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Abstract

Given the continuing improvements in design and manufacturing processes in
addition to improvements in artificial intelligence, robots are being deployed in an
increasing variety of environments for longer periods of time. As the number of
robots grows, it is expected that they will encounter and interact with other robots.
Additionally, the number of companies and research laboratories producing these
robots is increasing, leading to the situation where these robots may not share a
common communication or coordination protocol. While standards for coordination
and communication may be created, we expect that any standards will lag behind
the state-of-the-art protocols and robots will need to additionally reason intelli-
gently about their teammates with limited information. This problem motivates the
area of ad hoc teamwork in which an agent may potentially cooperate with a variety
of teammates in order to achieve a shared goal. We argue that agents that effectively
reason about ad hoc teamwork need to exhibit three capabilities: (1) robustness to
teammate variety, (2) robustness to diverse tasks, and (3) fast adaptation. This book
focuses on addressing all three of these challenges. In particular, this book intro-
duces algorithms for quickly adapting to unknown teammates that enable agents to
react to new teammates without extensive observations.

The majority of existing multiagent algorithms focus on scenarios where all
agents share coordination and communication protocols. While previous research
on ad hoc teamwork considers some of these three challenges, this book introduces
a new algorithm, PLASTIC, that is the first to address all three challenges in a
single algorithm. PLASTIC adapts quickly to unknown teammates by reusing
knowledge it learns about previous teammates and exploiting any expert knowledge
available. Given this knowledge, PLASTIC selects which previous teammates are
most similar to the current ones online and uses this information to adapt to their
behaviors. This book introduces two instantiations of PLASTIC. The first is a
model-based approach, PLASTIC–Model, that builds models of previous team-
mates’ behaviors and plans online to determine the best course of action. The
second uses a policy-based approach, PLASTIC–Policy, in which it learns policies
for cooperating with past teammates and selects from among these policies online.
Furthermore, we introduce a new transfer learning algorithm, TwoStageTransfer,

xix



that allows transferring knowledge from many past teammates while considering
how similar each teammate is to the current ones.

We theoretically analyze the computational tractability of PLASTIC–Model in a
number of scenarios with unknown teammates. Additionally, we empirically
evaluate PLASTIC in three domains that cover a spread of possible settings. Our
evaluations show that PLASTIC can learn to communicate with unknown team-
mates using a limited set of messages, coordinate with externally-created team-
mates that do not reason about ad hoc teams, and act intelligently in domains with
continuous states and actions. Furthermore, these evaluations show that
TwoStageTransfer outperforms existing transfer learning algorithms and enables
PLASTIC to adapt even better to new teammates. We also identify three dimen-
sions that we argue best describe ad hoc teamwork scenarios. We hypothesize that
these dimensions are useful for analyzing similarities among domains and deter-
mining which can be tackled by similar algorithms in addition to identifying ave-
nues for future research. The work presented in this book represents an important
step towards enabling agents to adapt to unknown teammates in the real world.
PLASTIC significantly broadens the robustness of robots to their teammates and
allows them to quickly adapt to new teammates by reusing previously learned
knowledge.
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Chapter 1
Introduction

Robots are becoming cheaper andmore durable asmanufacturing processes improve,
and they are becoming useful for an increasing number of tasks as artificial intelli-
gence improves. These improvements are leading to robots being deployed in more
environments for longer periods of time, and we believe that this trend will only
grow. As this robotic proliferation continues, it is expected that robots will encounter
and interact with a growing variety of other types of robots. In many cases, these
interacting robots may share a set of common goals, in which case it will be desirable
for them to cooperate with each other. However, existing research into gettingmultia-
gent teams to accomplish shared goals assumes that all of these robots share common
communication and coordination protocols, an assumption that becomes increasingly
unlikely given the rapidly growing number of companies and laboratories designing
robots. It is possible that some standards for coordination or communication will
be created for all robots to support. We believe that given the speed of changes in
artificial intelligence and robotics, if these standards are created, they will lag behind
the state-of-the-art protocols and agents will need to intelligently reason about their
teammates in addition to the information that these protocols provide. Therefore,
in order to effectively cooperate with these new teammates, it is desirable for these
robots to observe and adapt to their teammates to accomplish their shared goals.

For example, after a disaster, it is helpful to use robots to search the site and rescue
survivors. However, the robots may come from a variety of sources and may not be
designed to cooperate with each other, such as in the response to the 2011 Tohoku
earthquake and tsunami [1–4]. If these robots are not pre-programmed to cooperate,
theymay not share information about which areas have been searched; or worse, they
may unintentionally impede their teammates’ efforts to rescue survivors. Therefore,
it is desirable for robots to be designed to observe their teammates and adapt to them,
forming a cohesive team that quickly searches the area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork settings,
agents encounter a variety of teammates and try to cooperate in order to accomplish
a shared goal. In ad hoc teamwork research, researchers focus on designing a single
agent or subset of agents that can cooperate with a variety of teammates. The desire
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2 1 Introduction

Fig. 1.1 Foci of agent based
research. a A view of a
single agent interacting with
its environment used by
many reinforcement learning
algorithms. b A standard
view of a unified team
interacting with the
environment. c The ad hoc
teamwork setting in which
an agent cooperates with an
ad hoc team of agents to
accomplish shared goals on a
given environment where the
teammates and the
environment are each drawn
from diverse sets at the
beginning of an episode

Environment

Joint
Action

State  Reward

Agent

Agent

Agent

Team

(a)

(b)

(c)

is for agents designed for ad hoc teamwork to quickly learn about these teammates
and determine how they should act on this new team to achieve their shared goals.
Agents that reason about ad hoc teamwork will be robust to changes in teammates
in addition to changes in the environment.

In this book, the word “agent” refers to an entity that repeatedly senses its envi-
ronment and takes actions that affect this environment, shown visually in Fig. 1.1a.
As a shorthand, the terms ad hoc team agent and ad hoc agent are used in this book to
refer to an agent that reasons about ad hoc teamwork. The environment includes the
dynamics of the world the agent interacts with, as well as defining the observations
received by the agent. We treat the other agents in the domain as teammates because
they share a set of common goals; they are fully cooperative in the terminology of
game theory.



1 Introduction 3

Previous research has investigated multiagent teams and introduced a number of
algorithms for coordinating teams [5–8]. This view of multiagent teams is shown in
Fig. 1.1b. However, these approaches require that all agents in the team have shared
coordination and communication protocols, so these approaches do not apply in all
scenarios. Another approach is to treat other agents as part of the environment. This
approach permits the agent to apply single agent learning algorithms to adapt to these
teammates, as shown in Fig. 1.1a. However, this view may prevent the team from
completing tasks that require explicit coordination, where performing only part of a
coordinated action results in a poor performance for the team. In addition, explicitly
reasoning about the dynamics of these other agents allows the ad hoc agent to factor
the domain, significantly reducing the complexity of the environment.

Rather than adopting either of these approaches, this book focuses on creating a
single agent or small subset of agents that cooperate with teammates coming from
a variety of sources without directly altering the behavior of these teammates, as
shown in Fig. 1.1c. This approach explicitly models that there are other intelligent
agents operating in the domain. In addition, rather than focusing on a single task,
these agents may face a variety of tasks.

This chapter presents the motivation and objectives for this book as well as an
overview of the entire book. Given the precedingmotivation for this book, we present
the central research question in Sect. 1.1. Next, we present an overview of the algo-
rithm, PLASTIC, that we propose for solving this problem in Sect. 1.2. In Sect. 1.3,
we explain the six contributions of this book. Finally, Sect. 1.4 previews the remaining
chapters of this book and gives a roadmap to reading this book.

1.1 Research Question

In order to be responsive to different teammates and environments, a fully general
ad hoc agent needs two general classes of capabilities: (1) the ability to learn about
the environment and calculate the actions necessary to achieve its goal, and (2) the
ability to reason about teamwork and learn about its teammates. Previous work in
reinforcement learning has largely focused on how an agent should learn about the
dynamics of the environment, e.g. [9, 10]. Therefore, this book leverages such past
research about (1) and expand this work in the new direction of (2), reasoning about
the team and social knowledge required for effective teamwork. To this end, this
book identifies three classes of capabilities needed by ad hoc team agents:

1. Robustness to teammate variety. Adhoc teamagents should be able to cooperate
with a wide variety of teammates following unknown behaviors. To this end, ad
hoc agents should learn about their teammates and adapt to their behaviors.

2. Robustness to diverse tasks. Ad hoc team agents should be able to cooperate
with the teammates to accomplish an array of diverse tasks. An algorithm for ad
hoc teamwork that is only applicable to a single task is insufficient for a fully
general ad hoc team agent. To be robust, an ad hoc team agent should be able to
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4 1 Introduction

adapt to new tasks, while additionally deciding when to take actions to explore
its teammates’ behaviors.

3. Fast adaptation. Ad hoc team agents should be adaptive without lengthy obser-
vations of the current teammates or tasks; they should be able to quickly adapt to
these new problems and perform effectively with few interactions. In real world
settings, robots are unable to interact with their teammates in the given environ-
ment for extended periods of time before attempting their task. Therefore, ad hoc
agents must be sample efficient, learning to cooperate in few interactions with
their teammates. Ideally, ad hoc agents should also exploit any information they
have learned about previous teammates and environments to speed up the learning
process. This means that ad hoc agents may not achieve optimal performance;
instead they may need to compromise by quickly converging to well-performing
but suboptimal behaviors.

With these three capabilities in mind, the key question that this book addresses is:

How can an agent cooperate with teammates
of uncertain types on a variety of tasks?

Fully answering this question is a long-term challenge beyond the scope of a single
book. However, this book moves towards answering this question. Specifically, we
introduce an algorithm, PLASTIC, that satisfies the three desired capabilities above.
PLASTIC allows ad hoc agents to quickly adapt to a variety of unknown teammates,
and our analysis shows that PLASTIC is effective on 3 very different domains,
including a complex simulation of robot soccer.

1.2 Algorithm Overview

The primary algorithmic contribution of this book is the Planning and Learning
to Adapt Swiftly to Teammates to Improve Cooperation (PLASTIC) algorithm to
address the research question posed in the previous section. Rather than trying to “fit
in” with its team by copying their behavior, PLASTIC employs learning algorithms
that allow an ad hoc agent to improve over its teammates’ potentially suboptimal
behaviors. However, learning about each teammate as if it is completely new severely
limits the speed that the ad hoc agent can adapt to its teammates. Therefore, PLAS-
TIC speeds up this learning by reusing information it has learned about previous
teammates. In addition, PLASTIC allows developers to provide expert knowledge
about potential teammates in order to speed up adaptation. PLASTIC then tries to
see which of the past teammates and expert-provided information best represents
the new teammates that it encounters. This approach allows PLASTIC to quickly
adapt to unknown teammates in a variety of domains. The full PLASTIC algorithm
is introduced in full detail in Sect. 5.1.

http://dx.doi.org/10.1007/978-3-319-18069-4_5
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This book presents two instantiations of the general PLASTIC algorithm:
PLASTIC–Model and PLASTIC–Policy. When learning about previous teammates,
PLASTIC–Model represents its knowledge asmodels thatmap currentworld states to
its teammates’ actions, where one model is learned for each past teammate. Expert
knowledge is similarly represented by models of potential teammates’ behaviors.
When it encounters new teammates, PLASTIC–Model maintains its beliefs over
which model best represents these new teammates. Using its belief distribution over
these models, PLASTIC–Model can plan the best actions to cooperate with its team-
mates. In this book, we use decision trees to learn models of past teammates [11],
update the probabilities of models using the polynomial weights algorithm [12],
and plan using Upper Confidence bounds for Trees (UCT) [13]. We present the full
PLASTIC–Model algorithm in Sect. 5.2.

When the ad hoc agent has a limited number observations of its new teammates,
it can also build new models of their behaviors while reusing information about past
teammates. Specifically, we introduce a new transfer learning algorithm, TwoStage-
Transfer, that allows PLASTIC–Model to reuse information about many previous
teammates to create a model of the new teammates, exploiting the fact that some
teammates are more similar to the new teammates than others. TwoStageTransfer
is completely specified in Sect. 5.2.4.

In complex domains, planning algorithms may run into problems due to inaccura-
cies in their models or due to limitations in computational power. Therefore, directly
learning policies for cooperating with various teammates may be more effective.
PLASTIC–Policy employs this approach, where knowledge about past teammates is
represented as the policies that are used to cooperate with these teammates. Similar
to PLASTIC–Model, one policy is learned for each past teammate. In PLASTIC–
Policy, experts can provide policies for cooperating with other teammates if they are
available. Then, PLASTIC–Policy combines these policies, determines which poli-
cies enable it to best cooperate with the current teammates, and selects the actions
specified by themost likely policy. In this book, we use fittedQ iteration (FQI) [14] to
learn policies for past teammates. To update the probabilities of different teammate
types, we build a nearest neighbor model of the teammates’ behaviors using the sam-
ples collected for FQI and update the probabilities of different teammate types using
the polynomial weights algorithm [12]. We present the complete PLASTIC–Policy
algorithm in Sect. 5.3.

1.3 Contributions

This book provides the following six major contributions to the field:

1. PLASTIC: As described above, this book introduces the general PLASTIC algo-
rithm and its two instantiations: PLASTIC–Model and PLASTIC–Policy. These
algorithms are the first generally applicable algorithms that permit ad hoc team
agents to quickly adapt to a variety of unknown teammates in many domains.

http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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These algorithms combine knowledge learned from past teammates with any
available expert knowledge to adapt to new teammates much more quickly than
existing approaches. PLASTIC is presented in full detail in Chap.5.

2. Theoretical Analysis: This book proves that PLASTIC–Model is computationally
tractable in a number of scenarios in the bandit domain.We show that the problem
can be modeled as a POMDP and bound the complexity of learning the ε-policy
in several versions of the domain that vary in the prior knowledge available to
PLASTIC–Model. This theoretical analysis is presented in Chap. 6.

3. Reasoning about Communication: Themajority of prior work in ad hoc teamwork
considers cases where communication is not available. However, as the connec-
tivity of devices grows, so does the chances of ad hoc team agents being able
to communicate some information with their teammates, though they may not
know how these teammates will interpret these messages. Therefore, this book
addresses this gap by considering a scenario in which communication is avail-
able, namely the bandit domain described in Sect. 3.2.1. Theoretical analysis of
the bandit domain with communication are presented in Chap.6, and empirical
analysis of it are given in Sect. 7.1.

4. TwoStageTransfer: This book introduces a new transfer learning algorithm,
TwoStageTransfer. TwoStageTransfer can efficiently incorporate knowledge com-
ing from many sources to the target setting, exploiting the knowledge that some
sources are more similar to the target than others. TwoStageTransfer is a general
transfer learning algorithm, but we only apply it to ad hoc teamwork settings in
this book. We empirically evaluate TwoStageTransfer for quickly learning mod-
els of new teammates given observations of past teammates. TwoStageTransfer
is presented in full detail in Sect. 5.2.4, and empirical results of it are presented
in Sect. 7.2.7.

5. Empirical Evaluation: This book empirically evaluates PLASTIC in 3 different
domains, with varying amounts of knowledge about its teammates. This evalua-
tion considers scenarios not covered in the theoretical analysis. Specifically, we
focus on externally-created teammates, which are created by other developers
without considering ad hoc teamwork. Notably, this evaluation also includes a
complex ad hoc teamwork problem in the form of the half field offense task in
the 2D simulated soccer domain. All empirical results are presented in Chap.7.

6. Taxonomy of Ad Hoc Teamwork: This book identifies three dimensions that we
believe are the most informative for analyzing ad hoc teamwork domains and
teammates. We believe that domains with similar values along these dimensions
will be tractable for similar algorithms, while domains with significantly different
values are more likely to be solved using different approaches. These dimensions
are presented in full detail in Sect. 2.3. In that section, we also discuss how these
dimensions describe the three domains used in this book. In addition, we use these
dimensions to analyze the related ad hoc team research in Sect. 4.4.4.

These contributions are described in detail throughout the remainder of this book.

http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_4
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1.4 Book Overview

The remainder of this book is organized as follows.
Chapter2: This chapter motivates and describes the problem studied in this book,

namely the problem of ad hoc teamwork. Then, the chapter presents the frame-
work we use to evaluate ad hoc teamwork agents. Finally, the chapter specifies
three dimensions of ad hoc teamwork problems that are useful for analyzing the
similarity of problems as well as which algorithms apply to the problems. These
dimensions serve as the basis for Contribution 6.

Chapter3: In this chapter, we present the background information required to under-
stand the remainder of the book. Specifically, we present an overview ofMarkov
Decision Processes (MDPs), Partially Observable Markov Decision Processes
(POMDPs), and the algorithms used to solve them in addition to an overview
of transfer learning. Then, the chapter describes the 3 domains used to evaluate
PLASTIC: themulti-armed bandit domain, the pursuit domain, and the half field
offense task in the simulated 2D robot soccer domain. In addition, the chapter
discusses the teammates used in these three domains, including the externally-
created teammates which were created by other developers. The bandit domain
is used to investigate communication (Contribution 3) and in the theoretical
analysis for Contribution 2. All three domains are used in the empirical evalua-
tion (Contribution 5).

Chapter4: This chapter situates PLASTIC in the literature. We begin by discussing
past work on multiagent coordination, where developers can control the entire
team instead of a single agent on the team. Then,we look at research on opponent
modeling, where agents learn to adapt to their opponents instead of teammates.
We follow this by an overview of some of the most relevant research in each
domain used in our evaluations. Finally, we discuss the current state of the art
research into ad hoc teamwork and describe how these papers relate to the work
presented in this book. We use the three dimensions of ad hoc teamwork to
analyze the related literature as part of Contribution 6.

Chapter5: In this chapter, we specify the general PLASTIC algorithm and the two
instantiations of it used in this book: PLASTIC–Model and PLASTIC–Policy.
PLASTIC enables an ad hoc agent to quickly adapt to unknown teammates
on several domains. To accomplish this task, PLASTIC learns about previous
teammates and combines this knowledge with any expert knowledge the devel-
oper can encode about potential teammates.When encountering new teammates,
PLASTIC determines which of the past teammates are most similar to the cur-
rent ones and reuses the information learned about them. Different learning
and action selection algorithms can be used depending on the domains, but the
general architecture remains the same. PLASTIC–Model adopts a model-based
approach that uses planning to discover effective actions, while PLASTIC–
Policy uses a policy-based approach and selects between these policies. This
chapter also specifies our new transfer learning algorithm, TwoStageTransfer,
that can aid PLASTIC in adapting to new teammates by combining information

http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_4
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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coming from many past teammates, some of which are more similar to the new
teammates than others. This chapter presents PLASTIC for Contribution 1 in
addition to TwoStageTransfer for Contribution 4.

Chapter6: This chapter presents a theoretical analysis of PLASTIC–Model. Specif-
ically, it analyzes the complexity of applying PLASTIC–Model to the bandit
domain.Wemodel the bandit problem as a POMDPand investigate the computa-
tional tractability of calculating the ε-optimal behavior in the resulting POMDP.
We consider several variations of the bandit domain, varying in the knowledge
the ad hoc agent has about its teammates and its environment. The theoretical
analysis in this chapter is Contribution 2 as well as part of Contribution 3.

Chapter7: We present the empirical analyses of PLASTIC in this chapter. These
analyses cover the 3 domains described in Chap.3: the bandit, pursuit, and half
field offense domains. Our tests evaluate both PLASTIC–Model and PLASTIC–
Policy on a range of tasks, varying the prior knowledge of the ad hoc agent aswell
as the teammates it encounters. The results of these tests show the effectiveness
of PLASTIC for enabling ad hoc team agents to quickly adapt to a variety of
unknown teammates. This chapter presents the results that form Contribution 5.
In addition, this chapter looks at the empirical usefulness of communication in
the bandit domain as part of Contribution 3.

Chapter8: This chapter summarizes the contributions of this book. In addition, it
identifies areas for future research into ad hoc teamwork.

Appendix A: This appendix presents the full behaviors of the hand-coded preda-
tors used in the pursuit domain described in Sect. 3.2.2. The results using these
predators as teammates are presented in Sect. 7.2.

While this book is written to be read from start to finish, some sections can be
omitted if only interested in a specific aspect of the work. Specifically, it is possible to
isolate the theoretical analyses from the empirical ones and to understand the related
work without reading most of the book. To understand the theoretical analyses in
Chap.6, it is useful to understand the PLASTIC algorithm presented in Chap.5 as
well as the problem definition in Chap.2 as well as the discussion of POMDPs in
Sect. 3.1.5 and the bandit problem described in Sect. 3.2.1. The empirical analyses in
Chap.7 depend on the reader understanding the PLASTIC algorithm from Chap.5
in addition to the problem definition (Chap.2) and the background (Chap.3). The
discussion of related work in Chap.4 is largely self-contained, but it does help to
understand the problem definition and dimensions that describe ad hoc teamwork
presented in Chap.2.

http://dx.doi.org/10.1007/978-3-319-18069-4_6
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http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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Chapter 2
Problem Description

This chapter describes the problem setting investigated in this book. Rather than
considering unified teams of agents designed by a single designer, we consider con-
trolling a single agent on a newly created team. The following sections describe
the problem in more depth as well as the evaluation framework used to measure
performance on this problem. In addition, this chapter investigates an approach for
describing the different dimensions of ad hoc team problems.

2.1 Ad Hoc Teamwork

Robots are becoming cheaper and more durable and are therefore being deployed
in more environments for longer periods of time. As robots continue to proliferate
in this way, many of them will encounter and interact with a variety of other kinds
of robots. In many cases, these interacting robots will share a set of common goals,
in which case it will be desirable for them to cooperate with each other. In order to
effectively perform in new environments and with changing teammates, they should
observe their teammates and adapt to achieve their shared goals. For example, after a
disaster, it is helpful to use robots to search the site and rescue survivors. However, the
robotsmay come from a variety of sources andmay not be designed to cooperate with
each other, such as in the response to the 2011 Tohoku earthquake and tsunami [2–5].
These robots were used to investigate the Fukushima Daiichi Nuclear Power Station,
clear a fishing port, and find victims trapped underwater. These robots were remotely
controlled and therefore derived any cooperation from their human operators. Robots
that operate autonomously will have to be designed for cooperation as they will not
have human operators providing cooperation. If these autonomous robots are not
pre-programmed to cooperate, they may not share information about which areas

This chapter contains material from the publication: [1].
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have been searched; or worse, they may unintentionally impede their teammates’
efforts to rescue survivors. Therefore, in the future, it is desirable for robots to be
designed to observe their teammates and adapt to them, forming a cohesive team that
quickly searches the area and rescues the survivors.

This idea epitomizes the spirit of ad hoc teamwork. In ad hoc teamwork settings,
agents encounter a variety of teammates and try to accomplish a shared goal. Ideally,
agents designed for ad hoc teamwork try to quickly learn about their teammates and
figure out how they should try to fit into the team. Agents that reason about ad hoc
teamwork will be robust to changes in teammates and the environment. They must
be adaptive and resourceful, learning how to accomplish the team’s goals.

In this book, the word “agent” refers to an entity that repeatedly senses its environ-
ment and takes actions that affect this environment. Robots are examples of agents, as
are software agents that bid for advertisements. As a shorthand, the terms ad hoc team
agent and ad hoc agent are used in this book to refer to an agent that reasons about
ad hoc teamwork. The environment includes the dynamics of the world the agent
interacts with, as well as defining the observations received by the agent. In addition,
the ad hoc agent will have to interact with teammate agents that are attempting to
accomplish the same goals as the ad hoc agent. This book considers ad hoc agents
that explicitly reason about the behaviors of their teammates separately from the
environment because this factoring significantly reduces the complexity of the learn-
ing problem. Previous work has largely assumed that all agents in the domain will act
as a unified team and are designed to work with their specific teammates [6–9]. On
the other hand, this book will focus on creating a single agent that cooperates with
teammates coming from a variety of sources without directly altering the behavior
of these teammates. This agent will need to adapt to these different teammates and
learn to cooperate with them on the fly.

The differences of this book frompriorwork are presented visually in Fig. 2.1.One
existing area of research into how agents should behave is reinforcement learning
(RL). Generally, RL problems revolve around a single agent learning by interacting
with its environment. In RL problems, agents receive sparse feedback about the
quality of sequences of actions. Generally, RL algorithms model other agents as
part of the environment and try to learn the best policy for the single agent given
this environment. In addition, RL algorithms usually learn from scratch in each new
environment, ignoring information coming from previous environments. However,
there is a growing body of work on applying transfer learning to RL to allow agents
to reuse prior experiences [10]. Figure2.1a shows the standard RL view of an agent
interacting with its environment. Figure2.1b represents a common multiagent view
of a unified team interacting with the environment where the agents model their
teammates as being separate from the environment. In this case, the team is designed
before being deployed to cooperate with these specific agents to interact with a fixed
environment. However, these agents rely on knowing their teammates and usually
require an explicit communication and/or coordination protocol to be shared among
the whole team [11, 12]. On the other hand, this book will focus on ad hoc teams
drawn from a set of possible teammates, where the team tackles a variety of possible
environments as shown in Fig. 2.1c. In this case, the teammates are not programmed
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Fig. 2.1 Foci of agent based
research. a A view of a
single agent interacting with
its environment used by
many reinforcement learning
algorithms. b A standard
view of a unified team
interacting with the
environment. c The ad hoc
teamwork setting in which
an agent cooperates with an
ad hoc team of agents to
accomplish shared goals in a
given environment where the
teammates and the
environment are each drawn
from diverse sets at the
beginning of an episode

Environment

Joint
Action

State  Reward

Agent

Agent

Agent

Team

(a)

(b)

(c)

to cooperate with this specific ad hoc agent, and they must be treated as fixed and
given. Instead, this research focuses on enabling the ad hoc agent to cooperate with
a variety of teammates in a range of possible environments.

In order to be responsive to different teammates and environments, a fully general
ad hoc agent needs two general classes of capabilities: (1) the ability to learn how
to act in an environment to maximize reward, and (2) the ability to reason about
teamwork and learn about its teammates. Previous work in reinforcement learning
has largely focused on how an agent should learn about the dynamics of the environ-
ment [13, 14]. Therefore, this book will leverage such past research about (1) and
expand this work in the new direction of (2), reasoning about the team and social
knowledge required for effective teamwork.
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Adhoc teamworkproblems canbe encountered in a variety of realworld scenarios.
As described in the example above, in search and rescue scenarios, robots from
different developers need to cooperate quickly. Furthermore, as more robots enter
society, their interactions will increase. In the near future, personal assistant robots
may need to interact with other service robots to accomplish their tasks. In addition,
the introductionof autonomous cars opens up an interesting area for adhoc teamwork:
cooperating with human drivers. Cars on the road have the shared goal of reaching
their destinations quickly and safely, and they need to cooperate with the other cars
in order to accomplish these goals. These agents have very limited observations of
the other cars, and therefore must adapt quickly.

Another area where ad hoc teamwork comes into play is when robots need
to accomplish tasks in workplace settings with human teammates. These settings
include manufacturing jobs, where new robots are now able to work more closely
with humans, and using robots in warehouses for moving products. The robots are
likely to interact with a variety of humans, and therefore need to adapt quickly to
these new teammates. While the robots and humans share a common goal, com-
munication between them is limited; humans cannot quickly and fully specify their
intentions to the level used in existingmultiagent coordination algorithms. Therefore,
it is desirable for the robots to reason about ad hoc teamwork.

Another interesting application of ad hoc teamwork is in the area of games. Game-
playing agents interact with humans and need to adapt to them with only limited
observations. These interactions are incredibly complex, and existing approaches rely
heavily on heuristic approaches with only limited adaptations [15–17]. Reasoning
about ad hoc teamwork would allow virtual agents in video games to adapt to their
human teammates.

2.2 Evaluation Framework

In an ad hoc team, agents need to be able to cooperate with a variety of previously
unseen teammates. Rather than developing protocols for coordinating an entire team,
ad hoc team research focuses on developing agents that cooperate with teammates
in the absence of such explicit protocols. Therefore, we consider a single agent
cooperatingwith teammates thatmayormaynot adapt to its behavior. In this scenario,
we can only develop algorithms for the ad hoc team agent, without having any direct
control over the other teammates.

However, directly measuring teamwork is difficult. In many cases, the only easily
measurable aspect is the overall performance of the team, which makes it difficult to
assign credit to each agent. By placing an agent on a variety of teams and measuring
those teams’ performances, we can estimate how good the agent is at teamwork.

Therefore, we introduce an algorithm that evaluates an ad hoc team agent while
considering the teammates and domains it may encounter. This framework is speci-
fied in Algorithm 2.1 and visually presented in Fig. 2.2. According to this framework,
the performance of the ad hoc team agent a depends on the distribution of problem
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Algorithm 2.1 Ad hoc agent evaluation
1: function Evaluate:

inputs:
a � the ad hoc agent
A � the set of possible teammate agents
D � the set of possible domains

outputs:
r
n � the average performance (reward)

params:
smin � the minimal acceptable performance of a team
n � the number of iterations

2: Initialize: r = 0
3: for i = 1 to n do
4: Sample a task d from D
5: Randomly draw a subset of agents B, from A such that E[s(B, d)] ≥ smin
6: Randomly select one agent b ∈ B
7: Create the new team C = {a} ∪ B\{b}
8: r = r + s(C, d)
9: return r

n

10: If Evaluate(a0, A, D) > Evaluate(a1, A, D) and the difference is significant, we can conclude
that a0 is a better ad hoc team agent than a1 in domain d over the set of possible teammates A.

domains D and the distribution of possible teammates A that it will cooperate with.
For the team B cooperating to execute the task d, s(B, d) is a scalar score representing
their effectiveness, where higher scores indicate better performance. The algorithm
takes a sampling approach to average the agent’s performance across a range of

Fig. 2.2 A visual
representation of the
evaluation algorithm given in
Algorithm 2.1
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possible tasks and teammates to capture the idea that a good ad hoc team player
ought to be robust to a wide variety of teamwork scenarios. We use smin as a mini-
mum acceptable reward for the team to be evaluated, because the ad hoc team agent
may be unable to accomplish a task if its teammates are too ineffective, regardless of
its own abilities. It is mainly used to reduce the number of samples required to eval-
uate the ad hoc agents and reduces the noise in the comparisons. Metrics other than
the sum of the rewards can be used depending on the domain, such as the worst-case
performance.

2.3 Dimensions of Ad Hoc Team Problems

Section2.2 specified the framework for evaluating ad hoc team agents, but this eval-
uation depends on the specific domain and teammates that the ad hoc agent may
encounter. This section identifies three dimensions of ad hoc teamwork settings
that can be used to describe these domains and teammates. We hypothesize that
domains with similar values along these dimensions can be tackled by similar algo-
rithms, while domains with very different values will need different algorithms for
good performance. For this book, we use these dimensions as a way as classifying
problems, but a promising area for future work is to apply these dimensions to predict
which algorithms will be effective on different problems.

There are many possible ways that ad hoc team domains can vary, such as the size
of the task’s state space and the stochasticity of the domain. But, for differentiating
among the algorithms in the existing literature, we find the following three to be the
most informative.

1. Team Knowledge: Does the ad hoc agent know what its teammates’ actions will
be for a given state, before interacting with them?

2. Environment Knowledge: Does the ad hoc agent know the transition and reward
distribution given a joint action and state before interacting with the environment?

3. Reactivity of teammates: Howmuch does the ad hoc agent’s actions affect those
of its teammates?

These dimensions affect the difficulty of planning in the domain in addition to how
much an ad hoc agent needs to explore the environment and its teammates. When
an ad hoc agent has good knowledge, it can plan without considering exploration,
but when it has incomplete knowledge, it must reason about the cost and benefits of
exploration. The exploration-exploitation problem has been studied previously, but
adding in the need to explore the teammates’ behaviors and the ability to affect them
considerably alters this tradeoff. Sections2.3.1–2.3.3 provide further details about
each of these dimensions, how they are measured, and why they are important for
ad hoc teamwork.

To better illustrate the dimensions, we introduce a simple domain to evaluate
across each of the dimensions. The domain is described here, and it will be revisited
in the discussion of each dimension (Sections2.3.1–2.3.3).
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MatchActions: This domain is a typical coordination game with two agents, each
of which has two actions. If they select the same action, both receive a reward of
ri , where ri is randomly selected from {0.5, 0.75, 1.0} for i ∈ 1, 2, but fixed for the
episode. On the other hand, if both of the agents select different actions, they receive a
reward of 0. In addition, both agents can observe their teammates’ previous actions.
The ad hoc agent knows that its teammate is following one of two behaviors:

• FirstAction: the teammate always chooses the first action
• BestResponse: the teammate chooses the same action as the ad hoc agent did

previously

Therefore, the state can be represented as the previous action taken by the ad hoc
agent, called s0 if the ad hoc agent chose the first action, and s1 otherwise.

2.3.1 Team Knowledge

The ad hoc agent’s knowledge about its teammates’ behaviors gives insight into the
difficulty of planning in the domain. The agent’s knowledge can range from knowing
the complete behaviors of its teammates to knowing nothing about them. Settings
with partial information are especially relevant, because inmany realworld problems,
the exact behavior of a teammate may not be known, but some reasonable guidelines
of their behaviors exist. For example, when playing soccer, one can usually assume
that a teammate will not intentionally pass to the other team or shoot at the wrong
goal. If the behaviors are completely known, the agent can reason fully about the
team’s actions, while if the behaviors are unknown, the agent must learn about them
and adapt to find a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’ behaviors, we
compare the actions the ad hoc agent expects them to take and the ground truth ofwhat
actions they take. Specifically, we compare the expected distribution of teammate
actions to the true distribution that the teammates follow. To compute the difference
between the distributions, we use the Jensen-Shannon divergence measure, which
was chosen because it is a smoothed, symmetric variant of the popular Kullback-
Leibler divergence measure. Specifically, we denote the Jensen-Shannon divergence
by JS where

JS(P, Q) = 1

2
(KL(P, M) + KL(Q, M))

and M = 1
2 (P + Q). The Kullback-Leibler divergence is given by

KL(P, Q) =
∑

i

P(i) log
P(i)

Qi
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When the ad hoc agent has no information about a teammate’s action, we assume
that it uses the uniform distribution to represent its actions. Therefore, we define the
knowledge measure as

K (T, P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if JS(T, P) = 0

1 − JS(T, P)

JS(T,U )
if JS(T, P) < JS(T,U )

− JS(P,U )

JS(U,Point)
otherwise

(2.1)

where T is the true distribution, P is the predicted distribution, U is the uniform
distribution, andPoint is a distributionwith allweight on one point (e.g. [1, 0, 0, . . .]).
By this definition, K (T, T ) = 1, so the knowledge is complete if the ad hoc agent
knows the true distribution. K (T,U ) = 0, representing when the ad hoc agent
has no knowledge and relies on the uniform distribution. Finally, if the predicted
distribution is less accurate than the uniform distribution, then K (T, P) is negative,
with a minimum value of −1. This measure captures the range [0, 1] smoothly, but
can still be used for the range [−1, 0].1 However, we generally expect the prediction
to be a higher entropy distribution than the true distribution as the ad hoc agent
ought to correctly model its uncertainty in its teammates’ behaviors rather than being
confident and wrong, which keeps the measure in the range [0, 1].

We define the ad hoc agent’s knowledge about its teammates’ behaviors as the
average over the teammates and world states, specifically

TeamK =

n∑

s=1

k∑

t=1

K (TrueActiont (s),PredActiont (s))

nk

where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate, TrueActiont (s) is
the ground truth action distribution for teammate t for state s, and PredActiont (s) is
the action distribution that the ad hoc agent predicts teammate t to select for state s.
Thus, if the ad hoc agent has better information about its teammates’ behaviors, the
distance between the distributions will be smaller and TeamK will be higher.

Let us now calculate the TeamK for the MatchActions domain. The ad hoc agent
has uniform beliefs over its teammate following either the FirstAction or BestRe-
sponse behaviors. However, the teammate is actually following the BestResponse
behavior. With these beliefs, in s0, the ad hoc agent expects that its teammate will
always chose a0, so PredActions0 = [1, 0]. In s1, the ad hoc agent thinks that the
teammate will choose a0 with probability 0.5 and a1 with probability 0.5, while it
actually chooses a1 with probability 1. Thus,

1One slight anomaly of this measure is that when T is the uniform distribution (e.g. [0.5, 0.5]), K
is either 1 when P is exactly correct at [0.5, 0.5] or negative. For all other values of T, K smoothly
spans the range [−1, 1].
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TeamK = K ([1, 0], [1, 0]) + K ([0, 1], [ 12 , 1
2 ])

2
= 0 + 1

2
= 0.5

This value indicates that the ad hoc agent is somewhat knowledgeable about its
teammate’s actions as it predicts its teammate’s actions half the time better than
random guessing.

2.3.2 Environmental Knowledge

Another informative dimension is how much knowledge the ad hoc agent has about
the effects of a joint action given a state, for example the transition and reward
functions. If the ad hoc agent has complete knowledge about the environment, it can
plan about what actions it should select more simply than if it must also consider
unknown effects of actions. However, if it has incomplete knowledge, it must explore
its actions and face the standard problem of balancing exploring the environment
versus exploiting its current knowledge.

Similarly to teammate knowledge, we formally define the ad hoc agent’s knowl-
edge about the environment’s transitions as

TransK = 1

nm

n∑

s=1

m∑

j=1

K (TrueTrans(s, j),PredTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is taken from Eq. (2.1),
TrueTrans(s, j) is the ground truth transition distribution from state s given joint
action j , and PredTrans is the ad hoc agent’s expected transition distribution. If the
agent has no information about the transitions, we assume that PredTrans(s, j) is
the uniform distribution. Intuitively, if the ad hoc agent knows more about the tran-
sition function, then the distance between TrueTrans and PredTrans will be smaller
and as a result TransK will be higher. We define the agent’s knowledge about the
environmental rewards similarly

RewardK = 1

nm

n∑

s=1

m∑

j=1

K (TrueReward(s, j),PredReward(s, j))

We define the environmental knowledge as a 2-dimensional value given by EnvK =
(TransK,RewardK).

Revisiting the MatchActions domain, the ad hoc agent knows the true transition
function, as it only depends on the ad hoc agent’s previous action, so TransK = 1.
However, it only knows that the payoff for each action is uniformly drawn from
{0.5, 0.75, 1.0} and the reward is 0 if the agents’ actions do not match. There are 8
possible cases to count over, coming from 2 states, 2 actions for the ad hoc agent,
and 2 for its teammate, but the cases fall into 2 sets based on whether the actions
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match, each set covering 4 cases. In addition, it does not matter which value each
matched action actually takes, so we can simplify the calculation. If the agents take
the different actions, the reward is correctly known to be 0. Note that there are four
reward values possible: {0, 0.5, 0.75, 1.0}. Therefore, the knowledge in this case is
K ([1, 0, 0, 0], [1, 0, 0, 0]) = 1. On the other hand, if they take the same actions, the
ad hoc agent is unsure which of the three rewards {0.5, 0.75, 1.0} it will receive, so
the knowledge in this case is K ([0, 1, 0, 0], [0, 1

3 ,
1
3 ,

1
3 ]) = 0.164. This leads to

RewardK = 4 ∗ K ([1, 0, 0, 0], [1, 0, 0, 0]) + 4 ∗ K ([0, 1, 0, 0], [0, 1
3 ,

1
3 ,

1
3 ])

8

= 4 ∗ 1 + 4 ∗ 0.164

8
= 0.582

Thus, EnvK = (1, 0.582). As the agent observes these payoffs, it can refine its
knowledge, butwe are evaluating these properties prior to the ad hoc agent interacting
with its environment.

2.3.3 Teammate Reactivity

The optimal behavior for the ad hoc agent also depends on how much its teammates
react to its actions. If its teammates’ actions do not depend on the ad hoc agent at all,
the ad hoc agent can simply choose its actions to maximize the team reward, as if
it were a single agent problem. Considering the actions of its teammates separately
from that of the environment may still help computation by factoring the domain.
However, if the teammates’ actions depend strongly on the ad hoc agent’s actions,
the ad hoc agent’s reasoning should consider what its teammates’ reactions will be.
If the ad hoc agent is modeling its teammates and its teammates are modeling the ad
hoc agent, the problem can become recursive, as is directly addressed by Vidal and
Durfee’s Recursive Modeling Method [18].

A formal measure of the teammate reactivity needs to capture how different the
teammates’ actions will be when the ad hoc agent chooses different actions. We
measure the distancebetween the resultingdistributions of the teammate joint actions,
using the pairwise Jensen-Shannon divergence measures. However, it is desirable for
the distance to be 1 when the distributions have no overlap, so we use a normalizing
constant of log 2. Thus, we define the reactivity of a domain in state s as

Reactivity(s) = 1

m(m − 1) log 2

m∑

a=1

m∑

a′=1

JS(T (s, a), T (s, a′))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a′ ≤ m is the actions
available to the ad hoc agent, and T (s, a) is the distribution of the teammates’ joint
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actions given the state s and the ad hoc agent’s action, a. We use m − 1 in the
denominator because we exclude the case where a = a′; in the numerator, the JS
measure will be 0 in this case. For the overall reactivity of the domain, we average
over the states, resulting in Reactivity = 1

n

∑n
s=1 Reactivity(s). It is possible to

consider how an action affects the teammates’ actions further in the future, but we
restrict our focus to one step reactivity for this book. Note that all of the sums in
this formulation can be converted to integrals for continuous states or actions. This
formulation is similar to the empowerment measure used by Jung et al. [19], but we
consider the ad hoc agent’s ability to change the actions of its teammates rather than
the environment state.

Let us once again explore this dimension in the context of the MatchActions
domain.Although the ad hoc agent is unsure of its teammate’s behavior, the teammate
is truly playing the BestResponse behavior. Thus, its actions are entirely dependent
on the ad hoc agent’s actions, so Reactivity = 1. If instead the teammate played
BestResponsewith probability 9

10 andFirstActionwith probability
1
10 , thenwewould

get

Reactivity = JS([1, 0], [ 1
10 ,

9
10 ]) + JS([ 1

10 ,
9
10 ], [1, 0])

2 log 2
= 0.758

Therefore, we can conclude that the agent would still be very reactive, though not as
reactive as the BestResponse agent.

2.3.4 Applying the Dimensions

In theory, calculating the dimensions over every possible state is a promising
approach. However, as the size of the state space grows, this approach rapidly
becomes computationally ineffective. Therefore, it is desirable to approximate the
values along each dimension. Specifically, we approximate these values by randomly
sampling states and teammates and summing over these samples to calculate approx-
imate values for each of the dimensions. In addition, in continuous state spaces, the
summations in the dimension definitions become integrals in the continuous case,
but we continue to sample states in these scenarios. Furthermore, the distributions
become continuous, but the JS measure can operate over continuous distributions.
Specifically, we approximate the JS measure using Monte Carlo sampling in this
book. The domains used in this book are described in Sect. 3.2, where we discuss the
values of each domain along these dimensions.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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2.4 Chapter Summary

This chapter introduces the type of situations this book focuses on: ad hoc team
problems. In ad hoc teams, agents must adapt to new and unknown teammates with-
out prior coordination, possibly without any explicit communication channels. In
addition, this chapter introduces the evaluation framework used to evaluate ad hoc
agents. This evaluation framework relies on sampling teams and tasks and then
replacing an agent on the team with the ad hoc agent. The resulting team performs
the task and receives a reward based on its performance, which is combined with
results with other teams and tasks. Finally, this chapter describes 3 dimensions for
categorizing ad hoc team problems that indicate which approaches are expected to be
effective. These dimensions are: (1) team knowledge, (2) environment knowledge,
and (3) team reactivity. This chapter provides the framework for how the rest of
the book investigates ad hoc teamwork scenarios. The next chapter will provide an
introduction to the algorithms that this book builds upon as well as a description of
the domains used to evaluate the proposed algorithm.
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Chapter 3
Background

While the previous chapter describes the general problem investigated in this book,
this chapter describes the mathematical model used to analyze this problem. In addi-
tion, this chapter presents the existing algorithms that our approach builds upon.
Then, the chapter grounds the general ad hoc teamwork problem in a number of
domains that the remainder of the book uses to evaluate the proposed approach.
Using the dimensions described in Sect. 2.3, we can analyze these domains as well
as the teammates that the ad hoc agent may encounter. Informally, we find that simi-
lar algorithms are effective on problems with similar values, but we do not use these
values for further algorithm design or selection in this book.

3.1 Background

This section defines the models, Markov Decision Processes (MDPs) and Partially
Observable Markov Decision Processes (POMDPs) we use as the mathematical
frameworks for modeling ad hoc team problems. Then, this section presents sev-
eral existing algorithms used to learn how to act in MDPs. This section concludes
with a discussion of transfer learning algorithms, which can be used to efficiently
learn models of the teammates’ behaviors.

3.1.1 Markov Decision Process

In order to plan and learn in various ad hoc teamwork scenarios, it is helpful to pick
a way to model the problem. Agents that need to cooperate in ad hoc teams need to
handle sequential decision making problems; therefore, we choose to model these
problems as a Markov Decision Process. The Markov Decision Process (MDP) is
a standard formalism in reinforcement learning [1], generally used to describe an
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Fig. 3.1 A single agent
interacting with the
environment in
reinforcement learning

agent interacting with its environment. A summary of this interaction is given in
Fig. 3.1. An MDP is 4-tuple (S, A, P, R), where S is a set of states, A is a set of
actions, P(s′|s, a) is the probability of transitioning from state s to s′ when after
taking action a, and R(s, a) is a scalar reward given to the agent for taking action
a in state s. In the pursuit domain, s ∈ S corresponds to the current positions of
every agent and a ∈ A is the action that the ad hoc agent chooses (i.e. left, right,
up, down, or staying still). In this framework, a policy π is a mapping from states to
actions, which defines an agent’s behavior for every state. The agent’s goal is to find
the policy that maximizes its long term expected rewards. The long term expected
value from taking action a from state s is the value of the state-action and is denoted
Q(s, a). For every state-action pair, Q∗(s, a) represents the maximum long term
reward that can be obtained from (s, a) and is defined by the Bellman equation

Q∗(s, a) = R(s, a) + γ
∑

s′
P(s′|s, a)max

a′ Q∗(s′, a′) (3.1)

where 0 < γ < 1 is the discount factor representing how much more immediate
rewards are worth compared to delayed rewards. The optimal policy π∗ can then be
derived by choosing the action a that maximizes Q∗(s, a) for every s ∈ S. The goal
of most reinforcement learning algorithms is to find this optimal policy.

3.1.2 Value Iteration

Once we model a problem as an MDP, it becomes clear what the agent’s objective
is: to maximize long term expected reward. In our setting this translates into the
ad hoc agent optimally cooperating with its teammates to accomplish their shared
goals. One way to calculate the optimal policy is by using Value Iteration (VI) [1].
VI requires a complete model of the environment, specifically the full transition and
reward functions. Given these models, VI can calculate the optimal value function
Q∗(s, a) and therefore the optimal policy π∗. Value iteration relies on dynamic
programming to solve for the optimal state-action values for all state-action pairs. VI
initializes the state-action values arbitrarily, and then improves these estimates using
an update version of the Bellman optimality equation given in Eq.3.1. These updates
are repeated iteratively until convergence, and the final calculated state-action values
are guaranteed to be optimal.
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While VI provably converges to the optimal policy, this convergence may take a
substantial amount of time.VI has difficulties in scaling to large domains as it requires
visiting each state-action over many iterations. In ad hoc teamwork scenarios, this
problem is especially costly as the number of agents greatly increases the state
space. In many problems, the team’s state space becomes exponential in the size of
the domain, with a power proportional to the number of agents, (#positions)(#agents).
Given the symmetries of a specific problem, it is sometimes possible to reduce the
number of possible states, but the scaling is still poor. For example, in initial tests into
ad hoc teamwork in the pursuit domain (described in Sect. 3.2.2), VI on a 5× 5 world
took approximately 12h on the University of Texas Mastodon computing cluster. In
a 5× 5 world, there are 255 ≈ 1e7 states to consider ignoring symmetries, given
that there are 5 agents moving around the 25 world positions. Scaling up to a larger
problem of a 20× 20 world, there are 4005 ≈ 1e13 states of the entire team. Thus,
there are more than a million times more states than the 5× 5 world, leading to this
problem to be computationally infeasible. Due to the exponential blowup of the size
of the state space, many ad hoc teamwork problems are not suitable for VI, even
if the teammates’ behaviors are fully known and the problem can be described as
an MDP.

3.1.3 Monte Carlo Tree Search

Value Iteration is one approach for solving MDPs, and it would allow an ad hoc
agent to optimally cooperate with its teammates if were it to have a complete model
of its teammates and the environment. However, VI is often infeasible to run in a
reasonable time and requires a complex model. Rather than calculating the exact
optimal value of every state-action, it is much more computationally tractable to
instead learn an approximately optimal value for relevant state-actions. When the
state space is large and only small sections of it are relevant to the agent, it can be
advantageous to use a sample-based approach to approximating the values of actions,
such as Monte Carlo Tree Search (MCTS). Specifically, the MCTS algorithm called
Upper Confidence bounds for Trees (UCT) [2] is used as a starting point for creating
the primary planning algorithm used in this book.

MCTS does not require a complete model of the environment. Rather than know-
ing the full probability distribution of next states and rewards resulting from the tran-
sition and reward functions, MCTS only needs a model that allows sampling these
next states and rewards. Furthermore, rather than treating all of the state-actions as
equally likely, UCT focuses on only calculating the values for relevant state-actions.
UCT does so by performing a number of playouts at each step, starting at the current
state and sampling actions and the environment until the end of the episode. It then
uses these playouts to estimate the values of the sampled state-action pairs. Also, it
maintains a count of its visits to various state actions, and estimates the upper con-
fidence bound of the values to balance exploration and exploitation. When selecting
actions, UCT greedily chooses the action with the highest upper confidence bound.
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UCT has been shown to be effective on domains with a high branching factor, such
as Go [3] and large POMDPs [4], so it should be able to handle the branching factor
caused by the number of agents.

In this book, UCT is modified to use eligibility traces and remove the depth
index to help speed up learning. The pseudocode of the algorithm can be seen in
Algorithm 3.1, with s being the current state. Similar modifications were made by
Silver et al., with good success in Go [5]. In addition, work by Hester and Stone [6]
show good results in a number of other reinforcement learning domains.

Algorithm 3.1 The modified version of UCT used in this book
1: function UCTSelect:

inputs:
s � the current state

outputs:
a � action selected by UCT

params:
γ � discount factor, parameter of the MDP
NumPlayouts � number of Monte Carlo playouts to perform
c � weight given to the confidence bound
λ � eligibility trace parameter - affects amount of backup
simulateAction(s, a) � an environment model that samples next states

2: for i = 1 to NumPlayouts do
3: Search(s)
4: return a = argmaxa Q(s, a)

5: function Search(s):
6: a = bestAction(s)
7: while s is not terminal do
8: (s′, r) = simulateAction(s, a)

9: a′ = bestAction(s′)
10: e(s, a) = 1

� Update the Q-values
11: δ = r + γQ(s′, a′) − Q(s, a)

12: for all s∗, a∗ do
13: Q(s∗, a∗) = Q(s∗, a∗) + e(s∗, a∗) ∗ δ

visits(s∗,a∗)

14: e(s∗, a∗) = λe(s∗, a∗)
15: s = s′; a = a′;

16: function bestAction(s):

17: return argmaxa Q(s, a) + c

√
ln visits(s)

visits(s, a)
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3.1.4 Fitted Q Iteration

While UCT is effective for quickly computing an approximately optimal policy in an
MDP, it does require a model of the MDP that permits sampling from the transition
and reward functions. Thismodel can either be given or learned given enough data.VI
requires a stronger model; a model that gives the full probability distribution of next
states and rewards for the transition and reward functions. However, other approaches
attempt to directly learn the values of state-actions without a model of the transition
function, and these approaches are called model-free. Model-free approaches do not
require building a model of the domain which can be more tractable in hard to model
domains. In addition, model-free algorithms are often computationally simpler. In
complex domains, it may be difficult for ad hoc agents to compute the model of their
environment and teammates, so it may be useful for the ad hoc agent to employ a
model-free learning method to find a good policy for cooperating with its teammates.

In this work, our agent uses the Fitted Q Iteration (FQI) algorithm introduced
by Ernst et al. [7]. Similar to Value Iteration (VI), FQI iteratively backs up rewards
to improve its estimates of the values of states. Rather than looking at every state
and every possible outcome from each state, FQI uses samples of these states and
outcomes to approximate the values of state-action pairs. This approximation allows
FQI to find solutions for complex, continuous domains. Alternative policy learning
algorithms can be used, such as Q-learning [8] or policy search [9].

To collect samples of the domain, the agent first performs a number of exploratory
actions. Fromeach action, the agent stores the tuple 〈s, a, r, s′〉, where s is the original
state, a is the action, r is the reward, and s′ is the resulting state. An advantage of the
FQI algorithm is that this data can be collected in parallel from a number of tests. At
each iteration, the agent updates the following equation for each tuple

Q(s, a) = r + γ ∗ max
a′ Q(s′, a′)

where Q(s, a) is initialized to 0. Q is an estimate of the optimal value function,
Q∗, and this estimate is iteratively improved by looping over the stored samples. To
handle continuous state spaces, Q is not stored exactly in a table; instead, its value
is approximated using function approximation. In this paper, the continuous state
features are converted into a set of binary features using CMAC tile-coding [10, 11],
and the estimate of Q(s, a) is given by

Q̂(s, a) =
∑

i

wi fi

where fi is the i th binary feature andwi is theweight given to the featurewith updates
split uniformly between the active features. This approach uses a set of overlapping
tilings to cover the space with binary activations [1]. The advantages of tile coding
include simple computation, binary output, and good control over the generalization
of the model.
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3.1.5 Partially Observable Markov Decision Process

Section3.1.1 introduced theMarkovDecision Process (MDP), and Sects. 3.1.2–3.1.4
introduce methods for solving MDPs. However, not all problems can be modeled
as an MDP. Therefore, we also use an extended version of the MDP known as
the Partially Observable Markov Decision Process (POMDP) in our analysis. In
this model, the agent cannot directly observe its true state s. Instead, it receives
imperfect observations of the underlying state, Ω(s) = o ∈ O , where O is the set of
possible observations. The underlying states and transitions remain unchanged from
the original MDP, as does the agent’s goal of maximizing the reward. However, the
agent’s task is harder because it must reason about the true state.

The difficulty of solving a POMDP is bounded by the size of the δ-covering of
its belief space. A belief state is the probability distribution over states that the agent
may be in. The belief space is a combination of what the agent can directly observe
about the world and its beliefs about the hidden state of the world. For a metric space
A, a set B is a δ-covering if ∀a ∈ A ∃b ∈ B such that |a − b| < δ. Intuitively, a
δ-covering can be thought of as a set of multi-dimensional balls with radius δ filling
the space. The covering number is the size of the smallest δ-covering. FromTheorem
5 in [12], it is known that a policy that performs within ε of the optimal policy for a
POMDP can be found in polynomial time in terms of the size of a given δ-cover set B
where δ = poly(ε). This theorem shows this result for the infinite horizon, discounted
rewards case, chosen because the discount factor bounds the expected total reward.
However, these results extend to the finite horizon setting of the bandit problem used
in Chap.6 given that the expected total reward is bounded by the number of rounds
and agents.

3.1.6 Partially Observable Monte Carlo Planning

As in an MDP, in a POMDP, the agent’s goal is to maximize its long term expected
reward. This task is made more difficult by the partial observability of the domain.
However, there are existing algorithms for planning effective policies for these
problems, and Partially Observable Monte Carlo Planning (POMCP) is one such
algorithm [4]. POMCP is a Monte Carlo Tree Search (MCTS) algorithm that is an
extension of the Upper Confidence bounds for Trees (UCT) algorithm, discussed in
Sect. 3.1.3.While POMCP is guaranteed to find an optimal policy for a POMDPgiven
infinite time, it loses those guarantees in situations with limited computation. Despite
this lack of guarantees when computation is limited, POMCP has been shown to be
effective on a number of large POMDPs, scaling far beyond existing approximate
solvers.

Similar to UCT, POMCP relies on performing a number of simulations from the
current state until reaching the end of the problem. In the simulations, the agent
selects its actions using upper confidence bounds on its current estimates of the

http://dx.doi.org/10.1007/978-3-319-18069-4_6
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available actions. However, rather than being given the true world state, POMCP has
to reason about the underlying world state given the observations the agent receives.
To handle this uncertainty, POMCP starts from the set of possible initial world states
and performs simulations to create a tree, where each node represents the possi-
ble observations received and edges are the actions. At each node, POMCP stores
counts of which underlying world states are reached that produce these observations.
POMCP uses these counts to estimate the probability of a sequence of observations
having come from a sequence of states. This estimate allows POMCP to quickly
approximate the Bayesian update of beliefs while simultaneously calculating an
estimate of the values of each action.

3.1.7 Transfer Learning

While Sects. 3.1.2 and 3.1.3 introducemethods for how the ad hoc agent can compute
a policy for cooperating with its teammates given a model of its teammates, it does
not specify where these models come from. An approach that we employ in this book
is to learn models of past teammates, treating it as a supervised learning problem.
When the ad hoc agent has a limited amount of experienceswith its current teammates
in addition to extensive experiences with past experiences, it may be able to learn
models specific to the current teammates. Unfortunately, the limited experienceswith
the current teammatesmakes learning a newmodel from scratch infeasible. However,
it may be able to reuse information it has learned about past teammates in addition
to what it knows of its current teammates to learn a new model of its teammates.
This idea leads us to transfer learning. In Transfer Learning (TL), the goal is to reuse
information learned on a source data set to improve results on a target data set. For
TL, only the performance on the target data matters; the source data is only used
for training. Following this terminology, for ad hoc teamwork settings, we consider
the current teammates to be the target set, and the previously observed teammates
are the source set. In this section, we discuss three state of the art transfer learning
algorithms: TrAdaBoost [13], TwoStageTrAdaBoost [14], and TrBagg [15].

TrAdaBoost [13] is a boosting-based algorithm, in which the source and target
data sets are lumped together and then a model is learned via boosting. As in many
boosting algorithms, data points are weighted in TrAdaBoost, so that each data point
can have a different amount of influence in the learned classifiers. As in standard
boosting, errors made on the target data set are handled by increasing the weights
of points on which mistakes are made. On the other hand, errors on points from
the source data set are treated differently; specifically, misclassified points from
the source data set have their weights decreased. The intuition is to identify source
data points that are distributed similarly to the target data and decrease the effect of
irrelevant points.

TwoStageTrAdaBoost [14] was designed in response to problems of TrAdaBoost
overfitting the training data. This problem is especially noticeable when the source
data set is much larger than the target data set, causing TrAdaBoost to respond
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too much to irrelevant source data points before dropping their weights sufficiently.
Therefore, TwoStageTrAdaBoost first searches over a set of possible weightings of
the source data points, and determineswhichweighting is best using cross-validation.
At each weighting, it fixes the weight of the source data and performs boosting over
the combined source and target data sets, only changing the weights of the target
data points. These models learned for each weighting are tested via cross-validation
before selecting the best weighting on which to train the final model.

While the other transfer learning algorithms described here focus on using boost-
ing, bagging approaches have also shown promise, specifically in the form of
TrBagg [15]. The TrBagg algorithm combines the source and target data sets into a
single data set. From this combined set, TrBagg samples a number of smaller data
sets. Then, a model is learned on each data set, and these models then undergo a
filtering phase, using cross validation to determine which models are most helpful.
In the filtering phase, models are sorted in order of their performance on the target
data, and subsets of increasing size are tested against a fallback model, that prevents
negative transfer learning. The final model outputs the median of the models that
pass the filtering phase. This method has the advantage of being conceptually simple
and very easy to parallelize.

There has also been some research into transferring knowledge from multiple
sources. Yao and Doretto [16] introduced two transfer learning algorithms for han-
dling multiple sources. The first, MultiSourceTrAdaBoost, uses an instance-transfer
approach, reusing data from the source tasks for training the target classifier. Alterna-
tively, TaskTrAdaBoost employs a parameter-transfer approach where it is assumed
that the target data shares some parameters with some of the source data sets. Another
look at transfer with multiple source sets is the work of Huang et al. [17]. They pro-
pose the SharedBoost algorithm to select the best features for prediction from a
small number of source data sets for text classification. Zhuang et al. [18] investigate
using autoencoders to determine a feature mapping that allows them to train multiple
classifiers from the source domain and apply them effectively on the target domain.
Similarly, Fang et al. [19] introduce an algorithm that determines a shared subspace
among the labels for multiple sources, where each sample is given multiple labels.
Then, this subspace is used to transfer knowledge to the target domain. Another
approach was developed by Ge et al. [20]. The authors introduce an online algo-
rithm that transfers knowledge from multiple sources in a principled way, achieving
a no-regret guarantee compared to the offline algorithm. These algorithms provide a
promising step towards effectively handling multiple sources.

3.2 Domain Descriptions

This section describes the domains thatwe use to evaluate approaches for cooperating
in ad hoc teams. Specifically, we use three domains, which we describe in the order
of simplest to most complex. These domains provide a spectrum of different tasks
and interactions between agents that allow us to effectively evaluate our approach.
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In addition, we also describe the teammates that are used as possible teammates in
each of the domains. We use a number of hand-coded teammates to provide a spread
of possible teammates that our agent may encounter. However, in ad hoc teamwork
research, it is important to also use externally-created teammates to evaluate the
various ad hoc team agents. Externally-created teammates are created by developers
other than the authors and represent real agents that are created for the domain
when developers do not plan for ad hoc teamwork scenarios. It is important to use
externally-created teammates because their development is not biased to make them
more capable of cooperating with ad hoc team agents. Therefore, they are useful for
analyzing how ad hoc agents can cooperate with teammates that are not designed to
work with them, which is the general case that ad hoc agents would encounter in real
world scenarios.

We also describe how these domains fit into the three dimensions described in
Sect. 2.3: teammate knowledge, environment knowledge, and teammate reactivity.
The exact values of these dimensions vary in the different tests performed in this
book. Therefore, tables of the values are specified for various settings at the end of
each domain description.

3.2.1 Multi-armed Bandit Problem

To investigate ad hoc teamwork in a simple domain, we use a problem that is com-
monly used tomodel decision-making tasks, namely themulti-armed bandit problem.
The name of “multi-armed bandits” is derived from the informal name of “one-armed
bandit” given to slot machines. In the standard multi-armed bandit setting, an agent
has to decide between a number of arms to pull, each corresponding to a slot machine
with a different underlying payoff distribution. The agent’s goal is to maximize its
payoff by learning which arm has the highest payoff mean and repeatedly pulling
this arm. However, exploring the different arms has a cost because the other arms
may pay out less than the best known arm. Therefore, the central problem for the
multi-armed bandit setting is to balance exploration and exploitation.

The multi-armed bandit setting is a fundamental problem in single agent rein-
forcement learning [1], and a bandit setting without communication has been used
to study ad hoc teamwork in the past [21]. This book introduces a multiagent, multi-
armed bandit problem that allows limited communication. In this problem, there are
several agents that pull the arms simultaneously. After pulling an arm, each agent
can broadcast a set of messages to share knowledge with its teammates, and each
of these messages has a cost to send. This setting is chosen here to serve as a mini-
mal decision-making domain that exhibits the necessary properties for investigating
communication with unknown teammates.

The multi-armed bandit setting is a useful abstraction for many decision-making
scenarios. For example, consider a scenario inwhich a number of robots are deployed
to transport supplies following a disaster. These robotsmust repeatedly carry supplies
along one of a few possible routes which vary in their speed and safety. In this setting,

http://dx.doi.org/10.1007/978-3-319-18069-4_2
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selecting a route corresponds to pulling an arm. It is desirable for these robots to share
their knowledge about the routes, but this communication takes time and is limited
to whatever messages their teammates understand. A robot that is adept at reasoning
about ad hoc teamwork should adapt to its teammates’ usage of these routes and help
the team select the best routes.

We formally define the bandit problem in this book as the tuple G = (A,C,P, R)

whereA is a set of two arms {arm0, arm1}with Bernoulli payoff distributions, return-
ing either 0 or 1, C = {(ci , cost (ci ))} is a finite set of possible communications and
their costs, P denotes the players in the problem with |P| = n + 1 with n of the
agents being a pre-designed team, and R is the number of rounds. Each round in the
problem involves two phases: (1) a communication phase followed by (2) an action
phase. In both phases, all agents act simultaneously. In the communication phase,
each agent can broadcast a message of each type to its teammates:

• obs—Send the agent’s last selected arm and payoff
• meani—Send the agent’s observed mean and number of pulls for armi

• suggesti—Suggest that the teammates pull armi

These message types are understood by all of the agents. In the action phase, each
agent chooses an arm and receives a payoff. The team’s goal is to maximize the sum
of payoffs minus the communication costs. We use arm∗ to denote the arm with the
highest payoff. Note that the results in this book can be generalized to any number
of fixed arms, other discrete distributions, and other message types.

As a concrete example, consider a case with four agents playing for three rounds
with two Bernoulli arms with success probabilities of 0.75 and 0.25 respectively.
Their actions and payoffs are shown in Table3.1. The team state shows the combined
knowledge of the team as given by the 4-tuple: ( s0

p0
, s1

p1
, r, sugg), where pi and si are

the number of pulls and successes for armi , r is the number of rounds remaining,
and sugg is the last suggestion. The rows specify the messages sent, arms pulled,
and observed payoffs of each agent on the team. Remember that each agent can send
a number of messages during each communication phase and pull one arm during
the action phase. The messages are used to keep the team’s knowledge of all arms
synchronized and encourage the teammates to pull the arm believed to be best. At the
end of the game, the team’s reward is 7−5 ·cost (obs)−cost (suggestion) given that
the team observes 7 successful pulls, sends 5 obs messages, and a single suggestion
message.

3.2.1.1 Teammate Overview

Given that the teammates form an existing team, we assume that they are tightly
coordinated. Specifically, this means that the team’s behavior can be described as a
function of the team’s total number of pulls and successes of each arm. The team-
mates can pool this knowledge using the message types provided in the domain.
The team’s actions also rely on the ad hoc agent’s pulls and successes that it has
communicated, combining all of the team’s pulls and successes as well as the ad hoc
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agent’s into a single estimate of the quality of each arm.While the assumption that all
of the knowledge is shared via communication may not always hold, it may hold in
many scenarios. This assumption simplifies the problem as representing each agent’s
knowledge of the numbers of pulls and successes can lead to an exponential blowup
of the state space, while maintaining the team’s knowledge is merely polynomial, as
shown in Chap.6.

Each teammate’s behavior consists of an action function and a communication
function. These functions specify the probability of the agent selecting arms or send-
ing messages. We denote the action function of each teammate by the function act,
where the result of act is a probability distribution over the agent pulling each arm. Let
ar

i be the action chosen by agent i in round r , pk be the number of times that armk was
pulled by the team, sk be the number of times that armk returned a value of 1, R−r be
the number of rounds remaining, and sugg be the ad hoc agent’s last suggestion. Then,
act(p0, s0, p1, s1, R−r, sugg, i) = Pr(ar

i = arm j ). The teammates’ communication
function is denoted comm, where the result of comm is the probability of sending each
possible message. In particular, comm(p0, s0, p1, s1, R − r, sugg, i) = Pr(c j ∈ Cr

i )

where Cr
i is the set of messages broadcast by agent i in round r and c j ∈ C.

Going back to the example in Table3.1, agent0 is the ad hoc agent. The team state
row summarizes the variables described for act and comm at the beginning of the
specified phase. In this scenario, for the remaining agents,

comm(c) =
{
1 if c = obs and the last payoff was 1

0 otherwise

Let us now describe the act function. When there have been no pulls yet, the even
numbered agents select arm0, and the odd numbered ones select arm1. In later
rounds, agent2 continues exploring the arms, and the other agents act greedily.
To examine one agent’s decision, in round 1, agent1’s action function is given by
act(2, 2, 2, 1, 1, sugg0, 1) = arm0 because arm0’s observed mean is higher than that
of arm1.

3.2.1.2 Hand-Coded Teammates

We consider two parameterized types of hand-coded teammates that select arms
using: (1) the ε-greedy algorithmand (2) confidencebounds in the formofUCB1 [22].
The value ε controls the exploration of the agent by specifying the chance of taking
a random action. In our setting, the teammates’ value of c can vary, unlike in the
original UCB1, so we call the algorithm UCB(c). The value of c similarly controls
exploration, but by specifying how much weight is given to the confidence bounds.
The ε-greedy algorithm specifies that the teammates’ action function is:

http://dx.doi.org/10.1007/978-3-319-18069-4_6
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vi = si

pi

act(armi ) =
{
1 − ε if vi = argmax j v j

ε otherwise
(3.2)

The teammates using UCB(c) select actions using:

vi = si

pi
+ c

√
ln(p0+p1)

pi

act(armi ) =
{
1 if vi = argmax j v j

0 otherwise
(3.3)

In some of our theoretical analysis, we consider teammates where ε = 0 and c = 1.
To model the effects of sending suggestions, the teammates are given a probability
of following the most recent suggestion received from the ad hoc agent, using the
probability 0 ≤ s ≤ 1.

3.2.1.3 Externally-Created Teammates

In addition to the set of hand-coded teammates, we also consider a number of
externally-created teammates. These agents represent a spread of possible team-
mates that the ad hoc agent may encounter. It is important to note that these agents
are not designed for ad hoc teamwork, so there are no guarantees about how they
will interact with the ad hoc agent. These agents were designed by undergraduate
and graduate students as part of an assignment for a course on agent design taught
by Sarit Kraus at Bar Ilan University in the fall of 2012. To prevent any bias in the
creation of the agents, the students designed the entire team without considering ad
hoc teamwork. These agents use the same three types of messages available to the ad
hoc agent. However, not all of the students’ agents employ all of the message types
available, so they may ignore some messages sent by the ad hoc agent.

3.2.1.4 Dimension Analysis

Let us now describe where the multi-armed bandit domain falls on the dimensions
described in Sect. 2.3. All values are calculated using the sampling-based approach
specified in the same section. In our study of the bandit domain, the ad hoc agent’s
team knowledge (TeamK) varies based on the prior knowledge of the ad hoc agent
as well as the number of rounds and arms. In the simplest setting where the ad hoc
agent exactly knows its teammates’ behaviors, TeamK = 1. Values for TeamK and
Reactivity in a number of different scenarios in the bandit domain are summarized
in Table3.2. In the majority of our tests, the ad hoc agents knows the true payoffs
of the arms. Therefore, the ad hoc agent has perfect environmental knowledge in

http://dx.doi.org/10.1007/978-3-319-18069-4_2
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Table 3.2 TeamK and reactivity for various settings in the bandit domain given that the ad hoc
agent believes that its teammates are drawn from {ε-greedy, UCB(c)}

Teammate type Num arms Num teammates TeamK Reactivity

Hand-coded 2 1 0.410 0.300

Hand-coded 2 2 0.391 0.410

Hand-coded 3 4 0.420 0.610

Hand-coded 7 1 0.484 0.508

Hand-coded 7 2 0.520 0.374

Externally-
created

3 4 0.418 0.150

these settings, i.e. EnvK = (1, 1). However, we also consider the case where the
Bernoulli payoff probabilities are not known be the ad hoc agent. In these situations,
EnvK = (0.5, 0.5) given that the ad hoc agent’s prior is uniform for the acting phase,
EnvKact = (0, 0), and complete for the communication phase, EnvKcomm = (1, 1).

Given the high reactivity of the teammates, it is helpful for the ad hoc agent
to explicitly model its teammates’ mental state so that it can cooperate with them
effectively. However, the low reactivity of the externally-created teammates in the
unbiased scenario motivates our tests about whether the ad hoc agent can help correct
its teammates’ biased knowledge of the arms as described in Chap. 7. The limited
knowledge of its teammates’ behaviors means that the ad hoc agent needs to quickly
learn about its teammates. In addition, the high environmental knowledge allows the
ad hoc agent to focus on learning about its teammates rather than learning about the
domain. However, when the payoff distributions of the arms are not known by the
ad hoc agent, it must balance exploring the domain as well as its teammates. The
bandit domain is investigated from a theoretical standpoint in Chap. 6, and empirical
results are presented in Chap.7.

3.2.2 Pursuit Domain

While the previous section described a simple decision-making domain, this section
introduces a more complex sequential decision-making domain. Specifically, this
section describes the pursuit domain, also called predator-prey. The pursuit domain is
a popular problem inmultiagent systems literature as it requires cooperation between
all of the teammates to capture the prey while remaining simple enough to evaluate
approaches well [23]. There are many versions of the pursuit domain with different
rules, but the pursuit domain revolves around a set of agents called predators trying
to capture an agent called the prey in minimal time.

In the version of the pursuit domain used in this book, the world is a rectangu-
lar, toroidal grid, where moving off one side of the grid brings the agent back on

http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_7
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Fig. 3.2 A view of the pursuit domain, where the rectangle is the prey, the ovals are predators, and
the oval with the star is the ad hoc predator being evaluated. a Random starting position. b A valid
capture position. c A second valid capture position

the opposite side. Four predators attempt to capture the randomly moving prey by
surrounding it on all sides in as few time steps as possible. At each time step, each
agent can select to move in any of the four cardinal directions or to remain in its
current position. All agents pick their actions simultaneously, and collisions are han-
dled using priorities that are randomized at each time step. In addition, each agent is
able to observe the positions of all other agents. A view of the domain is shown in
Fig. 3.2, and videos of the domain can be viewed online.1

3.2.2.1 Hand-Coded Teammates

In order to meaningfully test the proposed ad hoc teamwork algorithms, four hand-
coded predator algorithms with varying and representative properties were used.
Short descriptions of these predators are below, and a full explanation of them can
be found in Appendix A. The greedy (GR) predator moves towards the nearest
open cell that neighbors the prey, ignoring its teammates’ actions. On the other

1http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit.

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit
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hand, the teammate-aware (TA) predator considers its teammates, and allows the
predator that is farthest from the prey have the cell closest to it. In addition, the
teammate-aware predator uses the A* path planning algorithm to select its actions
while the greedy predator only considers immediate collisions. It is expected that
the differences between these teammates will require the ad hoc agent to adapt and
reason about how its actions will influence its teammates’ actions. In addition to
these two deterministic agents, two stochastic agents are used that each select an
action distribution at each time step. The greedy probabilistic (GP) predator moves
similarly to the greedy predator except that it has a chance of taking a longer path to
the greedy destination. Finally, the probabilistic destinations (PD) predator chooses
a new destination near the prey at every time step, slowly encircling the prey before
converging on it.

These behaviors were chosen to provide a spread of representative behaviors. The
deterministic GR predator largely ignores its teammates’ actions while the determin-
istic TA predator tries to move out of the way of its teammates, but it also assumes
that they will move out of its way when needed. It is expected that the ad hoc agent
will need to cooperate differently with these two types of agents based on their reac-
tivity (0.855 for TA teammates and 0.655 for GR teammates). In addition to these
two deterministic agents, the stochastic GP and PD agents provide behaviors that
are harder for the agent to quickly differentiate. Therefore, the ad hoc agent will be
forced to reason about the uncertainty of its teammates’ behaviors for longer. Further-
more, these behaviors are significantly different from the deterministic behaviors,
and interacting with them requires reasoning about noise in future outcomes.

3.2.2.2 Externally-Created Teammates

While the set of hand-coded teammates attempts to be representative, this set is
limited and possibly biased as the agents were designed by someone planning for ad
hoc teamwork. Therefore, we also consider externally-created teammates to provide
a broader range of agents less biased towards cooperating with agents following
other behaviors. Specifically, we use two additional sets of teammates in this book,
both created by undergraduate and graduate computer science students. These agents
were created for an assignment in two workshops on agent design with no discussion
of ad hoc teams; instead, the students were asked to create a team of predators that
captured the prey as quickly as possible. The agents produced varied wildly in their
approaches as well as their effectiveness. Both sets of agents come from a workshop
taught by Sarit Kraus at Bar Ilan University, one taught in the spring of 2010, and
the other taught in the spring of 2011. The first set of agents contains the best 12
student agents taken from the first class of 41 students, filtered by their ability to
capture a randomly moving prey in a 5× 5 world in less than 15 steps on average
(i.e. smin = 15 in Algorithm 2.1). This set of agents is called StudentSelected. The
second set of agents, StudentBroad, comes from a second offering of the course and
contains 29 agents from a class of 31 students. One student teamwas removed for not
capturing the prey at all and the secondwas removed for taking excessively long times
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Table 3.3 TeamK and reactivity for various settings in the pursuit domain

Teammate type Prior knowledge World size TeamK Reactivity

Hand-coded Hand-coded 5× 5 0.719 0.717

Hand-coded Hand-coded 20× 20 0.360 0.801

StudentSelected Hand-coded 20× 20 0.156 0.801

StudentSelected Known learned set 20× 20 0.318 0.801

StudentBroad Hand-coded 20× 20 0.098 0.800

StudentBroad Known learned set 20× 20 0.301 0.800

StudentBroad Leave-one-out known
learned set

20× 20 0.280 0.800

to calculate their actions. StudentBroad contains a wider range of performance than
StudentSelected as it is filtered less heavily. The better quality of agents in StudentBroad
is due to the improvements to the directions and architecture provided to the second
class of students based on the lessons learned from the first offering of the course.

3.2.2.3 Dimension Analysis

Given the problem description, we can analyze how the pursuit domain is described
by the dimensions introduced in Sect. 2.3. As in the bandit domain, the ad hoc agent’s
knowledge about its team (TeamK) varies in the different tests, as does the reactivity
of the teammates. When the ad hoc agent knows its teammates’ behaviors, TeamK =
1. A variety of other scenarios are summarized in Table3.3, where we vary the
type of teammates as well as the prior knowledge the ad hoc agent has about its
teammates. The ad hoc agent completely knows the environment dynamics, leading
to EnvK = (1, 1).

The high reactivity values for all teammate types implies that it is vital to under-
stand and model the ad hoc agent’s teammates. The lower values of team knowledge
for the student teammates shows the importance of quickly narrowing the field of
models to descriptive ones to allow for better planning. As these values are generally
similar to those of the bandit domain, we expect that similar approaches should work
in these two domains. This hypothesis and approaches to learning about teammates
are explored empirically in Chap.7.

3.2.3 Half Field Offense in the 2D RoboCup Simulator

While the pursuit domain provides an interestingmultiagent domain for testing team-
work, it is still fairly simple compared to real world problems. In order to test the
scalability of our approach, it is important to also consider more complex problems.

http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_7
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Fig. 3.3 A screenshot of
half field offense in the 2D
soccer simulation league.
The yellow agent number 11
is under our control, and
remaining yellow players are
its externally created
teammates. These agents are
trying to score against the
blue defenders

Therefore,we also consider a simulated robot soccer domain used in the 2DRoboCup
Simulation League.

The 2DSimulationLeague is one of the oldest leagues inRoboCup and is therefore
one of the best studied, both in competition and research. In this domain, teams of
11 autonomous agents play soccer on a simulated 2D field for two 5min halves. The
game lasts for 6,000 simulation steps, each lasting 100ms. At each of these steps,
these agents receive noisy sensory information such as their location, the location of
the ball, and the locations of nearby agents. After processing this information, agents
select abstract actions that describe how they move in the world, such as dashing,
kicking, and turning. The 2D simulation server and the full manual that includes
the perception and action models can be found online.2 This domain is used as it
provides a testbed for teamwork in a complex domain without requiring focus on
areas such as computer vision and legged locomotion.

Rather than use full 10min 11 on 11 game, this book instead uses the quicker
task of half field offense introduced by Kalyanakrishnan et al. [24]. In Half Field
Offense (HFO), a set of offensive agents attempt to score on a set of defensive agents,
including a goalie, without letting the defense capture the ball. A view of this game is
shown in Fig. 3.3, andmore information and videos can be found online.3 This task is
useful as it allows for much faster evaluation of team performance than running full
games as well as providing a simpler domain in which to focus on ways to improve
ball control. In this book, we consider two versions of the HFO domain: (1) a limited
version with two offensive agents and two defensive agents including the goalie and

2http://sourceforge.net/projects/sserver/.
3http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/.

http://sourceforge.net/projects/sserver/
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/
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(2) the full version with four offensive agents and five defensive agents including the
goalie. Videos of both versions of this domain can be viewed online.4

If the ball leaves the offensive half of the field or the defense captures the ball,
the offensive team loses. If the offensive team scores a goal, they win. In addition, if
no goal is scored within 500 simulation steps (50 s), the defense wins.

At the beginning of each episode, the ball is moved to a random location within
the 25% of the offensive half closest to the midline. Let length be the length of
the soccer pitch. Offensive players start on randomly selected vertices forming a
square around the ball with edge length 0.2 · length with an added offset uniformly
randomly selected in [0, 0.1 · length]. The goalie begins in the center of the goal, and
the remaining defensive players start randomly in the back half of their defensive
half. A variety of start conditions are shown in Fig. 3.4.

3.2.3.1 Externally-Created Teammates

Unlike in the multi-armed bandit and pursuit domains, we do not use hand-coded
teammates as it is difficult to define what a set of representative policies might be
in this domain. Instead, it is more productive to consider agents created for the
RoboCup competition. It is expected that these agents represent a far better spread of
possible behaviors than any hand-coded teammates, given the years of improvements
implemented for the competitions.

As part of the 2D simulation league competition, teams are required to release
binary versions of their agents following the competition.5 Therefore, we use the
binary releases from the 2013 competition held in Eindhoven. These agents provide
an excellent source of externally-created teammates with which to test the possible
ad hoc team agents. Specifically, we use 6 of the top 8 teams from the 2013 com-
petition, omitting 2 as they do not support playing games faster than real time. In
addition, we use the team provided in the code release by Helios [25], commonly
called agent2d. Therefore, there are a total of 7 possible teams that our agent may
encounter: agent2d, aut, axiom, cyrus, gliders, helios, and yushan.

In order to run some existing teams used in the RoboCup competition, it is neces-
sary to field the entire 11 player team for the agents to behave correctly. Therefore, it
is necessary to create the entire team and then constrain the additional players to stay
away from play, only using the agents needed for half field offense. These additional
players are moved to the other side of the field every time step. This approach may
affect the players used in the HFO, but empirical tests have shown that the teams
still perform well and that our ad hoc team agent can still adapt to these teams. We
choose a fixed set of player numbers for the teammates, based on which player num-
bers tended to play offensive positions in observed play. In the limited HFO task,
defensive players use the helios behavior, while in the full HFO task, they use the
agent2d behavior.

4http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO.
5http://www.socsim.robocup.org/files/2D/.

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO
http://www.socsim.robocup.org/files/2D/
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Fig. 3.4 A screenshot of a selection of random start positions in half field offense

3.2.3.2 Dimension Analysis

In order to better understand the properties of the half field offense domain and the
teammates that the ad hoc agent may encounter, we can use the dimensions described
in Sect. 2.3. We approximate the Jensen-Shannon divergence measure using Monte
Carlo sampling. Recall from Chap.2 that JS(P, Q) = 1

2 (KL(P, M) + KL(Q, M))

where M = 1
2 (P + Q) and the Kullback-Leibler divergence is defined as

KL(P, M) =
∫

P(X) log
P(x)

M(x)

http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_2
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The Monte Carlo approximation is given by

K̂L(P, M) = 1

n

n∑

i

log
P(xi )

M(xi )

where M(xi ) = 1
2 (P(xi ) + Q(xi )). As the number of samples goes to infinity, this

approximation converges to the true value of KL.
Given that the actions are also continuous, we need to consider an infinite number

of joint actions. In addition, the ad hoc agent does not directly observe the actions of
its teammates. Therefore, we use the resulting locations of the agents as an estimate
of their actions. We assume that the effects of these actions are noisy modeled with a
Gaussian distribution with standard deviation of 40 and 40 ◦ for distances and angles
respectively.

Applying this methodology with the calculation introduced in Sect. 2.3.1 leads us
to an approximate value of 0.425 for TeamK in the limited HFO task. In this task, the
ad hoc agent knows that its teammate’s behavior is drawn from the set of 7 potential
behaviors. In the full HFO task, this methodology calculates that TeamK ≈ 0.295.

We can similarly approximate the value of Reactivity by using the calculation
introduced in Sect. 2.3.3. The 7 possible teams that the ad hoc agent may encounter
have an average reactivity of Reactivity = 0.263 in the limited HFO task and
Reactivity = 0.507 in the full version of the task. Given that the 2D RoboCup
simulator is open source and all domain parameters are passed on to the players,
the ad hoc agent completely knows the environment dynamics. In addition, note that
the opponents’ behaviors are known by the ad hoc agent. Therefore, EnvK = (1, 1).
However, it is worth noting that it is complex to model the full domain, so in our
tests, the ad hoc agent does not explicitly model the HFO dynamics.

The fairly high reactivity means that the ad hoc agent can help its team and should
consider how its actions affect its teammates, especially in the full HFO domain. In
addition, the perfect environmental knowledge means that the agent does not need to
explore the environment. On the other hand, the lower teammate knowledge means
that it is helpful to explore the teammates’ behaviors, especially in the full HFO
domain,where the space of its teammates’ behaviors is larger.Notice that these values
are close to those arising from the bandit and pursuit domains. Therefore, we once
again expect that a similar approach should be effective in this domain. However,
the complexity of fully modeling the domain means that methods applied to the
other two domains may run into issues here. Therefore, we expect that a model-free
approach may be more effective, but using teammate knowledge similarly should be
effective. The model-free approach is analyzed in more depth with empirical results
in Chap.7.

www.allitebooks.com
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Table 3.4 Ranges of the
dimensions for scenarios in
the 3 domains used in this
book

Domain TeamK EnvK Reactivity

Bandit 0.391–1 (0.5,0.5)–
(1,1)

0.150–0.610

Pursuit 0.156–1 (1,1) 0.717–0.801

Limited HFO 0.425 (1,1) 0.263

Full HFO 0.295 (1,1) 0.507

3.3 Chapter Summary

This chapter presents the Markov Decision Process model that we use to analyze
problems in this book. This model has been well analyzed in the past, resulting in a
number of effective algorithms for tackling learning how to act in domains that fit
the MDP model. Therefore, this chapter reports on the learning algorithms that the
remainder of the book builds upon. In addition, this chapter describes the domains
in which we explore ad hoc teamwork, as well as the teammates that our ad hoc
agent will encounter. Using these descriptions, we analyze each domain and set of
teammates using the dimensions presented in Sect. 2.3. A summary of these values is
given in Table3.4. The values achieved through this analysis advise the approach we
use to tackle these problems, which is described in Chap.5. To better understand the
problems tackled in this book, it is important to investigate how the problems relate
to existing research. Thus, the following chapter describes the research relevant to
this book.
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Chapter 4
Related Work

While the preceding sections discuss the research problem and the approach used to
tackle that problem, this section focuses instead on the problem of situating this book
in the literature.We first provide overviews of some areas that are closely related to ad
hoc teamwork, beginning with general multiagent coordination research in Sect. 4.1
and then moving on to research into opponent modeling in Sect. 4.2. In Sect. 4.3,
we discuss selected works that use the domains discussed in this book. Finally, we
conclude with a more detailed discussion of current research on ad hoc teamwork in
Sect. 4.4. Any works that overlap between the other areas and ad hoc teamwork are
covered in the section on ad hoc teamwork.

4.1 Multiagent Coordination

There is a large body of research on coordinating multiagent teams, as multiagent
teams are considered an important topic for artificial intelligence research, especially
in the area of robotics. This field is too large to be surveyed completely in this book,
especially as the methods employed are only tangentially related to ad hoc teamwork
due to their strong assumptions. Instead, we discuss somemethods that best represent
the core themes of research in this area.

One important algorithm for multiagent coordination is STEAM [1], which builds
upon the SharedPlans coordination algorithm [2] aswell as the joint intentions frame-
work [3]. STEAM accomplishes a shared joint task using a flexible architecture for
representing team plans through a hierarchical decomposition tree. Agents keep their
beliefs consistent with the rest of the team through the use of communication. In addi-
tion, agents monitor the progress of their plans, repairing these plans as conditions
change. STEAMallows developers to specify general rules aswell as domain specific
rules, allowing it to be easily applied to new domains. STEAM has been shown to
be effective for a wide array of domains including RoboCup and large-scale military
simulations. STEAMrepresents a sophisticated approach for coordinatingmultiagent

© Springer International Publishing Switzerland 2015
S. Barrett, Making Friends on the Fly: Advances in Ad Hoc Teamwork,
Studies in Computational Intelligence 603,
DOI 10.1007/978-3-319-18069-4_4

49



50 4 Related Work

teams through intelligent rules for task decomposition and shared communication
protocols. While this method are very effective for organized teams, they require all
of the agents to share the same rules and communication protocols. Therefore, it is
difficult to apply STEAM to ad hoc teams, where we cannot assume that all agents
will have this shared background.

Another approach to coordinating multiagent teams is the Generalized Partial
Global Planning (GPGP) framework [4]. GPGP allows for a number of modular
coordination mechanisms. Compared to STEAM, GPGP represents a more decen-
tralized, dynamic approach for team coordination. Agents in GPGP have a set of
individual plans that represent different ways that goals can be achieved. Agents
begin by ignoring their teammates and then use communication to figure out the
relationships between their tasks. Using these relationships, agents can build a model
of tasks and create a plan that accomplishes their goals. While GPGP builds plans
in a less centralized fashion than STEAM, it still requires all of the agents to share
a common communication protocol as well as a similar way of representing tasks
and plans. Therefore, GPGP is not directly applicable to ad hoc teams, where the
agents may not know how to communicate with one another and may model tasks
very differently.

STEAM and GPGP expect that agents know the team’s goal as well as the tasks
required to accomplish the goal. The difficulty arises from how to assign agents
to different tasks and how to order these tasks. However, another line of research
explores domains in which this information is not known; instead, agents must learn
the tasks required to accomplish their goals. Multiagent learning is a broad field,
including homogeneous and heterogeneous teams with and without communication.
Importantly, multiagent learning research covers fully cooperative, fully competitive,
and partially competitive settings.We discuss a representative publication in the fully
cooperative setting as it most closely compares to the fully cooperative setting of ad
hoc teamwork. The fully competitive setting is discussed in Sect. 4.2.

Lauer and Riedmiller’s work introduces Distributed Q-learning [5] for learning
in multiagent, fully cooperative settings. The authors model the problem as a multi-
agent MDP and adopt a model free approach. In Distributed Q-learning, each agent
maintains a local policy and Q-value function that depends only on its own actions.
The local Q-value function is only updated when the update leads to an improvement,
ensuring that the local Q-value maintains the maximum value of the joint-actions.
Using this approach, the agents’ policies converge to the optimal joint-actions in
deterministic domains. The distributed Q-learning approach is effective for learn-
ing intelligent team behaviors, but, like many cooperative multiagent learning algo-
rithms, it assumes that the whole team follows the same algorithm. If agents deviate
from this approach, the team’s performance will suffer. Thus, distributed Q-learning
is not directly applicable to ad hoc teamwork settings, where teammates’ behav-
iors may deviate significantly from that expected by distributed Q-learning. Many
other approaches take a similar high-level approach to learning inmultiagent systems
[6–9], and more information about multiagent reinforcement learning can be found
in Busoniu et al.’s work [10].
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Multiagent coordination is a large and growing area of research.While this section
only presents a small number of papers, these publications represent some core
approaches to the problems faced in multiagent coordination. Methods for coordi-
nating multiagent teams largely rely on specifying standardized protocols for com-
munication as well as shared algorithms for coordination. These approaches do not
directly apply to ad hoc teams given their strong assumptions about this sharing of
prior knowledge. In comparison, PLASTIC does not require any shared communica-
tion or coordination protocols and does not assume that the teammates are necessarily
adapting to the ad hoc team agent.

4.2 Opponent Modeling

The work discussed in the previous section assumes that the whole team is coopera-
tive, trying to accomplish a shared goal. Another scenario that may occur in multia-
gent teams is the fully competitive setting, where agents attempt to achieve mutually
exclusive goals. Opponent modeling research explores this problem, explicitly mod-
eling the other agents in the domain.While research into cooperative teams appears to
bemore similar to ad hoc teamwork given that agents are trying to accomplish shared
goals in both settings, opponent modeling is often more similar to ad hoc teamwork.
This similarity stems from the importance of understanding and reasoning about the
other agents in the domain in opponent modeling, which is also necessary for robust
ad hoc team agents. Rather than trying to represent the entire field of opponent mod-
eling, this section summarizes some of the major lines of inquiry into the problem
that are relevant to this book.

One such line of inquiry is theoretically motivated, exploring what can be proven
about interacting with opponents. An algorithm that shows this reasoning is the
AWESOME algorithm [11]. AWESOME is a learning algorithm for repeated normal
form games. When it plays against opponents that use the same algorithm, the AWE-
SOME agents will converge to playing the Nash equilibrium, the optimal behavior if
all agents are rational. When playing against stationary opponents, an AWESOME
agent learns to exploit them optimally. These results show that the same algorithm
can exploit simple opponents while still not getting exploited by smart agents. In
the same vein of theoretical analysis, Chakraborty and Stone developed the CMLeS
algorithm [12]. CMLeS extends to exploiting memory-bounded teammates while
retaining the convergence to the Nash equilibrium in self play. CMLeS reverts to
playing a maximin strategy when playing adversaries that are not memory-bounded,
retaining good payoffs in the worst case scenario.

This style of theoretical approaches to opponent modeling leads to algorithms
that handle the worst case scenario of other agents very well. If the other agents in
the domain are fully competitive and are intelligent, this type of algorithm ensures
that our agent will not be exploited. However, in the ad hoc teamwork scenario,
we can treat the other agents in the domain as teammates. Rather than expecting
them to exploit any weakness our agent exhibits, we can assume that they are trying
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to accomplish a shared goal. Therefore, we can reason more about the common
case rather than the worst case scenario, which allows us to design algorithms that
learn more quickly. This line of research in extended to the ad hoc team scenario
in a more recent paper by Chakraborty and Stone [13] discussed in Sect. 4.4. Other
researchers use a similar approach to theoretically analyze how to adapt to opponents’
behaviors [7, 14–16].

Another exciting line of opponent modeling research is into using game theory
to solve real world security problems. For example, Korzhyk et al. [17] discuss
the use of the Stackelberg game model to design intelligent strategies. This work
has been applied for deploying security at the LAX airport as well as scheduling
the US Federal Air Marshals. In Stackelberg games, the leaders act first, and their
opponents can observe these actions before responding. The solution to this problem
is robust to the opponents’ actions,minimizing the risk. This paper shows that in some
scenarios, any Stackelberg strategy is also a Nash equilibrium strategy. Additionally,
this paper shows that in other scenarios, Stackelberg and Nash strategies differ. This
line of research shows that game theoretic approaches can be applied to real world
problems with great effect, minimizing the resources required to protect a resource
while maximizing its safety. These assumptions differ from that of ad hoc teamwork
in that other agents are assumed to be opponents rather than teammates. In addition,
the authors generally assume that opponents are intelligent and observe the agent’s
actions (e.g. [18–20]), though they relax that assumption in this work [17]. In ad
hoc teamwork, there is no guarantee that the other agents are as intelligent as the ad
hoc agent, so expecting them to optimally adapt to the ad hoc agent’s actions is not
reliable.

One more avenue of research that combines theoretical analysis with empirical
results is in the area of computer poker. For example, Bard et al. [21] look at how to
adapt to an opponent’s strategy in heads-up limit Texas hold’em poker. The authors
approximate the Nash equilibrium strategy through the use of counterfactual regret
(CFR) [22], which limits the amount that their agent can be exploited. In order
to exploit weaknesses in other players, it is possible to compute the best response
strategy to their strategies. However, if the opponents’ strategies are not completely
known or if the opponents adapt, this best response strategy can in turn be exploited.
Therefore, it is desirable to limit the amount of adaptation that is performed given
the limited information about the opponents. Rather than explicitly modeling the
opponent’s behavior, Bard et al. use an implicit model that summarizes its oppo-
nents with a portfolio of counter strategies that are computed offline. These counter
strategies are limited best responses, adapting to the opponents, but not allowing this
adaptation to add too much exploitability. Then, their agent selects between these
strategies online, treating this selection as a bandit problem. To aid in this selection,
their agent uses variance reduction to estimate the effectiveness of the strategies
and prunes the number of strategies in the portfolio. PLASTIC is related to this
approach. Instead of computing the Nash equilibrium, PLASTIC can plan knowing
that the other agents are trying to cooperate. Rather than limiting the best response
to teammates, PLASTIC can use the full best response given that it does not need to
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worry about its teammates exploiting it. In addition, we improve over using bandit
selection algorithms, instead using updates based on Bayes’ rule.

Opponent modeling is closely related to ad hoc teamwork. Both areas revolve
around modeling and adapting to other agents in the domain. However, opponent
modeling expects that other agents are intelligent opponents that are trying to exploit
our agent. This assumption requires algorithms to focus on bounding the worst case
scenario and never make mistakes. Ad hoc teamwork is more forgiving, given that
the other agents are assumed to be teammates, so exploring more and learning more
quickly is considered safe.

4.3 Experimental Domains

In addition to seeing how this book relates to work onmultiagent teams and opponent
modeling, it is also helpful to see how it relates to prior research on the domains used
in the book. The three domains explored in this book are well studied domains in
research into artificial intelligence. This sections gives a brief overview of the most
relevant research on these domains.

4.3.1 Multi-armed Bandits

The first domain used in this book is the multi-armed bandit (MAB) problem, which
has been studied extensively [23]. The bandit problem is interesting due to its sim-
plicity, while still modeling the trade-off between exploration and exploitation.Many
decision making problems can be modeled as bandit problems, leading it to be an
area of continued research. It is a well studied problem in economics in addition to its
presence in the artificial intelligence literature. While the vast majority of research in
this area focuses on the single agent setting, several variations have been considered
in which there are multiple agents that can observe the actions or outcomes of each
other. We discuss a selection of these multiagent bandit settings here.

One multiagent version of the bandit domain was investigated by Keller and
Rady [24]. In this scenario, there are two arms: a predictable arm that returns a
small positive payoff and a risky arm that distributes lump-sum payoffs according
to a Poisson distribution. In this work, Keller and Rady construct an asymmetric
equilibrium in which the agents take turns pulling the risky arm. Their experiments
explore giving agents rewards for pulling the risky arm, finding that having too high
of a reward may decrease average payoffs in some cases. The focus of this work is in
designing the right incentives to encourage the agents to explore the riskier option.
This work differs from ad hoc teamwork in that the behaviors of both teammates
follow fixed policies and the focus is on how the problem designer can modify the
incentives to achieve good team performance.
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Another line of research into multiagent teams in the bandit domain is the work
by Aoyagi [25]. Aoyagi focuses on a two-armed bandit problem with multiple play-
ers that can only observe the actions of other players rather than the outcomes of
these actions. This information reveals some information about the other players’
beliefs about the payoffs of the arms. Under some restrictions of the arms’ payoff
distributions, he proves that all players will settle on the same arm. This work shows
that agents can coordinate without explicit communication, reaching the same con-
clusions about the effectiveness of different actions. This work differs from the work
in this book in that the agents in Aoyagi’s formulation are not teammates sharing
rewards. In addition, we explore how explicit communication can help the team’s
performance.

Explicit communication in thebandit domain is investigatedbyGoldmanet al. [26].
In thiswork, the authors consider agents that are learning to communicate and explore
how to handle issues such as misinterpretation of messages. They introduce a the-
oretical framework for analyzing the problem where agents learn to communicate
and maximize system performance simultaneously. Then, the authors go on to show
that solving the problem optimally is often intractable. Despite this difficulty, the
authors propose an approach that allows agents to converge on a common language
and empirically show the effectiveness of this approach. Given that they assume very
little about the meaning of messages, their approach needs to learn over a long period
of time compared to PLASTIC in our bandit domain. This faster adaption is enabled
by the assumption that all agents share a common language for communicating,
though the ad hoc agent does not necessarily know how its messages will be used by
its teammates.

In summary, the bandit domain is awell studied problem for investigating decision
making tasks. The majority of work in the bandit domain considers the single agent
case, but there is some work on the multiagent setting, e.g. [27–29]. However, these
works differ from ours in whether the authors control the whole team’s behavior and
how communication is used. There has also been prior research into ad hoc teamwork
in the bandit domain, which is discussed in Sect. 4.4.

4.3.2 Pursuit Domain

The second domain explored in this book is the pursuit domain. Isaacs performed
seminal research on pursuit and evasion [30], and the problemwas further explored by
Benda et al. [31]. Benda et al. explore varying the predators’ ability to communicate,
even considering a central strategy, but with communication carrying a cost. In this
setting, communication may be limited or may lower the amount of computation
time taken per step. Many variants of the pursuit domain have been investigated as
it remains a useful domain for evaluating teamwork algorithms. This section only
covers a sampling of relevant research, but more research into the range of research
possibilities in the pursuit domain is explained in the survey paper by Stone and
Veloso [32].
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Most previous research focused on developing coordinated predators before
deploying them, rather than learning to adapt to unseen teammates. Some of the
versions of the pursuit domain are increasingly difficult, due to noise and partial
observability. One recent example of this type of research is the work by Undeger
and Polat [33]. The authors consider a version of the pursuit problem with a con-
tinuous, partially observable environment that contains obstacles. In this work, the
prey intelligently plans its actions to avoid capture, requiring more intelligent coor-
dination by the predators. To address this problem, Undeger and Polat introduce the
MAPS algorithm, which uses two coordination strategies to position the predators
in locations to cover possible escape directions of the prey. This work represents a
foray into the coordination required in complex versions of the pursuit domain. In
this book, we consider a simpler version of the pursuit domain, but do not assume
that the team shares a common coordination algorithm.

Another investigation of the pursuit domain is that of Ishiwaka et al. [34], which
considers heterogeneous agents in a continuous state-action world with partial, noisy
observations. In this work, the authors investigate how the predators can learn online
using Q-learning. The predators attempt to predict the locations of the other agents as
well as themovement of the prey. Similar to ad hoc teamwork, not all of the agents use
the same behavior. The predators start as homogeneous agents, but diverge during the
learning process, specializing in parts of the task. This work presents one approach
to incorporating agents with differing action policies that learn to adapt to each other.
Compared to this book, this learning takes place over a much longer time, though
it considers a more complex version of the pursuit domain. In addition, while the
agents learn different policies, they do employ the same learning algorithm.

One work that investigates when agents have differing amounts of knowledge
about the domain was performed by Chakraborty and Sen [35]. These authors exam-
ine a pursuit scenario in which experienced agents attempt to teach novice predators.
This work requires that the agents share a known training protocol, where the expert
selects example situations to train and teach the novice agent. This framework allows
the novice agents to have different learning algorithms and knowledge representa-
tions from that of the experts. While this work investigates how an agent can learn
to adapt to its teammates, it is not directly applicable to ad hoc teamwork due to its
reliance on a shared training protocol.

In summary, the pursuit domain is commonly used to explore multiagent coordi-
nation. Some of this work focuses on scaling these coordination algorithms to more
complex versions of the pursuit domain. Other work explores teams with heteroge-
neous behaviors or how to teach and learn from other teammates. While research
on the pursuit domain pushes multiagent research in exciting directions, it largely
requires teams to share some kind of coordination protocols, which are not available
in ad hoc teamwork scenarios.
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4.3.3 RoboCup

The final domain used to evaluate PLASTIC in this book is the 2D simulation league
fromRoboCup.RoboCup is an annual robotics competitionwhere teams fromaround
the world compete on a number of tasks. It serves as a common domain to test many
artificial intelligence algorithms and pushes research in robotics. RoboCup pushes
research in a number of areas, including walking [36–39], positioning [40, 41],
and vision [42, 43]. Instead of discussing all research from RoboCup, we discuss the
most relevant papers on the multiagent aspects of it, specifically looking at designing
teamwork, analyzing teamwork, and modeling opponents in RoboCup.

One early exploration of learning in the RoboCup simulation domain was per-
formed by Stone [44]. This book describes a flexible team structure as well as a
novel learning approach called layered learning. Furthermore, it introduces a new
multiagent reinforcement learning algorithm and describes the resulting complete
team. This work shows the complexity of the domain as well as the novel research
motivated by RoboCup. In particular, it introduces the concept of a “locker-room
agreement.” Locker-room agreements are pre-determined multiagent protocols that
define the flexible teamwork structure and the inter-agent communication protocols.
However, this work relies on the entire team sharing this locker-room agreement,
which cannot be assumed in ad hoc teamwork.

Another aspect of research in RoboCup is how to characterize the teams’ behav-
iors in these complex multiagent systems. Almeida et al. [45] explore this problem
in the RoboCup 2D simulated robotic soccer league, using logs of play as their input
information. The authors explore the complexity of team’s behaviors as well as dis-
covering guidelines for creating new plans for teamwork. This work represents how
one might characterize a team’s behaviors, similar to how an ad hoc agent may wish
to understand its teammates’ behaviors. However, the proposed approach requires a
substantial amount of observations of the team, which is not usually available in ad
hoc teamwork scenarios.

One set of online adaptations to other agents is from the Small Size League (SSL)
of RoboCup. Biswas et al. [46] explore how to plan about opponents’ strategies.
Their approach attempts to pull opponents out of position, leaving openings that
their strategy can then exploit. In addition, they detect potential threats based on the
positions of opponents and adapt to defend these threats. These online adaptations
show that agents can adapt to other agents in the domain on the fly, in just a single
game. While this general approach could be applied to other multiagent settings, the
current version of it relies on strong assumptions about the domain. For example,
this work tries to encourage specific opponents to mark their players, pulling them
out of position for the planned play.

RoboCup encourages a substantial amount of research into multiagent systems
in complex domains. The majority of this research focuses on coordinated teams of
agents and is thus not directly applicable to ad hoc teamwork.

www.allitebooks.com
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4.4 Ad Hoc Teamwork

While previous sections explore different aspects of multiagent research, the most
relevant research to this book is in the area of ad hoc teamwork. Ad hoc teamwork has
been explored under various names and methodologies over recent years. However,
the problem formulation and evaluation framework used in this book was proposed
by Stone et al. [47] in a 2010 AAAI challenge paper. This paper has encouraged the
growth of the field, leading to an increase in the amount of research exploring this
exciting area. The remainder of this section identifies and summarizes work in this
field.

The types of problems that these works address are summarized in Table4.1. We
evaluated each of theworks on a number of axes. The first axis is whether they control
an agent’s actions, i.e. whether the output of the ad hoc teamwork algorithm is direct
control decisions (a policy) for one or more agent’s behavior on the team. Almost all
algorithms surveyed do directly output a policy. The notable exception along this axis
is Liemhetcharat and Veloso’s work [48] where the task is to select a team instead
of control an agent acting on a team. Then, we look at whether these approaches
consider multiple teammates followed by whether these teammates are unknown to
the ad hoc agent prior to the beginning of the interaction. We continue by looking
at whether these papers evaluate their approaches in a domain more complex than
the bandit domain or matrix games. Next, we evaluate whether these approaches are
generally applicable or specific to the domain studied. Additionally, we consider the
speed that the ad hoc agent adapts: whether it can learn over the course of a handful
of interactions. Finally, we consider whether the approaches can automatically reuse
knowledge learned about previous teammates. As shown in the table, this book is
the first to address all of these issues using a single algorithm.

We report the current state of research into ad hoc teamwork in Sect. 4.4.1 before
exploring one area of research in more depth in Sect. 4.4.2, namely that of the drop-in
player challenge held at RoboCup. Then, Sect. 4.4.3 discusses other models that can
be used to formalize problems including ad hoc teamwork scenarios. Finally, we
describe where these domains lie on the dimensions of ad hoc teamwork problems
in Sect. 4.4.4.

4.4.1 Survey of Ad Hoc Teamwork

A significant portion of research on ad hoc teamwork takes a theoretical approach to
the problem. These approaches focus on simple settings such as the bandit domain or
matrix games and try to prove the optimality of their approach under certain condi-
tions. Other researchers focus on empirical approaches, showing that their algorithms
apply to ad hoc teamwork problems in practice. Let us first consider theoretical con-
tributions coming from analysis of ad hoc teamwork in the bandit domain.
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One example of the theoretical approach using the bandit domain is Stone and
Kraus’s research [49]. In this work, the authors consider a multiagent version of
the setting with a knowledgeable agent attempts to teach its novice teammate. The
knowledgeable agent knows the true distributions of the arms while the novice agent
starts with no initial knowledge about the arms. The authors only control the knowl-
edgeable agent, which is called the teacher. This work differs from existing teaching
literature in that the teacher is embedded in the domain, so its teaching actions have
an explicit cost. They consider the case where the agents know the number of time
steps remaining and have undiscounted rewards. We expanded this work to the dis-
counted reward setting with infinite pulls [50]. This line of research proves that the
ad hoc agent acting as teacher can optimally lead its teammate to achieve the best
team payoff. These papers differ from the work in this book in that they assume that
the novice teammate’s policy is known and their results are only directly applicable
to the bandit domain, while we consider domains that are too large to be proven to
be tractable in a similar fashion.

While the bandit domain allows for multiagent research, the majority of work on
it is single agent and therefore not focusing on the ad hoc teamwork problem. Amore
common domain for looking at interactions between agents is inmatrix games, where
agents act simultaneously and receive rewards. This domain allows for multiagent
interactions, but remains simple enough for theoretical analysis.

An early paper that looks into ad hoc teamwork in matrix games was that of
Brafman and Tennenholz [51]. In their paper, they investigate agents performing a
repeated joint task, where one agent attempts to teach a novice agent. The authors
could only affect the ad hoc agent, i.e. the agent acting as a teacher. In this work, they
use a game-theoretic framework and only consider teammates that either maximize
their expected utility or use reinforcement learning. Overall, they consider a number
of strategies for the agent to play, including a reinforcement learning agent as well
as some well established hand-coded policies. In different settings, they find differ-
ent approaches work better, and conclude that effective agents in this domain need
to reason about how to punish and reward their teammates to affect their actions.
This book explores more complex domains than those used in this work, considers
unknown teammates, and uses more types of teammates.

Building on this idea, Stone et al. [52] investigate ad hoc teamwork in matrix
games with a theoretical focus. They explore how an ad hoc agent should cooperate
with a best response teammate while maximizing the team’s shared rewards. Best
response agents choose the action that gives the highest payoff assuming that its
teammates continue playing their last observed action. In this work, the ad hoc agent
knows the payoff matrix as well as the teammate’s behavior, so the difficulty is to
plan the optimal path to lead the best response teammate to the best payoff. This
work was expanded by Agmon and Stone [53] to include more than one teammate.
Agmon and Stone show that the best payoff is not always reachable when the team
is larger than two agents, but they come up with a way of describing the optimal
team payoff as the optimal steady cycle and show how to lead a team to that cycle.
This work was further expanded to the case where the teammates’ behaviors are not
fully known [54], instead assuming that the ad hoc agent knows that its teammates
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are using a behavior from a known set. A common approach to uncertainty in matrix
games is to assume the worst case scenario, which in this setting corresponds to the
teammates following the weakest behavior from the set. However, this paper shows
that incorrectly assuming that the teammates are following the weakest behavior can
lead to long term poor payoffs even aftermore information is gathered. Therefore, the
authors describe an algorithm, REACT, for balancing the potential costs of different
assumptions about the teammates’ behaviors and show that REACT empirically
performs well on a large number of matrices. This line of research differs from
that of this book due to its focus on theoretical analysis, which limits the work to the
simplematrix game setting. In addition, this book considers a wider range of possible
teammate behaviors as well as cases where the ad hoc agent has less knowledge of
its teammates.

Stone et al. [52] and Agmon and Stone [53] both assume that the teammates’
behaviors are known, though Agmon et al. [54] relax this assumption, instead assum-
ing that the teammates’ behaviors are drawn from a known set. Chakraborty and
Stone [13] further relax this knowledge of the teammates’ behaviors in ad hoc team-
work scenarios in matrix games. This work extends earlier work by Chakraborty and
Stone [12] for opponent modeling, as discussed in Sect. 4.2. The authors propose
a new algorithm, LCM, that tries to achieve optimal performance with teammates
that use a limited features derived from the history. With other teammates, LCM
ensures that the team receives the security value of the matrix game. LCM does this
by determining which features best explain its teammate’s behavior, and, if no set
of features explains its behavior, LCM reverts to playing the safety strategy. This
approach performs optimally with some teammates, but this form of learning takes
substantially longer than PLASTIC. Unlike PLASTIC, LCM does guarantee a safety
value with any teammates, but in practice this safety value is often low compared
to what the team could receive and ensuring a safety value in more complex tasks
requiring coordination is often impossible.

While Chakraborty and Stone’s work [13] performs very well, it requires complex
calculations and reasoning. An approach to simplifying ad hoc teamwork in matrix
games was explored by Hao et al. [55]. They explore how agents can coordinate
under the networked social learning framework. This research proposed two types
of learners: one that models its teammates as part of the environment and one that
considers the joint actions with its teammates. The authors explore how the neighbor-
hood size of the agents affects these two approaches. This work focuses on how the
other agents affect the learning process. As opposed to this book, this work considers
agents with a shared learning approach, instead investigating the effects of network
topology on learning.

While matrix games serve as a good testbed for looking at interactions between
agents in ad hoc teamwork scenarios, they are limited to stateless interactions.
Wu et al. [56] scale theoretical analysis of ad hoc teamwork to some more complex,
though still theoretically tractable, domains. In this work, the authors investigate ad
hoc teamwork with few assumptions about the behaviors of the teammates. Their ad
hoc agent plans using MCTS and uses biased adaptive play to predict the actions of
teammates. Biased adaptive play can be used to estimate the policies of teammates
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from their previous actions. They test their agent on three domains: cooperative box
pushing, meeting in a 3×3 grid, andmulti-channel broadcast. They consider the case
where the ad hoc agent knows the environment, but not its teammates. These team-
mates are referred to as unknown teammates (UTM), and two types of teammates
are used in each domain: UTM-1 agents that follow a fixed set of actions and UTM-2
agents that try to play the optimal behavior but have partial observations. Their work
shows that their approach can adapt to these teammates to accomplish their tasks.
While this work explores several domains, all of the domains used are fairly simple.
Additionally, their ad hoc agent is given a large amount of expert knowledge and the
set of possible teammates is limited compared to this book.

Another approach to scaling ad hoc teamwork beyond only matrix games is the
work ofAlbrecht andRamamoorthy [57, 65], though they also considermatrix games
in their work. In this work, they consider the case where the ad hoc agent is given a
set of possible types of its teammates and introduce a new formal model to represent
this problem. In their setting, the problem is for the ad hoc agent to determine the
type of its teammates. Their approach (HBA) combines the idea of Bayesian Nash
equilibria with the Bellman optimality equation. HBA maintains the probability of
each of the provided teammate types and maximizes its expected payoffs according
to the Bellman principle. In later research [66], Albrecht and Ramamoorthy explore
the convergence bounds of HBA. Specifically, they prove convergence bounds when
an ad hoc agent knows its teammates are drawn from a known set and consider how
accurate the expert-provided types need to be for HBA to solve its task. This line
of research is closely related to that of this book, but differs in some notable ways.
Given the similarity of HBA and PLASTIC, we expect that much of their analysis
could be generalized to PLASTIC. However, we also consider scenarios where the
ad hoc agent is not provided with expert knowledge about possible teammates and
uses PLASTIC to reuse knowledge learned from previous teammates. Furthermore,
we show that PLASTIC scales to more complex domains than those used to evaluate
HBA.

While theoretical analysis of problems can create exciting new algorithms for
ad hoc teamwork, an important question is how well these algorithms fare in more
complex empirical analyses. One line of research that considers a more complex ad
hoc teamwork scenarios is that of Wray and Thompson [58]. They look at a problem
with a continuous state space with limited observability. In this work, the authors
investigate a version of the pursuit domain, where a number of predators that have to
intercept an unknown number of prey without any explicit communication. The key
problem in the domain is for predators to avoid trying to capture the same prey. Their
solution employs fictitious play to dynamically assign predators to prey despite the
limited information. While the authors focus on a more complex version of pursuit
than is used in this book, their agents know more about their teammates. Though
they do not know the prey that these predators will try to capture, they know how
the other predators decide which prey to capture and employ this information to
prevent the predators from attempting to capture the same prey. In addition, their
work only explores how to match predators to prey as opposed to the more complex
coordination required in this book.
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While Wray and Thompson [58] consider a more complex domain, the necessary
coordination between agents is limited to ensuring that the predators do not pursue
the same prey. A work that looks at more complex coordination in ad hoc teams is
that of Bowling and McCracken [59]. In the domain of robot soccer, Bowling and
McCrackenmeasure the performance of a few ad hoc agents, where each ad hoc agent
is given a playbook that differs from that of its teammates. In this paper, a play refers
to a team plan that specifies when the play applies, termination conditions, and roles
for the players. In this domain, the teammates implicitly assign the ad hoc agent a role,
and then react to it as they would any teammate. The ad hoc agent analyzes which
plays work best over hundreds of games and predicts the roles that its teammates will
play. This work explores a very similar setting to that used in this work, though it
learns over a significantly longer time scale. However, they focus on agents that are
similarly designed but have a different playbook, rather than completely unknown
teammates. In addition, their approach relies on having a playbook of possible plays
that specifies roles for all agents on the team. In many domains, agents may not have
such a playbook, so this approach cannot be directly applied to these domains.

Jones et al. [60] also consider robotic ad hoc teams, but they expand their analysis
to heterogeneous robots. The authors explore ad hoc teams operating in the treasure
hunt domain and implement their algorithms on real heterogeneous robots searching
new environments for treasure. The authors focus on how agents can allocate roles
amongst a team in a decentralized fashion.However, they assume that the agents share
a communication protocol that they use to bid on different roles in an auction as well
as a shared coordination protocol for how to assign tasks given this communication.
This book explores scenarios in which these shared protocols do not exist, as they
may not always be present in ad hoc teamwork scenarios.

Another work that considers how to allocate roles or tasks on a team in a decen-
tralized fashion is that of Xing Su et al. [61]. The authors explore ad hoc teamwork
in disaster response scenarios. They look at how to allocate tasks under spatial and
communication constraints by having the agents elect leaders in a decentralized sys-
tem. This approach allows the agents to limit communication costs whilemaintaining
good allocations and allows the agents to adapt dynamically during task execution.
Unlike this book, they assume that the agents share a communication and coordina-
tion protocol and focus on how a team can adapt without starting with any structure
to the team.

While the previous works mainly focus on small teams of agents, there is also
research into how to affect large teams of agents. Specifically, researchers have
investigated how to use a small number of agents under their control (ad hoc agents)
to affect the behavior of flocks of agents, such as flocks of birds or fish. The ad hoc
agents encourage the team to reach a specified goal. This work spans some of the
space between theoretical and empirical approaches. An early paper in this area was
written by Han et al. [62], prior to Stone et al.’s formulation of ad hoc teamwork.
This work focused on adding a “shill” agent to the flock, that corresponds to the
ad hoc team agent in our terminology. This agent was designed by the authors and
attempts to move the flock in a desired direction. Agents in the flock are based on
the Boid model [67]. in which each agent chooses its current heading by averaging
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the heading of its neighbors located within some radius. Further research on this line
includes the work of Genter et al. [63] and Genter and Stone [64]. This research
proves bounds on the number of actions required to control the flock’s behavior. In
addition, they provide an algorithm that empirically outperforms other methods by
using short-term lookahead planning. The authors expand the problem to consider
multiple ad hoc agents. This line of research differs from this book in that it focuses
on scenarios in which the teammates’ behaviors are known, rather than needing to
learn about teammates. The difficulty of their problem is in planning the optimal
behavior rather than balancing exploring the teammates’ behaviors and exploiting
the current knowledge.

While the previous works all consider how an ad hoc agent should act to improve
the performance of its team, another consideration is how to choose agents to form a
new team given a much larger set of possible agents. Liemhetcharat and Veloso [48]
explore this idea, selecting which agents will form a new ad hoc team. Given that
different agents are better at performing different roles on the team, it is important to
select agents that fill the roles in a beneficialway. In addition, there are synergies in the
team, where some pairs of agents work better with each other than with other agents.
These complexities lead to interesting questions into how to select teammates from
this set of agents. The authors come up with a novel representation of this problem,
called a synergy graph, and show how to learn this graph. While it also investigates
ad hoc teamwork, this research focuses on the problem of selecting agents for an ad
hoc team rather than the question explored in this book, how an agent should act on
the ad hoc team.

In summary, this section presented a survey of the research on ad hoc teamwork
that is relevant to this book. Table4.1 gives an overview of these works, describ-
ing where they fall on a number of axes. Table4.1 shows that none of these works
address all of the problems tackled in this book. A large amount of these works
focus on simple domains and provide theoretical analyses. In addition, a substantial
number of them assume that they know their teammates or share some communi-
cation or coordination protocols, but these works are still ad hoc teamwork because
not all agents are designed by the same developers and the provided protocols are
decentralized. However, these works do not consider the ad hoc teamwork problems
investigated in this book, where the teammates may be completely unknown prior
to the coordination. Finally, this book is the only work that we are aware of that
learns about previous teammates and reuses this knowledge to quickly adapt to new
teammates.

4.4.2 Drop-In Player Challenge

One especially relevant area of research into ad hoc teamwork is the drop-in player
challenge that was held in the 2013 and 2014 RoboCup competitions in the standard
platform league, the 3D simulation league, and the 2D simulation league [68]. The
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Standard Platform League (SPL) involves teams of 5 humanoid Nao robots.1 These
robots play on a color-coded field that has no unique markers, and robots need to
figure out the locations of important objects using two cameras mounted in the head.
The 3D simulation league uses robot models based on the Nao robots in a physics-
based simulation called SimSpark.2 Games in this league involve teams of 11 robots,
where robots receive noisy observations of objects on the field. This information
allows developers to concentrate on higher level team coordination than in SPL,
while still retaining the complexity of humanoid robot control. The 2D simulation
league is described in Sect. 3.2.3 and involves teams of 11 robots on a simulated 2D
pitch. These robots receive noisy observations and act using higher level movement
commands, allowing teams to concentrate on team behaviors more than in the 3D
simulation league.

The drop-in player challenge involved having players fromdifferent teams attempt
to combine to form a coherent teamwithout any prior coordination. These teams then
played other teams created in the same fashion, and the different players were evalu-
ated based on their contributions to the team. All leagues used the scoring differential
between teams containing each agent to measure their contributions, which matches
the evaluation paradigm presented in Sect. 2.2. The standard platform league refined
these scores by additionally including scores from human judges, which rated agents
based on their subjective perceived teamwork performance. Players were given a
common format for communicating basic information such as their location and that
of the ball.

In the 2013 SPL competition, teams did not release any reports about their behav-
ior, so we can only report about the behaviors of the team in which we were directly
involved, UT Austin Villa. UT Austin Villa employed the same basic strategy as in
the main competition, where agents bid on chasing the ball and the other players are
assigned to field positions based on their current locations. In the drop-in setting,
our agent estimated the bids of its teammates and assumed that its teammates would
move to the “assigned” positions. While this approach worked to some degree, its
effectiveness was limited by other agents’ problems with communication and due to
its strong assumptions.

The following year, in the 2014 competition, UTAustinVilla changed its behavior
to use a potential-based positioning system. Robots tried to avoid being too close to
their teammates while being attracted to the ball and a defensive position between the
ball and their own goal. The chaser was decided based on communicated preferences
as well as robots’ positions relative to the ball. This approach worked adequately,
but was limited by issues with the low level skills.

In the 2014 SPL competition, teams were required to compete in the drop-in
challenge and also to write a short description of their behaviors.3 The descriptions
indicate that most teams played a behavior similar to their behavior in the main

1http://www.aldebaran.com.
2http://simspark.sourcforge.net.
3https://tzi.de/spl/bin/view/Website/DropinStrat2014.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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competition. Most teams listen to the other players and let the player closest to the
ball play a chasing role and otherwise play a field role. These roles vary based on the
team, either playing a defensive role to block shots or playing upfield to wait for a
pass. Often these roles were selected statically, so any adaptation was performed by
the developers choosing which role their robot should play or based on dynamically
avoiding other players as obstacles. The B-Human team did additionally track the
trustworthiness of its teammates and used this information when deciding whether
to chase the ball. The majority of teams did not specially design behaviors and
strategies for the drop-in player challenge; there is still a substantial amount of work
to be explored in this domain.

For the RoboCup 2D simulation league in 2013, UT Austin Villa altered its role
assignment for the drop-in player challenge. Specifically, it used a dynamic role
assignment system [69] that minimizes the time for all agents to reach their target
positions while avoiding collisions. Given that teams communicated their positions,
this approach allowed UT Austin Villa’s agents to adapt to their teammates online,
based on their movements.

For the 2014 RoboCup 3D simulation drop-in player challenges, UT Austin Villa
used a simple role assignment scheme. If the agent was closest to the ball, it played
as chaser. Otherwise, it took up a position two meters behind the ball as this position
was found to be especially important [69]. In addition, the UT Austin Villa player
tracks the trustworthiness of other players’ information. To do this, the UT Austin
Villa player listens to the locations they report for themselves and the ball. When
it can observe these players or the ball, the UT Austin Villa players compares its
observed positions to the communicated positions, updating the trustworthiness of
the players’ based on the difference between these values.When their trustworthiness
drops below a threshold, the UT Austin Villa player ignores their messages.

RoboCup’s drop-in player challenges serve as an exciting testbed for ad hoc team
research. However, current approaches in these challenges are still fairly simple due
to the relative youth of the challenge. Therefore, there is space to explore more
advanced techniques. This book presents one such technique, and we hypothesize
that PLASTIC could be applied successfully to these problems, but leave testing that
hypothesis for future work. We did not apply PLASTIC to this setting yet because
both PLASTIC–Model and PLASTIC–Policy require either somemodels or policies
of possible teammates, which can be learned or given by an expert. In the SPL, not
enough information has been stored to learn about existing teammates, and there
is no release of full agents, either via full source code releases or binary releases.
In addition, it is difficult to hand-code possible models or policies for teammates’
behaviors given the complexity of the domain and the amount of changes to teams’
strategies between competitions where their behaviors can be observed. The exper-
iments in this book show that using approximate hand-coded models works well in
some scenarios, but applying this approach to the drop-in player challenges remains
future work.
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4.4.3 Alternative Models

While we model the ad hoc teamwork problem as either an MDP or a POMDP in
this book, there are alternative ways of modeling the problem. One such way is as
an Interactive POMDP (I-POMDP) [70]. I-POMDPs model adversarial interactions
of agents by examining what an agent believes about the other agents and these
agents’ beliefs. The graphical counterparts of I-POMDPs are known as Interactive
Dynamic Influence Diagrams (I-DIDs) [71]. I-DIDs provide concise representations
of the beliefs about other agents and allow for nesting I-DIDs to represent these
beliefs. Both I-POMDPs and I-DIDs could be used to model the problems studied
in this book. However, both have issues with the potential exponential blowup of
beliefs as the size of the problem grows. While work has been performed to increase
the efficiency of algorithms for these models [72–74], they remain computationally
intractable for the size of problems studied in this book.

An alternative approach to modeling multiagent problems is the Network of Influ-
ence Diagrams (NID) model [75]. This model represents an agent’s mental models
as graphical structures. NIDs are representationally equivalent to Bayesian games
but are more compact. While NIDs perform well on some problems, they also run
into scalability issues as the size of the problem grows.

4.4.4 Dimension Analysis

For this relatedwork in ad hoc teamwork, it may be helpful or informative to consider
where these problems fall on the dimensions described in Sect. 2.3. We would like
to calculate the exact values of the dimensions for each of the domains as we did
in Sect. 3.2, but this calculation requires more information about the exact formula-
tions of the domains and teammates than is typically available in the publications
that are available to us. Therefore, we instead give some rough estimates of where
these problems lie on the dimensions. The three dimensions we consider are team
knowledge, environment knowledge, and the reactivity of teammates.

We begin by discussing the team knowledge (TeamK) of ad hoc agents in these
domains, which shows how much the ad hoc agent knows about its teammates prior
to cooperating with them. As shown in Table4.1, the majority of the related research
considers cases where the teammates are known, so TeamK is 1 or close to 1. Notable
exceptions of this include Liemhetcharat andVeloso’s work [48] aswell asWu et al.’s
work [56] which consider completely unknown teammates, where TeamK is 0. Also,
Agmon et al. [54] and Albrecht and Ramamoorthy [57] assume that their teammates
are drawn from a known set, so TeamK is between 0 and 1; we estimate that TeamK
lies in the range [0.3, 0.7] for theseworks.Additionally,Bowling andMcCracken [59]
consider situationswith teammates that donot share a codebookwith the adhoc agent.
We estimate that TeamK is fairly high in these settings, in the range [0.6, 0.8], given
that effective soccer plays are similar compared to random movement of teammates.

http://dx.doi.org/10.1007/978-3-319-18069-4_2
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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From this analysis, we can see that most existing works focus on situations where the
teammates are fairly well known; only a few consider scenarios where the teammates
are initially unknown.

Let us now consider the environmental knowledge (EnvK) of these domains,
where the environmental knowledge explains howmuch the adhoc agent knows about
the transition and reward dynamics of the domain before beginning. The majority
of the works in this section assume that the ad hoc agent has full knowledge of the
domain, so EnvK = (1, 1) for these settings. While there may be noise in these
domains, the ad hoc agent is expected to know the level of noise and therefore
know the true distribution of next states. Exceptions to this include Jones et al. [60],
Liemhetcharat and Veloso [48], and Hao et al. [55] where the ad hoc agent does not
initially know the reward function and may have limited knowledge of the transition
function. We estimate that the knowledge of the transition function lies in [0.7, 1.0]
for these works, and the reward knowledge lies in [0, 0.5]. This analysis suggests
that research into ad hoc teamwork has not focused on learning about the domain.
Instead, agents are assumed to know the domain and instead focus on learning about
teammates and planning how to cooperate with them.

The reactivity of the teammates in these domains (Reactivity) covers a large spread
of values. All of the domains assume that the teammates are at least partially reactive
to the ad hoc agents, or it would not be worth considering the problem as amultiagent
setting. This reactivity varies significantly based on the domain. When ideal actions
are fairly obvious to teammates, interactions with the ad hoc agent are unlikely to
change the teammates’ behaviors, leading Reactivity to be close to 0. On the opposite
end of the spectrum,when the teammates have high uncertainty about the best actions
ahead of time, the ad hoc agent’s actions can significantly affect their actions, leading
to values of Reactivity close to 1. Our analysis of the bandit domain in Sect. 3.2.1.4
shows how much the reactivity of teammates can vary in a single domain. Given
that so much research assumes that ad hoc agents know their teammates and the
domain well, the majority of focus has been on how to plan to cooperate effectively
with teammates. Exploring planning in ad hoc teamwork encourages researchers to
investigate settings with varying amounts of teammate reactivity, as this dimension
is the most influential on planning.

While calculating the exact values for each of the three dimensions (TeamK,
EnvK, and Reactivity) for each domain studied in the related work would be useful,
it is impossible to calculate these values without complete knowledge of the domain
and teammates. Even so, these rough estimates of the dimensions for these problems
lead to some interesting conclusions. Specifically, existing research has done a good
job of exploring how to plan to cooperate with teammates, covering the gamut of
teammate reactivity. On the other hand, ad hoc team research has focused largely on
problems with high team knowledge and high environmental knowledge, with less
work exploring how agents can learn about their teammates and the domain. Future
work in ad hoc teamwork should address this gap and explore settings in which the
ad hoc agent needs to learn more about its teammates and the domain. In real world
scenarios, robots will need to be constantly adapting to their changing environments
as well as new teammates they may encounter. Therefore, it is important for ad hoc

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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teamwork research to explore these settings, where agents must reason about the
tradeoff between exploring the domain, exploring their teammates, and exploiting
their current knowledge. We discuss this problem in more depth in the future work
presented in Sect. 8.4.

4.5 Summary

While there is a large amount of work related to ad hoc teamwork, this book brings
many new ideas to the table. Rather than requiring shared communication and coor-
dination protocols like past research on multiagent teams, this work describes agents
that can cooperate without these shared protocols. Compared to opponent modeling,
this work creates agents that adapt more quickly to other agents at the price of mak-
ing the stronger assumption that they are cooperating towards a shared goal. With
respect to ad hoc teamwork, this book moves ad hoc teamwork to an empirical set-
ting and tackles more complex problems than most studied previously. However, the
main differentiating factor of this work is that it considers how to adapt to unknown
teammates in a non-domain specific way that can be applied generally.
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Chapter 5
The PLASTIC Algorithms

This chapter introduces the Planning and Learning to Adapt Swiftly to Teammates
to Improve Cooperation (PLASTIC) algorithms that enable an ad hoc team agent
to cooperate with a variety of different teammates. One might think that the most
appropriate thing for an ad hoc team agent to do is to “fit in” with its team by
following the same behavior as its teammates. However, if the teammates’ behaviors
are suboptimal, this approach will limit how much the ad hoc agent can help its
team. Therefore, in this book, we adopt the approach of learning about different
teammates and deciding how to act by leveraging this knowledge. This approach
allows an ad hoc agent to reason about how well its knowledge of past teammates
predicts its current teammates’ actions as well as to convert this knowledge into the
actions it needs to take to accomplish its goals. If the knowledge of prior teammates
accurately predicts the current teammates and the ad hoc agent is given enough time
to plan, this approach will lead to optimal performance of the ad hoc agent, helping
its team achieve the best possible outcome. Note that this may not be the optimal
performance of any team, but it is optimal for the ad hoc agent given that the behaviors
of its teammates are fixed.

5.1 Overview

A visual overview of the PLASTIC is given in Fig. 5.1. The short summary of the
approach is that the ad hoc agent either learns about a set of prior teammates or is
given some hand-coded information about possible teammates. Then, the agent uses
this prior knowledge to select its actions and updates its beliefs about its teammates
by observing their reactions to its behavior.

This chapter contains material from three publications: [1–4]. Note that some of Sect. 5.2 is
joint work with Sarit Kraus and Avi Rosenfeld in addition to Peter Stone [3].
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Fig. 5.1 Overview of using
PLASTIC to cooperate with
unknown teammates
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In this book, this general approach is realized in two algorithms. One algorithm,
PLASTIC–Model, focuses on a model-based approach. In this approach, the ad
hoc agent learns models of its past teammates, selects which models best predict
its current teammates, and then uses these models to plan how to act in order to
cooperate with the teammates. The second algorithm is called PLASTIC–Policy
and uses a model-free approach. In this variant, the ad hoc agent learns a policy to
cooperate with each of its past teammates, selects which policies best match how to
cooperate with its current teammates, and then selects actions using these policies.
These two algorithms are described in the remainder of the chapter. This general
approach is specified in Algorithm 5.1. The subroutines LearnAboutPriorTeammate,
SelectAction, and UpdateBeliefs are described for each of the two algorithms in the
following section.

As shown in Algorithm 5.1, PLASTIC begins by initializing its knowledge using
the provided prior knowledge and what it has learned about previous teammates in
Lines 2–5. LearnAboutPriorTeammate is defined differently for the two variants,
but in both algorithms it learns information about the prior teammate, encoding
the knowledge to be used in the SelectAction subroutine. Lines 6–10 show how
PLASTIC selects the agent’s actions. PLASTIC updates its beliefs over the teammate
models or policies by observing their actions and using the UpdateBeliefs function
implemented in the two variants.
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Algorithm 5.1 Pseudocode of PLASTIC
1: function PLASTIC:

inputs:
PriorTeammates � past teammates the agent has encountered
HandCodedKnowledge � prior knowledge coded by hand
BehaviorPrior � prior distribution over the prior knowledge

� initialize knowledge using information from prior teammates
2: PriorKnowledge = HandCodedKnowledge
3: for t ∈ PriorTeammates do
4: PriorKnowledge = PriorKnowledge ∪ {LearnAboutPriorTeammate(t)}
5: BehaviorDistr = BehaviorPrior(PriorKnowledge) � initialize beliefs

� act in the domain
6: Initialize s
7: while s is not terminal do
8: a = SelectAction(BehaviorDistr, s)
9: Take action a and observe r, s′
10: BehaviorDistr = UpdateBeliefs(BehaviorDistr, s, a)

5.2 PLASTIC–Model

When an agent has a good model of its environment, it can use this model to plan
good actions using a limited number of interactions with the environment. For an ad
hoc agent to plan, it also needs to model its teammates; therefore, it is useful for the
ad hoc agent to build models of its teammates’ behaviors. Given that learning new
models online takes many samples, it is useful to reuse information learned from
past teammates. This section describes PLASTIC–Model, a variant of the PLASTIC
approach that learnsmodels of prior teammates and selects whichmodels best predict
its current teammates. An overview of this approach is given in Fig. 5.2 and the
specification of the LearnAboutPriorTeammate, SelectAction, and UpdateBeliefs
functions are given in Algorithm 5.2. These functions are described in depth in the
remainder of this section.

5.2.1 Model Selection

In Algorithm 5.2, it is also necessary to select from a set of possible team-
mate models using SelectAction. Performing the simulations for the Monte Carlo
rollouts or other planners requires that the ad hoc agent has a model of how its
teammates behave. If there is a (presumably correct or approximately correct) single
model for this behavior, the planning is straightforward. On the other hand, if the ad
hoc agent is given several possible models to choose from, the problem is more dif-
ficult. Assuming that the ad hoc agent starts with some prior belief distribution over
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Algorithm 5.2 Instantiation of functions from Algorithm 5.1 for PLASTIC–Model.
1: function UpdateBeliefs:

inputs:
BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state
a � previously chosen action

outputs:
BehaviorDistr � updated probability distr.

params:
η � bounds the maximum allowed loss

2: for m ∈ BehaviorDistr do
3: loss = 1 − P(a|m, s)
4: BehaviorDistr(m)∗ = (1 − ηloss)
5: Normalize BehaviorDistr
6: return BehaviorDistr

7: function SelectAction:
inputs:
BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state

outputs:
a � the best action for the agent to take

params:
p � an MDP planner that selects actions, such as UCT

� simulateAction is derived from the known environment model and
� sampling from BehaviorDistr (the teammate behavior distribution)

8: a = p(s)
9: return a

10: function LearnAboutPriorTeammate:
inputs:

t � the prior teammate
outputs:

m � model of the teammate’s behavior
params:
learnClassifier � supervised learning algorithm

11: Data = ∅
12: repeat
13: Collect s, a for t
14: Data = Data ∪ {(s, a)}
15: m = learnClassifier(Data)
16: return m

which model correctly reflects its teammates’ behaviors, the ad hoc agent can update
these beliefs by observing its teammates. Specifically, it can update the models using
Bayes theorem:

P(model|actions) = P(actions|model) ∗ P(model)

P(actions)



5.2 PLASTIC–Model 77
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If the correct model is in the given set of models, then the ad hoc agent’s beliefs will
converge to this model or a set of models that are not differentiable from this model.

On the other hand, if the correct model is not in the set, using Bayes rule may drop
a good model’s posterior probability to 0 for a single wrong prediction. This update
may punish generally well-performing models that make a single mistake, while
leaving poor models that predict nearly randomly. Therefore, it may be advantageous
to update the probabilities more conservatively. Research in regret minimization has
shown that updating model probabilities using the polynomial weights algorithm is
near optimal if examples are chosen adversarially [5]. Since it is expected that the
ad hoc agent’s models are not perfect, the agent updates its beliefs using polynomial
weights:

loss = 1 − P(actions|model)

P(model|actions) ∝ (1 − η ∗ loss) ∗ P(model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher values
converge more quickly. This scheme ensures that good models are not prematurely
removed, but it does reduce the rate of convergence. In practice, this scheme performs
very well as the observed examples of the teammates may be arbitrarily unrepresen-
tative of the agent’s overall decision function.
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5.2.2 Planning

This section describes the SelectAction function in Algorithm 5.2. When an ad hoc
agent has a model of both the environment and its teammates, it can use this model
to plan about the effects of its actions and how it should adapt to its teammates.
Specifically, the ad hoc agent uses UCT to quickly determine the effects of its actions
and plan a sequence of actions that will be most beneficial to the team. UCT is used
due to its speed and ability to handle large action and state spaces, allowing it to
scale to large numbers of teammates in complex domains. The modified version of
the UCT algorithm that is used in this book is explained in Sect. 3.1.3. Other planning
algorithms such as Value Iteration (VI) or other approximate planners can also be
used, but UCT is chosen here as it shows good empirical performance in many large
domains.

Given the current belief distribution over the models, the ad hoc agent can sample
teammate models for planning, choosing one model for each rollout similar to the
approach adopted by Silver and Veness [6]. Sampling the model once per rollout is
desirable compared to sampling a model at each time step because this resampling
can lead to states that no model predicts. Ideally, state-action evaluations would be
stored and performed separately for each model, but that would require many more
rollouts to plan effectively. Instead, the state-action evaluations from all the models
are combined to improve the generalization of the planning.

5.2.3 Learning Teammate Models

This section describes how teammate models are learned in the LearnAboutPrior-
Teammate function of Algorithm 5.2. The previous sections described how the ad
hoc agent can select the most accurate model and use it for planning, but they did
not specify the source of these models. One option is that the ad hoc agent is given
hand-coded models from human experts, as shown in Line 2 of Algorithm 5.1 and in
Fig. 5.2. However, there may not always be a source of these models, or the models
may be imperfect. Therefore, a more general solution is for the ad hoc agent to learn
the models. Learning allows the agent to gain a good set of diverse models over
its lifespan, allowing better performance with arbitrary new teammates. The ad hoc
agent builds models of past teammates’ behaviors offline and then selects from these
learned models online while cooperating with new teammates. It is expected that the
past teammates are representative of the distribution of future teammates, though the
future teammates have not yet been seen.

PLASTIC–Model treats building teammate models as a supervised learning prob-
lem, where the goal is to predict the teammates’ actions using the features extracted
from the world state. The model predicts the next action of each teammate; when this
teammate model is combined with a model of the domain, the ad hoc agent can plan
far into the future. In this book, our agent uses C4.5 decision trees as implemented

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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in the Weka toolbox [7] to learn these models. Several other classifiers were tried
including SVMs, naiveBayes, decision lists, and nearest neighbor approaches aswell
as boosted versions of these classifiers. However, decision trees outperformed these
methods in initial tests in a combination of prediction accuracy and training time.
All model learning is performed offline, reflecting past experience in the domain, but
the ad hoc agent updates its belief over the models online.

To capture the notion that the ad hoc agent is expected to have extensive prior
general domain expertise (as is assumed in the ad hoc teamwork setting), though not
with the specific teammates at hand, we pre-train the ad hoc agent with observations
of a pool of past teammates. We treat the observations of previous teammates as
experience given to PLASTIC prior to deploying the ad hoc agent.

5.2.4 Adapting Existing Teammate Models

Theprevious sections discuss howanadhoc agent should cooperatewith teammates it
has interacted with before as well as how the agent should cooperate with completely
new teammates. However, in many cases, an ad hoc agent may have a limited amount
of time to observe its current teammates before it interacts with them. In addition, it
has extensive observations frompast interactionswith other teammates. For example,
in pickup soccer, this scenario corresponds to havingpast experience in pickup soccer,
showing up to a new game, and watching a couple minutes before joining in. This
scenario fits the transfer learning (TL) paradigm, but requires the ability to leverage
multiple sources of related data. In this section, we introduce a new transfer learning
algorithm (TwoStageTransfer) to leverage such information to speed up learning
about new teammates. TwoStageTransfer is a general algorithm that can apply to ad
hoc teamwork, and we will present it in general terms here. In the ad hoc teamwork
scenario, the observations of prior teammates correspond to the source data sets and
observations of the current teammates form the target set.

While the transfer learning algorithms discussed in Sect. 3.1.7 are effective on
some problems, they do not directly address the problem of transferring knowledge
from multiple sources. In general, they lump all source data into a single data set
and expect the learning algorithms to handle this data. TwoStageTransfer is inspired
by the TwoStageTrAdaBoost algorithm [8], and it is designed to explicitly leverage
multiple source data sets. Specifically in this setting, the ad hoc agent has observed
many other agents, some of which are more similar to the target teammate than
others. Therefore, tracking the source of the data may be important as it allows the
ad hoc agent to discount data from agents that differ greatly from it. Recent research
into transfer learning has shown this information may improve results [9–13]. These
approaches are promising, but are not directly evaluated here due to the complexity of
applying them to our setting coupled with the recency of these algorithms compared
to TwoStageTransfer.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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TwoStageTransfer’s goal is to find the best possible weighting for each set
of source data and create a classifier using these weights, as described in Algo-
rithm 5.3. TwoStageTransfer takes in the target data set T , the set of source data
sets S = {S1, . . . , Sn}, a number of boosting iterations m, a number of folds k for
cross validation, and a maximum number of source data sets to include b. We use the
annotation Sw to mean the data set S taken with weight w spread over the instances.
The base model learner used in this book is a decision tree learning algorithm that
handles weighted instances, but other learning algorithms can be used.

Ideally, TwoStageTransfer would try every combination of weightings, but having
n source data sets and m different weightings leads to mn possible combinations (in
the case considered in Chap.7 there are 1028 combinations). Rather than trying
all of them, TwoStageTransfer first evaluates each data source independently, and
calculates the ideal weight of that data source using cross validation. Then, it adds
the data sources in decreasing order of the calculated weights. As it adds each data
set, it finds the optimal weighting of that set with the data that has already been
added. Finally, it adds the data with the optimal weight and repeats the procedure
with the next data set. This algorithm requires only nm + nm = 2nm combinations
to be evaluated (in the case from Chap. 7 there are 560 combinations), with nm for
the initial evaluations and then m when adding each n data sets. To achieve this
efficiency, this approach does not guarantee optimality.

TwoStageTransfer is a general transfer learning algorithm that can be used in a
variety of settings for learning from multiple source domains. For example, when
classifying the subject of text documents, you may have labeled data from a variety
of sources including newspapers, personal letters, and books. When trying to build
a classifier for a new magazine, it is useful to transfer information about these other
sources, bearing in mind that some sources such as newspapers may be more similar
to the magazine than letters. In this book, TwoStageTransfer is used to learn models
of teammates’ behaviors by transferring knowledge from previously encountered
teammates.

In order to integrate TwoStageTransfer with PLASTIC–Model, only a minor
change needs to be made to Algorithm 5.1. Specifically, after Line 4, we insert
the lines:

m = T woStageT rans f er(PriorKnowledge,Observations(Teammates))
PriorKnowledge = PriorKnowledge ∪ {m}

This alteration adds a newmodel to PriorKnowledge that is learned using TwoStage-
Transfer, combining the information from previous teammates as well as the limited
observations of the new teammates.

http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_7
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Algorithm 5.3 TwoStageTransfer: transfer learning from multiple sources
1: function TwoStageTransfer:

inputs:
T � target data set
S � source data sets

outputs:
c � learned classifier

params:
b � maximum number of source data sets to include

2: for all Si in S: do
3: wi ← CalculateOptimalWeight(T,∅, Si , m, k)
4: Sort S in decreasing order of wi ’s
5: F ← ∅
6: for i from 1 to b do
7: w ← CalculateOptimalWeight(T, F, Si , m, k)
8: F ← F ∪ Sw

i

9: Train classifier c on T ∪ F
10: return c

11: function CalculateOptimalWeight:
inputs:

T � target data set
F � fixed data set
S � source data set under consideration

outputs:
w∗ � best weighting of the source data set

params:
m � number of boosting iterations
k � number of folds for cross validation

12: for i from 1 to m do
13: wi = |T |

|T |+|S| (1 − i
m−1 )

14: Calculate erri from k-fold cross validation on T using F and Swi as additional training
data

15: w∗ = w j such that j = argmini (erri )
16: return w∗

5.3 PLASTIC–Policy

In complex domains, planning algorithms such as UCT may perform poorly due to
the inaccuracies of their models of the environment. Therefore, it may be desirable
to directly learn a policy for acting in this environment rather than planning online.
Learning a policy directly prevents the ad hoc agent from learning to exploit actions
that work well in the model, but not in the real environment. Given that the policy
learned will depend heavily on the teammates that the agent is cooperating with,
it is desirable to learn a policy for each type of teammate. Then, the ad hoc agent
will try to pick which policy best fits new teammates it encounters. The remainder
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Fig. 5.3 Overview of using
the model-based approach of
PLASTIC–Policy to
cooperate with unknown
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of this section describes the PLASTIC–Policy algorithm that uses this approach,
summarized in Fig. 5.3. The subroutines used in PLASTIC–Policy are specified in
Algorithm 5.4.

5.3.1 Learning the Policy

PLASTIC–Policy learns about its teammates using the LearnAboutPriorTeammate
function. Rather than explicitly modeling the MDP’s transition function as in
PLASTIC–Model, the agent directly uses samples taken from environment with its
current teammates. However, online learning is sequential and can take a long time to
learn a useful policy on complex domains. Therefore, it is desirable to use a distrib-
uted approach that takes advantage of the ability to runmany tests simultaneously. To
this end, PLASTIC–Policy performs a number of interactions in which it explores the
available actions in parallel. It stores its experiences as the tuple 〈s, a, r, s′〉, where
s is the original state, a is the action, r is the reward, and s′ is the resulting state.

Using these observations, PLASTIC–Policy can learn a policy for cooperating
with its teammates using existing learning algorithms. In this book, the agent uses
Fitted Q Iteration (FQI) [14], as described in Sect. 3.1.4. Alternative policy learning
algorithms can be used, such as Q-learning [15] or policy search [16].

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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Algorithm 5.4 Instantiation of functions from Algorithm 5.1 for PLASTIC–Policy.
1: function LearnAboutPriorTeammate:

inputs:
t � the prior teammate

outputs:
π � policy for cooperating with teammate t
m � nearest neighbors model of the teammate’s behavior

params:
Q-learning parameters: α, λ, and the function approximation

2: Data = ∅
3: repeat
4: Collect s, a, r, s′ for t
5: Data = Data ∪ {(s, a, r, s′)}
6: Learn a policy π for Data using Q-Learning
7: Learn a nearest neighbors model m of t using Data
8: return (π, m)

9: function UpdateBeliefs:
inputs:
BehaviorDistr � probability distr. over possible teammate behaviors
s � the previous environment state
a � previously chosen action

outputs:
BehaviorDistr � updated probability distr.

params:
η � bounds the maximum allowed loss

10: for (π, m) ∈ BehaviorDistr do
11: loss = 1 − P(a|m, s)
12: BehaviorDistr(m)∗ = (1 − ηloss)
13: Normalize BehaviorDistr
14: return BehaviorDistr

15: function SelectAction:
inputs:
BehaviorDistr � probability distr. over possible teammate behaviors
s � the current environment state

outputs:
a � the best action for the agent to take

16: (π, m) = argmaxBehaviorDistr � select most likely policy
17: a = π(s)
18: return a

5.3.2 Selecting Policies

This section describes the UpdateBeliefs and SelectAction functions from Algo-
rithm 5.4. When an agent joins a new team, it must decide how to act with these
teammates. If it has copious amounts of time, it can learn a policy for cooperatingwith
these teammates. However, if its time is more limited, it must adapt more efficiently.
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We assume that the agent has previously played with a number of different teams,
and the agent learns a policy for each of these teams. When it joins a new team, the
agent can then reuse the knowledge it has learned from these teams to adapt more
quickly to the new team. One way of reusing this knowledge is to select from these
learned policies. If the agent knows its teammates’ identities and has previously
played with this team, the agent can directly used the learned policy. However, if it
does not know their identities, the agent must select from a set of learned policies.

Many similar decision-making problems can be modeled as multi-armed bandit
problems when the problem is stateless. In this setting, selecting an arm corresponds
to playing one of the learned policies for an episode. Over time, the agent can estimate
the expected values (expected chance of scoring) of each policy by selecting that
policy a number of times and observing the outcome.

However, this type of learning may require a large number of trials as the out-
comes of playing each policy may be very noisy depending on the complexity of the
domain. Therefore, it is desirable to select from the policies more quickly. To this
end, PLASTIC–Policy employs an approach based on maintaining the probability
of the new team being similar to a previously observed team. These probabilities
are updated by observing the actions the team performs and using Bayes’ theorem.
However, Bayes’ theorem may drop the posterior probability of a similar team to 0
for a single wrong prediction. Therefore, as in Sect. 5.2.1, PLASTIC–Policy adopts
the approach of updating these probabilities using the polynomial weights algorithm
from regret minimization [5]:

loss = 1 − P(actions|model)

P(model|actions) ∝ (1 − η ∗ loss) ∗ P(model)

where η ≤ 0.5 is a parameter that bounds the maximum loss, where higher values
converge more quickly.

The learned policies do not directly give the probability of a past team taking an
action. However, the experiences (〈s, a, r, s′〉) used in learning the policies can help
because they provide estimates of the teams’ transition function. When the agent
observes a state s and the next state s′, it can update the probability of the new team
being similar to each old team. For each old team, the agent finds the stored state ŝ
closest to s and its next state ŝ′. Then, for each component of the state, it computes
the difference between s′ and ŝ′. We assume that the MDP’s noise is normal, so
each difference results in a probability that it was drawn from the noise distribution.
Multiplying these factors together results in a point estimate of the probability of the
previous team taking the observed action.
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5.4 Chapter Summary

This chapter presents the PLASTIC algorithms used in the remainder of this book.
This approach is instantiated in two algorithms: PLASTIC–Model and PLASTIC–
Policy. These two algorithms allow an ad hoc agent to reuse knowledge learned from
past teammates in order to efficiently learn with new teammates. PLASTIC–Model
uses a model-based approach, where it learns a model of past teammates, updates
the probabilities of these models online, and then plans using the distribution over
models. PLASTIC–Policy is a model-free approach that attacks problems that are
less tractable formodeling. PLASTIC–Policy learns policies for cooperates with past
teammates, updates the probabilities of using each policy by observing its teammates,
and selects actions using the most likely policy. Given this approach, we first look
at its theoretical properties in the bandit domain in Chap. 6 and then investigate its
empirical performance in Chap.7.
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Chapter 6
Theoretical Analysis of PLASTIC

Chapter 5 introduced the algorithms used in this book for solving ad hoc
teamwork problems. Before moving on to the empirical analysis of these algorithms
in Chap.7, it is useful to first investigate the theoretical attributes of PLASTIC. Our
analysis focuses on whether the multi-armed bandit domain described in Sect. 3.2.1
is tractable for PLASTIC–Model. We chose to analyze the bandit domain because of
its simplicity, which lends itself to more complete theoretical analysis. In addition,
the bandit domain is interesting due to its use of communication, which is an impor-
tant aspect of ad hoc teamwork that is not explored in the other domains. Note that
we do not investigate the model learning aspect of PLASTIC–Model. Instead, we
analyze whether the PLASTIC–Model can select from a set of known models (from
HandCodedKnowledge) and plan its response to these models in polynomial time.

This analysis is performed in the context of the multi-armed bandit domain
described in Sect. 3.2.1. Recall that in this domain, several agents simultaneously
pull from one of two Bernoulli arms. These agents can broadcast three types of mes-
sages to one another: their last observation, the number of pulls and successes they
have observed of an arm, or a suggestion to pull an arm. Sending these messages has
a cost, so the optimal behavior for the ad hoc agent is to send the minimal amount
of messages required to convince its teammates to pull the optimal arm.

Our analysis begins with the simplest version of the problem, in which the ad hoc
agent knows its teammates’ behaviors and the distributions of the arms. We show
that this version of the problem is tractable for PLASTIC–Model to compute the
optimal policy. Then, we relax the assumptions of the problem and analyze whether
PLASTIC–Model can still compute an optimal or ε-optimal policy for cooperat-
ing with its teammates in polynomial time. Specifically, Sects. 6.2–6.5 show that
a number of ad hoc team problems in the bandit setting are provably tractable, as
summarized in Table6.1. The problems vary in how much the agent knows about its

This chapter contains material from the publication: [1]. Note that all work presented in this
chapter is joint work with Noa Agmon, NoamHazon, and Sarit Kraus in addition to my advisor
Peter Stone.
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Table 6.1 Problems that are solvable in polynomial time

Knowledge of
teammates

Teammate type Knowledge of
environment

Solution type Sections

Known Stochastic Known Exact 6.2

Finite set Deterministic Known Exact 6.3

Parameterized set Stochastic Known Approx. 6.4

Parameterized set Stochastic Unknown Approx. 6.5

teammates, whether its teammates are deterministic, and whether the agent has prior
knowledge of the environment in terms of the underlying payoff distributions of the
arms. As the agent’s knowledge of its teammates and the environment is reduced
and it encounters stochastic agents, the problem becomes more difficult. However,
the agent is still able to select the best messages and actions in polynomial time,
though these selections change from being optimal to only approximately optimal
as the problem becomes more difficult. These results prove that ad hoc team agents
can plan approximately optimal behaviors involving communication without taking
more than polynomial time. The empirical results in Chap.7 show that communi-
cation does improve the team’s performance, as well as investigating situations not
covered in the theoretical analysis.

6.1 Model and Notation

As discussed in Chap. 5, when the ad hoc agent knows its teammates’ behaviors,
it can model the bandit problem as an MDP. We now describe the resulting MDP
and introduce the notation used in the remainder of this chapter. The MDP’s state is
composed of the pulls and observations of the ad hoc agent’s teammates as well as
the messages it has sent. Let K = (p0, s0, p1, s1) be the knowledge about the arms
where pi and si are the number of pulls and successes of armi . Then, the state is given
by the vector (Kt , Ka, Kc, r, phase, sugg), where Kt is the team’s knowledge from
their pulls, Ka is the ad hoc agent’s knowledge from its pulls, Kc is the knowledge
that the ad hoc agent has communicated, r is the current round number, phase is the
phase of the round, and sugg is the ad hoc agent’s most recent suggestion. As the n
agents on the team are coordinated, their actions depend onKt andKc and not directly
on Ka . We split Kc from Kt to model how the ad hoc agent’s messages will affect
the team. For example, if the ad hoc agent already communicated an observation,
communicating its observations of the same armwill replace its teammates’ memory
of this observation.

Next, we reason about the number of states and actions of the resulting MDP.
Given that there are R rounds and n teammates, pi and si in Kt are each bounded
by n R, pi and si in both Ka and Kc are each bounded by R. The round r is bounded

http://dx.doi.org/10.1007/978-3-319-18069-4_7
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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by R, and there are 2 possible phases of a round. Finally, the most recent suggestion
sugg takes on one of 3 values (arm0, arm1, or none). Therefore, the state space has
at most (n R)4 × R × R4 × R4 × 2 × 3 = 6n4R13 states. This polynomial bound
means that the problem is tractable and existing algorithms for solving the MDP can
be applied.

The actions of the MDP are the possible arms and the available messages. Arms
other than arm∗ are considered because their observations affect the messages that
the ad hoc agent can send to affect its teammates’ actions, so there are 2 actions in
the action phase. Let us now look at actions available in the communication phase.
In the communication phase, the ad hoc agent can send one message of each type.
For the last observation, the ad hoc agent can choose to send its last observation or
not, resulting in 2 options. For the observed arm mean, the ad hoc agent can send
the mean of either arm or choose to send no message, resulting in 3 options. Finally,
as a suggestion, the ad hoc agent can suggest either arm or choose not to suggest an
arm, resulting in 3 options. Therefore, there are 2 × 3 × 3 = 18 possible actions in
the communication phase, and 2 in the action phase.

The transition function P is composed of the act and comm functions, the arms’
payoff distributions, and the effects of the ad hoc agent’s messages. Specifically, act
and the ad hoc agent’s chosen arms affect the pi values in Kt and Ka respectively,
while the arm distributions specify how these actions affect the si values in Kt and
Ka . The ad hoc agent’s messages and Ka define the changes to Kc and sugg. The
reward function R is a combination of the rewards coming from the arms and the
costs of communication.

6.2 Known Teammates and Arms

Given this model, we first analyze themost straightforward setting. In this setting, the
ad hoc agent knows the true distributions of the arms and can observe its teammates’
actions and the resulting payoffs. In addition, it knows the true stochastic behavior
(act and comm) of its teammates. Therefore, the ad hoc agent has a full model of the
problem described in Sect. 6.1. It is possible to find the optimal solution to an MDP
using DP in time polynomial in the MDP’s size, which is polynomial in the number
of rounds R and teammates n. Therefore, Proposition 1 directly follows.

Proposition 1 An ad hoc agent that knows the true arm distributions and its team-
mates’ behaviors can calculate its optimal behavior for maximizing the team’s shared
payoffs in poly(R, n) time.

Proof Using Dynamic Programming (DP), it is possible to find the optimal solution
to an MDP in polynomial time in terms of the number of states and actions [2]. As
shown in Sect. 6.1, the resulting MDP has a state space that has size polynomial in
R and n, and the number of actions is bounded by 18. Therefore, the ad hoc agent
can use DP to optimally plan its actions in poly(R, n) time.
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6.3 Teammates from a Finite Set

In this section, we relax the constraint on knowing the teammates’ behaviors. Rather
than knowing the specific behavior of its teammates, the ad hoc agent instead knows
that the behaviors are drawn from a known, finite set of deterministic behaviors.
In addition, it still knows the true distributions of the arms. This case is of interest
because a finite set of behaviors can often cover the space of likely behaviors. For
example, analysis of bandit problems [3], ad hoc teamwork [4], and using machine
learning with psychological models [5] suggests that a small number of behaviors
can represent the spread of possible behaviors.

In general, this finite set of behaviors can vary, but in this analysis, we consider
two types of teammates: (1) greedy agents and (2) ones that choose arms using
confidence bounds in the form of UCB1 [6]. The UCB1 agents select actions using

arm = argmax
i

si

pi
+ c

√
ln(p0+p1)

pi
(6.1)

where c = 1. The ad hoc agent is given a prior probability distribution over teams
following either of these behaviors. The teammates are assumed to use the ad hoc
agent’s communicated pulls when selecting their actions. Additionally, we assume
that these teammates share all information with each other and send messages that
the ad hoc agent can hear, but thesemessages do not reveal the teammates’ behaviors.

To analyze this problem, we add the ad hoc agent’s beliefs about its teammates
into the state space that the agent plans over. As the teammates are deterministic,
there are three possibilities for the belief space: both models are still possible, only
the greedy model is possible, or only the UCB1 model is possible. Therefore, the
combined belief and world state space is three times larger than the world state space,
and the resulting MDP has state space of size 18n4R13. In general, the increase in
size is 2k −1 where k is the number of models, but we assume that k is fixed and not a
problem parameter. The transition function can bemodified to simultaneously update
the ad hoc agent’s beliefs as well as the world state based on whether a teammate
model predicts the observed actions. Therefore, the MDP can again be solved using
DP in polynomial time. Proposition 2 follows directly from this reasoning.

Proposition 2 An ad hoc agent that knows the true arm distributions and that its
teammates’ behaviors are drawn from a known set of two deterministic behaviors can
calculate its optimal behavior for maximizing the team’s shared payoffs in poly(R, n)

time.

Proof Similar to Theorem 1, we know that the resulting MDP has a state space that
has size polynomial in R and n. In addition, using DP it is possible to optimally solve
an MDP in polynomial time with respect to the size of the state and action spaces.
Given that the MDP’s state space is polynomial in R and n and there are 18 actions,
it is possible to find the optimal behavior in poly(R, n) time using DP.
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6.4 Teammates from a Continuous Set

In this section, we further relax the constraints on the teammates’ behaviors, consid-
ering a continuous set of stochastic behaviors rather than the discrete set of determin-
istic behaviors used in the last section. We still consider a small number of possible
behaviors, specifically ε-greedy and UCB(c). For these behaviors, ε is the probabil-
ity of taking a random action, and c is the scaling factor of the confidence bound in
Eq.6.1. Therefore, the ad hoc agent must maintain a belief distribution over values
of ε, values of c, and p the probability of the teammates being ε-greedy. The ad hoc
agent is given the prior knowledge that ε, c are uniformly distributed over [0, 1], and
it starts with an initial estimate of p. While we use two models for simplicity, this
analysis can be extended for any fixed number of parameterized models.

To analyze this problem, we model the problem as a POMDP as discussed in
Sect. 3.1.5. The transition function for the fully observable state variables remains
the same as in the original MDP. In this setting, the belief space has three partially
observed values: ε, c, and p the probability of the teammates being ε-greedy versus
UCB(c). The value of p is updated using Bayes’ rule given the probability of the
models predicting the observed actions, and the updates to the probability distribu-
tions of ε and c are described in Lemma 1. The remainder of the POMDP remains
as defined above.

In Lemma 1 and Theorem 1, we show that in this expansion of the problem, the ad
hoc agent can perform within η of the optimal behavior with calculations performed
in polynomial time. This result comes from reasoning about the δ-covering of the
belief space, which defines the difficulty of solving the POMDP as discussed in
Sect. 3.1.5.

Lemma 1 The belief space of the resulting POMDP has a δ-covering with size
poly(R, n, 1/δ).

Proof The resulting size of the δ-covering is a product of the contributing factors.
These factors come from the underlying MDP state s, ε, c, and p. Using Proposition
1 of Hsu et al.’s work [7], we know that the fully observed state variables result in a
multiplicative factor that is polynomial in R and n. Therefore, since the ad hoc agent
directly observes s, it only results is a factor of poly(R, n). The probability of the two
models p is a single real value in [0,1], resulting in a factor of 1/δ. The parameter ε

has a uniform prior, so the posterior is a beta distribution, relying on two parameters,
α and β. These parameters correspond to the (fully observed) number of observed
greedy and random pulls; thus, each are integers bounded by n R. Therefore, the
probability distribution over ε can be represented using a factor of size (n R)2.

The parameter c has a uniform prior, and UCB agents select arms using Eq.6.1,
combining the communicated and team’s pulls by setting p j = pt

j + pc
j and s j =

st
j + sc

j . The teammates will only select the lower arm when c is above a certain
value and the higher arm when c is below a certain value. Therefore, the top and
bottom ranges of c can be updated using linear programming from observing their
actions. Note that the posterior remains uniform; only the range changes. Therefore,

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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the probability distribution over c can be represented using two real values in [0, 1]
that are the top and bottom of the uniform range of c, resulting in a factor of 1/δ2.
Multiplying all of these factors results in a δ-covering of size poly(R, n, 1/δ).

As discussed in Sect. 3.1.5, a POMDP can be solved approximately in polynomial
time given a covering set. Given this result and Lemma 1, Theorem 1 follows directly.

Theorem 1 Consider an ad hoc agent that can observe its teammates’ actions,
knows the true arm distributions, and knows that its teammates are drawn from a
known, continuous set of ε-greedy and UCB teammates. This agent can calculate an
η-optimal behavior in poly(n, R, 1/η) time.

Proof FromTheorem 1 inKurniawati et al.’s work [8], it is known that a POMDP can
be solved in time polynomial in terms of the size of its covering number. While this
theorem applies to the infinite horizon, discounted rewards case, any finite horizon
POMDP can be converted into an infinite horizon POMDP by adding a sink state
that results in no rewards. In addition, the undiscounted rewards can be converted to
discounted rewards by multiplying by the inverse of the discount factor. Therefore, a
finite horizon POMDP can also be solved in polynomial time with respect to the size
of its covering number. From Lemma 1, we know that the combined state and belief
space of the POMDP has a proper δ-covering of size polynomial in R, n, and 1/δ.
Kurniawati et al. [8] showed that for the result to hold, δ needs to be polynomial in
terms of 1/η, the horizon, and the one step reward, which is bounded by n. Therefore,
the η-optimal behavior can be calculated in poly(n, R, 1/η) time.

6.5 Unknown Arms

The previous sections assumed that the ad hoc agent already knew the underlying
distributions of the arms (i.e. the POMDP’s transition function), but in many cases
the ad hoc agent may not have this information. Therefore, it is desirable for the ad
hoc agent to reason about trading off between exploring the domain, exploring its
teammates, and exploiting its current knowledge. In this section, we prove that the
ad hoc agent can optimally handle this tradeoff while planning in polynomial time.
We again assume that the ad hoc agent knows its teammates’ pulls and results, either
by observing them directly or by listening to its teammates’ messages.

The belief space of the POMDP is increased to track two additional values, one
for the Bernoulli success probability of each arm. The probabilities of these values
can be tracked using a beta distribution similar to ε in Lemma 1, resulting in an
additional multiplicative factor of (n R)2. Therefore, the covering number has size
poly(R, n, 1/δ). Theorem 2 follows naturally from this result and the reasoning in
Theorem 1.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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Theorem 2 Consider an ad hoc agent that does not know the true arm distributions,
but has a uniform prior over their success probabilities, knows that its teammates’
behaviors are drawn from a continuous set of ε-greedy and UCB teammates, and can
observe the results of their actions. This agent can calculate an η-optimal behavior
in poly(n, R, 1/η) time.

Proof We know that a POMDP can be solved in time polynomial in its covering
number. From Theorem 1, we know that the ad hoc agent’s beliefs about its team-
mates’ behaviors and the observed pulls can be covered in a polynomial number of
points. In this setting, the ad hoc agent must also track its beliefs about the success
probability of each arm. The reasoning proceeds similarly to the reasoning about ε

in Lemma 1. The agent starts with uniform beliefs about each arms’ success proba-
bility, which leads the posterior to be a beta distribution, which can be represented
using two integer parameters. These parameters correspond to the (fully observed)
numbers of successes and pulls observed; thus the integers can are be bounded by
(n + 1)R for each arm. Representing the probability distribution of the two arms’
success probabilities leads to a factor of size ((n + 1)R)2. Therefore, the η-optimal
behavior can still be calculated in poly(n, R, 1/η) time.

6.6 Chapter Summary

This chapter presents theoretical analysis of the PLASTIC–Model algorithm in
the multi-armed bandit setting described in Sect. 3.2.1. These results show that
PLASTIC–Model can calculate an ε-optimal policy for the ad hoc agent to fol-
low in a variety of scenarios in polynomial time. The analysis proceeds by bounding
the number of states and actions in the resulting MDPs and POMDPs. When the ad
hoc agent is uncertain about its teammates’ behaviors or the true success probabil-
ities of the arms, it can efficiently represent its uncertainty about these beliefs. The
compactness of these beliefs and the size of the state space enables us to prove that
there are efficient ways to calculate the optimal behavior for the ad hoc agent. This
result suggests that empirical approaches for solving POMDPs will be effective in
this domain, a hypothesis which is explored in Chap.7.
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Chapter 7
Empirical Evaluation

While the previous chapter describes the theoretical analysis of the PLASTIC algo-
rithm, this chapter presents its empirical analysis. This empirical analysis covers
the three domains introduced in Sect. 3.2: the multi-armed bandit domain, the pur-
suit domain, and half field offense in the 2D RoboCup simulator. An overview of
the experiments is presented in Table7.1. This table lists the domains and teammate
types used in each experiment as well as whether the teammates have been previously
seen or provided in HandCodedKnowledge. Furthermore, for each experiment, we
describe whether the ad hoc agent knows the environment, how many teammates it
is cooperating with, whether it uses communication to cooperate with its teammates,
and whether the domain provides continuous states and actions. Finally, we specify
whether we test PLASTIC–Model or PLASTIC–Policy in each experiment. In the
table, we bold the factors that result in extra complexities and show that PLASTIC is
applicable to other complex domains. Specifically, we highlight when the teammates
were externally created, when the teammates are previously unseen or only seen
briefly, when the domain has continuous states and actions, when the environment
in unknown, and when PLASTIC has to select from a set of parameterized models.

This analysis tests the hypothesis that PLASTIC is effective for enabling agents to
quickly adapt to new teammates in a variety of possible ad hoc teamwork scenarios.
In Sect. 7.1, we start by evaluatingwhether PLASTIC–Model can efficiently commu-
nicate with teammates given a limited language as well as whether it can select good
models from a set of parameterized hand-coded models for HandCodedKnowledge
including the case where these models do not cover its teammates’ true behaviors.
Then, in Sect. 7.2, we test the hypothesis that PLASTIC–Model can use models it
learned from previous teammates to adapt quickly to new teammates. Furthermore,

This chapter contains material from four publications: [1–5]. Note that the work in Sect. 7.1
is joint work with Noa Agmon, Noam Hazon, and Sarit Kraus in addition to my advisor Peter
Stone [1]. In addition, Sects. 7.2.1, 7.2.6, and 7.2.7 are joint work with Sarit Kraus and Avi
Rosenfeld in addition to Peter Stone [4].
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we assess whether TwoStageTransfer is effective for learning models of new team-
mates while transferring knowledge about past teammates. Specifically, we perform
this evaluation by using the learnedmodels in PLASTIC–Model for cooperatingwith
these new teammates. Finally, we test the hypothesis that PLASTIC–Policy allows
ad hoc agents to quickly adapt to new teammates in a complex domain (HFO) in
Sect. 7.3.

7.1 Multi-armed Bandits

We start with the simplest domain studied in this book, specifically the multi-armed
bandit setting. The multiagent, multi-armed bandit setting used in this analysis is
described in depth in Sect. 3.2.1. While Chap.6 showed that this bandit problem can
be modeled as a POMDP, and thus is theoretically tractable to solve in polynomial
time. Given this theoretical result, we expect that PLASTIC–Model should be effec-
tive in this domain. Therefore, this section investigates whether PLASTIC–Model is
practical and shows that it enables an ad hoc agent to cooperate with its teammates
better than alternative approaches. In addition, we also consider a number of scenar-
ios that go beyond those handled in the theoretical analysis. The results presented
in this section show that modeling the problem as a (PO)MDP and planning using
this model significantly improves the performance of the team compared to several
intuitive baseline behaviors in several scenarios.

7.1.1 Methods

To cooperate effectively in the bandit problem, our agent uses the PLASTIC–Model
algorithm. We model the bandit problem as a POMDP, as discussed in Sect. 6.1.
Chapter 6 showed that calculating the approximately optimal behavior in the result-
ing POMDPs takes polynomial time, but the polynomial quickly becomes too large
for practical computation as the size of the problem grows. Therefore, PLASTIC–
Model uses Monte Carlo planning to find an inexact solution in a practical amount
of time. In addition, as the beliefs over the teammate parameters may be contin-
uous, PLASTIC–Model approximates the belief update for the sake of efficiency.
To this end, PLASTIC–Model uses Partially Observable Monte Carlo Planning
(POMCP) [6] to perform the planning and belief updates. POMCP is presented in
more depth in Sect. 3.1.6. Past research has shown that POMCP is effective for scal-
ing to large POMDPs, producing effective policies for behaving in these POMDPs.
While POMCP is not guaranteed to find an optimal solution given limited computa-
tion, our results show that it plans an effective behavior in our setting.

In these tests, PLASTIC–Model is given prior knowledge in the form of
HandCodedKnowledge, a set of hand-coded behaviors of possible teammates.
Specifically, HandCodedKnowledge is composed of teammates following the

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_6
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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ε-greedy or UCB(c) algorithms, described in Sect. 3.2.1.2. This set provides a uni-
form distribution of ε and c drawn from [0,1]. Similarly, the probability of the team
following the ad hoc agent’s suggestion s is also drawn from [0,1]. Therefore, the
problem is for PLASTIC–Model to determine which of these behaviors best fits the
teammates it encounters, as well as which actions to take based on these beliefs.

7.1.2 Evaluation Setup

In our evaluations, we compare four potential behaviors for the ad hoc agent to
follow:

• Match—Plays as if it were another agent of the team’s type, but can observe all
agents’ results

• NoComm—Pulls the best arm and does not communicate
• Obs—Pulls the best arm and sends its last observation
• PLASTIC–Model—Selects arms and messages using PLASTIC–Model

Match, NoComm, and Obs serve as baselines. Pulling the best arm and sending other
messages were tested, but generally produced worse results than either NoComm or
Obs. Match is only used as a baseline when the arms’ payoffs are unknown.

In our theoretical analysis in Chap.6, we prove that problems with 2 arms and
teammates that are coordinated and use ε-greedy or UCB behaviors are tractable.
These tests will investigate scenarios with more arms and externally-created team-
mates that are not coordinated and do not use ε-greedy or UCB behaviors. Unless
otherwise specified, the version of the bandit problem used for the evaluations has 10
rounds, 7 teammates, and 3 arms. The costs for sending messages are known by all
agents and randomly selected for each run. These costs are sampled from [0, m|c|],
where |c| is the size of the message (3 for mean, 2 for obs, and 1 for sugg) and
m = 0.75 unless otherwise specified.

In all of the evaluations, we assume that the ad hoc agent can observe its team-
mates’ actions and payoffs. The ad hoc agent knows the true distributions of the arms
except where otherwise noted (Fig. 7.3). Our evaluations use 100 trials. The random-
ness of the trials is fixed across the different ad hoc agent behaviors to allow for
paired statistical tests. The results are average team rewards normalized by the aver-
age reward if all agents repeatedly pull the best arm with no communication costs.
Statistical significance is tested using a Wilcoxon signed-rank test with p < 0.05,
denoted by “+” in the figureswhen comparing PLASTIC–Model to all othermethods.

7.1.3 Hand-Coded Teammates

In this first set of experiments, we test the hypothesis that PLASTIC–Model can
effectively cooperate with unknown teams of coordinated ε-greedy and UCB(c)

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_6
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Fig. 7.1 Normalized rewards with varied message costs with a logarithmic x-axis. Significance is
denoted by “+”. a ε-greedy teammates b UCB teammates

teammates. These experiments evaluate whether PLASTIC–Model can determine
the behaviors of its teammates and the parameters of these behaviors on the fly. We
hypothesize that PLASTIC–Model will outperform the baselines introduced above.

These evaluations are over 100 trials with teams where ε, c, s, and the arms’
success probabilities are selected randomly uniformly between 0 and 1. PLASTIC–
Model is initialized with the beliefs that both ε-greedy and UCB(c) teammates are
equally likely, so its prior beliefs include the correct behavior. Therefore, PLASTIC–
Model attempts to determine the correct teammate type and parameters for its team-
mates. These hand-coded teammates are explained in detail in Sect. 3.2.1.2.

Figure7.1 presents the results when the ad hoc agent encounters the problem
discussed in Sect. 6.4, cooperating with teams that are ε-greedy or UCB, with varied
message costs. Note that NoComm is unaffected by the message costs as it does
not communicate. The results indicate that the agent can effectively plan its actions,
significantly outperforming the baselines. The performance of PLASTIC–Model
diminishes as the cost of messages rises because affecting the teammates becomes
more costly. However, PLASTIC–Model will plan not to communicate when the
message costs get too high, so its performance never drops below that of NoComm.
The results are similar when the ad hoc agent knows its teammates’ true behavior,
rather than assuming that both types are possible.

The results of these evaluations show that PLASTIC–Model can quickly learn to
cooperate with various teammates when it knows that its teammates’ behaviors are
drawn from a known, parameterized set. PLASTIC–Model efficiently uses commu-
nication to improve the team’s performance, thus scaling its communication as the
cost of communicating grows.

7.1.4 Externally-Created Teammates

The previous section presented zwith a set of possible hand-coded teammates, specif-
ically the ε-greedy and UCB teammates. However, this set of teammates is limited

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_6
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and may not represent the set of possible teammates the ad hoc agent may encounter.
Therefore, we also consider a number of agents that were not created by the authors,
denoted externally-created teammates. These teammates were created by students
for a class assignment and are presented inmore depth in Sect. 3.2.1.3. To prevent any
bias in the creation of the agents, the students designed the entire team without con-
sidering ad hoc teamwork. These agents serve as a sample of the variety of teammates
an ad hoc agent might encounter in real scenarios. We hypothesize that PLASTIC–
Model will use communication to cooperate effectively with these teammates despite
the inaccuracies of its expert-provided prior knowledge (HandCodedKnowledge).

Section3.2.1.1 specifies that the teammates are assumed to be tightly coordi-
nated and know each other’s actions and payoffs via communication. However, the
externally-created agents do not always choose to share this information, breaking
this assumption. In addition, the externally-created agents follow a variety of behav-
iors. Rather than being optimal, these agents represent a diverse set of imperfect
agents that may be created by a variety of designers attempting to solve a real prob-
lem. We specifically did not analyze their behaviors to prevent biasing the design of
our ad hoc agent.

Given that the externally-created teams quickly converge to the best arm, all
approaches perform similarly with these teammates. Therefore, we investigate how
well the ad hoc agent can correct its teammates’ knowledge if its teammates have
incorrect beliefs. To this end, we look at the worst case scenario for the team: the
best arm performs poorly early in the scenario, possibly misleading the team into not
pulling the arm later. To create this setting, we consider the case where in the first
5 rounds, the teammates’ pulls of the best arm are biased to have a lower chance of
success. In this setting, both the teammates and the ad hoc agent are unaware of the
initial bias of the arm. Therefore, this test evaluates how well the ad hoc agent can
use its prior knowledge to correct the misinformation its teammates have observed.

As in the previous tests, PLASTIC–Model is again provided with the same prior
knowledge, specifically HandCodedKnowledge is the set of ε-greedy and UCB(c)
hand-coded policies with their various parameters initialized uniformly randomly.
Despite this prior knowledge being incorrect, PLASTIC–Model is still able to deter-
mine which of these behaviors best fit its teammates and perform well. Figure7.2
shows the results with externally-created agents, a problem not covered by any the-
oretical guarantees, as the models do not match the true teammates. In these evalua-
tions, we test the sensitivity of the agent to various problem parameters, investigating
under which conditions POMCP outperforms the baselines. Note that the message
costs are also applied to the externally-created teammates, which know the current
message costs, so the performance of NoComm is now affected by message costs.

As the cost of communicating increases, NoComm becomes closer to the optimal
behavior. As the number of rounds increases, communicating ismore helpful because
there is more time to reap the benefits of better informing the teammates. With more
arms, it is harder to get the teammates to select the best arm, so communicating is less
helpful. With more teammates, communicating is more likely to be outweighed by

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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Fig. 7.2 Normalized rewards with varied parameters when cooperating with externally-created
teammates. a Message costs with logarithmic x-axis. b Numbers of rounds. c Numbers of arms. d
Numbers of teammates

other agents’ messages, which explains the decreasing performance of PLASTIC–
Model. However, communication can still encourage the teammates to pull better
arms, leading to PLASTIC–Model outperforming NoComm. Overall, the results in
these scenarios tell a similar story, specifically that reasoning about communication
helps an ad hoc agent effectively cooperate with various teammates, even when its
models of these teammates are incomplete or incorrect.

7.1.5 Unknown Arms

While the previous sections investigated how an ad hoc agent can cooperate with a
variety of teammates, the ad hoc agents were provided with prior knowledge about
the underlying distributions of the arms. This section investigates a scenario in which
the ad hoc agent is also uncertain about the true payoffs of the arms and must
simultaneously learn about the world and its teammates, as discussed in Sect. 6.5.
We still assume that the ad hoc agent observes the payoffs of its teammates’ actions,
for example by listening to their messages. These tests evaluate the hypothesis that

http://dx.doi.org/10.1007/978-3-319-18069-4_6
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Fig. 7.3 Normalized rewards when dealing with unknown arms and varying numbers of teammates
a Mix of ε-greedy and UCB teammates. b Externally-created teammates

PLASTIC–Model can effectively cooperatewith its teamusing communicationwhile
learning about both its teammates and its environment.

Figure7.3 shows the results for this scenario. When using PLASTIC–Model, the
ad hoc agent samples its initial beliefs of the underlying world state by randomly
selecting the payoff value of each arm. In the NoComm and Obs settings, the ad hoc
agent chooses arms ε-greedily, with ε = 0.1, because it does not know the true best
arm. To encouragemore sharing, the basemessage cost is set tom = 0.04. The results
show that when the ad hoc agent is unsure of the arms’ payoffs, PLASTIC–Model
enables it to learn about its environment while using communication intelligently to
cooperate with unknown teammates.

7.1.6 Summary

This section presented several evaluations of PLASTIC–Model in the bandit domain
that test PLASTIC–Model’s ability to use communication to cooperate with its team-
mates. These results show that PLASTIC–Model is capable of reasoning both about
what actions to take and what messages to send to its teammates. The first tests
demonstrate that PLASTIC–Model can cooperate with a set of hand-coded team-
mates while selecting from a set of parameterized hand-coded teammate behaviors.
In addition, PLASTIC–Model can successfully cooperate with externally-created
teammates, for which it has no theoretical guarantees and only imperfect models.
Finally, PLASTIC–Model can balance learning about the domain and its teammates
at the same timewhen the payoff distributions of the arms are unknown. These results
show that PLASTIC–Model can effectively use limited communication to cooperate
with unknown teammates.
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7.2 Pursuit

The previous section focused on analyzing PLASTIC in a simple domain, specifically
themulti-armed bandit domain. If we are interested in applying PLASTIC to realistic
scenarios, it is important to see how well it scales. Therefore, this section looks at
PLASTIC’s performance on a more complex domain in the form of the pursuit
domain introduced in Sect. 3.2.2. As in the bandit domain, we use PLASTIC–Model
in the pursuit domain.

7.2.1 Methods

To employ PLASTIC–Model, we model the pursuit domain as an MDP. States in the
MDP are the current positions of all agents, and the actions are to move in one of the
four cardinal directions or stay still. The transition function is deterministic except
for collisions, which are handled based on a random priority assigned each time step.
The reward function returns 1.0 when the prey is captured and 0 otherwise.

In Sects. 7.2.6 and 7.2.7, PLASTIC–Model learns models of its teammates, as
discussed in Sect. 5.2.3. Learning allows the agent to gain a good set of diversemodels
over its lifespan, allowing better performance with arbitrary new teammates. The ad
hoc agent builds models of past teammates’ behaviors offline and then selects from
these learned models online while cooperating with new teammates. It is expected
that the past teammates are representative of the distribution of future teammates,
though the future teammates have not yet been seen.

PLASTIC–Model treats building teammate models as a supervised learning prob-
lem,where the goal is to predict the teammates’ actions using the features in Table7.2
with all positions being relative to the modeled teammate. The model predicts the
next action of each teammate; when combinedwith amodel of the domain, the ad hoc
agent can plan far into the future. With its observations of past teammates, the ad hoc
agent learns a decision tree, implemented in theWeka toolbox [7]. Several other clas-
sifiers were tried including SVMs, naive Bayes, decision lists, and nearest neighbor
approaches as well as boosted versions of these classifiers. However, decision trees
outperformed these methods in initial tests in a combination of prediction accuracy
and training time. All model learning is performed offline, reflecting past experience
in the domain, but the ad hoc agent updates its belief over the models online.

The features in Table7.2 are mostly the relative locations of other agents in the
domain. The features also include whether the predator is currently neighboring the
prey and whether each of the four cells around the prey are occupied by predators,
which gives information about which direction the predator may move to fill the
empty spots. Also, we include which of the four numbers the predator is assigned in
case agents on a team are specialized based on their number. Finally, the previous
two actions give a succinct, but imperfect summary of the predator’s intentions; we
expect that predators are likely to continue in their current direction, but the learning
algorithm figures out how this history predicts the next action.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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Table 7.2 Features for predicting a teammate’s actions

Description Num. Features Values

Predator number 1 {0, 1, 2, 3}
Prey x position 1 {−10, . . . , 10}
Prey y position 1 {−10, . . . , 10}
Predatori x position 3 {−10, . . . , 10}
Predatori y position 3 {−10, . . . , 10}
Neighboring prey 1 {true,false}

Cell neighboring prey is
occupied

4 {true,false}

Previous two actions 2 {←,→,↑,↓, •}
Positions are relative to the teammate

To capture the notion that the ad hoc agent is expected to have extensive prior
general domain expertise (as is assumed in the ad hoc teamwork setting), though
not with the specific teammates at hand, PLASTIC–Model observes a number of
past teammates. Specifically, it watches teams of four predators for 50,000 steps for
each past teammate type, and builds a separate model for each type of teammate.
Preliminary tests show that less data can still be effective, but the focus of this research
is about minimizing observations of the current teammates, not the previous ones.
We treat the observations of previous teammates as experience prior to deploying
the ad hoc agent. If some observations of the current teammates are available, we
can improve our results using transfer learning in the form of TwoStageTransfer as
discussed in Sect. 7.2.7.

7.2.2 Evaluation Setup

We evaluate how PLASTIC–Model compares to the baseline of directly copying the
teammates’ behaviors. Copying the teammates’ behaviors tests how the team would
perform if it had another teammate that matched the team rather than the ad hoc
team agent. We use the following performance metric: given 500 steps, how many
times can the predators capture the prey. Whenever the prey is caught, it is randomly
relocated and the predators try to capture the prey again. Results are averaged over
1,000 trials, and statistical significance is tested using a Wilcoxon signed-rank test
with p < 0.01.

7.2.3 Cooperating with Known Teammates

Before analyzingwhether PLASTIC–Model is effective at cooperatingwith unknown
teammates, it is first informative to test whether it can cooperate with known team-
mates on a known task. Specifically, we test its performance with the hand-coded
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teammates presented in Sect. 3.2.2.1. PLASTIC–Model is given the prior knowl-
edge in the form of the correct hand-coded policy of its teammates behaviors for
HandCodedKnowledge. Although the ad hoc team agent has a full model of its
teammates, this scenario is still an ad hoc teamwork setting because there is no
opportunity for the team to coordinate prior to starting the task: the agent must
determine its strategy online. We hypothesize that PLASTIC–Model will effectively
plan to deal with its known teammates and outperform matching their suboptimal
behaviors.

When both the teammates and the task are known, finding the optimal behavior
with PLASTIC–Model simplifies to a planning algorithm.As presented in Sect. 3.1.2,
Value Iteration (VI) is a planning algorithm that is guaranteed to compute the optimal
behavior for the ad hoc agent, but it is computationally intensive to calculate. In order
to scale to larger problems, it is desirable to use more efficient, approximate methods
such as Upper Confidence bounds for Trees (UCT), which is discussed in Sect. 3.1.3.
Ideally, the approximate solutions will not lose too much compared to the optimal
solutions. Therefore, we look at the performance of these two different planning
algorithms for PLASTIC–Model, as well as the baseline of matching the teammates’
behaviors.

Results for three sizes of worlds are given in Fig. 7.4. These results show that the
ad hoc agent can do much better than just copying the behavior of its teammates by
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Fig. 7.4 Results with known hand-coded teammates. a 5 × 5 world. b 10 × 10 world. c 20 × 20
world
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using PLASTIC–Model. In the 5× 5 world, following the optimal behavior found
by VI captures the prey an average of 92.82 and 81.04 times respectively when
cooperating with Greedy and Teammate-aware teammates as opposed to 67.77 and
63.88 times when mimicking their behavior. The improvements of planning over
mimicking the teammates increase as theworlds get larger, althoughVI does not scale
well enough computationally to calculate the optimal behavior for these worlds. For
example, on the 20× 20world, using PLASTIC–ModelwithUCTallows the agent to
capture the prey on average 15.07 times per 500 steps when cooperating with Greedy
Probabilistic teammates compared to 6.12 times when mimicking the teammates’
behavior. Similarly, the agent using PLASTIC–Model captures the prey 14.47 times
rather than 2.60 times when paired with Probabilistic Destinations teammates. All
differences are statistically significant.

However, using the approximate planning of UCT in PLASTIC–Model is not
much of a compromise, since it performs nearly as well as VI despite using much
less computation time. In the 5× 5world, the agent captures the prey 91.68 and 80.45
timeswithGreedy andTeammate-aware agentswhen planningwithUCT, as opposed
to 92.82 and 81.043 times with VI. The difference in performance could be lowered
by using more playouts in the UCT at the cost of more computation time. Given the
close approximation to optimal that UCT provides, the most important difference
between the methods is the time it takes to plan. On the 5× 5 world, an entire UCT
episode takes less than 10 s compared to VI’s 12 h computation (although VI only
needs to run once, rather than for each episode). Furthermore, UCT is an anytime
algorithm, so it can be used to handle variable time constraints and can modify its
plan online as the models change. Given the good performance of UCT as well as its
computational efficiency, we use it as the planning algorithm for PLASTIC–Model
for the remainder of this section.

In summary, these tests show that PLASTIC–Model is effective for cooperating
with known teammates. In addition, they show that using UCT as the planning algo-
rithm for PLASTIC–Model leads to good performance of the team while remaining
computationally efficient.

7.2.4 Cooperating with Teammates Drawn from a Known Set

While Sect. 7.2.3 considers the case in which the ad hoc agent knows the behaviors of
its teammates, the ad hoc agent may not always be this well informed. Instead, ad hoc
agents will need to adapt to new teammates on the fly. Therefore, we now expand the
problem, considering the case inwhich the ad hoc agentmay encounter any of the four
hand-coded predators as teammates, but it does not know which behavior its current
teammates are using. The ad hoc agent does know that these teammates are drawn
from the set of hand-coded predators. In other words, PLASTIC–Model receives all
four hand-coded behaviors as HandCodedKnowledge and needs to determine which
one best represents its teammates online. This setting is closer to the general ad
hoc teamwork scenario, because it shows how well an ad hoc agent can do if it only
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knows that its teammates are drawn from a larger set A of possible teammates. These
evaluations test whether PLASTIC–Model can determine which type of teammates it
encounters and adapt to them.Wehypothesize that PLASTIC–Modelwill outperform
matching their behaviors and perform only marginally worse than when PLASTIC–
Model knows their behaviors before interacting with them. In Sects. 7.2.5–7.2.7, we
explore a setting with a much larger set of possible teammates.

If it has a set of possible models for its teammates, ideally PLASTIC–Model
should be able to determine which model is correct and plan with that model
appropriately. In this setting, PLASTIC–Model uses the polynomial weights method
described in Sect. 5.2.1 to maintain its beliefs over the teammates’ types. PLASTIC–
Model is given a uniform prior over the teammate types for BehaviorPrior, but
PLASTIC–Model knows that the teammates are homogeneous; i.e. there were no
teams with some agents following the Greedy behavior and others following the
Teammate-aware behavior. The results for this scenario are displayed in Fig. 7.5.
Differentiating the deterministic teammate behaviors is straightforward because as
soon as they take one action that is not expected by the deterministic behavior, the
incorrect model can be removed. However, the stochastic teammate behaviors are
more difficult to differentiate, as there is significant overlap in the actions that are
possible for them to take.
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Fig. 7.5 Results with unknown hand-coded teammates. a 5× 5 world. b 10× 10 world. c 20× 20
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We compare PLASTIC–Model being given the four hand-coded teammate behav-
iors as HandCodedKnowledgeto a version of PLASTIC–Model that is given only the
correct model of its teammates as HandCodedKnowledge. We keep the baseline of
trying to fit into the teammates’ pre-designed team, denoted Match. The results are
shown in Fig. 7.5. PLASTIC–Model is statistically significantly better than Match in
all scenarios. In the 5× 5 world, PLASTIC–Model(All) is statistically significantly
worse that PLASTIC–Model(True) for GR, GP, and PD teammates. In the 10× 10
world, PLASTIC–Model(True) is significantly better than PLASTIC–Model(All)
only for GR teammates, and in the 20× 20 world, PLASTIC–Model(True) is sig-
nificantly better than PLASTIC–Model(All) for the GR and PD teammates. These
results show that PLASTIC–Model is able to quickly determine the behaviors of its
teammates, losing only a small amount compared to when it knows the correct team-
mate behavior ahead of time. In summary, these results show that PLASTIC–Model
can learn to cooperate with a number of unknown teammates given prior hand-coded
models of its potential teammates’ behaviors for HandCodedKnowledge.

7.2.5 Unmodeled Teammates

To this point, PLASTIC–Model has alwayshad thebenefit of having the correctmodel
of its teammates in HandCodedKnowledge, even when HandCodedKnowledge
includes incorrect models. However, PLASTIC–Model may not always be this
fortunate. Therefore, we now consider the case where there are agents in A for
which PLASTIC–Model does not have a correct model in HandCodedKnowledge.
We again give PLASTIC–Model the four hand-coded teammate behaviors as
HandCodedKnowledge, but the ad hoc agent encounters teammates not drawn from
this set. To make sure we have not biased the creation of these agents, and that
they truly are unknown, we used the externally-created teammates described in
Sect. 3.2.2.2 as StudentBroad. Note that all the agents on each team used here are
produced by the same student: we did not mix and match agents from different stu-
dents. However, on some of the students’ teams, not all of the agents use the same
behavior. For this and all following tests, we focus on the 20× 20 world because it is
more complex and interesting than the small worlds.We hypothesize that PLASTIC–
Model will be able to determine which models best fit its teammates and use them to
plan to effectively cooperate with its teammates. Our expectation is that PLASTIC–
Model will outperform matching their behaviors and be outperformed by planning
when their true behavior is known.

As explained in depth in Sect. 5.2, PLASTIC–Model maintains the probabilities
of the four known models and samples from this distribution while planning. While
these models are not correct, PLASTIC–Model tries to determine which of these
behaviors best matches how its current teammates are behaving.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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We compare 3 possible strategies for the ad hoc agent:

1. Match—match the teammates’ behaviors
2. PLASTIC–Model(True)—use PLASTIC–Model with the HandCodedKnow-

ledge initialized to the current teammates’ true behavior
3. PLASTIC–Model(HC)—use PLASTIC–Model with the 4 hand-coded models

provided as HandCodedKnowledge

Strategies 1 and 2 require the ad hoc agent to know the true behavior of its cur-
rent teammates, which is not always possible. These two strategies therefore serve
as baselines to compare strategy 3, which represents the true ad hoc scenario of
encountering previously unseen teammates. The results in Fig. 7.6 show that the ad
hoc agents do quite well despite the incorrect models. All differences are statisti-
cally significant. For example, the PLASTIC–Model agent captures the prey 13.36
times per 500 steps rather than 9.97 times if it matched its teammate’s behaviors. This
result is surprising because one would assume that planning using an incorrect model
would perform worse than playing the behavior of the student’s agent that the ad hoc
agent replaced. While there is some loss compared to if the ad hoc agent knew the
true behavior of its teammates, these 4 hand-coded models are representative enough
of these externally-created teammate to achieve good results.

This experiment shows that it is possible for an agent to cooperate with unknown
teammates by using a set of known, representative models. In summary, these results
demonstrate that PLASTIC–Model can cooperate with a variety of previously unseen
teammates given a set of good hand-coded models as HandCodedKnowledge.
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7.2.6 Learning About Teammates

In this section, we explore the scenario where the ad hoc agent has previously
observed a number of past teammates. These past teammates are expected to be
similar to the current teammates. Ideally, the ad hoc agent should be able to use the
observations of its past teammates to better cooperate with its current teammates.
To this end, this section evaluates how well PLASTIC–Model learns models of past
teammates and then selects between these models. Specifically, PLASTIC–Model
observes each past teammate for a total of 50,000 steps. Then, PLASTIC–Model
learns a decision tree to represent the behavior of each past teammate, as discussed in
Sect. 5.2.3. This section tests the hypothesis that PLASTIC–Model can learn models
of past teammates and reuse these learned models to cooperate with new teammates.
The results show that this approach only marginally loses compared to knowing the
teammates’ true behaviors and outperforms matching their behaviors.

The teammates used in this section are those from StudentBroad, described in
Sect. 3.2.2.2. These teammates are externally-created, being designed by students
for a class assignment. We consider 5 behaviors for the ad hoc agent:

1. Match—match the teammates’ behaviors
2. PLASTIC–Model(True)—use PLASTIC–Model with the HandCodedKnowl-

edge initialized to the current teammates’ true behavior
3. PLASTIC–Model(CorrectLearned)—use PLASTIC–Model with PriorTeam-

mates being only the current teammates
4. PLASTIC–Model(SetIncluding)—use PLASTIC–Model with PriorTeammates

including all 29 possible teammates from StudentBroad, including the current ones
5. PLASTIC–Model(SetExcluding)—usePLASTIC–ModelwithPriorTeammates

including 28 possible teammates from StudentBroad, excluding the current ones

Once again, strategies 1 and 2 serve as baselines and require knowledge of the current
teammates true behaviors. PLASTIC–Model(CorrectLearned) evaluates the perfor-
mance of the learning algorithm, where PLASTIC–Model knows which teammates
the agent is cooperatingwith anduses its past observations of these teammates to learn
a model of them. PLASTIC–Model(SetIncluding) evaluates the more general ad hoc
teamwork scenario where the current type of teammate is unknown, but the current
teammates have been previously observed. Finally, PLASTIC–Model(SetExcluding)
shows the true ad hoc teamwork scenario, when the ad hoc agent has never seen the
current teammates, but uses PLASTIC–Model to reuse knowledge it has learned
from previous teammates.

Figure7.7 shows the performance of these five approaches; all differences are sta-
tistically significant. PLASTIC–Model(True) shows an unattainable level of perfor-
mance as it requires perfect knowledge of the current teammates. However, learning
a model by observing the current teammates does not lose too much performance, as
shownby the PLASTIC–Model(CorrectLearned) line. Furthermore, having observed
many teammates and needing to select from these past teammates does not generate
too much loss either, as shown by the PLASTIC–Model(SetIncluding) line. Finally,

http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_3


7.2 Pursuit 111

Student Broad

Teammate Type

0

2

4

6

8

10

12

14

16
T

im
es

 P
re

y 
C

ap
tu

re
d

PLASTIC-Model(True)

PLASTIC-Model(CorrectLearned)

PLASTIC-Model(SetIncluding)

PLASTIC-Model(SetExcluding)

Match

Fig. 7.7 Results with PLASTIC–Model learning models of previously observed teammates when
encountering teams from StudentBroad on a 20× 20 world

PLASTIC–Model(SetExcluding) shows the performance of PLASTIC–Model when
encountering a previously unseen teammate. Its performance shows that the mod-
els learned from previous teammates can do a good job of capturing the behav-
ior of new teammates. This problem is the true ad hoc teamwork problem, when
the ad hoc agent encounters teammates for which it has no prior knowledge. The
gap between PLASTIC–Model(SetExcluding) and PLASTIC–Model(SetIncluding)
shows that there is still room to improve for new teammates.

It is possible that the agents created by the class are biased to be similar, so all
agents from StudentBroad may share some characteristics. Therefore, we would also
like to test how these learned models allow PLASTIC–Model to cooperate with
teammates drawn from another set. In this scenario, we never learn models on the
StudentSelected teammates. Instead, we evaluate howwell PLASTIC–Model performs
when it is given StudentBroad for PriorTeammates, but then encounters teammates
from StudentSelected. Specifically, PLASTIC–Model learns 29 models, one for each
teammate behavior in StudentBroad, but then encounters a 30th teammate, drawn from
StudentSelected.

Figure7.8 gives the results of these tests, with all differences being statistically
significant. Once again, PLASTIC–Model(True) shows the upper bound on per-
formance, when PLASTIC–Model is given information about the true behavior of
the teammates, which is not accessible in most scenarios. However, PLASTIC–
Model(SetExcluding) performs quite well, showing that the learned models are gen-
erally useful. This approach still far outperformsmatching the teammates’ behaviors,
despite the inaccuracies of themodels. For visual comparison, videos of ad hoc agents
using PLASTIC–Model to adapt to its teammates and videos of ad hoc agents using
other strategies can be found online.1

In summary, these results demonstrate that PLASTIC–Model can effectively learn
models of past teammates and use these models to quickly adapt to unknown team-

1http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit.

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_Pursuit
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Fig. 7.8 Results with PLASTIC–Model learning models of previously observed teammates when
encountering teams from StudentSelected on a 20× 20 world

mates. Furthermore, the results show that PLASTIC–Model is effective even when
the new teammates are drawn from a substantially different set than its previous
teammates.

7.2.7 Learning About New Teammates

The previous section assumes that PLASTIC–Model has observed previous team-
mates, but not the current teammates. If instead, PLASTIC–Model observes the cur-
rent teammates for a small number of steps, it can try to use this information to learn
a new model about these teammates. However, given that the learning is about the
current teammates, we care about the speed of learning. Therefore, PLASTIC–Model
combines this information with that coming from previously observed teammates to
learn a better model. Specifically, this setting permits PLASTIC–Model to use trans-
fer learning to learn a bettermodel of its current teammates. These evaluations test the
hypothesis that using TwoStageTransfer allows PLASTIC–Model to narrow the gap
between PLASTIC–Model(SetExcluding) and PLASTIC–Model(CorrectLearned)
seen in the previous section.

In our tests, we assume that the ad hoc agent has previously observed 50,000
training steps of each of the past 28 teammates from StudentBroad. In addition, it
has seen 100 training steps of the current teammates. Note that this is significantly
less than the testing time of 500 steps, but once testing begins, PLASTIC–Model
is not learning online other than adapting its belief distribution over the possible
models. PLASTIC–Model could also improve its models, but we focus on evalu-
ating the transfer learning algorithms with a fixed amount of observations of the
current teammates. Both the past and current teammates in this test are taken from
StudentBroad.
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To perform transfer learning, PLASTIC–Model uses the TwoStageTransfer algo-
rithm introduced in Sect. 5.2.4. TwoStageTransfer allows the PLASTIC–Model to
learn from a number of different past teammates (source data sets) combined with a
few observations of the current teammates (the target data set). The goal of transfer
learning is to produce a model that performs well on the target data set by using
the source data sets. The advantage of TwoStageTransfer is that it considers that
the data comes from several different types of past teammates, some of which are
more similar to the current teammates than others. Specifically, TwoStageTransfer
attempts to figure out the best weighting of data coming from each past teammate,
where data coming from more similar teammates is given a higher weighting. In our
tests, TwoStageTransfer considers 10 different weightings for each of the 28 past
teammates from StudentBroad. While considering every possible weighting for each
teammate would result in a total of 1028 weightings to consider. However, TwoStage-
Transfer approximates its search by choosing teammate weightings greedily, instead
considering only 2 × 10 × 28 ≈ 600 possible weightings. This efficiency allows
TwoStageTransfer to be computationally tractable on this problem.

To evaluate the performance of TwoStageTransfer, we compare it to using
TwoStageTrAdaBoost, TrAdaBoost, and TrBagg (discussed in Sect. 3.1.7) in
PLASTIC–Model. All of the transfer learning algorithms use decision trees as their
base learning algorithm. Each algorithmhas some set of parameters that can be tuned,
and their values were chosen in preliminary tests based on their performance and
computational tractability. To make the evaluations as fair as possible, for TwoStage-
Transfer and TwoStageTrAdaBoost, 10 different weightings were used. In TrAd-
aBoost and TwoStageTrAdaBoost, 10 boosting iterations were used. For TrBagg, a
total of 1,000 sets were used for training classifiers, and a Naive Bayes classifier
served as the fallback model.

Figure7.9 shows the results of the four transfer learning algorithms used as sub-
routines of PLASTIC–Model, with all differences being statistically significant. In
PLASTIC–Model, all learning of the models is performed offline with only model
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Fig. 7.9 Comparing different transfer learning algorithms in PLASTIC–Model to improve results
with ad hoc agents that have limited observations of their current teammates. Tests are in a 20× 20
world with StudentBroad teammates

http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_3
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selection happening online during the evaluation. One baseline for comparison is if
PLASTIC–Model ignores the previously observed teammates and learns a newmodel
from just the observed 100 steps of the current teammates, shown as PLASTIC–
Model(CorrectLearned100). As an upper baseline, we compare to the unattainable
performance of using a version of PLASTIC–Model that observes 50,000 steps of
the current teammate, shown as PLASTIC–Model(CorrectLearned50,000),which rep-
resents the best performance attainable using models learned given large amounts
of data.

In these results, TwoStageTransfer statistically significantly outperforms the
other transfer learning algorithms. In addition, combining the models learned
with TwoStageTransfer with the models learned from representative teammates in
the PLASTIC–Model(TwoStageTransfer + SetExcluding) setting helps, reaching
results that are statistically significantly better thanPLASTIC–Model(SetExcluding).
TrBagg performed poorly in this setting, mis-transferring information, possibly due
to the fallback model used or the balance of target and source data. Several values
of these parameters were tested, but performance remained similar.

In addition, it is important to see how much target data TwoStageTransfer needs
to perform well. Therefore, we vary the order of magnitude of target data and run
PLASTIC–Model(TwoStageTransferi ) where i is the amount of target data provided.
Figure7.10 shows results with varying amounts of target data, but constant amounts
of source data. The difference between the results with 1,000 steps of target data and
100 is statistically significant, but the differences between 10,000 and 1,000 or 100
and 10 are not. The results show that the performance of TwoStageTransfer does
improve with more target data, but the improvement is not smooth. These results
show that as few observations as 10 steps of the current teammates are sufficient
for TwoStageTransfer to perform produce useful models in this scenario. We used
100 steps in Fig. 7.9 to give other transfer learning methods enough data to per-
form adequately, though the results show that TwoStageTransfer still significantly
outperforms them.
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Fig. 7.10 Evaluating PLASTIC–Model using TwoStageTransfer with varying amounts of target
data. Tests are in a 20× 20 world with StudentBroad teammates
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In summary, TwoStageTransfer is effective for learningmodels of new teammates
using only a small amount of observations of these teammate combined with many
observations of past teammates. Using TwoStageTransfer with PLASTIC–Model
allows an ad hoc agent to cooperate with a variety of unknown teammates, outper-
forming only reusing previously learned models.

7.2.8 Summary

This section showed that PLASTIC–Model enables ad hoc team agents to cooperate
with a variety of hand-coded and externally-created teammates in the pursuit domain.
PLASTIC–Model gets good results when given a set of hand-coded behaviors as
HandCodedKnowledge or when it has experienced a number of previous teammates
as PriorTeammates. PLASTIC–Model performs well even when it has never seen
the current teammates before. Furthermore, TwoStageTransfer is effective for cre-
ating improved models for PLASTIC–Model to plan with, outperforming existing
transfer learning algorithms. This result is due to TwoStageTransfer’s exploitation
of the knowledge that some past teammates are more similar to the current team-
mates than others andweighting data coming from these past teammates accordingly.
PLASTIC–Model allows for effective ad hoc teams in the pursuit domain.

7.3 Half Field Offense

The previous section showed that PLASTIC allows ad hoc agents to cooperate with
a variety of teammates in the pursuit domain. However, while the pursuit domain
requires a number of agents to cooperate, it is still simple compared to many realistic
scenarios. Therefore, this section looks into scaling PLASTIC to a more complex
domain, namely that of half field offense (HFO), described in Sect. 3.2.3. All past
research on HFO has focused on creating full teams that are pre-coordinated, but
this section shows that PLASTIC can handle unknown teammates without prior
coordination. Given the complexity of HFO, planning using UCT requires many
samples and runs into issues with imperfect modeling of the environment. Therefore,
we evaluate PLASTIC–Policy in HFO. PLASTIC–Policy is more effective because it
avoids the complexity of modeling the domain and teammates. Instead, PLASTIC–
Policy directly learns policies for cooperating with previous teammates and then
selects between these policies online for the current teammates. PLASTIC–Policy is
described in depth in Sect. 5.3.

7.3.1 Grounding the Model

Before we discuss how to learn or act in HFO, it is important to understand how we
model the problem. Therefore, this section describes howwemodel the HFO domain
as an MDP.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
http://dx.doi.org/10.1007/978-3-319-18069-4_5
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7.3.1.1 State

A state s ∈ S describes the current positions, orientations, and velocities of the agents
as well as the position and velocity of the ball. In this book, we use the noiseless
versions of these values to permit for simpler learning.

7.3.1.2 Actions

In the 2D simulation league, agents act by selecting whether to dash, turn, or kick
and specify values such as the power and angle to kick at. Combining these actions
to accomplish the desired results is a difficult problem. Therefore, this book builds
on the code release by Helios [8]. This code release provides a number of high level
actions, such as passing, shooting, or moving to a specified point.

We use 6 high level actions when the agent has the ball:

1. Shoot—shoot the ball at the goal, avoiding any opponents
2. Short dribble—dribble the ball while maintaining control
3. Long dribble—kick ball and chase it
4. Pass0—pass to teammate 0
5. Pass1—pass to teammate 1
6. Pass2—pass to teammate 2

Each action considers a number of possible movements of the ball and evaluates
their effectiveness given the locations of the agent’s opponents and teammates. Each
action therefore represents a number of possible actions that are reduced to discrete
actions using the agent2d evaluation function. While using these high level actions
restricts the possibilities that the agent can take, it also enables the agent to learn
more quickly and prune out ineffective actions, allowing it to select more intelligent
actions with fewer samples.

Additionally, the agent can select how it moves when it is away from the ball. As
the agent can take a continuous turn action or a continuous dash action every time
step, it is helpful to again use a set of high level actions, in this case 7:

1. Stay in the current position
2. Move towards the ball
3. Move towards the opposing goal
4. Move towards the nearest teammate
5. Move away from the nearest teammate
6. Move towards the nearest opponent
7. Move away from the nearest opponent

These actions provide the agent a number of possible actions that adapt to its changing
environment, while constraining the number of possible actions.



7.3 Half Field Offense 117

7.3.1.3 Transition Function

The transition function is defined by a combination of the simulated physics of
the domain as well as the actions selected by the other agents. The agent does not
directly model this function; instead, it stores samples observed from played games
as described in Sect. 7.3.2.

7.3.1.4 Reward Function

The reward function is 1,000 when the offense wins,−1,000 when the defense wins,
and −1 per each time step taken in the episode. The value of 1,000 is chosen to be
greater than the effects of step rewards over the whole episode, but not so great as to
completely outweigh these effects. Other values were tested with similar results.

7.3.2 Methods

PLASTIC–Policy learns policies for cooperating with each previously encountered
team. In this book, we use Fitted Q Iteration (FQI), introduced by Ernst et al. [9]. We
treat an action as going fromwhen an agent has possession of the ball until the action
ends, another agent holds the ball, or the episode has ended. Given that we only
control a single agent, the teammates follow their own policies. The agent collects
data about its actions and those of its teammates’ in the form 〈s, a, r, s′〉 where the a
is our agent’s actions. The agent does not directly store the actions of its teammates,
instead storing the resulting world states, which include the effects of its teammates’
actions. If we controlled all of the agents, we would also consider the action from the
teammates’ perspectives. The agent observes 100,000 episodes of HFO with each
type of teammate. These episodes contain the agent’s actions when the agent has the
ball as well as when it is away from the ball.

There are many ways to represent the state of a game of half field offense. Ideally,
we want a compact representation that allows the agent to learn quickly by gener-
alizing its knowledge about a state to similar states without over-constraining the
policy. Therefore, we select 20 features given that there are 3 teammates:

• X position—the agent’s x position on the field
• Y position—the agent’s y position on the field
• Orientation—the direction that the agent is facing
• Goal opening angle—the size of the largest open angle of the agent to the goal,
shown as θg in Fig. 7.11

• Teammate i’s goal opening angle—the teammate’s goal opening angle
• Distance to opponent—distance to the closest opponent
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Fig. 7.11 Open angle from
ball to the goal avoiding the
blue goalie and the open
angle from the ball to the
yellow teammate

• Distance from teammate i to opponent—the distance from the teammate to the
closest opponent

• Pass opening angle i—the open angle available to pass to the teammate, shown
as θp in Fig. 7.11

7.3.3 Evaluation Setup

Results are averaged over 1,000 trials, each consisting of a series of games of half
field offense. In each trial, the agent is placed on a team randomly selected from the
7 teams described in Sect. 3.2.3.1. Performance is measured by the fraction of the
time that the resulting team scores.

In this book, we use two variations on the HFO task: (1) the limited version with
two offensive players attempting to score on two defenders (including the goalie)
and (2) the full version with four attackers attempting to score on five defenders. In
order to run some existing teams used in the RoboCup competition, it is necessary
to field the entire 11 player team for the agents to behave correctly. Therefore, it is
necessary to create the entire team and then constrain the additional players to stay
away from play, only using the agents needed for half field offense. This approach
may alter the behavior of the players used in the HFO, but our initial tests suggested
that the resulting teams still perform well on the task. We choose a fixed set of player
numbers for the teammates, based on which player numbers tended to play offensive
positions in observed play. The defensive players use the behavior created by Helios
in the limited version ofHFO. In the full HFO, the defense uses the agent2d behavior
provided in the code release by Helios [8].

We compare several strategies for selecting from the policies learned by playing
with previously encountered teammates. The performance is bounded above by the
Correct Policy line,where the agent knows its teammate’s behavior type and therefore
which policy to use. The lower bound on performance is given by the Random Policy
line, where the agent randomly selects which policy to use. The Combined Policy
line shows the performance if the agent learns a single policy using the data collected
from all possible teammates, representing what an agent might do if treating this as
a single angle learning problem instead of an ad hoc teamwork problem.

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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We then compare twomore intelligent methods for selecting models, as described
in Sect. 5.3.2. Specifically, our agent must decide which of the 7 policies to follow
as it does not know its new teammate’s behavior type. The Bandit line represents
PLASTIC–Policy that uses an ε-greedy bandit algorithm to select policies. Other
bandit algorithms were tested as were other values of ε, but ε-greedy with ε = 0.1
linearly decreasing to 0 over the length of the trial outperformed these other meth-
ods. The PLASTIC–Policy line shows the performance of our approach, using loss-
bounded Bayesian updates to maintain probabilities over which previously learned
policy to use.We set η = 0.1 for updating the probabilities of themodels in Eq.4.We
model the noise in predicting actions using a normal distribution. This noise affects
the loss function by controlling the probability function P(actions|model). For dif-
ferences in distance predictions, we use σ = 4.0, and, for orientation differences,
we use σ = 40◦.

7.3.4 Limited Half Field Offense

Our first set of results are in the limited version of the HFO game which uses 2
offensive players competing against 2 defenders (including the goalie). Therefore,
the agent only needs to adapt to a single teammate. This limited version of the
problem reduces the number of state features to 8 and the number of actions while
holding the ball to 4, while the number of actions away from the ball stays at 7.
These evaluations test the hypothesis that PLASTIC–Policy can quickly converge to
selecting the best policy, losing only a small amount compared to the correct policy.
In addition, we hypothesize that PLASTIC–Policy will converge much faster than
the bandit-based approach and will also outperform combining the data from all of
the agents to learn a single, combined policy. The results are shown in Fig. 7.12, with
the error bars showing the standard error.

The difference between the Correct Policy and Random Policy lines shows that
selecting the correct policy to use is important for the agent to adapt to its teammates.
The gap between the Correct Policy and Combined Policy shows that knowing the
correct teammate is better that grouping all teammates together. While the Bandit
line does not show much learning in Fig. 7.12, it does continue learning over time.
Its performance converges to scoring 0.418 of the time after approximately 10,000
episodes, though it does score approximately equal to the combined policy (0.382)
after 1,750 episodes. Its slow speed is due to the fact that its observations are noisy
estimates of the policies’ effectiveness and are only received after each game of
HFO. In addition, the scoring fractions of the different strategies are fairly close, so
determining the best one given the amount of noise is difficult.

On the other hand, the PLASTIC–Policy line shows fast improvement, converging
to the performance of the Correct Policy line. This quick adaptation is due to two
factors: (1) the better estimations of which policy fits the teammates and (2) the

http://dx.doi.org/10.1007/978-3-319-18069-4_5
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Fig. 7.12 Scoring frequency
in the limited half field
offense task
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frequency of the updates. The estimations of the probabilities are better as they
measure how each agent moves, rather than only using a noisy estimate of how
the policy performs. The updates are performed after every action rather than after
each episode; so updates are much more frequent. These two factors combine to
result in fast adaptation to new teammates using PLASTIC–Policy. The differences
between the performance of PLASTIC–Policy and Combined Policy and Bandit
are statistically significant using a two population binomial test with p < 0.01 for
all episodes shown in Fig. 7.12. Videos of the performance of PLASTIC–Policy
compared to other strategies can be viewed online.2

To understand the learning of PLASTIC–Policy, it is useful to look at its beliefs,
shown in Fig. 7.13. This graph shows the probability of the correct model of the
current teammates as well as the probability that correct model has the highest prob-
ability (with ties contributing a probability of 1

#tied ). While the probability of the
correct model takes over 15 episodes to reach above 90% probability, the correct
model becomes the maximal model 90% of the time after just 5 episodes. This result
explains why taking the maximal model gives such good performance in PLASTIC–
Policy.Note that choosing themaximalmodel does not create premature convergence
because each action the teammates take allows PLASTIC–Policy to update the prob-
ability of those teammates.

In summary, the results in this section show that PLASTIC–Policy is effective
for cooperating with unknown teammates on a complex domain with continuous
state and continuous actions. PLASTIC–Policy is able to learn policies for cooper-
ating with previous teammates and quickly select from these policies to efficiently
cooperate with new teammates.

2http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO.

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO
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Fig. 7.13 Belief of the
probability of the correct
model (P(m∗|s, a)) and
probability of the correct
model having the highest
probability
(P(p∗ = max pi |s, a))
calculated by
PLASTIC–Policy in the
limited HFO task
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7.3.5 Full Half Field Offense

Our second set of results are in the full HFO game with 4 offensive players versus
5 defenders (including the goalie). In this setting, our agent needs to adapt to its
three teammates to score against the five defenders. This setting tests the hypothesis
that PLASTIC–Policy can learn intelligent policies for cooperating with its three
teammates andquickly select between these policieswhen cooperatingwith unknown
teammates.We expect that PLASTIC–Policywill outperform selecting policies using
abandit-based approachor learning a single policy to cooperatewith all teammates. In
addition, we hypothesize that PLASTIC–Policy will only lose marginally compared
to the gold standard of knowing the best policy before interacting with its teammates.

The results for this setting are shown in Fig. 7.14. As in Sect. 7.3.4, the upper
bound on performance is given by Correct Policy and the lower bound is given by
Random Policy. The Bandit setting learns slowly, reaching a performance of 0.357
after approximately 20,000 episodes. It outperforms the combined policy (0.350)
after 12,000 episodes. Once again, PLASTIC–Policy quickly converges to the cor-
rect policy’s performance, outperforming the Bandit and Combined lines. These
results show that PLASTIC–Policy quickly learns to cooperate with unknown team-
mates. Using a two population binomial test with p < 0.05, PLASTIC–Policy’s
performance is stastically significantly better than Combined Policy and Bandit from
episode 3 on. For visual comparison, videos of ad hoc agents using PLASTIC–Policy
and other strategies to cooperate with its teammates can be viewed online.3

We again look at PLASTIC–Policy’s beliefs over time in Fig. 7.15. In this figure,
we can see that PLASTIC–Policy takes several episodes to be convinced that the
correct model is the true model of the current teammates because of the noise of the
whole team’s actions. However, greedily selecting the highest probability model’s

3http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO.

http://www.cs.utexas.edu/~larg/index.php/Ad_Hoc_Teamwork:_HFO
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Fig. 7.14 Scoring frequency
in the full half field offense
task

0 5 10 15 20 25

Episode

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Fr
ac

tio
n

S
co

re
d

Correct Policy

PLASTIC-Policy

Combined Policy
Bandit
Random Policy

Fig. 7.15 Belief of the
probability of the correct
model (P(m∗|s, a)) and
probability of the correct
model having the highest
probability
(P(p∗ = max pi |s, a)) by
PLASTIC–Policy in the full
HFO task
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corresponding policy performs well because the correct model is maximal 90% of
the time after just 5 episodes. This result shows that PLASTIC–Policy learns quickly
and can take advantage of its continuing exploration of its teammates despite only
selecting what it believes in the current best policy.

In summary, the results in this section demonstrate that PLASTIC–Policy can scale
to complex domains requiring coordinating withmany teammates, continuous states,
and continuous actions. PLASTIC–Policy can efficiently select good policies for
cooperating with its current teammates from a set of policies learned for cooperating
with past teammates.
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7.3.6 Summary

The results in this section show that PLASTIC–Policy is effective for ad hoc team
agents in the HFO domain. Our tests evaluate PLASTIC–Policy with teams that
competed in the 2013 RoboCup 2D Simulation League and are complex, being
developed over several years. Despite this complexity, PLASTIC–Policy is able to
learn policies about each type of teammate, and the results show that these policies
are specialized to the teammate type. Therefore, PLASTIC–Policy’s approach of
maintaining the probabilities of each teammate type and selecting the best policy
significantly outperforms the other approaches. This section shows that PLASTIC
can scale to complex domains.

7.4 Chapter Summary

This chapter presents the empirical analysis of PLASTIC in the bandit domain,
the pursuit domain, and half field offense in the 2D RoboCup domain. The results
reported here show that both PLASTIC–Model and PLASTIC–Policy enable ad hoc
team agents to cooperate with a variety of teammates. Our tests focus on whether
PLASTIC can cooperate with externally-created teammates, which are not pre-
designed for ad hoc teamwork.

An overview of the experiments can be seen in Table7.1. The results in Sect. 7.1
show that PLASTIC can plan how to effectively communicate with its teammates in
the bandit domain. These results also show that PLASTICcanoperate effectivelywith
parameterized hand-coded models for HandCodedKnowledge. Section7.2 shows
that PLASTIC can learn models of past teammates and use these models to quickly
adapt to new teammates. In addition, the results in Sect. 7.2.7 show that TwoStage-
Transfer significantly outperforms other transfer learning algorithms for learning
models of new teammates because it takes advantage of the fact that some past
teammates are more similar to the current teammates than others. Finally, Sect. 7.3
describes the results in the HFO domain. These results show that PLASTIC can
scale to complex domains, where teams of developers work for years to develop
smart agents. This chapter shows that PLASTIC can reason about communication,
select from a set of parameterized hand-coded models for HandCodedKnowledge,
learn models of its past teammates, use transfer learning to improve the models it
learns, and perform well in complex domains.
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Chapter 8
Discussion and Conclusion

Past research on multiagent teams assumes that the agents share common commu-
nication and coordination protocols, and research on other multiagent systems focus
on the case where the agents’ goals are diametrically opposed and other agents are
treated as opponents. This book instead looks at a multiagent system where agents
are brought together to form a new team without prior coordination. This setting
is known as ad hoc teamwork and addresses the case where agents need to adapt
to teammates that they do not know. We believe that this problem is important for
deploying robots into real world scenarios because they may encounter robots from
other companies or research laboratories thatmay not share a communication or coor-
dination protocol. For agents to act intelligently in this setting, they need to learn
and adapt to their teammates quickly. We believe that this problem is of growing
importance due to the increasing durability, increasing capabilities, and decreasing
cost of intelligent robots.

Specifically, we believe that to enable ad hoc agents to be viable for real world
scenarios, their algorithms must be robust to their teammates’ behaviors, robust to
diverse tasks, and adapt quickly. Therefore, this book presents an algorithm, PLAS-
TIC, that addresses all three of these requirements. PLASTIC reuses knowledge
learned from past teammates and combines this knowledge with any advice pro-
vided by domain experts. This approach allows PLASTIC to quickly adapt to new
teammates on the fly. We show that PLASTIC performs well on three disparate
domains with a variety of teammates and differing amounts of knowledge about its
teammates. In addition, we introduce a transfer learning algorithm, TwoStageTrans-
fer, that improves the speed of adaptation, outperforming existing transfer learning
algorithms. Furthermore, we analyze the ad hoc teamwork problem in the bandit
domain that includes communication and show that it is theoretically tractable as it
takes only polynomial time to calculate an ε-optimal behavior. Finally, we identify
three dimensions that we believe describe ad hoc teamwork problems in an infor-
mative way. We hypothesize that these dimensions will allow researchers to identify
which algorithms to use on new problems. In this book, we use these dimensions to
analyze existing research and identify areas for future research.
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This chapter summarizes the book and identifies avenues for future research. We
begin by summarizing the PLASTIC algorithm and the rest of the book in Sect. 8.1.
Section8.2 presents the contributions of this book. Then, Sect. 8.3 discusses the
applicability of PLASTIC as well as its limitations, and Sect. 8.4 presents direc-
tions for future work that address these limitations. Finally, Sect. 8.5 provides some
concluding remarks.

8.1 Summary

This book introduces the PLASTIC algorithm for cooperating with unknown team-
mates in ad hoc teamwork scenarios. PLASTIC exploits any prior knowledge it has
learned about previous teammates in addition to any expert-provided knowledge to
speed up its adaptation. PLASTIC is described in detail in Chap. 5. Our tests show
that reusing this knowledge allows PLASTIC to quickly adapt to new teammates.
We show that two versions of PLASTIC are effective: PLASTIC–Model, a model-
based approach, and PLASTIC–Policy, a policy-based approach. We discuss which
algorithm is expected to be more effective on new domains in Sect. 8.3. In summary,
PLASTIC–Policy is more effective when the domain or teammates are difficult to
model and plan about, and PLASTIC–Model is preferred in other scenarios due to
being able to plan over a distribution of beliefs about the teammates’ behaviors.

In Chap.7, we empirically test PLASTIC–Model and PLASTIC–Policy on three
very different domains while varying the amount of information that is available
about the current teammates. These domains provide a variety of interesting prob-
lems including communicating with unknown teammates, requiring coordinated
actions, and having continuous state and action spaces. We consider a wide vari-
ety of externally-created teammates that are not designed for ad hoc teamwork.
These results show the effectiveness of PLASTIC; PLASTIC quickly adapts to new
teammates and significantly outperforms existing approaches.

In addition, we analyze the computational complexity of applying PLASTIC–
Model on the bandit domain that includes communication. These theoretical analyses
are presented in Chap. 6, and they show that the bandit domain is computationally
tractable, i.e. ε-optimally solvable in polynomial time.

Furthermore, we introduce a transfer learning algorithm, TwoStageTransfer,
and show that it helps PLASTIC–Model adapt more quickly to new teammates.
TwoStageTransfer allows the agent to transfer knowledge frommany past teammates
while exploiting the idea that some past teammates are more similar to the current
teammates than others. TwoStageTransfer is a general transfer learning algorithm,
and we empirically test it for learning models of new teammates that are used by
PLASTIC–Model on the pursuit domain. These results show that TwoStageTransfer
is computationally efficient and outperforms existing transfer learning algorithms.
The full TwoStageTransfer algorithm is presented in Sect. 5.2.4 and results with it
can be found in Sect. 7.2.7.

http://dx.doi.org/10.1007/978-3-319-18069-4_5
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http://dx.doi.org/10.1007/978-3-319-18069-4_5
http://dx.doi.org/10.1007/978-3-319-18069-4_7
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After describing the general ad hoc teamwork problem and the evaluation frame-
work used to analyze ad hoc team agents in the beginning of Chap. 2, we go on to
introduce three dimensions in Sect. 2.3 that we believe best describe ad hoc team-
work problems. These dimensions describe the ad hoc agent’s knowledge of the
team, its knowledge about the environment, and the how reactive its teammates are
to its actions. We believe that domains with similar values along these dimensions
can be solved by similar algorithms, and we apply these dimensions to analyze the
problems explored in this book in Sect. 3.2. In addition, we use these dimensions to
analyze related ad hoc teamwork research in Sect. 4.4.4. We also discuss other prior
related multiagent research in the rest of Chap.4.

8.2 Contributions

In summary, this book provides the following six major contributions to the field:

1. PLASTIC: This book introduces the PLASTIC algorithm and instantiates it in
a model-based approach called PLASTIC–Model and a policy-based approach
called PLASTIC–Policy. These algorithms are the first algorithms for ad hoc
teamwork that allow ad hoc agents to learn about previous teammates and reuse
this knowledge to cooperate with new, unknown teammates on a variety of
domains. In addition, these algorithms allow domain experts to provide infor-
mation about potential teammates to speed up adaptation.

2. Theoretical Analysis: We provide theoretical analysis of PLASTIC–Model in
the multi-armed bandit domain described in Sect. 3.2.1. This analysis proves
that ε-optimally selecting between a parameterized set of models of teammates’
behaviors and planning reactions to these teammates takes polynomial computa-
tion even when the distributions of the arms are unknown. Note that this analysis
includes communication with known messages, including the case where the ad
hoc agent is uncertain about how its teammates will react to messages.

3. Reasoning about Communication: Past research in ad hoc teamwork focuses
either on the case where there is no communication or the case where there are
completely shared protocols for coordination and communication. However, this
book considers the case where messages’ meanings are known, but the other
agents’ reactions to these messages is unknown. This book proves that reasoning
about this type of communication using PLASTIC–Model is computationally
tractable on the bandit domain described in Sect. 3.2.1. In addition, the book
shows that PLASTIC–Model empirically outperforms other approaches on the
bandit domain, using this communication in an efficient manner.

4. TwoStageTransfer: In this book, we introduce TwoStageTransfer, a new transfer
learning algorithm. TwoStageTransfer improves over existing transfer learning
algorithms because it efficiently transfers information frommany different source
data sets, while using the information of which source set data came from. This
approach allows TwoStageTransfer to consider how similar each source data set

http://dx.doi.org/10.1007/978-3-319-18069-4_2
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http://dx.doi.org/10.1007/978-3-319-18069-4_3
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is to the target data set and transfer information from these sets accordingly.
TwoStageTransfer is a general transfer learning algorithm, and we empirically
test it in the area of ad hoc teamwork. We test whether TwoStageTransfer can
transfer knowledge about previous teammates to quickly build newmodels of the
current teammates.

5. Empirical Evaluation: We empirically test PLASTIC on the three domains pre-
sented in Sect. 3.2, namely the bandit domain, the pursuit domain, and the half
field offense task in the 2D simulated soccer domain. These domains are signifi-
cantly different, showing that PLASTIC can performwell in domains that provide
communication, require coordinated multiagent actions, and have continuous
state and action spaces. We show that PLASTIC outperforms other approaches.
Combining information learned from previous teammates with expert-provided
information allows PLASTIC to quickly adapt to new teammates, using both the
PLASTIC–Model and PLASTIC–Policy versions of the algorithm.

6. Taxonomy of Ad Hoc Teamwork: We present what we believe are the three most
important dimensions for describing ad hoc teamwork problems. We believe that
domains with similar values along these dimensions can be solved using similar
approaches, while domains with very different values may be best solved using
different approaches. This book analyzes where the three domains we use fall
along these dimensions. Furthermore, we analyze the related ad hoc teamwork
research to identify areas for future research,whichwe discuss further in Sect. 8.4.

8.3 Discussion

The empirical evaluations in Chap.7 show that PLASTIC is effective in a vari-
ety domains. However, there are limitations to where it can be effectively applied.
One such limitation is that if there is a complete, shared communication protocol
that allows agents to schedule their tasks and negotiate, PLASTIC is not the best
approach. In these settings, standard multiagent team coordination algorithms (e.g.
STEAM [1] and GPGP [2]) will serve better because they are designed to handle this
scenario. In Sect. 7.1, we show that PLASTIC performs well when there is limited
communication, but with full communication there are more applicable approaches.

PLASTIC–Model is only performs well in situations in which it can effectively
model the domain. In complex domains, errors in the models can lead to issues with
using planning algorithms to calculate the best responding behavior. This issue may
be addressed by using amore robust planning algorithm, but in preliminary tests in the
HFO domain, PLASTIC–Model performed poorly. However, this poor performance
may also be due to the computational costs of PLASTIC–Model. Given that the
implementation of PLASTIC–Model used in this book relies on Upper Confidence
bounds for Trees (UCT) for planning, the computational costs may be high. Run-
ning UCT requires running many forwards simulations, and, if these simulations are
expensive to calculate, it is expensive to run enough simulations to calculate which

http://dx.doi.org/10.1007/978-3-319-18069-4_3
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actions perform best. However, PLASTIC–Policy performs well on these more com-
plex domains.

Another constraint of PLASTIC is that it relies on either knowledge about past
teammates or expert knowledge about potential teammates. Relying on this initial
knowledge also means that PLASTIC may not perform well with teammates that
differ greatly from previous teammates. In this case, the best approach might be to
throw away any knowledge about previous teammates and learn about the problem
using existing learning algorithms such as Q-learning [3], Fitted Q Iteration [4], or
policy search [5]. Albrecht and Ramamoorthy [6] look at the performance of an
algorithm that is similar to PLASTIC and prove constraints about the performance
of their algorithm given errors in their teammate models. We believe that in most
cases, there will be similarities between previous teammates and the current team-
mates, so reusing this information via PLASTIC will be effective. However, there
are scenarios in which this will not be the case, for example if there are two very
different approaches to solving the task and only agents using one approach have
been encountered previously.

Fortunately, we believe that PLASTIC does apply in most scenarios. PLASTIC
allows an ad hoc agent to quickly adapt to new teammates by reusing information
about previous teammates or expert knowledge.We believe that this information will
be available in many scenarios. PLASTIC will perform especially well when there
are a limited number of useful behaviors that teammates may follow. When it has
complete prior knowledge about potential teammates, PLASTIC can calculate the
optimal behavior rather than just trying to fit into the team and copy its teammates’
behaviors.When this prior knowledge is limited but good, PLASTIC can still perform
effectively.

Another important consideration in PLASTIC is whether to use a model-based
approach (PLASTIC–Model) or a policy-based approach (PLASTIC–Policy).
PLASTIC–Model is effective when online planning algorithms like Upper Confi-
dence bounds for Trees (UCT) [7] perform well. Using PLASTIC–Model allows an
agent to calculate the best response to its current beliefs over its teammates behavior.
On the other hand, PLASTIC–Policy only allows the agent to use the most likely
policy because combining a weighted set of policies into a single policy does not
have a clear online solution. It is possible to pre-calculate an effective behavior for
a specific set of beliefs, but it is too expensive to pre-calculate policies for all possi-
ble beliefs. Therefore, we believe that it is desirable to use PLASTIC–Model where
possible.

Applying PLASTIC–Model is not effective when the domain is complex to model
or very noisy. Complex models take a significant amount of computation time, which
limits the effectiveness of online planners such as UCT. Similarly, having noise in
the effects of actions, observations, or teammates’ behaviors leads to more complex-
ity in planning. Online planners need to consider the range of possible outcomes
to determine the best behavior. In addition, imperfect models can lead planners to
calculate behaviors that do not work well in practice. In these scenarios, we expect
PLASTIC–Policy to be more effective because it directly learns policies for coop-
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erating with teammates in the domain and does not rely on building a model of the
world and its teammates. Testing this hypothesis remains an area for future research.

The following section describes ways to extend PLASTIC, ensuring good per-
formance in even more scenarios. These extensions apply to both PLASTIC–Model
and PLASTIC–Policy.

8.4 Future Work

The research in this book leads tomany interesting directions for future research. This
section discusses five of these directions. The first is to investigate ad hoc teamwork
in complex robotic tasks, discussed in Sect. 8.4.1. Analyzing the related ad hoc team
research in Sect. 4.4.4 using the dimensions introduced in Sect. 2.3 leads us to observe
that past ad hoc team research focuses on the case where the domain is known.
Therefore, Sect. 8.4.2 discusses an important area for future research: considering
ad hoc team agents that simultaneously learn about the domain and their teammates.
Section8.4.3 explains how to extend ad hoc teamwork research towards cooperating
with both human and artificial teammates interchangeably. Then, Sect. 8.4.4 explores
approaches to handling ad hoc teamwork with ambiguous communication, where the
language itself must be learned. Finally, we discuss how ad hoc teamwork motivates
more advances in transfer learning in Sect. 8.4.5.

8.4.1 Robotic Tasks

The most immediate area for future work on PLASTIC is trying it on larger, more
complex domains. While half field offense in the simulated 2D RoboCup domain
is complex, it still abstracts away many issues that arise on robots. Dealing with
robots requires dealing with a large amount of noise in both perception and actuation.
Furthermore, the action space of robots is higher than that of the 2D simulated robots.

Given the complexities of these domains, we expect that using a policy-based
approach, such as PLASTIC–Policy, will work better than a model-based approach.
However, instead of learning policies with algorithms such as fitted Q iteration as
we did in the HFO domain, it may be more effective to use policy search. Research
on robotics has shown that policy search techniques can perform well, scaling to
complex domains [5]. We expect that similar approaches can determine intelligent
policies for interacting with teammates, though the difficulties of these problems
may require high level abstractions such as those used in Sect. 7.3.

Given these policies, it is still complex to select between them. While bandit
approaches can be used to select between policies (as described in Sect. 5.3.2), these
noisy domains will make determining the mean performance of the policies dif-
ficult. Instead, we still recommend using a Bayesian-based approach, such as the
polynomial weights approach described in Sect. 5.3.2. However, building a model
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of the teammates’ behaviors is difficult, so using an approximate, nearest neighbors
algorithm to represent the expected next statesmay bemore effective as in Sect. 7.3.3.

Unfortunately, due to noisiness of actions and perceptions, the probability updates
will also be significantly noisier. This issue will slow the convergence to the best
policy. In order to compensate for this issue, it may be necessary to take actions to
specifically differentiatewhich type of teammate that the ad hoc agent is dealingwith.
This idea corresponds to reasoning about the value of information [8]. For example,
Dearden et al. [9] investigated the value of information for controlling exploration in
reinforcement learning. However, their methods were computationally intensive and
could only be applied to small domains. On the other hand, Ross et al.’s work [10] on
POMDPs provide amore efficient approach to tracking beliefs about the environment
through particle filtering. Reasoning about the value of information should allow the
ad hoc agent to more quickly understand its teammates’ behaviors.

In summary, future research into ad hoc teamwork should include work on scal-
ing ad hoc teamwork to complex robotic domains. We expect that policy-based
approaches, like PLASTIC–Policy, will perform well in these settings, especially
when using policy search algorithms to build effective policies for cooperating with
teammates and reasoning about the value of information to decide which policy to
use with new teammates.

8.4.2 Learning About the Environment

Our analysis of the dimensions of the related ad hoc teamwork research in Sect. 4.4.4
indicates that most research has focused on the case where the ad hoc agent knows
the full dynamics of the domain it is in. This book includes a small exception to that
in the theoretical and empirical analysis in the bandit domain in Sects. 6.5 and 7.1.5.
However, much more research on handling unknown environments is necessary for
ad hoc agents to be ready to handle the changing, unknown environments encountered
in the real world. We expect that models of the environment will not be good enough
to directly plan on, so the ad hoc agent will have to at least perform some learning
to adapt their models or possibly learn new ones.

To simultaneously learn about unknown tasks and unknown teammates, an ad
hoc team agent will need to balance the trade-off between exploiting its current
knowledge, exploring the dynamics of the task, and exploring the behavior of its
teammates. In many ways, this situation is similar to only trying to learn about the
teammates. If the ad hoc team agent knows the task and its teammates, the problem
can be viewed as a Markov Decision Process (MDP).

On the other hand, if the ad hoc agent knows the task, but not its teammates, the
problem can be viewed as a PartiallyObservableMarkovDecision Process (POMDP)
where the unobserved variable is behavior of its teammates. Rather than directly
observing its teammates’ behaviors, the ad hoc agent must reason about these behav-
iors from the actions it observed. In effect, the ad hoc agent is trying to select the
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correct MDP from a set of possible MDPs, where the difference in the MDPs is the
behavior of its teammates.

When the ad hoc team agent also does not know the dynamics of the task, the set
of possible MDPs increases, expanding along another dimension, but the problem
remains fundamentally the same. Therefore, similar methods should allow the ad
hoc agent to simultaneously reason about exploring both the task and its teammates,
but they must be able to scale to larger problems. The addition of another dimension
will greatly increase the number of possible worlds that the ad hoc agent may be
inhabiting. Thus, the biggest challenge of this potential contribution is to create
algorithms that scale to large POMDPs. It is hopeful that work on scaling the ad
hoc team algorithms discussed above to more complex domains will also aid in
progress towards reasoning about a larger space of possible worlds. The theoretical
analysis in Chap.6 showed that some versions of the ad hoc team problem can
be solved in polynomial time, but if the ad hoc agent needs to simultaneously learn
about the domain, the problem becomesmuchmore complex. In general, ε-optimally
solving POMDPs takes exponential time in terms of the number of actions and
observations. However, approximate methods for planning in POMDPs can achieve
good results [11–14].

In addition, there may be ways to limit the complexity of the problem. If the
domain is drawn from a limited set, the ad hoc agent may determine which possible
world it is in using a Bayesian-based method, similar to the one from Sect. 5.3.2 used
to determine with which teammate the ad hoc agent is cooperating. Some research
has looked into how to select whichMDP an agent is in [15], but combining this with
determining the teammates’ behavior simultaneously is an interesting problem that
is necessary for ad hoc team agents to be ready for deployment into the real world.

8.4.3 Human Interactions

In this book, we consider ad hoc team agents that cooperate with a variety of
autonomous agents. However, another type of teammate that agents should be robust
to is humans. Ideally, in the future, robots and other agents will be able to quickly
adapt to human teammates to accomplish shared tasks. Robots should be able to
cooperate with new human teammates as they do with other artificial agents. There
is current research into human-agent interactions such as Peled et al.’s work [16].
Peled et al. use machine learning techniques to determine which social factors affect
the humanplayers’ behaviors and combine these predictionswith a decision-theoretic
approach to negotiate with humans. However, these approaches commonly only con-
sider dealing with humans, rather than also considering other artificial agents. We
would like agents to be able to cooperate with both humans and artificial agents
interchangeably, cooperating with both whenever they are present.

The main additional difficulty of cooperating with humans compared to other
agents is the humans’ relative lack of predictability. Autonomous agents are likely
to select the same actions or choose from the same distribution of actions when the
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repeatedly visit the same state. Humans do not necessarily follow this assumption;
instead, they change their behaviors as the learn, explore, or get bored. In addition,
in many situations it is possible for humans to supply a wider range of behaviors
than those explored in this book. Each human is unique, and therefore may exhibit
a unique behavior.

We expect humans’ unpredictability to mainly be a problem for learning models
of human teammates, as it is difficult to collect many trials of humans following the
same behavior. Instead, it is likely that theywill present a spread of possible behaviors
during the learning process, making any learned models very noisy. Furthermore,
humans are often impatient when dealing with automated systems, which places
higher importance of ad hoc agents adapting quickly to their human teammates. In
summary, there is no fundamental difference in interacting with humans instead of
autonomous agents, but we expect that learning models or policies for cooperation
will be more difficult. In addition, we expect that learning quickly will be even more
important.

In this book, we propose the approach of learning about past teammates and
reusing this information to learn more quickly with new teammates in the from
of PLASTIC. We present two instantiations of PLASTIC: PLASTIC–Model that
learns models of previous teammates and PLASTIC–Policy which learns policies to
cooperate with previous teammates. We expect that this general approach will apply
well to dealing with humans despite the wide range of behaviors that humans can
exhibit. This expectation is supported by research showing that a small number of
behaviors captures the majority of human behaviors in certain tasks [17]. Similarly,
research on bandit problems suggests that only a limited number of strategies are
viable in social settings [18]. Therefore, learning a small number of teammatemodels
and adapting them to new teammates should allow ad hoc agents to cooperate with
a wide variety of humans.

In order to use this approach for cooperating with humans, it is necessary to
identify which models are most representative of the spread of possible behaviors
that humans might exhibit. In this book, we learn a model for each previous type of
teammates and then select from these models when encountering a new teammate.
However, human behaviors will have small differences, so the number of possible
models that fully represent these past human teammates may quickly grow too large
to select from effectively. Therefore, it may be necessary to employ a clustering
approach to discover a small number of behaviors that represent all observed behav-
iors with minimal errors.

One promising approach for solving this problem is that of Mahmud et al. [19].
Mahmud et al. present algorithms to clusterMarkovDecision Processes (MDPs), rep-
resenting these MDPs with a smaller set of MDPs. Their approach relies on looking
at the optimal policies that have been learned for each MDP and looking at the cost
of reusing these policies on the other MDPs. This analysis results in a cost function
that can then be used as an input into a clustering algorithm based on the Metropolis-
Hastings algorithm. This approach could be directly applied to PLASTIC–Policy to
calculate a smaller subset of policies for cooperating with humans. However, their
approach then relies on using a bandit algorithm to update which policy to use in a



134 8 Discussion and Conclusion

new setting, which our results in Sect. 7.3 show is much slower than the Bayesian
approach adopted by PLASTIC–Policy. Therefore, it would be advantageous to build
a rough model of the teammates in the cluster to allow PLASTIC–Policy to use
Bayesian updates to quickly determine which policy is best for cooperating with the
current teammates. How to build this combined model remains an open question.
In addition, other approaches for clustering policies may prove to be more effective
than the one proposed by Mahmud et al. [19]. Alternatively, clustering teammates in
the model space may prove to be more tractable, enabling PLASTIC–Model to scale
well with humans.

Whatever approaches are eventually adopted, it is also important to consider how
to test these approaches. Running large scale human experiments is time consum-
ing. In addition, automatically perceiving human actions at a high level is difficult,
although research in activity recognition is making significant progress (for example,
see Chen and Grauman’s work [20]). Therefore, one place to start is by using human-
controlled agents. Rather than directly interacting with humans, ad hoc agents can
interact with other agents that are being remotely controlled. This approach greatly
reduces the perception problem. In addition, this approach allows large scale tests
to be run in simulation, using online services to find human participants, such as
Amazon Mechanical Turk.1

We suggest using remote-controlled agents over peer designed agents (PDAs) [21]
because using PDAs reduces the unpredictability and adaptations of the agents. We
expect that methods that are similar to PLASTIC will perform well with humans,
but these methods may need to be adapted. Testing this hypothesis remains future
work. Future research should then expand these approaches to real human tests by
handling the greater uncertainty of the humans’ actions.

8.4.4 Learning to Communicate

In Sect. 3.2.1,we describe an ad hoc teamwork scenario that involves communication.
In this scenario, the teammates’ responses to messages may be unknown, but the
meaning of the messages is clear. However, this assumption is not always true; ad
hoc agents should also be able to learn about ambiguous messages. They should be
able to learn new languages and learn the meanings of unknown messages.

Past work has looked at methods for evolving a common language over time. One
early investigation of learning about communication was performed by Levin [22].
Levin demonstrates that a simulated population can converge to a single scheme for
coding and decoding messages. Further work by Kirby explored how artificial life
approaches could be applied to learning languages and themeaning ofmessages [23].
In addition, Rawal et al. [24] look at evolving communication in the pursuit domain.
The authors look at a version of the pursuit domain where predators can send real
valued signals to each other. The results show that without any initial meaning to

1http://www.mturk.com.
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these signals, the predators are able to evolve a messaging code that improves the
performance of the team. Tuci et al. [25] also consider evolving simple communica-
tion for a group of robots equipped with different sensors. These papers show that it
is possible to evolve meaningful languages without providing an initial language to
the agents. Similar methods could allow agents on ad hoc teams to learn a language
to communicate with each other.

Another promising line of work looks at how to interpret ambiguous messages
[26, 27]. In these works, Grizou et al. considers the case where one party knows
the meaning of the messages, and the goal is for the other agent to learn what these
messages mean. In addition, they show that agents can simultaneously determine
what task they should be considering. This type of reasoning would allow ad hoc
agents to learn the languages of their teammates, if these agents already have a
language. Importantly, these approaches could also allow agents to quickly determine
the meaning of any human feedback when interacting with people.

8.4.5 Improvements in Transfer Learning

To reuse information from past teammates when cooperating with new teammates,
ad hoc agents can employ transfer learning algorithms. In this book, we introduce the
TwoStageTransfer algorithm for transferring knowledge from many source data sets
(past teammates) to build models of the target data set (new teammate). However,
we believe that improvements can be made on this approach. TwoStageTransfer is
an improvement over existing transfer learning algorithms in that it considers how
similar each source data set is to the target data and weights data coming from these
sets accordingly. However, in ad hoc teamwork scenarios, these past teammates may
be more similar to the current ones in specific parts of the state space. Therefore, it
would be helpful to also consider the weightings of different parts of the state space
separately, though this does increase the complexity of the problem.

One approach for solving this problem is to adopt an approach similar to
TwoStageTransfer. TwoStageTransfer determines the weighting of each source data
set using cross validation. Unfortunately, when considering the many partitions of
a source data set, calculating a model and then cross validating it may become too
computationally intensive. Therefore, a more computationally efficient approach is
to treat this problem as a hierarchical Bayesian model, where a source data set has
some base similarity distribution to the target data, partitions of this set have sim-
ilarities drawn from the source data’s similarity distribution, and further partitions
draw their similarities from the partitions above. This approach allows for fast and
simple inference of the similarities of different parts of the state space. However,
how to choose these partitions remains an open problem. It is not clear whether this
approach will outperform TwoStageTransfer, given that TwoStageTransfer uses a
more empirical approach of determining the weighting of each source data set using
cross validation, but the approach is promising.
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Another approach to applying transfer learning to ad hoc team problems is to
transfer policies rather than models. In this book, we directly reuse policies using
PLASTIC–Policy, but it is possible to improve on this approach. As above, it is
possible in certain areas of the state space, a past teammate is more similar to the
current teammate than others. Therefore, it may be possible to combine several
different policies to cooperate with a new teammate by using different policies in
different parts of the state space. One promising approach for performing this type
of transfer is to reuse data of the form 〈s, a, r, s′〉 from previous domains [28].
Reusing this information allows the agent to learn a policy more quickly on the
target domain. Another approach to transferring instances from previous domains is
the TIMBREL algorithm introduced by Taylor et al. [29]. TIMBREL transfers saved
instances of the transition and reward function that will be used immediately by the
agent, ignoring states that are for from the current state. Alternatively, recent research
has discovered methods for automatically mapping transfer between tasks [30]. A
promising approach is to extend this approach to consider transferring from different
parts of the state space rather than considering different mappings. How to perform
this transfer is an interesting open problem.

8.4.6 Summary

This section describes five areas of future research that are motivated by this book.
One extension of this work is to apply PLASTIC to complex robotic domains.
Another area for future research is to enable ad hoc agents to efficiently learn about its
environment while cooperating with unknown teammates, which Sect. 4.4.4 identi-
fies as an open problemusing the dimensions introduced in Sect. 2.3. Next, expanding
ad hoc teamwork to cooperating with noisy humans in addition to artificial agents is
an exciting problem. In addition, enabling ad hoc agents to learn about ambiguous
messages and learn new languages will allow them to act effectively in many more
situations. Finally, more advanced transfer learning methods can speed up learning
and improve the behaviors learned for ad hoc team agents cooperating with unknown
teammates.

8.5 Conclusion

This book presents the PLASTIC algorithm, which is the first to allow agents to
quickly adapt to new teammates by reusing knowledge about previous teammates.
PLASTIC fulfills the three desiderata for an ad hoc team agent algorithm: it is robust
to a variety of teammates, it is effective on several different domains, and it allows
fast adaptation to its teammates. Therefore, PLASTIC is applicable to many complex
ad hoc team problems, allowing agents to quickly learn and adapt to their teammates.

http://dx.doi.org/10.1007/978-3-319-18069-4_4
http://dx.doi.org/10.1007/978-3-319-18069-4_2
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We demonstrate the effectiveness of PLASTIC on three domains with a variety of
teammates and prior knowledge. Thus, this book represents an important step towards
intelligently handling ad hoc team problems in the real world.
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Appendix A
Hand-Coded Pursuit Teammates

While Sect. 3.2.2.1 briefly introduces the hand-coded teammates used in the pursuit
domain, it leaves out many of the details of the implementations. This appendix
addresses this gap, giving more information about the hand-coded teammate types.

Tomore accurately describe these hand-coded predators, some additional notation
is helpful. Assume that a predator is at position (x, y) and is trying to move to a
destination (x ′, y′) on a world of size (w, h).

Δx = (x ′ − x)modw Δy = (y′ − y)mod h

dimmin = argmin (Δx ,Δy) dimmax = argmax (Δx ,Δy)

mi = argmin movesΔi

Thus, mi is the move that minimizes the difference to the destination for dimension
i , and mi is the move in the opposite direction. The stochastic agents use the softmax
activation function, which assigns probabilities to a set of values, favoring the higher
values. The temperature, τ , controls the amount of this bias, with values closer to 0
resulting in higher probabilities of the maximum value. If v(i) is the value of option
i , the probability of option a is

p(a) = exp(v(a)/τ )∑n
i=1 exp(v(i)/τ )

To clarify the predators’ behaviors, examples of their action selection on the cases
shown in Fig.A.1 are discussed, looking at the actions taken by the starred agent.
The letters in the figure indicate the destination of the agent after taking one step.
Note that none of the hand-coded predators ever choose to stay still, so that action is
not labeled.

Greedy Predator (GR)

The greedy predator selects the nearest unoccupied cell neighboring the prey, and
tries tomove towards itwhile avoiding immediate obstacles. It follows the succeeding
rules in order.
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Fig. A.1 World configurations that differentiate the teammates’ behaviors. a Configuration 1. b
Configuration 2

• If already neighboring the prey, try to move onto the prey so that if it moves, the
predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as the destination.
• Let d = dimmax. If md is not blocked, take it.
• Let d = dimmin. If md is not blocked, take it.
• Otherwise, move randomly.

For example, using the configurations shown in Fig.A.1 and taking actions as the
starred agent, if the starred agent were a Greedy predator, it chooses the move taking
it to cell C in configuration 1, and B in configuration 2. On average, a team of all
Greedy predators captures a randomly moving prey in 7.74 steps on a 5× 5 world.

Teammate-aware Predator (TA)

The teammate-aware predator considers its teammates’ distances from the preywhen
selecting its destination and uses A* path planning (an optimal heuristic search
algorithm) [1] to avoid other agents, treating them as static obstacles. In contrast
to the greedy predator, a teammate-aware predator that is already neighboring the
prey may move towards another neighboring cell to give its spot to a farther away
teammate. It is implemented as follows.

• Calculate the distance from each predator to each cell neighboring the prey.
• Order the predators based on worst shortest distance to a cell neighboring the prey.
• In order, the predators are assigned the unchosen destination that is closest to
them (without communication), breaking ties by a mutually known ordering of
the predators.

• If the predator is already at the destination, try to move onto the prey so that if it
moves, the predator will follow.

• Otherwise, use A* path planning to select a path, treating other agents as static
obstacles.

For the configurations shown in Fig.A.1, a Teammate-aware predator in the position
of the starred predator chooses the move taking it to cell D in configuration 1, and C
in configuration 2 (note that since the world is a torus, this is a single move). A team
of Teammate-aware predators captures the prey in 7.41 steps on a 5× 5 world.
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Greedy Probabilistic Predator (GP)

The greedy probabilistic predator moves towards the nearest cell neighboring the
prey, but does not always take a direct path there. The predator favors minimizing
dimmax and prefers mdim over mdim.

• If already neighboring the prey, try to move onto the prey so that if it moves, the
predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as the destination.
• Given a destination, choose a dimension, d, tominimize using the softmax function
with temperature 0.5 using the distance as v.

• Choose either md or md using the softmax function with temperature −0.5, using
the distance after the move as v, but penalizing moves that are currently blocked.

On configuration 1 from Fig.A.1, the predator is deterministic, choosing the action
taking it to position C. On configuration 2, it selects a distribution of actions, specif-
ically the moves taking it to cells A, B, C, and D with probabilities 0.000, 0.879,
0.119, and 0.002. On a 5× 5world, a team ofGreedy Probabilistic predators captures
the prey in 12.88 steps.

Probabilistic Destinations Predator (PD)

The probabilistic destinations predator attempts to tighten a circle around the prey.
It favors destinations that are both nearer to the prey and to itself, but may choose
farther destinations to prevent getting stuck on other predators and dealing with a
moving prey.

• If already neighboring the prey, try to move onto the prey so that if it moves, the
predator will follow.

• Select a desired distance from the prey using the softmax functionwith temperature
−1 using the distance as v.

• Select a destination at the chosen distance using the softmax function with tem-
perature −1 weighted by the distance of the destination to the predator’s current
position.

• Let d = dimmax, and select md .
• If the destination or the next position is occupied, repeat.

For the configurations in Fig.A.1, a Probabilistic Destinations predator would select
the move ending in C in configuration 1. On configuration 2, it would select actions
taking it to cells A, B, C, and D with probabilities 0.007, 0.596, 0.388, and 0.009.A
team of predators following the Probabilistic Destinations behavior capture in 9.19
steps on a 5× 5 world.
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