to
each of the three color channels separately.
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Example 10.5 (Restoration of a distorted image): Figure 10.6 shows an example of image
restoration using the inverse filter. In order to simulate non-ideal imaging, a Gaussian
low-pass filter with the spatial cutoff frequency fc = 80 was applied to a low-noise RGB
color image s(x) of size 512×512. In addition, normally distributed white noise n(x) with
a very low variance (σ2 = 0.01) was additively superposed on the result of that filtering.
The resulting image g(x) is shown in Fig. 10.6(a); the transfer function H(f) of the Gaus-
sian low-pass filter is illustrated in Fig. 10.6(b). In order to allow a better interpretation of
the filter, a horizontal section of H(f) through the origin of the spatial frequency domain
is drawn as a dotted line in Fig. 10.6(b).

During the restoration of g(x) with the inverse filter (10.18), the high-frequency com-
ponents of the noise n(x) are massively amplified because

V (f)� 1 for ‖f‖ � fc (10.25)

(cf. Fig. 10.6(d)). Therefore, despite the barely existing noise n(x), the restoration re-
sult shown in Fig. 10.6(c) is affected by numerous distortions and is not satisfying at all.
Mainly because of its enormous dynamic range, the transfer function V (f) illustrated in
Fig. 10.6(d) seems to be dark except for the border areas: the lowest value V (0) = 1 is
located at the origin (f = 0) of the spatial frequency domain.

The modified inverse filter (10.21) with ε > 0 blocks for H(f) → 0—i.e., for high spa-
tial frequencies—and therefore achieves much better results than (10.18). In the present
case, the result shown in Fig. 10.6(e) can barely be distinguished from the noise-free orig-
inal s(x). Essentially, the transfer function V (f) of the modified inverse filter (Fig. 10.6(f))
has band-pass characteristics but the filter can still be passed by low spatial frequencies.

Example 10.6 (Image restoration for defocusing): Another practically relevant application of
inverse filtering is the restoration of defocused images. In order to demonstrate the ap-
proach, a low-noise, sharp RGB color image s(x) of size 512×512 (Fig. 10.7(a)) has been
convolved with a circular disk having a diameter of 9 pixels, in order to simulate a defo-
cused imaging. The result of the convolution has then been additively superposed with
a normally distributed white noise n(x) having a variance of σ2 = 25, see Fig. 10.7(b).

Because of the zeros of the transfer function H(f) of the defocused optical imaging,
a pure inverse filter in accordance with (10.18) is not suitable. Instead, two differently
parameterized versions of the modified inverse filter (10.21) have been used. The pa-
rameters were chosen to be ε = 0.001 and ε = 0.01, see Fig. 10.7(c) and (d). Obviously,
by choosing a greater value of ε, the inverse filter blocks for small values of the trans-
fer function H(f) and achieves an efficient mitigation of the noise of the corresponding
spatial frequencies. However, in exchange, the associated components of the desired sig-
nal, which in the present case are fine image structures, are also attenuated. This is why
Fig. 10.7(c) appears to be sharper than Fig. 10.7(d), despite the distinctive noise.

These considerations are confirmed by an analysis of the corresponding magnitude
spectra shown in Fig. 10.7(e) and (f). For better visualization, the amplitudes of the mag-
nitude spectra have been clipped to 1� of the maximum value.



530 10. Image Restoration

(a) Simulated observation g(x) (b) Transfer function H(f) (ρ = 80)

(c) Inverse filtering ŝ(x) (ε = 0) (d) Transfer function V (f) (ε = 0)

(e) Inverse filtering ŝ(x) (ε = 0.001) (f) Transfer function V (f) (ε=0.001)

Figure 10.6. Restoration of a distorted image using an inverse filter.
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(a) Ideal image s(x) (b) Simulated observation g(x)

(c) Inverse filtering ŝ(x) (ε = 0.001) (d) Inverse filtering ŝ(x) (ε = 0.01)

(e) Magnitude spectrum |Ŝ(f)| of (c) (f) Magnitude spectrum |Ŝ(f)| of (d)

Figure 10.7. Restoration of a defocused image using an inverse filter.
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(a) Ideal image without motion blur s(x) (b) Image affected by motion blur g(x)

(c) Extracted motion pattern h(x) (d) Result ŝ(x) of the inverse filtering

Figure 10.8. Restoration of an image of fairy lights affected by motion blur.

Example 10.7 (Image restoration to ameliorate motion blur): Finally, Fig. 10.8 shows an example
of a restoration of an RGB color image affected by motion blur. The ideal signal s(x) of
the steady image of a fairy light is shown in Fig. 10.8(a). The observation g(x) has been
acquired by moving the camera during the exposure of the sensor, see Fig. 10.8(b). By
using simple binary morphologic operations (see Chap. 12) after applying a thresholding,
the motion pattern shown in Fig. 10.8(c) can be extracted and can be used as an estimate of
the impulse response function h(x) of the non-ideal imaging. By this means, the transfer
function V (f) of a modified inverse filter can be calculated according to (10.21) and the
observed image g(x) can be reconstructed.

However, the limitations of the method are clearly visible in the restoration result ŝ(x)
(cf. Fig. 10.8(d)). The zeros of the transfer function H(f) of the non-ideal imaging result
in a loss of information, which is why the resulting image ŝ(x) shows nearly none of the
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details of the original scene. Nevertheless, the number and the positions of the individual
lights are clearly shown in this image.

10.310.3 The Wiener filter
The Wiener filter1 is an optimal linear filter used for signal estimation, which minimizes
the mean squared error between the original signal s(x) and the estimation result ŝ(x) (cf.
Fig. 10.1). In the field of image processing, the Wiener filter is one of the standard tools of
image restoration [5].

Unlike the signal model shown in Fig. 10.1, the Wiener filter requires the signals s(x)

and n(x)—and therefore also the derived signals g(x) and ŝ(x)—to be weakly stationary
random processes, so that they can be described by their power spectral densities in the spa-
tial frequency domain using the Wiener–Khintchine theorem (Theorem 8.16). Furthermore,
the noise signal n(x) is assumed to be zero-mean:

μn = E{n(x)} = 0 . (10.26)

To simplify matters, the original signal s(x) and the zero-mean noise n(x) are assumed to be
uncorrelated:

rsn(τ ) = μs μn = 0 ; (10.27)

in fact, the Wiener filter can also be formulated for noise signals which are correlated with
s(x).

In order to achieve the highest similarity of the restoration result ŝ(x) to the original s(x)
as possible, the optimization minimizes the mean squared error:

E
{
(s(x)− ŝ(x))

2} !−→ Min . (10.28)

Expanding (10.28) in combination with (8.260) and (8.287) yields

E
{
(s(x)− ŝ(x))2

}
= E
{
s2(x)− 2 s(x) ŝ(x) + ŝ2(x)

}
(10.29)

= rss(0)− 2 rsŝ(0) + rŝŝ(0) (10.30)

=

∞∫∫
−∞

(Sss(f)− 2 Ssŝ(f) + Sŝŝ(f)) df . (10.31)

A one-dimensional auxiliary calculation is used to obtain the cross power spectral density
Ssŝ(f) depending on Sss(f).

Auxiliary Calculation 10.1 (The effect of an LSI system on a random process): Applying an LSI
system to a random process g(x) results in the process

k(x) = g(x) ∗ h(x) =
∫

g(x− α)h(α) dα , (10.32)

1The Wiener filter (also called the Wiener–Kolmogorov filter) is named after the American mathe-
matician Norbert Wiener (1894–1964).
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g(x) � h(x) � k(x) = g(x) ∗∗ h(x)

Figure 10.9. Effect on a stochastic process g(x) of an LSI system.

where h(x) denotes the impulse response function of the LSI system (cf. Fig. 10.9). In the
case of weak stationarity, (8.260) implies the following for the cross correlation function
rgk(τ) of the processes g(x) and k(x):

rgk(τ) = E{g(x) k(x+ τ)} (10.33)

= E

{
g(x)

∫
g(x+ τ − α)h(α) dα

}
(10.34)

=

∫
E{g(x) g(x+ τ − α)}h(α) dα (10.35)

=

∫
rgg(τ − α)h(α) dα . (10.36)

Because of the symmetry of the autocorrelation function rgg(τ), this is equivalent to

rgk(τ) =

∫
rgg(α− τ)h(α) dα = rgg(τ) ∗ h(−τ) , (10.37)

which results in the following after applying the Fourier transform:

Sgk(f) = Sgg(f)H
∗(f) . (10.38)

Because of (10.38) and since s(x) and n(x) are uncorrelated as in (10.27), the cross power
spectral density Ssŝ(f) can be expressed as

Ssŝ(f) = V ∗(f)H∗(f)Sss(f) + V ∗(f)Ssn(f)︸ ︷︷ ︸
=0

. (10.39)

Similarly, the following results for the power spectral density Sŝŝ(f) by employing (8.300):

Sŝŝ(f) = |V (f)|2
(
|H(f)|2 Sss(f) + Snn(f)

)︸ ︷︷ ︸
=:Γ(f)

= |V (f)|2 Γ(f) (10.40)

with

Γ(f) := |H(f)|2 Sss(f) + Snn(f) . (10.41)

To simplify matters, the dependency on x and f will now be omitted. With (10.39) and
(10.40), the mean squared error (10.31) is given by:

E
{
(s− ŝ)

2}
=

∫∫
(Sss (1− 2V ∗H∗) + |V |2 Γ) df . (10.42)

The integrand is real-valued if

V (f) = α(f)H∗(f) , α(f) ∈ R , (10.43)
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for all f . Insertion of (10.43) into (10.42) yields

E
{
(s− ŝ)

2}
=

∫∫
(Sss(1− 2α|H|2) + α2|H|2Γ) df !−→ Min . (10.44)

In order to minimize the integral (10.44), the integrand has to be minimal for all f . Hence,
the following necessary condition has to be met:

∂

∂α
= 0 : − 2 |H|2 Sss + 2α |H|2 Γ = 0 (10.45)

⇔ α =
Sss

Γ
. (10.46)

The sufficient condition for a minimum is always met:

∂2

∂α2
> 0 : 2 |H|2 Γ > 0 . (10.47)

Finally, the approach (10.43), (10.46) and (10.41) yields the optimal filter according to Wiener:

V (f) =
H∗(f)Sss(f)

|H(f)|2 Sss(f) + Snn(f)
=

1

H(f)
· |H(f)|2

|H(f)|2 + Snn(f)

Sss(f)︸ ︷︷ ︸
SNR−1(f)

. (10.48)

According to the right-hand side of these equations, the Wiener filter is a series of an inverse
filter and a modified noise mitigation filter, which often shows a low-pass characteristic.
If there is no noise, i.e., if n(x) ≡ 0, then V (f) turns out to be the transfer function of the
inverse filter. Otherwise, the filter is ‘open’ for spatial frequencies where the desired signal
dominates the noise, and on the other hand, the filter is ‘blocking’ for spatial frequencies
where the noise dominates the signal sought.

As the minimal squared error does not correspond to the human visual perception of
quality, the results of this optimal filter are usually not perceived to be optimal in terms of
visual quality, which represents a drawback of the Wiener filter. Nevertheless, the follow-
ing example shows that it is absolutely possible to achieve visually convincing restoration
results using the Wiener filter.

Example 10.8 (Restoration of defocused images): In this example, a color image g(x)

(Fig. 10.10(a)) is considered, in which some spectral components are attenuated or sup-
pressed by a simulated defocused optical imaging H(f). The amplitude |H(f)| of the
defocused optical imaging is rotationally symmetric and has zeros on concentric circles
as in Example 10.1; the amplitude is illustrated in Figures 10.10(c) and 10.10(e). Fur-
thermore, the observed signal g(x) is affected by an additive normally distributed white
noise n(x) of variance σ2 = 25.

Besides the power spectral density Snn(f) of the noise n(x), which, by (8.301), is con-
stant for a white noise process and is assumed to be known for this example, the power
spectral density Sss(f) of the undistorted original image s(x) is needed for the calcula-
tion of the transfer function V (f) of the Wiener filter. Since usually this quantity is not
available, it has been estimated from the observation g(x) for the present case. Hence,
the periodogram Ŝgg(f) has been calculated and smoothed; subsequently, the known
power spectral density Snn(f) of the noise process was subtracted. Figure 10.10(d) shows
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(a) Simulated observation g(x) (b) Result ŝ(x) of the Wiener filtering

(c) Amplitude |H(f)| (d) Amplitude |V (f)|

(e) Amplitudes of defocused imaging |H(f)| and Wiener filter |V (f)|
Figure 10.10. Wiener filter for image restoration: (a) Observed signal g(x) (h(x) = k · rect(‖x‖/9); n(x): Normally
distributed white noise with σ2 = 25); (b) Result ŝ(x) of the restoration with the Wiener filter; (c) Amplitude
|H(f)| of the defocused optical imaging; (d) Amplitude |V (f)| of the Wiener optimal filter; (e) Comparison of the
amplitudes of the defocused optical imaging |H(f)| with the Wiener filter |V (f)|.
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the transfer function V (f) of the Wiener filter which was calculated in accordance with
(10.48). The result of the Wiener filtering is shown in Fig. 10.10(b). Compared to the re-
sults of the inverse filtering shown in Fig. 10.7(c) and (d), the result of the Wiener filter
stands out because of its effective noise reduction.

Figure 10.10(e) shows horizontal sections of the amplitudes of H(f) and V (f) through
the origin of the spatial frequency domain in order to allow a better interpretation of the
Wiener filter. Although both amplitudes share the same zeros, the Wiener filter achieves
a higher amplification of those spatial frequencies for which the signal is dominates the
noise, which is constant in the present case. Similarly, the filter ‘blocks’ those spatial
frequencies for which the noise dominates the signal sought.

Example 10.9 (Image restoration for uniform linear motion blur): Figure 10.11(a) shows an im-
age of a PCB placed on a still conveyor belt. When the conveyor belt is running, the
uniform linear motion results in a convolution of the image with an impulse response
function according to (10.7). Additionally, every individual pixel is affected by a sensor
noise, that is assumed to be independent from that of the other pixels. Based on these as-
sumptions, an artificial image g(x) affected by noise and motion blur has been simulated
(see Fig. 10.11(b)).

The ideal, noise-free image s(x) can be estimated by acquiring multiple images of the

(a) Motionless image (b) Image g(x) affected by motion blur

(c) Estimated impulse response ĥ(x) (d) Restoration result ŝ(x)

Figure 10.11. Image restoration for blur caused by a uniform linear motion.
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PCB on the still conveyor belt and by averaging these images. The transfer function H(f)

of the non-ideal imaging is described by (10.8); it can be estimated by a system identifi-
cation, e.g., by computing the following quotient of mean power spectral densities [10]:

Ĥ(f) =
Ŝgs(f)

Ŝss(f)
≈ G(f) Ŝss(f)

Ŝss(f)
. (10.49)

Figure 10.11(c) shows the corresponding estimated impulse response ĥ(x). By means of
periodograms, the power spectral densities of the noise-free image and of the noise can
be estimated. Using the impulse response and the estimated power spectral densities,
the optimal restoration filter V (f) according to Wiener can be designed. By employing
this filter, a noise-free and sharp image ŝ(x) can be estimated out of camera images af-
fected by noise and motion blur, which are acquired when the conveyor belt is running
(Fig. 10.11(d)).

10.4 10.4 The geometric mean filter
The geometric mean filter can be considered as a generalization of the Wiener filter, which
is supposed to be superior especially for weak distortions n(x) or for random variations of a
non-ideal imaging H(f), (see [1]). It is defined by the transfer function

V (f) =

(
H∗(f)

|H(f)|2

)a

·

⎛⎝ H∗(f)

|H(f)|2 + b Snn(f)
Sss(f)

⎞⎠1−a

(10.50)

with the real-valued parameters a ∈ [0, 1] and b ≥ 0. Different choices of a and b result in a
parametric family of restoration filters, which contains both the inverse filter and the Wiener
filter as special cases:

Choosing a = 1 results in the inverse filter.
Choosing a = 0 and b = 1 results in the Wiener filter.
Choosing a = 0 results in the parameterized Wiener filter:

V (f) =
H∗(f)

|H(f)|2 + b Snn(f)
Sss(f)

. (10.51)

Choosing a = 0.5 and b = 1 results in the geometric mean filter.

The parameter b adjusts the amount of noise mitigation and ‘undistortion’. If b is chosen
inside the interval 0 < b < 1, (10.50) and (10.51) are supposed to yield results that are more
visually pleasing than the results of the Wiener filter [2].

Example 10.10 (Image restoration using the geometric mean filter): In order to illustrate the
influence of the two parameters a and b of the geometric mean filter, the defocused im-
age of a chip g(x) shown in Fig. 10.12(a) is considered, which is affected by an additive,
normally distributed white noise n(x) of variance σ2 = 25. For the simulation of the
defocused optical imaging, the transfer function H(f) has been parameterized as in Ex-
ample 10.8, cf. Fig. 10.10(c).

Beginning with the parameters of the Wiener filter (a = 0 and b = 1, cf. Fig. 10.12(b)),
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(a) Simulated observation g(x) (b) Filtering with a = 0 and b = 1

(c) Filtering with a = 0 and b = 10−3 (d) Filtering with a = 0 and b = 103

(e) Filtering with a = 0.8 and b = 1 (f) Filtering with a = 0.95 and b = 1

Figure 10.12. Restoration of a defocused, noisy image using the geometric mean filter.



540 10. Image Restoration

the SNR can be weighted in (10.50) by varying b, so that either inverse filtering or the mit-
igation of the noise is dominant, see Figs. 10.12(c) and (d), respectively. This corresponds
to the parameterized Wiener filter (10.51).

For a constant b = 1, choosing a > 0 allows a higher influence of the inverse filtering,
resulting in a ‘sharper’ impression of the image. Particularly for a = 0.8, the fine struc-
tures of the chip show much more contrast in the resulting image than in Fig. 10.12(b),
without intensely amplifying the noise, cf. Fig. 10.12(e). In contrast, for a = 0.95, artifacts
and distortions are clearly visible, cf. Fig. 10.12(f).

10.5 10.5 Optimal constraint filter
A drawback of the Wiener filter (Sec. 10.3) and the related geometric mean filter (Sec. 10.4) is
the need to know the power spectral densities Sss(f) and Snn(f) of, respectively, the desired
signal and the noise. In contrast, the requirements of the optimal constraint filter can be met
rather easily. Besides the observation g(x) and the impulse response function h(x) of the
non-ideal imaging, only the energy of the noise

ρ =

∫∫
Ωg

n2(x) dx (10.52)

is required, where Ωg denotes the spatial area of the image g(x) [4, 8, 14].
As the energy ρ of the noise is known, it is quite easy to adapt the approach (10.16) of

the inverse filter, which minimizes the squared difference of the observation g(x) and the
restoration result ŝ(x) of the filtering with h(x), to the following condition:∫∫

Ωg

(g(x)− ŝ(x) ∗∗ h(x))2 dx !
= ρ . (10.53)

As there is no unique solution to this equation, it is used as a constraint and another opti-
mization target is formulated for the regularization of the restoration problem:∫∫

Ωg

(ŝ(x) ∗∗ c(x))2 dx !−→ Min . (10.54)

The term c(x) represents an arbitrary design parameter and is the impulse response function
of an LSI filter, which usually has high-pass characteristics. Hence, the condition (10.54)
requires ŝ(x) to be smooth. By using Parseval’s theorem, the conditions (10.53) and (10.54)
can be transformed into the spatial frequency domain:

∞∫∫
−∞

∣∣∣G(f)− Ŝ(f) H(f)
∣∣∣2 df !

= ρ , (10.55)

∞∫∫
−∞

∣∣∣Ŝ(f) C(f)
∣∣∣2 df !−→ Min . (10.56)
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In order to minimize the expression (10.56) with respect to the constraint (10.55), a Lagrange
multiplier λ is introduced:

∞∫∫
−∞

∣∣∣Ŝ(f)C(f)
∣∣∣2 df + λ ·

⎛⎝∞∫∫
−∞

∣∣∣G(f)− Ŝ(f)H(f)
∣∣∣2 df − ρ

⎞⎠ !−→ Min . (10.57)

With Ŝ(f) = V (f)G(f), an auxiliary calculation (for details see [14, pp. 99]) results in

V (f) =
1

H(f)
· λ |H(f)|2
|C(f)|2 + λ |H(f)|2 . (10.58)

Finally, inserting this result into (10.55) yields

∞∫∫
−∞

|C(f)|4 |G(f)|2

(|C(f)|2 + λ |H(f)|2)2
df = ρ . (10.59)

This equation has to be solved numerically, in order to determine the Lagrange multiplier λ
needed in (10.58).

Remarks:

In the case of the constraint filter, the solution only applies to a single image g(x), i.e., for
a single sample function, as the Lagrange multiplier λ depends on both the image g(x)

and the energy ρ of the noise and has to be recalculated if any of these conditions change.
In contrast, the Wiener filter fits all sample functions of a stochastic process g(x).

Increasing the energy ρ of the noise leads to smaller values of the Lagrange multiplier λ.
If on the other hand, the energy ρ reaches zero, the constraint filter turns into the inverse
filter:

(ρ→ 0) ⇒ V (f)→ H−1(f) . (10.60)

Typically, the transfer function H(f) of a non-ideal imaging shows low-pass characteris-
tics. If C(f) is chosen as a high-pass, the restoration filter V (f) corresponds to an inverse
filter with a subsequent low-pass.

Example 10.11 (Restoration of a motion blurred test image): As an example of image restoration
using the optimal constraint filter, consider the video test image shown in Fig. 10.13(a).
In this case, non-ideal imaging is simulated as a linear motion blur as in Example 10.2
under an angle of 21◦ (mathematically positive), see Fig. 10.13(b).

The restoration results shown in Fig. 10.13(c) and (d) were obtained by a modified
inverse filtering according to (10.21) and by an optimal constraint filtering. For the con-
straint filtering, the filter function c(x) was chosen as a spatially discrete Laplace filter
as in (11.59) that is proportional to the squared magnitude of the spatial frequency, pe-
nalizing high-frequency components in the restoration result ŝ(x). Because of the re-
quired smoothness (10.54), Fig. 10.13(d) is less affected by high-frequency noise than
Fig. 10.13(c).
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(a) Original image s(x) (source: [15]) (b) Simulated observation g(x)

(c) Modified inverse filtering ŝ(x) (d) Optimal constraint filtering ŝ(x)

Figure 10.13. Restoration of a motion blurred image.

Example 10.12 (Optimal constraint filtering of a blurred image): In order to allow a compari-
son of the optimal constraint filter with the Wiener filter, Fig. 10.14 shows four different
results of restoring the defocused RGB color image of Fig. 10.10(a). The filter function
was always chosen as a spatially discrete Laplace filter according to (11.59). As, in prac-
tice, the energy ρ of the noise is usually not exactly known, slightly altered estimates ρ̂

have been used for numerically solving (10.59), in order to evaluate the robustness of the
method.

The quality of the results is clearly dependent on the choice of these parameters. Al-
though the best restoration result shown in Fig. 10.14(b) is quite similar to the result of
the Wiener filter 10.10(b), here, a noise energy that was 10% higher than the actual value
had to be employed. By further increasing this parameter, too many high-frequency de-
tails were suppressed (cf. Fig. 10.14(c) and (d)); for smaller choices of the noise energy,
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(a) Restoration result ŝ(x) (ρ̂ = ρ) (b) Restoration result ŝ(x) (ρ̂ = 1.1 ρ)

(c) Restoration result ŝ(x) (ρ̂ = 1.2 ρ) (d) Restoration result ŝ(x) (ρ̂ = 1.4 ρ)

Figure 10.14. Restoration of the defocused image shown in Fig. 10.10(a) using an optimal constraint filter.

distortions and several overshoots arose (cf. Fig. 10.14(a)).
If the parameter ρ is chosen to be constant, a similar variation of the constraint filter

can be achieved by adjusting the Lagrange multiplier λ with respect to the optimal value.

10.610.6 Restoration problems in matrix notation
For the restoration approaches covered up to now, the images were considered to be contin-
uous signals. If they are discretized,

g(x), s(x), n(x), h(x) −−−−−−−−→
Discretization

gmn, smn, nmn, hmn , (10.61)
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and aligned as column vectors, restoration problems can be formulated in matrix notation.
A discrete original image smn of size P × Q results in a column vector s ∈ RPQ. If the

observed image gmn and the noise nmn consist of M ×N pixels, the corresponding column
vectors are given by g, r ∈ RMN . By this means, the restoration problem can be written as

g = Hs+ n , (10.62)

where H represents an MN × PQ matrix corresponding to hmn.
This representation is beneficial, as it enables the use of matrix operations. Furthermore,

H can even describe non-LSI systems. Unfortunately, the matrix H is very large and usually
ill-conditioned. Therefore, special characteristics of H have to be exploited in order to obtain
a solution.

Example 10.13 (The Wiener filter in matrix notation): If the signals shown in Fig. 10.1 are repre-
sented as column vectors, according to (10.62), the observed signal is given by

g = Hs+ n . (10.63)

By (10.2), the restoration result is

ŝ = Vg = VHs+Vn . (10.64)

The Wiener filter aims at minimizing the mean squared error (MSE):

MSE = E
{
(s− ŝ)T(s− ŝ)

} !−→ Min ; (10.65)

the statistical properties of the noise n and of the desired signal s are given by the corre-
sponding correlation matrices:

E
{
nnT

}
= Rnn , E{n} = 0 , (10.66)

E
{
ssT
}
= Rss , (10.67)

E
{
nsT
}
= 0 . (10.68)

Finally, the filter matrix V that minimizes (10.65) has to be found.
The optimization approach (10.65) can be expressed as follows:

MSE = E
{
(s− ŝ)T(s− ŝ)

}
(10.69)

= E
{
Trace

(
(s− ŝ)(s− ŝ)T

)}
(10.70)

= Trace
(
E
{
ŝŝT − ŝsT − sŝT + ssT

})
. (10.71)

For the first term of the expected value, one has

E
{
ŝŝT
}
= E
{
VggT VT

}
= VE

{
g gT

}
VT = . . . (10.72)

= V
(
HRssH

T +Rnn

)
VT . (10.73)

The remaining terms can be rewritten similarly. Using the positive-definite matrix

Q := HRssH
T +Rnn , (10.74)
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Equation (10.71) can be expressed as follows:

MSE = Trace
(
VQVT −VHRss −RssH

T VT +Rss (10.75)

+RssH
T Q−1 QQ−1 HRss −RssH

T Q−1 QQ−1 HRss

)
= Trace

(
(V −RssH

T Q−1)Q (V −RssH
T Q−1)T︸ ︷︷ ︸

A

(10.76)

+Rss −RssH
T Q−1 HRss︸ ︷︷ ︸
B

)
.

As the second term B of (10.76) is independent of V, it can be neglected when minimizing
the mean squared error with respect to V. Because the covariance matrix A is positive-
semidefinite, Equation (10.76) is minimal if A = 0. Then, the following holds for the
minimal mean squared error:

MSEmin = Trace
(
Rss −RssH

T Q−1 HRss

)
(10.77)

= Trace
(
RssRnn (HRssH

T +Rnn)
−1
)
. (10.78)

The constraint A = 0 results in the following optimal filter matrix V:

V = RssH
T Q−1 (10.79)

= RssH
T (HRssH

T +Rnn)
−1 (10.80)

= (HT R−1
nn H+R−1

ss )
−1 HT R−1

nn . (10.81)

If the matrices HT and R−1
nn commute, the filter matrix V can be written as

V = (HT H+R−1
ss Rnn)

−1 HT . (10.82)

As a final remark, the expected value of the cross product of the vector of the estimation
error (ŝ− s) and the observation vector gT can be calculated:

E
{
(ŝ− s)gT

}
= E
{
(Vg − s)(Hs+ n)T

}
(10.83)

= E
{
(VHs+Vn− s)(sT HT + nT)

}
(10.84)

= E
{
VHssT HT +VnsT HT − s sT HT

−VHsnT +VnnT − s nT
}

(10.85)

= VHRssH
T +VRnn −RssH

T (10.86)

= V
(
HRssH

T +Rnn

)
−RssH

T . (10.87)

Applying equation (10.80) yields the principle of orthogonality

E
{
(ŝ− s)gT

}
= 0 (10.88)

of the vector of the estimation error (ŝ− s) and the observation vector g.
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10.7 10.7 Restoration for participating media
If the medium between the illumination, the object, and the camera interacts considerably
with the light, the medium is called participating.

Since the distances to the investigated object are typically rather short in automated vi-
sual inspection applications, the properties of the medium of air can mostly be neglected.
Exceptions are smoke, steam, and the shimmer above heated objects. However, for the
medium of water, the transport of the light is affected to such an extent by the absorption
and scattering caused by turbidity, that these effects usually have to be taken into account.

There are important applications of automated visual inspection underwater, e.g., the in-
spection of a ship’s hull, submarine cables, underwater pipelines, the foundations of offshore
wind farms, etc. Diving missions for underwater inspections are expensive or even impossi-
ble for humans, depending on the depth. This is why remotely controlled or autonomous un-
derwater vehicles equipped with artificial illumination and a camera are increasingly used
for such tasks. However, this requires restoration methods capable of canceling or at least
significantly mitigating the effects of the medium on the image acquisition.

In vacuum, light can propagate freely, so that the radiance L(r,x) does not change with
respect to the direction of propagation r,

rT gradx L(r,x) = 0 , (10.89)

i.e., the radiance remains constant along the direction of propagation:

L(r,x+ ρr) = L(r,x) , with ρ ∈ R . (10.90)

In participating media, such as haze, fog, smoke, or water, there is an interaction between the
radiation and the medium. This leads to image degradations, such as color shifts, reductions
in contrast, and blurring. Figure 10.15 is an example of an underwater image with these
image degradations, which are mainly caused by absorption and scattering.

(a) (b)

Figure 10.15. (a) Camera image of a pillar illuminated by daylight through the water surface. At this depth, the
green and blue components of the spectrum of daylight are obviously already emphasized. The image degradations
typical of participating media are clearly visible: color shifts, blurring, and a reduced contrast. (b) Result of image
enhancement. By estimating a transmission map [13], the contrast, which had been lost due to the scattering caused
by the turbidity, could be increased by means of a local histogram equalization.

Absorption is caused, e.g., if some of the radiation energy is transformed into heat energy
by the medium. The change in the radiance induced by this absorption is linearly dependent
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on the strength of the radiance

rT gradx L(r,x) = −μL(r,x) . (10.91)

From this differential equation, the Lambert–Beer law can be derived:

L(r,x+ ρr) = L(r,x) e−μρ . (10.92)

In water, the absorption coefficient μ = μ(λ) is heavily dependent on the wavelength λ of
light. Since the long-wave components of the visible spectral range are more intensely at-
tenuated than the short-wave components, underwater images usually have a blue or green
tint.

Scattering denotes the effect of particles inside the medium stochastically altering the
direction of propagation. On the one hand, the radiance at a certain point is reduced by
scattering, but on the other hand, it is increased by light scattered to this point from other
directions. Together, absorption and scattering lead to the radiative transfer equation (RTE)
[3, 9]:

rT gradx L(r,x) = − (μ+ b)L(r,x) + C(r,x) . (10.93)

The scatter-induced increase of the radiance can be determined by integrating the radiance
over the unit sphere S2 at the point x:

C(r,x) :=

∫
S2

L(r′,x)β(r′ → r,x) dr′ . (10.94)

Here, the volume scattering function β(r′ → r,x) describes the distribution of the scattering
as a function of the angle ∠(r′, r) between r′ and r at the position x. Integrating over the
unit sphere results in the scattering coefficient

b :=

∫
S2

β(0→ r,x) dr , (10.95)

which, in homogeneous media, is independent of the position x.
For image restoration, a sufficiently exact model of the image formation process is

needed. In [12], the three paths of light propagation are considered, which are the most
important for the formation of the image (see Fig. 10.16). Propagation paths with two or
more scattering events are neglected here, since they contribute less to the light field.

The direct component includes all paths which originate at the light source, are reflected
at the surface, and are captured by the camera sensor. The indirect component contains
all light rays which are scattered into the direction of the camera without being reflected
at the object surface. The blurring component comprises the light rays which come from
the light source, are reflected at the object surface, and are scattered into an adjacent line of
sight. Together, all three components can be expressed as an affine transformation in matrix
notation:

g = Hs+ b = (Hdirect +Hindirect) s+ b . (10.96)

The matrix H is the sum of the direct component Hdirect and the indirect component
Hindirect. The vector b contains the blur component. The elements of the matrix H and
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Light source

Camera Object surface

Figure 10.16. Separation of the most relevant paths of light propagation into three components. The direct compo-
nent (green) is the light from the light source that is reflected at the surface. The indirect component (blue) is the
light of the light source that is scattered into the line of sight. The blurring component (red) are the light rays that
are reflected at the surface and scattered into the line of sight.

of the vector b can be determined by means of the radiative transfer equation [12]. If the
observed object can be described by a plane perpendicular to the optical axis, H describes a
linear shift-invariant system.

A difficulty involved in the restoration of images taken in participating media is the esti-
mation of the necessary parameters. Mostly, the coefficient of absorption and the volume
scatter function are not known sufficiently exactly. This is why a so-called blind image
restoration method is used, which concurrently estimates the model H but penalizes dif-
ferences from an initial model H̃:(

Ĥ, ŝ
)
:= argmin

H,s
{‖Hs+ b− g‖2 + η1Q(s) + η2R(H)} . (10.97)

The regularization term

Q(s) :=
∑
i

√
[Dxs]

2
i + [Dys]

2
i (10.98)

corresponds to the isotropic total variation, with Dx and Dy denoting discrete approxima-
tions of the partial differentiation operators ∂

∂x and ∂
∂y . The scalars [Dxs]i and [Dys]i denote

the ith element of the vectors Dxs and Dys. The regularization term

R(H) :=
∑
i,j

‖Hi,j − H̃i,j‖2 (10.99)

quadratically penalizes the difference between the model H and the initial estimation H̃.
In order to process color images, the restoration approach can be separately applied to

every color channel with individually adjusted parameters: see the example in Fig. 10.17.

10.8 10.8 Spatially-varying image restoration
Up to now, a spatially-invariant image degradation has been assumed, i.e., every pixel x has
been affected by the same image degradation. Accordingly, spatially-invariant restoration
filters have been used.
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(a) (b)

Figure 10.17. (a) Image in turbid water of a planar test pattern aligned perpendicularly to the optical axis of the
camera at a distance of 1.5 m. (b) Restoration result—both the color shift and the blurring have been significantly
reduced [12].

However, spatial invariance does not hold for every application [14]. In general, a
spatially-varying image restoration requires much more effort. In some cases it is in fact
possible to make a spatially-varying restoration problem spatially-invariant, e.g., by per-
forming a coordinate transformation, cf. Sec. 9.2.1. The spatially-invariant restoration meth-
ods covered in this chapter can be applied to the transformed image and the result can be
transformed back into the original coordinate system.

Example 10.14 (Rotational motion blur): As an example, images affected by a rotational motion
blur will be considered. In this case, the function of the image degradation is spatially-
varying: the blur is increased for higher distances from the axis of rotation. Points located
on a section of an arc around the center of the rotation are superposed during the expo-
sure time and form a blurred image. As the radian measure Δϕ of the section of the arc
is constant, its size increases for greater radii. However, if the image is transformed into
polar coordinates (r, ϕ), the image degradation is spatially-invariant and corresponds to
a convolution with a rectangle

h(r, ϕ) =
1

|Δϕ| rect
(

ϕ

|Δϕ|

)
δ(r) (10.100)

in the direction of the angle coordinate ϕ. Now the transformed image γ(r, ϕ) can be
restored using, for example, a Wiener filter [11]. Finally, the conversion into polar coordi-
nates is undone, so that the restoration result is given in the original coordinate system.

Figure 10.18 shows the results of this method for an image of a rotating can. After the
restoration, the writing on the label of the can appears more clearly.
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(a) (b)

(c) (d)

Figure 10.18. Spatially-varying image restoration using a transformation to polar coordinates: (a) Original image of
a can affected by a rotational motion blur; (b) Representation of (a) in polar coordinates—the blur is clearly visible
in the horizontal direction (ϕ direction); (c) Result of the Wiener filter; (d) Restored image in the original Cartesian
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11 Segmentation
Segmentation tries to decompose an image g(x) into separate, meaningful areas. For exam-
ple, the test object is isolated from the background, or the borders between different objects
are detected. An automated analysis of a segmented image is often easier than that of an
unprocessed image. The result of the segmentation could be used to determine the position
and orientation of the segmented objects in a subsequent processing step.

In medical image processing, segmentation methods are of great importance. Here, the
borders between the different organs or tissues have to be found in images acquired using
X-rays, ultrasound, or magnetic resonance imaging.

In order to formally describe the segmentation problem, a so-called uniformity criterion
is introduced. The interior of the segments of the image is supposed to be uniform to a
certain extent, and to simultaneously differ from the adjacent segments. The choice of the
uniformity criterion depends on the application on hand.

11.1Definition 11.1: Complete segmentation
Complete segmentation denotes a division of the set Ωg of all image points of g(x), x ∈ Ωg

into I disjoint, non-empty subsets ω1, . . . , ωI in such a way that the following holds for a
certain uniformity criterion E [36, 42]:

1.
⋃I

i=1 ωi = Ωg ; the subsets partition the domain.
2. ∀i: ωi is connected.
3. ∀i: E(ωi) is met.
4. For every union of two adjacent ωi, ωj , E(ωi ∪ ωj) is not met.

A uniformity criterion is a function that assigns a truth value to every subset of Ωg :

E :

{
P(Ωg) → {true, false}
ω �→ e ,

(11.1)

where P(Ωg) denotes the power set, i.e., the set of all subsets of Ωg . The uniformity criterion
E(ω) depends only on the image values g(x) of the pixels x ∈ ω. Besides, it is true for each
non-empty subset of a set ω if it is true for ω:

E(ω) = true ⇒ ∀ι ⊆ ω, ι �= ∅ : E(ι) = true . (11.2)

�

For example, a simple uniformity criterion is one that requires the differences between the
image values of the pixels of ω to stay below a certain threshold ε:

E(ω) = true :⇔ ∀x,y ∈ ω : |g(x)− g(y)| < ε . (11.3)

In general, image segmentation is a hard problem. Often, the observed intensities vary more
intensely inside the desired segments than at their borders. Other factors, such as noise
and inhomogeneous illumination conditions, further complicate the task. Fig. 11.1 shows an
example of a segmentation task, which is hard even for humans.

In the following, two different approaches for solving the segmentation task will be cov-
ered: region-based methods and edge-based methods [42].

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_11,
© Springer-Verlag Berlin Heidelberg 2016
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Figure 11.1. Example of a hard segmentation task: A Dalmatian in snow-covered scenery (source: E. Schneider).

11.1 11.1 Region-based segmentation

11.1.1 Segmentation by feature-based classification
Region-based segmentation methods assign a feature vector m(x) ∈M ⊆ RK to every pixel
x ∈ Ωg .

For example, clustering is used to partition the feature spaceM into I disjoint decision
regionsRi:

I⋃
i=1

Ri =M , Ri ∩Rj = ∅ if i �= j . (11.4)

By means of the assignment

m(x) ∈ Ri ⇒ ω̂(x) := ωi (11.5)

a segmentation of the image points can be obtained.
However, the obtained segments ωi are not necessarily connected, in which case the con-

ditions of Def. 11.1 are not met.
In a K-dimensional feature space, the borders between the decision regions Ri are de-

scribed by (K−1)-dimensional hyperplanes (Fig. 11.2). These borders constitute the classifier

Figure 11.2. Segmentation of an image into regions ωi using a classification in the feature space. The right side
illustrates a two-dimensional section through the K-dimensional feature space M.
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and have to be learned from examples. The quality of the result depends on the classification
performance and hence on the suitability of the chosen features and on the set of training
samples.

In this approach, the region-based segmentation is equivalent to the standard classifi-
cation problem in pattern recognition [4, 18]. The decomposition of M into the decision
regions Ri and the decision rule m �→ ω̂ ∈ {ω1, . . . , ωI} represents a classification of the
image points x based on their features m(x). Therefore, common classifiers used in pattern
recognition are applicable.

Example 11.1 (Image values as a feature vector): The easiest way of choosing a feature space
is to directly use the image value (the gray value in the case of a gray-scale image) of the
pixel as its feature: m(x) = g(x), K = 1.

The segmentation is performed by defining decision regions (in this case gray value
intervals) and their boundaries (thresholds).

Similarly, the vector g(x) of the color values or spectral values of a pixel x can be used
as a feature vector for multichannel images or multispectral images [28, 33].

Example 11.2 (Illumination series): A circuit board is to be segmented into its three regions:
ground substrates, gold, and silver (Fig. 11.3). For this purpose, the setup described in
Sec. 7.5.1 is used in order to acquire an image series with varying illumination conditions.
The image values gi(x) of the pixel x of the different illumination setups i = 1, . . . ,K

describe a possible feature vector for the segmentation: m(x) = (g1(x), . . . , gK(x))T.
Based on this feature vector, different classifiers, such as linear discriminant analysis or
clustering, can be applied [24].

(a) (b)

Figure 11.3. Segmentation of the different materials of a circuit board: (a) Gray-scale image of the test object acquired
under diffuse illumination; (b) Segmentation result in false colors (red =̂ ground substrate, yellow =̂ gold, blue
=̂ silver).
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Example 11.3 (Mean and standard deviation): For some applications, also the statistics of the
local distribution of the image values can be used as features. For example,

m(x) =

(
μ̂(x)

σ̂(x)

)
(11.6)

is considered with the mean local gray value μ̂(x) =: m1(x) ≥ 0 and the local standard
deviation σ̂(x) =: m2(x) ≥ 0, see Sec. 9.2.2.

Figure 11.4 shows an example of a feature space with I = 2 regions. The decision
boundary shows that both features m1 and m2 are necessary for separating the two
classes.

Decision boundary

Figure 11.4. Segmentation by classification of a two-dimensional feature space into two regions.

Often, parametric models of the decision regions and their boundaries are used for classi-
fication in the feature space. The following considerations assume the most simple case of
K = 1 and I = 2. The features of each class ωi are assumed to be distributed according to a
Gaussian density with an expected value μi and standard deviation σi:

x ∈ ωi ⇒ m(x) = m with probability density function (PDF):

fm|ωi
(m|ωi) =

1√
2πσi

e
− 1

2 (
m−μi

σi
)2
, i = 1, 2 . (11.7)

The term fm|ωi
(m|ωi) denotes the conditional probability density of the feature m if x is a

member of the class ωi.
Let Pi := Pr{x ∈ ωi} denote the a priori probability of x being a member of the class

ωi. The segmentation can, for example, be based on the maximization of the a posteriori
probability P (ω|m):

P (ω1|m(x)) > P (ω2|m(x)) (11.8)

⇔ P1 fm|ω1
(m(x)|ω1) > P2 fm|ω2

(m(x)|ω2) (11.9)

⇔ m(x) ∈ R1 (11.10)

⇒ ω̂(x) := ω1 . (11.11)

In this simple case, the separation in the feature space is determined by one or two thresh-
olds, see Figures 11.5 and 11.6. In the case of Fig. 11.5, a single threshold γ is sufficient to
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Weighted PDF

Figure 11.5. Optimal decision boundaries for K = 1 features and I = 2 regions.

Weighted PDF

Figure 11.6. Even in a one-dimensional feature space, multiple thresholds γ might be necessary.

separate the decision regionsR1 andR2. This results in

ω̂(x) := ω1 ⇔ m(x) < γ . (11.12)

The error probability ε of the segmentation can be expressed as a function of γ:

ε(γ) = P1

∞∫
γ

fm|ω1
(m|ω1) dm+ P2

γ∫
−∞

fm|ω2
(m|ω2) dm. (11.13)

Minimizing this expression yields the optimal choice of the threshold γ with respect to the
parameters μi, σi and Pi. For example, the case σ1 = σ2 = σ results in [42]

γopt =
μ1 + μ2

2
− σ2

μ2 − μ1
ln

P2

P1
. (11.14)

For K > 1, vectors of expected values μi and covariance matrices Σi, i = 1, . . . , I are ob-
tained. The histogram ĥ(m) calculated from the training examples can be used to estimate
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the parameters μi, Σi and Pi. For this purpose, the model

f(m) = fm(m|μ1,Σ1, P1, . . . ,μI ,ΣI , PI) =
I∑

i=1

Pi fm|ωi
(m|ωi,μi,Σi) (11.15)

is fitted to the empirically observed histogram using a least squares method, so the following
optimization problem is solved:∑

m

(f(m)− ĥ(m))2 → Min. (11.16)

As (11.15) represents a Gaussian mixture model, no closed solution can be obtained. The
expectation-maximization algorithm (EM algorithm) can be used for the optimization [17,
40]. In every iteration t, the likelihood function

Q(t)(m|ωi) =

P
(t)
i

1√
(2π)K detΣ

(t)
i

e
− 1

2

(
m−μ

(t)
i

)T(
Σ

(t)
i

)−1(
m−μ

(t)
i

)

∑I
j=1 P

(t)
j

1√
(2π)K detΣ

(t)
j

e
− 1

2

(
m−μ

(t)
j

)T(
Σ

(t)
j

)−1(
m−μ

(t)
j

)

is evaluated. Subsequently, the parameters of the probability density are estimated:

P
(t+1)
i =

∑
m

ĥ(m)Q(t)(m|ωi) , (11.17)

μ
(t+1)
i =

1

P
(t+1)
i

∑
m

ĥ(m)Q(t)(m|ωi)m , (11.18)

Σ
(t+1)
i =

1

P
(t+1)
i

∑
m

ĥ(m)Q(t)(m|ωi)
(
m− μ

(t+1)
i

)(
m− μ

(t+1)
i

)T
.

Example 11.4 (Histogram-based segmentation): The image shown in Fig. 11.7(a) is to be seg-
mented into I = 3 regions. Artificial noise r(x) is additively superposed on the original
image g0(x):

g(x) := g0(x) + r(x) . (11.19)

This white, Gaussian noise is zero-mean and has a standard deviation of σr = 10:

E{r(x)} = 0 , E{r(x)r(y)} = δyx σ2
r . (11.20)

The superposition of an artificially generated noise signal is a common method used for
evaluating the robustness of image processing methods.

As in Ex. 11.1, the gray value of the image signal is used as a feature: m(x) := g(x).
Figure 11.7(c) shows the gray value histogram of the image and the Gaussian densities of
the three regions, which have been estimated using the EM algorithm. In the intervalR3,
there is a clear difference between the histogram and the model, which might be caused
by an inadequate model that could be improved by a larger number I of regions.

The result of the segmentation is shown in Fig. 11.7(b). The segmented regions are
disconnected. In addition, there are two further drawbacks: some noisy pixels were
assigned to other regions, and objects have not been correctly segmented because of in-
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(a) (b)

0 64 128 192 255
0

0.005

0.010
PDF

(c)

Figure 11.7. Region-based segmentation using a probabilistic model of the gray value histogram: (a) Noisy image
g(x); (b) Result of the segmentation into I = 3 regions (white =̂ ω1, gray =̂ ω2, black =̂ ω3); (c) Gaussian densities
fg|ωi

(g|ωi) adjusted to the gray value histogram ĥ(g).

homogeneous illumination conditions and reflectance properties, e.g., in the background
of the top left corner and in the image center.

Another possibility for choosing thresholds in the histogram is the maximization of the vari-
ance between the two classes. For gray value histograms, this approach is realized by the
method of Otsu [23, 35].

For some applications it might be reasonable to choose a locally adaptive threshold [42].
This can be achieved by solving the optimization problem (11.16) for local regions of the
image. For example, local histograms ĥ(m) can be calculated for partially overlapping rect-
angular windows. The local thresholds γij(x) for discriminating between ωi and ωj at the
pixel position x can then be determined by an interpolation of the thresholds of the overlap-
ping windows.
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11.1.2 Region growing methods
In general, the segments resulting from the described classification methods are not con-
nected. This problem is avoided by region growing methods [1, 25, 42]. Here, the segments
ωi are iteratively enlarged by appending adjacent points meeting the uniformity criterion.
Starting with at least one initial point per segment, the iteration is repeated until all pixels
x ∈ Ωg are assigned to a class ωi. In order to achieve a complete segmentation in which ev-
ery pixel is assigned to a segment, the uniformity criterion might have to be relaxed during
the iterations.

Figure 11.8 shows the result of the region growing method for the test image used in
Ex. 11.4. The three marked seed points were set manually. The segmented regions are con-
nected. However, the fine object structures have not been segmented. The method is robust
to single noisy pixels.

Figure 11.8. Result of the region growing method used for segmenting Fig. 11.7(a) into I = 3 regions. The seed
points, which were manually set, are marked in red.

Unfortunately, the result of the region growing method is heavily dependent on the
choice of the initial seed points. This drawback can be overcome by choosing seed points
that can be classified with a high degree of confidence, i.e., which are located far away from
the decision boundaries in the feature space.

Another variant of region-based segmentation is given by the pyramid-linking method
described in Chap. 15 in the context of image representation using image pyramids.

11.2 11.2 Edge-oriented methods
In contrast to region-based methods, which use the inner uniformity of the regions as a
criterion, edge-oriented segmentation methods try to determine the borders between the
regions.
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11.2 Definition 11.2: Edge
An edge is a border between two regions that are homogeneous in terms of a uniformity
criterion regarding their interiors. At an edge, the local image properties which are subject
to the uniformity criterion show a high spatial variance: ideally, they show a jump disconti-
nuity. �

According to this definition, edges are also called step edges, as they represent a ‘step’ be-
tween two different regions in terms of the uniformity criterion.

The edges present in an image can be caused by different phenomena of the observed
scene (Fig. 11.9(a)):

Object edges correspond to the actual geometric borders between two objects.
Reflectance edges are caused by discontinuities of the reflectance of an object’s surface.
Shadow edges arise at borders between directly illuminated regions and shadowed
regions of an object. They can be detected by varying the illumination direction
(Fig. 11.9(b)).

The latter two edge types are also referred to as pseudo-edges, as they do not correspond to
actually existing geometric features of the scene.

Object edge

Shadow edge

(a) (b)

Figure 11.9. Edges in the image might be caused by different contents of the scene: (a) Image of a cuboid with object
edges, reflectance edges and shadow edges; (b) Image of the same scene under a different illumination.

Edge detection is a common problem in image processing. Numerous methods have
been proposed for its solution. The most common methods calculate a spatial derivative of
the image signal in order to detect edges. An edge is represented

by an edge in the image signal g(x) according to the definition of an edge,
by an extremum of the first derivative (the gradient) of the image signal,
by a change of sign of the second derivative of the image signal.

Figure 11.10 shows a one-dimensional section through an image signal illustrating the char-
acteristics of an edge in terms of the first and second derivatives. Obviously, the high-
frequency noise is amplified by differentiation. This effect is explained by the transfer func-
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Figure 11.10. Effects of edges on the first and second derivatives of the image signal. The diagrams show the image
values as well as the first and second derivates along the section.

tion of the derivative operators, whose magnitudes increase for higher frequencies:

∂

∂x
◦=• j2π fx , (11.21)

∂2

∂x2
◦=• −4π2 f2

x . (11.22)

As the image signal is given in a discrete representation, discrete filters for approximating
the first or second derivative have to be designed for detecting edges.

11.2.1 Gradient filters
To begin with, the first derivate will be employed for edge detection. The gradient of the
image signal is defined as

grad g(x) :=

(
∂g(x)

∂x
,
∂g(x)

∂y

)T

. (11.23)

Assume that an edge is located at the position x. Then, the absolute value ‖grad g(x)‖ of the
gradient is a measure of the intensity of the edge. As the gradient is perpendicular to the
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edge, it is a description of the normal to the edge. This normal direction is given by

∠grad g(x) = arctan

(
∂g
∂y

∂g
∂x

)
. (11.24)

In what follows, there will be derived some linear discrete filters to be used for approxi-
mating the gradient. At first, only one dimension will be considered. A convolution of the
discrete signal gm with the impulse response function dm of the filters sought is supposed to
yield an approximation of the signal’s gradient:

d

dx
g(x)

∣∣∣∣
x=mΔx

≈ dm ∗ gm , (11.25)

where m denotes the discrete spatial coordinate of the impulse response. Obvious approxi-
mations are the asymmetric difference quotient

g(x)− g(x−Δx)

Δx
(11.26)

and the symmetric difference quotient

g(x+Δx)− g(x−Δx)

2Δx
, (11.27)

each with a discretization step width Δx. A better approximation is Stirling’s approxima-
tion:

−g(x+ 2Δx) + 8g(x+Δx)− 8g(x−Δx) + g(x− 2Δx)

12Δx
. (11.28)

The corresponding impulse responses are directly given by the coefficients in the quotients,
e.g.,

g(x+Δx)− g(x−Δx)

2Δx

∣∣∣∣
x=mΔx

=
(

1
2 0 − 1

2

)
∗ gm . (11.29)

Table 11.1 summarizes the impulse responses of the three mentioned gradient filters. The
asymmetric difference quotient results in a displacement of the edge position by one-half
of a pixel, as the center of its impulse response function is located at m = 1

2 and therefore
between the points of the pixel grid.

Table 11.1. Impulse response function dm of simple linear gradient filters.

Discrete position m −3 −2 −1 0 1 2 3

Asymmetric difference quotient (11.26) 0 0 0 1 −1 0 0

Symmetric difference quotient (11.27) 0 0 1
2 0 − 1

2 0 0

Stirling’s approximation (11.28) 0 − 1
12

2
3 0 − 2

3
1
12 0
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Example 11.5 (Symmetric difference quotient): In the x-direction and the y-direction, the sym-
metric difference quotient of a gray-scale image g(x, y) is calculated as follows:

∂g(x, y)

∂x
≈ g(x+Δx, y)− g(x−Δx, y)

2Δx
, (11.30)

∂g(x, y)

∂y
≈ g(x, y +Δy)− g(x, y −Δy)

2Δy
. (11.31)

The absolute value of the gradient is given by

‖grad g(x)‖ =

√(
∂g(x, y)

∂x

)2

+

(
∂g(x, y)

∂y

)2

. (11.32)

Figure 11.11 shows the approximation of the gradient of a sample image using the sym-
metric difference quotient. Although the derivatives can be negative, the visualized ab-
solute value of the gradient is always positive like the gray values of the original image.

11.2.1.1 Construction of symmetric linear gradient filters
A systematic construction of linear discrete gradient filters can be obtained by considering
the transfer function. Employing (8.53), an ideal differentiator has the transfer function j2πf :

d

dx
g(x) ◦−• j2πf G(f) . (11.33)

Example 11.6 (The transfer function of the symmetric difference quotient): The symmetric dif-
ference quotient has the following DFT transfer function:

Dk =
1

2

(
−e−j2π k

N + e−j2π
k(N−1)

N

)
=

1

2

(
−e−j2π k

N + e j2π k
N

)
(11.34)

= j sin 2π
k

N
(11.35)

≈ j2π
k

N
if k � N . (11.36)

One has D0 = 0, DN
4

= j < jπ2 , DN
2

= 0 � jπ. For low discrete frequencies k
N , the

effect of the symmetric difference quotient is similar to an ideal differentiator; however,
for higher frequencies, its transfer function decreases.

Now, a symmetric linear gradient filter rdm of length L = 2r + 1 is to be constructed, i.e.,

rdm = 0 if m = 0 ∨ |m| > r , (11.37)

rdm = −rd−m . (11.38)
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(a) g(x, y) (b)
∂g(x, y)

∂x

(c)
∂g(x, y)

∂y
(d) ‖grad g(x)‖

Figure 11.11. Edge detection using the symmetric difference quotient: (a) Original image; (b) Symmetric difference
quotient in x-direction (black =̂ negative values, gray =̂ 0, white =̂ positive values); (c) Symmetric difference
quotient in y-direction; (d) Absolute value of the gradient (black =̂ 0).

In the spatial frequency domain, the real-valued, odd function rdm corresponds to a pure
imaginary, odd Fourier transform rDk, cf. (11.33):

rDk =

N−1∑
ν=0

rdν e
−j2π kν

N =

r∑
ν=1

rdν

(
e−j2π kν

N − e j2π kν
N

)
(11.39)

= −2j
r∑

ν=1

rdν sin

(
2π

kν

N

)
, N > 2r . (11.40)
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Now expand the sine functions as Taylor series in k
N . The r degrees of freedom of the filter

are chosen to meet the following requirements:

The linear term of the Taylor series should be equal to j2π k
N , corresponding to the transfer

function of the ideal differentiator.
The subsequent r − 1 terms should vanish.

Example 11.7 (Symmetric linear gradient filters of length 5): A symmetric linear gradient filter
of length L = 5 is to be constructed; in this case, r = 2 coefficients have to be determined.
From (11.40), it follows that

2Dk = −2jd1 sin
(
2π

k

N

)
− 2jd2 sin

(
4π

k

N

)
. (11.41)

Inserting the power series x− x3

3! +
x5

5! ∓ . . . of the sine results in:

2Dk = j2π

(
−2d1

k

N
+

4

3
d1π

2

(
k

N

)3

− 4d2
k

N
+

32

3
d2π

2

(
k

N

)3

+O
((

k

N

)5
)) (11.42)

= j2π

(
(−2d1 − 4d2)

k

N

+

(
4

3
π2d1 +

32

3
π2d2

)(
k

N

)3

+O
((

k

N

)5
))

.

(11.43)

Solving the system of equations (from (11.33))

−2d1 − 4d2
!
=1

4

3
d1 +

32

3
d2

!
=0 (11.44)

yields

d1 = −2

3
d2 =

1

12
. (11.45)

This corresponds to Stirling’s approximation (11.28).

A longer gradient filter results in a better approximation of the transfer function of the ideal
differentiator (Fig. 11.12). In fact, the decay of the transfer functions of the gradient filters
for higher frequencies is preferred in practice, as high-frequency noise is amplified less in-
tensely.

11.2.1.2 Differentiation using the DFT
Alternatively, the DFT can be used to directly perform the differentiation: first the discrete
Fourier transform Gk of the image is calculated, then this is multiplied by the differential
operator Dk in the spatial frequency domain, and finally the result is transformed back into
the spatial domain. For one dimension, this approach results in the following equations:

dg(x)

dx
≈ DFT−1{Gk Dk} , (11.46)
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Figure 11.12. Transfer functions of symmetric linear gradient filteres of length L = 2r + 1.

Dk :=

⎧⎪⎪⎨⎪⎪⎩
j2π k

N if k < N
2

0 if k = N
2

j2π k−N
N if k > N

2

k = 0, . . . , N − 1 . (11.47)

However, this method can be problematic if there is severe spectral leakage (see Chap. 8).
There are a couple of problems that affect all gradient filters. On the one hand, the dif-

ferentiation amplifies noise, which has to be mitigated by attenuating the high spatial fre-
quencies by means of a low-pass filter. Hence, all in all, suitable linear edge detection filters
show band-pass characteristics. Furthermore, widened contours are often visible in the fil-
tered result: the edges cannot be located with pixel accuracy. This issue can be solved by
a subsequent edge thinning (see Chap. 12). On the other hand, the contours can also be
disconnected. In this case, contour tracing might be a suitable post-processing step [23, 38].
Artifacts can even arise, e.g., false contours caused by noise, which have then to be dealt
with.



570 11. Segmentation

11.2.1.3 Gradient-of-Gaussian filter
The gradient-of-Gaussian filter is a common gradient filter with band-pass characteristics.
Because of the simultaneous smoothing of the image g(x) by the Gaussian h(x), this operator
is relatively insensitive to noise.

The filtering of a two-dimensional signal g(x) with the derivative of a Gaussian low-pass
filter in the x-direction can be mathematically described as follows:

∂g(x)

∂x
≈ ∂

∂x
(h(x) ∗∗ g(x)) = ∂

∂x

∞∫
−∞

∞∫
−∞

g(α)h(x−α) dα (11.48)

=

∞∫
−∞

∞∫
−∞

g(α)
∂h

∂x
(x−α) dα =

(
∂

∂x
h(x)

)
︸ ︷︷ ︸
=: dx(x)

∗∗ g(x) , (11.49)

h(x) :=
1

2πσ2
e−

‖x‖2
2σ2 , (11.50)

dx(x) = − x

2πσ4
e−

‖x‖2
2σ2 . (11.51)

Differentiation in the y-direction is performed similarly. The resulting impulse response
functions dx and dy are shown in Fig. 11.13. In all, the gradient is approximated as follows:

grad g(x) ≈ (grad h(x)) ∗∗ g(x) , (11.52)

grad h(x) = − x

σ2
h(x) =:

(
dx(x)

dy(x)

)
. (11.53)

As is shown by the above calculation, convolution with the derivative of the Gaussian low-
pass filter is equivalent to a smoothing and a subsequent differentiation. Analyzing the
transfer function leads to the same result: in the spatial frequency domain, the differentiation
with respect to x corresponds to multiplication by j2πfx, and the convolution with h(x)

corresponds to multiplication by H(f), and these two multiplications commute. The transfer
function Dx(f) of the Gaussian low-pass filter dx(x) that performs the differentiation in the
x-direction can be obtained using the correspondence e−π‖x‖ ◦−• e−π‖f‖ and the derivative
property of the Fourier transform:

Dx(f) = j2πfx e
−2π2σ2‖f‖2

. (11.54)

Figure 11.13. Impulse response functions dx(x) and dy(x) of the differentiated Gaussian low-pass filter.
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For small ‖f‖, this approximates the differential operator j2πfx; for large ‖f‖, one has
Dx(f)→ 0, which represents the band-pass characteristics.

Figure 11.14 shows the results of applying the gradient-of-Gaussian filter to an example
image. A larger σ results in a better noise reduction. However, the fine edge structures
vanish for increasing σ. By adjusting σ, one can set the granularity of the structures which
are to be detected, cf. Chap. 15.

(a) (b) (c)

(d) (e) (f)

Figure 11.14. Edge detection using the first derivative: (a) Original image with additive Gaussian noise with stan-
dard deviation σr = 20, cf. (11.20); (b) Symmetric difference quotient; (c) Roberts operator; (d) Sobel operator;
(e) Gradient-of-Gaussian filter with smoothing parameter σ = 0.8; (f) With σ = 2.2. The images show the absolute
value of the gradient for q = 2.

There are two possibilities for obtaining a discrete formulation of this filter:

Filtering using a convolution in the spatial domain by sampling dx(x) and dy(x) to obtain
dxmn and dymn ;
Filtering using a multiplication in the spatial frequency domain by sampling Dx(f) and
Dy(f) to obtain Dx

kl and Dy
kl .

Canny formulated quality criteria, such as the signal-to-noise ratio and localization accuracy,
and used them to obtain the optimal edge detector. The differentiated Gaussian low-pass
filter is a good approximation to the numerically calculated optimal edge detector [10, 23].
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11.2.1.4 Simple edge operators
Sobel filters can be considered as a rough sampling of the differentiated Gaussian low-pass
filters dx and dy in the spatial domain:

sxmn =

⎛⎜⎝ 1 0 −1
2 0 −2
1 0 −1

⎞⎟⎠ , symn =

⎛⎜⎝−1 −2 −10 0 0

1 2 1

⎞⎟⎠ . (11.55)

Hence, the absolute value of the gradient can be approximated by the Sobel operator:

(|sxmn ∗∗ gmn|q + |symn ∗∗ gmn|q)
1
q , q ∈ {1, 2,∞} . (11.56)

In the literature, different norms are used for the calculation of the absolute gradient. The
choice of q = 1 (q = 2) corresponds to the Manhattan norm (Euclidean norm); q = ∞
corresponds to the maximum norm (Chebyshev norm):

max {|sxmn ∗∗ gmn|, |symn ∗∗ gmn|} . (11.57)

The Sobel filter can be represented as a convolution of a binomial low-pass filter (see
Sec. 9.3.1.4), which is a discrete approximation of the Gaussian low-pass filter, and the sym-
metric difference quotient. For example, sxmn is obtained by the convolution of the binomial
filter hy

3 with respect to y and the symmetric difference quotient in the x-direction:

sxmn =

⎛⎜⎝1

2

1

⎞⎟⎠ ∗∗
(
1 0 −1

)
◦
•

◦
•

◦
• N×N -DFT

Sx
kl = 2

(
1 + cos

(
2π

l

N

))
︸ ︷︷ ︸

Low-pass

· j2 sin

(
2π

k

N

)
︸ ︷︷ ︸
Differentiation

The smallest possible filter mask of size 2×2 is used by the so-called Roberts operator for
the detection of edges:

km,n = (|gm,n − gm−1,n−1|q + |gm−1,n − gm,n−1|q)
1
q (11.58)

with q ∈ {1, 2,∞}. In contrast to the Sobel operator, the Roberts operator is much more
sensitive to noise, as it does not perform any smoothing, but on the other hand it yields
much thinner edges. As the center of symmetry is located in between the pixels, the resulting
image is affected by a displacement of the edge positions.

11.2.2 Edge detection using the second derivative
Every additional differentiation amplifies the high-frequency noise. This is why an adequate
smoothing is even more important for edge detection using the second derivative. In the
second derivative, an edge of the original signal is represented as a zero located between a
distinctive maximum and a distinctive minimum.
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The simplest approximation of the second derivative is obtained by a convolution of the
image with the so-called Laplace filter:

gmn ∗∗ lmn , lmn =

⎛⎜⎝ 0 1 0

1 −4 1

0 1 0

⎞⎟⎠ . (11.59)

As no smoothing is performed by this filter, it is very sensitive to noise.
The so-called Laplacian-of-Gaussian operator, or LoG for short, is a well-known edge

filter which was proposed by Marr and Hildreth in 1980 [30]. At first, the image is smoothed
with a Gaussian low-pass filter h(x), in order to reduce the noise (cf. Chap. 9). Subsequently,
the Laplace operator Δ = ∂2

∂x2 +
∂2

∂y2 is applied in order to obtain the second derivative of the
smoothed image. As Δ and the convolution with h(x) are linear operators which therefore
can be reordered, the same result can be achieved by convolving the original image with the
filter l(x) that is obtained by applying the Laplace operator to the Gaussian low-pass filter:

LoG{g(x)} := −Δ(h(x) ∗∗ g(x)) = (−Δh(x))︸ ︷︷ ︸
=: l(x)

∗∗ g(x) , (11.60)

l(x) = − ∂2h(x)

∂x2
− ∂2h(x)

∂y2
=

2σ2 − ‖x‖2
2πσ6

e−
‖x‖2
2σ2 (11.61)

◦
•

L(f) = 4π2‖f‖2 e−2π2σ2‖f‖2

. (11.62)

Because L(0) = 0 = L(∞), the LoG operator has band-pass characteristics and compensates
for high-frequency noise. Due to its shape, this operator is also known as the ‘Mexican Hat’
(see Fig. 11.15).

Figure 11.15. Laplacian of Gaussian (‘Mexican Hat’).

The following approaches provide a discrete realization of the LoG operator:

Sampling of l(x) to form a discrete impulse response function lmn. In order to keep the
discretization error low, the mask should be large: its length should be at least 7σ.
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Sampling of L(f) to form a DFT transfer function Lkl. Because of the large size of the
filter masks in the spatial domain, an implementation using the fast Fourier transform
can be beneficial.
Approximation by the Difference-of-Gaussians operator, or DoG for short (see
Fig. 11.16). The second derivative of the Gaussian function can be approximated by a
difference of two Gaussian functions with different standard deviations σ1, σ2:

l(x) ≈ 1

2πσ2
1

e
− ‖x‖2

2σ2
1 − 1

2πσ2
2

e
− ‖x‖2

2σ2
2 with

σ2

σ1
≈ 1.6 . (11.63)

The corresponding transfer function L(f) is rotationally symmetric and shows band-pass
characteristics:

L(0) = 0 , lim
‖f‖→∞

L(f) = 0 . (11.64)

The maximum of its absolute value is located at

‖f‖max =
1

π

√
ln σ2

σ1

σ2
2 − σ2

1

. (11.65)

The two Gaussian low-pass filters can be approximated by binomial filters (see Chap. 9).

Figure 11.16. Difference of Gaussians.

An important advantage of the second derivative for edge detection is the possibility of
precisely locating the zeros which correspond to the inflection points perpendicular to the
step edge. As the resulting edges have a width of one pixel, there is no need for a subsequent
edge thinning. There is evidence that the human visual system uses a similar principle for
edge detection [30].

Besides its sensitivity to noise, the second derivative has another drawback: the require-
ment Δg(x)

!
=0 is only a necessary condition for the presence of an edge. Unfortunately, it

is not sufficient, i.e., the zeros of the LoG operator do not necessarily have to correspond to
signal edges. Therefore, edge artifacts can often be caused when using the second derivative.
Besides, a displacement can be observed, especially at curved edges. A possible solution is
given by a combination with a gradient-based method: the absolute value of the gradient
can be used to verify the results of the LoG operator.
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(a) σ = 2,5 (b) σ = 7,5

Figure 11.17. LoG filtering of the test image Fig. 11.14(a) using different smoothing parameters σ. The edges are
located at steep rises or steep falls of the gray-scale levels between the positive (bright) and negative (dark) values.

Example 11.8 (Edge detection using the LoG operator): Figure 11.18 demonstrates the detection
of edges by means of the LoG operator. The images shown in Fig. 11.17, which were
filtered with the LoG operator using different smoothing parameters σ, are used as the
input images. The classification of the contours is based on the slope of the zeros, which
was approximated by the difference between the maximum value and minimum value
inside a local neighborhood; the results of this operation are shown in Figs. 11.18(a) and
11.18(b).

The resulting closed contours are classified separately for every contour by means
of the mean gradient of the zeros. The classification results are shown in the images
11.18(c) and 11.18(d). Indeed, the binary result in Fig. 11.18(d) shows smoother contours
than Fig. 11.18(c) because of the choice of σ, but previously unconnected image regions
located in the center of the image are merged into a common region.

Example 11.9 (Defect detection using the LoG operator): For the detection of defects in honed
surfaces, first an adaptive filtering of the original image Fig. 11.19(a) is performed as ex-
plained in Sec. 13.3.4, in order to suppress faultless grooves. Then, a LoG filtering of the
resulting background image Fig. 11.19(b) with σ = 5 is performed. In order to achieve a
sufficiently precise approximation of the impulse response function of the LoG filter, the
window size has to be at least 35×35 [30], which is why an implementation in the spatial
frequency domain is beneficial. Figure 11.19(c) shows the result of such a filtering; the
contours of the defects are represented by the zero crossings.

The classification of the contours is based on the gradient at the zeros, which can be
easily approximated by the difference between the maximum value and the minimum
value within a local neighborhood (Fig. 11.19(d)). In order to detect only closed contour
paths, the mean gradient of each closed contour is calculated and assigned to the corre-
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(a) Derivative at the zeros (σ = 2,5) (b) Derivative at the zeros (σ = 7,5)

(c) Result of the detection (σ = 2,5) (d) Result of the detection (σ = 7,5)

Figure 11.18. Edge detection using the LoG operator: (a)–(b) Derivative at the zeros of the images from Fig. 11.17;
(c)–(d) Results of the edge detection.

sponding pixels (Fig. 11.19(e)) and a binary detection result is obtained using a spatially
constant thresholding (Fig. 11.19(f)).

11.2.3 The watershed transformation
Often, an edge image is sufficient for solving a visual inspection task. For example, the edges
can be used to estimate the orientation or the length of the object if two opposing edges are
present. If the edge information is insufficient, a segmentation in the sense of Def. 11.1
has to be calculated from the edge image. Later on in this chapter, different edge-based
segmentation methods will be presented.
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(a) Original image (b) Background image with suppressed grooves

(c) Result of the LoG filtering (d) Gradient at the zeros

(e) Mean gradient (f) Detection result

Figure 11.19. Detecting defects using the LoG operator.
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Watersheds Water
level

(a) (b)

Figure 11.20. Image segmentation using the watershed transformation: (a) Illustration of the principle; (b) Result
of the watershed transformation applied to the test image shown in Fig. 11.7(a). The watersheds, i.e., the segment
borders, are represented by the red lines.

The watershed transformation considers the gradient image to be a mountain landscape,
whose watersheds represent the borders of the segments. Local minima of the absolute
values of the gradient are used as seed points, from which adjacent points are successively
analyzed. These points are visited in order of the ascending absolute value of the gradient,
simulating a rising water level. The segment of the current pixel is set with respect to its
adjacent pixels: if all adjacent pixels are part of the same segment or have not been marked
yet, the current pixel is added to the same segment. However, if they correspond to different
segments, the current pixel is located on the watershed and represents a border point.

There are different variants and algorithmic realizations of the watershed transformation
[23,31,39]. Often, the watershed transformation leads to an over-segmentation, i.e., it results
in too many small segments. To resolve this issue, a subsequent clustering of segments or a
preprocessing for the extraction of seed points can be performed. Figure 11.20(b) shows the
result of the latter variant for an example image.

11.3 11.3 Diffusion filters
Diffusion filters can be used for smoothing an image. Linear smoothing filters result in a
usually unwanted attenuation and widening of edges (cf. Sec. 9.3.1.1). In the ideal case, the
smoothing is supposed to yield homogeneous regions that are separated by sharp edges.
This can be approximately achieved by anisotropic diffusion filters, which perform an edge-
preserving smoothing.

Diffusion filters are part of the image enhancement methods covered in Chap. 9. How-
ever, as they perform an edge-preserving smoothing, which represents an important prepro-
cessing step for edge detection, diffusion filters will be discussed here.

The diffusion filter is motivated by the physical process of diffusion, which establishes a
concentration or heat equilibrium in gases and liquids or in the heat transfer within solids.
The concentration or temperature is assumed to be a function u(x, t) of the position x and
time t. Concentration or temperature gradients result in diffusion processes. A spatial con-
centration gradient causes a compensating current j, the so-called ‘diffusion flux.’ The rela-
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tion between grad u and j is described by the diffusion tensor, which is a positive semidefi-
nite, symmetric matrix D:

j = −D grad u . (11.66)

This equation is called Fick’s law [43]. In accordance with this law, a current flows in the
direction of the negative gradient, so that an equilibrium of the concentrations is established.
Additionally, the following continuity equation holds:

∂u

∂t
= − div j . (11.67)

This equation represents the conservation of mass and energy: the temporal difference of the
concentration at a position x is exactly equal to the total compensating current originating
from that point summed over all spatial directions. Inserting Fick’s law (11.66) into the
continuity equation (11.67) yields the following diffusion equation:

∂u

∂t
= div(D grad u) . (11.68)

Transferred to image processing, the image values g(x) are considered to be the initial state
of the distribution of concentrations, or of the temperature distribution:

u(x, 0) := g(x) . (11.69)

Diffusion is a process running for a simulated time t. As time goes by, the diffusion processes
lead to a smoothing of the resulting image u(x, t), corresponding to a low-pass filtering of
the image signal. The mean image value is preserved because of the equation of continuity
(11.67). The choice of diffusion tensor D determines the characteristics of the diffusion filter
[43]:

Linear diffusion: D is independent of the gradient grad u;

Nonlinear diffusion: D is a function of the gradient, D = D(grad u);

Homogeneous diffusion: D is constant with respect to the position x;

Inhomogeneous diffusion: D is a function of the position, D = D(x);

Isotropic diffusion: the relation between the diffusion flux j and the gradient is the same
for all directions, so that the diffusion flux is parallel to the gradient; hence, the diffusion
tensor satisfies D = D I with D ∈ R, D > 0 (here, I denotes the identity matrix);

Anisotropic diffusion: the relation between the diffusion flux and the gradient depends
on the position, and so j and grad u are not parallel.

By combining the properties of linearity, homogeneity and isotropy, different diffusion fil-
ters can be designed, of which some variants will now be presented.

11.3.1 Linear, homogeneous, isotropic image diffusion
In the case of linear, homogeneous, isotropic image diffusion, the diffusion tensor D = D I

is constant for the whole image. If D = 1 is used, the diffusion equation (11.68) is given by

∂u(x, t)

∂t
= divx(I gradx u(x, t)) (11.70)

= Δxu(x, t) (11.71)
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with the Laplace operator1 Δx. Together with the initial condition (11.69), this equation is
an initial value problem. Its solution is given by

u(x, t) =

{
g(x) if t = 0

K(x, t) ∗∗ g(x) if t > 0
(11.72)

with the convolution kernel

K(x, t) =
1

2π s2
e−

‖x‖2
2s2

∣∣∣∣
s=

√
2t

. (11.73)

This convolution kernel corresponds to a Gaussian low-pass filter (see Sec. 9.3.1.1). Hence,
the linear, homogeneous, isotropic image diffusion is a low-pass filtering, with the Gaus-
sian function’s standard deviation s increasing in time. In the case of linear, homogeneous,
isotropic diffusion, a closed solution of the differential equation can be obtained. This is
not possible for more complicated diffusion models, so that an iterative numerical solution
will be necessary: the time t corresponds to the number i of iterations. In each iteration, the
following calculation is performed:

u(x, i+ 1) = u(x, i) + λDΔxu(x, i) , (11.74)

where 0 < λ < 1
4 is the step width of the numerical iteration [9,37]. A simple approximation

of the Laplace operator Δ is given by the convolution with the impulse response function
lmn of (11.59):

Δu(x, t) ≈ lmn ∗∗u(x, t) , lmn =

⎛⎜⎝ 0 1 0

1 −4 1

0 1 0

⎞⎟⎠ , x =

(
mΔx

nΔy

)
.

11.3.2 Linear, inhomogeneous, isotropic image diffusion
As mentioned above, a homogeneous low-pass filtering might cause blurred edges. In order
to obtain sharp and clear edges between the segment borders, a reduced smoothing should
be applied to the image in regions close to edges. Edges present in the image g(x) are repre-
sented by high values of the absolute value of the gradient ‖grad g(x)‖. For inhomogeneous
diffusion, the diffusion tensor can be chosen as a function of the absolute value of the gra-
dient. Still considering a linear and isotropic diffusion results in the following approach for
the diffusion tensor:

D = D(‖grad g(x)‖) I . (11.75)

The scalar weighting function D( · ) should decrease monotonically for increasing absolute
values of the gradient ‖grad g(x)‖, in order to reduce the smoothing near the edges. A pos-

1In the following, a subscript will be added to the differential operators grad, Δ and div, telling
which variable is subject to differentiation if it is not clear from the context. In the case of image
diffusion, the operators just mentioned represent a spatial differentiation with respect to x, not to the
time t.
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sible choice is

D(‖grad g(x)‖) := 1√
1 +
(

‖grad g(x)‖
γ

)p (11.76)

with parameters γ > 0 and p. Choosing p = 1 results in the model of Charbonnier et
al. [5,14,43]. Insertion into (11.68) yields the diffusion equation of the linear, inhomogeneous,
isotropic image diffusion:

∂u(x, t)

∂t
= divx(D(‖grad g(x)‖) gradx u(x, t)) . (11.77)

Edges in the image are barriers for the diffusion process, so that the smoothing is only ap-
plied inside of largely homogeneous regions.

11.3.3 Nonlinear, inhomogeneous, isotropic image diffusion
Another variant can be obtained if the diffusion tensor is chosen to be a function of the
gradient of the current diffused image u(x, t) instead of the gradient of the original image
g(x):

D = D(‖gradx u(x, t)‖) I . (11.78)

Besides (11.76), the model of Perona and Malik presents a possible choice for the scalar func-
tion D( · ):

D(‖gradx u(x, t)‖) :=
1√

1 +
(

‖gradx u(x,t)‖
γ

)p . (11.79)

Here, the parameter γ corresponds to the standard deviation of the image value dif-
ferences, which are supposed to be just mitigated by the diffusion. Higher image value
differences are considered as edges, which have to be preserved [37].

The diffusion equation (11.68) turns into a nonlinear partial differential equation:

∂u(x, t)

∂t
= divx(D(‖gradx u(x, t)‖) gradx u(x, t)) . (11.80)

11.3.4 Nonlinear, inhomogeneous, anisotropic image diffusion
Inhomogeneous diffusion allows a better preservation of sharp contours in the image. How-
ever, there is nearly no smoothing along the edges, so that noise affecting these regions is
barely affected. In the ideal case, the smoothing would have to be increased along the edges
in order to mitigate the noise, and reduced perpendicular to edges in order to preserve sharp
edges. This principle is realized by anisotropic diffusion. Its diffusion tensor depends on the
orientation of the edges, which is estimated from the locally predominant direction of the
image.

11.3Definition 11.3: Direction and orientation
The direction α ∈ [0, 2π) of a vector v = (x, y)T ∈ R2, v �= 0 is its angle with the x-axis:

α = arctan
y

x
∈ [0, 2π) . (11.81)
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The vector v can be written as v = ‖v‖ (cosα, sinα)T.
Its orientation β ∈ [0, π) is defined as its direction modulo π:

β :=

{
α if α ∈ [0, π)

α− π if α ∈ [π, 2π) .
(11.82)

According to this definition, two vectors v and −v, whose directions are opposed by 180◦,
share the same orientation. �

As the gradient vector grad g(x) is the normal vector to an edge, it characterizes the edge’s
direction α ∈ [0, 2π). However, in real images, the direction information of a single pixel is
usually too noisy, so that smoothing is required. This is why, for example, a prior smoothing
of the image with a Gaussian low-pass filter hσ(x) could be applied, cf. (11.50):

wσ(x) := hσ(x) ∗∗ g(x) . (11.83)

As the calculation of the gradient and the linear filtering can be done in any order, grad wσ(x)

is equivalent to smoothing the gradient image with a Gaussian low-pass filter:

grad wσ(x) = grad (hσ(x) ∗∗ g(x)) = (hσ(x) ∗∗ (grad g(x)) . (11.84)

However, smoothing the gradient vectors does not yield the desired result, as adjacent gradi-
ent vectors with the same orientation β ∈ [0, π) but opposed directions α2 = α1±π eliminate
each other. This is a typical situation for lines with two edges having opposed gradient direc-
tions. This is why the information of the orientation can get lost during the spatial averaging
of the gradient vectors.

This problem can be avoided by an alternative that describes the information encoded in
the orientation by the dyadic product of the gradient vectors:

J0(grad wσ(x)) := (grad wσ(x)) (grad wσ(x))
T . (11.85)

Here, the parameter σ is chosen small enough so that no considerable elimination of the
gradients can occur in regions of the impulse response function hσ that are notably differ-
ent from zero, i.e., smaller than the size of the finest structures present in the image, like
line widths, for example. The sign is suppressed by calculating the dyadic product. This is
why the dyadic product is invariant with respect to a change of sign of the gradient. Hence
a spatial averaging is possible without the risk of unwanted extinctions of opposed gradi-
ent directions. The smoothing also propagates the orientation information to image points
with a low absolute gradient value, where a reliable estimation would not be possible. The
smoothed dyadic product is called the structure tensor. A Gaussian filter with standard
deviation ρ is used for smoothing:

hρ(x) :=
1

2π ρ2
e
− ‖x‖2

2ρ2 , ρ > 0 , (11.86)

Jρ(grad wσ(x)) := hρ(x) ∗∗ (grad wσ(x) (grad wσ(x))
T) . (11.87)

As opposed directions are merged to one orientation by the structure tensor, the parameter
ρ can be chosen to be greater than σ. The smoothing is performed by separately considering
each entry of the dyadic product J0 as a function of the position and applying a convolution
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with the Gaussian function. Because of the symmetry of the dyadic product, three two-
dimensional convolution operations in all have to be performed for the calculation of the
structure tensor. The resulting structure tensor represents a description of the orientation of
the directed structures at the position x of the image g(x).

Example 11.10 (Averaging of orientations using the structure tensor): The two opposite sides
of a line in an image cause gradient vectors with opposed directions. If these gradi-
ent vectors are averaged inside an image region, they might be partially or completely
eliminated. Inside the considered window of the example shown in Fig. 11.21, there the
numbers of gradient vectors of the directions

grad g(x) =

(
1

1

)
and grad g(x) =

(
−1
−1

)
(11.88)

are equal. Hence, the spatial averaging results in

grad (wσ(x)) = hσ(x) ∗∗ grad g(x) =

(
0

0

)
. (11.89)

The information about the orientation of the line structure is lost due to the spatial aver-
aging of the gradients.

In contrast, the dyadic product of the gradient vectors is given by

J0(grad g(x)) = (grad g(x)) (grad g(x))T (11.90)

=

(
1

1

)(
1 1

)
=

(
1 1

1 1

)
(11.91)

and

J0(grad g(x)) = (grad g(x)) (grad g(x))T (11.92)

=

(
−1
−1

)(
−1 −1

)
=

(
1 1

1 1

)
. (11.93)

Figure 11.21. Averaging of directions.
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The opposed signs are suppressed by the calculation of the dyadic product. A spatial
averaging yields the structure tensor

Jρ(grad g(x)) =

(
1 1

1 1

)
. (11.94)

Hence, the calculation of the structure tensor preserves the information about the orien-
tations.

Now consider an arbitrary gradient orientation a ∈ R2, ‖a‖ = 1. The gradient vectors
are denoted by

grad g(x) = ra , (11.95)

and the length r ∈ R of the gradient vectors is assumed to be a zero-mean random
variable:

E{r} = 0 . (11.96)

If this random process is assumed to be ergodic, the spatially averaged gradient is given
by the following expected value:

E{grad g(x)} = E{r}a = 0 . (11.97)

Hence, the orientation information is lost due to the averaging. On the other hand, the
structure tensor is given by

J(grad g(x)) = E{(grad g(x)) (grad g(x))T} (11.98)

= E{ra raT} = E{r2}aaT . (11.99)

The orientation vector a is an eigenvector of the structure tensor with eigenvalue E{r2},
as ‖a‖ = 1 implies

J(grad g(x))a = E{r2}aaT a = E{r2}a . (11.100)

Thus, the orientation information is contained in the eigenvectors of the structure tensor
and is preserved despite the spatial averaging.

Example 11.11 (Averaging of orientations using complex numbers): An alternative approach
for an orientation preserving averaging is given by the representation of directions as
complex numbers. A complex number v ∈ C can be written as

v = vTex + jvTey , (11.101)

v = |v| e jϕ , |v| = ‖v‖ , ϕ = ∠v = arctan
vTey
vTex

. (11.102)

The real part and the imaginary part can be considered to be the components of a vector
v, whose length is equal to the absolute value of the complex number. The opposed
direction is described by the negative complex number w. A direct averaging of the two
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directions v and w leads to an elimination of the orientation information:

w = −v = |v| e j(ϕ+π) ⇒ v + w = 0 . (11.103)

However, an orientation preserving averaging is possible by adding the squares of the
complex numbers:

v2 + w2 = |v|2 e j2ϕ + |v|2 e j2ϕ e j2π︸︷︷︸
= 1

= 2|v|2 e j2ϕ = 2v2 (11.104)

⇒
√
v2 + w2 = v

√
2 . (11.105)

Hence, the orientation preserving average of N complex numbers vi can be defined as
follows:√√√√ 1

N

N∑
i=1

v2i . (11.106)

The remaining derivation of the anisotropic diffusion will be based on the structure tensor.
For each image point x, the structure tensor Jρ(grad wσ(x)) ∈ R2×2 is represented by a
symmetric, positive semidefinite matrix. This is why there exists an orthonormal basis of
eigenvectors of the structure tensor, v1,v2 ∈ R2, with eigenvalues μ1, μ2 ≥ 0 [2]. W.l.o.g. let
μ1 ≥ μ2 ≥ 0. The eigenvectors meet

vT
1 v2 = 0 , ‖v1‖ = 1 , ‖v2‖ = 1 . (11.107)

Now, the structure tensor can be written as

Jρ(grad wσ(x)) = μ1v1v
T
1 + μ2v2v

T
2 . (11.108)

The magnitude of the eigenvalue is a measure of the contrast of the image wσ(x) in the
orientation of the corresponding eigenvector. The eigenvector v1 of the greatest eigenvalue
μ1 describes the orientation of the largest change of image values, e.g., an orientation which
is perpendicular to an edge of the image. The eigenvector v2 denotes the orientation of the
least change of image values, e.g., along an edge. The difference between the eigenvalues
(μ1 − μ2)

2 is a measure of the local anisotropy of the image wσ at the position x.
Now, the anisotropic diffusion should reduce the smoothing in the orientation of the

greatest difference of image values, in order to preserve edges and lines in the image. In
other words, the diffusion is supposed to be low with respect to the orientation v1 and
high with respect to the orientation v2. These requirements can be met by an appropriate
choice of the diffusion tensor D. This approach defines a diffusion tensor having the same
eigenvectors as the structure tensor but different eigenvalues λ1, λ2:

D(Jρ(grad wσ(x))) := λ1v1v
T
1 + λ2v2v

T
2 , 0 ≤ λ1 ≤ λ2 . (11.109)

As the diffusion is supposed to be minimal in the direction v1 of the largest difference of
image values, λ1 ≤ λ2. A possible choice for the eigenvalues of the diffusion tensor is given
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by

λ1 := D(‖grad wσ(x)‖) , (11.110)

λ2 :=

{
λ1 if μ1 = μ2

λ1 + (1− λ1) e
− C

(μ1−μ2)2m otherwise .
(11.111)

As with isotropic diffusion, the first eigenvalue can be chosen according to (11.76) or (11.79),
resulting in a stronger smoothing of homogeneous regions than of edges in the direction of
the gradient. At positions showing a low first eigenvalue, the second eigenvalue is increased
at pixels having a great local anisotropy (μ1 − μ2)

2. For example, this results in an intense
smoothing along edges perpendicular to the gradient direction. The parameters can be cho-
sen according to C > 0 and m ∈ N; usually, m := 1. This diffusion tensor is now inserted
into the diffusion equation (11.68):

∂u(x, t)

∂t
= divx(D(Jρ(grad wσ(x))) gradx u(x, t)) . (11.112)

For nonlinear diffusion, u(x, t) is used instead of g(x) for the calculation of wσ(x) in (11.83).
The algorithm of anisotropic diffusion can be summarized as follows:

1. Calculate the current gradient grad wσ(x), for example by convolving with the differen-
tiated Gaussian low-pass filter (11.53) with standard deviation σ.

2. Calculate the structure tensor field Jρ(grad wσ(x)) in accordance with (11.87), by spatially
averaging the dyadic product (11.85) of the gradient using a Gaussian low-pass filter with
standard deviation ρ > σ.

3. Determine the eigenvalues and eigenvectors of the structure tensor for every image
pixel x.

4. Design the diffusion tensor field D(Jρ(grad wσ(x))) in accordance with (11.109).
5. Numerically solve the diffusion equation (11.112).

Figure 11.22 shows the results of the described diffusion filter for an example image. Ho-
mogeneous diffusion yields similar results to those of a Gaussian low-pass filter: the noise
is reduced but fine structures are blurred. This disadvantage is avoided by inhomogeneous
diffusion, but the noise along the edges is not reduced. Anisotropic diffusion results in mit-
igating the noise for the whole image, while simultaneously preserving sharp edges.

11.4 11.4 Active contours
Active contour models (e.g., ‘snakes’ and ‘balloons’) represent a contour that changes as
a function of the local image properties. The contour represents the border between two
regions of an image, resulting in a segmentation into I = 2 segments: outside the contour
and inside the contour.

The basic idea of active contours can be illustrated as follows: an ‘elastic band’ is placed
inside the image, which nestles to the structures of interest and forms a (preferably) short
curve. The image is segmented into the two regions inside and outside the closed curve. In
fact, there are considerably more degrees of freedom when designing active contours than
the physical forces affecting an elastic band.
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(a) (b)

(c) (d)

Figure 11.22. Different diffusion filters applied to a test image with additive Gaussian noise of standard deviation
σr = 20, cf. Fig. 11.14(a): (a) Linear, homogeneous, isotropic diffusion in accordance with (11.70); (b) Linear,
inhomogeneous, isotropic diffusion in accordance with (11.77); (c) Nonlinear, inhomogeneous, isotropic diffusion
(11.80) according to the Perona–Malik model with γ = σr = 20; (d) Nonlinear, inhomogeneous, anisotropic image
diffusion in accordance with (11.112).

This section focuses on the snake model, which is based on Kass, Witkin and Terzopoulos
[26]. At first, the original approach will be presented, and then two variants, gradient vector
flow and vector field convolution, will be introduced.

Snakes are based on a parametric contour model. For the contour, an energy functional
is defined, which corresponds to a potential energy with inner and external forces.2 The

2For force fields F(x) with vanishing curl rotF(x) = 0, a scalar potential E(x) can be assumed,
so that F(x) = −grad E(x). Such force fields are called conservative, as the energy necessary to get
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Figure 11.23. Active contour pictured as a chain of points connected
by springs, which are affected by internal drag forces Zint and in-
ternal restoring forces Mint on the one hand, and by external forces
Fext on the other hand.

contour is adapted to the local image features by minimizing this energy functional. A closed
contour is represented as follows:

v : [0, 1]→ R2 , v(s) =

(
x(s)

y(s)

)
, s ∈ [0, 1] , v(0) = v(1) .

The energy functional is composed of the internal and external energy:

ESnake(v(s)) =

1∫
0

(Eint(v(s), s) + Eext(v(s))) ds . (11.113)

The internal energy Eint is responsible for the elasticity and the smoothness characteristics
of the contour:

Eint(v(s), s) =
1

2
w1(s)

∥∥∥∥ d

ds
v(s)

∥∥∥∥2︸ ︷︷ ︸
‘Elasticity’ , ‘Rigidity’

+
1

2
w2(s)

∥∥∥∥ d2

ds2
v(s)

∥∥∥∥2︸ ︷︷ ︸
‘Smoothness’

. (11.114)

The two terms are weighted by the functions w1(s) and w2(s), which are often assumed to be
constant. An active contour can be visualized as a chain of points that are coupled by drag
forces and restoring torques (see Fig. 11.23). The first term of (11.114) corresponds to the
drag forces Zint and the second term, which increases for higher curvatures of the contour
v(s), corresponds to the restoring torques (bending moments) Mint. By decreasing w1, the
contour will be more stretchable. A smoother contour can be obtained by increasing w2.

The external energy is defined as follows:

Eext(v(s)) = PImage(v(s)) + EDesign(v(s)) . (11.115)

Here, PImage( · ) is a scalar potential function associated to the image data, and EDesign( · ) is
an energy term for considering problem specific constraints (design term).

The image potential PImage(v) causes the contour to be attracted by image features such
as lines, edges or corners. The design of the potential function results in local minima of
the potential for interesting image features. The image potential in turn can be defined as a
weighted sum of multiple terms:

PImage = wline Pline + wedge Pedge + wterm Pterm . (11.116)

from point x1 to point x2 is independent of the choice of the path between x1 and x2:
∫ x2

x1
F(x) dx =

E(x1)− E(x2).
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The line potential Pline causes the snake to be attracted by lines in the image. The simplest
case is given by

Pline(x) = g(x) . (11.117)

The potential coincides with the image value. Depending on the sign of wline, the contour is
attracted by bright or dark lines.

The edge potential Pedge causes the snake to be attracted by step edges inside the image.
In principle, any edge operator can be used, for example,

Pedge(x) = −‖grad g(x)‖2 . (11.118)

An initial smoothing should be performed on images which are severely affected by noise,
e.g., by applying a differentiated Gaussian low-pass filter (see Sec. 11.2.1). Because of the
termination potential Pterm, the snake is attracted by ends of lines:

Pterm = −
∣∣(grad θ)Tn⊥

∣∣ . (11.119)

Here, θ denotes the gradient angle,

θ = ∠grad g(x) = arctan

∂g(x)
∂y

∂g(x)
∂x

, (11.120)

and n⊥ denotes the normal vector which is perpendicular to the gradient direction:

n⊥ =

(
− sin θ

cos θ

)
(11.121)

Along lines, the gradient of the gradient angle is perpendicular to the edge, which is why
the inner product in (11.119) vanishes. At line endings, however, there is a gradient in the
direction of the edge, resulting in a negative potential, which attracts the contour. The ter-
mination potential (11.119) can be directly calculated as a function of the first and second
derivatives of the image signal [26]:

Pterm = −

∣∣∣∣∣∣∣∣∣
∂2g(x)
∂y2

(
∂g(x)
∂x

)2
− 2∂2g(x)

∂x∂y
∂g(x)
∂x

∂g(x)
∂y + ∂2g(x)

∂x2

(
∂g(x)
∂y

)2
((

∂g(x)
∂x

)2
+
(

∂g(x)
∂y

)2) 3
2

∣∣∣∣∣∣∣∣∣ .
Because of the intensive use of derivatives, extremely noisy images should first be smoothed.

The problem of minimizing the energy is solved using the methods of the calculus of
variations [11], which will now be briefly presented for the case of a general optimization
problem. The energy functional

E =

s2∫
s1

f(s,v(s),vs(s),vss(s)) ds → Extremum (11.122)

is considered in the following notation

v s ... s︸︷︷︸
n

(s) :=
dnv(s)

dsn
. (11.123)
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The function f( · ) inside the energy functional depends on the parameter s, the value of the
function v(s) for s, and the first two derivatives of v at s.

If a function v(s) is an extremum of the energy functional, it will satisfy the Euler–
Lagrange differential equation:3

∂

∂v
f − d

ds

∂

∂vs
f +

d2

ds2
∂

∂vss
f = 0 . (11.124)

This formalism is now applied to the following energy functional:

ESnake(v(s)) =

1∫
0

(Eint(v(s), s) + Eext(v(s))) ds (11.125)

=

1∫
0

(
1
2w1(s) ‖vs(s)‖2 + 1

2w2(s) ‖vss(s)‖2

+ PImage(v(s)) + EDesign(v(s))
)
ds .

(11.126)

By the Euler–Lagrange equation, one has

∂

∂v
PImage(v(s)) +

∂

∂v
EDesign(v(s))−

d

ds
(w1(s)vs(s)) +

d2

ds2
(w2(s)vss(s)) = 0 . (11.127)

For constant w1(s) and w2(s), this results in

−w1vss(s) + w2vssss(s) = −
∂

∂v
PImage(v(s))−

∂

∂v
EDesign(v(s)) . (11.128)

As on the right-hand side, the forces corresponding to the potentials are calculated by the
operation −gradv , the terms on the two sides of the equation can be considered as internal
and external forces:

Fint(v(s)) := −w1vss(s) + w2vssss(s) , (11.129)

Fext(v(s)) := −
∂

∂v
PImage(v(s))−

∂

∂v
EDesign(v(s)) . (11.130)

The energy is minimal in the case of an equilibrium of forces:

Fint = Fext (11.131)

The external forces consist of the actual image force and user-defined, problem-specific
forces. In summary, a segmentation using active contours comprises the following steps:

1. Determination of the image structures of interest and design of the appropriate poten-
tials, which correspond to the forces that attract the contour to such structures.

2. Definition of active contours, whose ‘material properties’ are determined by the internal
forces or by their potentials.

3. Positioning the initial contour in the image, which is then deformed by the acting forces,
until an equilibrium between internal and external forces is reached.

4. In the equilibrium, the contour marks the borders between the two segments.

3Here, the notation ∂
∂v

is short for gradv. Accordingly, ∂
∂vs

and ∂
∂vss

correspond to gradvs
and

gradvss
.
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The third step does not have to be realized as a quasi-temporal process, but can also be
carried out implicitly by directly calculating the position of the equilibrium.

Remarks:

The initial contour has to be placed near the relevant contour of the image, in order to
prevent the active contour from collapsing.

The potential of the image should be defined in such a way as to provide a sufficiently
large range for the forces that are caused by the relevant structures. For example, this can
be problematic for step edges between regions with constant image values. In this case,
the gradient of the image values is zero inside the regions and the contour is not attracted
to the edges.

The active contour can be calculated by numerically solving the differential equations, e.g.,
by means of the

finite element method (FEM) or the
finite difference method (FDM).

By these methods, the Euler–Lagrange equation is discretized and solved iteratively [26].

11.4.1 Gradient vector flow
Gradient vector flow is an alternative external force for snakes, providing a higher range
of attraction to the structures of interest. It has been designed to improve the adaptation of
the contour to concave structures and to improve the convergence for more distant initial
contours.

The external force field FGVF(x) = (α(x), β(x))T is determined by minimizing a specially
developed energy functional EGVF, which is defined as follows [44]:

EGVF =

∫∫
Ωg

(
μ (‖grad α(x)‖2 + ‖grad β(x)‖2) (11.132)

+ ‖grad gedge(x)‖2 ‖FGVF(x)− grad gedge(x)‖2
)
dx . (11.133)

Here, gedge(x) is an edge image, e.g.,

gedge(x) = ‖grad g(x)‖2 , (11.134)

The gradient grad gedge(x) of the edge image is oriented towards the edges, so if an ade-
quate external force is present, edges attract active contours, cf. Fig. 11.24(a). Now, Equation
(11.133) can be interpreted as follows: because of the summand in the second row, the force
field FGVF is equal to the gradient of the edge image, especially at positions of high mag-
nitudes of this gradient. The two summands of the first row of (11.133) smooth FGVF and
the relative weight of this smoothing term is determined by μ ≥ 0. For homogeneous image
regions, the smoothing terms are dominant, as the second term is attenuated by the factor
‖grad gedge(x)‖2. Hence, the gradient of the edge image is extended into homogeneous re-
gions, so that the range of the attracting force is increased. This is why the dependency of
the initialization of the energy minimization problem is decreased and the adaptation of the
active contour to concave structures is improved.

The numerical calculation of the external force can be performed using the Euler–
Lagrange equation [44]. In the second step, the right-hand side of Equation (11.128) is re-
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(a)

(b) (c) (d) (e)

Figure 11.24. Adaptation of the contour according to the gradient vector flow method, illustrated using a binary test
image: (a) Force field FGVF(x); (b) Initial contour; (c), (d) Intermediate steps of the numerical contour adaptation;
(e) Final result (source: Prof. J. Prince [44]).

placed by the resulting force field FGVF(v(s)) and the adaptation of the active contour is
again performed numerically.

Figure 11.24 shows the force field for a test image as well as the iterative adaptation of
the active contour. The method can also handle images with a high noise level, as is shown
by an example from the field of medical imaging (see Fig. 11.25).

(a) (b) (c)

Figure 11.25. Segmentation of a magnetic resonance image: (a) Initial contour; (b) Intermediate result; (c) Final result
of the contour adaptation (source: Prof. J. Prince [44]).
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11.4.2 Vector field convolution
Vector field convolution [29] represents another method for the definition of the external
forces for active contours. The aim is an optimal adaptation of the active contour to concave
structures and distant initial contours. Simultaneously, the calculation of the external force
has to be efficient.

For vector field convolution, the external force is given by a convolution with a suitable
kernel q(x):

FVFC(x) = gedge(x) ∗∗q(x) . (11.135)

As in the previous section, gedge(x) denotes the edge image, see Equation (11.134).
The convolution kernel describes an elementary vector field (force field) with a local

depression located at the origin. It is defined as the product of a direction field with a scalar
decay function (Fig. 11.26):

q(x) := m(x)n(x) (11.136)

with n(x) :=

{
− x

‖x‖ if x �= 0

0 if x = 0 ,
(11.137)

m1(x) := (‖x‖+ ε)−γ or, e.g., m2(x) := e
− ‖x‖2

ζ2 . (11.138)
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Figure 11.26. Convolution kernel q(x) = − x
‖x‖2 for vector field convolution (m(x) = m1(x), ε = 0, γ = 1).
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The direction field n(x) is directed towards the center of the convolution kernel. For the
amplitudes m(x), the two alternatives m1(x) and m2(x) have been proposed, where ε > 0,
γ > 0 and ζ > 0 are parameters [29]. The range of the external force can be explicitly set
by adjusting the size of the convolution kernel and the parameters γ and ζ. When using
m1(x) with γ = 2 and ε = 0, the resulting convolution kernel corresponds to Newton’s law
of gravitation.

The convolution operation required for calculating the external force can be performed
using the fast Fourier transform. For this purpose, the vectorial convolution kernel q(x) =
(qx, qy)

T can be expressed as a complex signal: q(x) := qx + jqy . The real-valued, vectorial
convolution with q(x) is equivalent to a complex-valued convolution with q(x):

FVFC(x)= gedge(x) ∗∗ q(x) FVFC,q ∈ R2

FVFC(x)= gedge(x) ∗∗ q(x) FVFC, q ∈ C

◦
•

F{FVFC}(f)=F{gedge}(f) · F{q}(f) .

(11.139)

In the spatial frequency domain, this convolution corresponds to a multiplication. Before
performing the discrete Fourier transform, the domains of the signals need to be suitably
increased (by zero padding, cf. Sec. 8.3.9.2). In [29] it is shown that the calculation of FVFC

using the fast Fourier transform is more efficient than the calculation of FGVF from the pre-
vious section using numerical methods. Besides, the elementary field can be explicitly set or
defined, whereas FGVF is the result of a calculation and can only be indirectly adjusted via
the parameter μ. Furthermore, the VFC method allows a quasi-physical interpretation, as
gedge(x) can be considered as a distribution of charges and q as a field of single elementary
charges. The superposition of the fields of the elementary charges, which are distributed
according to gedge(x), in the surrounding space represents the total force field.

On the one hand, active contours yield good results in edge detection and segmentation
even in the presence of severe noise. This is because of the integral character of the calculus
of variations.

On the other hand, the need for closed contours is a very strict requirement regarding
the topology of the structures of interest. Sensible results are only possible if this model
is adequate. The decision of whether or not to apply active contours can be made using
background knowledge about the inspection task.

Other generalizations of snakes allow more complicated topologies [3].

11.5 11.5 Segmentation according to Mumford and Shah
The energy functionals of Mumford and Shah represent a mathematically well-founded for-
mulation of the segmentation problem [16, 32]. Their approach is based on an empirically
motivated assumption about the characteristics of scenic images: the image signal shows
discontinuities at object borders and is relatively smooth inside objects. Additionally, the
approach of Mumford and Shah assumes that the image signals are piecewise smooth but
might have local discontinuities. The borders between segments are modeled by a set Γ of
edge points, which are neither described by parametric curves nor have to be connected. The
result of the segmentation is an image u(x), whose segments are piecewise smooth functions
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with a quadratically integrable gradient grad u(x) ∈ L2(Ωg\Γ). A formulation of the energy
functional of Mumford and Shah is

EMS{u(x),Γ} := μ

∫∫
Ωg

(g(x)− u(x))2 dx+ νL{Γ}+
∫∫

Ωg\Γ

‖grad u(x)‖2 dx (11.140)

with the weighting factors μ, ν ≥ 0 and the curve length L{Γ}. The first term of the energy
functional hopefully results in a good approximation of the original image g(x) by the re-
sulting image u(x) in the sense of the minimal mean squared error. If, for example, u(x) is
modeled as a piecewise constant function, it will have the mean image value of a segment
ωi inside the segment:

∀x ∈ ωi : umin(x) =
1

|ωi|
∑
x∈ωi

g(x) . (11.141)

The second term in (11.140) minimizes the total length L{Γ} of the edges. The third term
requires the resulting image u(x) to be smooth, except for edges. Along the edges, the re-
sulting image may contain discontinuities.

Minimizing the Mumford and Shah functional (11.140) yields the segmentation result
(umin( · ),Γmin) with

EMS{umin(x),Γmin} = min
u( · ),Γ{EMS{u(x),Γ}} . (11.142)

Usually, this problem can only be solved numerically. For this purpose, different discrete
formulations of the functional have been proposed. For example, the approach of Chan and
Vese models the set of the edge points using the level set method:

Γ = {x ∈ Ωg |φ(x) = 0} (11.143)

with the level set function

φ(x) : Ωg → R , grad φ(x)|φ(x)=0 �= 0 . (11.144)

This formulation results in a segmentation into I = 2 segments [12, 13]. The two segments
ω1, ω2 are determined by the sign of the level set function [34]:

ω1 = {x ∈ Ωg |φ(x) > 0} , (11.145)

ω2 = {x ∈ Ωg |φ(x) < 0} . (11.146)

The zeros of the level set function correspond to the edges between the two segments. The
generalization to I > 2 segments is possible using multiple level set functions [41].

The Mumford and Shah functional (11.140) can also be extended to suit multi-channel
images g(x) : Ωg → RQ:

EMS{u(x),Γ} := μ

∫∫
Ωg

‖g(x)− u(x)‖2 dx+ νL{Γ}+
∫∫

Ωg\Γ

Q∑
q=1

‖grad uq(x)‖2 dx . (11.147)

Figure 11.27 shows the result of this method applied to an example image.
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(a) (b)

Figure 11.27. Segmentation of a color image using the method of Mumford and Shah: (a) Original image g(x)

superposed with the segment borders Γ; (b) Segmentation result u(x) (source: Dr. M. Fried, University of Erlangen,
Germany [21]).

11.6 11.6 Segmentation using graph cut methods
Maximum flow and minimal cut algorithms for flow networks provide an efficient way to
minimize certain energy functionals. In the following, the basics of the maximization of the
network flow will be introduced at first. Then, the application to segmentation problems
will be presented.

11.4 Definition 11.4: Flow network
A flow network (or ‘network’, for short) N = (V, E , w, T ) consists of

a set of vertices (or nodes) v ∈ V ,
a set of edges (or arcs) e ∈ E ⊆ V × V ,
a weighting function w : E → R, assigning a capacity w(e) > 0 to each edge e,
and a set of terminal vertices t ∈ T ⊆ V . �

Hence, a network is a weighted graph together with a set of terminal vertices (Fig. 11.28(a)).
In the case of exactly two terminal vertices, T = {s, t}, the network is called an s-t-network
with a source s and a sink t. Such networks are of particular importance for segmentation.
A flow with unlimited capacity is fed into the network at the source s. At the sink t, a
flow is extracted from the network with unlimited capacity. Now, the maximum flow of the
network is to be determined, with respect to the capacity of the edges, which is represented
by their weights.
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Figure 11.28. Example of a network N = (V, E, w, {s, t}): (a) Capacities w(e); (b) Maximum flow f(e) and mini-
mum cut (Vs,Vt) with c(f) = c(Vs,Vt) = 20.

11.5Definition 11.5: Network flow
In a network N = (V, E , w, T ), a flow f is a mapping f : E → R having the following
properties:

∀e ∈ E : 0 ≤ f(e) ≤ w(e) , (11.148)

∀v ∈ V\T :
∑

e=(u,v)∈E
f(e) =

∑
ẽ=(v,ũ)∈E

f(ẽ) . (11.149)

�

The number f(e) is called the flow of the edge e. The first constraint (11.148) ensures that the
flow of an edge cannot exceed its capacity. The flow conservation constraint (11.149) states
that the sum of incoming flows at a vertex v has to be equal to the sum of the outgoing flows.

Another important concept strongly connected with the network flow is a so-called cut
in a network:

11.6Definition 11.6: Network cut
A partition of the vertices of a network N = (V, E , w, T ) into non-empty, disjoint subsets Vi,
i = 1, . . . , |T | is called a cut if the following requirements are met:

|T |⋃
i=1

Vi = V , (11.150)

∀i, j ∈ {1, . . . , |T |} : i �= j ⇒ Vi ∩ Vj = ∅ , (11.151)

∀i ∈ {1, . . . , |T |} : |Vi ∩ T | = 1 . (11.152)

The set of the edges affected by the cut is

E(V1, . . . ,V|T |) = {e = (u, v) ∈ E |u ∈ Vi ∧ v ∈ Vj ∧ i �= j} . (11.153)

The capacity c of the cut is

c(V1, . . . ,V|T |) =
∑

e∈E(V1,...,V|T |)

w(e) . (11.154)

A cut with minimum capacity in N is called a minimum cut. �
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A cut is uniquely identified by either the partition (V1, . . . ,V|T |) or by the cut-set
E(V1, . . . ,V|T |). In the case of T = {s, t}, a cut (V1,V2) separates the network into two parts,
one containing the source s and the other one containing the sink t.

Now, the value of the network flow can be defined using the network cut:

11.7 Definition 11.7: Value of a network flow
The value c(f) of a flow f in an s-t-network N = (V, E , w, {s, t}) is given by

c(f) =
∑

e∈E(Vs,Vt)

f(e) , (11.155)

with (Vs,Vt) denoting an arbitrary cut of the network.
A flow f with maximum value in N is called a maximum flow. �

The value c(f) of a flow f is the sum of the flow at an arbitrary cut of the network. Because
of the flow conservation constraint (11.149), this sum is equal for all possible cuts. As

c(f) =
∑

e=(s,v)∈E
f(e) =

∑
e=(v,t)∈E

f(e) , (11.156)

the value of the flow is the amount of flow entering the network at the source s or exiting
the network at the sink t.

The relation between the maximum flow and the minimum cut in an s-t-network is de-
scribed by the max-flow min-cut theorem of Ford and Fulkerson (Fig. 11.28(b)).

11.1 Theorem 11.1: Max-flow min-cut theorem
Let f denote a maximum flow and (Vs,Vt) denote a minimum cut in a network N =

(V, E , w, {s, t}). Then, the value of the flow is equal to the capacity of the cut:

c(f) = c(Vs,Vt) . (11.157)

For the proof, see [15]. �

If the edge weights w(e) are interpreted as transport capacities, it is obvious that the maxi-
mum flow f from the source s to the sink t must flow through a set of saturated edges with
f(e) = w(e). The minimum cut of the network runs through saturated edges limiting the
network flow the most and therefore showing minimum capacities.

Finding the minimum cut in N is equivalent to maximizing the network flow. If a max-
imum flow f is known in an s–t-network, a minimum cut can be obtained as follows: let
Vs denote the set of all vertices which can be reached from s via a path of positive residual
capacity, i.e., over a connected series of edges e with w(e) − f(e) > 0. Then (Vs,V\Vs) is a
minimum cut.

There are two classes of efficient algorithms for finding the maximum network flow in
the case of T = {s, t}: so-called push-relabel algorithms according to Goldberg and Tarjan
[22], and so-called augmenting path algorithms according to Ford and Fulkerson [20]. The
latter perform a stepwise increase of the flow by finding augmenting paths in the network
that still have a positive residual capacity. Based on this principle, an algorithm especially
optimized for image processing applications has been proposed by Boykov and Kolmogorov
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[7]. The flow maximization problem is of polynomial time complexity in the number of the
network’s vertices and edges. However for |T | ≥ 3, finding the minimum cut is NP-hard,
i.e., no algorithms are known that can solve the problem in polynomial time. This is why
such problems are usually solved only approximately, e.g., by the α-expansion algorithm
[8]. In every iteration, a terminal vertex α ∈ T is selected and a reduced network with
only two terminal vertices Tα = (α, t) is constructed. The minimum cut of this network
can be calculated efficiently and determines the set Vα of vertices that should be assigned
to the terminal vertex α. The assignment of the other vertices Vt remains unchanged by
this iteration. After each terminal vertex α ∈ T has been selected at least once, the resulting
partition (Vα)α∈T of the original network constitutes a good approximation of the minimum
cut.

Even though the minimum cut and the maximum flow in a given network are not neces-
sarily unique, the value of the maximum flow or the capacity of the minimum cut is unique.

In the field of image processing, the pixels of an image can be considered as the vertices of
a network: Ωg ⊆ V . The edges and capacities of the network can reflect different constraints
of the image processing task. Usually, edges are created between adjacent pixels, as well
as between pixels and the terminal vertices. Image processing algorithms relying on the
maximization of the network flow are known as graph cut methods.

For segmentation tasks, the edges between adjacent pixels x1,x2 represent the similarity
of the corresponding feature vectors m. To this end, a neighborhood criterion for pixels is
necessary. Two definitions of neighborhoods commonly used in image processing are as
follows:

11.8Definition 11.8: Neighborhood
The 4-connected neighborhood N4(x) of a pixel x = (x, y)T includes the horizontally and
vertically adjacent pixels:

N4(x) = {(x− 1, y)T, (x+ 1, y)T, (x, y − 1)T, (x, y + 1)T} . (11.158)

The 8-connected neighborhood N8(x) contains, in addition to the above, the diagonally
adjacent pixels as well:

N8(x) = N4(x)∪ {(x− 1, y− 1)T, (x− 1, y+1)T, (x+1, y+1)T, (x+1, y− 1)T} . (11.159)

�

For each pixel x2 in a neighborhood of x1, such as the 4-connected neighborhood N4(x1) for
example, an edge is created with the capacity d(m(x1),m(x2)):

EN := {(x1,x2) ∈ Ω2
g |x2 ∈ N4(x1)} , (11.160)

w((x1,x2)) := d(m(x1),m(x2)) if e = (x1,x2) ∈ EN . (11.161)

An edge e is assigned a high capacity w(e) if the features of the connected pixels are sim-
ilar, so that they should belong to the same segment. As it is assigned a low capacity if
the features are markedly different, the minimum cut will preferentially intersect the edges
of adjacent pixels with dissimilar features (Fig. 11.29). A possible choice of the weighting
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(a) (b)

(c) (d)

Figure 11.29. Principle of segmentation using graph cuts: (a) Gray-scale image g(x); (b) Corresponding pixel graph
(Ωg , EN); if two adjacent pixels have similar gray values, their corresponding vertices are connected by an edge with
a high capacity; (c) Introduction of seed points by adding terminal vertices s, t and calculation of the minimum cut;
(d) The minimum cut determines the border between the two segments ωs, ωt.

function d( · , · ) is given by

d(m(x1),m(x2)) ∝ e−
‖m(x1)−m(x2)‖

2σ2 . (11.162)

Here, the parameter σ should approximate the standard deviation of the noise in the im-
age [6].

For the binary segmentation of the image into two segments ωs, ωt, two terminal vertices
s, t are added to the network, resulting in the set of vertices

V = Ωg ∪ T , T = {s, t} , (11.163)

see Fig. 11.29. The terminal vertices correspond to the two image segments sought, e.g., the
test object and the background.

In addition, every pixel vertex x ∈ Ωg can be connected to each terminal vertex i ∈ T via
an edge (Fig. 11.30):

ET := Ωg × T . (11.164)

In the case of binary segmentation, this corresponds to the set of edges

ET =
⋃

x∈Ωg

{(s,x), (x, t)} . (11.165)
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s

t
Minimum

cut

Figure 11.30. Binary segmentation by computing the minimum cut of the network N = (V, E, w, T ).

The capacity of the terminal vertices can be chosen as a function of the conditional prob-
abilities P (m(x)|ωi), i ∈ T of the occurrence of a feature vector m(x) given that the pixel
belongs to segment ωi. These probabilities can be estimated from, e.g., the histograms of
the respective regions of reference images. By these means, the inner characteristics of the
regions that are to be segmented can be introduced into the optimization problem, instead
of only considering the edge capacities at the region borders. Additionally, sets of arbitrarily
distributed seed points can be used. The seed points of the set Si, i ∈ T will be part of the
segment ωi. Hence, the capacities of the terminal edges can be chosen as follows [6]:

w((s,x)) :=

⎧⎪⎪⎨⎪⎪⎩
∞ if x ∈ Ss
0 if x ∈ St
−λ lnP (m(x)|ωt) otherwise ,

(11.166)

w((x, t)) :=

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ Ss
∞ if x ∈ St
−λ lnP (m(x)|ωs) otherwise ,

(11.167)

Ss ∩ St = ∅ . (11.168)

The capacity of an edge e = (x, i) ∈ ET is infinite if x ∈ Si, so that a seed point will be
certainly assigned to the segment ωi. Accordingly, the capacity of a seed point’s edges to
the other terminal vertices is zero, so that these edges must be part of the minimum cut. If
the probability of a point x belonging to segment ωi is high because of its features m(x),
the capacity of the corresponding edge (x, i) is set to a high value. If, on the contrary, the
probability is low, a low value is assigned to the edge, so that chances are high that it will be
part of the minimum cut.

The parameter λ > 0 determines the relative weighting of the terminal edges and neigh-
bor edges.

Thus, the segmentation problem is mapped to a network N = (V, E , w, T ) with V =

Ωg ∪ T , E = EN ∪ ET and T = {s, t}. Now, the minimum cut (Vs,Vt) of this network can be
calculated efficiently and has the following characteristics:

For every pixel vertex x ∈ Ωg , exactly one terminal edge (x, i) ∈ ET is cut.
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If x ∈ ωs, the terminal edge (x, t) is contained in the minimum cut E(Vs,Vt).
If, on the contrary, x ∈ ωt, then (s,x) ∈ E(Vs,Vt).
A neighborhood edge (x1,x2) ∈ EN is part of the minimum cut E(Vs,Vt) if and only if x1

and x2 are assigned to different segments.

The minimum cut separates the two segments. A pixel x ∈ Ωg is assigned to the segment ωs

if, and only if, x ∈ Vs ⇔ (x, t) ∈ E(Vs,Vt).
The steps of binary segmentation using maximum network flow can be summarized as

follows:

1. Create a weighted pixel graph (Ωg, EN) using the feature vectors m(x), a similarity crite-
rion d( · , · ) for the feature vectors, and a definition of the neighborhoods N(x).

2. Determine seed points Ss for the object that is to be segmented and St for the background,
Ss,St ⊂ Ωg , Ss ∩ St = ∅.

3. Add the terminal vertices s (source) and t (sink) to the pixel graph.
4. Create the terminal edges (s,x) and (x, t) for all pixels x ∈ Ωg .
5. Determine the weights w(e) for the neighborhood edges and terminal edges, resulting in

a network N = (V, E , w, T ) with T = {s, t}.
6. Calculate the minimum cut (Vs,Vt) separating the terminal vertices s and t (s ∈ Vs, t ∈ Vt)

using a network flow algorithm.
7. The partition (Vs,Vt) defined by the minimum cut corresponds to a segmentation of the

image into the object region ωs and the background region ωt.

The resulting segments do not necessarily have to be connected. The segment borders are
not explicitly modeled. Both region-based and edge-based criteria can be used, depending
on the features used. As binary segmentation yields the global minimum cut, an optimal
result is guaranteed with respect to the chosen model. The generalization to more than two
segments is possible using the α-expansion algorithm, which, however, provides only an
approximate solution.

Example 11.12 (Sorting of food): The setup for sorting bulk goods described in Sec. 7.6.2 uses
a hyperspectral line camera, which acquires an image with about 200 channels in the
near infrared. The image values g(x) of the hyperspectral image are directly used as the
feature vectors m(x) for determining the edge capacities. As an example from the food
industry, Fig. 11.31 shows an image of coffee beans, among which contaminants are to be
detected. The conditional probabilities P (m|ωi) for the three classes coffee beans, con-
taminants, and background are estimated using manually set seed points, Fig. 11.31(b).
The segmentation result of the iterative α-expansion algorithm is shown in Fig. 11.31(c).

The calculation of the minimum cut can be considered as the minimization of an energy func-
tional. The energy is defined to be dependent on the labeling function L : Ωg → {ω1, . . . , ωI},
which assigns a segment ωi to every image point x ∈ Ωg . The energy functional is composed
of two terms, which correspond to the terminal edges and the neighborhood edges of the
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(a) (b) (c)

Figure 11.31. Application of segmentation using minimum network cuts to sorting food: (a) One channel of the
hyperspectral image; (b) Manually marked sets of seed points; (c) Segmentation into coffee beans, contaminants,
and background; superposed on the original image in pseudo colors.

network:

EGC{L} =
∑
x∈Ωg

ED(g(x), L(x))︸ ︷︷ ︸
Data consistence

+
∑

x1∈Ωg

x2∈N(x1)

EG(g(x1), g(x2), L(x1), L(x2))

︸ ︷︷ ︸
Smoothness

. (11.169)

The first term represents the relation between the assignment L(x) and the image g(x) or
the extracted features m(x) respectively. The second term demands the smoothness of the
assignment in a local neighborhood. These two terms are somehow similar to the functional
of Mumford and Shah (11.140). However, no explicit attention is paid to the length of the
edges between the segments. In fact, it would be possible to consider the edge lengths when
constructing the network, so that certain variants of the functional of Mumford and Shah
can be minimized using graph cut algorithms [19].

There are even more image processing tasks that can be formulated as an assignment
problem [8]. A label, whose meaning depends on the actual application, is assigned to every
image point (Table 11.2). An energy functional is constructed that depends on the labeling
function L and is minimized using network flow algorithms. This is possible if the energy
functional meets certain conditions [27]. Among others, the single summands may only
depend on the labels of a few vertices. In (11.169), for example, ED depends only on a single
pixel assignment L(x) and EG depends on the assignment of two pixels L(x1), L(x2).

Table 11.2. Application of maximum network flow to image processing.

Application Meaning of the labels

Segmentation Segment ωi

Image restoration Restored (undisturbed) intensity

Finding stereo correspondences Object distance

Texture synthesis Synthesized intensity
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12 Morphological Image Processing
Morphological methods used in the algebra of sets can be used for morphological image
processing. They were introduced by Matheron and Serra under the term ‘Mathematical
Morphology’ [12, 16, 17]. Here, image signals are considered to be point sets and morpho-
logical filters are operations manipulating these sets.

Basically, morphological methods can be applied to binary images (Sec. 12.1) as well as
to gray-scale images and color images (Sec. 12.2). As morphological operators are nonlinear,
they cannot be described using the methods of linear system theory. Nevertheless, morpho-
logical methods are very intuitive, as their local effects are clearly visible and comprehensi-
ble. Among other things, this is because of the so-called structuring element, which can to a
certain extent be compared to the impulse response function of a linear system.

Morphological methods are suitable for various tasks of image evaluation, e.g., prepro-
cessing, noise mitigation, edge extraction and detection. Because of the variety of possi-
ble applications, morphological image processing can hardly be integrated into the chapter
structure of this book, which is why it is presented in a distinct chapter.

12.112.1 Binary morphology

12.1.1 Point sets and structuring elements
As a preparation for applying morphological methods to image signals, first a point set
representation of image signals has to be defined. In the usual signal-oriented treatment,
continuous binary images are represented by a function

g :

{
Ωg → {0, 1}
x �→ g ,

x ∈ Ωg ⊆ R2 , (12.1)

which maps the continuous domain Ωg to the discrete values 0 and 1. Discrete binary images
are different from this representation, as the image coordinates x ∈ Ωg ⊆ Z2 are sampled on
a discrete grid:

g :

{
Ωg → {0, 1}
x �→ g ,

x ∈ Ωg ⊆ Z2 . (12.2)

12.1Definition 12.1: The point set of a binary image
The point set G of a binary image g(x) is the set of all image points with a value of 1:

G = {x | g(x) = 1} . (12.3)

�

In other words, G represents the set of image points describing the object of interest. All
other image points are assigned to the background. For the visualization of such binary
images, ‘black’ corresponds to the value 1 and ‘white’ corresponds to the value 0. As an
example, Fig. 12.1 shows a two-dimensional butterfly-shaped point set G.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_12,
© Springer-Verlag Berlin Heidelberg 2016
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Figure 12.1. Binary image as a point set G.

(a) SC (b) SPP

Figure 12.2. Examples of structuring elements.

The assignment between binary images and point sets is bijective, so that a lossless trans-
formation between the two representations is possible. The binary image of a point set G is
given by the following formula:

g(x) =

{
1 if x ∈ G
0 if x /∈ G .

(12.4)

As with linear methods, where the input signal g(x) is linked to another signal—the impulse
response function h(x) of the system—two point sets are linked by the morphological oper-
ators. Here, the nonempty point set used for manipulating the image G using morphological
operators is the so-called structuring element S . By changing the size and the shape of S , the
characteristics of a morphological operation can be adjusted. In practice, suitable structuring
elements S are usually heuristically determined depending on the application on hand. As
an example, Fig. 12.2 shows two simple, discrete structuring elements: the cross

SC =
{
(0, 0)T, (1, 0)T, (0, 1)T, (−1, 0)T, (0,−1)T

}
(12.5)

and the point pair

SPP =
{
(−1, 0)T, (1, 0)T

}
. (12.6)

The cross can be considered as an approximation of a circle. The reference point (i.e., the
origin) of the structuring element, which is marked by the symbol ◦ in Fig. 12.2, does not
necessarily have to be part of S .

Before the basic operators of morphological image processing will be covered in the next
subsection, some specific operators for point sets are introduced, which allow a more com-
pact and therefore a clearer representation of set operations.

12.2 Definition 12.2: Operations on point sets
The shift of the set G by the vector z refers to the set

(G)z := {w |w = x+ z, x ∈ G} . (12.7)

The reflection of the set G at its origin is defined as

GR := {w |w = −x, x ∈ G} . (12.8)
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Further, the complement G of a set is the set of elements that are not part of G:

G := {w ∈ Ωg |w /∈ G} . (12.9)

The difference of two sets G1 and G2,

G1\G2 := {w ∈ Ωg |w ∈ G1, w /∈ G2} = G1 ∩ G2, (12.10)

is the set of elements belonging to G1 and not to G2. �

12.1.2 Erosion and dilation
The basic methods of morphology are erosion and dilation [4, 12].1

12.3Definition 12.3: Erosion
The erosion G �S of a set G by the structuring element S is defined as the set of shifts w of S
for which the shifted sets (S)w are entirely contained in G:

G � S := {w | (S)w ⊆ G} . (12.11)

�

By erosion, the point set G is shrunk, depending on the structuring element S . The interior
of objects larger than the structuring element remains unchanged. However, some points at
their margin are removed (Fig. 12.3).

In contrast, dilation enlarges the point set:

12.4Definition 12.4: Dilation
The dilation G ⊕S of a set G by S is defined as the set of shifts w of S for which the intersec-
tions of G and the shifted S are nonempty:

G ⊕ S := {w | (SR)w ∩ G �= ∅} . (12.12)

�

Figure 12.4 illustrates the results of the erosion and dilation of the two-dimensional butterfly-
shaped set G using a circular structuring element S containing the origin. Obviously, the
appendages are removed by the erosion, as at the respective positions, the shifted S cannot
be a subset of G. Furthermore, this erosion results in shrinking G by the radius of S , as the
shifted S has to be completely contained in G (Fig. 12.3). Thus,

G � S ⊆ G . (12.13)

In the case of dilation, the set G is enlarged by about the size of the radius of S, which is why
the fine notches disappear; here,

G ⊆ G ⊕ S . (12.14)

1Erosion and dilation are closely related to the set-theoretic operations Minkowski subtraction and
Minkowski addition.
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(a)

(b)

(c)

Figure 12.3. Illustration of erosion and dilation: (a) Original set G and structuring element S; (b) Result of the erosion
of G by S; (c) Result of the dilation of G by S.

S
x

y

(a) Erosion (b) Dilation

Figure 12.4. Result of erosion and dilation of the binary image of Fig. 12.1 using the structuring element shown, S.

In the following, further properties of erosion and dilation will be covered, which help
in selecting and implementing morphological operators and support the design of the struc-
turing element [7].

12.1 Theorem 12.1: Properties of erosion
Let G, G1, and G2 denote the point sets of some binary images, and S , S1, and S2 denote
structuring elements.
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1. The erosion of a point set G is the intersection of all the point sets resulting from shifts of
G by −z for each z ∈ S .

G � S =
⋂
z∈S

(G)−z . (12.15)

2. The erosion using an ‘impulse,’ i.e., a single-element structuring element {x0}, corre-
sponds to the shift of the point set G by the vector −x0 (Fig. 12.5):

G � {x0} = (G)−x0
. (12.16)

3. The structuring element {0} that contains only the origin is the neutral element of the
erosion:

G � {0} = G . (12.17)

4. Erosion is not commutative: in general,

G � S �= S � G . (12.18)

However, the ordering of subsequent erosion operations can be arbitrarily chosen:

(G � S1)� S2 = (G � S2)� S1 . (12.19)

5. Erosion is not associative: in general,

G � (S1 � S2) �= (G � S1)� S2 . (12.20)

6. Erosion is shift-invariant: for an arbitrary shift vector z,

(G)z � S = (G � S)z , (12.21)

G � (S)z = (G � S)−z = (G)−z � S . (12.22)

7. The eroded point set is contained in the original point set if the structuring element con-
tains the origin:

(0, 0)T ∈ S ⇒ G � S ⊆ G . (12.23)

Figure 12.5. The erosion of the point set G using the single-element
structuring element S := {x0} (‘impulse’) corresponds to the shift
of G by −x0.
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8. Erosion is monotonic with respect to the inclusion relation:

G1 ⊆ G2 ⇒ G1 � S ⊆ G2 � S , (12.24)

S1 ⊆ S2 ⇒ G � S1 ⊇ G � S2 . (12.25)

9. Erosion can be expressed as

G � S := {w | (S)w ∩ G = (S)w} . (12.26)

�

Proof 12.1 (Properties of erosion):
1. Representation as an intersection: first, suppose that w ∈ G�S = {w | (S)w ⊆ G}. Hence,

∀z ∈ S : y = z+w ∈ G (12.27)

⇒ ∀z ∈ S : w ∈ (G)−z = {x |x = y − z ∧ y ∈ G} (12.28)

⇒ w ∈
⋂
z∈S

(G)−z , (12.29)

which implies G � S ⊆
⋂

z∈S(G)−z.
On the other hand, suppose that w ∈

⋂
z∈S(G)−z. Then,

∀z ∈ S : w ∈ (G)−z (12.30)

⇒ ∀y = z+w ∈ (S)w : w ∈ (G)−(y−w) (12.31)

⇒ ∀y ∈ (S)w : w + (y −w) ∈ G (12.32)

⇒ (S)w ⊆ G (12.33)

⇒ w ∈ G � S . (12.34)

This yields
⋂

z∈S(G)−z ⊆ G � S and finally implies the identity of the alternative repre-
sentations and the definition of erosion.

2. Erosion with an impulse:

G � {x0} = {w | ({x0})w ⊆ G} (12.35)

= {w | {x0 +w} ⊆ G} (12.36)

= {w | (x0 +w)︸ ︷︷ ︸
=: z

∈ G} (12.37)

= {w |w = z− x0 ∧ z ∈ G} (12.38)

= (G)−x0
. (12.39)

3. Neutral element: a consequence of 2, using x0 = 0.

4. Commutativity: from 7, it is obvious that G�S ⊆ G and S�G ⊆ S . For disjoint point sets
G ∩ S = ∅, this results in G � S �= S � G. Hence in general, erosion is not commutative.
The permutability of (12.19) is shown later in the context of Theorem 12.3.

5. Associativity: S1 = S2 = S ⊃ {0} and G�S ⊂ G is assumed. This results in G�(S�S) =
G � {0} = G and (G � S) � S �= G. These counterexamples show that erosion is not
associative.
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6. Shift-invariance:

(G)z � S =
⋂
x∈S

((G)z)−x =
⋂
x∈S

(G)z−x =

(⋂
x∈S

(G)−x

)
z

= (G � S)z . (12.40)

Furthermore,

G � (S)z =
⋂

y∈(S)z

(G)−y =
⋂
x∈S

(G)−(x+z) =

(⋂
x∈S

(G)−x

)
−z

= (G � S)−z . (12.41)

The last equation in (12.22) is obtained by applying (12.21).

7. Inclusion relation: assuming S = {0} ∪ S1, we have

G � S = {w | (S)w ⊆ G} = {w | ({0})w ⊆ G ∧ (S1)w ⊆ G} (12.42)

⊆ {w | ({0})w ⊆ G} = G � {0} = G . (12.43)

8. Monotonicity:

G1 � S = {w | (S)w ⊆ G1} (12.44)

⊆ {w | (S)w ⊆ G2} = G2 � S , (12.45)

G � S1 = {w | (S1)w ⊆ G} (12.46)

⊇ {w | (S1)w ⊆ G ∧ (S2\S1)w ⊆ G} (12.47)

= {w | (S2)w ⊆ G} = G � S2 . (12.48)

9. This is the result of applying elementary set-theoretical operations to the definition of
erosion.

12.2Theorem 12.2: Properties of dilation
Let G, G1, and G2 denote point sets of binary images and let S , S1, and S2 denote structuring
elements.

1. Dilation is the union of all the point sets (G)z resulting from shifts of G by z for each z ∈ S :

G ⊕ S =
⋃
z∈G

(S)z =
⋃
z∈S

(G)z . (12.49)

2. The dilation of a single-element point set G = {x0} using the structuring element S cor-
responds to the shift of the structuring element by the vector x0 (Fig. 12.6):

{x0} ⊕ S = (S)x0
. (12.50)

3. The structuring element {0} containing only the origin is the neutral element of the dila-
tion:

G ⊕ {0} = G . (12.51)

4. Dilation is commutative:

G ⊕ S = S ⊕ G . (12.52)
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Figure 12.6. The dilation of the single-element point set G using a structuring element S can be considered as the
impulse response of the structuring element.

5. Dilation is associative:

G ⊕ (S1 ⊕ S2) = (G ⊕ S1)⊕ S2 . (12.53)

6. Dilation is shift-invariant:

(G)z ⊕ S = (G ⊕ S)z . (12.54)

7. The original point set is contained in the dilated point set if the structuring element con-
tains the origin:

(0, 0)T ∈ S ⇒ G ⊆ G ⊕ S . (12.55)

8. Dilation is monotonic with respect to the inclusion relation:

G1 ⊆ G2 ⇒ G1 ⊕ S ⊆ G2 ⊕ S . (12.56)

�

Proof 12.2 (Properties of dilation):
1. Representation as a union of sets: first, assume that w ∈ G ⊕ S = {w | (SR)w ∩ G �= ∅}.

Then,

∃x : x ∈ (SR)w ∩ G (12.57)

⇒ x ∈ (SR)w ∧ x ∈ G (12.58)

⇒ x ∈ {y |y = r+w ∧ r ∈ SR} ∧ x ∈ G (12.59)

⇒ r = x−w ∈ SR ∧ x ∈ G (12.60)

⇒ s = −r = w − x ∈ S ∧ x ∈ G (12.61)

⇒ w = s+ x ∈ (S)x ∧ x ∈ G (12.62)

⇒ w ∈
⋃
x∈G

(S)x . (12.63)

This implies {w | (SR)w ∩ G �= ∅} ⊆
⋃

z∈G(S)z.
Now, assume w ∈

⋃
z∈G(S)z. Then, there exists a z ∈ G with
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w ∈ (S)z (12.64)

⇒ w ∈ {x |x = s+ z ∧ s ∈ S} (12.65)

⇒ ∃s ∈ S : w = s+ z . (12.66)

This results in

r = −s ∈ SR (12.67)

⇒ z = w − s = r+w ∈ (SR)w (12.68)

z ∈ G ⇒ z ∈ ((SR)w ∩ G) (12.69)

⇒ ((SR)w ∩ G) �= ∅ (12.70)

⇒ w ∈ {w | (SR)w ∩ G �= ∅} , (12.71)

which implies
⋃

z∈G(S)z ⊆ {w | (SR)w ∩G �= ∅} and finally yields the equality of the two
representations.
The second representation in (12.49) is proven using the commutativity in 4.

2. Dilation with an impulse: results from 1.

3. Neutral element: results from 2.

4. Commutativity:

G ⊕ S =
⋃
z∈G

(S)z =
⋃
z∈G
{w |w = x+ z ∧ x ∈ S} (12.72)

= {w |w = x+ z ∧ x ∈ S ∧ z ∈ G} (12.73)

=
⋃
x∈S
{w |w = x+ z ∧ z ∈ G} =

⋃
x∈S

(G)x = S ⊕ G . (12.74)

5. Associativity:

G ⊕ (S1 ⊕ S2) =
⋃
z∈G

( ⋃
x∈S1

(S2)x

)
z

(12.75)

=
⋃
z∈G

({w |w = x+ y ∧ x ∈ S1 ∧ y ∈ S2})z (12.76)

= {v |v = x+ y + z ∧ x ∈ S1 ∧ y ∈ S2 ∧ z ∈ G} (12.77)

=
⋃

r∈{w |w=x+z∧x∈S1 ∧ z∈G}
(S2)r (12.78)

=
⋃

r∈
⋃

z∈G
(S1)z

(S2)r =
⋃

r∈(G⊕S1)

(S2)r = (G ⊕ S1)⊕ S2 . (12.79)
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6. Shift-invariance:

(G)z ⊕ S =
⋃

x∈(G)z

(S)x =
⋃

x∈{x |x=y+z∧y∈G}
(S)x (12.80)

= {w |w = s+ y + z ∧ y ∈ G ∧ s ∈ S} (12.81)

= ({v |v = s+ y ∧ y ∈ G ∧ s ∈ S})z (12.82)

=

⎛⎝⋃
y∈G

(S)y

⎞⎠
z

= (G ⊕ S)z . (12.83)

7. Inclusion relation:

G ⊕ S =
⋃
z∈S

(G)z =
⋃

z∈({0}∪(S\{0}))
(G)z = (G)0 ∪

⋃
z∈(S\{0})

(G)z ⊇ (G)0 = G . (12.84)

8. Monotonicity:

G1 ⊕ S =
⋃

z∈G1

(S)z ⊆
⋃

z∈G2

(S)z = G2 ⊕ S . (12.85)

12.1.2.1 Duality of erosion and dilation
Erosion and dilation, the fundamental operations of morphology, are not inverses. In other
words, in general, the composition of the two operations does not yield the original set:

(G � S)⊕ S �= G �= (G ⊕ S)� S . (12.86)

However, the following duality applies to erosion and dilation:

12.3 Theorem 12.3: Duality of erosion and dilation
Given point sets G, S , S1, . . . , SK , it follows that

G ⊕ SR = G � S . (12.87)

Besides,

G ⊆ (G ⊕ S)� S , (12.88)

G ⊇ (G � S)⊕ S . (12.89)

Furthermore, the following relation holds for erosion and dilation:

(G � S1)� S2 = G � (S1 ⊕ S2) , (12.90)

(· · · (((G � S1)� S2)� S3) · · · � SK) = G � (S1 ⊕ · · · ⊕ SK) . (12.91)

�
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Proof 12.3 (Duality of erosion and dilation): The proof is carried out by applying De Morgan’s
laws to the intersection of the point sets:

G � S =
⋂
z∈S

(G)−z =
⋃
z∈S

(G)−z =
⋃

x∈SR

(G)x = G ⊕ SR . (12.92)

The inclusion relation is proven as follows: w ∈ G is assumed to be arbitrary. Thus,

∀z ∈ S : w + z ∈ (G)z (12.93)

⇒ ∀z ∈ S : w + z ∈
⋃
x∈S

(G)x = G ⊕ S (12.94)

⇒ ∀z ∈ S : w ∈ (G ⊕ S)−z (12.95)

⇒ w ∈
⋂
z∈S

(G ⊕ S)−z = (G ⊕ S)� S . (12.96)

Now assume that w ∈ (G�S)⊕S =
⋃

z∈S(G�S)z = {w |w = y+z∧ y ∈ (G�S)∧ z ∈ S}.
Because of the last equation, it is obvious that

∃y ∈ (G � S) ∃z ∈ S : w = y + z (12.97)

⇒ y ∈
⋂
s∈S

(G)−s =
⋂
s∈S
{v |v = x− s ∧ x ∈ G} (12.98)

⇒ ∀s ∈ S : y ∈ {v |v = x− s ∧ x ∈ G} (12.99)

⇒ ∀s ∈ S : x = y + s ∈ G (12.100)

z ∈ S ⇒ y + z ∈ G (12.101)

w = y + z ⇒ w ∈ G . (12.102)

Regarding (12.90):

(G � S1)� S2 =
⋂

z∈S2

(G � S1)−z =
⋂

z∈S2

⋂
y∈S1

(G)−z−y (12.103)

=
⋂

x∈{x |x=y+z∧y∈S1 ∧ z∈S2}
(G)−x =

⋂
x∈

⋃
y∈S1

(S2)y

(G)−x (12.104)

=
⋂

x∈(S1⊕S2)

(G)−x = G � (S1 ⊕ S2) . (12.105)

Equation (12.91) results by an induction with respect to K. Finally, (12.90) and the com-
mutativity of the dilation imply (12.19).

The duality of erosion and dilation is illustrated in Fig. 12.7. The dilation of the image back-
ground G with a symmetric structuring element S is equivalent to the erosion of the fore-
ground object G, and vice versa:

G ⊕ SR = G � S , G � SR = G ⊕ S . (12.106)

Although erosion and dilation are only dual methods, they are inverse under certain circum-
stances, so that the composition of these two methods yields the original point set. For such
cases, a perfect reconstruction of the original set G is possible using the dual operation. The
following section will present examples of such cases, cf. (12.124).
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Complement

Erosion Complement

Dilation

Figure 12.7. Duality of erosion and dilation. For a structuring element with point symmetry as in this example, one
has S = SR.

The associativity of the dilation as in (12.53) can be exploited to increase computa-
tional efficiency: multiple dilation operations with small structuring elements S1, . . . ,SK
usually need less computation time than a dilation with a composite structuring element
S1⊕· · ·⊕SK . Furthermore, the intermediate results might be reusable in some applications.
Similarly, the following applies to the erosion: a large structuring element can be decom-
posed according to (12.90) and (12.91) [7].

12.1.3 Opening and closing
The shrinking caused by erosion can sometimes be mitigated by performing an additional
dilation with the same structuring element. Similarly, the growth caused by the dilation can
be alleviated by applying a subsequent erosion. The morphological operation of opening,
respectively, closing, is defined as the composition of erosion with dilation, respectively, the
composition of dilation with erosion.

12.5 Definition 12.5: Opening and closing
Let G denote a point set and S denote a structuring element. The composition of an erosion
with a subsequent dilation is called opening:

G ◦ S := (G � S)⊕ S . (12.107)

The reverse order of the operations is called closing:

G • S := (G ⊕ S)� S . (12.108)

�

Opening and closing yield sets with borders close to those of the original set G. An opening
removes fine appendages which are thinner than S and preserves (i.e., opens) inclusions,
whereas closing preserves fine appendages and closes inclusions thinner than S (Fig. 12.8).
An opening removes isolated pixels and objects which are smaller than the structuring ele-
ment. A closing fills holes in the object that are smaller than the structuring element. Both
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Dilation

Dilation

Erosion

Erosion

Dilation + Erosion = Closing

Erosion + Dilation  =:

:

Opening

S

G

G � S

G ⊕ S

G ◦ S

G • S

x

x

y

y

Figure 12.8. Opening and closing applied to the example image shown in Fig. 12.1.

operations can be interpreted as smoothing methods for G yielding results that are similar
to G but differ with respect to details which are smaller than S.

12.4Theorem 12.4: Properties of opening and closing

1. The opened point set is a subset of the original point set. The closed point set is a superset
of the original point set:

G ◦ S ⊆ G ⊆ G • S . (12.109)

2. Opening and closing are monotonic with respect to the relation of inclusion:

G1 ⊆ G2 ⇒
{
G1 ◦ S ⊆ G2 ◦ S
G1 • S ⊆ G2 • S .

(12.110)

3. Opening using a given structuring element is an idempotent, and so is closing:

(G ◦ S) ◦ S = G ◦ S , (12.111)

(G • S) • S = G • S . (12.112)

4. Opening and closing are dual operations:

G • S = G ◦ SR , (12.113)

G ◦ S = G • SR . (12.114)
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5. Opening and closing can be expressed as set operations:

G ◦ S =
⋃

{z | (S)z⊆G}
(S)z , (12.115)

G • S =
⋂

{z | (SR)z∩G=∅}
(SR)z . (12.116)

6. The effect of shifts on opening and closing is as follows:

(G)z ◦ S = (G ◦ S)z , (12.117)

(G)z • S = (G • S)z , (12.118)

∀w ∈ Ωg : G ◦ (S)w = G ◦ S , (12.119)

∀w ∈ Ωg : G • (S)w = G • S . (12.120)

7. The operations have the following relations to erosion and dilation:

G � S = (G ◦ S)� S = (G � S) • S , (12.121)

G ⊕ S = (G • S)⊕ S = (G ⊕ S) ◦ S . (12.122)

�

Proof 12.4 (Properties of opening and closing):
1. The inclusion relations immediately result from Theorem 12.3.

2. The monotonicity results from the monotonicity of erosion and dilation.

3. Idempotence of opening: 1 and the monotonicity of erosion results in

(G ◦ S) ⊆ G ⇒ ((G � S)⊕ S)� S = (G ◦ S)� S ⊆ G � S .

Furthermore, applying 1 to G � S yields

G � S ⊆ (G � S) • S = ((G � S)⊕ S)� S . (12.123)

So, in all, one has

((G � S)⊕ S)� S = G � S . (12.124)

Hence, when applied to G � S , dilation and erosion with S are inverse to each other.
Another dilation performed on both sides of the last equation results in the idempotence
of opening:

(((G � S)⊕ S)︸ ︷︷ ︸
= G ◦ S

�S)⊕ S

︸ ︷︷ ︸
= (G ◦ S) ◦ S

= (G � S)⊕ S︸ ︷︷ ︸
= G ◦ S

. (12.125)

The idempotence of closing can be proven similarly [7].

4. The duality results from the duality of erosion and dilation (Theorem 12.3):

G • S = (G ⊕ S)� S = (G ⊕ S)⊕ SR = (G � SR)⊕ SR = G ◦ SR .
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5. Representation as a set union or intersection: the first step is to write the opening as

G ◦ S = (G � S)⊕ S =
⋃

z∈G�S
(S)z =

⋃
z∈{w | (S)w⊆G}

(S)z . (12.126)

Using duality, this yields the representation of closing:

G • S = G ◦ SR =
⋃

z∈{w | (SR)w⊆G}

(SR)z =
⋂

z∈{w | (SR)w∩G=∅}
(SR)z .

6. Shift-invariance: the properties of erosion and dilation with respect to the shift by w

result in

G ◦ (S)w = (G � (S)w)⊕ (S)w = ((G � S)−w ⊕ S)w (12.127)

= ((G � S)⊕ S)w−w = G ◦ S . (12.128)

The other equations can be proven similarly.

7. The relations with erosion and dilation, as well as the idempotence, follow from (12.124)
and the corresponding proof regarding closing.

In contrast to erosion and dilation, the location of the origin of the structuring element is
of no importance for opening and closing, as the shifts of successive erosion and dilation
operations compensate for each other.

The combination of the introduced basic operations of binary morphology provides a
simple and descriptive way to solve numerous image processing tasks. Some examples of
composite morphological operators are presented in the following sections.

12.1.4 Border extraction
In many applications, e.g., for measuring the circumference of an object, its border is of
interest. The presented morphological operators binary above allow an easy extraction of
the borders of the point set G [5]:

Border{G} = G\(G � S) . (12.129)

Erosion results in shrinking the object and yields the interior of the point set. By calculat-
ing the difference from the original binary image, one obtains exactly the border points. A
circular set of radius one, whose center is placed in the origin, is used as the structuring ele-
ment and can be approximated by the cross SC by employing Fig. 12.2(a). The center of the
circle is located at the origin of the coordinate system. This results in a contour of the object
that has a width of exactly one pixel and which is connected in the sense of 4-connected
neighborhoods, i.e., contour points preceding or succeeding a contour point are part of a
4-connected neighborhood N4(x) (see Def. 11.8). If a contour according to an 8-connected
neighborhood is desired, a 3 × 3 square can be chosen as the structuring element. Larger
structuring elements result in wider contours.

Figure 12.9 shows an example of binary morphological border extraction applied to the
butterfly-shaped point set G from Fig. 12.1.
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Erosion

Figure 12.9. Border extraction with SC.

12.1.5 Region filling
For some applications, a connected component in the image, which is given by its outer
contour and which might contain holes, has to be filled, e.g., in order to determine its area.
Based on morphological operators, iterative algorithms can be designed that are capable of
closing such gaps [5]. Suppose that the point set G is connected with respect to 8-connected
neighborhoods, and let Y denote the region enclosed by G, and assume further that Y ∩
G = ∅. Beginning with a start point p ∈ Y , the following algorithm finds all other points
belonging to Y . For this purpose, the set

Xk := (Xk−1 ⊕ SC) ∩ G , k = 1, 2, 3, . . . (12.130)

is calculated iteratively. For the first iteration, set X0 := {p}. The dilation using the cross
SC as structuring element results in a growth of the regions, and the subsequent calculation
of the intersection removes possibly added points that are not part of Y . The iteration is
finished as soon as

Xk = Xk−1. (12.131)

Then, the following holds for the filled gap: Y = Xk.
Figure 12.10 shows a simple example of the determination of an enclosed region Y . In

this case, the termination condition is met after the fourth iteration. The filled region around
the point p is the result of the union of the original contour G with the enclosed region Y .

12.1.6 Component labeling and connected component analysis
Binary morphological methods can also be used for extracting connected components (i.e.,
objects) from an image [5]. Although for a human observer it is clear whether some adjacent
points of an image form a connected region, this is not obvious for a computer, as the image
is only represented as a matrix of image pixels. A connected component analysis tries to
assign a unique label (usually an integer) to each connected component.

In order to label a single component, the approach of Sec. 12.1.5 is used and Y ⊆ G
denotes the connected region that is to be extracted. Beginning from a starting point p ∈
Y , the iterative algorithm finds all other points of Y . Similar to the filling of regions, the
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Figure 12.10. Example of region filling.

Figure 12.11. Example of component labeling.

algorithm is given by

Xk = (Xk−1 ⊕ S) ∩ G , k = 1, 2, 3, . . . (12.132)

with X0 = {p}. As now a component of the object is to be found, the intersection with G
has to be computed, instead of the complement G as for the filling of gaps in the background
using (12.130). The iteration is finished as soon as the condition Xk = Xk−1 is met. Then,
Y = Xk.

A cross S as in Fig. 12.2(a) is chosen as the structuring element if the adjacent pixels
of an object are required to have a common side (4-connected neighborhood). It is even
possible to allow neighborhoods that have at least one common corner (i.e., 8-connected
neighborhoods), in which case a square of size 3 × 3 is necessary. For this case, Fig. 12.11
shows an example of component labeling, where the termination condition is met after six
iterations.
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To perform a complete connected component analysis, all components have to be labeled
sequentially. The starting point p can be an arbitrary object pixel that is not yet assigned to
any component. Then, a unique label is assigned to the component found.

However, there are more efficient algorithms for component analysis, which do not rely
on morphological operations [6, 8, 15].

12.1.7 The hit-or-miss operator
The hit-or-miss operator allows the detection of image pixels having certain relations to
adjacent pixels [1, 6]. It uses two disjoint structuring elements simultaneously.

12.6 Definition 12.6: The hit-or-miss operator
A composite structuring element S consists of two disjoint structuring elements V ,W :

S = (V,W) with V ∩W = ∅ . (12.133)

The hit-or-miss operator with the composite structuring element S = (V,W) is defined as
follows:

G � S := (G � V) ∩ (G �W) . (12.134)

�

12.5 Theorem 12.5: The hit-or-miss operator
The hit-or-miss operator can be calculated using one of the following formulas:

G � S = (G � V)\(G ⊕WR) (12.135)

=
{
z | (V)z ⊆ G ∧ (W)z ⊆ G

}
. (12.136)

�

Proof 12.5 (The hit-or-miss operator): The duality theorem 12.3 yields

G � S = (G � V) ∩ (G �W) (12.137)

= (G � V) ∩ (G ⊕WR) (12.138)

= (G � V)\(G ⊕WR) . (12.139)

The definition of erosion immediately results in the second representation:

G � S = (G � V) ∩ (G �W) (12.140)

= {z | (V)z ⊆ G} ∩
{
z | (W)z ⊆ G

}
(12.141)

=
{
z | (V)z ⊆ G ∧ (W)z ⊆ G

}
. (12.142)

An image point is detected by the operator if the first structuring element V fits in the present
object and the second structuring elementW misses the object. By this means, pixels having
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Figure 12.12. Structuring element used to detect isolated points with respect to
4-connected neighborhoods. In order to achieve a compact graphical represen-
tation of the pixels of S, the pixels of V are colored black and the pixels of W
are colored blue.

a specified arrangement of neighbors can be extracted. Possible applications for the hit-and-
miss operator are:

the detection of isolated pixels for which no object pixel belongs to the neighboring pixels
(Fig. 12.12),
the extraction of the endpoints of lines—in this case, at most one object pixel belongs to
the neighboring pixels,
the detection of multiple points and crossings of two or more lines, of which more than
two object pixels belong to the neighboring pixels, as well as
finding contour points for which at least one background pixel has to belong to the neigh-
boring pixels.

Further applications for the hit-or-miss operator will be covered in the following sections.

12.1.7.1 Thinning
Thinning the point set G using a composite structuring element S = (V,W) is defined as
follows:

G , S := G\(G � S) (12.143)

Hence, the result of the hit-or-miss operation (G � S) is removed from the original point set
G [5, 6].

An algorithm for thinning the point set G to a contour of the width of a single pixel
with respect to the 8-connected neighborhood performs the following steps: successively,
the point set is thinned by N structuring elements. For thinning with respect to the 8-
connected neighborhood, N = 8 structuring elements Σ = (S1, . . . ,S8) are chosen as follows
(Fig. 12.13):

Thinning of axis-parallel lines: a border point can be removed from the point set G if
three horizontally adjacent points of G are located directly below that point (V1). In this
case (W1) the border point property is met if the three adjacent points directly above the
considered point are not part of the point set G. Whether the left or right neighbors are
part of G or not is irrelevant. Thes considerations result in the composite structuring ele-
ment S1 = (V1,W1). Similarly, successive rotations by 90◦ yield the structuring elements
for detecting border points of horizontal or vertical lines: S3, S5, S7.

Thinning at corner points: a point is a corner point of an upper left corner of G if the three
directly neighboring points on the left, top, and top left of the considered point are not
part of G. It can be removed during the thinning if the neighboring points on the right,
bottom, and bottom right are part of G. This results in the composite structuring element
S2 = (V2,W2) for thinning with respect to the 8-connected neighborhood. If instead the
4-connected neighborhood is considered, the bottom right pixel of W2 can be removed.
For the other corner points, the structuring element is successively rotated by 90◦: S4, S6
and S8.
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Figure 12.13. A tuple Σ of N = 8 structuring elements Si = (Vi,Wi) for thinning. The sets Vi are shown in black
and the sets Wi are shown in blue.

Figure 12.14. Thinning a point set G with the structuring elements of Fig. 12.13.

As the discrete pixel grid allows no further possible orientations of directly adjacent pix-
els of the border contour of a point set, the structuring elements of Σ cover all relevant
cases. The algorithm for thinning the point set G iteratively applies the structuring elements
S1, . . . ,SN ∈ Σ. Afterwards, the thinning is applied to the result, again starting with S1, and
so on:

X1,0 := G , (12.144)

Xk,i := Xk,i−1 , Si = Xk,i−1\(Xk,i−1 � Si) , i = 1, . . . , N , k = 1, 2, 3, . . . (12.145)

Xk+1,0 := Xk,N , k = 1, 2, 3, . . . (12.146)

A single application of the operation with every structuring element of Σ can also be ex-
pressed as

G , Σ := X2,0 = (· · · ((G , S1), S2) · · · ), SN . (12.147)

The iteration ends as soon as Xk+1,0 = Xk,0. Then, Xk,0 represents the result of the thinning
of G. If the point set is to be shrunk by a fixed width, the algorithm can also be terminated
after the corresponding number of iterations.

As the morphological operators are nonlinear, the order of the structuring elements Si in
Σ is important. So Σ is an N -tuple of structuring elements and not a set, whose elements are
unordered.

Figure 12.14 shows the intermediate steps of the algorithm applied to an example. The
point sets Xk,i are black; the points Xk,i−1 � Si that are removed in the corresponding step
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(a) (b) (c)

Figure 12.15. Binary morphological processing of an edge image: (a) Edge image of Fig. 11.14(f), transformed into a
binary image using the gray value histogram shown in Sec. 11.1; (b) Opening in order to mitigate noise; (c) Thinning.

are colored red. The set X2,0 is the final result of the thinning with respect to the 4-connected
neighborhood.

Example 12.1 (Edge thinning): A typical application for thinning are edge images. The edge
image is obtained by applying an edge operator to a gray-scale image g(x). Subse-
quently, it is transformed into a binary image using a threshold-based segmentation
method (Fig. 12.15(a)). Now the morphological thinning is applied to the binary image
(Fig. 12.15(c)). The resulting image contains edges having a width of one pixel, represent-
ing a sharp border between the image regions.

As the thinning is applied after the transformation into the binary image, it cannot
consider the absolute value of the gradient. An alternative method is based on the search
for local maxima of the gradient in the edge image and thus yields more precise edge
positions. This approach is used by the Canny operator, a commonly used edge detector
that usually calculates the gradient using the differentiated Gaussian low-pass filter [3].

12.1.7.2 Thickening
The thickening of a point set G is defined as follows:

G - S := G ∪ (G � S) . (12.148)

Thickening widens the point set G by appending points to its border. Similar to thinning, the
algorithm performs iterative thickening steps using structuring elements of a tuple Σ. The
composite structuring elements for a thickening of one pixel can be obtained by swapping
the roles of V andW of the structuring elements of Fig. 12.13: Σ = ((W1,V1) . . . , (W8,V8)).

The iteration of the thickening algorithm ends as soon as the separating lines between
the objects have a width of only one pixel.
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The thickening operation is dual to the thinning operation: thickening of the object with
(W,V) is equivalent to thinning the background with (V,W):

G - (W,V) = G ∪ (G � (W,V)) = G ∪ ((G �W) ∩ (G � V)) (12.149)

= G ∩ ((G �W) ∩ (G � V)) = G ∩ (G � (V,W)) (12.150)

= G\(G � (V,W)) = G , (V,W) . (12.151)

12.1.8 Skeletonization
The skeleton of a point set is a contour starting from the margin of the set and running
along the medial axis of the point set (Fig. 12.16). It characterizes the topology of the set
independently of its width.

Skeleton

Figure 12.16. The definition of the skeleton.

12.7 Definition 12.7: Skeleton
The skeleton of a continuous two-dimensional point set G ⊆ R2 is defined as the set of the
center points of all circles that are entirely contained in G and touch the border of G at at least
two points. �

Using binary morphological operations, the skeleton of a discrete two-dimensional point set
G ⊆ Z2 can be calculated as follows [6]:

Skel(G) :=
K⋃

k=0

Skelk(G) , (12.152)

Skelk(G) := (G �k S)\((G �k S) ◦ S) . (12.153)

Here, G �k S denotes k iterative erosions of G with S :

G �0 S := G , (12.154)

G �k S := (G �k−1 S)� S , k = 1, 2, 3, . . . (12.155)

In the following, this notation will also be used for multiple applications of other morpho-
logical operations.
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The set Skelk(G) is called the kth partial skeleton of G. It consists of the points of G that
have a distance of k from at least two border points of G. The union of all partial skeletons
is the sought for approximation of the skeleton of G. The iterative calculation of the partial
skeletons ends as soon as the erosion results in the empty set and no more partial skeletons
can be found:

K = max{k | (G �k S) �= ∅} . (12.156)

The original point set G can be exactly reconstructed from the partial skeletons by applying
k dilations to the partial skeletons and calculating the union of the results:

G =

K⋃
k=0

(Skelk(G)⊕k S) . (12.157)

Figure 12.17 shows an example of the skeletonization and reconstruction with K = 2. A
square of size 3×3 is chosen as the structuring element [5]. The result of the method applied
to the test image is shown in Fig. 12.18. The slight asymmetry of the original point set clearly
affects some regions of the skeleton.

The approximation of the skeleton resulting from the presented approach consists of the
points which approximately meet Def. 12.7. In contrast to the thinned point set, the skeleton
is not connected in general and is wider than the minimum possible width of a single pixel.

Figure 12.17. Binary morphological skeletonization (adapted from [5]).
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Figure 12.18. Approximated skeleton of the point set of Fig. 12.1 using binary morphology.

12.1.9 Pruning
Besides the contour of interest, the skeleton of a point set often contains short contour seg-
ments reaching from the center axis of the object to its border. These so-called barbs par-
ticularly appear at phantom corners of the point set, caused by the bending of its border.
Since for the further image processing, usually only the topology of the point set is needed,
these barbs represent unwanted noise and should be removed. This processing step is called
pruning.

Pruning a connected point set can be performed using an algorithm based on binary
morphological operations. Let K denote the maximum length of the barbs which are to be
pruned. Depending on the application at hand, the number of partial skeletons (12.156) can
be an adequate choice for K. The following removal of line-ending points is applied K times
to the point set G, e.g., the connected skeleton:

Y0 := G , (12.158)

Yk := Yk−1\
(

8⋃
i=1

Yk−1 � Si

)
, k = 1, . . . ,K , (12.159)

X1 := YK . (12.160)

The tuple Σ = (S1, . . . ,S8) contains eight structuring elements detecting line-endings.
Each structuring element corresponds to one of the possible orientations of a line-ending
(Fig. 12.19). In the result X1, all lines are shortened by K points. The barbs are completely
removed, as they were assumed to be shorter than K. However, as any other line is short-
ened as well, an adequate reconstruction has to be performed.

Figure 12.19. Composite structuring elements for detecting line-endings.
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For this purpose, all line-ending points of the set X1 are detected in the second step of
the algorithm:

X2 :=

8⋃
i=1

(X1 � Si) . (12.161)

As the barbs have already been completely removed, the point set X2 consists exclusively
of the end points of all lines which are to be preserved. In the third step of the pruning, K
dilations are applied to the set of the end points:

Z0 := X2 . (12.162)

Zk := (Zk−1 ⊕ T ) ∩ G , k = 1, . . . ,K , (12.163)

A 3 × 3 square is used as the structuring element T . By calculating the intersection with
the original point set G, the dilated point set is restricted to all tails of lines of G whose end
points were contained in X2.

Finally, the result of the pruning is given by the union of the point set with the shortened
lines of step one and the line-endings obtained:

X := X1 ∪ ZK . (12.164)

As an example, the method is applied to the binary image of a handwritten character a (see
Fig. 12.20). At the left border of the contour, a barb of length K = 3 is successfully removed.

Figure 12.20. Pruning (adapted from [5]).

A drawback of this method is the necessity of knowing the length K of the barbs that
have to be removed, before the algorithm can be applied. If it is chosen too low, longer
barbs will be completely preserved. If it is chosen too high, shorter line-endings might get
removed. Isolated contour segments shorter than 2K pixels might get completely removed
by this approach. On the other hand, barbs near the end points of longer contours might be
preserved, as they get reconstructed during the dilation starting from the line-endings.
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Example 12.2 (Optical character recognition): The section covering binary morphology is con-
cluded by this example showing the interaction of different morphological operations in a
complex application: a morphological preprocessing is applied to a scanned text passage
with the aim of a subsequent character recognition. First, the gray-scale image shown
in Fig. 12.21(a) is binarized using the classification method of Sec. 11.1, see Fig. 12.21(b).
The result contains isolated distortions and holes, which can be alleviated by using bi-
nary morphological opening and closing. The result of this post-processing is shown in
gray in the following images. The skeleton of this intermediate result, approximated us-
ing binary morphology, is shown in Fig. 12.21(c). Gaps in the skeleton are closed using a
dilation. Subsequently, the point set is thinned, resulting in a contour of a width of one
pixel, which is connected with respect to the 4-connected neighborhood, see Fig. 12.21(d).
Finally, a pruning is applied, see Fig. 12.21(e).

The variability of the contours is notably reduced in the resulting image, e.g., the dif-
ferences between normal and boldfaced characters or the differences between the two
‘o’ characters caused by noise, see Fig. 12.21. These results are beneficial for the further
classification of the letters using, e.g., the Fourier descriptors of their contours [2, 14].

As shown in the previous sections, the elementary binary morphological operators can be
used to easily construct image processing methods for special applications. The presented
methods should be considered as examples showing how to design target-oriented, complex
morphological operators. Further specialized morphological methods can be found, e.g., in
[5, 18].

12.2 12.2 Gray-scale morphology

12.2.1 The point set of a gray-scale image
The point set of a binary image consists of all pixels having the value 1. Now an adequate
definition for the point set corresponding to an image with pixels having more than two val-
ues has to be found. A general one-channel image, e.g., a gray-scale image, can be considered
to be a scalar function g : Ωg → R corresponding to a surface in the three-dimensional space
R3. The image value is the third dimension besides the two spatial dimensions x and y. The
point set U of a scalar image is a subset of this three-dimensional space: the set of all points
below the surface z = g(x, y):

U = {(x, y, z)T ∈ R3 | z ≤ g(x, y)} . (12.165)

This point set is called the umbra of the image. The image can be reconstructed from the
umbra by determining the ‘surface’ of the point set, i.e., by finding the element of U with
maximum z-value for each pixel (x, y)T.

The umbra operation can be defined for an arbitrary N -dimensional space RN , N ≥ 2,
for functions RN−1 → R [7,11]. In the following, discrete and quantized one-channel images
will be considered, so that R = Z and N = 3. As often gray-scale images are considered,
the term gray-scale morphology is used, in accordance with the literature. In fact, also the
application of morphological operations to distance images, e.g., to surface reliefs, is par-
ticularly descriptive. Furthermore, morphological operations can be separately applied to
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(a)

(b)

(c)

(d)

(e)

Figure 12.21. Morphological processing of scanned text: (a) Scanned text of the table of contents of this book; (b) Bi-
nary image; (c) Skeleton Skel(G); (d) Post-processed skeleton; (e) Result of the pruning.

the single channels of a color image. Vector morphology is an alternative approach to us-
ing morphological methods on color images, where the operations min and max are defined
using distance metrics or order relations suitable for vectors of image values [9, 10].



636 12. Morphological Image Processing

12.8 Definition 12.8: Umbra
A set U ⊆ ZN is called an umbra if and only if

(xT, g)T ∈ U ⇒ ∀z ≤ g : (xT, z)T ∈ U , (12.166)

with x = (x, y)T ∈ ZN−1 and g, z ∈ Z. The umbra of a function g : Ωg → Z, Ωg ⊆ ZN−1, is
given by

U{g} := {(xT, z)T ∈ Ωg ×Z | z ≤ g(x)} . (12.167)

The top or top surface of an umbra U ⊆ ZN is a function

T{U} :
{

Ωg → Z

x �→ max{g | (xT, g)T ∈ U}
(12.168)

with

Ωg := {x ∈ ZN−1 | ∃g ∈ Z : (xT, g)T ∈ U} . (12.169)

�

Consequently, U{ · } is an operator producing a point set, represented by an umbra, from the
image g(x), and T{ · } is an operator that transforms such a special point set back into an
image signal g(x). These two operators are inverse to each other:

12.6 Theorem 12.6: Umbra operator
For an arbitrary g(x) : Ωg → Z, Ωg ⊆ ZN−1,

T {U{g(x)}} = g(x) . (12.170)

For every umbra U ,

U {T{U}} = U . (12.171)

For a proof, see [7]. �

A particularly illustrative interpretation of the umbra can be obtained by considering z =

g(x, y) as a surface relief instead of as an intensity image. In this case, the umbra corresponds
to a three-dimensional object, whose surface is given by g(x, y) and which is infinitely large
in the negative direction of the z-axis. Conversely, the surface operator T{ · } yields a func-
tion describing the surface relief in positive z-direction. Morphological operations can be
imagined to perform a sampling by mechanically touching the surface relief with a probe
head, whose shape is determined by the structuring element (cf. Fig. 12.22). In gray-scale
morphology, structuring elements are also represented by functions s(x), whose umbras can
be calculated.

12.2.2 Erosion and dilation
With the operators umbra U{ · } and surface T{ · }, basic morphological operations can be
modified to be applicable to functions: first, the umbras of the functions g(x) and s(x) are
calculated, then, the known morphological operations are applied to this point set, and fi-
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nally the resulting umbra is transformed back into an image [7]. As the binary morphological
operators are independent of the dimension of the point set, they can be applied directly to
the umbra.

12.9Definition 12.9: Erosion and dilation in gray-scale morphology
For Ωg,Ωs ⊆ ZN−1 and functions g : Ωg → Z, s : Ωs → Z, erosion g � s and dilation g ⊕ s

are defined by the following scalar functions:

g � s := T {U{g} � U{s}} , (12.172)

g ⊕ s := T {U{g} ⊕ U{s}} . (12.173)

Erosion and dilation on umbras is performed according to the corresponding definitions
from Sec. 12.1 of these operations for point sets. �

Handling the three-dimensional point sets of gray-scale images comes with considerable
computational costs and space requirements. Fortunately, a detailed analysis shows that
there are simple signal-oriented operations that are equivalent to the set-based operations
[7]. With regard to the signals g(x) and s(x), erosion and dilation can be performed as
follows:

12.7Theorem 12.7: Erosion and dilation in gray-scale morphology
The erosion and dilation of functions according to Def. 12.9 can be calculated as follows:

(g � s)(x) = min
ξ∈Ωs

{g(x+ ξ)− s(ξ)} , (12.174)

(g ⊕ s)(x) = max
ξ∈Ωs

x−ξ∈Ωg

{g(x− ξ) + s(ξ)} , (12.175)

with Ωs denoting the support of s(x). �

Proof 12.6 (Erosion and dilation in gray-scale morphology):

(g � s)(x) = T {U{g} � U{s}} (x) (12.176)

= max
{
z
∣∣ (xT, z)T ∈ (U{g} � U{s})

}
= max

{
z
∣∣ (xT, z)T ∈ {(vT, w)T ∈ ZN | (U{s})(vT,w)T ⊆ U{g}}

}
= max

{
z
∣∣ (xT, z)T ∈
{(vT, w)T ∈ ZN | ∀(ξ, ζ) ∈ U{s} : (ξT, ζ)T + (vT, w)T ∈ U{g}}

}
= max

{
z
∣∣ ∀(ξ, ζ) ∈ U{s} : (ξT, ζ)T + (xT, z)T ∈ U{g}

}
= max

{
z
∣∣ ∀ξ ∈ Ωs ∀ζ ≤ s(ξ) : ζ + z ≤ g(ξ + x)

}
= max

{
z
∣∣ ∀ξ ∈ Ωs : s(ξ) + z ≤ g(ξ + x)

}
= max

{
z
∣∣ z ≤ min

ξ∈Ωs

{g(ξ + x)− s(ξ)}
}

= min
ξ∈Ωs

{g(ξ + x)− s(ξ)} . (12.177)

The proof concerning dilation is similar [7].
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With these formulas, the morphological operations can be performed without explicitly cal-
culating the umbras. The computational complexity corresponds to a convolution in the
spatial domain with an impulse response function having the domain Ωs. However, as the
multiplication is replaced by the calculation of an extremum, the morphological operations
are nonlinear.

min
ξ∈Ωs

{g(x+ ξ)− s(ξ)}

g(x+ ξ)

(g � s)(x)

(a) Erosion

(g ⊕ s)(x)

g(x− ξ)

(b) Dilation

Figure 12.22. Calculation of the basic operations of gray-scale morphology. Shown is a section through the x,z-plane
of the three-dimensional umbras.

The formulas can be visualized by using the comparison to sampling by mechanical
touching (Fig. 12.22). The structuring element corresponds to a probe head shaped as s(x).
The calculation of the minimum needed for the erosion can be described as a sampling of
the surface from below, i.e., from the inside of the umbra. At every point x of the x,y-plane,
the probe head is moved as near to the surface z = g(x) as possible. Then the origin of
the structuring element is part of the surface of the eroded image. The umbra of the image
U{g} is horizontally shifted in two dimensions, the umbra of the structuring element U{s}
is vertically shifted in one dimension. The result of the erosion is given by all those shift
constellations where the structuring element touches the signal g from below.

Because of the calculation of the maximum, the dilation corresponds to a sampling by
mechanical touching from above. By definition,

g ⊕ s = T
{{

w
∣∣ ((U{s})R)

w
∩ U{g} �= ∅

}}
. (12.178)

In particular, the structuring element is reflected in the case of the dilation, cf. Def. 12.4.
Hence, at every point x, the turned umbra is moved from above towards the umbra so
that it just remains overlapping it. Then, the dilated surface runs through the origin of the
structuring element in the z-position, where it just touches the umbra (Fig. 12.22(b)).

As the umbra operation is a homomorphism, further properties of the gray-scale mor-
phology can be directly obtained from the binary morphology.
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12.8Theorem 12.8: Umbra homomorphism theorem

1. Let U and V denote two umbras. Then, the erosion U � V and the dilation U ⊕ V also
represent umbras.

2. The calculation of the umbra is a homomorphism with respect to the operations erosion
and dilation:

U{g � s} = U{g} � U{s} , (12.179)

U{g ⊕ s} = U{g} ⊕ U{s} . (12.180)

3. The relation g1 ≤ g2 of functions g1, g2 : Ωg → Z is equal to the inclusion relation of their
umbras:

U{g1} ⊆ U{g2} ⇔ ∀x ∈ Ωg : g1(x) ≤ g2(x) . (12.181)

�

Proof 12.7 (Umbra homomorphism theorem):
1. See [7].

2. With 1, Theorem 12.6 implies

U{g � s} = U {T {U{g} � U{s}}} (12.182)

= U{g} � U{s} (12.183)

and similarly for dilation.

3. First, assume U{g1} ⊆ U{g2}. For an arbitrary x ∈ Ωg , we have (xT, g1(x))
T ∈ U{g1}, and

hence also (xT, g1(x))
T ∈ U{g2}. Then, by the definition of the umbra, g1(x) ≤ g2(x).

Now assume g1(x) ≤ g2(x) for all x. For an arbitrary (xT, z)T ∈ U{g1}, we have z ≤
g1(x) ≤ g2(x). This implies (xT, z)T ∈ U{g2}, and hence, U{g1} ⊆ U{g2}.

As the gray-scale morphological operators in Def. 12.9 are directly related to the general
definition of point sets, all the properties from Sec. 12.1 apply to the operators because of the
homomorphism theorem.

Example 12.3 (Associativity of the gray-scale morphological dilation): The umbra homomor-
phism theorem implies that dilation of a gray-scale image g with the structuring elements
s1 and s2 is associative:

g ⊕ (s1 ⊕ s2) = T {U{g} ⊕ U{s1 ⊕ s2}} (12.184)

= T {U{g} ⊕ (U{s1} ⊕ U{s2})} (12.185)

= T {(U{g} ⊕ U{s1})⊕ U{s2}} (12.186)

= T {U{g ⊕ s1} ⊕ U{s2}} (12.187)

= (g ⊕ s1)⊕ s2 . (12.188)

For point sets, the associativity U{g}⊕ (U{s1}⊕U{s2}) = (U{g}⊕U{s1})⊕U{s2} holds
by Theorem 12.2.
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Example 12.4 (Inclusion relation of the gray-scale morphological erosion): Let (0, 0, 0)T ∈ U{s},
and thus s(0) ≥ 0. By Theorem 12.1,

U{g} � U{s} ⊆ U{g} . (12.189)

Then, the homomorphism theorem implies

U{g � s} ⊆ U{g} ⇔ ∀x : (g � s)(x) ≤ g(x) . (12.190)

Although morphological operations for binary and gray-scale images are based on the same
theoretical foundations, there are fundamental differences in their effects on the resulting
image: whereas binary morphological operators only affect the margins of the objects in the
image, gray-scale operators result in a change in nearly all image values in the image. For
example, a dilation increases image values even in spatially homogeneous regions. These
differences are caused by the meaning of the dimensions of the point sets: whereas the two-
dimensional point set of a binary image only consists of spatial dimensions, the point set
of a gray-scale image has the additional dimension of its image values. The morphological
operators are identically defined on the point sets, however, their effects differ because of
the different semantics of the dimensions.

Like all properties of the binary morphological operations, also the duality of erosion and
dilation has a correspondence in gray-scale morphology [6, 7]. The complement is replaced
by the negation of the function g. However, the calculation of the negation is not equivalent
to the calculation of the complement of the umbras, as can be seen in the example of the
structuring element from Fig. 12.22.

12.9 Theorem 12.9: Duality of erosion and dilation in gray-scale morphology
The following duality applies to the erosion and the dilation of a scalar image g with a
structuring element s:

− (g ⊕ s) = (−g)� sR , (12.191)

with sR(x) := s(−x) denoting a function sR : ΩR
s → Z. �

Proof 12.8 (Duality of erosion and dilation in gray-scale morphology):

(−(g ⊕ s))(x) = − max
ξ∈Ωs

x−ξ∈Ωg

{g(x− ξ) + s(ξ)} (12.192)

= min
ξ∈Ωs

x−ξ∈Ωg

{−g(x− ξ)− s(ξ)} (12.193)

= min
ξ∈ΩR

s
x+ξ∈Ωg

{
−g(x+ ξ)− sR(ξ)

}
(12.194)

=
(
(−g)� sR

)
(x) . (12.195)
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12.2.3 Opening and closing
As with binary images, opening and closing are defined as a composition of a dilation and
an erosion with the same structuring element.

12.10Definition 12.10: Opening and closing in gray-scale morphology
Let g : Ωg → Z denote a scalar image and s : Ωs → Z a structuring element. The opening
g ◦ s and the closing g • s are defined as follows:

g ◦ s := (g � s)⊕ s , (12.196)

g • s := (g ⊕ s)� s . (12.197)

�

For the commonly used structuring elements, erosion and dilation are inverse to each other
for spatially homogeneous regions of the image, so that opening and closing only have an
effect on edges and other structures within the images.

Because of the umbra homomorphism theorem 12.8, Theorem 12.4 still applies to gray-
scale morphological operations. This is why opening and closing have the following prop-
erties:

12.10Theorem 12.10: Properties of gray-scale morphological opening and closing

g ◦ s ≤ g ≤ g • s (12.198)

(g ◦ s) ◦ s = g ◦ s (12.199)

(g • s) • s = g • s (12.200)

g ◦ s = T

⎧⎨⎩ ⋃
z∈{z∈ZN | (U{s})z⊆U{g}}

(U{s})z

⎫⎬⎭ (12.201)

− (g ◦ s) = (−g) • sR (12.202)

�

Proof 12.9 (Properties of gray-scale morphological opening and closing): The first four relations
are the result of Theorem 12.4 using Theorem 12.8. The last equation is obtained using
Theorem 12.9 [7].

By means of (12.201), the opening can be visualized as a sampling by mechanically touching:
the structuring element U{s} touches the surface from below, i.e., from the inside of the um-
bra. The opened umbra is the union of all shifted probe heads that are completely contained
within the umbra. This is why the opening removes the narrow maxima of the surface in
which the structuring element does not fit (Fig. 12.23(a)).

At every image point x, the opened surface corresponds to the maximum value s(ξ) at a
position ξ of one of the shifted structuring elements. Hence, the maximum is not restricted
to the origin or the position of the maximum value of the structuring element, but can be at
any position of the whole shifted structuring element [7].
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g
g ◦ s

(a) Opening

g
g • s

(b) Closing

Figure 12.23. Visualization of opening and closing of scalar images as a sampling by mechanically touching.

Because of the duality (12.202), closing can be expressed as

g • s = −((−g) ◦ sR) . (12.203)

Therefore, it can be visualized as a sampling by mechanically touching from below of the
surface −g, reflected at the x,y-plane. This is equivalent to touching the original surface g

from above with the reflected structuring element (U{s})R. This probe head is moved over
the surface g from above but does not penetrate the object. At the image point x, the closed
surface runs through the lowest point of one of the shifted probe heads. Narrow valleys of
the surface in which the structuring element does not fit are removed (Fig. 12.23(b)).

The gray-scale morphological operations opening and closing are related to the median
filtering of Sec. 9.3.2.1 and are therefore suitable for noise reduction [6].

Example 12.5 (Noise reduction): Because of the mentioned properties, opening and closing
can be used for noise reduction. In contrast to the convention of the illustration of binary
images, in gray-scale morphology, high image values g represent bright image regions,
whereas low image values correspond to dark image regions. The opening removes dis-
tortions that are smaller than the structuring element and brighter than the surrounding
image values. The closing removes distortions that are darker than the surrounding im-
age values. The composition of both operations mitigates both bright and dark distor-
tions.

This is shown in Fig. 12.24 using an example image with artificially added noise.
Opening and closing results in a smoothing of structures that are smaller than the struc-
turing element. Larger structures remain nearly unaffected.

If, on the contrary, only narrow extrema of the image are of interest, e.g., at bright or dark
lines, the difference image to the original image can be calculated [5]:

g − (g ◦ s) white top-hat (12.204)

(g • s)− g black top-hat (12.205)
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(a) g

s

(b) g ◦ s

(c) g • s (d) (g ◦ s) • s
Figure 12.24. Noise compensation using gray-scale morphology: (a) Test image with artificially added bright and
dark distortions, (b) Opening with the structuring element s shown at the bottom left, (c) Closing, (d) Opening and
subsequent closing.

Figure 12.25 illustrates the application of these two operations to a test image. The result
contains bright and dark structures that are smaller than the structuring element used.

12.2.4 Edge detection
Just as binary morphology can be used for the extraction of the borders of binary images,
gray-scale morphology allows the detection of the edges in scalar images. As described in
Sec. 11.2, the detection of edges can be performed on the basis of the first or second deriva-
tive. Both variants can be realized using gray-scale morphology.
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(a) g(x)

0 50 100 150
0

100

200

300

(b) g(x, y0)

s

(c) g − (g ◦ s)

0 50 100 150
0

50

100

150

(d) g − (g ◦ s)

s

(e) (g • s)− g

0 50 100 150
0

50

100

150

(f) (g • s)− g

Figure 12.25. Extraction of bright and dark points and lines using gray-scale morphology: (a) Test image with arti-
ficially superposed white noise; (b) One-dimensional section of gray values along the marked horizontal line; (c),
(d) White top hat with the structuring element s; (e), (f) Black top hat.
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The so-called Beucher gradient results in an approximation of the absolute value of the
gradient:

‖grad g‖+ const. ≈ (g ⊕ s)− (g � s) . (12.206)

The eroded image is subtracted from the dilated image [13].
An approximation for the second derivative can be obtained using the morphological

Laplace operator:

Δg = div(grad g) ≈ (g ⊕ s) + (g � s)− 2g . (12.207)

Example 12.6 (Morphological edge detection): Figure 12.26 shows the result of applying the
two edge operators to the test image shown in Fig. 12.25(a). Morphological edge de-
tection also amplifies noise with every differentiation. The use of greater structuring
elements results in a certain smoothing but impairs the localization and the detection of
fine structures.

In Fig. 12.27, the results of the application of the two presented morphological edge
operators to the example image of Chap. 11 can be compared to other edge operators.
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Figure 12.26. Edge extraction using gray-scale morphology: (a) Beucher gradient, calculated for the test image of
Fig. 12.25(a) using the structuring element s with radius 1; (b) One-dimensional section of gray values along the
horizontal line marked in Fig. 12.25(a); (c), (d) Beucher gradient calculated with a circular structuring element with
radius 3; (e), (f) Result of the morphological Laplace operator.



12.3 Bibliography 647

(a) Beucher gradient (b) Morphological Laplace operator

Figure 12.27. Morphological edge operators applied to the example image Fig. 11.14(a).

[16] Jean Serra. Imaging Analysis and Mathematical Morphology – Vol. I. Academic Press, 1982.

[17] Jean Serra. Imaging Analysis and Mathematical Morphology – Vol. II: Theoretical Advances. Academic
Press, 1988.

[18] Pierre Soille. Morphological image analysis: principles and applications. Springer, 1999.



13Chapter 13

Texture Analysis



13

13 Texture Analysis

13.1 Types of textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

13.1.1 Structural texture type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

13.1.2 Structural-statistical texture type . . . . . . . . . . . . . . . . . . . . . . 653

13.1.3 Statistical texture type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

13.2 Visual inspection tasks regarding textures . . . . . . . . . . . . . . . . . . . . . 655

13.3 Model-based texture analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

13.3.1 Analysis of structural textures . . . . . . . . . . . . . . . . . . . . . . . . 656

13.3.2 Analysis of structural-statistical textures . . . . . . . . . . . . . . . . . . 660

13.3.3 Autoregressive models for analyzing statistical textures . . . . . . . . . 663

13.3.4 Separation of line textures . . . . . . . . . . . . . . . . . . . . . . . . . . 666

13.4 Feature-based texture analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

13.4.1 Basic statistical texture features . . . . . . . . . . . . . . . . . . . . . . 672

13.4.2 Co-occurrence matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

13.4.3 Histogram of oriented gradients . . . . . . . . . . . . . . . . . . . . . . . 676

13.4.4 Run-length analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

13.4.5 Laws’ texture energy measures . . . . . . . . . . . . . . . . . . . . . . . 678

13.4.6 Local binary patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

13.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681



651

13 Texture Analysis
A texture can be defined as a two-dimensional structure with a certain deterministic or sta-
tistical regularity. However, there is no standard definition for the term ‘texture’ [13]. Alter-
natively, a texture can be defined, e.g., by the variations of the image structures, which are
smaller than the scales of interest [25].

Textures can be composed, e.g., of lines with regular or stochastic distances and angles, or
of two-dimensional primitives which are repeated in a regular pattern (Fig. 13.1). Figure 13.2
shows some images of textures from the Brodatz album [7]. Although these photographs
were originally intended to be used by artists and designers, they came to be a reference
data set for texture analysis methods. Textures can be generated by production processes,
e.g., in textile fabrication or metal machining (Fig. 13.3). Natural processes might also pro-
duce textures. The substantial structures of the texture can be of microscopic or macroscopic
dimensions.
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Figure 13.1. Examples of textures.

In the following, first a classification of textures according to their deterministic or sta-
tistical regularity will be presented. On this basis, the appearance of textures in image data
can be modeled. By means of these models, different tasks of texture analysis can be ac-
complished (Sec. 13.3). An alternative approach to texture analysis is based on descriptive
texture features (Sec. 13.4) instead of on explicit texture models.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_13,
© Springer-Verlag Berlin Heidelberg 2016
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Figure 13.2. Examples of textures [7].

(a) Honing texture (b) Milling texture (c) Planing texture

Figure 13.3. Textures of machined surfaces [2, 4].

13.1 13.1 Types of textures
In the first instance, a texture is a structure in the object space. However, only the image
signal t(x) of the texture produced by an optical imaging is subject to image processing. In
the ideal case, the image signal provides a direct description of the real texture. However, in
practice, the conditions of the image acquisition are often suboptimal. The most important
reasons for differences between the texture and the image signal are given by:

The structure is affected by a perspective distortion because of the imaging geometry
[30]. This cannot be avoided if, e.g., the texture is located on a cylindrical surface instead
of a planar surface and if it is observed using a common camera optic.

The illumination conditions or the reflectance properties of the object’s surface can cause
an inhomogeneous image signal [4].
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Such influences can often be more or less compensated for by using the image enhance-
ment methods presented in Chap. 9. This is why the input image for texture analysis can
be assumed to be adequately preprocessed. Hence, real textures and their images are not
distinguished in the following sections.

Depending on their deterministic or stochastic nature, texture can be described by differ-
ent kinds of models [1, 24].

13.1.1 Structural texture type
Structural textures consist of elementary patterns that are aligned in a deterministic spatial
pattern. An elementary patterns is called a texel (or a texture element). The type of structural
texture assumes a deterministic texture model. An important special case is that of spatially
homogeneous structural textures where both the texels and their alignment are spatially
invariant. This corresponds to a two-dimensional periodic signal.

A spatially homogeneous structural texture can be mathematically described as fol-
lows: let q(x) denote the image of the texel and let a1 and a2 denote linearly indepen-
dent grid vectors of the alignment. Thus, the grid vectors span a two-dimensional plane:
span{a1, a2} = R2. And hence the structural texture t(x) is a two-dimensional convolution
with a grid of Dirac delta functions:

t(x) = q(x) ∗∗
∑

(k,l)∈Z2

δ(x− k a1 − l a2) =
∑

(k,l)∈Z2

q(x− k a1 − l a2) . (13.1)

Every grid point is described by a Dirac delta function. The texel is repeated at every grid
point. The chosen model is adequate if the texels are non-overlapping, i.e., if they have
disjoint supports for different grid points:

supp{q(x− k a1 − l a2)} ∩ supp{q(x− ia1 − j a2)} = ∅ (13.2)

for all (k, l) �= (i, j). Because of the periodicity of the texture, the texels are not uniquely
determined: a point of the texture can be assigned to the right border of a texel or to the left
border of the adjacent texel on the right.

The model (13.1) describes an infinitely expanded texture. In practice, the texture is
clipped at the borders of the images or of an image region. The simplest case of an equidis-
tant, rectangular grid with a distance of a > 0 between adjacent grid points is given by
a1 = (a, 0)T, a2 = (0, a)T.

Examples of structural textures are crystal lattices and precisely manufactured 2D struc-
tures. Structural texture models can also be hierarchically composed, so that every texel of
the macro texture has a texture of its own and consists of micro texels.

13.1.2 Structural-statistical texture type
For this texture type, both the texels q(x) and the alignment {a1, a2} are not thoroughly
deterministic, but are affected by certain stochastic variations (Fig. 13.4). The variations can
be caused by, e.g., random effects and perturbations of a natural or technical production
process. As their extent is limited, the texels remain clearly distinguishable.

Examples of structural-statistical textures are microscopic images of cell cultures, groove
textures on machined metal surfaces, textile structures, etc.
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(a) (b) (c)

Figure 13.4. Images of structural and structural-statistical textures: (a) Printed textiles (texels and their alignment
are approximately deterministic); (b) Irregularly aligned nails (stochastic alignment); (c) Coffee beans (stochastic
texels and alignment).

13.1.3 Statistical texture type
Because of the high stochastic variability of statistical textures, a description of the texture
by texels and their alignment is no longer adequate. A statistical texture can be assumed to
be a sample function of a random process, which can be described by probability density
functions as follows:

ft(t(x1), t(x2), . . . , t(xn)) for all (x1,x2, . . . ,xn) ∈ Ωn
t and all n ∈ N . (13.3)

For a fixed n, such a probability density function defines a nth order statistic (cf. Def. 8.13).
For example, ft(t(x)) is the probability of the image point x having the value of t(x). For
n = 2, ft(t(x1), t(x2)) describes the joint probability density of the image point x1 having
the value of t(x1) and the image point x2 having the value of t(x2) simultaneously.

The visual perception of the human is especially sensitive to differences of the first- and
second-order statistics and comparatively insensitive to higher-order statistics [16, 17]. This
is why often only the first- and second-order statistics and their corresponding moments,
the expected value E{ · } (first-order moment), the variance Var{ · }, and the autocorrelation
function (both second order), are used for modeling statistic textures.

Example 13.1 (Human perception of differences between textures): Figure 13.5 shows two im-
ages of the same texture, each with a single square, with a different texture. In the left
image, the texture differs from the surrounding texture in its second-order statistic, so
that the square can be identified by a human observer at first glance. In the second im-
age, the first-order and second-order statistics are identical. Only the third-order statistic
is different, which can only be seen by taking a closer look at the image.

Natural topographies, fractured surfaces, sand-blasted surfaces, surfaces of sand cast com-
ponents, and a water surface crinkled by the wind are examples of statistical textures.

The transitions between the three presented texture types are smooth (Fig. 13.6). The
more structured is the texture, the more detailed is the way in which it can be described and
modeled. In order to achieve an expressive and effective texture model for texture analysis
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Figure 13.5. Human perception of differences in the statistics of textures (adapted from [17]).

Structural Structural-statistical Statistical

Increasing knowledge about the texture

No more texels
can be distinguished

Figure 13.6. Smooth transition between different texture types.

and texture synthesis, preferably all available information about texture should be incorpo-
rated into the model.

13.213.2 Visual inspection tasks regarding textures
In terms of automated visual inspection, texture analysis can handle the following tasks:

Texture classification: classification of a texture, discriminating between different tex-
tures;
Texture segmentation: segmentation of the image into connected regions of different
textures;
Texture separation: separation of texture components and image background (i.e., non-
texture image components);
Estimation of texture parameters (e.g., intensities, angles,. . . );
Defect detection: detection of significant deviations from the texture’s regularity.

An important tool for some of these tasks is the synthesis of textures, i.e., the generation of
images using texture models. On the one hand, synthesized textures can be used to assess
the quality of a texture model by visual comparison to a real texture. On the other hand,
texture synthesis can be used to develop methods for suppressing the modeled texture in
real images, so that defects not covered by the model are highlighted. By these means, a
subsequent defect detection will be easier and more efficient.



656 13. Texture Analysis

13.3 13.3 Model-based texture analysis

13.3.1 Analysis of structural textures
A possible approach to the analysis of structural textures is based on the Fourier transform
of the texture model (13.1):

t(x) = q(x) ∗∗
∑

(k,l)∈Z2

δ(x− k a1 − l a2) (13.4)

◦
•

T (f) ∝ Q(f)
∑

(k,l)∈Z2

δ(f − k f1 − l f2) with (a1,a2) =

(
fT1
fT2

)−1

. (13.5)

The correspondence is obtained by means of the convolution theorem (8.148) and the results
presented in Sec. 8.3.7.

The first goal is to estimate the grid vectors f1 and f2 by evaluating the distances between
the extrema in the spatial frequency domain, so that the grid vectors a1 and a2 of the spatial
arrangement can be calculated.

Usually, a texture is not a pure harmonic oscillation: the extrema in the spatial frequency
domain are not only located at the basis vectors f1 and f2 but also at integer multiples of
their spatial frequencies. These extrema correspond to the harmonics of the periodic signal,
similar to the coefficients of a Fourier series. In order to determine the basis vectors of the
grid, the four extrema with the smallest distance from the origin are chosen. Because of the
symmetry of the Fourier transform of the real-valued image signal t(x), these four extrema
are located at the grid vectors f1 and f2 and their reflections −f1 and −f2. In the spatial do-
main, this corresponds to an approximation of the texture t(x) by two harmonic oscillations,
which are the two fundamental frequencies of the texture:

t̃(x) = F−1{Q(f1) δ(f − f1) +Q(−f1) δ(f + f1)

+Q(f2) δ(f − f2) +Q(−f2) δ(f + f2)} .
(13.6)

A pair δ(fi) + δ(−fi) represents the Fourier transform of the harmonic oscillation
2 cos(2πfTi x), see Sec. 8.3.1.3.

Example 13.2 (Analysis of structural textures using the Fourier transform): The alignment
(a1, a2) of the texture of Fig. 13.7(a) is to be determined. For this purpose, the discrete
Fourier transform of the texture is calculated and a Hann window (8.127) is used to re-
duce spectral leakage. The magnitude spectrum shows significant maxima at the posi-
tions f1, f2, −f1, and −f2, see Fig. 13.7(b). By setting all other spatial frequencies to zero
and by transforming the resulting spectrum back into the spatial domain, an approxima-
tion of the texture by two harmonic oscillations t̃(x) is obtained, cf. Fig. 13.7(c).

Now, the grid vectors a1 and a2 of the alignment in the spatial domain can be calcu-
lated from f1 and f2 by using (13.5).

Now, a real-world application of defect detection in structural textures by means of the
Fourier transform will be presented.
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(a) t(x) (b) log(1 + |DFT{t}|) (c) t̃(x)

Figure 13.7. Estimation of the alignment (a1,a2) of a structural texture: (a) Example texture t(x); (b) Magnified
section of the magnitude of the DFT spectrum of the windowed texture signal shown using logarithmic values;
(c) Fundamental oscillation of the texture, transformed back from the grid vectors f1, f2, −f1, −f2.

Example 13.3 (Analysis of a face milling texture): In face milling, a rotating milling cutter is
moved linearly over the surface of the workpiece. This motion, which is a combination
of a linear and a rotational movement, produces a texture on the workpiece consisting
of periodically aligned grooves in the shape of cycloidal marks, see Fig. 13.8(a). For
example, face milling is used for the sealing surface between the engine block and the
cylinder head of combustion engines [4].

In a model of this texture, a texel is represented by a single groove. The alignment
is one-dimensional in this case, as it consists of equidistant Dirac delta functions, spaced
with the groove distance Δx on the x-axis:

∞∑
m=−∞

δ(x−mΔx) δ(y) =

∞∑
m=−∞

δ(x−mΔx ex) (13.7)

◦
•

1

Δx

∞∑
k=−∞

δ

(
fx −

k

Δx

)
1(fy) . (13.8)

In the spatial frequency domain, this alignment corresponds to a series of slice functions
with reciprocal distance. The support of the Fourier transform of a cycloid is approxi-
mately a subset of a double wedge-shaped area, whose top is located at the origin, see
Fig. 13.9(a). This can be explained as follows: when a section of the cycloid is considered,
which is small enough to approximate a line, Example 8.21 implies that the correspond-
ing Fourier spectrum has to be approximately a line through the origin of the spatial
frequency domain perpendicular to the groove considered. As this applies to every sec-
tion of the groove, the resulting area is double wedge-shaped with an opening angle
depending on the orientations of the grooves present in the texture.

As the convolution of the alignment and the texel corresponds to a multiplication
in the spatial frequency domain, the squared magnitude spectrum shows two notable
vertical lines, which represent the fundamental oscillation of the groove texture, see
Fig. 13.8(b).

The milling cutter considered in this example has three teeth. A typical defect is the
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(a) (b)

(c)

A1A1
A2A2

(d)

Figure 13.8. Analysis of face milling textures: (a) Faultless texture; (b) Magnitude spectrum of the faultless texture
(magnification of the section surrounding the origin); (c) Defect texture; (d) Corresponding magnitude spectrum
with the regions of integration A1, A2 for the calculation of the feature μ.

breaking of a cutting edge of one of the teeth. In this case, one of the three parallel grooves
is attenuated or is completely lacking, see Fig. 13.8(c). In a model of the resulting texture,
the texel consist of three adjacent grooves, of which two are faultless. Only every third
Dirac delta function remains present in the alignment (Fig. 13.9(b)):

∞∑
m=−∞

δ(x−m 3Δx) δ(y) (13.9)

◦
•

1

3Δx

∞∑
k=−∞

δ

(
fx −

k

3Δx

)
1(fy) . (13.10)

In the Fourier domain, this tripled distance corresponds to one-third of the spatial fre-
quency. This is why a defect test object shows significant spectral components at integer
multiples of one-third of the original frequency, see Fig. 13.8(d). Now, the frequency of
the fundamental oscillation of the texture in Fig. 13.8(c) is only one-third of the frequency
of Fig. 13.8(a). The other lines visible in Fig. 13.8(d) represent the first and second har-
monics of this fundamental oscillation. With regards to the fundamental oscillation of the
texture of the intact cutter (Fig. 13.8(b)), the added lines are subharmonic spectral com-
ponents. In the spectrum, these subharmonic components allow a reliable detection of
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Figure 13.9. Analysis of a face milling texture using the Fourier transform: (a) Faultless cutter; (b) Defect cutter.

any break of a cutting edge using the milling texture. The quotient of the integrals over
the corresponding regions of the squared magnitude spectrum can be used as a feature
μ:

μ :=

∫
A2
|F{t(x, y)}|2 dfx dfy∫

A1
|F{t(x, y)}|2 dfx dfy

, (13.11)

where A1 denotes the support of the fundamental oscillation and A2 the support of the
two subharmonic components, see Fig. 13.8(d).

Altogether, high values of μ signal a defect of the cutter.

Methods using the spatial frequency domain for texture analysis can also be used for pur-
poses other than just visual inspection of the texture. For example, the velocity of a vehicle
can be estimated using motion blurred or double-exposed images of a textured surface.
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Example 13.4 (Estimation of the direction of motion): Multiply exposed images of a texture
which has been moved relatively to the camera are used for estimating the velocity. For
example, a camera mounted on a moving vehicle can observe the texture of the road
surface, so that the velocity vector can be measured [14, 31].

In the spatial domain, double-exposed images of one and the same texture correspond
to a convolution of the texture signal t(x) with a pair of impulses

δ
(
x− 1

2 l
)
+ δ
(
x+ 1

2 l
)
, (13.12)

where l denotes the translation vector sought. In the spatial frequency domain, this con-
volution corresponds to a multiplication of the texture’s spectrum T (f) with a cosine
function. The frequency of the cosine increases proportionally with the length of the mo-
tion vector. Figures 13.10(a) and (d) show two examples of double-exposed images of
a single texture with different magnitudes of the motion vector. The respective discrete
Fourier transforms in Fig. 13.10(b), (e) correspond to the multiplication of the spectrum
of the still texture by a cosine function. In the case of Fig. 13.10(b), the frequency is higher
because the translation vector has a greater magnitude.

A simple possibility for estimating the motion vector is given by the so-called cep-
strum. The cepstrum of a signal g(x) is defined as

Cepstrum{g(x)} := DFT {log(|DFT{g(x)}|)} . (13.13)

Hence, a second Fourier transform is applied to the logarithm of the magnitude spec-
trum. Thus, the cosine function is again represented by a pair of impulses. Because of
the calculation of the magnitude and the logarithm, the resulting oscillation is no longer
a pure harmonic oscillation, resulting in the higher corresponding harmonics. The log-
arithmic scale greatly reduces the dynamic range of the magnitude spectrum, so that
the interesting structures are accentuated for higher frequencies and therefore occupy a
larger region of the frequency domain. By the reciprocity of the Fourier transform, the
maxima that result from these structures after the second Fourier transform, are narrower.

The position of the first maximum in the cepstrum is an estimation of the motion vec-
tor l sought. Because of the second Fourier transform, lengths in the cepstral domain
correspond to lengths in the spatial domain.

If the time between the two exposures is known, the velocity of the motion can be
calculated from the motion vector.

A similar approach can also be used for a continuous, longer exposure of the moving
texture, Fig. 13.10(g). The motion-blurred image corresponds to the convolution of the
texture signal with a one-dimensional rectangular function of the length and orientation
of the motion vector (see Ex. 10.2). In the spatial frequency domain, this convolution cor-
responds to multiplication by a sinc function, see Fig. 13.10(h). The motion vector and
hence the velocity can be estimated using the cepstrum, see Fig. 13.10(i) [14].

13.3.2 Analysis of structural-statistical textures
There is no general approach to the analysis of structural-statistical textures, as the choice
of adequate features and methods always depends on the properties of the texture at hand.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13.10. Estimation of the translation vector between the double-exposed images of a texture (source: D. vom
Stein [31]): (a) Double-exposed images of the moved texture at a high velocity, (b) Magnitude of the discrete Fourier
transform of (a), (c) Cepstrum of (a), in which the translation vector l can be determined, (d)–(f) Double-exposed
images, DFT and cepstrum for low velocity, (g) Motion-blurred image of the texture, (h) Corresponding DFT, (i) Cor-
responding cepstrum.

The methods always have to be adapted to meet the requirements of the application. In the
following, an example will be used to thoroughly present different methods.

Example 13.5 (Structural-statistical model of a honing texture): Honing is an abrasive machin-
ing process for surface finishing. Honed surfaces are used inside the cylinders of com-
bustion engines, for example. They contain fine grooves that can hold motor oil for sup-
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porting the lubrication of the cylinder’s contact surfaces. A surface is honed by moving
a hone, which consists of abrasive grains, over the surface in a motion made up from
strokes and rotations (Fig. 13.11). The depths and distances of the grooves produced
depend on the different dimensions and distances of the irregularly arranged abrasive
grains. However, they show two notable predominant directions, of which one corre-
sponds to the upward stroke and the other corresponds to the downward stroke.

A structural-statistical model of the honing texture should consider both the direction
structure and the almost random distribution of the distances and shape of the grooves.
Here, all random variables are assumed to be stochastically independent and identically
distributed. The texels of the structural-statistical texture model are straight grooves.
The grooves lν( · ) are assumed to be randomly, identically distributed and stochastically
independent. A groove profile models the gray values of a line perpendicular to the di-
rection of the groove (Fig. 13.12). For example, a groove in the y-direction is given by

Rotation

Hone

Oscillating
stroke movement

Abrasive
grains

(a)

Time

Stroke

(b)

Figure 13.11. Creation of a honing texture [4]: (a) Combination of rotations and strokes, (b) Temporal course of an
ideal stroke move.

y

x

Figure 13.12. Structural-statistical model of the honing texture. The grooves represent the texels.
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q(x, y) = lν(x), i.e., the gray values along a line are identical for all y-values. A groove
which is rotated by the angle αν is represented by q(x) = lν(x

Teν) with the normal vec-
tor eν = (cos αν , sin αν)T. The groove angles αν ∈ [0, π) are also assumed to be identically
distributed and stochastically independent random variables. Because of the honing pro-
cess, the groove angles are not uniformly distributed but show two distinct predominant
directions β1 and β2, which are the only directions present in the ideal case. This results
in the following probability distribution fα(αν) of the groove angles:

fα(αν) =
1
2 (δ(αν − β1) + δ(αν − β2)) . (13.14)

Now, the distances between the grooves are modeled. A groove that is shifted by dν in
the direction of the normal from the origin can be described by q(x) = lν(x

Teν−dν). The
distances dν can be assumed to be randomly uniformly distributed, as the abrasive grains
are placed independently and homogeneously randomly on the hone. In summary, the
structural-statistical model of a honing texture is given by:

t(x) =
∞∑

ν=−∞
lν(x

Teν − dν) . (13.15)

Because of the random placing of the abrasive grains, the number n of grooves inside an
interval of distances to the origin of length L is assumed to be distributed according to a
Poisson distribution:

Pn(n) = e−λL (λL)n

n!
, n = 0, 1, . . . ,∞ . (13.16)

The parameter λ > 0 of the Poisson distribution represents the spatial groove density.
The randomly distributed parameters αν , dν define a stochastic alignment. In contrast
to the requirement of Sec. 13.1.1, the single texture elements overlap at the intersections
of the grooves, which is an anomaly of the honing texture caused by the honing pro-
cess. The addition of the gray value profiles at the intersections is a model error which
however immensely simplifies the usage of the model. This is why the model does not
represent the reality at the intersections.

The groove angles β1 and β2, the spatial groove density λ, and the samples of the
expected value E{lν( · )} of the groove profiles are the model parameters. Figure 13.14
shows a texture that has been synthesized with this model, and a real texture. In the
synthesized texture, the mentioned model error affecting the intersection has been com-
pensated for.

The model allows the calculation of the power spectral density of a honing texture
in terms of the model parameters. The model parameters can be considered to be cus-
tomized texture features [4].

13.3.3 Autoregressive models for analyzing statistical textures
The autoregressive signal model, AR model for short, provides a simple possibility for mod-
eling two-dimensional statistical structures, especially statistical textures [15]. An AR model
describes the image value gmn at a position (m,n) by a linear combination of the image val-
ues in a neighborhood U of this position (Fig. 13.13). The weights of this linear combination
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Figure 13.13. Autoregressive model: Causal neighborhood U of the origin 0.

are the AR coefficients akl. The difference between the actual image value and the image
value predicted by the linear combination is modeled as the random variable emn.

Hence, the AR model of the signal gmn is given by

gmn =
∑

(k,l)∈U
akl gm−k,n−l + emn . (13.17)

The neighborhood U is a so-called causal neighborhood of the origin, so that for a pixel-wise
shift in the positive direction to the right, or to the line above if the line-ending has been
reached, the neighborhood consists exclusively of already calculated pixels. Originally, AR
models were used for the analysis of time series, where only the previous values can be
accessed. However, for two-dimensional spatial signals, there is no natural ordering of the
points. This is why causality has to be artificially introduced, i.e., defined for images. Then,
the image can be sequentially processed in the corresponding order.

The signal gmn is considered to be a stochastic process, which is weakly stationary and
w.l.o.g. zero-mean, E{gmn} = 0. Hence, before the AR model can be applied to an image,
the mean value of the image signal has to be subtracted. The last summand emn represents
a zero-mean, weakly stationary, white noise: E{emn} = 0, E{emn em+i,n+j} = σ2 δ0i δ

0
j .

The causal neighborhood U contains only points (k, l) on one side of the origin (0, 0),
e.g., those points with k > 0 or l > 0. The origin itself is not contained in the neighborhood,
(0, 0) /∈ U . By this means, the model can be evaluated recursively: as the points (m,n)

are processed row-by-row and column-by-column, only those values gmn are needed on
the right-hand side of (13.17) which have been already calculated. The number of elements
inside the neighborhood, i.e., the number of AR coefficients, is called the order of the AR
model, and is denoted by |U|.

Equation (13.17) can also be expressed in vector notation by forming vectors from the AR
coefficients and the signal inside the neighborhood:

gmn =aTγmn + emn , (13.18)

γmn := (. . . , gm−k,n−l, . . .)
T ∈ R|U| , (k, l) ∈ U , (13.19)

a := (. . . , akl, . . .)
T ∈ R|U| . (13.20)

By the term aTγmn, the current value gmn of the signal is predicted from the past values
gm−k,n−l, (k, l) ∈ U . This method is affected by a stochastic error emn. The AR model fits a
signal optimally if the prediction error emn = gmn − aTγmn is of minimum variance. This
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characteristic can be used for parameter estimation when a signal gmn is to be approximated
by an AR model. The parameters of the AR model are a and σ2.

Hence, for finding the optimal parameters, the following optimization problem has to be
solved:

σ2 = E{e2mn} → Min. (13.21)

It holds:

σ2 = E{e2mn} = E{g2mn − 2aTγmngmn + aTγmna
Tγmn} (13.22)

= E{g2mn} − 2aTE{γmngmn}+ aTE{γmnγ
T
mn}a . (13.23)

A necessary condition for a minimum of this term is that there is a zero of the gradient with
respect to the vector of coefficients a:

grada E{e2mn}
!
=0 (13.24)

⇔ −2E{γmngmn}+ 2E{γmnγ
T
mn}a = 0 (13.25)

⇔ a = ( E{γmnγ
T
mn}︸ ︷︷ ︸

≈ 1
K

∑
m,n

γmnγ
T
mn

)−1 E{γmngmn}︸ ︷︷ ︸
≈ 1

K
∑
m,n

γmngmn

. (13.26)

The presented approximations apply to ergodic signals gmn: then, the necessary covariance
matrices can be estimated by spatial averaging. The number K of summands subject to the
averaging should be chosen to be as high as possible to achieve an adequate estimation. In
this case, this results in the following estimation â of the vector of the AR coefficients:

â =

(∑
m,n

γmnγ
T
mn

)−1∑
m,n

γmn gmn . (13.27)

This is a second-order statistic, as all summands are products of two image values of two
generally different positions (cf. Sec. 13.1.3). The remaining parameter σ2 can now be esti-
mated using (13.23), this coefficient vector, and the assumed ergodicity:

σ̂2 = 1
K

∑
m,n

g2mn − 2
K âT

∑
m,n

γmn gmn + 1
K âT

∑
m,n

γmnγ
T
mnâ . (13.28)

As on the right-hand side of (13.26), both E{γmnγ
T
mn} and E{γmn gmn} are matrices which

contain only the values of the autocovariance function of gmn, the Wiener–Khinchin theorem
8.16 implies that AR models neither contain nor model any phase information. This is why
AR models can be used for modeling statistical structures but are inapplicable to scenic
images, as for them, the phase information is of particular importance (see Sec. 8.3.9.3).

If AR models are used for texture analysis, gmn denotes the image of the texture. After
the parameters have been estimated from a sample of images of a texture, the model can be
used for texture synthesis.

Example 13.6 (AR model of a honing texture): For the honing texture of Ex. 13.5, an AR model
of order 84 has been estimated using a sample of texture images. Figure 13.14(c) shows
an image synthesized using this model. The structural-statistical model (13.15) looks
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(a) (b) (c)

Figure 13.14. Synthesis of honing textures: (a) Original image of a honed surface [2]; (b) Synthesized texture using
the structural-statistical model (13.15); (c) Synthesized texture using the AR model.

better in terms of a qualitative visual comparison. This is because it contains much more
model information about the properties of the honing texture than the generally usable
AR model. Therefore, notably fewer parameters have to be estimated from the given
sample. However, for some applications, the results of the AR model can be sufficient, as
it requires no specialized modeling and can easily be adjusted to suit other textures.

The advantage of the AR model is that it is easy to fit it to different textures. For an actual
application, the suitability of the model can be evaluated by, e.g., judging the synthesized
textures. The use of AR models for defect detection is covered in Sec. 14.2.

13.3.4 Separation of line textures
In this section, the separation of line textures is presented as an example of a complex im-
age processing method [3, 6]. This approach illustrates how methods from Chap. 8 can be
combined in a smart way.

Let the image g(x) be additively1 composed of the line texture t(x) and the ‘background’
h(x):

g(x) = t(x) + h(x) . (13.29)

Now, the two additive signals are to be separated, i.e., t(x) and h(x) are to be obtained.
If the method is applied to the honing texture from Ex. 13.5, then t(x) corresponds to the
texture model (13.15) and h(x) represents the image content which is not described by the
texture model. The background is only assumed to have no predominant direction. After the
separation, the background signal h(x) contains differences from the honing texture. This is
why it can be used for the detection of defects caused by the honing process or which were
already present in the material before the actual honing (Fig. 13.15). Conversely, texture
parameters, like the groove angle, can be more reliably estimated from the separated texture
signal t(x).

The first step is to consider the superposition of a single line with the background.
A line in an image can be modeled by a function l(xTe − d) with the normal vector

1In the case of a multiplicative superposition g(x) = t(x)h(x), the method can be applied to the
logarithm of the image signal log g(x) (cf. Sec. 9.2.2.3).
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(a) (b)
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(c)

Figure 13.15. Separation of grooves and background of a honing texture: (a) Original image g(x) (from [2]), (b) Line
texture t̂(x), (c) Background ĥ(x) with marked defects.

e = (cosα, sinα)T and the distance d of the line to the origin, as in Ex. 13.5. The separa-
tion of the texture can be performed in the spatial frequency domain. The Fourier transform
of the image signal is given by

g(x) = l(xTe− d) + h(x) (13.30)
◦
•

G(f) = L(fTe) δ(fTp) e−j2π d fTe +H(f) (13.31)

with the one-dimensional Fourier transform L(η) of the line profile l(ξ),

L(η) =

∞∫
−∞

l(ξ) e−j2π η ξ dξ , (13.32)

and the unit vector p perpendicular to e:

p ⊥ e , ‖p‖ = 1 ⇒ p =

(
− sinα

cosα

)
. (13.33)

The dependency on the distance d from the line and the origin is omitted by calculating the
magnitude spectrum:

|G(f)| ≈ |L(fTe)| δ(fTp) + |H(‖f‖)| . (13.34)

In this magnitude spectrum, the line is shaped like a slice function, which is perpendicular
to the line in the spatial domain (Fig. 13.16). Calculating the absolute value separately for
every single summand represents a good approximation, as always either the first summand
dominates the second summand (in the case of fTp = 0) or it vanishes (in the case fTp �= 0).
The background is assumed to be broadband, so that its magnitude spectrum is approxi-
mately rotationally symmetric, i.e., depends only on the distance ‖f‖ to the origin. After
a transformation into polar coordinates, the spectrum of the line turns into an axis-parallel
structure with the distance α to the axis of the radius (Fig. 13.16(c)):(

fx
fy

)
�→ ρ

(
cosφ

sinφ

)
, ρ ∈ R , φ ∈ [0, π) . (13.35)
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Figure 13.16. Separation of line textures: (a) Original image g(x); (b) Magnitude spectrum |G(f)|; (c) Magnitude
spectrum in polar coordinates, using a logarithmic scale log(1 + |G(ρ cosφ, ρ sinφ)|); (d) Absolute value of the
Fourier transform Fφ,ρ{|ρG(ρ cosφ, ρ sinφ)|}; (e) Estimated magnitude spectrum of the background, represented

in polar coordinates log(1+ ̂|Hφ,ρ(φ, ρ)|); (f) Estimated magnitude spectrum of the line texture |T̂ (f)|; (g) Estimated
magnitude spectrum of the background |Ĥ(f)| = |G(f)| − |T̂ (f)|; (h) Estimated line texture t̂(x); (i) Estimated
background of the image ĥ(x).
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Because of (13.33), this coordinate transformation results in the following expression for the
factor δ(fTp) in (13.34):

δ(fTp) = δ(ρ (sinφ cosα− cosφ sinα)) = δ(ρ sin(φ− α)︸ ︷︷ ︸
=: a(φ)

) . (13.36)

The argument a(φ) of the Dirac delta function has a simple root at φ = α. The formulas for
Dirac delta functions (shown in Table 8.1) result in

δ(a(φ)) =
1∣∣∣ dadφ ∣∣∣
∣∣∣∣∣∣
φ=α

δ(φ− α) . (13.37)

One has

da

dφ
= ρ cos(φ− α) ,

∣∣∣da
dφ

∣∣∣∣∣∣∣
φ=α

= |ρ| (13.38)

and hence

δ(fTp) =
δ(φ− α)

|ρ| . (13.39)

The factor L(fTe) of (13.34) is given by

L(fTe) = L(ρ(cosφ cosα+ sinφ sinα)) . (13.40)

As this factor is multiplied by the Dirac delta function (13.39), only its value for the angle
φ = α is needed (cf. Table 8.1). In this case, it is fTe = ρ in (13.40), so that the expression

L(fTe)
∣∣
φ=α

= L(ρ) (13.41)

can be used. Therefore, the polar coordinate representation of (13.34) can be written as

|G(ρ cosφ, ρ sinφ)| ≈ |L(ρ)| δ(φ− α)

|ρ| + |H(ρ)| , ρ �= 0 . (13.42)

Because of the polar transformation, the spectral components corresponding to the line
are mapped to a line-shaped structure perpendicular to the φ-axis and the background is
mapped to a broadband structure parallel to the φ-axis. In order to achieve a better sep-
arability of these signal components, another Fourier transform is applied with respect to
the polar coordinates. Prior to this, the magnitude spectrum is multiplied by |ρ|, in order to
reduce the signal’s dynamic range. This results in

Fφ,ρ{|ρG(ρ cosφ, ρ sinφ)|} (13.43)

≈ Fρ{|L(ρ)|}Fφ

{ ∞∑
k=−∞

δ(φ− α− k π)

}
+ Fφ,ρ{|ρH(|ρ|)|} (13.44)

≈ Fρ{|L(ρ)|} 1
π

∞∑
k=−∞

δ(fφ − k
π ) e

−j2π fφα + Fρ{|ρH(|ρ|)|} δ(fφ) . (13.45)

It has to be mentioned that the magnitude spectrum |G(ρ cosφ, ρ sinφ)| is repeated with a
period of π (with respect to φ) if it is transformed into polar coordinates. An alternative
implementation of this step can be obtained using the logarithm of the signal [6].
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Now, the two components of the line and the background approximately belong to two
orthogonal subspaces: the background is located on the fρ-axis, while the line is mainly
located along the fφ-axis, see Fig. 13.16(d). The supports of these subspaces neither depend
on the distance d to the origin nor on the angle α, so that the presented relations apply to an
arbitrary line of the texture. Hence, the method can not only be used for a single line, but
for a texture consisting of many lines with different angles and different distances from the
origin.

Now, a separation of the two components is possible in the (fφ, fρ)-space. In order to
isolate the background component, the components which are inside a rectangle around the
fφ-axis are suppressed, and only the components from this rectangle and along the fρ-axis
are preserved. This can be realized with a multiplication by a binary mask M(fφ, fρ) (cf.
Fig. 13.17):

Ĥφ,ρ(fφ, fρ) = Fφ,ρ{|ρG(ρ cosφ, ρ sinφ)|}M(fφ, fρ) . (13.46)

As, for this purpose, the parameters of the line do not have to be known, a so-called blind
separation can be performed. After an inverse Fourier transform F−1

φ,ρ and a transformation

back into Cartesian coordinates, this method yields an estimation |̂H(f)| of the magnitude
spectrum of the background signal.

However, the image signal h(x) cannot be reconstructed, as the phase information is
missing. Instead, |̂H(f)| is used for a decision criterion, which performs a spectral decompo-
sition in the spatial frequency domain. This results in the following estimation of the texture
components:

T̂ (f) :=

⎧⎨⎩G(f) if |G(f)|
|̂H(f)|

>
√
2

0 otherwise .
(13.47)

For every spatial frequency, it is decided whether the corresponding spectral value con-
tributes to the line texture or rather to the background. The spectral components for which
the texture signal exceeds the estimated background signal are preserved and all others are

1

0

Figure 13.17. Mask for suppressing the line structure in the (fφ, fρ)-space.
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(a) (b) (c)

Figure 13.18. Separation of the line texture from the background of a textile: (a) Original image g(x) (from [7]);
(b) Line texture t̂(x); (c) Background ĥ(x) with clearly visible defects.

set to zero, see Fig. 13.16(f). An estimation of the background spectrum Ĥ(f) is given by

Ĥ(f) = G(f)− T̂ (f) . (13.48)

This separation rule is similar to a linear filtering of the image using two complementary
binary transfer functions. The optimal design of this transfer function leads to the decision
rule (13.47) and especially to the threshold

√
2 [6].

Now, the inverse transformation of (13.47) yields an estimation of the separated texture
(Fig. 13.16(h)):

t̂(x) = F−1{T̂ (f)} . (13.49)

Because of (13.29), the separated image background is estimated by

ĥ(x) = g(x)− t̂(x) . (13.50)

The estimated background signal can now be used in a further processing step, e.g., for
the detection of defects. Besides the already mentioned honing textures, the analysis of the
grooves of firearms and the detection of defects in textiles (Fig. 13.18) are possible applica-
tions.

13.413.4 Feature-based texture analysis
For texture analysis, it is not necessary to use an explicit model of the texture. Alternatively,
features with a general definition can be used, which are not designed to suit one specific
texture. With these features, the texture can be characterized and differences from a reference
image can be detected. A texture feature can be applied globally to the whole image of the
texture or to a local region of the image. Global features provide information about the
mean properties of the texture and can be used, e.g., for the classification of textures. Local
features only describe a small region of the image and are therefore suitable for detecting
defects with a spatially limited extent. In this section, some of the classic texture features
will be discussed [22, 25, 27]. Most of these features can be efficiently calculated.
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13.4.1 Basic statistical texture features
Basically, any statistical moments can be used as texture features. As mentioned in
Sec. 13.1.3, especially first and second order moments are suitable. The mean gray value
as an empiric average is a first order moment:

m1 =
1

|Ωt|

∫
Ωt

t(x) dx . (13.51)

As the domain Ωt of the texture is subject to the integration, all pixel positions which are part
of the image of the texture will be integrated. The first order second moment is the empirical
variance:

s2 =
1

|Ωt|

∫
Ωt

(t(x)−m1)
2 dx . (13.52)

The empirical variance is a measure of the contrast in the image.
For anisotropic textures, features which characterize orientations, like the angles of the

predominant directions, are suitable. Further, there are measures of anisotropy, e.g., the
mean difference of the eigenvalue of the structure tensor from Sec. 11.3.4.

Besides, a measure for the granularity of a textures can be defined. An example is the
correlation length ‖τ‖, which is the length of the vector τ for which the autocorrelation
function rtt(τ ) of the image of an isotropic texture is less than or equal to e−1.

In the literature, there are various features which are often obtained from the histogram
(a first order statistic) or from an estimation of second order probability densities (i.e., by sta-
tistically evaluating pairs of pixels). Some of these features will be covered in the remaining
part of this chapter. Furthermore, specific features can be defined for many applications.

Example 13.7 (Groove angles of a honing texture): Here, the groove angle ϕ denotes the direc-
tion of the normal vector of the groove, cf. Ex. 13.5. In the Fourier transform T (f) of the
texture image, the predominant directions of a honing texture produce high spectral val-
ues along lines through the origin that are perpendicular to the predominant directions,
i.e., in the direction ϕ of the normal, see Figs. 13.19(a) and (b) (cf. Chap. 8). A projection

(a) (b) (c)

Figure 13.19. Groove angle as a feature of a honing texture: (a) Honing texture t(x) [2]; (b) Magnitude of the discrete
Fourier transform |T (f)|; (c) Projection function ϑ(ϕ) [5].
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along lines through the origin in direction (cosϕ, sinϕ)T yields a function ϑ(ϕ), which
represents the distribution of the signal energy of the texture as a function of the groove
angle ϕ:

ϑ(ϕ) :=

∞∫
0

∞∫
−∞

|T (f)|2 δ((− sinϕ, cosϕ)f) dfx dfy . (13.53)

The positions of the maxima β̂1 and β̂2 of the projection function ϑ(ϕ) correspond to the
two predominant directions of the honing texture, which are expressed as angles of the
normal vectors of the grooves, cf. Fig. 13.19(c) [5].

13.4.2 Co-occurrence matrix
Co-occurrence matrices describe spatial dependencies in a gray-scale image [10,11,13]. They
are special histograms for the values of pairs of pixels and therefore represent second order
statistics.

Co-occurrence matrices are defined with regard to the offset vector d that describes
the relative position of the two pixels under consideration. The elements c′d,ij of the co-
occurrence matrices C′

d are calculated as follows:

c′d,ij := |{(x1,x2) ∈ Ω2
g |x2 = x1 + d, g(x1) = i, g(x2) = j}| ∈ N0 . (13.54)

The element (i, j) of a co-occurrence matrix denotes the number of points x in the image for
which g(x) = i and g(x + d) = j (Fig. 13.20). As the elements of the matrix represent abso-
lute frequencies, they are natural numbers. The row and column indices of a co-occurrence
matrix correspond to the gray values, which is why the numbering usually starts with zero.
If the gray value is quantized with K quantization steps, the co-occurrence matrices have a
size of K ×K: C′

d ∈ NK×K
0 .

Figure 13.20. Definition of the co-occurrence matrix. The entry c′d,g1g2
of a co-occurrence matrix denotes the number

of points x in the image for which g(x) = g1 and g(x+ d) = g2.
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Example 13.8 (Co-occurrence matrices): In order to exemplify this definition, a simple exam-
ple of a 4×4-image with K = 3 quantization steps is considered. The image g(x) is
assumed to be

1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

. (13.55)

The co-occurrence matrices for the horizontal, vertical, and diagonal offset vectors (1, 0)T,
(0, 1)T, (1, 1)T, and (1,−1)T are given by

d =

(
1

0

)
, C′

d =

⎛⎜⎝ 4 0 2

2 2 0

0 0 2

⎞⎟⎠ , (13.56)

d =

(
0

1

)
, C′

d =

⎛⎜⎝ 4 0 2

2 2 0

0 0 2

⎞⎟⎠ , (13.57)

d =

(
1

1

)
, C′

d =

⎛⎜⎝ 2 0 2

2 1 1

0 0 1

⎞⎟⎠ , (13.58)

d =

(
1

−1

)
, C′

d =

⎛⎜⎝ 3 1 1

1 1 0

1 0 1

⎞⎟⎠ . (13.59)

For example, the first co-occurrence matrix describes the co-occurrences between hori-
zontally adjacent points. The value c′d,00 = 4 implies that there are four instances in the
image where a pixel with a gray value 0 has an adjacent pixel to its right with a gray
value 0. A pixel with a gray value of 0 is the right neighbor of a pixel with a gray value
of 1 two times, which is why c′d,10 = 2, and so on.

For this example, the horizontal and the vertical co-occurrence matrix are identical, as
the image is symmetric with respect to the main diagonal: g(x, y) = g(y, x).

A co-occurrence matrix can be normalized by dividing it by the sum of its entries:

Cd =
1

1TC′
d1

C′
d . (13.60)

The term in the denominator corresponds to the sum of all the entries of the matrix, which is
independent of the gray values in the considered image. Depending on the size of the image
and on the offset vector d, a certain amount of pixels at the border of the image cannot be
considered. After the normalization, the entries of Cd sum to 1. The entries of the matrix are
all inside of the interval [0, 1]. They represent relative frequencies and can be interpreted as
estimations of the corresponding second order joint probabilities.

The co-occurrence matrices considered until now depend on the sign of the offset vec-
tor d. In general, the negated offset −d yields a different result. If these differences are not
relevant for the inspection task, both matrices can be added together to result in a matrix
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which is symmetric with respect to the offset direction:

C±d = Cd +C−d . (13.61)

Instead of the direction, only the orientation of the structures in the image is taken into
consideration, cf. Def. 11.3.

Co-occurrence matrices characterize important texture characteristics. However, they are
of relatively high dimensions and are usually not directly used for texture analysis. In fact,
features are used that are defined on the basis of the co-occurrence matrices. These include
the well-known Haralick features, of which some will now be presented [10, 32]. They are
calculated from normalized co-occurrence matrices according to (13.60).

Energy:

K−1∑
i=0

K−1∑
j=0

c2d,ij (13.62)

Entropy:

−
K−1∑
i=0

K−1∑
j=0

cd,ij ld(cd,ij) (13.63)

Contrast:
K−1∑
i=0

K−1∑
j=0

|i− j|a cbd,ij (13.64)

Typically, the parameters a = 2 and b = 1 are chosen.

Maximum probability:

max
i,j

cd,ij (13.65)

Inverse difference moment of order κ:
K−1∑
i=0

K−1∑
j=0

cd,ij
1 + |i− j|κ (13.66)

For κ = 1, this feature is also called ‘homogeneity’.

Correlation:
K−1∑
i=0

K−1∑
j=0

i j cd,ij −mR
i mC

j

sRi sCj
(13.67)

Here, mR
i , mC

j denote the empirical mean values, sRi , sCj denote the empirical standard
deviations (cf. Sec. 13.4.1) of the row sums and column sums

cRd,i =
K−1∑
j=0

cd,ij and cCd,j =
K−1∑
i=0

cd,ij , (13.68)

which can be interpreted as the marginal distributions of the co-occurrence probabilities.

These features can be used as a basis for texture classification. Alternatively, a feature vector
can be constructed as follows [10]: First, the symmetric, normalized co-occurrence matrices
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of the whole image region Ωt of the texture are calculated for the four offset directions of
Ex. 13.8. Next, some features can be extracted from each of the four co-occurrence matri-
ces. For each feature, the mean value and the variance are calculated with respect to the
offset d. By this means, a certain rotational invariance can be achieved. The resulting mean
values and variances now represent the feature vector which can be used for a subsequent
classification.

The best choice of orientations and lengths of the offset vectors for a certain application is
not obvious. A possible approach to determining the best offset vectors is to perform some
statistical tests. For example, the vector that maximizes the χ2 test can be used as an offset
vector:

χ2(d) =

K−1∑
i=0

K−1∑
j=0

c2d,ij
cRd,i c

C
d,j

. (13.69)

Then, the entries of the co-occurrence matrices calculated with d as well as their row sums
and column sums of (13.68) have to be inserted into this equation. The χ2 test yields the
offset d for which there is a maximum statistical dependency between the respective pairs
of pixels. In order to take into account the two dimensions of the texture, at least one further
offset direction d2 should be considered, which could be chosen, e.g., to be orthogonal to d.

13.4.3 Histogram of oriented gradients
The histogram of oriented gradients is a possible approach to obtain information about the
anisotropy of a texture [29]. This method can be used to determine the predominant direc-
tions of a texture and to discriminate between anisotropic textures and isotropic textures.

The histogram of oriented gradients is a histogram of the gradient orientations present
in the image g(x). Thus, the gradient orientation has to be estimated at every pixel. The
gradient grad g(x) = (gx(x), gy(x))

T can be estimated by different linear filters (see Sec. 11.2).
From these derivatives, the orientation θ(x) and the norm u(x) of the gradient at the image
pixel x can be estimated:

θ(x) := arctan
gy(x)

gx(x)
∈ [0, π) , (13.70)

u(x) := ‖grad g(x)‖ =
√
(gx(x))2 + (gy(x))2 . (13.71)

The only pixels which are considered in the calculation of the histogram of oriented gradi-
ents are those for which u(x) exceeds a fixed threshold umin, as the direction of low gradients
cannot be reliably estimated because of the noise. The gradient direction is quantized into K

equidistant intervals of a width of Δθ. For each interval, the histogram tells how often the
respective gradient direction is present in the image. The absolute frequencies are given by

Nθ(k) := |{x ∈ Ωt | kΔθ ≤ θ(x) < (k + 1)Δθ ∧ u(x) > umin}| ,

Δθ :=
π

K
, k = 0, . . . ,K − 1 .

(13.72)

Now a normalization is performed in order to obtain the relative frequencies, so that the
scaling of the histogram is independent of the size of the image region and of the number of
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the pixels considered:

Hθ(k) :=
Nθ(k)∑K−1
l=0 Nθ(l)

, k = 0, . . . ,K − 1 . (13.73)

Several alternatives are possible when defining these histograms. First of all, the gradient
direction ∈ [0, 2π) can be used instead of the orientation θ ∈ [0, π). In another variant, the
magnitudes u(x) of the gradients of a direction are summed [20], instead of counting the
number of the gradients exceeding the threshold umin. Then, stronger gradients receive a
higher weight.

The histogram of oriented gradients of an anisotropic texture shows a distinctive max-
imum, which determines the predominant direction of the texture. If there are multiple
similarly high maxima, the texture has no predominant direction. Isotropic textures have a
flat histogram.

Besides the rather simple evaluation of the maxima, further features, such as the energy,
entropy, etc., can be calculated from the histogram of oriented gradients and can be used for
the analysis and classification of the texture. Histograms of oriented gradients can also be
directly used as a feature vector for a classifier.

For the classification of objects in images, the histograms of oriented gradients of over-
lapping local windows can be calculated and classified. By an additional normalization, a
better invariance with respect to contrast and illumination conditions can be achieved [8].

13.4.4 Run-length analysis
The run-length analysis of a texture provides information about the local structure of the
texture. A run is a set of pixels that have the same gray values and are directly adjacent with
respect to a direction d [9]. In general, the gray values do not have to be exactly identical but
only within the same interval of an additional quantization scale [33]. These quantization
steps are denoted by g ∈ {0, 1, . . . , gmax}. For a run-length analysis, the histograms Bd(g, r)

are calculated over the number of runs with a certain length r and within a certain inter-
val g of gray values. Similar to the co-occurrence matrices from Sec. 13.4.2, the direction d

can be chosen, however, in this case, the sign of the vector d is irrelevant. The histograms
characterize the local consistency of the texture. By this means, textures consisting of coarse
structures can be discriminated from fine-structured textures. However, the run-length fea-
tures are said to be susceptible to noisy image signals [33].

Based on run-length histograms, features can be defined that can be used for, e.g., texture
classification. Let rmax denote the maximum length of a run present in the histogram and let
rtotal denote the total number of runs,

rtotal =

gmax∑
g=0

rmax∑
r=1

Bd(g, r) . (13.74)

At first, it might be interesting to see whether short or long runs are predominant. The
feature ‘short runs emphasis’ emphasizes the short runs independently of their gray values,
and normalized with respect to the total number of runs:

1

rtotal

gmax∑
g=0

rmax∑
r=1

Bd(g, r)

r2
. (13.75)
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Conversely, longer runs are put into focus by the ‘long runs emphasis’ feature:

1

rtotal

gmax∑
g=0

rmax∑
r=1

Bd(g, r) r
2 . (13.76)

The ‘inhomogeneity of the gray values’ can be evaluated as follows:

1

rtotal

gmax∑
g=0

(
rmax∑
r=1

Bd(g, r)

)2

. (13.77)

This feature is minimal if the number of runs is uniformly distributed over all gray values.
The ‘inhomogeneity of the run lengths’ provides information about the distribution of

the run lengths, independently of their gray value:

1

rtotal

rmax∑
r=1

(
gmax∑
g=0

Bd(g, r)

)2

. (13.78)

It is minimal if the number of runs is uniformly distributed over all run lengths.
The ‘run density’ is defined as the quotient of the total number of runs by the number of

pixels:

rtotal∑gmax

g=0

∑rmax

r=1 Bd(g, r) r
=

rtotal
M N

. (13.79)

It is equal to one if the texture contains exclusively runs of length one. The longer the runs,
the lower the run density. Thus, it is a measure of the amount of linear structures with an
orientation d.

13.4.5 Laws’ texture energy measures
Laws’ texture energy measures represent further classical features for texture classification
[13, 18, 19]. They are obtained by a convolution of the gray-scale image g(x) with the so-
called Laws matrices. These matrices are defined as the dyadic products of certain vectors.
The matrices and vectors represent the impulse responses of linear, shift-invariant systems,
i.e., linear filters expressed in matrix notation. The elementary vectors are given by

l3 =

⎛⎜⎝1

2

1

⎞⎟⎠ , e3 =

⎛⎜⎝−10
1

⎞⎟⎠ , s3 =

⎛⎜⎝−12
−1

⎞⎟⎠ . (13.80)

The first filter l3 is a binomial low-pass filter, so that the result of the convolution contains
only the signal components with low spatial frequencies. The two other filter masks e3 and
s3 have band-pass characteristics and select certain spatial frequencies of the image signal.
The filter e3 corresponds to the symmetric difference quotient of Sec. 11.2.1 and therefore is
an edge operator. The impulse response s3 results from the convolution of two asymmetric
difference quotients, s3 = (1,−1)T ∗(−1, 1)T, and approximates the second derivative. Fur-
ther filters of length 5 are the result of convolutions of these elementary impulse responses
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of length 3:

l5 = l3 ∗ l3 =

⎛⎜⎜⎜⎜⎜⎝
1

4

6

4

1

⎞⎟⎟⎟⎟⎟⎠ , e5 = l3 ∗ e3 =

⎛⎜⎜⎜⎜⎜⎝
−1
−2
0

2

1

⎞⎟⎟⎟⎟⎟⎠ , (13.81)

s5 = l3 ∗ s3 =

⎛⎜⎜⎜⎜⎜⎝
−1
0

2

0

−1

⎞⎟⎟⎟⎟⎟⎠ = −e3 ∗ e3 , (13.82)

r5 = s3 ∗ s3 =

⎛⎜⎜⎜⎜⎜⎝
1

−4
6

−4
1

⎞⎟⎟⎟⎟⎟⎠ , w5 = s3 ∗ e3 =

⎛⎜⎜⎜⎜⎜⎝
1

−2
0

2

−1

⎞⎟⎟⎟⎟⎟⎠ . (13.83)

The Laws matrices represent two-dimensional impulse responses that are the dyadic prod-
uct of the one-dimensional impulse responses.

Example 13.9 (Laws matrices): The dyadic product of the vectors e5 and l5 results in the ma-
trix

e5 l
T
5 = e5 ∗∗ lT5 =

⎛⎜⎜⎜⎜⎜⎝
−1
−2
0

2

1

⎞⎟⎟⎟⎟⎟⎠
(
1 4 6 4 1

)
=

⎛⎜⎜⎜⎜⎜⎝
−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

⎞⎟⎟⎟⎟⎟⎠ . (13.84)

The convolution of the gray-scale image of a texture and a Laws matrix results in a feature
image, e.g.:

μe5lT5
(x) := g(x) ∗∗ (e5lT5 ) = (g(x) ∗∗ e5︸ ︷︷ ︸

=: μe5(x)

) ∗∗ lT5 . (13.85)

Now, the energy of this feature image is calculated by summing the squared image values,
cf. (13.62). It corresponds to the energy of the image signal in different frequency domains,
which are selected by the filter masks. In all, the use of multiple Laws matrices provides a
set of energy features that can be used for texture classification.

To realize an efficient calculation, the associativity of the convolution can be exploited,
so that only convolutions of the image with one-dimensional impulse responses have to be
computed, cf. (13.85). Besides, intermediate results, like μe5(x), can be reused.
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13.4.6 Local binary patterns
Local binary patterns (LBPs) represent texture features that are invariant with respect to ro-
tation and monotonic transformations of the gray value [22, 23, 25, 26]. For every point x,
a certain number of P image points x1, . . . ,xP are considered, which are arranged equidis-
tantly on a circle with radius R around x (Fig. 13.21). Now, the differences of the gray values
g(xp) of these points from the gray value g(x) of the reference point are calculated and the
signs of these differences are evaluated. The gray values of points which do not exactly lie
on the pixel grid are interpolated. The result is a binary vector

(H(g(x1)− g(x)), . . . , H(g(xP )− g(x)))
T ∈ {0, 1}P , (13.86)

where H( · ) denotes the Heaviside function (8.18) and the surrounding points xp = xp(x),
p = 1, . . . , P are chosen with respect to the reference point x. As only the signs of the image
value differences are considered, this vector is invariant to monotonic transformations of the
image values, which might be caused by, e.g., a homogeneous change of the illumination
conditions. This vector can be considered as the binary representation of an integer number
of the set {0, 1, . . . , 2P − 1}.

In order to construct a robust, rotation-invariant feature, the number U of sign changes
with respect to a cycle through the binary pattern can be evaluated, for example:

UP,R(x) :=
P∑

p=2

|H(g(xp)− g(x))−H(g(xp−1)− g(x))|

+ |H(g(xP )− g(x))−H(g(x1)− g(x))| .
(13.87)

If the binary pattern contains at most one block of positive and at most one block of negative
signs, then UP,R(x) ≤ 2. Such patterns are called uniform. There are P +1 uniform patterns:

Two patterns with UP,R(x) = 0, which correspond to isolated bright or dark points x, as
well as to homogeneous areas;
P − 1 patterns with UP,R(x) = 2, which represent edges with different curvatures,
Fig. 13.22(a).

In typical textures, uniform patterns appear much more frequently than non-uniform pat-
terns, so that they can be subject to a robust statistical evaluation [23]. This is why in the
following only the uniform patterns will be further investigated and all non-uniform pat-

(a) P = 4, R = 1 (b) P = 8, R = 1 (c) P = 16, R = 2 (d) P = 24, R = 3

Figure 13.21. Image points for the calculation of the local binary patterns for different values of the number of points
P and the radius R (adapted from [23]).
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Figure 13.22. Local binary patterns for the case P = 8, normalized with respect to the orientation, and their feature
values LBP8,R(x): (a) The P + 1 = 9 uniform patterns; (b) Subset of the 27 non-uniform patterns (adapted from
[23]).

terns are grouped into one class. This motivates the following definition of the feature:

LBPP,R(x) :=

{∑P
p=1 H(g(xp)− g(x)) if UP,R(x) ≤ 2

P + 1 if UP,R(x) > 2 .
(13.88)

For uniform patterns, the number of positive signs is defined to be the value of the feature.
As this value does not change when the image is rotated, the feature is rotation-invariant.
All non-uniform patterns are assigned the same feature value P + 1, Fig. 13.22(b).

By calculating the feature LBPP,R(x) for many image points x of the texture, a histogram
of the feature values can be obtained. This step can be repeated for different numbers P of
points and for different radii R, e.g., for the values shown in Fig. 13.21(b)–(d). The use of
different radii R corresponds to a multiresolution analysis of the structures in the image,
cf. Chap. 15. Based on these histograms, further processing steps, such as texture classifi-
cation, texture segmentation, or object detection, can be performed [12, 21, 23, 28]. For this
purpose, the similarity of the observed histogram to histograms learned from the samples
of different texture classes is evaluated.
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14 Detection
The term detection refers to the recognition of known or unknown objects in an image and to
the determination of their position and orientation. On the one hand, the objects that are to
be detected can be test objects, whose presence, orientation or integrity has to be inspected.
On the other hand, it might be necessary to detect defects or certain structures such as, e.g.,
features, in the image.

For describing detection, we assume a linear signal model, in which the objects are addi-
tively superposed on a background signal h(x). In the image, the objects are represented by
signals oi(x), whose amplitudes are weighted with factors ci ∈ R, ci > 0. In the image g(x),
these object signals can be shifted, scaled or rotated:

g(x) =
∑
i

ci oi(si Ai x− xi) + h(x) . (14.1)

The vectors xi ∈ R2 describe the position of the objects in the image (translation), the si ∈ R,
si > 0 scale their spatial extent, and the rotation matrices

Ai =

(
cosϕi sinϕi

− sinϕi cosϕi

)
, ϕi ∈ [0, 2π) , (14.2)

rotate the object by the angle ϕi.
The variation of the object signals caused by si and Ai can be directly considered during

the construction of detection methods, leading to rotation-invariant and scale-invariant de-
tectors. A ‘brute force’ approach of this kind uses ensembles of detectors for a sufficiently
large but finite number of quantized rotation steps and scaling steps. However, this ap-
proach involves markedly increased computational costs.

More sophisticated detectors already come with invariance characteristics concerning
rotation and scaling, e.g., by integrating features over all possible rotations and scalings.
A detailed description of invariant methods can be found in [32]. Actual applications of
invariant approaches used in automated visual inspection are given in [27].

Alternatively, the scaling si and the rotation ϕi of the objects in the acquired image can
be estimated and compensated for in a normalization step before applying the actual de-
tection method. And, finally, for automated visual inspection, the image acquisition can be
constructively adjusted. Very accurate and repeatable geometric relations of the position of
the test object with respect to the camera can keep unwanted influences low, like scaling and
rotation, or, more generally, changing perspectives.

In contrast, the weightings of the amplitude by the factors ci and the displacements xi

are of no account for linear detection filters, which are to be covered in the following.
For understanding the presented methods it is sufficient that only one object o( · ) is as-

sumed to be present in the image, without any rotation and scaling: A = I, s = 1. Hence,
the model (14.1) is simplified to

g(x) = c o(x− x0) + h(x) . (14.3)

In the following, detection methods will be distinguished according to the a priori knowl-
edge that they require to be available about the object and the background (Table 14.1). For
the various different assumptions, optimal linear detection filters can be designed. Further-
more, the detection of lines and corners will be discussed during the course of this chapter.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_14,
© Springer-Verlag Berlin Heidelberg 2016
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Table 14.1. Detection filters for different assumptions concerning objects and background.

Objects known Objects unknown
(e.g., defect detection)

Background is a weakly stationary
stochastic process with known
autocorrelation function

Matched filter:
detection filter
with optimum
SNR

Search for significant local
variations in the background
properties, e.g., by predic-
tion error filters

Background is unknown – correlation filter
– phase-only filter
– inverse filter
– . . .

Detection of local texture
inhomogeneities using
homogeneity tests

14.1 14.1 Detection of known objects by linear filters
The object sought is now assumed to be described by a deterministic signal o(x). One must
then find the impulse response function v(x) of a linear detection filter, so as to convolve it
with the image signal;

k(x) := g(x) ∗∗ v(x) . (14.4)

The chosen impulse response function v(x) should lead to k(x)’s having a maximum at the
position x0 of the object, greater than all other surrounding signal values. The height of this
‘peak’ should allow of reliable detection, and the position of this peak should allow of the
exact localization of the object.

A particularly important case is when the known objects are represented by lines; this
case will be covered in Sec. 14.3.

14.1.1 Unknown background
For a single object o(x) at the position x0, the model (14.3) can be described as follows in the
spatial domain and the frequency domain:

g(x) = c o(x− x0) + h(x) = o(x) ∗∗ c δ(x− x0) + h(x) (14.5)
◦
•

G(f) = O(f) c e−j2πfTx0 +H(f) . (14.6)

The cross-correlation function

r(τ ) =

∞∫∫
−∞

o(x) o(x− x0 + τ ) dx (14.7)
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of o(x) and o(x − x0) is maximal for τ = x0, as in this case it is equal to the autocorrelation
function1 of o(x) at the position 0. The calculation of this cross-correlation function is equiv-
alent to the convolution of o(x − x0) with the reflected object model o(−x). This is why the
convolution

k(x) := g(x) ∗∗ o(−x) (14.8)

can be expected to have its maximum at x = x0. This detection method is called the cor-
relation filter. It has the following representation in the spatial domain and the frequency
domain:2

v(x) = o(−x) ◦=• V (f) = O∗(f) . (14.9)

A generalization of the correlation filter is obtained by means of the representation of O(f)

and V (f) by magnitude and phase:

O(f) = |O(f)| e j∠O(f) , (14.10)

V (f) = |O(f)| e−j∠O(f) . (14.11)

The complex conjugation is equivalent to a negation of the phase. The more general frac-
tional power filter (FPF) is obtained by adding the exponent q to the magnitude [38]

Vq(f) := |O(f)|q e−j∠O(f) , q ∈ [−1; 1] . (14.12)

Besides the correlation filter, further important detection filter can be considered as special
cases of this parametric family, see Table 14.2.

Example 14.1 (Object detection using correlation filters): Figure 14.1(a) shows an artificial test
image g(x) with three objects oi(x) placed in front of a textured background h(x), which
can be assumed to be correlated noise. The superposition does not correspond to the
additive model (14.3), as the objects occlude the background. For the D-shaped object
o1(x), a correlation filter (matched filter) v(x) := o1(−x) is designed according to (14.9),
see Fig. 14.1(b). The result k(x) of the convolution (14.4) is shown in Fig. 14.1(c). There is
a distinct maximum at the position of the object o1.

1As the Schwarz inequality (14.20) implies:∫∫
o(x) o(x+ τ ) dx ≤

∫∫
o2(x) dx ·

∫∫
o2(x+ τ ) dx︸ ︷︷ ︸

=
∫∫

o2(x) dx

=

(∫∫
o2(x) dx

)2

.

The left-hand side is maximal if equality holds, which is the case for o(x) ∝ o(x+ τ ), which does only
hold for τ = 0 in general.

2The complex conjugation of the transfer function O(f) is denoted by O∗(f).
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Table 14.2. Special cases of the fractional power filters.

q = −1 V (f) = O−1(f) Inverse filter for reconstructing c δ(x−x0) (cf. Sec. 10.2). The
inverse filter yields a narrow detection peak but is suscepti-
ble to noise: zeros of O(f) lead to an intense amplification of
noise. In this regard, the modification known from Sec. 10.2

represents an improvement: V (f) =
O∗(f)

|O(f)|2 + ε

q = 0 V (f) = e−j∠O(f) Phase-only filter (POF): only the phase but not the magni-
tude of the signal is altered by the filtering. This approach
is interesting for an optical realization, as there is no loss of
light, i.e., maximum optical efficiency can be achieved [36].
Another advantage over the correlation filter is given by the
possibility of discriminating between similar objects [15].

q = 1 V (f) = O∗(f) Correlation filter: the correlation filter is the optimum filter
if h(x) is white noise, i.e., under this condition, it provides
the maximum signal-to-noise ratio. Just as well, the corre-
lation filter is also optimal with regard to estimating the ob-
ject’s position: it minimizes the so-called ‘peak location error’
[37]. The correlation filter is also called the matched filter, as
it matches the object template o(x) to the image signal g(x).

(a) g(x) (b) v(x) (c) k(x)

Figure 14.1. Object detection using the correlation filter: (a) Test image; (b) Impulse response function of the corre-
lation filter; (c) Result of the filtering.

14.1.2 White noise as background
This section considers the special case where the background h(x) can be described as white
noise. Hence, by (8.301), the power spectral density is constant:

Shh(f) ≡ Nh . (14.13)
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As already mentioned, the matched filter (correlation filter) is the optimum filter in this case,
as will now be explained. The filtering of the image signal (14.5) with the impulse response
function v(x) of a linear filter yields

k(x) = g(x) ∗∗ v(x) = c o(x− x0) ∗∗ v(x)︸ ︷︷ ︸
signal

+ h(x) ∗∗ v(x)︸ ︷︷ ︸
noise

, (14.14)

where the first term represents the signal and the second term represents the noise after
filtering. The signal-to-noise ratio of the filtered signal is given by

SNR =
P1

P2
, (14.15)

with P1 denoting the power of the signal sought and P2 denoting the power of the noise
signal after the filtering.

Especially at the position x = x0 of the object that is to be detected, the signal’s power
P1 is evaluated. For detection and localization it is sufficient that the filtering results in an
extremum at that position, which is notably greater than the signal k(x) surrounding the
object. The local power of the signal at the position x = x0 is given by

P1 := |c o(x− x0) ∗∗ v(x)|2
∣∣
x=x0

= |c o(x) ∗∗ v(x)|2
∣∣
x=0

(14.16)

= c2 |o(x) ∗∗ v(x)|
∣∣
x=0

= c2

∣∣∣∣∣∣
∞∫∫
−∞

O(f)V (f) df

∣∣∣∣∣∣
2

. (14.17)

To formulate the above equations, the LSI property of the detection filter is exploited and also
the central ordinate theorem is applied to the correspondence o(x) ∗∗ v(x) ◦=• O(f)V (f).

In contrast to the power P1 of the desired signal, which denotes the instantaneous power
of a deterministic signal o(x) ∗∗ v(x), the power P2 of the noise has to be calculated for a
stochastic process h(x). This is why P2 is defined as the mean signal power of h(x) ∗∗ v(x).
The mean power of the noise signal is given by

P2 = Nh

∞∫∫
−∞

|V (f)|2 df . (14.18)

In order to maximize the signal-to-noise ratio, the Schwarz inequality is applied. For the
scalar product

〈f(x), g(x)〉 :=
∞∫

−∞

f(x) g∗(x) dx (14.19)

in the space of quadratically integrable complex-valued functions, it is given by

|〈f(x), g(x)〉|2 ≤ 〈f(x), f(x)〉 · 〈g(x), g(x)〉 , (14.20)
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where equality holds if, and only if, f(x) is a scalar multiple of g(x) [14,25]. Thus for (14.17),
this implies

P1 = c2

∣∣∣∣∣∣
∞∫∫
−∞

V (f)O(f) df

∣∣∣∣∣∣
2

= c2

∣∣∣∣∣∣
∞∫∫
−∞

V (f) (O∗(f))∗ df

∣∣∣∣∣∣
2

= c2 |〈V (f), O∗(f)〉|2 (14.21)

≤ c2〈V (f), V (f)〉 · 〈O∗(f), O∗(f)〉 = c2
∞∫∫
−∞

|V (f)|2 df ·
∞∫∫
−∞

|O(f)|2 df . (14.22)

The left-hand side is maximal, i.e., the inequality turns into an equality, if V (f) ∝ O∗(f).
Hence, for a fixed P2, the SNR is maximal if the transfer function V (f) of the detection

filter is chosen to be proportional to the complex conjugation of the object’s transfer function:

V (f) = const. ·O∗(f) (14.23)
•
◦

v(x) = const. · o(−x) (14.24)

In sum, the matched filter is optimal for white noise in terms of having the maximum SNR
at the position x = x0.

14.1.3 Correlated, weakly stationary noise as background
The matched filter can be generalized to suit correlated, weakly stationary noise h(x) with a
known autocorrelation rhh(τ ). For the detection filter v(x), the following approach is chosen
(Fig. 14.2):

v(x) := ṽ(x) ∗∗w(x) . (14.25)

The convolution of the noise term with the impulse response function w(x) is supposed to
decorrelate the noise, i.e., to turn it into white noise, so that subsequently the matched filter
ṽ(x) from the previous section can be used. This is why the filter w(x) ◦=• W (f) is called a
whitening filter. The convolution of the image g(x) with the whitening filter results in

γ(x) := g(x) ∗∗w(x) = c o(x− x0) ∗∗w(x)︸ ︷︷ ︸
=: õ(x)

+ h(x) ∗∗w(x)︸ ︷︷ ︸
=: ρ(x)

. (14.26)

The second term ρ(x) is supposed to be white noise:

Sρρ(f) = |W (f)|2 Shh(f)
!≡ const. (14.27)

Figure 14.2. Approach for the matched filter v(x) for correlated, weakly stationary noise (colored noise).
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This yields the following condition for the transfer function of the whitening filter:

w(x) with |W (f)| = 1√
Shh(f)

. (14.28)

By this means, the problem is turned into the case of white noise and leads to

ṽ(x) = const. · õ(−x) (14.29)

with

õ(x) = o(x) ∗∗w(x) . (14.30)

The whitening produces the modified signal õ(x), which now has to be detected with maxi-
mum SNR in white noise. This results in the following matched filter for correlated (colored)
noise:

v(x) = const. · õ(−x) ∗∗w(x) (14.31)

= const. · o(−x) ∗∗w(−x) ∗∗w(x) (14.32)
◦
•

V (f) = const. ·O∗(f) |W (f)|2 (14.33)

= const. · O
∗(f)

Shh(f)
. (14.34)

The transfer function of the filter has low values for spatial frequencies for which the power
spectral density of the noise is high compared to the sought for signal. Conversely, the filter
opens for frequencies for which, in the Fourier domain, the signal sought o(x) dominates the
noise h(x).

14.1.4 Discrete formulation of the matched filter
Until now, the continuous case has been considered for deriving the detection methods. The
matched filter can be alternatively expressed in matrix notation, similar to the restoration
methods of Sec. 10.6, so that it can be applied to discrete image data.

A region of the image can be written as a column vector gmn:

gmn := (. . . , gm−i,n−j , . . . )
T , (i, j) ∈ U , gmn ∈ R|U| , (14.35)

with U denoting a neighborhood around the origin (Fig. 14.3). Similarly, the vectors
omn,hmn ∈ R|U | are defined for the object and for the background noise. Hence, the dis-
crete formulation of the signal model (14.3) is given by

gmn = omn + hmn . (14.36)

The sought for matched filter can also be written as a column vector:

v := (. . . , vij , . . . )
T ∈ R|U | . (14.37)

The result of the filtering at the point (m,n) is given by the inner product

kmn = vTgmn . (14.38)
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Figure 14.3. The vectors gmn, omn and hmn are out of the sur-
rounding (U)mn, which can be obtained by shifting U to the posi-
tion (m,n).

This corresponds to a convolution of the image with the impulse response function v of a lin-
ear, shift-invariant system. To simplify matters, the indices mn are omitted in the following.
So for the image position (m0, n0) of the object, we have

km0n0
= k = vTg = vTo+ vTh . (14.39)

Now again, the signal-to-noise ratio has to be maximized:

SNR =
P1

P2

!−→ Max. (14.40)

The power of the signal sought at the object position is given by

P1 = (vTo)2 . (14.41)

And the power of the background signal is

P2 = E{(vTh)2} = E{(vTh)(hTv)} = vT E{hhT}︸ ︷︷ ︸
= Rhh

v . (14.42)

The correlation matrix Rhh of the noise signal is symmetric and positive definite and can
therefore be decomposed as follows:3

Rhh = QTQ . (14.43)

In this representation, the inverse correlation matrix R−1
hh is given by

R−1
hh = Q−1(QT)−1 . (14.44)

Setting ω := Qv results in

v = Q−1ω , (14.45)

vT = ωT(Q−1)T . (14.46)

Hence, the signal-to-noise ratio is

SNR =
(vTo)2

vTRhhv
=

(ωT(Q−1)To)2

ωTω
. (14.47)

W.l.o.g. the vector v can be scaled so that ‖ω‖ = 1: as the squares of v and ω are contained
in both the numerator and the denominator, the chosen scaling factor can be canceled. This

3This is the so-called Cholesky decomposition of the matrix [34].
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is why only the numerator has to be considered for the optimization. The inner product
in the numerator reaches its maximum if ω is parallel to (Q−1)To. Thus, for the discrete
formulation of the matched filter, this results in

ω = const. · (Q−1)To (14.48)

⇒ v = const. ·Q−1(Q−1)To = const. ·R−1
hh o , (14.49)

kmn = vTgmn ∝ oTQ−1(Q−1)Tgmn . (14.50)

The discrete formulation can be interpreted similarly to the continuous formulation. Here,
(Q−1)T represents the whitening filter and oTQ−1 the function which describes the object
(template), and which is modified by the whitening.

In general, detection problems are complicated by the fact that the known object models
appear affected by additional rotations, scalings or perspective distortions in the image. As
the matched filter approaches that have been presented here are not invariant with respect to
those transformations, their effectiveness is susceptible to such variations. In order to detect
arbitrarily rotated and scaled objects, an ensemble of filters has to be applied to the image,
in which every filter detects objects with a certain rotation and scaling [30].

Example 14.2 (Optical character recognition): In automated visual inspection, often the label-
ing of test objects has to be identified, in order to sort the objects or to verify their identity.
The characters do not necessarily have to be printed with ink but can also be engraved as
a relief, e.g., on cast parts (Fig. 14.4). In this case, a suitable image acquisition has to be
performed, e.g., by a stripe projection method, so that the relief data can be turned into a

(a)

CameraProjector

Characters

(b)

(c)

 J      4      5     1     3      0         0      2      4

(d)

Figure 14.4. Optical character recognition on cast parts: (a) Intensity image of the test object; (b) Acquiring the 3D
shape of the surface using stripe projection; (c) Surface relief (black =̂ invalid data points); (d) Result of the character
recognition.
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2D image of the characters after a rectification.
Matched filters can be used for the detection of the single characters: for every rel-

evant character i (letters, numbers, etc.), an impulse response function oi(x) is learned.
Next, a convolution of the preprocessed image with each filter vi(x) := oi(−x) is per-
formed:

ki(x) := g(x) ∗∗ oi(−x) . (14.51)

The resulting feature image ki(x) shows a maximum if the corresponding character is
present (Fig. 14.5(b)). A thresholding yields a binary image, which can be used for the
detection decision (Fig. 14.5(c)). The three maxima in the upper image clearly represent
an occurrence of the number ‘0’, whereas besides the two correct maxima corresponding
to the number ‘1’, there are some false detections. However, when considering the known
position of the characters within one line, the false detections can be eliminated. The
bottom image remains black, as the number ‘2’ is not present in the example sequence.
In total, the evaluation of the result of the filtering for all numbers and characters yields
the result shown in Fig. 14.5(d). It is remarkable that even the first character has been
correctly identified as the capital character ‘O’, which is a little smaller than the number
‘0’.

Formally speaking, the decision rule is as follows: the character i is considered to be
detected at position x if

ki(x) > threshold (14.52)

∧ x ∈ regions of interest ⊂ Ωg (14.53)

∧ ki(x) > kj(x) for all j �= i . (14.54)

(a)

‘0’

‘1’

(b)

‘2’

(c)

(d)

Figure 14.5. Optical character recognition using matched filters: (a) Gray-scale image g(x); (b) Filtering results ki(x)
for the characters ‘0’, ‘1’ and ‘2’; (c) Binary images, obtained by thresholding (b), superposed with the regions of
interest (red rectangles); (d) Detection result.
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The first condition requires a minimum height of the peak, i.e., a significant amplitude of
the feature ki(x) at the position x. The second condition prevents false detections outside
of the regions of interest (ROIs) in which the characters might occur at all. If multiple
filters show a peak for a single position, the third condition selects the most probable
character.

For optical character recognition, often much more complex methods are used,
which—among other things—consider the probability distributions over the neighbor-
hood of the characters inside of words. For identifying numbers, etc., for which such
knowledge is not available, matched filters present a practical solution. Alternative meth-
ods for the detection of single characters are artificial neural networks and classifiers, for
example [8].

In industry, often 2D bar codes are used for labeling objects, instead of plaintext fonts,
as they allow a redundant encoding, which however cannot be directly read by humans.

14.214.2 Detection of unknown objects (defects)
For the detection of unknown objects, the object signal o(x) is considered as a local varia-
tion of the embedding background. The background is assumed to be a weakly stationary
stochastic process h(x) with a known autocorrelation function rhh(τ ). This situation is typi-
cal for the detection of defects of all kinds in known textures. The defects appear as signifi-
cant local variations of the statistical properties of g(x). These can be detected by specifically
suppressing the background signal h(x), so that the defects are highlighted.

Example 14.3 (A prediction error filter based on AR models): The AR model of Sec. 13.3.3 can be
used for defect detection in textures. The image value at the position (m,n) is predicted
by the AR model. The prediction error emn is a measure for the difference of the texture
model

emn = gmn − aTγmn︸ ︷︷ ︸
= ĝmn

. (14.55)

The information about the statistical properties of the texture, e.g., the autocorrelation
function rhh(τ ) or the correlation matrix Rhh of the background signal, is represented
by the AR coefficients a. For local variations of the image signal gmn and the modeled
background signal hmn, the prediction error emn shows a high local power. As emn is
itself a random variable, a sensible definition for the local power has to be found, e.g.,
as the local variance σ2

mn = Var{emn}. In practice, σ2
mn can be estimated by a local

averaging of the sample function emn, e.g., elegantly by a low-pass filtering of e2mn (cf.
the calculation of σ̂(x) in Sec. 9.2.2.3).

As an example, Fig. 14.6 shows the detection of anomalies in a wooden structure.
For the textures in Fig. 14.6(a), an AR model has been estimated. Figure 14.6(b) shows
a synthesized texture for validating the model. The prediction error emn is shown in
Fig. 14.6(c). After smoothing the squared error signal with a Gaussian low-pass filter, the
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(a) Original image gmn (b) Synthesized texture

(c) Prediction error emn (d) Estimation of the local variance σ2
mn

Figure 14.6. Defect detection in a wood texture using an AR model.

anomaly of the wooden structure is represented by a distinctive maximum in Fig. 14.6(d).

The example shown models the object-free background with an AR model, which is a signal
adapted method, in order to accentuate the objects by suppressing the background.

Often even simpler methods, e.g., thresholding, are sufficient, if the objects appear as
bright or dark regions compared to the background, cf. Sec. 11.1.

In another important case, the objects (especially the defects) have high-frequency struc-
tures in contrast to the background, which can be detected by applying a high-pass filtering,
calculating the magnitude, and finally performing a thresholding.
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14.314.3 Detection of straight lines
Lines are important components of ‘technical scenes’: many technically built objects have
piecewise straight structures or borders. This is why the detection of lines and the determi-
nation of their orientation plays an important role for automated visual inspection.

14.3.1 The Radon transform
The Radon transform4 represents an important tool for the detection and localization of lines
in images [3, 7]. In contrast to the differentiating edge detection methods of Chap. 11, the
Radon transform is an integral transform and is therefore much more robust against noise
in the image.

14.3.1.1 Definition

14.1Definition 14.1: Radon transform
The Radon transform of a signal g(x) is defined as

ǧ(u, ϕ) = R{g(x)} :=
∞∫

−∞

∞∫
−∞

g(x) δ(xTeϕ − u) dx (14.56)

with

ϕ ∈ [0, π) , u ∈ R , eϕ =

(
cosϕ

sinϕ

)
. (14.57)

�

The δ-line

δ(xTeϕ − u) ‘ = ’

{
0 if xTeϕ − u �= 0

∞ if xTeϕ − u = 0
(14.58)

representing the transformation kernel results in the summation of the values of the signal
g(x) along lines that have the parameters u (distance to the origin) and ϕ (line angle), see
Fig. 14.7.

Thus for a fixed angle ϕ0, ǧ(u, ϕ0) is equal to the parallel projection of the signal in the
ϕ0-direction. If every value of the whole domain is considered for ϕ, it becomes obvious that
the Radon transform contains all parallel projections of the signal g(x) in an ordered manner.
The Radon transform expands the signal g(x) in δ-lines. Because of the geometric structure
of the transformation kernel, line-shaped signal components are constructively integrated
and appear as distinct extrema in the u,ϕ-domain.

Line-shaped structures will produce a distinct maximum, if the image background is
zero-mean. Depending on the homogeneity of the image, it is either sufficient to subtract
the global average or a first-order homogenization should be applied that eliminates the
local average (see Sec. 9.2.2). Spatially slowly changing components of the image result in
wide and strong signal components in the Radon transform, which are irrelevant for the
detection of lines and can be compensated for by means of eliminating the local average.

4Named after Johann Radon, 1917 [28]
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Figure 14.7. Notation used with regard to the Radon transform.

For all examples shown in this chapter, the Radon transform has been applied to zero-mean
images.

Example 14.4 (The Radon transform of textures): The effect of the Radon transform can be illus-
trated using images of textures with straight grooves (cf. Chap. 13). The sawing texture in
Fig. 14.8(a) consists exclusively of parallel grooves. This is why the corresponding Radon
transform shows significant extrema only for one angle ϕ0 (Fig. 14.8(b)). The minima and
maxima correspond to the distances from the origin of the dark and bright straight lines
in the texture image.

The honing texture in Fig. 14.8(c) has grooves with two different predominant di-
rections. The corresponding angles ϕ1, ϕ2 result in extrema in the Radon transform
(Fig. 14.8(d)). As the grooves in the honing texture have random distances and widths,
the extrema have different heights and different distances.

The inverse Radon transform is given by

g(x) = R−1{ǧ(u, ϕ)} = 1

2π2

π∫
0

∞∫
−∞

1

xTeϕ − u

∂ǧ(u, ϕ)

∂u
du dϕ . (14.59)

It yields the signal g(x) for given projection data ǧ(u, ϕ). Suitable approaches to practically
computing Equations (14.56) and (14.59) will be discussed in Sec. 14.3.1.3.

Example 14.5 (Computed tomography): The principle of computed tomography (CT) is a prac-
tical application of the Radon transform, see Fig. 14.9. Here, parallel X-rays are assumed.
For more general ray geometries, such as point-shaped X-ray sources, the reader is re-
ferred to standard tomographic literature [18, 19].

The parallel X-radiation emitted by a sender array has the initial intensity I0 and
passes through an object with spatially varying absorption coefficients μ(x), so that the
radiation I(μ, ϕ) measured by the receiver array is attenuated in obedience to the follow-
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(a) g1(x)

u

ϕ�

�

(b) ǧ1(u, ϕ)

(c) g2(x)

u

ϕ�

�

(d) ǧ2(u, ϕ)

Figure 14.8. Radon transform applied to examples images.

ing equation (see Sec. 7.4.2):

I(u, ϕ) = I0 exp

(
−
∫∫

μ(x) δ(xTeϕ − u) dx

)
. (14.60)

By divising by I0 and taking the logarithm, the measured data corresponds to the line
integral of the absorption coefficients μ(x) along the rays, i.e., to the Radon transform
R{μ(x)} of the function μ(x):

ln

(
I0

I(u, ϕ)

)
=

∫∫
μ(x) δ(xTeϕ − u) dx = R{μ(x)} . (14.61)

In order to reconstruct the function μ(x) sufficiently precisely, the absorption along many
lines with different directions has to be measured by rotating the test object with re-
spect to the tomograph. Then, the inverse Radon transform is applied to the measured
data [35].
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Figure 14.9. Principle of computed tomography.

Also in computed tomography, there is a sampling theorem related to the Radon
transform, specifying the roughest quantization of u and ϕ with in terms of the band-
width of μ(x) and to the size of the object [29].

14.3.1.2 The Fourier slice theorem
The Fourier slice theorem (also called projection-slice theorem or central slice theorem) is
very important for the practical use of the Radon transform [7]. It gives a relation between
the Fourier transform (8.130) and the Radon transform and is illustrated in Fig. 14.10.

14.1 Theorem 14.1: The Fourier slice theorem
Via a one-dimensional Fourier transform, a parallel projection of the signal g(x) is related
to a central slice perpendicular to the projection direction of the two-dimensional Fourier
transform G(f) = Fx{g(x)}:

Fu{ǧ(u, ϕ)} = G(fu eϕ) , (14.62)

where fu denotes the spatial frequency corresponding to u. �

By means of this theorem, the fast Fourier transform (FFT) and an interpolation from rect-
angular to polar coordinates can be used to efficiently compute the Radon transform, see
Sec. 14.3.1.3.



14.3 Detection of straight lines 703

Spatial frequency domain

Projection

Figure 14.10. Visualization of the Fourier slice theorem.

Proof 14.1 (Fourier slice theorem): In order to derive (14.62), the Radon transform of the image
g(x) for ϕ = 0◦ is calculated according to Fig. 14.11:

ǧ(u, ϕ = 0) =

∫∫
g(x) δ(x− u) dx =

∫
g(u, y) dy . (14.63)

A Fourier transform with respect to u yields

Fu{ǧ(u, 0)} =
∫∫

g(u, y) e−j2πfuu du dy

=

∫∫
g(x, y) e−j2πfxx dx dy

=

∫∫
g(x, y) e−j2π(fxx+fyy) dx dy

∣∣∣∣
fy=0

= G(fx, 0) = G(fxex) = G(fueϕ)|ϕ=0 . (14.64)

A rotation of the function g(x) in the spatial domain corresponds to a rotation of the
Fourier transform G(f) (see Theorem 8.13):

F{g(Dx)} = G(Df) with D =

(
cosϕ sinϕ

− sinϕ cosϕ

)
. (14.65)

Together with (14.64), this immediately implies (14.62).

14.3.1.3 Efficient computation of the Radon transform
Figure 14.12 shows a practical strategy for computing the Radon transform using the Fourier
slice theorem. After a 2D Fourier transform of the original image g(x), the complex spectrum
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Spatial frequency domain

Projection

Figure 14.11. Proof of the Fourier slice theorem.

G(f) is interpolated on a polar grid. Then, an inverse one-dimensional Fourier transform is
applied to the result of the interpolation ‘column by column’ with respect to the coordinate
u. The result is the Radon transform sought.

The inverse Radon transform is of particular importance to use the Radon transform for
image enhancement. Here, the procedure of Fig. 14.12 can simply be inverted: after a 1D-FFT
with respect to the parameter u, an interpolation on a Cartesian grid is performed. Finally,
an inverse 2D-FFT is applied to the result.

2D-FFT
Interpolation

1D-IFFT

Figure 14.12. Efficient calculation of the Radon transform using the Fourier slice theorem and the FFT.

Generally, this approach is affected by an interpolation error, and so only an approxi-
mation of the Radon transform can be achieved. In practice, it is usually sufficient to use a
bilinear interpolation, which has also been used to calculated the examples of this section
(cf. Sec. 9.2.1).

In the following, the savings in computation time obtained by using the Fourier slice
theorem for the calculation of the Radon transform will be estimated. The image size is
assumed to be N × N , so that N = Nϕ = Nu, with Nϕ and Nu denoting the number of
quantization steps of ϕ and u. The computational costs of the direct evaluation of the Radon
integral are O(N3); in contrast, by using the Fourier slice theorem, the computational costs
are only O(N2 ldN). Especially for high N , the method illustrated in Fig. 14.12 requires a
markedly reduced number of computation steps, as is shown in Table 14.3 for typical values.
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Table 14.3. Speedup achieved when using the Fourier slice theorem for the calculation of the (inverse) Radon trans-
form.

Image size N ×N 256× 256 512× 512 1024× 1024

ComplexityRadon = O(N3)

ComplexityFST = O(N2 ldN)
≈ 10 ≈ 18 ≈ 32

Example 14.6 (Amplifying lines for image enhancement): As an example of an application of
the Radon transform to image processing, the amplification of line-shaped signal com-
ponents for enhancing images with low SNR will be given [9, 26]. Figure 14.13(b) shows
an SAR image (synthetic aperture radar) of the ocean surface captured by a satellite [31].
The image contains traces of the bow wave of a ship. For image enhancement, the Radon
transform of the zero-mean image is calculated and then the point operation sgn(k)|k|p
is applied. Line-shaped structures which are mapped to local extrema in the u,ϕ-plane
are enhanced for p > 1 with respect to the noise components. Figure 14.13(c) shows the
result for p = 2 after an additional inverse Radon transform. Now, the traces of the wave
show a notably increased signal-to-noise ratio.

In contrast to the Radon transform, the usual operators for the detection of edges and
lines would have amplified the severe noise in the example image because of their differ-
entiating characteristics. Being an integral transform, the Radon transform is beneficial
for images with a low SNR.

Original image Enhanced image
HP

(a)

(b) (c)

Figure 14.13. Image enhancement (accentuation of lines) by means of the Radon transform: (a) Processing steps of
the image enhancement; (b) SAR image of a ship with bow wave (source: DLR TerraSAR-X); (c) Result of the image
enhancement for p = 2.
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14.3.2 Detection of line-shaped structures
The Radon transform has been defined for δ-lines, i.e., for infinitely extended and infinites-
imally narrow lines. In fact, it can also be used for the detection of finite lines and other
line-shaped structures, e.g., for a non-continuous chain of collinear points or line segments.
Before discussing such examples, first the signal-to-noise ratio of the Radon transform will
be investigated.

14.3.2.1 Signal-to-noise ratio (SNR)
By using the Radon transform, a line-shaped structure is somehow concentrated in a small
region in the Radon domain. The coordinates u and ϕ of an extremum corresponding to a
line in the spatial domain are good estimates for the line’s distance from the origin and for
its angle.

In order to quantify the statistical advantages of the Radon transform, an additive super-
position

g(x) = s(x) + h(x) (14.66)

of a line-shaped signal s(x) = l(xTeα − d) and an unwanted background image h(x) will be
considered, where the profile l( · ) of the line s(x) is perpendicular to the line xTeα − d, see
Fig. 14.14(a).

In the following, the signal-to-noise ratio (SNR) of the image is shown before and after
the Radon transform [2]:

Before: SNR{g(x)} = s2

σ2
; (14.67)

After: SNR{ǧ(u, ϕ)} ≈ (sL)
2

L2σ2 κ
L

=
s2L

σ2κ
. (14.68)

Here, σ2 = Var{h(x)} denotes the variance of the noise signal, κ denotes the correlation
length of h(x) (cf. Sec. 13.4.1), s = max

x
{|s(x)|} = max

ξ
{|l(ξ)|} the amplitude of s(x), and

L(u, ϕ) = R{IΩg (x)} with the aperture function IΩg (x) of the image g(x), see Fig. 14.14(b).

(a)

0 1

(b)

Figure 14.14. Calculation of the signal-to-noise ratio of the Radon transform: (a) Line-shaped structures embedded
in an unwanted background texture, (b) Definition of aperture function IΩg (x) and projection length L.
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The L(u, ϕ) are the lengths of the integration paths of the Radon integral inside the image
g(x). The aperture function of the image corresponds to the indicator function of the domain
Ωg :

IΩg
(x) =

{
1 if x ∈ Ωg

0 otherwise .
(14.69)

By means of the Radon transform, the SNR is improved by the factor

SNR{ǧ(u, ϕ)}
SNR{g(x)} ≈

L(u, ϕ)

κ
, (14.70)

which is a huge benefit for signal processing, especially for line segments that are signifi-
cantly longer than the correlation length of the background.

14.3.2.2 Detection using correlation filters
The Radon transform allows an efficient realization of the correlation filter for the detection
of line-shaped structures. By this means, the correlation of two signals, which usually re-
quires an N -dimensional relative shift, is generalized to a shift parameter u and a rotation
parameter ϕ:

ψgl(u, ϕ) :=

∞∫
−∞

∞∫
−∞

g(x) l(xTeϕ − u) dx . (14.71)

In the sense of a correlation filter, ψgl, to which an integral transform has been applied,
has extrema at u = d and ϕ = α in the u,ϕ-plane for signal components proportional to
l(xTeα − d). These allow an exact and reliable detection and localization of lines with a
profile l( · ).

Expressing the lines l(xTeϕ − u) as a convolution of a slice function and the line profile
yields

ψgl(u, ϕ) =

∞∫
ρ=−∞

∞∫
−∞

∞∫
−∞

g(x) δ(xTeϕ − ρ) dx

︸ ︷︷ ︸
ǧ(ρ, ϕ)

l(ρ− u) dρ (14.72)

=

∞∫
ρ=−∞

ǧ(ρ, ϕ) l(ρ− u) dρ = ǧ(u, ϕ)
u∗ l(−u) . (14.73)

This corresponds to a one-dimensional correlation filtering (or convolution) of the Radon
transform of g(x) with the line profile l( · ). The Radon transform and the Fourier slice theo-
rem allow an efficient implementation of the correlation filter in the u,ϕ-plane.

14.3.2.3 Examples of applications
As an example of an application, the honing textures of Chap. 13 will be considered. First,
the Radon transform can be used for the detection and localization of the grooves in the
texture. In combination with the methods of texture analysis, an additional detection of
defect grooves is possible [3].
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Example 14.7 (Detecting grooves in honing textures): The straight grooves of honing textures
cause extrema in the corresponding Radon transform. Figure 14.15 shows an example.
The extrema in the Radon transform of Fig. 14.15(b) correspond to the line parameters
(u, ϕ) of the grooves of Fig. 14.15(a). By means of the extrema, the positions of distinctive
grooves can be reconstructed, see Fig. 14.15(c).

(a)

u

ϕ�

�

(b) (c)

Figure 14.15. The detection of grooves in honing textures: (a) Honing texture g(x), (b) Radon transform ǧ(u, ϕ),
(c) Detection result.

Example 14.8 (Detecting defective grooves in honing textures): An important type of defect in
honed surfaces is folded metal: after the honing process, the grooves might be partially
interrupted (Fig. 14.16(a)). This defect is crucial regarding the quality of the cylinder sur-
face in a combustion engine, as peeled-off iron particles might damage the surface during
the operation of the engine.

For defect detection, the image g(x) of the honing texture is first split into a groove
texture t(x) and the background image h(x) by the method of Sec. 13.3.4 (Fig. 14.16(b),
(d)). Intact grooves appear almost exclusively in the texture image t(x), whereas folded
metal defects are represented in the background image h(x) by irregular variations along
the groove. Hence, a defective groove is present if there are line-shaped structures in
the texture image and intensity variations in the background image at the same posi-
tion. For the detection of the line-shaped structures, the Radon transform is used and the
background signal is squared before the transformation, in order to prevent the mutual
extinction of bright and dark variations (Fig. 14.16(c), (e), (f)). Finally, the two Radon
transforms are multiplied together (Fig. 14.16(g)):

R{t(x)} ·R{(h(x))2} . (14.74)

Extrema in this product correspond to the line parameters (u, ϕ) of the defective grooves,
which appear as line-shaped structures in the two separate images. By means of the
most pronounced extrema, the position of the defective grooves can be reconstructed,
see Fig. 14.16(h).
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(a) (b)
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�

(c)

(d) (e)
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�

(f)

u
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�

(g) (h)

Figure 14.16. The detection of defect grooves in honing textures: (a) Honing texture g(x) with sheet jacket grooves,
(b) Separated groove texture t(x), (c) Radon transform ť(u, ϕ) of the groove textures, (d) Separated image back-
ground h(x), (e) Squared background signal (h(x))2, (f) Radon transform of (e), (g) Product of the Radon trans-
forms (c) and (f), (h) Detection result.
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14.3.3 The Hough transform for the detection of lines
To a certain degree, the well-known Hough transform for lines is a discrete special case of the
Radon transform suitable for binary images [6, 10, 12, 16, 21]. For counting the image points
belonging to a line, the Hough algorithm uses a special technique, which finally corresponds
to the integration step of the Radon transform. Initially, the so-called accumulator A(u, ϕ)

is initialized to zero for all discrete samples of the parameters u and ϕ. Then, for each pixel
x and for each discrete value of ϕ, the distance u of the line xTeϕ − u = 0 from the origin,
which has the normal direction ϕ and which runs through x, is calculated. The accumulator
bin A(u, ϕ) is increased if g(x) = 1 in the binary image. In the case of a gray-scale image, the
image value g(x) is added to the accumulator. Figure 14.17 shows the generalization of the
Hough algorithm to gray-scale images. For binary images with g ∈ {0, 1}, the outer loops,
which are evaluated for all image points, can be replaced by a loop that only processes those
points x that have g(x) = 1.

Start

Figure 14.17. Algorithm of the Hough transform.

The Hough transform of a point is a sine-shaped curve running through the distances
from the origin and through the angles of all lines containing this point. If in the image,
there is a line with the parameters (ϕ, u), the sine-shaped curves of its points intersect at the
position (ϕ, u) in the Hough transform, resulting in an extremum. The magnitude of the
extremum increases for longer lines. As usually the domain of an image is an axis-parallel
rectangle, the number of summed image points varies with respect to the line parameters
angle and distance from the origin. This causes a characteristic background pattern in the
Hough transform. In most cases, this pattern can be mitigated by applying the transforma-
tion to zero-mean images.

Example 14.9 (The Hough transform): For the binary test image Fig. 14.18(a) with a rectangle
and a trapezoid, Fig. 14.18(b) shows the Hough transform of the zero-mean image. As
the lines are darker than the image background, they appear as minima in the Hough
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Figure 14.18. Line detection using the Hough transform: (a) Binary test image, (b) Corresponding Hough transform.
The numbers represent the assignment of the lines in the image to the extrema of the Hough transform.

transform. The eight most intense minima can clearly be assigned to the lines in the test
image. Because of the periodicity of the angles, the minima with ϕ = 0 appear again
at ϕ = π, but reflected at the ϕ-axis, i.e., with a negative u-value. The second, axially
non-parallel quadrilateral is not a rectangle, but a trapezoid. This is quite obvious in
the Hough transform, as the normal angles ϕ of the corresponding sides 6 and 8 of the
rectangle are different.

In contrast to the Hough transform, the Radon transform can be applied to gray-scale images
without any modifications. Besides, linear filter operations can be efficiently and simulta-
neously performed in the Fourier domain. For this purpose, only the 2D-FFT has to be
multiplied by the complex-valued transfer function, before the sampling on the polar grid is
carried out.

14.3.4 The Hough transform for the detection of curves
The Hough transform can also be formulated so as to allow the detection of arbitrary curves.
Although this section covers the detection of lines and not of curves, the discussion of the
generalization of the Hough transform is presented here, as it is quite similar in method. A
family C of curves is assumed to be implicitly given by the equation

C(x,p) = 0 , p = (p1, . . . , pK)T ∈ Π , (14.75)

with p denoting the vector of the K parameters of the function family. The Hough transform
for the detection of these curves uses a K-dimensional accumulator A(p).

As long as the conditions of the implicit function theorem (cf. [5, 39]) are satisfied, Equa-
tion (14.75) can be solved for pK w.l.o.g. , resulting in an equation of the form

pK = c(x, y, p1, . . . , pK−1) . (14.76)

Now, the Hough algorithm iterated over the pixels x as well as over the first K−1 parameters
p1, . . . , pK−1 and the remaining parameters pK is calculated according to this equation. After
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Start

Figure 14.19. Algorithm of the Hough transform for the detection of curves C(x,p) = 0.

rounding to a discrete set of values of pK , the accumulator bin A(p1, . . . , pK) is incremented
by the image value g(x) (Fig. 14.19).

Example 14.10 (Detection of lines): The special case C(x, ϕ, u) = xTeϕ − u, K = 2, p1 = ϕ,
p2 = u results in the Hough transform for the detection of lines (Fig. 14.17).

Example 14.11 (Detection of circles): Circles can be implicitly defined as a set of curves:

0 = C(x,p) = (x− a)2 + (y − b)2 − ρ2 , p = (a, b, ρ)T , (14.77)

with (a, b)T denoting the coordinates of the center and ρ denoting the radius. The three-
dimensional accumulator A(a, b, ρ) of the Hough transform has a maximum at the posi-
tion (a, b, ρ) if the image g(x) contains a circle with center (a, b)T and radius ρ [33].

Example 14.12 (Detection of ellipses): An ellipse with center (a, b)T, semi-axes c and d, and
rotation angle β (Fig. 14.20) can be described by

0 = C(x,p) =
((x− a) cosβ + (y − b) sinβ)

2

1−
(

(y−b) cos β−(x−a) sin β
d

)2 − c2 , p = (a, b, c, d, β)T , (14.78)

resulting in a five-dimensional accumulator. Figure 14.21 shows the result of the method
applied to a test image. The image shows a two-dimensional section through the Hough
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Figure 14.20. Parameters of the equation of an ellipse.

(a) (b)

(c) (d)

Figure 14.21. Detection of ellipses using the Hough transform: (a) Noise-free image with an ellipse, (b) Two-
dimensional section through the Hough transform in the a,b-plane for c = 30, d = 20, β = π

9
, (c) Image with

artificial noise, (d) Two-dimensional section through the corresponding Hough transform.

transform for the correct parameters c = 30, d = 20, β = π
9 . The global minimum is

located at the center (a, b)T of the ellipse and is even detectable in the case of intense
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noise. Besides, Fig. 14.21(b) shows secondary peaks on a curve with twice the distance
to the semi-axes around the center. Ellipses with these centers are tangent to the ellipse
contained in the image.

The computational complexity of the Hough transform is O(NK+1) and the space require-
ment is O(NK), where N denotes the number of sampling points for each of the coordinate
axes x, y, p1, . . . , pK . Thus, line detection has a computational complexity of O(N3), which
is already greater than the complexity of the Radon transform (if the latter is implemented
using the Fourier slice theorem). For a higher number of parameters K, the Hough trans-
form for curves has a high computational complexity and high space requirements, so that
in most cases, only a rough discretization of the parameter space Π is practically possible.

14.3.5 The generalized Hough transform
There are further generalizations of the Hough transform, which try to detect and localize
even more sophisticated structures than parametrized curves [1]. For example, the structures
sought might be given as a binary image S , which can be an arbitrary structure or contour,
for which no analytic model (like a set of curves) is needed. Now, a reference point a is
chosen, e.g., the center of the structure. The structure is represented by the vectors r that run
from the points of the structure to the reference points (cf. Fig. 14.22):

RS := {r |x+ r = a , x ∈ S} . (14.79)

For the detection of the structure S in an image g(x), the bins A(x + r) of the accumulator
are incremented for every vector r ofRS :

∀r ∈ RS A(x+ r) := A(x+ r) + g(x) . (14.80)

A structure S in the image g with the reference point at the image position x causes an
extremum at the bin x of the accumulator.

Figure 14.22. Notation for the generalized Hough transform.

If all |RS | accumulator bins are incremented for all structure points, the extrema in the
accumulator often do not show an appreciable magnitude. A better signal-to-noise ratio can
be achieved using additional information. A common approach is the consideration of the
local gradient direction θ(x) in the image. In this case, the following representation of the
structure S is obtained, with respect to the gradient direction θ:

RS(θ) := {r |x+ r = a , x ∈ S ∧ θS(x) = θ} , (14.81)
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with θS(x) denoting the gradient direction at the position x of the structure S . An adequate
discretization has to be applied to the gradient direction θ.

The application of the generalized Hough transform considers only those accumulator
bins for every point x of the image g for which the local gradient directions θg of the image
and θS of the sought for structure are equal:

∀r ∈ RS(θg(x)) A(x+ r) := A(x+ r) + g(x) . (14.82)

By this means, the set of the corresponding accumulator bins is markedly decreased, re-
sulting in more distinct extrema at the reference points of the structure and in a reduced
computational complexity. In the literature, there are further approaches to increasing the
efficiency of the generalized Hough transform [20].

To achieve a rotation-invariant and scale-invariant detection, the accumulator can be ex-
tended by the dimensions of the rotation angle ϕ and the scaling factor α. The accumulator
bins A(x, ϕ, α) corresponding to an image point x can be determined by a simple trans-
formation of the representation RS(θ) [1]. However, such additional dimensions notably
increase the computational costs of the method.

14.3.6 Implicit shape models
Implicit shape models can be considered as a further generalization of the Hough transform
[22–24]. These models not only use contours or point sets to describe the object of interest,
but annotate the object components with feature descriptors (cf. Sec. 13.4). Typically, corners
or other interest points are used for this purpose. For these points, suitable features are
calculated, e.g., scale-invariant and rotation-invariant SIFT features or SURF features (see
Sec. 15.6). In fact, it is also possible to directly use the image values of a certain region as
a feature vector. Both the codebook of the feature descriptors and the spatial distribution
of the object components with respect to the object’s reference point can be learned from
training samples.

For object detection, first the feature descriptors of the interest points of the image are
calculated and compared to the learned codebook entries. If there is a sufficient similarity,
the accumulator bin of the corresponding reference point of the object is incremented. Again,
extrema of the accumulator represent candidates for the object contained in the image.

Besides the detection of objects, the method allows the determination of the position and
orientation of the individual components of an object [4, 17].

14.414.4 Corner detection
For various applications, the detection and localization of corners contained in the image is
of great interest. In automated visual inspection, a test object can be localized and dimen-
sioned by means of its corners. Furthermore, corners are typical features of the patterns that
are used for camera calibration (see Sec. 3.3). Finally, corners or other interest points can be
found in multiple images of the same object and can therefore be used for correspondence
methods, which are required for evaluating stereo images or image series (see Sec. 7.3.8).

Inside a homogeneous image region, the image value is approximately constant in all
directions. Edges show a high change of the image value in the gradient direction, i.e.,
perpendicular to the edge, whereas the image value barely changes along the edge. A corner
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is considered to represent an image point for which the image values significantly change in
all directions. This is the case for, e.g., the intersection of two edges or also for isolated points
which are brighter or darker than their surroundings. In the sense of image processing, a
corner does not necessarily have to be a corner of the observed object as in the colloquial
sense.

In the following, the Harris operator will be presented, which is a famous method for
the detection of corners. In order to derive the Harris operator, a local window in the im-
age is considered [11]. By comparing the image signal inside the window with a slightly
shifted window, information about edges and corners can be gained: an edge causes a no-
table change of the image values for a shift in the direction of the gradient and no change for
a shift parallel to the edge. Conversely, corners cause changes of the image values for shifts
of the window in every direction.

The change of the image values can be quantified by the sum of the squared differences.
Here, the window function is a Gaussian function with parameter σ. So for a shift by the
vector (Δx,Δy)T, this results in

c(x, y) ∝
∑
u,v

e−
(u−x)2+(v−y)2

2σ2 (g(u, v)− g(u+Δx, v +Δy))
2
. (14.83)

By expanding a Taylor series around (u, v)T, the shifted image can be written as

g(u+Δx, v +Δy) ≈ g(u, v) +

(
∂g

∂u
(u, v),

∂g

∂v
(u, v)

)(
Δx

Δy

)
. (14.84)

Inserting this approximation into (14.83) yields

c(x, y) ∝
∑
u,v

e−
(u−x)2+(v−y)2

2σ2 (g(u, v)− g(u+Δx, v +Δy))
2 (14.85)

≈
∑
u,v

e−
(u−x)2+(v−y)2

2σ2

(
g(u, v)− g(u, v)−

(
∂g

∂u
(u, v),

∂g

∂v
(u, v)

)(
Δx

Δy

))2

(14.86)

=
∑
u,v

e−
(u−x)2+(v−y)2

2σ2

((
∂g

∂u
(u, v),

∂g

∂v
(u, v)

)(
Δx

Δy

))2

. (14.87)

With (aTb)2 = aTbaTb = bTaaTb, this results in

c(x, y) ≈ (Δx,Δy)
∑
u,v

e−
(u−x)2+(v−y)2

2σ2

⎛⎜⎝
(

∂g
∂u (u, v)

)2 (
∂g
∂u (u, v)

)(
∂g
∂v (u, v)

)
(

∂g
∂u (u, v)

)(
∂g
∂v (u, v)

) (
∂g
∂v (u, v)

)2
⎞⎟⎠(Δx

Δy

) (14.88)

= (Δx,Δy)C(x, y)

(
Δx

Δy

)
(14.89)

with C(x, y) :=
∑
u,v

e−
(u−x)2+(v−y)2

2σ2
(
grad g(u, v) (grad g(u, v))T

)
. (14.90)

The resulting matrix C(x, y) corresponds to the structure tensor Jσ(grad g(x)) at the image
point x as in (11.87). The eigenvalues μ1 ≥ μ2 ≥ 0 and the corresponding orthogonal eigen-
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vectors v1, v2 of the structure tensor characterize the local changes of the image value at the
position x:

1st case: both eigenvalues μ1, μ2 are small.
The change of the image values c(x) is low for every shift direction. This is, then, a
homogeneous image region with an approximately constant image value g(x).

2nd case: the first eigenvalue μ1 is large, the second eigenvalue μ2 is small.
The change c(x) of image values is large in the shift direction v1 and small in the orthog-
onal direction v2. This corresponds to an edge with normal vector v1.

3rd case: both eigenvalues μ1, μ2 are large.
For an arbitrary shift vector, the change c(x) of the image values is high. The window
contains a corner.

By means of the eigenvalues of the structure tensor, corners can be detected in the image.
However, the Harris operator uses no explicit calculation of the eigenvalues for reasons of
complexity. In fact, the determinant and the trace of the matrix are used, which are related
to the eigenvalues μ1 and μ2 as follows

detC = μ1 μ2 = a b− d2 , (14.91)

trace(C) = μ1 + μ2 = a+ b , (14.92)

with the symmetric structure tensor being written as

C =

(
a d

d b

)
(14.93)

In contrast to the trace, which has large values for both corners and edges, the determinant
is especially large for corners. This motivates the following definition of the Harris operator:

corner(x) := detC(x)− k (trace(C(x)))
2
, k > 0 . (14.94)

This expression shows maxima for corners, negative values for edges, and tends to zero for
homogeneous regions.

Example 14.13 (Corner detection using the Harris operator): The results of the application
of the Harris operator with the parameter k = 0.04 to two test images are shown in
Fig. 14.23. The binary image clearly shows that corners lead to positive (bright) values
and edges lead to negative (dark) values of corner(x), whereas in homogeneous regions,
corner(x) = 0 (gray areas in Fig. 14.23(b)). For the buildings in Fig. 14.23(c), the corners
are mainly detected at windows and doors, but also at isolated plants in the forecourt.

Also the local binary patterns mentioned in Sec. 13.4.6 can be used for the detection of inter-
est points [13]. The scale-invariant detection of interest points is discussed in Sec. 15.6.
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Figure 14.23. Edge detection using the Harris operator: (a) Binary test image, (b) Result of the Harris operator
applied to (a), (c) Aerial photograph of the Karlsruhe Palace (source: ONUK), (d) Result of the Harris operator
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15 Image Pyramids, the Wavelet Transform
and Multiresolution Analysis

Multiresolution analysis is a mathematical concept describing signal analysis on different
resolution levels. In contrast to the analysis of the fine details contained in the image, which
requires the maximum possible resolution, coarse structures can be analyzed with little effort
using a reduced resolution. Two methods for multiresolution analysis, which are covered in
this chapter, are image pyramids and the wavelet transform.

15.115.1 Image pyramids
Images contain structures like edges, corners, texels, objects, and defects on different scales,
i.e., with different spatial extents. On the one hand, this is because of the size, shape and
texture of the observed objects and on the other hand this is caused by the constraints of
the image acquisition: depending on the focal length of the camera lens and on the distance
of the objects, the structures of interest are imaged with varying magnifications. For many
applications of image processing, it is preferable to efficiently analyze structures on different
scales, in order to investigate different object properties and to achieve a certain invariance
with respect to the magnification.

However, naively applying the image processing methods on multiple scales might cause
a huge computational complexity.

For example, the convolution necessary for a correlation filter (see Sec. 14.1) used to de-
tect an object of size L×L in an image of size N ×N requires about O(N2 L2) operations in
the spatial domain. Hence, an analysis on multiple resolutions quadratically increases the
computing time with respect to the object width L. The resulting computing time can easily
impair the practicality of a visual inspection system for real-time applications.

In order to reduce the costs of inspecting large image structures, the concept of image
pyramids has been introduced by Burt [7, 11, 13]. It uses an iterative filtering and subsam-
pling of the image gmn. This results in a pyramid of images gνmn, of which every image
represents a certain scale.

The construction of an image pyramid for an w.l.o.g. square image gmn of size N × N

requires the following steps:

1. Initialization of the iterative method with the original image:

g0mn := gmn . (15.1)

2. For ν = 1, 2, . . . ,K, low-pass filtering of gν−1
mn to one-half of the original bandwidth.

3. Subsampling by a factor of 2. Because of the previous low-pass filtering, the sampling
theorem still applies. The result is the filtered and subsampled image

gνmn of size
N

2ν
× N

2ν
. (15.2)

4. Continuing the iterative pyramid construction with step 2.

Figure 15.1 shows the resulting image pyramid.
The pyramid contains the image in logarithmic resolution levels (the so-called multires-

olution or multigrid principle).

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_15,
© Springer-Verlag Berlin Heidelberg 2016
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Figure 15.1. Construction of a pyramid from the image g0mn := gmn.

By this means, coarse image structures as well as fine image structures can be evaluated
using small local operators. The application of the operator on one of the upper levels of the
pyramid (ν > 0) approximately corresponds to the application of the virtually, proportion-
ally enlarged operator to the original image (ν = 0). Because of the pyramid concept, coarse
structures get within the reach of local operators.

Considering the example of the detection task again, the costs of level ν > 0 of the pyra-
mid are reduced to about O(2−4ν N2 L2), as the dimensions of the image and the object are
both reduced by the factor 2−ν to 2−νN × 2−νN , respectively, 2−νL × 2−νL. Hence, the
computational costs are notably reduced for increasing ν. This is why also the detection of
large objects is efficient but involves the loss of fine details because of the low-pass filtering
between the pyramid levels.

Despite the need for storing the image information at multiple resolutions, the costs of
a single image pyramid remains manageable. The first subsampled image g1mn has the size
N
2 ×

N
2 , the second g2mn has the size N

4 ×
N
4 , and so on. The total amount of image pixels can

be estimated using the geometric series [6, 24, 26]:

N2 +
N2

4
+

N2

16
+ . . . ≤ N2

∞∑
ν=0

1

4ν
=

4

3
N2 . (15.3)

From now on, the reduction of the resolution inside the pyramid is denoted by the following
notation:

gνmn = ↓ gν−1
mn := Subsampling by the factor 2 of gν−1

mn ∗∗hmn . (15.4)

First, a convolution with the impulse response hmn of a suitable low-pass filter is applied to
the image gν−1

mn , which is then subsampled. The other way around, the image is interpolated,
which is called expansion:

hmn ∗∗ gνmn = ↑ gν+1
mn := 4

∑
(k,l)∈Imn

ikl g
ν+1
m−k

2 ,n−l
2

(15.5)
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with

Imn :=
{
(k, l) ∈ Z2

∣∣ m− k and n− l are even numbers
}
. (15.6)

With m− k =: 2p, n− l =: 2q and integers p, q it is k = m− 2p, l = n− 2q and therefore

↑ gν+1
mn = 4

∑
(p,q)∈Ωgν+1

im−2p,n−2q g
ν+1
pq , (15.7)

with Ωgν+1 denoting the image’s domain as usual; in this case gν+1
mn . In every coordinate

direction, the extent of the expanded image is increased by the factor 2 with respect to gν+1
mn .

The factor 4 is needed, as for the interpolation only values of the even pixel positions in both
coordinate directions are available. In the ideal case, the interpolation filter imn corresponds
to the sinc function (see Sec. 9.2.1). Often, however imn := hmn is set [7]. The low-pass filter
hmn should meet the following requirements:

Positivity: hmn > 0 ∀m,n.

hmn is unimodal, i.e., the impulse response only has a single maximum.

Point symmetry with respect to the origin: hmn = h−m,−n ∀m,n.

Preserving the mean image value:
∑

m,n hmn = 1.

Every pixel is supposed to make the same contribution to the following level. As only
the pixels with even indices are preserved by the subsampling, the sums of the even
and odd filter coefficients have to be equal:

∑
i,j h2i,2j =

∑
i,j h2i+1,2j =

∑
i,j h2i,2j+1 =∑

i,j h2i+1,2j+1.

Separability: hmn = hm hn with a one-dimensional impulse response hn [7]. Separability
allows an efficient implementation, see Sec. 9.3.1.1.

All these requirements are met by the binomial low-pass filter (cf. Sec. 9.3.1.4).

15.1.1 Gaussian pyramid
An image pyramid constructed with the binomial low-pass hmn,L is called a Gaussian pyra-
mid. Figure 15.2 visualizes the application of the processing chain of low-pass filtering and
subsampling by the factor 2 to a one-dimensional image gm.

g3
m

g2
m

g1
m

g0
m

1
16

1
16

1
4

1
4

3
8

Figure 15.2. Construction of a one-dimensional Gaussian pyramid using a binomial filter of size L = 5.
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15.1.2 Laplacian pyramid
Until now, image pyramids were constructed using a low-pass filtering. In every step, signal
components with a high spatial frequency are filtered out, so that only low spatial frequen-
cies remain at the upper levels of the pyramid.

Alternatively, the pyramids can be constructed to contain a band-pass filtering of the
original image. A simple possibility of realizing such a band-pass filtering is the subtraction
of two subsequent images of a low-pass pyramid. In the case of the Gaussian pyramid gνmn,
this approach results in the Laplacian pyramid λν

mn:

λν
mn := gνmn− ↑ gν+1

mn . (15.8)

The subtraction of the images filtered with the binomial low-pass corresponds to the differ-
ence of Gaussian filtering of Sec. 11.2.2. By this means, the λν

mn represent approximations
of the second derivative of the original image with different smoothing parameters. On the
first level of the Laplacian pyramid, fine edge structures are amplified, whereas on higher
levels, coarser edge structures of the original image are visible.

Example 15.1 (Image pyramids): Figure 15.3 shows the first levels of the Gaussian and of
the Laplacian pyramid of an image gmn. As each level halves the number of rows and
columns, the images shown here are slightly enlarged for ν ≥ 1. In the Laplacian pyra-
mid, the image value 0 is rendered gray, positive image values appear bright and negative
values appear dark.

(a) g0mn = gmn (b) g1mn (c) g2mn (d) g3mn

(e) λ0
mn = g0mn− ↑ g1mn (f) λ1

mn (g) λ2
mn (h) λ3

mn

Figure 15.3. Image pyramids: (a)–(d) Gaussian pyramid gνmn according to (15.4), (e)–(h) Laplacian pyramid λν
mn =

gνmn− ↑ gν+1
mn according to (15.8).
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The Laplacian pyramid is a decomposition of the image signal in band-pass regions with
a logarithmic frequency scale. The original image can be exactly reconstructed from the
Laplacian pyramid and the top image of the Gaussian pyramid:

g0mn =

K−1∑
ν=0

↑ν λν
mn+ ↑K gKmn (15.9)

= λ0
mn+ ↑ λ1

mn+ ↑ ↑ λ2
mn + · · ·+ ↑ . . . ↑︸ ︷︷ ︸

K−1

λK−1
mn + ↑ . . . ↑︸ ︷︷ ︸

K

gKmn . (15.10)

For the construction of the pyramid by subsampling by the factor 2, the following general-
izations are possible:

Reduction by p × q per pyramid level by adequately filtering and considering signal
anisotropies if necessary.
Application of optimal (signal-adapted) sampling schemes, cf. Sec. 8.3.7.

15.1.3 Pyramid linking
An application of image pyramids is image segmentation (see Chap. 11). The method is
known as pyramid linking [8, 13, 20]. It involves the following processing steps:

1. Calculation of the Gaussian pyramid, usually using a mean filter of size 4 × 4 as a low-
pass filter.

2. Linking: The image pyramid is considered as a tree structure with the image points rep-
resenting the nodes of the tree and the edges connecting nodes, i.e., image points of sub-
sequent levels of the pyramid. The possible children of an image point gνmn on level ν of
the pyramid are given by the 16 image points{

gν−1
k,l | (k, l) ∈ Z2, 2m− 1 ≤ k ≤ 2m+ 2, 2n− 1 ≤ l ≤ 2n+ 2

}
(15.11)

of the next lower level ν − 1. Conversely, every node gν−1
kl of level ν − 1 might have one

of four possible parent nodes. Out of these candidates gνmn, that node is chosen which
minimizes a distance measure, e.g., the difference of the image values |gν−1

kl − gνmn|. The
edge (gνmn, g

ν−1
kl ) is added to the tree structure.

3. Averaging connected image points: the image values on the levels ν = 1, 2, . . . ,K are
recalculated in this ascending order. For a node gνmn on level ν, only its children are
considered for the reduction step, i.e., the image value gνmn is obtained by calculating
the average of the image values gν−1

kl of those nodes that are reachable via the edges
(gνmn, g

ν−1
kl ).

4. Iteratively repeating steps 2 and 3 until a stable result is reached.

5. Assigning the segments: from a certain level or as soon as the differences of the image
values of the child nodes are below a certain threshold, all child nodes are recursively
assigned the value of the parent node and are grouped into one segment.

By considering the coarse structure at higher levels of the pyramid, the method’s robust-
ness is improved, as local distortions can be compensated for. Additionally, the number
of segments does not have to be known a priori, which represents another advantage of the
presented method. Figure 15.4 shows an example of a segmentation obtained using pyramid
linking.
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(a) (b)

Figure 15.4. Example of segmentation using pyramid linking: (a) Surface relief of a coin; (b) Segmentation result
(source: A. Purde [20]).

15.2 15.2 Wavelets
The wavelet transform is an integral transform that can be formulated for one-dimensional
or for multi-dimensional signals and is therefore also suitable for image signals [12]. In con-
trast to the Fourier transform, which uses infinitely spread harmonic oscillations as basis
functions, the basis functions of the wavelet transform have compact support. This is also
the reason for the name of the transform: the term ‘wavelet’ corresponds to the French term
“ondelette,” which means “small wave.” The basis functions are not only scaled, correspond-
ing to an expansion of spatial frequencies as with the Fourier transform, but are also shifted
in the spatial domain. By this means, the spatial information is preserved by the wavelet
transform. The result is a spatially resolved representation of the coarse and fine structures
of the signal.

In the following, the wavelet transform will be described for one-dimensional signals
first. Then, the relation with multiresolution analysis and the theory of orthogonal filter
banks will be discussed. Finally, the transformation of two-dimensional signals will be cov-
ered.

15.2.1 Continuous wavelet transform
First, the continuous formulation of the wavelet transform will be presented, as it is espe-
cially beneficial for a theoretical understanding and analytical considerations. For practi-
cal use in image and signal processing, an adequate discretization is needed, similar to the
Fourier transform. This finally results in the fast wavelet transform.

The continuous transform is defined via an integral [4]:
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15.1 Definition 15.1: The wavelet transform
The wavelet transform of the signal g(x) is defined as follows:

Γψ(s, τ) :=

∞∫
−∞

g(x)ψ∗
s,τ (x) dx (15.12)

with

ψs,τ (x) :=
1√
s
ψ

(
x− τ

s

)
, s, τ ∈ R , s > 0 . (15.13)

The function ψ( · ) is the so-called mother wavelet. The argument s is the so-called scaling
parameter, τ is the shift parameter, and ψ∗ denotes the complex conjugation of the wavelet
function. �

As the wavelet transform of a one-dimensional signal is two-dimensional, it is highly redun-
dant.

The inverse wavelet transform is given by [1]

g(x) =
1

Cψ

∞∫
0

∞∫
−∞

Γψ(s, τ)
ψs,τ (x)

s2
dτ ds (15.14)

with

Cψ =

∞∫
−∞

|Ψ(f)|2
|f | df . (15.15)

Here, Ψ(f) = F{ψ(x)} denotes the Fourier transform of the mother wavelet ψ(x). The
mother wavelet must satisfy the admissibility condition Cψ < ∞. This implies that the
DC component of the wavelet is zero:

Cψ <∞ ⇒ 0 = Ψ(0) =

∞∫
−∞

ψ(x) dx . (15.16)

Example 15.2 (The one-dimensional continuous wavelet transform): As an example of the
wavelet transform, the mother wavelet

ψ(x) = e−
x2

2 sin(2πx) (15.17)

is considered. By means of the shift property and the scaling property, the Fourier trans-
form of the scaled and shifted wavelet ψs,τ (x) can be calculated:

Ψs,τ (f) = j

√
πs

2

(
e−2π2(sf+1)2 − e−2π2(sf−1)2

)
e−j2πτf . (15.18)

Figure 15.5 shows the wavelet function ψs,τ (x) and the magnitude of its Fourier spectrum
|Ψs,τ (f)| for different scaling and shift parameters s and τ . If the wavelets ψs,τ (x) are con-
sidered to be the impulse response functions of LSI systems, the spectra clearly show that
they represent band-pass filters, whose frequency decreases for increasing scale parame-
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Figure 15.5. One-dimensional continuous wavelet: (a) Different scalings and shifts of the mother wavelet (15.17);
(b) Magnitude of the corresponding Fourier transforms.

ters s. Hence, the wavelet transform Γψ(s, τ) of a signal contains the fine structure of the
signal for small s and the coarse structure for large s.

The wavelet transform has some beneficial properties:

In contrast to the Fourier transform, it is a local transform. Therefore it allows the simul-
taneous localization of signal components in space and frequency.
A fast algorithm for efficiently calculating the transform is available (see Sec. 15.4).
The choice of the mother wavelet offers great design opportunities.

This is why the wavelet transform is used for analyzing non-stationary processes and to
perform a local, spatially resolved spectral analysis. Furthermore, it is of great importance
for image compression [23].

Example 15.3 (Reconstruction of a non-stationary signal): In order to compare the properties
of the Fourier transform and the wavelet transform, the analysis and reconstruction of
a one-dimensional non-stationary signal is considered. The signal g(x) of Fig. 15.6(a)
shows jump discontinuities and oscillations but is piecewise constant in-between. By
expanding this signal as a Fourier series and by reconstructing it from the 100 Fourier
coefficients with the largest magnitudes, the constant parts are affected by harmonic os-
cillations, see Fig. 15.6(b). As the basis functions of the Fourier transform have a global
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0

(a)

0

(b)

0

(c)

0

(d)

Figure 15.6. Example of the reconstruction of a non-stationary signal (adapted from [1]): (a) Original signal g(x);
(b) Reconstruction of g(x) from the first 100 Fourier coefficients with largest magnitudes; (c) Reconstruction from
the 100 wavelet coefficients with largest magnitudes; (d) Reconstruction from the 50 wavelet coefficients with largest
magnitudes.

reach over the whole domain, it is hard to approximate non-stationary components.
If the fast wavelet transform with the Daubechies filter bank D4 (see Ex. 15.5) is used

instead, and if the signal is reconstructed from the 100 wavelet coefficients with the
largest magnitudes, the result is a much better approximation, especially of the piecewise
constant regions. Basis functions with spatially limited support better suit the transitions
between the constant and high-frequency signal components. Also the quantitative ap-
proximation error in the sense of the squared error is lower, by many times, than for the
Fourier transform. Only 50 wavelet coefficients are sufficient to achieve the same quanti-
tative approximation error, cf. Fig. 15.6(d).

15.2.2 Discretization of the wavelet transform
For the discretization of the continuous wavelet transform

Γψ(s, τ) =
1√
s

∞∫
−∞

g(x)ψ∗
(
x− τ

s

)
dx (15.19)

first the continuous signal g(x) is replaced by the series∑
n

g(nΔx) δ(x− nΔx) =
∑
n

gn δ(x− nΔx) (15.20)
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of samples. Simultaneously, the shift parameter τ = lΔx, l ∈ Z is spatially discretized. By
this means, Equation (15.19) turns into

Γψ(s, l) =
1√
s

∑
n

gn ψ
∗
(
(n− l)Δx

s

)
. (15.21)

Additionally, a logarithmic discretization is applied to the scale parameter: s = 2p, p ∈ Z.
The shift parameter and the scale parameter are linked as follows:

l := s ν = 2p ν ⇔ τ = 2p νΔx (15.22)

This corresponds to a scale-dependent spatial thinning of the wavelet transform, which re-
moves the redundancy of the wavelet transform mentioned above. In other words, short
(fine) wavelets are placed so as to be more spatially compact, and long wavelets (for captur-
ing the coarse structure) are placed so as to be less spatially compact. In all, the discretization
of the scale by Equation (15.21) results in

2−
p
2

∑
n

gn ψ
∗((2−p n− ν)Δx

)
. (15.23)

Figure 15.7 illustrates the grid which is induced on the plane of the position and the spatial
frequency by the discretization of the wavelet transform with respect to the position and the
scale. For low spatial frequencies f (and thus for large scales1 s) a coarse spatial sampling is
sufficient, for higher frequencies (low scales), a finer sampling is applied to the position x.
For every octave, i.e., for every doubling of the spatial frequency, the number of the spatial
sampling points is doubled. The sampling points of the spatial frequency are located at the
scale parameters s = 2p, so that Δp = 1 corresponds to exactly one octave. For a doubling
of the spatial frequency (halving the scale) the number of sampling points is halved with
respect to the coordinate of the spatial frequency.

Octave
Figure 15.7. Discretization of position x, scale s and there-
fore of the spatial frequency f used for the wavelet trans-
form.

1Although the scale parameter s and the spatial frequency f have a reciprocal relation, this is only
obvious in the strict sense of the inverse proportionality f ∝ s−1 for certain wavelets, like (15.17),
where a harmonic factor is present, whose frequency is multiplied with s−1. If, in contrast, the
Daubechies wavelets in Fig. 15.10 on page 741 are considered, the relation of frequency and scale is
less obvious. Generally, a scaling of ψ(x) causes a shift of the spectrum Ψ(f) proportional to s−1 in the
spatial frequency domain besides a reciprocal scaling.
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Similar to (15.13), the shift and scaling of the mother wavelet in the discrete case can be
written as

ψp,ν(n) := 2−
p
2ψ
(
(2−p n− ν)Δx

)
= 2−

p
2 ψ

(
n− 2p ν

2p
Δx

)
. (15.24)

The forward transform of such a discretized wavelet transform is given by

Γp,ν =
∞∑

n=−∞
gn ψ

∗
p,ν(n) . (15.25)

And the corresponding inverse transform is given by

gn =

∞∑
p=−∞

∞∑
ν=−∞

Γp,ν ψp,ν(n) . (15.26)

15.315.3 Multiresolution analysis
Multiresolution analysis is a mathematical concept providing a consistent description of im-
age pyramids, wavelets, and filter banks [3, 15]. With each of these methods, image signals
can be analyzed at different resolution levels. Filter banks are ensembles of band-pass filters
with different center frequencies, which are all applied to the image signal in parallel.

For multiresolution analysis, a function g(x) is approximated by a linear combination
of orthonormal basis functions that span a function space on a certain scale. The finer the
scale chosen, the more accurate is the corresponding approximation. The basis functions are
constructed using a scaling function ϕ(x).

15.2Definition 15.2: Scaling functions
A scaling function is a function ϕ(x) ∈ L2(R) that satisfies the following conditions:

Orthonormality: the functions obtained via shifting ϕ(x) by νΔx, ν ∈ Z, form an or-
thonormal system,

〈ϕ(x− ν), ϕ(x)〉 = δν0 , ν ∈ Z , (15.27)

with respect to the inner product

〈a(x), b(x)〉 :=
∞∫

−∞

a(x) b∗(x) dx in L2(R) . (15.28)

W.l.o.g. the spatial discretization Δx := 1 has been chosen.

Two-scale relation: the scaling function can be expressed as a linear combination of the
shifted scaling functions of the next, finer scale:

ϕ(x) =
√
2
∑
ν∈Z

hν ϕ(2x− ν) (15.29)

with suitable coefficients hν ∈ R.
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Mean property:

∞∫
−∞

ϕ(x) dx = 1 , (15.30)

Hence, by the mean value theorem for integration, there exists a ξ ∈ R, so that g(ξ) results
from the calculation of the inner product with a function g(x) [6, 26]:

〈g(x), ϕ(x)〉 =
∞∫

−∞

g(x)ϕ∗(x) dx = g(ξ)

∞∫
−∞

ϕ(x) dx = g(ξ) . (15.31)

Asymptotic characteristics: outside of a compact interval, the scaling function ap-
proaches zero:

lim
x→±∞

ϕ(x) = 0 . (15.32)

As for the wavelet functions, shifted and scaled variants of ϕ(x) are defined:

ϕp,ν(x) := 2−
p
2 ϕ(2−p x− ν) . (15.33)

Hence, the two-scale relation (15.29) can be written as follows:

ϕ(x) =
√
2
∑
ν∈Z

hν ϕ(2x− ν) =
∑
ν∈Z

hν ϕ−1,ν(x) . (15.34)

�

For a fixed p, the shifted scaling functions ϕp,ν , ν ∈ Z form the basis functions of the function
space Vp:

Vp := span {ϕp,ν(x) | ν ∈ Z} . (15.35)

The approximation of a function g(x) in Vp can be expressed as:

g(x; p) =

∞∑
ν=−∞

Cp,ν ϕp,ν(x) (15.36)

with suitable coefficients Cp,ν ∈ R. The approximation step can be considered as an orthog-
onal projection of the function g(x) to the space Vp [1]. The quality of the approximation
g(x; p) of the signal g(x) increases for lower scale parameters p. So varying p yields different
representations of the signal on different scales.

15.1 Theorem 15.1: Multiresolution analysis
The two-scale relation (15.34) can be generalized to arbitrary scales p and shifts ν:

ϕp,ν(x) =
∑
n∈Z

hn ϕp−1,n+2ν(x) =
∑
n∈Z

hn−2ν ϕp−1,n(x) . (15.37)

By (15.27), the shifted scaling functions form an orthonormal basis of the function space Vp.
Besides, the two-scale relation implies Vp ⊆ Vp−1, as the basis functions ϕp,ν of Vp can be
represented as linear combinations from Vp−1. This results in a nested series of function
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spaces Vp:

{0} ⊂ . . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · ⊂ L2(R) (15.38)

�

During the transition from the scale Vp−1 to the next coarser scale Vp, information concerning
the details of the signal are lost.

In order to achieve a signal approximation which is as good as in Vp−1, the basis of Vp has
to be extended by additional functions, which allow a representation of the information lost
during the transition from Vp−1 to Vp. Now, the wavelet function ψ(x) is chosen, so that the
shifted wavelets ψp,ν(x) on the scale p achieve exactly the sought for extension of the basis
{ϕp,ν(x) | ν ∈ Z}. Then, the approximation of the signal g(x) by the wavelet functions ψp,ν ,
ν ∈ Z yields exactly the missing information concerning the details, so that the representa-
tion by the shifted scaling function ϕp,ν can be completed to represent all of the information
of the scale p− 1 [17].

15.2Theorem 15.2: Wavelets for multiresolution analysis
The function space V−1 can be orthogonally decomposed into the space V0 and another space
W0, the so-called wavelet space:2

V0 ⊕W0 = V−1 , W0 = V ⊥
0 in V−1 . (15.39)

The basis {ϕ0,ν | ν ∈ Z} of V0 can be extended by a basis of W0 to an orthonormal basis of
V−1. The following is chosen for the basis of W0:

{ψ(x− ν) | ν ∈ Z} , (15.40)

with ψ(x) denoting the mother wavelet. As a result of the assumptions made, ψ(x) ∈ V−1,
so that a representation in terms of the orthonormal basis of V−1 can be obtained for suitable
coefficients kν :

ψ(x) =
∑
ν∈Z

kν ϕ−1,ν(x) =
√
2
∑
ν∈Z

kν ϕ(2x− ν) . (15.41)

This equation is called the two-scale relation for the wavelet function, or, the wavelet equa-
tion [21].

With

Wp := span{ψp,ν | ν ∈ Z} , (15.42)

the following holds for the scaled and shifted wavelets ψp,ν :

Vp ⊕Wp = Vp−1 , Wp = V ⊥
p in Vp−1 , (15.43)

2As is common in linear algebra, the symbol ⊕ denotes the direct sum of vector spaces [5]. This
operation has to be distinguished from the morphological dilation, which is denoted by the same
symbol in Chap. 12.
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. . . (V3 ⊕W3) = V2 ⊂ (V2 ⊕W2) = V1

⊂ (V1 ⊕W1) = V0 ⊂ (V0 ⊕W0) = V−1 . . .
(15.44)

Furthermore, if 〈ϕ(x− ν), ϕ(x− μ)〉 = 0 for all ν, μ ∈ Z, μ �= ν and additionally

kν = (−1)ν hM−ν for an uneven M ∈ Z , (15.45)

then {ψp,ν | p, ν ∈ Z} is an orthogonal basis of the space L2 of the quadratically integrable
functions [1]. �

At the scale p, a signal g(x) can now be approximated as follows:

g(x; p) =

∞∑
ν=−∞

Cp,ν ϕp,ν(x) with Cp,ν = 〈g, ϕp,ν〉 , (15.46)

g(x; p) =

∞∑
μ=p+1

∞∑
ν=−∞

Γμ,ν ψμ,ν(x) Γμ,ν = 〈g, ψμ,ν〉 . (15.47)

The coefficients Cp,ν and Γμ,ν in these linear combinations are determined by the mentioned
inner products, as {ϕp,ν | ν ∈ Z} and {ψμ,ν | ν ∈ Z} are orthonormal bases.

The representation g(x; p − 1) on the finer scale p − 1 can now be expressed as the sum
of the coarser approximation g(x; p) on the scale p and the detailed information dp(x), see
Fig. 15.8:

g(x; p− 1) = g(x; p) + dp(x) , (15.48)

dp(x) =
∑
ν∈Z

Γp,ν ψp,ν(x) . (15.49)

The detailed information dp(x) is in the wavelet space Wp. The coarse representation g(x; p)

(15.46) is based on the scaling functions ϕp,ν in the space Vp. Recursively applying (15.48) to
the right-hand side yields the representation (15.47).

Figure 15.8. Recursive decomposition of the signal g(x) in a coarse and detailed signal.

The detailed signal dp(x) represents a high-pass filtering of the finer signal g(x; p−1). The
coarser approximation g(x; p) corresponds to a low-pass filtering of g(x; p − 1). These two
filtering operations of multiresolution analysis are similar to the transition from the image
signal gν−1

mn to the next higher levels λν
mn and gνmn of the Laplacian or Gaussian pyramid.

Example 15.4 (The Haar wavelet): The Haar wavelet is the result of a scaling function which
has the shape of a rectangular pulse, see Fig. 15.9(a):

ϕ(x) := rect
(
x− 1

2

)
=

{
1 if 0 ≤ x < 1

0 otherwise .
(15.50)

This function satisfies the requirements of Def. 15.2:
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Figure 15.9. Approximation of the function g(x) = cosx using the Haar wavelet: (a) Scaling function ϕ(x) =

ϕ0,0(x); (b) Scaling function ϕ−1,0(x) =
√
2ϕ(2x) for the next finer level p = −1; (c) Mother wavelet ψ0,0(x) =

ψ(x) = ϕ(2x) − ϕ(2x − 1); (d) Coarse approximation g(x; 0) of the function g(x) = cosx at the level p = 0;
(e) Detailed signal d0(x); (f) Approximation at the next finer level p = −1 as a sum of the coarse signal and the
detailed signal at level p = 0: g(x;−1) = g(x; 0) + d0(x).

– As the carriers of the functions, which have been shifted by integer values, are disjoint,
〈ϕ(x− ν), ϕ(x)〉 = δν0 for all ν ∈ Z.

– For the scaling function, the two-scale relation is given by

ϕ(x) = ϕ(2x) + ϕ(2x− 1) =
√
2

(
1√
2
ϕ(2x) +

1√
2
ϕ(2x− 1)

)
,

i.e., h0 = h1 = 1√
2

and hν = 0 for all ν /∈ {0, 1}.
– The mean property and the asymptotic characteristics are obviously satisfied.

With (15.45), (15.41) and M := 1, the mother wavelet is given by

k0 = h1 =
1√
2
, k1 = −h0 = − 1√

2
, (15.51)

kν = 0 if kν /∈ {0, 1} , (15.52)

ψ(x) =
√
2
∑
ν∈Z

kν ϕ(2x− ν) (15.53)

= ϕ(2x)− ϕ(2x− 1) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise .

(15.54)



738 15. Image Pyramids, the Wavelet Transform and Multiresolution Analysis

This function is called the Haar wavelet (Fig. 15.9(c)). It is associated to a high-pass filter
with the impulse response function (k0, k1), whereas ϕ(x) corresponds to a low-pass fil-
ter with the impulse response function (h0, h1).

The results of Theorem 15.2 can easily be understood by means of this example: be-
cause of the disjoint carriers, 〈ψp,ν , ψp,0〉 = δν0 and obviously 〈ψp,ν , ϕp,n〉 = 0 for all
ν, n ∈ Z. Hence,

{ϕp,ν | ν ∈ Z} ∪ {ψp,ν | ν ∈ Z} (15.55)

is an orthonormal basis of Vp−1.
The approximation g(x; 0) of a signal g(x) with the scaling function of the Haar

wavelet corresponds to a representation as a step function. In the example of Fig. 15.9(d),
the function g(x) = cosx in the interval [0, 3) is described by three coefficients C0,ν . With
regard to the Haar wavelet function ψ(x), the detailed signal d0(x) approximates the
difference between the signal and the step function g(x; 0) and also consists of three co-
efficients Γ0,ν (Fig. 15.9(e)). The sum of the coarse signal and the detailed signal results
in the function g(x; p − 1) at the next finer level p = −1 (Fig. 15.9(f)). This is equivalent
to the approximation of the signal by six coefficients C−1,ν in terms of the refined scaling
function ϕ−1,ν(x) of Fig. 15.9(b).

The choice of a suitable mother wavelet depends on different criteria, such as the lim-
ited support of the filter, vanishing moments, regularity, symmetry and orthogonality or
biorthogonality [17].

15.4 15.4 The fast wavelet transform
Based on the theory of multiresolution analysis, a fast transform for discrete signals can be
derived. It relies on a recursive decomposition into a coarse signal and a detailed signal
according to (15.48). The calculation can be realized using filter banks, i.e., by a discrete
convolution of the signal with the impulse response functions of the filters that correspond
to the scaling function and the wavelet function.

15.3 Theorem 15.3: Fast wavelet transform
Putting together the two-scale relations (15.37) and (15.41) results in the following recursive
formulas for calculating the coefficients Cp,n and Γp,n in the function representation (15.46),
(15.47):

Cp,n =
∑
l∈Z

hl−2n Cp−1,l , (15.56)

Γp,n =
∑
l∈Z

kl−2n Cp−1,l . (15.57)

The recursive inverse transformation of the coefficients from level p to level p− 1 is given by

Cp−1,n =
∑
l∈Z

(n−l) even

(
hl Cp,n−l

2
+ kl Γp,n−l

2

)
. (15.58)
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The filter coefficients hn and kn of (15.37) and (15.41) can be calculated by the following inner
products:

hn = 〈ϕ0,0(x), ϕ−1,n(x)〉 =
√
2 〈ϕ(x), ϕ(2x− n)〉 , (15.59)

kn = 〈ψ0,0(x), ϕ−1,n(x)〉 =
√
2 〈ψ(x), ϕ(2x− n)〉 . (15.60)

Furthermore, the following relations hold for the filter coefficients:3∑
n∈Z

hn =
√
2 , (15.61)

∑
n∈Z

hn hn−2l = δl0 , l ∈ Z , (15.62)

kn = (−1)n hM−n (15.63)

with M ∈ Z odd. �

Additionally, an initial condition is required for the recurrence relations (15.56), (15.57) of
the fast wavelet transform. In practice, one often sets

C0,n := gn = g(nΔx) , (15.64)

i.e., the coefficients of the finest scale pmin := 0 are set to the values of the discrete or the
samples of the continuous signal. As this approach has no theoretical justification, it is called
the ‘wavelet crime’.

As with the Gaussian and Laplacian pyramid, the signal g(x) can be completely recon-
structed from the detailed signals dp(x), p = pmin + 1, . . . , pmax and the last level g(x; pmax)

of the coarse signal:

g(x) = g(x; pmax) +

pmax∑
p=pmin+1

dp(x) . (15.65)

In the discrete case, the number of coefficients Cp,n and Γp,n is reduced by a factor of 2 during
the transition to the next scale p, as in (15.56), for M coefficients Cp−1,n and an impulse
response function hn of length N , only M

2 +N −1 coefficients Cp,n are non-zero. This is why
the computational complexity and the space requirements of the fast wavelet transform are
linearly proportional to the length M of the transformed signal [17].

Example 15.5 (Daubechies wavelet D4 and the corresponding filter banks): For an impulse re-
sponse function hn of length N = 4, (15.61) and (15.62) result in the following conditions:

h0 + h1 + h2 + h3 =
√
2 , (15.66)

h2
0 + h2

1 + h2
2 + h2

3 = 1 , (15.67)

h2 h0 + h3 h1 = 0 . (15.68)

3Equation (15.61) is obtained by integrating (15.37) with respect to x and applying (15.30). The
second equation (15.62) results from the orthonormality condition (15.27) of the scaling function [1].
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the filter coefficients are not uniquely determined by these formulas. Rather, there are
various degrees of freedom concerning the choice of wavelets and scaling functions. A
possible constraint on these degrees of freedom is the requirement proposed by Ingrid
Daubechies: the wavelet function ψ(x) should be differentiable as often as possible [10,
21]. This results in the following coefficients hn of the low-pass filter [17]:

h0 =
1 +
√
3

4
√
2

, h1 =
3 +
√
3

4
√
2

, (15.69)

h2 =
3−
√
3

4
√
2

, h3 =
1−
√
3

4
√
2

. (15.70)

The coefficients kn of the high-pass filter can then be obtained using (15.45) and
M := N − 1 = 3:

k3 = −1 +
√
3

4
√
2

, k2 =
3 +
√
3

4
√
2

, (15.71)

k1 = −3−
√
3

4
√
2

, k0 =
1−
√
3

4
√
2

. (15.72)

This wavelet filter is called the Daubechies filter D4.
Daubechies filters can be constructed for arbitrary, even-numbered lengths N . The

corresponding scaling functions and wavelet functions have the compact support
[0, N − 1]. However, they can not be represented by closed formulas in general. Instead,
the function values have to be recursively calculated by means of the two-scale relations
(15.37) and (15.41). Figure 15.10 shows the scaling functions and wavelet functions of
the Daubechies wavelets D4 and D12. The additional degrees of freedom of the longer
impulse response D12 are used in order to construct smoother functions. The filter D2
equals the Haar wavelet of Ex. 15.4.
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Figure 15.10. Scaling functions ϕ(x) and wavelet functions (mother wavelets) ψ(x) of two Daubechies wavelets.
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15.5 15.5 The two-dimensional wavelet transform
In order to transform two-dimensional image signals, the one-dimensional wavelet trans-
form can be applied first to the rows and then to the columns of the image g(x). This corre-
sponds to the transformation of the image by means of the following four scaling functions
and wavelet functions [11, 21]:

ϕ(x) = ϕ(x)ϕ(y) , (15.73)

ψH(x) = ψ(x)ϕ(y) , (15.74)

ψV(x) = ϕ(x)ψ(y) , (15.75)

ψD(x) = ψ(x)ψ(y) . (15.76)

By definition, these functions are separable. The combination of the coarse signals and de-
tailed signals in the two coordinate directions results in four signal components g(x; p),
dHp (x), dVp (x), and dDp (x). The coarse structure is contained in g(x; p); while dHp (x) corre-
sponds to the horizontal, dVp (x) to the vertical, and dDp (x) to the diagonal fine structures.
Here, for example, the horizontal details represent image structures that contain a gradient
in the x-direction, such as vertical edges. Usually, the four signal components are arranged
in the quadrants of an image (Fig. 15.11).

The application of the fast wavelet transform to a discrete image signal gmn is performed
as follows: first, the initial condition

C0,m,n := gmn (15.77)

is chosen. Because of separability, every image line can then be individually transformed,
i.e., the filters hm and km can be applied in the m-direction, cf. (15.56), (15.57). As an inter-
mediate result, an image of the original size is obtained, of which the first half of each row
corresponds to the coarse structure and the second half corresponds to the detailed structure,
Fig. 15.12(a). The two coefficient vectors each consist of half as many entries as the original
image row. Next, the wavelet transform is applied column-wise to this image, i.e., the filters
hn and kn. The result of the wavelet transform at scale p = 1 is an image of the original
size, which contains the coefficients C1,m,n, ΓH

1,m,n, ΓV
1,m,n and ΓD

1,m,n in its four quadrants,
Fig. 15.12(b). To continue the transform to the next scale, the principle just has to be applied
to the quadrants containing the Cp,m,n, Fig. 15.12(c), (d). This is why the computational
complexity is reduced to one-fourth for every level during the forward transform as well as
during the inverse transform. In total, the computational complexity for an image of size

(a) p = 0 (b) p = 1 (c) p = 2 (d) p = 3

Figure 15.11. Alignment of the coefficients for the two-dimensional wavelet transform (adapted from [11]).
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(a) (b)

(c) (d)

Figure 15.12. Wavelet transform of the test image Fig. 15.3(a) with the Daubechies wavelet D4 of Ex. 15.5: (a) Trans-
form of the rows; (b) Transform of the columns (cf. Fig. 15.11(b)); (c), (d) Another transform of the quadrant C1,m,n,
cf. Fig. 15.11(c). In the quadrant of the detailed signal, gray pixels correspond to zero coefficients.

M ×M and for a filter bank of length N is given by

pmax∑
p=0

2
1

4p
N M2 ≤ 2

1

1− 1
4

N M2 = 8
3 N M2 , (15.78)

and is therefore linear with respect to the number M2 of image pixels for an arbitrary number
pmax of scaling levels [17].

The signal-flow graph of the two-dimensional fast wavelet transform is shown in
Fig. 15.13(a). The inverse transform, i.e., the synthesis of the image signal gmn from the
wavelet coefficients Cpmax,m,n, ΓH

p,m,n, ΓV
p,m,n, and ΓD

p,m,n, p = 1, . . . , pmax, is obtained by
inverting the single steps of the transform: first, the columns of the coefficient matrix are
upsampled and convolutions with the impulse response functions hn and kn are performed.
Employing (15.58), a point-wise addition is applied to the two convolution results. Then, the
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(a) Forward transform (analysis) from level p− 1 to level p,
C0,m,n := gmn

(b) Inverse transform (synthesis) from level p to level p− 1

Figure 15.13. Signal-flow graph for the fast two-dimensional wavelet transform (adapted from [11]).

same procedure is repeated for the rows (Fig. 15.13(b)). By this means, an exact reconstruc-
tion of the image signal gmn is achieved.
The wavelet transform of image signals may by used in various applications:

Multiresolution analysis: similar to an image pyramid, the wavelet transform is a repre-
sentation of the image at multiple resolutions, in which structures of different extents can
be efficiently analyzed.

Features: the wavelet coefficients can be considered as features, which can be used for
different image processing tasks, e.g., texture classification or defect detection.

Compression: by compressing low-magnitude wavelet coefficients and by means of a
coarse quantization especially of the detailed signals, a compression of the image data
can be achieved [11, 23].

15.6 15.6 Scale-invariant features
SIFT (scale-invariant feature transform) and SURF (speeded up robust features) represent
sophisticated methods for the detection of interest points, which can be easily relocated. For
each of the detected image points (keypoints), a set of features, the so-called descriptor, is
calculated. The descriptors are invariant with respect to rotations and scalings of the image
and are unsusceptible to changes of the perspective and of the illumination. They are used
for finding correspondences in image series and for object detection, among other things.

The SIFT method uses a multiresolution representation in order to find interest
points [16]. First, a series of images λσ

mn, σ=αν is calculated by means of the difference-
of-Gaussians method (11.63). The result is similar to the Laplacian pyramid of Sec. 15.1.2
except for the finer sampling α of the scale parameter σ, resulting in multiple images at
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Figure 15.14. Neighborhood definition for the search of SIFT points in the scale space.

a single pyramid level. In this three-dimensional multiresolution representation, extrema
with respect to the three coordinate directions (m,n, σ)T are now found. For this purpose, a
generalization of the 8-neighborhood N8(x) of Def. 11.8 to a 26-neighborhood is used:

N26

(
(m0, n0, σ0)

T
)
:=
{
(m,n, σ)T

∣∣∣ |m−m0| ≤ 1 ∧ |n− n0| ≤ 1

∧ 1
α ≤

σ
σ0
≤ α ∧ (m,n, σ) �= (m0, n0, σ0)

}
.

Candidates for interest points are points (m0, n0) for which the image value λσ0
m0n0

for a σ0 is
greater than or less than all other image values in the neighborhood N26((m0, n0, σ0)

T) (cf.
Fig. 15.14).

In order to achieve a hopefully stable recognition and localization of the feature points,
the set of candidates is reduced by additional tests. For example, extrema along an edge
are often not notably intense and allow no exact localization. In this respect, corners in the
sense of Sec. 14.4 are more suitable. This is why the SIFT method discards candidates with
low contrast and with a curvature of only one direction (e.g., perpendicular to an edge).
For this purpose, the Hessian matrix containing the second derivative of λσ0

m0n0
is discretely

approximated. By means of the trace and the determinant of this Hessian matrix, a criterion
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(a) (b)

Figure 15.15. Calculation of the SIFT feature vector: (a) Gradient vectors in a local neighborhood of the interest point;
(b) Resulting histogram of oriented gradients.

similar to Sec. 14.4 can be designed, which discards candidates showing distinct structure
changes only in one direction. Besides, a Taylor expansion is performed, in order to achieve
a localization of interest points with subpixel accuracy.

In order to achieve rotational invariance, the features are calculated relative to the locally
predominant direction of the gradient image. This direction is estimated by means of the
histogram of oriented gradients of a local neighborhood of the interest point (m0, n0, σ0)

T in
the image gσ0

mn resulting from a Gaussian filtering. If there is no distinct maximum, multiple
feature vectors for the same interest point are calculated, in order to achieve greater robust-
ness. An unstable estimation of the direction can impair results of the SIFT method for some
applications [14].

The feature vector of an interest point consists of the histogram of oriented gradients of
a local neighborhood of the image point gσ0

m0n0
. More precisely, the neighborhood is divided

into 4× 4 quadratic subregions and a histogram of oriented gradients is calculated for each
subregion (Fig. 15.15). The gradient angles are measured with respect to the predominant
direction calculated in the previous step. The histograms use eight quantization steps, corre-
sponding to an angular resolution of 45◦. The total dimension of the resulting feature vector
is 4 · 4 · 8 = 128. The vector is normalized to unit length in order to compensate for linear
changes of illumination.

An alternative method for calculating interest points and feature vectors is the SURF
method [2]. Here, one performs a convolution of the image with rectangular filter impulse
response functions that approximate the second derivative of the Gaussian function. By this
means, approximations of the Hessian matrix and its determinant can be calculated. In order
to achieve a multiresolution analysis, impulse response functions of different sizes are used.
The local maxima of the determinant within the neighborhood N26((m0, n0, σ0)

T) of a point
(m0, n0, σ0)

T in the scale space constitute the interest points. They are located with subpixel
accuracy by means of an interpolation in all three coordinate directions.

The features of an interest point are based on an analysis by means of the Haar wavelet
of Ex. 15.4. In a local neighborhood, whose size and the scaling of the wavelet filter are
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Figure 15.16. Calculation of the sum of the image values of g in the
gray rectangle by means of the integral image gΣ according (15.80).

chosen with respect to σ0, the wavelet coefficients ΓH
mn and ΓV

mn are calculated for the x-
direction and y-direction. These are summed two times in 4 × 4 regions: with signs and as
absolute values. This results in the following four features for every region:

∑
ΓH
mn,
∑

ΓV
mn,∑

|ΓH
mn|, and

∑
|ΓV

mn|. In total, the resulting feature vector has 64 dimensions and is again
normalized to unit length to achieve an invariance to illumination changes. Optionally, the
locally predominant direction can be estimated by a Haar wavelet analysis and can be used
as a reference value.

In order to achieve an efficient implementation, all steps of the SURF method rely on
integral images, which allow a constant-time calculation of the sum of all image values in
an axis-parallel rectangle [9, 25]. The integral image gΣ of an image g is defined by

gΣ,m,n :=

m∑
i=0

n∑
j=0

gmn . (15.79)

The image value of the integral image at position (m,n) is equal to the sum of all image
values in the axis-parallel rectangle with the corners (0, 0) and (m,n) of the original image.
The sum of all image values in an arbitrary axis-parallel rectangle with the corners (m1, n1)

and (m2, n2) (m1 ≤ m2, and n1 ≤ n2) can be now be calculated as follows (cf. Fig. 15.16):

m2∑
m=m1+1

n2∑
n=m1+1

gmn = gΣm2n2 − gΣm1n2 − gΣm2n1 + gΣm1n1 . (15.80)

As the impulse response functions of the Haar wavelet and the filters used for approxi-
mating the Hessian matrix in the SURF method have larger blocks of constant values, any
convolution operation of these filters can be efficiently realized using integral images.

In the literature, various other methods for calculating interest points and features have
been proposed and analyzed [18, 19, 22]. Important applications for local image features
are correspondence algorithms for image series and the detection of objects. Those feature
vectors are sought inside the training data, respectively, in other images of the series, that
best fit the feature vectors of the analyzed image. As single false assignments cannot be
avoided, robust methods for outlier detection have to be used in order to obtain reliable
results. Especially for evaluating stereo images in the fields of machine vision, e.g., for robots
or vehicles, these methods play an important role.

Figure 15.17 shows an example of the calculation of interest points using the SIFT and
SURF methods.
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(a) (b)

(c) (d)

Figure 15.17. Example of the SIFT and SURF methods: (a) Result of applying the SIFT method to Fig. 14.23(c);
(b) Result of applying the SIFT method to an artificially rotated and scaled section of (a); (c), (d) Result of applying
the SURF method to the two test images. The calculated interest points are marked as red circles on the original
image. The size of the circles represents the extent of the corresponding feature, i.e., the scale level of the extremum.
By means of finding correspondences between the feature vectors, the coordinate transform between the two test
images could be reconstructed.



15.7 Bibliography 749

15.715.7 Bibliography
[1] Werner Bäni. Wavelets: Eine Einführung für Ingenieure. Oldenbourg, 2nd edition, 2005.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features. In Aleš
Leonardis, Horst Bischof, and Axel Pinz, editors, 9th European Conference on Computer Vision,
pages 404–417. Springer, 2006.

[3] Josef Bigun. Vision with direction. Springer, 2006.

[4] Kristian Bredies and Dirk Lorenz. Mathematische Bildverarbeitung: Einführung in Grundlagen und
moderne Theorie. Vieweg+Teubner, 2011.

[5] Joel G. Broida and S. Gill Williamson. A comprehensive introduction to linear algebra. Addison-
Wesley, 1989.

[6] Ilja Bronshtein, Konstantin Semendyayev, Gerhard Musiol, and Heiner Mühlig. Handbook of
Mathematics. Springer, 6th edition, 2015.

[7] Peter Burt and Edward Adelson. The Laplacian pyramid as a compact image code. IEEE Trans-
actions on Communications, 31(4):532–540, April 1983.

[8] Peter Burt, Tsai-Hong Hong, and Azriel Rosenfeld. Segmentation and Estimation of Image Re-
gion Properties through Cooperative Hierarchial Computation. IEEE Transactions on Systems,
Man and Cybernetics, 11(12):802–809, 1981.

[9] Franklin Crow. Summed-Area Tables for Texture Mapping. Computer Graphics, 18(3):207–212,
1984.

[10] Ingrid Daubechies. Ten lectures on wavelets. Society for Industrial and Applied Mathematics, 1992.

[11] Rafael Gonzalez and Richard Woods. Digital image processing. Pearson Prentice Hall, 3rd edition,
2008.

[12] Barbara Burke Hubbard. The world according to wavelets: the story of a mathematical technique in the
making. Peters, 2nd edition, 1999.

[13] Bernd Jähne. Digital image processing. Springer, 6th edition, 2005.

[14] Kai Jüngling. Ein generisches System zur automatischen Detektion, Verfolgung und Wiedererkennung
von Personen in Videodaten. PhD thesis, Karlsruhe Institute of Technology, 2011.

[15] Tony Lindeberg. Scale space theory in computer vision. Kluwer, 1994.

[16] David Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[17] Stéphane Mallat. A wavelet tour of signal processing. Academic Press, 2nd edition, 1999.

[18] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and
L. Van Gool. A Comparison of Affine Region Detectors. International Journal of Computer Vision,
65:43–72, 2005.

[19] Krystian Mikolajczyk and Cordelia Schmid. Scale & Affine Invariant Interest Point Detectors.
International Journal of Computer Vision, 60(1):63–86, 2004.

[20] Andreas Purde. Speckle-Interferometrie zur Formvermessung unstetiger Oberflächen. PhD thesis,
Technische Universität München, 2006.
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A Mathematical Foundations

A.1A.1 The intercept theorem
The intercept theorem [1,2] is an important principle for constructing the optical paths in the
model of geometric optics (Chap. 3).

A.1Theorem A.1: The intercept theorem
Two lines s and t are assumed to have an intersection at the origin O. Furthermore, p1 and p2
are assumed to denote two parallel lines intersecting s and t (Fig. A.1). Then, the lengths1 of
the segments between P1 and Q1, respectively, between P2 and Q2, are in the same relation
to each other as the distances from O to the intersections P1 and P2, respectively, Q1 and
Q2:

P1Q1

P2Q2

=
OP1

OP2

=
OQ1

OQ2

. (A.1)

It is of no relevance whether the parallels are on the same side or on different sides of the
origin (Fig. A.1(b)). �

s

t

p1 p2

t′α1

α2

β1
β2

(a)

s

t

p1 p2

(b)

Figure A.1. Intercept Theorem.

Proof A.1 (The intercept theorem): For the right triangle OH1P1, one has

sinα1 =
OH1

OP1

. (A.2)

Equivalently, the following holds for the triangle OH2P2

sinα2 =
OH2

OP2

. (A.3)

1The length of the segment between the points A and B is denoted by AB.

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6_16,
© Springer-Verlag Berlin Heidelberg 2016
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As p1 and p2 are parallel, α1 = α2 and hence

OH1

OP1

=
OH2

OP2

⇔ OH1

OH2

=
OP1

OP2

. (A.4)

Similarly, the right triangles OQ1H1 and OQ2H2 imply

β1 = β2 ⇔ OH1

OQ1

= sinβ1 = sinβ2 =
OH2

OQ2

(A.5)

⇔ OH1

OH2

=
OQ1

OQ2

. (A.6)

Together, this results in the second equation of (A.1):

OP1

OP2

=
OQ1

OQ2

. (A.7)

The first equation of the theorem can be derived by means of the line t′ which is parallel
to t in Fig. A.1(a). For this purpose, P2 is interpreted as the origin, so that (A.7) implies

P2P1

P2O
=

P2T′

P2Q2

⇔ P2O−OP1

P2O
=

P2Q2 −Q2T′

P2Q2

(A.8)

⇔ Q2T′

P2Q2

=
OP1

P2O
. (A.9)

As P1Q1Q2T
′ is a parallelogram, Q2T′ = P1Q1 and the claim is proven,

P1Q1

P2Q2

=
OP1

OP2

. (A.10)

A.2 A.2 Inverse problems

A.1 Definition A.1: Well-posed problem
A mathematical problem is called well-posed, according to the definition of Hadamard, if
the following three conditions are satisfied [3]:

1. Existence: there exists a solution for the problem.
2. Uniqueness: the solution is unique.
3. Stability: the solution changes continuously with respect to the input data of the problem.

A problem is called ill-posed if one of these conditions is violated. �

Finding the inverse of a mapping f : X → Y , y = f(x) with the domain X and the codomain
Y represents an inverse problem. The quantity sought is x ∈ X . However, only y ∈ Y can
be observed. An inverse problem is ill-posed if one of the following holds for the inverse
mapping f−1:

1. f−1 is not well-defined, i.e., there exists an y ∈ Y for which there is no preimage, so that
f is not surjective.
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2. x = f−1(y) is not uniquely defined, i.e., f is not injective.
3. f−1 is not continuous: a limited distance between the images y1 = f(x1) and y2 = f(x2),

i.e.,

‖y1 − y2‖ < δ with δ > 0 arbitrary, (A.11)

does not imply that the distance between the preimages is limited, i.e., that

‖x1 − x2‖ < ε with ε > 0 . (A.12)

Regularization methods can be used to solve an ill-posed problem by introducing additional
constraints on the solution. These include assumptions, prior knowledge, or desired charac-
teristics, so that a unique solution can be selected out of the manifold of possible solutions.
In the field of automated visual and image processing, especially the following two regular-
ization approaches are of greater importance:

Uniqueness by additional measurements: by means of additional measurement data, a
unique solution of an ambiguous inverse problem might be found. An example is the
deflectometric reconstruction problem of Sec. 7.3.5, which is made unique by an addi-
tional measurement from another angle of view. Also the common intensity-based stereo
evaluation can be interpreted in this way: because of the loss of information by the cen-
tral projection, the reconstruction of the 3D structure from a single camera perspective
presents an ill-posed problem. Only by adding an additional camera perspective is the
calculation of the depth information possible.

Continuous solution: demanding a continuous solution results in additional constraints,
which contribute to a reduction of the manifold of the solutions. Continuity conditions
can be formulated by means of energy functionals. This approach can be applied to
different methods for 3D reconstruction, e.g., stereo, shape from shading, structured illu-
mination (see Chap. 7), as well as to image segmentation (see Chap. 11). The additional
continuity assumption is not necessarily satisfied by every object.
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B The Fourier Transform

B.1B.1 The one-dimensional Fourier transform

B.1.1 Definition

Definition: F{g(x)} :=
∞∫

−∞

g(x) e−j2πfx dx = G(f)

Inversion: g(x) =

∞∫
−∞

G(f) e j2πfx df = F−1{G(f)}

Angular frequency: ω = 2πf

[x] = [f ]−1 , j =
√
−1
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B.1.2 Properties and characteristics

Properties and Characteristics g(x) ◦−• G(f)

Linearity a g1(x) + b g2(x) ◦−• aG1(f) + bG2(f)

Similarity theorem g(kx) with k ∈ R\{0} ◦−• |k|−1 G

(
f

k

)
G(x) ◦−• g(−f)

Duality
G∗(x) ◦−• g∗(f)

Theorem of the conjugated
complex-valued functions

g∗(x) ◦−• G∗(−f)

g(x− x0) ◦−• G(f) e−j2πx0f

Shift property
g(x) e j2πf0x ◦−• G(f − f0)

dg(x)

dx
◦−• j2πf G(f)

Derivative property
−j2πx g(x) ◦−• dG(f)

df∫ x

−∞
u(τ) dτ ◦−•

[
1

j2πf
+

1

2
δ(f)

]
U(f)

Integration property [
−1
j2πx

+
1

2
δ(x)

]
u(x) ◦−•

∫ f

−∞
U(ϕ) dϕ

g1(x) ∗ g2(x) ◦−• G1(f)G2(f)
Convolution property

g1(x) g2(x) ◦−• G1(f) ∗G2(f)

g1(x)� g2(x) ◦−• G1(f)G
∗
2(f)

Correlation property
g1(x) g

∗
2(x) ◦−• G1(f)�G2(f)

Assignment property �{gg(x)} ◦−• �{Gg(f)}

Index: �{gu(x)} ◦−• j�{Gu(f)}
– g: even component j�{gg(x)} ◦−• j�{Gg(f)}
– u: odd component j�{gu(x)} ◦−• �{Gu(f)}∫ ∞

−∞
xν g(x) dx = (−j2π)−ν dνG(f)

dfν

∣∣∣
f=0

Moments
(j2π)−ν dνg(x)

dxν

∣∣∣
x=0

=

∫ ∞

−∞
fν G(f) df

Central ordinate theorem g(0) =

∫ ∞

−∞
G(f) df G(0) =

∫ ∞

−∞
g(x) dx

∫ ∞

−∞
g1(x) g

∗
2(x) dx =

∫ ∞

−∞
G1(f)G

∗
2(f) df

Plancherel’s Theorem (Parseval’s Theorem) ∫ ∞

−∞
|g(x)|2 dx =

∫ ∞

−∞
|G(f)|2 df
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B.1.3 Correspondences

1

1

Correspondences
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Correspondences

1

1
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B.2B.2 The n-dimensional Fourier transform

B.2.1 Definition

Definition: F{g(x)} :=
∞∫

−∞

. . .

∞∫
−∞

g(x) e−j2πfTx dx = G(f)

Inversion: g(x) =

∞∫
−∞

. . .

∞∫
−∞

G(f) e j2πfTx df = F−1{G(f)}

x = (x1, . . . , xn)
T ∈ Rn , dx = dx1 dx2 . . . dxn

f = (f1, . . . , fn)
T ∈ Rn , df = df1 df2 . . . dfn

B.2.2 Correspondences of the two-dimensional Fourier transform
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B.3 B.3 The discrete Fourier transform

Definition: Gl :=

N−1∑
n=0

gn e
−j2π ln

N with gn := g(nΔx) = g
(nxmax

N

)

Inversion: gn =
1

N

N−1∑
l=0

Gl e
j2π ln

N
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List of Symbols

Conventions

a, b, . . . ,

A,B, . . .

identifiers

x, y, . . . ,

A,B, . . .

scalar variables (italic, lower-case, sometimes
capital letters)

x,y, . . . ,

A,B, . . .

vectors (bold, lower-case, sometimes capital
letters)

A,B, . . . matrices; points (bold, capital letters)

A,B, . . . sets

A{ · },
B{ · }, . . .

operators

a, b, . . . random variables (typewriter font)

Operators

ḟ derivative of the function f with respect to
the time t

27

↓ reduction step (multiresolution analysis) 724

↑ expansion step (multiresolution analysis) 725

%x& greatest integer ≤ x 479

�x� smallest integer > x 479

g∗ complex conjugation of g 388, 689,
729

f(t) temporal averaging 33, 47

∠ · argument (phase angle) of a complex-valued
quantity or direction of a two-dimensional
vector

384, 565

| · | absolute value of a real-valued or complex-
valued quantity

73, 384

|| · || norm of a vector 27

J. Beyerer et al., Machine Vision, DOI 10.1007/978-3-662-47794-6,
© Springer-Verlag Berlin Heidelberg 2016



770 List of Symbols

∗ convolution of one-dimensional signals 381, 401

∗∗ convolution of two-dimensional signals 406
x∗ one-dimensional convolution of multi-

dimensional signals with respect to the
variable x

497

g(x) ◦−• G(f) correspondence of the one-dimensional
Fourier transform

383

g(x) ◦=• G(f) correspondence of the two-dimensional
Fourier transform

402

x1 ↔ x2 corresponding image points 287

a ⊥ b vector a is orthogonal to vector b 28

∝ proportionality 60

a ∼ P random variable a is distributed according
to P

64, 436

〈 · , · 〉 inner product 691, 733

!
= is supposed to be equal 392, 447

a ∈ A a is element of the set A 10

A ∩ B intersection of A and B 130

A ∪ B union of A and B 555

A\B difference of the sets A and B 78, 595,
611

⊂, ⊆ subset 10, 611

∅ empty set 481

G complement of the point set G 611

GR reflection of the point set G 610

(G)z shift of the point set by the vector z 610

⊕ direct sum of vector spaces 735

⊕ morphological dilation 611, 637

� morphological erosion 611, 637

◦ morphological opening 620, 641

• morphological closing 620, 641

� morphological hit-or-miss operator 626
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, morphological thinning 627

- morphological thickening 629

0 zero-vector: 0 := (0, 0, . . . , 0)T 105

1(x) function equal to 1: 1(x) ≡ 1 52, 403

1 1 := (1, 1, . . . , 1)T 674

ΔF Laplace operator, applied to a vector field F 26, 580,
645

∀ universal quantifier (‘for all . . . ’) 177

A{G} focused optical imaging of the point G by
the optical system A

9, 99

argmin argument of the minimum 232

df
dx derivative of the function f with respect to

the variable x

27

∂f
∂x partial derivative of the function f with

respect to the variable x

25

DFT{gmn} two-dimensional discrete Fourier transform
of the discrete image signal gmn

401

divF divergence of the vector field F 25

E{ · } expected value 61, 434,
654, 665

∃ existential quantifier (‘there exists a . . . ’) 616

F{g(x)} Fourier transform of the function g(x) 51

grad g(x) gradient of the function g(x) 564

�{ · } imaginary part of a complex number 237

max maximum of a set or of a function 301

min minimum of a set or of a function 196

Pr{ · } probability 61

R{g(x)} Radon transform of the image g(x) 699

�{ · } real part of a complex number 29

rotF curl of the vector field F 25

span{ · } spanned vector space 653, 734



772 List of Symbols

supp{ · } support
supp{G(f)} :=

{
f
∣∣ |G(f)| > 0

} 481, 653

T{ · } morphological top surface operator 636

U{ · } umbra operator 636

Var{ · } variance 61, 434,
654

Greek symbols

α quantum efficiency of an image sensor 63

α half of the lens’ angular aperture 114, 121

Γp,ν wavelet coefficients 733, 738

Γψ(s, τ) continuous wavelet transform 729

γmn region of a two-dimensional signal in vector
notation

664

δ penetration depth of electromagnetic waves
in a conducting medium

78

δ optical path difference between the polar-
ization components of an electromagnetic
wave

32

δ( · ) Dirac delta function (Dirac distribution) 378

δki Kronecker symbol: δki :=

{
1 if i = k

0 if i �= k
27

δmn two-dimensional, spatially discrete Dirac
delta function

419

δn one-dimensional spatially discrete Dirac
delta function

419

ε diameter of the blur disk in the image plane 119

ε permittivity 25

ε0 permittivity of the vacuum (electric field
constant), ε0 ≈ 8,854 · 10−12 As

Vm

26

εr relative permittivity 26

ζ length of the reference path of an interferom-
etry setup

310

H entropy 459



List of Symbols 773

η light yield 83

η attenuation factor of electromagnetic waves
in a conducting medium

77

θ(x) gradient direction at the pixel x 589, 676

θ1 angle of incidence 67

θ triangulation angle 259

θ1B Brewster’s angle 74

θ1C critical angle of incidence 75

θ2 refraction angle 69

θe angle between the emitted light and the
surface normal

152

θi angle of incidence of the illuminating ray 152

θr emergent angle for specular reflection 67

Λ( x
B ) triangle function:

Λ
(
x
B

)
:=

⎧⎨⎩ 1−
∣∣∣ x
B

∣∣∣ if |x| < B

0 otherwise

480

λ wavelength of the light 23, 29

λν
mn image signal on the νth level of the Laplacian

pyramid
726

μ magnetic permeability 25

μ0 permeability of the vacuum (magnetic field
constant), μ0 = 4π · 10−7 Vs

Am

26

μr relative permeability 26

ν frequency of an electromagnetic wave (light
wave) in Hz

23, 29

ν shift parameter in multiresolution analysis 732

ν21 frequency of the light emitted during a
transition from energy level E2 to energy
level E1

90

Δν frequency bandwidth 44, 91

ρ reflection factor 152

ρ electric charge density 25
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Σ set of structuring elements 627

σ specific electrical conductance 25, 76

σ2 variance 600, 664

τ shift parameter of the continuous wavelet
transform

729

Φ radiant flux 145

Φl luminous flux 83, 145

ϕ phase of an electromagnetic wave 29

ϕ normal angle of a line 673, 699

ϕp,ν(x) scaling function of the multiresolution
analysis

734

ϕx, ϕy phase shift of an electromagnetic wave 31

χ ellipticity angle of the polarization ellipse 32

ψ angle of the direction of the polarization
ellipse

32

ψp,ν(x) wavelet function of the multiresolution
analysis

733

ψs,τ (x) wavelet function of the continuous wavelet
transform

729

Ω solid angle 145

Ωg domain of the image g 10, 609

Ωt domain of the texture t(x) 672

ωi segment of an image 555

ω angular frequency of an electromagnetic
wave

29

Latin symbols

A area of a pixel 63

A(p) accumulator of the Hough transform 710, 711

ACol(λ) spectral absorption of a colorant layer 173

A transformation matrix for a linear color space
transformation

176, 194



List of Symbols 775

a absorption coefficient of electromagnetic
waves in a conducting medium

77

a∗ red-green chromaticity coordinate of the
CIELAB color space

185

aCol(λ) constant of absorption of a colorant 173

akl coefficient of the AR model 664

a vector of AR coefficients 664

a1, a2 alignment of a structural texture 653

B image size 109

BCIE color value with respect to the blue CIE
primary color

175

Bd(g, r) entry in the run-length histogram with
respect to the direction d, the gray value g

and the the run-length r

677

Bs blue coordinate of the linear sRGB color
space

194

B′
s blue coordinate of the gamma-corrected

sRGB color space
195

B image point 109

B magnetic flux density 25

BRDF bidirectional reflectance distribution function 152

b image distance 61, 101,
109

b̄(λ) color value function of the blue CIE primary
color

175

b∗ yellow-blue chromaticity coordinate of the
CIELAB color space

185

C cyan color value in the CMYK color space 197

ΔC difference of chroma 189

Cab chroma, based on the CIELAB color space 185

CB blue-yellow-chrominance in the YCBCR color
space

197

Cp,ν coefficients of the rough structure in mul-
tiresolution analysis

734, 738
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CR red-green-chrominance in the YCBCR color
space

197

Cd co-occurrence matrix 673

Cgg covariance matrix 456

C set of complex-valued numbers 77

c speed of light in a vacuum,
c = 299 792 458 m/s

23, 28

cd,ij entry of the co-occurrence matrix Cd 673

cCol concentration of a colorant 173

const. arbitrary, but fixed constant 27

D aperture diameter (more precisely: diameter
of the entrance pupil)

61, 103,
110, 117

D diffusion tensor 579

D electric flux density 25

d negative imaginary part of the complex
refraction index

77

dK coherence length 44

dCol thickness of a colorant layer 173

dp(x) detail signal in multiresolution analysis 736

d shift vector of the co-occurrence matrix 673

detA determinant of the matrix A 288

E amplitude of the electric field strength 27

E energy 63

E irradiance 148

El illuminance 148

ΔE color distance 189

E{ · } energy functional 588

E0x, E0y amplitude of the polarized electromagnetic
wave in x-direction and y-direction

31

Ei ith energy level of an atom 90

Es, Ep electric field strength perpendicular or
parallel to the incidence plane

71
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E electric field strength 25

E Jones vector 43

E(x, t) complex wave function of the electric field 29

E(ω) uniformity criterion for segments 555

emn zero-mean, weakly stationary noise signal in
the AR model

664

eϕ two-dimensional unit vector in the direction
of ϕ:

eϕ = (cosϕ, sinϕ)T

407, 699

eϕ⊥ two-dimensional unit vector perpendicular
to eϕ:

eϕ⊥ = (− sinϕ, cosϕ)T

407

ex, ey , ez standard basis vectors 30

exp(x) exponential function, exp(x) = ex 80

F fundamental matrix of a stereo camera setup 287

F force 588

f focal length 106, 108

fγ( · ) gamma correction 193

fγ,I0( · ) modified gamma correction 193, 195

G object size 109

GCIE color value with respect to the green CIE
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ǧ(u, ϕ) Radon transform of the image g(x) 699

gνmn image signal on the νth level of the
(Gaussian) pyramid

723

g(x) multi-channel image, e.g., color image 10

gmn discrete image signal 10, 373,
664

H radiant exposure 149

Hl luminous exposure 149

ΔH difference of hue 189

H(x) Heaviside function 380

HHSI hue in the HSI color space 196

Hθ(k) histogram of oriented gradients 677

H magnetic field strength 25

H(x, t) complex wave function of the magnetic field 29

h height difference, layer thickness 230, 260

h Planck’s constant, h ≈ 6,626 · 10−34 Js 23, 63

Δh difference of hue angle 190

h(x) background signal in the image 666, 687

hab hue angle in the CIELAB color space 185

hν impulse response of the low-pass filter in the
multiresolution analysis

733, 739

hσ(x) Gaussian low-pass 500, 570

I intensity of electromagnetic radiation 31

I number of segments of an image 555

I electric current 83, 210

I radiant intensity 146



List of Symbols 779

Il luminous intensity 146

IA(λ) spectrum of the CIE standard illuminant A
(incandescent lamp)

187

ID65(λ) spectrum of the CIE standard illuminant D65
(daylight)

187

IE(λ) spectrum of the CIE standard illuminant E
(constant intensity)

175

IHSI intensity in the HSI color space 196

Jn(z) Bessel function of the nth kind 56

J Jones matrix 43

J electric current density 25

j imaginary unit 29

K number of quantization steps of the image
signal

10, 446

K dimension of the feature spaceM 556

K black color value in the CMYK color space 197

Km constant of the photometric base system,
Km = 683 lm

W

166

k wave number 29

k Boltzmann constant, k ≈ 1,38 · 10−23 J/K 80

k scaling factor for the calculation of the
normalized color values

178

k(x) result of a (detection) filter 492, 688

kν impulse response of the high-pass filter in
multiresolution analysis

735, 739

k wave vector 29

L radiance 80, 147

Ll luminance 147

ΔL∗ difference of brightness 189

L2( · ) space of the quadratically integrable func-
tions

595, 736

Li
LQ radiance emitted by a light source 151



780 List of Symbols

Lj
OF radiance emitted by the object surface (light

field, plenoptic function)
151

L∗ brightness coordinate of the CIELAB color
space

185

l(xTe− d) line as an element of a texture 663, 667

M width of the image (number of columns) 10

M magenta color value in the CMYK color
space

197

M Mueller matrix 36

M feature space 556

m1 empirical average 672

m(x) feature vector for the segment classification
at the image point x

556

(m,n) discrete image coordinates 10

N height of the image (number of lines or rows) 10

N4(x),
N8(x)

4-neighborhood, respectively, 8-
neighborhood

599

Ni occupation number of the energy level Ei 90

N set of natural numbers (non-negative inte-
gers)

386

NA numerical aperture 121

n photon count 63

n refraction index (real-valued) 28, 68

n complex refraction index 77

n normal vector of a surface 67

N (μ, σ2) (Gaussian) normal distribution with expected
value μ and variance σ2

436

O f-number 61, 117

O(f) Fourier transform of the object signal 689

O(f(N)) function class of asymptotic upper bounds
(Big O notation): O(f(N)) := {g(N) | ∃c >

0, N0 > 0 ∀N ≥ N0 g(N) ≤ c · f(N)}

568, 723

o(x) object signal in the image 687



List of Symbols 781

P electric power 83

P (x, y) complex aperture function 49

P̂i entry of the histogram 467, 560

P projection matrix of the camera model 104

P Poynting vector of an electromagnetic wave 30

p scale parameter in multiresolution analysis 732

p degree of polarization of an electromagnetic
wave

35

Q number of image channels 10

Q radiant energy 149

Ql luminous energy 149

q(x) texel 653

R surface roughness 61

R ohmic resistance 89, 210

RCIE color value with respect to the red CIE
primary color

175

Ri region in the feature space 556

Rij reflection function of the object surface 151, 186

Rs red coordinate of the linear sRGB color space 194

R′
s red coordinate of the gamma-corrected sRGB

color space
195

Rs
12, R

p
12 Fresnel reflectance for light polarized per-

pendicularly or parallel to the incidence
plane

73

Rnn correlation matrix 544

R set of real-valued numbers 10

r̄(λ) color value function of the red CIE primary
color

175

rgg(τ ) autocorrelation function of the stationary
stochastic process g(x)

437

rgk(x, τ ) cross-correlation of the stochastic processes g
and k

435



782 List of Symbols

rs12, r
p
12 Fresnel coefficients of reflection for light

polarized perpendicularly or parallel to the
incidence plane

72

rect
(
x
ε

)
rectangular function:

rect
(
x
ε

)
:=

{
1 if |x| < ε

2

0 otherwise

52, 379

rnd( · ) rounding to the next integer 710

SCol(λ) spectral scatter of a colorant layer 173

Sgg(f) power spectral density of the stationary
stochastic process g(x)

438

SHSI saturation in the HSI color space 196

S point set of a binary structuring element 610

SER point set of the binary cross 610

S Stokes vector, Stokes parameters:
S = (S0, S1, S2, S3)

T

33

SNR signal-to-noise ratio 64, 492,
691

trace(A) trace of the matrix A (sum of the diagonal
elements)

340

s scale parameter of the continuous wavelet
transform

729

s(x) structuring element in gray-scale morphol-
ogy

636

s2 empirical variance 672

sinc( · ) cardinal sine function: sinc(x) := sin(πx)
πx 52, 390

sgn( · ) sign function: sgn(x) :=

⎧⎪⎪⎨
⎪⎪⎩
1 x > 0

0 x = 0

−1 x < 0

705

T exposure time 63

T temperature 80, 83

T s
12, T

p
12 Fresnel transmittance for light polarized

perpendicularly or parallel to the incidence
plane

73

t time 25



List of Symbols 783

t(x) image of a texture 653

ts12, t
p
12 Fresnel coefficients of transmission for light

polarized perpendicularly or parallel to the
incidence plane

72

U blue-yellow-chrominance in the YUV color
space

197

U electric voltage 83, 210

UN nominal voltage 83

U umbra 634

U neighborhood of the origin 485, 664,
693

u(x, t) diffused image signal 580

V magnification of an optical imaging 101

V contrast (visibility) of an interference pattern 48

V red-green-chrominance in the YUV color
space

197

V (λ) luminosity function of the human eye for
photopic vision

165, 177

V ′(λ) luminosity function of the human eye for
scotopic vision

165

V (f) transfer function of a detection filter 689

Vp function space in multiresolution analysis 734

v propagation velocity (phase velocity) of an
electromagnetic wave

27, 68

v(x) impulse response of a detection filter 688

v(s) active contour as a parametric curve 588

Wp wavelet space 735

w( · ) two times differentiable function in the
solution of the wave equation

27, 29

w(x) whitening filter 692

X CIE tristimulus value with respect to the
virtual primary color X

176

Xprim basis vector of the virtual primary color X 178



784 List of Symbols

x normalized color value x in the CIE chro-
maticity diagram

179

x̄(λ) CIE color matching function of the virtual
primary color X

176

x three-dimensional position of an electromag-
netic wave

27

x continuous image coordinates:
x = (x, y)T ∈ R2

10

x′ homogeneous coordinates:
x′ = (x′

1, . . . , x
′
N , w)T

102

xc camera coordinates: xc = (xc, yc, zc)
T 101

xw world coordinates: xw = (xw, yw, zw)
T 103

Y CIE tristimulus value with respect to the
virtual primary color Y

176

Y yellow color value in the CMYK color space 197

Y ′ gamma-corrected brightness in technical
color spaces

197

Yprim basis vector of the virtual primary color Y 178

y normalized color value y in the CIE chro-
maticity diagram

179
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