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Preface

I love embedded systems. The first time a motor turned because I told it to, I was
hooked. I quickly moved away from pure software and into a field where I can touch
the world. Just as I was leaving software, the seminal work was done on design pat-
terns.*My team went through the book, discussing the patterns and where we'd consider
using them. As I got more into embedded systems, I found compilers that couldn't
handle C++ inheritance, processors with absurdly small amounts of memory in which
to implement the patterns, and a whole new set of problems where design patterns
didn't seem applicable. But I never forgot the idea that there are patterns to the way we
do engineering. By learning to recognize the patterns, we can use the robust solutions
over and over. So much of this book looks at standard patterns and offers some new
ones for embedded system development. I've also filled in a number of chapters with
other useful information not found in most books.

About This Book
After seeing embedded systems in medical devices, race cars, airplanes, children's toys,
and gunshot location systems, I've found a lot of commonalities. There are a lot of
things I wish I knew then on how to go about designing and implementing software
for an embedded system. This book contains some of what I've learned. It is a book
about good software design in resource constrained environments.

It is also a book about understanding what interviewers look for when you apply for
an embedded systems job. Each section ends with an interview question. These are
generally not language specific; instead they attempt to divine how you think. Good
interview questions don't have a single correct answer. Instead of trying to document
all the paths, the notes after each question provide hints about what an interviewer
might look for in your response. You'll have to get the job (and the answers) on your
own merits.

* Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995),  Design Patterns: Elements of
Reusable Object-Oriented Software .
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One note, though: my embedded systems don't have operating systems. The software
runs on the bare metal. When the software says “turn that light on,” it says it to the
processor without an intermediary. This isn't a book about an embedded operating
system (OS). But the concepts translate to processors running OSs, so if you stick
around, you may learn about the undersides of OSs too. Working without one helps
you really appreciate what an OS does.

This book describes the archetypes and principles that are commonly used in creating
embedded system software. I don't cover any particular platform, processor, compiler
or language, because if you get a good foundation from this book, specifics can come
later.

About the Author
In the field of embedded systems, I have worked on DNA scanners, inertial measure-
ment units for airplanes and race cars, toys for preschoolers, a gunshot location system
for catching criminals, and assorted medical and consumer devices.

I have specialized in signal processing, hardware integration, complex system design,
and performance. Having been through FAA and FDA certification processes, I un-
derstand the importance of producing high-quality designs and how they lead to high-
quality implementations.

I've spent several years in management roles, but I enjoy hands-on engineering and the
thrill of delivering excellent products. I'm happy to say that leaving management has
not decreased my opportunities to provide leadership and mentoring.

Organization of the Book
I read nonfiction for amusement. I read a lot more fiction than nonfiction but, still, I
like any good book. I wrote this book to be read, almost as a story, from cover to cover.
The information is technical (extremely so in spots) but the presentation is casual. You
don't need to program along with it to get the material (though trying out the examples
and applying the recommendations to your code will give you a deeper understanding).

This isn't intended to be a technical manual where you can skip into the middle and
read only what you want. I mean, you can do that, but you'll miss a lot of information
with the search and destroy method. You'll also miss the jokes, which is what I really
would feel bad about. I hope that you go through the book in order. Then, when you
are a hip deep in alligators and need to implement a function fast, pick up the book,
flip to the right chapter and, like a wizard, whip up a command table or fixed point
implementation of variance.

Or you can skip around, reading about solutions to your crisis of the week. I under-
stand. Sometimes you just have to solve the problem. If that is the case, I hope you find
the chapter interesting enough to come back when you are done fighting this fire.
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The order of chapters is:

Chapter 1. Introduction
What is an embedded system? How is development different from traditional soft-
ware?

Chapter 2. Creating a System Architecture
How to create (and document) a system architecture.

Chapter 3. Getting the Code Working
Hardware/software integration during board bring up can be scary, but there are
some ways to make it smoother.

Chapter 4. Outputs, Inputs and Timers
The embedded systems version of “Hello World” is making an LED blink. It can
be more complex than you might expect.

Chapter 5. Task Management
This chapter describes how to set up your system, where to use interrupts (and
how not to), and how to make a state machine.

Chapter 6. Communicating with Peripherals
Different serial communication forms rule embedded systems (UART, SSP, SPI,
I2C, USB, etc.). Networking, bit-bang, and parallel buses are not to be discounted.

Chapter 7. Updating Code
When you need to replace the program running in your processor, you have a few
options from internal bootloaders to building your own solution.

Chapter 8. Doing More with Less
This covers methods for reducing consumption of RAM, code space, and processor
cycles.

Chapter 9. Math
Most embedded systems need to do some form of analysis. Understanding how
mathematical operations and floating point work (and don't work) will make your
system faster.

Chapter 10. Reducing Power Consumption
From reducing processor cycles to system architecture suggestions, this chapter
will help you if your system runs on batteries.

The information is presented in the order that I want my engineers to start thinking
about these things. It may seem odd that architecture is first, though most people don't
get to it until later in their careers. However, I want the people I work with to be thinking
about how their code fits in the system long before I want them to worry about opti-
mization.
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Conventions Used in This Book

Typography
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Terminology
A microcontroller is a processor with on board goodies like RAM, code space (usually
flash) and various peripheral interfaces (e.g. I/O lines). You code runs on a processor
or central processing unit (CPU). A microprocessor is a small processor. But the defi-
nition of small changes.

A DSP (digital signal processor) is a specialized form of microcontroller which focuses
on signal processing, usually sampling analog signals and doing something interesting
with the result. Usually a DSP is also a microcontroller but it has special tweaks to make
it perform math operations faster (in particular multiply and add).

As I wrote the book, I wanted to put in the right terminology so you'd get used to it.
However, this is so critical I don't want to keep changing the name. Throughout the
book, I stick with the term processor to represent whatever it is you are using to im-
plement your system. Most of the material is applicable to whatever you actually have.
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Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O'Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Making Embedded Systems by Elecia White
(O'Reilly). Copyright 2011 Some Copyright Holder, 9781449302146.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O'Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O'Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449302146

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O'Reilly Network, see our website at:

http://www.oreilly.com
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CHAPTER 1

Introduction

Embedded systems are different things to different people. To someone who has been
working on servers, an application developed for a phone is an embedded system. To
someone who has written code for tiny 8-bit microprocessors, anything with an oper-
ating system doesn't seem very embedded. I tend to tell non-technical people that em-
bedded systems are things like microwaves and automobiles that run software but aren't
computers. (Most people recognize a computer as a general purpose device.) Perhaps
an easy way to define the term without haggling over technology is:

An embedded system is a computerized system that is purpose built for its application.

Because its mission is narrower than a general purpose computer, an embedded system
has less support for things that are unrelated to running the application. The hardware
often has constraints: for instance, a CPU that runs more slowly to save battery power;
a system that uses less memory so it can be manufactured more cheaply; processors
that come only in certain speeds or support a subset of peripherals.

The hardware isn't the only part of the system with constraints. In some systems, the
software must act deterministically (exactly the same each time) or real-time (always
reacting to an event fast enough). Some systems require that the software be fault-
tolerant with graceful degradation in the face of errors. For example, consider a system
where servicing faulty software or broken hardware may be infeasible (i.e. a satellite or
a tracking tag on a whale). Other systems require that the software cease operation at
the first sign of trouble, often providing clear error messages (a heart monitor should
not fail quietly).

Compilers, Languages, and Object-Oriented Programming
Another way to identify embedded systems is that they use cross compilers. While a
cross compiler runs on your desktop or laptop computer, it creates code that does not.
The cross compiled image runs on your target embedded system. Since the code needs
to run on your processor, the vendor for the target system usually sells a cross compiler
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or provides a list of available cross compilers to choose from. Many larger processors
use the cross compilers from the GNU family of tools.

Embedded software compilers often support only C, or C and C++. In addition, many
embedded C++ compilers implement only a subset of the language (commonly, mul-
tiple inheritance, exceptions, and templates are missing). There is a growing popularity
for Java, but the memory management inherent to the language works only on a larger
system.

Regardless of the language you need to use in your software, you can practice object-
oriented design. The design principles of encapsulation, modularity, and data abstrac-
tion can be applied to any application in nearly any language. The goal is to make the
design robust, maintainable, and flexible. We should use all the help we can get from
the object-oriented camp.

Taken as a whole, an embedded system can be considered equivalent to an object,
particularly one that works in a larger system (e.g. a remote control talking to a set top
box, a distributed control system in a factory, an airbag deployment sensor in a car).
In the higher level, everything is inherently object-oriented, and it is logical to extend
this down into embedded software.

On the other hand, I don't recommend a strict adherence to all object-oriented design
principles. Embedded systems get pulled in too many directions to be able to lay down
such a commandment. Once you recognize the trade-offs, you can balance the software
design goals and the system design goals.

Most of the examples in this book are in C or C++. I expect that the language is less
important than the concepts, so even if you aren't familiar with the syntax, look at the
code. This book won't teach you any programming language (except for some assembly
language), but as I've said, good design principles transcend language.

Embedded System Development
Embedded systems are special, offering special challenges to developers. Most embed-
ded software engineers develop a toolkit for dealing with the constraints. Before we can
start building yours, let's look at the difficulties associated with developing an embed-
ded system. Once you become familiar with how your embedded system might be
limited, we'll start on some principles to guide us to better solutions.

Debugging
If you were to debug software running on a computer, you could compile and debug
on that computer. The system would have enough resources to run the program and
support debugging it at the same time. In fact, the hardware wouldn't know you were
debugging an application, as it is all done in software.

2 | Chapter 1: Introduction



Embedded systems aren't like that. In addition to a cross compiler, you'll need a cross
debugger. The debugger sits on your computer and communicates with the target pro-
cessor through the special processor interface (see Figure 1-1). The interface is dedi-
cated to letting someone else eavesdrop on the processor as it works. This interface is
often called JTAG (pronounced "jay-tag"), whether it actually implements that wide-
spread standard or not.

Load code to processor

Debug interface

(JTAG)

Serial

Your Computer

Source.c Cross  compiler
and linker

Object file 
for processor

Cross Debugger
- Stop and step through code
- Look at variables
- Reset processor

Serial port terminal

Processor

Running SW outputs
Debug messages

HW support for debugging
(Limited resources)

Code space

Figure 1-1. Computer and target processor

The processor must expend some of its resources to support the debug interface, al-
lowing the debugger to halt it as it runs and providing the normal sorts of debug in-
formation. Supporting debugging operations adds cost to the processor. To keep costs
down, some processors support a limited subset of features. For example, adding a
breakpoint causes the processor to modify the machine code to say “stop here.” How-
ever, if your code is programmed to flash (or any other sort of read-only memory),
instead of modifying the machine code, the processor has to set an internal register
(hardware breakpoint) and compare it at each execution cycle to the address being run,
stopping when they match. This can change the timing of the code, leading to annoying
bugs that occur only when you are (or maybe aren't) debugging. Internal registers take
up resources too, so there are often only a limited number of hardware breakpoints
available.

To sum up, processors support debugging, but not always as much debugging as you
are accustomed to if you're coming from the software world.

The device that communicates between your PC and the processor is generally called
an emulator, an in-circuit emulator (ICE), or a JTAG adapter. These may refer (some-
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what incorrectly) to the same thing or they may be three different devices. The emulator
is specific to the processor (or processor family), so you can't take the emulator you got
for one project and assume it will work on another. The emulator costs add up, par-
ticularly if you collect enough of them or if you have a large team working on your
system.

To avoid buying an emulator or dealing with the processor limitations, many embedded
systems are designed to have their debugging primarily done via printf or some sort
of lighter weight logging to an otherwise unused communication port. While incredibly
useful, this can also change the timing of the system, possibly leaving some bugs to be
revealed only after debugging output is turned off.

Writing software for an embedded system can be tricky, as you have to balance the
needs of the system and the constraints of the hardware. Now you'll need to add another
item to your to-do list: making the software debuggable in a somewhat hostile envi-
ronment.

More Challenges
An embedded system is designed to perform a specific task, cutting out the resources
it doesn't need to accomplish its mission. The resources under consideration include:

• Memory (RAM)

• Code space (ROM)

• Processor cycles or speed

• Battery life (or power savings)

• Processor peripherals

To some extent, these are interchangeable. For example, you can trade code space for
processor cycles, writing parts of your code to take up more space but run more quickly.
Or you might reduce the processor speed in order to decrease power consumption. If
you don't have a particular peripheral interface, you might be able to create it in software
with I/O lines and processor cycles. However, even with trading off, you have only a
limited supply of each resource. The challenge of resource constraints is one of the most
obvious for embedded systems.

Another set of challenges comes from working with the hardware. The added burden
of cross-debugging can be frustrating. During board bring up, the uncertainty of
whether a bug is in the hardware or software can make issues difficult to solve. Unlike
your computer, the software you write may be able to do actual damage to the hard-
ware. Most of all, you have to know about the hardware and what it is capable of. That
knowledge might not be applicable to the next system you work on. You will be chal-
lenged to learn quickly.

Once development and testing are finished, the system is manufactured, something
most pure software engineers never need to consider. However, creating a system that
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can be manufactured for a reasonable cost is a goal that both embedded software en-
gineers and hardware engineers have to keep in mind. Supporting manufacturing is one
way you can make sure that the system that you created gets reproduced with high
fidelity.

After manufacture, the units go into the field. With consumer products, that means
they go into millions of homes where any bugs you created are enjoyed by many. With
medical, aviation, or other critical products, your bugs may be catastrophic (which is
why you get to do so much paperwork). With scientific or monitoring equipment, the
field could be a place where the unit cannot ever be retrieved (or retrieved only at great
risk and expense—consider the devices in volcano calderas) so it had better work. The
life your system is going to lead after it leaves you is a challenge you must consider as
you design the software.

After you've figured out all of these issues and determined how to deal with them for
your system, there is still the largest challenge, one common to all branches of engi-
neering: change. Not only do the product goals change, the needs of the project change
through its lifespan. In the beginning, maybe you want to hack something together,
just to try it out. As you get more serious and better understand (and define) the goals
of the product and the hardware you are using, you start to build more infrastructure
to make the software debuggable, robust and flexible. In the resource constrained en-
vironment, you'll need to determine how much infrastructure you can afford in terms
of development time, RAM, code space and processor cycles. What you started building
initially is not what you will end up with when development is complete. And devel-
opment is rarely ever complete.

Creating a system that is purpose built for an application has an unfortunate side-effect:
the system may not support change as the application morphs. Engineering embedded
systems is not just about strict constraints and the eventual life of the system. The
challenge is figuring out which of those constraints will be a problem later in product
development. You will need to predict the likely course of changes and try to design
software flexible enough accommodate whichever path the application takes. Get out
your crystal ball.

Principles to Confront those Challenges
Embedded systems can seem like a jigsaw puzzle, with pieces that interlock (and only
go together one way). Sometimes you can force pieces together, but the resulting picture
might not be what is on the box. However, we should jettison the idea of the final result
as a single version of code shipped at the end of the project.

Instead, imagine the puzzle has a time dimension which shows how it varies over its
whole life: conception, prototyping, board bring up, debugging, testing, release, main-
tenance, and repeat. Flexibility is not just about what the code can do right now, but
also about how the code can handle its lifespan. Our goal is to be flexible enough to
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meet the product goals while dealing with the resource constraints and other challenges
inherent to embedded systems.

There are some excellent principles we can take from software design to make the
system more flexible. Using modularity we separate the functionality into subsystems
and hide the data each subsystem uses. With encapsulation, we create interfaces be-
tween the subsystems so they don't know much about each other. Once we have loosely
coupled subsystems (or objects, if you prefer), we can change one area of software with
confidence that it won't have an impact on another area. This lets us take apart our
system and put it back together a little differently when we need to.

Recognizing where to break up a system into parts takes practice. A good rule of thumb
is to consider which parts can change independently. In embedded systems, this is
helped by the presence of physical objects that you can consider. If a sensor X talks
over a communication channel Y, those are separate things and good candidates for
being separate subsystems (and code modules).

If we break things into objects, we can do some testing on them. I've had the good
fortune of having excellent QA teams for some projects. In others, I've had no one
standing between my code and the people who were going to use the system. I've found
that bugs caught before software releases are like gifts. The earlier in the process errors
are caught, the cheaper they are to fix and the better it is for everyone.

You don't have to wait for someone else to give you presents. Testing and quality go
hand in hand. Writing test code for your system will make it better, provide some
documentation for your code, and make other people think you write great software.

Documenting your code is another way to reduce bugs. It can be difficult to know the
level of detail when commenting your code.

i++; // increment the index

No, not like that. Lines like that rarely need comments at all. The goal is to write the
comment for someone just like you, looking at the code a year from when you wrote
it. By that time, future-you will probably be working on something different and have
forgotten exactly what creative solution old-you came up with. Future-you probably
doesn't even remember writing this code, so help yourself out with a bit of orientation
(file and function headers). In general, though, assume the reader will have your brains
and your general background, so document what the code does, not how it does it.

Finally, with resource constrained systems, there is the temptation to optimize your
code early and often. Fight the urge. Implement the features, make them work, test
them out, and then make them smaller or faster as needed.

"We should forget about small efficiencies, say about 97% of the time: premature opti-
mization is the root of all evil." – Donald Knuth

You've got only a limited amount of time: focus on where you can get better results by
looking for the bigger resource consumers after you've got a working subsystem. It
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doesn't do you any good to optimize a function for speed if it runs rarely and is dwarfed
by the time spent in another function that runs frequently. To be sure, dealing with the
constraints of the system will require some optimization. Just make sure you under-
stand where your resources are being used before you start tuning.

Further Reading
There are many excellent references about design patterns. These two are my favorite.

1. Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN
0-201-63361-2. There are many excellent references about design patterns, but this
was the one that sparked the revolution. Due to its four collaborators, it is often
known at the “Gang of Four” book (or a standard design pattern may be noted as
a GoF pattern).

2. Freeman, Eric T; Elisabeth Robson, Bert Bates, Kathy Sierra (2004). Head First
Design Patterns. O'Reilly Media. ISBN 0-596-00712-4.

Interview question: hello world
Here is a computer with compiler and an editor. Please implement “hello world”.
Once you've got the basic version working, add in the functionality to get a name
from the command line. Finally, tell me what happens before your code executes
(before the main() function). (Thanks to Phillip King for this question.)

In many embedded systems, you have to develop a system from scratch. With the first
part of this task, I look for a candidate to be able to take a blank slate and fill in the
basic functionality, even in an unfamiliar environment. I want him to have enough
facility with programming that this question is straightforward.

This is a solid programming question, so you'd better know the languages on your
resume. Any of them are fair game for this question. When I ask for a “hello world”
implementation, I look for the specifics of a language (that means knowing which
header file to include and using command arguments in C and C++). I want the inter-
viewee to have the ability to find and fix syntax errors based on compiler errors (though
I am unduly impressed when he can type the whole program without any mistakes,
even typos).

I am a decent typist on my own, but if someone watches over my
shoulder, I end up with every other letter wrong. That's OK, lots of
people are like that. So don't let it throw you off. Just focus on the
keyboard and the code, not on your typing skills.

The second half of the question is where we start moving into embedded systems. A
pure computer scientist tends to consider the computer as an imaginary ideal box for
executing his beautiful algorithms. When asked what happens before the main func-
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tion, he will tend to answer along the lines of "you know, the program runs" but with
no understanding of what that implies.

However, if he mentions "start" or “cstart,” he is well on his way in the interview. In
general, I want him to know that the program requires initialization beyond what we
see in the source, no matter what the platform is. I like to hear mention of setting the
exception vectors to handle interrupts, initializing critical peripherals, initializing the
stack, initializing variables, and if there is any C++ objects, calling creators for those.
It is great if he can describe what happens implicitly (by the compiler) and what happens
explicitly (in initialization code).

The best answers are step-by-step descriptions of everything that might happen, with
an explanation of why they are important, and how they happen in an embedded sys-
tem. An experienced embedded engineer often starts at the vector table, with the reset
vector, and moves from there to the power-on-behavior of the system. This material is
covered later in the book so if these terms are new to you, don't worry.

An electrical engineer who asks this question gives bonus points if a candidate can, on
further discussion of power-on-behavior, explain why an embedded system can't be up
and running 1 microsecond after the switch is flipped. The EE looks for an under-
standing of power sequencing, power ramp up-time, clock stabilization time, and pro-
cessor reset/initialization delay.
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CHAPTER 2

Creating a System Architecture

Even small embedded systems have so many details that it can be difficult to recognize
where patterns can be applied. You'll need a good view of the whole system to under-
stand which pieces have straightforward solutions and which have hidden dependen-
cies. A good design is created by starting with an OK design and then improving on it,
ideally before you start implementing it. And a system architecture diagram is a good
way to view the system and start designing the software.

Starting a project from scratch can be difficult. A product definition is seldom fixed at
the start, so you may go round and round to hammer out ideas. Once the product
functions have been sketched out on a white board, you can start to think about the
software architecture. The hardware folks are doing the same thing (hopefully in con-
junction with you as the software designer, though their focus may be a little different).
In short order, you'll have a software architecture and a draft schematic. Depending on
your experience level, the first few projects you design will likely be based on other
projects so that the hardware will be based on an existing platform with some changes.

Embedded systems depend heavily on their hardware. Unstable hardware leaves the
software looking buggy and unreliable. In this section, we'll look at creating a system
architecture from the general hardware level and going up to the function level. It is
possible (and usually preferable) to go the other way, looking at the system functions
and determining what hardware is necessary to support them. However, I'm going to
focus on starting at the low level hardware-interfacing software to reinforce the idea
that your product depends on the hardware features being stable and accessible.

When you do a bottoms-up design as described here, recognize that the hardware you
are specifying is archetypal. While you will eventually need to know the specifics of the
hardware, initially accept that there will be some hardware that meets your require-
ments (i.e. some processor that does everything you need). Use that to work out the
system, software and hardware architectures before diving into details.
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Creating System Diagrams
Just as hardware designers create schematics, you should make a series of software
block diagrams that show the relationships between the various parts of the software
system. Such diagrams will give you a view of the whole system, help you identify
dependencies and provide insight into the design of new features.

I recommend three different diagrams:

• Architecture block diagram

• Hierarchy of control organization chart

• Software layering view

The Block Diagram
Design is straightforward at the start because you are considering the physical compo-
nents of the system, and you can think in an object-oriented fashion—whether or not
you are using an object-oriented language—to model your software around the physical
components. Each chip attached to the processor is an object. You can think of the
wires that connect the chip to the processor (the communication methods) as another
set of objects.

Start your design by drawing these as boxes where a chip is in the center, the commu-
nication objects are in the processor and the peripherals are each attached to those.

For this example, I'm going to introduce a type of memory called flash memory. While
the details aren't important here, it is a relatively inexpensive type of memory used in
many devices. Many flash memory chips communicate over the SPI bus, a type of serial
communication (discussed in more detail later). Most processors cannot execute code
over SPI so the flash is used for off-processor storage. Our schematic, shown at the top
of Figure 2-1, shows that we have some flash memory attached to our processor via SPI.

In our software block diagram, we'll add the flash as a peripheral (a box outside the
processor) and a SPI box inside the processor to show that we'll need to write some SPI
code. Our software diagram looks very similar to the hardware schematic at this stage,
but as we identify additional software components, it will diverge.

The next step is to add a flash box inside the processor to indicate that we'll need to
write some flash-specific code. It's valuable to separate the communication method
from the peripheral; if there are multiple chips connected via the same method, they
should all go to the same communications block in the chip. The diagram will at that
point warn us to be extra careful about sharing that resource, and to consider the per-
formance and resource contention issues that sharing brings.

Figure 2-1 shows a snippet of a schematic and the beginnings of a software block dia-
gram. Note that the schematic is far more detailed. At this point in a design, we want
to see the high level items to determine what objects we'll need to create and how they
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all fit together. Keep the detailed pieces in mind, particularly where the details may
have a system impact, but try to keep the details out of the diagram if possible.
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Figure 2-1. Comparison of schematic and initial software block diagram
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The next stage is to add some higher level functionality. What is each peripheral chip
used for? This is simple if each has only one function. For example, if our flash is used
to store bitmaps to put on a screen, we can put a box on the architecture to represent
the display assets. This doesn't have an off-chip component, so its box goes in the
processor. We'll also need boxes for a screen and its communication method, and an-
other box to convey flash based display assets to the screen. It is better to have too
many boxes at this stage than too few. We can combine them later.

Add any other software structures you can think of: databases, buffering systems,
command handlers, algorithms, state machine, etc. You may not know exactly what
you'll need for those (some of them we'll talk about more later in the book) but try to
represent everything from the hardware to the product function in the diagram. See
Figure 2-2.

After you have sketched out this diagram on a piece of paper or a white board (probably
multiple times because the boxes never end up being big enough or in the right place),
you may think you've done enough. However, another drawing may give additional
insight.

Looking at the various views may show you some hidden, ugly spots with critical bot-
tlenecks, poorly understood requirements, or an innate failure to implement the prod-
uct on the platform. Often these deficiencies can be seen from only one angle or are
represented by the boxes that most change between the different diagrams. By looking
at them from the right perspective, you may not only identify the tricky modules but
also see a path to making a good solution.
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Font data

LCD

Backlight

SPI
Images

Backlight PNMIO

Text

Generated 
graphics

Flash
Driver

Screen
buffer

Parallel LCD
Driver

RENDERING

MAIN PROCESSOR

Figure 2-2. Software block diagram
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Hierarchy of Control
The next type of software architecture diagram looks like an organizational chart, as
in Figure 2-3. Main is the highest level. If you know how the algorithm is going to use
each piece, you can fill in the next level with algorithm-related objects. If you don't
think they are going to change, you can start with the product related features and then
drop down to the pieces we do know, putting the most complex on top. We can then
fill in the lower-level objects that are used by a higher-level object. So for instance, our
SPI object is used by our flash object, which is used by our display assets object, and
so on. You may need to add some pieces here, ones you hadn't thought of before. You
should determine whether those pieces need to go on the block diagram too (probably).

Sensor LoggingDisplay

Rendering

Text and 
fonts

Images

Flash

SPI

Generated
graphics

LCD

.... ....

Parallel
interface

MAIN

Figure 2-3. Organizational diagram

However, as much as we'd like to devote a peripheral to one function (e.g. the display
assets in the flash memory), the limitations of the system (cost, speed, etc.) don't always
support that. Often you end up cramming multiple, not particularly compatible func-
tions into one peripheral.
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In the diagram, you can see where the text and images share the flash driver and its
child SPI driver. This sharing is often necessary, but it is a red flag in the design because
you'll need special care to avoid contention around the resource and make sure it is
available when needed. Luckily, this figure shows that the rendering code controls both
and will be able to ensure that only one of the resources, text or images, is needed at a
time, so there is unlikely to be a conflict between them.

Let's say that your team has determined that the system we've been designing needs
each unit to have a serial number. It is to be programmed in manufacturing and com-
municated upon request. We could add another memory chip as a peripheral, but that
would increase cost, board complexity, and the software complexity. The flash we
already have is large enough to fit the serial number. This way only software complexity
has to increase.

In Figure 2-4, we print the system serial number through the flash that previously was
devoted to the display assets. If the logging subsystem needs to get the serial number
asynchronously from the display assets (say I've got two threads or my display assets
are used in an interrupt), the software will have to avoid collisions and any resulting
corruption.

Sensor LoggingDisplay

Rendering

Text and 
fonts

Images

Flash

SPI

Generated
graphics

LCD

.... ....

Parallel
interface

MAIN

Print serial
number

Figure 2-4. Organizational diagram with a shared resource

Each time something like this is added, some little piece where you are using A and B
and have to consider a potential interaction with C, the system becomes a little less
robust. This added awareness is very hard to document, and shared resources cause
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pains in the design, implementation, and maintenances phases of the project. The ex-
ample here is pretty easily fixed with a flag, but all shared resources should make you
think about the consequences.

Layered View
The last architecture drawing looks for layers and represents objects by their estimated
size, as in Figure 2-5. This is another diagram to start with paper and pencil. Start at
the bottom of the page and draw boxes for the things that go off the processor (like our
communication boxes). If you anticipate that one is going to be more complicated to
implement, make it a little larger. If you aren't sure, make them all the same size. Next,
add the items that use the lowest layer to the diagram. If there are multiple users of a
lower level object, they should all touch the lower level object (this might mean making
an object bigger). Also, each object that uses something below it should touch all of
the things it uses, if possible.

That was a little sneaky. I said to make the object size depend on its complexity. Then
I said that if an object has multiple users, make it bigger. As described in the previous
section, shared resources increase complexity. So when you have a resource that is
shared by so many things they can't all touch, it will probably increase in complexity
even if the goal of the module is straightforward. It isn't only bottom layers that have
this problem. In the diagram, I initially had the rendering box much smaller because
moving data from the flash to the LCD is easy. However, once the rendering box had
to control all the bits and pieces below it, it became larger. And sure enough, ultimately,
on the project that I took this snippet from, rendering became a relatively large module
and then two modules.

Eventually, the layered view shows you where the layers in your code are, letting you
bundle groups of resources together if they are always used together. For example, the
LCD and parallel I/O boxes touch only each other. If this is the final diagram, maybe
those could be combined to make one module. The same goes for the backlight and
PWM output.

Also look at the horizontal groupings. Fonts and images share their higher-level and
lower-level connections. Possibly they should be merged into one module because they
seem to have the same inputs and outputs. The goal of this diagram is to look for such
points and think about the implications of combining the boxes in various ways. You
might end up with a simpler design.

Finally, if you have a group of several modules that try to touch the same lower level
item, you might want to take some time to break apart that resource. Would it be useful
to have a flash driver that only dealt with the serial number? Maybe one that read the
serial number on initialization and then never reread it so that the display subsystem
could keep control of the flash? Understand the complexity of your design and your
options for designing the system to modify that complexity. A good design can save
time and money in implementation and maintainability.
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Figure 2-5. Layered software diagram

From Diagram to Architecture
So now, sitting with three different architecture drawings, where do you go next? Maybe
you've realized there are a few pieces of code you didn't think about initially. And maybe
you have progressed a bit at figuring out how the modules interact. Before we consider
those interactions (interfaces), there is one thing that is really worth spending some
time on: what is going to change? At this stage, everything is experimental so it is a good
bet that any piece of the system puzzle is going to change.

Given your product requirements, you may be pretty confident about some of the
functions of your system. Our example, whatever it does, needs a display, and the best
way to send bitmaps to it seems like flash. Many flash chips are SPI, so that seems like
a good bet too. However, exactly which flash chip is used may change. The LCD, the
image, or font data may also change. Even the way you store the image or font data
may change. The boxes in the diagram should represent the Platonic ideals of each
thing instead of a specific implementation.

Encapsulate Modules
Thus we are making interfaces between the modules that don't depend specifically on
what is in them (this is encapsulation!). We use the three different architecture drawings
to figure out the best places for those interfaces. Each box will probably have its own
interface. Maybe those can be mashed together into one object but is there a good
reason to do it now instead of later?

Sometimes yes. If you can reduce some complexity of your diagrams without giving up
flexibility in the future, it may be worth collapsing some dependency trees. Here are
some things to look for:

• In the hierarchy chart, look for objects that are used only by one other object. Are
these both fixed? Or can one change independently of the other?
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• In the layered diagram, look for collections of objects that are always used together.
Can these be grouped together in a higher level interface to manage the objects?
You'd be creating a hardware abstraction layer.

• Which modules have lots of interdependencies? Can they be broken apart and
simplified? Or can the dependencies be grouped together?

In whole, as you look at the architecture drawings, consider each box as a software file,
a module, or possibly an object. What interfaces does it have to its neighbors?

Delegation of Tasks
The diagrams also help you divide up and apportion work to minions. Which parts of
the system can be broken off into separate, describable pieces that someone else can
implement?

What if you have no chance of getting minions? It is still important to
go through this thought process. You want to reduce interdependencies
where possible, which may cause you to redesign your system. And
where you can't reduce the interdependencies, you can at least be wary
of them when coding.

Too often we want our minions to do the boring part of the job while we get to do only
the fun part. ("Here minion, write my test code, do my documentation, fold my laun-
dry.") Not only does it drive away the good minions, it tends to decrease the quality of
your product. Instead, think about which whole box (or whole subtree) you can give
someone else. As you try to describe the interdependencies to your imaginary minion,
you may find that they become worse than you've represented in the diagrams. Or you
may find that a simple flag (such as a semaphore) to describe who currently owns the
resource may be enough to get started.

Looking for things that can be split off and accomplished by another person will help
you identify sections of code that can have a simple interface between them. Also, when
marketing asks how this project could be made to go faster, you'll have an answer ready
for them. However, there is one more thing our imaginary minion provides: assume he
or she is slightly deficient and you need to protect yourself and your code from the
faulty minion's bad code.

What sort of defensive structures can you picture erecting between modules? Imagine
the data being passed between modules. What is the minimum amount of data that
can move between boxes (or groups of boxes)? Does adding a box to your group mean
that significantly less data is passed? How can the data be stored in a way that will keep
it safe and usable by all those who need it?

The minimization of complexity between boxes (or at least between groups of boxes)
will make the project go more smoothly. The more that your minions are boxed into
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their own sets of code, with well understood interfaces, the more everyone will be able
to test and develop their own code.

Driver Interface: Open, Close, Read, Write, IOCTL
The previous section used a top-down view of module interfaces to train you to consider
encapsulation and think about where you can get help from another person. Going
from the bottom up works as well. The bottom here consists of the modules that talk
to the hardware (the drivers).

Many drivers in embedded systems are based on API used call devices in Unix systems.
Why? Because the model works well in many situations and it saves you from rein-
venting the wheel every time you need access to the hardware. The interface to Unix
drivers is straightforward:

open
Opens the driver for use. Similar to (and sometimes replaced by) init.

close
Cleans up the driver, often so another subsystem can call open.

read
Reads data from the device.

write
Sends data to the device.

ioctl
(Pronunciation: eye-octal.) Stands for input/output (I/O) control and handles the
features not covered by the other parts of the interface. It is somewhat discouraged
by kernel programmers due to its lack of structure but still very popular.

In Unix, a driver is part of the kernel. Each of these functions takes an argument with
a file descriptor that represents the driver in question (such as /dev/tty01 for the first
terminal on the system). That gets pretty cumbersome for an embedded system without
an operating system. The idea is to model your driver upon Unix drivers. A sample
functionality for an embedded system device might look like any of these:*

• spi.open()

• spi_open()

• SpiOpen(WITH_LOCK)

• spi.ioctl_changeFrequency(THIRTY_MHz)

• SpiIoctl(kChangeFrequency, THIRTY_MHz)

* Style is very important. Coding guidelines will save you debugging time. They won't quash your creativity.
If you don't have some, look at the style guide Google suggests for open source projects. Their explanations
of why they chose what they did might help you formulate your own guide.
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This interface straightens outs the kinks that can happen at the driver level, making
them less specific to the application and creating reusable code. Further, when someone
comes up to your code, if the driver looks like it has these functions, they will know
what to expect.

The driver model in Unix sometimes includes two newer functions. The
first, select (or poll), waits for the device to change state. That used to
be done by getting empty reads or polling ioctl messages but now it has
its own function. The other one is mmap, which controls the memory map
the driver shares with the code that calls it.

If your round peg can't fit into this POSIX-compliant square hole, don't force it. But if
it looks like it might, starting with this standard interface can make your design just a
little better and easier to maintain.

Adapter Pattern
One traditional software design pattern is called adapter (or sometimes wrapper). It
converts the interface of an object into one that is easier for a client (a higher level
module). Often times, adapters are written over software APIs to hide ugly interfaces
or libraries that change.

Many hardware interfaces are like ungainly software interfaces. That makes each driver
an adapter, as shown in figure Figure 2-6. If you create a common interface to your
driver (even if it isn't open, close, read, write, ioctl), the hardware interface can change
without your upper-level software changing. Ideally, you can switch platforms alto-
gether and need only to rework the underpinnings.

Note that drivers are stackable, as shown in Figure 2-7. In our example, we've got a
display that uses flash memory that in turn uses SPI communication. When you call
open for the display, it will call its subsystems initialization code, which will call open
for the flash, which will call open for the SPI driver. That's three levels of adapters, all
in the cause of portability and maintainability.
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Figure 2-6. Drivers implement the Adapter pattern

If the interface to each level is consistent, the higher level code is pretty impervious to
change. For example, if our SPI flash changes to an I2C EEPROM (a different com-
munication bus and a different type of memory), the display driver may not need to
change, or may only need to replace flash functions with EEPROM ones.

In Figure 2-7, I've added a function called test to the interface of each of the modules.
In Chapter 3, I'll discuss some strategies for choosing automated tests to make your
code more robust. For now, they are just place holders.

20 | Chapter 2: Creating a System Architecture



...

DISPLAY
open, close, read, 

write, IOCTL, test

RENDERING
INIT, test

interface TBD

TEXT AND FONTS
INIT, test

interface TBD

IMAGE
INIT, test

Get image data

FLASH
Open, close, read, 
write, IOCTL, test

SPI
Open, close, read,
write, IOCTL, test

Figure 2-7. Interfaces for display subsystem and below
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Getting Started With Other Interfaces
Moving away from drivers, your definition of a module interface depends on the spe-
cifics of the system. It is pretty safe to say that most modules will also need an initial-
ization function (though drivers often use open for this). Initialization may be happen
as objects are instantiated during startup, or it may be a function called as the system
initializes. To keep modules encapsulated (and more easily reused), high-level func-
tions should be responsible for initializing the modules they depend upon. A good
init function should be able to be called multiple times if it is used by different sub-
systems. A very good init function can reset the subsystem (or hardware resource) to
a known good state in case partial system failure.

Now that you don't have a completely blank slate anymore, it may be easier to fill in
the interface of each of your boxes. Consider how to retain encapsulation for your
module, your hypothetical minion's contribution, and the driver model, start working
out the responsibilities of each box in your architecture diagrams.

Having created three versions of the architecture, you may not want to
maintain each one. As you fill in the interface, you may want to focus
on whichever one is most useful to you (or clearest to your boss).

Example: A Logging Interface
A resource constrained system often lacks a path to let your code talk to the outside
world. The goal of the logging module noted in the example system is to implement a
robust and usable logging system. In this section we'll start off by defining the require-
ments of the interface, and then explore some options for the interface (and the local
memory). It doesn't matter what your communication method is. By coding to the
interface in the face of limitations, you leave yourself open to reusing your code in
another system.

Logging debug output can slow down a processor significantly. If your
code behaviour changes when you turn logging on and off, consider how
the timing of various subsystems works together.

The implementation is dependent on your system. Sometimes the best you can do is
toggle an I/O line attached to an LED and send your messages via Morse code (I kid
you not). However, most of the time, you get to write text debug messages to some
interface. Making a system debug-able is part of making it maintainable. Even if your
code is perfect, the person who comes after you may not be so lucky when they add a
newly required feature. A logging subsystem will not only help you during develop-
ment, it is an invaluable tool during maintenance.
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I have occasionally wished for a complete mind meld when a system is acting oddly.
Sadly, there are never enough resources available to output everything you might want.
Further, your logging methodology may change as your product develops. This is an
area where you should encapsulate what changes by hiding its functions called from
the main interface. The small overhead you add will allow you greater flexibility. If you
can code to the interface, changing the underlying pathway won't matter.

Commonly, you want to output a lot of information over a relatively small pipe. As
your system gets bigger, the pipe looks smaller. Your pipe may be a simple serial port
connecting via RS232 to your computer, a pathway available only with special hard-
ware. It may be a special debug packet that happens over your network. The data may
be stored in an external RAM source and be readable only when you stop the processor
and read via JTAG. The log may be available only when you run on the development
kit, but not on the custom hardware. So the first big requirement for the module is: the
logging interface should be able to handle different underlying implementations.

Second, as you work on one area of the system at a time, you may not need (or want)
messages from other areas. So the logging methods should be subsystem specific. Of
course, you do need to know about catastrophic issues with other subsystems.

The third requirement is a priority level that will let you debug the minutiae of the
subsystem you are working on without losing critical information from other parts of
the code.

Typical calls needed for logging

Defining the main interface requirements of a module is often enough of a definition,
particularly during design. However, those are a lot of words for something that can
be summed up in one line of code:

void Log(enum eLogSubSystem sys, enum eLogLevel level, char *msg);

This prototype isn't fixed in stone and may change as the interface develops, but it
provides a useful shorthand to other developers.

The log levels might include: none, information only, debugging, warning, error, and
critical. The subsystems will depend on your system but might include: communica-
tions, display, system, sensor, updating firmware, etc.

Note that the log message takes a string and not a variable argument like printf or
iostream. You can always use a library to build the message if you have that function-
ality. However, the printf and iostream family of functions are some of the first things
cut from a system needing more code space and memory. If that is the case, you'll
probably end up implementing what you need most on your own, so this interface
should have the bare minimum of what you'll need:

void LogWithNum(enum eLogSubSystem sys, enum eLogLevel level, char *msg, int number);
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Using the subsystem identifiers and the priority levels allows you to change the debug
options remotely (if the system allows that sort of thing). When debugging something,
you might start with all subsystems set to a verbose priority level (e.g. debug) and once
a subsystem is cleared, raise its priority level (e.g. error). This way you get the messages
you want when you want them. So we'll need an interface to allow this flexibility on a
subsystem and priority level:

void LogSetOutputLevel(enum eLogSubSystem sys, enum eLogLevel level)

Because the calling code doesn't care about the underlying implementation, it shouldn't
have direct access to it. All logging functions should go through this log interface.
Ideally, the underlying interface isn't shared with any other modules, but your archi-
tecture diagram will tell you if that isn't true. The log initialization function should call
whatever it depends on, whether it's to initialize a serial port driver or set up I/O lines.

Because logging can change the system timing, sometimes the logging system needs to
be turned off in a global way. This allows you to say with some certainty that the
debugging subsystem is not interfering in any way with any other part of the code.
While these may not be used often, an on/off switch is an excellent addition to the
interface:

void LogGlobalOn();
void LogGlobalOff();

Version Your Code
At some point, someone will need to know exactly what revision of code is running. In
the application world, putting a version string in the help/about box is straightforward.
In the embedded world, the version should be available via the primary communication
path (UART, I2C, other bus, etc.). If possible, this should print out automatically on
boot. If that is not possible, try to make it available through a query. If that is not
possible, it should be compiled into its own object file and located at a specific address
so that it is available for inspection.

The ideal version is of the form A.B.C where:

• A is the major version (1 byte)

• B is the minor version (1 byte)

• C is a build indicator (2 bytes)

If the build indicator does not increment automatically, you should increment it often
(numbers are cheap). Depending on your output method and the aesthetics of your
system, you may want to add an interface to your logging code for displaying the version
properly:

void LogVersion(struct sFirmwareVersion *v)

The runtime code is not the only piece of the system that should have a version. Each
piece that gets built or updated separately should have a version that is part of the
protocol. For example, if an EEPROM is programmed in manufacturing, it should have
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a version that is checked by the code before the EEPROM is used. Sometimes, you don't
have the space or processing power to make your system backward compatible, but it
is critical to make sure all of the moving pieces are currently compatible.

The logging interface hides the details of how the logging is actually accomplished,
letting you hide changes (and complexity). Your logging needs may change with the
development cycle. For example, in the initial phase, your development kit may come
with an extra serial port and your logging information can go to a computer. In a later
phase, the serial port may not be available so you may pare your output back to an LED
or two.

Designs of the other subsystems do not (and should not) depend on the way that logging
is carried out. If you can say that about the interface to your modules (“The other
subsystems do not depend on the way XYZ is carried out, they just call the given in-
terface”), you've successfully designed the interfaces of the system.

State of logging

As you work on the architecture, some areas will be easier to define than others, espe-
cially if you've done something similar before. And as you define interfaces, you may
find that ideas come to you and implementation will be easy (even fun), but only if you
start right now.

Hold back a bit when you get this urge to jump into implementation; try to keep ev-
erything to the same level. If you finish gold-plating one module before defining the
interface to another, you may find that they don't fit together very well.

Once you've gotten a little further with all the modules in the system, it may be time to
consider the state associated with each module. In general, the less state held in the
module, the better (so that your functions do the same things every time you call them).
However, eliminating all state is generally unavoidable (or at least extremely cumber-
some).

Back to our logging module: can you see the internal state needed? The LogGlobalOn
and LogGlobalOff functions set (and clear) a single variable. LogSetOutputLevel needs
to have a level for each subsystem.

You have some options for how to implement these variables. If you want to eliminate
local state, you could put them in a structure (or object) that every function calling into
the logging module would need to have. However, that means passing the logging
object to every function that might possibly need logging. And to every function that
has a function that needs to log something.
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You may think passing around the state like that is convoluted. And for
logging, I'd agree. However, have you ever wondered what is in the file
handler you get back when your code opens a file? Open files embody
lots of state information.

Maybe this isn't a good idea. How can every user of the logging subsystem get access
to it? As noted in “Object Oriented Programming in C” on page 26, you can create
some object oriented characteristics in C. Even in a more object oriented language, you
could have a module where the functions are globally available and the state is kept in
a local object. However, there is another way to give access to the logging object without
opening up the module completely.

Object Oriented Programming in C
Why not use C++? Most systems have pretty good embedded C++ compilers. How-
ever, there is a lot of code already written in C, and sometimes you need to match what
is already there. Or maybe you just like C for its speed. That doesn't mean you should
leave your object oriented principles behind.

One of the most critical ideas to retain is data hiding. In an object oriented language,
your object (class) can contain private variables. This is a polite way of saying they have
internal state that no one else can see. C has different kinds of global variables. By
scoping a variable appropriately, you can mimic the idea of private variables (and even
friend objects). First, let's start with the C equivalent of a public variable, declared
outside a function, usually at the top of your C file:

// everyone can see this global with an “extern tBoolean_t gLogOnPublic;” in the
// file or in the header
tBoolean gLogOnPublic;

These are the global variables upon which spaghetti code is built. Try to avoid them.
A private variable is declared with the static keyword and is declared outside a func-
tion, usually at the top of your C file.

// file variables are globals with some encapsulation
static tBoolean gLogOnPrivate; 

The static keyword means different things in different places; it's
actually kind of annoying that way. For functions and variables out-
side functions, the keyword means “hide me so no one else can see”
and limits scope. For variables within a function, the static keyword
maintains the value between calls, acting as a global variable whose
scope is only the function it is declared in.

A set of loose variables is a little difficult to track, so consider a structure filled with the
variables private to a module:

// contain all the global variables into a structure:
struct {
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  tBoolean logOn;
  static enum eLogLevel outputLevel[NUM_LOG_SUBSYSTEMS];
} sLogStruct;
static struct sLogStruct gLogData;

If you want your C code to be more like an object, this structure would not be part of
the module, but would be created (malloc'd) during initialization (LogInit, for the log-
ging system discussed in this chapter) and passed back to the caller like this:

struct sLogStruct* LogInit()
{
  int i;
  struct sLogStruct *logData = malloc(sizeof(*logData));
  logData->logOn = FALSE;
  for (i=0; i < NUM_LOG_SUBSYSTEMS; i++) {
    logData-> outputLevel = eNoLogging;
  }
  return logData;
}

The structure can be passed around as an object. Of course, you'd need to add a way
to free the object; that just requires adding another function to the interface.

Pattern: Singleton

Another way to make sure every part of the system has access to the same log object is
to use another design pattern, this one called singleton.

When it is important that a class have exactly one instance, the singleton pattern is
commonly seen. In an object oriented language, the singleton is responsible for inter-
cepting requests to create new objects in order to preserve its solitary state. The access
to the resource is global (anyone can use it), but all accesses go through the single
instance. There is no public constructor. In C++ this would look like:

class Singleton {
public:
  static Singleton* Instance() {
    if (mInstance == 0) {
      mInstance = new Singleton;
    }
    return mInstance;
  }
protected:
  Singleton(); // no one can create this except itself
private:
  static Singleton* mInstance = 0;
}

For logging, the singleton lets the whole system have access to the system with only
one instantiation. Often, when you have a single resource (such as a serial port) that
different parts of the system need to work with, a singleton can come in handy to avoid
conflicts.
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In an object oriented language, singletons also permit lazy allocation and initialization
so that modules which are never used don't consume resources.

Sharing Private Globals

Even in a procedural language like C, the concept of the singleton has a place. The data
hiding goodness of object oriented design was noted in “Object Oriented Programming
in C” on page 26. Protecting a module's variables from modification (and use) by other
files will give you a more robust solution.

However, sometimes you need a back door to the information, either because you need
to reuse the RAM for another purpose (Chapter 8) or because you need to test the
module from an outside agency (Chapter 3). In C++, you might use a friend class to
gain access to otherwise hidden internals.

In C, instead of making the module variables truly global by removing the static key-
word, you can cheat a little and return a pointer to the private variables:

static struct sLogStruct gLogData;
struct sLogStruct* LogInternalState() {
  return &gLogData;
}

This is not a good way to retain encapsulation and keep data hidden, so use it sparingly.
Consider guarding against it during normal development:

static struct sLogStruct gLogData;
struct sLogStruct* LogInternalState() {
#if PRODUCTION
  #error “Internal state of logging protected!”
#else
  return &gLogData;
#endif /* PRODUCTION */
}

As you design your interface and consider the state information that will be part of your
modules, keep in mind that you will also need methods for verifying your system.

A Sandbox to Play In
That pretty much covers the low and mid-level boxes, but we've still got some algorithm
boxes to think about. One goal of a good architecture is to keep the algorithm as seg-
regated as possible. The common pattern of Model-View-Controller (MVC) is an ex-
cellent one to apply here. The purpose of the pattern is to isolate the gooey center of
the application from the user interface so they can be independently developed and
tested.

In this pattern, the view is the interface to the user, both input and output. In our device,
the user may not be a person: it may be hardware sensors (input) and a screen (output).
In fact, if you have a system without a screen, but that sends data over a network, the
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view may have no visual aspect but it is still a part of the system as the form of input
and output. The model is the domain-specific data and logic. It is the part that takes
raw data from the input and creates something useful, often using the algorithm that
makes your product special. The controller is the glue that works between the model
and the view: it handles how to get the input to the model for processing, and data
from the model for display or outside communication. There are standard ways for
these three elements to interact, but for now it is enough to understand the separation
of functions.

Different Aspects of the Model-View-Controller
The good news about the Model-View-Controller is that nearly everyone agrees that
there are three parts to it. The bad news is that this might be the only thing everybody
agrees on.

The model holds the data, state, and application logic. If you are building a weather
station, the model has the temperature monitoring code and predictive models. For an
MP3 player, the model consists of database of music and the codec necessary to play it.

Traditionally thought of in contexts where there is a screen, the view represents the
display handling functions. The view is what the user sees of the model. A view could
a picture of a sun or a detailed read-out of the statistics from a weather service. Those
are both views of the same information.

The controller is the somewhat nebulous cloud that sits between (or near) the model
and view to help them work together. The goal of the controller is to make the view
and model independent of each other so that they can each be reused. For that MP3
player, your company may want a consistent interface even though your audio playing
hardware was revamped. Or maybe it is the same hardware but marketing wants to
make the system look more child friendly. How can you achieve both of these, touching
the smallest amount of code? The controller enables the model/view separation by
providing services such as translating a user button press into an action on the model.

Figure 2-8 shows a basic interpretation of the model view controller and some common
variants. There are a lot of different ways to put it together, some of them seemingly
contradictory. The term MVC is kind of like the adjective sanguine, which can mean
murderous or cheerfully optimistic. You may need some context clues to know which
it is, but you are probably talking about someone's mood either way.
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Figure 2-8. Model View Controller Overview

There is another way to use the MVC pattern, which serves as a valuable way to develop
and verify algorithms for embedded systems: use a virtual box or sandbox. The more
complex the algorithm, the more this is a necessity.

Take all of the inputs to the algorithm's box and make an interface that lets you quickly
and easily generate them from your host system or from a file on a PC. Redirect the
output of the algorithm to a file. Now you can test the algorithm on a PC (where the
debugging environment may be a lot better than an embedded system) and rerun the
same data over and over again until any anomalous behavior can be isolated and fixed.
It is a great way to do regression tests to verify that little algorithm changes don't have
unforeseen side effects.

In the sandbox environment, your files and the way you read the data in are the view
part of the MVC. The algorithm you are testing is the model, and shouldn't change.
The controller is the part that changes when you put the algorithm on a PC. Consider
an MP3 player (Figure 2-9) and what the MVC diagram might look like with a sandbox.
Note that the view and controller will both have relatively strict APIs because you will
be replacing those as you move from virtual device to actual device.
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Your input view file might be like a movie script, directing the sandbox to act as the
user might. The first field is a time when the second field, a method in your system, is
fired:

Time, Action, Variable arguments // comment
00:00.00, PowerOnClean          // should do all of the initialization without futher interaction
00:01.00, PlayPressed           // no action, no song loaded
00:02.00, Search, "Still Alive" // expect list back based on available matches
00:02.50, PlayPressed           // expect song to be played

The input file can look however you want. For instance, you might have multiple output
files, one to describe the state and the changes sent to the user interface from the con-
troller and the model and another one to output what the model would send to the
digital-to-analog converter (DAC). The first output file might look like this:

Time, Subsystem, Log message
00:00:01, System, Initilization: sandbox version 1.3.45
00:01:02, Controller, Minor error: no song loaded
00:02:02, Controller, 4 songs found for "Still Alive" search, selecting ID 0x1234
00:02.51, Controller, Loading player class to play ID 0x1234

Again, you get to define the format so that it meets your needs (which will probably
change). For instance, if you have a bug where the player plays the wrong song, the
sandbox could output the song ID in every line.

The Model-View-Controller here is a very high level pattern, a system-level pattern.
Once you look at breaking up the system this way, you might find that it has fractal
qualities. For instance, what if you only want to be able to test the code that reads a
file from the memory and outputs it to a DAC? The file name and the resulting bitstream
of information that would go to the DAC could be considered the view (which consists
of inputs and outputs, whether or not they go to humans), the logic and data necessary
to convert the file would be the model, and the file handler may be the controller since
that would have to change between platforms.

With this idea of separation and sandboxing in mind, take a look at the architecture
drawings and see how many inputs the algorithm has. If there is more than one, does
it make sense to have a special interface object? Sometimes it is better to have multiple
files to represent multiple things going on. Looking further into the diagrams, does it
make sense to incorporate the virtual box at a lower level than just the product feature
algorithms? This expands your model and, more importantly, lets you test more of your
code in a controlled environment.

Your virtual box might be expensive to develop, so you may not want to start imple-
mentation immediately. In particular, your virtual box may have different sizes for your
variables and its compiler could potentially act differently, so you may want to hold off
building it unless your algorithms are complex or your hardware is a long time in com-
ing. There is a trade-off between time to develop the virtual box and its extraordinary
powers of debug-ability and testability. But identifying how to get to a sandbox from
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the design and keeping it in mind as you develop your architecture will give you leeway
for when things go wrong.
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Figure 2-9. Model-View-Controller in a sandbox

Proceeding in the Face of Resource and Time Constraints
Creating an architecture diagram from scratch can be daunting. It can be even harder
if you join a team with a close deadline, a bunch of code, and very little documentation
with no time to write more. A system architecture diagram is still called for, though
you may need to keep it in your notebook and fill it in as best you can. Your ability to
see the structure will help you write your piece of the system in a way that keeps you
on track to provide good quality code and meet your deadline.

The schematic (or the hardware block diagram if they've got it) is still a good place to
start. After that, get a list of the code files. If there are too many to count, use the
directory names and libraries. Someone decided that these are modules, and maybe
they even tried to consider them as objects, so they go in our diagram as boxes. Where
to put the boxes and how to order them is a puzzle, one that may take a while to figure
out.

You may need to consider formulating two architectures: one local to the code you are
working on, and a more global one that describes the whole product so you can see

32 | Chapter 2: Creating a System Architecture



how your piece fits in. As the architecture gets bigger, it may need to have some depth
to it, particularly for a mature design. If the drawing is too complex, bundle up some
boxes into one box and then expand them on another drawing.

Which style of drawing you use for this depends on what you feel comfortable with.
You may need to try a few different options before settling on one.

Further Reading
This chapter touched on a few of the many design patterns. The rest of the book will
as well but this is a book about embedded systems, not about design patterns. Think
about exploring one of these to learn more about standard software patterns.

• Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995), Design
Patterns: Elements of Reusable Object-Oriented Software. This is the original, semi-
nal work on design patterns. It uses C++ as the reference language.

• Freeman, Elisabeth; Eric Freeman, Bert Bates, and Kathy Sierra (2004), Head First
Design Patterns. Using Java as the example language, this book gives great exam-
ples with an engaging style.

• Search on Wikipedia for software design pattern.

Interview question: Create an architecture
Describe the architecture for (pick an object in the room) this conference phone.

Looking around an interviewing area is usually fairly dicey because it is devoid of most
interesting things. The conference phone gets picked a lot because it sometimes the
most complicated system in the room. Another good target is the projector.

When asking this question, I want to know that the candidate can break a problem
down into pieces. I want to see the process as they mentally de-construct an object. In
general, starting with the inputs and outputs is a safe bet. For a conference phone, the
speaker and the display are outputs; the buttons and the microphone are inputs. I like
to see these as boxes on a piece of paper. Candidates shouldn't be afraid to pick up the
object and see the connections it has. Those are input and outputs as well. Once they've
got the physical hardware down, they can start making connections by asking (them-
selves) how each component works: How does the power button work and how might
the software interface to it? How does the microphone work and what does it imply
about other pieces of the system (i.e. is there an analog to digital converter)?

Candidates get points for mentioning good software design practices. Calling the boxes
drivers for the lowest level and objects for the next level is a good start. It is also good
to hear some noises about parts of the system that might be reused in a future phone
and how to keep them encapsulated.

I expect them to ask questions about specific features or possible design goals (cost).
However, they get a lot of latitude to make up the details. Want to talk about net-
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working? Pretend it is a voice over IP (VoIP) phone. Want to skip that entirely? Focus
instead on how it might store numbers in a mini-database or linked list. I'm happy when
they talk about things they are interested in, particularly areas that I've failed to ask
them about in other parts of the interview.

While I want to see a good overview on the whole system, I don't mind if a candidate
chooses to dig deep into one area. This question gives a lot of freedom to expound on
how their experience would help them design a phone. If I ask a question, I don't mind
if they admit their ignorance and talk about something they do know.

Asking an interviewee about architecture is not about getting perfect technical details.
It is crucial to draw something even if it is only mildly legible. The intent of the question
is about seeing the candidate show enthusiasm in problem solving and effectively com-
municate his ideas.
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CHAPTER 3

Getting the Code Working

It can be tough to start working with embedded systems: most software engineers need
a crash course in electrical engineering and most electrical engineers need a crash course
in good software design. Working closely with a member of the opposite discipline will
make getting into embedded systems much easier. Some of my best friends are electrical
engineers.

If you've never been through a development cycle that includes hardware, it can be a
bit daunting to try to intuit your roles and responsibilities. I'll start out with an overview
of a how a project usually flows. Then I'll give you some more detailed advice on the
skills you need to hold up your end of the team, including:

• Reading a datasheet

• Getting to know a new processor

• Unraveling a schematic

• Having a debugging toolbox

• Testing the hardware (and software)

Hardware/Software Integration
The product starts out as an idea or a need to be filled. Someone makes a high level
product design based on features, cost, and time to market. At this point, a schedule
is usually created to show the major milestones and activities (see Figure 3-1).
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Figure 3-1. Ideal Project Schedule

Ideal Project Flow
The hardware team goes through datasheets and reference designs to choose compo-
nents, ideally consulting the embedded software team. Often, development kits are
purchased for the riskiest parts of the system, usually the processor and the least un-
derstood peripherals (more on processors and peripherals in a bit).

The hardware team creates schematics, while the software team works on the devel-
opment kit. It may seems like the hardware team is taking weeks (or months) to make
a drawing, but most of that time is spent wading through datasheets to find a compo-
nent that does what it needs to for the product, at the right price, in the correct physical
dimensions, with a good temperature range, etc. During that time, the embedded soft-
ware team is finding (or building) a tool chain with compiler and debugger, creating a
debugging subsystem, trying out a few peripherals, and possibly building a sandbox
for testing algorithms (see Figure 3-1).

Schematics are entered using a schematic capture program (aka CAD package). These
programs are often expensive to license and cumbersome to use, so the hardware en-
gineer will generate a PDF schematic at checkpoints or reviews for your use. Although
you should take the time to review the whole schematic (described in “Reading a Sche-
matic” on page 51), the part that has the largest impact on you is the processor and
its view of the system. Because hardware engineers understand that, most will generate
an I/O map that describes the connection attached to each pin of the processor (Chap-
ter 4 suggests taking the I/O map and making a header file from it).

Once the schematic is complete (and the development kits have show that the processor
and risky peripherals are probably suitable), the board can be laid out. In layout, the
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connections on the schematic are made into a map of physical traces on a board, con-
necting each component as they are in the schematic.

Board layout is often a specialized skill, different from electrical engi-
neering, so don't be surprised if someone other than your hardware en-
gineer does the board layout.

After layout, the board goes to fabrication (fab) where the printed circuit boards (PCBs)
are built. Then they get assembled with all of their components. A board and all of its
loose components are kits. Getting the long lead time parts can make it difficult to
create a complete kit, which can delay assembly. An assembled board is called a PCBA,
which is what will sit on your desk (or in your lab).

After the schematic is done and layout started, the primary task for the embedded
software team is to define the hardware tests and get them written while the boards
being are created. The algorithms are more fun and creating an outer shell for the system
looks more productive, but when you get the boards back from fabrication you won't
be able to make progress on the software until you bring them up. The hardware tests
will not only make the bring up smoother, they will make the system more stable for
development (and production). As you work on the hardware tests, ask your electrical
engineer which parts are the riskiest. Prioritize development for the tests for those sub-
systems (and/or try them out on a development kit).

When the boards come back, the hardware engineer will power them on to verify there
aren't power issues, possibly verifying other purely-hardware subsystems. Then (fi-
nally!) you get a board and bring up starts.

Board Bring Up
This can be a fun time, where you are learning from an engineer whose skill set is
different than yours. Or it can be a shout-fest where each team accuses the other of
incompetence and maliciousness. Your call.

The board you receive may or may not be full of bugs. Electrical engineers don't have
an opportunity to compile their code, try it out, make a change, and recompile. Making
a board is not a process with lots of iterations. Remember that people make mistakes,
and the more fluffheaded the mistake, the more likely it will take an eternity to find
and fix (what was the longest time you ever spent debugging an error that turned out
to be a typo?).

Don't be afraid to ask questions, though, or to ask for help finding your problem (yes,
phrase it that way). An electrical engineer sitting with you might be what you need to
see what is going wrong.

Hardware/Software Integration | 37



Finding a hardware (or software) bug at an early stage of design is like getting a gift.
The fewer people who know about your bugs, the happier you'll be. Your product
team's bugs reflect upon you, so be willing to give your time and coding skills to unravel
a problem. It isn't just polite and professional: it is a necessary part of being on a team.
If there is a geographic or organizational separation, and getting the hardware engineer's
help requires leaping through hoops, consider some back channel communications
(and trade in lunches). It might make you poor in the short term, but you'll be a hero
for getting things done; your long-term outlook will be good.

Don't be embarrassed when someone points out a bug, be grateful. If
that person is on your team or in your company, that bug didn't get out
to the field where it could be seen by customers.

To make bring up easier on both yourself and your hardware engineer, first, make each
component individually testable. If you don't have enough code space, make another
project for the hardware test code (but share the underlying modules as much as pos-
sible).

Second, when you get the PCBA, start on the lowest level pieces, at the smallest steps
possible. For example, don't try out your fancy motor controller software. Instead, set
an I/O device to go on for a short time and make sure the motor moves at all.

Finally, make your tools independent of you being present to run them, so that someone
else is able to reproduce an issue. Once an issue is reproducible, even if the cause isn't
certain, fixes can be tried. (Sometimes the fix will explain the cause.) The time spent
writing good tests will pay dividends. There is a good chance that this hardware veri-
fication code will be around for a while; you'll probably want it again when the next
set of boards come back. Also, these tests tend to fold into manufacturing tests used to
check the board's functionality during production.

How do you know what tests need to be written? It starts with knowing an in-depth
knowledge of the processor and peripherals. That leads to the topic of reading a data-
sheet.

Reading a Datasheet
With the pressure to get products released, it can be tough to slow down enough to
read the component datasheets, manuals, and application notes. Worse, it can feel like
you've read them (because you've turned all the pages) but nothing sticks because it is
a foreign language. When the code doesn't work, you're tempted to complain that the
hardware is broken.

If you are a software engineer, consider each chip as a separate software library. All the
effort you'd need to put into learning a software package (Qt, Gtk, Boost, STL, etc.),
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you are going to need to put into learning your chip and peripherals. They will even
have methods of talking to them that are somewhat like APIs. As with libraries, you
can often get away with reading only a subset of the documentation—but you are better
off knowing which subset is the most important one for you before you end up down
a rabbit hole.

Datasheets are the API manuals for peripherals. So make sure you've got the latest
version of your datasheet (check the manufacturer's site and do an online search just
to be sure) before I let you in on the secrets of what to read twice and what to ignore
until you need it.

Unfortunately, many manufacturers release their datasheets only under
NDA so their website is only an overview or summary of their product.

Hardware components are described by their datasheets. Datasheets can be intimidat-
ing, as they are packed densely with information. Reading datasheets is an art, one that
requires experience and patience. The first thing to know about datasheets is that they
aren't really written for you. They are written for an electrical engineer, more precisely
for an electrical engineer who is already familiar with the component or its close cousin.

In some ways, reading a datasheet is like coming into the middle of a technical con-
versation. Take a look at Figure 3-2, which resembles a real datasheet even though it's
not a component you're likely to interface with in your software. Near the top of each
datasheet is an overview or feature list. While this is the summary of the chip, if you
haven't already used a component with a datasheet that is 85% the same as this one,
the overview isn't likely to be very helpful. On the other hand, once you have used three
or four analog triceratops (or accelerometers or whatever you are really looking at), you
can just read the overview of the next one and get an idea how this chip is the same
and different from your previous experience. If the datasheet took the time to explain
everything a newcomer might want to know, each one would be a book (and most
would have the same information). Additionally, it isn't the newcomers that buy com-
ponents in volume; it is the experienced engineers who are already familiar with the
devices.
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Features
 - Ceratopside genus
 - Three hoofed hands
 - No fenestrae frills
 - Ultrasmall brain
 - Supply range: 2.7V to 5V

Triceratops is a genus of herbivorous ceratopsid 
dinosaur which lived during the late Maastrichtian 
stage of the Late Cretaceous Period, around 68 to 
65 million years ago in what is now North America. 

Description

Analog Triceratops

T. HORRIDUS
T. PROPRSUS

Dino
Industries

Figure 3-2. Top of the Analog Triceratops datasheet from Dino Industries

So I say, skip the overview header (or at least come back to it later).

I like the functional diagrams that are often on the first page, but they are a lot like the
overview. If you don't know what you are looking for, the block diagram probably isn't
going to enlighten you. So the place to start is the description. This usually covers about
half the first page, maybe extending a little on to the second page.

The description is not the place to read a few words and skip to the next paragraph.
The text is dense and probably less than a page long. Read this section thoroughly.
Read it aloud or underline the important information (which could be most of the
information).

Datasheet Sections You Need When Things Go Wrong
After the first page, the order of information in each datasheet varies. And not all da-
tasheets have all sections. Nonetheless, you don't want to scrutinize sections that won't
offer anything that helps your software use the peripheral. Save some time and mental
fatigue by skipping over the absolute maximum ratings, recommended operating con-
ditions, electrical characteristics, packaging information, layout, and mechanical con-
siderations.

The hardware team has already looked at that part of the sheet; trust them to do their
jobs. Someday, when you aren't under a lot of pressure to get the product done, it is
worth going through those sections.

You probably still want to know about these sections. These are the ones that are
needed when things go wrong, when you have to pull out an oscilloscope and figure
out why the driver doesn't work, or (worse) when the part seems to be working but not
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as advertised. Note that these sections exist but you can come back to when you need
them; they are safe to ignore on the first pass:

Pin out for each type of package available
You'll need to know the pin out if you have to probe the chip during debugging.
Ideally, this won't be important because your software will work and you won't
need to probe the chip.

The pin configuration shows some pin names with bars over them (Figure 3-3).
The bars indicate that these pins are active low, meaning that they are on when the
voltage is low. In the pin description, active low pins have slashes before the name.
You may also see other things to indicate active low signals. If most of your pins
have a NAME, look for a modifier that puts the name in the format nNAME, _NAME,
NAME*, NAME_N, etc. Basically, if it has a modifier near the name, look to see whether
it is active low, which should be noted in the pin descriptions section.

Pin descriptions
This is a table that looks like Figure 3-4. Come back when you need this informa-
tion, possibly as you look to see if the lines should be active low or as you are trying
to make your oscilloscope show the same image as the timing diagrams in the
datasheet.

Performance characteristics
These tables and graphs, describing exactly what the component does, offer too
much detailed information for your the first reading. However, when your com-
ponent communicates but doesn't work, the performance characteristics can help
you determine if there might be a reason (i.e. the part is rated to work over 0-70C
but it is right next to your extremely warm processor or the peripheral works when
the input voltage is just right but falls off in accuracy if the input gets a little outside
the specified range).

Sample schematics
Sometimes you get driver code, it works as you need it, and you don't end up
changing much, if anything. The sample schematics are the electrical engineering
version of driver code. When your part is acting up, it can be reassuring to see that
the sample schematics are similar to your schematics. However, as with vendor
provided driver code, there are lots of excellent reasons that the actual implemen-
tation doesn't match the sample implementation. If you are having trouble with a
part and the schematic doesn't match, ask your electrical engineer about the dif-
ferences. It may be nothing but it may be important.
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PIN CONFIGURATION
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Figure 3-3. Analog Triceratops pin out

Figure 3-4. Analog Triceratops pin descriptions

Important Text for Software Developers
Eventually, possibly halfway through the datasheet, you will get to some text (Fig-
ure 3-5). This could be titled the Application Information or the Theory of Operation.
Or possibly the datasheet just switches from tables and graphs to text and diagrams.
This is the part you need to start reading. It is fine to start by skimming this to see where
the information you need is located, but you will eventually really need to read it from
start to end. As a bonus, there the text may link to application notes and user manuals
of value. Read through the datasheet, considering how you'll need to implement the
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driver for your system. How does it communicate? How does it need to be initialized?
What does your software need to do to use the part effectively? Are there strict timing
requirements and how can your processor handle them?

As you read through the datasheet, mark areas that may make an impact on your code
so you can return to them. Timing diagrams are good places to stop and catch your
breath (Figure 3-6). Try to relate those to the text and to your intended implementation.
More information on timing diagrams is provided in “How Timing Diagrams Help
Software Developers” on page 46.

Figure 3-5. Analog Triceratops theory of operation
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Figure 3-6. Analog Triceratops timing diagrams
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Figure 3-7. Analog Triceratops errata

In addition to making sure you have the latest datasheet for your component, check
the manufacturer's web page for errata, which provide corrections to any errors in the
datasheet. Search the web page for the part number and the word "errata" (Fig-
ure 3-7). Errata can refer to errors in the datasheet or errors in the part.

Datasheets can have revisions and components can have revisions. Get
the latest datasheet for the component revision you are using.

When you are done, if you are very good or very lucky, you will have the information
you need to use the chip. Generally, most people will start writing the driver for the
chip and spend time re-reading parts as they write the interface to the chip, then the
communication method, then finally actually using the chip. Reading datasheets is a
race where the tortoise definitely wins over the hare.

Once you are all done with the driver and it is working, read through the feature sum-
mary at the top of the datasheet, because now you have conquered this type of com-
ponent and can better understand the summary. Even so, when you implement some-
thing similar, you'll probably still need to read parts of the datasheet, but it will be
simpler and you'll get a much better overview from the summary on the datasheet's
front page.

Other resources may also available as you work with peripherals:

• If the chip has a user manual, be sure to look at that.

• Application notes often have specific use cases that may be of interest.
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• There may be forums and examples of other people using the part.

Look around before diving in; the answer to something you don't know yet may be out
there.

How Timing Diagrams Help Software Developers
Timing diagrams show the relationship between transitions. Some transitions may be
on the same signal, or the timing diagram may show the relationship between transi-
tions on different signals. For instance, alternating states of the hands (HND1 and
HND2) in normal mode at the top of Figure 3-6 show that one hand is raised shortly
after the other is put down. When approaching a timing diagram, start on the left side
with the signal name. Time advances from left to right.

Most timing diagrams focus on the digital states, showing you when a signal is high or
low (remember to check the name for modifiers that indicate a signal is active low).
Some diagrams include a ramp (such as hands and feet in the boot sequence in Fig-
ure 3-6) to show you when the signal is in a transitory state. You may also see signals
that are both high and low (such as the horn in the boot sequence of Figure 3-6); these
indicate the signal is in an indeterminate state (for output) or isn't monitored (for input).

The important time characteristics are highlighted with lines with arrows. These are
usually specified in detail in a table. Also look for an indication of signal ordering (often
shown with dashed lines) and causal relationships (usually arrows from one signal to
another). Finally, footnotes in the diagram often contain critical information.

Evaluating Components Using the Datasheet
It may seem odd to have this section about evaluating a component after its imple-
mentation. That isn't the way it goes in projects. However, it is the way it goes in
engineering life. Generally, before you get to the point where you choose pieces of the
system, you have to cut your teeth on implementing pieces of systems designed by other
people. So evaluating a component is a more advanced skill than reading the datasheet,
a skill that electrical engineers develop before software engineers.

When you are evaluating a component, your goal is to eliminate components that won't
work as fast as possible. Don't waste valuable time determining precisely how a com-
ponent does feature X if the component can't be used because it requires 120V AC and
your system has 5V of DC. Start off with a list of must-haves and a list of wants. Then
you'll want to generate your potential pool of parts that require further investigation.

Before you get too deep into that further investigation, let's talk about the things that
datasheets don't have. They don't usually have prices because those depend on many
factors, especially how many you plan to order. And datasheets don't have lead times
(so be careful about designing the perfect part, it may only be available if you wait six
months). Unless you are ordering online, you'll need to talk to your vendor or distrib-
utor.
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It is a good opportunity to ask whether they have any guidance for using the part,
initialization code, application notes, white papers, forums, or anything that might get
you a little further along. Vendors recognize that these can be selling points and their
application engineers are generally willing to help. Distributors might even help you
compare and contrast the different options available to you.

Back to the datasheet, this time those skipped sections become the most critical. Start
with the absolute maximum ratings and electrical characteristics (see Figure 3-8). If
they don't match (or exceed) your criteria, set the datasheet aside. The present goal is
to wade through the pile of datasheets quickly; if a part doesn't meet your basic criteria,
note what it fails and go on. (Keeping notes is useful; otherwise you may end up rejecting
the same datasheet repeatedly.) You may want to prioritize the datasheets by how far
out of range they are. If you end up without any datasheet that meet your high stand-
ards, you can recheck the closest ones to see if they can be made to work.

Once the basic electrical and mechanical needs are met, the next step is to consider the
typical characteristics, determining whether the part is what you need. I can't help you
much with specifics, as they depend on your system's needs and the particular com-
ponent. Some common questions at this level your functional parameters: Does the
component go fast enough? Does the output meet or exceed that required by your
system? In a sensor or an ADC, is the noise acceptable?

Once you have two or three datasheets that pass the first round of checking, delve
deeper into them. If there is an application section, that is a good place to start. Are
any of these applications similar to yours? If so, carry on. If not, worry a bit. It is prob-
ably all right to be the first to use a peripheral in a particular way, but if the part is
directed particularly to underwater sensor networks and you want to use it in your
super-smart toaster, you might want to find out why they've defined the application so
narrowly. More seriously, there may be a reason why the suggested applications don't
cover all uses. For example, chips directed toward automotive use may not be available
in small quantities. The goal of the datasheet is to sell things to people already using
similar things, so there may be a good reason for a limited scope.

Next, look at the performance characteristics and determine whether they meet your
needs. Often, you'll find new requirements in this section, such as realizing your system
should have the temperature response of part A, the supply voltage response of part B,
and the noise resistance of part C. Collect these into the criteria and eliminate the ones
that don't meet your needs (but also prioritize the criteria so you don't paint yourself
into a corner).

At this point, you should have at least two but not more than four datasheets. If you
have more than four, ask around to see whether one vendor has a better reputation in
your purchasing department, has shorter lead times, or has better prices. You may need
to come back to your extras, but select out four that seem good.

If you have eliminated all of your datasheets, or you have only one, don't stop there. It
doesn't mean that everything is unusable (or that only one is). Instead, it may mean
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that your criteria are too strict and you'll have to learn more about the options available
to you. So choose the two best components, even if one or both fail your most discerning
standards.

For each remaining datasheet, you want to figure out the tricky pieces of the imple-
mentation and see how well the component will fare in your system. This is where some
experience dealing with similar parts is useful. You want to read the datasheet as though
you were going to implement the code. In fact, if you don't have experience with some-
thing pretty similar, you may want to type up some code to make it real. If you can
prototype the parts with actual hardware, great! If not, you can still do a mental pro-
totype, going through the steps of implementation and estimating what will happen.

Even though you will be doing this for two to four parts and probably only using one
of them, this will give you a jump start on your code when the part is finally chosen.

Such in-depth analysis takes a significant amount of time, but reduces the risk of the
part not working. How far you take your prototype is up to you (and your schedule).
If you still have multiple choices, look at the family of the component. If you run out
of something (space or pins or range), is there a pin-for-pin compatible part in the same
family (ideally with the same software interface)? Having headroom can be very handy.

Finally, having selected the component, the feature summary is an exercise in compa-
rative literature. Now that you have become that person who has already read several
datasheets for similar components, the overview that starts the datasheet is for you. If
you have any remaining datasheets to evaluate, start there. Compare the ones you've
done against the new ones to get a quick feel for what each chip does and how different
parameters interact (e.g. faster speed may be proportional to higher cost).

Figure 3-8. Analog Triceratops absolute maximum ratings
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Your Processor Is a Language
As you get to know a new processor, expect that it will take almost the same level of
effort as if you were learning a new programming language. And, like learning a lan-
guage, if you've already worked with something similar, it will be simpler to learn the
new one. As you learn several programming languages or several processors, you will
find that the new ones become easier and easier.

While this metaphor gives you an idea of the scale of information you'll need to assim-
ilate, the processor itself is really more like a large library with an odd interface. Talking
to the hardware is a misnomer. Your software is actually talking to the processor soft-
ware through special methods called registers, which I'll cover in more detail in another
chapter (Chapter 4). Registers are like keywords in a language. You generally get to
know a few (if, else, while) and then later you get to know a few more (enum, do, sizeof)
and finally you become an expert (static, volatile, union).

The amount of documentation for a processor scales with the processor complexity.
Your goal is to learn only what you need to get things accomplished. With a flood of
information available, you'll need to determine which pieces of documentation get your
valuable time and attention. Some documents to look for include:

User Manual (or User Guide) from the processor vendor
Often voluminous, the user manual provides most of what you'll need to know.
Reading the introduction will help you get to know the processor's capabilities.

Why get the user manual from the vendor? Take for example the
NXP LPC1313 processor, which uses an ARM Cortex-M3 core.
You don't want to read the ARM user manual if you are using the
LPC1313; 88% of the information in ARM manual is extraneous,
10% will be in the LPC13xx manual and the last few percent you
probably won't ever need.

Often these are written for families of processors, so if you want to use an LPC1313,
you'll need to get a LPC13xx manual and look for the notes that differentiate the
processors. Once you read the introduction, you'll probably want to skip to the
parts that will be on your system. Each chapter will have usually a helpful intro-
duction of its own before moving into gritty details.

The user manual will have the information you need to work with the chip, though
it may not help you get a system up and working.

Getting Started Guide or User Manual for the development kit
A development kit (dev kit) is often the place to start when working with a new
processor. Using a dev kit lets you set up your compiler and debugger with confi-
dence, before custom hardware comes in (and gives you something to compare
against if the hardware doesn't work immediately). The dev kit is generally a sales
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tool for the processor, so it isn't too expensive and tends to have excellent docu-
mentation for setting the system up from scratch. The kit recommends compilers,
debuggers, and necessary hardware, and even shows you how to connect all the
cables. The development kit documentation is intended to be an orientation for
programmers, so even if you don't purchase a kit, the associated documentation
may help you orient yourself to the processor's ecosystem.

Getting Started Guide (slides)
This document describes how to get started with using the processor for both
electrical engineers and software developers. While interesting and fast to read,
this slide deck generally won't answer questions about how to use the processor.
It can be helpful when evaluating a processor for use in a project, as it does discuss
what the processor is and common applications. It might give you an idea of what
dev kits are available.

Wikis and forums
While the main Wikipedia page to your processor probably won't have enough
information to help you get code written, it may give you a high level overview
(though usually the user manual's introduction is more useful to you). The Wiki-
pedia page may have valuable links to forums and communities using the processor
where you can search for problems you may have and how other people solved
them.

The vendor may also have wiki pages or forums devoted to the processor. These
can be valuable for another perspective on the information in the user manual or
getting started guide. They are often easy to search with links to lots of examples.

Vendor or distributor visits
Sit in on these. They may have little readily pertinent information, but the net-
working is useful later when you ask for code or support.

Processor datasheet
The datasheet for your processor is usually more electrical focused. Since you'll be
writing the software, you want something more software oriented. So for process-
ors, skip the datasheet and go to the user manual (or user guide).

Most processors now come with many examples, including a ton of driver code. Some-
times this is good code, sometimes not. Even with the not-so-great code, it is nice to
have an example to start from. Though the examples generally work as described, they
may not be robust or efficient enough for your needs. If you are going to use the code,
it becomes your code to own, so make sure you understand it.

Once you get oriented, preferably with a dev kit up and running, hunker down with
the user manual and read the chapters for every interface you are using (even if your
vendor gave you example code that does what you need). As we work through the
specifics of an embedded system, there will be more details about what to expect from
chapters in the user manual (inputs and outputs, interrupts, watchdogs and commu-
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nications, etc.). For now let's go back to the bigger picture of the system we are about
to bring up.

Reading a Schematic
If you come from the traditional software world, schematics can seem like an eye-chart
with hieroglyphics interspersed with strange boxes and tangled lines. As with a data-
sheet, knowing where to start can be daunting. Beginning on page one of a multipage
schematic can be dicey because many electrical engineers put their power handling
hardware there, something you don't necessarily care about. Figure 3-9 shows you a
snippet of one page of a schematic.

Figure 3-9. Example Schematic Snippet

Most of the time, you'll get a hardware block diagram to help you decode
a schematic. On the other hand, a question I've been asked in several
interviews is “what does this schematic do?” so this section gives you
tips on getting through that as well as a more friendly schematic.

As you go through a schematic for the first time, start by looking for boxes with lots of
connections. Often this can be simplified further because box size on the schematic is
proportional to number of wires– look for the largest boxes. Your processor is likely
to be one of those things. Since it is the center of the software world, finding it will help
you find the peripherals that you most care about.
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Above the box is the component ID (U1), often printed on the PCB. Inside or under
the boxes is usually the part number. As shown in (Figure 3-9), the part number may
not be what you are used to seeing. While your processor manual may say Atmel
AT91R40008, the schematic may have AT9140008-66AI which is more of a mouthful.
However, the schematic not only describes how to make the traces on the printed circuit
board, it also says how to put together the board with the correct components. The
extra letters for the processor describe how the processor is packaged and attached to
the board.

By now you've found the two to four of the largest and/or most connected components.
Look at their part numbers to determine what they actually are. Hopefully, you've found
your processor. (If not, keep looking.) You may also have found some memory. Mem-
ory used to be on the address bus so it would have almost as many connections as the
processor, often with eight address lines and sixteen data lines as in Figure 3-9. Many
newer processors have enough embedded memory to alleviate the need for externally
memory mapped RAM or flash so you may not find any large components besides your
processor.

Next, look at the connectors which can look like boxes or like long rectangles. These
are labeled with Js instead of Us (e.g. J3). There should be a connector for power to the
system (at least two pins: power and ground). There is probably a connector for de-
bugging the processor (J1 in Figure 3-9). The other connectors may tell you quite a bit
about the board; they are how the world outside sees the board. Is there a connector
with many signals that could indicate a daughter board? Is there a connector with RS232
signal to indicate a serial port? A connector filled with wire names that start with USB
or LCD? The names are intended to give you a hint.

With connectors and the larger chips identified, you can start building a mental model
of the system (or a hardware block diagram if you don't already have one). Now go
back to the boxes and see if you can use the names to estimate their function. Looking
for names like SENSOR or ADC might help. Chapter 6 chapter will give you some other
signal names that might help you find interesting peripherals.

In a schematic, wires can cross without connecting. Look for a dot to
indicate the connections.

In all this time, we've been ignoring the non-box shaped components. While it is useful
to be able to understand a resistor network, an RC filter, or an op-amp circuit, you
don't need to know these right away. Figure 3-10 shows some common schematic
components and their names, though they may be drawn a little differently in your
schematic. This will let you express curiosity about “What does this resistor do?” “Fu
rther Reading” on page 71 gives you some suggestions on how to increase your hard-
ware knowledge.
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Figure 3-10. Common Schematic Components

There are two exceptions to my recommendation that you ignore everything but boxes.
First, LEDs, switches, and buttons are often connected to the processor. The schematic
will tell you the processor line it is connected to so you know where to read the state
of a switch or turn on an LED.

The other kind of components to pay attention to are resistors connected to the pro-
cessor and power, known as pull-ups because they pull the voltage up (toward power).

Usually, pull-ups are relatively weak (low amounts of resistance) so the processor can
drive a pulled-up I/O line to be low. The pull-up means that the signal on that line is
defined to be high even when the processor isn't driving it. A processor may have in-
ternal pull-ups so that inputs to the processor have a default state even when uncon-
nected. Note that there are also pull-downs, which means resistors to ground. All of
this applies to them except that their default logic level is low instead of high.
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Having a Debugging Toolbox (and a Fire Extinguisher)
The datasheets, user manuals, and schematics we've examined so far are just paper (or
electronic forms of paper). Let's get to the hardware. Wait, before you grab it, be aware
that touching hardware can shock it.

Keep your Board Safe
Ask your hardware engineer for the tools to keep your board safe. Try to be conscious
of what your board is sitting on. Always carry it around in the bag it came in. Anti-
static mats are cheap and force you to allocate a portion of your desk for hardware
(even if you don't use the anti-static wrist band, it is still an improvement over having
the hardware crushed under a falling book or being yanked off the table.

If possible, if any wires get added to the board, get them glued down as well as soldered.
Many an hour has been lost to a broken reworked wire. In that same vein, if the con-
nectors are not keyed so that they can be inserted only one way, take a picture of the
board or mark notes about which way is the correct way to plug in a connector.

I like having my hardware connected to a power strip I can turn off (preferably one my
computer is not connected to). It is really good to have an emergency stop-all plan. And
note where the fire extinguisher is, just in case.

Seriously, the problem usually isn't flames but more like little puffs of smoke. Whatever
you do to it, though, a damaged board is unlikely to win friends. When your manager
or hardware engineer ask you how many boards you want allocated to for the embedded
software, always ask for a spare or two. Nominally this is so you can make sure the
hardware tests work on more than one board. Once the system starts making baby
steps, you are the person most likely to lose access to a board so it can be shown off to
others. At least, those are the reasons you should give for wanting a spare board. Not
because you may very well damage the first one (or two).

Toolbox
I love my toolbox because it gives me some level of independence from my hardware
engineer. With the toolbox on my desk, I can make small changes to my board in a
safer way (using needle nose pliers to move a jumper is much less likely to damage a
board than using fingers). Not counting the detritus of assorted jumper wires, RS232
gender changers and half dead batteries I've accumulated over the years, my toolbox
contains:

• Needle nose pliers

• Tweezers (one pair for use as mini pliers, one pair for use as tweezers)

• Box cutter

• Digital multimeter (more on this in a minute)
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• Electrical tape

• Sharpies

• Assorted screwdrivers (or one with many bits)

• Flashlight

• Magnifying glass

• Safety glasses

• Cable ties (Velcro and zip tie)

If your company has a good lab with someone who keeps their tools in labeled areas,
use theirs. If not, a trip to the hardware store may save some frustration in the future.

Digital Multimeter
Even if you opt not to get a more complete toolbox, I strongly suggest getting a digital
multimeter (DMM).

You can get a cheap one that covers the basic functionality for about what you'd pay
for good lunch. Of course, you can blow your whole week's food budget on an excellent
DMM, but you shouldn't need to. As an embedded software engineer, you need only
a few functions.

First, you need the voltage mode. Ideally, your DMM at least should be able to read
from 0-20V with 0.1V granularity and from 0-2V with 0.01V granularity. The question
you are usually looking to answer with the voltage mode of the DMM is simple: are
any volts getting there at all? While a DMM with 1mV granularity might be nice occa-
sionally, 80% of your DMM use will be the broader question of “Is the chip or com-
ponent even powered?”

The second most important mode is the resistance check mode, usually indicated with
the Ohm symbol and a series of three arcs.You probably don't need to know what value
a resistor is; the real use for this mode is to determine when things are connected to
each other. Just as voltage mode answers "Does it have power?", this mode will answer
the question, "Are these things even talking to each other?"

To determine the resistance between two points on the board, the DMM sends a small
current through the test points. As long as the board is off, this is safe. Don't run it in
resistance mode with a powered board unless you know what you are doing.

When the DMM beeps, there is no significant resistance between the two test probes,
indicating they are connected (you can check whether the beep is on by just touching
the two probes together). Using this mode, your DMM can be used to quickly determine
whether a cable or a trace has broken.

Finally, you want a DMM with a current mode denoted with an amp symbol (A or mA).
This is for measuring how much power your system is taking; more on that in Chap-
ter 10.
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Oscilloscopes and Logic Analyzers
Sometimes you need to know what the electrical signals on the board are doing. There
are three flavors of scopes that can help you see the signals as they move:

Traditional oscilloscope
Measures analog signals, usually two or four of them at a time. A digital signal can
be measured via analog, but it is kind of boring to see it in one of two spots (high
or low).

Logic analyzer
Measures digital signals only, usually a lot of them at the same time (16, 32, or 64).
At one time, logic analyzers were behemoth instruments that took days to set up,
but generally found the problem within hours of set up being complete. Now many
of them hook to your computer and help you do the setup so that it takes only a
little while. Additionally, many logic analyzers have protocol analyzers that inter-
pret the digital bus so you can easily see what the processor is outputting. Thus, if
you have a SPI communication bus and you are sending a series of bytes, a protocol
analyzer will interpret the information on the bus. A network analyzer is a specific
type of protocol analyzer, one that focuses on the complex traffic associated with
a network.

Mixed signal oscilloscope
Combines the features of a traditional scope and logic analyzer with a couple analog
channels and 8 or 16 digital ones. A personal favorite of mine, the mixed signal
scope can be used to look at different kinds information simultaneously.

These scopes tend to be shared resources as they are relatively expensive. You can buy
reasonably priced ones that hook to your computer, but sometimes their feature set is
limited in non-obvious ways. Generally, you get what you pay for.

Setting Up a Scope

Step one is to determine which signal(s) are going to help you figure out a problem.
Next you'll need to attach probes to these signals (and attach the scope's ground clip
to ground). Many processors have such tiny pins that they require specialized probes.
On the other hand, many hardware engineers put test points on their board, knowing
that the software team is likely to need access to particular signals for debugging. Al-
ternatively, you can get wires soldered on to the board at the signals you need and hook
a probe to those.

Using a scope can be a bit daunting if you've never set one up before. Oscilloscope
manuals vary, but they are the best place to look (and most of them are online). There
is no generic manual to all of them, so I can only tell you for the words to look for as
you page through the manual.
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Figure 3-11 shows what an archetypal oscilloscope screen looks like. The most impor-
tant point is that time moves along the x-axis and voltage varies along the y-axis. The
scales of these axes are configurable.

Figure 3-11. Oscilloscope Screen Example

Somewhere on the scope's interface, there should be a knob to make the timescale
change. Move it to the right and each horizontal tick goes from, say, 1s to 0.5s (and
then down into the millisecond or microsecond range). This controls the timescale for
the whole screen. For debugging, the goal is to start with the largest possible time base
that shows what you are looking for.

If you zoom in too far, you'll see strange things as the supposedly digital
signals show their true (and weird) analog colors.
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Once you set the time base, you'll need to set the scale of the voltage axis. This may be
one knob that accesses all channels (or probes), making you shift the channel some
other way, or you may get one knob per channel. Either way, as you turn it to the right,
each vertical block magnifies (5V goes to 2V down to millivolts).

If you aren't sure, set the timescale to be about 100ms/block and the voltage granularity
to be about 2V/block. You can zoom in (or out) from there if you need to.

A different knob will set where each channel is on the screen, where its zero line is.
Figure 3-11 shows the zero line for each channel on the left side of the screen. There
may be one knob per channel or a way to multiplex the knob between all the channels.
Keep the channels a little offset from each other so you can see each one. (You can turn
off the channels you don't need, probably with a button.)

Next, look for a knob to set the zero point of your timescale. This will cause a vertical
line to wander your screen. Set it near the middle. Alternatively, you can set it toward
the left of your screen if you are looking for information that happens after an event,
or toward the right if you want to know what goes on before an event.

At this point, you can probably turn on your system and see a line wiggle. It may go by
so quickly that you don't see what it does, but it can be a start. If nothing happens, look
for the buttons that say Run/Stop. You want the scope to be in Run mode. The Stop
mode freezes the display at a single point in time, which gives you the opportunity to
think about what you've discovered. Near Run/Stop may be a button that says Single,
which waits for a trigger and then puts the system in stop mode. There may also be an
Auto button, which will let the system trigger continuously.

If there is an Auto button, be very careful about pushing it. Check to see
whether the name means auto-trigger or auto-set. The former is useful,
but the latter tries to automatically configure your scope for you. I find
that it tends to reset the configuration to be completely random.

To set up a trigger, look for the trigger knob. This will put up a horizontal line to show
where the trigger voltage level is. It is channel dependent, but unlike the other channel-
dependent knob, you usually can't set a trigger for each channel. Instead, it requires
additional configuration, usually via an on screen menu and button presses. You want
the trigger to be on the channel that changes just at the start (or end) of an interesting
event. You'll need to choose whether the trigger is activated going up or going down.
You'll also need to choose how often the scope will trigger. If you want to see the first
time it changes, set a long time-out. If you want to see the last time it changes, set a
short one.

There are a few other things to note. Unless you know what you are doing, you don't
want the scope in AC mode. And there is the possibility that the probes are giving
signals that are 10x (or 1/10) the size on the screen. This depends on the probe.
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If you've set up your scope according to my instructions (and the scope manual) and it
still doesn't work the way you want it to, get someone with more experience to help
you. Scopes are powerful and useful tools, but being good with one requires a lot of
practice. Don't get discouraged if it is a bit frustrating to start.

Testing the Hardware (and Software)
While I strongly recommend being ready to pull out the toolbox, DMM, and scope,
that can reasonably be left to your hardware engineer if you aren't ready to do it alone.
As a software person, it is more important that you get as far as possible building the
software that will test the hardware in a manner conducive to easy debugging.

Three kinds of tests are commonly seen for embedded systems. First, the power on self-
test (POST) runs every time you boot the system, even after the code is released. This
test verifies that all of the hardware components are there to run your system safely.
The more the POST tests, the longer the boot time is, so there is a trade off that may
impact the customer. Once the POST completes, the system is ready to be used by the
customer.

All POST debug messages printed out at boot time should be accessible
later. Whether it is the software version string or the type of sensor
attached, there will be a time when you require that information without
power cycling.

The second sort of test should be run before every software release, but they may not
be suitable to run at every boot, perhaps because they take too long to execute, return
the system to factory default, or put unsightly test patterns on the screen. These tests
verify the software and hardware are working together as expected.

The words unit test mean different things to different people. To me, it is automated
test code that verifies that a unit of source code is ready for use. Some developers want
tests to cover all possible paths through the code. This can lead to unit test suites that
are large and unwieldy, which is the argument used to avoid unit testing in embedded
systems. My sort of tests are meant to test the basic functionality and the corner cases
most likely to occur. This process lets me build testing into my development and keep
it there even after shipping.

Find out what your industry (or your management) expects of your unit
tests. If they mean for the tests to check all software paths, make sure
you (and they) understand how much work and code that will take.

Some unit tests may be external to the hardware of the system (i.e. if you are using a
sandbox to verify algorithms as suggested in Chapter 2). The ones that aren't, I would
encourage you to leave in the production code if you can, making them run in the field
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upon some special set of criteria (for instance, "hold down these two buttons and cross
your eyes as the system boots"). Not only will this let your quality department use the
tests, you may find that using the unit tests as a first line check in the field will tell you
if the system's hardware is acting oddly.

The third and final sorts of tests are those you create during bring up, usually because
a subsystem is not functioning as intended. These are sometimes throwaway checks,
superseded by more inclusive tests or added to unit tests. Temporary bring up code is
OK. The goal of this whole exercise is not to write classic source code but build systems.
And once you've checked such code in to your version control system, deleting it is
fine, because you can always recover the file if you realize you need the test again.

Building Tests
As noted earlier, the code to control peripherals (and the associated tests) is often writ-
ten while the schematic is being completed. The good news is that you've just spent
time with the datasheets, so you have a good idea how to implement the code. The bad
news is that you may end up writing drivers for six peripherals before you get to inte-
grate your software with the hardware, as you wait for the boards to get back.

In Chapter 2, we had a system that communicated to a flash memory device via the SPI
communication protocol (partial schematic reproduced in Figure 3-12). What do we
need to test, and what tools do we need to verify the results?

• I/O lines are under software control (external verification with a DMM)

• SPI can send and receive bytes (external verification with a logic analyzer)

• Flash can be read and written (internal verification, use the debug subsystem to
output results)

Figure 3-12. Flash schematic snippet
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To make bring up easy, you'll need to be able to do each of these. You might choose
to run the all-inclusive flash test first. If that works, you know the other two work.
However, if it doesn't, you'll need to have the others available for debugging as needed.

While other chapters cover controlling I/O lines (Chapter 4) and a bit more about SPI
(Chapter 6), for now let's focus on the tests that we can write to test the flash memory.
How flash works isn't critical, but you can test your skills with datasheets by looking
over the Numonyx M25P80 flash memory datasheet (search for the part number on
Google or Digikey).

Flash Test Example
Flash memory is a type of non-volatile memory (so it doesn't get cleared when the power
is turned off). Some other types of non-volatile memory include ROM (read-only mem-
ory) and electrically erasable programmable read-only memory (EEPROM).

Volatile memory doesn't retain its value after a power cycle. There are
different kinds of volatile memory, but they are all one type of RAM or
another.

Like an EEPROM, flash can be erased and written to. However, most EEPROMs let
you erase and write a byte at a time. With flash, you may be able to write a byte at a
time, but you have to erase a whole sector in order to do so. The sector size depends
on the flash (usually the larger the flash, the larger each sector). For our tests compo-
nent, a sector is 65536 bytes and the whole chip contains 1Mbyte (or 16 sectors). Flash
usually has more space than an EEPROM and is less power hungry. However, EE-
PROMs come in smaller sizes so they are still useful.

When we write a bring up test, nothing in the flash chip needs to be retained. For the
POST, we really shouldn't modify the flash, as the system might be using it (for storing
version and graphic data). For a unit test, we'd like to leave it the way we found it after
testing, but we might be able to set some constraints on that.

Tests typically take three parameters: the goal flash address, so that the test can run in
an unpopulated (or noncritical) sector, a pointer to memory, and the memory length.
The memory length is the amount of data the flash test will retain. If the memory is the
same size as the sector, no data will be lost in the flash. The following prototypes
illustrate three types of test: an umbrella test that runs the others (and returns the
number of errors it encounters), a test that tries to read from the flash (returning the
number of bytes that were actually read), and a test that tries to write to the flash
(returning the number of bytes written).

int FlashTest(uint32_t address, uint8_t *memory, uint16_t memLength);
uint16_t FlashRead(uint32_t addr, uint8_t *data, uint16_t dataLen);
uint16_t FlashWrite(uint32_t addr, uint8_t *data, uint16_t dataLen);
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We'll use the FlashTest extensively during bring up then put it in unit tests and turn it
on as needed when things change or before releases. Because at least two of these tests
have the potential to be destructive, we don't want to do them on power on (POST).
Further, we don't need to. If the processor can communicate with the flash at all, then
it is reasonable to believe the flash is working. (You can check basic communication
by putting a header in the flash that includes a known key, a version, and/or a check-
sum.)

There are two ways to access this flash part: bytes and multi-byte blocks. When running
the code, you'll want to use the faster block access. As you test, though, the goal is to
start out simple to build a good foundation.

Test 1: Read Exiting Data

Testing that you can read data from the flash actually verifies that the I/O lines are
configured to work as an SPI port, that the SPI port is configured properly, and that
you understand the basics of the flash command protocol.

For this test, we'll read out as much data as we can from the sector so we can write it
back later. Here is the start of FlashTest:

  // Test 1: Read existing data in a block just to make sure it is possible
  dataLen = FlashRead(startAddress, memory, memLength);
  if (dataLen != memLength) {
    // read less than desired, note error
    Log(LogUnitTest, LogLevelError, "Flash test: truncation on byte read");
    memLength = dataLen;
    error++;
  }

Note that there is no verification of the data, since we don't know if this function is
being run with an empty flash chip. If you were writing a POST, you might do this read
and then check that the data is valid (and then stop testing, because that is enough for
a power-on check).

Test 2: Byte Access

The next test starts by erasing the data in the sector. Then it fills the flash with data,
writing one byte at a time. We want to write it with something that changes so we can
make sure the command is effective. I like to write it with an offset based on the address.
(The offset tells me that I'm not accidentally reading the address back.)

  FlashEraseSector(startAddress);

  // want to put in an incrementing value but don't want it to be the address
  addValue = 0x55;
  for (i=0; i< memLength; i++) {
    value = i + addValue;
    dataLen = FlashWrite(startAddress + i, &value, 1);
    if (dataLen != 1) {
      Log (LogUnitTest, LogLevelError, "Flash test: byte write error.");
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      error++;
    }
  }

To complete this check, you just need to read the data back, byte by byte, and verify
the value is as expected at each address (address + addValue).

Test 3: Block Access

Now that the flash contains our newly written junk, confirm that block access works
by putting back the original data. That means starting with an erase of the sector again:

FlashEraseSector(startAddress);
  dataLen = FlashWrite(startAddress, memory, memLength);
  if (dataLen != memLength) {
    LogWithNum(LogUnitTest, LogLevelError, "Flash test: block write error, len ", dataLen);
    error++;
  }

Finally, verify this data using another byte-by-byte read. We know that works from test
2. If the results are good, then we know that block writes work from this test and that
block reads work from test 1. The number of errors is returned to the higher level
verification code.

This tests the flash driver software. It doesn't check that the flash has
no sticky bits (bits that never change even though they should). A man-
ufacturing test can confirm that all bits change, so but most flash gets
verified that way before it gets to you.

Test Wrap Up

If the board passes these three tests, you can be confident that the flash hardware and
software both work, satisfying your need for a bring up test and a unit test.

For most forms of memory, the pattern we've seen here is a good start:

1. Read the original data.

2. Write some changing but formulaic junk.

3. Verify the junk.

4. Re-write original.

5. Verify the original.

However, there are many other types of peripherals, more than I can cover here. While
automated tests are best, some will need external verification, such as an LCD that gets
a pattern of colors and lines to verify its driver. Some tests will need fake external inputs
so that a sensing element can be checked.

For each of your peripherals and software subsystems, try to figure out what test will
give you the confidence that it is working reliably and as expected. It doesn't sound
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difficult but it can be. Designing good tests is one of those things that can make your
software great.

Command and Response
Let's say you take the advice in the previous section and create test functions for each
piece of your hardware. During bring up, you've made a special image that executes
each test on power up. If one of them fails, you and the hardware engineer may want
to just run that test over and over. So you recompile and reload. Then you want to do
the same thing for a different test. And yet another one. Wouldn't it be easier to send
your embedded system commands and have it run the tests as needed?

Embedded systems do not often have the rich user interface experience found in com-
puters (or even smart phones). Many are controlled through a command line. Even
those with screens often use a command line interface for debugging. The first part of
this section describes how to send commands in C using function pointers in a com-
mand handling jump table. This nifty problem-and-solution gives me an opportunity
to show the standard command pattern, which is a useful pattern to know whatever
language you are using.

Figure 3-13 shows some high level goals for our automated command handler. The
figure specifies a port (serial or Ethernet) and a file read from external memory or any
other communication method. We'll ignore those for now and concentrate on being
able to send a command and get a response.

1) Buffer serial data
2) Parse character stream into commands
3) Invoke commands
4) Perform actions
5) Output results

PC

SERIAL

System

Command line
interface on

serial terminal

Figure 3-13. Goals for a command handler

Once you have some data read in, the code will need to figure out which function to
call. A small interpreter with a command table will make the lives of those around you
easier. By separating the interface from the actual test code, you will more easily be able
to extend it in unforeseen directions.

Creating a command

Let's start with a small list of commands you want to implement:
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Ver
Outputs the version information

Test the flash
Runs the flash unit test, printing out the number of errors upon completion

Blink LED
Sets an LED to blink at a given frequency

Help
Lists available commands with one-line descriptions

Once you have a few commands implemented, adding commands as you go along
should be pretty easy.

I'm going to show how to do this in C because it is probably the scariest of the ways
you'd implement it. Object-oriented languages such as C++ and Java offer friendlier
ways to implement this functionality using objects. However, the C method will be
smaller and generally faster, so factor that in when you are choosing how to implement
this pattern. For readers unfamiliar with the C language's function pointers, “Function
pointers aren't so scary” on page 66 provides an introduction.

Each command we can call will be made up of a name, a function to call, and a help
string.

typedef void(*functionPointerType)(void);
struct commandStruct {
  char const *name;
  functionPointerType execute;
  char const *help;
};

An array of these will provide our list of commands.

const struct commandStruct commands[] =
  {
  {"ver", &CmdVersion, "Display firmware version"},
  {"flashTest", &CmdFlashTest, "RRuns the flash unit test, printing out the number of errors upon completion"},
  {"blinkLed", &CmdBlinkLed, "Sets the LED to blink at a desired rate (parameter: frequency (Hz))"},
  {"",0,""} //End of table indicator. MUST BE LAST!!!
};            

The command execution functions CmdVersion, CmdFlashTest, and CmdBlink are imple-
mented elsewhere. The commands that take parameters will have to work with the
parser to get their parameters from the character stream. Not only does this simplify
this piece of code, it gives greater flexibility, allowing each command to set the terms
of its use, such as the number and type of parameters.

Note that the list doesn't contain the help command. That is a special macro command
that prints out the name and help strings of all items in the table.
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Function pointers aren't so scary
Can you imagine a situation where you don't know what function you want to run until
your program is already running? Say for example you wanted to run one of several
signal processing algorithms on some data coming from your sensors. You can start off
with a switch statement controlled by a variable:

  switch (algorithm) {
    case eFIRFilter:
      return fir(data, dataLen);
    case eIIRFilter:
      return iir(data, dataLen);
    ...
  }

Now when you want to change your algorithm, you send a command or push a button
to make the algorithm variable change. If the data gets processed continually, the system
still has to run the switch statement even if you didn't change the algorithm.

In object-oriented languages, you can use a reference to an interface. Each algorithm
object would implement a function of the same name (for this signal processing ex-
ample, we'd call it filter). Then when the algorithm needed to change, the caller object
would change. Depending on the language, the interface implementation could be in-
dicated with a keyword or through inheritance.

C doesn't have those features (and using inheritance in C++ may be verboten in your
system due to compiler constraints). So we come to function pointers, which can do
the same thing.

To declare a function pointer, you need the prototype of a function that will go in it.
For our switch statement, that would be a function that took in a data pointer and data
length and didn't return anything. However, it could return results by modifying its
first argument. The prototype for one of the functions would look like:

void fir(uint16_t* data, uint16_t dataLen);

Now take out the name of the function and replace it with a star and a generic name
surrounded by parentheses:

void (*filter)(uint16_t* data, uint16_t dataLen);

Instead of changing your algorithm variable and calling the switch statement to select
a function, you can change the algorithm only when needed and call the function
pointer:

  filter = &fir;
  *filter(data, dataLen);

Once you are comfortable with the idea of function pointers, they can be a powerful
asset when the code is supposed to adapt to its environment. Some common uses for
function pointers include the command structure described in this chapter, callbacks
to indicate a completed event, and mapping button presses to context-sensitive actions.

One caution: excessive use of function pointers can cause your processor to be slow.
Most processors try to predict where your code is going and load the appropriate in-
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structions before execution. Function pointers inhibit branch prediction because the
processor can't guess where you'll be after the call.

However, other methods of selecting on-the-fly function calls also interrupt branch
prediction (such as the switch statement we started with). Unless you are to the stage
of hand tuning the assembly code, it generally isn't worth worrying about the slight
slowdown caused by the awesome powers of the function pointer.

Invoking a command

Once the client on the command line indicates which command to run by sending a
string, you need to choose the command and run it. To do that, go through the table,
looking for a string that matches. Once you find it, call the function pointer to execute
that function.

Compared to the previous section, this part seems almost too easy. That is the goal.
Embedded systems are complex, sometimes hideously so, given their tight constraints
and hidden dependencies. The goal of this (and many other patterns) is to isolate the
complexity. You can't get rid of the complexity; a system that does nothing isn't very
complex but isn't very useful either. There is still a fair amount of complexity in setting
up the table and the parsing code to use it, but those details can be confined to their
own spaces.

Each command may perform the desired action itself or call another function (the re-
ceiver) to perform the action. For example, the peek command may get the address to
be read and then just read the address. On the other hand, the blink LED command
will probably call whatever function already exists to set interface to the LED and set
a timer to make it blink. This function, the receiver, is the code that the user really
wanted to talk to.

If a command implements the receiver (like the version command does), it is called a
smart command. This is a misnomer, as separating the command and the receiver is
usually smarter because it leads to a more easily extensible system.

Command Pattern
What we've been looking at is a formal, classic design pattern. Where the command
handler I've described is a tactical solution to a problem, the command pattern is the
strategy that guides it and other designs like it.

The overarching goal of this pattern is to decouple the command processing from the
actual action to be taken. The command pattern shows an interface for executing op-
erations. Any time you see a situation where one piece of a system needs to make
requests of another piece without the intermediaries knowing the contents of those
requests, consider the command pattern.

As shown in Figure 3-14, there are four pieces:
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Determine which
command to run

then execute

Get parameters
run receiver

Does action
Array

of 
Commands

Command line input

Invoker Command Receiver

Figure 3-14. How the command handler work

Client
Maps the receivers onto commands. Clients create concrete command objects and
create the association between receivers and command objects. A client may run
at initialization (as it was done in our example by creating an array) or create the
associations on the fly.

Invoker
Determines when the command needs to run and executes it. It doesn't know any-
thing about the receiver. It treats every command the same.

Command object
An interface for executing an operation. This is a C++ class, a Java interface, or a
C structure with a function pointer. An instantiation of the command interface is
called a concrete command.

Receiver
Knows how to service the request. This is goal code to be run.

Figure 3-15 shows the purpose of each element of the command pattern.
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Figure 3-15. Command patterns knowledge barrier

Consider the client as protecting the secrets of the system by disguising
all of the commands to look alike. The invoker will have to play by the
rules or the system will know it is up to no good.

The command interface can be richer, possibly adding a log command, a help function,
and an undo function. The invoker will know when to call these, but it will be up to
the client to build each of these commands with the actual implementation.

Because the details are hidden, it is pretty straightforward to add a macro command
that implements multiple commands. To do this, the client creates a list of the basic
commands to be combined. When invoked, the macro calls the execute function on
each of its subcommands (or undo or log). For example, a macro to print the version
(ver) and read the data at an address (peek), would call the execute functions of those
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commands. This provides a better layer of decoupling than if the macro called the
receiver functions directly.

Handling Errors Gracefully
The longevity of code shocks me. For all that it sometimes seems like we are rewriting
the same old things in different ways, one day you may discover that a piece of code
you wrote at a start-up over a decade ago is being used by a Fortune 500 company.
Once it works well enough, why fix the depths of code?

It only makes it scarier to know that at some point your code will fail. An error will
occur, either from something you wrote or from an unexpected condition in the envi-
ronment. There are two ways to handle errors. First, the system can enter a state of
graceful degradation where the software does the best it can. Alternatively, the system
could fail loudly and immediately. Long term sensor-type systems require the former,
whereas medical systems require the latter. Either way a system should fail safely.

But how to implement either one? More importantly, what criteria should be used to
determine which subsystems implement which error handling method? What you do
depends on your product; my goal is to get you to think about error handling during
design.

Consistent Methodology
Functions should handle errors as best they can. For example, if a variable can be out
of range, the range should be fixed and the error logged as appropriate. Functions can
return errors to allow a caller to deal with the problems. The caller should check and
deal with the error, which may mean passing it further upstream in a multi-layered
application. In many cases, if the error is not important enough to check, it is not
important enough to return. On the other hand, there are cases where you want to
return a diagnostic code that is used only in testing. It can be noted in the comments
that the returned error code is not for normal usage or should only be used in
ASSERT() calls.

ASSERT() is not always implemented in embedded systems, but it is straightforward to
implement in a manner appropriate to the system. This might be a message printed out
on the debugger consoler, a print to a system console or log, a breakpoint instruction
such as BKPT, or even an I/O line or LED that toggles on an error condition. Printing
changes the embedded system's timing, so it is often beneficial to separate the functions
for error communications to allow other methods of output (i.e. an LED).

Error return codes for an application or system should be standardized over the code
base. A single high-level errorCodes.h file (or some such) may be created to provide
consistent errors in an enumerated format. Some suggested error codes are:

• No error (should always be 0)
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• Unknown error (or unrecognized error)

• Bad parameter

• Bad index (pointer outside range or null)

• Uninitialized variable or subsystem

• Catastrophic failure (this may cause a processor reset unless it is in a development
mode,x in which case it probably causes a breakpoint or spin loop)

There should be a minimum number of errors, generic errors, so that the application
can interpret them. While specificity is lost (UART_FAILED_TO_INIT_BECAUSE_SEC
OND_PARAMETER_WAS_TOO_HIGH), the generalization makes error handling and usage easier
(if the error PARMETER_BAD occurs in a subsystem, you've got a good place to start to look
for it). Essentially, by keeping it simple, you make sure to hand the developer the im-
portant information (the existence of a bug) and additional debugging can dig into
where and why.

Error Handling Library
An error handling library is also a good idea. One way to implement one is to have each
function return an error code. Instead of calling the function and checking the results
like this:

error = FunctionFoo();
if (error != NO_ERROR) {
  ErrorSet (&globalErrorCode, error);
}

you'd call the function inside an error checking function:

ErrorSet(&globalErrorCode, FunctionFoo());

The ErrorSet function would not overwrite a previous error condition if this function
returned without a failure. This allows you to call several functions at a time, checking
the error at the end instead of at each call.

In such an error handling library, there would be four functions, implemented and used
as makes sense with the application: ErrorSet, ErrorGet, ErrorPrint, and ErrorClear.
The library should be designed for debugging and testing, though the mechanism
should be left in place even when development is complete. For example, ErrorPrint
may change from writing out a log of information on a serial port to a small function
that just toggles an I/O line. This is not an error for the final user to deal with; it is for
a developer confronted with production units that do not perform properly.

Further Reading
If you want to learn more about handling hardware safely, reading schematics, and
soldering, I suggest Make: Electronics by Charles Platt, published by O'Reilly (2009).
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The step-by-step introduction is an easy read, though better if you follow along, com-
ponents in hand.

To get a better look into hardware design, I suggest Designing Embedded Hardware by
John Catsoulis, published by O'Reilly (2005).

If you are implementing code for a peripheral, get the latest datasheet version! Read
the general description then skip to the text in the center, stopping at all timing dia-
grams. Don't forget to check the errata.

If you are evaluating a peripheral, find components that meet the bare minimum elec-
trical and operating criteria. Check prices, lead times and future availability. Check
performance characteristics (add requirements and desires to your criteria as needed).
Make a prototype by mentally (or actually) implementing the code needed for this
peripheral.

If you are getting used to a new processor, dev kits are the new user welcome mat for
processors. Not only do they let you mock up the hardware, their getting started guides
will give you the flavor of working with the whole environment: processor, compiler,
debugger. This will help you a lot but it won't get you out of reading the user manual.
Start with the introduction and wander where needed.

Learning to use your oscilloscope probably should be done with its manual, but I've
found one useful, more general write-up that is very detailed. Alternatively, there are
some videos on YouTube about setting up oscopes; sometimes watching someone do
it is easier than reading about it.

Interview question: Talking about failure
Tell me about a project that you worked on that was successful. Then, tell me
about a project that you worked on that was not so successful. What happened?
How did you work through it? [Thanks to Kristin Anderson for this question.]

The goal of this question is not really about judging an applicant's previous successes
and failures. The question starts there because the processes that lead to success (or
failure) depend on knowledge, information and communication. By talking about suc-
cess or failure, the applicant reveals what he learns from available information, how he
seeks out information, and how he communicates important information to others on
the team. If he can understand the big picture and analyze the project's progress, he's
more likely to be an asset to the team.

The successful half of the question is interesting to listen to, particularly if the inter-
viewee is excited and passionate about his project. I want to hear about his part in
making it successful and the process he used. However, like many of the more technical
questions, the first half of the question is really about getting to the second half of the
question.

Did he understand all the requirements before jumping into the problem, or were there
perhaps communication gaps between the requirements set by the marketing group
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and the plans developed by the engineers? Did the applicant consider all the tasks and
even perhaps Murphy's Law before developing a schedule and add some time for risk?

Did he bring up anything relative to any risks or issues he faced and any mitigation
strategies he considered? Some of these terms are program management terms, and I
don't really expect the engineers to use all the right buzz words. But I do expect them
to be able to go beyond talking about the technical aspects and be able to tell me other
factors in successful projects.

Often, in talking about successful projects, an applicant will say he understood the
requirements and knew how to develop the right project and made people happy. That
is enough to go on to the next question.

Then, when I ask what went wrong, I really want to hear how the applicant evaluated
the factors involved in trying for a successful project and whether he can tell me why
he thought the project failed (poor communication, lack of clear goals, lack of clear
requirements, no management support, etc.). There is no right or wrong answer; what
I'm interested in is how he analyzes the project to tell me what went wrong. I am dis-
appointed by the interviewees who cannot think of an unsuccessful project, because
no project goes perfectly so I tend to think they weren't paying attention to the project
as a whole. Understanding more than just what he has to do technically makes an
engineer a much better engineer.
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CHAPTER 4

Outputs, Inputs, and Timers

As you've probably determined for yourself, projects don't always start off fully defined.
Even the simple sounding subject of making an LED blink is not immune to product
goals changing. In this chapter, we'll go through the phases of a project as the vision
appears, changes, and finally crystallizes. Along the way, we'll focus on the input and
output aspects of the system. From pin configuration registers to debouncing buttons
to timers, this chapter will describe the most basic embedded concepts.

Toggling an Output
Marketing has come to you with an idea for a product. When you see through the smoke
and mirrors, you realize that all they need is a light to blink.

Most processors have pins whose digital states can be read (input) or set (output) by
the software. These go by the name of I/O pins, GPIO (general purpose I/O) and oc-
casionally GIO (general I/O). The basic use case is straightforward:

1. Initialize the pin to be an output (as an I/O pin, it could be input or output).

2. Set the pin high when you want the LED on. Set the pin low when you want the
LED low.

Through this chapter, I'll give you examples from three different user manuals so you
get an idea of what to expect in your processor's documentation. Atmel's ATtiny AVR
microcontroller manual describes an 8-bit microcontroller with plenty of peripherals.
The TI MSP430x2xx User's Guide describes a 16-bit RISC processor designed to be
ultra low power. The NXP LPC 13xx User Manual describes a 32-bit ARM Cortex
microcontroller. You won't need these documents to follow along, but I thought you
might like to know the processors the examples are based upon.
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Starting with Registers
To do anything with an I/O line, we need to talk to the appropriate register. As described
in “Reading a Datasheet” on page 38, you can think of registers as an API to the hard-
ware. Described in the chip's user manual, registers come in all flavors to configure the
processor and control peripherals. They are memory-mapped, so you can write to a
specific address to modify a particular register.

As you work with registers, you will need to think about things at the bit level. Often
you'll turn specific bits on and off. If you've never used bitwise operations, now is the
time to look them up. In C and C++, a bitwise-OR is | and bitwise-AND is &. The
logical NOT operator (!) turns a 1 into a 0 (or a true into a false) and vice versa. The
bitwise NOT (~) set each bit to its opposite.

register = register | (1 << 3); // turn on the 3rd bit in the register
register |= 1 << 3;             // same but more concisely
register &= ~(1 << 3);          // turn off the 3rd bit in the register

Enough review—if this isn't pretty obvious, look into bitwise operations and boolean
math. You will need to know these pretty well to use registers.

An Introduction to Binary and Hexadecimal
Becoming familiar with basic binary and hexadecimal math will make your career in
embedded systems far more enjoyable. Shifting individual bits around is great when
you need only to modify one or two places. But if you need to modify the whole variable,
hex comes in handy because each digit in hex corresponds to a nibble (four bits) in
binary. (Yes, of course a nibble is half of a byte. Embedded folks like their puns.)

Binary Hex Decimal Remember this number

0000 0 0 This one is easy.

0001 1 1 This is (1 << 0).

0010 2 3 This is (1<< 1). Shifting is the same as multiplying by 2shiftValue.

0011 3 3 Notice how in binary, this is just the sum of one and two.

0100 4 4 (1 << 2)

0101 5 5 This is an interesting number because every other bit is set.

0110 6 6 See how this looks like you could shift the three over to the left by one? This could be
put together as ((1<<2)|(1<<1)) or ((1<<2) + (1<<1)) or (3 << 1)).

0111 7 7 Look at the pattern of binary bits. They are very repetitive. Learn the pattern and you'll
be able to generate this table if you need to.

1000 8 8 (1 << 3) See how the shift and the number of zeros are related? If not look at the binary
representation of 2 and 4.

1001 9 9 We are about to go beyond the normal decimal numbers. Since there are more digits
in hexadecimal, we'll borrow some from the alphabet. In the meantime, 9 is just 8 + 1.
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Binary Hex Decimal Remember this number

1010 A 10 This is another special number with every other bit set.

1011 B 11 See how the last bit goes back and forth from 0 to 1. It signifies even and odd.

1100 C 12 Note how C is just 8 and 4 combined in binary? So of course it equals twelve.

1101 D 13 The second bit from the right goes back and forth from 0 to 1 at half the speed of the
first bit: 0 then 0 then 1 then 1 then repeat.

1110 E 14 The third bit also goes back and forth but at half the rate of the second bit.

1111 F 15 All of the bits set. This is an important one to remember.

Note that with four bits (one hex digit) you can represent 16 numbers but you can't
represent the number 16. Many things in embedded systems are zero based, including
addresses, mapping well to binary or hexadecimal numbers.

A byte is two nibbles, the left one being shifted up four spaces from the other. So 0x80
is (0x8 << 4). A 16 bit word is made up of two bytes, so 0x1234 is (0x12 << 8) + (0x34).
A 32 bit word is eight characters long in hex but ten characters long in decimal.

Since memory is generally viewed in hex, some values are used to identify anomalies
in memory. In particular, expect to see (and use) 0xDEADBEEF as an indicator (it is a
lot easier to remember in hex than in decimal: 3735928559). Two other important bytes
are 0xAA and 0x55. Because the bits in these numbers alternate, they are easy to see
on an oscilloscope and good for testing when you want to see a lot of change in your
values.

Set the Pin to be an Output
Most I/O pins can be either inputs or outputs. The first register you'll need to set will
control the direction of the pin so it is an output. First, determine which pin you will
be changing. To modify the pin, you'll need to know the pin name ("I/O pin 2”, not its
number on the processor (i.e. pin 12). The names are often inside the processor in
schematics where the pin number is on the outside of the box (as shown in Figure 4-1).
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Figure 4-1. Schematic of processor with LED attached

The pins may have multiple numbers in their name, indicating a port (or bank) and a
pin in that port. (The ports may also be letters instead of numbers.) In the figure, the
LED is attached to processor pin 10 which says “SPICLK/IO1_2”. This pin is shared
between the SPI port (remember, this is a communication method discussed in Chap-
ter 6) and the I/O subsystem (IO1_2). The user manual will tell you whether the pin is
an I/O by default or a SPI pin (and how to switch between them). Another register may
be needed to indicate the purpose of the pin. Most vendors are good about cross-
referencing the pin setup, but if it is shared between peripherals, you may need to look
in the peripheral section to turn off unwanted functionality. In our example, we'll say
the pin is an I/O by default.

In the I/O subsystem, it is the second pin (2) of the first bank (1). We'll need to re-
member that and to make sure the pin is used as an I/O pin and not as a SPI pin. Your
processor user manual will describe more. Look for a section with a name like "I/O
Configuration," "Digital I/O Introduction," or "I/O Ports." If you have trouble finding
the name, look for the word “direction” which tends to be used to describe whether
you want the pin to be an input or an output.

Once you find the register in the manual, you can determine whether you need to set
or clear a bit in the direction register. In most cases, you need to set the bit to make the
pin an output. You could determine the address and hard code the result:

*((int*)0x0070C1) |= (1<<2); 

However, please don't do that.

The processor or compiler vendor will almost always provide a header that hides the
memory map of the chip so you can treat registers as global variables. If they didn't give
you a header, make one for yourself so that your code looks more like one of these lines:
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LPC13xx processor

LPC_GPIO1->DIR |= (1 << 2); // set IO1_2 to be an output

MSP430 processor

P1DIR |= BIT2;              // set IO1_2 to be an output

ATtiny processor

DDRB |= 0x4;                // set IOB_2 to be an output

Note that the register names are different for each processor, but the effect of the code
in each line is the same. Each processor has different options for setting the second bit
in the byte (or word).

In each of these examples, the code is reading the current register value, modifying it,
and then writing the result back to the register. This read-modify-write cycle needs to
happen in relatively atomic chunks. If you read the value, modify it, then do some other
stuff before writing the register, you run the risk that the register has changed and the
value you are writing is out of date. The register modification will change the intended
bit but may also have unintended consequences.

Turn On the LED
The next step is to turn on the LED. Again, we'll need to find the appropriate register
in the user manual.

LPC13xx processor

LPC_GPIO1->DATA |= (1<<2); // IO1_2 high

MSP430 processor

P1OUT |= BIT2;             // IO1_2 high

ATtiny processor

PORTB |= 0x4;              // IOB_2 high

The header file provided by the processor or compiler vendor shows how the raw ad-
dresses get masked by some programming niceties. In the LPC13xx.h, the I/O registers
are accessed at an address through a structure (I made some reorganization and sim-
plifications to the file):

typedef struct
{
  __IO uint32_t DATA;
  uint32_t RESERVED0[4095]; // The same data appears at 4096 locations
                            // in the GPIO address space and 12 bits
                            // of the address bus can be used for
                            // bit masking. (See manual 7-4.1)

  __IO uint32_t DIR;  // direction set for output, clear for input
  __IO uint32_t IS;   // interrupt sense (1 = interrupt pending)
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  __IO uint32_t IBE;  // interrupt on both falling and rising edges
  __IO uint32_t IEV;  // interrupt event register
  __IO uint32_t IE;   // interrupt enable
  __IO uint32_t RIS;  // raw status register
  __IO uint32_t MIS;  // masked interrupt status register
  __IO uint32_t IC;   // interrupt clear (set bit to clear interrupt)
} LPC_GPIO_TypeDef;

#define LPC_AHB_BASE          (0x50000000UL)
#define LPC_GPIO0_BASE        (LPC_AHB_BASE  + 0x00000)
#define LPC_GPIO1             ((LPC_GPIO_TypeDef   *) LPC_GPIO1_BASE )

The header file describes many registers we haven't looked at. These are also in the user
manual section, with a lot more explanation. I prefer accessing the registers via the
structure because it groups related functions together, often letting you work with the
ports interchangeably.

You may want to update a vendor header file to use this structured
approach. Approach this free code as a starting point, not the final draft.
Modify it as needed to work in your system.

Once we have the LED on, we'll need to turn it off again. You just need to clear those
same bits as shown in the register section (“Starting with Registers” on page 76).

LPC13xx processor

LPC_GPIO1->DATA &= ~(1<<2);    // IO1_2 low

MSP430 processor

LPC13xx P1OUT &= ~(BIT2);      // IO1_2 low

ATtiny processor

PORTB &= ~0x4;                 // IOB_2 low

Blinking the LED
To finish our program, all we need to do is put it all together. The pseudo code for this
is:

main:
  initialize the direction of the I/O pin to be an output
loop:
  set the LED on
  do nothing for some period of time
  set the LED off
  do nothing for the same period of time
  repeat

Once you've programmed it for your processor, you should compile, load, and test it.
You might want to tweak the timing so the LED looks about right, it will probably
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require several tens of thousands of processor cycles or the LED will blink faster than
you can perceive it.

Troubleshooting
If you have a debugging system such as JTAG set up, finding out why your LED won't
turn on is likely to be straightforward. Otherwise, you may have to use the process of
elimination.

First, check to see whether a pin is shared between different peripherals. While we said
that the pin was an I/O by default, if you are having trouble, verify its functionality is
as expected.

As long as you have the manual open, verify that the pin is configured properly. If the
LED isn't responding, you'll need to read the chapter of the user manual. This section
gives you a high level idea but processors are different, so check that the pin doesn't
need additional configuration (e.g. a power control output) or have a feature turned
on by default (do not make the GPIO an open-drain output by accident).

Most processors have I/O as a default because that is the simplest way for their users
(us!) to verify the processor is connected correctly. However, particularly with low
power processors, they want to keep all unused subsystems off to avoid power con-
sumption. (And other special-purpose processors may have other default functional-
ity.) The user manual will tell you more about the default configuration and how to
change it. These are often other registers that need a bit set (or cleared) to make a pin
act as an I/O.

Next, make sure the system is running your code. Do you have another way to verify
that the code being run is the code that you compiled? If you have a debug serial port,
try incrementing the revision to verify that the code is getting loaded.

Make the code as simple as possible to be certain that the processor is running the
function handling the LEDs. Eliminate any noncritical initialization of peripherals in
case the system is being delayed waiting for a nonexistent external device. Turn off
interrupts and asserts. Make sure the watchdog is off (see “Watchdog” on page 143).
Put the LED code as early as possible in the code to reduce the likelihood that any other
code is freezing the processor.

Double-check your math. Even if you are completely comfortable with hex and bit
shifting, a typo is always possible. In my experience, typos are the most difficult bugs
to catch, often harder than memory corruptions. Check you are using the right pin on
the schematic. And make sure there is power to the board. (You may think that advice
is funny, but you'd be surprised at how often this plays a role!)

With many microcontrollers, pins can sink more current than they can source (pro-
vide). Therefore it is not uncommon for the pin to be connected to the cathode rather
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than the anode of the LED. In these instances, you turn a LED on by writing a zero
rather than a one.

If the output still doesn't work, consider whether there is a hardware issue. Even in
hardware, it can be something simple (installing LEDs backwards is pretty easy). It may
be a design problem such as the processor pin being unable to provide enough current
to drive the LED; the datasheet (or user manual) might be able to tell you this. There
might be a problem on the board: a broken component or connection. With the high-
density pins on most processors, it is very easy to short pins together. Ask for help or
get out your multimeter (or oscilloscope).

Separating the Hardware from the Action
Marketing liked your first prototype, though they might want to tweak a bit later. The
system went from a prototype board to a PCB. Somehow in the process, the pin number
changed (to IO1_3). They need to be able to run both systems.

For this project it is trivially simple to fix the code, but for a larger system, the pins may
be scrambled to make way for a new feature. Let's look at how to make modifications
simpler.

Board-Specific Header File
Using a board-specific header file lets you avoid hard coding the pin. If you have a
header file, you just have to change a value there instead of going through your code
to change it everywhere it's referenced. The header file might look like:

#define LED_SET_DIRECTION  (P1DIR)
#define LED_REGISTER       (P1OUT)
#define LED_BIT            (1<<3)

The lines of code to configure and blink the LED can be processor-independent:

LED_SET_DIRECTION |= LED_BIT; // set the IO to be output
LED_REGISTER |= LED_BIT;      // turn the LED on
LED_REGISTER &= ~LED_BIT;     // turn the LED off

That might get a bit unwieldy if you have many I/O lines or need the other registers. It
might be nice to be able to give only the port (1) and position in the port (3) and let the
code figure it out. The code might be more complex, but it is likely to save time (and
bugs). For that, the header file would look like:

// ioMapping_v2.h
#define LED_PORT 1
#define LED_PIN 3

If we want to recompile to use different builds for different boards, we can use three
header files. The first is the old board pin assignments (ioMapping_v1.h). Next we'll
create one for the new pin assignment (ioMapping_v2.h). We could include the one we
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need in our main .c file, but that defeats the goal of modifying that code less. If we have
the main file always include a generic ioMapping.h, we can switch the versions in the
main file by including the correct header file:

// ioMapping.h
#if COMPILING_FOR_V1
#include “ioMapping_v1.h”
#elif COMPILING_FOR_V2
#include “ioMapping_v2.h”
#else
#error “No IO map selected for the board. What is your target?”
#endif /* COMPILING_FOR_*/

Using a board-specific header file hardens your development process against future
hardware changes. By sequestering the board specific information from the function-
ality of the system, you are creating a more loosely coupled and flexible code base.

Keeping the I/O map in Excel is a pretty common way to make sure the
hardware and software engineers agree on the pin definitions. With a
little bit of creative scripting, you can generate your version specific I/
O map from a CSV file to ensure your pin identifiers match those on the
schematic.

I/O Handling Code
Instead of writing directly to the registers in the code, we'll need to handle the multiple
ports in a generic way. So far we need to initialize the pin to be an output, set the pin
high so the LED is on, and set the pin low so the LED is off. Oddly enough, we have a
large number of options for putting together even so simple an interface.

In the implementation, the initialization function configures the pin to be an output
(and sets it to be an I/O pin instead of a peripheral if necessary). With multiple pins,
you might be inclined to group all of the initialization together, but that breaks the
modularity of the systems.

While the code will take up a bit more space, it is better to have each subsystem initialize
the I/Os it needs. Then if you remove or reuse a module, you have everything you need
in one area. We've seen, though, one situation where you should not separate interfaces
into subsystems: the I/O mapping header file, where all of the pins are collected together
to make the interface with the hardware more easily communicated.

Moving on with the I/O subsystem interface, setting a pin high and low could be done
with one function: IOWrite(port, pin, high/low). Alternatively, each function could
be broken out so that there are IOSet(port, pin) and IOClear(port, pin) functions.
Both methods work. Imagine what our main function will look like in both cases.

The goal is to make the LED toggle. If we use IOWrite, we can have a variable that
switches between high and low. In the IOSet and IOClear case, we'd have to save that
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variable and check it in the main loop to determine which function to call. Alternatively,
we could hide IOSet and IOClear within another function called IOToggle.

XOR
XOR (exclusive or) is a somewhat magical bitwise operation. It doesn't have a logical
analog and isn't used as much as the others we've seen, so remembering it can be tough.

Imagine your nemesis puts on his blog that he is going to the movies this evening, just
what you had planned to do. If you both avoid going, the movie won't play because
there won't be an audience. One of you can go to see the movie. But if you both go, the
movie won't play (the theater is still not happy about the fuss you caused last time).

The truth table looks like:

Input A Input B Output

0 0 0

0 1 1

1 0 1

1 1 0

As shown in Figure 4-2, XOR is often represented as a Venn diagram where the over-
lapping section is not covered.
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Figure 4-2. XOR Venn Diagram

XOR has some nifty applications in computer graphics and finding overflows (math
errors). You can also toggle our LED on and off using XOR:

register = register ^ (1<<2);

Note that (1<<2) would always be a 1 in the table. If it is Input A, we are only using
the bottom half of the chart. If the register (Input B) already has that pin set, what would
the output be?

We don't have any particular constraints with our hardware, so we don't need to con-
sider optimizing the code in this example. For education's sake, however, consider the
options we are giving ourselves with these potential interfaces.

The IOWrite option does everything in one function, so it takes less code space. How-
ever, it has more parameters, so it takes more stack space, which comes out of RAM.
Plus it has to keep around a state variable (also RAM).

With the IOSet/IOClear/IOToggle option, there are more functions (more code space)
but fewer parameters and possibly no required variables (less RAM). Note that the
toggle function is no more expensive in terms of processor cycles than the set and clear
functions.

This sort of evaluation requires you to think about the interface along another dimen-
sion. Chapter 8 will go over more details on how to optimize for each area. During the
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prototyping phase, it is too soon to optimize the code, but it is never too soon to con-
sider how the code can be designed to allow for optimization later.

Main Loop
The modifications in the previous sections put the I/O handling code in its own module,
though the basics of the main loop don't change. The implementation might look like:

void main(void)
{
  IOSetDir(LED_PORT, LED_PIN, OUTPUT);
  while (1) { // spin forever
    IOToggle(LED_PORT, LED_PIN);
    DelayMs(DELAY_TIME);
  }
}

The main function is no longer directly dependent on the processor. With this level of
decoupling, the code is more likely to be reused in other projects. In (a) of Figure 4-3,
the original version of software architecture is shown, its only dependency being the
processor header. In the middle (b) is our current version. It is more complicated, but
the separation of concerns is more apparent. Note that the header files are put off to
the side to show that they feed into the dependencies.

Our next reorganization will create an even more flexible and reusable architecture,
illustrated by (c).

(a) (b) (c)

Processor 
Header

Main

IO Pin
Handler

Main

Processor 
Header

IO
Mapping V2

V1

V2

V1
LED

IO Pin
Handler

IO
Mapping

Processor 
Header

Processor 
Header

Figure 4-3. Comparison of architectures

Facade Pattern
As you can imagine, our I/O interface is going to get more complex as the product
features expand. (Currently we've got only one output pin, so it can't really get any
simpler.) In the long run, we want to hide the details of each subsystem. There is a
standard software design pattern called facade that provides a simplified interface to a
piece of code. The goal of the facade pattern is to make a software library easier to use.
Along the lines of the metaphor I've been using in this book, that interfacing to the
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processor is similar to working with a software library, it makes sense to use the facade
pattern to hide some details of the processor and the hardware.

In “From Diagram to Architecture” on page 16, we saw the adapter pattern, which is
a more general version of the facade pattern. While the adapter pattern acted as a
translation between two layers, the facade does this by simplifying the layer below it.
If you were acting as an interpreter between scientists and aliens, you might be asked
to translate “x=y+2, where y=1”. If you were an adapter pattern, you'd restate the same
information without any changes. If you were a facade pattern, you'd probably say
“x=3” because it is simpler and the details are not critical to using the information.

Hiding details in a subsystem is an important part of good design. It makes the code
more readable and more easily tested. Furthermore, the calling code doesn't depend
on the internals of the subsystem, so the underlying code can change leaving the facade
intact.

A facade for our blinking LED would hide the idea of I/O pins from calling code by
creating an LED subsystem as shown in the right side of Figure 4-3. Given how little
the user needs to know about the LED subsystem, the facade could be implemented
with only two functions:

LEDInit()
Calls the I/O initialization function for the LED pin

LEDBlink()
Blinks the LED

Adding a facade will often increase the size of your code, but may be worth it in terms
of debuggability and maintainability.

The Input In I/O
Marketing has determined that they want to change the way the system blinks in response
to a button. For now, if the button is held down, the system should stop blinking altogether.

Our schematic is not much more complex with the addition of a button (see Fig-
ure 4-4). Note that the button is I/O port 2, pin 2 denoted with S1 (switch 1). The icon
for a switch makes some sense; when you push it in, it conducts across the area indi-
cated. Here, when you press the switch, the pin will be connected to ground.

The Input In I/O | 87



VLL
IO1_0/SPIMOSI
RESET
IO1_1/SPIMOSI
IO2_0/ADCO
GND

ADC3/IO2_3
IO1_3

SPICLK/IO1_2
ADC2/IO2_2

AREF
ADC1/IO2_1

1
2
3
4
5
6

12
11
10
9
8
7

GND

3v3

GND

S1 1kR

Figure 4-4. Schematic with LED and Button

Many processor I/O pins have internal pull-up resistors. When a pin is an output, the
pull-ups don't do anything. However, when the pin is an input, the pull-up gives it a
consistent value (1) even when nothing is attached. The existence and strength of the
pull-up may be settable but depends on your processor (and possibly on the particular
pin). Some processors even have an option to allow internal pull-downs on a pin. In
that case, our switch could have been connected to power instead of ground.

Inputs with internal pull-ups take a bit of power, so if your system needs
to conserve a few micro amps, you may end up disabling the unneeded
pull-ups.

Your processor user manual will describe the pin options. The basic steps for setup are:

1. Add the pin to the I/O map header file.

2. Configure it to be an output. Verify it is not part of another peripheral.

3. Configure a pull-up explicitly (if necessary).

Once you've got your I/O pin set up as an input, you'll need to add a function to use
it, one that can return the state of the pin as high (true) or false (low):

boolean IOGet(uint8_t port, uint8_t pin);

The button will connect to ground when the button is pressed. This signal is active
low, meaning that when the button is actively being held down, the signal is low.
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A Simple Interface to a Button
To keep the details of the system hidden, we'll want to make a button subsystem that
can use our I/O handling module. On top of the I/O function, we can put another
facade so that the button subsystem will have a simple interface.

The I/O function returns the level of the pin. However, we want to know whether the
user has taken an action. Instead of the button interface returning the level, you can
invert the signal to determine if the button is currently pressed. The interface could be:

void ButtonInit()
Calls the I/O initialization function for the button

boolean ButtonPressed()
Returns true if the button is down

See the architecture in Figure 4-4. Both the LED and button subsystems use the I/O
subsystem and I/O map header file. This is a simple illustration of how the modulari-
zation we did earlier in the chapter allows reuse.
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At a higher level, there are a few ways to implement the main function.

main:
  initialize LED
  initialize button
loop:
  if button pressed, turn LED off
  else toggle LED
  do nothing for a period of time
  repeat

With this code, the LED won't go off immediately, but will wait until the delay has
expired. The user may notice some lag between pushing the button and the LED turning
off.
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A system that doesn't respond to a button press in less than a quarter of
a second (250ms) feels sluggish and difficult to use. A response time of
100ms is much better, but still noticeable to impatient people. A re-
sponse time under 50ms feels very snappy.

To decrease the response time, we could constantly check to see if the button was
pressed.

loop:
  if button pressed, turn LED off
  else
    if enough time has passed,
      toggle LED
      clear how much time has passed
  repeat

These methods both check the button to determine if it is pressed. This continuous
querying is called polling and is easy to follow in the code. However, if the LED needs
to be turned off as fast as possible, you may want the button to interrupt the normal
flow.

With interrupts, the main loop could be simpler.

loop:
  if button not pressed, toggle LED
  do nothing for a period of time
  repeat

The code to turn off the LED could be handled in the interrupt. However, this makes
the button and LED subsystems depend on each other, coupling the systems together
in an unobvious way. There are times where you'll have to do this for an embedded
system to be fast enough to handle an event.

Chapter 5 will describe how and when to use interrupts in more detail. This chapter
will continue to look at them at a high level only.

Momentary Button Press
Instead of using the button to halt the LED, marketing wants to test different blink rates
by tapping the button. For each button press, the system should decrease the amount of
delay it has (until it gets to near zero, at which point it should go back to the initial delay).

In the previous assignment, all you had to check was whether the button was simply
pressed down. This time you have to know both when the button will be pressed and
when it will be released. Ideally, we'd like the switch to look like the top part of Fig-
ure 4-6. If it did, we could make the system note the rising edge of the signal and take
an action there.
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Interrupt on a Button Press
This might be another area where an interrupt can help us catch the user input so the
main loop doesn't have to poll the I/O pin so quickly. The main loop becomes straight-
forward, if it uses a global variable to learn of button presses.

interrupt when the user presses the button:
  set global button pressed = true

loop:
  if global button pressed,
    set the delay period (reset or decrease it)
    set global button pressed = false
  if enough time has passed,
    toggle LED
    clear how much time has passed
  repeat

The input pins on many processors can be configured to interrupt when the signal at
the pin is at a certain level (high or low) or has changed (rising or falling edge). If the
button signal looks like it does in part (a) of Figure 4-6, where would you want to
interrupt? Interrupting when the signal is low may lead to multiple activations if the
user holds the button down. I prefer to interrupt on the rising edge so that when the
user presses the button down nothing, happens until she releases it.

To check a global variable accurately in this situation, you'll need the
volatile C keyword, which you may never have needed before when
developing software in C and C++. The keyword tells the compiler that
the value of the variable or object can change unexpectedly and should
never be optimized out. All registers and all global variables shared be-
tween interrupts and normal code should be marked volatile. If your
code works fine without optimizations and then fails when optimiza-
tions are on, check that the appropriate globals and registers are marked
volatile.

Configuring the Interrupt
Setting a pin to be an interrupt is usually separate from setting the function to set a pin
to be an input. Although both are part of initialization, you should save the complexity
of interrupt configuration for the pins that require it.

Configuring a pin for interrupting the processor adds three more functions to our I/O
subsystem:

IOConfigureInterrupt(port, pin, edge or level, rising edge/high or falling edge/
low)

Configures a pin to be an interrupt. Some systems also provide a parameter for a
callback, which is a function to be called when the interrupt happens; other systems
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will hardcore the callback to a certain function name and you'll need to put your
code there.

IOInterruptEnable(port, pin)
Enables the interrupt associated with a pin

IOInterruptDisable(port, pin)
Disables the interrupt associated with a pin

If interrupts are not per-pin (they may be per-bank), the processor may have a generic
I/O interrupt, in which case the interrupt service routine (ISR) will need to untangle
which pin caused the interrupt. It depends on your processor. If each I/O pin can have
its own interrupt, the modules can be more loosely coupled.

Debouncing Switches
Many buttons do not provide the clean signal shown in the ideal button signal in the
top part of Figure 4-6. Instead they look more like those labeled “Bouncy digital button
signal.” If you interrupted on that signal, your system could waste processor cycles
interrupting on the glitches at the start and end of the button press.

Uncertain Logic Levels

Ideal button signal

Bouncy digital button signal

Analog button signal

Processor pin read 1  1  1  ?  ?  ?  0  0  0  0  0  0  0  ?  ?  ?  1  1  1

50 ms

Figure 4-6. Different views of button signals

Switch bouncing is due to an inductive effect caused by the switch as the state of the
signal transitions from one to another, and hence there is an associated change in the
electric field. The switch is, in effect, acting as an inductor. Coupled with transmission
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line effects in the signal trace, this is the source of the anomaly. It is not a mechanical
"bounce," although this is commonly and incorrectly taught in many universities. The
confusion arises because the inductive ringing is known as signal "bounce" and many
people misinterpret this term. The switch doesn't physically bounce. You can drive the
contact home with significant force (no mechanical bounce possible) and still get ring-
ing. You will also get ringing/bouncing when a contact is electrically (rather than me-
chanically) toggled.

Figure 4-6 shows an analog view of what could happen when a button is pressed and
only slowly goes into effect. Whether you have a bouncy or switch bouncing button,
there are parts of the analog signal where the signal is neither high nor low, but some-
where in between. This leads to indeterminate values of the digital signal. A digital
signal full of edges would cause the code to believe multiple presses happened per user
action. The result would be inconsistent and frustrating to the user.

Debouncing can eliminate the spurious edges. While it can be done in hardware or
software, we'll focus on software. See Jack Ganssle's excellent web article on debounc-
ing (in the references at the end of this chapter) for hardware solutions.

Many modern switches have a very short period of uncertainty. Switches
have datasheets too; check yours to see what the manufacturer recom-
mends. Beware that trying to empirically determine if you need de-
bouncing may not be enough, as different batches of switches may act
differently.

You still want to look for the rising edge of the signal, where the user releases the button.
To avoid the garbage near the rising and falling edges, you'll need to look for a relatively
long period of consistent signal. How long that is depends on your switch and how fast
you want to respond to the user.

To debounce the switch, take multiple readings (aka samples) of the pin at a periodic
interval several times faster than you'd like to respond. When there have been several
consecutive, consistent samples, alert the rest of the system that the button has
changed.

You will need three variables:

• The current raw reading of the I/O line

• A counter to determine how long the raw reading has been consistent

• The debounced button value used by the rest of the code

How long debouncing takes (and how long your system takes to respond to a user)
depends on how high the counter needs to increment before the debounced button
variable is changed to the current raw state. The counter should be set so that the
debouncing occurs over a reasonable time for that switch.

94 | Chapter 4: Outputs, Inputs, and Timers



If there isn't a specification for it in your product, consider how fast buttons are pressed
on a keyboard. If advanced typists can type 120 words per minute, assuming an average
of 5 characters per word, they are hitting keys (buttons) about 10 times per second.
Figuring that a button is down half the time, you need to look for the button to be down
for about 50ms. (If you really are making a keyboard, you probably need a tighter
tolerance because there are faster typists.)

For our system, the mythical switch has an imaginary datasheet stating that the switch
will ring for no more than 12.5ms when pressed or released. If the goal is to respond
to a button held down for 50ms or more, we can sample at 5ms (200Hz) and look for
five consecutive samples.

Using five consecutive samples is pretty conservative. You may want to adjust how
often you poll the pin's level so you need only three consecutive samples to indicate
that the button state has changed. What you choose depends on the cost of being wrong
(annoyance or catastrophe?) and the cost of doing it better (developer time and pro-
cessor cycles).

In the previous edge interrupt method of handling the button press, the state of the
button wasn't as interesting as the change in state. To that end, we'll add a fourth
variable to simplify the main loop.

read button:
  if raw reading same as debounced button value,
    reset the counter
  else
    decrement the counter
    if the counter is zero,
      set debounced button value to raw reading
      set changed to true
    reset the counter

main loop:
  if time to read button,
    read button
    if button changed and button is no longer pressed
      set button changed to false
      set the delay period (reset or halve it)
  if time to toggle the LED,
    toggle LED
  repeat

In this pseudo-code, the main loop polls the button again instead of using interrupts.
However, many processors have timers that can be configured to interrupt. Reading
the button could be done in a timer to simplify the main function. The LED toggling
could also happen in a timer. More on timers soon, but first marketing has another
request.
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Runtime Uncertainty
Marketing has a number of LEDs to try out. The LEDs are attached to different pins. Use
the button to cycle through the possibilities.

We've got the button press handled, but the LED subsystem knows only about the
output on pin 1_2 on the v1 board, or 1_3 on the v2 board. Once you've initialized all
the LEDs as outputs, you could put a conditional (or switch) statement in your main
loop:

If number button presses = 0, toggle blue LED
If number button presses = 1, toggle red LED
If number button presses = 2, toggle greed LED

To implement this, you'll need to have three different LED subsystems or (more likely)
your LED toggle function will need to take a parameter. The former represents a lot of
copied code (almost always a bad thing); the latter means the LED function will need
to map the color to the I/O pin each time it toggles the LED (which wastes processor
cycles).

Our goal here is to create a method to use one particular option from a list of several
possible objects. Instead of making the selection each time (in main or in the LED
function), you can select the desired LED when the button is pressed. Then the LED
toggle function is agnostic about which LED it is changing:

main loop:
  if time to read button,
    read button
    if button changed and button is no longer pressed
      set button changed to false
      change which LED

  if time to toggle the LED,
    toggle LED
  repeat

By adding a state variable, we use a little RAM to save a few processor cycles. State
variables tend to make a system confusing, especially if the change which LED section
of the code is separated from toggle LED. Unraveling the code to show how a state
variable controls the option can be tedious for someone trying to fix a bug (commenting
helps!). However, the state variable simplifies the LED toggle function considerably so
there are times where a state variable is worth the complications it creates.

Dependency Injection
However, we can go beyond a state variable to something even more flexible. Earlier
we saw that abstracting the I/O pins from the board saves us from having to rewrite
code when the board changes. We can also use abstraction to deal with dynamic
changes (like which LED is to be used). We'll need to abstract the LED code from the
I/O pin by passing the I/O handler as a parameter to the LED code, eliminating any
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direct dependence that the LED subsystem has on the I/O subsystem. This is called
dependency injection because you inject the dependencies into the code, generally dur-
ing configuration (when the button is pressed, the I/O to use is changed) instead of
during normal operation.

An oft-used example to illustrate dependency injection relates engines to cars. The car,
the final product, depends on an engine to move. The car and engine are made by the
manufacturer. Though the car cannot choose an engine to install, the manufacturer
can inject any of the dependency options that the car can use to get around (e.g. the
800 horsepower engine or the 20 horsepower one).

Tracing back to the LED example, the LED code is like the car and depends on the I/
O pin to work, just as the car depends on the engine. However, the LED code may be
made generic enough to avoid dependence on a particular I/O pin. This allows the main
function (our manufacturer) to install an I/O pin appropriate to the circumstance in-
stead of hard coding the dependency at compile time. This technique allows you to
compose the way the system works at run time.

In C++ or other object oriented languages, to inject the dependency, we pass a new I/
O pin handler object to the LED whenever a button is pressed. The LED module would
never know anything about which pin it was changing or how it was doing so.

A structure of function pointers is often used in C to achieve the same
goal.

This is a very powerful technique, particularly if your LED module did something a lot
more complicated, for instance, it outputs Morse code. If you passed in your I/O pin
handler, you could reuse the Morse code LED output routine for any processor. Fur-
ther, during testing, your I/O pin handler could print out every call that the LED module
made to it instead of (or in addition to) changing the output pin.

However, the car engine example illustrates one of the major problems with depend-
ency injection: complexity. It works fine when you only need to change the engine. But
once you are injecting the wheels, the steering column, the seat covers, the transmission,
the dashboard, and the body, the car module becomes quite complicated, with little
intrinsic utility of its own.

The aim of dependency injection is to allow flexibility. This runs contrary to the goal
of the facade pattern, which reduces complexity. In an embedded system, dependency
injection will take more RAM and a few extra processor cycles. The facade pattern will
almost always take more code space. You will need to consider the needs and resources
of your system to find a reasonable balance.
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Using a Timer
Using the button to change the speed of blinking was helpful, but marketing has found a
problem in the uncertainty introduced into the blink rate. Instead of cutting the speed of
the LED in half, they want to use the button to cycle through a series of precise blink rates:
13 times per second (Hz), 17Hz, and 20Hz.

This request seems simple, but it is the first time we've needed to do anything with time
precision. Before, the system could handle buttons and toggle the LED generally when
it was convenient. Now the system needs to handle the LED in real time. How close
you get to “precise” depends on the parameters of your system, mainly on the accuracy
and precision of your processor input clock. We'll start by using a timer on the processor
to make it more precise than it was before and see if marketing can accept that.

Timer Pieces
In principle, a timer is a simple counter measuring time by accumulating the number
of clock ticks. The more deterministic the master clock is, the more precise the timer
can be. Timers operate independently of software execution, acting in the background
without slowing down the code at all.

To set the frequency of the timer, you will need to determine the clock input. This may
be your processor clock (aka system clock or master clock) or it may be a different clock
from another subsystem (for instance, many processors have a peripheral clock).

System statistics
When embedded systems engineers talk about the stats of our systems to other engi-
neers, we tend to use a short hand consisting of the vendor, the processor (and its core),
the number of bits in each instruction, and our system clock speed. Earlier in this
chapter, I gave register examples from the LPC13xx, MSP430, and ATtiny processor
families. Systems with these processors could have stats like:

• NXP LPC1313 (Cortex-M3), 32-bit, 72MHz

• Texas Instrument MSP430 G2201, 16-bit, 16MHz

• Atmel ATtiny45, 8-bit, 4MHz

That last number is the processor clock, and describes the theoretical number of in-
structions the processor can handle in a second. The actual performance may be slower
if your memory accesses can't keep up, or faster if you can use processor features to
bypass overhead). The system clock is not the same as the oscillator on the board (if
you have one). Thanks to the magic of PLL, your processor speed may much be faster
than an onboard oscillator. PLL stands for phase lock loop which is the way a processor
can multiply a slower clock (i.e. a slow oscillator) to get a faster clock (a processor
clock). Since slower oscillators are generally cheaper (and consume less power) than
faster ones, PLLs are ubiquitous.
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Many small microcontrollers use an internal RC oscillator as their clock source. While
these make life easier for the hardware designer, their accuracy leaves a lot to be desired.
Considerable drift can accumulate over time, and this can lead to errors in communi-
cation and some real-time applications.

For example, the ATtiny45 has a maximum processor clock of 4MHz. We want the
LED to be able blink at 20Hz, a division of 200,000. The ATtiny45 is an 8-bit processor;
it has two 8-bit timers and a 16-bit timer. Neither size of timer will work to count up
that high (see “System statistics” on page 98). However, the chip designers recognized
this issue and gave us another tool: the prescale register, which divides the clock so that
the counter increments at a slower rate.

The effect of the prescale register is seen in Figure 4-7. The system clock toggles regu-
larly. With a prescale value of two, the prescaled clock (the input to our timer subsys-
tem) toggles at half the system clock speed. The timer counts up. The processor notes
when the timer matches the compare register (set to 3 in the diagram). When the timer
matches, it may continue counting up or reset.

System 
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Clock

Timer

Timer,
Compare=3

Timer, 
Compare=3
with reset
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False
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Figure 4-7. Timer prescaling and matching

Before getting back to the timer on the ATtiny45, note that the registers needed to make
a timer work consist of:

Timer counter
This holds the changing value of the timer, the number of ticks since the timer was
last reset.

Compare (or match) register
When the timer counter equals this register, an action is taken. There may be more
than one compare register for each timer.
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Action register
This register sets up an action to take when the timer and compare register are the
same. (For some timers, these actions are also available when the timer overflows,
which is like having a compare register set to the maximum value of the timer
counter.) There are four types of possible actions to be configured:

• Interrupt (or not)

• Stop or continue counting

• Reset the counter (or not)

• Set an output pin to high, low, toggle, or nothing

Clock configure register (optional)
This register tells a subsystem which clock source to use, though the default may
be the system clock. Some processors have timers that even allow a clock to be
attached to an input pin.

Prescale register
As shown in Figure 4-7, this divides the clock so that it runs more slowly, allowing
timers to happen for relatively rare events.

Control register
This sets the timer to start counting once it has been configured. The control reg-
ister also often has a way to reset the timer.

Interrupt register (may be multiple)
If you have timer interrupts, you will need to use the appropriate interrupt register
to enable, clear, and check the status of each timer interrupt.

Setting up a timer is processor specific, and the user manual will generally guide you
through setting up each of these registers. Your processor user manual may give the
registers slightly different names.

Instead of a compare register, your processor might only allow you to
trigger the timer actions when the timer overflows. This is an implicit
match value of two to the number of bits in the timer register minus 1
(e.g. for an 8-bit timer, (28)-1 = 255). By tweaking the prescaler, most
timer values are achievable without too much error.

Doing the Math
Timers are made to deal with physical time scales, so you need to relate them from a
series of registers to an actual time. Remember that the frequency (for instance, 14Hz)
is inversely proportional to the period.

The basic equation for the relationship between the timer frequency, clock input, pre-
scaler, and compare register is:

timerFrequency = clockIn/(prescaler * compareReg)
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This is an optimization problem. You know the clockIn and the goal timerFrequency.
You need to adjust the prescaler and compare register until the timer frequency is close
enough to the goal. If there were no other limitations, this would be an easy problem
to solve.

How many bits in that number?
Better than counting sheep, figuring out powers of two is often how I fall asleep. If you
don't share the habit, there are some powers of two that you really should memorize.

The number of different values a variable can have is 2 to the power of the number of
bits it has (i.e. 8 bits offers 28, so 256 different values can be in an 8-bit variable).
However, that number has to hold a 0 as well, so the maximum value of an 8-bit variable
is 28-1 or 255. Even that is true only for unsigned variables. A signed variable uses one
bit for the sign (+/-), so an 8-bit variable would only have seven bits available for the
value. Its maximum would be 27-1 or 127. Zero has to be represented only once, so the
minimum value of a signed 8-bit variable is -128.

Bits Power of two Maximum value Significance

4 24 = 16 15 A nibble

7 27 = 128 127 Signed 8-bit variable

8 28 = 256 255 Byte and an unsigned 8-bit variable

10 210 = 1024 1023 Many peripherals are 10-bit

12 212 = 4096 4095 Many peripherals are 12-bit

15 215 = 32768 32767 Signed 16-bit variable

16 216 = 65536 65535 Unsigned 16-bit variable

24 224 = 16777216 ~1.6 million Color is often 24-bit.

31 231 = 2147483648 ~2 billion Signed 32-bit variable

32 232 = 4294967296 ~4 billion Unsigned 32-bit variable

I usually fall asleep before 2^20, so I remember the higher order as estimates only.
There will be times when a 32-bit number is too small to hold the information you
need. Even a 64-bit number can fall down when you build a machine to do something
as seemingly simple as shuffling cards.

Remember that variables (and registers) have sizes and that those sizes matter.

Returning to the ATtiny45's 8-bit timer, 4MHz system clock, and goal frequency of
20Hz, we can export the constraints we'll need to use to solve the equation:

• These are integer values, so the prescaler and compare register have to be whole
numbers. This constraint is true for any processor.
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• The compare register has to lie between 0 and 255 (because the timer register is
eight bits in size).

• The prescaler on the ATtiny45 is 10 bits, so the maximum prescaler is 1023. (The
size of your prescaler may be different.)

The prescaler for this subsystem is not shared with other peripherals, so we don't need
to be concerned about this potential constraint for our solution.

There are several heuristics for finding a prescaler and compare register that will provide
the timer frequency needed (see Figure 4-8).

I asked two math professors how to solve this problem in a generic
manner. The answers I got back were interesting. The most interesting
part was learning that this problem is NP complete for two reasons:
integers are involved and it is a nonlinear two variable problem. Thanks
Professor Ross and Professor Patton!
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Figure 4-8. Timer Heuristics
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We can determine the minimum prescaler by rearranging the equation and setting the
compare register to its maximum value:

prescaler = clockIn/(compareReg*timerFrequency) minPrescaler
      = 4MHz/(255 * 20Hz)

Unfortunately, the resulting prescaler value is a floating point number (784.31). If you
round down (784), the timer value will be above the goal. If you round up, you may be
able to decrease the compare register to get the timer value to be about right.

In this case, we end up with a timer of 19.98Hz which is an error of less than a tenth
of a percent off. However, marketing asked for high precision and there are some
methods to find a better prescaler.

First, note that you want the product of the prescaler and compare register to equal the
clock input divided by the goal frequency:

prescaler * compareReg = 4Mhz/20Hz = 200,000

This is a nice, round number, easily factored into 1000 (prescaler) and 200 (compare
register). This is the best and easiest solution to optimizing prescaler and compar
eReg: determine the factors of (clockIn/timerFrequency) and arrange them into pre
scaler and compareReg. However, this requires the (clockIn/timerFreq) to be an integer
and the factors to split easily into the sizes allowed for the registers. It isn't always
possible to use this method.

We can see this as we move along to another blink frequency requested by marketing
(17Hz).

prescaler * compareReg = 4Mhz/17Hz = 235294.1

There is no simple factorization of this floating point number. We can verify that a
result is possible by calculating the minimum prescaler (we did that above by setting
the compare register to its maximum value). The result (923) will fit in our 10-bit
register. We can calculate the percent error using:

error = 100*(goal frequency – actual)/goal

With the minimum prescaler, we get an error of 0.03%. This is pretty close, but we
may be able to get closer.

Set the prescaler to its maximum value and see what the options are. In this case, a
prescaler of 1023 leads to a compare value of 230 and an error of less than 0.02%, a
little better. But can we reduce the error further?

For larger timers, you might try a binary search for a good value: starting out with the
minimum prescaler. Double it. Look at the prescaler values that are +/- 1 to find a
compare register that is the closest whole number. If the resulting timer is not close
enough, repeat the doubling of the modified prescaler. Unfortunately, with our exam-
ple, we can't double our prescaler and stay within the bounds of the 10-bit number.
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Finally, another way to find the solution is to use a script or program (i.e. Matlab or
Excel) and brute force try out the options as shown in Figure 4-7. Start by finding the
minimum prescaler value and the maximum prescaler value (by setting the compare
register to 1). Limit the minimum and maximum so they are integers and fit into the
correct number of bits. Then, for each whole number in that range, calculate the com-
pare register for the goal timer frequency. Round the compare register to the nearest
whole number and calculate the actual timer frequency. This method led to a prescaler
of 997 and a compare register of 236 and a tiny error of 0.0009%. A brute force solution
like this will give you the smallest error but will probably take the most developer time.
Determine what error you can live with and go on to other things once you've met that
goal.

1   Min Prescaler = CLOCK INPUT
  GOAL FREQUENCY x MAX COMPARE
 = 4MHz  = 922.72
  20Hz * 255
2  Max Prescaler= 4MHz  = 200,000
  20Hz * 1   This is only 10-bit register (max 1023)
     
3   For each prescale value 923  to 1023
 Compare   = CLOCK INPUT    =  4MHz   = 254.9
       GOAL FREQUENCY * PRESCALE  20Hz * 923
 Compare   = ROUND(COMPARE) = 255
 Actual output = CLOCK INPUT       = 4MHz  = 16.99
      frequency PRESCALE * COMPARE 923*255
 Error % = 100 * ABS ( GOAL-ACTUAL OUT FREQUENCY )
    GOAL OUTPUT FREQUENCY
       = 100 * ( 17 - 16.99 ) = 0.03%
     17
4   Find PRESCALE and COMPARE REGISTER
 pair with least error

Figure 4-9. Brute force timer solution

A Long Wait between Timer Ticks
Brute force works well for 17Hz, but when you get the goal output of 13Hz, the min-
imum prescaler that you calculate is more than 10 bits. The timer cannot fit in the 8-
bit timer. This is shown as an exception in the flowchart (Figure 4-8). The simplest
solution is to use a larger timer if you can. The ATtiny45's 16-bit timer can alleviate
this problem because its maximum compare value is 65535 instead of the 8-bit 255, so
we can use a smaller prescaler.
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If a larger timer is unavailable, another solution is to disconnect the I/O line from the
timer and call an interrupt when the timer expires. The interrupt can increment a var-
iable and take action when the variable is large enough. For example, to get to 13Hz,
we could have a 26Hz timer and toggle the LED every other time the interrupt was
called. This method is less precise because there may be delays due to other interrupts.

Using the Timer
Once you have determined your settings, the hard part is over. There are a few more
things to do:

• Remove the code in the main function to toggle the LED. Now the main loop will
only need to have a set of prescale and compare registers to cycle through when
the button is pressed.

• Configure the pin. Some processors will connect any timer to any output, whereas
others will allow a timer to change a pin only with special settings. For the processor
that doesn't support a timer on the pin, you will need to have an interrupt handler
in the code that toggles only the pin of interest.

• Configure timer settings and start the timer.

Using Pulse Width Modulation (PWM)
Market research has shown that potential customers are bothered by the brightness of the
LED. Marketing wants to try out different brightness settings (100%, 80%, 70% and 50%)
using the button.

A timer is a set of pulses that are all alike. In PWM, the pulses' widths change depending
on the situation. So a timer signal is 50% up and 50% down (this is known as 50% duty
cycle). But a PWM can have a different ratio. A PWM with a 100% duty cycle is always
on, like a high level of an output pin. And a 0% duty cycle represents a pin that has
been pulled low. The duty cycle represents the average value of the signal as shown by
the dashed line in Figure 4-10.
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Figure 4-10. PWM duty cycles: 20%, 50% and 80%

PWM signals often drive motors and LEDs (though motors require a bit more hardware
support). Using PWM, the processor can control the amount of power the hardware
gets. Using some inexpensive electronics, the output of a PWM pin can be smoothed
to be the average signal. For LEDs, though, no additional electronics are necessary.

Given the timer from the previous chapter, we could implement a PWM with an in-
terrupt. For our 20Hz LED example, we had a compare register of 200 so that every
two hundred ticks, the timer would do something (toggle the LED). If we wanted the
LED to be on 80% of the time with a 20Hz timer, we could ping-pong between two
interrupts that would set the compare register at every pass.

1. Timer interrupt 1:

a. Turn on LED.

b. Set the compare to 160 (80% of 200).

c. Reset the timer.

2. Timer interrupt 2:

a. Turn LED off.

b. Set the compare register to 40 (20% of 200).

c. Reset the timer.

With a 20Hz timer, this would probably look like a very quick series of flashes instead
of a dim LED. To alleviate that, increase the frequency at which the timer switches the
LED state (aka the switching frequency). The more you increase the frequency, the
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more the LED will look dim instead of blinking. However, a faster frequency means
more interrupts.

There is a way to carry out this procedure in the processor. In the previous section, the
configurable actions included whether to reset the counter as well as how to set the
pin. Many timers have multiple compare registers and allow different actions for each
compare register. Thus, a PWM output can be set with two compare registers, one to
control the switching frequency and one to control the duty cycle.

For example, the bottom of Figure 4-10 shows a timer counting up and being reset.
This represents the switching frequency set by a compare register. We'll name this
compare register A and set it to 100. When this value is reached, the timer is reset and
the LED is turned on. The duty cycle is set with a different register (compare register
B, set to 80) which turns the LED off but allows the timer to continue counting.

Which pins can act as PWM outputs depends on your processor, though often they
are a subset of the pins that can act as timer outputs. The PWM section of the processor
user manual may be separate from the timer section. Also, there are different PWM
controller configurations, often for particular applications (motors are often finicky
about which type of PWM they require).

For our LED, once the PWM is set up, the code only needs to modify the duty cycle
when the button is pressed. As with timers, main doesn't control the LED directly at all.

While dimming the LED is what marketing requested, there are other neat applications
you can try out. To get a snoring effect, where the LED fades in and out, you'll often
need to modify the duty cycle. If you have tricolor LEDs, you can use PWM control to
set the three LED colors to different levels, providing a whole palette of options.

Shipping the Product
Marketing has found the perfect LED (blue), blink rate (8Hz), and brightness (100%).
They are ready to ship the product as soon as you set the parameters.

It all seems so simple to just set the parameters and ship the code. However, what does
the code look like right now? Did the timer code get morphed into the PWM code or
is the timer still around? With a brightness of 100%, the PWM code isn't needed any
longer. In fact, the button code can go. The ability to choose an LED at runtime is no
longer needed. The old board layout can be forgotten in the future. Before shipping the
code and freezing development, let's try to reduce the spaghetti into something less
tangled.

A product starts out as an idea, but often takes a few iterations to solidify into reality.
Engineers often have good imaginations for how things will work. Not everyone is so
lucky, so a good prototype can go a long way toward defining the goal.

However, keeping around unneeded code clutters the code base (see the left side of
Figure 4-11). Unused code (or worse, code that has been commented out) is frustrating
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for the next person who doesn't know why things were removed. Avoid that as much
as possible. Instead, trust that your version control system can recover old code. Don't
be afraid to internally release a development version. It will help you find the removed
features after you prune the code for shipment.

Main INIT IO Mapping

LED Button LED Timer LED PWM

IO Pin
Handler

Processor
Header

V1

V2
Main

IO Mapping

LED Timer
Processor

Header

V1

V2

Figure 4-11. Comparing spaghetti prototyping code with a simpler design

In this example, many things are easy to remove because they just aren't needed. One
thing that is harder to decide about is the dependency injection. It increases flexibility
for future changes, which is a good reason for leaving it in. However, when you have
to allocate a specific timer to a specific I/O pin, the configuration of the system becomes
more processor-dependent and rigid. The cost of forcing it to be flexible can be high if
you try to build a file to handle every contingency. In this case, I considered the idea
and weighed the cost of making a file I'd never want to show anyone with the benefit
of reducing the chance of writing bugs in the I/O subsystem (I tend to like readable
files even if it means a few initial bugs but I can respect either option).

On the right side of Figure 4-11, the code base is trimmed down, using only the modules
it needs. It keeps the I/O mapping header file, even with definitions for the old board
because the cost is low (it is in a separated file for easy maintenance and requires no
additional processor cycles). Embedded systems engineers tend to end up with the
oldest hardware (karmic payback for the time at the beginning of the project when we
had the newest hardware). You may need the old board header file for future develop-
ment. Pretty much everything else that isn't critical can go into version control and then
be removed from the project.

It hurts to see effort thrown away. But you haven't! All of the other code was necessary
to make the prototypes that were required to make the product. The code aided mar-
keting, and you learned a lot while writing and testing it. The best part about developing
the prototype code is that the final code can look clean because you explored the op-
tions.
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You need to balance the flexibility of leaving all of the code in with the maintainability
of a code base that is easy to understand. Now that you've written it once, trust that
your future self can write it again (if you have to).

Further Reading
(These are kind of a mess, I'm not sure what really needs to be here other than the
Ganssle pointer which could be moved up to be a footnote. Help!)

1. A Guide to Debouncing: Offers mechanics, real world experimentation, other
methods for implementing your debouncing code, and some excellent methods for
doing it in the hardware and saving your processor cycles for something more
interesting.

2. LPC13xx preliminary user manual (UM10375), Rev. 00.07, 31 July 2009.

3. MSP430 430x2xx Family User's Guide (slau144e.pdf), 2008.

4. Atmel user manual: 8-bit Microcontroller with 2/4/8K Bytes In-System Program-
mable Flash (ATtiny25/V, ATtiny45/V, ATtiny85/V), Rev. 2586M–AVR–07/10.

5. Atmel application note: AVR 130: Setup and Use the AVR Timers

Interview question: Waiting for a register to change
What is wrong with this piece of code?

void IOWaitForRegChange(unsigned int* register, unsigned int
      bitmask)
{
  unsigned int orig = *reg & bitmask;
  while (orig == (*reg & bitmask)) { /* do nothing */ ; }
}

“What's wrong with this code?” is a tough question because the goal is to figure out
what the interviewer thinks is wrong with the code. For this code, I can imagine an
interviewee wondering where the comment header is. And whether there really should
exist a function that waits forever without any sort of time out or error handling.

If an interviewee flails, pointing out non-critical things, I would tell him that the func-
tion never returns even though the register changes, as observed on an oscilloscope. If
he continues to flounder, I would tell him that the code compiles with optimizations on.

In the end, this is not a see-how-you-think question but one with a single correct answer:
the code is missing the volatile keyword. To succeed in an embedded systems inter-
view you have to know what that keyword does (it is similar in C, C++ and Java).
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CHAPTER 5

Task Management

In Chapter 2, we looked at different ways to break up a system into manageable chunks.
That chapter described the what and why of design; this chapter covers the how. Once
you've identified the pieces, getting them all to work together as a system can be daunt-
ing.

Scheduling and Operating System Basics
Structuring an embedded system without an operating system requires an understand-
ing of some of the things that an operating system can do for you. I'm going to only
give brief highlights; if any of this first section is brand new to you, you may want to
review a book about operating systems (see “Further Reading” on page 145).

Tasks
When you turn on your computer, if you are like I am, you load up the email program,
web browser, and compiler. Several other programs start automatically (such as my
instant message client). Each of these programs runs on the computer, seemingly in
parallel even if you've only got one processor.

Three words that mean slightly different things, but that overlap exten-
sively, are sometimes used interchangeably. A task is something the
processor does. A thread is a task plus some overhead such as memory.
A process is usually a complete unit of execution unit with its own
memory space, usually compiled separately from other processes. I'm
focusing on tasks; threads and processes generally imply an operating
system.

The operating system you are running has a scheduler that does the switching between
processes (or threads), allowing each to run in its proper turn. There are many ways to
implement schedulers, far beyond the scope of this book (let alone this small section).
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The key point is that a scheduler knows about all of the things your system should do
and chooses which one it does right now.

Without an operating system, you are going to need to do the scheduling yourself. The
very simplest scheduler has only one task. As with the blinking LED project in Chap-
ter 4, you can do the same thing every time (on, wait, off, wait, repeat). However, things
become more complex as the system reacts to changes in its environment (e.g. the
button presses that change the LED timing).

Communication between Tasks
The button press interrupt and the LED blinking loop are two tasks in the tiny system
we have been examining. When we used a global variable to indicate that the button
state changed, the two tasks communicated with each other. However, sharing memory
between tasks is dangerous; you have to be careful about how to do it.

Figure 5-1 shows the normal course of events where the interrupt sets the shared mem-
ory when a button is pressed. Then the main loop reads and clears the variable. The
user presses the button again, which causes the interrupt to set the memory again.
Suppose that, just as the main loop is clearing the variable, the interrupt fires again. At
the very instant that the variable is being cleared, an interrupt stops the processing,
swooping in to set the variable. Does it end up as set or cleared?
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Figure 5-1. Race condition in shared memory
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The answer depends on the precise timing of what happens. The uncertainty is the
problem. If it can be this complicated with a simple Boolean value, consider what could
happen if the code needs to set two variables or a whole array of data.

When this happens, it is called a race condition. Any memory shared between tasks can
exhibit the uncertainty, leading to unstable and inconsistent behavior.

In this example, given the way the interrupt and button work together, it is likely that
the system will miss a button press (if the interrupt wins the race to set the variable,
the main function will clear it even though it should be set). While only a slight an-
noyance to a user in this system, race conditions can lead to unsafe conditions in a more
critical system.

Avoiding Race Conditions
We need a way to prohibit multiple tasks from writing to the same memory. It isn't
only writing that can be an issue: the main loop reads both the variable that says the
button is changed and the value of the button. If an interrupt occurs between those two
reads, it may change the value of the button between them.

Any time memory shared between tasks is read or written, it creates a critical section of
code, meaning code that accesses a shared resource (memory or device). The shared
resource must be protected so only one task can modify it at a time. This is called
mutual exclusion, often shortened to mutex.

In a system with an OS, when two tasks are running, but neither is an interrupt, you
can use a mutex to indicate which task owns a resource. This can be as simple as a
variable indicating whether the resource (or global variable) is available for use. How-
ever, when one of the two tasks is an interrupt, we have already seen that not even a
Boolean value is safe, so this resource ownership change has to be atomic. An atomic
action is one that cannot be interrupted by anything else in the system.

Operating systems have heavier weight mutexes called semaphores that
can handle situations where a thread or process can be preempted (for-
cibly changed by the scheduler).

From here on, we are going to focus on systems where a task is interruptible but oth-
erwise runs until it gives up control. In that case, race conditions are avoided by disal-
lowing interrupts while accessing the shared global variables. This has a downside,
though: when you turn off interrupts, the system can't respond as quickly to button
presses because it has to wait to get out of a critical section. Turning off interrupts
increases the system latency (time it takes to respond).

Latency is important as we talk about real-time systems. A real-time system must re-
spond to an event within a fixed amount of time. Although the required response time
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depends on the system, usually it is measured in microseconds or milliseconds. As
latency increases, the time it takes before an event can be noticed by the system increases
and so the total time between an event and its response increases.

Priority Inversion
Some processors allow interrupts to have different priorities (like operating systems do
for processes). While the flexibility can be very useful, it is possible to create a lot of
trouble for yourself. Figure 5-2 shows the typical operating systems definition of priority
inversion. It is okay for a high priority process to stop because it needs access to some-
thing a low priority process has. However, if a medium priority process starts, it can
block the low priority process from completing its use of the resource needed by the
high priority task. The medium priority task blocks the high priority task.

Low Priority
Process (L)

Medium Priority
Process (M)

High Priority
Process (H)

Main
Loop

Debug out
Interrupt Handler

Button Interrupt
Handler

L Starts

L acquires 
resource R, 

H starts, 
premepts C

H needs R blocks,
and lets L run

M starts, 
preempts C

M blocks H from
running

Main Starts

Main disables button 
interrupt. On button 
press, interrupt has 

to wait (pending).

Debug out interrupts
occurs, preempts main.

Button interrupt is 
still waiting

*
*
*
*
*
*
*
*
*
*

Operating System
Priority Inversion

R

R

R

R

Figure 5-2. Priority Inversion

For example, say we have the high priority button press interrupt and our low priority
main loop. When the main function accesses the button press variable, it turns off the
button press interrupt to avoid a race condition. Now, we add another interrupt to
output debug data through a communication port. This should be a background task
of medium priority: something that should get done but shouldn't block the system
from handling a button press. However, if it interrupts the main loop, it is doing exactly
that.

What is the most important thing for the processor to be doing? That is its highest
priority. Or at least, it should be the highest priority. If someone had asked whether
debug output is more important than button presses, we would have said no. If that is
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true, why is the processor running the debug interrupt and not the button handler? The
simple fix in this case is to disable all interrupts (or all interrupts that are lower in
priority than the button handler).

As we look at different ways of task management without an operating system, there
are more ways to get into the position where the processor is inadvertently running a
task that isn't the highest priority. Watch for this.

State Machines
One way to keep your system organized while you have more than one thing going on
is to use a state machine. This is a standard software pattern, one that embedded systems
use a lot. According to Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, the intent of the State pattern is to “allow an object to alter its behavior when its
internal state changes. The object will appear to change its class.”

Put more simply, when you call a state machine, it will do whatever it thinks it should
do, based on its current state. It will not do the same thing each time, but will base the
change of behavior on its context, which consists of the environment and the state
machine's history (internal state). If this all sounds clinical and theoretical, there is an
easier way to think about state machines: flow charts.

Almost any state machine can be represented as a flow chart. (Conversely, a problem
you solve with a flow chart is probably destined to be a state machine). State machines
can also be represented as finite state automata (as shown in Figure 5-3), where each
state is a circle and a change between states (a state transition) is an arrow.

State Machine
LED

Commands:
Stop, Go

R

Y

G

Timeout

Command: 
Stop

Command: 
Stop

State:
Red

State:
Green

State:
YellowCommand:

Stop

Command:
Go

Command: GoCommand: Go

Figure 5-3. Stoplight System
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We'll look at each element of this figure in the following section. The arrows in the
diagram are just as important as the circles. State machines are not only about the states
that a system can occupy, but also about the events that the system handles.

State Machine Example: Stoplight Controller
To talk about state machines properly, we need an example a bit more complicated
than a blinking LED and a button. Figure 5-3 shows a stop light controller. When the
light is red and the controller gets a message to go, it turns the light green. When the
controller gets a message to stop, it turns the light yellow for a time and then red. We've
implemented this stoplight so it stays green as long as no one needs it to change. Pre-
sumably, a command to stop will be generated when a car arrives on the cross-street.

One state transition—which is the formal term for what each arrow shows—is a bit
subtle. When the light is yellow and the controller receives a message to go, it should
not change the light back to green. Yellow lights should change to red, not green, so
the message to go just leaves the light in the yellow stage. This subtlety is an example
of the gotchas that state machines create for you. You have to be prepared for every
transition that can happen in every state, including very rare cases—even cases that
shouldn't take place but that may happen because of errors.

To work with a state machine, the first thing to do is to figure out the states and the
events that can change states. With a system as simple as this, drawing a diagram is the
best thing to do. Once you've identified the state (red, yellow, green), look at its con-
nections. The stop and go commands should only happen in the green and red states
(respectively). Even so, the commands are asynchronous, coming from outside the
system so each state should be able to handle them, even if they occur improperly. The
easiest way of handling them here was to ignore them, putting a loop back to the as-
sociated state.

State-centric State Machine
Most people think of state machines as a big if-else statement or switch statement:

  while (1) {
    look for event

    switch (state) {
    case (green light):
      if (event is stop command)
        turn off green light
        turn on yellow light
        set state to yellow light
        start timer
      break;
    case (yellow light):
      if (event is timeout)
        turn off yellow light
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        turn on red light
        set state to red light
      break;
    case (red light):
      if (event is go command)
        turn off red light
        turn on green light
        set state to green light
      break;
    default (unhandled state)
      error!
    }
  }

The form of the state machine here is:

    case (state):
      if event valid for this state
        handle event
        prepare for new state
        set new state

The state machine can change its context (move to a new state). This means that each
state needs to know about its sibling states.

State-Centric State Machine with Hidden Transitions
Another way to implement the state machine is to separate the state transition infor-
mation from the state machine. This is theoretically better than the model in the pre-
vious section because it has more encapsulation and fewer dependencies. The previous
model forced each state to know how and when to trigger each of the other states that
can be reached from it. In the model I'll show in this section, some higher-level system
keeps track of which state reaches which other state. I'll call this the "next state" func-
tion. It handles every state and puts the system into the next state that it should be in.
By creating this function, you can separate the actions taken in each state from the state
transitions.

The generic form of this would look like:

    case (state):
      make sure current state is actively doing what it needs
      if event valid for this state
        call next state function

In the stoplight example, this model would leave the code for each state simpler, and
similar for almost all states. For instance, the green light state would look like:

    case (green light):
      if (green light not on) turn on green light
      if (event is stop)
        turn off green light
        call next state function
      break;
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The "next state" function should be called when a change occurs. The code will be
familiar from the previous section, because it is a simple switch statement as well:

next state function:
    switch (state) {
    case (green light):
      set state to yellow light
      break;
    case (yellow light):
      set state to red light
      break;
    case (red light):
      set state to green light
      break;

Now you have one place to look for the state and one for the transitions, but each one
is pretty simple. In this example, the state transitions are independent of the event, one
clue that this is a good implementation method.

This model is not always the best one if inter-state dependencies are there for a reason.
State transitions are sometimes intertwined with state actions in ways that makes it
more cumbersome to separate them than to keep them together.

Event-centric
Another way to implement a state machine is to turn it on its side by having the events
control the flow so that each event has an associated set of conditionals.

    case (event):
      if state transition for this event
        go to new state

For example:

    switch (event)
    case (stop):
      if (state is green light)
        turn off green light
        go to next state
      // else do nothing
      break;

Most state machines create a comfortable fit between switch statements and states, but
in some cases it may be cleaner to associate the state machines with events as shown
here. The functions may still need a switch statement to handle the dependency on the
current state:

Function to handle stop event
  If (state == green light) {
    turn off green light
    go to next state
  }
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Unlike the state-centric options, the event-centric state machine implementation can
make it difficult to do housekeeping activities (like checking for a timeout in the yellow
state). You could make housekeeping an event if your system needs regular mainte-
nance, or stick with the state-centric implementation shown in the previous section.

State Pattern
An object-oriented way to implement a state machine is to treat each state as an object
and create methods in the object to handle each event. Each state object in our example
would have these member functions:

Enter
Called when the state is entered (turns on its light)

Exit
Called when leaving the state (turns off its light)

EventGo
Handles the go event as appropriate for the state

EventStop
Handles the stop event

Housekeeping
Periodic call to let the state check for changes (such as timeouts)

A higher-level object, the "context," keeps track of the states and calls the appropriate
function. It must provide a way for the states to indicate state transitions. As before,
the states might know about each other and choose appropriately, or the state may just
indicate a need to go to the next state. Our system is straightforward, so a simple next-
state function will be enough. In pseudocode, the class looks like:

class Context {
  class State Red, Yellow, Green;
  class State Current;

constructor:
  Current = Red;
  Current.Enter();

destructor:
  Current.Exit();

Go:
  if (Current.Go() indicates a state change)
    NextState();

Stop:
  if (Current.Stop() indicates a state change)
    NextState();

Housekeeping:
  if (Current.Housekeeping() indicates a state change)
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    NextState();

NextState:
  Current.Exit();
  if (Current is Red)    Current = Green;
  if (Current is Yellow) Current = Red;
  if (Current is Green)  Current = Yellow;
  Current.Enter();
}

Allowing each state to be treated exactly the same frees the system from the switch
statement, letting the objects do the work the conditionals used to do.

Table Driven State Machine
Although flow charts and state diagrams are handy for conceiving of a state machine,
an easier way to document and fully define a state machine is to use a table.

In the table in Figure 5-4, the possible events are columns of the table and each state
has a row. Each box therefore shows what action needs to occur when the system is in
that state and the event occurs. Often, the action is simply to move to a new state.

RED red GREEN RED RED

YELLOW yellow RED YELLOW RED

GREEN green GREEN YELLOW GREEN

STATES EVENTS

Current State

Event “Go”
New current state = GREEN

Table DataState Machine Engine

Light Go Stop Timeout

Figure 5-4. The state machine as a data table

When I worked on children's toys, they often offered 30 or more buttons
(ABCs, volume, etc.). A table like this helped us figure out which events
didn't get handled in the flow chart. Even though a button may be invalid
for a state, someone somewhere will still inexplicably press it. So, tables
like these not only helped with implementation and documentation,
they were critical to designing the game play.

Defining the system as a table here hints toward defining it as a data table in the code.
Instead of one large, complex piece of code, you end up with two smaller, simpler
pieces: a data table showing what state to go to when an event happens, and an engine
that reads the data table and does what it says. The best part is that the engine is
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reusable, so if you are going to implement many complex state machines, this is a great
solution.

The stoplight problem is a little too simple to make this method worthwhile for im-
plementation but it is a straightforward example. Let's start with the information in
each table:

struct sStateTableEntry {
  tLight light;       // all states have associated lights
  tState goEvent;     // state to enter when go event occurs
  tState stopEvent;   // ... when stop event occurs
  tState timeoutEvent;// ... when timeout occurs
};

In addition to the next event for each table, I put in the light associated with the current
state so that each state can be handled exactly the same way. (This state machine
method really shines when there are lots of states that are all very similar.) Putting the
light in the state table means our event handlers do the same thing for each state:

// event handler
void HandleEventGo(struct sStateTableEntry *currentState)
{
  LightOff(currentState->light);
  currentState = currentState->go;
  LightOn(currentState->light);
}

What about the actual table? It needs to start by defining an order in the data table:

typedef enum { kRedState = 0, kYellowState = 1, kGreenState = 2 } tState;

struct sStateTableEntry stateTable[] = {
  { kRedLight,    kGreenState,  kRedState,    kRedState},   // Red
  { kYellowLight, kYellowState, kYellowState, kRedState},   // Yellow
  { kGreenLight,  kGreenState,  kYellowState, kGreenState}, // Green
}

Typing in this table is a pain and it is easy to get into trouble with an off-by-one error.
However, if your state machine is a spreadsheet table and you can save it as a comma
or tab separated variable file, a small script can generate the table for you. It feels like
a bit like cheating to reorganize your state machine as a spreadsheet, but this is a pow-
erful technique when the number of states and events is large.

Making the state machine a table creates a dense view of the information, letting you
take in the whole state machine at a glance. This will not only help you see holes
(unhandled state/event combinations), it will let you see that the product handles
events consistently.

The table can also show more complex interactions as well, detailing what needs to
happen. However, as complexity increases, the table loses the ability to simply become
data and likely needs to return to one of the implementation mechanisms we showed
earlier, oriented around control flow statements. For example, if we add some detail
and error finding to the stoplight, we get a more complex picture.
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State/Events Command Go Command Stop Timeout

Red Move to Green Do nothing Invalid (log error), do nothing

Yellow Do not clear event (defer handling to red) Do nothing Move to Red

Green Do nothing Move to Yellow, set timer Invalid (log error), do nothing

Even when the state machine can't be implemented as a data table driven system, rep-
resenting it as a table provides better documentation than a flow chart.

Choosing a State Machine Implementation
Each of the options I showed for a state machine offers the same functionality, even
though the implementation is different. When you consider your implementation, be
lazy. Choose the option that leads to the least amount of code. If they are all about the
same, choose the one with the least amount of replicated code. If one implementation
lets you reuse a section of code without copying it, that's a better implementation for
your system. If that still doesn't help you choose, consider which form of code will be
the most easily read by someone else.

State machines are powerful because they let your code act according to its history
(state) and the environment (event). However, because they react differently depending
on those things, they can be very difficult to maintain, leading to spaghetti code and
dependencies between states that are not obvious to the casual observer. Documenta-
tion is key, which is why I focused in these sections on the human-readable represen-
tation of the state machine before showing a code implementation.

Interrupts
In our system so far, we haven't worried about how the events occur. The state machine
doesn't care whether there is a person pushing buttons that say “stop” and “go” or there
is a wireless Ethernet controller parsing a data stream looking for these commands.
This sort of encapsulation is great for the state machine. Now, though, it is time to
consider the hows and whys of the events.

Interrupts can be kind of scary. They are one of the things that make embedded systems
different from traditional software. Interrupts often seem to swoop in from nowhere
to change the flow of the code. They can only call certain functions (and not usually
the debug functions). Interrupts need to be fast, so fast that they are a piece of code
that is still sometimes written in assembly. And bugs in interrupts are often quite dif-
ficult to find because, by definition, they occur outside the normal flow of code.

However, they are not the bogeyman they've been made out to be. If you understand
a bit about what happens when an interrupt occurs, you'll find where they can be a
useful part of your software design.
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Looking back, I want you to remember that processors and interfaces are like software
APIs (in “Reading a Datasheet” on page 38) and that function pointers aren't scary (in
“Function pointers aren't so scary” on page 66). You'll need both of those ideas in your
head as we walk through what happens when an interrupt occurs:

1. Interrupt request (IRQ) happens, inside the processor based on a peripheral, the
software, or a fault in the system.

2. The processor saves where it was (the context).

3. The processor looks in the interrupt vector table to find the callback function as-
sociated with the interrupt.

4. The callback function (aka interrupt service routine (ISR) or interrupt handler) runs.

Some interrupts are like small, high-priority tasks. Once their ISR is complete, the
processor restores the context it saved and continues on its way as though nothing had
happened. Most peripheral interrupts are like that: input lines, communication path-
way, timers, peripherals, ADCs, etc.

But some interrupts are more like exceptions, handling system faults and never return-
ing to normal execution. For example, an interrupt can occur when there is a memory
error, there is a divide by zero error, the processor tries to execute an invalid instruction,
or the power level is not quite sufficient to run the processor properly (brown out
detection). Since these errors mean the processor can't run properly, they are often
handled with infinite loops or processor resets.

Most interrupts you need to handle will be more like tasks than exceptions. They will
let your processor run multiple tasks, seemingly in parallel. Before we get to that, let's
go through the process of interrupt handling in more detail.

An IRQ Happens
Usually an interrupt request happens because you've configured the interrupt. If it
wasn't you, then your compiler's startup code probably did the work. While often in-
visible to high level language programmers, the startup code configures some hardware
oriented things (such as setting up the default interrupts, usually the fault interrupts).

For task-like interrupts, your initialization code can configure them to occur under the
conditions you specify. What exactly those conditions are depend on your processor.
Your processor's user manual will be critical to setting up interrupts.

In our stoplight example, we want a timer interrupt to signal an event when the yellow
light has been on for long enough. Because processors are different, I'll focus on a NXP's
LPC17xx processor which is middle of the road in its interrupt handling complexity
(Atmel's ATMega is much simpler, the TI C2xxx is more complex).

The first step to setting up an interrupt is often, somewhat oddly, disabling the inter-
rupt. Even though part of the power-on sequence is to disable and clear all interrupts,
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it is sensible to take the precaution anyway. If the interrupt is enabled, it might fire
before the initialization code finishes setting it up properly, possibly leading to a crash.

Setting up interrupts uses registers that are memory mapped, similar to those we saw
in “Function pointers aren't so scary” on page 66. As noted in that section, accessing
the memory address directly will make for illegible code. Most processor vendors and
compiler vendors will give you a header files of #define statements, often allowing you
to access individual registers as members of structures. Let's take apart a typical line of
code:

NVIC->ICER[0] = (1<<4); // disable timer 3 interrupt

Many things are going on in that one line. First, NVIC is a pointer to a structure located
at a particular address. The header file from the compiler vendor unravels the hard-
coded memory mapped address:

#define SCS_BASE (0xE000E000)       /*!< System Control Space Base Address */
#define NVIC_BASE (SCS_BASE +  0x0100) /*!< NVIC Base Address  */
#define NVIC ((NVIC_Type *) NVIC_BASE) /*!< NVIC configuration struct */

The same header file defines the structure that holds the registers and where they are
in the address space, so we can identify the next element in our line of code, ICER[0]:

typedef struct
{
  __IO uint32_t ISER[8]; /*!< Offset: 0x000  Interrupt Set Enable Register */
       uint32_t RESERVED0[24];
  __IO uint32_t ICER[8];/*!< Offset: 0x080  Interrupt Clear Enable Register*/
…
}  NVIC_Type;

This header file structure can be built by reading the user manual, if you
can't find some source code where someone else has done it for you.

This processor has separate clear and set registers as described in “Writing an Indirect
Register” on page 125, so what our code does is set a bit in the clear (ICER) register
that disables the timer interrupt. This is known as masking the interrupt.

Writing an Indirect Register
Memory mapped registers can have some interesting properties. Registers don't always
act like variables.

If you want to modify a normal variable, the steps hidden in your memoryReg |= 0x01
line of code are:

1. Read the current value of the memory into a processor register.

2. Modify the value.
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3. Write the variable back into memory.

However, for a register that sets interrupt handling, this multi-step process can cause
problems if an interrupt occurs between any two of these steps. To prevent this race
condition—where an interrupt occurs during an inconsistent state—actions on regis-
ters must be atomic (executing in a single instruction).

This is accomplished by having set of indirect registers: a register that can set bits and
a register that can clear bits, each of which acts on a third function register that is not
directly writable (or memory mapped). To set a bit in the function register, you have
to write the bit in the set register. To clear a bit in the function register, you write that
bit in the clear register. In either register (set or clear), the unset bits don't do anything
to the function register. (Side b of Figure 5-5 gives an example of setting and clearing
bits and the contents of the function register at each step.)

Sometimes, the function register is reflected in the set and clear registers, so if you read
either one of those, you can see the currently set bits. It can be confusing, though, to
read something that is not what you have written to the same register.

A function register can also be write-only without any way to be read. Some processors
save memory space by having a register act as a function register when it is written but

1  0  0  0 0  0  0  0

0  0  0  0 0  1  0  0

1  0  0  0 0  1  0  0

A)

B)

C)

1) Read

2) Modify

3) Write

0x80

0x04

0x80 | 0x04 = 0x84

1  0  0  0 0  0  0  0

1  0  0  0 0  1  0  0

0  0  0  0 0  1  0  0

0x80

0x84

0x04

0x02

0x00

1) Initial value
2) Set the third bit by writing
     Ox04 to set register
3) Clear the high bit by writing 0x80
     to clear register

1) Read status
             *
2) Read status

*Code did nothing between reads

Variable Style

Indirect Addressing

Reading register clears value

Contents of Variable

Contents of Function Register

Contents of Status Register

0  0  0  0 0  0  1  0

0  0  0  0 0  0  0  0

Figure 5-5. Methods for Setting Registers
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a status register when it is read. In that case, you will need to keep track of the bit set
in the function register using a shadow variable, a global variable in your code that you
modify whenever you change the register. Instead of set and clear intermediate registers,
you will need to modify your shadow and then write the register with the shadow's
value.

There are also registers where the act of reading the register modifies its contents. This
is commonly used for status registers, where the pending status is cleared by the pro-
cessor once your code reads the register (see part c of Figure 5-5). This can prevent a
race condition from occurring in the time between the user reading the register and
clearing the relevant bit.

Your user manual will tell you which types of registers exhibit special behaviors.

Once the interrupt is disabled, we can configure it to cause an IRQ when the timer has
expired. Timer configuration was covered in Chapter 4. All operations use the structure
that points to the memory map of the processor registers for this peripheral
(LPC_TIM3). The user manual says that the match control register describes whether
an interrupt should happen (yes) and whether the timer should reset (no) and start
again (no).

LPC_TIM3->MCR |=   0x01;      // set the interrupt to occur
LPC_TIM3->MCR &= ~(0x02);     // timer should not reset after it expires
LPC_TIM3->MCR |=   0x04;      // timer should stop incrementing after it expires

Even though the first line of the snippet sets the timer interrupt to occur when it modi-
fied the register, it didn't really turn on the interrupt. Many processors require two steps
to turn the interrupt on: a peripheral specific interrupt-enable like the one just shown,
and a global interrupt enable like this:

NVIC->ISER[0] = (1<<4); // enable timer 3 interrupt

Note that the peripheral interrupt configuration is in the peripheral part of the user
manual, but the other register is in the interrupts section. You need to set both so that
an interrupt can happen. Before putting that line in our code, we may want to wait to
configure a few more things for our timer interrupt.

Multiple Sources for One Interrupt

Some processors have only one interrupt. The machinery necessary to stop the pro-
cessor takes up space in the silicon. A single interrupt saves on cost (and power). When
this interrupt happens, the ISR starts by determining which of the peripherals activated
the interrupt. This information is usually stored in a cause or status register, where the
ISR looks at each bit to separate out the source of the interrupt (“Timer 1, did you
trigger an interrupt? No? What about you, timer 2?”).

Having an interrupt for each possible peripheral is a luxury of many larger processors.
When there are many possible sources, it is inefficient to poll all of the options. How-
ever, even when you have identified a peripheral, there is still a good chance you'll need
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to unravel the real source of the interrupt. For example, if your timer 3 is used for
multiple purposes, the yellow light timeout may be indicated when timer 3 matches
the first match register. To generate the appropriate event, when the interrupt happens,
you'll need to look at the peripheral's interrupt register to determine why the timer 3
interrupt occurred:

if (LPC_TIM3->IR & 0x1) { // this interrupt is due to a match at match reg 0
                          // on timer 3

Most peripherals require this second level of checking for the interrupt. To look at
another example, in a specific communication mechanism such as SPI, you'll probably
get a single interrupt to indicate that something interesting happened. Then you'll need
to check the SPI status register to determine what it was: it ran out of bytes to send, it
received some bytes, the communication experienced errors, etc.

Whether you have one interrupt with many sources or many interrupts with even more
sources, don't stop looking at the cause register when you find the first hit. There may
be multiple causes. That leads us back to the question of priorities: which interrupt
source will you handle first?

Interrupt Priority

As noted in “Scheduling and Operating System Basics” on page 111, some processors
have a priority system for interrupts. For example, in our stoplight controller, a timer
interrupt could be used to indicate when the yellow state should be completed, turning
the light to red. This timer interrupt is pretty important. The other lights in the inter-
section have to stay in sync. If one of the controllers stayed yellow when the cross traffic
turned to green, it would cause accidents.

Some processors handle interrupt priority by virtue of the peripherals themselves (so
Timer 1 has a higher priority than Timer 2, which in turn is more important than Timer
3). Other processors allow you to set the priority on a per-interrupt basis. See Fig-
ure 5-6 for a snippet of the user manual for the LPC17xx.

Figure 5-6. Priority register from LPC17xx manual

In the initialization code, we can set the priority level which is in the lowest eight bits
of IPR1 according to the user manual:

NVIC->IPR[1] &= ~(0x000000FF);  // set priority of timer 3 to be zero, highest priority
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Of course, if you set all of the interrupts to the highest priority, the processor will choose
which ones get set based on its own internal, documented criteria. (That also seems
like a good metaphor for the life of a software engineer at a small startup.)

Nested Interrupts

Some processors allow interrupts within interrupts. Instead of priority being important
only when an ISR is called, the priority is used to determine whether an interrupt can
supersede the one currently running.

This is a powerful tool that is likely to cause unnecessary complexity. Unless nested
interrupts solve a clear problem particular to your system, it is customary to disable
other interrupts while in an interrupt service routine.

When you clear the interrupt from the enable register, you disable that single interrupt
from occurring. Some processors have another register that can turn off all interrupts
(global interrupt enable/disable).

Non-Maskable Interrupts

Some processors define certain interrupts as so important that they can't be disabled;
these are called non-maskable interrupts (NMI). (I suppose not-disable-able interrupts
was a little unwieldy to say.)

The processor exceptions noted earlier are one form of NMI. Often there is one I/O
pin that can be linked to an NMI, which usually leads to an “on” button on the device.
These interrupts cannot be ignored at any time and must be handled immediately, even
in critical sections of code.

Save the Context
After the interrupt request happens (after you've set it up and the event happens), the
processor saves where it was before it finds the appropriate ISR and calls it. Like a
bookmark saving your spot, the processor saves its context to the stack (see “Stacks
(and heaps)” on page 225). The context includes the program counter (which points
to the next instruction to execute) and a subset of the processor registers (which are
like the processor's own cached, local RAM). The registers are saved so that the inter-
rupt code can use them in its execution.

These steps don't come for free. The amount of time it takes between the IRQ and the
ISR is the processor's interrupt latency, usually advertised in the user manual as taking
a certain number of processor cycles.

The system latency is the worst-case amount of time it takes from when
an interrupt event happens to the start of the ISR. It includes the pro-
cessor's interrupt latency and the maximum amount of time interrupts
are ever disabled.
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These processor cycles are lost. If you had a processor that could do a hundred in-
structions a second (100Hz) with an interrupt latency of 10 cycles and you set up a
timer that interrupted every second, you'd lose 10% of your cycles to context switching.
Actually, since you have to restore the context, it could be worse than that. While 10
cycles is a decent interrupt latency (not great, not bad), 100Hz systems are rare. How-
ever, doing this math with a 30MHz processor, handling audio in an interrupt at
44100Hz with a 10-cycle latency uses 1.47% of the processor's cycles simply calling the
interrupt handler.

Processor designers work to keep the interrupt latency low. One way to do that is to
store the minimum amount of context. That means that instead of saving all of the
processor registers, the processor will save only a subset, requiring the software to store
the other ones it needs. This is usually handled by the compiler, increasing the effective
latency.

Some compilers will place limitations on the interrupt handling code you can write to
minimize the latency, possibly limiting the number of variables you can have or the
number of nested functions.

Calculating System Latency

Calling functions while in an interrupt is often discouraged. Each function call has some
overhead (discussed more fully in Chapter 8), so function calls make your interrupt
take longer. If you have other interrupts disabled during your interrupt, your system
latency increases with each function call.

As your system latency increases, its ability to handle events in real time decreases.
Going back to the 30MHz processor with its 44100Hz interrupt, if each interrupt uses
10 cycles for interrupt overhead and 10 cycles calling five short functions (each) which
collectively use 275 cycles actually processing information, no other interrupt can be
handled for at least 335 cycles (10 + 5*10 + 275). The system latency is 11 microseconds
(335/30MHz). Also note that the system spends nearly 50% of its time in the interrupt.
Reducing the overhead of the interrupt will free up processor cycles for other tasks.

Reentrant Functions

Sometimes it is worth the overhead to call a function, though you've got to be careful
about which ones are called. We've already seen some of the damage that a race con-
dition can cause when interrupts and normal code try to share a global variable. How-
ever, functions which are called by interrupts must have an additional layer of protec-
tion.

A reentrant function is one that can be safely called multiple times, while it is running.
This garden-variety swap function, for instance, is non-reentrant, because it has a tem-
porary variable t whose value must not change before it is used to set the final y variable:

int t;
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void swap(int* x, int* y) {
     t = *x;
    *x = *y;
    // hardware interrupt might invoke isr() here!
    *y =  t;
}

void isr(){
    int x = 1, y = 2;
    swap(&x, &y);
}

Functions that use static or global variables are non-reentrant. Our state machine with
its internal state is non-reentrant. Many C++ objects are non-reentrant by virtue of
their private data. Worse, some standard library calls are non-reentrant, including
malloc (or new) and printf (any I/O or file function).

When the system saves the context, it does the bare minimum. The compiler can do
more, but even that does not give you an entirely clean slate to work with. That is
actually a good thing, because you usually want a global variable or two to signal the
runtime code that the interrupt occurred. However, while in the interrupt, your code
should not call any function that uses a global variable.

Count on interrupts to occur at the worst time. That way, you can design
your system to minimize the havoc they can cause.

Get the ISR from the Vector Table
The third step to handling an interrupt is to determine which ISR to call by looking in
the interrupt vector table (IVT). This table is located at a specific area of memory. When
an interrupt occurs, the processor looks in the table to call the function associated with
the interrupt.

The interrupt vector table is a list of callback functions, one for each type of interrupt.
Really, the vector table is just a list of function pointers.

Initializing the Vector Table

The startup code (which probably came with your compiler) sets up the vector table
for you, usually with dummy interrupt handlers. When debugging, you probably want
your unhandled interrupts to loop so that you find them and turn off the interrupt or
handle it properly.

When the product hits the market, having an unhandled interrupt handler go into an
endless loop will cause your system to become unresponsive. You may want unhandled
interrupts to simply return to normal execution. That's still a bug, but at least then the
bug's effect on the customer is a slight slowdown instead of a system that needs a reboot.
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In some cases, if you name your handler function the same as the one in the table, some
preprocessor magic will make the compiler use yours in the IVT. With other processors
and compilers, though, you will need to insert your ISR into the function table at the
correct slot for your interrupt.

In the LPC17xx processor, using the CodeRed compiler, we'd only need to name the
ISR TIMER3_IRQHandler and the compiler would put the correct function address in the
vector table. In some processors, such as Atmel's AT91SAM7S, you have to create a
function and put it in the table more manually:

interrupt void Timer1ISR()
{
  …
}

Void YellowTimerInit()
{
  …
  AT91C_BASE_AIC->AIC_SVR[AT91C_ID_TC1] = // Set the TC1 IRQ handler address in the IVT
      (unsigned long)Timer1ISR;     // Source Vector Register, slot AT91C_ID_TC1 (12)
  …
}

This has to occur when the interrupt is initialized, and before the interrupt is enabled.

Looking up the ISR

The vector table is located at a particular address in memory, set by the linker script.
Since this is probably done for you in the startup code, you don't usually need to know
how to do it. However, in case you are curious, let's dig into the startup code for the
LPC17xx for a moment:

__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
  // Core Level - CM3
  &_vStackTop,   // The initial stack pointer
  ResetISR,      // The reset handler
  NMI_Handler, // The NMI handler

…
  TIMER2_IRQHandler,  // 19, 0x4c - TIMER2
  TIMER3_IRQHandler,  // 20, 0x50 - TIMER3
  UART0_IRQHandler,  // 21, 0x54 - UART0
…
}

First in the listing is a non-standard line that communicates to the compiler that the
following variable needs to go someplace special and that the linker script will indicate
where it is (at the location specified by .isr_vector). We'll talk more about linker files
scripts (“Linker Scripts” on page 205), but right now it is safe to say that the .isr_vec
tor linker variable is located where the user manual says the vector table should be
(0x00000000).
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Inside the array of void * elements, there is the location for the stack, also set in the
linker script. After that is the reset vector, the address of the code that is called when
your system boots up or resets for another reason. It is one of the exception interrupts
mentioned earlier. Most people don't think of turning on the power or pushing the reset
button as an interrupt to their code. However, the processor responds to a reset by
loading a vector from the table, in the same way that it responds to an interrupt by
loading a vector. Later in the table, there are the peripheral interrupts such as our timer.
Figure 5-7 shows how this would look in the processor's memory.

Code space
Address

0X00000000
...04
...08

...50

...54

Exception
Interrupts

Peripheral
Interrupts

Stack pointer initial value
Reset Vector
NMI Handler
...
...
Timer3_IRQHandler
UARTO_IRQHandler
...

Figure 5-7. Vector table in memory

Each interrupt has an interrupt number. For our timer 3 interrupt, it is 20. When the
interrupt happens, it is signaled by just this number: the part of the processor that
generates the IRQ sends it to the part of the processor that looks up the handler in the
vector table as the number. The address to the handler is found by multiplying the
number by 4 (20*4=80 or 0x50) and looking at that slot in the vector table.

In this table, the compiler vendor has filled in all slots with dummy interrupt handlers
that run infinite loops, to help the programmer catch misconfigured or spurious inter-
rupts.

Calling the ISR
So far we've been going through what you need to know about the workings of an ISR
and how to set it up. Now we'll get to the meaty part of actual ISR that you'll need to
implement. We've already seen the most important rules surrounding ISRs:
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• Keep ISRs short, because longer ones increase your system latency. Generally avoid
function calls, which may have hidden depths and increase overhead.

• Don't call non-reentrant functions (such as printf), because global variables can
be corrupted by interrupts.

• Turn off other interrupts during the ISR to avoid priority inversion problems.

This gives us the design guidelines to implement an ISR. Our timer interrupt is easy to
implement, because all we need to do is set a flag indicating it is time to change to a
red light:

volatile tBoolean gYellowTimeout = FALSE; // global variable set by the interrupt handler
                                 // cleared by normal code when event handled
void TIMER3_IRQHandler(void)
{
  __disable_irq();        // disallow nesting of interrupts
  gYellowTimeout = TRUE;
  __enable_irq();
}

The interrupt doesn't print out a debug message or change the state to red. As much
as it would make sense to do that, keeping it short means we need to let other parts of
the system take care of these things.

Our system so far has been entirely devoted to controlling the lights at the signal, so
we haven't had to worry about system latency. However, few controllers in the wild
have such a limited scope, so for this section we'll add some functionality: say the stop
light controller is also taking pictures of red-light runners with a traffic camera, dis-
pensing gimbals to good citizens who use the crosswalk, and trying to gain sentience.
With the small processor so overloaded, we might have to make allowances for the
state machine not running as quickly as we'd like.

After reviewing the product requirements and making sure we can't alleviate the prob-
lem by reducing the feature set (do we really need sentient stoplights?), we might opt
to make sure the system is left in the safest possible mode by turning off the yellow light
and turning on the red light.

Since the state machine is non-reentrant, the interrupt would have to circumvent it and
force the lights to the new color, getting them out of sync with the state recorded by
the state machine. Not only does this simple timeout ISR become coupled to the event
handling and the light code, it creates an oddity in the system that is a little hard to
explain to someone taking over maintenance. That is why I'd verify the requirements
before implementing the workaround. On the other hand, interrupts can do more than
set flags and unblock communications drivers. Using them to make a system safer is a
worthy trade off (although fixing the design to avoid the heavyweight state change
would still be preferable).

Many processors require that you acknowledge (or clear) the interrupt. This is usually
accomplished by reading a status register. As noted in “Writing an Indirect Regis-
ter” on page 125, this may have the side effect of clearing the bit.
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Disabling Interrupts

Nested interrupts are allowed on the LPC17xx, but we don't want to deal with the
complexity of interrupts within interrupts. The __disable_irq() and __enable_irq()
macros come from the compiler vendor and insert a single instruction, so the overhead
to prevent nesting is minimal.

Critical Sections

We've already seen how race conditions can happen in critical sections. To avoid that,
we'll need to turn off interrupts there as well. We could disable a particular interrupt,
but that might lead to the priority inversion noted earlier. Unless you've got a good
reason for your particular design, it is usually safer to turn off all interrupts.

There are two methods for disabling interrupts. The first method uses the macros we've
already seen. However, there is one problem with those- what if you've got critical code
inside critical code? For example:

HandyHelperFunction:
  disable interrupts
  do critical things
  enable interrupts

CriticalFunction:
  disable interrupts
  call HandyHelperFunction
  do supposedly critical things  // unprotected!
  enable interrupts

Note that as soon as interrupts are enabled in HandyHelperFunction, they are also ena-
bled in the calling function (CriticalFunction), which is a bug. Critical sections should
be short (to keep system latency at a minimum), so you could avoid this problem by
not nesting critical sections, but this is something easier said than done.

Since some processors won't let you nest critical pieces of code, you'll
need to be sure to avoid doing it accidentally. I recommend naming the
functions in a way that indicates they turn off interrupts to avoid this
issue.

Alternatively, if your processor allows it, implement the global disable and enable
functions (or macros) a little differently by returning the previous status of the inter-
rupts in the code that disables them:

HandyHelperFunction:
  interrupt level  = disable interrupts
  do critical things
  enable interrupts(interrupt level)

CriticalFunction:
  interrupt level = disable interrupts

Interrupts | 135



  call HandyHelperFunction
  do critical things
  enable interrupts(interrupt level)

Since the helper function doesn't actually disable interrupts, it doesn't enable them
either. The critical code remains safe throughout both functions.

Restore the Context
After your ISR has run to completion, it is time to return to normal execution. Some
compilers extend C/C++ to include an interrupt keyword (or __IRQ or _interrupt) to
indicate which functions implement interrupt handlers. The processor gives these
functions get special treatment both when they start (some context is saved before the
ISR starts running) and when they return.

As noted in the section on saving the context, the program counter points to the ma-
chine instruction you are about to run. When you call a function, the address of the
next instruction (program counter + 1 instruction) is put on the stack as the return
address. When you return from the function (rts), the program counter is set to that
address.

It is unusual for different assembly languages to have similar opcodes.
However, rts and rti tend to be pretty common. They stand for ReTurn
from Subroutine and ReTurn from Interrupt respectively.

However, the interrupt isn't a standard function call; it is a jump to the interrupt handler
caused by the processor. If the interrupt simply returned as though it was a function,
the things that the processor did to store the context would not get undone. So inter-
rupts have a special instruction (rti) to indicate that they are returning from an inter-
rupt. This lets the processor know that it must restore the context to its state before
the function call before continuing on its way.

This difference between a call and a jump is an important one, especially if you end up
doing any assembly programming. Some alliteration may help you remember the dif-
ference: a call has context, a jump just goes. If you use gotos in your code, you are
executing a jump.

Yes, people do use gotos in modern code. Used sparingly, they can act as exception
handlers, cleaning up memory or a peripheral when things have gone catastrophically
wrong during its use. They often replace code that starts out with a variable that tracks
the error condition, getting checked at each stage in a series. When too many stages
are preceded by if !error do..., the code morphs to just "goto an error handler" as
soon as an error occurs, leaving the normal flow code unburdened by if statements.

If your compiler doesn't require you to indicate that a function is an interrupt, you can
rest assured it is finding some other way to make the return from interrupt happen.
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That is, the compiler is probably wrapping the interrupt function in assembly code that
merely calls your function. Once your handler returns from the function call, the as-
sembly wrapper returns from the interrupt. The processor resets the stack the way it
was and program execution continues from exactly the point it left off.

When To Use Interrupts
Now that we've set up our stoplight to use an interrupt for the timer and created the
code to handle the interrupt, we need to backtrack. We forgot a design step: should
the yellow light time-out be an interrupt?

There are many circumstances in which the simplest solution is an interrupt. Commu-
nication pathways often have buffers that need to be filled (or emptied). An interrupt
can act as a background task to feed the buffers while the foreground task generates
(or uses) the data. Changes to input lines may need interrupts if they need to be handled
quickly. The more real-time is the requirement to handle a change on the line, the more
an interrupt is appropriate for a solution.

Under that criterion, the button press we saw in Chapter 4 that only needed a simple
response within 50ms would not need an interrupt. A button press happens pretty
rarely in the world of your processor. However, if checking to see whether it has been
pressed takes time from other activities, it may be better to have an interrupt.

We've also seen that interrupts have some serious downsides. I already mentioned the
overhead of each interrupt, which can add up if you've got a lot of them. Interrupts also
make your system less deterministic. One of the great things about not having an op-
erating system* is being able to say that once instruction x happens, y will happen. If
you have interrupts, you lose the predictability of your system. And, because the code
is no longer linear in flow, debugging is harder. Worse, some catastrophic bugs will be
very difficult to track down if they depend on an interrupt happening at a very specific
time in the code (i.e. a race condition). Plus, the configuration is largely compiler and
processor dependent (and the implementation may be as well) so interrupts tend to
make your code less portable.

In the end, the development cost of implementing (and maintaining) interrupts is pretty
high, sometimes higher than figuring out how to solve the problem at hand without
them. Save interrupts for when you need their special power: when a system is time
critical, when an event is expensive to check for and happens very rarely, and when a
short background task will let the system run more smoothly.

* Some real-time operating systems (RTOSs) are deterministic, usually the more expensive ones.
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How Not to Use Interrupts
So, if you don't need their special power, how can you avoid interrupts? Some things
can be solved in hardware, such as using a faster processor to keep up with time critical
events. Other things require more software finesse.

Returning to our stoplight example, we've considered the events as interrupts. Two
events are communicated to the system (commands stop and go) and one is generated
by the system (yellow's timeout). Do any of these events need to be interrupts?

Let's assume the system doesn't do anything besides handle the events. It just waits for
these events to happen. The implementation of the system could be much simpler to
maintain if we can always see what the code is waiting for.

When you get to Chapter 10, interrupts become a way to wake the pro-
cessor from sleep, so you have to use them.

Polling
Asking a human “are you done yet?” is generally considered impolite after the fourth
or fifth query. The processor doesn't care if the code incessantly asks whether an event
is ready. Polling adds processor overhead even when there are no events to process.
However, if you are going to be in a while loop anyway (i.e. an idle loop), there is no
reason not to check for events.

Polling is straightforward to code. There's just one subtlety worth mentioning: if you
are polling and waiting for the hardware to do complete something, you might want a
timeout just in case.

In the yellow light example, all we need to do is wait for a certain amount of time to
pass. Even though embedded systems have a reputation for being fast, many systems
spend an inordinate amount of their clock cycles waiting for time to pass.

System Tick
Like the sound you hear when the clock's second hand moves, many systems have a
tick that indicates time is passing. While the amount of time in that tick varies, one
millisecond tends to be a popular choice.

Ticks don't have to be one millisecond. If you've got a time that is im-
portant to your system for other reasons (e.g. you have an audio re-
cording system that is running at 44100Hz), you may want to use that
instead.
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The tick is implemented with a timer interrupt that counts time passing. Yes, if we
implemented the yellow light time out this way, we are still basing the solution on an
interrupt, but it is a much less specific interrupt. The system tick solves a much broader
range of problems. In particular, it lets us define this function:

void DelayMs(tTime delay);

This will wait for the amount of time indicated—well, for approximately the amount
of time indicated (see “Fenceposts and Jitter” on page 139). Note that because of fence
posting and jitter, DelayMs isn't a good measure of a single millisecond. However, if you
want to delay ten or a hundred milliseconds, the error becomes small enough not to
matter. If your system depends on one-millisecond accuracy, you could use a shorter
tick, though you'll need to balance the overhead of the timer interrupt with the pro-
cessing needs of the rest of the system.

Fenceposts and Jitter
A fencepost error is an example of an off-by-one error, one often illustrated with build-
ing materials:

If you build a straight fence 100m long with posts 10m apart, how many posts do you need?

The quick and wrong answer is that you need 10 posts, but you actually need 11 posts
to enclose the 100m meters as shown in Figure 5-8. The same is true of a system tick.
To cover at least the number of milliseconds in question, you need to add one to the
delay.

0             10            20            30             40            50            60            70            80             90           100

1              2              3               4               5               6               7              8               9              10            11

1              2              3               4               5                6

0.5        1.5           2.5            3.5          4.5             5.5

# Posts

Distance (m)

System Tick

Ticks Passed

Time Passed (ms)

10987654321 11

Delay ms(s) start

?

Figure 5-8. Fencepost Example

However, this calculation is complicated by jitter. Your call to DelayMs is very unlikely
to happen on a tick boundary. Instead, the delay will always start after a tick, so that
DelayMs will always be longer than the number of ticks indicates.

You can choose whether you want to wait no more than the delay indicated (in which
case, with a one millisecond delay, you may wait less than a processor cycle) or no less
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than the delay indicated (with a one millisecond delay, you may wait two milliseconds
minus a processor cycle). You can make whatever choice leaves your application most
robust, as long as the code is clear.

In the stoplight's yellow state, we could call DelayMs and move to red as soon as it was
finished. However, then we couldn't respond to any other commands. In this example
that happens to be OK, because stop and go don't do anything in the yellow state—
but still, what if one of them did?

If you want to be keep track of time passing and do other things, add a few more
functions to your system tick:

tTime TimeNow();
tTime TimePassed(tTime since);

The TimeNow function should return the tick counter. The code never looks at this di-
rectly, instead using the TimePassed function to determine whether enough time has
passed. In fact, DelayMs can be implemented as a combination of these functions (getting
the initial time and then waiting for the time passed to be greater than the delay). In
between these functions your system can do other things. In effect, this is a kind of
polling.

Note that the TimeNow function gives the number of ticks since the system was booted.
At some point this variable holding the number of ticks will run out of space and roll
over to zero. If you used an unsigned 16 bit integer, a 1ms tick will make the clock roll
over every 65.5 seconds. If need use these functions to try to measure something that
takes 70 seconds, you may never get there.

However, if you use an unsigned 32-bit integer, your system will roll over to zero in
4,294,967,296 ms or about 49.7 days. If you use an unsigned 64-bit integer, your 1ms
tick won't roll over for half an eon (0.58 billion years). I'm impressed by this long-term
thinking, but are you sure there won't get a power outage or system reboot before then?

So the size of your timekeeping variable determines the length of time you can measure.
In many systems, instability can occur when the rollover happens. Protect against this
by taking the rollover into account when you write the time measuring function to
ensure the discontinuity does not cause a problem:

tTime TimePassed(tTime since) {
  tTime now = gSystemTicks;

  if (now >= since) {return (now - since);}

  // rollover has occurred
  return (now + (TIME_MAX-since));
}
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Time Based Events
In our stoplight example, the yellow state can use the system tick to create its time
based event. When the code enters the yellow state, it sets a state variable:

yellowTimeStart = TimeNow();

Then, when doing housekeeping, it checks for the completion of the event:

if (TimeSince(yellowTimeStart) > YELLOW_STATE_TIMEOUT)
  // transition out of the yellow state

Between those two times, the system can do whatever it needs to: listen for commands,
check the lights to make sure their bulbs are working, play Tetris, etc.

A Very Small Scheduler
For things that recur or need attention on a regular basis, you can use a timer as a mini-
scheduler to fire off a callback function (a task).

At this point, you are starting to recreate the functions of an operating
system. If your mini-scheduler becomes more and more complicated,
consider investing in an operating system.

Let's add a state to our stoplight that blinks the red light to indicate a four-way stop.
This happens only when something goes wrong, but we'll cover those possibilities in
the next section. While we could use the time-based event to turn the red light on and
off, it might be a little simpler to make this a background task, something that the
scheduler can accomplish.

So, before looking at the gory details, let's consider what the main loop needs to do to
make all this work for a scheduler that runs about once a second.

  run the scheduler after initialization is complete
  LastScheduleTime = TimeNow()

  while (1) {

    if TimePassed(LastScheduleTime) > ONE_SECOND
     run the scheduler, it will call the functions (tasks) when they are due
     LastScheduleTime = TimeNow()
  }

We've already got the time based functionality worked out in the previous section; now
let's look at the scheduler in more detail.

When a task is allocated, it has some associated overheard, including the callback
function that is the heart of the task. It also contains the next time the task should be
run, the period (if it is a periodic task), and whether or not the task is currently enabled:
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struct Task;                                 // forward declaration of the struct
typedef void (*TaskCallback)(struct Task *); // type of the callback function

typedef struct Task {
  tTime              runNextAt;              // next timer tick at which to run this task
  tTime              timeBetweenRuns;        // for periodic tasks
  TaskCallback  callback;
  int      enabled;                          // current status
};

The calling code should not know about the internals of the task management, so each
task has an interface to hide those details.

void TaskResetPeriodic(struct Task *t);
void TaskSetNextTime(struct Task *t, tTime timeFromNow, tTime now);
void TaskDisable(struct Task *t);

(Yes, these could be methods in a class instead of functions; both ways work just fine.)

The scheduler is straightforward and has only one main interface:

void SchedulerRun(tTime now);

When the scheduler runs, it looks through its list of timers. Upon finding an enabled
timer, it looks to see whether the current time is later than runNextAt. If so, it runs the
task by calling the callback function. The SchedulerRun function sits in the main loop,
running whenever nothing else is.

These tasks are not interrupt-level, so they should not be used for activities with real-
time constraints. Also, the tasks have to be polite and give up control relatively quickly,
because they will not be preempted as they would be in typical operating systems.

There is one final piece to the scheduler: attaching the tasks to the scheduler so that
they run. First, you'll need to allocate a timer. Next, configure it with your callback
function, the time at which the function should run, and the time between each sub-
sequent run (for periodic functions). Finally, send it to the scheduler to put in its list:

void SchedulerAddTask(struct Task* t);

Publish/Subscribe Pattern
With the scheduler, we've built what is known as a publish/subscribe pattern (also called
an observer pattern or pub/sub model). The scheduler publishes the amount of time
that has passed, and several tasks subscribe to that information (at varying intervals).
This pattern can be even more flexible, often publishing several different kinds of in-
formation.

The name of the pattern comes from newspapers, probably the easiest way to remember
it. One part of your code publishes information, other parts of your code subscribe to
it. Sometimes the subscribers only request a subset of the information (like getting the
Sunday edition only). The publisher is only loosely coupled to the subscribers: it doesn't
need to know about the individual subscribers; it just sends the information in a generic
method.
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Our scheduler has only one type of data (how much time has passed), but the publish/
subscribe pattern is even more powerful when you have multiple types of data. This
pattern is particularly useful for message passing, allowing parts of your system to
receive messages they are interested in but not others. When you have one object with
access to information that many others want to know about, consider the publish/
subscribe pattern as a good solution.

Watchdog
We started the scheduler section mentioning the blink-red state. Its goal was to put the
system in a safe mode when a system failure occurs. But how do we know a system
failure has occurred?

Our software can monitor how long it has been since the last communication. If it
doesn't see a stop or go command in an unreasonably long time, it can respond ac-
cordingly. Metaphorically speaking, it acts as a watchdog to prevent catastrophic fail-
ure. Actually, the term watchdog means something far more specific in the embedded
world.

Most processors or reset circuits have a watchdog timer capability that will reset the
processor if the processor fails to perform an action (such as toggle an I/O line or write
to a particular register). The watchdog system waits for the processor to send a signal
that things are going well. If such a signal fails to occur in a reasonable (often config-
urable) amount of time, the watchdog will cause the processor to reset.

The goal is that when the system fails, it fails in a safe manner (failsafe). No one wants
the system to fail, but we have to be realistic. Software crashes. Even safety critical
software crashes. As we design and develop our systems, we work to avoid crashes.
But, unless you are omniscient, your software will fail in an unexpected way. Cosmic
rays and loose wires happen. Many embedded systems need to be self-reliant. They
can't wait for someone to reboot the system when the software hangs. They may not
even be monitored by a human. If the system can't recover from some kinds of error,
it is generally better to restart and put the system in a good state.

Using a watchdog does not free you from handling normal errors; instead, it exists only
for when the system is unrecoverable. There are ways to use a watchdog that make it
more effective. But first, let's look at some suboptimal techniques, based on models
earlier in this chapter, that would make the watchdog less effective:

Setting up a timer interrupt that goes off slightly more often than the watchdog would
take to expire.

If you service the watchdog in the timer interrupt, your system will never reset even
though your system is stuck in an infinite loop. This defeats the purpose of the
watchdog.
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Setting the delay function (DelayMs) to service the watchdog on the idea that the processor
isn't doing anything else then.

You'll have scatter delay functions scattered around the code so the watchdog gets
serviced often. Even then, if the processor gets stuck in an area of code that happens
to have a delay, the system won't reset as it should.

Putting the watchdog servicing in places that take a while for the processor to perform,
maybe the five or six longest running functions.

By scattering the watchdog code around, it waters down the power of the watchdog
and offers the possibility that your code could crash in one of those areas and hang
the system.

The goal of the watchdog is to provide a way to determine whether any part of the
system has hung. Ideally, watchdog servicing is in only one place, some place that the
code has to pass through that shows all of its subsystems are running as expected.
Generally, this is the main loop. Even if it means that your watchdog needs to have a
longer timeout, having it watch the whole system is better than giving it a shorter re-
covery time while trying to watch only part of the system.

Sadly, for some systems, the watchdog cannot be segregated so neatly. When the signal
to the watchdog must be sent in some lower level of code, recognize that the code is
dangerous, an area where an unrecoverable error might occur, causing the system to
hang. That code will need extra attention to determine whether anything could go
wrong (and hopefully prevent it).

Generally you don't want the watchdog active during board bring-up or while using a
debugger. Otherwise, the system will reset after a breakpoint. A straightforward way
to turn off the watchdog will facilitate debugging. If you have a logging method, be sure
to print out a message on boot if the watchdog is on. It is one of those things you don't
want to forget to enable as you do production testing. Alternatively, you can toggle an
LED when the watchdog is serviced to give your system a heartbeat that is easy to see
from the outside, letting the user know that everything is working as expected.

Watchdog terminology
Servicing the watchdog so it doesn't hang has traditionally been called “kicking the
dog.”

This caused consternation when I worked at a small pet-friendly company. It was great
to see the dogs play at lunch, kind of calming. However, one day as we were preparing
for a big client to review our code, out CEO went off the rails when he saw the function
KickTheDog() in the main loop. He adamantly explained that no dog, real or virtual,
would be kicked at our company. Ever.

We refactored the function name to PetTheDog(). On the day of the big meeting, the
clients snickered when they saw our politically correct safety net. I'm not sure when
the terminology changed, but in the years since then, I've seen less kicking and more
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petting, feeding, or walking the watchdog. What you choose to do is up to you, but
you'd never actually kick a dog, right?

There are three take aways here: 1) terminology for standard things changes, 2) lan-
guage matters, 3) never let your CEO see your code.

Further Reading
Running an embedded system without an operating system (running on bare metal)
doesn't mean you can be ignorant of operating systems principles. If anything, since
you are doing the work yourself, you need to know more about how OSs function so
you can recreate the parts you need. There are many good OS books, but my favorite
is the classic text book from Andrew Tannenbaum: Operating Systems: Design and
Implementation (Pearson).

I also recommend finding an old book about programming a small processor, some-
thing published in 1980 or before. For example, I have Programming the 6502 from
Rodnay Zaks, 3rd ed. (Sybex). You can find one in a library or used bookstore. This
sort of book takes out the modern fluff surrounding processors (the fluff that makes
them easier to use) and provides insight into how the processors worked when they
were simpler. Also, they make for pretty entertaining reading because the assumed
knowledge is much different from current user manuals (mine starts with a section
called “What is programming”).

Finally, the Arduino is a nifty and popular embedded platform, particularly for home
projects. This blog post on setting up Arduino timer interrupts gives a great walk
through of interrupts.

Interview Question: Stoplight Control of an Intersection
A small city has decided their intersection is too busy for a stop sign and they've
decided to upgrade to a light. They've asked you to write the code for the light.
There are four lights, each with a red, yellow, and green bulb. There are also four
car sensors that can tell when a vehicle is stopped at the light. Where do you
start? Tell me about your design and then write some pseudo code. (During this
time, I've drawn an intersection as in Figure 5-9. I tend to draw this intersection
on their piece of paper if I can).
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Figure 5-9. Intersection in a small city

This is a problem that lets the interviewee drive the interaction. If she wants to talk
about design patterns, there are plenty. If she wants to skip design and talk about timers
or the hardware of the sensing, that works too.

An interviewee should clarify the problem if it isn't clear. In this question, she should
ask whether there is a left turn light (no, the intersection is small and the city doesn't
need that yet). Some people also ask about a crosswalk (also not to be handled in the
initial development).

Very good interviewees notice that the problem is only half of what it appears on the
surface. The goal is not to control four stoplights, since two lights are always in sync.

As with all of my interview questions, naming is very important. The reason I draw on
their paper is to encourage the interviewee to add her own information to the diagram.
Some good names include identifying the intersection by compass directions (north/
south and east/west), some moniker that makes sense for the situation (First and Main)
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or place on the page (right/left and up/down). Until she's put names on the diagram,
any pseudocode will be gibberish.

Once she starts digging into the problem, I like to hear about the state machine (or
automata or flow chart). I want to see diagrams or flow charts. Some people get stuck
on the initial state because we all tend to want to start with “what happens first”.
However, the initial state is relatively uninteresting in this case (though, if asked, I'll
suggest she start with an all red state).

Once she's laid out the basics, I tend to add a few curve balls (though great interviewees
tend to handle these before I ask).

First, what if a sensor is broken? Or what if the city wants to be friendly to bikes (which
don't activate the car sensor)? This adds a timer to the state machine so that the inter-
section doesn't get trapped in any state forever.

Second, the intersection has been getting a lot of accidents with folks running the yellow
light. Can she do something to improve the safety of the system? (Hint: Add a short all
red state to allow traffic to clear the intersection before going to the next green.)

Since this interview question is simply a logic problem, I often spring it on other engi-
neers, particularly those who work in quality departments (“how would you write a
test plan for this controller?”).
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CHAPTER 6

Communicating with Peripherals

We've investigated heavily what goes on inside your processor during the course of this
book. Now, before you can build a system, we need to consider what goes on in other
components. Ultimately, the information you need are in datasheets, so if you're com-
fortable extracting information from them, you might be able to skip the first two thirds
of this chapter, which cover fitting peripherals into embedded systems, comparing and
contrasting some peripherals, and discussing common communication methods. The
last third is more software-oriented, offering strategies for making them work well to-
gether. Don't skip that part.

The Wide Reach of Peripherals
A peripheral is anything outside your processor that it communicates with. Peripherals
come in all shapes and flavors. Because your processor has direct access to memory, it
barely counts as a peripheral (though it can be outside your chip). Sensors tell your
system about its environment. Actuators act up on the environment. And displays in-
teract with users.

I'm going to mention the most obvious of each of these so you get some ideas for your
options. However, don't let my lack of creativity limit your ideas. And if you can't find
what you want, wait six or eighteen months and someone will come along with it (yay
for I2C tricolor LEDs!).

External Memory
We've already looked a bit at memory and how it is classified into volatile memory (lost
when the system turns off) and nonvolatile memory (retained through power cycles).
RAM is the most predominant form of volatile memory. It comes in different flavors;
the software doesn't usually need to know the specifics.

On the other hand, most nonvolatile memory requires a software driver that recognizes
the features of the memory style. As noted in Chapter 3, the two more common subtypes
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of this type of memory are EEPROM and flash. EEPROMs are generally smaller and
their bytes can be written individually. Flash is made up of sectors that must be erased
all at one time (the larger the flash, the larger the sector). Once a sector is erased, flash
can be written one byte at a time.

The volatile keyword in C/C++ refers to something different from the
idea of volatile memory. The keyword tells the compiler, “this variable
may change outside the code that is currently running,” whereas volatile
memory changes only when power is lost.

Once you've classified your memory as volatile or non-volatile, you'll need to a few
more pieces of information about your external memory:

• How large is it? (Don't be fooled by memory sizes given in Mbits instead of Mbytes!)

• How long does it take to access the memory? This depends both on the commu-
nication bandwidth and the memory characteristics.

• How much do you need to erase at a time?

• How many times can it be rewritten?

Your product team may have a few other questions to help determine what kind of
external memory you need:

• What is the price per bit?

• How large is the memory physically? (Or the density of the memory, the physical
size per bit.)

• How much power does it consume? (RAM tends to be the worst, then flash, then
EEPROM)

Once you choose what is right for you, memory is probably the easiest peripheral you
will have to work with.

Buttons and Key Matrices
You've already seen buttons with a simple I/O interfaces (covered in Chapter 4). How-
ever, if you've got a bunch of buttons (e.g. a keyboard), you don't need one I/O line per
button. You can matrix the inputs to get a lot more out of your I/O than you expect.
There are two ways to implement a key matrix, depending on whether you need it to
be cheap (row/column scan) or minimal I/O (Charlieplexing).

With a row/column scan you can implement an MxN matrix with M+N lines. So if you
want to implement a 12 digit number pad, you could do a 3x4 matrix and use 7 lines
(far fewer than the 12 lines it would take to do direct I/O). Of course, matrix input does
require more complicated software to make it work.
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In the electronics, each button is connected to one row and one column (and not an
input pin to ground, as would be the normal I/O interface). On initialization, make all
of the rows outputs and set them to be low. Then, make all of the columns inputs. As
you are reading for button presses, set a row high, read the column's inputs, set the row
low, and move on to the next row. A button that is pressed will be high when you read
its column. You will need to map the row/column value to the button's actual meaning.
Figure 6-1 shows a snippet of a schematic with the row/column scan. Each circle is a
button.

Figure 6-1. Row/column scan style key matrix

Note that matrixing the buttons means that they need to be polled. Although you can
set up a timer interrupt to do that, you can't use a processor interrupt to tell you when
an input has changed. The software needs to keep cycling through the rows.

This is also true of Charlieplexing, which is normally used with LEDs to make complex
displays from only a few I/O pins. The same process can be used on inputs, but it
requires more electronics (diodes) than the row/column matrix method. Instead of
using N pins to receive N inputs in direct drive, or M+N pins to receive MxN inputs
in row/column, Charlieplexing lets you use N pins to get (N2-N) inputs. So for the 12
buttons in a number pad, you can use a mere 4 I/O lines (and 12 diodes, fewer if you
don't care about detecting multiple buttons pressed). While the software is more com-
plicated than the row/column matrix, it is just a matter of taking it step by step. A web
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site about Charlieplexing uses excellent animations to walk through how it works.
(They also walk through the row/column method with good animations.)

Both of these methods may cause problems when multiple buttons are
pressed simultaneously.

Row/column matrix and Charlieplexing can be used on outputs (LEDs) as well as in-
puts (buttons). The methodology is the same in each case, so once you wrap your head
around matrices you'll find plenty of places to implement them.

Sensors
A button could be called a type of sensor. The methods used to talk to buttons are
similar to those used with sensors, and the choices are similar (e.g. interrupts versus
polling). However, buttons are either pressed down or not. Sensors can provide all sorts
of data—high, low, 1.45, 10342.81, 12, 43, or out of range. What you read depends
on your sensor.

Your system may have its own input sensors while serving as a sensor
to another system.

Analog Sensors

If you have a microphone, like your ears, the audio it picks up is analog. You can use
an ADC to move from real-world analog to software-friendly digital (ADC means an-
alog-to-digital converter, sometimes called an A2D). Your software can do any number
of things with the digital data: watch for events in the analog stream, filter it, or change
it back into analog with a DAC (digital to analog converter, aka D2A). In analog form,
the signal can be played through a speaker. Figure 6-2 shows a simple system.

Figure 6-2. Analog to digital to analog system

The signal is the underlying thing you are looking at, whether it is currently digital or
analog. Noise is what makes it hard for your software to see the signal properly. A goal
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of the system is to make sure there is plenty signal compared to the noise giving you a
high SNR (signal to noise ratio).

Signal processing is a software technique for changing data from analog to digital, and
often doing something to make sense of the data. Sometimes the data gets transformed
to look like something different. Often, this change converts the data to a combination
of sine waves because these are easy to compute with. The sine waves are frequencies
(think of radio station frequencies or musical pitches). So this conversion is called
conversion to the frequency domain.

In the Figure 6-2, the signal is reduced by dividing each integer sample by two. The
resulting analog sound should be quieter (attenuated) but integer division isn't a good
idea with such small numbers, so the signal morphs more than it should. (Receiving a
higher signal input at the ADC or sampling more bits in the ADC would reduce this
problem with integer math.)

This is a relatively silly example, because you could get a better attenuation effect with-
out digitizing the input. More often, the data goes through multiple stages of process-
ing. Some of these might include filtering (to reduce noise or enhance a particular signal
characteristic), companding (attenuating loud sections and/or boosting quiet ones),
and convolution (finding one signal hidden inside another).

Some processors are built with signal processing in mind (DSPs, aka digital signal pro-
cessors). They have special processor instructions that work with the signal much faster
than a general purpose processor does.

Of all of the embedded systems areas, signal processing is my favorite. However, it is
a complete book unto itself. Well, two books, because you need to understand the math
(Fourier is fun) and how to apply that to real-world problems (Fast Fourier Trans-
forms!).

I haven't talked about sampling and the Nyquist frequency. That is because I haven't
given you nearly enough information to be able to do anything useful with analog
sensors. Either you already know this or you need far more than this brief orientation.
I don't want you to think you are ready to go off and make a great analog system with
this tiny section. I recommend my favorite signal processing books in “Further Read-
ing” on page 195.

I started this section with a microphone, but analog sensors come in all sorts of types-
motion sensors (accelerometers, gyroscopes, magnetometers), weather sensors (wind,
humidity, temperature), vision sensors (cameras, infrared detectors), the list goes on
and on. You may only have five senses, but your system can have many more.

MEMS (microelectromechanical systems) sensors are a special type of sensor that uses
a tiny (nanoscale) sensing element. While MEMS have given us more robust and a wider
variety of sensors to play with, from the software point of view, MEMS sensors are the
same as any other sensor.
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I once heard an electrical engineer say, “All sensors are temperature
sensors but some are better than others.” It is true. Sensors respond to
ambient temperature even when they are supposed to be measuring
something else. Expect to have to calibrate your system for temperature
and give a sigh of relief if you don't need to.

ADCs and DACs are characterized by their sample frequencies (how fast they work)
and number of bits. An 8-bit ADC has 256 levels in its digital signal; a 16-bit ADC has
65,536 levels. What you need depends on your application, but those two numbers
can drive how your whole software system is organized by constraining the speed of
your processor and the amount of RAM you need. How fast your system can process
data is called its throughput or bandwidth.

Digital Sensors

If I have made you a little nervous with analog sensors and the arcane world of signal
processing, I do apologize. However, you'll like digital sensors a lot more. Sometimes
called a smart sensor, a digital sensor will do the analog to digital conversion for you,
ideally giving you exactly the data you need. As with analog sensors, the range of digital
sensors is staggering. Although digital sensors are usually a bit more expensive than
their analog counterparts, the price is often worth it because they produce meaningful
samples and are less susceptible to external noise (see “EMI: Electromagnetic Interfer-
ence” on page 154).

As you look at the datasheet for the digital sensor, the primary concern is how to com-
municate with it. Does your processor have that type of interface? The next question
pertains to throughput- can your software keep up with the amount of data the sensor
is going to send? What is it going to do with the data? How long will it that take?

EMI: Electromagnetic Interference
As signals travel along wires, they pick up noise from all the things around that have
clocks. Wait a minute, you say—my system has a clock? Probably more than one,
actually.

So you can't expect your analog system to be free of noise. The wires that the analog
signal travels along are like antennas picking up static from everything around them.
Your electrical engineer can shield the signal and reduce its susceptibility to noise (usu-
ally by putting a shiny metal box connected to ground, called a Faraday cage, around
the signal).

Sometimes, before you can fix the issue, you need to find the culprit causing the noise.
That can be difficult. If it is not external to your system, it could be any of your com-
munication paths, any of your peripherals, or your processor itself. Even worse, it may
be some combination of these interfering in tandem, giving you hard to reproduce
errors. Radiating noise internally is not the only problem.
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Sometimes, after bring up but before the end of your project, your electrical engineer
will take your system off for EMC (electromagnetic compatibility) testing. If your sys-
tem has a clock that is over 9kHz, in the US, it needs to go through EMC testing to
ensure that it doesn't radiate signals that will interfere with communication (to comply
with FCC part 15).

This test will put the unit into an anechoic chamber and monitor it at many radio
frequencies to see if it emits any noise above the tolerated level. As you prepare the
software used in hardware bring up, you may need to put together an EMC test version
that will transmit data through all communication pathways as fast as possible to gen-
erate chatter and verify that nothing much radiates from your device.

The same EMC test lab usually can blast your unit with different frequencies to see if
it is susceptible to noise in any particular range.

Although digital signals emit more noise to the environment, they
are more immune to outside sources of noise.

Actuators
Actuators are what your software uses to make a mechanical impact on its environment.
The simplest actuator is a solenoid which you can think of as a button in reverse. If you
set it high, the solenoid is in one position. If you set it low, the solenoid is in another.
These are useful for locking things or turning on and off valves. However, moving things
is a lot more fun if you use a motor.

Motors

Whether you are making a bipedal robot or moving a widget along a conveyor belt,
motors are where the systems really get to play in the real world. Unhappily, while
motors are nifty and you should totally try them out, really great motor control requires
its own book. I'll give you some things to look for but I can't give you anything more
than an orientation to motors.

Just as you can buy an easier interface using a digital sensor, some motor
assemblies include a motor controller chip that will implement an al-
gorithm compatible with the style of motor.

First, what kind of motor are you looking at using? There are many types of motors
and your application will drive what type you use based on a combination of charac-
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teristics including price, life span, torque (turning power), energy efficiency, and power
consumption.

A stepper motor is a popular choice though they can be relatively expensive. A stepper
motor can be positioned precisely and will stay there (high holding torque). These are
the simplest motors to use because you can run them open loop (without any feedback
mechanism). Because they have a number of magnets to turn the motor shaft, stepper
motors require multiple I/O lines. Each I/O line gets energized in order to cause the
shaft to step forward to next position (this can cause a bit of a jerk). When you want
the motor to go smoothly in one direction, you need to make the I/O lines dance in a
complicated pattern (dictated by its datasheet).

At the opposite end of the motor spectrum is a (brushed) DC motor. These are very
cheap and usually only require one I/O line (well, two if you want it to be able to go
backwards). The speed of motor depends on the voltage applied. You can use a PWM
to give you more control than off and running full speed. (We saw PWM control in
Chapter 4.) Motors don't usually like to be jerked on and off in a digital manner so
using PWM to give smoother velocity profile that will increase your motor's lifespan.

The torque of a brushed DC motor depends on the current so your I/O lines will prob-
ably go through some additional circuitry to get more oomph (your processor probably
only sources enough current to drive a very wimpy DC motor). A difficulty with DC
motors can be stopping them at the precise position you want; they often require a
feedback control system.

Because it doesn't have the jerkiness of the stepper and it doesn't have any parts
(brushes) that touch, a brushless motor usually has a longer life span. As with a stepper
motor, they need a few I/O lines working together to achieve rotation. As with a DC,
it is easier to control the speed than the position. They are power efficient and usually
priced between stepper and a brushed DC motors of similar characteristics. Also, just
to make things a little confusing, a brushless motor is generally DC (though it can be
AC).

The second most important thing to understand about your motor
system is: how will you know when it gets to wherever it is going? With a stepper motor,
you can count the steps. Even so, when the system boots up, how will it know? Most
motors (stepper or not), have a home position that puts the motor in a safe position
and tells the software the position. Usually home is at an extreme of the motor travel
direction (e.g. all the way to the left or at the bottom). Finding home is a matter of
moving the motor slowly in that direction until the home position is sensed. Generally,
home is the zero position of the system and position counts from there (though some-
times home is the center of travel instead of one edge).

In a stepper motor, the position is counted based on motor counts. In any other type
of motor, you'll need another type of sensor called an encoder. Often optical, it is usually
a series of black and white (or reflective) areas that let your software treat the signal as
a digital input. A rotary encoder measures the angle of the motor shaft and is usually

Position encoding.
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absolute (3 bits will let you know which of 8 positions your motor is in). A linear encoder
measures the position of the motor along a straight line and is usually incremental so
the software must keep track of where it is (in reference to a home position).

Figure 6-3. Motor encoder system

Figure 6-3 shows a simple motor system with some PWM control lines going to a motor.
As the motor rotates, the encoder moves back and forth (the dots indicate the me-
chanical black box that includes gears and whatnot). A sensor sees the black and white
areas on the encoder. The sensor connects to a counter on the processor. Initially, the
motor goes through its homing routine. Once there the software can count how many
lines it has on the encoder. Your processor probably has a feature that will do this sort
of counting, check in the Timer/Counter section of your user manual.

PID Control

Controlling the motor is not as simple as telling it to go until you get to a position and
then telling it to stop. By then, the motor has overshot the position. You could tell it
to go back but then you will overshoot again. Unless you are trying to rock a baby, you
don't want to keep going back and forth like that.

The most common way to handle this problem is to use PID control. PID stands for
proportional, integral, and derivative. Each term handles a part of the problem and
together they can tell you how much power to send to the motor (usually in terms of
PWM level). It starts with an error term that is simply the difference in position between
where the motor currently is (process value, PV) and where you want it to be (set
point, SP).
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The proportional term is easy to understand. It is just a constant multiplied by that
position error.

          error = goalPosition – currentPosition;
          PID.proportionalTerm = PID.proportionalConstant * error;
        

So when the motor is far from the goal, your software gives it a lot of juice and when
you are close to the goal, it powers down. Sometimes this is all you need. However,
starting the motor full-on when you are far away from the target will cause it to jerk
which is bad for it. Further, you may still overshoot the target leading to oscillations
around the goal position. Or if your error is small, the proportional term will never give
the motor enough power to actually move so you end up stuck in not quite the right
position (steady state error).

The integral term helps these problems. The integral term adds the error over time:

        PID.integralSum += error; 
        PID.integralTerm = PID.integralConstant * PID.integralSum;
      

Not only is the integral term proportional to the amount of error (as the proportional
term is), it takes into account how long there has been error. After the motor has been
commanded to move, the error has only been around for a short time. But after a few
cycles of the PID control loop, if the motor hasn't gotten close to its destination, the
integral term lends oomph, accelerating toward the goal. However, it is kind of like
momentum. Once the integral term gets going, it tends to cause overshoot, even worse
than the proportional term would alone. However, the controller will find its way back
and instead of constantly oscillating around the set point or stopping with some error,
the integral term will cause the system to settle in the right place.

The derivative term reduces the overshoot caused by the integral term:

PID.derivativeTerm = PID.derivativeConstant * (error –
        previousError);

This makes the controller decrease the output if the error is decreasing. This adds some
friction to balance the proportional and integral terms, usually counteracting the PI
terms as the error term gets smaller.

The output of the PID controller is just the addition of each of the terms. Figure 6-4
shows a reasonably well-tuned interaction between the terms and their PWM output
as the system is commanded to go to position (or temperature 100). Note that with the
integral and derivative terms, the output of the system feeds back into the controller
so this is a feedback system. As such, it can be unstable. Too much proportional control
can make the motor oscillate (or ring). Too much integral control and the motor may
smash itself to bits as it overshoots the position. Too much noise in the error channel
and the derivative term can lead to random results. Feedback systems that get out of
control can do dangerous things.
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Figure 6-4. PID response over time

However, there are many, many engineering problems where a PID controller provides
a good solution. I've used PIDs with motors, heaters and modeling spring systems. This
control method is widely used and well understood (consider it an engineering design
pattern). And you can see from the above code snippets that implementing one in
software is simple.

However, those constants? The ones that describe how much weight each PID term
brings to the output? Figuring those out is a painful process called tuning. There are
some easy guidelines you'll find- start with proportional control until you get it working
pretty well, then add integral until it works better, then add a little derivative to prevent
too much overshoot. Three weeks after the project is supposed to end, you may still be
cursing the person who gave you this advice telling you to just tweak the parameters
until the motor works.

There are some mathematical tools to help you with tuning (e.g. Ziegler-Nichols
method). Despite the mathematical tedium and having to estimate some inputs (the
real-world doesn't match the mathematical ideal), I recommend using something other
than trial and error. These methods often require a formal and deep understanding of
the problem.
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Note that the PID concept is pretty standard but implementations vary. For example,
as the derivative term is sensitive to noise in the error signal, many implementations
will use an average of error over several cycles. This hardens the derivative term against
noise caused insanity but makes it less responsive to the system. There are many dozens
of these little tweaks to ensure better performance and deal with system-specific issues.

At this point, I have given you enough information to be dangerous but
not enough to do a good job. “Further Reading” on page 195 suggests
some books to help you with implementing and tuning a PID controller
(and some other control methodologies).

Displays
Your system output may not only be in the realm of actuators. Some embedded systems
have displays for dealing with those pesky humans. As with sensors, your display may
be analog or digital, as simple as an LED or as complex as an LCD with touchscreen.
The range is huge.

Segmented Displays

We've already spent enough time on individual LEDs in Chapter 4, even making them
dim using PWM control. A seven segment display is probably the next most basic
display that you'll see. Most seven segment displays are ordered as shown in Figure 6-5.

160 | Chapter 6: Communicating with Peripherals



Figure 6-5. Seven segment display

Each LED in the segment can be represented as a bit in a byte (the extra one bit is
sometimes used for the decimal place segment found on some displays). The segments
are accessed in order: abcdefg (or sometimes gfedcba). So if you want to put a 3 on the
display, you need to turn on the LEDs at abcdg and turn off the LEDs at fe. In hex,
using abcedfg, you'll want to write 0x79 to the display to represent the number 3.

The actual implementation here is not that important. The critical idea here is the
decoupling between human readable data on the display and the representation in the
code. Get used to having to map between the display's context and other parts of the
software.

Ok, taking a step back, do you remember the solar powered calculators? The LCD
display with eight digits (each one a seven segment display)? The ones that were amaz-
ing technology in the 1960s but were handed out for free by the 1980s? They also had
at least 17 buttons. However, the processors that ran inside those calculators didn't
have 81 I/O lines (17 (buttons) + 8 (places) * 7 (segments in each character) + 8 (decimal
points)).

As noted in above, you can matrix the button inputs: 17 buttons can use 9 lines (4x5)
and you can get a three more buttons for “free”. The same method can be used to matrix
the display outputs. Using row/column scanning, for 8 characters with decimals (64
segments), we can use an 8x8 matrix so only 16 I/O lines are needed. With buttons,
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the response time depends on the number of columns because you cut time spent
looking at each column into that many slices. With outputs, the time slice is how much
time each segment can spend on. So, if you do an 8x8 LED array, the LEDs will only
be on 1/8 of the time. Most LEDs are so bright that this doesn't matter. With LCD
(such as those found in our solar calculator), the limited amount of on-time can make
segments look washed out and difficult to see, particularly when the power is low.

LCD segments don't run with a constant “on” like LEDs do. While they
can be matrix'd, it is more difficult because need an AC signal. You'll
usually use an LCD controller but if you want to try it (or just understand
it better), check out this ST Microelectronics AN1447 Application Note.

The 8x8 matrix is very convenient because it lines up with our character mapping very
well. We can either power all of one character at one time or we can power all of the
a-segments, then all of the b-segments and so on. Either method works. As long as you
refresh the display fast enough (get through all of the segments faster than 30Hz), the
user will never know.

Pixel displays

However, seven segments per character isn't enough to represent much. You can choose
a fourteen segment display to get decent looking letters for English application (or
sixteen segment display to incorporate Latin letters and Arabic digits). At some point,
you might as well use a dot matrix display and build your digits, characters and graphics
out of dots. Well, dots sound so plebeian, let's call them picture elements. Naw, that
takes too long, let's call them pixels.

Now your mapping between the number 3 and what appears on your display may be
even further apart than 3 and 0x79. Each thing you want to put on the screen needs a
bitmap to describe what bits are on and what bits are off. Anything that goes on the
screen is a glyph whether it comes from a bitmap or whether it is generated by the code
(like a graph).

All of your bitmaps together are called your graphic assets. Graphic assets are usually
split in to fonts and other graphics (pictures, logos, etc). As before, the goal of designing
a display subsystem is to keep images of the data loosely coupled from the data itself.
This gives you much greater flexibility to change screens, give your system a new look
and reuse your display subsystem in a different product.
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Figure 6-6. Graphic subsystem organization

Figure 6-6 shows one way to set up the graphic assets. First, there is a table of data,
usually with a header file that tells you where the logo is or the offset to the animations.
It is important to version the file (and the asset list); if they change without your software
knowing you could display garbage to the screen.

To put the number 3 up on the screen, first you need to know what representation of
3 to display: Is the bitmap going to be small or fill the whole screen? Is it going to be
bold or italicized? Each of these options will lead to a different font set in your assets.
Once you know the font, you'll need to map from the character to the bitmap, usually
by searching through the character map to get an offset into the bitmap glyphs.

Bitmaps can be stored in monochrome (1 bit per pixel) as shown in Figure 6-6. Look
at all the wasted data though, that can be compressed. That may make getting the asset
faster from wherever it is stored (often off chip flash). However, uncompressing the
data becomes one more thing for the processor to do.

One form of compression that may not slow down the processor at all is run length
encoding (RLE). Sections of data that are the same are stored as a single data value and
a count rather than each pixel being replicated. This is great if you've got a lot of the
same color on the screen. For example, you might get a stream of white pixels (W) and
black pixels (B) that look like WWWWBBWWW. This would encode to W4B2W4. If
the data is stored as one bit per pixel (so the whole image is only black and white), that
would give you no savings. However, if the image is one byte per pixel (or two or three
bytes per pixel), RLE provides significant compression without much processor over-
head).

Display subsystems end up pushing a lot of data from one place to another. A mono-
chrome bitmap is fairly small. In the figure, the number 3 glyph will be 8 pixels wide
and 8 pixels wide so it can be represented in 8 bytes. However, it will probably look
terrible with those blocky edges. To make it look better, you'll want to add antialiasing
which softens the edges by putting grayscale pixels in. Figure 6-7 shows a little bit of
smoothing on the number 3 bitmap, it uses five levels so it would need three bits per
pixel.
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Figure 6-7. Antialiasing of a character

With anti-aliasing, the bitmap is no longer monochrome. It could be eight bits per pixel
to describe the antialiasing which means the number 3 glyph takes up 64 bytes, still a
really small amount but you're on a slippery slope. Before your whole A-Z, a-z, 0-9
monochrome font could fit into 500 bytes but now it is almost 4kbytes and that is for
8 pixel high letters. Once you've got a 2.4in LCD display (24 bit color, 240x320 pixels),
each screen can take up to 225kbytes.

Coding a display subsystem often means optimizing your code so the parts that handle
this data throughput don't cause problems with the screen. For example, tearing is
when the screen refreshes showing half of the new image and half of the old image.
Sometimes that is a synchronization issue but often it is matter of setting all of the pixels
to their intended values as quickly as possible.

Note that how you pack the assets into the storage mechanism is important. You will
need to make a trade off between having the assets take up a smaller amount of space
or have a simpler interface for the processor. Another issue might intrude as well: what
if your display has to go into the product enclosure upside-down due to electro-me-
chanical requirements? While it may require more front end processing to put the assets
in a different orientation, it is better than having the processor turn them upside down
and backwards each time the asset is read.

Being an embedded systems specialist does not excuse you from writing
programs to pack data assets. Since you'll be the one using the infor-
mation, you'll find your life is much easier if you control how the graph-
ics are stored.
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Finally, once you have the bitmap ready to send the screen, you'll need to know where
to put it. Figure 6-8 shows the number 3 glyph on the screen.

Figure 6-8. Number 3 on Display

To sum up the steps:

1. Determine what is going on the screen and where.

2. Look in the assets to find the correct font.

3. Find the character in the font.

4. Read the bitmap, possibly uncompressing it.

5. Send it to the display, ideally right after the last refresh.

To put up a logo or other fixed graphic, combine steps 2 and 3 into one: looking up
the image glyph.

Hosts and Other Processors
From your processor's point of view, a host computer is just another peripheral to talk
to. Sure, the host might change your processor's code or instruct it to move the motor
to a different location or ask for the data you've collected. But all of those things are
just digital communications. In fact, if you've been sending bytes to your display or
your motor, it has a processor. And if your sensor is a digital one, it has a processor.
Each processor is the center of its world so, to the digital sensor, your processor is a host.
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Just as each of your peripherals has a documented interface, your system's interface to
its host should be reasonably well documented (even if you control both sides). Putting
a documented interface in place will let the two systems change independently. As for
implementation, the command interpreter in Chapter 3 is a good place to start.

As more of our everyday objects enter the network world, we build up detailed pictures
of the environment. Whether it is a fridge that sends a shopping list to your phone when
you've entered a grocery store or a scattering of small sensors monitoring a forest for
fires, we are building distributed sensor networks. Increasing the intelligence of the sen-
sors makes each one better able to deal with irregularities in its particular location,
making the whole network more robust. Note that the information can return to a host
for integration and processing (i.e. forest fire sensors) or the information can be gen-
erated with each piece contributing it knowledge in a host-less system (i.e. groceries).

The strength of the sensor network is that each element works together to construct
information that is greater as whole. However, that is also their weakness; if the system
cannot communicate, it is much less useful. Further, if enough sensors go offline, the
system can become degraded to such a degree as to be useless.

So Many Ways of Communicating
Whether you are communicating as a host to a peripheral or as a sensor to a host, the
important thing is the clock.

Sometimes the clock is explicit so one side generates it (usually the communication
master). In other communication methods, the clock is implicit, agreed upon by both
sides ahead of time (like knowing the baud rate of your serial device). The clock not
only controls the speed of communication (throughput), it controls the existence of
the interactions. Anytime you need to investigate a new communication method, the
first question to ask is “where does the clock come from?”

OSI Model
The Open Systems Interconnection model (OSI model) is a way to talk about commu-
nication systems as a series of layers. Each layer provides some feature to the one above
it to build up a communication pathway.

This model is far more complex than you'll need for most embedded systems but by
having an idea of how a big complicated, communication pathway works, you'll get
some ideas about how little ones work. Hint: most of them combine (or skip) layers.
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Table 6-1. OSI Model

Layer Function Questions for this layer On a PC's Ethernet

1. Physical Provides electrical and physical speci-
fication

How many wires connect your processor
to a peripheral? At what voltage? At what
speed?

Ethernet cable

2. Data Link Describes how bytes flow over the phys-
ical wires

Do the bytes have parity checking? How
many bits are sent and received in each
frame?

Ethernet (802.xx)

3. Network Gets a variable length of information
(packets) from one place to another

How is each system addressed? How to
break up (and re-form) big blocks of data
into amounts that can go over the com-
munication pathway?

IP

4. Transport Moves blocks of data in a reliable man-
ner, even if those blocks are larger than
the lower levels can handle

How do you count on data being received
even when there is a glitch in wires? How
are errors recovered from?

TCP

5. Session Manages a connection between local
and remote application

How to send this data from here to there? Sockets

6. Presentation Provides structure to the data, possibly
encryption

How is the data organized when it is sent? TLS and SSL

7. Application Takes user interaction with the soft-
ware and formulates a communication
request

What command to send when a button is
pressed?

HTTP

I've put Table 6-1 upside down because the first few layers are the most important for
embedded systems. While you may need to know how the data is sent to a flash chip
or a received from a digital sensor, you won't get many options for implementing the
presentation layer; that information will be specified in the datasheet.

Here are some mnemonics for learning the OSI layers, from the top
down:

• All People Seem To Need Data Processing

• All Penguins Stand Too Near Deep Pools

Or from the bottom up:

• People Design Networks To Send Packets Accurately

• Please Do Not Touch Steve's Pet Alligator

For an embedded system, most of your attention will be spent on the data link layer
and how to move bytes from one place to another.
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Ethernet and WiFi
Because it is so complex, using Ethernet usually implies an operating system. Since this
book doesn't make any assumptions about you having an embedded OS, I'm not going
to spend many words on this. However, as systems become more intelligent, Ethernet
becomes more important. Due to the standard infrastructure around Ethernet, it is
easily integrated into a large system (such as those distributed sensor networks). Finally,
while Ethernet is the data link layer, it implies that there will be a network and transport
layer involved so your software will interface to TCP or UDP. (TCP provides a reliable
communication path so your data always gets there but it is more complicated than
UDP.)

Communication reliability isn't that important if you are communicating with an LCD
controller that shares board space with your processor. However, if your system is in
the middle of the ocean monitoring for tsunamis, you may want something more reli-
able than serial communication.

If you are using a wireless network, you definitely want something reasonably reliable.
Radio networks are hard. I mean, they are really hard. Murphy (of Murphy's Law) loves
radio networks.

One of the most difficult parts of dealing with a radio network is their
dependence on the environment. I know of one system that worked well
on its install in November but gradually stopped working as spring
came. Tree leaves absorb 2.4GHz radio waves.

There are amazing and fascinating applications of networked systems. However, when
faced with the cost of a good radio, most companies flinch. At that point, someone will
say, “let's just implement our own, the components aren't that expensive.” I know you
want to agree as your product is amazing and the radio cost is a big hurdle to make it
truly compelling in the market. I've been there, thinking “how hard could it be?” Take
how hard you think it could possibly be and multiply by at least one order of magnitude.

Don't reinvent this wheel, as expensive as it seems. Spend the time making your system
work. Once you've gotten that done, you can cost-reduce the product to implement
your own Ethernet controller or wireless network. In the meantime, buy the radio off
the shelf.

Serial
At its broadest definition, serial communication is the process of sending data one bit
at a time over a communication pathway. Under this definition even Ethernet is a serial
form of communication. Let's narrow it down a bit and say a serial port is something
that can be implemented with a universal synchronous/asynchronous receiver/trans-
mitter (USART). That probably doesn't help you much, does it? Let me defines some
terms and then we'll look at the most common serial communication methods.
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There are UARTs (you-arts) which implement things like RS-232, the default protocol
when someone wants to hook a serial cable to your computer.

Even high-end Internet routers often have a serial port for configuration
or debugging. Not only is it cheap to implement, a serial port is like a
torx screwdriver; most people don't know what they are. Using one is
akin to admitting you think you know what you are doing.

UART is missing the S in USART (use-art). The S is for synchronous. When a serial
port is synchronous, both ends have to send bytes at the same time, always trading data
even when one of them doesn't have anything important to say. SPI (Serial Peripheral
Interface) is a popular bus that is synchronous.

Another important factor when considering serial ports is whether you have two wires
to communicate upon (transmit and receive) or only one wire (which switches direction
depending on whose turn it is to talk). Having two wires is called full duplex; sharing
a single wire is called half duplex. 1-wire bus and I2C are two of the most popular half
duplex protocols. Of course, half duplex serial ports are a little more complicated to
debug because you can't be sure on your oscilloscope (or logic analyzer) which chip is
the source of the bytes.

When encountering a new peripheral bus, the things to understand include:

• How is the clock generated? Is it implicit (all parties agree upon it ahead of time)
or explicit? If it is explicit, does the clock generator (usually the bus master) have
any other special responsibilities?

• How many hardware lines does it need?

• Synchronous or asynchronous?

• Full or half duplex?

• Is it point-to-point or is there addressing? Is it in the protocol or done via chip select?

• What is the maximum throughput of the system?

• How far can the signals travel?

The real goal here is to figure out how long it will take you to implement a driver using
the communication method in question. The easiest driver to write is one you've already
got working on another project.

Many processors come with example code, particularly for their com-
munication drivers. Sometimes this code is excellent, sometimes it is
only an example to get it running (but not working robustly). Be sure
to review this code if you incorporate it into your project.
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Serial Peripheral Bus Profiles
Moving on from the higher level terminology and general questions, let's look at how
some popular buses behave. This is still just an introduction. In the end, you'll need to
look at your datasheet to see what the peripheral needs and your processor manual to
see how to provide it.

Timing diagrams are often very important to getting a peripheral working. As you bring
up a driver for the first time, expect to spend some time setting an oscope up and trying
to recreate those diagrams (in order to debug your driver).

RS-232 and TTL

It is funny how the word serial is overloaded to mean many protocols. When we come
to talk about the most common serial interface (the one between your system and your
computer), it has several names. I already mentioned UART with is the part of your
processor that implements this interface. However, it sends out TTL level serial signals
(0-~3V) and another chip converts them to RS-232 level signals +/- 12V.

Figure 6-9. Serial connection from the embedded system to a PC

Figure 6-11 shows a possible debug pathway from your computer to your processor.
While RS-232 defines eight signals (and ground), transmit (TX) and receive (RX) are
the most important signals. You can interface your embedded system with your com-
puter with those alone. Note that both systems have a TX and RX so you'll need to
swap them to connect the TXs to RXs. This may be done in your cable (using a null
modem cable) or on your board (in which case you need a standard or straight through
serial cable).

170 | Chapter 6: Communicating with Peripherals



Note that there are serial USB to TTL cables available from Sparkfun
which can be used to take out the intermediate steps.

If you are hooking up to a cellular data modem or serial to Ethernet converter, you may
also need some of the other RS-232 lines to indicate the modem is ready to receive data
(RTS/CTS handshaking). At this point, even though the clock is implicit, you'll need
to designate a bus master because the signals are not symmetric. In RS-232, the bus
master is the DTE (data terminal equipment) and the slave is DCE (data communication
equipment). Yes, pretty much every protocol has different names for similar things.

This form of serial resides at the physical and data link layers of the OSI model. There
is no built in addressing scheme so it is only between two parties. Both parties must
agree upon the baud rate (bits per second), parity, number of start and stop bits and
the flow control (which can be hardware using RTS/CTS, software using Xon/Xoff or
no flow control). The baud rates are usually between 2400 and 115200 (though it can
go as high as 921600). Certain baud rates are very popular: 9600, 19200, 38400 and
115200. Because the data link layer require extra bits per byte sent (those start, stop
and parity bits), most serial connections have a throughput in bytes about equal to their
baud rate divided by ten. So if you've got a baud rate of 19200, your system is getting
to get about 1920 bytes per second. Compare this with standard 100Mbit Ethernet
(though 1 Gbit is pretty common too) which gives a throughput of around 11Mbytes
per second, depending on the protocol. Serial is slow.

The relatively high voltage of RS-232 (12V!) means it can travel pretty far before the
signals deteriorate, up to 50 feet (15 meters) with a normal serial (or null modem) cable.
A special cable (low capacitance) can increase the distance by about a factor of 20.

RS-232 has been around seemingly forever and is continues to be widely used. Even
though its demise is often heralded as new protocols take its place (Ethernet, USB, etc.),
RS-232 keeps coming back because it is easy to implement in software and cheap to
implement in hardware.

SPI

RS-232 works pretty well. But it has some deficiencies: about 20% of the bitstream is
overhead; both sides have to know the set up (e.g. baud rate, parity); the RX/TX cross-
ing thing is pain because it depends on your point of view which is wire is RX (or TX);
etc.

So there is SPI (pronounced spy or S-P-I). There are four wires that connect your pro-
cessor to a SPI peripheral:

Master-In Slave-Out (MISO) also known as Slave Data Out (SDO)
Receive for the master
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Master-Out Slave-In (MOSI), sometimes known as Slave Data In (SDI)
Transmit for the master

Clock (CLK or SCLK)
Generated by the master, it is the clock for both sides of communication

Chip Select (CS) or Slave Select (SS)
Generated by the master and one line per peripheral, it is usually active low

As noted above, SPI is a synchronous protocol so the master and slave both have to
send data when the clock is going (0xFF is the traditional byte to send when you just
want to clock out data from the slave). Since the master provides the clock, the SPI
doesn't require that either the processor or the peripheral have a precision oscillator.

The clock speed can be slow (tens of kHz) or fast (up to 100MHz). The clock speed is
the baud rate and there isn't any overhead so a clock of 8MHz leads to 1Mbytes/second,
much faster than RS-232 and comparable to Ethernet at high clock speeds. Finally, the
clock speed can be whatever your processor can clock and the particular peripheral can
receive. There is no need to try to run at precisely 8MHz, it is acceptable to run at
8.1234MHz or 7.9876MHz. The flip side of running a clock so fast is that it doesn't
travel very far, SPI signals don't usually leave the board (in a cable it travels less than a
meter before deteriorating).

The protocol defines a chip select so multiple peripheral can often share a single SPI
bus as long as there is one CS per peripheral.

Check your peripheral datasheets, not all peripheral play nicely on a
shared bus.

A SPI driver is even easier to implement than RS-232 driver. The only tricky part is to
figure out whether you want the data on the line to be valid when the clock edge rises
or falls (clock polarity). Your peripheral datasheet will tell you what it wants and the
processor manual will give you some registers to configure it.

The SPI interface is so easy that it is often implemented as a bit-bang interface. Some-
times your processor doesn't have the hardware interface to implement SPI. So you take
four unused GPIO lines and make your own SPI interface. A timer becomes the clock
and at each timer tick, SCK toggles and either an output bit is written to the MOSI line
or an input bit is read from the MISO line.

You can create a bit-bang driver for any of the serial interfaces but it
consumes far more processing power than a built in processor interface.
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I2C

I2C stands for inter-integrated circuit and is pronounced eye-squared-see or eye-two-
see. Like SPI, the bus has a master which provides the clock and starts the interaction.
However, unlike SPI, the I2C bus master can change, allowing a peripheral to control
the interaction. If SPI is a simplification of RS-232, I2C is what happens when folks
start wondering how many wires they really need to connect a whole bunch of things
together. Apparently, you need three connections: SCL provides the clock, SDA which
provides the data (and goes both ways, making this a half-duplex protocol) and ground.

However, the simplicity of hardware design is paid for in software complexity. Not
only that, because this protocol allows multiple peripherals (and multiple masters), it
specifies an address scheme moving it beyond OSI layers 1 and 2 to layer 3 (network).
On the other hand, I2C is fairly widely used so you should be able to find some example
code to help you implement your driver.

I2C drivers invariably include a state machine to deal with the complexity of switching
the direction of the bus between the master transmitting and the slave transmitting.
The master starts communication by sending a 7-bit address and whether it wants to
read from or write to the slave. The slave with that address then sends an acknowl-
edgement (ACK). Next, the master sends a command to (or reads from) the slave and
the interaction proceeds. When the communication is complete, the master sends a
stop bit.

The number of components attached to the bus is limited by the address space (and by
the capacitance of the bus). The 7-bit addresses are assigned by NXP. Many compo-
nents let you set the last few bits of the address using pull-ups so you can put several
of the same part on the bus. Alternatively, some components have slightly different part
numbers that result in different I2C addresses).

Common I²C bus speeds are the 100 kbit/s (standard mode) and 10 kbit/s (low-speed
mode). However, like SPI, since the master sends the clock, these frequencies don't
need to be precise. Some peripherals implement faster speeds: 400 kbits/s, 1 Mbit/s
and even 3.4Mbit/s.

While there is overhead built into the I2C bus, if you are moving large amounts of data
around (i.e. reading from an ADC or an EEPROM), the bus arbitration and start/stop
bits become a negligible percentage of the traffic. So with standard mode you can see
12.5 kbytes/s throughput on the I2C bus.

I2C isn't generally used to communicate to distant peripherals but it can go a few meters
before the cable degrades the signal too much. As the protocol needs only two wires to
go to many peripherals, your cable can be only four wires in total (the peripherals
usually also need power and ground).
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I2C is sometimes called TWI for two wire interface.

1-Wire

I2C isn't as few wires as possible; there is still the well-named 1-wire bus. It provides
low-speed data communication and power over a single wire. (Well, you need ground
too.) It is similar in concept to I2C (master, slave, arbitration, a software driver with a
state machine) but it has an implicit clock of 100kbits/s. While this is a fairly low data
rate, it can be used for longer ranges up to 10m (100m with special cables).

Like I2C, the bus can be used with a wide variety of peripherals including memory,
sensors, ADCs and DACs. However, the most common 1-wire implementations are in
authentication chips. These are used to authenticate the origin of pieces of the system
which can be replaced. For example, if you are making a printer cartridge (or any form
of consumable) and you want to deter competitors from making a drop-in replacement,
a 1-wire secure authentication chip will force your consumable to send the correct
password to your firmware before it can be used.

USB

All of the other serial protocols mentioned here can be bit-banged if you don't have the
hardware (and you have enough processing power). I don't know that I'd try that with
USB, it is pretty complicated. It is an asynchronous, full duplex system, with an implicit
clock and up to 127 devices. And like most of the other protocols discussed here, it is
asymmetric (it has a master that controls communication).

USB not only provides communication, it also provides power (5V, 500-900mA de-
pending on version). It is fast (1.5, 12, 480, or 4000 Mbit/s depending on version). The
cable can be of medium length (5 meters) and still maintain signal integrity.

Like Ethernet, the USB interaction is complicated enough to usually warrant an oper-
ating system (or a USB stack that goes far beyond a simple driver). Further, USB ap-
plications usually implement all or most of the OSI layers.

Miscellaneous Other Protocols

By now, I hope you are seeing the commonality of the different serial protocols. There
is no need to memorize what is what. When you get a datasheet for a peripheral, it will
tell you what it needs. And your processor will tell you how to implement that (or if it
doesn't, Wikipedia will probably give you pseudo code for a bit-bang driver). The goal
here is to think about what makes a protocol easy or hard to implement. Some take
aways:
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• The more OSI layers you need, the more complicated it is. Many protocols don't
fit neatly in the OSI model but it is still useful to know the framework.

• Point-to-point is easier than a network which requires addresses.

• Half duplex is harder than full duplex because you have to switch the wire around

• Synchronous is easier than asynchronous because you know exactly when you'll
get a byte.

• Having a master on the bus (asymmetric) is generally easier than trying to figure
out who gets to talk when no one has control.

• Explicit clocks are easier than implicit.

So, say you need to implement a contact interface to a smart card. Smart cards use
ISO-7816 which is a half-duplex, point-to-point, asymmetric protocol where the master
provides the clock (in the 1Mhz-5Mhz range). How hard will it be to implement? With
that information, it looks more complex than SPI but simpler than I2C. Add a little to
your planning estimate because it is relatively rate and you probably won't be able to
find good example code. Now, what if I tell you that it implements four or more of the
OSI layers, though somewhat simplified? That should raise your implementation esti-
mation by a factor of three (at least).

How about something more industrial like RS-485? Designed to travel long distances,
it can be full or half duplex. When it is full-duplex, it is asynchronous. The clock is
implicit (100kHz – 10Mhz) and only the OSI physical and data link layers are specified.
There is usually bus master but that isn't required. With only that information, it sounds
like a cross between RS-232 and I2C.

If you can find the commonalities between different protocols, then, once you've writ-
ten something similar, you'll know what to expect when doing the implementation of
something new.

ASCII Characters
If your test code for a new serial driver sends “Hello” as its first word, you can't expect
to see an electronic hand waving on the oscilloscope during debugging. The letters get
translated into numbers, usually 8-bit numbers according to the ASCII character en-
coding scheme.

Letter; H e l l o

ASCII: 0x48 0x65 0x6C 0x6C 0x6F

So when you see “Hello” starting on your transmit line, it will start with ‘H' which is
0x48 which look like: 01001000. In Figure 6-10, I've shown how to make it a little easier
to know where you are in the data stream by starting the transmission high to show the
falling edge of the data. You might be able to see the start of the signal by triggering on
chip select (if your protocol has one).

So Many Ways of Communicating | 175



Figure 6-10. Compare ASCII Hello with UU3

Or you can select some letters that will be easier to pick out from on the oscope. I like
“UU3”. Each ‘U' is 0x55 which means every other bit is set so it looks like a clock signal.
And ‘3' is serendipitously 0x33: 00110011 so it looks like a clock at half the speed.

Learning the ASCII chart is a lot like learning Morse code. It is very handy if you use it
but if you are just learning for fun, don't expect long term retention. On the other hand,
if you end up writing about one serial driver a year, you may start remembering the
highlights. The ASCII chart is set up in a logical way so it is easier to remember only
the important stuff:

'0' -> 0x30 
'A' -> 0x41 
'a' -> 0x61

The numbers and letters increment from those starting points (hence 0x33). You won't
know where the punctuation and the control characters are but that summarizes the
table well enough to talk to another embedded engineer in case you get trapped some-
where with binary communication.

While ASCII is the most prevalent encoding scheme in embedded
systems, it can't fit characters from other languages into 8-bit words.
Unicode uses 16 bits (sometimes more). If your product will be in-
ternationalized, figure out if Unicode is the right choice for you.

Parallel
Parallel is the opposite of serial. Where in serial, you send all of the bits over one line
(maybe one line for transmit and one for receive if you have full duplex), in a parallel
bus, you have one line per bit. It can take up many I/O lines. That tends to make a chip
more expensive (I/O lines take up space in the silicon, the size of the silicon is propor-
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tional to the cost to make the chip). Figure 6-11 shows a comparison in the number of
lines needed for some of the most popular buses and common peripherals.

Figure 6-11. Comparing peripheral communication methods

By putting eight or sixteen bits on the bus at once, you can communicate very quickly.
Almost always the data bits of the parallel bus are put together on a single bank of I/O
pins. This let you set all of the bits by writing the data byte to the I/O register. Instead
of setting a single bit as shown in Chapter 4:

LPC_GPIO1->DATA |= (1<<2); // IO1_2 high

You can modify several I/O lines at once:

LPC_GPIO1->DATA |= data & 0xFF;   // put 8 bits of data on the parallel bus: IO1_0 to IO_7

This interface tends to be reserved for things that have high data throughput require-
ments: LCDs and external memory. As noted earlier in this chapter, a cell phone sized
LCD (240x320 pixel display) needs 225kbytes per screen (if you update the whole
screen).

In a serial bus that would mean 1.8Mbits per screen (225k*8 bits/byte). The update
rate is at least 30Hz so you'd need to move 54Mbits/s, faster than SPI could manage.
However with an 8-bit wide parallel bus, the bit rate per line goes down to 6.75Mbits.
The data gets spread over the whole bus; the more lines in parallel, the higher the
throughput.

Parallel buses tend to be half duplex with control lines to indicate which direction the
data is going (read and write) and whether the bus is connected to a chip (chip select).
The control lines tend to also be the clocks for the system so a write interaction would
look like:
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1. Select the chip.

2. De-assert the write control line.

3. Set the parallel bus to the data intended.

4. Assert the write control line.

5. Go to 2 until all data has been transferred.

Check the timing of your peripheral datasheet to figure out if you need some delay
between them. All in all, implementing a parallel bus is pretty easy, on the order of a
SPI driver though debugging is a bit harder because there are so many lines to look at.

Putting Peripherals and Communication Together
So we've seen the data generators and the data consumers. And we've seen how to send
and receive data. However, there are some pieces missing between these two. Under-
standing how to move the data around in your software is critical to making a great
system. Let's start with the big picture of the handling the data at a system level and
then work down into the mechanics.

Data Handling
In Chapter 5, we looked at systems that were event driven: things happen because
sensors were activated, causing events which caused changes the state of the system.
However, not all embedded systems can (or should) be set up as event loops and state
machines.

There is a class of problems where the goal is to get data, process it, do something with
the results and repeat. In such data driven systems, there are no events, just an ever
increasing mountain of data for your software to process. Ideally, the system can wade
through the data just a tiny bit faster than it is generated. Some examples of test driven
systems:

• An airplane's black box continuously records audio and telemetry.

• A gunshot location sensor listens to its environment. Upon identifying an impulsive
sound, it generates an event to send to a host.

• A reconnaissance satellite records image data, compresses it, and (when in range
of a link point) sends it to Earth.

• An MP3 player reads data from its audio store, uncompresses it and sends bits out
a DAC to generate a signal that sounds like music to your ears.

• A robot on an assembly line, shifting widgets from one conveyor belt to another.

A data driven system can be understood by looking at the flow of data. The rate of the
data and how quickly it needs to be processed are the primary features of the system.
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Reboots and errors can cause the system to fall behind. This is one type of system where
failing gracefully is important. If the system had an error that caused it to fall behind,
should it skip some of the data and catch up? Or should it do some sort of reduced
processing until the system returns to normal? What are the consequences of missing
data?

Happily, the implementing a data driven system is pretty straightforward because the
processing on the data is repetitive. Consider the analog to digital system described in
Figure 6-2 where digital data comes from the ADC, gets attenuated and goes out the
DAC. The system can usually be divided into a producer of data (the ADC) and a
consumer of data (the DAC). These must remain in zen-like balance. As long as the
processor can keep up with the ADC by running the algorithm and sending the data to
the DAC, the system can run forever.

Most systems have some elements of an event driven system and a data driven system.
As you consider your system, try to figure out what aspects belong to each. This will
unravel some of the complexity of your software by allowing you to implement them
separately.

Circular Buffers

The circular buffer is a key implementation tactic among data driven systems. Unlike
stacks mentioned in Chapter 5 where the last datum in is the first one out (LIFO),
circular buffers are first in, first out (FIFO).

A producer puts data in the circular buffer at some rate. The consumer takes it out of
the buffer, at the same average rate. However, the consumer can take it out in chunks
while the producer puts it in dribbles. This lets the processor do other things while the
data accumulates to the size needed for the algorithm. (Or it could go the other way,
with the producer putting a large chunk of data into the circular buffer to be read out
at a steady rate.)

A circular buffer needs to keep track of a chunk of memory, its length, where to put
the next element that comes in (write or start) and where to get the next element
(read or end). See Figure 6-12. Note that understanding a circular buffer is easier when
the read pointer is before the write pointer. This is true for everyone; most of the com-
mon circular buffer bugs happen when the read and write pointers are crossed even
though the software will spend half of its existence like that.

When the buffer is empty, the read pointer is equal to the write pointer. This is easy
enough to check. However, the problem is that when the buffer is full, the read pointer
is also equal to the write pointer.
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Figure 6-12. Example of pointers in a circular buffer

A common work around is to call the buffer full when the write pointer is one away
from the read pointer. This is easy to understand and implement though it wastes an
element's worth of memory. Another possible solution is to add a variable to keep track
of the length by having an enqueue function increment the length and a dequeue func-
tion decrement it. No you've traded a variable for a position in your circular buffer.
Depending on the size of the elements in the buffer, that may be worthwhile.

Usually, one end of the circular buffer is an interrupt (either the producer or the con-
sumer) and the other end is usually not. We saw in Chapter 5 that all sorts of interesting
things occur when you have interrupt code and non-interrupt code trying to modify
the same variable. If you use the blank-element to know when your buffer is full, you
can isolate the producer's variables from the consumer's, making the circular buffer
interrupt safe as long at the read and write pointers update atomically. (Otherwise a
request for the length of available data will give an invalid response.) However, since
the pointers wrap around when they get to the end of the buffer, an atomic operation
may seem unlikely.

Most common implementations in embedded systems constrain the circular buffer
length to be a power of two to avoid this issue. So let's start with an implementation
using a structure like this:

struct sCircularBuffer {
  tElement *buf;    // block of memory
  uint16_t size;    // must be a power of two
  uint16_t read;    // holds current read position: 0 to (size-1) 
  uint16_t write;   // holds current write position: 0 to (size-1)
};

In the initialization function, we'll set the buffer pointer to a block of memory (one that
holds a power-of-two number of elements). We will also need to set the size to the
length of memory and the read and write offsets to zero. From there, we only need to
implement a few other functions. The first is probably the most difficult to follow. It
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does a wrapped subtraction to determine the length of the data available in the circular
buffer:

uint16_t CBLengthData(struct sCircularBuffer *cb) 
{
  /*        **********
     |-----|----------|-------|
          write     read
  */

  int32_t length = cb->write - cb->read;
  if (length > 0) return length;
  /*
     bbbbbb           aaaaaaaa  
     |-----|----------|-------|
         read       write
  */
  return (cb->size – cb->write) +    /* aaaa */
            (cb->read);              /* bbbbb */
}

Actually, that doesn't use the constraint of the buffer size being a power of two. A more
efficient implementation looks like:

uint16_t CBLengthData(struct sCircularBuffer *cb) 
{
   return ((cb->write – cb->read) & (cb->size - 1));
}

Even though the read and write variables are unsigned, the length be correct thanks to
that bitwise AND. “Representing Signed Numbers” on page 181 explains why.

Representing Signed Numbers
You know about unsigned binary numbers (see “An Introduction to Binary and Hex-
adecimal” on page 76 for a refresher). “How many bits in that number?” on page 101
showed the highest number you could fit in an 8-bit or 16-bit variable, where signed
numbers were always half as much as unsigned numbers: the sign takes up a bit. There
are several ways to encode the sign in one bit, consider how we do it in decimal with a
sign to the left of the value. One way to do it in binary is to have the sign be the leftmost
bit (most significant bit) while the other bits encode the number:

snnn nnnn = <1-bit sign> <7-bit number>
0000 0000 = +0
0000 0001 = +1
…
0111 1111 = +127
1000 0000 = -0
1000 0001 = -1
1111 1111 = -127

Note that there is a 0 and -0. Many encodings have that. It is a little odd and a little
inefficient.
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However, that sign and value encoding isn't how your computer normally stores num-
bers because there is a way to make processing faster using a different encoding. The
ingenious method is called two's complement. In this representation, the left most bit
still holds the sign of the number. And a positive number is encoded just as you'd expect.
However, a negative is encoded by inverting all the bits and then adding one to the
result:

snnn nnnn = <1-bit sign> <7-bit number>
0000 0000 = 0
0000 0001 = +1
…
0111 1111 = +127
1000 0000 = -128
1000 0001 = -127
…
1111 1110 = -2
1111 1111 = -1

I find the “invert and add one” instructions difficult to remember. However, the neat
part of two's complement is that when you add a number and its opposite in sign, the
numbers obliterate each other:

  0000 0001 = 1
  1111 1111 = -1
  --------------
1 0000 0000 = 0 (and a carry bit)

Being able to always add numbers (and not perform a different operation for subtrac-
tion) makes this number encoding very powerful.

Remember that -1 is equivalent to the highest unsigned value. If you write code:

uint8_t value = -1; // set to highest value this unsigned type can hold

Your value will be 255 (0xFF). To figure out other unsigned numbers, subtract normally
from -1:

-1 = 0xFF = 1111 1111
-2 = 0xFE = 1111 1110
-3 = 0xFD = 1111 1101
-4 = 0xFC = 1111 1100
…

Let's see how this encoding works on the modulo math from this chapter. For example,
here are the step to do the wrapped subtraction of cb->write (5), cb->read (6,) and cb-
>size (8):

  (cb->write – cb->read) & (cb->size - 1)
= (    5     –     6   ) & (    8    - 1) 
= (          -1        ) & (      7     )
= (      1111 1111     ) & (  0000 0111 )
=  0000 0111 = 7

The power-of-two length makes the bitwise AND eliminate the sign information, leav-
ing us with the correct result.

182 | Chapter 6: Communicating with Peripherals



An empty buffer would return a length of zero. A full buffer would have a length of
(cb->size-1). Keeping that in mind, writing the enqueue function is pretty simple:

enum eError CBWrite(struct sCircularBuffer *cb, tElement data)
{
  if (CBLengthData(cb) == (cb->size-1)) { return eErrorBufferFull;}
  cb->buf[cb->write] = data;
  cb->write = (cb->write + 1) & (cb->size - 1); // must be atomic  
}

The modification of the write variable in the last line of code needs to be a single in-
struction. Well, only setting to the write variable need to be atomic; the preparation
((write+1)&(size-1)) can be multiple instructions. These variables are declared as
uint16_t; if this code runs on a 16-bit processor, the setting of the write variable will
be atomic (but for an 8-bit processor, it won't be; in a 32-bit processor, usually the
uint16_t write instruction is a single operation but not always).

Also note that the circular buffer rejects data that would overflow the buffer. This goes
back to the question of how you want your system to fail. Do you want to reject new
data as this code does? Or do you want to drop some old data to make room for the
new data? What is your strategy for falling behind? I'll stick with the error for now but
you do have options to consider.

Taking things out of the buffer is similar but deals only with the read offset:

enum eError CBRead(struct sCircularBuffer *cb, tElement *data)
{
  if (CBLengthData(cb) == 0) { return eErrorBufferEmpty;}
  *data = cb->buf[cb->read];
  cb->read = (cb->read + 1) & ( cb->size - 1);  
}

If you don't constrain the buffer size to a power of two, you need to use
modulo arithmetic to wrap the pointers. Modulo arithmetic (like divi-
sion) is a relatively slow operation, not the sort of thing you want to do
in an interrupt. Chapter 9 talks more about what forms of math are fast
and slow on an embedded processor.

Note that the data element is copied out of the buffer to another location. In general,
copying memory is not a good use of your embedded system's limited processing cycles
(the act of copying) or limited memory (two copies of the same information). Why
don't you just leave it where it is?

You can add another pointer to your circular buffer to indicate when data is free for
use by the write pointer. However, this is where buffers start to get complicated. This
is also where you might want to pull out a paper and pencil or get to a white board.
For many circular buffer problems, the solution is far easier to see when you can draw
out the options (see Figure 6-13).

Putting Peripherals and Communication Together | 183



Figure 6-13. Circular buffer with multiple pointers

Once you get it straight in your head the code will be pretty simple. First, add a free
variable to the structure (initialize it to zero). Next you'll probably need to know the
lengths of the different sections of data:

How much is free and ready to be written
Wrapped subtract of write from free

How much data can be read
Wrapped subtract of read from write

How much data is currently checked out for reading
Wrapped subtract of free from read

Handling the free pointer is straightforward. When the code is done with the element
it took, simply free it back to the circular buffer for the write pointer to use:

enum eError CBFree(struct sCircularBuffer *cb)
{
  if (CBLengthReadData(cb) == 0) { return eErrorBufferEmpty;}
  cb->free = (cb->free + 1) & (cb->size-1);  
}

Note that element wasn't passed in because you have to free them in order.

You may want to do more than read parts of the buffer. Many data processing steps
lend themselves to in-place modification. Once you get the hang of handling multiple
pointers into the circular buffer, you may want to keep using them to avoid copies.
Such streamlining will make your system faster.
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Figure 6-14 shows the example from the analog sensors section. The analog data is
sampled by the ADC. The digital data is put into a circular buffer (write) at a constant
rate. The data may be obtained from the buffer at a different rate because the processing
is done in chunks (you do something to several samples at once) or because the pro-
cessor does something else while the data queues up. The processing module reads and
modifies the data. It could put the data in another circular buffer for output to the DAC
or it could return it to the same circular buffer (or modify it in place). Once the DAC
outputs the processed data, the circular buffer element is free to be used again.

Figure 6-14. ADC to DAC data driven system with multiple pointers into a single circular buffer

To implement a system like that, you'd need to add one more pointer to the system
called processed. As the pointers move independently of on another, adding another is
fairly straightforward. The code is nearly the same as we added for CBRead or CBWrite.
Don't forget to add a new length function(s) too.

Hardware FIFOs

You don't always have to implement a circular buffer. Sometimes the hardware will do
it for you with a FIFO buffer.

Using a FIFO is pretty simple. To send data, write to the transmit holding register
(THR). Writing to this address sends data to the transmit FIFO. The data will get sent
when it reaches the end of the FIFO queue and the transmitter is available. Unlike the
circular buffer, there is no dealing with pointers, you write to the THR to fill the FIFO
and the data eventually reaches the pins. While the peripheral is streaming out the data
stored its FIFO, the processor can do other things.

It isn't just transmit, you usually get both transmit and receive FIFOs. To get data from
the receive FIFO, check to make sure something is available (using a status register)
and then read the receive buffer register (RBR) to get the oldest data in the FIFO.
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The send and receive registers (THR and RBR) can be the same register,
changing roles depending on whether you write to it or read from it.

Processor FIFOs use a set of flags to signal the software. The status flags generally
include: full, empty, half full, half empty. (If you are thinking that the FIFO has opti-
mist/pessimist issues, usually a receive buffer signals half-full while a transmit buffer
signals half-empty.) These levels can be used to interrupt the processor.

Some processors will let you set specific levels at which to interrupt. For maximum
throughput, determine how long it will take your processor to get to the interrupt
(latency) and how much data can be sent in that amount of time. For example, suppose
you want to keep a steady stream of data flowing on the SPI bus. If you are running SPI
at 10MHz and it takes you a maximum of 3 microseconds to respond to an interrupt,
you need to get an interrupt when the FIFO has 4 bytes remaining (10MHz clock ->
1.25 Mbytes/s -> 0.8 us/byte, 3 microsecond latency / 0.8 us/byte -> 3.75 bytes).

A transmit interrupt usually fills the FIFO with available data. A receive FIFO interrupt
flushes all of the data, putting it where the software can use it (often in a circular buffer).
The goal is to balance the trigger levels so that you maintain a constant stream of data
with the fewest number of interrupts.

Your processor manual will describe how to configure your FIFOs in more detail. FIFOs
are usually 8 or 16 bytes deep. But what if your FIFO depth wasn't so limited? What if
your FIFO was more like your circular buffer, using as much RAM as you need?

DMA

A processor that supports DMA (Direct Memory Access) can pass far more data than
one that implements only a FIFO. To use DMA, you give the processor a pointer and
a number of bytes to read. When receiving, the processor puts data from the peripheral
until it reaches the byte count at which point it interrupts the software. Similarly, when
transmitting, the processor moves data from the buffer to the peripheral, interrupting
when the count is complete.

DMA is a lot like having another thread do the data handling for you. The configuration
is relatively straightforward, look in your manual for the DMA registers: transmit
pointer register (the buffer to write to), transmit count, receive pointer register and
receive count. If your data comes in chunks (instead of a constant stream), you can use
a DMA controller with one channel. If your data is constant stream, you may need to
copy the data from the DMA controller to another location so your software has time
to work with it.

To avoid the copy (which, as you recall, is an inefficient use of your processing cycles
and RAM resources), many DMA implementations can alternate between two buffers.
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This allows the software to use one buffer while the processor transfers peripheral data
into (or out of) the other. This two buffer back and forth is called a ping-pong buffer.

DMA is used with peripherals that have very high throughput such as disk drive con-
trollers and network cards. It is also used to in multi-core processors to communicate
between cores. If you know how many bytes you'll be receiving (or you are transmitting
a block of data and not just a dribble), DMA is a great way to reduce processor overhead,
making your processor seem faster than it is.

Comparison of Buffering Schemes

How much does good data handling really matter? Well, let's compare how much pro-
cessor time would be needed to implement an SPI interface, running at 1Mhz with a
byte wide interface.

If your processor didn't support a SPI peripheral at all, you can implement a bus master
via bit-banging. Set up a timer to interrupt at twice the clock speed (2MHz). On the
every other interrupt, put the clock line down and set the outgoing data line (MOSI)
value of the next bit in the transmit data byte (and shift the data byte). On the alternate
interrupts, toggle the clock line up and read data on the incoming data line (MISO),
setting the next bit in the receive data byte, shifting it to the next place. Every eight bits,
you'll need to start a new byte. Overall, you don't have to do all that much for each
interrupt, but you have a lot of interrupts and which means tons of context switching.

The next fastest implementation would be a hardware supported interface. When your
processor datasheet says something like:

One Master/Slave Serial Peripheral Interface (SPI) – 8- to 16-bit Programmable Data
Length, Four External Peripheral Chip Selects

Then you've got built in SPI. You can configure it to run at 1MHz (sometimes not
precisely as this will depend on your processor clock and how you can use dividers,
but usually you can get close enough). Then you'll need to configure it to interrupt
when a byte has been exchanged, every 125 kHz. In that interrupt, you'll need to get
the byte from the receive register and put it somewhere (e.g. a circular buffer). You'll
also need to put the next byte in the transmit register. Not only is the interrupt shorter
than the bit-bang version, there are many fewer of them.

Of course, if your FIFO is 16 bytes deep, you only have to interrupt at 7.8kHz. Well,
you could if you interrupt when the FIFO is completely full. But that means your com-
munication will fall behind if your latency is greater than 128us (1/7.8kHz). To give
you more latitude, interrupt when it is half-full. That will still only give you an interrupt
rate of 15.6kHz. At every interrupt, you need to move the bytes in the receive FIFO
into another piece of RAM and move the transmit bytes into that FIFO.

Now for DMA. Well, if your goal is throughput, divide your RAM into a small piece
for local variables and a large piece for a ping-pong buffer. If you have 32kbyte of RAM,
you could save 2kbyte for variables and have ping-pong buffers that are 15kbyte each.
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That means you'll get an interrupt 8 times a second, leaving you with plenty of time to
actually do the processing.

Table 6-2 compares the processing difference of the interrupt overhead alone (assuming
each interrupt has only 10 cycles of overhead, a fairly small amount). Instead of making
a massive DMA buffer, I gave it a reasonable 512 bytes to work with. Note that to
implement a bit-bang solution, you would need a processor that is more than 8000
times faster than a comparable DMA solution. That is just the overhead! A bit-bang
driver is more complex than the DMA interrupt which just needs to switch pointers
and set a flag for the processing to occur on the already full buffer.

Table 6-2. How much faster is DMA?

Buffering Methodol-
ogy

Bit-bang interface Hardware peripheral
interface

16 byte FIFO (inter-
rupt on half)

DMA with 512 byte
buffer

Clocks per second taken
up with interrupt con-
text switching (10 cycle
interrupt overhead)

20MHz 1.25MHz 156 kHz 2.44 kHz

Times faster than the
bit-bang interface

1 16 128 8197

Adding Robustness to the Communication
No matter your throughput, you need to know that the data you received is the data
that was transmitted. If you don't control both sides of the communication pathway,
this can be tricky. Your SPI ADC may not have any facilities for ensuring data integrity.
On the other hand, there is plenty that you can do when you do have some control.

Version Everything Then Checksum It

In “Version Your Code” on page 24, I recommended that you have a version for your
code and make it easy to get to from outside your system. Don't stop with versions
there. Even though your product may be a self-contained widget on the outside, it
probably has several components inside that can change independently. It is critical to
version and checksum pieces of the system which can be attached and detached. It is
less important to do it for components that are on the same board as the processor
(though still pretty important if they get programmed separately). A version byte (or
two) tells you when two parts of your system are incompatible. A checksum will tell
you when components have been tampered with or have experienced hardware failures.

So, put a version in your flash memory so you know what assets are there. If you don't
have enough code space to be backward compatible, at least you can give an appropriate
error instead of putting random designs on the screen until the software crashes. The
version can also act as a key to verify that external memories are programmed.
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Running a checksum over a large flash is often prohibitively slow. However, if you
checksum each asset as you obtain it from the flash, you can verify the asset went into
memory correctly and the communication pathway didn't lose or mangle any bytes.

In the same spirit, add a version to your EEPROM in case the layout (or size) changes
in the future. Right now, a larger EEPROM might be too expensive or unnecessary but
things change. Give yourself the means to be flexible. Even if your EEPROM is small,
adding another byte as a checksum will pay dividends when cosmic rays damage a chip.

While cosmic rays get jokingly blamed for many irreproducible errors
in hardware and software, they really do happen. And they really do
cause errors such as corrupted data in memory devices. Radiation hard-
ening your system creates more work for each engineering discipline:
mechanical (shielding), electrical (choosing components) and software
(redundant pathways and error checking).

If you have control over both sides of a communication protocol (for example, if your
company makes both an embedded system and a host for it to talk to), adding a version
to the communication protocol will allow the pieces to grow independently.

I suspect you get the idea with versions and checksums but there is one more: version
your hardware. How? Take three of your I/O lines and send them to a set of pull-down
resistors. As you configure the lines, make them inputs with weak pull-ups. Next read
the value to get a version. This lets your hardware describe itself to the software, pos-
sibly letting you reconfigure for different I/O configurations as described in Chap-
ter 4, as long as you don't change the location of the hardware version. (Finally, if you
are concerned about power consumption, you may want to change the pull-ups on the
input lines to match the read values of the hardware. No need to suck even that much
power.)

Types of Checksums
The simplest form of checksum is just to sum all of the bytes in question, ignoring any
overflow. If your buffer is {10, 20, 40, 60, 80, 90} then your checksum should be 300.
If you are only using an 8-bit checksum, that becomes 44 (300 mod 256). There are
many other combinations that could sum to the same value (i.e. {44} or {11, 11, 11,
11, 0, 0}) but those aren't likely to happen by chance (statistics gives us that there is a
1 in 256 possibility if all of the bytes are random). Even this paltry 8-bit checksum is
likely to save you if a byte or two gets corrupted. (As long as two bytes don't get cor-
rupted in ways that cancel.)

If you have lots of data, 1 in 256 isn't very good odds. You could sum everything as 16-
bit words which gives you a much lower probability of good checksums with bad data.
Note that you need to sum the data as 16-bit words, not just keep the overflow from
an 8-bit sum.

The types of errors you get depend on the memory or communication pathway. In an
EEPROM, it tends to be a sticky bit that doesn't change upon command. A single byte
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error will always be caught in a simple check sum. However, it cannot detect when two
bytes in the stream are swapped. And errors can cancel each other out in the checksum
if multiple bytes are modified. In many communication methods, the errors tend to be
bursty so that many bytes will get corrupted at once.

So when people say “checksum” they often mean “CRC value”. CRC stands for cyclic
redundancy check which you don't need to remember. Do recall that CRCs give you
more protection than a checksum against multiple-byte and swapped byte errors.
However, CRCs require more computational power than the simple sum. There are
many versions available online, though I like the one here as it walks through several
code examples, showing you how it works (and how to make it faster).

Remember, the checksum goal is to detect that an error has occurred. A more complex
scheme might be able to tell you where the error occurred or even correct small errors.

Authentication and Encryption

Checksums and CRCs are not preventions against hacking. That is, they don't protect
against intentional modification of data. There are two main forms of protection.

Encryption ensures that no one can read (or modify) your data without having the
correct keys and method of decryption.

Authentication lets you know that your software is talking to something in particular.
Printer manufacturers want to make sure the printer cartridges come from a known
source (partially because the wrong ink could ruin a printer, partially because con-
sumables are profitable). The authentication may be an encrypted signature so the two
are often related.

Consumables are often subject to cloning but an internal database usu-
ally prevents against seeing the same one multiple times.

Authentication and encryption are difficult. I mean, the next chapter is about updating
code and that is hard to understand but once you get it, you'll be able to implement
something successfully. But authentication and encryption are things you can never do
successfully. Sure, you might implement the algorithm correctly, but that doesn't mean
the data is safe.

The more valuable your consumable or data is, the more likely someone will take the
time to reverse engineer it. A determined hacker will eventually succeed, though only
sometimes by a brute force attack (it is probably easier to get into the manufacturing
building and access to the source code than figure out 128 bit AES key).

You can't be in charge of locking the door; the best you can hope for is that your code
is robust enough to fend off the casual attacker and create enough headaches that they
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leave your product alone. You probably don't have a lot of processing power for your
system. Trying to implement AES or some other well understood encryption when you
are running an 8-bit processing at a few MHz may make you want to help the hackers.

However, not all encryption methods have symmetric processing burdens. Some algo-
rithms make it easier to decrypt than encrypt (or the other way). Let the host do the
hard math. Alternatively, only run encryption on the critical data, leaving the rest in
clear text (or with a reduced encryption level). It may make your code more complex
but if it is between good encryption for the important part or mediocre encryption for
all, well, I know which I'd take.

Even if you have to use an encryption algorithm that isn't good enough to stand up to
the NSA (what is?), use a well understood algorithm. For all that you may have a tricky
mind, your 8-bit encryption solution will not be better than a well-understood algo-
rithm. Hiding things through obscurity instead of security doesn't protect against
someone who wants your information. RSA, DES and AES are the most common al-
gorithms. You may have to use a smaller key for an embedded system, but then you
can estimate the time it takes to crack and give your management a reasonable effort
level, something you may not be able to do if you design your own algorithm.

As you design your system, put on a black hat. What would you do to attack the system?
Assume the hackers know the algorithm but not the keys.* Is the easiest way to obtain
the keys the relatively difficult matter of putting the chip under an electron microscope
to read out the code? Or can they read it from your email because another developer
sent it to you in clear text? Or log into your source code repository with the guest
account? Your authentication and encryption algorithms are only as good as the weak-
est link.

Mild paranoia aside, protecting your system is hard. Your management team will need
to determine how much time (and money) they are willing to spend on developing
protocols to keep your data (or consumables) safe. It is a business decision as well as
a technical decision. It is also a long term decision; staying ahead of the hackers is an
ongoing concern, not a one-time algorithm choice.

Changing Data
In the LCD section, I described a way to store character and image glyphs, retrieving
them as needed to put on the screen. There is a design pattern that matches that de-
scription: the flyweight pattern. The way I described it mashes it together with a factory
pattern so it is more correctly be called a flyweight factory pattern. Let me untangle the
two so you can see them separately and be able to use the concepts outside the LCD.

* In cryptography this is called Kerckhoffs' principle: A cryptosystem should be secure even if everything about
the system, except the key, is public knowledge.
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The flyweight pattern's typical example is a document with many characters. The char-
acters are objects describing their size and encapsulating a bitmap. In a non-embedded
world, there is some temptation to instantiate each character object on its own. Even-
tually, when there are enough characters, this leads to sluggish behavior. In an embed-
ded device, we wouldn't have that problem as there is never enough RAM to let us get
into trouble this way. The solution is to point to a single instance of the character object
(which for us was in flash memory).

That is it. That is the pattern: when you have lots of things used repeatedly, create a
pool of instances (one for each object) and point to the pool instead of instantiating
directly. Each of the shared objects is called a flyweight (like the lightest weight in
boxing, not like the weight used to increase inertia in flywheels). Each flyweight must
be relatively interchangeable with the others, though they may describe their state (i.e.
a character may describe its width).

The factory pattern is a bit more complicated, centering on the factory method. Re-
member the UNIX driver model from Chapter 2? Almost all drivers implement the same
interface (open, close, read, write, ioctl). If you are writing a program to use a driver,
you open it as though it was a file (“/dev/tty0”). When it actually gets instantiated
(returned to you), on the surface it is a generic handler but underneath, it is a serial
port. The factory method (open) knows how to create a specific widget (subclass) that
is of a generic type (class). All of the specific widgets implement the same interface (the
class interface).
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Figure 6-15. Factory pattern and flyweight factory pattern examples

The factory pattern is often implemented in a very object oriented way with specific
subclasses being instantiations of a class. The creator class (the code that calls the
factory method) controls the whole thing. Figure 6-15 shows the classic factory pattern
diagram. Next it shows the UNIX driver model example and the LCD graphics example.

The diagram is in UML, a useful visual language for describing software,
particularly object oriented software. It can be simple (like this) or far
more complex, going so far as to become an interpretable language.

The factory pattern is all around you, decoupling instances from a generic ideal. It is a
fairly physical pattern and the name is makes sense. Imagine you have a real live factory.
It is flexible enough to make any one of several, relatively similar products (the product
class). In the factory is a machine (the creator). Today, you configure the machine to
make sprockets (concrete product) by putting a template (factory method) into the
machine. When you push the “on” button, the factory will generate sprockets. To-
morrow, you may switch out the template to make gadgets (a different concrete prod-
uct) ensured by a different template (factory method).

When we do this in graphics software and with flyweights, pressing the “on” button is
more like the software requesting a glyph. With a flyweight factory pattern, the factory
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part manages the flyweights, making sure they are shared properly, decoupling char-
acters from the way they are displayed on the screen.

Changing Algorithms
Sometimes it isn't the data that needs to be selected depending on the situation, some-
times the path of your code needs to change based on the environment.

If you are thinking that we saw a way to change what the code is doing based on
commands from the host in the command pattern in Chapter 3, you are correct. The
command pattern is used to make short term command/response changes. The strategy
pattern is used to make longer term changes, usually to data processing. According to
the official definition, the strategy pattern is used to “define a family of algorithms,
encapsulate each one and make them interchangeable. Strategy lets the algorithm vary
independently from the clients that use it.”

Let's go back to the data driven system with the ADC digitizing data to be attenuated
and then sent back to analog via the DAC as shown in Figure 6-2. What if you weren't
sure you wanted to attenuate the signal? What if you wanted to invert it? Or amplify
the signal? Or add another signal to it?

You could use a state machine but is a little clunky. Once each processing pass, the
code would have to check which algorithm to use based on the state variable.

Another way to implement this is to have a pointer to a function (or object) which
processes data. You'll need to define the function interface so every data processing
function is the same. But if you can do that, you can change the pointer on command,
thereby changing how your whole system works (or possibly, how a small part of your
system modifies the data).

Some embedded systems are too constrained to be able to change the
algorithm on the fly. However, you may still want to use the strategy
pattern concepts to switch algorithms during development. Consider
how the strategy pattern helps you separate data from code and enforces
a relatively strict interface to different algorithms. Sometimes “on the
fly” in highly constrained systems may include recompiling and down-
loading the code. Then it is more a matter of making the changes quickly
in terms of releasing the code.

A related pattern is the template pattern. A template provides a skeleton of an algorithm
but allows steps to change (without changing the algorithm's structure). Usually these
aren't function pointers; the steps are part the organization of the algorithm. In our
data driven system, we could make a template that looked like:

class Template {
private:
  struct sCircularBuffer *cb;
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public:
  enum eErrorCode sample();
  enum eErrorCode processData();
  enum eErrorCode output();
}

Even though each of these functions has the same prototype, they aren't interchange-
able like a strategy pattern is. Instead, they provide an outline of how the system works.
An instance of this template for the system described would have the ADC sampling
the data, the data being amplified and then output via the DAC. The instantiation of a
template may override certain (or all) parts of the default implementation. If the ADC-
process-DAC is the default implementation, a test version of the class may override the
sample function to read data from a file while leaving the other two functions in place.

You can, of course, combine patterns. Here is a strategy pattern inside the template's
skeleton.

class Template {
private:
  struct sCircularBuffer *cb;
public:
  enum eErrorCode sample();
  enum eErrorCode (*processData)();
  enum eErrorCode output();
}

In object oriented software, there is the concept of inheritance where an instance is-a
concrete version of an object. Template patterns are like that (it is a series of these
steps). Then there is the idea of composition, where the software has-a concrete version
of an object. Strategy patterns are more like that (it has a function to call). Composition
is more flexible than inheritance as it is easier to switch what things have, than what
they are. On the other hand, building (composing) a system at run time may not be a
good use of limited resources. Balance the trade offs for your system.

Further Reading
This section covered many things so I've got lots of places for you to look if you want
to dig deeper into a particular area. Going backwards, as mentioned elsewhere in the
book, these two references are great for understanding design patterns:

• Gamma, Erich; Richard Helm, Ralph Johnson, and John Vlissides (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN
0-201-63361-2. The canonical text.

• Freeman, Eric T; Elisabeth Robson, Bert Bates, Kathy Sierra (2004). Head First
Design Patterns. O'Reilly Media. ISBN 0-596-00712-4.

For encryption and authentication, there are many resources. For a relatively fluffy
introduction, there is a history of cryptography in WWII (almost a spy novel): Marks,
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Leo (2000). Between Silk and Cyanide: A Codemaker's War, 1941-1945. Free Press.
ISBN 0-684-86780-9.

For a more comprehensive look at security and some of the chips used to keep infor-
mation secure, look at Rankl, Wolfgang; Wolfgang Effing (2010). The Smart Card
Handbook. Wiley, 4th ed. ISBN 0-470-74367-0. This is a weighty tome but it is sur-
prisingly easy to read, even in the security chapter.

For an example implementation of FIFO vs DMA, look for James Lynch's write up on
Atmel's AT91SAM7 serial communications. If you are using the AT91SAM7, look for
his excellent tutorial on setting up open source tools.

When coming across any new serial interface, I tend to hit Wikipedia first. There are
so many variants of different protocol. The datasheet for a device may be filled with
acronyms and complex timing diagrams. But Wikipedia gives me an overview that puts
it in perspective.

For motor control and other control schemes, I like Dutton, Ken; Steve Thompson, Bill
Barraclough (1997). The Art of Control Engineering. Addison-Wesley. ISBN
0-201-17545-2. It is a little more math filled than it needs to be but still pretty useful n
actual implementation.

Signal processing and motor control have a lot in common in the underlying math
(Laplace and Fourier transforms). If you haven't had those in school (or cannot dredge
up the memories), you might consider taking a class. It isn't the sort of thing to learn
from a book. But if you are going to anyway, the seminal textbook is Oppenheim, Alan
V; et. al (1983 or 1996). Signals and Systems. Prentice-Hall. ISBN 0-138-14757-4.

Or you can skip to practical application with a really fantastic book: Smith, Steve
(1997). The Scientist and Engineer's Guide to Digital Signal Processing. California
Technical Pub. ISBN 0-966-01763-3. It is also available online for free.

Interview question: Choosing a processor
How would you go about choosing a processor for our next generation platform?

This question is multifaceted, starting out with a basic check of the interviewee's lis-
tening skills. Does he know what we build? Is he interested enough in the company to
spend some time doing research? Has he been awake while I blathered on about the
current system?

From there, it moves into checking their design skills and experience level. I want the
candidate to know which questions to ask (What are the bottlenecks on the current
platform and how have we identified them?). He should specific questions about the
types of processing and the bandwidth requirements of the system to understand the
problem better.

Most companies don't want to go backwards in their feature set so it is relatively safe
to start with the assumption of more processing power, more RAM and more code
space than the previous design. However, I want the candidate to check these assump-
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tions. Ideally, as we talk about these, the candidate should describe ways to unburden
the processor (peripherals often taking up an unreasonable amount of processor over-
head).

A good candidate will also consider the underlying goals of a new platform (i.e. Why
are we looking for a new platform?). A candidate with a product view is often a better
fit than someone whose scope is more limited. To that end, I hope he asks about the
volume and the cost goals. An excellent candidate will also ask if the requirements are
expected to change significantly over the development cycle, helping him determine if
he wants a general purpose processor or if he can choose something very specific.

Processor selection is difficult, there are many factors. I don't expect that someone can
come in for a day's worth of interviews and produce a suggestion for a new processor.
Most people don't keep the processor lines from the various microprocessor vendors
in their head. If he immediately suggests something concrete, I take it as an indication
of what he's been working on. At that point, I tend to ask why he thinks that is a good
path for our particular product. The goal is to get him to tell me how he would choose,
not the actual choice. In interviewing, the methods people use to confront problems is
far more interesting than the solutions they generate.
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CHAPTER 7

Updating Code

When your system has problems after it goes out into the wild, you'll need to be able
to update the code on a device in the field. To understand the complexities, let's start
by looking at how uploading works in the comfort of your development lab, and how
that differs from uploading to a device you've released.

During development, your system lets you peer into the guts of the code, maybe with
a JTAG that can stop the processor. As part of the process, you also get to modify the
code (aka flashing the chip). The method for doing that is chip-dependent, but it usually
requires some special debugging widget. If you want to update the code after the system
leaves your desk, you'll need to plan ahead. Although we'd like to arm the world with
development hardware, it isn't cost effective (sadly).

The lowest level of updating code is very chip-dependent, but follows certain common
patterns.

There are many different names for updating code on a device: bootstrap
loading, bootloading (even when it isn't related to booting), updating,
uploading, burning the code, and over-the-air programming. Whatever
you call it, uploading code is one of the most difficult topics in embed-
ded systems. It is right up there with storing code on cartridges, keeping
consumables secure, and faking floating point math via binary scaling.
This chapter may be tough the first time you read it. Don't lose hope.

Three different loaders are described in this chapter in increasing order of complexity.
Some issues you should know about before we start include:

The code storage mechanism and communication method
We'll need something to hold the new code image. What you employ to store it on
depends mostly on the communication method, for example: a thumbdrive when
updating over USB, an EEPROM for SPI, or a hard drive for a network.
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Code space memory (old code location)
This is often called ROM (read-only memory). However, since we are about to
change its contents, it isn't read-only. Instead, the code space is some sort of non-
volatile memory (memory that is not erased when the power is lost) that often
requires special voodoo to rewrite. Once this really was read-only memory and
firmware updates simply weren't possible at all. Now this type of memory is usually
flash and able to be rewritten so that runtime code can be updated in the field (as
well as on your desk or in manufacturing). Whether it is flash or some other form
of ROM, writing to it is more complicated than writing bits to RAM so it is often
called programming the memory. How you program the memory where your code
is stored depends on your processor.

Scratch space RAM
Ideally, this RAM is the same size (or larger) than your runtime image. It should
be local to the system. While not strictly necessary, the scratch space prevents
serious complications if communication with the new code is lost before program-
ming is complete. The idea is to write the code to the scratch space and make sure
the upload is complete without corruption before actually copying it over to where
it counts—the permanent memory of the device.

Run space RAM
This is RAM from which the processor can execute. If you don't have this, it limits
your loading options.

On-Board Bootloader
Some processors have an internal bootloader that will load code from an external source
if the right I/O pins are set. In an ideal world, you'd just set the I/O pin while you
connected the new code to the system, generally as the system powers up. The boot-
loader would automatically load the data into the code space.

Part a) of Figure 7-1 shows the new code connected to the processor using one of the
communication methods mentioned earlier. The bootloader code inside the chip reads
in the data and writes it to the code space.
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a) On-board bootloader

b) Build your own bootloader

c) Loading from RAM

New Code
Communication method Bootloader

Processor

Code Space

Communication method
Bootloader

Code

Processor

Scrath space
RAM

Communication method Run Space Ram

Processor

Code

Scratch space
RAM

New Code

Loader
New Code

Figure 7-1. Three architectures for loading code

If that figure describes your system—excellent. If you can make that be your system,
do so. Everything else is a lot more complicated when it comes to uploading in the field.

Build Your Own Bootloader
If you have plenty of code space, the next easiest option is to build your own bootloader:
a resident program in the code space that could reprogram the rest of the memory.
Since most code space is flash memory, you will have to erase sectors of the old runtime
code before you can write the new code.
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The naive bootloader would erase a sector, read the new code into some scratch mem-
ory and use chip-specific functions to write the code to executable memory, repeating
until all runtime sectors are complete. What could possibly go wrong?

First, the new code could come corrupted from the source. Second, the communication
method could drop part of the message. Third, the memory holding the new code could
be removed. A checksum could detect these problems, but that won't help if the boot-
loader has already written the data to the code space before it can detect the error.
Programming a bad image will lead to a non-functional unit at best. The scratch space
RAM is optional but it will help you avoid those pitfalls. See part b) of Figure 7-1 for a
high level view of this system.

Your bootloader is a resident of your code space. This gives you the opportunity to
recover from failures. Even if there isn't enough RAM to validate the whole image, so
that you have to take the risk that a corrupted image will be installed on the device, it
will be OK as long as you allow part of the bootloader to run during the power-on
sequence. The bootloader can verify that the runtime code image is valid, by running
the checksum that was uploaded with it. If the code isn't valid, the bootloader can wait
as long as it takes for you to connect new code. Yes, the device is non-functional, but
that's probably better than having it display garbage or short out some part of a factory
system. This solution does mean that your bootloader has to be the first code to run at
boot time, as shown in Figure 7-2.
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Figure 7-2. Build your own bootloader flowchart

Since the bootloader will be erasing the rest of the code, it must contain everything it
needs to run. Instead of just a function to be called, it is a mini-program embodying
code to communicate with the new code storage mechanism, processor-specific func-
tions to write to the code space, and any debugging code you need to make it all work.

If the code space can only be erased in sectors, the bootloader must take up a whole
sector (or a whole number of sectors). If you are a little short on code space, you might
consider putting other things in the section with the bootloader (for instance, fixed
lookup tables). These sectors become untouchable, never to be updated, so you have
to hope any problems that arise don't reside there. Test your loader thoroughly.

Modifying the Resident Bootloader
If you really need to, you can modify the bootloader using a two-pass process that
resembles a shell game. See the table to identify where the bootloaders and runtime
codes go. The asterisk (*) indicates which code is running at each stage.

Stage Storage mechanism Bootloader area of memory Runtime code area of memory

1 BL2 Old bootloader* Old runtime
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Stage Storage mechanism Bootloader area of memory Runtime code area of memory

2 (Nothing) Old bootloader BL2*

3 New bootloader (Erased) BL2*

4 (Nothing) New bootloader BL2*

5 New runtime New bootloader* (Erased)

6 (Nothing) New bootloader New runtime*

In your new code storage mechanism, put an image that contains code similar to the
bootloader (we'll call it BL2). The old resident bootloader will load this and then run
it. BL2 erases the old resident bootloader and writes a new resident bootloader from
the storage mechanism. Once the new resident bootloader runs (this may require a
reset), it can load a new runtime image. See the flow of control in Figure 7-3, note each
stage from the table is marked.

Old bootloader
programs new
runtime (BL2)

2

BL2 erases
old bootloader

New bootloader
loads new

runtime

BL2 programs
new bootloader

1

3 4 5

6

Figure 7-3. Modifying the resident bootloader

If you can leave the bootloader resident in the code space, building your own can be a
good solution, workable for many systems. However, this method doesn't work if you
don't have enough code space to devote to the bootloader, if the bootloader function-
ality changes regularly, or if the code space doesn't allow sector erases (a security fea-
ture).

Brick Loader
The next loader solves all of the problems mentioned at the end of the previous section
but is more complicated and riskier. The danger comes from the possibility of making
the system useless and unable to ever load valid code (aka "turning the system into a
brick").

There is a period between erasing the flash and having the new code fully loaded on
the system. If the power is lost during this time, the system is not recoverable in the

204 | Chapter 7: Updating Code



field. Depending on the processor, the system may never be recoverable. One of the
goals of good loader design is to make this period as short as possible.

Let's get back to our processor and its new code. We've determined that the loader can't
run from the normal code space because we are going to erase that and put in new code.
That leaves the processor RAM as the only place left to run the code from (though some
architectures disallow this so not all processors can have this type of loader). See part
c) of Figure 7-1.

Loading code isn't the only time you may want to run from RAM.
Sometimes it is faster! See “Memory Timing” on page 240 for more
information.

In “Build Your Own Bootloader” on page 201, the bootloader was separate from the
rest of the program because it had to contain everything it needed to operate while the
runtime code was erased. For the loader in this section, you'll need a completely sep-
arate image of the loader code. You will also need to edit the linker script to make the
loader run from RAM. Linker scripts are not for the faint of heart, but they are reason-
ably standard across platforms. Once you learn the basics of one linker script language,
others will be easier to use. And you don't need to learn all the features, just enough to
modify an address and segment length here and there.

To get the new runtime image running using our loader, we'll need to implement five
steps:

1. With the runtime code, copy the loader from the new code storage to RAM.

2. Run the loader code.

3. Copy the new code to a scratch area.

4. Erase the old code and program the new code.

5. Reset the processor to run the new code.

In this section, I've dropped the “boot” from bootloader. Where the methods in the
previous sections are part of the system and can be part of boot time checking, the
loader in this section only runs for a short time.

Linker Scripts
After your source code gets compiled and assembled, the object files (and libraries) are
combined by the linker into an executable file. The resulting code has three sections:

bss segment
Contains uninitialized global variables. This will go in RAM. The odd name has
historical reasons that don't concern us here.
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Data segment
Contains global variables that are initialized. This will go in RAM. The data seg-
ment may include bss as a subsegment. It may also include the heap and stack.

Text segment
Contains code and constant data. This may be put in read only memory or in RAM.

Vector segment
A special part of the text segment that contains the exception vector table to handle
interrupts.

The linker reads a text script to determine the memory layout of the output. To move
the code or place buffers at certain addresses, you'll need to modify the linker script.
Don't write one from scratch. When you build your executable, it already has a linker
script, usually ending in .ld. Find the existing one and modify that. (Or look for a loader
example specifically for your processor and start with that one.)

For example, if our system has flash for storing and running code, some internal RAM,
and some external RAM, the memory map might look like:

Address Size Memory type Segments that can be placed here

0x000000 0x0FFFF Read only memory (flash) text

0x010000 0x07FFF Internal processor RAM text, data and bss

0x110000 0x1FFFF Off chip RAM data and bss

A simple linker script representing that would look like:

SECTIONS
{
   /* Memory location is in Flash, place next commands at this location */
  . = 0x000000; 
  Code : { 
    *(.vectors)} /* Put interrupt table at very first in memory */
    *(.text) 
  }
   /* Now put everything in off board RAM */
  . = 0x110000; 
  Data : { *(.data) }
  UninitGlobals : { *(.bss) }
}

The script is very order-dependent. The line . = 0x000000 indicates that the cursor
(where the next section will be placed) is at 0x000000. The next line (.text :
{ *(.text) }) says to put that part of the text segment in a section called Code.

A more complex linker file would define the size and addresses of the memory so that
the linker could give an error if the segments didn't fit in their allotted spaces. Also note
that the type of memory (readable, writable, or executable) is specified to enable more
error-checking.
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MEMORY
{
  /* Define each memory region */
  Flash (rx)  : ORIGIN = 0x000000, LENGTH = 0x0FFFF  /* 64k */
  InRam (rwx) : ORIGIN = 0x010000, LENGTH = 0x07FFF  /* 36k */
  ExRam (rw)  : ORIGIN = 0x110000, LENGTH = 0x1FFFF  /* 128k */ 
}
SECTIONS
{
    Code : { 
     *(.vectors)} 
     *(.text) 
   } > Flash
  Data : { *(.data) } > OutRam
  UninitGlobals : { *(.bss) } > OutRam
}

Linker scripts can get very complicated. Don't get bogged down in the details; focus on
the addresses and how they match the table. Look up the language, start out by making
small changes, and look in the program's output map file to see the effects. (Reading a
map file is discussed in Chapter 8.)

As with many scripting languages, it is pretty easy to build up a linker script that is so
complicated no one can decipher it. Be careful. If you have a gnarly linker script to start
with, search the Internet for “linker script” for tutorials and manuals for more detailed
information.

When creating a RAM-based program such as a loader, you'll need to move the code
from the Flash section to the InRam section (or in the first example, set the initial memory
location to the internal RAM address, .= 0x010000 instead of .=0x000000).

Creating buffers at hard-coded addresses is only a little bit trickier. You can add vari-
ables before any sections (before SECTIONS or MEMORY). Then use those variables in the
script (and in your code).

_linkSensorDataLen = 0x1FFF;
_linkSpiBufferLen = 0x2FF; 
_linkMaxLoaderSize = linkSensorDataLen + linkSpiBufferLen;

MEMORY
{
  … /* same as before */
}
SECTIONS
{
  Code : { 
     *(.vectors)} 
     *(.text) 
   } > Flash
  /* The special buffers allocated here, the NOLOAD indicatess to the linker that
  ** it doesn't need to do anything with these gaps in the memory */
  Special (NOLOAD): {         
    _linkSensorData = .;       /* address of data buffer */
    . = . + linkSensorDataLen; /* increment memory pointer to leave a gap */
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   _ linkSpiBuffer = .;
    . = . + linkSpiBufferLen;
  } > InRam

  Data : { *(.data) } > OutRam
  UninitGlobals : { *(.bss) } > OutRam
}

As for using those linker variables in your code, it depends very much on your compiler.
Here is one way I've seen it handled. The _linkSensorData variable comes from the
linker script, and the program just creates an ad hoc struct called sSensorData in order
to get access to the data at that point:

extern unsigned long _linkSensorData;
extern unsigned long _linkSensorDataLen;
struct sSensorData *gSensor = (struct sSensorData *) &_linkSensorData;

Copy Loader to RAM
The process just described sounds pretty simple, but a few details make it difficult.
First, you can't just copy the loader into RAM that your runtime program is using. If
you put the loader in the same RAM used by the runtime (including interrupts), your
program will exhibit random behavior and crash. You'll need to allocate some RAM
specifically for the loader code—enough for the whole loader program— and make
sure the runtime program doesn't use that RAM for the stack or heap.

Next you have the problem that your loader program is built to run at a certain address
(its base address), calling functions at certain other addresses. The RAM you allocate
has to be at that particular base address, which is not something that you can do in
standard C or C++. Compilers for embedded systems will give you a way to do this,
sometimes using the @ symbol, using a #pragma, or through the use of linker variables.
If the solution involves linker variables, you will need to modify your runtime linker
script to set the address of the RAM buffer and create a gap the size of your loader
program.

This is pretty compiler-specific and processor-specific stuff. “Linker
Scripts” on page 205 shows some sample linker code. Yours won't look exactly like
that, but it will give you a place to start.

Loading the RAM-based executable at runtime takes a bit of arrange-
ment. Before getting all gung-ho about writing the loader, start small
and create a program that blinks an LED (or something similarly hello
world-esque). Get it running from RAM, ideally via a debugger (though
some debuggers do not support this well, one of the reasons I'm sug-
gesting you start small, in easily debugged chunks). Then get your run-
time code to copy the blinky test program from the new code storage
mechanism to RAM and run it.
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If your loader program is greater than the size of your available RAM, start by divesting
the loader program of all unnecessary functionality. If it still doesn't fit, programming
new code in the field may require an on-processor bootloader. But don't lose hope yet.
Is there a large buffer or set of medium-sized buffers in your system? (For instance, you
may be able to turn up some display or data acquisition buffers.) If the code is about
to have its mind wiped, these buffers may not need to stay valid until the brain trans-
plant is complete. In fact, if your program stops executing all interesting functions, you
might be able to free up enough space for the loader to execute from. Make a list of the
buffers that aren't needed during the firmware update. If the loader code can fit in the
sum of those buffers, you can make this work.

In the linker script, put your large buffer at the top of RAM (the lowest address). If the
loader program area contains multiple buffers, you'll need to allocate them and specify
their sizes. At the end, you'll also need to figure out exactly how big your loader can be.

For example, if we use the system described in the linker script, we have our flash
memory at 0x00000 where the code runs from. We have RAM at 0x010000 which is
where we'll want the loader to go. Let's say our system has some sensor data and a
circular buffer for communicating with the sensor. At the end of updating the code,
the system will reset and lose the sensor data anyway. So during the loading process,
we can halt the subsystem that uses those buffers and reuse them. The loader will run
from the space that once held the sensor and SPI data. The entire loader program must
fit in that space.

Address Buffer Buffer Size Loader Ramifications

0x010000 Sensor 1 data 0x1FFF Loader base address should be 0x010000 in its linker file.

0x012000 SPI circular buffer 0x2FF  

0x012300 (No more big buffers)  Loader program can be no more than 0x2300 in length.

Don't forget to disable all interrupts that use any of this memory before
loading your bootloader there.

Run the Loader
Once the loader is in RAM, you'll need to run it. Essentially, you want to blindly execute
the code loaded in RAM.

This is kind of scary. One way to make it less scary is to be sure that the loader is correct
and complete. As you build the loader, calculate a checksum. Then calculate the loader
checksum as you load the code into RAM. If they don't match, log an error and reset
the system. The old code will still be around and a reset will clean up the RAM so that
the runtime code can safely use it.
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Once you get down to actually loading the code, you'll need to use a function pointer
(“Function pointers aren't so scary” on page 66). The function pointer should be set to
the address in RAM that holds the loader program. Once the function pointer executes,
it will never return.

  int loaderStartAddress = 0x10000; // should come from the linker file
  typedef void (*tFunctionPointer)(void);
  tFunctionPointer fp = (tFunctionPointer) (*(uint32_t*)(loaderStartAddress));
  (*fp)(); // jump to loader, never to return

If you are walking through the code, this jump will make your debugger lose all context
so that it will show you only assembly code. Some debuggers allow you to reload sym-
bols without reloading code, which will fix the context. In others, you'll have to test
the process out first with a small, easily debugged test loader (i.e. blinking LED).

Copy New Code to Scratch
Once the loader code is running, the next step is to get the new runtime code on the
system. You could erase and program the new code directly, but if something happens,
you could end up with a system whose only program is a RAM-based loader. Once the
power is cycled, you end up with a brick.

Unlike the procedure for building your own bootloader, here you don't have a back-
up way to check and load code at power-on. These failures are much worse than having
a unit that doesn't currently work. They lead to units that can never work again. The
optional scratch RAM becomes more critical for this type of loader due to the more
dire consequences.

Once the image is good in its entirety and the image cannot be removed due to user
impatience or network recalcitrance, the old code can be erased and the new code
programmed.

Dangerous Time: Erase and Program
Up to this point, no damage has been done to the system. If the system resets, the worst
that can happen is a break in normal operation. However, once you erase the old code,
that's no longer true. Nearly anything that goes wrong is a catastrophic system failure,
including a power loss.

So before erasing the old code, disable all interrupts (really this time, no excuses). Then
write the new code. A reset will make the new code run (a good excuse to stop feeding
the watchdog (see “Watchdog” on page 143 for more information about using your
watchdog timer to improve system robustness)).
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Chip vendors often supply the erase and write functions, so look around
before writing them.

Reset to New Code
The flow chart in Figure 7-4 shows the process we've gone through to get here, with
the dangerous area highlighted.

Figure 7-4. Loader flowchart

There are a few additional points of interest when thinking about loaders. First, where
does the loader come from? The loader could be stored in the current image already on
the system. This implies that the old code needs to know how to load new code. How-
ever, it isn't always possible to get users to update for every revision. You'd have to
architect your bootloader in a way that allows users to leapfrog versions. Or you can
get your loader from the same place as the new application code, as shown in part c of
Figure 7-1. Then, as described there, your runtime needs to know only how to copy
the loader to a spot in RAM and jump to it. The loader retains control of the rest of the
process, adding flexibility. As long as the loader fits in the memory allocated by any of
the released runtimes, users can upgrade to any revision from any other revision.

Second, this process assumes that getting the new image is straightforward. However,
if it is not so simple, such as when you need to send the image over a network, one way
to keep your loader code small enough to fit in your RAM is to let the runtime handle
the heavy lifting and put the loader's image someplace local before handing control
over to the loader. This decreases the flexibility for future, unforeseen needs, but you
may need to do it.
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Finally, loading code is dangerous. Often the loader is the last piece of code written
and so one of the least tested parts of the system. As you draw a flow chart for what
goes on in your loader, look at the amount of time when the old image is erased and
the new image is running. Minimizing that time will save your units.

Security
Adding security into the mix tends to make bootloaders exponentially more complex.
In general, winning against a sea of hackers is impossible, but you can make casual
attacks more difficult. The first step is to identify what you are protecting: a secret
algorithm in the code? the ability to create or verify consumables? the integrity of the
hardware? What you choose to implement depends on your priorities.

You might get a little bit of help from your processor. Many chips offer code read
protection. Once it is turned on, on-chip memory becomes unreadable. The processor
can still execute the code, but a debugger (or a loader) cannot read the code space.

Often times, the code read protection will limit the processor's ability to erase sector
by sector. Instead, you have to erase all of it before updating code. (Some levels of
protection won't even let you write new code at all.)

Once you've done that, the weak point is in the way new code is handled. Ideally, the
new code is seen only by trusted associates who will be updating the code (or the code
will travel only over secure networks). However, if you allow the user to update the
system, you need to augment your loader with some security features.

If you build your own (resident) bootloader, you should encrypt the new application
code. The bootloader will need a decryption method (which will increase the number
of sectors to be devoted to the bootloader).

Because the loader must fit into a limited amount of space, it may not have a lot of
space to authenticate your new code. If you don't need to encrypt the whole code
(perhaps just secret keys for consumables), consider encrypting the loader with the
keys. The runtime can decrypt the loader as it puts it in RAM. Then the loader can
program the clear text new code, adding the secret keys only the loader knows.

What you do depends on your system and the goals you have. It will require some
twisty thinking to determine an authentication scheme that works for you. Remember
that loading new code is likely to be a weak point in the overall security system.

Summary
These three strategies are good places to start your design. There is a lot of room be-
tween the ones presented and your system requirements. For example, you may want
to consider having a resident bootloader but copying it to RAM when code is updated
to allow it to be reprogrammed. Or your scratch RAM may be only half the size it needs
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to be so that you update the firmware in two chunks. There are lots of options, now
that you understand the basics.

Questions to ask yourself about your design:

• How often will new code be loaded and by whom? Are they trusted associates?
Experienced technicians?

• Would adding a low-cost part make loading new code safer, and can you include it?

• What other pieces of the system might change? Will you need to accommodate
updating information on different chips? (Maybe reprogramming an external flash
with new data?)

• What if the new code is corrupted? What if the new code becomes unavailable
because its media is removed or communication to it is lost?

• Are there security concerns? What are the points of attack? (Authentication keys?
Algorithm?) What are the vulnerabilities? (Reading code from the processor? Read-
ing code from the new code storage mechanism? Hacking the loader and taking
over the hardware?)

• At each stage, what is the worst that can happen? For the unrecoverable stages,
how can you make them take less time or decrease the probability of bad things
happening?

Once you determine what is important about your loader and set some goals, you can
design the methodology to update the code.

Interview question: Getting a goat safely across a river
A man is taking home a goat, his partially tamed wolf, and a cabbage. They reach
a river but the bridge is washed out. The boat conveniently tied on his side of the
shore is very small and can hold only the man and one passenger at a time. If the
goat and the wolf are left alone, the wolf will eat the goat. If the goat and the
cabbage are left alone, the goat will eat the cabbage. The wolf, however, will not
eat the cabbage. How can they cross the river safely? (See Figure 7-5.)

A

Home

B

Wolf

Goat
Cabbage

You

Figure 7-5. Taking everyone home safely
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While this style of question is pretty common, I am strongly opposed to interview
questions that involve goats crossing water so I wouldn't ask this one. Basically, if it is
necessary for me to herd goat(s), I don't particularly want the job. However, loading
code is a lot like this problem. There are dangers along with resource limitations at
multiple points. You have to know what to look for and then use some little mental
twist you learned along the way to make the leap to the solution. I generally prefer to
see how people think instead of whether they are in the club that already knows the
answer, so I wouldn't ask this question. Since I don't know what I'd look for; I'll just
provide the solution.

In this case, the trick is to note that the goat is the dangerous one and must be kept
away from the others. If you frame the problem that way, the solution falls out a little
easier.

Start on side A with the wolf, goat, and cabbage. Cross to side B with the goat. Return
to side A. Take the wolf (or the cabbage, doesn't matter) to side B. Now, take the goat
back to side A, leave it there while you ferry the cabbage (or wolf) back to side B. Cross
back to A, get the goat, cross back to B and move the parade along.

The trick behind the problem is that you can take extra trips to get the job done, as
long as the job is done properly. Updating firmware is a lot like that.
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CHAPTER 8

Doing More with Less

Engineering requires technical skills and a deep understanding of the relevant technol-
ogy. Writing good embedded software goes a step further, also requiring a devious
mind with an affinity for puzzles.

Implementing the requirements on a system that has everything you need is a matter
of turning the metaphorical crank to get the answer. Some solutions are more elegant
than others but most will work well enough to get the product shipped. It all gets a lot
more interesting when you have a system that seems as if it can't possibly contain
everything you need. You can compromise on the features but where is the fun in that?

For me, the great part of embedded systems implementation is the thrill of finding just
a tweak that liberates a few more processor cycles, being excited about freeing eight
bytes of RAM, persevering through the map file to find a whole section that you can
reclaim for the use of your code, and realizing you can get your product the coveted
green award if you can just squeak out a few more milliseconds of deep sleep.

The downside to all of this is that you may make the system more fragile. For instance,
when you free the RAM by having two otherwise decoupled subsystems share it, those
subsystems become linked. Maintainers of the system become confused and frustrated
by hidden linkages. The code is no longer modular and subsystems cannot be reused.
Flexibility is lost.

This chapter looks at the ways to get more out of your system. We'll need to start by
characterizing the resources we have and those we need. Some of the resource optimi-
zation techniques allow you to trade one resource for another. Identifying the plentiful
resources is almost as important as determining where the scarce ones disappear to.

One of the most important resources is development effort. Your time is valuable. You
will need to balance value versus the time it takes to implement a solution: moving to
a larger, faster chip in the family is a cost to all units which could be a win if you are
building only a few; trading memory and processor cycles may require you to restruc-
ture some code; and going line by line to optimize assembly code is going to take serious
effort (and skill).

215



Code Space
Implementing an application on a system without enough code space is like trying to
write a term paper in a booklet that is too small. Even though you plan ahead and try
to figure out how much space should be allocated to each point, in the end, you will
have to write tiny on that last page and wind up using the margins. This section will
help you cope with the situation.

Reading a Map File (Part 1)
I get a sinking feeling when the linker gives an error message during a build. The com-
piler provides all sorts of friendly advice and critiques my typing. But the linker doesn't
usually talk back unless it is something important.

On the other hand, the linker provides a wealth of information if you know where to
look. “Linker Scripts” on page 205 describes the linker input. The output map file is
easier to read, though still foreign to most developers.

You may need to configure your linker to output the map file. Look in
the directory where your executable is located for a .map file. If it isn't
there, check the manual.

Map files are processor specific. The examples in this section come from a GNU based
tool chain for the NXP LPC13xx. Most map files have the same information though it
may be in a different order or have different formatting. You'll need to make some
educated guesses as you look through yours. If you aren't sure that your map file is
giving you the information you are looking for, try this: make a copy, change the code,
and then diff the resulting map file with the original.

The GNU linker for the LPC 13xx starts off with a list of the library modules that are
included and which of your modules is responsible for the inclusion.

Archive member included because of file (symbol)
../lib/gcc/arm-none-eabi/4.3.3/../../../../arm-none-eabi/lib/thumb2/libcr_c.a(memcpy.o)
                              ./src/aes256.o (memcpy)

If you find that a library is large, this section helps you figure out which part of your
code is calling functions in that library. You can then decide whether the code module
needs to make that call or if there is a way around it.

Next in the map file is a list of global variables and their size.

Allocating common symbols
Common symbol       size              file
gNewFirmwareVersion
                    0x6               ./src/firmwareVersion.o

Limiting the scope of the variable using the static keyword will cause the variables to
be later in the file, so if a common symbol like the one just shown isn't in your file,
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you've done a good job of getting rid of global variables. If you have a lot of data here,
review “Object Oriented Programming in C” on page 26 to remember the difference
between global variables and file variables.

Next is a list of sections, addresses and sizes of code that is not referenced by anything.
This section, titled "Discarded input sections" in the LPC 13xx map file, shows which
functions and variables are cluttering your code but not taking up any code space. Often
the unused code remains in the code base if it is vendor code you don't want to modify
or test code which is only used in special circumstances.

A reflection of the linker script is shown in a memory map:

Memory Configuration
Name      Origin       Length      Attributes
Flash      0x00000000  0x00008000  xr
RAM        0x10000000  0x00002000  xrw
*default*  0x00000000  0xffffffff

Some map files also give you the amount of each resource used. This is very helpful for
determining how close you are to running out of resources.

The next section of the map is a tedious list of all the files included in your project. Skip
over that.

Eventually, you get to a section that lists each function, the address it is allocated to,
the function size, and the file it came from. These are in the order they occur in the
compiled image, generally grouped together by file (module).

This starts with the first section in the linker file (you may want to pull up the linker
input .ld file as you go through the map file so you know what to expect). The line at
the top gives the section (.text, which contains all the code), the address, and the size
of the section.

.text           0x00000000     0x7ccd

Other than experience and expectation, there is nothing to indicate that this line is
more important than the others. In the "Memory Configuration" snippet shown earlier,
the total flash size is 0x8000. Here we see that the code is taking up nearly all of that.

Next, the listing breaks down the contents of the code section:

.text.Initialize
                0x0000037c       0x7c ./src/main.o
                0x0000037c                Initialize
 .text.main     0x000003f8       0xb4 ./src/main.o
                0x000003f8                main

In the map output, most functions have two lines like this, giving slightly redundant
information:

.section.functionName   address    size        file
                        address                functionName
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This part of the map file shows you the size of every function. The first step to reducing
the footprint is to find out which pieces are particularly large. Many of the largest pieces
will be libraries, especially if you are using floating-point, C's standard I/O (scanf/
printf), or C++'s iostream. Even operators such as division end up calling functions.

.text.__aeabi_ldiv0
                0x00006c6c        0x4 ../lib/gcc/arm-none-eabi/4.3.3/thumb2\libcr_eabihelpers.a(rtlib.o)
                0x00006c6c                __aeabi_ldiv0
.text.__bhs_ldivmod
                0x00006ec0      0x20c../lib/gcc/arm-none-eabi/4.3.3/thumb2\libcr_eabihelpers.a(rtlib.o)
                0x00006ec0                __bhs_ldivmod

The aeabi_ldiv0 function is a wrapper because it is only four bytes, just enough to jump
to another function. However, bhs_ldivmod is a real function. Doing signed long divides
is costing the program 0x20c bytes, more than twice the size of the main function.

Some map files don't break out the function sizes in the same way. In-
stead they list the address of each function in the image and you need
to calculate the differences to get the size.

Functions are not the only things that take up code space. Later in the example map
file is the section for read-only data:

*(.rodata*)
 .rodata.str1.1
                0x000070cc       0x36 ./src/main.o
.rodata         0x0000715c       0x10 ./src/aes256.o
.rodata.str1.1
                0x0000716c       0x35 ./src/aes256.o

Here, main has 0x36 bytes of str1.1, not something I'd name a variable. Actually, this
is the automatic name this compiler gives to string variables. So wherever there are
constant strings (such as “Hello world”), the compiler collects them into one area that
goes into the read-only data section. In addition to the 0x35 bytes of string data in
aes256.o, the previous snippet also shows unspecified data in the file (0x10 in length).
In the source file, in the test function, a variable is declared with static initializers:

uint8_t buf[16] = {0xe5, 0xaa, 0x6d, 0xcb, 0x29, 0xb2, 0x71, 
       0xae, 0x0e, 0xbc, 0xfa, 0x7a, 0xb2, 0x2b, 0x57, 0x59};

Because this is inside a function, it isn't visible by name to other files. The map file
therefore doesn't show the variable name, but lists the constants because they take up
space in the executable image.

All constants take up space whether they are declared in #define declarations or with
the keyword const. Global constants are often visible in the map file, but variables
declared with #define end up in the code, so they aren't called out in a similar way. You
can see the variables declared with const in the map file under .rodata.
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.rodata        0x00007ab8      0x6A ./src/displayMap.o
               0x00007b8a            kBackgroundInfo
               0x00007bf4            kBorderInfo

There may be some sections that say fill. These indicate that the data between files
got misaligned, generally because a file used a constant that was smaller than the native
format of the processor. For example, a character string that is five characters long will
consume 1.25 words on a 32-bit processor, causing the linker to fill three bytes (usually
with zeros). This is wasted space but difficult to recover. Unless you really need every
byte, it is better to focus on the larger users of memory.

The rest of the map file is filled with juicy RAM details (we'll get to those later) and
debug information (not generally useful unless you are building a JTAG unit).

If the map file doesn't present the data in a way that is useful to you,
write a script to parse it yourself! Read the map file and create an output
table where the height of the cell is proportional to the size of the func-
tion. This is pretty easy to do in Python, especially if you use HTML as
the output.

Process of Elimination
Now that you know what is taking up your code space, you can start to reduce the size.
Start with your tools. In addition to the different optimization levels you normally see
to make your code go faster (i.e. the -O3 compiler option), there are special optimization
flags to make your code smaller (for instance, in GCC, -Os tries to optimize for code
size instead of speed of execution). This may be enough to solve your code size issues.

If you get a different runtime outcome when you turn optimizations on,
check that all of your variables are initialized and that volatile variables
are marked as such.

If compiler optimizations aren't enough, as you look for memory, it is useful to keep
score so you know which changes lead to the best improvements. Not only does this
give you a feel for the types of improvements, it will help you express trade-offs to your
colleagues (e.g. “Yes, that code is uglier now, but it saves 2Kb in code space.”).

As in Table 8-1, create a spreadsheet starting with the baseline numbers. For every
change, fill in a row so you can see the relative value of the changes. If your linker output
gives you the numbers in hex, you may want to let the spreadsheet translate to decimal
(or the other way around).

Table 8-1. Optimization Scorecard

Action Text (code) Data Total Total (hex) Freed Total freed

Baseline 31949 324 32273 7E11   
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Action Text (code) Data Total Total (hex) Freed Total freed

Commented
out test code

26629 324 26953 6949 5320 (Reverted
change)

Re-implemen-
ted abs()

29845 324 30169 75D9 2104 2104

Calculated
const table at
init time

29885 244 30129 75B1 40 2144

= comment
from you

= size of .text
section

= size of .data
section

= total image
size

= hex of to-
tal image
size

= bytes freed
with this
change

= total bytes
freed since start

The table documents how you tried multiple actions, including commenting out a large
block of test code. As described in Chapter 3, it is often good to be able to run code
tests in the field. However, these take a huge chunk of precious space. While feature
reduction is undesirable, when looking at code space reduction, the relative importance
of features should be kept in mind.

“Reduced size of code by 40%” is a super line on your resume. Hard
numbers are great but be prepared to explain how you did it and the
trade offs you considered. (And the explanation shouldn't consist solely
of “turned on compiler optimizations”!)

Libraries
As you go through the memory map, look at the largest consumers first. You may find
some libraries are included that you don't expect. Trace through the functions to see
where the calls to these libraries are coming from.

While some (monolithic) libraries are included if any function is used, other libraries
are granular, loading only the functions required. Even the standard libraries can be
monolithic so that using the built-in string copy function leads to a large footprint.
Your map file will show you these space hogs.

Many times you can write a function to replace the library. Other times, you'll need to
figure out how to work around a limitation. Here are some common examples to get
the ideas flowing:

• Replace floating point numbers with fixed point representations (see Chapter 9).

• Replace printf with a few functions that don't take variable arguments (Log, Log
WithNum).

• Replace strcpy with your own implementation to exclude the strings library.

• Replace the abs function with a macro to remove floating-point math library de-
pendencies.
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Functions and Macros
Keeping your code modular is critical to readability. However, each function comes
with a price, increasing code space, RAM and processor time. The code space cost is
easy to quantify.

For example, I needed to find a small implementation of a way to find the minimum
of three variables (“Functions and Macros” on page 221).

Example 8-1. Minimum of Three Algorithm

if a < b,
  if a < c, return a
  else, return c
else,
  if b < c, return b
  else, return c

I put together some code to try out the different implementation options. First, I wrote
out the code in the main function and compiled it to get my baseline code size in bytes
(given the other cruft automatically compiled in, this was almost 3k). I changed the
implementation to be a macro:

#define min3(x, y, z) (((x)<(y))?(((x)<(z))?(x):(z)):(((y)<(z))?(y):(z)))

Don't remember the ternary conditional operation? It is a shorthand
version of an if-statement:

condition ? value if condition is true : value if condition is
false

Not only does this make your code more dense, there are times that it
nudges the compiler into more optimal code.

Then I modified my code to run the macro a few times to get different code space sizes.
I changed the macro into a function and ran the same tests. It was a bit odd: the func-
tions were the same whether I used an inline function, a regular local function, or an
external function.

The inline keyword should have made the function behave as a macro
did, replicating the code into each location. However, it is only a sug-
gestion to the compiler, not a requirement. How the compiler takes the
suggestion is very compiler specific.

After I recorded the size, I turned optimizations on and re-ran both tests, recording the
difference in bytes each implementation was from the baseline. All along I had all my
variables marked as volatile so that the compiler couldn't remove the interim function
or macro calls.
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Implementation 1 call (diff from baseline) 2 calls 3 calls

Macro 0 76 152

Function (local or external) 20 60 96

Macro with space optimization -40 8 56

Function with space optimization -40 -20 0

The key thing to note from the table is where the crossover points are (2 calls without
opts, 1 call with). A macro uses the same amount of space as copying the line of code
into your function (essentially the preprocessor does a search and replace). Once you've
called the min3 macro a few times, it would take less code space to turn it into a func-
tion. Although the function call generally makes for smaller code, we'll have to return
to the issue when we look at functions in RAM and processor cycle optimization.

Macros do have the advantage (of sorts) that they don't do type checking; the same
macro could be used for integers, unsigned integers, or floating point numbers. Also,
a smaller snippet of code may never have a crossover point, so a macro may always be
better. (Even the innocuous minimum of two has a crossover point of three calls, so a
smaller snippet of code should be very small indeed.) Crossover points depend on many
factors including processor architecture, compiler implementation and memory layout.
You many need to do some experimentation on your system to determine the code
space trade off between macros and functions.

Constants and Strings
Going through the map file, you may find that your debug strings take up a lot of your
code space. This is a really tough dilemma because those debug strings provide valuable
information and useful comments.

If you've implemented a logging API (described in “From Diagram to Architec-
ture” on page 16), you already have the ability to turn the debugging on and off per
subsystem at runtime. To get rid of the debugging strings, you'll need to go a step further
and remove the functions at compile time.

You can still get some flexibility (and some documentation) using this common idiom
that lets you turn off the logging in a particular subsystem (i.e. the motor subsystem):

#define MOTOR_LOG 1 // set this to zero to turn off debugging
#if MOTOR_LOG
#define Log(level, str)             Log(eMotorSubSystem, (level), (str))
#define LogWithNum(level, str, num) LogWithNum(eMotorSubSystem, (level), (str), (num))
#else
#define Log(level, str)
#define LogWithNum(level, str)
#endif

When you change the value of MOTOR_LOG to 0 in the #define, all strings get compiled
out (even though the code looks the same). It can be a little frustrating if you forget and

222 | Chapter 8: Doing More with Less



try to turn debugging on during runtime so you'll need to find the balance between
runtime flexibility and code space.

As for other constants, why are they there? Do you really need them? Are there ways
to calculate the data at runtime? Or compress it? Can you move the information to
another storage mechanism (an external device such as a flash or EEPROM)? The op-
tions depend on your system, but now that you know where the space is going, you
can dig into the problem.

RAM
Unlike the angst produced when your linker says you are out of code space, a RAM
resource error from the linker should give you a sense of relief at having dodged a bullet.
The alternative symptom for a RAM shortage is a system that crashes randomly.

Some of the same techniques for finding more code space work for RAM as well. How-
ever, it's more difficult to find out where the RAM is disappearing to. You can make it
easier on yourself with some design choices.

Free malloc
To really understand where your RAM goes, eliminate dynamic memory allocation.
Local variables are hard to see, so if you make large arrays global, you can use the
memory map output of your linker to determine where the RAM is used.

If your system uses a language with garbage collection, you might not
have the luxury of knowing where your RAM is going. For embedded
systems written in such languages, dealing with RAM constraints be-
comes much more difficult.

If I haven't convinced you that the transparency is a good enough reason to get rid of
dynamic allocation, there are some other reasons. Say you have a heap that is 30 bytes
in size (this is a little small, but makes my example easier) and in a particular function,
you allocate a 10-byte buffer and a 5-byte buffer. Then you free the 10-byte buffer so
you can allocate a 20 byte buffer. What is wrong with this picture? More than you might
expect:

• Wasted RAM. The heap requires RAM to keep a data structure describing the
memory that's in use. Every dynamic allocation has some amount of metadata
overhead.

• Lost processor cycles. Keeping track of the heap is not free. Searching the heap
data structure for available memory is usually a binary search, which is pretty fast,
but it is still a search.
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• Fragmentation. As shown in Figure , after you've allocated the 10-byte and 5-byte
buffers, the first half of the heap is used. After you free the 10-byte buffer, there
are 25 bytes available. However, there isn't a contiguous block for the 20 byte
buffer. By mixing buffer sizes, the heap gets fragmented. With a heap that is much
larger than the variables (and few or no small allocations), this is less of a problem.
However, in an embedded system, you may not have the luxury of a large heap.

ALLOC 10

ALLOC 5

FREE

HEAP

OX......00
05
0A
0F
14
19
1E

Bytes allocated           15              5
Bytes free                15             25
Largest free block      15             15

Step    1 Step    2

FREE

ALLOC 5

FREE

Figure . Heap Fragmentation

If you have a buffer that can be recycled after it is used, there are options besides using
the built-in dynamic allocation system. If you need two buffers—say, one for an inter-
rupt to write to and one for the normal code to read from—use a ping-pong buffer as
described in “Interrupts” on page 123. If you have a queue of data, implement a circular
buffer (Chapter 6). If all of your buffers are the same size, consider a chunk allocator
(there many examples on the web and Wikipedia). However, avoid reinventing the
wheel. If your memory system is so complex that you end up rebuilding malloc, use
the built-in version. Its benefits will probably outweigh the costs on your system.
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Stacks (and heaps)
A stack is a data structure that holds information in a last-in-first-out (LIFO) manner
as shown in Figure 8-2. You push data on to the stack (adding it to the stack's memory
and increasing the pointer to where the next set of data will go). To get the last piece
of data out, you pop the stack (which decreases the pointer).

A Stack: Last in first out 

LIFO

Third

Second

First

Third

Second

First

PUSH

POP

Figure 8-2. Stack basics

A stack is a simple data structure any student can implement, but the stack (note the
definite article) refers to the call stack that lies behind every running program, a des-
ignated section of RAM. For each function called, the compiler creates a stack frame
that contains the local variables, parameters, and the address to return to when the
function is finished. There is a stack frame for every function call, starting with the reset
vector, then the call to main, then whatever you call after that.

RAM | 225



A heap is a tree data structure. The heap is where dynamically allocated memory comes
from (so named because it can be implemented as a heap data structure).

The heap grows up (see Figure 8-3), whereas the stack grows down. When they meet,
your system crashes. Well, actually your system will probably crash before they meet
because there are other things between them (global and static variables and possibly
code).
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Current stack pointer
Local variables:
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unit16-t* heapPtr
uint8-t* heapPtr2

Calling function local variables
Calling-calling function

Heap = malloc (256*sizeof(UINT8-T)
ptr2

Heap = malloc (256*sizeof(UINT16-T)
 ptr

    Stack frame

    Local variables

Turtles all the way down

DATA

BSS

Calling function
stack frame:

arguments and
return address

Figure 8-3. Memory map of a system
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If the stack gets too large, it can grow into other areas of memory, for example where
a global array is located. If the stack overwrites the memory of the array, the corrupt
data in the array is likely to give you incorrect results. On the other hand, if the global
array overwrites the stack, the function return address may be corrupted. When the
function returns, the program will return to a bogus address and crash (usually due to
an inappropriate instruction).

Long function call chains can make for a large stack, particularly if the intermediate
calls have many local variables.

Recursion is seldom used in embedded systems because the stack
may be exhausted before the solution is obtained.

Allocation for the heap and the stack is often done in the linker file (or as an argument
passed into the linker). Without malloc, the heap can be allocated to zero (or only as
large as your libraries require). However, the stack should be a bit larger than the
amount you calculate (I'd say 25% larger). Stack overflow bugs are very difficult to
solve, and a bit of buffering will save you from needing to do so. (If you have an oper-
ating system, each thread may have its own stack and heap.)

Reading a Map File (Part 2)
Going back to the map file, we may find some RAM information in the data and bss
sections. They are not always obvious: you may need to search for these sections be-
cause they often look like the text section filled with functions. For each section there
is a summary that shows the total amount used:

.data       0x10000000     0x144
…
.bss        0x10000000     0x1b7c

In some map files, the data section is called cinit. Most linkers are pretty
standard, but if you see things you don't recognize, you may need to
break out the linker manual or search online.

Looking back to the overview memory map (the memory configuration in the code
space section), this program is taking up quite a lot of its 0x2000 bytes of RAM. Note
that this total doesn't include the heap or the stack. (Actually, there is no heap in this
program, so all remaining RAM is allocated to the stack.)

Remember, the data section contains constants for your initialized variables and bss
contains all of your uninitialized global and static variables. The data section variables
also require code space for their initial values, which is captured in the rodata section.
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The bss section variables are RAM only. The layout is similar to what it was for the
functions.

.section      address    size        file
              address                global variable name
              address                global variable name

If your variables are local to your file (or static variables in a function), only the size
and file name are shown.

.bss           0x10001bb4       0x14 ./SharedSrc/i2c.o

As with functions, the goal here is to look for the larger variables, as those are where
the best savings can be had. (Reducing a 12-byte array by 50% is not as exciting as
doing the same for a 200-byte array.)

Registers and Local Variables
Unlike global variables, it is more difficult to estimate the RAM consumed by local
variables (those within functions). Registers are the memory pieces of a CPU. Some
processors can't perform actions on RAM directly. Instead, they have to load the value
from RAM into a register, perform the action on the register, and then store the infor-
mation back to RAM. That's a lot of instructions for a line of code that says:

i++

Not every processor needs to go through such gymnastics, but registers are faster for
any processor to use. The reason local variables are difficult to count when tallying up
RAM usages is that many local variables spend their whole existence as registers.

C has a keyword called register that is supposed to give a hint to the
compiler about which variables you think should go in registers. The
keyword is generally ignored, if it is implemented at all.

Function Parameters

A function's input arguments are often in registers instead of on the stack (RAM). You
can encourage the compiler to do this if your function has a only few parameters per
function. A good rule of thumb is less than four parameters per function. If you have
a 32-bit processor, that would be four 32-bit variables, not a dozen pieces of data
crammed into four structures.

In fact, if you have an N-bit processor, try to stick to N-bit variables. Larger variables
generally are not candidates for precious registers. (Smaller variables often add pro-
cessor steps. The compiler tries to access only the part you find interesting.)

To use registers, you usually want to pass arguments by value. If you pass by reference
(or by pointer), you are sending the address of the data. The address may be in a register,
but the data will need to be accessed in RAM. For example:
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int bar = 10;
foo(&bar);  /* this takes more RAM than passing by value
             because bar has to be in RAM to have an address */

There is an exception to the pointer guidelines if you pass a structure to a function. If
you pass a structure by value, you are likely to have two copies of it in RAM: the original
and the stack version of the copy. Pass pointers to structures to eliminate duplication.

Minimize Scope

For most efficient register use, each function should use only a small number of vari-
ables at any time. When optimization is on, your compiler will move around the code
to limit the scope of the variables and free up registers. However, you can help it figure
out what is going on. For a simple (and somewhat lame) example, take this code snippet
that needs to make each array value equal to its place in the array. It does some pro-
cessing and then needs the array to be reinitialized to its original values before going on:

for (i=0;  i < MAX_ARRAY_LENGTH; i++) { array[i] = i; }
… /* do stuff to array, need to set it up again */
/* i still equals max array so subtract one and run through the loop again*/
for (i--; i >= 0; i--) { array[i] = i; }

The programmer thought they'd save a few cycles by not re-initializing i. However, as
the code is written, its value has to be remembered across other processing even though
it doesn't really matter. The variable's scope is increased without cause. We can rewrite
the code to enable the compiler to forget about i when it isn't in use (and the compiler
can reuse a register for a different variable).

for (i=0;  i < MAX_ARRAY_LENGTH; i++) { array[i] = i; }
… /* do stuff to array, need to set it up again */
for (i=0;  i < MAX_ARRAY_LENGTH; i++) { array[i] = i; }

For this example, the solution is a no-brainer (and has cleaner code). However, when
you look at your code, can you see places to decrease the scope of the variables? Maybe
do all the processing on one variable before shifting on to another?

Don't worry about the total number of variables you have in a function. If you limit the
scope of each variable and, within each scope, limit the total number of variables in
play, the compiler can figure out the rest. It doesn't always pay to reuse variables,
particularly if your compiler can't recognize an old variable used in a new scope.

Look at the Assembly

How do you know if you've been successful in your attempts to mind meld with the
compiler? Look at the assembly code. No, wait, stop running away!

I'm not suggesting you learn assembly language for this. Well, maybe read it a little. I
definitely am not suggesting you write in assembly language (that is in “Coding in
Assembly Language” on page 248 later in chapter). However, you can learn a lot about
your compiler (and your code) by looking at the list file (.lst) or walking through the
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assembly in your debugger. Make sure you can see the higher level language at the same
time as the assembly. Your code acts as sort of a comment for the assembly code so
you know what it is trying to do. (You may need to add a compiler option to retain the
list files; look on the web or in your compiler manual.)

The first few times you look at assembly and walk through it, make sure
optimization was off during compilation. The tricky things that occur
during optimization are not a good introduction to learning how to read
assembly.

As you look at the code in a new light, note that when the compiler optimizes for speed,
it will put the most often used variables into registers so that it doesn't have to load and
store them for each access. If you can set your compiler to optimize for RAM usage, it
will instead put the largest number of variables in registers, possibly leaving an often
used variable in RAM if its scope is large.

Function Chains
We saw in the “Stacks (and heaps)” on page 225 that each function call increases the
size of the stack. Say we have three functions: main calls foo and foo calls bar. At that
point, our stack looks like the left part of Figure 8-4.

BAR’s local variables

Parameter’s 
FOO             BAR

FOO’s return address

FOO’s local variables

Parameters 
Main                FOO

Main’s return address

Main’s local variables

FOO’s local variables

Parameters 
Main                FOO

Main’s return address

Main’s local variables

Main calls FOO
Then FOO calls BAR

SP

BAR’s
Stack
Frame

FOO’s
Stack
Frame

Main’s
Stack
Frame

Main calls FOO then main calls BAR

BAR’s local variables

Parameters
Main                BAR

Main’s return address

Main’s local variables

SP

Figure 8-4. Function chains in the stack
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Only a few registers are available on the processor, so everything else goes on the stack.
You don't get extra registers for making function calls; there are a static number through
the whole system. So, if you have a chain of functions, the local variables and parameters
from earlier functions will have to go on the stack to make way for the latest calls. Even
if a parameter or a local variable starts out as a register, if it has a large enough scope,
it may end up on the stack when you call another function.

As shown in the right side of Figure 8-4, if you can tweak your design to have a flatter
function structure, your stack can be smaller (and each stack frame will be smaller as
you increase the register usage).

One exception to the rule that functions calling functions incur RAM costs is a tech-
nique called tail recursion. It isn't really recursion (remember: recursion bad in an en-
vironment with limited RAM!). In tail recursion, you call the next function as the last
statement of the current one (for instance, call bar at the very end of foo). This lets you
retain encapsulation for your modules and keep the stack small. The compiler will
remove foo's local variables and parameters from the stack, allowing the bar function
to return directly to main (without passing through foo). Even though foo called bar,
the stack looks like the right side of Figure 8-4.

Also, while an earlier section discussed the trade-offs of macros in terms of code side,
macros play a different role in RAM reduction. Macros take up no stack frame at all,
so they are good for decreasing the RAM footprint (especially for little functions like
“Functions and Macros” on page 221). A little more code space might lead to less RAM
(and faster execution).

Pros and Cons of Globals
Global variables have a bad reputation. They've been party to all sorts of spaghetti code.
They continually conspire with inexplicable outside forces to control the flow of code.
They don't know the meaning of the word reentrant.*

But laziness convenience is not the only reason for using global variables. They do have
a good side.

But a little more about their bad side first. Global variables can't be stored in registers.
That means they always take RAM. They are almost always slower to access than a
local (register) variable. So if you've got a global variable that could be used as a local
one, make it local. Even if it ends up on the stack instead of in a register, once the
program execution goes out of scope, that RAM is free for use elsewhere.

When can a global save on RAM? Say you have a function chain and need a particular
variable in several functions (or worse, you only need the data at the end of your func-
tion chain). If you pass the data in via a parameter to each function in the chain, with

* A subroutine is reentrant if it can be interrupted in the middle and safely be called again before its previous
invocation has been completed.
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intermediate processing, the compiler may be unable to keep the data in a register all
the way through the chain. Because it is a parameter to each function, the data will go
on the stack multiple times. A global variable is outside the stack and short-circuits the
process.

Memory Overlays
Does your system have a few large buffers? Some of the particularly bulky ones I've
found on some of my systems include display buffers, communications buffers, and
sensor input buffers. Once you've identified the large buffers in the system, ask yourself
whether they all need to be used at the same time.

For example, maybe your display buffer is used to build up the image and then sits idle
until the next time you need to update the display, at which point you build it up again.
Or the sensor input buffer isn't needed while you're waiting for an interesting event.
Once you notice the event, you need the whole buffer to queue up the data, but until
then, only a small area of it is needed. Or maybe you have a large communications
buffer for when you are receiving new code to load, but in general you need only a little
of it. Does any of that sound familiar?

If your system used dynamic memory allocation, these subsystems might allocate and
free their memory to avoid tying up the RAM resources. However, if you've banned
dynamic memory allocation (and if a chunk allocator is overkill), your system might
benefit from RAM overlays. This is where two subsystems share some or all of their
allocated memory, but only one gets to use it at a time. By overloading the resource,
you effectively get a lot more RAM. Figure 8-5 shows a 4k RAM buffer available on a
processor. Without the overlay, they overflow the available space and the system won't
compile. With the overlay, the buffers fit. However, the two subsystems depend on
each other in a way not obvious to the casual observer (since you've smashed encap-
sulation to bits).
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Figure 8-5. Sharing RAM between modules

There are several ways to implement memory overlays. The simplest is to treat the
buffer as private to one module and allow access to it through a single function, as
described with the modified singleton pattern in “From Diagram to Architec-
ture” on page 16. Another method is to implement a union of several arrays, possibly
with an owner tag to indicate the current user of the memory.

Alternatively, to make the subsystems less entwined, you can modify the linker script
to overlay the RAM buffers on each other. This eliminates any direct interaction be-
tween the two subsystems, but requires that any future developer understand that the
two subsystems cannot run at the same time (without catastrophic results).

Speed
Of all the places to spend your valuable development time, the worst can be sunk in
trying to squeeze out a few more cycles from the processor. Try to avoid that position
by starting with the design of the system, maybe building in some overhead when
selecting a processor. However, there are times when you have to make the code go
faster to respond to a real-time event, to add another feature, or to reduce power con-
sumption (see Chapter 10).

Before delving into serious system tuning, start by profiling your application to make
sure you focus on the important parts. While not as simple as reading the map file, it
is still unwise to optimize the wrong thing (e.g. cutting half of your initialization time,
which runs only once at system boot, instead of focusing on the problem in your main
loop).
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Profiling
To know where to spend your time optimizing the code, you need to know where the
cycles are going. Many compilers (and operating systems) have some built in analysis
tools, including profilers. If you have those, learn them. If you don't, you may want to
build your own rudimentary profiler to give you some insight.

In physics, the Heisenberg Uncertainty Principle says that electron momentum and
position cannot simultaneously be known to an arbitrary precision. In profiling there
is also uncertainty: the more precisely you need to know how long each piece of code
takes to run, the less you can know about the whole of the execution. That is, your
profiler will change the behavior (and timing) of the code. Understanding the impact
your profiler has on your code is an important part of profiling.

Profiling usually starts off trying to answer questions about where the processor time
is spent. By digging down into a particular function, you can apply the same method
to determine which part of that function is longest (and so on). Each of the four profilers
discussed here has a slightly different focus to help you get a broad and deep view of
your system.

Similar to the code space and RAM score cards, use your profiler to track
which modifications were most effective.

I/O Lines and an OScope

If you've got a few open I/O lines, they can show you where to start on the path to
profiling your code. As you enter a function of interest, set an output line to be high.
When you leave, set it low. Watch these lines on an oscilloscope to see how long each
function takes.

For example, we have a system that waits for data to be ready, reads the data, transforms
it and displays the result to an LCD:

Interrupt sets data ready variable when data is available to be read

Main loop:
  Loop, waiting for data ready to be set
  Read the data in the buffer
  Transform data into information
  Write the information to the LCD

If we had four I/O lines, setting and clearing one for each stage, the result might look
like Figure 8-6. Each I/O switches exactly as its predecessor completes (often you don't
need to instrument everything; you can look at the gaps). In the beginning, it looks like
everything is good: the bulk of the time is spent waiting for the data to be ready and
writing information to the LCD. Eventually, the wait for data ready goes to zero but
the other tasks take up the same amount of time.
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Figure 8-6. Profiling Using Oscilloscope Lines

Two things in the graph are important. First, as time goes on, the data is always ready
as soon as the LCD write is finished. This means that you will start to miss data because
the system can't keep up. Second, the system time is dominated by the LCD write, the
activity on the bottom. If you can fix what is taking so long in there, the system might
be able to keep up with the input.

The great part about I/O line profiling is being able to set and clear an output line in
an interrupt. It will slow your system down to add the I/O changes to interrupt service
routines, but only by a little. The profiling information you gain about the system is
often worth the temporary slow-down.

Timer Profiler 1 (Function timer)

For a system with few interrupts, another way to implement a profiler is to time how
long a section of code takes to run. In “System Tick” on page 138, I talked about how
to build a system clock to measure how long things will take. We built the TimeNow
function to return the number of milliseconds since the processor started. Using that
as a simple timer profiler might look like:

struct sProfile {
  uint32_t count;
  tTime    sum;
  tTime    start;
  tTime    end;
} ;
void main()
{
  struct sProfile profile;
  ...

 profile.count = 0;
  profile.sum = 0;
 while (1) {
    profile.start = TimeNow();
    ImportantFunction();
    profile.end = TimeNow();
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    profile.sum += profile.end - profile.start;
    profile.count++;
    if (profile.count == PROFILE_COUNT_PRINT) {
      LogWithNum(eProfilerSystem, eDebug, "Important Function profile: ", profile.sum);
      profile.count = 0;
      profile.sum = 0;
     }
   ... // continue with other main loop functions
  }
}

The function profiled (ImportantFunction) should be longer than the timer tick—at a
minimum, twice as long, and preferably at least ten times as long. It is also critical that
the profiling function (TimeNow) take a negligible about of processing compared to the
profiled function.

Note that the summation and logging are outside the scope of the profiler. Try to sample
only the things you care about and not all of the accoutrements of profiling. If you aren't
sure that you've eliminated the profiler overhead, try commenting out the function of
interest so that you are profiling only the start and end time acquisition. The result
should consistently be zero if the profiler is working properly.

If you have a few functions of interest as you try to decide where to spend
your development time, you might use three or four profiler variables
to monitor different areas of code.

Finally, using many samples will average out any minor differences (for example, if you
have a short intermittent interrupt). By sampling multiple times, you also get a small
increase in precision as the integers get larger. For example, with one sample, the func-
tion may take 10 ms. But with a thousand samples, the sum may give you 10435 ms,
indicating an average of 10.4 ms.

Figure 8-7 shows how each this function timer profiler measures one area of interest at
a time.

Timer Profiler 2 (Response Timer)

If you want to profile a function that is much shorter than your timer tick, you can use
a shorter timer tick in your profiler or change the way you sample. The following ex-
ample, for instance, profiles the whole main loop, because the profiler timer doesn't
stop until the counter has reached its goal as shown in the middle of Figure 8-7. This
may yield valuable information if you are trying to react to an event within a certain
amount of time.

  profile.count = 0;
  profile.start = TimeNow();
  while (1) {
    ImportantFunction();
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    profile.count++;
    if (profile.count == PROFILE_COUNT_PRINT) {
      profile.end = TimeNow();
      profile.sum = profile.end - profile.start;
      LogWithNum(eProfilerSystem, eDebug, "Important Function profile: ", profile.sum);
      profile.count = 0;
      profile.start = TimeNow();
      }
    ... // other main loop functions are also part of the profile
  }

This timer profiler has a larger impact on the results, because it increments the counter
and compares it to a constant inside the profiled area. If your loop is very quick, these
activities may be non-negligible. As before, you can check this assumption by com-
menting out everything in the main loop except the profiler. By taking this measure-
ment, the baseline of the profiler can be subtracted out of your final analysis.

As shown in Figure 8-7, this profiler gives you a longer view of the system timing. Both
of the timer profiling methods break up the flow of code. They tend to be temporary
pieces of code that you remove after gathering the information you want. Instrumenting
the code in this fashion is straightforward, so reproducing the code as needed is usually
better than leaving it in to slow down the code and/or confuse future generations.

Sampling Profiler

If you have an interrupt-driven system, profiling can be more difficult. However, if you
can allocate a block of RAM to it, you can implement a sampling profiler with a timer-
based interrupt.

First create a timer interrupt, one that is asynchronous to everything else in the system.
For example, if you have 10Hz and 15Hz interrupts, make sure your new timer is not
1, 2, 3, or 5Hz. Instead make it something like 1.7Hz so it is not evenly divisible into
any of your other time based interrupts. This makes sure that your results are not biased
by periodic functions. Figure 8-7 illustrates the relative timing of two functions and
your custom timer (the little arrows at the bottom).

238 | Chapter 8: Doing More with Less



Interrupt stores return address in RAM buffer

Function takes (Sum/3) ms 
to execute

Processor can respond within
(Sum/3) MS

40% of processor time
is spent in function

Time 
Profiler 2

Interrupt
Profiler

Time 
Profiler 1

Start
Sum + = End -Start Sum + = End -Start Sum + = End -Start

End End End

End Sum = End - Start

Start Start

Start

Figure 8-7. Comparing timer and interrupt profilers

Now, on every profiler timer interrupt, save the return pointer to the block of RAM.
The return pointer tells you what code was running when the timer interrupted. Once
the RAM buffer is full, stop the timer and output the list of addresses. Armed with a
list of return addresses, figure out where these are in the image using the map file. A
scripting language will significantly help you parse the map file and count up the num-
ber of times the profiler sampled from each function. You can thus figure out what
percent of the processor time each function is taking.

This method works best when your processor allows nested interrupts and the profiler
timer is the only one allowed to interrupt other interrupts. If you have other non-
maskable interrupts, you won't be able to see those in the results.

This sampling profiler doesn't slow down any particular function, but it does place a
tiny drain on the whole system. (Outputting the list of addresses may be a larger drain,
depending on your implementation.) This sort of profiler is readily left in the code with
the timer (and output function) turned off when it is unneeded.

Optimizing
Armed with the knowledge of what is slowing down your system, you can now explore
the options available to you. Definitely start by turning on optimizations in your com-
piler. The less tweaking you need to do, the better your code will be.

Next, try to get most of your variables into registers. Even if you have a long function
call chain and variables end up going on the stack while another function is called, if
they can at least be registers in a smaller scope, the code will be faster.

Having done those basics, consider the techniques in the following sections.
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Memory Timing

Wait states are a bane to efficient use of the processor resources. Many types of memory
cannot be accessed as fast as the processor runs. To get information from such memory,
the processor has to wait some number of processor cycles to offset the timing differ-
ence. Memory has a number of wait states. For example, if your code runs from four
wait state flash, every time it needs a new instruction, the processor has to wait for four
clock cycles.

I should point out that four wait state memory doesn't (always) mean your code runs
four times slower than in one wait state memory. Processors can pipeline instructions
to reduce the impact of slow memory: this means looking up the next instructions while
executing the current one. If the number of pipeline stages is greater than the number
of wait states, the memory will slow execution only when the pipeline stalls (which
tends to happen at branches, such as if statements, and function calls, because the
processor can't just assume that it will execute the next instruction in memory).

By knowing how many wait states each type of memory has, you have options for
speeding up execution by moving code to faster memory. For example, you may want
to copy a critical function to zero wait state RAM if that is faster than your normal
program flash. If you need the function occasionally, you can overlay the memory with
another buffer. When the function is needed, copy it out of code space (though you'll
need to do some profiling to make sure the overhead of copying it is balanced by its
amazing speed in RAM). Many compilers support a keyword (ramfunc), pragma or
macro that lets you indicate the function should be stored in code space but loaded
into RAM on boot (by the startup code that runs before main). Often, you'll need to
modify your linker file to put the section into RAM. Check your seldom used compiler
manual for this, not your handy processor manual.

Variable Size

When you are working on an 8-bit processor, it is easy to understand that using a larger
variable will incur a higher cost in terms of processor cycles. What may not seem as
logical is that using a smaller variable on a larger processor may have some unwanted
overhead as well. For best results, local variables should match the size of the registers.

When the compiler needs to reduce the size of a local variable from a native 32-bit
variable to a 8-bit char or a 16-bit short, it has to extend the sign, which means every
manipulation takes two instructions (or zero extend for unsigned variables, which only
takes an extra instruction). Cutting out one instruction at a time is a good way to drive
you crazy. However, if you generally implement variables using native types, you won't
have to sort through your code later.

Along the same lines, try to use the same type of variables for the bulk of your pro-
cessing. Type conversions are a waste of processor time. Converting between signed
and unsigned should also be avoided as much as possible.
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Signed ints are upgraded to unsigned ints when the two are compared.
So a small negative signed variable is likely to be considered a numeri-
cally larger value when unwisely compared with an unsigned variables.
Stick with unsigned variables unless you really need negative numbers.

One Last Look at Function Chains

Functions make your code run more slowly, because the processor switches context by
pushing data on the stack (and usually having to refill the pipeline). Of course, functions
make your code maintainable (and usually make it more correct), so don't eliminate
them entirely. Try to avoid small functions where the cost of calling the function may
outweigh its benefit.

For example, take an LCD display driver. LCD drivers are often optimized because the
data needs to be on the screen before the screen refreshes. If there is no other form of
control and only part of the data is available in the LCD's buffer, the screen may tear
(show part of the old image and part of the new) until the next refresh cycle. Our
example driver is for an LCD that is 240x320 pixels and each pixel is 16-bit (meaning
it has 216 colors). When putting an image on the screen (or part of the screen), the driver
reads from a buffer of RAM and puts it on a parallel bus that is 8-bits wide. The code
starts out looking like:

// in Lcd.c
void LcdWriteBuffer(uint16_t* buffer, uint16_t bufLength)
{
  int i;
  while (bufLength) {
    LcdWriteBus(buffer[i] & 0xFF);       // write lower byte
    LcdWriteBus((buffer[i] >> 8) & 0xFF); // write upper byte
    i++;
    bufLength--;
  }
}
void LcdWriteBus(uint8_t data)
{
  IoClear(LCD_SELECT_N);          // select the chip
  IoWriteBusByte(LCD_BUS, data);  // write to the IO lines
  IoSet(LCD_SELECT_N)             // deselect the chip
}

// in Io.c
IoWriteBusByte(uint32_t io, uint8_t data)
{
  // ioBus was configured during initialization
  ioBus[io] = data;
}

That is a lot of code, and when it's lined up like that you may see some chances for
optimization. When the code is scattered in multiple files, it can be harder to see.
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When you find a spot that seems worth optimizing, look at its call chain
as a whole.

Selecting and deselecting the LCD for every write is silly. The LcdWriteBus function has
to do it because it doesn't know what else is going on around it. However, the LcdWri
teBuffer function knows it is sending a large amount of data. While the LcdWriteBus
function is probably used by other parts of the code, the LcdWriteBuffer code won't
call it, instead implementing its own version.

//in lcd.c
void LcdWriteBuffer(uint16_t* buffer, uint16_t bufLength)
{
  int i;
  IoClear(LCD_SELECT_N);         // select the chip
  while (bufLength) {
    IoWriteBusByte(LCD_BUS, buffer[i] & 0xFF); // write lower byte
    IoWriteBusByte(LCD_BUS, (buffer[i] >> 8) & 0xFF); // write upper byte
    i++;
    buffLength--;
  }
  IoSet(LCD_SELECT_N)              // deselect the chip
}

So you've eliminated one link in the function chain. The function will run faster and
there is no way the compiler could have done that optimization for you. All you had
to do was copy code from one function to another, not sell your soul or anything.
However, if there was a bug in LcdWriteBus, it is likely to now be in LcdWriteBuffer.
Maybe you should add a comment in both functions to cross reference so a maintainer
will know to change both locations.

The slope gets much more slippery from here. The next function in the chain is IoWri
teBusByte. It is only one line of C code, but underneath it does some indirect addressing
to write to the I/O register. It does that every time the function is called even though
the byte is written to the same LCD I/O lines each time.

It seems like an easy change. However, the I/O function is in the I/O module, not the
LCD module. If you change this, your code becomes faster but less portable, as it won't
have any abstraction between the LCD and the hardware. Is it worth it? Are you looking
at a situation where you need 20% more cycles or one where you absolutely need 60%
more cycles?

The cost of making a dramatic improvement is often high. Even if the change is fast to
make now, future development time will need to be invested as the system becomes
less flexible and more information intensive. The next person is not going to recognize
the trade offs, so they will stumble over the code and ask why you made it so ugly.
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There is another option. By making IoWriteBusByte a macro, you can preserve the
modular boundaries and still eliminate the stack manipulation. The macro will take up
a little more code space (especially if IoWriteBusByte is used in many other functions).
Worse, you still are still spending processor cycles with the pointer access. However,
before we think about breaking encapsulation further, let's think through some other
options.

Consider the Instructions

If you were the processor, what would go on with the instructions that appear in the
two IoWriteBusByte calls, to read buffer[i] twice and then increment i? Though the
machine code is processor dependent, we can estimate the steps for each line of code
(in italics):

IoWriteBusByte(LCD_BUS, buffer[i] & 0xFF); // write lower byte
 (Variable i would already be in a register, already initialized)
  Copy the buffer pointer from the stack into a register
  Add the buffer pointer to i
  Read the contents of memory at that address
  Perform bit-wise AND with contents
  Put i on stack
  Call IoWriteBusByte, passing data
  Pop i off the stack

 IoWriteBusByte(LCD_BUS, (buffer[i] >> 8) & 0xFF); // write upper byte
  Copy the buffer pointer from the stack in a register
  Add the buffer pointer to i
  Read the contents of memory at that address
  Perform shift with contents
  Perform bit-wise AND with result
  Put i on stack
  Call IoWriteBusByte, passing data
  Pop i off the stack

i++;
  Increment register i

I broke the process down into pretty granular steps. Although some assembly languages
could combine some of my instructions, most of them would need a few more. The
goal is to think like a microprocessor. And, if you do this, even if you are wrong some-
times, you will write better and more easily optimized code. Thinking along those lines,
it would be more efficient if we didn't have to add the index to the buffer pointer.

Making a PB&J
There is a neat experiment you can run if you have a handy 5-9 year old. Ask them to
pretend that they have a robot (you) and want to make a peanut butter and jelly sand-
wich (PB&J). The ‘bot is very dumb so they have to give it complete and detailed
instructions.
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The robot already knows how to grasp and lift objects (bread, peanut butter, jelly, bread
and spreaders). But it doesn't know how to put it all together to make a sandwich. What
are the steps and how do they go together? As the child writes (or says) the steps, the
robot often creates a mess instead of a sandwich as it interprets each command literally.

Breaking down the process of making a PB&J is a fun way to get kids to understand a
little bit about the process of writing software. Plus, you get to say “Does not compute”
like a Dalek until they manage a sandwich.

(Thanks to Walter and Emma Stockwell for letting me experiment upon their sons,
Alasdair and Toby.)

IoWriteBusByte(LCD_BUS, *buffer & 0xFF); // write lower byte
  (Variable buffer would already be in a register, already initialized)
  Copy the buffer pointer from the stack in a register 
  Add the buffer pointer to i
  Read the contents of memory at that address
  Perform bit-wise AND with contents
  Put buffer on stack
  Call IoWriteBusByte, passing data
  Pop buffer off the stack

IoWriteBusByte(LCD_BUS, (*buffer >> 8) & 0xFF); // write upper byte
  Copy the buffer pointer from the stack in a register
  Add the buffer pointer to i
  Read the contents of memory at that address
  Perform shift with contents
  Perform bit-wise AND with result
  Put buffer on stack
  Call IoWriteBusByte, passing data
  Pop buffer off the stack

buffer++;
  Increment register buffer

i++;
  Increment register i

This doesn't really change anything important; it only gives a hint to the compiler about
what choices it could make to go faster. (And some compilers are intelligent enough to
have parsed the code to get to the same point.)

The immediate lesson is use pointer arithmetic (buffer++) instead of arrays and indexes
where possible. Pointer arithmetic uses a little less RAM and give the compiler a clearer
path toward optimization. The larger lesson is to understand how your code is trans-
lated into machine language, and to make it easy for a compiler to take a faster route.
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Reduce Math in Loops

What next? Ideally, we'd like to do less math during a loop. The shift and bitwise-and
are relatively cheap, but if you do them on every pass, they add up. It wouldn't be
necessary if the buffer was a byte buffer instead of a word buffer:

void LcdWriteBuffer(uint16_t* buffer, uint16_t bufLength)
{
  uint8_t *byteBuffer = (uint8_t *) buffer;
  // buffer is now a buffer of bytes.
  // This works only if your endian-ness matches what the hardware expects
  bufLength = bufLength*2;

  IoClear(LCD_SELECT_N);         // select the chip
  while (bufLength) {
    IoWriteBusByte(LCD_BUS, *byteBuffer);
    bufLength--; byteBuffer++;
  }
  IoSet(LCD_SELECT_N)              // deselect the chip
}

The code now relies on a feature of the processor (endianness) that will not be portable.
However, it will make it faster—probably. Remember that memory size matters. This
change would improve the speed of an 8-bit chip significantly. For a 32-bit chip? Well,
it shouldn't slow it down much because we were already doing the bit manipulation
previously shown. At least now we are letting the compiler do the best optimization it
can. The potential improvement depends on your architecture.

Usually, making the loop smaller is a good idea, as is making it do exactly the same set
of operations each time. Keep if statements out of loops, as they mess with your pipe-
lining and slow it all down.

However, there is a conditional statement in the previous loop. At this point, it may be
taking a non-trivial number of cycles. If you were to walk through the assembly code,
you might see that the loop is writing the byte, decrementing and incrementing some
registers, and checking to make sure one register is not zero.

Checking against zero is cheaper than checking against a constant
(much cheaper than checking against a variable). Make your loop in-
dexes count down. It saves only an instruction or two but it is good
practice.

Loop Unrolling

By now, when you look at the assembly for the loop in this function, the check against
zero may be one of about ten instructions. The decrement of bufLength is another. You
are spending 20% of your time dealing with loop overhead.
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The compiler can't get rid of that, but you know more about the situation. For example,
you know that there are an even number of bytes (because you made it that way). There
is no need to check the loop on every pass, only every other pass:

void LcdWriteBuffer(uint16_t* buffer, uint16_t bufLength)
{
  // Use a buffer of bytes. This only works if your endian-ness is correct
  uint8_t *byteBuffer = (uint8_t *) buffer;

  IoClear(LCD_SELECT_N);         // select the chip
  while (bufLength) {
    IoWriteBusByte(LCD_BUS, *byteBuffer);
    byteBuffer++;
    IoWriteBusByte(LCD_BUS, *byteBuffer);
    byteBuffer++;
    bufLength--;
  }
  IoSet(LCD_SELECT_N)              // deselect the chip
}

Now, if this loop previously took ten instructions to write a 16-bit pixel, it will instead
run in eight. We've eliminated an increment to bufLength and a check against zero for
a 20% improvement (yay us!). Loop unrolling, then, means reducing the number of
iterations by duplicating code inside a loop. Improvements that large are not usually
so cheap. Now we look back to IoWriteBusByte as the largest consumer of cycles in the
loop, even as a macro. We'll stop here because, as noted above, it accesses variables in
another file so it is a modification more egregious to maintaining modularity.

Why don't I care about removing the bufLength multiplication at the top of the function?
For the same reason I never mentioned breaking modularity to reduce IoClear and
IoSet. Reducing the code outside the loop is much, much less important because it
runs only once (or once per function call).

When you are optimizing, focus on the loops and the repeated actions.

When I introduced the LCD function, I mentioned the screen was 320x240 pixels.
Could you have a single function write out a whole screen's worth of data without any
conditionals? Of course. And it would be faster than having conditionals. However,
you'll be sad when you've lost count after pasting the 12243th instance of:

IoWriteBusByte(LCD_BUS, *byteBuffer); byteBuffer++;

Worse, when you compile, you may find that all those repeated instruction come with
a cost: code space.

Sidebar: Explaining optimization to a business major
Ultimately, optimization is an economics problem. You start out with a portfolio of
assets associated with your system. The major ones are the RAM, processor cycles, and
code space. You may also have some auxiliary assets in power consumption and pe-
ripheral support on your processor. Your most liquid asset is development time, so
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think of that as money. Once you invest (or allocate) these assets to parts of the system,
you lose the opportunity to use them in other subsystems.

If the set of investments you initially selected do not deliver the expected returns, you
might partially recoup the spent resources, but to do so you will need to sink more
development time into the project. As you go further along the development path,
switching the allocations becomes more and more costly (and less and less possible).
Making the right call at the start of the design process can mean the difference between
buying at the bottom of the market and losing your shirt.

In order to make strategic trades that are truly beneficial, you need to understand your
resources in terms of the assets and debts. Unfortunately, the system portfolio is not
yet a slick prepared prospectus that comes in the mail. An accurate, precise under-
standing of it takes a lot of time (aka money). Estimation can suffice for certain areas,
others require in-depth investigation (profiling).

Your system's assets are somewhat fungible. For instance, you can trade RAM for pro-
cessor cycles or code space (you will need some development time to facilitate the
transaction). Sometimes, you don't have to trade anything; spending more development
time will reduce your debt load. However, the total amount of any resource is fixed
and a resource can become so scarce that any amount of development time (and assets)
will fail to produce any more of it.

As you consider different optimization strategies, consider as well the high opportunity
cost that comes with investing your assets. Buying futures is almost always cheaper
than buying stock. Similarly, selecting resources at the design phase is cheaper than
waiting until the last minute and realizing you are seriously in debt with no easy way
to recover.

(Thanks to Jane Muschenetz for helping with the business side of this analogy!)

Lookup Tables

Nothing is ever free in optimization. Even turning on the compiler optimizations takes
development time, because the debugger no longer works as it did: when you step
through line by line, the debugger won't show you most of the variables (the ones the
compiler removed) and it jumps around (because the compiler rearranged the assembly
instructions).

Loop unrolling trades code space for speed. Using a macro instead of a function also
trades code space for speed. These trades go either way, so if you need more code space,
you may want to roll up any loops and eliminate macros.

There is another trade between cycles and code space (or RAM) that goes beyond mac-
ros: lookup tables. When the running code needs the information, instead of perform-
ing calculations, it finds result in the table, often with a simple index.

For simple example, if you need to transform from the 128 ASCII characters into their
Unicode equivalent, you can put them in a table to look up the result. Lookup tables
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go far beyond this though, many complex algorithms (i.e. encryption's AES) have two
implementations: a fast one (large) one that uses lookup tables and a small (slow) one
that computes the values it needs. (Generating lookup tables to reduce math overhead
is covered in gory detail in Chapter 9.)

The lookup table can be code based (where the values are calculated at or before com-
pilation) or RAM-based. The latter are useful if your RAM access is fast (fewer wait
states) or you have plenty of RAM but not enough code space (calculate the table on
initialization). They can also be useful if your lookup values need to change when
circumstances change (e.g. a networking router's lookup tables change when a different
protocol is needed).

The compiler may create a lookup table when you use a switch state-
ment in place of an if-else. Looking at your assembly code will tell you
if it has (and if it is a savings to you).

Coding in Assembly Language

Looking at your assembly code is an important part of optimizing. Even if you don't
start out knowing the meaning of the instructions in your assembly language, following
along in the debugger for critical functions will help you figure out what the processor
is really doing. Once you understand that, you may be able to tweak your high level
language code to help the compiler do something more efficient.

That said, your time is valuable. Don't program in assembly language. Really, it isn't a
good idea. The resulting code is usually a mess, almost always easier to rewrite than it
is to read, even by the original programmer. That isn't to say it is easy to rewrite, just
that it can be impossible to read. Maintenance to assembly code tends to be in the form
of major refactoring (aka rewriting it all, fixing the old bugs but indubitably writing
new ones).

However, if you have a function that really, really needs to be super-fast and the com-
piler is clearly not doing all it can, well, programming in assembly can be kind of fun,
in a furtive playing-Tetris-at-work sort of way.

Start off with the high level code. Understand the assembly generated by the compiler.
Next, turn optimizations on and really understand the new assembly generated by the
compiler. You are smarter than the compiler and you have more system knowledge.
But the compiler almost certainly knows the assembly language better than you do. Let
it show you what it thinks is important before you start tweaking the assembly that the
compiler output.

That is the big secret: don't start with a blank slate. Start with the assembly your com-
piler gives you and go from there. Paste the equivalent high-level code into the assembly
code as comments so that your future-self can remember the goal of each section.
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Summary
I can't provide a comprehensive list of optimization techniques. They depend on your
processor and your compiler. Even more importantly, they depend on your require-
ments and your available resources. I can say that if you've gotten to the end of the
project and you are looking for cheap ways to reduce your code by 40%, you have
seriously misjudged the ability of your hardware resources to support your application.
But I've made that mistake too.

Optimization starts with a good design, preferably one with a little extra overhead just
in case the future features turn out to be larger, slower, and more RAM intensive than
you'd planned. Even at the end of the project, you need a few spare resources to fix
bugs and respond to hardware changes.

In medical and safety-related products, that margin needs to be larger.
Recompiling the code is a paperwork-intensive process even for a minor
one-line change. If you end up changing 50 lines because you need one
more byte of RAM or just a few more processor cycles to implement the
change, the paperwork and testing grows exponentially.

While there is some fun to be had in reducing the resources as far as possible, you'll get
diminishing returns. While the first 10% of improvement shouldn't be too difficult, the
next 10% will probably take twice as long (and so on). Start with a goal and don't
optimize much beyond there.

There are trade-offs in optimization. You can share resources between subsystems. But
every time you do that, your product becomes a little less robust and a little more fragile
for the next person to modify. There is something incredibly embarrassing about hand-
ing a project off to another team and explaining why they should never change sub-
system X because it will change the very precise timing of subsystem Y.

A better way of utilizing development time is to look for ways to optimize using well-
understood algorithms. Keep reading books (and blogs) for ways to solve common (and
not-so-common) problems. A proven algorithm is well worth the time invested. Instead
of inventing the wheel all over again, you can refine someone else's.

One last point: many times, the tuning of the system is left to the end of the development
cycle, even after the first testing has completed. I've heard that this is done on the theory
that the features should work before they get tuned. The process of keeping the system
within its resources should be planned for and maintained during system development.
Introducing complex changes right before you ship a product will lead to an unstable
system. Balance the risk of making a premature optimization (e.g. reading all of your
assembly list code looking for ways the compiler could have reduced a single instruc-
tion) against the benefit of making an optimization early so it can be thoroughly tested
and have an impact on other design considerations.
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Further Reading
While I have attempted to give you some tools to take care of the largest problems,
there are almost always ways to squeak out a little bit more. For more optimization
techniques, look to your processor vendor's application notes and your compiler man-
ual. Atmel has a particularly good application note for one of their 8-bit processors:
AVR035: Efficient C Coding for AVR.

Interview question: Reverse bits in a byte
Start by reversing the bits in a byte using limited memory. Once you've finished,
modify the code to be as fast as possible (but without the memory limitation).

In an interview setting, I don't mind if the interviewee starts out slow, with a relatively
dumb solution. Optimization should take a backseat to correctness.

uint8_t SwapBitsInByte(uint8_t input) {
  uint8_t output=0;
  for (uint8_t i = 0; i < 8; i++) { // for every bit in the byte
    if (input & (1 << i)) { // need to set the bit in the output
      output |= 1 << (7-i);
    }
  }
}

Generally, I don't look for syntax during interviews (that is what compilers are for).
However, in this problem, parentheses are important because the bit shift operator has
lower precedence than addition or subtraction. If the interviewee has missed this, the
reminder will probably come in the form of "walk through this test case and tell me the
value of each variable at every step".

Ideally, the programmer should check her own code, running through it with a couple
of values to make sure that following the instructions works. Like mental unit tests, I
like to see the interviewee do this as she writes the code (or even before).

When I look at the solution, naming is important, for both function names and variable
name. Comments are nice as long as they are useful ("// set the bit in the output" might
be useful on an if-statement but it probably isn't on the actual setting of the bit line).

Using variables to implement the problem is a good start to the solution, although there
is a straightforward way to do it with one variable (by unrolling the loop). If the can-
didate mentions that both variables (and input parameter) are likely to be in registers,
I can point out that the use of an extra register probably meant some other variable got
pushed on to the stack. Despite the correction, the interviewee gets a lot of points for
the observation.

As for the second part of the problem, I don't know anyone who has successfully worked
out the problem in an interview situation. It is one of those tricks that you just need to
know: use a lookup table. If you can allocate 256 bytes (in RAM memory or in code
space, whichever is faster), then to quickly find the reverse of a byte, all you need to do
is use the value of the byte as a lookup into the array of bytes.
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uint8_t SwapBitInByte(uint8_t input) {
   const uint8_t lookup_table[256] = {0x00, 0x80, 0x40, 0xC0... 0x7F, 0xFF};
   return lookup_table[input];
}

This technique is often used in embedded situations when the system has more code
space than time. I hope that by this point, the interviewee has mentioned that she'd
look up the algorithm to make sure she had a reasonably optimal solution for the design
constraints.

There is a more optimal solution to the first part of the question. Instead of reversing
the bit one after another, using a temporary variable, the code can reverse the bits
pairwise, then reverse the pairs, then reverse the nibbles. All without a temporary var-
iable (and I suspect one less register can be used):

uint8_t SwapBitInByte(uint8_t val) {
  val = ( val & 0x55 ) << 1  | ( val & 0xAA  ) >> 1;
  val = ( val & 0x33 ) << 2  | ( val & 0xCC ) >> 2;
  val = ( val & 0x0F ) << 4  | ( val & 0xF0 ) >> 4;
  return val;
}

I would not expect an interview candidate to come up with this on her feet. I had to
adapt it from Hacker's Delight by Henry S. Warren. On the other hand, now I'm tempted
to make future interviewees explain what the code does (and how to make it faster,
hoping they would come up with a lookup table).
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CHAPTER 9

Math

When we looked at trading resources, you had to choose between RAM, code space
and processing cycles. Trading resources only goes so far. Sometimes you need to know
some techniques to make your code go faster. Not knowing what you'll need for your
system, I can still guess that you'll need to implement some math (that being where
processors excel).

The less your system does, the fewer resources it needs to do them. Sometimes we
confuse important accuracy with pointless precision (see “Accuracy vs. Preci-
sion” on page 253). If you can quantify the range of data you expect and your error
budget, there are some useful methods to reduce unnecessary precision for all sorts of
algorithms.

Accuracy vs. Precision
Accuracy is a measure of how correct you are. Precision is how many digits you show
in your answer. Both of there have degrees to them; one answer can be more accurate
and/or more precise than another. A really accurate answer knows its limitations. For
example, what is the distance to the moon?

Distance to the moon Is it precise? Is it accurate?

12.12345124 km Stupidly so No

400,000 km No Far more so than 12 km, accurate enough for most conversations

383,990 km Yes Even more so

383,990.12341231 Uselessly so Same accuracy as the previous answer

383,990 +/- 30,292 km Yes Yes, best answer yet

Precision can be noise. If the extra bits of precision don't mean anything, they needlessly
complicate your system, use precious RAM and waste processor cycle. As you imple-
ment complex algorithms and perform mathematics on your data, you need to deter-
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mine just how much precision is required to maintain sufficient accuracy for your
product.

Identifying Fast and Slow Operations
Optimizing your system to do its mathematical operations quickly requires you to un-
derstand a bit more about your compiler and processor. Once you understand which
operations occur quickly (and which ones take up one line of code but compile to use
two libraries and an absurd amount of processing), you'll have the basis to optimize
your system.

So, addition and subtraction are fast. Shifting bits is fast. Division is very slow. Anything
with floating point is dead slow.

What about multiplication? On a DSP, it is fast: multiply and add together form a single
instruction (MAC for multiply-accumulate). On a non-DSP (e.g. an ARM or your PC),
multiplication is between addition and division, closer to addition.

Division isn't built into hardware as with the other arithmetic operators.
It calls a library function, usually a pretty large one if you look in your
map file.

Just because an operation can be described in one line of code, that doesn't mean it
takes a short time to run on the processor. Chapter 6 mentioned that modulo math was
useful for circular buffers. It is also useful if you want to do something on every Nth
pass of a loop:

for (i=0; i<100; i++)
  if ((i%10) == 0) {
    printf(“%d percent done.”, i);
  }
} 

However, that %10 is actually a hidden division, a relatively costly instruction (though,
nowhere near the processing cost of printf but that is another story). If you could make
the interval a power of two, you replace the modulo math with a cheap (single instruc-
tion) bitwise logic operation (see “Representing Signed Numbers” on page 181 for
why).

for (i=0; i<100; i++)
  if (i & 7) { // this will print out every 8th pass
    printf(“%d percent done.”, i);
  }
}
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In many processors, addition and subtraction take a single processor cycle. However,
if they don't, then addition of unsigned variables is faster than addition or subtraction
with signed variables.

Shifting bits takes a single processor cycle if the number of bits to shift is a constant. It
is a cheap way to do divide and multiple, if you can keep your constants to a power of
two. (We'll be discussing this one in a lot more detail.)

Using constants is faster than using variables. But they need to be real constants (#de-
fine) not constant variables (const). Now you know why embedded system program-
mers are still addicted to ugly #defines.

There are a ton of these rules but you'll learn them with time. Once you get a feel for
the details of your processor (and compiler), much of it is common sense, considering
what your system really needs and how to implement it. Let's take a look at a common
system example to see how different choices can change an algorithm.

Taking an Average
For many signals, you'll need to calculate the average (aka mean) and standard devia-
tion. Sometimes that is your output. Sometimes it is just a sanity check to make sure
your signal hasn't gotten overly corrupted by noise.

With a rolling N-point average, you calculate the average of the last N points. You don't
even need to add them all up and divide each time, you can add the new point and
subtract the oldest (like a FIFO).

newAverage = lastAverage + (newSample/length) – (oldestSample/length);

However, you have to perform division at every step. And if you are averaging over a
large number of small valued samples, this division may truncate and give you an in-
accurate average (see sidebar on the downsides of integer math).

The other downside to a rolling average is that you need to keep the sample buffer intact
until the oldest sample is leaving the average. If the average is over a large number of
samples, this could be a big RAM buffer.

Instead of jumping into optimization, take a step back and consider the needs of the
system. Do you need a new average value at every time step? Or can you use the same
value for a period of time? If so, you might be able to implement a block average instead
of a rolling average. That is where you average over a number of samples until you need
the average, then you restart the calculation.

struct sAve {
  int32_t blockAverage;
  uint16_6 numSamples;
};
int16_t AddSampleToAverage(struct sAve ave, int16_t newSample){
  ave.blockAverage += newSample;
  ave.numSamples++;
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}
int16_t GetAverage(struct sAve ave) {
  int16_t average = ave.blockAverage/ave.numSamples;
  // get ready for the next block
  ave.blockAverage = 0; ave.numSamples = 0;
  return average
}

Figure 9-1 shows a set of samples with the rolling average (over five samples) and the
block average (also over five samples). Note that each time the block average changes,
it is the same as the rolling average result at that point. The rolling average changes
faster and so it is a more accurate representation of the data at any given time step. If
you only need the average at every fifth (or hundredth) time step, then the block average
is just as accurate at a much lower cost in terms of RAM and processor cycles.

Figure 9-1. Rolling average vs block average

The Downside of Integer Math
What is 4/4? 1. Excellent. What is 5/4? Um, according to the processor, that is still 1.
As is 6/4 and 7/4. Integer division truncates the number, like running the floor() func-
tion on a floating point number. It can lead to serious trouble.

For example, what if you optimized the rolling average to avoid an unnecessary division:

newAverage = lastAverage + ((newSample- oldestSample)/length);

If your samples are all about the same, your average will be horribly incorrect. Fig-
ure 9-2 shows three different forms of the rolling average. First there is the floating point
version which tracks the signal reasonably well (though it is slightly delayed). Next is
the sample implementation but with integer truncation as the oldest and newest sample
are individually divided by the length. It tracks reasonably well but you can see some
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inaccuracies. Finally, there is the implementation given above. It saves a costly division
step but the result is junk.

You want to save resources but generate junk.

Figure 9-2. Truncation failure in rolling average

The solution is easy to state: large values should be divided by smaller ones; they
shouldn't be similar in magnitude.

It is much more difficult to actually implement that. If you know that you are going to
have the problem, you can choose to increase the magnitude of your numerator (that
is, multiply every sample by some fixed constant). For taking an average, multiplying
by any constant greater than the number of samples in the average will suffice. That
would be fine here. The resulting average will be off by that amount so you may need
to divide by it later.

You can choose any constant, as long as you don't multiply the samples so they are two
big to fit in their variables. Not only can division cause underflow, multiplication can
cause overflow which also results in odd behavior. That means you need to know the
range you are expecting to receive. Using the knowledge of your system to optimize is
very useful but it can lead to a brittle system where seemingly minor changes (i.e. the
input range changing by 10%) lead to errors.

Thus, the downside to integer math is that you need to know and depend upon a range
of input values so that you can make sure your accuracy is not degraded by the lack of
precision.
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Use an Existing Algorithm
Once you've got a bit of a feel for what is fast (addition, shifting, and maybe multipli-
cation), now I'm going to share the most important the thing to do when you need to
implement an algorithm using minimal resources: look it up. If it is a standard algo-
rithm, search online or pull out a numerical recipes book. If someone has already put
in the time and effort to explaining how to reduce the processing cycles or the RAM
usage, use their work. I mean, make sure the copyright situation is good, but most
instructional materials exist so someone will use them.

There are probably several ways to implement an algorithm but only one or two will
save the resources you need to preserve. For example, let's look at standard deviation.

The standard deviation is how far the samples in a set vary from the average of the same
set. The standard deviation (σ) is calculated using each sample in the group (xi), the
mean or average of the group (u) and the number of sample in the set (N) according to
the equation in Figure 9-3.

Figure 9-3. Equation for Standard Deviation

How to make this friendly for your embedded system? Well, take the square root piece
first… The simple answer is to not perform the square root. While it changes the value
of the result, it doesn't change the information it gives you about how much the samples
vary. Since many people do this, the un-square-rooted standard deviation is called a
variance.

(Imaging how many processing cycles we've already saved by redefining the goal!)

We can start by implementing the variance pretty much as it is in the equation:

uint16 GetVariance(int16_t* samples, uint16_t numSamples, int16_t mean) {
  uint32_t sumSquares = 0;
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  int32_t tmp;
  uint32_t i = numSamples;
  
  while (i--) {
    tmp = *sumSquares-mean;
    sumSquares += tmp*tmp; 
  }
  return (sumSquares/(numSamples-1));
}

Note that the mean was passed into the function. It has already been calculated for this
block. Another piece of code has already looked at each of the samples so this function
is a second pass through the data. In addition to the inefficiency of running through
the loop twice, you have to keep all of the data around in a buffer, probably a waste of
RAM.

However, like the block average, you can calculate variance as you go along.

struct sVar {
  int32_t sum;
  uint64_t sumSquares;
  uint16_t numSamples;
};
void AddSampleToVariance (stuct sVar *var, int16_t newSample) {
  var->sum += newSample;
  var->sumSquares += newSample*newSample;
  var->numSamples++;
}
uint16_t GetVariance(struct sVar *var) {
  int16_t average = var->sum/var->numSamples;
  uint16_t variance = (var->sumSquares - var->sum*average)/(var->numSamples-1);
  // get ready for the next block
  var->sum = 0; var->numSamples = 0; var->sumSquares = 0;
  return variance;
}

There is at least one problem with that implementation. The variable sumSquares can
get quite large (even sum can get pretty large if you have many samples). Instead of the
signed 16-bit samples in the code, let's say the function used signed 8-bit samples. If
you have two samples at 127 each, your sumSquares would be 32258, almost 15 bits.
By the time you had five samples at the maximum value, you'd need 17 bits to hold
your sumSquares which means moving up to a 32-bit variable. If you are using 16-bit
values, the sumSquares needs to be a 64-bit variable. Using large variables takes RAM
and processing cycles.

That wouldn't happen in the two pass implementation because the subtraction of mean
from each sample keeps the sum of squares reasonably small. However, there is a way
to do it without using a large intermediate variable and without taking two passes at
the data:

struct sVar {
  int16_t mean;
  int32_t sumSquares;
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  uint16_t numSamples;
};
void AddSampleToVariance(struct sVar *var, int16_t newSample){
  int16_t delta = newSample - var->mean;
  var->numSamples++;
  var->mean += delta/var->numSamples;
  var->M2 += delta * (newSample - var->mean); // uses the new mean
}
uint16_t GetVariance(struct sVar *var) {
  uint16_t variance = var->M2/var->numSamples;
  // get ready for the next block
  var->numSamples =0; var->mean = 0; var->M2 = 0;
  return variance
}

I don't think I would have come up with that on my own, especially when I was focused
on building a way to see how much the samples in my system varied from the mean.
Even Knuth credits an article by another author (Welford).

Looking at the code in more detail, to store the intermediate variable for the variance,
you only need a variable that is double the size of your sample (so if your sample is 8-
bits, M2 can be 16-bits). This method lets you use a variable that is the same size as
your data to store the mean (as opposed to the sum variable above which depended on
the number of samples. However, the code is less legible and if you change the order
of the lines in AddSampleToVariance, it will break. It also does a division operation on
every pass and, worse, the division to calculate mean can cause problems because delta
is likely to be small.

Yes, everything has consequences. Sometimes trying to save processor cycles is like
trying to hold tightly onto a balloon; the more you grip it, the more some other area
will poke out between your fingers. By using a well understood algorithm, there is a
good chance that the failure analysis will already be done for you. There is a lot to be
found online about optimizing some algorithms but some trusted resources described
in “Further Reading” on page 282 are worth having on your bookshelf when you need
them.

If you really need to know the standard deviation (instead of the var-
iance), there are many methods of approximating the square root. More
than ten are listed on the relevant Wikipedia page. Choose one or two
then use your profiling tools to compare them with your compiler's math
library.

Designing and Modifying Algorithms
Sometimes your algorithm goes beyond simple math and yet isn't something you find
as a recipe in a book.
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As with cooking, the more recipes you know, the more likely your mod-
ifications will succeed.

There are many tips for implementing different processor intensive operations. If you
learn some of the building blocks, you can optimize for yourself.

Factor Polynomials
Say you have something that can be implemented as:

y = A*x + B*x + C*x;

That is three multiplications and two additions. If you factor your polynomial you can
have it in two additions and one multiplication:

y = (A + B + C)*x;

Much better. You can take this further process further and turn the polynomial inside
out:

A*x3+B*x2+Cx  ==>  ((Ax+B)x+C)x

On the left, if you'd calculated x cubed and multiplied it by A and so on you would
have done nine multiplications and two additions. If you go the other way, the same
answer arrives in three multiplications and two additions. How you frame a polynomial
is very important.

This method is called Horner's scheme and was developed by mathe-
matician William George Horner.

Taylor Series
Polynomials are important because they make up one way to model complex steps in
your algorithm. A Taylor series represents a function as a sum of infinite terms. It works
for most functions including trigonometric (sine, cosine, tangent, arcsine, etc), more
difficult polynomials (x-1), square root and logarithms. As more terms in the infinite
series are added, the result becomes more precise (and more accurate). You can turn
that around: you don't need infinitely many terms to generate an accurate answer for
your function.

Creating a Taylor series for a generic polynomial is a fair bit of math, beyond the scope
of this book (much more than the slight trickery of Horner's scheme). However, you
can look them up easily. For example, the sine function can be replaced with its Taylor
series expansion (see Figure 9-4).
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Figure 9-4. Sine function in Taylor Series, rearranged via Horner's scheme

I'm going to going to work all of this section in radians. Remember π
=180 °.

For the Taylor series with four terms, the error between π and – π is small (0.000003).
If it is still too large, you can add the next term in the Taylor series for more accuracy
(+x^9/9!). Or if you can deal with more error than that (particularly at the edges of
+/- π), you can stop a term early.

Physicists often stop at the first term, approximating sin(x)=x. The
closer to x is to zero, the better this works.

As before, to really optimize, you need to understand your input and the acceptable
error of your system. If your input is in the range of -0.2 π to 0.2 π, and you need an
accuracy of 10%, you can use the physicists' approximation. Or if you need an error of
less than 1%, you can use two terms of the Taylor expansion. A Taylor series approx-
imates lets you balance the processing power with the accuracy required by your ap-
plication (see Figure 9-5).
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Figure 9-5. Different numbers of terms for the sine Taylor series

Because they are just multiplications and additions, Taylor series are relatively light in
processor intensity. Putting in constants and using Horner's method, we can implement
four terms of sine (in floating point) as:

xSq = x*x;
sinX = x * (1 – xSq * (INV_THREE_FACTORIAL + xSq * 
            (INV_FIVE_FACTORIAL – INV_SEVEN_FACTORIAL * xSq)));

// or taking it apart and writing multiple steps, stating with 
// the end and moving toward the front:
tmp = – INV_SEVEN_FACTORIAL * xSq;
tmp = xSq * (INV_FIVE_FACTORIAL + tmp);
tmp = xSq * (-INV_THREE_FACTORIAL + tmp);
sinX = x * (1 - tmp);

Why does this have to be floating point? Because INV_THREE_FACT and the other
constants need to be between zero and one. However, there are ways to avoid this
problem.
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Dividing by a Constant
Division is a relatively costly arithmetic step. But when you divide by a constant, there
are ways of cheating. Using sine's Taylor series for an example, let's say you need to
divide by 3!. That is 3*2*1 = 6. Well, that won't be too difficult.

uint16_t InverseThreeFactorial(uint16_t input){
  const uint16_t denominator = 6;
  return input/denominator;
}

For now, let's not worry about x being between +/- π, instead taking a larger number
to play with. If the input is 245, the result will be 40 in integer math (40.833 in floating
point). I'm not yet concerned about the truncation here, just about the division oper-
ation. Is there a way to make it faster?

Shift is faster, much faster. Sadly, six is not a power of two. However, there are other
ways of formulating the number 1/6. I mean, 2/12 is obvious but not useful to our
purposes. What we want is multiplier/powerOfTwo to be equivalent to 1/6 (0.166667),
at least within some small amount of error. Then we can multiply by the numerator by
the input and shift the result to finish the division. We trade division for a multiplication
and shift. Table 9-1 shows some multiplier with their power-of-two divisors and re-
sultant errors.

Table 9-1. Approximating 1/6 with a power of two divisor

Multiplier Divisor Equivalent Shift Result % Error

1 6 ? 0.166666667 0

3 16 4 0.1875 12.5

5 23 5 0.15625 6.2

11 64 6 0.171875 3.1

21 128 7 0.164063 1.5

43 256 8 0.167969 0.78

85 512 9 0.166016 0.39

171 1024 10 0.166992 0.19

341 2048 11 0.166504 0.09

683 4096 12 0.166748 0,04

Note that the errors in the table divide in half for every additional shift. So if you im-
plement a function to divide by 3!, it could look like this:

#define INVERSE_THREE_FACT_MULT 171
#define INVERSE_THREE_FACT_SHIFT 10
int16_t InvThreeFact(int16_t input){
  int32_t tmp = input* INVERSE_THREE_FACT_MULT;
  return (tmp >> INVERSE_THREE_FACT_SHIFT);
}
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Note that the input and output are 16 bits but a 32 bit variable is necessary to hold the
multiplication result. Even using a larger temporary variable, this function is cheaper
than division.

If you don't do the final shift, the result can be more precise than the
truncated division. You'll need to remember that the value is multiplied
by 1024 when you use it.

However, there is a big downside to this implementation: you need to know the divisor
ahead of time to construct the function. While it is useful anytime you need to divide
by a constant, it isn't generic enough to get rid of all division.

Scaling the Input
The sine function takes and input from –π to π and outputs a value from 0 to 1. That
is all pretty difficult to do if you are avoiding floating point numbers. However, you
can multiply everything by a constant to get more granularity than an integer imple-
ments. For example if you want to get rid of floating point numbers in the sine function,
you can change the input to +/- -1024 π and make the output be +/-1024.

For mathematical operations where f(Ax) = Af(x), it is as simple as using the scaled
input. Even for functions that are f(Ax) = f(A)f(x), removing the scalar is straightforward
(divide by f(A)). However, sine is more complex than that.

You'll have to keep track of the multiplications in the Taylor expansion which means
checking that each step is only scaled by a single 1024 and not multiple:

xSq = x*x >> 10;  // right shift is like divide
tmp = – InverseSevenFactorial(xSq);
tmp = (xSq * (INV_FIVE_FACTORIAL + tmp)) >> 10;
tmp = (xSq * (-INV_THREE_FACTORIAL + tmp)) >> 10;
sinX = x – ((x * tmp)>>10);

The great news here is that with the scaling, the division at some of the steps becomes
easier. Everything must be multiplied, including the constants. Instead of multiplying
by 1/3! (essentially dividing by 6), we are multiplying by 1024/3! which is about 171.
Since 5! Is 120, there is more error to rounding 1024/120 to 8 (8.533). The last term
( 7! = 5040) is still large so it requires some actual division, though it is still dividing by
a constant. Because it is a small constant, there is some error associated with it as shown
in Figure 9-6.
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Figure 9-6. Errors in scaling the input with Taylor series (0 to π)

There are ways to alleviate these errors (such as scaling by a larger number). As you are
implementing your changes, you will need to understand where error comes into the
system. As with profiling, the bulk of your time should be spent on the sources of the
largest error, not optimizing a minor contributor.

These ideas of scaling and division by shifting are going to help us create a method to
avoid floating point numbers entirely. Before we go directly there, let's look at a very
popular way to save processor cycles.

Lookup Tables
As mentioned in Chapter 8 (and expounded on in the interview question), lookup tables
are blazingly fast and just require a bit of code space.

However, to use a lookup table, you need to know the range of the input and the
acceptable error. In Taylor expansions, it drives the number of terms you calculate. In
lookup tables, these parameters determine the number of entries in your table.

Implicit Input

Each entry in the look up table requires two pieces of information: the input (x) and
the output (y). However, not all look up tables require both to be in the table. With
implicit input lookup tables, the position in the array indicates the input value. For
example, here is a sine lookup table with an input in milliradians (-π/1000 to +π/1000)
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and an output also scaled by 1000. (Note: lookup tables decrease the dependency on
power of two shifts, often leading to more human-sensible scaling.)

const int16_t sinLookup[] =
  -58,   // x =  -3200
  -335,  // x =  -2800
  -676,  // x =  -2400
  -910,  // x =  -2000
  -1000, // x =  -1600
  -933,  // x =  -1200
  -718,  // x =  -800
  -390,  // x =  -400
   0,    // x =  0
   389,  // x =  400
   717,  // x =  800
   932,  // x =  1200
   999,  // x =  1600
   909,  // x =  2000
   675,  // x =  2400
   334,  // x =  2800
  -59    // x =  3200
};

To use the table, you'll need to calculate the index that matches your input. To do that,
subtract the lowest value in the table and divide by the step size of the table:

uint8_t index = (x – (-3200))/400;
y = sinLookup[index];

Wait a minute, why are killing ourselves optimizing a sine function if we are just going
to do a division now? Right. The step size of the table not only changes the precision
of your table, it can also change your processing requirements. The non-power of two
step size was a bad choice. If we'd chosen 512, the table would only be a little bit smaller
(less precise) but the processing would have been shorter:

uint8_t index = (x – (-3145))>>9; // use #defs, not magic numbers
y = sinLookup[index];

Given only thirteen entries, the table is not very precise but will the results be accurate?
Figure 9-7 shows points and where they'll land in this calculation. With this code, we
are looking at a) where the value returned by the table represents the result of the input
at the start of the interval covered. The table would be more accurate if the output value
covered the center of the range as shown in b).
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Figure 9-7. Comparing Sine

The table itself doesn't need to change to make this happen, just the indexing. In effect,
we need to add half a step when calculating the index:
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uint8_t index = (x – (-3145 - 256))>>9;
y = sinLookup[index];

This idea of adding a half step to center the result is prevalent in almost
every well implemented lookup table.

Once you change the valid range, I'd recommending making the comments describe
the range as well as the value.

#define BASE_SIN_LOOKUP (-3124 – 256)
#define SHIFT_SIN_LOOKUP 9
const int16_t sinLookup[] =
  3,     // x @ -3145, for range -3401  to  -2888
  -487,  // x @ -2633, for range -2889  to  -2376
  -853,  // x @ -2121, for range -2377  to  -1864
  -1000, // x @ -1609, for range -1865  to  -1352
  -890,  // x @ -1097, for range -1353  to  -840
  -553,  // x @ -585,  for range -841   to  -328
  -73,   // x @ -73,   for range -329   to  182
  425,   // x @ 493,   for range 183    to  695
  813,   // x @ 951,   for range 695    to  1207
  994,   // x @ 1463,  for range 1207   to  1719
  919,   // x @ 1975,  for range 1719   to  2231
  608,   // x @ 2487,  for range 2231   to  2743
  142,   // x @ 2999,  for range 2743   to  3255
};

Note that this new table has a step size of 512 and thirteen entries. It looks Fig-
ure 9-8. This table covers the expected input (-π to + π) and a little more besides.
However, if there is a possibility of getting data outside the table's range, add code to
verify the inputs. After all if your input is 2 π, then your index will be 19, outside the
range of the table. However, accessing sinLookup[19] will work in C but give you a
completely incorrect result.
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Figure 9-8. Points in sine lookup table

Linear Interpolation

In the lookup table, even with the center biasing, there are times when your result
should be more accurate than a single number covering a range of inputs. In that case,
linear interpolation may be the way to go.

You can use other interpolation methods. Consider the trade-offs be-
tween the increased computational requirements of a polynomial fit
against the code space of putting in a larger table.
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Figure 9-9. Linear Interpolation

As shown in Figure 9-9, linear interpolation isn't hard, just a bit of algebra you might
not have used for a while. You'll need two values from the lookup table: the one below
the input you have and one above. In the figure, the goal is to find the output for x=5
so the two closest points are used. Since the input and output values are linked, for
interpolation, I find it simpler to treat them as points instead of individual values:

struct sPoint {
  int16_t x;
  int16_t y
};

The linear interpolation code is simply math, be sure to keep the bits from overflowing
with the multiplication.

// This linear interpolation code does:
// y = p0.y + ((x-p0.x)*(p1.y-p0.y))/(p1.x-p0.x);
// But in a bit safe way.
int16_t interpolate(struct sPoint p0, struct sPoint p1, int16_t x)
{
  int16_t y;
  int32_t tmp; // start and end with int16s but can need a larger intermediate
  tmp = (x – p0.x);
  tmp *= (p1.y – p0.y);
  tmp /= (p1.x – p0.x);
  y = p0.y + tmp; // now safe to go back to 16 bits
  return (y);
}

This method works even if the input is not between the two points. If you end up with
an input that is just outside your table, you can use the last two points in the table to
interpolate past the end.

Note there is a division associated with linear interpolation. You are trading some pro-
cessor cycles to get more accuracy with a smaller table size (code space). You can avoid
division by making size of the x-steps in the lookup table a power of two (as I did with
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the last sine lookup table above). Then the divisor is a power of two so the divide can
become a shift.

While the table lookup depends on the table itself, interpolation is a step away from
that. By optimizing the division out, your interpolation function depends on the table
data. If you have multiple tables, you'll need multiple interpolate functions (or a pa-
rameter to describe the shift value). Be careful as it will make your code less readable
and more brittle, linking data and code together. If you need the processing cycles, it
may be the best way. But it makes for lousy code.

Explicit Input in the Table

For some functions, you can create a smaller or more accurate table by allowing variable
step sizes, interpolating between them. The sine function is very linear toward the
center as seen in Figure 9-8. We could easily take out the three canter most points and
let linear interpolation handle it (which is why sin(x) = x for small x is so popular).
Even the outer most edges could have a sample removed; it is those tricky curves that
need more points.

Sometimes a lookup table has a variable step size to decrease errors in certain areas.
Linear interpolation can be used between the areas as shown in Figure 9-10.

Figure 9-10. Using linear interpolation between points on an explicit lookup table

The lookup table is now nearly double in size because we have to put in the start of the
range covered as well as the value. It takes up more code space but we gain accuracy
in the areas we need it most
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struct sPoint sinLookup[] ={
  { -3145 , 3 },
  { -2121 , -853 },
  { -1865 , -958 },
  { -1609 , -1000 },
  { -1353 , -977 },
  { -1097 , -890 },
  { 951 , 813 },
  { 1207 , 934 },
  { 1463 , 994 },
  { 1719 , 989 },
  { 1975 , 919 },
  { 2999 , 142 }
};

An explicit input lookup table is often used if you have to build the table
from the environment such as when calibrating a sensor for temperature
effects. The x value would be the temperature read via a thermistor and
the y value would be the offset from the expected value.

Unfortunately, using an explicit table means you need to search through the entries to
find the correct input range. As long as the table is in order, the search is straightfor-
ward. The goal is to find the index into the table with the closest x value without going
over.

int SeachLookupTable(int32_t target, point_t const *table, int tableSize)
{
  int i;
  int bestIndex = 0;

  for (i=0; i<tableSize; i++) {
    if (target > table[i].x) {
      bestIndex = i;
    } else {
      return bestIndex;
    }
  }
  return bestIndex;
}

You can pair this with interpolation:

  index = SeachLookupTable (x, sinLookup, sizeof(sinLookup));
  if (index+1 < sizeof(sinLookup)) {
    y = interpolate(x, sinLookup[index], sinLookup [index + 1]);
  } else {
    y = interpolate(x, sinLookup[index-1], sinLookup [index]);
  }

Unlike with the implicit input, this method allows the input to be beyond the range of
the table. It will linear interpolate using the first two points (if the input is less than the
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first entry in the table) or the last two points (if the input is greater than the last look-
up point).

Fake Floating Point Numbers
I've been showing my biases and taking for granted that you won't be using floating
point numbers. If you have a floating point unit (FPU) in your processor, then that is
a poor assumption on my part. If you don't, then now might be a good time for you to
look in your map file to see how much code space the floating point libraries take up
just to, say, add two numbers together. For a processor optimized for space, modifying
an integer add to use floating point took 532 bytes of code space (to add the library
functions __aeabi_fadd and __aeabi_fsub, even though I only used the add function).

Standard input and output functions often include floating point han-
dling (i.e. printf or iostream). Even if you don't use floating point num-
bers in your code, if you use these library functions, your code will still
include the floating point math libraries. Use your map file!

Of course, code space is only part of the problem with floating point numbers: com-
pared to integer math, floating point math is slow. Floating point numbers are expen-
sive in an embedded system. Unless you've got a really good reason to do otherwise,
avoid them like the plague. If you can't avoid them, you can fake them.

To get the idea, remember back to grade school, when there weren't floating point
numbers in your life. Even before we could write 0.25, we knew what a quarter of a pie
was and that it could be written as one over four (1/4). Any rational number can be
written as a fractional number (ratio of a numerator over a denominator). Even irra-
tional number can be approximated with less error coming from having a larger de-
nominator. (For example, π is often approximated with 22/7.)

If we stopped there, it wouldn't be such a big improvement (divides are slow). Except,
we've already gotten around divides by shifting by a power of two. I didn't give it a
name before but this technique is called binary scaling and forms the basis for our fake
floating point numbers. We'll start with a 32-bit numerator and an 8-bit exponent. The
exponent is the number of bits to shift to the left (for positive values) or to the right
(for negative values).

We'll start off by defining a structure to hold the values:

struct sFakeFloat {
  int32_t num;  // numerator
  int8_t shift; // right shift values (use negative for left shift)
}

The number held in this structure is represented by

floatingPointValue = num / 2shift;
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And now for a few examples. Let's start by going back to a quarter of a pie. The nu-
merator is one, and the denominator is already a power of two.

struct sFakeFloat oneFourth = {1, 2};

A negative shift value changes the direction of the shift. We could rewrite four using
this notation as well:

struct sFakeFloat four = {1, -2};
floatingPointValue = four.num >> shift 
                   ==> 1/(2(-2)) ==> 1 * 22 ==> 4

Fake floating point can also be used to work with numbers larger than normally stored
in a 32-bit value (or whatever the size of the numerator). The result will be less precise
than a larger variable would be. For example, say we want to store ten billion and one
(10,000,000,001). We can make the value fit into a signed 32-bit integer by dividing by
eight:

struct sFakeFloat notTenBillionOne = { 1250000000, -3 }; 

However, while this is within one ten billionth of being correct, we've lost the last digit;
the resulting value is only ten billion.

Precision
In the structure, we could use a 24-bit numerator and an 8-bit shift for the denominator.
While it would keep everything in a convenient 32-bit variable, it might decrease pre-
cision. We've already seen how we can lose digits for big numbers but the same can
happen with other numbers.

For example, the number 12.345 could be represented as 49/4 with an error of 0.095.
With a larger denominator shift value, more precision can be obtained. However, a too
large denominator will cause the numerator to overflow.

Table 9-2. Representing the number 12.345 using binary scaling

Numerator Number of bits needed in
numerator

Denominator shift val-
ues

Equivalent floating point num-
ber

Error

12 4 0 12 0.345

25 5 1 12.5 0.155

99 7 3 12.375 0.030

395 9 5 12.34375 0.00125

12641 14 10 12.34472656 0.000273

12944671 24 20 12.34500027 2.67E-07

414229463 29 25 12.345 1.19E-09

1656917852 31 27 12.345 1.19E-09
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So as you increase the shift in the denominator, you can decrease the error but you'll
also need to increase the number of bits in the numerator. The question returns, how
much error can your system tolerate for this mathematical operation?

Also, as before, you need to be concerned with overflowing the bits (mostly with mul-
tiplication though it can happen with addition).

Addition (and Subtraction)
Let's look at addition for a pair of fake floating point variables. Again, thinking back
to grade school days and fractional math, you need to make their denominators the
same before trying to combine numbers. In this case, it means making the shift values
the same, generally by left shifting the smaller number before doing the addition.

The best way to explain is to walk through an example. In this example, we'll use a byte
for floating point numerator. This can be useful when not a lot of range is needed.
Looking back at our 12.345 table, using 8 bits we got an error of 0.030 or less than 1%.
(Also, using an 8-bit numerator means you can imagine overflows without huge num-
bers.)

struct sFakeFloat {
  int8_t num;
  int8_t shift;
};

This example is only going to show addition using positive numbers but the method is
mostly the same for subtraction and for negative numbers. First we need to set up our
floating point numbers with some values.

struct sFakeFloat a = { 99, 3 }; // 12.375, not quite 12.345
struct sFakeFloat b = {111, 5 }; // 3.46875, not quite 3.456
struct sFakeFloat result;       // 15.84375, close to ideal of 15.831

Next, find the least common denominator so we can add them together. Finding the
least common denominator when all denominators are powers of two is very easy.
Determine which is larger and then elevate the other value.

int16_t tmp = a.num;
tmp = tmp << (b.shift - a.shift);

A larger temporary variable must be used or the result may overflow and get truncated.
This code should check that the difference in powers of the denominator (b.shift –
a.shift) is less than eight bits (or less than 24 bits if the temporary is a 32-bit variable).
In addition to shifting the variable with the smaller denominator up, you may also need
to shift the variable with the large denominator down (dividing by two and losing
precision).

The sum of the numerators is kept in the temp variable until we make sure it is small
enough to fix into our result variable.

tmp = tmp + b.num;
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At this point the shift value is the larger of the two (b.shift = 5) and the temp variable
is 507, too large for an 8-bit variable. Until this temporary variable can safely fit back
into the variable size we have, we'll need to make the numerator smaller (by dividing
by two).

result.shift = b.shift;
while (tmp > INT8_MAX || tmp < -INT8_MAX) {
   tmp = tmp >> 1;
   result.shift--;
}
result.num = b.num;

Finally, we have a result that describes the addition of two floating point numbers.

The result's numerator is 126 and the shift is 3 for a floating point equivalent of 15.84
(plus some unnecessary precision). This is no different than if we'd added the two
numbers in floating point (other than the initial precision error in representing).

Multiplication (and Division)
Multiplication is a little simpler because you don't have to make the denominators
match. In fractional math, you just multiply the top and the bottom separately to get
the answer (2/3 * 5/3 = 10/9).

When you multiply two fake floating point numbers, multiply the numerators safely,
then multiply the denominators (sort of).

We again start by putting the numerator of one in a larger temporary variable so we
don't get an overflow. Unlike addition where we needed to check the size, we can be
certain than the result of two 32-bit variables will be no more than 64 bits.

Then multiply the temporary variable by the numerator of the second.

The shift value is not exactly the denominator; it is the exponent of the denominator:

denominator = 2^shift;

Instead of multiplying the shift values, we only need to add them together. If the re-
sulting numerator is greater than the number of bits we have available, shift to the right
until it fits.

For this multiplication example, we'll return to int32_t to hold the numerator.

struct sFakeFloat {
  int32_t num;
  int8_t shift;
} ;
struct sFakeFloat a = { 1656917852,  27 }; // 12.345
struct sFakeFloat b = {128, 8};   // 0.5
struct sFakeFloat result;

For this example, we'll give the variables precise values so we can check the process at
each stage. (Though one half could be trivially implemented at {1, 1}).
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The temporary variable noted must be at least as many bits as both numerators com-
bined. Since we are using 32-bit numerators, the temporary variable has to be 64 bits.
If we were using 16-bits in the numerator, we'd need at least 32 bits to hold the mul-
tiplication. Note that a 64 bit integer may not be native to your processor so using it
will incur some overhead but not nearly as much a there would be if you did a variable
of type float or double.

int64_t tmp;
tmp = a.num;
tmp = tmp * b.num;

The multiplication is done in two steps to upgrade the variables into the larger sized
variables. If you'd just multiplied the numerators together, the result would have been
an int32_t before it got upgraded and stored in an int64_t. You need to upgrade, then
multiply.

result.shift = 0;
while (tmp > INT32_MAX || tmp < -INT32_MAX) {
  tmp = tmp >> 1;
  result.shift--;
}
results.num = tmp;

As with addition, as long as the results of the numerator multiplication don't fit in the
results numerator, we need to increase the shift to avoid overflow. For the values above,
it decreases the shift eight times.

We can also make sure that the shift values don't overflow the shift variable:

tmp = a.shift + b.shift;
ASSERT(tmp < INT8_MAX);
result.num = tmp;

The result of the operator is 6.1725 {1656917852, 28}.

Division is a bit more complicated but works along the same lines as multiplication
where the numerators are divided and the shifts are subtracted instead of added.

Note that both addition and multiplication have places where they can have errors.
You'll need to limit your variables or return those errors to a calling function.

Determining the Error
One of the difficulties with using binary scaling is recognizing the limitations. The
results will be the best if you have plenty of prior knowledge about the numbers you'll
be working with so you can handle overflows and verify the stability of your system.
You could make a very generic library to handle every possible case but you run the
risk of re-implementing floating point numbers. As you look at your algorithm, you'll
need to know the range (min and max) of the variables and the precision you need for
dealing with them at each point in time.
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Say you have a system where you need to perform a function on the input form an ADC:

y = Ax2 + Bx + C 

where x is the ADC value.

Making up some other realistic details for this example, the ADC is 10-bits so the
minimum value is 0 and the maximum value is 1024 and we want the output to have
less than 0.01% error. The coefficients A, B and C are set in the factory as a calibration.
We have control over the manufacturing process and can fail a unit in the factory if the
coefficients don't fall within the tolerated range. See the table for the other information.

Table 9-3. ADC example limits of parameters

 Input from ADC A B C

Minimum 0 -0.001 0.002 -2

Maximum 1024 0.001 0.2 3

We can determine the maximum output value (in floating point) using the maximum
coefficients in the equation. The minimum is a little more complicated because A can
be negative such that the maximum ADC value used with the minimum coefficient is
less than the minimum ADC value and the minimum coefficients.

First, we make sure we can hold our range of outputs in a binary scaled floating point
value by trying different shift values and calculating the error. Table 9-4 shows an
example where the scaling is -1, indicating the numbers will be shifted to the left by
one place (so everything is multiplied by 2).

Table 9-4. Example of error examination (bad result)

 Minimum result Maximum result Notes (and Excel formulas)

A*ADC2 + B*ADC +C -1048.528 1256.376 Calculated from the parameters in Table 9-3.

Shift value -1 -1 Try different ones to get to an error level that is accept-
able.

Numerator -2097 2513 =ROUND(result*2shift)

Bits needed in the nu-
merator

12+1 = 20 12+1 = 20 =CEILING(LOG(numerator, 2)) + 1 (if signed)

Variable size of numera-
tor

16 16 Needs to be greater than the previous line. Note that
signed values require one more bit.

Precision granularity 0.5 0.5 =2shift

Absolute error in calcula-
tion

0.028 0.124 =ABS(result-(numerator / 2shift))

The error is about 3% with the minimum result and about 12% using the maximum,
pretty far off from our goal of 0.01%. How do we go forward? It requires some judgment
but here is the basic recipe.
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First, determine the range of the variable. Note whether the inputs and outputs are
signed or unsigned.

For each input and output, check the representation and verify the granularity is ac-
ceptable. To do that, start by determining how many bits are in your numerator. Ideally,
this is the number of bits native to your processor: 8, 16, or 32. You can make it smaller
so that your whole structure fits into 32 bits but you run the risk of creating more (and
slower) code as the assembly level tries to shift the variable around. Next, choose a shift
value that allows your numerator to fit in the number of bits you have available. Note
if there is a range of acceptable shift values. Verify the number can be represented in a
binary scaled format at the extreme values without overflowing. Verify the granularity
is acceptable; it should be less than your goal error. Finally, look at the errors at the
extreme value and for a nominal value. These will always be less than the granularity
but it provides another check that this scaling value is valid.

Considering this, we can get much better shift values as shown in Table 9-5. It is an
iterative process so I tend to use Excel or some other spreadsheet program to help
calculate the values.

Table 9-5. Example of error examination (good result)

 Minimum result Maximum result Notes (and Excel formulas)

A*ADC2 + B*ADC +C -1048.528 1256.376 Calculated from the parameters in Table 9-3.

Shift value -8 -8 Try different ones to get to an error level that is accept-
able.

Numerator -268423 321632 =ROUND(result*2shift)

Bits needed in the nu-
merator

19+1 = 20 19+1 = 20 =CEILING(LOG(numerator, 2)) + 1 (if signed)

Variable size of numera-
tor

31 31 Needs to be greater than the previous line. Note that
signed values require one more bit.

Precision granularity 0.00390625 0.00390625 =2shift

Absolute error in calcula-
tion

0.00065625 0.001 =ABS(result-(numerator / 2shift))

We can represent the range of interest with very little error inherent in the fixed point
number. While not required, it is good that we can represent both the minimum result
and the maximum result with the same shift value, it means we can choose to optimize
later. So that covers the minimum and maximum of the output, now we need to go
through the same process for each input and determined how big the variables need to
between each step.

Since the A coefficient gets multiplied by the square of the ADC input (1024*1024),
any error in its representation is going to get multiplied by a million. Let's look at what
the range of the coefficient might be and how that might change the representation
needed as shown in Table 9-6.
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Table 9-6. Example of error examination on the coefficients

 Minimum Maximum Notes and Formulas

Coefficient A in floating point -0.001 0.001 In manufacturing, we'll reject any calculated
coefficient that does not fit in this range.

A shift 32 32 Choose this so that the numeric error is small.

A numerator -4294967 4294967 =ROUND(coeff*2shift)

Actual bits in numerator 23 + 1 = 24 23 + 1 = 24 =CEILING(LOG(numerator, 2)) + 1 (if signed)

Granularity 4.2950E+09 4.2950E+09 =1/(2shift)

Error associated with coefficient A 6.89179E-11 6.89179E-11 =ABS(coeff-(numerator / 2shift))

Multiplied by max input value
(1024*1024)

-4.5036E+12 4.5036E+12 Multiply out the input and the coefficient.

Number of bits required to hold the results 44 44 Note that this will not fit in a 32-bit integer
unless we shift it down.

Floating point A*x2 -1048.576 1048.576 Using floating point, this is the answer we
expect.

Faked point A*x2 -1048.575928 1048.575928 Using fixed point this is the answer we get.

Error between floating and faked 7.22656E-05 7.22656E-05 Error due to using fixed point. This can be made
smaller by increasing A shift.

Note that the A part requires 44 bits (43 + a sign bit) so during calculation, the inter-
mediate value will need to be an int64_t. At the end of calculating Ax2, we can keep
the intermediate variable around for further use or put the A part back into our struc-
ture. In this example, to go back in the structure, it needs to fit into a 32 bit signed
integer so it will need to be right shifted by (44-32=) 12. Fortunately, this makes no
difference for the error. If it did, we might keep the intermediate value around until the
shift was safe. (If it was never safe, our original check would have shown us that the
result could not be represented in this way.)

So once we do the same for B and C (both a little easier), we can add up the errors for
each part to the maximum error expected. If it is outside your error budget, look at the
largest error sources and increase their shift values (until they don't fit into the variable
size, then look at the next largest error source and increase their shift value and so on).

The next step is to add each part of the equation. In this example, it is straightforward
but you do have to remember to shift them all to the same shift value so they have the
same denominator before adding the numerators.

As part of adding these together, we have to check that the variable we are using to
store each operation is large enough. If this part of the equation used all 64 bits of our
variable, then we'd have to shift down before doing the next operation and we'd have
to check that the shift down did not increase the error outside the acceptable range.
The addition will require an intermediate because adding two 32 bit integers may lead
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to a 33 bit integer. After the addition, check that the number can be shifted to fit back
in the structure.

The order of operations and shifting is important but very application specific. You
must determine where the overflows (and underflows) occur or you'll end up with some
fairly strange behavior.

The last part of the process is to check the final fixed point formulated numbers against
the expected floating point version. The error here may be different (smaller) from the
added together error above because the errors don't always combine in a maximally
bad way (they tend to cancel out).

This process of determining the possible error is laborious and often requires multiple
passes as other parts of the system change. Creating a well-documented spreadsheet
will save you time.

Further Reading
Someday I'd like to sit down and read the Art of Computer Programming. The scho-
lastically inclined part of me is slightly stunned I haven't done it already. The more
pragmatic (um, lazy) part convinces me to just look up what I need, when I need it and
not get too distracted by all of the interesting, shiny object around in the book. Whether
you've read it or not, it should be on your shelf: Knuth, Donald E. (1998). The Art of
Computer Programming, volume 2: Seminumerical Algorithms. Addison-Wesley.
ISBN 0-201-89684-8.

Alternatively, you may want to use a numerical recipes book for more implementation
specific information: Press, et. al (2007). Numerical Recipes 3rd Ed: The Art of Scien-
tific Computing. Cambridge University Press. ISBN 0-521-88068-8. Variations come
in language specific forms (C, C++, Java, etc).

At the deeply embedded scope there is the Warren, Henry (2002). Hacker's Delight.
Addison-Wesley Professional. ISBN 0-201-91465-8. This is an interesting book to flip
through, almost a grimoire of slightly scary optimization techniques. Compiler design-
ers tend to need to know these things. You want people to be able to read and reuse
your code so don't go too overboard in optimization at this level.

Interview question: Handling Very Large Numbers
Write a program to add the numbers from 1 to 10 in the language of your choice,
use C if you don't care. As the interviewee complete each piece, a new question
is asked: What do you need to do to make it generic so it is 1 to n? What sorts of
optimizations can you provide? What limitations are inherent in the implemen-
tation? How would you change it for the input to be arbitrary length? (Thanks
to Rob Calhoun for this one!)

As the interviewee starts with the first question, does she create a function that takes a
parameter to stop the addition (1 to n)? That is better than hard coding it immediately
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to go from 1 to 10. From there, I look at the size of variables for both input and output
variables- using integer or long variables is ok, but can she explain the limitations it
places on the code? Does she use unsigned or signed variables and can she explain why
unsigned are preferable?

If she doesn't know the formula for the sum from 1 to n = n*(n+1)/2, I help her through
it typically by writing 1, 2, 3, 4, 5, 6 out and pairing up 1+6, 2+5, 3+4. The interviewee
loses no points lost for not knowing this formula as long as she's awake and figures it
out. Points are lost for interrupting and insisting upon an incorrect formula, even in
the face of counter examples (it happens more often than you'd think).

Next, we go back to the size of the variables. What is size of n * (n+1)/2 compared with
n? If n is a 16 bit integer, how big does the output need to be? What if n is 64 bits? I
prod to ensure she knows that (2^16)^2 is 2^(16*2).

Finally, we get to the really interesting part of the question where I get to ask how she'd
change it if it needed to work for inputs up to 2^64. Now what can she use as an output?
If she picks double-precision floats, well, we discuss the limitations of floats. There is
no wrong answer here, it is building up- what if we need to use even larger numbers? I
limit it to on the order of a few hundred...or a few thousand...digits, always constraining
it to not be more than a million hexadecimal digits.

Now how can the interviewee modify her function? I walk them through constructing
the data structure used for the input buffer and the output buffer (and she should know
by this point how big to make the output buffer: twice the input) and the function
prototype.

I look for thread safety, failure to keep track of the size of the byte string, discussing as
necessary. Finally, I get them get her to do as much of the implementation as she can
of computing (n * n - 1)/2 for arbitrary length integer, reading from *input and writing
to *output. If she's are having some trouble, I suggest using an 8-bit machine as it is
more straightforward to draw out.

Depending on the skill the interviewee shows, this question can move in different di-
rections, drilling down to show strength and weakness. Usually, it takes the whole
interview slot to work through only part of it.
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CHAPTER 10

Reducing Power Consumption

Whether you are building a device that fits in your pocket or trying to save the world
by reducing your company's carbon footprint, decreasing a system's power consump-
tion can take an order of magnitude more time than implementing the product features.
Choosing all the right hardware components is a huge part of making a system power
efficient. But because the processor is likely to be one of the largest consumers of power
in the system, software can play a big role in saving electricity.

The pressures to decrease power usage and cost are what lead us to select processors
that don't have enough resources to comfortably perform the product features. Since
you are a relatively expensive resource, using your time to save on cost of the processor
is sensible only if you are building enough units to amortize your time.

How expensive are you? Take your annual salary and divide by a thou-
sand. That is about what each hour of your time costs your company,
counting salary, benefits, office space and all the little things that add
up. So if you are making $80,000 per year, each hour is worth about
$80. If you can buy a $250 tool to tool to save four hours, it is usually
worth it. Of course, there is a difference between capital outlay (cash)
and sunk cost (your salary) so while this is a good rule of thumb, your
boss may not let you buy the scooter to get from your desk to the break
room even after you describe the cost benefit of saving thirty seconds
every day.

On the other hand, a processor with the minimum amount of power cycles, RAM, and
code space consumes less power than one with plenty of resources. As suggested in
Chapter 8, you may want to optimize to "as low as possible," but that will take an
infinitely long time. Start with a quantifiable system goal. Let your electrical engineering
team do their part when choosing the components. Then use the points in this chapter
to reduce the power further.
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Understanding Power Consumption
All electrical circuits can be modeled as resistors, though this is akin to saying all dif-
ferential equations can be modeled linearly. It is true, but depending on the circum-
stances, you might expect to see a lot of error. However, it is a good start. Power is
measured in watts and is proportional to the square of the current used in the system:

P = I2*R
power = (current)2 * resistance
Watts (W) = (Amps (A))2 * Ohms (Ω)

Since your system is modeled as a resistor, if you focus on decreasing your current, you
decrease your power consumption. Another way to look at power is as the product of
voltage and current:

P = V * I
power = voltage * current
Watts (W) = Volts (V) * Amps (A)

This is why your processor core may run at 1.8V even though other parts of your system
run at 3 or 5V. Since the core takes a lot of current, the lower voltage means less power
consumption. The two ways of looking at power are equivalent, according to the golden
rule of electrical engineering, Ohm's law:

V = I * R
voltage = current * resistance
Volts (V)  = Amps (A)  * Ohms (Ω)

There is a lot more that Ohm's law can do for you, so if this overview has given you a
buzz of interest, check out “Further Reading” on page 296 for some electrical engi-
neering reading.

One more useful equation is for energy:

      W = P * T
      energy = power * time
      Joules (J) = Watts (W) * seconds

For the first time, we have an equation with time. Basically, it says that
if you are designing an energy-efficient system, you can minimize the
power it uses or the amount of time it is on.

Batteries have a voltage rating and a capacity. An alkaline AA battery has a nominal
voltage of 1.5V and a capacity of about 3000mAh (milliamp hours). So capacity isn't
rated in power but in current supplied over time. If your system takes 30mA and 1.5V
when it is on, with an AA battery, it should last about 100 hours (~4 days). If your
system takes 300mA, it should last about 10 hours. However, if your system consumes
3000 mA, the AA battery won't last an hour, because, just as with calling your system
a resistor, this rule of thumb only goes so far. Your battery will have a datasheet that
explains its capacity, peak current draw, and other characteristics.
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From both perspectives (power and battery capacity), minimizing current consumption
is the key to reducing power usage or increasing battery life.

Measuring Current
To keep score during your efforts to reduce power consumption, you'll need to know
how to measure current consumption. If you have a bench top power supply, ignore
what it says as they aren't very accurate.

Chapter 3 suggested that you get your own digital multimeter (DMM). If you get a good
one, you can measure current directly as shown in part b of Figure 10-1. Most cheap
DMMs will let you measure in the range of milliamps (mA). A small embedded system
consisting of a low power processor and a few peripheral chips will draw tens to hun-
dreds of milliamps. So the DMM is an easy way to measure current of a running system.
However, if you are trying to look at power consumption in sleep mode, you may need
to measure lower amounts of current. A good DMM may let you look at hundreds of
microamps (uA) but you may need even finer granularity than that.

Figure 10-1. Measuring Current

Another way to measure current is to put a small resistor in series with the system as
shown in part (c) of Figure 10-1. Switch your DMM to voltage mode, something it is
better at measuring. You may need to tweak the value of the resistor to get the voltage
in the range that your DMM can read it. Then apply Ohm's law:

current = voltage / resistance

This table shows some possible combinations to give you the idea. You may have to
tweak the resistor value depending on the current you expect to read.

Expected Current Resistor in Circuit Voltage Measured on DMM Note

12 mA 1 Ω 0.012 V Easily measured on most DMMs

23 uA 1 Ω 0.000023 V Impossible to read on most DMMs
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Expected Current Resistor in Circuit Voltage Measured on DMM Note

34 uA 10 Ω 0.00034 V A very good DMM might be able to read
this

45 uA 100 Ω 0.0045 V Once again within reach of most DMMs
but resistor is getting to be too large.

The resistor likely needs to be large enough to read the tiny sleep currents but still small
enough that it doesn't become a large consumer of power itself and interfere with the
measurement. Since the it consumes power on its own, you may choose to have the
resistor only available on development boards with a zero-ohm resistor (also known as
a "wire") on the production boards.

Resistors are associated with an accuracy. After you measure current
consumption, power off your system and measure the true resistance
value of the resistor with your DMM.

Figure 10-1 shows how to measure the system current, but if you have multiple power
rails (i.e. 5V, 3.3V, 1.8V), you may want to measure each individually or focus on the
power rail most closely associated with the processor. The process is the same, though
you might need a hardware engineer to set it up on your board.

Measuring the system current with your debugging tools attached
might change the results.

(Thanks to Robert Mitchell for his excellent help on this sidebar!)

Turn Off the Light When You Leave the Room
The easiest way to reduce power consumption is turn off components that are not
needed. The downside is that those components won't be ready when you need them,
and bringing them back will add both some power usage and some latency in respond-
ing to events. You'll need to investigate the trade offs; I tend to use a spreadsheet to
help me weigh the power savings.

The following sections details some of the ways to turn off or reduce the power drain
of components.

Turn Off Peripherals
As you review your schematic and your design, consider what your processor has access
to and how to design your system to turn off peripherals that are not needed. For
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example, if you have external RAM, you may be able to preload the data to a local
location and then power down the RAM instead of leaving it powered on for extended
periods of time.

A chip external to the processor will consume no current if it does not have power. If
the processor doesn't have access to the power lines, holding the peripheral in reset will
nearly eliminate the current consumption. This isn't as optimal as turning off the power,
but better than leaving the processor running.

Many chips need time to return to functioning after reset, so there is some overhead in
powering them down. The goal is to turn off the component for a reasonable amount
of time. ADCs are some of the peripherals with longer reset times. But they also often
big power consumers, so it is often worth taking the time to balance the power con-
sumption versus the power-on time.

Turn Off Unused I/O devices
If you've got spare I/O devices, you can save a little bit of current by configuring them
to be inputs with internal pull-downs. If your chip doesn't have internal pull-downs,
set it to be a low output. If that doesn't work for you, an input with pull-ups still has
reasonably small amounts of leakage current.

Don't remember pull-ups as anything other than gym torture? See
Chapter 3 for more information on both pull-ups and pull-downs.

As for those I/Os connected to the component you've got powered off, the preferred
order is the same (input with pull-downs, output low, input with pull-ups). Configuring
one I/O in this manner isn't likely to save a lot, but if you've got a whole bunch of them,
the small savings can add up. On the other hand, if some I/Os on your system have an
external pull-up or pull-down, set the internal one to match. Fighting external resistors
wastes power.

If you have peripheral that is powered off (or in reset), be careful how
you connect other processor I/Os to it. Don't leave the lines pulled-up
or set high. Chips often have internal protection diodes that could use
the high signal to back-power and damage the chip.

Turn Off Processor Subsystems
In addition to setting I/O devices to be low power, often you can turn off whole sub-
systems of the processor that you don't need (are you using that second SPI port?) Your
processor manual will tell you whether this is a supported feature of the processor.
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Sometimes you can turn off all functionality (best); sometimes you can only turn off
the clock to the peripheral (still pretty good).

Slowing Down to Conserve Energy
Lowering your clock frequency saves power. This is true of all of the clocks you can
control, but especially the processor clock. However, a slower processor clock gives
you fewer processor cycles to run in. That is why we spent so much time in Chap-
ter 8 on optimizing code, even though optimizing for processor speed tends to decrease
the quality (robustness, readability, and debuggability) of your code. Often, the most
straightforward way to decrease power consumption of your system by 10% is to de-
crease the clock by about 10%. In other words, the power consumption of the chip is
proportional to the frequency it runs at.

If the processor has to be on all the time, (for example, monitoring its environment),
being able to slow down may be crucial to achieving low power. Some embedded op-
erating systems will do frequency scaling for you, consuming power efficiently when
possible and still having the speed available when you need it. You can do this without
an operating system, instead of scaling over the whole range, you might want to create
slow, medium and fast modes and change the performance level based on events.
However, as with running a race, there is a balance between slowing the processor
down and keeping it on for a longer time (being a tortoise) or sprinting for a shorter
period of time and then sleeping (being a hare).

Putting the Processor to Sleep
Even at a slow clock speed, the processor is consuming power. Slowing down will help,
but what if your code spends a lot of time waiting for things to happen?

Many processors designed for low-power systems can go into an energy-conserving
sleep when they aren't needed. They use interrupts to tell the processor when to wake
up.

On your computer, sleep is a standby mode where processing is off but the memory is
still powered. This lets the operating system wake up quickly, exactly where it had left
off. Alternatively, in hibernation, the contents of RAM are written to the disk (or other
non-volatile memory). It takes longer to wake up from hibernation, but the system uses
much less power while in the state (maybe almost no power, depending on the make
of your computer).

Most embedded processors offer a similar range of sleep possibilities, with some pro-
cessors having lots of granularity and others opting to have only one low power mode.
In decreasing levels of power consumption, some sleep modes you might find in your
processor manual include:
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Slow down
Going beyond frequency scaling, some processors allow you to slow the clock
down to hundreds of hertz.

Idle or sleep
This turns off the processor core but keeps enabled timers, peripherals and RAM
alive. Any interrupt can return the processor to normal running.

Deep sleep or light hibernation
In addition to the processor core being disabled, some (possibly all) peripherals
can be configured to turn off. Be careful not to turn off the subsystem that generates
the interrupt that will wake up the processor.

Deep hibernation or power down
The processor chooses which peripherals to be turned off (usually almost all of
them). RAM is usually left in an unstable state, but the processor registers are
retained, so the system doesn't need initialization on boot. Usually, only a wakeup
pin or a small subset of interrupts can restart the processor.

Power off
The processor does not retain any memory, and starts from a completely clean
state.

Deeper sleep modes place the processor into a lower power state but take longer to
wake from, increasing system latency. You'll need to spend some time with the user
manual to determine how to achieve the lowest power level possible that will meet your
product's needs.

The wake-up interrupts could be buttons, timers, other chips (i.e. ADC conversion
complete), or traffic on a communications bus. It depends on your processor (and your
sleep level).

Once you've determined that your processor can sleep, how do you design a system to
make the best use of it? We'll explore that now.

Interrupt-based code flow model
Understanding the interrupt-based code flow model is critical for power sensitive ap-
plications. Breaking down the long name in the title of this section, interrupt-based
indicates that the code will listen to interrupts to do its business. And if you have a
subsystem that doesn't normally cause an interrupt, you'll need to make one, probably
with a timer that can do all of the regular housekeeping. The next part of the name is
code flow to show that the program tends to flow along like a waterfall. It doesn't have
multiple tasks and it tends to be linear.

If you are familiar with an event loop for handling button presses in user interface code,
the principle here is very similar. Button handlers tend to spend a lot of time idling,
waiting for a button to be pressed. Once one is, the handler calls the appropriate func-
tion, and after it returns, the handler goes back to waiting for something to happen.
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Instead of idling, the microprocessor spends time sleeping, waking up only when it
needs to, then handling the interrupt and going back to sleep. The goal is to maximize
the amount of time the processor is asleep, thereby maximizing power efficiency. See
Figure 10-2 for a flow chart describing the interrupt-based code flow model.
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Figure 10-2. Interrupt-based code flowchart

Putting the Processor to Sleep | 293



The interrupt may be generated from a peripheral to indicate it needs processor atten-
tion (like an ADC finishing with its data, needing the processor to read the result and
start another conversion). In other systems, the interrupt may be generated by a button
the user presses or a sensor rising above a threshold. The interrupts may also be gen-
erated internally, for example, by a timer.

When an interrupt occurs, the processor wakes up and calls the appropriate interrupt
service routine (ISR). The ISR sets a flag to indicate the cause for the wakeup and
modifies the sleep register to keep the processor awake. When the ISR returns, because
the sleep register is set to awake, the main loop runs. The main loop checks each possible
flag and, when it finds a flag set, runs the appropriate handler (also clearing the flag).
When the main loop completes and all of the flags have been cleared, the processor
returns to sleep mode. Figure 10-2 illustrates the general idea with two handlers to
check.

Let's say you've got a processor that can sleep. To experiment, start with a timer inter-
rupt. These are common in the interrupt flow model because the timer lets you wake
up to do any necessary housekeeping. Run the processor without sleep, and set up an
interrupt to run so it toggles an output line or LED. The frequency doesn't matter,
though a slow interrupt is better. I'd recommend about twice per second (2Hz). Meas-
ure the current of the system as describe in “Measuring Current” on page 287.

Now set your processor to sleep between interrupts. From the outside, the processor
behaves the same. However, when you measure the system current, it should be smaller.
How much smaller depends on many aspects of your system. For instance, I tried this
procedure with the Texas Instrument MSP430 Launchpad development kit using the
G2231 processor. When the system was in a while loop, waiting for the next timer
interrupt, the system consumed 9mW (3mA @ 3V). When I let it enter a low power
mode instead of idling in the while loop, the results were dramatically different. I used
the third level of sleep (the processor has four). However, even with a 0.001 Ω resistor,
I couldn't measure any voltage drop over the resistor with my DMM.

The datasheet informed me that the current should be about 0.9uA (2.7uW) in this
state, which would require additional special tools for me to measure. The timer in-
terrupt to toggle the LED must have spent some time at 3mA, but the processor woke
up, set the timer flag, toggled the LED in main, and went back to sleep before it could
make a blip on my meter. Remember, energy efficiency is about time as well as current.

The processor on TI's Launchpad kit is designed to be super low power when it is
sleeping, so the results may not be so dramatic on another device.

A Closer Look at the Main Loop
Handling the interrupts in the main loop allows you to keep the interrupt service rou-
tines short, because all they do is set a couple flags and exit. Long interrupts tend to
decrease system responsiveness. Plus, going through the main loop can aid in debugging
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as the system revolves around sleeping and the flags set by the most recent interrupts.
(If you can output the cause variable on every pass, you'll get a good view of what the
system is doing.) Note that additional interrupts may happen while executing the han-
dlers for the interrupt that caused the processor to wake up.

By putting the flags in the bits of a variable (or two) it becomes simple to check that all
interrupts have been processed.

volatile uint16_t gInterruptCause = 0; // Bitmasked flags that describe what interrupt has occurred

void main()
{
    uint16_t cause;
    Initialize();
    while (1) {
        cause = gInterruptCause; // atomic interrupt safe read of gInterruptCause
        while (cause) {
            // each handler will clear the relevant bit in gInterruptCause
            if (cause & 0x01) { HandleSlowTimer();} /
            if (cause & 0x02) { HandleADCConversion();}
            FeedWatchdog(); // while awake, make sure the watchdog stays happy
            cause = gInterruptCause;
        }
        // need to read the cause register again without allowing any new interrupts:
        InterruptsOff();
        if (gInterruptCause == 0) {
            InterruptsOn();
            GoToSleep(); // an interrupt will cause a wake up and run the while loop
         }
        InterruptsOn();
    }
} // end main

The interrupts themselves just need to set the flag and modify the sleep register to keep
the CPU awake after they return. The handlers will perform the necessary actions and
clear the cause register (in an interrupt safe manner).

Remember that working with interrupts can be tricky due to race con-
ditions. “Interrupts” on page 123 for more tips on interrupts.

Processor Watchdog
In “Watchdog” on page 143, I talked about the importance of having a watchdog, and
how you shouldn't use a timer interrupt to service the watchdog. Now that your system
is entirely interrupt based, how are you going to make sure the watchdog remains
content?

In the lightest levels of sleep, your processor will probably let the watchdog continue
to run. The processor may let you configure whether you want the watchdog to run
while the processor is asleep (consuming some power during sleep and forcing the
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processor to wake up to service it) or to have the watchdog sleep when the processor
does (losing a failsafe mechanism for your system). Recognizing the trade off will help
you make the right decision for your system.

If you leave the watchdog on, you'll need to set a timer to wake the processor up before
the watchdog expires. This goes against the grain of my earlier advice. However, here
the watchdog is not only verifying that the system is running properly, it is verifying
that the system is waking up from sleep properly.

Avoid Frequent Wake-ups
Since each wakeup requires some overhead from the chip (and the deeper the sleep,
the more overhead is required as it wakes up), avoid frequent wake-ups. If you have a
low-priority task that doesn't have a hard real-time requirement, piggyback it upon
another task. This spreads the overhead of waking up the processor over several tasks.

While a timer to do housekeeping can be valuable, it may be better to check whether
enough time has passed to do the low priority tasks and reset the timer so you can skip
a wakeup.

Chained Processors
It is pretty common to have a small, very efficient processor monitor the important
signals, waking up a larger processor when needed. In this case the larger processor
requires more power to wake up (and possibly more time if it is running an operating
system). So the small processor does the housekeeping: checking for buttons pressed,
looking for lower power conditions that indicate the system should shut down, or
waking the large processor due to a preset alarm.

In such systems, both processors spend as much time asleep as possible, but the system
is designed so that the interrupts get triaged in the small processor, which can opt to
handle them itself or wake up its larger partner.

Further Reading
As noted in Chapter 3, for a gentle introduction to electronics, I recommend Make:
Electronics by Charles Platt, published by O'Reilly (2009). The step by step introduction
to putting a system together and soldering is an easy read.

For a more serious look at electrical engineering, The Art of Electronics by Paul Horowitz
and Winfield Hill (Cambridge University Press, 1989) is the seminal book, along the
lines of Knuth's Art of Computer Programming.

If you are somewhere in between those two and looking for a more intuitive grasp of
analog components, try There Are No Electrons: Electronics for Earthlings by Kenn
Amdahl (Clearwater Publishing, 1991). This fun book gets away from the plumbing
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model of electronics and gives you a different story about how resistors and capacitors
work.

The TI MSP430 line of processors is geared toward inexpensive and power sensitive
devices. The MSP430 Software Coding Techniques Application Report is an excellent
reference for learning more about the interrupt flow model and other power saving tips.

Interview question: Is the fridge light on?
In two minutes, how many different ways can you figure out how to tell whether
the light in a fridge is going off when you shut the door? Please don't damage
the fridge. [Thanks to Jen Silva for this question.]

This question is all about quantity and creativity of solutions offered. This is not a
question with a lot of depth (though I will ask a follow-up if I want more depth). Lots
of people come up with the common solutions, some of which are:

• Take a video recording

• Wireless (and presumably battery powered) light sensor

• Solar panel charger (check the charge of a battery after a period of time, with and
without the door open)

• Disabling the cooling assembly so the fridge uses only a small amount of power,
then checking the difference in current with the door open and closed

• With the door open, press the door closing button to see what happens

Interviewees get credit for the number of solutions, uniqueness of them, what implicit
assumptions they make, and how the they apply scientific method to solve the problem.
I like to see them note the trade-offs in terms of time and cost but I'd rather they spent
the time generating different answers.

There seem to be three types of responses when faced with this question. First (and
worst) are the interviewees that come up with one of these and can't figure something
else out, even with prompting. Second (and most common) are the interviewees that
come up with a solution and tweak one thing at a time until they get to another solution.
They generally rack up enough solutions and often surprise me with a few really creative
ones. The last set of responses can only be classified as mildly insane. These are the
most fun and, as long as they manage to get a few of the more sensible answers, these
are the best people to work with.

One person suggested a statistical method in answer: first you get 100 units. Leave the
door open on 50 of them and the door closed on 50. Determine the mean time between
failure (MTBF) for the light bulbs in the open units. Now open all the closed doors and
wait for those to fail. If they fail about the same time as the initially opened ones, then
the light was off with the door closed.

This isn't necessarily sensible or easily accomplished in a reasonable amount of time
for testing the lights in fridges, but there are times when this sort of method will work
very well. It gets bonus points for extra creativity.
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