
www.allitebooks.com

http://www.allitebooks.org

MariaDB High Performance

Familiarize yourself with the MariaDB system and
build high-performance applications

Pierre MAVRO

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

MariaDB High Performance

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-160-1

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Pierre MAVRO

Reviewers
David "DaviXX" CHANIAL

P. R. Karthik

Emilien Kenler

Joffrey MICHAÏE

Daniel Parnell

Dimitri Savineau

Commissioning Editor
Kunal Parikh

Acquisition Editor
Subho Gupta

Content Development Editor
Mohammed Fahad

Technical Editors
Dennis John

Sebastian Rodrigues

Copy Editors
Roshni Banerjee

Sarang Chari

Project Coordinator
Danuta Jones

Proofreaders
Maria Gould

Ameesha Green

Paul Hindle

Kevin McGowan

Elinor Perry-Smith

Indexers
Hemangini Bari

Priya Sane

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Production Coordinators
Aparna Bhagat

Manu Joseph

Nitesh Thakur

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Pierre MAVRO lives in Joinville-le-Pont (a suburb of Paris). He's an open source
software lover and has been working with Linux for more than 10 years now.
Today, he works as a Senior DevOps Engineer at Red Hat / eNovance, where he
designs and implements solutions for the Web and personal clouds (OpenStack).
During the last few years, he has been designing high-availability infrastructures
with performance tuning for a high-frequency trading company. He has also built
geoclusters and developed tools to fit high-availability requirements for financial
companies. He has worked on resolving issues on open source software for the
French government. He has also provided training to several IT professionals on
subjects such as Linux and MySQL/MariaDB.

I would really like to thank my wife and daughter, who encouraged
and helped me to find the time to write this book. I would also like
to thank my friend Joffrey and my colleague Dimitri for reviewing
the technical part of the book. A big thanks goes to Packt Publishing
for approaching me to write this book. And to finish, thanks to the
employees of Packt Publishing I worked with (Subho, Neha, and
Mohammed); thanks for showing patience. I would also like to thank
the technical reviewers Daniel Parnell, P. R. Karthik, Emilien Kenler,
and David "DaviXX" CHANIAL, who provided their valuable
support and helped me enhance the quality of the content.

Writing this book was my first experience in editing; it was not
an easy task, and therefore, thanks a lot to all who helped me in
different ways to do so!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

David "DaviXX" CHANIAL is a French autodidact system administrator and
programmer. He has been setting up high-availability hosting solutions for years,
especially using Gentoo Linux, Apache/Nginx, PHP, MySQL/MariaDB, and
Python/Perl/C.

David sold the French company EuroWeb in 2011, which he had cofounded and
managed on a technical level since 2003 (EuroWeb was into hosting, dedicated
servers, managed services, and consulting). He spent some time working as a
consultant for the company Magic Online that had acquired his old company.

Currently, in addition to working independently with his company DaviXX on
projects using Ansible, MariaDB, Django, embedded systems, and some electronic
systems, David holds the position of Director of System and Network at Believe
Digital Group.

P. R. Karthik has a Bachelor's degree in Engineering in Electronics and
Communications. He is an experienced MySQL database administrator and works
for one of the Fortune 500 companies providing planning, architecture, and resource
management solutions for mission-critical database applications, such as online
advertising and e-commerce. He manages one of the biggest MySQL farms. He is a
tech enthusiast and is socially connected with MySQL and open source communities,
sharing his expertise and learning from other technologists in this field. He is a
regular blogger at www.remotemysqldba.blogspot.in.

He has also worked on reviewing the book Getting Started with MariaDB,
Packt Publishing.

I would like to thank my parents for their support and my colleagues
for helping me in reviewing this book.

www.allitebooks.com

http://www.allitebooks.org

Emilien Kenler, after working on small web projects, began focusing on game
development in 2008 while he was in high school. Until 2011, he worked for different
groups and specialized in system administration.

In 2011, he founded a company that sold Minecraft servers while he was completing
his engineering in Computer Science. He created a lightweight IaaS based on new
technologies such as Node.js and RabbitMQ.

Thereafter, he worked at TaDaweb as a system administrator, building its
infrastructure and creating tools to manage deployments and monitoring.

In 2014, he began a new adventure at Wizcorp, Tokyo. He will graduate in 2014 from
the University of Technology of Compiègne.

He has also contributed as a reviewer on another book Learning Nagios 4,
Packt Publishing (http://www.packtpub.com/learning-nagios-4/book).

Joffrey MICHAÏE joined MySQL AB / Sun as a consultant in 2009 and quickly
became one of the most prominent consultants. He has since joined SkySQL and
continues to spread the word as a principal consultant. His common duties include
designing architectures, tuning the performance, and troubleshooting or migrating
database installations using MariaDB and MySQL. When not in an airplane, Joffrey
enjoys the nightlife in Barcelona.

Daniel Parnell has been messing around with computers from a very early
age. Starting out with an AIM-65, he has used Commodore VIC-20, Commodore
64, Apple IIe, Commodore Amiga, an ICL Concurrent CP/M-86 machine, Apple
Macintosh Plus, and various other PCs and Macs so far.

Recently, Daniel has been working on web applications for the healthcare industry
using Ruby on Rails and is building a rich web application using JavaScript as the
frontend and Erlang as the backend.

When Daniel is not coding or tinkering with electronic gadgets, he can be found
spending time with his family. He lost his 6-year-old son last year to an untreatable
neurodegenerative disorder called Batten disease.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Performance Introduction 7

MariaDB history 7
Choosing the appropriate hardware 8

Disks 8
SATA magnetic drives 8
SAS magnetic drives 9
Hybrid drives 9
SSDs 9

RAID and acceleration cards 10
RAID cards and levels 10
Fusion-io direct acceleration cards 12
Disk arrays 12
RAM 12
CPU 13

Architecture types and performances 13
BIOS power management optimization 15

C-States 16
P-States 16
Constructor name options 16
Power management optimization 17

cpufreq 17
cpuidle 18

Disk and filesystem optimization 20
Kernel disks' I/O schedulers 20
Partition alignment 21
SSD optimization 22
Filesystem options 23
SWAP 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Dedicating hardware with cgroups 25
Manual solution 26
Automatic solution using the cgconfig daemon 28

Dedicating hardware optimization with NUMA 31
Migrating from MySQL to MariaDB 33
Introduction to MariaDB engines 35
Summary 37

Chapter 2: Performance Analysis 39
Slow queries 41
The explain command 42
Slow query logs 43
The show explain command 46
Profiling 47
Performance schema 49
User statistics 50
Sysbench 51
Percona Toolkits 54

pt-query-digest 54
pt-stalk 55
pt-summary 56
pt-mysql-summary 57
pt-duplicate-key-checker 58
pt-index-usage 59

Process list progression 60
mytop 61
innotop 62
mysqlsla 63
Summary 64

Chapter 3: Performance Optimizations 65
Resetting statistics 66
Global statistics 66
DNS connections 66

The DNS cache server 67
Maximum connections 68
The binlogs cache 70

Binlogs for transactional caches 70
Binlogs for nontransactional caches 71

Temporary tables 71
Open tables 73

Table of Contents

[iii]

The query cache 75
Understanding the query cache 75
Modifying the query cache 77

Optimizing storage engines 78
Summarizing your databases 78
InnoDB/XtraDB 79

Pool size and statistics 80
Redo logs 81
Transaction commits and logs 82
Buffer pool instances 84
The flush method 85

TokuDB 86
Installation 86
The flush method 88
Cache size 88
Transaction commits and logs 89
Temporary directory 90
Compression 90

MyISAM 91
Key buffer 91

Index 92
Engines 93
Types 93

mysqltuner 94
Summary 96

Chapter 4: MariaDB Replication 97
How replication works 99

Configuring the master node 100
Preparing the master node 101
Configuring the slave node 102
Creating a slave 102

Using mysqldump 103
Using Xtrabackup 104

Checking the slave status 106
GTID replication 108

What is GTID 109
Configuring the master node 109
Preparing the master node 110
Configuring a GTID slave node 110
Creating a slave 111
Starting the slave 111
Checking the slave status 112

Table of Contents

[iv]

Migrating from classical to GTID replication 113
Parallel replication 115
Load balancing read transactions 115

Installing HAProxy 117
Configuring HAProxy 117
Checking health 119
Testing the configuration 120

Use cases and troubleshooting 120
SQL errors 120
Analyzing binlogs 124
GTID – switching a slave to master and recovering 124

Summary 126
Chapter 5: WAN Slave Architectures 127

Cascade slaves 127
Speeding up replication performance for middle slaves 129

Restricting replications 131
Designing slave in multiple continents 134
SSL replication 135

Generating certificates 137
Building your own CA 137
Building your server certificate 138
Building your client certificates 139
Checking your certificates 141

Configuring MariaDB for SSL 141
Master SSL 141
Client SSL 143

Compression options 145
Summary 145

Chapter 6: Building a Dual Master Replication 147
Dual master replication and risks 147
Installing and configuring a dual master 149
Automatic management 156

HAProxy 156
Learning about the maintenance mode 159
Keepalived 161

Pacemaker or Percona Replication Manager 164
DRBD 174

How to repair a dual master replication 181
Summary 181

Table of Contents

[v]

Chapter 7: MariaDB Multimaster Slaves 183
Multimaster slave replication 183

Setting up a multisource replication 184
Other options 190

Summary 190
Chapter 8: Galera Cluster – Multimaster Replication 191

How Galera Cluster works 192
Galera Cluster limitations 194
The basics of installation and configuration 194

Installation 195
Configuration files 197

MariaDB configuration 198
Galera configuration 198

First boot 200
Usages and understandings 205

Transfer methods 205
Using mysqldump 206
Using Xtrabackup 207
Using rsync 207

Dedicating a donor node 208
Starting after a complete blackout 208
Consensus clustering and maintenance 209
Garb – the quorum solution 209
Performance tuning 211

Parallel slave threads 211
Gcache size 211

Designing redundant architectures 212
Read and write nodes 212
Load balanced architecture 213
WAN replication 217
Disaster recovery 218

Tests and issues 219
Paused replication 220
Break Galera 221
Split-brain 221

Summary 222
Chapter 9: Spider – Sharding Your Data 223

Configuring Spider 225
Creating your first shard 228

Table of Contents

[vi]

Sharding replication 233
Creating replicated shards 234
Spider HA monitoring 236
Recovering data after server failure 237

Performance tuning 242
Spider parameters 242

The bgs mode 242
The connection recycle mode 242
Statistics tables 243
Remote SQL logs 243

Number of shards 243
Summary 244

Chapter 10: Monitoring 245
Single instance 246
Replication 248
Galera Cluster 248
Other monitoring solutions 250

Graphs 250
Logs 255

Summary 256
Chapter 11: Backups 257

Using mysqldump 259
Compression 260

Using mysqlhotcopy 261
LVM 262

Snapshot 262
Removing snapshots 263
Rollback 263

Backup 264
Xtrabackup 264

Full backup 265
Incremental backup 266
Restoring from a full backup 267
Restoring from an incremental backup 268

Galera backup 268
Summary 270

Index 271

Preface
What is MariaDB? If you bought this book, it is assumed that you already know
a bit; anyways, a quick reminder and a short introduction will help us understand
certain things.

MariaDB is a fork (drop-in replacement) of MySQL. MySQL was acquired by
Sun Microsystems in 2008. Then, Oracle acquired Sun Microsystems in 2009 with
MySQL included.

For several reasons, Michael "Monty" Widenius (founder of MySQL) decided to
fork MySQL and to create a company for it called Monty Program AB; that's how
MariaDB was born (Maria is the name of the second daughter of Michael Widenius).

In December 2012, the MariaDB foundation was brought into existence to avoid any
company acquisition like what had happened in the past for MySQL.

SkySQL is a company formed of ex-MySQL executives and investors who deliver
services around MySQL/MariaDB. In April 2013, SkySQL and Monty Program AB
were merged, because for a company to switch to MariaDB without support was
problematic. But since the merge, it's been possible.

MariaDB has new interesting features, better testing, performance improvements,
and bug fixes that unfortunately are not available in MySQL. For example, some
optimizations come from Google, Facebook, Twitter, and so on.

Please remember that MariaDB is a full open source project and you're welcome
to contribute.

Preface

[2]

What this book covers
Chapter 1, Performance Introduction, describes common hardware solutions to help
you choose the best solution for your needs; furthermore, it introduces system
optimization and describes how to migrate from MySQL to MariaDB.

Chapter 2, Performance Analysis, introduces tools to find performance issues and
shares basic best practices.

Chapter 3, Performance Optimizations, talks about how to find bottlenecks, how to tune
caches, and also introduces some engines.

Chapter 4, MariaDB Replication, explains how to set up MariaDB replications, how to
scale with HAProxy, and the benefits of replication.

Chapter 5, WAN Slave Architectures, helps us understand the problems that arise in
WAN replications and how to work with them.

Chapter 6, Building a Dual Master Replication, describes what the benefits are of this
kind of architecture and how to set it up using DRBD, Pacemaker, PRM, and so on.

Chapter 7, MariaDB Multimaster Slaves, introduces the benefits of using the replication
features of MariaDB 10.

Chapter 8, Galera Cluster – Multimaster Replication, describes the benefits and the way
to deploy a Galera Cluster.

Chapter 9, Spider – Sharding Your Data, explains how to achieve better performance in
sharding your data.

Chapter 10, Monitoring, describes what kind of elements are important to monitor on
a single instance, replication, or Galera Cluster.

Chapter 11, Backups, introduces several ways to create backups and helps you choose
the best method for your needs.

What you need for this book
As you proceed with this book, you will see a lot of features, solutions, and practical
exercises that require technical tests. It's not often easy to test everything in the
correct environment.

Many feel that preparing an environment is a waste of time, and they are right! To
avoid it and concentrate on the content of the book, we'll use virtual machines. To
make it fast and simple, we're going to use VirtualBox and Vagrant. If you are not
acquainted with these tools, don't worry, we will show you how to use them here.

Preface

[3]

These tools will help you test everything very quickly (a few seconds/minutes).
The advantages of both tools are:

• They are free
• They can run on Linux, Mac OS X, and Windows
• Fast instance provisioning

To install them, go to the official websites and download and install them on your
current infrastructure:

• VirtualBox: https://www.virtualbox.org/
• Vagrant: http://www.vagrantup.com/

In this book, every exercise will run on Debian GNU/Linux Wheezy amd64 version
on a VirtualBox. That's why, after installing both the latest versions of those tools,
I suggest you work in a separate folder/box per exercise:

1. Create a folder named MariaDB that will contain all the exercises of
this book.

2. Inside that folder, create a subfolder named Chapter X, where X is the
chapter number.

3. Inside the Chapter X subfolder, create another subfolder named Exercise X,
where X is the name of the section.

4. Place the appropriate content of the Vagrantfile in the Exercise X folder.
5. Inside that folder, power up machines (you absolutely need to be in to

perform actions on the virtual machines):
vagrant up

6. And access them in the following manner:
vagrant ssh (for a single machine)

vagrant ssh machine-name (for multiple machines)

You're now ready for the exercises. When the exercises finish and you want to get
your disk space back, you can stop and remove them with the following command:

vagrant halt

vagrant destroy

Then, you can remove the current folder.

Preface

[4]

Who this book is for
This book is for anyone who is already familiar with MariaDB, has good system
knowledge, and wants to scale or set up a high availability MariaDB infrastructure. It
will be especially useful for system architects, senior system administrators, or DBAs.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This engine is a drop-in replacement for the FEDERATED engine. It uses libmysql
to talk to an RDBMS."

A block of code is set as follows:

-*- mode: ruby -*-
vi: set ft=ruby :
ENV['LANG'] = 'C'

Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :mysqlserver },

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_SSL_Crl: /etc/mysql/ssl/cacert.pem
 Master_SSL_Crlpath:
 Using_Gtid: No

Preface

[5]

Any command-line input or output is written as follows:

MariaDB [(none)]> show global variables like 'tmp_table_size';

+----------------+----------+

| Variable_name | Value |

+----------------+----------+

| tmp_table_size | 33554432 |

+----------------+----------+

1 row in set (0.00 sec)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "With HP
hardware, a Ctrl + A in the BIOS shows an additional Services Options menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Performance Introduction
In this chapter, you'll learn about common hardware solutions that you can find
on the market, and which ones are slower or faster for MariaDB. You'll be able to
properly tune your operating system to optimize your hardware and see how to
reserve resources. Finally, you'll learn how to migrate from MySQL to MariaDB
and have an overview of the available engines.

MariaDB history
What is MariaDB? If you have bought this book, you probably already know;
anyway, a quick reminder and a short introduction helps us to understand
certain things.

MariaDB is a fork (drop-in replacement) of MySQL. MySQL was acquired by
Sun Microsystems in 2008. Then, Oracle acquired Sun Microsystems in 2010
with MySQL included.

For several reasons, Michael Monty Widenius (the founder of MySQL) decided to
fork MySQL and create a company for it called Monty Program AB. Thus, MariaDB
(Maria is the name of the second daughter of Michael Monty Widenius) was born.

In December 2012, the MariaDB foundation was created to avoid any company
acquisition like what had happened in the past for MySQL.

SkySQL is a company comprising of ex-MySQL executives and investors who
deliver services around MySQL/MariaDB. In April 2013, there was a merger
between SkySQL and Monty Program AB. For a company that may have wanted to
switch to MariaDB without support, it was problematic. However, since the merger,
it has been possible.

Performance Introduction

[8]

MariaDB has new interesting features: better testing, performance improvements,
and bug fixes that are unfortunately not available in MySQL. For example, some
optimizations come from Google, Facebook, Twitter, and so on.

Please remember that MariaDB is a fully open source project
and you're welcome to contribute.

Choosing the appropriate hardware
Choosing the correct hardware is not an easy task. MariaDB has the following
hardware requirements:

• Disk performance
• RAID and acceleration cards
• RAM
• CPU

Some types of software do not require so many important resources, but this is not
the case for MariaDB. Of course, it depends on what you want to use your MariaDB
instance for. For example, for a small website with poor access, you do not really
need a huge configuration; a 10-year-old PC should really be enough. However, for
a high-load website, requests should be analyzed to know which kind of hardware
should be taken into consideration.

Disks
The disk is one of the biggest parts as several kinds of elements should be taken
into consideration, and the storage is, in most cases, the bottleneck. Everything will
depend on the write access you will need of course. That's why you're going to see
several solutions that exist for speedy access to sensitive and reactive requirements.

SATA magnetic drives
SATA Hard Disk Drives (HDDs) are the slowest solution that can be commonly
found on some servers. Generally, there are two kinds of rotation-per-minute drives:

• 5400 rpms: These disks have the slowest performances but the
highest density

• 7200 rpms: These are slower drives but they have high density

Chapter 1

[9]

10K HDDs exist but are not designed for production usages. A good solution to win
access time is to have the highest disk cache size.

We can find disk caches with 2,5' and 3,5' sizes on the market. Servers are now
generally shipped with 2,5' drives as we could add more than 3,5'. For instance, it's
common to see 1U servers with eight arrays plugged to 2,5' disks. On 3U servers,
constructors can add up to 25 disks. With Redundant Array of Independent Disks
(RAID) mechanisms, it becomes interesting to get as many drives as possible to
speed up the storage.

SAS magnetic drives
SAS magnetic drives are faster drives than SATA and are generally used with a
specific PCI-X RAID card to enhance performance. Like the SATA HDDs, there
are two kinds of rotation speeds:

• 10K rpms: These disks have the highest SAS density but are slower
• 15K rpms: These disks have the lowest SAS density and are faster but

less robust

The disk choice is important, but there is another thing to take into account. Like
SATA drives, 3,5' drives exist, but they are hard to find now. Let's stick with 2,5'
drives instead.

Hybrid drives
Hybrid drives are more common because their performances are similar to that
of Solid State Drives (SSDs) with the size of SATA HDDs. This is a real good
alternative to the high cost of SSDs. Hybrid drives are bridging the gap between
SSDs and SATA drives.

Hybrid drives combine NAND flash drives (SSDs) with HDDs. The NAND flash of
the drive is used to store data as cache to quickly deliver often-accessed files. The
HDD part of the drive stores all the information, but the access is slower.

The hybrid drives that we can find on the market today have, for example, 1 TB
of magnetic storage with 8 GB, 16 GB, or 24 GB of NAND flash.

SSDs
SSDs are the fastest disks on the market! They give the best disk performance that we
can find today. However, SSD (NAND flash) drives are expensive, so a storage disk
array is really expensive.

Performance Introduction

[10]

SSDs are more expensive and prone to more failures than other
disk drives. They have a limited life time, so you should use
them with the RAID system.

RAID and acceleration cards
Having an overview of what kinds of disks exist is generally not enough to
get maximum fault tolerance and speed performance. That's why additional
mechanisms such as RAID and acceleration cards exist. We'll see their pros
and cons in the following sections.

RAID cards and levels
I have already talked about PCI-X RAID cards—cards where disks are plugged embed
fast cache memory. Today, we can commonly find 512 MB, 1 GB, or 2 GB flash cache.
The more flash cache the PCI-X card has, the faster the transactions. You generally,
depending on the card model, configure two kinds of cache: read and write caches.

There are two types of read cache:

• Demand caching: This helps to quickly serve the same information if
requested multiple times. In this case, it significantly improves disk
I/O performance.

• Look-ahead caching: If the required data is sequentially stored in blocks,
this will store the next requested blocks in the cache to serve them faster
when they are asked for.

The best performance solution for MariaDB is demand caching, as data is not
sequential when reading.

There are two types of write cache:
• Write-back caching: When a write request is issued, data is quickly written

to the cache and the system is informed about the correct write. When it's
free time for the bus or when the buffer does not have enough space to store
new data, the data cache is written to the disk.

• Write-through caching: This is the same as the write-back caching method,
except the data is immediately transferred from the cache to the disk before
informing the system.

Chapter 1

[11]

In the case of a system crash, the write-back caching method is of course the most
dangerous option. To avoid losing data, a Battery Backup Unit (BBU) is present on
the cards to preserve data during a power cut. For example, when the system powers
up and the SAS RAID card boots, the battery writes the cache information to disk.

When using BBU, it is recommend to disable the learning cycle. During a learning
cycle, the battery is unloaded/reloaded and the write cache method switches from
write-back to write-through.

Depending on the card manufacturer, some other options can be configured to
customize those cache types.

Regarding the RAID levels, multiple solutions exist, and here are the common ones:

RAID level Description

0 Block Level (BL) striping without parity; this provides fast read and
write but no security

1 BL mirroring without parity; this provides security and fast read but
slow write access

5 BL striping with distributed parity; this provides more security but
slow read and write access

6 This is the same as RAID 5 but with double distributed parity; this is
the slowest but it provides high security

10 This is also called 1+0: mirroring without parity but with BL striping;
this is fast and provides security

RAID 0 is not really the best solution for production use as there is no security. If a
disk crashes, there is no way to recover it. In RAID 1, it's only mirroring! Even if we
add more than two disks, the same information will be replicated. So, it is not good
to use with MariaDB, but it generally answers OS disk problems. RAID 5 has been
a really good solution for several years because of its good security guarantee. But
we're losing performance here because of the parity calculation and storage, which
corresponds to one disk. It's not recommended to create a very big RAID 5 solution,
because if you lose more than one disk, all your data is lost. RAID 6 permits to lose
up to two disks at once! However, the parity calculation is double and performance
is not what we expect.

RAID 10 is a better solution! RAID 10 stripes mirrors; it's as simple as that! We have
security as we could lose more than one disk (with mirroring) and have speed (with
striping). The major problem of this solution is the cost, as you would only be able to
use half of the total capacity of your disks. For example, if I have 12 disks in a server,
you can consider that six disks are mirrored against the other six. Each of the six
groups are stripped or they can be divided once again to get smaller (three) stripes.

Performance Introduction

[12]

Fusion-io direct acceleration cards
Fusion-io direct acceleration cards are PCI-X cards that permit the drives to be faster
than classic SSD solutions, with a better and consistent I/O throughput to give up
to 85 percent more transactions. How? Simply because it requires less hardware
components to access data and uses high speed hardware to achieve it.

When you use SSD/HDD SAS drives, CPU transactions need to pass through the
RAID card and are then transferred to the disks. This is the bottleneck! On a high
load charge on the SAS RAID card, the performance degrades gradually because of
the connectivity to the disks.

To avoid it, Fusion-io direct access cards embed NAND flash directly on the PCI-X
card to permit the drive to have a big cache system (up to 5 TB per card). The high
bus bandwidth of the PCI-X permits the drive to quickly access information from
the CPU and reduce a lot of latency.

The Fusion-io company provides other cheaper solutions to speed up server
performance, but the fastest solution remains the Fusion-io direct access card anyway.
Moreover, MariaDB is a partner with Fusion-io and has created special parameters to
double the I/O capacity on those cards (available since MariaDB 5.5.31).

Disk arrays
Disk arrays have been the solution to get maximum performance, and the only way
to have a huge data size solution. The information that comes from the server(s) to
the disk array (DAS, NAS, and SAN) takes too much time to process requests as it
passes through several kinds of components such as networks in the worst case.

Even if it's a good solution in several cases, it's unfortunately not the fastest one. The
recommendation for high performance is to store data locally. Multiple solutions
exist for replication and high availability, so you don't have to worry about it.

RAM
In MariaDB, RAM availability is very important. The more RAM you have, the
more data from your database can be kept in memory. For instance, on the InnoDB/
XtraDB engine, to get maximum performance, it's recommended to get the database
size equal to the free RAM size. It's also used to store table caches and so on.

Of course, if you have terabits of database data, it will be hard to get that much
RAM. However, solutions exist to avoid those problems.

Chapter 1

[13]

Another important thing is to look at your server architecture. You should take care
of the motherboard's bus frequency and keep it as high as possible. In a major case,
if you fill all the RAM slots that the motherboard can take, the bus frequency will
decrease and the result will be a higher latency communication between the CPU
and RAM. If you want to get the maximum RAM capacity of your server without
losing any performance, look at the server constructor documentation to fill the
correct amount of RAM slots with the highest RAM size per slot.

The latest important thing is not related to MariaDB: the Error-Correcting Code
memory (ECC memory). It's a type of RAM that can detect and correct the most
common kinds of internal data corruption. You may lower memory performance
by around two to three percent. This is not a big performance loss, but you'll be
sure that your data will be best protected from corruption.

CPU
Depending on the CPU model and constructor, having a lot of cores is of course
interesting for multi-threading operations. A high processor clock speed
allows faster calculation.

The L1, L2, and L3 processor cache sizes are very important as well. More memory
allocation can be used to store on the processor; the fewer round trips made, faster
the transactions will be.

To get maximum dedicated performance, you have to use the Linux cgroup feature
to bind CPUs/cores to a MariaDB instance. This is also called CPU pinning.

Architecture types and performances
MariaDB is able to run on multiple kinds of operating systems:

• Microsoft Windows x86 and x64
• Oracle Solaris 10 and 11 x64
• Linux x86 and x64

MariaDB has a special thread-pool implementation that allows
it to perform much better than MySQL under heavy loads (lots
of connections).

Performance Introduction

[14]

In this book, every exercise will be on Debian GNU/Linux Wheezy amd64 version.
Of course, all MariaDB tuning will be portable to any operating system, so you won't
be lost. For the operating system performance tuning, we'll focus on Linux amd64
(Debian GNU/Linux), as it's free and open source, and of course MariaDB works
very well on it.

To easily test the following parameters, you can use the following Vagrant file
that provides you with the necessary virtual machine with MariaDB installed.
The requirements are as follows:

• Four cores
• 512 MB of RAM
• 8 GB of disk space

Here is the associated Vagrant file:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :mariadb },
]

$install = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mariadb-
server

INSTALL

Chapter 1

[15]

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 # For each VM, add a public and private card. Then install Ceph
 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.customize ["modifyvm", :id, "--cpus", 4]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 file_to_disk = 'ext4-journal_' + opts[:name].to_s + '.vdi'
 config.vm.customize ['createhd', '--filename', file_to_disk,
'--size', 250]
 config.vm.customize ['storageattach', :id, '--storagectl',
'SATA Controller', '--port', 1, '--device', 0, '--type', 'hdd',
'--medium', file_to_disk]
 config.vm.provision "shell", inline: $install
 end
 end
end

BIOS power management optimization
By default, new servers are configured for low consumption power (green energy).
This is a really good point for the environment! However, reducing electric power
implies reducing computation power.

The CPU is the main component that directly affects performance because of its
wake up time during sleep states. CPU power management should be disabled as
much as possible. However, depending on the hardware manufacturer, multiple
options may change.

If you're wondering what the effects are of that power management, it's simple. If the
activity of the processor is reduced too much, a standard action that takes 1 second
could take more than 2 seconds in that period. During this period of 1 or more
seconds, CPU power management techniques are changing the CPU state (lowering
frequency, lowering voltage, and deactivating some subsystems, and so on).

When the workload increases, subsystems are reactivated, but C-State reactivation
implies some latency (milliseconds to seconds) before being at maximum performance.

www.allitebooks.com

http://www.allitebooks.org

Performance Introduction

[16]

C-States
C-States are idle CPU states. C0 is the working processor while C1 is the first
idle level of the processor. The problem is no instructions are executed during
the C1 state, as the CPU manufacturer introduced new C-States to reduce power
consumption during an idle period.

P-States
P-States are different levels of the operation state of the processor. Each level differs
from the others by different working voltages/frequencies. For example, at P0, a
processor can run at 3 GHz, but at P1 it can run at only 1.5 GHz. Voltage is also
scaled to reduce power consumption.

In a P-State, the CPU is working, performing operations and executing instructions.
This is not an idle state.

Constructor name options
Depending on the CPU constructor, power management technologies do not have
the same name. Here is a list of functionalities that should be disabled. For Intel,
they are called:

• Speedstep
• Turbo boost
• C1E
• QPI Power Management

For AMD, the functionalities are as follows:

• PowerNow!
• Cooln'Quiet
• Turbo Core

Some constructors have enabled extra power management features that are keyboard
tricks (for example, with HP hardware, a Ctrl + A in the BIOS shows an additional
Services Options menu).

In most cases, it's recommended to look at the BIOS constructor
documentation to see what should be turned on or off.

Chapter 1

[17]

Power management optimization
Most of the following power management commands may not work under virtual
machines. So, you should consider having a physical machine to test and run them.

cpufreq
cpufreq allows the OS to control P-States. This means that the OS-based idleness
can lower the frequency of the CPU to reduce power consumption.

To get cpufreq information on a specified core, look at the cpufreq folder by
running the following command:

> ls -1 /sys/devices/system/cpu/cpu0/cpufreq

affected_cpus

bios_limit

cpuinfo_cur_freq

cpuinfo_max_freq

cpuinfo_min_freq

cpuinfo_transition_latency

freqdomain_cpus

related_cpus

scaling_available_frequencies

scaling_available_governors

scaling_cur_freq

scaling_driver

scaling_governor

scaling_max_freq

scaling_min_freq

scaling_setspeed

When enabled in the BIOS, cpufreq drivers are loaded and the cpufreq directory
in sysfs is available. You can look at the used governor (power management
mechanism using the following command):

> cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

ondemand

If the BIOS settings are disabled, no drivers are loaded and no scaling frequency is
allowed. That means your server works at maximum performance. However, you
can also tune the scaling governor for performance purposes.

Performance Introduction

[18]

To always get the maximum performance without disabling the options in the BIOS,
we'll install a package that will configure all the cores on your machine:

aptitude install cpufrequtils

cp
/usr/share/doc/cpufrequtils/examples/cpufrequtils.loadcpufreq.sample
/etc/default/cpufrequtils

Then, edit the configuration file (/etc/default/cpufrequtils) and set the new
configuration:

/etc/default/loadcpufreq sample file

#

Use this file to override the CPUFreq kernel module to

be loaded or disable loading at all

ENABLE=true

FREQDRIVER=performance

You can get all the available governors with the following command:

> cat
/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

ondemand performance

Then, you can restart the cpufrequtils service and your governors' cores will be
updated to performance.

cpuidle
cpuidle allows the OS to control the CPU C-states (control how the CPU goes into
idle/sleep state). Depending on the CPU constructor and model, several C-States
are available. Standard ones are C0 and C1. C0 is a running state while C1 is an
idle state.

Even if C-States have been disabled in the BIOS settings, the cpuidle driver can be
loaded and managed. To look at the loaded driver, run the following command:

> cat /sys/devices/system/cpu/cpuidle/current_driver

intel_idle

The intel_idle driver handles more C-States and aggressively puts the CPU into a
lower idle mode. Since we have significant latency to wake up from lower C-States,
this can affect performance.

Chapter 1

[19]

When the intel_idle driver is loaded, specific cpuidle configurations are available
for each CPU:

> ls -1R /sys/devices/system/cpu/cpu0/cpuidle/

/sys/devices/system/cpu/cpu0/cpuidle/:

state0

state1

state2

state3

/sys/devices/system/cpu/cpu0/cpuidle/state0:

desc

latency

name

power

time

usage

[...]

/sys/devices/system/cpu/cpu0/cpuidle/state3:

desc

latency

name

power

time

usage

Each of the C-States are described here with the latency to wake up. To know the time
it takes a C-State to wake up and check the latency file, run the following command:

> cat /sys/devices/system/cpu/cpu0/cpuidle/state3/latency

150

In the preceding command, the time for C-State 3 to wake up is 150 ms! To avoid
having all the C-States enabled, change the grub boot configuration and add the
following option (in the /etc/default/grub location):

GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_idle.max_cstate=0"

To make it work, upgrade the grub configuration and reboot:

update-grub

Performance Introduction

[20]

Disk and filesystem optimization
For disks and filesystems, there are multiple factors that can slow down your
MariaDB instance:

• Magnetic drives' rotation per minute
• Magnetic drives with data at the beginning of the disk
• Partitions not aligned to the disk
• Small partitions at the end of the disk
• Disk bus speed
• Magnetic drives' seek time
• Active SWAP partitions

Some of these factors can only be resolved by changing the hardware, but others can
be changed by tuning the operating system.

Kernel disks' I/O schedulers
The kernel I/O scheduler permits us to change the way we read and write data on
the disk. There are three kinds of schedulers. You can select a disk and look at the
currently used scheduler using the following command:

cat /sys/block/sda/queue/scheduler

noop deadline [cfq]

The I/O scheduler used here is Completely Fair Queuing (CFQ).

The noop scheduler queues requests as they are sent to the I/O.

The deadline scheduler prevents excessive seek movement by serving I/O requests
that are near to the new location on the disk. This is the best solution for SSDs.

The CFQ scheduler is the default scheduler on most Linux distributions. The goal
of this scheduler is to minimize seek head movements. This is the best solution for
magnetic disks if there is no other mechanism above it (such as RAID, Fusion-io,
and so on). In the case of SSDs, you have to use the deadline scheduler.

To change the disk I/O scheduler with deadline, use the following command:

echo deadline > /sys/block/device/queue/scheduler

You have to replace the device with the device name (such as sda).

Chapter 1

[21]

Another solution to avoid changing the disk I/O scheduler manually is to install
sysfsutils by using the following command:

aptitude install sysfsutils

Then, you have to configure it in /etc/sysfs.conf:

block/sdb/queue/scheduler = deadline

Easy to use and understand, sysfsutils is a daemon that permits us to make
changes in /sys automatically (as there is no sysctl for /sys).

Now, it could be a problem if you have a lot of disks on your machine and want to
set the same I/O scheduler on all devices. Simply change the grub boot settings
(/etc/default/grub) with the elevetor option:

GRUB_CMDLINE_LINUX_DEFAULT="quiet elevator=deadline"

To make the preceding setting work, upgrade the grub configuration and reboot:

update-grub

If you want to go ahead, there are several options for each I/O scheduler, and
there is no optimal configuration. For example, on MyISAM, you need to increase
nr_requests to multiply the throughput. You have to test them and look at the
better solution corresponding to your needs.

In the latest version of CFQ, it automatically detects if it's a magnetic disk and adapts
itself to avoid changing the elevator value. You can find all the required information
on the Linux kernel website (http://www.kernel.org).

Partition alignment
The goal of partition alignment is to match logical block partitions with physical
blocks to limit the number of disk operations. You must make the first partition
begin from the disk sector 2048. However, it can be done automatically if you're
using the parted command. First of all, install the package:

aptitude install parted

Here is an example:

device=/dev/sdb

parted -s -a optimal $device mklabel gpt

parted -s -a optimal $device mkpart primary ext4 0% 100%

Performance Introduction

[22]

In the preceding example, we set /dev/sdb as the disk device, then created a gpt
table partition, and finally created a single partition that takes the full disk size. 0%
means the beginning of the disk (which in fact starts at 2M) and goes to the end
(100%). The optimal option means we want the best partition alignment to get the
best performance.

SSD optimization
From the 2.6.33 version of kernel, you can enable TRIM support. Btrfs, Ext4, JFS, and
XFS are optimized for TRIM when you activate this option. The TRIM feature blocks
data that is no longer considered in use and that can be wiped internally. It allows
the SSDs to handle garbage collection overhead that otherwise slows down future
operations on the blocks.

Ext4 is one of the best solutions for high performance. To enable TRIM on it, modify
your fstab (/etc/fstab) configuration to add the discard option:

/dev/sda2 / ext4 rw,discard,errors=remount-ro 0 1

Now, remount your partition to enable TRIM support for Ext4:

mount -o remount /

On LVM, you can also enable TRIM for all the logical volumes by changing the
issue_discards option in your LVM configuration file (/etc/lvm/lvm.conf):

issue_discards = 1

Finally, we want to limit needless utilization of SSD, and this can be done by setting
temporary folders in the RAM using the tmpfs filesystem. To achieve this, edit the
fstab file at /etc/fstab and add the following three lines:

tmpfs /tmp tmpfs defaults,noatime,mode=1777 0 0
tmpfs /var/lock tmpfs defaults,noatime,mode=1777 0 0
tmpfs /var/run tmpfs defaults,noatime,mode=1777 0 0

Mount the preceding partitions to make them active.

On Debian, you do not need to change /etc/fstab, and you can
make add tmpfs is /etc/default/tmpfs instead.

Chapter 1

[23]

Filesystem options
Several kinds of filesystems exist and their performances generally depend on their
usage. For MariaDB, I've performed several tests against XFS. My conclusion is the
same as what we can find on most of the specialized websites on the Internet: XFS
is a good solution but Ext4 is slightly faster.

On Ext4, you can add several interesting options to limit write access on the disk.
You can, for example, disable the access time on all files and folders. This will avoid
writing the last access time information to any acceded files on partition. As MariaDB
often needs to access the same files, they are updated on each MariaDB modification
(insert/update/delete), which is disk I/O consuming.

This could be a problem in some cases (for example, if you absolutely need these
updates), but most of the time, it can be disabled by adding the following options in
the fstab configuration (/etc/fstab):

/dev/sda2 / ext4 rw,noatime,nodiratime,data=writeback,discard 0 1

On a high disk I/O system, you will reduce the disk's access significantly.

You've also noticed that we used data=writeback. This option means that only
metadata writes are journalized. It works well with InnoDB and is safe. Why?
Because InnoDB has its own transaction logs, there is no need to duplicate the
same action. This is the fastest solution, but if you prefer a safer one, you can use
data=ordered instead to get data written before metadata.

Another interesting filesystem performance solution is to separate the Ext4 journal
from the data disk (as in journaling, the filesystem writes data twice). Place the
journal on a separate fast drive such as SSD. By default, the journal occupies between
2.5 percent and 5 percent of the filesystem size. It's suggested to keep the size at
minimum for performance (it could be reduced on a very large data size).

First of all, check your current filesystem block size (here /dev/mapper/vg-home):

> dumpe2fs /dev/mapper/vg-home | grep "^Block"

dumpe2fs 1.42.5 (29-Jul-2012)

Block count: 1327104

Block size: 4096

Blocks per group: 32768

Here, we've got a 4096 block size and the journal needs to have the same block size
as well.

Performance Introduction

[24]

To dedicate a journal to a current partition, we need to unmount it. To be sure that
there is no access, remove the current journal from the partition, create the journal
partition on the dedicated device (partition size * 5 / 100), attach it to the wished
partition, and then remount it:

> umount /home

> dumpe2fs /dev/mapper/vg-home | grep "Journal"

Journal inode: 8

Journal backup: inode blocks

Journal features: (none)

Journal size: 128M

Journal length: 32768

Journal sequence: 0x0000002f

Journal start: 0

> tune2fs -f -O ^has_journal /dev/mapper/vg-home

> mke2fs -O journal_dev -b 4096 /dev/sdb1

> tune2fs -j -J device=/dev/sdb1 /dev/mapper/vg-home

> mount /home

Now, you check on your partition to see whether the journal is located on
another partition:

> dumpe2fs /dev/mapper/vg-home | grep "Journal"

Journal UUID: 8a3c6cec-2d45-4aa9-ac2f-4a181093a92e

Journal device: 0x0811

Journal backup: inode blocks

To locate it, use the following command:

> blkid | grep 8a3c6cec-2d45-4aa9-ac2f-4a181093a92e

/dev/mapper/vg-home: UUID="6b8f2604-e1ac-4bea-a5c9-e7acf08cec8c"
TYPE="ext4" EXT_JOURNAL="8a3c6cec-2d45-4aa9-ac2f-4a181093a92e"

/dev/sdb1: UUID="8a3c6cec-2d45-4aa9-ac2f-4a181093a92e" TYPE="jbd"

As you now have a dedicated journal for your partition, add two other options to
/etc/fstab (journal_async_commit). The advantage is that the commit block can
be written to disk without waiting for the descriptor blocks. This option will boost
performance. The code is as follows:

/dev/mapper/vg-home /home ext4
rw,noatime,nodiratime,data=writeback,discard,journal_async_commit
0 2

Chapter 1

[25]

Another option exists for Ext4: barrier=0. It will boost performance as well. Do not
use it if you have a standalone server, because it will delay journal data writes and
you may not be able to recover your data if your system crashes. You only have to
use barrier=0 if you're using a RAID car with a BBU.

The Linux kernel evolves very quickly. XFS has new options, new
filesystems appear, and Ext4 may not be the best solution in all cases.
You should stay in touch with all the kernel-related news and test
your usage cases yourself.

SWAP
As SWAP is used on a physical disk (magnetic or SSD), it's slower than RAM. Linux,
by default, likes swapping for several reasons. To avoid your MariaDB data being
SWAP instead of RAM, you have to play with a kernel parameter called swappiness.

A swappiness value is used to change the balance between swapping out runtime
memory and dropping pages from the system page cache. The higher the value,
the more the system will swap. The lower the value, the less the system will swap.
The maximum value is 100, the minimum is 0, and 60 is the default. To change
this parameter in the persistence mode, add this line to your sysctl.conf file in
/etc/sysctl.conf:

vm.swappiness = 0

To avoid a system reboot to get this value set on the running system, you can launch
the following command:

sysctl -w vm.swappiness=0

And now check the value to be sure it has been applied:

> sysctl vm.swappiness

vm.swappiness = 0

Dedicating hardware with cgroups
Linux kernel brings features that permit the isolation of a process from others,
called cgroups (since version 2.6.24). If we want to dedicate CPU, RAM, or disk
I/O, we can use cgroups to do it (it also provides other interesting features if you
want to go ahead). With this solution, you can be sure to dedicate hardware to your
MariaDB instance.

www.allitebooks.com

http://www.allitebooks.org

Performance Introduction

[26]

To start using cgroups, we must start preparing the environment. In fact, cgroups
needs a specific folder hierarchy to work, but you'll see the advantages when we use
it. So, edit the fstab file in /etc/fstab to mount cgroups at each machine startup,
and add the following line:

cgroup /sys/fs/cgroup cgroup defaults 0 0

Mount cgroup now to make cgroups available:

 mount /sys/fs/cgroup

To get all the CPU and memory features enabled, you need to change the grub
configuration by adding two new features in /etc/default/grub (cgroup_enable
and swapaccount):

GRUB_CMDLINE_LINUX_DEFAULT="quiet cgroup_enable=memory
swapaccount=1"

Then, upgrade your grub settings and reboot:

update-grub

After the machine has rebooted, you can check whether your cgroup hierarchy exists:

> mount | grep ^cgroup

cgroup on /sys/fs/cgroup type cgroup
(rw,relatime,perf_event,blkio,net_cls,freezer,devices,memory,cpuacct,
cpu,cpuset)

Manual solution
Let's create our first cgroup, the MariaDB one! Create a folder with a name of your
choice in the cgroup folder:

mkdir /sys/fs/cgroup/mariadb_cgroup

If we now look at the mariadb_cgroup content, you can see all the limitations that
the cgroup features are able to offer:

> ls -1 /sys/fs/cgroup/mariadb_cgroup/

[...]

cpuset.cpu_exclusive

cpuset.cpus

cpuset.mem_exclusive

cpuset.mem_hardwall

Chapter 1

[27]

cpuset.memory_migrate

cpuset.memory_pressure

cpuset.memory_spread_page

cpuset.memory_spread_slab

cpuset.mems

[...]

tasks

You can see that there's a lot of stuff! Ok, now let's look at your processor
information to see how many cores you've got:

> cat /proc/cpuinfo | grep ^processor

processor : 0

processor : 1

processor : 2

processor : 3

I can see that I've got four cores available on this machine. For example, let's say I
want to dedicate two cores to my MariaDB instance. The first thing to do is to assign
two cores to the mariadb_cgroup cgroup:

echo 2,3 > /sys/fs/cgroup/mariadb_cgroup/cpuset.cpus

You can set multiple cores separated by commas or with the minus character if you
want a CPU range (0-3 to set from C0 to C3).

In case of multiple cores, I've just asked the cgroup to be bound to the last two cores.
That means this cgroup is only able to use those two cores and that doesn't mean it is
the only one able to use them. Those cores are still sharable with other processes. To
make them dedicated to this cgroup, simply use the following command:

echo 1 > /sys/fs/cgroup/mariadb_cgroup/cpuset.cpu_exclusive

You can check the configuration of your cgroup simply with cat:

> cat /sys/fs/cgroup/mariadb_cgroup/cpuset.cpu*

1

2-3

We also need to specify the memory nodes that the tasks will be allowed to access.
First, let's get a look at the available memory nodes:

> numactl --hardware | grep ^available

available: 1 nodes (0)

Performance Introduction

[28]

Then, set to the wished memory node (here 0):

echo 0 > /sys/fs/cgroup/mariadb_cgroup/cpuset.mems

Now, the cgroup is ready to dedicate cores to a process ID:

echo $(pidof mysqld) > /sys/fs/cgroup/mariadb_cgroup/tasks

That is it! If you want to be sure that you've correctly configured your cgroups, you
can add another PID in that cgroup that will burst the two cores and check with the
top or htop command, for example.

You can check your configuration using a PID in the following way:

> cat /proc/$(pidof mysqld)/status | grep _allowed

Cpus_allowed: c

Cpus_allowed_list: 2-3

Mems_allowed: 00000000,00000001

Mems_allowed_list: 0

Automatic solution using the cgconfig daemon
It's preferable to be able to manage the manual solution before the automatic solution
to check whether your configuration works as expected.

Now, if you want to have it enabled on boot and automatically configured correctly,
you will need to use the cgconfig daemon. It will load a configuration and then
watch all the launched processes. If one matches its set configuration, it will
automatically apply the defined rules.

To get cgconfig, you'll need to install the following package:

aptitude install cgroup-bin daemon

The cgroup-bin package in Debian wheezy is a little bit young, so we need to
manually set up the init file and the configuration from the package documentation.

Unfortunately, you need to do a little hack with the init skeleton file to be able to
use the update-rc.d command for the cgconfig services because the original init
files are not 100 percent Debian-compliant yet:

cd /etc/init.d

cp skeleton cgconfig

cp skeleton cgred

chmod 755 cgconfig cgred

Chapter 1

[29]

sed -i 's/skeleton/cgconfig/' cgconfig

sed -i 's/skeleton/cgred/' cgred

update-rc.d cgconfig defaults

update-rc.d cgred defaults

cd /usr/share/doc/cgroup-bin/examples/

cp cgred.conf /etc/default/

cp cgconfig.conf cgrules.conf /etc/

gzip -d cgconfig.gz

cp cgconfig cgred /etc/init.d/

cd /etc/init.d/

sed -i 's/sysconfig/defaults/' cgred cgconfig

sed -i 's/\/etc\/rc.d\/init.d\/functions/\/lib\/init\/vars.sh/' cgred

sed -i 's/--check/--name/' cgred

sed -i 's/killproc.*/kill $(cat $pidfile)/' cgred

sed -i 's/touch "$lockfile"/test -d \/var\/lock\/subsys || mkdir
\/var\/lock\/subsys\n\t&/' cgconfig

chmod 755 cgconfig cgred

In the meantime, we've updated a Red Hat path to a Debian one (sysconfig |
defaults), modified the folder to store the lock file of the daemon, and changed
the default cgred init to correct some bugs.

Regarding the configuration files, let's start with /etc/cgconfig.conf:

#
Copyright IBM Corporation. 2007
#
Authors: Balbir Singh <balbir@linux.vnet.ibm.com>
This program is free software; you can redistribute it and/or
modify it
under the terms of version 2.1 of the GNU Lesser General Public
License
as published by the Free Software Foundation.
#
This program is distributed in the hope that it would be
useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
group mariadb_cgroup {
 perm {
 admin {

Performance Introduction

[30]

 uid = mysql;
 }
 task {
 uid = mysql;
 }
 }

 cpuset {
 cpuset.mems = 0;
 cpuset.cpus = "2,3";
 cpuset.cpu_exclusive = 1;
 }
}

Here, we've got the cgroup name mariadb_cgroup. When a user, mysql, launches
an operation, the cpuset configuration will be applied. In the same way as in the
manual method, we've limited the mysql user process to the second and third cores.

The last thing to configure is the cgrules.conf file in /etc/cgrules.conf, which
will indicate which process belongs to which cgroup. You need to add the user
mysql to modify the cpu information and the cgroup folder name where it should
be placed:

mysql cpu mariadb_cgroup/

Of course, you can check your configuration in /sys/fs/cgroup when you want.

When you've finished configuring your cgroup and want the new configuration to
be active, restart the services in the following order:

• /etc/init.d/cgred stop

• /etc/init.d/cgconfig stop

• umount /sys/fs/cgroup 2>/dev/null

• rmdir /sys/fs/cgroup/* /sys/fs/cgroup 2>/dev/null

• mount /sys/fs/cgroup

• /etc/init.d/cgconfig start

• /etc/init.d/cgred start

Chapter 1

[31]

Dedicating hardware optimization with NUMA
With large InnoDB databases (~ >32G), it becomes important to take a look at this
kind of optimization.

In old/classic Uniform Memory Architecture (UMA), all the memory was
shared among all the processors with equal access. There wasn't any affinity and
performances were equal among all cores to the memory bank. With the Non-Uniform
Memory Access (NUMA) architecture (starting with Intel Nehalem and AMD
Opteron), this is totally different:

Each core has a local memory bank that gives closer access and thus reduces the
latency. Of course, the whole system is visible as one unit, but optimization can
be done to restrict a processor to its local memory bank. If there is no NUMA
optimization, a core can ask for memory outside its local memory, which will
increase the latency and lower the global performances.

By default, Linux automatically knows when it runs on a NUMA architecture and
performs the following kind of operations natively:

• Collects hardware information to understand the running architecture
• Binds the correct memory module to the local core it belongs to
• Splits physical processors to nodes
• Collects cost information regarding inter-node communication

Performance Introduction

[32]

To look at the NUMA hardware on a running system, you can use the numactl
command (install it first if not present):

> numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
node 0 size: 65490 MB
node 0 free: 56085 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
node 1 size: 65536 MB
node 1 free: 35150 MB
node distances:
node 0 1
0: 10 20
1: 20 10

We can see two different nodes here that indicate two different physical CPUs and
the physical allocated RAM.

The node distances represent the cost of interconnect access. The weight for node 0
to access its local bank is 10, and for node 1, it's 20. This is the same constraint for
node 1 to access node 0.

You can see the NUMA policy and information using the following command:

> numactl --show
policy: default
preferred node: current
physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31
cpubind: 0 1
nodebind: 0 1
membind: 0 1

Now, if you want to bind a process to a CPU, use the following command:

numactl –physcpubind=0,1 <PID>

To allocate the local memory of a NUMA node, use the following command:

numactl --physcpubind=0 --localalloc <PID>

Now, if you want to get stats and see how your NUMA system works when the
interleave has been hit and so on, use the numastat command:

> numastat
node0 node1
numa_hit 407467513 656867541
numa_miss 0 0

Chapter 1

[33]

numa_foreign 0 0
interleave_hit 32442 32470
local_node 407037248 656824235
other_node 430265 43306

Migrating from MySQL to MariaDB
First of all, MariaDB is a fork of MySQL. So, if you're using a version from 5.1 to 5.5,
the migration will be really easy. To make it clear and simple, if you're running a
MySQL version under 5.1, upgrade it first to 5.1 at least and 5.5 at max.

Then, it will be easy to migrate. First of all, you need to understand the best
compatibility version, as shown in the following table:

MySQL version MariaDB version

5.1 5.1, 5.2, 5.3

5.5 5.5

5.6 10

It is recommended, for example, to switch from the 5.1 version of MySQL to the
5.1 version of MariaDB. Then test it, see if everything is fine, and then you can
upgrade to a higher version of MariaDB.

There is something that you should consider: starting from the 5.6 version of
MySQL, MariaDB will start to number the version from 10. Why? Because MariaDB
developers want to be clear on the features portability from MySQL to MariaDB.
All the features won't be ported in version 10. They may be done later or not at all.
Some features will be fully rewritten for several reasons, and MariaDB developers
will try to keep compatibility with MySQL. That's why for a migration, it's preferable
to migrate a MySQL version from 5.1 to 5.5. If you don't use advanced features, it
shouldn't be a problem as incompatibilities are very low.

Since 5.5 is really stable, you can skip the upgrade to 5.3 (the latest branch of
MariaDB based on 5.1) and go straight to 5.5. Of course, complete regression
testing of the application is recommended.

To get more information on the compatibility list from one version to another,
I strongly recommend following the official MariaDB compatibility information
page available on the main site: https://mariadb.com/kb/en/mariadb-versus-
mysql-compatibility/.

Performance Introduction

[34]

Now that you've understood how to migrate, we'll perform a migration using a
virtual machine. You'll need the following:

• 1 CPU
• 512 MB of RAM
• 8 GB of disk space

This is the code you need to run:

-*- mode: ruby -*-
vi: set ft=ruby :
ENV['LANG'] = 'C'

Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :mysqlserver },
]

$install = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mysql-
server
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 # For each VM, add a public and private card. Then install Ceph
 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install
 end
 end
end

Chapter 1

[35]

Install on this virtual machine the application of your choice (WordPress,
MediaWiki, and so on) to confirm the migration doesn't break anything.

You will see that the migration is an easy step. First of all, remove the current
MySQL version, but keep the data:
apt-get remove mysql-server

Then, your database will still be available in the data directory (/var/lib/mysql by
default) but no binary will be present.

It's time to install MariaDB. First add the MariaDB repository (for version 5.5 here):
apt-get install python-software-properties

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db

add-apt-repository 'deb
http://mirrors.linsrv.net/mariadb/repo/5.5/debian wheezy main'

Now install MariaDB:
apt-get update

apt-get install mariadb-server

It should have started without any issues. Take a look at the logs in /var/log/
syslog if this is not the case.

Introduction to MariaDB engines
When you use MariaDB, you may not know all of the engines, what they can do,
which one is more efficient, and in which situation, and so on.

Comparing all the available engines of MariaDB could take a whole book. So, we're
going to cover them here, but just an introduction with some additional information
to help you to choose some of them for testing.

The classic engines that can also be found on MySQL are as follows:

Engine Description

MyISAM This is a light and nontransactional engine. It has good performance
and a small data footprint. MyISAM has good performances for small
database access.

InnoDB InnoDB gets very high performance when the database size is less or
equal to the RAM size to be used as cache. It's unfortunately not as
efficient as MyISAM if there is not enough RAM memory.

www.allitebooks.com

http://www.allitebooks.org

Performance Introduction

[36]

Engine Description

BLACKHOLE The BLACKHOLE engines accept data but they are immediately dropped
and a zero result is returned by the engine. This engine is generally used
for complex replication filtering on very high load databases.

CSV The CVS engine is able to read and write CSV (comma-separated-values)
format files.

MEMORY The MEMORY engine stores data in memory to perform very fast
queries. Generally used for read-only cache or temporary access, it's the
fastest engine but with some limitations, such as no support for blob or
text columns. As a result, it's a nonpersistent engine because all data is in
the RAM.

ARCHIVE The ARCHIVE engine is a good solution for minimal disk space
occupation with small footprint. It compresses rows with the zlib
algorithm. It's one of the slowest solutions (no index + compression) but
it's perfect to store a huge amount of data without specific performance
requirements.

MERGE The MERGE engine is a collection of identical MyISAM tables that can be
used as one table.

MariaDB introduces several new engines and is still adding some more for different
usages and performances:

Engine Available
version

Description

Aria >= 5.1 This engine is a crash-safe alternative to MyISAM. It's
able to be a transactional and nontransactional storage.

XtraDB >= 5.1 The Percona XtraDB engine is a drop-in replacement for
InnoDB. It's more scalable with many cores and also gets
highest performances and more metrics.

PBXT < 5.5 The PrimeBase XT (PBXT) engine is designed for a
high concurrency environment. It's unfortunately not
maintained anymore.

FederatedX >= 5.1 This engine is a drop-in replacement of the FEDERATED
engine. It uses libmysql to talk to an RDBMS. The idea
is to use other RDBMS as data sources.

SphinxSE >= 5.2 The Sphinx Search Engine (SphinxSE) is a built-in
client to talk directly to the searchd daemon and run
search queries. It doesn't store data at all.

IBMDB2I < 5.5 This engine is able to store its data in a DB2 table
running on IBM.

Chapter 1

[37]

Engine Available
version

Description

TokuDB >= 5.5 This is a highly scalable engine with indexing-
based query acceleration, no slave lag performance,
unparalleled compression, and hot schema modification.
It has better performances compared to XtraDB,
when you do not have enough RAM. In that case,
performances are quite similar to MyISAM.

Cassandra >= 10 This engine allows direct access to a Cassandra cluster
from MariaDB.

Connect >= 10 This engine permits access to local or remote data when
defining tables based on different data types.

Sequence >= 10 This engine permits the creation of ascending or
descending number sequences using a starting and
ending value and increment.

Spider >= 10 This is a built-in sharding features engine that supports
xa transactions, partitioning, and allows table links to
the table on a remote server.

HandlerSocket >=5.3 This is a NoSQL plugin. It doesn't support SQL queries
but supports CRUD (Create/Update/Delete) operations
on tables. It accepts direct TCP connections.

In the future, more and more NoSQL engines will be integrated.

Summary
This chapter gave you an overview of the hardware that exists for MariaDB and
which one is better than the others. You also now know how to take advantage of
some hardware and operating systems for MariaDB. You've seen a quick overview of
which MariaDB engines are available and which ones are faster. Selecting the correct
hardware is a very important thing, and to know how it works is a completely
different topic. Take time to understand how to optimize and how your environment
works to avoid misunderstood slowdowns. As a rule, try to keep yourself updated
on the new CPU features / power management and how Linux evolves with it.

Performance Analysis
In this chapter, you'll get recommendations for how to achieve good performance,
what tools to use, and MariaDB internal presentations for analyses purposes. The
goal of this chapter is to help you find where a performance issue comes from.

The performance goal takes time and requires a lot of tests to make things as
performant as possible. There are many situations, many possibilities, and different
architectures, and all these complex things need to be answered with many tools.
These tools will help you diagnose performance issues as fast as possible to find
complex issues.

Tools are not the only solutions. You can do many other things to optimize
your databases:

• Use good index types when it's necessary. Too many indexes will slow down
your databases.

• Set the best column data type. For example, do not use a char column data
type if it stores only integers.

• Avoid duplicated keys.
• Optimize your SQL queries as much as possible.

If these points are correctly taken into account, the number of performance issues can
be minimized.

For this chapter, some features are only available from MariaDB 10. That's why you
need to change your repository information. In addition, we're going to use Percona
tools and the Percona repositories need to be set up. So, here is the Vagrantfile
for it:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!

Performance Analysis

[40]

#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :mariadb },
]

$install = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mariadb-
server percona-toolkit bzr
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 # For each VM, add a public and private card. Then install Ceph
 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.customize ["modifyvm", :id, "--cpus", 2]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install
 end
 end
end

Chapter 2

[41]

In addition, in some of this chapter's examples, free and open source software will be
taken for their database analysis, such as MediaWiki (http://www.mediawiki.org)
and Tiny Tiny RSS (http://tt-rss.org).

Slow queries
The slow query log feature gives the possibility to log queries that take more than x
seconds to be executed. This is the first step when investigating a performance issue.
To look at the current status, connect to your MariaDB instance and launch it:

MariaDB [(none)]> SHOW GLOBAL VARIABLES LIKE '%SLOW_QUERY%';

+---------------------+---------------------------------+

| Variable_name | Value |

+---------------------+---------------------------------+

| slow_query_log | OFF |

| slow_query_log_file | /var/log/mysql/mariadb-slow.log |

+---------------------+---------------------------------+

2 rows in set (0.00 sec)

Here, we can see the path of the slow query logs. To activate this on the fly, run that
SQL command:

MariaDB [(none)]> SET GLOBAL SLOW_QUERY_LOG=1;

Query OK, 0 rows affected (0.00 sec)

The other option is to set in seconds the query delay to mark it as a long query.
These long queries will be logged as follows:

MariaDB [(none)]> SHOW GLOBAL VARIABLES LIKE '%LONG_QUERY%';

+-----------------+----------+

| Variable_name | Value |

+-----------------+----------+

| long_query_time | 1.000000 |

+-----------------+----------+

1 row in set (0.00 sec)

This is the default setting; the long query is set to 10 seconds. You can change this
setting on the fly as well:

MariaDB [(none)]> SET GLOBAL LONG_QUERY_TIME=1;

Query OK, 0 rows affected (0.00 sec)

Performance Analysis

[42]

Now, you've set global status variables on the fly. This prevents MariaDB from
rebooting, and this is good news. However, only new connections will be affected by
these changes. The problem will occur during the next start boot of MariaDB, as it
will lose those settings. To avoid this, you have to set the MariaDB configuration file
settings (/etc/mysql/my.cnf):

[mysqld]
slow_query_log=1
slow_query_log_file = /var/log/mysql/mariadb-slow.log
long_query_time=1

You're now ready to look at the slow logs in the mariadb-slow.log file at /var/
log/mysql/mariadb-slow.log. You will find all the slow queries, the query time,
the lock time, and other interesting information in these queries. This is the first step
to looking into your application and performing changes on the code part generating
those requests. This could involve a lot of things, such as requests being too long,
missing indexes, and so on, but the good thing is you now know which queries are
slow and which ones make your application look slow.

The explain command
The explain SQL command provides information for a specific request. Most of the
time, we get a query from the slow query logs to analyze the request. The explain
command won't return the classical output of the query but will provide some
information concerning the related SQL query.

The explain command can only be applied on a SELECT query. UPDATE and DELETE
are supported in Version 10.0.5!

Let's take a query that you can have in your slow query logs. Here is an example
with a working version of MediaWiki:

MariaDB [mediawiki]> explain select page_id, page_title,
page_namespace, page_is_redirect, old_id, old_text from wiki_page,
wiki_revision, wiki_text where rev_id=page_latest and
old_id=rev_text_id\g;

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: wiki_page

 type: ALL

Chapter 2

[43]

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 2005

 Extra:

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: wiki_revision

 type: eq_ref

possible_keys: rev_id

 key: rev_id

 key_len: 4

 ref: mediawiki.wiki_page.page_latest

 rows: 1

 Extra:

...

3 rows in set (0.00 sec)

The explain feature lists two rows here. If you examine the first one, ALL means
there is a full scan done on the wiki_page table. Then, in the type section, you can
see how the table is accessed. Here, there is no index type. That's why 2005 rows
were scanned and that's why it's slow.

If you now look at the second row, it's better. There is an index (eq_ref), which
means this is the best possible plan to find the row. In addition, the number of
scanned rows is 1, so it's perfect!

Slow query logs
Since you can directly have the query log the output of the explain command in
MariaDB 10.0.5, this will help you save time. To make it active, you need to add this
line in your MariaDB configuration file (/etc/mysql/my.cnf):

[mysqld]
log_slow_verbosity = query_plan,explain

Performance Analysis

[44]

Then, restart MariaDB. To test it, simply force the creation of a long query. Here is a
SQL script with a loop. Adapt the first line if the default time is not enough:

-- Change this value to a higher one if you need more time

-- This will insert x lines number in your database

SET @MAX_INSERT = 100000;

-- Vars

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

SET time_zone = "+00:00";

-- Create database

DROP DATABASE IF EXISTS chapter2;

CREATE DATABASE chapter2;

USE chapter2;

-- Create table and add index

CREATE TABLE IF NOT EXISTS `s_explain` (

 `id` int(11) DEFAULT NULL,

 `ts` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' ON UPDATE
CURRENT_TIMESTAMP

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

ALTER TABLE `s_explain` ADD INDEX (`id`);

-- Create a procedure to insert lines

DELIMITER $$

DROP PROCEDURE IF EXISTS proc_name$$

CREATE PROCEDURE proc_name()

BEGIN

 DECLARE count INT DEFAULT 0;

 WHILE count < @MAX_INSERT DO

 SET count = count + 1;

 INSERT INTO `s_explain`(`id`, `ts`) VALUES (FLOOR(RAND() *
@MAX_INSERT), NOW());

 END WHILE;

END$$

DELIMITER ;

-- Call procedure

call proc_name();

Chapter 2

[45]

You can now simply call this script by slowing down the long_query_time, calling
the loop.sql script, and running a SELECT command on it:

mysql < loop.sql

Here is the result you will find in your slow query logs:

Time: 140113 23:02:57

User@Host: root[root] @ localhost []

Thread_id: 65 Schema: chapter2 QC_hit: No

Query_time: 0.254088 Lock_time: 0.000090 Rows_sent: 60000
Rows_examined: 60000

Full_scan: Yes Full_join: No Tmp_table: No Tmp_table_on_disk: No

Filesort: No Filesort_on_disk: No Merge_passes: 0

#

explain: id select_type table type possible_keys key
key_len ref rows Extra

explain: 1 SIMPLE s_explain ALL NULL NULL NULL
NULL 60249

#

SET timestamp=1389654177;

select * from s_explain;

Here is some more information:

• Query_time: This indicates the time taken for the query to run. It's important
to check the Lock_time value as well to avoid table locking, which then
could block other requests. The query time should be much bigger than the
lock time.

• Rows_examined: The lesser the rows examined, the shorter the time the query
will take. You can use an index to reduce this time. Rows_examined should
be much bigger than Rows_sent in most cases.

• Query_plan: This gives the information from Full_scan to Merge_passes.
It should also give important information that helps you understand where
a query spends too much time.

This information is just the first step for investigation. You need to dive more into
your SQL query or the application that creates the SQL query.

www.allitebooks.com

http://www.allitebooks.org

Performance Analysis

[46]

The show explain command
The show explain feature is only available in MariaDB 10. It allows you to get an
explanation directly from a running process, for example, if you use the loop.sql
script once again. At the time of insertion, execute a show processlist command:

MariaDB [chapter2]> SHOW PROCESSLIST\G;

[...]

*************************** 2. row ***************************

 Id: 81

 User: root

 Host: localhost

 db: chapter2

 Command: Query

 Time: 0

 State: query end

 Info: INSERT INTO `s_explain`(`id`, `ts`) VALUES (FLOOR(RAND() *
@MAX_INSERT), NOW())

Progress: 0.000

2 rows in set (0.00 sec)

We can see here the 81 ID, which is the INSERT command in the loop.sql script.
We're going to analyze it with the show explain command:

MariaDB [chapter2]> SHOW EXPLAIN FOR 81\G;

*************************** 1. row ***************************

 id: 1

 select_type: INSERT

 table: s_explain

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: NULL

 Extra:

1 row in set, 1 warning (0.01 sec)

This could be very interesting on a really long slow query, without having to wait till
the end of it to perform an explain analysis.

Chapter 2

[47]

Profiling
Profiling permits you to benchmark information that indicates resource usages
during a session. This is used when we want to get information on a specified query.
Here are the types of information:

• Block I/O
• Context switches
• CPU
• IPC
• Memory
• Page faults
• Source
• Swaps
• All

First of all, you need to know that profiling on a production server is not
recommended because of the performance degradation it can cause.

To enable profiling, use the following command:

MariaDB [none]> SET PROFILING=1;

Perform all the query tasks you want to profile and then list them:

MariaDB [none]> SHOW PROFILES;

+----------+------------+-------------------------+

| Query_ID | Duration | Query |

+----------+------------+-------------------------+

| 1 | 0.30798532 | select * from s_explain |

| 2 | 0.25341312 | select * from s_explain |

+----------+------------+-------------------------+

In the preceding command-line output, you can see that we've two query IDs. To get
information related to the first Query_ID, with extra columns for the CPU, use the
following command:

MariaDB [none]> SHOW PROFILE CPU FOR QUERY 1;

+--------------------------------+----------+----------+------------+

| Status | Duration | CPU_user | CPU_system |

+--------------------------------+----------+----------+------------+

Performance Analysis

[48]

| starting | 0.000034 | 0.000000 | 0.000000 |

| Waiting for query cache lock | 0.000009 | 0.000000 | 0.000000 |

| init | 0.000008 | 0.000000 | 0.000000 |

[...]

| init | 0.000016 | 0.000000 | 0.000000 |

| optimizing | 0.000011 | 0.000000 | 0.000000 |

| statistics | 0.000050 | 0.000000 | 0.000000 |

| preparing | 0.000017 | 0.000000 | 0.000000 |

| executing | 0.000008 | 0.000000 | 0.000000 |

| Sending data | 0.007369 | 0.004001 | 0.000000 |

| Waiting for query cache lock | 0.000020 | 0.000000 | 0.000000 |

| Sending data | 0.003420 | 0.004000 | 0.000000 |

[...]

| Sending data | 0.271156 | 0.272017 | 0.000000 |

| end | 0.000020 | 0.000000 | 0.000000 |

| query end | 0.000010 | 0.000000 | 0.000000 |

| closing tables | 0.000015 | 0.000000 | 0.000000 |

| freeing items | 0.000009 | 0.000000 | 0.000000 |

| updating status | 0.000041 | 0.000000 | 0.000000 |

| cleaning up | 0.000029 | 0.000000 | 0.000000 |

+--------------------------------+----------+----------+------------+

You will find a lot of interesting information in the preceding command-line output.
Here is an overview:

• init: This gives information of the starting process for the storage engine
• optimizing: This gives the query plan information as given in the slow

query logs
• statistics: This shows the engine locking and optimization
• executing: This shows the execution time (as in Query_plan)

In the preceding command line, we've just specified the CPU type and got all the
extra columns related to it. If we want maximum information, replace CPU with ALL.

So, now you're able to compare multiple requests, see their evolution, and track the
used resources with them.

Chapter 2

[49]

Performance schema
In Version 5.5.3, you can use the performance_schema monitoring feature of
MariaDB to monitor performance. It has been implemented as an engine (that's
why you can see it on a show engines command) with a database that stores
data performance.

To activate the performance schema, add this line to your my.cnf configuration file:

performance_schema=on

You can then check whether it has been correctly activated:

MariaDB [(none)]> SHOW VARIABLES LIKE 'performance_schema';

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| performance_schema | ON |

+--------------------+-------+

1 row in set (0.00 sec)

You can now list the complete table list to see the available monitoring features:

MariaDB [(none)]> USE PERFORMANCE_SCHEMA;

MariaDB [performance_schema]> show tables;

+--+

| Tables_in_performance_schema |

+--+

| accounts |

| cond_instances |

| events_stages_current |

[...]

| table_lock_waits_summary_by_table |

| threads |

| users |

+--+

52 rows in set (0.00 sec)

You can get a complete list of all the features in the MariaDB documentation at
https://mariadb.com/kb/en/list-of-performance-schema-tables/.

Performance Analysis

[50]

User statistics
Since MariaDB 5.2, a patch from Google, Percona, and other companies has been
implemented, which permits you to view the user statistics, client statistics, index
statistics (and usage), and table statistics.

You can activate it on the fly using the following command:

MariaDB [(none)]> SET GLOBAL userstat=1;

Alternatively, you can make it persistent in the MariaDB configuration (my.cnf)
using the following code:

[mysqld]
userstat = 1

You now have access to the new FLUSH and SHOW commands:

MariaDB [(none)]> FLUSH TABLE_STATISTICS

MariaDB [(none)]> FLUSH INDEX_STATISTICS

MariaDB [(none)]> FLUSH USER_STATISTICS

MariaDB [(none)]> FLUSH CLIENT_STATISTICS

MariaDB [(none)]> SHOW CLIENT_STATISTICS

MariaDB [(none)]> SHOW USER_STATISTICS

MariaDB [(none)]> SHOW INDEX_STATISTICS

MariaDB [(none)]> SHOW TABLE_STATISTICS

Here is an example of what the user statistics look like:

MariaDB [(none)]> SHOW USER_STATISTICS\G;

*************************** 1. row ***************************

 User: root

 Total_connections: 2

Concurrent_connections: 0

 Connected_time: 23

 Busy_time: 0.002942

 Cpu_time: 0.0024703

 Bytes_received: 96

 Bytes_sent: 5147

 Binlog_bytes_written: 0

 Rows_read: 0

 Rows_sent: 3

Chapter 2

[51]

 Rows_deleted: 0

 Rows_inserted: 0

 Rows_updated: 0

 Select_commands: 1

 Update_commands: 0

 Other_commands: 0

 Commit_transactions: 0

 Rollback_transactions: 0

 Denied_connections: 0

 Lost_connections: 0

 Access_denied: 0

 Empty_queries: 0

1 row in set (0.00 sec)

You can get the fine statistics about a user through the preceding command.

Sysbench
Sysbench is a benchmarking tool that has several modes to bench:

• - fileio: This performs the file I/O test
• - cpu: This performs the CPU performance test
• - memory: This performs the memory functions speed test
• - threads: This performs the thread subsystem performance test
• - mutex: This performs the mutex performance test
• - oltp: This performs the OLTP test

To install it, run this command:

> aptitude install sysbench

The common test is to use the Online Transaction Processing (OLTP) scenario
with small transactions to hit an optimized database. We will pass arguments
to the command to simulate application threads (the --num-threads argument).

You can run this OLTP test with two kinds of scenarios:

• Read only (14 SELECT queries per transaction)
• Read/Write (14 SELECT, 1 INSERT, 1 UPDATE, and 1 DELETE queries

per transaction)

Performance Analysis

[52]

The available version in Debian Wheezy is 0.4. A newer version exists with more
interesting results such as a reporting interval every x sec. In addition, you can also
find a complete set of tests from the sysbench repository. That's why we're not going
to use the sysbench version from the MariaDB repository. To install it, you need to
proceed as follows:

> aptitude install automake libtool libmariadbclient-dev bzr

> bzr branch lp:sysbench

> cd sysbench

> ./autogen.sh

> ./configure

> make

The sysbench binary is now available in the sysbench folder. We can now test it!
First of all, you need to prepare your instance. This will create a dedicated username
and database for the tests (sbtest):

> cd sysbench

> ./sysbench --test=tests/db/oltp.lua --num-threads=4 --max-time=30 -
-mysql-user=root prepare

sysbench 0.5: multi-threaded system evaluation benchmark

Creating table 'sbtest1'...

Inserting 10000 records into 'sbtest1'

You can now run the test:

> ./sysbench --test=tests/db/oltp.lua --num-threads=4 --max-time=30 -
-mysql-user=root --report-interval=5 run

sysbench 0.5: multi-threaded system evaluation benchmark

Running the test with following options:

Number of threads: 4

Report intermediate results every 5 second(s)

Random number generator seed is 0 and will be ignored

 Threads started!

[5s] threads: 4, tps: 267.47, reads/s: 3751.99, writes/s: 1069.88,
response time: 23.65ms (95%)

[10s] threads: 4, tps: 271.20, reads/s: 3796.78, writes/s: 1085.59,
response time: 23.06ms (95%)

Chapter 2

[53]

[15s] threads: 4, tps: 270.20, reads/s: 3785.20, writes/s: 1080.80,
response time: 21.80ms (95%)

[20s] threads: 4, tps: 243.80, reads/s: 3412.38, writes/s: 975.19,
response time: 23.80ms (95%)

[25s] threads: 4, tps: 265.00, reads/s: 3709.83, writes/s: 1060.81,
response time: 22.29ms (95%)

[30s] threads: 4, tps: 257.60, reads/s: 3607.19, writes/s: 1029.60,
response time: 24.05ms (95%)

OLTP test statistics:

 queries performed:

 read: 110320

 write: 31520

 other: 15760

 total: 157600

 transactions: 7880 (262.55 per sec.)

 deadlocks: 0 (0.00 per sec.)

 read/write requests: 141840 (4725.92 per sec.)

 other operations: 15760 (525.10 per sec.)

 General statistics:

 total time: 30.0132s

 total number of events: 7880

 total time taken by event execution: 119.9270s

 response time:

 min: 5.68ms

 avg: 15.22ms

 max: 110.65ms

 approx. 95 percentile: 23.15ms

 Threads fairness:

 events (avg/stddev): 1970.0000/10.32

 execution time (avg/stddev): 29.9817/0.01

We can see here how many operations this instance is able to handle with its
configuration. In this case, we've seen the basic test with OLTP processing.

Performance Analysis

[54]

You can find other tests in the tests/db/ location. Sysbench is an old and common
tool to perform tests against MariaDB.

You are now able to perform changes and see the benefits of them with sysbench.

Percona Toolkits
Percona Toolkits is a suite of tools for MySQL and MariaDB. They are very useful in
many situations and well documented (the main website is http://www.percona.
com/software/percona-toolkit). To install them, you can add the repository:

> aptitude install python-software-properties

> apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A

> add-apt-repository 'deb http://repo.percona.com/apt wheezy main'

Then, configure APT-Pining to avoid the Percona repository overriding
MariaDB's repository and conflict some packages. So, create this file at /etc/apt/
preferences.d/00percona.pref and add the following content to it:

Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100

You're now ready for the installation of the package:

> aptitude update

> aptitude install percona-toolkit

That's it! Several binaries starting with pt- are now available on your system.

pt-query-digest
The pt-query-digest tool will help you analyze the MariaDB slow queries and
binary logfiles. To get a report on slow queries, run pt-query-digest directly
on them:

> pt-query-digest /var/log/mysql/mariadb-slow.log

Rank Query ID Response time Calls R/Call Apdx V/M Item

==== ================== ============= ===== ====== ==== =====
==========

1 0x1CB7FFA97DE5F579 1.7216 23.9% 6 0.2869 1.00 0.00
DELETE SELECT ttrss_entries ttrss_user_entries

2 0xB44E823E1547F193 1.1306 15.7% 6 0.1884 1.00 0.00
SELECT ttrss_feeds

Chapter 2

[55]

3 0x813031B8BBC3B329 0.9622 13.4% 3194 0.0003 1.00 0.00
COMMIT

4 0x8DB6A7CBF78AD7EA 0.5197 7.2% 108 0.0048 1.00 0.01
SELECT ttrss_user_entries

5 0x559EB525379A2B6B 0.4575 6.4% 1941 0.0002 1.00 0.00
SELECT ttrss_entries ttrss_user_entries

Here is the summary of the five slowest queries and the first query (rank 1) takes
23.9% of the total response time.

You also have the analysis of all the queries to help you more. There are other
interesting options if you have a huge slow query logfile: --since and –until.
These options will help you have a better filter. Another one is –limit to display
the 90 percent or the top 30 worst queries:

> pt-query-digest –limit 90%:30

More than that, you can have a report from tcpdump or through the MariaDB
process list command.

pt-stalk
The pt-stalk tool can save you a lot of time. When you're facing random
performance issues, happening during a short period of time, it's very hard to
analyze. pt-stalk will help you gather data when a trigger condition occurs.

Let's say we want to start data gathering as soon as (cycles=1) there are five more
(threshold) connected threads (variables):

> pt-stalk --threshold=5 --variable=connected --cycles=1 -- -u<user>
--p<passoword>

2014_01_11_07_29_58 Starting /usr/bin/pt-stalk --function=status --
variable=connected --threshold=5 --match= --cycles=1 --interval=1 --
iterations= --run-time=30 --sleep=300 --dest=/var/lib/pt-stalk --
prefix= --notify-by-email= --log=/var/log/pt-stalk.log --
pid=/var/run/pt-stalk.pid

2014_01_11_07_29_59 Check results: connected=5, matched=no,
cycles_true=0

2014_01_11_07_30_00 Check results: connected=5, matched=no,
cycles_true=0

2014_01_11_07_30_01 Check results: connected=5, matched=no,
cycles_true=0

2014_01_11_07_30_02 Check results: connected=6, matched=yes,
cycles_true=1

www.allitebooks.com

http://www.allitebooks.org

Performance Analysis

[56]

2014_01_11_07_30_02 Collect triggered

2014_01_11_07_30_02 Collector PID 8008

2014_01_11_07_30_02 Sleeping 300 seconds after collect

You can also run it as a daemon, change the default destination, and be notified by
e-mail. The gathering of data is not only on the MariaDB side, but the system side
as well.

Here is the list of what kind of result you get from pt-stalk:

> ls /var/lib/pt-stalk | sed 's/2014_01_11.*-//' | column

df processlist lsof trigger opentables1

space procstat meminfo variables opentables2

diskstats procvmstat status1 vmstat output

hostname ps status2 overall pmap

innodbstatus1 slabinfo mysqladmin df processlist

innodbstatus2 sysctl netstat space procstat

interrupts top netstat_s diskstats procvmstat

lsof trigger opentables1 hostname ps

meminfo variables opentables2 innodbstatus1 slabinfo

status1 vmstat output innodbstatus2 sysctl

status2 overall pmap interrupts top

mysqladmin df processlist lsof trigger

netstat space procstat meminfo variables

netstat_s diskstats procvmstat status1 vmstat

opentables1 hostname ps status2 overall

opentables2 innodbstatus1 slabinfo mysqladmin

output innodbstatus2 sysctl netstat

pmap interrupts top netstat_s

Also, another interesting option if you're located on the server and the problem
occurs at this moment is that you can collect data with no delay by using the
--no-stalk option.

pt-summary
The pt-summary tool provides information related to the system. It could help to see
the basic issues related to the system side:

> pt-summary

Percona Toolkit System Summary Report

Chapter 2

[57]

 Date | 2014-06-15 11:41:04 UTC (local TZ: UTC +0000)

 Hostname | mariadb

 Uptime | 1 min, 1 user, load average: 0.27, 0.09, 0.03

 System | innotek GmbH; VirtualBox; v1.2 (Other)

 Service Tag | 0

 Platform | Linux

 Release | Debian GNU/Linux 7.5 (wheezy) (wheezy)

 Kernel | 3.2.0-4-amd64

Architecture | CPU = 64-bit, OS = 64-bit

 Threading | NPTL 2.13

 SELinux | No SELinux detected

 Virtualized | VirtualBox

Processor

 Processors | physical = 1, cores = 2, virtual = 2, hyperthreading =
no

 Speeds | 2x2388.297

 Models | 2xIntel(R) Core(TM) i5-4258U CPU @ 2.40GHz

 Caches | 2x6144 KB

Memory

 Total | 496.8M

 Free | 166.5M

 Used | physical = 330.3M, swap allocated = 300.0M, swap used
= 0.0, virtual = 330.3M

 Buffers | 18.9M

 Caches | 231.5M

pt-mysql-summary
The pt-mysql-summary tool will give you a summary of your MariaDB instance
with schema and databases (this will require a dump). This is just a tool to
summarize all the information of your instance and it gives you an overview
of the health of your database instance:

> pt-mysql-summary

Percona Toolkit MySQL Summary Report

 System time | 2014-01-11 07:11:13 UTC (local TZ: UTC
+0000)

Instances

Performance Analysis

[58]

 Port Data Directory Nice OOM Socket

 ===== ========================== ==== === ======

 3306 /var/lib/mysql 0 0 /var/run/mysqld/mysqld.sock

MySQL Executable

 Path to executable | /usr/sbin/mysqld

 Has symbols | No

Report On Port 3306

 User | root@localhost

 Time | 2014-01-11 07:11:13 (UTC)

 Hostname | mariadb

 Version | 5.5.34-MariaDB-1~wheezy-log mariadb.org
binary distribution

 Built On | debian-linux-gnu x86_64

 Started | 2014-01-11 05:59 (up 0+01:11:51)

 Databases | 3

 Datadir | /var/lib/mysql/

 Processes | 1 connected, 1 running

 Replication | Is not a slave, has 0 slaves connected

 Pidfile | /var/run/mysqld/mysqld.pid (exists)

It's usually good to be sure your configuration is conformed to your wishes. It's
recommended to take care of the configuration information, if your instance has
not been running with at least 24 hours of a normal load.

pt-duplicate-key-checker
The pt-duplicate-key-checker tool will find duplicate indexes and foreign
keys for you in your database tables. It reads the result of the show create table
commands and related queries to find suspicious indexes. The result is really explicit:

> pt-duplicate-key-checker

##
##

tinyrss.ttrss_prefs

##
##

ttrss_prefs_pref_name_idx is a duplicate of PRIMARY

Key definitions:

Chapter 2

[59]

KEY `ttrss_prefs_pref_name_idx` (`pref_name`),

PRIMARY KEY (`pref_name`),

Column types:

`pref_name` varchar(250) not null

To remove this duplicate index, execute:

ALTER TABLE `tinyrss`.`ttrss_prefs` DROP INDEX
`ttrss_prefs_pref_name_idx`;

##
##

Summary of indexes

##
##

Size Duplicate Indexes 73241117

Total Duplicate Indexes 17

Total Indexes 819

You directly got the SQL queries to remove the duplicated index and a summary of
the whole analysis. The duplicate index could really slow down your write queries,
so you should be sure that your index is correctly placed. The same information
could be shown for the foreign keys.

You can directly apply the changes suggested by pt-duplicate-key-checker
as follows:

> pt-duplicate-key-checker | mysql

pt-index-usage
The pt-index-usage tool will use the slow query logs to analyze which indexes are
unused. Removing those indexes will speed up the specified queries. However, the
listed indexes may be used by other queries to make them faster. For example, if the
long_query_time index is set to 10s and pt-index-usage reports some unused
indexes, this doesn't mean you have to remove them as they can be used on other
slow queries with an execution time lower than 10s. So, you absolutely need to be
sure it won't affect other requests before deleting an index.

Performance Analysis

[60]

The pt-index-usage tool can also do other interesting things, such as check for
queries that have unstable plans or which indexes have alternatives that were
never used, and so on. The following command analyzes the slow query logs:

> pt-index-usage /var/log/mysql/mariadb-slow.log

ALTER TABLE `tinyrss`.`ttrss_enclosures` DROP KEY `post_id`, DROP KEY
`ttrss_enclosures_post_id_idx`; -- type:non-unique

ALTER TABLE `tinyrss`.`ttrss_entries` DROP KEY
`ttrss_entries_date_entered_index`, DROP KEY
`ttrss_entries_guid_index`, DROP KEY `ttrss_entries_updated_idx`; --
type:non-unique

ALTER TABLE `tinyrss`.`ttrss_user_entries` DROP KEY `feed_id`, DROP
KEY `orig_feed_id`, DROP KEY `owner_uid`, DROP KEY
`ttrss_user_entries_feed_id`, DROP KEY
`ttrss_user_entries_owner_uid_index`, DROP KEY
`ttrss_user_entries_ref_id_index`, DROP KEY
`ttrss_user_entries_unread_idx`; -- type:non-unique

Process list progression
You certainly know the show process list command that shows you the current
list of running queries on your MariaDB instance. Since the Version 5.3 of MariaDB,
another option is available that shows you the progression of certain long tasks such
as the following:

• ALTER TABLE

• CREATE INDEX

• DROP INDEX

• LOAD DATA IN FILE

• CHECK TABLE

• REPAIR TABLE

• ANALYZE TABLE

• OPTIMIZE TABLE

By default, it's enabled in MariaDB, but your client or driver should be recent
enough to support this feature. MariaDB sends back the information to the client
every 5 seconds by default.

Here is an example of changing the storage engine of a table:

MariaDB [chapter2]> ALTER TABLE s_explain ENGINE = Aria;

Stage: 1 of 2 'copy to tmp table' 9.09e+03% of stage done

Chapter 2

[61]

You can see the progression simply by running the ALTER TABLE command. The
progression is also available from the processlist command:

MariaDB [(none)]> SHOW PROCESSLIST\G;

[...]

*************************** 2. row ***************************

 Id: 70

 User: root

 Host: localhost

 db: chapter2

 Command: Query

 Time: 0

 State: copy to tmp table

 Info: ALTER TABLE s_explain ENGINE = Aria

Progress: 22.767

2 rows in set (0.00 sec)

Then, when it's finished, it returns the information:

ALTER TABLE s_explain ENGINE = Aria;

Query OK, 100000 rows affected (0.85 sec)

Records: 100000 Duplicates: 0 Warnings: 0

With the MariaDB built-in commands, the progression is supported. However, if you
are using a MariaDB driver, you can change the default update values directly from
the driver connection process.

mytop
mytop was a powerful tool for MySQL, which is now deprecated. Fortunately, the
MariaDB project has continued this tool and included advanced features, such as
progression as described in the preceding section. It permits us to show the current
running queries and update often using the top command. As this is an interactive
command, several options exist. To download it, get it from the MariaDB source
code and add it to your binary PATH environment:

wget -O /usr/bin/mytop "http://bazaar.launchpad.net/~maria-
captains/maria/10.0-base/download/sergii%40pisem.net-20121017170408-
6g093t8gm948zore/mytop.sh-20110627161159-12i6t8if6e5q5v6c-1/mytop.sh"

chmod 755 /usr/bin/mytop

Performance Analysis

[62]

Once mytop is installed, you can call it with extra parameters to connect to the
MariaDB instance. You can also use the ~/.mytop file to set your default parameters.
With the current VirtualBox configuration, you only need to define the selected
database (here, it is not specified, so all databases are matched), as shown in the
following screenshot:

You can see the current list of running processes. As mytop is interactive, you can
type ? to get the full list of available options.

One of the most used features is killing a process with the k key. It's the solution
to stop a query that locks tables and slows down all your applications. Of course,
most of the time, it's preferable to know why some queries were running before
killing them.

innotop
innotop is an InnoDB transaction/status monitor. It is more advanced than mytop
as it knows how to monitor several kinds of things. Several modes exist, and they
basically perform the following operations:

• Replication and Galera cluster monitoring
• Query monitoring
• Transaction monitoring

Chapter 2

[63]

The innotop command works like the top command and refreshes its data
periodically. Here is an example:

> innotop

When Load QPS Slow QCacheHit KCacheHit BpsIn BpsOut

Now 0.00 254.85 0 19.00% 100.00% 35.10k 66.42k

Total 0.00 89.87 3 42.63% 98.21% 14.41k 86.21k

Cmd ID State User Host DB Time Query

You can monitor multiple servers at the same time. There are a lot of options and
hotkeys. You can set a configuration file if you always want something specific or
with a lot of servers to connect to.

mysqlsla
mysqlsla is a parser of MySQL/MariaDB slow, binary, and microslow logs. It filters
and analyzes logs in order to create a custom report from the desired logs and their
meta-property values.

To install mysqlsla, get the latest version, install it, and create a symbolic link in
order to get it in your classic PATH environment:

> wget http://hackmysql.com/scripts/mysqlsla

> chmod +x mysqlsla

You're now ready to make a report from the slow query logs; for example:

> mysqlsla -lt slow /var/log/mysql/mariadb-slow.log

Report for msl logs: /var/log/mysql/mariadb-slow.log

183 queries total, 31 unique

Sorted by 't_sum'

Grand Totals: Time 559 s, Lock 0 s, Rows sent 460, Rows Examined 0

__
001 ___

Count : 11 (6.01%)

Time : 558.794256 s total, 50.799478 s avg, 13.793118 s to
59.643728 s max (99.98%)

 95% of Time : 499.150528 s total, 49.915053 s avg, 13.793118 s to
58.413305 s max

Performance Analysis

[64]

Lock Time (s) : 462 ms total, 42 ms avg, 26 ms to 155 ms max (1.03%)

 95% of Lock : 307 ms total, 31 ms avg, 26 ms to 36 ms max

Rows sent : 0 avg, 0 to 0 max (0.00%)

Rows examined : 0 avg, 0 to 0 max (0.00%)

Database : chapter2

Users :

 root@localhost : 100.00% (11) of query, 66.12% (121) of all users

Query abstract:

SET timestamp=N; CALL proc_name();

Query sample:

SET timestamp=1389652094;

call proc_name();

You can see here a nice report that is easy to analyze. You can also check the man
for advanced sorting filters and usages.

Summary
In this chapter, you saw some tools and solutions to find where slowdowns and
bottlenecks are located. In some cases, SQL queries are correctly optimized and the
hardware should be enough to get your database working correctly. In other cases,
other solutions exist such as the choice of the storage engine or the optimization.
That's what we're going to see in the next chapter.

Performance Optimizations
In this chapter, you will see how to choose the engine depending on your needs,
how to optimize them, and how to optimize your operating system for MariaDB.

Checking all the requests passed to your MariaDB database can be a long quest.
When you're facing slowdown issues on an application, some other elements should
be taken into consideration before auditing all your application code. For example,
there is a lot of engine optimization that can be checked and adjusted before diving
into the code. There are also several engines that can answer your needs. We'll see
here a few things that you need to check, and that can be easily verified.

In this chapter, a lot of MariaDB global variables will be seen and configured. Some
of them are simply counters. Before taking them into account, it's recommended that
you run a MariaDB instance for at least 24 hours with a normal load. If you set new
environment variables and want to reset those counters, it's recommended that you
restart the instance.

Just as with any kind of optimization test, if you want to make optimization changes,
try them one by one to be sure that they have the desired effect. Of course, even if the
optimizations mentioned in this chapter are powerful, some of them depend on your
hardware. It's strongly recommended that you perform a test on a pre-production
server before applying changes to production.

Also, you'll see how to set (without restarting the MariaDB instance) global values on
the fly and how to set them permanently.

You can use the Vagrantfile from the previous chapter for the tests mentioned in
this chapter.

Performance Optimizations

[66]

Resetting statistics
In this chapter, we'll play with the MariaDB statistics. Sometimes, you'll need to reset
them. You have two choices to do so:

• Do it on the fly
• Make the change on the configuration file and restart the MariaDB instance

We'll see here how to flush the statistics on the fly with the mysqladmin command
as follows:

> mysqladmin flush-all-statistics

If you prefer using a classical command, here's one:

MariaDB [(none)]> FLUSH STATUS;

That's it!

Global statistics
Here is an easy but often-forgotten command to quickly see the status of your
MariaDB instance:

> mysqladmin status

Uptime: 22 Threads: 1 Questions: 88 Slow queries: 0 Opens: 99
Flush tables: 1 Open tables: 78 Queries per second avg: 4.000

Here, you've got one of the most important pieces of information. In this chapter,
we'll see what all this information means.

DNS connections
Here is a basic option that can reduce the connection time.

It's preferable to use an IP connection instead of DNS if you want to
reduce latency. More than that, this will prevent your database server
from going down when your DNS is down or responding slowly.

Chapter 3

[67]

There is a configuration option that denies naming the connection that you can add
to your MariaDB configuration file (my.cnf):

[mysqld]

skip_name_resolve

Before going ahead, you need to check the current configuration of your user with
the allowed hostname. You need to check that no hostnames are present and check
for wildcard hostnames as well:

MariaDB [(none)]> SELECT USER,HOST FROM mysql.user;

+------------------+-----------+

| USER | HOST |

+------------------+-----------+

| root | 127.0.0.1 |

| root | ::1 |

| debian-sys-maint | localhost |

| root | localhost |

| root | mariadb |

+------------------+-----------+

In the HOST table, only the IP address should remain!

You now need to restart your MariaDB instance and check out the logs! It's
preferable to validate that all your applications are correctly configured before
making this change in production!

The DNS cache server
We covered the fastest solution in the previous sections. However, you may want
to keep (for several reasons) the usage of the DNS.

If you do not care about latency, you can also add a local DNS cache server
(on the same host as your MariaDB instance). For example, we can use a Bind9
server. Here is how to set one up:

> aptitude install bind9

Edit the named.conf.options file in /etc/bind/, and add your DNS servers in
the forwarders brackets like this:

forwarders {
 8.8.8.8;
 8.8.4.4;
};

Performance Optimizations

[68]

Then, start the Bind9 service. To finish, add a short timeout parameter in your
resolv.conf file (in /etc) to quickly switch to another server in the event of a
problem (here, 1 second):

domain example.com
search example.com
options timeout:1
nameserver 127.0.0.1
nameserver 8.8.8.8
nameserver 8.8.4.4

Now, to test the request, you can use the dig command and see where it goes if the
bind server is either up or down:

> dig A mariadb.org

...

;; Query time: 59 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Tue Jun 17 11:38:00 2014

;; MSG SIZE rcvd: 256

With the local DNS server, you will see a DNS request the first time, which could
take up to several hundreds of milliseconds to resolve (depending on your network
speed and DNS server availability).

The next time you need to access the record, it will take less than 10 milliseconds as it
is in the cache (the cache will depend on the TTL of the record you're targeting).

Maximum connections
By default, MariaDB is configured for 150 connections plus one for root access if not
already used (so 151 connections). In most cases, 150 is really enough, but it might
not be in your case if you've got a lot of connection errors on your application.

The recommended action to change this value is the persistent way and then
restarting MariaDB (of course, this will kill all the current persistent connections).
So, change this value in the configuration file:

[mysqld]
max_connections = 200

Chapter 3

[69]

After rebooting MariaDB, you should be able to see the new value:

MariaDB [(none)]> select @@global.max_connections;

+--------------------------+

| @@global.max_connections |

+--------------------------+

| 200 |

+--------------------------+

You can change the number of connections on the fly like this:

MariaDB [(none)]> SET GLOBAL max_connections=1000;

However, you may be in a situation where no connections are available for you to
connect. That's why there's a trick using gdb (the C debugger), and you need to have
it installed on your server. This solution is not really recommended in production;
anyway, if you really do not have the choice and prefer doing it this way instead
of waiting for a reboot, here is the solution:

> gdb -p $(cat /var/run/mysqld/mysqld.pid) -ex "set
max_connections=1000" -batch

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-
gnu/libthread_db.so.1".

[New Thread 0x7f346abb4700 (LWP 3043)]

[New Thread 0x7f346b3fe700 (LWP 3035)]

[...]

[New Thread 0x7f34777fe700 (LWP 3003)]

[New Thread 0x7f3477fff700 (LWP 3002)]

[New Thread 0x7f34a2bff700 (LWP 3001)]

0x00007f34a3860e33 in poll () from /lib/x86_64-linux-gnu/libc.so.6

Now, if you look at the @@global.max_connections value, it will be set to 1000.
This command will catch the PID of MariaDB, find the maximum_connections
value in the memory, and change it to the one you've set.

You shouldn't go over 1,000 connections (threads) per instance, as the server
may not be as responsive as it should be due to context switching, contention for
hot locks, or bad CPU cache localities. The best way to avoid that is to change the
way your application uses your MariaDB instance. Several solutions exist, such as
using a connection pool or a thread pool, allowing you to have more than 15,000
connected threads.

Performance Optimizations

[70]

The binlogs cache
The binlogs cache has been split into two versions, which are as follows:

• Transactional cache
• Nontransactional cache (introduced in version 5.5)

Both caches can be tuned, and their usage depends on the engine you're using.
For example, InnoDB/XtraDB are transactional engines, while MyISAM is a
nontransactional engine. There is, of course, no sense in tuning a transactional
cache if you're only using the MyISAM engine, and vice versa. By the way, the
transactional cache shouldn't move if you're not using it.

Binlogs are mandatory for replication systems. If the cache is not correctly used,
the disk will be used and slowdowns are felt. So, the first thing to do is to check
the correct usage of that cache.

Binlogs for transactional caches
For transactional caches, you need to check the global values:

MariaDB [(none)]> show global status like 'Binlog_cache%';

+-----------------------+-------+

| Variable_name | Value |

+-----------------------+-------+

| Binlog_cache_disk_use | 0 |

| Binlog_cache_use | 128 |

+-----------------------+-------+

2 rows in set (0.00 sec)

This cache is the transactional cache. This corresponds to the following:

• Binlog_cache_use: This value should grow to get maximum performance.
This indicates how many transactions have been written to the cache. So, if
it's growing, it means that the cache is used, and this is good.

• Binlog_cache_disk_use: This value should stay at 0. If this value grows, it
means that transactions were too big to enter into the cache (more than 32 K).
So, the disk has to be used, which reduces the performance.

Chapter 3

[71]

You can dynamically change the default size of the binlog cache (to 64 K for
example) as follows:

MariaDB [(none)]> SET global binlog_cache_size=64*1024;

And you can set it in your configuration file (my.cnf) to be persistent as follows:

[mysqld]
binlog_cache_size = 64k

Do not go over 4 G of binlog cache to avoid performance degradation.

Binlogs for nontransactional caches
For nontransactional (statement) caches, it works exactly as it does for transactional
caches. Here are the nontransactional binlog values:

MariaDB [(none)]> show global status like 'Binlog_stmt%';

+----------------------------+-------+

| Variable_name | Value |

+----------------------------+-------+

| Binlog_stmt_cache_disk_use | 0 |

| Binlog_stmt_cache_use | 68 |

+----------------------------+-------+

2 rows in set (0.00 sec)

To change the default size of the cache (32 K) to 64 K, the code is as follows:

MariaDB [(none)]> SET global binlog_stmt_cache_size=64*1024;

And to make it persistent, add this line to the configuration file:

[mysqld]
binlog_stmt_cache_size=64k;

Temporary tables
Temporary tables show you how many temporary files are created in the disk
because they couldn't be set in memory. To show them, you can use the global
status information:

MariaDB [(none)]> show global status like 'Created_tmp%';

+-------------------------+--------+

| Variable_name | Value |

Performance Optimizations

[72]

+-------------------------+--------+

| Created_tmp_disk_tables | 13363 |

| Created_tmp_files | 6 |

| Created_tmp_tables | 107681 |

+-------------------------+--------+

3 rows in set (0.00 sec)

You can see all the temporarily created disk tables, files, and tables here. Here is a
description of them to better understand how they work:

• Created_tmp_disk_tables: This value should stay at 0 instead of getting
BLOB or TEXT columns in your databases. They are used when the in-memory
tables become too large.

• Created_tmp_files: This is how many temporary files were created. When
Created_tmp_disk_tables is not enough, disk files are created, and the
counter increments.

• Created_tmp_tables: This is the number of internal temporary
tables created.

If the Created_tmp_disk_tables value becomes too big, you need to adjust the
tmp_table_size or max_heap_table_size values. The maximum Created_tmp_
disk_tables size is the minimum of tmp_table_size.

If you absolutely need BLOB or TEXT columns and want to have better performance,
you should consider thinking about tmpfs as the temporary directory.

You can check these values in the global status values:

MariaDB [(none)]> show global variables like 'tmp_table_size';

+----------------+----------+

| Variable_name | Value |

+----------------+----------+

| tmp_table_size | 33554432 |

+----------------+----------+

1 row in set (0.00 sec)

MariaDB [(none)]> show global variables like 'max_heap_table_size';

+---------------------+----------+

| Variable_name | Value |

+---------------------+----------+

| max_heap_table_size | 33554432 |

+---------------------+----------+

1 row in set (0.00 sec)

Chapter 3

[73]

The default value is 32 M. To set a new size, add the following lines in your MariaDB
configuration file (my.cnf):

[mysqld]

tmp_table_size = 64M
max_heap_table_size = 64M

And if you want those new values to be applicable without restarting, here's how
you can go about it:

MariaDB [(none)]> SET global tmp_table_size=64*1024*1024;

MariaDB [(none)]> SET global max_heap_table_size=64*1024*1024;

Open tables
Some tables can't be cached, and there are also statistics for them. In MySQL
versions older than 5.1.3, the option was called table_cache. It's now called
table_open_cache in MariaDB.

To view the current status, enter the following command:

MariaDB [(none)]> SHOW global STATUS LIKE 'Open%';

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| Open_files | 288 |

| Open_streams | 0 |

| Open_table_definitions | 329 |

| Open_tables | 222 |

| Opened_files | 767 |

| Opened_table_definitions | 296 |

| Opened_tables | 525 |

| Opened_views | 0 |

+--------------------------+-------+

8 rows in set (0.00 sec)

We can see here the number of currently opening tables (222) and those already
opened (525). Check regularly that the opened tables are not growing too fast. If this
is the case, you should consider increasing the allocated memory for the table cache.

Performance Optimizations

[74]

To see the current settings, run the following command:

MariaDB [(none)]> select @@table_open_cache;

+--------------------+

| @@table_open_cache |

+--------------------+

| 400 |

+--------------------+

1 row in set (0.00 sec)

Here, 400 is the default size for MariaDB 10.

Try to grow this value to get better performance. You should also take care about
setting too high a value, which could result in a nonstarting MariaDB instance.
This is generally because of the file descriptor limitation from your operating system.

If you want to get an idea of what the table_open_cache size should be, it's
approximately max_connections * X. X represents the maximum number of
tables per join of any executed queries.

Another important thing is that you shouldn't change this value on the fly
to avoid side effects. So, to change this value, add the following line in your
MariaDB configuration file:

[mysqld]
table_open_cache = 1024

Then, restart MariaDB to apply the new configuration.

Do not set the table_open_cache value greater than 4096, or
your performance could be degraded.

The table_definition_cache value speeds up table opening if there are a large
number of tables increasing the cache size (the default is 400). So, if you have a lot
of open tables, you should increase this value.

To optimize performance, add similar lines in your configuration file as follows:

[mysqld]
table_definition_cache = 16384

Chapter 3

[75]

The query cache
The query cache stores the results of the previously executed select statements so
that they may be reused if the same query is issued again. If data is updated/added
to a table, the query cache is flushed, and the data should be retrieved once again
from the disk on the next SELECT query.

When there are too many concurrencies, the query cache could be a bottleneck.
Depending on the size of the database and the requested access, here are two scenarios:

• Smaller database, no high load traffic, no money: The query cache should
help you to get fast database access

• Huge database, high load traffic, money: Disable the query cache, optimize
your indexes, spread the read load across several read-only replicas, and use
a better caching mechanism, such as Memcache/Redis

A lot of common rules exist, but that doesn't mean they should always be applied. If
you do not encounter slowdown due to the query cache, it's fine! You can even tune
it to make it faster.

Understanding the query cache
To check whether the query cache is enabled, run the following command:

MariaDB [(none)]> SHOW VARIABLES LIKE 'query_cache_type';

+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| query_cache_type | ON |

+------------------+-------+

1 row in set (0.01 sec)

Here it is! If this is not the case, you can enable it by adding the following line in
your MariaDB configuration file (my.cnf):

[mysqld]
query_cache_type = 1

Performance Optimizations

[76]

You unfortunately can't set it dynamically if it was disabled at the start, but you can
disable it if it was enabled at start. The query_cache_type parameters can have
three different values:

• 0/disabled: No queries are cached
• 1/enabled: All the queries are cached instead of only those that contain the

SQL_NO_CACHE clause
• 2/demand: No queries are cached instead of only those that contain the

SQL_CACHE clause

To look at the query cache values, enter the following command:

MariaDB [(none)]> SHOW global STATUS LIKE 'Qc%';

+-------------------------+-----------+

| Variable_name | Value |

+-------------------------+-----------+

| Qcache_free_blocks | 1158 |

| Qcache_free_memory | 225271912 |

| Qcache_hits | 12206713 |

| Qcache_inserts | 8989093 |

| Qcache_lowmem_prunes | 0 |

| Qcache_not_cached | 2696299 |

| Qcache_queries_in_cache | 90748 |

| Qcache_total_blocks | 183057 |

+-------------------------+-----------+

8 rows in set (0.00 sec)

Here is an explanation of those variables:

• Qcache_free_memory: This is the available memory to store queries
(SQL request and results queries).

• Qcache_hits: This value corresponds to the number of times the cache has
been hit.

• Qcache_inserts: This is the number of queries that have entered the
cache. To get the correct performance and validate whether the Qcache
is finely used, the Qcache_hits value should be greater than that of
Qcache_inserts.

• Qcache_lowmem_prunes: If there is not enough space in the cache, the oldest
requests will be replaced by new ones.

Chapter 3

[77]

• Qcache_not_cached: This represents the queries that were not cached. This
value is important to know whether you have changed the query_cache_
type value to force queries to be cached or if you have disabled Qcache
because queries couldn't be cached.

Depending on the applications that are using your databases, the query cache may
not be as efficient as it should be in some cases. Here are the important items that
you should take into consideration to know whether you have to keep the query
cache or not:

• If the Qcache_hits value is less than Qcache_inserts, you should consider
disabling the query cache in most cases. This is not true if you have one
query hitting 100 percent of the query cache, and removing it can cause
disastrous performance.

• MariaDB has a feature to list the queries in the query cache.
• If the Qcache_not_cached value is less than the addition of the Qcache_hits

and Qcache_inserts values, try to grow the query cache size and the
per-query cache size. Then, if Qcache_not_cached is still growing,
disable the query cache.

• If the Qcache_lowmem_prunes value is growing, add more memory to
the Qcache.

Modifying the query cache
To get the current set memory for the query cache, run the following command:

MariaDB [(none)]> SHOW global VARIABLES LIKE 'query_cache%';

+------------------------------+----------+

| Variable_name | Value |

+------------------------------+----------+

| query_cache_limit | 131072 |

| query_cache_min_res_unit | 4096 |

| query_cache_size | 67108864 |

| query_cache_strip_comments | OFF |

| query_cache_type | ON |

| query_cache_wlock_invalidate | OFF |

+------------------------------+----------+

6 rows in set (0.00 sec)

Performance Optimizations

[78]

The important new information here is as follows:

• query_cache_size: This is the dedicated memory size for Qcache. Here,
we've got 64 MB.

• query_cache_limit: This is the size of the maximum cache size per query.

To change those settings on the fly with 2 MB per query and 128 MB for the
query cache, use the following commands:

MariaDB [(none)]> SET global query_cache_limit = 2*1024*1024;

MariaDB [(none)]> SET global query_cache_size = 128*1024*1024;

You should avoid having a query cache with more than 256 MB to
avoid performance issues.

To set it as persistent, add the following lines to your MariaDB configuration file:

[mysqld]
query_cache_limit = 2M
query_cache_size = 128M

Optimizing storage engines
In this section, you will learn how to get maximum benefit from using the storage
engines. They are all working differently and all have different kinds of optimizations.

Entering each engine and seeing all the advanced features really goes beyond the
scope of this book. So, here we will see the most common engines optimizations that
can enhance performance. In addition, as some MariaDB engines are still not fully
implemented, we'll cover the most used engines that you generally have in production.

Summarizing your databases
To get your database, index, and table sizes, run the following command:

MariaDB [(none)]> SELECT
TABLE_SCHEMA,ENGINE,SUM(TABLE_ROWS),SUM(DATA_LENGTH),SUM(INDEX_LENGTH
) FROM INFORMATION_SCHEMA.TABLES GROUP BY ENGINE,TABLE_SCHEMA ORDER
BY TABLE_SCHEMA;

Chapter 3

[79]

The output of this command is shown in the following screenshot:

As you can see here, we've got a lot of different engines and interesting information:

• SUM(DATA_LENGTH): Data size without indexes
• SUM(INDEX_LENGTH): Index size without data

Running this kind of query is resource expensive. It may freeze the server
for several minutes if you have a large number of tables. You can easily
count 10 minutes if you have 10,000 tables and 1 minute if you disable
innodb_stats_on_metadata:
MariaDB [(none)]> SET innodb_stats_on_metadata = 0;

InnoDB/XtraDB
The InnoDB storage engine is one of the most used engines for high load traffic after
memory. Why? Because it is able to cache in RAM data and indexes.

But there is a cost for that performance! The cost is you need to have more than
enough free RAM available than the database size. This is because indexes are
cached as well. Typical values for InnoDB are shown in the following table:

Database size RAM available for InnoDB

5 to 6 GB 8 GB

20 to 25 GB 32 GB

110 to 120 GB 128 GB

Performance Optimizations

[80]

These are typical values, but what really counts is the size of the active working set.
You can find this information by looking at the buffer pool hit ratio in the status
variables. That's why it's important to have enough RAM! If you do not, your
performance will be slower than MyISAM, and you may think about using another
storage engine, such as TokuDB.

XtraDB (Percona) is an enhanced version of InnoDB to scale better and get better
performance. It's backward compatible and is named as InnoDB (ENGINE=InnoDB) on
MariaDB. So, you'll never see XtraDB as the storage engine but InnoDB instead, even
if XtraDB is being used. You can see the XtraDB engine loading in the MariaDB logs.
In fact, it's a drop-in replacement for InnoDB.

Pool size and statistics
The best way to know exactly how much RAM you should reserve for the engine is
to show the engine statistics by running the following command:

MariaDB [(none)]> SHOW engine innodb STATUS\G;

*************************** 1. row ***************************

 Type: InnoDB

[...]

BUFFER POOL AND MEMORY

Total memory allocated 826540032; in additional pool allocated 0

Total memory allocated by read views 112

Internal hash tables (constant factor + variable factor)

 Adaptive hash index 18423648 (12750568 + 5673080)

 Page hash 797656 (buffer pool 0 only)

 Dictionary cache 4132069 (3189008 + 943061)

 File system 171664 (82672 + 88992)

 Lock system 1993392 (1993016 + 376)

 Recovery system 0 (0 + 0)

Dictionary memory allocated 943061

Buffer pool size 49151

Buffer pool size, bytes 805289984

Free buffers 18830

Database pages 29975

Old database pages 11052

Chapter 3

[81]

Modified db pages 0

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 50, not young 0

0.00 youngs/s, 0.00 non-youngs/s

Pages read 28131, created 1844, written 281524

0.00 reads/s, 0.00 creates/s, 16.12 writes/s

Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 /
1000

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read
ahead 0.00/s

LRU len: 29975, unzip_LRU len: 0

I/O sum[0]:cur[0], unzip sum[0]:cur[0]

[...]

1 row in set (0.00 sec)

Here, we can see a lot of interesting information:

• Buffer pool size: 49151 * 16 * 1024 = 768 MB
• Free buffers: 18830 * 16 * 1024 = 294 MB

We can see here that the dedicated space for the InnoDB cache is enough. If this
isn't the case, you can set a higher value to the buffer pool size in your MariaDB
configuration file using the following command:

[mysqld]
innodb_buffer_pool_size = 1024M

Then, you need to restart your MariaDB instance for the changes to take effect.

Redo logs
Redo logs are used to make sure that your data is safe and that recovery is possible
after a crash. Since MariaDB 5.5, the performance of redo logs has been good, so you
should consider keeping them to get better security for your data even if you have a
little lower performance on very intensive writes.

Performance Optimizations

[82]

You can change the size of the redo logs, but this will involve removing the current
ones to avoid errors on the next boot. Here is the procedure:

1. Change the size of the redo logs per file (2 by default) in your
configuration file:
[mysqld]
innodb_log_file_size = 512M

2. Force the syncing data to the redo logs:
MariaDB [(none)]> SET GLOBAL innodb_fast_shutdown = 0;

3. Stop the MariaDB instance:
service mysql stop

4. Remove the current redo logs:
rm -f /var/lib/mysql/ib_logfile*

5. Start MariaDB:
service mysql start

Here, the dedicated size for the redo logs is set to 512 MB.

To calculate the right size of the redo logs, you have to calculate how much data is
written in 1 hour. If the server writes 95 MB, you should set it to 64 MB (because
there are two redo log files by default). The bigger the redo log files, the more the
recovery time will be.

But if you get intensive writes on your databases, you can grow this value up to a
maximum of 64 GB.

Transaction commits and logs
There is an option that can affect performance that is called innodb_flush_log_at_
trx_commit. You can see the current value of it using the following command:

MariaDB [(none)]> SHOW SESSION VARIABLES LIKE
'innodb_flush_log_at_trx_commit';

+--------------------------------+-------+

| Variable_name | Value |

+--------------------------------+-------+

| innodb_flush_log_at_trx_commit | 1 |

+--------------------------------+-------+

1 row in set (0.00 sec)

Chapter 3

[83]

There are several options for it:

• 1: InnoDB is Atomicity, Consistency, Isolation, Durability (ACID) compliant.
This is the best choice when you are searching for the safest solution for
your data. But you can get an overhead if you have slow disks as an fsync
is made to flush each change to the redo logs.

• 2: This solution is less safe as the transactions are only flushed to the disk
(to the redo logs) once per second. This would not be a problem if you're
using replication.

• 0: This is the fastest solution, and you can set this value only if you're in a
full sync replica situation, or data may be lost. This is the most dangerous
of the three as it can lead to complete database corruption, and it can be
impossible to start. Use this only on slaves.

To change the value, modify it in your configuration file to make it permanent:

[mysqld]
innodb_flush_log_at_trx_commit = 2
sync_binlog=0

Another important setting is the sync_binlog value. Setting this value to 1, MariaDB
will synchronize the binary logs to disk after every sync_binlog write, so this is the
best solution for safe data. But the best solution for performance is to set this value
to 0. It's preferable to get get a RAID card with battery protection if you choose the
0 value.

If you're using replication and want to also have good performance, you can use a
group commit as follows:

[mysqld]
flush_log_at_trx_commit =1
sync_binlog =1

You can check the value using the following command:

MariaDB [(none)]> SHOW SESSION VARIABLES LIKE 'sync_binlog';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| sync_binlog | 1 |

+---------------+-------+

1 row in set (0.00 sec)

Performance Optimizations

[84]

And to change it on the fly, the command is as follows:

MariaDB [(none)]> SET global sync_binlog=0;

MariaDB [(none)]> SET GLOBAL innodb_flush_log_at_trx_commit=2;

There are other options that can permit us to change the checkpoint value (writing
modified pages in memory to table files). By default, the value is 200, but you can
change it if you have RAID 10, SSD, or Fusion IO cards.

For instance, here are the basic values that you can set to the innodb_io_capacity
parameter:

Storage type The innodb_io_capacity value
HDD 200
RAID 10 HDD 1,000
SSD 5,000
Fusion IO 10,000

Of course, these values may change a little depending on your hardware. You should
consider benchmarking your hardware I/O capacity before setting a value to be sure
that it can handle it well.

The last important option is innodb_max_dirty_pages_pct. This is the percentage
of the maximum dirty pages contained in the InnoDB/XtraDB buffer pool size
you've set.

For example, if you've set a buffer pool size equal to 100 GB and your redo logs
are set to 2 GB, by default, you will allow only 75 percent of the modified data in
RAM. But the redo logs' (ib_logfile) size is only 2 GB! Reducing the percentage
of innodb_max_dirty_pages_pct will make InnoDB/XtraDB flush more often,
and you'll be better protected against a crashing system.

So, you can set a lower value in your MariaDB configuration file (my.cnf) as follows:

[mysqld]
innodb_io_capacity = 1000
innodb_max_dirty_pages_pct = 85

Buffer pool instances
The innodb_buffer_pool_instances parameter is used when the innodb_buffer_
pool_size value is greater than 1 GB. It divides the buffer pool size into a number
of instances (the default value is 1).

Chapter 3

[85]

But if the buffer pool size is too high, you need to change this value to reduce
contention concurrency. This is done by having several instances. Each one
will have its own data structures. Here is the formula:

instance size = innodb_buffer_pool_size / innodb_buffer_pool_instance

You shouldn't have less than 1 GB per instance to get good performance. To get the
current value, use the following command:

MariaDB [(none)]> show variables like 'innodb_buffer_pool_instances';

+------------------------------+-------+

| Variable_name | Value |

+------------------------------+-------+

| innodb_buffer_pool_instances | 1 |

+------------------------------+-------+

1 row in set (0.00 sec)

And to set this value permanently, update your configuration file as follows:

[mysqld]
innodb_buffer_pool_instances = 4

The flush method
The flush method mechanism permits you to control how your data and logs are
going to be flushed to disk. If you have the RAID hardware with battery protection
on the write-back cache and fdatasync, you can set the value to O_DIRECT. It is
made to avoid double cache buffering between the filesystem cache and InnoDB
cache (which is a waste).

To check the current value, run the following commands:

MariaDB [(none)]> SHOW SESSION VARIABLES LIKE 'innodb_flush_method';

+---------------------+----------+

| Variable_name | Value |

+---------------------+----------+

| innodb_flush_method | O_DIRECT |

+---------------------+----------+

1 row in set (0.00 sec)

Performance Optimizations

[86]

To set it permanently, add the following line in your MariaDB configuration file:

[mysqld]
innodb_flush_method = O_DIRECT

You have just changed this value on the fly and now need to reboot your instance
to apply your changes.

The other possibility, if you do not have a RAID card, is to set the value to O_DSYNC.
It's strongly recommended to test both the scenarios and choose the best solution
depending on your hardware.

TokuDB
TokuDB is a highly scalable engine provided by Tokutek (http://www.tokutek.
com). It provides good performance for any database size (marketed as a big data
engine). Here are some benefits of this engine:

• Up to 20 times more improvement in insertions and indexing
• No replication slave lags
• High compression (LZMA)
• Fast schema changes (hot indexes, hot column addition)
• Fractal trees (no fragmentation)
• Less memory usage (compared to InnoDB)

To get good performance, it's recommended to get at least 2 GB of main memory on
your system.

Installation
TokuDB is available in MariaDB 5.5.33 and MariaDB 10.0.5. The official TokuDB
version differs from the MariaDB integrated version because MariaDB developers
don't want to add too much code in the stable version. The full features will be
added in the next stages.

Even if TokuDB is present in MariaDB, it's not activated by default. To enable it, you
need to uncomment the plugin line in the tokudb.cnf file at /etc/mysql/conf.d/:

[mariadb]
See https://mariadb.com/kb/en/how-to-enable-tokudb-in-mariadb/
for instructions how to enable TokuDB
#
See https://mariadb.com/kb/en/tokudb-differences/ for
differences

Chapter 3

[87]

between TokuDB in MariaDB and TokuDB from
http://www.tokutek.com/

For MariaDB 10
plugin-load-add=ha_tokudb.so
For MariaDB 5.5
plugin-load=ha_tokudb.so

On the Linux kernel, when transparent hugepages are enabled, TokuKV
(transactional key-value) counters problems for the memory usage tracking
calculation. This can lead to memory overcommit and TokuKV won't start.

To check the current value, use the following command:

> cat /sys/kernel/mm/transparent_hugepage/enabled

[always] madvise never

If it's not disabled (the never value), you have to add an option to Grub to enable it
on boot (/etc/default/grub):

GRUB_CMDLINE_LINUX_DEFAULT="quiet transparent_hugepage=never"

Then, update your Grub to make the transparent hugepages active on the next reboot:

> update-grub2

So now, you have to reboot your machine to get the transparent hugepages disabled.

To check whether the transparent hugepages have been correctly enabled, run the
following command:

MariaDB [(none)]> show engines\G;

[...]

*************************** 6. row ***************************

 Engine: TokuDB

 Support: YES

 Comment: Tokutek TokuDB Storage Engine with Fractal Tree(tm)
Technology

Transactions: YES

 XA: YES

 Savepoints: YES

*************************** 7. row ***************************

[...]

11 rows in set (0.00 sec)

Performance Optimizations

[88]

The flush method
The flush method works like the InnoDB engine. You have the choice to get either
direct I/O or buffered I/O caching. By default, it is set to buffer, but you can have
better performance with direct I/O caching (depending on your hardware). Do not
forget to get a RAID card with battery protection on the write-back cache.

As you can't change this value on the fly, you need to add it in the configuration file
of MariaDB and then restart the process:

[mariadb]
tokudb_directio = 1

Another important point is that if you choose direct I/O, you will need to change the
default cache size!

Cache size
By default, the cache size is automatically set when TokuDB is loaded, and it
depends on the memory hardware size. It will take half of the system memory.

You do not need to allow more than the automatic calculated size as the OS cache
is getting data in a compressed form inside its cache. And as the TokuDB cache gets
data in an uncompressed form, you allow the OS cache to be bigger, which means
more data (as compressed) in memory!

If you're using the direct I/O flush method, you will have to take
80 percent of the main memory!

Anyway, you can check the cache size if you really want to. To check this value,
run the following command:

MariaDB [(none)]> show global variables like 'tokudb_cache%';

+-------------------+-----------+

| Variable_name | Value |

+-------------------+-----------+

| tokudb_cache_size | 260491264 |

+-------------------+-----------+

1 row in set (0.00 sec)

Chapter 3

[89]

This value unfortunately cannot be updated on the fly. So, if you want to change it,
you have to set it in the MariaDB configuration file:

[mariadb]
tokudb_cache_size = 512M

As explained, you now need to reboot your MariaDB instance to change this value.

Transaction commits and logs
Like the innodb_flush_log_at_trx_commit InnoDB option, TokuDB can change
the way it writes data to disk.

TokuDB provides an option called tokudb_commit_sync, and here are the
possible values:

• 1: The logfile is fsynced at each transaction commit. This is safe but is the
slowest method.

• 0: This disables fsync on each commit but not fsync on each checkpoint. This
is less safe, but is the faster method.

To get the current status of the commit sync, use the following command:

MariaDB [(none)]> show global variables like '%tokudb_commit%';

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| tokudb_commit_sync | ON |

+--------------------+-------+

1 row in set (0.00 sec)

Here, it is enabled. But if we want to be faster, then allow up to 1 second of data loss
in the case of a crash:

[mariadb]
tokudb_commit_sync = 0
tokudb_fsync_log_period = 1000

And if you want to do it on the fly, run the following commands:

MariaDB [(none)]> SET global tokudb_commit_sync = 0

MariaDB [(none)]> SET global tokudb_fsync_log_period = 1000

Performance Optimizations

[90]

Temporary directory
If you've set the temporary directory as a tmpfs filesystem, you can update the
TokuDB configuration as well to take advantage of it:

[mariadb]
tokudb_tmp_dir = /var/tmp

It won't have a big performance impact, but this will be the fastest solution for
temporary files.

Compression
One of the most interesting features of TokuDB is compression. It is always enabled,
uses ZLIB by default, and you can use a different algorithm per table. It saves you
disk space and money. Four types of compression exist, which are as follows:

• UNCOMPRESSED: This type has no compression
• QUICKLZ: This type has light compression but less CPU usage
• ZLIB: This type has medium compression but more CPU usage

than QUICKLZ
• LZMA: This type has the best compression, but it is CPU intensive

Compression is done in the background and doesn't affect your database
performance. Anyways, it takes more CPU than uncompressed tables and
requirements exist, as follows:

• If your server runs more than six cores, you can use LZMA.
• If your server runs less than six cores, it's recommended to use

QUICKLZ or ZLIB.
• To look at the default compression algorithm when you create a new table,

use the following code:
MariaDB [(none)]> show global variables like '%tokudb_row%';

+-------------------+-------------+

| Variable_name | Value |

+-------------------+-------------+

| tokudb_row_format | tokudb_zlib |

+-------------------+-------------+

1 row in set (0.00 sec)

As you can see, this is ZLIB.

Chapter 3

[91]

• To change it, simply prefix the algorithm with tokudb_:
MariaDB [(none)]> set global tokudb_row_format=tokudb_lzma;

• And if you want to make it persistent, add it to your MariaDB
configuration file:

[mariadb]
tokudb_row_format = tokudb_lzma

MyISAM
For the past several years, MyISAM has been the default storage for MySQL
(since 3.23). It has also been the default engine up to the 5.5 version of MariaDB.

It has a small data footprint, has good performance, and it is light, but it is
nontransactional. If you don't want to do a lot of modification on your applications
that use MyISAM and absolutely need some MyISAM features, you should consider
moving to the Aria engine. Aria will have better performance and provide interesting
features such as transactions. Aria has been designed to replace the MyISAM engine.

By default, on MariaDB, all the temporary tables created on the disk use the Aria
storage engine. To reverse the change to MyISAM, you will need to recompile.

Key buffer
The MyISAM storage engine uses a key buffer to cache indexes on the disk. To check
the current state of the key buffer cache, use the following command:

MariaDB [(none)]> SHOW global STATUS LIKE 'key%';

+------------------------+---------+

| Variable_name | VALUE |

+------------------------+---------+

| Key_blocks_not_flushed | 0 |

| Key_blocks_unused | 14497 |

| Key_blocks_used | 12268 |

| Key_blocks_warm | 3214 |

| Key_read_requests | 2413795 |

| Key_reads | 67366 |

| Key_write_requests | 106173 |

| Key_writes | 104947 |

+------------------------+---------+

8 ROWS IN SET (0.00 sec)

Performance Optimizations

[92]

Here is the explanation of some of these variables:

• Key_reads_requests: This represents the number of requests to read a key
block from the cache

• Key_reads: This represents the number of physical reads of a key block from
the disk

• Key_writes_requests: This represents the number of requests to write a key
block from the cache

• Key_writes: This represents the number of requests to write a key block
from the cache

To know whether your read cache is set correctly, use the following formulas:

Read cache efficiency = key_reads_requests/ key_reads

Write cache efficiency = key_writes_requests/key_writes

You can consider that if the read and write cache efficiency is more than 10, you
don't really need to adjust it.

You can check the current buffer size value using the following command:

MariaDB [(none)]> SHOW variables LIKE 'key_buffer%';

+-----------------+-----------+

| Variable_name | Value |

+-----------------+-----------+

| key_buffer_size | 134217728 |

+-----------------+-----------+

1 row in set (0.00 sec)

You can change this value in the MariaDB configuration file using the following code:

[mysql]
key_buffer_size = 128M

Then, restart the MariaDB instance.

Index
This chapter cannot end without discussing indexes. Entering into the details of
indexes could be long drawn out and is out of the scope of this book. Anyway,
we'll talk about them a bit and see what you should take care about.

Chapter 3

[93]

Most of the time, indexes are the way to get very good query result performances.
But if they are badly used, they could have an inverted effect.

Let's say your application makes a search on several columns. First of all, run an
explain command on the desired query and see what the explanation recommends.
Maybe it will recommend to add some specific indexes to the columns. Do not add
too many indexes only on the most used columns, or you'll waste resources.

If your application uses small tables, indexes won't make performance better.
Indexes are useful on large tables.

Engines
First, you have to know that there exist three kinds of index engines in the default
MariaDB installation, as follows:

• BTREE: This is the most commonly used index engine, which is used for
column comparison (only for InnoDB/XtraDB)

• RTREE: This is used for spacial columns, such as geographical coordinates,
rectangles, or polygons (only for MyISAM/Aria)

• HASH: This is used for equal comparison (only in memory) and also
internally in an InnoDB-adaptive Hash index (you cannot control it but
only enable or disable it)

Types
There are four kinds of indexes in MariaDB:

• Primary key
• Unique index
• Plain index
• Full-text index

If the desired query is using LIKE with a % sign, it's recommended to use a full-text
index, or your table will be analyzed each time. This will result in a big slowdown.
Unfortunately, some storage engines do not support the use of a full-text index,
and you should check this before trying to apply it.

Better full-text search engines, such as Sphinx, Elasticsearch, Lucene, and Solr, are
suited for full-text searching and can each be a very good complement to MariaDB.

If you have a huge table with high read and write loads, you should consider
delaying the writes by using batch. This will reduce the number of I/O disks.

Performance Optimizations

[94]

mysqltuner
mysqltuner is a tool that helps you quickly analyze a running MariaDB instance and
gives you basic information to optimize it. Take care about the suggestions; the tool
doesn't really know what you're doing with your application. However, it's generally
a good way to start the first analysis.

The current Debian version (available in the default Debian repository) is
unfortunately not yet MariaDB 10 compatible. That's why you should take the latest
version, which is partially MariaDB 10 compatible, for the moment (version 1.3.0).
To install it, run the following commands:

> wget -O /usr/bin/mysqltuner
https://raw.githubusercontent.com/major/MySQLTuner-perl/master/
mysqltuner.pl

> chmod 755 /usr/bin/mysqltuner

Now, you can launch it and see the recommendations made by the tool. Run the
following commands:

> mysqltuner

 >> MySQLTuner 1.3.0 - Major Hayden <major@mhtx.net>

 >> Bug reports, feature requests, and downloads at
http://mysqltuner.com/

 >> Run with '--help' for additional options and output filtering

[OK] Logged in using credentials from debian maintenance account.

[!!] Currently running unsupported MySQL version 10.0.12-MariaDB-
1~wheezy-log

[OK] Operating on 64-bit architecture

-------- Storage Engine Statistics --------------------------------------

[--] Status: +ARCHIVE +Aria +BLACKHOLE +CSV +FEDERATED +InnoDB
+MRG_MyISAM

[--] Data in MyISAM tables: 166M (Tables: 84)

[--] Data in InnoDB tables: 763M (Tables: 293)

[--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 52)

[--] Data in MEMORY tables: 0B (Tables: 1)

[!!] Total fragmented tables: 49

Chapter 3

[95]

-------- Security Recommendations --------------------------------------

[OK] All database users have passwords assigned

-------- Performance Metrics --

[--] Up for: 9d 2h 43m 31s (37M q [47.313 qps], 291K conn, TX:
42B, RX: 6B)

[--] Reads / Writes: 88% / 12%

[--] Total buffers: 1.3G global + 23.3M per thread (100 max
threads)

[OK] Maximum possible memory usage: 3.6G (11% of installed RAM)

[OK] Slow queries: 0% (325/37M)

[OK] Highest usage of available connections: 33% (33/100)

[OK] Key buffer size / total MyISAM indexes: 128.0M/35.9M

[OK] Key buffer hit rate: 97.9% (22M cached / 464K reads)

[OK] Query cache efficiency: 36.3% (15M cached / 42M selects)

[!!] Query cache prunes per day: 127508

[OK] Sorts requiring temporary tables: 0% (0 temp sorts / 253K
sorts)

[!!] Joins performed without indexes: 3127

[OK] Temporary tables created on disk: 15% (133K on disk / 851K
total)

[OK] Thread cache hit rate: 99% (33 created / 291K connections)

[!!] Table cache hit rate: 0% (457 open / 2M opened)

[OK] Open file limit used: 22% (229/1K)

[OK] Table locks acquired immediately: 99% (16M immediate / 16M
locks)

[OK] InnoDB buffer pool / data size: 768.0M/763.6M

[OK] InnoDB log waits: 0

-------- Recommendations --

General recommendations:

 Run OPTIMIZE TABLE to defragment tables for better performance

 Increasing the query_cache size over 128M may reduce
performance

 Adjust your join queries to always utilize indexes

 Increase table_open_cache gradually to avoid file descriptor
limits

Performance Optimizations

[96]

 Read this before increasing table_open_cache over 64:
http://bit.ly/1mi7c4C

Variables to adjust:

 query_cache_size (> 384M) [see warning above]

 join_buffer_size (> 16.0M, or always use indexes with joins)

 table_open_cache (> 457)

You can now see the suggested variables to adjust. Be sure that you've ran MariaDB
for at least 24 hours with normal traffic load to get relevant recommendations.

Summary
You've seen important tips here to get better performance using several stable
engines used in production. Other engines exist but are not so common in
production or not stable enough to figure out in this chapter.

Remember that if you have slowness on your application, and if it's due to the
database, here is what you should check:

• Look out for any long requests (slow queries), and try to optimize them
with the explain command

• Be sure you're using a good engine and have correctly tuned it
• Verify whether you're using indexes only where they are needed
• Be sure your hardware is correctly tuned for high performance
• If all these steps are alright, you should consider going ahead with the

next chapters

Tuning MariaDB performance does not require you to change a lot of parameters,
but only the most important ones. The rest of the performance will be achieved by
tuning your schema, your indexes, and your application!

In the next chapter, we'll start discussing architectures and how to make a
replication slave.

MariaDB Replication
MariaDB replication is a mechanism that permits us to replicate data to another
instance on another host. Replication is generally used for the following reasons:

• Scale out reads: Replication permits scaling between several read databases
to grow the read capacity

• Providing high availability: With multiple slaves, you have no read Single
Point Of Failure (SPOF)

• Data analysis: Replication can be useful to have a replicated environment
to allow querying without impacting the production environment

• Disaster recovery: You can have a distant copy of a master if a major issue
occurs on your primary site

• Security: Replication can be used to add a read-only database on a DMZ
for example

Replication works in an asynchronous mode, which means, if you have a low
or degraded bandwidth, you will have a replication delta (slave late/with more
delay) depending on your write load. The more write queries you have, the more
information will need to be replicated and the faster the network line should be. In
the best cases, the replication time difference could be in seconds or minutes, but in
the worst cases it can be an hour or several hours.

You can replicate all the databases, selected databases, or some tables in a database.

In this chapter, we will see several ways to build slaves, how to manage them, how
to avoid problems, and the advantages and possibilities of these solutions. You also
have some architecture examples of slave replications to help you define a good
solution for your needs.

MariaDB Replication

[98]

To help you to test a replication process, here is a Vagrantfile that will start two
MariaDB instances. The following diagram shows the architecture we're going to
set up:

1. Write
Transaction

3. Slave IO threads

Slave

4. Relay
logs

5. Slave SQL
Thread

Relay logs

Master

2. Write to binary logs

Binary logs

Client

To make it simpler, we've got a dedicated network here for the replication with
this information:

• Master node IP (master node): 192.168.33.31
• Slave1 node IP (classical replication node): 192.168.33.32
• Slave2 node IP (gtid replication node): 192.168.33.33
• Load Balancer node IP (haproxy): 192.168.33.40

You've noticed that the Vagrantfile has changed a little as we've got new roles:

• db: For database purposes, it installs MariaDB and the percona repository
• lb: This is the load balancer, it installs haproxy

Chapter 4

[99]

How replication works
The following diagram shows how the replication process works:

Maria DB
Slave 1

Load
Balancer

Read
Statments

Write
Statments

Application server

Maria DB
Slave 2

Maria DB
Master

Slave replication

SQL requests

A little explanation makes it easier to understand the process:

1. A client requests a write transaction on the master host.
2. The binary logs (also called binlogs) are updated. The binary logs

contain events that describe database changes.
3. The slave receives the information from the master.
4. It then appends it to its relay logs.
5. The slave SQL thread replays the statements contained in the relay logs.

There are 2 kinds of replication mechanisms:

• Standard replication: This is the most common method, standard,
each node has its own transaction ID

• Global Transaction ID (GTID) replication: GTID permits each node to
have the same transaction ID on all replicated nodes (only available from
MariaDB 10)

MariaDB Replication

[100]

We will see both the mechanisms and understand the advantages of GTID. In both the
cases, when a network cut occurs, it is able to automatically reconnect and resume the
replication (depending on the retention days).

Now, since you know a little bit more about the functional aspect, we're going to
practice it. The standard replication was released on MySQL 5.0 first and is still
available on MariaDB 10.

Configuring the master node
The first thing to do is to prepare the master node. We need to activate some options
in its configuration file (my.cnf):

[mysqld]
server-id=1
bind-address = 0.0.0.0
log_bin=/var/log/mysql/mariadb-bin

These are the minimum options. Let's study them in detail:

• server-id: This should be a unique ID. Here, we've chosen 1 but you can
choose a number up to 2^32-1.

• bind-address: This is the IP address on which the MariaDB instance should
listen. By default, it is 127.0.0.1. You can bind it to 192.168.33.31 if you
want to listen only on this interface. With 0.0.0.0, we want to bind on all
available interfaces.

• log-bin: This is where you can store the binary logs.

Now, we are able to build a master/slave replication. There are other options that
you should be aware of:

expire_logs_days=10
sync_binlog = 1
slave_compressed_protocol
transaction-isolation = READ COMMITTED
binlog_format = row

Let's see how useful these options can be:

• expire_logs_days: This is the number of days for binlogs retention. This is
generally used to avoid binlogs taking all the disk space indefinitely. After 10
days (here), it is automatically flushed.

Chapter 4

[101]

This also means if you have a delta between your master and your
slave that is bigger than 10 days, you won't be able to resume the
replication but you will need to do a full sync instead!

• sync_binlog: This will synchronize the binary logfile to the disk (flush)
after each write event. Set this value to 1 to activate this functionality.
This is the safest choice but also the slowest. Disable it if you need more
replication performances.

• slave_compressed_protocol: This will use compression if the slave
gets the option too. This consumes a little bit more of CPU, but makes
the replication faster.

• binlog_format: This chooses which kind of binlog format you want
(row, statement, or mixed). The row format is the best to guarantee
safe replications.

Now, restart your MariaDB master instance to activate your new options.

Preparing the master node
As your master is ready to serve now, you will need a dedicated account for
replication. This account will only have the replication rights. Of course, you
can add more rights to this dedicated user or choose an existing user, but it's not
recommended for security reasons.

So on the master, create a dedicated user (for security reasons) that is allowed to
connect from the slave server (here, 192.168.33.32):

MariaDB [(none)]> create user 'replication'@'192.168.33.32'
identified by 'password';

You should change the username and password; there is no restriction on
the username.

Then, grant the replication privileges to all the databases to make it easy:

MariaDB [(none)]> grant replication slave on *.* to
'replication'@'192.168.33.32';

There are no obligations to grant privileges on all databases. You can select the
restricted databases here, but other options exist to restrict the database access.

MariaDB Replication

[102]

Now, reload the privileges:

MariaDB [(none)]> FLUSH PRIVILEGES;

Let's now look at the master information:

MariaDB [(none)]> show master status;

+--------------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+--------------------+----------+--------------+------------------+

| mariadb-bin.000012 | 328 | | |

+--------------------+----------+--------------+------------------+

1 row in set (0.00 sec)

The file corresponds to the binary logs file available in your logbin directory,
and then the next column shows the current position in the binary log.

Configuring the slave node
If you want to have the benefits of your master options, you need to set them as well
on the slave. So basically, if you want to activate the transfer compression, you need
to activate it on the slave side as well:

[mysqld]
server-id=2
bind-address = 0.0.0.0
slave_compressed_protocol = 1

Now, we've set the server-id value as 2 here. Remember that it is important to have
a unique ID here. Here are other interesting options:

binlog_format = row
read_only

The read_only option is used in the preceding command. To be sure that your slave
won't have any changes with your master, you can disable any write operations.

Creating a slave
There are multiple ways to create a slave. Here are two of the common and best ways:

• mysqldump: We can create a slave with the classical mysqldump tool. It works
well, but it could take a very long time depending on the database size and
locks tables during the whole dump.

Chapter 4

[103]

• Xtrabackup: This is a Percona open source tool. It is faster and has a very
small lock table duration on InnoDB/XtraDB.

Using mysqldump
The biggest inconvenience with the mysqldump solution is that you need to lock
tables during the whole dump operation. This could be really problematic during
production hours. Anyway, it works quite well and this is the classical way to
perform human readable dumps. So, first let's flush all the data on the disk that
hasn't been written yet and lock the tables:

MariaDB [(none)]> flush tables with read lock;

Now, you're ready to dump the databases. If you want to perform a full replication
with all the databases available on the master, you can run the following command:

> mysqldump -uroot -p --opt --routines --triggers --events --single-
transaction --master-data=2 -A > alldb.sql

There are a lot of options here and not all of them are needed. Anyway, to be as close
as possible to the master node, it's necessary. Here is the explanation:

• --opt: This option is an all-in-one option that in fact includes the following:
 ° --add-locks: This will give faster insertions on restore.
 ° --create-options: This will add all the MariaDB options in the

create statement.
 ° --disable-keys: This helps speed up dump restore because indexes

are created after and not during import.
 ° --extended-insert: This uses multi-row insert to speed up import.
 ° --lock-tables: This locks the tables before dumping them.
 ° --quick: This is used for large tables.
 ° --set-charset: This adds the charset in the dump.
 ° --routines: This includes procedures and functions in the dump.
 ° --triggers: This adds triggers in the dump.
 ° --events: This dumps the mysql.event table as well.
 ° --single-transaction: This gets a consistent state for the InnoDB

engine. This option requires to be in a full InnoDB/XtraDB state
to avoid flushing tables with read locks. If this is not the case,
it will be useless.

MariaDB Replication

[104]

 ° --master-data: When set to 2, this adds the master binlog file and
position information as comments in the dump. When set to 1, this
will execute the change master to statement on the server where
the dump is imported.

 ° -A: This is used to dump all the databases.

Once the preceding command is executed, release the lock on tables:

MariaDB [(none)]> unlock tables;

You can now transfer the dump to the slave server your dump (the alldb.sql file
here) to start the restoration procedure.

To restore the dump on the slave, run the following command:

> mysql -uroot -p < alldb.sql

Now, you have a restored version on the slave of an x instant of the master.

Now, to be ready to start the slave, we need to get the binary logfile and position
written in the dump file, if you've chosen the master-data option to be 1:

> grep -m 1 "^-- CHANGE MASTER" alldb.sql

-- CHANGE MASTER TO MASTER_LOG_FILE='mariadb-bin.000012',
MASTER_LOG_POS=328;

Using Xtrabackup
Xtrabackup is the best solution to create backups for several reasons:

• It can create dumps fast
• It locks tables for a very short time
• It can stream compressed databases

To be able to use Xtrabackup for replication purposes, we need to have Xtrabackup
installed on both the master and slave server. To install it, add the repository of
Percona, add a preference pinning file, and install it (already done if you're using
the Vagrantfile):

> apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A

> add-apt-repository 'deb http://repo.percona.com/apt wheezy main'

echo 'Package: *

Pin: release o=Percona Development Team

Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref

Chapter 4

[105]

> aptitude update

> aptitude install xtrabackup

To be able to boot the slave properly, be sure no MariaDB instance is running on
your slave and delete all the current MariaDB datadir content:

slave1> service mysql stop

[ok] Stopping MariaDB database server: mysqld.

slave1> service mysql status

[info] MariaDB is stopped..

slave1> rm -Rf /var/lib/mysql/*

You will also need to do an SSH key exchange from the master to the slave to be able
to stream the backup directly to the slave:

master1> ssh-copy-id 192.168.33.32

Replace the IP address with the slave's IP address. You can now launch the stream
(via xbstream) backup from the master to the slave through SSH:

master1> innobackupex --stream=xbstream ./ | ssh root@192.168.33.32
"xbstream -x -C /var/lib/mysql/"

[...]

innobackupex: MySQL binlog position: filename 'mariadb-bin.000012',
position 328

140220 22:12:48 innobackupex: Connection to database server closed

140220 22:12:48 innobackupex: completed OK!

Now, the backup has been pushed on the slave server in /var/lib/mysql;
however, it's not ready for use. We need to prepare it on the slave host using
the following command:

slave1> innobackupex --apply-log /var/lib/mysql

[...]

InnoDB: FTS optimize thread exiting.

InnoDB: Starting shutdown...

InnoDB: Shutdown completed; log sequence number 1619478

140220 22:31:23 innobackupex: completed OK!

Change the right to give MariaDB user control using the following command:

slave1> chown -Rf mysql. /var/lib/mysql

MariaDB Replication

[106]

You can now start the slave host with the following command:

slave1> service mysql start

Now, to be ready to start the slave, we need to get the binary logfile and position
located in /var/lib/mysql/xtrabackup_binlog_info on the slave:

mariadb-bin.000012 328

We now have all the necessary information to start the slave! Let's do it! The stop
and reset options are not required but, as a rule, it's better to do it. This is generally
done when a previous slave was configured and it's required to make it work to
build a new replication. Execute these commands on the slave:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> reset slave;

MariaDB [(none)]> change master to master_host='192.168.33.31',
master_user='replication', master_password='password',
master_log_file='mariadb-bin.000012', master_log_pos=328;

MariaDB [(none)]> start slave;

What does the change master command do? It indicates to the slave the IP/DNS
of the master host, the credentials for replication, and the logbin information.

The logbin information indicates the position of the slave to the master. If actions
occurred on the master during the time interval of the back up and the restore
operations, those actions will be replayed on the slave to elevate it at the same
level of data as the master node.

The last thing to do is to replicate, from the master node, the debian.cnf file from
/etc/mysql/ to the slave one. Then, you have to change the password of that user
with the one indicated in the debian.cnf file to replicate it across all nodes:

MariaDB [(none)]> SET PASSWORD FOR 'debian-sys-maint'@'localhost' =
PASSWORD('password');

MariaDB [(none)]> FLUSH PRIVILEGES;

This avoids a failed startup service on the slaves.

Checking the slave status
You can check the slave status with the following command:

MariaDB [(none)]> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

Chapter 4

[107]

 Master_Host: 192.168.33.31

 Master_User: replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000012

 Read_Master_Log_Pos: 328

 Relay_Log_File: mysqld-relay-bin.000006

 Relay_Log_Pos: 617

 Relay_Master_Log_File: mariadb-bin.000012

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 328

 Relay_Log_Space: 1284

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

MariaDB Replication

[108]

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Using_Gtid: No

 Gtid_IO_Pos:

1 row in set (0.00 sec)

Here there is a huge amount of interesting information:

• Slave_IO_Running and Slave_SQL_Running: If they both are set to yes,
then the replication is ok. If one of them is not, then you'll have to correct it.

• Last_Errno and Last_Error: They indicate when a problem occurs and can
notify the current SQL query what has failed the replication. You can then try
to reproduce or understand it.

This is the most important information on the show slave status command.

The relay logs store the replication state which is updated on data changes.
This works independently of the master bin logs. This helps the slave to make
the correlation between binary logs and itself. It is commonly used when you
want to chain slaves from other slaves.

GTID replication
GTID has been introduced in MariaDB 10 and adds a new event to each transaction
in the binlog. This new event is the Global ID that gives a unique identifier across
all the replicated servers. This is how it is different from the classical replication.
One of the big advantages is that you can now easily change the master as you get
the same transaction ID across all nodes.

The other important thing is the slave is recorded in a crash-safe way. This involves
using a transactional engine like InnoDB to be fully crash-safe.

The big difference with the classical replication is that GTID of the last applied
transaction is stored in the gtid_slave_pos file of the mysql database. This table
is updated each time a transaction is written. If the slave crashes, it is easy for it to
catch the last state position and see with the master if it matches the last transaction
commit. Having the same GTID number permits us to get consistent binlogs as well.

An important thing to know is classical replication is still available to maintain
backward compatibility. However, GTID replication is enabled by default on
MariaDB 10!

Chapter 4

[109]

What is GTID
We've talked about the GTID replication solution, which is the best, but what is
a GTID exactly? It is composed of three separated dashed numbers like x-y-z.
They are explained as follows:

• x: This is the first number, that is, the domain ID
• y: This is the second number, that is, the server ID (as classical replication)
• z: This is the third number, that is, the sequence number (increasing on

each event)

Configuring the master node
The configuration of the master node is very similar to the classical replication.
Nothing different on that side, so you can pick up the same configuration:

[mysqld]
server-id=1
bind-address = 0.0.0.0
log_bin=/var/log/mysql/mariadb-bin
expire_logs_days=10
sync_binlog = 1
slave_compressed_protocol = 1
binlog_format = row

However, there are new and interesting options such as gtid_strict_mode.
It permits us to enforce the discipline about having the exact binlogs across all
the replicated nodes using GTID. This feature makes replication debugging easier
and you are strongly encouraged to activate it:

gtid_strict_mode=1

You can then check the global variable status with the following command:

MariaDB [(none)]> select @@global.gtid_strict_mode;

+---------------------------+

| @@global.gtid_strict_mode |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.00 sec)

MariaDB Replication

[110]

Preparing the master node
Like the classical replication, to allow a node to replicate master databases, create a
user and give replication rights:

MariaDB [(none)]> create user 'replication'@'192.168.33.33'

identified by 'password';

MariaDB [(none)]> grant replication slave on *.* to

'replication'@'192.168.33.33';

MariaDB [(none)]> FLUSH PRIVILEGES;

You may notice that we can plug this new GTID slave on the current master, which
already has a non-GTID slave. Don't worry, it works. You can have both activated.

Then, check the current GTID position using the following command:

MariaDB [(none)]> SELECT @@GLOBAL.gtid_current_pos;

+---------------------------+

| @@GLOBAL.gtid_current_pos |

+---------------------------+

| 0-1-2149 |

+---------------------------+

1 row in set (0.00 sec)

Configuring a GTID slave node
As a rule, the configuration of the slave doesn't change, neither from the classical
replication. Do not forget to change the server-id value and apply the gtid_
strict_mode option to be compliant with the master:

[mysqld]
server-id=3
bind-address = 0.0.0.0
slave_compressed_protocol = 1
binlog_format = row
read_only
gtid_strict_mode=1

Restart your slave node for the changes to take effect.

Chapter 4

[111]

Creating a slave
Unfortunately, at the time of writing, the integration of the GTID information in
the backup solutions is not fully ready yet, so you have to manually get the GTID
information from the master before doing the backup.

The methods to create a slave are identical to the classical ones. So, please refer
to the mysqldump or Xtrabackup solutions.

Starting the slave
You now have the GTID information, the backup has been restored to the new
slave node, and we are ready to start it:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> reset slave;

MariaDB [(none)]> set global gtid_slave_pos = "0-1-2149";

MariaDB [(none)]> change master to master_host='192.168.33.31',

master_user='replication', master_password='password',
master_use_gtid=slave_pos;

MariaDB [(none)]> start slave;

Now, the slave is starting and resuming changes since the backup was done.
In comparison to the classical replication, we've changed the master position
and binlog file with the master_user_gtid parameter.

Three possibilities exist for the master_user_gtid parameter:

• slave_pos: This is a safe method for the slave nodes. With this method,
you can point to any other master node easily.

• current_pos: This method is not totally safe if you're not using gtid_
strict_mode, as extra transactions could be inserted in the binlogs of
the slave server. This parameter is generally used when a slave could
be master if the master failed.

• no: This is used to disable GTID.

You can check the current position of the slave using the following command:

MariaDB [(none)]> select @@gtid_slave_pos;

+------------------+

| @@gtid_slave_pos |

+------------------+

| 0-1-2149 |

MariaDB Replication

[112]

+------------------+

1 row in set (0.00 sec)

It should be identical to the current master position if you run the command at the
same time.

Checking the slave status
The method to check a slave status doesn't change from the classical replication;
however, you will see the fulfilled parameters instead:

MariaDB [(none)]> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.31

 Master_User: replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.0000212

 Read_Master_Log_Pos: 328

 Relay_Log_File: mysqld-relay-bin.000006

 Relay_Log_Pos: 617

 Relay_Master_Log_File: mariadb-bin.000012

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 328

 Relay_Log_Space: 1284

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

Chapter 4

[113]

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Using_Gtid: Slave_Pos

 Gtid_IO_Pos: 0-1-2149

1 row in set (0.01 sec)

Just as we did in the classical method, we can set the two parameters Slave_IO_
Running and Slave_SQL_Running values to Yes, which means everything is
running fine.

The Using_Gtid parameter indicates the replication method used. The Gtid_IO_Pos
parameter is the current GTID position, and it should be equal to the @@GLOBAL.gtid_
current_pos value on the master host.

Migrating from classical to GTID
replication
There is no planned deprecation for the classical replication and both can be used in
multiple slave replication solutions. However, it's strongly recommended to switch
from classical to GTID replication to get better stability and less maintenance. To
switch from the classical to the GTID, it's simple. Let's take the slave1 node to do it.
First of all, we'll need to stop the slave, performing a change in the master position
to take GTID instead and switch back on the server. It's as easy as that.

MariaDB Replication

[114]

So, let's look at the current status of the slave:

MariaDB [(none)]> show slave status\G;

[...]

 Using_Gtid: No

 Gtid_IO_Pos:

1 row in set (0.00 sec)

Stop the slave and get the current GTID value on itself as the master. Send it even if
it's not in GTID:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> select @@gtid_slave_pos;

+------------------+

| @@gtid_slave_pos |

+------------------+

| 0-1-2162 |

+------------------+

1 row in set (0.00 sec)

Now, configure this slave position and start the slave:

MariaDB [(none)]> set global gtid_slave_pos = "0-1-2162";

MariaDB [(none)]> change master to master_host='192.168.33.31',
master_user='replication', master_password='password',
master_use_gtid=slave_pos;

MariaDB [(none)]> start slave;

Then, check whether you've correctly switched using the following command:

MariaDB [(none)]> show slave status\G;

[…]

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

[…]

 Last_SQL_Errno: 0

 Last_SQL_Error:

[…]

 Using_Gtid: Slave_Pos

 Gtid_IO_Pos: 0-1-2164

1 row in set (0.00 sec)

That's it! We have switched from the classical to GTID replication.

Chapter 4

[115]

Parallel replication
By default, replications are single-threaded (only one event executing at a time).
This can lead to performance issues when you're using multisource replication
without activating parallel replication. Since MariaDB 10, a pool of separate
replication worker threads is available to apply multiple events in parallel.
You can go up to 10 times faster when parallel replication is enabled.

To enable parallel replication, add this line in your MariaDB configuration file
(my.cnf):

slave-parallel-threads=4

A 0 value means disabled and the maximum value is 16383.

If you're going too high on this value, you may encounter a slowdown.

Other options can be used and adjusted to fine tune parallel replication:

• slave_parallel_max_queued: This sets the memory limit for the
SQL threads.

• slave_domain_parallel_threads: This shows how many connections
a master can reserve at most (at one time).

• binlog_commit_wait_count: This reduces I/O on the binary log.
This will help parallel replication adoption on the slave.

• binlog_commit_wait_usec: This sets how many micro seconds binary
logs will wait (for at least binlog_commit_wait_count commits) to
queue for a group commit.

Load balancing read transactions
Having a single slave to switch it to master in case of problems is a good solution
for high availability. However, if you need an intensive read across your database
and have already optimized all the things you could do, then the solution is to
build additional slaves.

The goal here is to distribute the traffic across multiple slaves for the read access
and only write to the MariaDB instance that will then replicate to the slaves.
Let's call this the read-only group of MariaDB: read group.

MariaDB Replication

[116]

Your application should be able to split by itself the read and write requests. So, we
can use DNS round robin for load balance against the read MariaDB instances, as this
is the simplest method. However, the danger of that mechanism is that it doesn't detect
failure. For example, you've got one write server and two read nodes. If you're running
on one read node instead of two, your request will fail at 50 percent.

The solution to avoid this problem is to have a load balancer. You can have a physical
(high cost) load balancer or you can use a software load balancer such as HAProxy.
HAProxy is a very fast, low memory footprint, free, and an open source load balancer.
It provides high performances and is perfect for this kind of usage. The following
diagram shows the working of a load balancer:

Maria DB
Slave 1

Load
Balancer

Read
Statments

Write
Statments

Application server

Maria DB
Slave 2

Maria DB
Master

Slave replication

SQL requests

In the preceding figure, you can see the load balancer serving read servers while the
write (master) server is alone. Slaves are getting information from the master.

Of course, here, you've got a SPOF on your write MariaDB instance and load
balancer, but we'll see later in the book how to cover those aspects.

So to set up HAProxy in Debian wheezy, we'll need to use backports, as the package
wasn't ready when wheezy was in the frozen stage.

Chapter 4

[117]

Installing HAProxy
To install HAProxy manually, you'll need to activate the wheezy backports.
So, add the backports appropriate repository in /etc/apt/sources.list.d/
wheezy-backports.list:

deb http://ftp.debian.org/debian/ wheezy-backports main
deb-src http://ftp.debian.org/debian/ wheezy-backports main

Then install HAProxy:

> aptitude update

> aptitude install haproxy

Then, you can enable it to autostart on boot:

> sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy

HAProxy is now ready to be configured.

Configuring HAProxy
First of all, we will need to create a user on the slave hosts to allow HAProxy
to perform a SQL connection. As we have multiple read hosts, if you don't want
to create a user on each slave, you can consider creating one on the master host
which will then replicate to the slaves.

So, we need to create a new user on the master node without any rights. This will
permit HAProxy to do the following:

• Connect on the instance (tcp)
• See if it can connect or not (MariaDB authentication)
• Close properly the connection (tcp)

Create the user and allow connection using the following commands:

MariaDB [(none)]> create user 'haproxy'@'192.168.33.40';

MariaDB [(none)]> flush privileges;

You can now add the HAProxy configuration, as follows, in /etc/haproxy/haproxy.
cfg (comments are included in the configuration file for better understanding):

global
 # log redirection (syslog)
 log /dev/log local0
 log /dev/log local1 notice

MariaDB Replication

[118]

 # maximum of connections for haproxy
 maxconn 4096
 # chroot for security reasons
 chroot /var/lib/haproxy
 # user/group for haproxy process
 user haproxy
 group haproxy
 # act as a daemon
 daemon

defaults
 # use gloval log declaration
 log global
 # default check type
 mode http
 # only log when closing session
 option tcplog
 # only log failed connections
 # retry 3 times before setting node as failed
 # redispatch traffic to other servers
 option dontlognull retries 3 option redispatch
 # maximum connection for the backend
 maxconn 1024
 # timeouts
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

enable web check health interface on port 80
listen haproxy 0.0.0.0:80
 mode http
 stats enable
 # set credentials
 stats auth admin:password

loadbalance on slaves
listen mariadb-read-slaves 0.0.0.0:3306
 # use tcp method
 mode tcp
 # round robin mechanism
 balance roundrobin
 # tcp keepalive (pipelining) on both side (clt/srv)
 option tcpka
 # perform mariadb connection with haproxy user
 option mysql-check user haproxy
 # set all read only nodes
 # inter: interval of check in milliseconds
 server slave1 192.168.33.32:3306 check inter 1000
 server slave2 192.168.33.33:3306 check inter 1000

Chapter 4

[119]

You can now start the haproxy process properly:

> service haproxy start

It will then listen on two interfaces as follows:

• 3306: This is to load balance on the backend servers (MariaDB read group)
• 80: This is the admin web interface (change the credentials for more security)

There are some options that you can change, such as the interval of check if you
want something more reactive, or the number of retries before setting a slave as
down. HAProxy is really powerful and can act up to the seventh layer. So, you can
tune a lot of things.

Checking health
In configuration, the web health check has been added. That permits us to get a
graphical interface to see the current status of all your nodes.

You can access it by using your web browser with admin/password credentials:

http://<loadbalancer_ip>/haproxy?stats

Here is a preview of what the web interface provides:

When it's green, that means everything is fine. Try to stop or kill severely (-9) a
MariaDB instance, and you'll see all the traffic redirected to the only remaining host.

MariaDB Replication

[120]

Testing the configuration
Testing the configuration is simple. You can use tcpdump to see the connections
going one time on slave1 and the second time on slave2, then slave1, then slave2,
and so on.

So, on the load balancer, launch tcpdump:

> tcpdump -i any port 3306

From another machine, target the load balancer on port 3306:

> nc -v 192.168.33.40 3306

You'll see the connections load balanced on each slave. If tcpdump is too verbose for
you, test with the netstat command on the load balancer:

> watch -n1 'netstat -auntpl | grep 3306'

The following screenshot shows the output:

Use cases and troubleshooting
Use cases are really needed for novices and for those who do not practice these kind
of solutions in production. That's why you'll see schema with explanations of what
could happen in production. Now, let's discuss outages and how to resolve them.

SQL errors
In a replication mode, you can encounter errors if you do not respect what has been
established. A common mistake is for the privileges to be configured on a slave node
and not the master.

Here is a scenario with a database as an example:

• Master: This is the server used as read/write
• Slave1: This is the server used as read only

Chapter 4

[121]

A junior database administrator connects to the slave server as someone asked for
a new database and creates a database crap. The database is present on the slave
node, but not the master. Two days later, another database administrator connects
on the master node because he needs to perform an urgent insertion in that database.
As he doesn't see it, he creates it now and performs the database creation named
crap. Everything runs fine for him and the master host.

But there is a problem! The replication falls down, as it can't execute the create
database statement on an already existing database. In this case, it's strongly
recommended to have a monitoring system as your slave server is still serving
data, but outdated data! Write operations are still operating on your master node
and the more the time elapses, the more outdated data you get. Here is what this
error looks like:

MariaDB [(none)]> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.31

 Master_User: replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000020

 Read_Master_Log_Pos: 2142

 Relay_Log_File: mysqld-relay-bin.000002

 Relay_Log_Pos: 656

 Relay_Master_Log_File: mariadb-bin.000020

 Slave_IO_Running: Yes

 Slave_SQL_Running: No

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 1007

 Last_Error: Error 'Can't create database 'crap';
database exists' on query. Default database: 'crap'. Query: 'create
database crap'

 Skip_Counter: 0

 Exec_Master_Log_Pos: 2021

 Relay_Log_Space: 1075

MariaDB Replication

[122]

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

 Seconds_Behind_Master: NULL

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 1007

 Last_SQL_Error: Error 'Can't create database 'crap';
database exists' on query. Default database: 'crap'. Query: 'create
database crap'

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

 Master_SSL_Crl:

 Master_SSL_Crlpath:

 Using_Gtid: Slave_Pos

 Gtid_IO_Pos: 0-1-2168

1 row in set (0.00 sec)

You can easily correct the error. The first thing to do is to analyze the query and
understand why it has failed. In general, MariaDB replication architectures are
stable and don't break by themselves. Most of the time, it's a human error or a
bad replication configuration from the beginning.

Please note that replications are capable of resuming themselves
in network loss, server crashing, or power cut issues.

The first thing to do is to stop the slave:

MariaDB [(none)]> stop slave;

Chapter 4

[123]

Then, after analyzing, you've three solutions:

• Correct: You can correct the problem yourself and start the replication
again. It won't crash anymore and perform the action. This is done using
the following commands:
MariaDB [(none)]> drop database crap;

MariaDB [(none)]> start slave;

• Skip: You don't care about that current problem and prefer to skip it using
the following commands:
MariaDB [(none)]> set global sql_slave_skip_counter=1;

MariaDB [(none)]> start slave;

Here, we are skipping one by one the problems (=1). You can of course skip
more, but it's strongly recommended to manage problems one-by-one to
avoid inconsistencies!
Then, look at the slave status and correct all the issues until everything is ok.
As you've seen, it's not so complicated to correct errors; however, if you're in
a very bad situation, it's preferable to lose a slave and recreate it from scratch
instead of having an inconsistent slave.

• GTID: skip_counter is unfortunately not available for GTID replications.
A discussion is in progress at the moment (https://mariadb.atlassian.
net/browse/MDEV-4937). Take the current GTID position on the slave
server and then jump to the next ID. The following command line shows
an example:

MariaDB [(none)]> SELECT @@GLOBAL.gtid_current_pos;

+---------------------------+

| @@GLOBAL.gtid_current_pos |

+---------------------------+

| 0-1-2159 |

+---------------------------+

MariaDB [(none)]> set global gtid_slave_pos = "0-1-2160";

MariaDB [(none)]> start slave;

Now, check the slave status and increment the GTID number until it works
as expected. You have to correct of course if it's a more complicated issue.

Please note that one of the Percona toolkit tools (pt-table-checksum)
is useful in these kinds of cases, when you want to be sure that the
master and slave are really the same.

MariaDB Replication

[124]

Analyzing binlogs
You need to read binlog when you analyze multiple replication errors. This will
help you to understand what will be the next operation.

To read binlogs, use the following commands:

> cd /var/log/mysql

> mysqlbinlog mariadb-bin.000020

You need to choose the desired binlog file and you'll get GTID information with
SQL requests:

at 1812
#140223 18:23:48 server id 1 end_log_pos 1908 Query
thread_id=61 exec_time=0 error_code=0
SET TIMESTAMP=1393179828/*!*/;
create user 'haproxy'@'192.168.33.40'
/*!*/;
at 1908
#140223 18:23:59 server id 1 end_log_pos 1946 GTID 0-1-2167

GTID – switching a slave to master
and recovering
Let's take a situation where we have a master and slave replication in a GTID
environment, as shown in the following diagram:

1. Slave working

2. Master crash

3. Takover -> slave become
master

MariaDB SlaveMariaDB Master

Chapter 4

[125]

Here is the scenario. Everything is running well. We lose the master and we're doing
a takeover on the slave by transforming it as the new master node. The old master
node has an electric power issue. The old master is ready to start and we are going
to failback to the old master node. But first of all, we need to resync the missed data
on that old master.

Here is how to achieve the resolution for the preceding scenario:

1. Change your application settings to connect to the slave instead of the
old master for write statements.

2. Remove the read_only parameter if you added it in the configuration,
and restart MariaDB or do it on the fly:
MariaDB [(none)]> SET GLOBAL read_only=0;

3. Stop the slave mechanism using the following command:
MariaDB [(none)]> stop slave;

4. We will need a replication account on the slave/new master node (we
shouldn't forget to remove that after the operation):
MariaDB [(none)]> create user 'replication'@'192.168.33.31'
identified by 'password';

MariaDB [(none)]> grant replication slave on *.* to
'replication'@'192.168.33.31';

MariaDB [(none)]> flush privileges;

The problem here is the old master has never been a slave. So, if we
take a look at the current status of the old master, we won't have the
requested information:
MariaDB [(none)]> select @@gtid_slave_pos;

+------------------+

| @@gtid_slave_pos |

+------------------+

| |

+------------------+

1 row in set (0.00 sec)

So, configure the old master to get the changes back:
MariaDB [(none)]> change master to
master_host='192.168.33.33', master_user='replication',
master_password='password', master_use_gtid=current_pos;

MariaDB [(none)]> start slave;

MariaDB Replication

[126]

5. Now, if you check the old master, all the information is up to date!
6. Stop the current master to be sure that no connections will go to this server:

> service mysql stop

7. Configure your application to go back to the old master.
8. On the master, stop the slave replication with the following command:

MariaDB [(none)]> stop slave;

9. Start the ex-master to become a slave again:
> service mysql start;

10. Perform the same operation on that node to take information back:
MariaDB [(none)]> change master to
master_host='192.168.33.31', master_user='replication',
master_password='password', master_use_gtid=current_pos;

MariaDB [(none)]> start slave;

It's done! All the operations are complete and you've finished it properly.

Summary
You saw in this chapter how to build slaves: the classical and GTID method.
You now know how to optimize them, how to load balance against multiple
read instances, and how to correct errors!

So much information in this chapter! It's strongly recommended to spend time
to test every scenario, try to break replications, and so on, because in production
it will not be so easy.

Replication is the first step of building a highly scalable system. That's why it's
important to master it.

In the next chapter, we'll see how to implement those replications with more
constraints, such as WAN architectures.

WAN Slave Architectures
In the previous chapter, we learned how to play with slave replications. You now
know how it works and want to know how we could grow and geographically
extend them to several regions.

You will encounter several issues in the following areas:

• The architecture of replications
• The security
• The bandwidth

We'll cover all these topics to help you understand the pros and cons of setting a
lot of replications. We will see different use cases and associated solutions.

Cascade slaves
In the previous chapter, we've seen how to build several slaves from a master
node. When you have a few nodes, it's not really a problem for the master node
to handle them.

However, when you multiply the number of slave nodes, you'll encounter more
and more I/O problems with your master node. It will be hard for it to perform
write operations and give them to the slave nodes from the binary logs. So basically,
you shouldn't have these kinds of architectures.

WAN Slave Architectures

[128]

Refer to the following diagram:

SLAVE
SLAVE

SLAVE

SLAVE

SLAVE

SLAVE

SLAVE

SLAVE
SLAVE

SLAVE

SLAVE

SLAVE

SLAVE REPLICATION

MASTER

Monitor the master node properly to ensure that it is not overloaded. Of course,
the number of maximum slaves depends on the load of the master node.

To resolve this kind of problem, you can perform slave cascading. The following
diagram shows a simple solution:

MASTER MIDDLE SLAVE END SLAVE

Chapter 5

[129]

This means that you can have a master replicated on a slave and then replicated on
another slave (as shown in the following diagram). This really helps in scaling with
high load traffic.

END SLAVE END SLAVEEND SLAVE END SLAVE

MASTER

MIDDLE SLAVEMIDDLE SLAVE

With this solution, you can scale more and minimize the replication load on the
master node. To configure it, add the following line on your slave's middle node's
configuration (my.cnf):

log_slave_updates = 1

The major problem in this solution is the configuration; if you lose one of the middle
slaves, you lose 50 percent of your up-to-date slaves. However, all the end slaves are
still accessible and you can reconfigure them to connect to another slave.

Speeding up replication performance for
middle slaves
One of the things we're expecting from a slave node is to apply events from the slave
relay logs to the slave database; this will make it ready to serve read requests.

However, for a middle (relay) slave server, we need not care about that. What we
want from it is to transmit the information as quickly as possible to the end slave.
To achieve this, we need to change how the middle slave will work.

WAN Slave Architectures

[130]

About the master and end slave configuration, nothing changes! However, for the
middle slave, here is what you need to set in addition of a classical slave configuration:

[mysqld]
log-bin = /var/log/mysql/mysql-bin.
log
slave_compressed_protocol = 1
sync_binlog = 1
relay_log = /var/log/mysql/relay-bin
relay_log_index = /var/log/mysql/relay-bin.index
relay_log_info_file = /var/log/mysql/relay-bin.info
log_slave_updates
read_only
skip-innodb
default-storage-engine = blackhole

As you can see here, we're using BLACKHOLE as the default engine. This means
that if there is no type of engine specified when creating a table, the BLACKHOLE
engine will be set.

We're also using the skip-innodb option to bypass InnoDB table creation even if
this is specified during table creation. In this case, the BLACKHOLE engine will
be used instead.

You can now easily create new tables, even in InnoDB; the middle slave server
will use BLACKHOLE, while the end slave servers will use the requested engine.
That's what we wanted.

What about current tables? Can we convert the current middle slave server to
BLACKHOLE tables without changing the end servers slave schema? Of course
yes! You first need to specify that you don't want to replicate the commands
you're going to enter to the end servers. Then, alter all tables to BLACKHOLE.
The following is an example conversion with a table:

MariaDB [(none)]> SET sql_log_bin = 0;
MariaDB [(none)]> ALTER TABLE my_table ENGINE = 'BLACKHOLE';
MariaDB [(none)]> SET sql_log_bin = 1;

Once done, reactivate the sql_log_bin. Notice that changing the sql_log_bin
value only takes effect during the session; other background tasks still replicate to
end slave servers. That's it! Your table has only been converted to BLACKHOLE
on the middle slave server and you've now increased the speed of the replication.

Chapter 5

[131]

Restricting replications
You saw how easy it is to create a replication. However, you may not want to
replicate all your databases. In your MariaDB configuration file, you can configure
which databases or tables you want to replicate.

Changing this can drastically reduce the traffic load and CPU usage. For example,
if you've got 1 TB of databases and you only need 20 GB from the databases on
your slaves for read purposes, you don't have to replicate all the data.

Another point would be about security access. Let's say you've got MariaDB
instances placed in DMZ and you don't want all your data to be replicated (such as
credentials, credits card details, and confidential information). You wouldn't want
to expose all your data, as they could be stolen if you're attacked and hacked. In this
case, you can limit what you want to sync. Notice that it is best practice to reduce
privilege restrictions if you want to add additional security.

If you take the output of a SHOW SLAVE STATUS command, you can see applied
replication restrictions:

MariaDB [(none)]> SHOW SLAVE STATUS\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.31

 Master_User: replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000012

 Read_Master_Log_Pos: 328

 Relay_Log_File: mysqld-relay-bin.000006

 Relay_Log_Pos: 617

 Relay_Master_Log_File: mariadb-bin.000012

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

[...]

1 row in set (0.00 sec)

WAN Slave Architectures

[132]

Here it's blank everywhere, which means that there are no restrictions at all.

Now let's look at these interesting options:

• replicate_do_db: This is a comma-separated explicit list of database names
to replicate as slave. You can see restricted databases you've set in the SLAVE
STATUS command. To configure them in your MariaDB configuration file,
you have to add a new line with each database you want to replicate:
replicate_do_db = mysql
replicate_do_db = database1
replicate_do_db = database2
[…]

You also can make these changes on the fly:
MariaDB [(none)]> stop slave;

MariaDB [(none)]> set global replicate_do_db =
"database1,database2";

MariaDB [(none)]> start slave;

Another important thing is the mysql database. Note that all users and
accesses are stored here and it is usually a good practice to synchronize
across slave.

• replicate_do_table: This works like the replicate_do_db option,
but for tables. You can sync only some tables of one or multiple databases.
For example, in your MariaDB configuration file, add the following:
replicate_do_table = database1.table1
replicate_do_table = database1.table3
replicate_do_table = database2.table8
[…]

You can also change it on the fly:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> set global replicate_do_table = "database1.
table1,database1.table3";

MariaDB [(none)]> start slave;

• replicate_wild_do_table: You saw that replicate_do_table is very
useful. However, when you start to have a huge amount of tables, it can
be a nightmare to manage. So a good solution is to use wildcards like the
following on the fly:
MariaDB [(none)]> stop slave;

Chapter 5

[133]

MariaDB [(none)]> set global replicate_wild_do_table = "database1.
table%,database2.%";

MariaDB [(none)]> start slave;

To make the changes permanent, change the configuration file in the
following manner:
replicate_wild_do_table = "database1.table%";
replicate_wild_do_table = "database2.%";

Of course, there is no sense here to wildcard all tables of database2;
replicate_do_db should be used instead.

• replicate_ignore_db: With replicate_do_db, you saw how to
restrict replication to some databases. With replicate_ignore_db,
this is inversed; it will synchronize all databases instead of those ignored.
This method is generally used for instances that are usually updated with
new databases. This is done to avoid manually configuring a replication
database by database.
So, to ignore database replications, use the following commands:
MariaDB [(none)]> stop slave;

MariaDB [(none)]> set global replicate_ignore_db =
"database1,database2";

MariaDB [(none)]> start slave;

To set this permanently, add the following lines in the MariaDB
configuration file:
replicate_ignore_db = database1
replicate_ignore_db = database2

• replicate_ignore_table: This does the opposite of what replicate_do_
db does; you can select all the database tables that you want to ignore.
This is generally used for temporary tables that are only locally used.
So if you want to configure it in MariaDB configuration file, add the
following lines:
replicate_ignore_table = database1.tmp_table
replicate_ignore_table = database2.tmp_table

If you want to configure it on the fly, use the following commands:
MariaDB [(none)]> stop slave;

MariaDB [(none)]> set global replicate_ignore_table = "database1.
tmp_table,database2.tmp_table";

MariaDB [(none)]> start slave;

WAN Slave Architectures

[134]

• replicate_wild_ignore_table: Like replicate_wild_do_table, you
can use wildcards to ignore some tables. This means that it will replicate
everything instead of the ignored tables by wildcards. Here is an example
that you can add in your MariaDB configuration file:
replicate_wild_ignore_table = "database1.tmp_%";
replicate_wild_ignore_table = "database2.tmp_%";

If you want to do it on the fly:
MariaDB [(none)]> stop slave;

MariaDB [(none)]> set global replicate_wild_ignore_table =
"database1.tmp_%,database2.tmp_%";

MariaDB [(none)]> start slave;

Designing slave in multiple continents
When you want to build a geographical distant architecture, you need to think
about several things:

• Should I replicate everything?
• Is write speed important?
• What is the expected read load for each site?

The following figure shows an example with a French Datacenter where we've got
the master node and several slaves that distribute information to other countries
(Brazil and Japan):

BRAZIL FRANCE JAPAN

Chapter 5

[135]

The latency and bandwidth with such distances are problematic for replication.
Consider the following important information:

• Should I replicate everything: In the previous section, we saw how to
replicate only some databases or tables and how to exclude some of them
from replication. It's important to understand and know the purpose of the
replication. Is this done for a site extension or is it for a full replication such
as disaster recovery? If you want to build a full replication where you can
completely start to recover, then you need to replicate everything! But, you
should be careful with the latency and bandwidth for this kind of project. It
is strongly recommended that the latency be very close to high bandwidth!
If you want to have a site extension for example, simply replicate only what
you need. Usually, distance implies latency. Try to optimize the latency by
limiting what you need to the strict minimum.

• Is slave lag important: If you do not have enough bandwidth between
your master and end slaves, or your middle slaves to the other end slaves,
you'll get replication lags. That means you can have several minutes, or even
hours of delta replication between two hosts. For example, if you get 4h for
replication lag and lose the primary node, your slave will be late from 4h.
That means you've lost data!!! That's why you may consider TokuDB,
which uses a different mechanism, to avoid this slave lag.

• What is the expected read load for each site: As described in the first point,
it's important to limit the latency and your needs. That's why you should
avoid having several replications with high latency area. Instead, you should
have one or two (for fault tolerance) replicates. Then, if you need more
read scalability, you can create other local slaves (in the same area) from
the current slaves. This reduces the load on the master, minimizes the used
bandwidth, and gives you the possibility to scale out easily.

Be sure of what and how many replications you will perform and what are the
impacts, before adding a new slave.

SSL replication
Implementing SSL on replication is an easy task. The question is: do you need
SSL? In a completely local and closed network (and depending on your security
restrictions of course), you generally don't need to set SSL as there is no Man In
The Middle (MITM) possibility like with VPN.

WAN Slave Architectures

[136]

However, in a nonrestricted, DMZ, or any opened network area, it's strongly
recommended to add more security. Also, as database information is generally
very important/critical, it could be very problematic if your data gets stolen.
The privacy of your data is generally very important, as is the confidentiality.
That's why you may think of implementing SSL replication to get uncleared
traffic between multiple MariaDB hosts.

SSL will of course introduce network and CPU overhead. This parameter has to
be taken into account as well. However, in some cases, like several Cloud providers,
you'll have only a public IP per OS instance and you need to establish communication
between two Internet-exposed MariaDB instances. It's recommended to configure your
firewall to limit the source, but that is generally not enough. In such situations, you
have the following two options:

• Using a VPN to encrypt all your traffic over the Internet: If this is done,
you don't need to set up SSL inside MariaDB. However, this will be much
more complicated to implement and will add other network problems.
Anyway, it's an excellent solution. If, for several reasons, you need to add
a VPN along with the SSL for replication, you'll get twice the amount of
network and CPU overhead.

• Using SSL replication for your front MariaDB server: After this is done,
you reduce the number of overheads in your complete infrastructure.
You generally do not need SSL on the SQL backends.

The following is an illustration of what is common for good performance and security:

SSL replication

Over WAN

MASTERMIDDLE SLAVE

NO SSL
Replication

FRANCEBRAZIL

Accessible from
Internet

Not accessible
from Internet

END SLAVEEND SLAVE

Chapter 5

[137]

Generating certificates
You may already have a certificate authority (CA) that could deliver certificates.
If that's the case, you can jump that section.

External CA providing paid certificates is useless, involved MariaDB instances
are close to the same company and don't need to pay for a CRT because security
is satisfied with a self-signed certificate.

An important thing to note about SSL information between server and client is that
if they are too close (organization name, unit, and so on), you'll get errors and won't
be able to connect.

Building your own CA
If you do not have a CA, then you need to manually generate your certificates and
auto-self-sign them.

First, create a folder named ssl where the MariaDB configuration file is located, and
then create a ssl folder to store all generated keys and move into that directory:

> mkdir -p /etc/mysql/ssl ~/ssl/{signedcerts,private}

> cd ~/ssl

We're now ready to generate your CA certificate. The higher the size of the private key,
the higher the establish time will be. A connection with a key of 4096 bits is three times
slower than without encryption. For security reasons, we've chose 4096 here:

> openssl genrsa 4096 > private/ca-key.pem

Generating RSA private key, 4096 bit long modulus

...

...

...

.....................................++

...

...++

e is 65537 (0x10001)

> openssl req -new -x509 -nodes -days 3650 -key private/ca-key.pem -out
cacert.pem

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

WAN Slave Architectures

[138]

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FR

State or Province Name (full name) [Some-State]:Ile de France

Locality Name (eg, city) []:Paris

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pierre Mavro
Company

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:ssl.fqdn.com

Email Address []:pierre@mavro.fr

Adapt the fields with your data. We set the certificate validity here to 10 years to
avoid recreating some too frequently.

Building your server certificate
We're now going to build the server key certificate:

> openssl req -newkey rsa:4096 -days 3650 -nodes -keyout private/server-
key.pem -out private/server-req.pem

Generating a 4096 bit RSA private key

......++

...

...

...++

writing new private key to 'private/server-key.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FR

State or Province Name (full name) [Some-State]:Ile de France

Locality Name (eg, city) []:Paris

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pierre Mavro
Company

Chapter 5

[139]

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:master.fqdn.com

Email Address []:pierre@mavro.fr

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:mypassword

An optional company name []:

This certificate is of 4096 bits. That means it is the current security standard, but will
require more CPU usage on both MariaDB instances for encryption/decryption. It is
up to you to find the best compromise between performance and security. As a rule,
if you want security, do not choose a very light encryption or it won't be efficient and
secure enough.

You now need to enter a pass phrase (challenge password). A passphrase will
be asked for this certificate but you should not enter one. This will be a problem
because each time a reboot of MariaDB occurs, the pass phrase will be prompted
and the service won't start until you enter it. So let's remove the passphrase:

> openssl rsa -in private/server-key.pem -out private/server-key.pem

writing RSA key

We can now sign it:

> openssl x509 -req -in private/server-req.pem -days 3650 -CA cacert.pem
-CAkey private/ca-key.pem -set_serial 01 -out signedcerts/server-cert.pem

Signature ok

subject=/C=FR/ST=Ile de France/L=Paris/O=Pierre Mavro Company/CN=master.
fqdn.com/emailAddress=pierre@mavro.fr

Getting CA Private Key

Building your client certificates
Let's create our first client key certificate:

> openssl req -newkey rsa:4096 -days 3650 -nodes -keyout private/client-
key.pem -out private/client-req.pem

Generating a 4096 bit RSA private key

...

...

...

...

...++

WAN Slave Architectures

[140]

...

.............++

writing new private key to 'private/client-key.pem'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FR

State or Province Name (full name) [Some-State]:Ile de France

Locality Name (eg, city) []:Paris

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pierre Mavro
Company

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:middle1.fqdn.com

Email Address []:pierre@mavro.fr

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:mypassword

An optional company name []:

We're now removing the pass phrase like on the server:

> openssl rsa -in private/client-key.pem -out private/client-key.pem

writing RSA key

And to finish, let's sign it:

> openssl x509 -req -in private/client-req.pem -days 3650 -CA cacert.pem
-CAkey private/ca-key.pem -set_serial 01 -out signedcerts/client-cert.pem

Signature ok

subject=/C=FR/ST=Ile de France/L=Paris/O=Pierre Mavro Company/CN=middle1.
fqdn.com/emailAddress=pierre@mavro.fr

Getting CA Private Key

Chapter 5

[141]

You should now have something like the following in your folder:

> tree

.

|-- cacert.pem

|-- private

| |-- ca-key.pem

| |-- client-key.pem

| |-- client-req.pem

| |-- server-key.pem

| `-- server-req.pem

`-- signedcerts

 |-- client-cert.pem

 `-- server-cert.pem

2 directories, 8 files

Now, you should move this ~/ssl folder to a secure server (inaccessible from
the Internet).

Checking your certificates
At any time, you can check your certificate to validate it:

> openssl verify -CAfile cacert.pem signedcerts/server-cert.pem
signedcerts/client-cert.pem

signedcerts/server-cert.pem: OK

signedcerts/client-cert.pem: OK

Configuring MariaDB for SSL
As we have our certificates now, we're ready to configure the nodes. The following
are modifications required when you set up an existing replication to an SSL one.

Master SSL
On the master, take the configuration from the last chapter and add the following
lines in your MariaDB configuration file (my.cnf):

[mysqld]
ssl-ca=/etc/mysql/ssl/cacert.pem
ssl-cert=/etc/mysql/ssl/server-cert.pem
ssl-key=/etc/mysql/ssl/server-key.pem

WAN Slave Architectures

[142]

You now need to copy these files to your ssl folder (/etc/mysql/ssl). Then, grant
privileges that require SSL (adapt with your configuration):

MariaDB [(none)]> grant replication slave on *.* to
'replication'@'192.168.33.33' require ssl;

MariaDB [(none)]> flush privileges;

Check (after having configured it) if the slave is still able to connect to the master,
as we now require SSL for this MariaDB user:

MariaDB [(none)]> SELECT user,host,ssl_type FROM mysql.user;
+------------------+---------------+----------+
| user | host | ssl_type |
+------------------+---------------+----------+
root	localhost	
root	master	
root	127.0.0.1	
root	::1	
debian-sys-maint	localhost	
replication	192.168.33.33	ANY
+------------------+---------------+----------+

To finish, restart MariaDB. You can check on the master node that the configuration
is correct:

MariaDB [(none)]> SHOW VARIABLES LIKE '%ssl%';
+---------------+--------------------------------+
| Variable_name | Value |
+---------------+--------------------------------+
have_openssl	YES
have_ssl	YES
ssl_ca	/etc/mysql/ssl/ca-cert.pem
ssl_capath	
ssl_cert	/etc/mysql/ssl/server-cert.pem
ssl_cipher	
ssl_crl	
ssl_crlpath	
ssl_key	/etc/mysql/ssl/server-key.pem
+---------------+--------------------------------+
9 rows in set (0.00 sec)

If you want to go ahead with SSL certificates, you can also change the value of
ssl_cipher. This will allow changing the algorithm to get better performances
or security.

Chapter 5

[143]

Client SSL
The clients need to have SSL enabled in your MariaDB configuration as well:

[mysqld]
ssl-ca=/etc/mysql/ssl/cacert.pem
ssl-cert=/etc/mysql/ssl/client-cert.pem
ssl-key=/etc/mysql/ssl/client-key.pem

Then update the slave information:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> change master to master_host='192.168.33.31', master_
user='replication', master_password='password', master_use_gtid=current_
pos, master_ssl=1, MASTER_SSL_CA='/etc/mysql/ssl/cacert.pem', MASTER_SSL_
CERT='/etc/mysql/ssl/client-cert.pem', MASTER_SSL_KEY='/etc/mysql/ssl/
client-key.pem';

MariaDB [(none)]> start slave;

We set the master_ssl option here to force SSL connectivity and the path to different
SSL certificates. Do not forget to copy the certificates in the SSL directory.

You can check on the clients whether the configuration is correct:

MariaDB [(none)]> SHOW VARIABLES LIKE '%ssl%';
+---------------+--------------------------------+
| Variable_name | Value |
+---------------+--------------------------------+
have_openssl	YES
have_ssl	YES
ssl_ca	/etc/mysql/ssl/cacert.pem
ssl_capath	
ssl_cert	/etc/mysql/ssl/client-cert.pem
ssl_cipher	
ssl_crl	
ssl_crlpath	
ssl_key	/etc/mysql/ssl/client-key.pem
+---------------+--------------------------------+
9 rows in set (0.00 sec)

If you now use the slave status command, you'll get information about SSL:

MariaDB [(none)]> show slave status\G;

*************************** 1. row ***************************

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.31

WAN Slave Architectures

[144]

 Master_User: replication

 Master_Port: 3306

 Connect_Retry: 60

 Master_Log_File: mariadb-bin.000014

 Read_Master_Log_Pos: 328

 Relay_Log_File: mysqld-relay-bin.000005

 Relay_Log_Pos: 617

 Relay_Master_Log_File: mariadb-bin.000014

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 328

 Relay_Log_Space: 1204

 Until_Condition: None

 Until_Log_File:

 Until_Log_Pos: 0

 Master_SSL_Allowed: Yes

 Master_SSL_CA_File: /etc/mysql/ssl/cacert.pem

 Master_SSL_CA_Path:

 Master_SSL_Cert: /etc/mysql/ssl/client-cert.pem

 Master_SSL_Cipher:

 Master_SSL_Key: /etc/mysql/ssl/client-key.pem

 Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

 Last_IO_Errno: 0

 Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

 Master_SSL_Crl: /etc/mysql/ssl/cacert.pem

Chapter 5

[145]

 Master_SSL_Crlpath:

 Using_Gtid: No

 Gtid_IO_Pos:

1 row in set (0.00 sec)

Compression options
An important option when you're in a WAN environment is the compression.
We already saw it in the previous chapter. It allows compressing data across
replicated nodes. Here is what you need to add in the MariaDB configuration file:

slave_compressed_protocol = 1

Summary
In this chapter, you saw how to build WAN slave architectures, what are the
risks, and things that you should take care about, such as latency and security.
You also saw how to limit what you want to replicate and you now understand
what is essential for a WAN replication.

In the next chapter, you'll learn how to build a dual master solution.

Building a Dual Master
Replication

In the previous chapters, you saw how to build complex slave replications. However,
in all those solutions, there was a Single Point of Failure (SPOF): the master node.

The solution to avoid having a single master is to build a dual master replication.
It's common to have a simple dual master replication architecture. However, it's
important to do things right when you're managing this kind of thing. Compared
to other solutions, you can't afford to make mistakes and should be very careful
with these kinds of tasks in production usage. To be as strict as possible, we're
going to use cluster tools for some solutions; load balancer and features will only
be available beginning with MariaDB 10.

Dual master replication and risks
A dual master replication is very simple to implement. If you know how to build
a slave, you'll be able to create a dual master easily. It's in fact a slave replication
on both sides. The following diagram shows dual-sided replication:

Slave1: Master1 ->Master2

Slave2: Master2 ->Master1

Master1 Master2

Building a Dual Master Replication

[148]

This means that in theory you can write to both MariaDB instances at the same time.
However, doing so is likely to result in inconsistent data between the two hosts,
breaking replication (because of PRIMARY/UNIQUE key collisions) and, worse than
that, you may end up having inconsistent data between two hosts.

Do not write on to both the masters at the same time!

The preceding tip mentions a rule that you need to follow to avoid issues in the
production usages. You can minimize this kind of issue by adding the following
two options in your MariaDB configuration file:

auto-increment-increment=2
auto-increment-offset=1

• This will avoid primary key collisions on the same rows of the same table:
• auto-increment-increment: This sets the number of masters (here 2)
• auto-increment-offset: This sets a unique number (taking the server-id

is a good solution)

Technically, you need to know that it is possible to write at the same time on
different tables:

Server1 Server2

TableA

TableB

TableA

TableB

Write

Chapter 6

[149]

You can see the following in the preceding diagram:

• TableA on Server1 is replicating to TableA on Server2
• TableB on Server2 is replicating to TableB on Server1

In this instance, there is no possible issue. However, it's generally easier to maintain
a replication that fully replicates all the data instead of a piece of data.

Installing and configuring a dual master
As shown in the previous chapters, you can use Vagrantfile to easily
install MariaDB:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :master1, :role => 'db', :ip =>
'192.168.33.31' }, # master node 1
 { :name => :master2, :role => 'db', :ip =>
'192.168.33.32' }, # master node 2
 { :name => :loadbalancer, :role => 'lb', :ip =>
'192.168.33.33' }, # load balancer 1
 { :name => :loadbalancer2, :role => 'lb', :ip =>
'192.168.33.34' }, # load balancer 2
 { :name => :drbd1, :role => 'drbd', :ip =>
'192.168.33.41' }, # drbd 1
 { :name => :drbd2, :role => 'drbd', :ip =>
'192.168.33.42' }, # drbd 2
]

$install_common = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties openntpd
INSTALL

$install = <<INSTALL
aptitude update

Building a Dual Master Replication

[150]

DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mariadb-
server percona-toolkit
INSTALL

$install_lb = <<INSTALL
add-apt-repository 'deb http://ftp.fr.debian.org/debian/ wheezy-
backports main'
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install haproxy
tcpdump keepalived
sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy
echo "net.ipv4.ip_nonlocal_bind = 1" >> /etc/sysctl.conf
INSTALL

$install_drbd = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install drbd8-
utils parted
echo "drbd" >> /etc/modules
INSTALL

$install_pacemaker = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install pacemaker
corosync
INSTALL

Vagrant::Config.run do |config|
 # Default box OS

Chapter 6

[151]

 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.customize ["modifyvm", :id, "--cpus", 2]
 config.vm.network :hostonly, opts[:ip]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install_common
 # Install HAProxy for load balancer server or
 if opts[:role] == 'lb'
 config.vm.provision "shell", inline: $install_lb
 else
 config.vm.provision "shell", inline: $install
 end
 # Add a second drive for DRBD
 if opts[:role] == 'drbd'
 config.vm.provision "shell", inline: $install_drbd
 config.vm.provision "shell", inline: $install_pacemaker
 file_to_disk = 'drbd-disk_' + opts[:name].to_s + '.vdi'
 config.vm.customize ['createhd', '--filename', file_to_
disk, '--size', 4 * 1024]
 config.vm.customize ['storageattach', :id, '--storagectl',
'SATA', '--port', 1, '--device', 0, '--type', 'hdd', '--medium', file_
to_disk]
 end

 # Pacemaker
 if opts[:role] == 'pm'
 config.vm.provision "shell", inline: $install
 config.vm.provision "shell", inline: $install_pacemaker
 end
 end
 end
end

Then, you'll be able to have two nodes to start your replication. What we will see
in that section is in fact a quick setup, where all used options have already been
discussed in Chapter 4, MariaDB Replication.

First of all, we need to properly configure both MariaDB configuration files to give
them the possibility to be slave and master at the same time.

Building a Dual Master Replication

[152]

The following is an example of the configuration required:

[mysqld]
server-id=1
bind-address = 0.0.0.0
log_bin=/var/log/mysql/mariadb-bin
expire_logs_days=10
sync_binlog = 1
slave_compressed_protocol = 1
binlog_format = row

Be sure that the read_only option is not activated in your
configuration file.

Do not forget to change the server-id value for both masters. As for slaves,
this value should be unique! Once done, restart MariaDB on both nodes.

We're going to create replication users to allow the following actions:

• Replication from Master2 to Master1
• Replication from Master1 to Master2

We've got two servers here with their corresponding IP addresses.

Execute the following command lines on Master1:

MariaDB [(none)]> create user 'replication'@'192.168.33.32' identified by
'password';
MariaDB [(none)]> grant replication slave on *.* to
'replication'@'192.168.33.32';
MariaDB [(none)]> create user 'replication'@'192.168.33.31' identified by
'password';
MariaDB [(none)]> grant replication slave on *.* to
'replication'@'192.168.33.31';
MariaDB [(none)]> flush privileges;

Take a look at the current position:

MariaDB [(none)]> SELECT @@GLOBAL.gtid_current_pos;
+---------------------------+
| @@GLOBAL.gtid_current_pos |
+---------------------------+
| 0-1-4289 |
+---------------------------+

Chapter 6

[153]

Now, use mysqldump (no need to use xtrabackup as this is a fresh install and
there is no need to lock tables as there is no activity) to make a proper replication
from Master1 node to Master2. Generally, we do not need to create a dump here;
however, as this is best practice, let's do it:

> mysqldump -uroot -p --opt --routines --triggers --events --single-
transaction --master-data=2 -A > alldb.sql

Transfer the dump on the Master2 node. Connect on that Master2 node and restore
the SQL dump:

> mysql -uroot -p < alldb.sql

You also need to copy the /etc/mysql/debian.cnf configuration file from Master1
to Master2! This file contains credentials necessary for Debian usages. If you forget
to copy that file, you'll encounter problems on starting and stopping the MySQL
service on Master2.

Then, configure Master2 to be the slave of Master1:

MariaDB [(none)]> flush privileges;

MariaDB [(none)]> stop slave;

MariaDB [(none)]> reset slave;

MariaDB [(none)]> set global gtid_slave_pos = "0-1-4289";

MariaDB [(none)]> change master to master_host='192.168.33.31', master_
user='replication', master_password='password', master_use_gtid=slave_
pos;

MariaDB [(none)]> start slave;

You can now check the slave status of the Master2 node:

MariaDB [(none)]> show slave status\G;
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: 192.168.33.31
 Master_User: replication
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mariadb-bin.000018
 Read_Master_Log_Pos: 1119
 Relay_Log_File: mysqld-relay-bin.000002
 Relay_Log_Pos: 656
 Relay_Master_Log_File: mariadb-bin.000018
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes

Building a Dual Master Replication

[154]

 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 1119
 Relay_Log_Space: 954
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Master_Server_Id: 1
 Master_SSL_Crl:
 Master_SSL_Crlpath:
 Using_Gtid: Slave_Pos
 Gtid_IO_Pos: 0-1-4289
1 row in set (0.00 sec)

Now we're going to set the slave replication from Master1 to Master2. As we've
already got synced data, we do not need to dump all databases; it makes no sense.

So, we will simply have to get the master information from the Master2 node:

MariaDB [(none)]> SELECT @@GLOBAL.gtid_current_pos;

+---------------------------+

| @@GLOBAL.gtid_current_pos |

Chapter 6

[155]

+---------------------------+

| 0-2-4407 |

+---------------------------+

Then configure and start the slave on the Master1 node:

MariaDB [(none)]> stop slave;

MariaDB [(none)]> reset slave;

MariaDB [(none)]> set global gtid_slave_pos = "0-2-4407";

MariaDB [(none)]> change master to master_host='192.168.33.32', master_
user='replication', master_password='password', master_use_gtid=slave_
pos;

MariaDB [(none)]> start slave;

That's it! If you now check the status of this Master1 node, it is a slave as well.

To confirm this works well, here is a simple solution. We're going to create
a database from Master1 and drop it from Master2. So, on node 1, use the
following command:

MariaDB [(none)]> create database replication_test;

On Master2, use the following commands:

MariaDB [(none)]> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| replication_test |

+--------------------+

4 rows in set (0.00 sec)

MariaDB [(none)]> drop database replication_test;

Now list your databases on the Master1 node; you'll see that replication_test
has disappeared!

The replication works correctly on both sides!

Building a Dual Master Replication

[156]

Automatic management
One of the goals of the dual master replication mode is to avoid doing a manual
intervention on both servers when an issue occurs. We want to reduce the switching
time as far as possible in case a server fails. To do so, multiple solutions exist and
we're going to see some of them here.

HAProxy
HAProxy was discussed in Chapter 4, MariaDB Replication, to load balance against
multiple slaves. We're now going to see how to do so on a dual master replication.
To follow the rules, we should load balance on failover, not on configuration. So why
should we use a load balancer if we do not have to load balance? Because HAProxy
is powerful, easy to install, easy to maintain, and does the job perfectly.

Now let's see what failover means. Failover means if one server goes down, it should
automatically switch to the other one. This action should be automatic, that is,
without any human intervention!

The following diagram shows a comfortable scenario for this kind of project:

Client

Server 1 Server 2 Server 3

Dual master replication

Master1 Master2

Master
Master standby

Applications Servers
HAProxy

Chapter 6

[157]

The dotted line means we are designing a current path for SQL queries from the
application servers. The solid line is the backup one, as there is no load balancing at
all here. As you can see, we've got a HAProxy server running on each application
server. This configuration could be useful if you don't need to manage dedicated
HAProxy servers (with Keepalived for example).

To install HAProxy, use the following commands:

> add-apt-repository 'deb http://ftp.fr.debian.org/debian/ wheezy-
backports main'

> aptitude update

> aptitude install haproxy tcpdump socat hatop

> sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy

Then add the HAProxy user:

MariaDB [(none)]> create user 'haproxy'@'192.168.33.33';

MariaDB [(none)]> flush privileges;

Now apply that configuration file (/etc/haproxy/haproxy.cfg):

global
 # log redirection (syslog)
 log /dev/log local0
 log /dev/log local1 notice
 # maximum of connections for haproxy
 maxconn 4096
 # chroot for security reasons
 chroot /var/lib/haproxy
 # user/group for haproxy process
 user haproxy
 group haproxy
 # act as a daemon
 daemon
 # enable stats unix socket
 stats socket /var/lib/haproxy/stats mode 777 level admin

defaults
 # use gloval log declaration
 log global
 # default check type
 mode http
 # only log when closing session
 option tcplog
 # only log failed connections

Building a Dual Master Replication

[158]

 # retry 3 times before setting node as failed
 # redispatch traffic to other servers
 option dontlognull retries 3 option redispatch
 # maximum connection for the backend
 maxconn 1024
 # timeouts
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

enable web check health interface on port 80
listen haproxy 0.0.0.0:80
 mode http
 stats enable
 # set credentials
 stats auth admin:password

loadbalance on master nodes
listen mariadb-masters 0.0.0.0:3306
 # use tcp method
 mode tcp
 # tcp keepalive (pipelining) on both side (clt/srv)
 option tcpka
 # perform mariadb connection with haproxy user
 option mysql-check user haproxy
 # set all write nodes
 # inter: interval of check in milliseconds
 server master1 192.168.33.31:3306 check inter 1000
 server master2 192.168.33.32:3306 check inter 1000 backup

Now reload the HAProxy service.

In this configuration file, it's important to add the backup parameter at the end
of the Master2 server. This parameter will indicate that we do not want to load
balance against all servers, rather we'll redirect all queries to the Master1 server
and automatically switch to Master2 if Master1 fails.

The major problem of that solution is the fallback! For instance, when you lose
your Master1 node and all traffic is redirected by HAProxy to the Master2 node.

Having a lag between the two masters will cause
data inconsistencies! It is important to have no
lag replication when you're using this method.

Chapter 6

[159]

Now suppose that you have network flip-flap on the Master1 node. HAProxy will
automatically fallback to the Master1 node as soon as it is available. You can adjust
it by adding a new parameter called rise:

server master1 192.168.33.31:3306 check inter 1000 rise 300

With the rise parameter set to 300 seconds, you'll not be annoyed by network flip-flap.
However, there are scenarios where you can have problems:

• Master1 crashes and reboots.
• Master2 takes the load.
• Master1 is back after 2 minutes.
• Master2 fails at the fourth minute.
• The load is not redirected to Master1! It will only switch once the 300th

second is reached even if you're in the blackout!

So if you want to do that, do not set too high a number for rise. A value of 20
seconds is a good compromise. You should also consider having a dedicated
network bonding for replication usage to reduce possible network issues.

If you want to disable auto failback, you can set the rise number to 99999999
(which corresponds to 15 years). Each HAProxy has to have an identical
configuration file, so it's preferable to use configuration management
(Ansible, Puppet, Chef, and SaltStack).

Learning about the maintenance mode
If you have a problem with one node and want to set it in maintenance mode,
we can use a few methods that will be described in the next sections.

Using Unix Socket
You can use Unix Socket to set a node in the maintenance mode.

To look at the current state of the HAProxy statistics, use the following command:

> echo "show stat" | socat stdio /var/lib/haproxy/stats | awk -F, '{
print $1,$2,$18 }'
pxname svname status
haproxy FRONTEND OPEN
haproxy BACKEND UP
mariadb-masters FRONTEND OPEN
mariadb-masters master1 UP
mariadb-masters master2 UP
mariadb-masters BACKEND UP

Building a Dual Master Replication

[160]

As you can see here, both nodes are up. Now if you want to put Master2 into
maintenance mode, use the following command:

> echo "disable server mariadb-masters/master2" | socat stdio /var/lib/
haproxy/stats"

You can now check if it is in the maintenance mode:

> echo "show stat" | socat stdio /var/lib/haproxy/stats | awk -F, '{
print $1,$2,$18 }'
pxname svname status
haproxy FRONTEND OPEN
haproxy BACKEND UP
mariadb-masters FRONTEND OPEN
mariadb-masters master1 UP
mariadb-masters master2 MAINT
mariadb-masters BACKEND UP

To enable the node again, do the following:

> echo "enable server mariadb-masters/master2" | socat stdio /var/lib/
haproxy/stats

That's it!

Using HATop
HATop is a tool that permits you to see and manage your load balancer with an
ncurses interactive GUI.

You can set a node in maintenance and see errors and other features. To launch it,
you need to have the HAProxy socket activated and then run that command:

> hatop -s /var/lib/haproxy/stats

Here is what it looks like

Chapter 6

[161]

Using the configuration file
If you do not want to use Unix Socket but only want to use the configuration file,
you also can add disabled to the HAProxy configuration file (haproxy.cfg):

server master2 192.168.33.32:3306 check inter 1000 backup disabled

Then reload the configuration:

> service haproxy reload

[ok] Reloading haproxy: haproxy.

If you check on the web interface, you will see Master2 in maintenance mode.
Remove this parameter to pull off maintenance mode on that node.

Keepalived
Keepalived is a routing solution based on the Virtual Router Redundancy Protocol
(VRRP) protocol. The main goal is to provide high availability. You will be able to
implement a Virtual IP (VIP) to failover on one of the two HAProxy nodes if an
issue occurs. Here is a schema of what you can do with Keepalived to avoid the
HAProxy issue:

VIP
VRRP Keepalived

Master1 Master2

Every command and the following configuration should be achieved on both nodes
to manually install Keepalived:

aptitude install keepalived

Building a Dual Master Replication

[162]

We now need to inform the kernel that we want to allow binding on non local IP on
the hosts. Perform the following steps to do so:

1. Add the following line in /etc/sysctl.conf:
net.ipv4.ip_nonlocal_bind = 1

2. Then enable it:
> sysctl -p

net.ipv4.ip_nonlocal_bind = 1

3. Create a configuration file named keepalived.conf under
/etc/keepalived/:
Detect if haproxy is down
vrrp_script check_haproxy {
 # verify the pid existence
 script "killall -0 haproxy"
 # check every 2 seconds
 interval 2
 # add 2 points of prio if OK
 weight 2
}

VRRP/VIP for haproxy
vrrp_instance haproxy_vip {
 # select the interface to monitor
 interface eth2
 state MASTER
 # set a unique ID for this route
 virtual_router_id 10
 # master: 101
 # backup: 100
 priority 100
 virtual_ipaddress {
 # set the wished VIP
 192.168.33.10
 }
 track_script {
 check_haproxy
 }
}

Chapter 6

[163]

Let's explain what that configuration does:

• vrrp_script: This will execute a script to get the return value of it. It always
should return 0 to be working correctly. You can adjust the check interval if
you want.

• interface: You need to specify the interface on which the VIP should be
mounted and monitored.

• priority: On the primary node (you'll have to define one), set 100 and
set 101 on the other node. If you set both to 100, a backup node will
automatically be selected.

• virtual_ipaddress: Set the VIP for this service. That means all MariaDB
connections will pass through that VIP, get routed to HAProxy, and finally
get distributed to a MariaDB node.

Then, restart Keepalived to make the configuration active:

> /etc/init.d/keepalived restart

If you look at your logs, you will see something like the following on the master node:

Mar 23 13:54:04 loadbalancer Keepalived_vrrp: VRRP_Script(check_haproxy)
succeeded
Mar 23 13:54:05 loadbalancer Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Transition to MASTER STATE
Mar 23 13:54:05 loadbalancer Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Received lower prio advert, forcing new election
Mar 23 13:54:06 loadbalancer Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Entering MASTER STATE

The following can be seen on the backup node:

Mar 23 13:54:04 loadbalancer2 Keepalived_vrrp: VRRP_Script(check_haproxy)
succeeded
Mar 23 13:54:05 loadbalancer2 Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Transition to MASTER STATE
Mar 23 13:54:05 loadbalancer2 Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Received higher prio advert
Mar 23 13:54:05 loadbalancer2 Keepalived_vrrp: VRRP_Instance(haproxy_vip)
Entering BACKUP STATE

If you check on the master host, you'll see the IP address attributed:

> ip a show eth2
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
 link/ether 08:00:27:ec:43:e9 brd ff:ff:ff:ff:ff:ff
 inet 192.168.33.34/24 brd 192.168.33.255 scope global eth2
 inet 192.168.33.10/32 scope global eth2

Building a Dual Master Replication

[164]

Pacemaker or Percona Replication Manager
Pacemaker is an open source, high availability resource manager to manage clusters.
It uses Corosync or Heartbeat to provide messaging and membership services.

We're going to use both these tools and we will also use a custom MariaDB/MySQL
resource agent created by Percona (and contributors) for Corosync in order to make
the integration very powerful. This resource agent is called Percona Replication
Manager (PRM).

So if you're using the Vagrantfile given at the beginning of the chapter, Pacemaker
and Corosync will automatically be installed. However, if you need to install them
manually, run the following command:

> aptitude install pacemaker corosync

By default (and it is recommended), cluster nodes use multicast to talk to each
other. You may have to adapt your switch configuration to support multicast if
it's not the case.

The following schema will help you to understand a little bit of what a good cluster
infrastructure should look like:

Failover/Stacked switchs

Switch1 Switch2

VIP Managed by Pacemaker

Master2/slave1

Pacemaker/Corosync

Maria DB

Master1/slave2

Pacemaker/Corosync

Maria DB

Dedicated network Link1

Dedicated network Link2

Customers

Chapter 6

[165]

You can see two redundant switches here, both connected to both master nodes.
To finish on the physical connectivity, you should consider having two cross-linked
and bonded interfaces. You can also pass through a dedicated switch for this part.
Do not underestimate the importance of those links. This is how the heartbeat of the
cluster communicates.

That means if you lose that link, the cluster won't be able to communicate with nodes
and you'll get a cluster split-brain. In that case, you'll get duplicate IP addresses on
your network (caused by the VIP) with both nodes as master. This situation could be
very uncomfortable to repair if data are written on both sides. You now understand
why it's preferable to get a bonded link with cross cables.

The VIP is an IP that can switch from one node to another. It is collocated with the
master node. With PRM, there is no dual master configuration; in face, it's a master/
slave configuration with a VIP on the master node. If the master node fails, it will
switch the master service and VIP to the available node and try to configure the
slave once the failed node gets back online.

To communicate with all nodes, the cluster will need an authentication key. Why?
Because it broadcasts to discover nodes at boot and needs to avoid registering in a
bad cluster if you have multiple nodes on the same network.

Another important thing is that nodes should be able to communicate
correctly all together! So, it is important to get a correct DNS name
available to all nodes or a correct /etc/hosts file containing all
nodes names and IPs.

Finally, you absolutely need to have your server time synchronized. A NTP client
updating your nodes is a must have! If your servers are not time-synced, you'll get
unwanted issues.

Before going ahead with Pacemaker/Corosync, you need to prepare your MariaDB
instances. On a classical master/slave replication, you need a dedicated user with
replication rights.

Be sure replication is working on all nodes with the correct
MariaDB configuration (as seen at the beginning of the chapter)
before going further.

Building a Dual Master Replication

[166]

Here you need additional users and one to test connectivity. So grant those rights
using the following commands:

MariaDB [(none)]> grant replication client, replication slave on *.* to
replication@'192.168.33.%' identified by 'password';

MariaDB [(none)]> grant replication client, replication slave,
SUPER, PROCESS, RELOAD on *.* to replication@'localhost' identified by
'password';

MariaDB [(none)]> grant select ON mysql.user to test_user@'localhost'
identified by 'password';

You now need to dump the required databases with this new information
and import it on the second node. There is no need to create the master/slave
configuration, PRM will do this for us.

Then we're going to generate the authorization key. But before that, we need to
generate entropy by using the following command:

> while [1] ; do tar cj /usr | md5sum >/dev/null ; done &

This will create an archive of /usr, creating a checksum on it and forwarding it to
/dev/null to drop it. We can now generate the authkey:

> cd /etc/corosync

> corosync-keygen

Corosync Cluster Engine Authentication key generator.

Gathering 1024 bits for key from /dev/random.

Press keys on your keyboard to generate entropy.

Press keys on your keyboard to generate entropy (bits = 24).

Press keys on your keyboard to generate entropy (bits = 88).

Press keys on your keyboard to generate entropy (bits = 152).

[...]

Press keys on your keyboard to generate entropy (bits = 864).

Press keys on your keyboard to generate entropy (bits = 928).

Press keys on your keyboard to generate entropy (bits = 992).

Writing corosync key to /etc/corosync/authkey.

Then, kill the shell PID of the tar/md5 that will be used for entropy.

The authkey is generated on Master1; you now need to transfer it to Master2 in the
same location (/etc/corosync/authkey) with 0400 rights.

Chapter 6

[167]

Now, let's take a look at the configuration file in /etc/corosync/corosync.conf:

Please read the openais.conf.5 manual page

Backward compatibility for OpenAIS
compatibility: whitetank

totem {
 version: 2
 # How long before declaring a token lost (ms)
 token: 3000
 # How many token retransmits before forming a new configuration
 token_retransmits_before_loss_const: 10
 # How long to wait for join messages in the membership protocol
(ms)
 join: 60
 # How long to wait for consensus to be achieved before starting a
new round of membership configuration (ms)
 consensus: 3600
 # Turn off the virtual synchrony filter
 vsftype: none
 # Number of messages that may be sent by one processor on receipt
of the token
 max_messages: 20
 # Limit generated node ids to 31-bits (positive signed integers)
 clear_node_high_bit: yes
 # Disable encryption
 secauth: on
 # How many threads to use for encryption/decryption
 threads: 0
 # Optionally assign a fixed node id (integer)
 # nodeid: 1234
 # This specifies the mode of redundant ring, which may be none,
active, or passive.
 rrp_mode: none

 # Define the private/dedicated cluster binded network address and
multicast information
 interface {
 # The following values need to be set based on your environment
 ringnumber: 0
 bindnetaddr: 192.168.33.0
 mcastaddr: 226.94.1.1
 mcastport: 5405

Building a Dual Master Replication

[168]

 ttl: 1
 }
}

amf {
 mode: disabled
}

service {
 # Load the Pacemaker Cluster Resource Manager
 ver: 0
 name: pacemaker
}

aisexec {
 user: root
 group: root
}

logging {
 fileline: off
 to_stderr: no
 to_logfile: no
 to_syslog: yes
 #logfile: /var/log/corosync/corosync.log
 syslog_facility: daemon
 debug: off
 timestamp: on
 logger_subsys {
 subsys: AMF
 debug: off
 tags: enter|leave|trace1|trace2|trace3|trace4|trace6
 }
}

We need to make some changes to the default configuration (in bold in the preceding
code). Additional comments have been added to make it more understandable.

In that file, the most important thing is to define the private/dedicated network
interface (bindnetaddr). Here, for simplicity, we're using the same subnet for
everything; however, this is not recommended for production usage. You need to
replicate that configuration to Master2 as well.

Chapter 6

[169]

In a cluster environment, isolate to the maximum the public
and private network with dedicated LAN or VLAN!

Logs are also redirected to syslog, which is the simplest way to store logs. You can
also use a dedicated log file for it if you want.

Now we're going to change the Corosync/Debian default configuration to make it
start at boot on both nodes. Edit the corosync file under /etc/default/ and change
the START value:

start corosync at boot [yes|no]
START=yes

PRM works only if MariaDB/MySQL services are properly stopped. That's why
we're going to disable autostart for this service on both nodes:

> update-rc.d -f mysql disable

We need to install the resource agent from Percona now on both nodes.

If you're using a classical replication, do the following:

> url='https://raw.githubusercontent.com/percona/percona-pacemaker-
agents/master/agents/mysql_prm'

If you're using a GTID replication, do the following:

> url='https://raw.githubusercontent.com/percona/percona-pacemaker-
agents/master/agents/mysql_prm56'

Now install PRM:

> cd /usr/lib/ocf/resource.d/

> mkdir percona

> cd percona/

> wget -O mysql -q $url

> chmod u+x mysql

This is just a bash script that will be called by Pacemaker/Corosync to get the correct
state of a MariaDB service.

You're now ready to start Pacemaker/Corosync! Simply start the corosync service:

> /etc/init.d/corosync restart

Building a Dual Master Replication

[170]

You can take a look at the cluster status after a few seconds (look for the requested
time for cluster creation, authentication nodes, and so on):

> crm status

============

Last updated: Sun Mar 23 09:51:00 2014

Last change: Sun Mar 23 08:57:46 2014 via crm_attribute on master1

Stack: openais

Current DC: master2 - partition with quorum

Version: 1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff

2 Nodes configured, 2 expected votes

0 Resources configured.

============

Online: [master1 master2]

We can see here that we got two nodes online and configured. This is good news!
We do not have any configured resources yet, but this will come.

Regarding the votes, this is a consensus mechanism to calculate the cluster state.
To avoid being in a split-brain situation, you need to have the majority of the total of
the nodes in your cluster, plus one. That means in a cluster of 6 nodes, you can lose
2 nodes (6-(6/3+1)) without any problems; your cluster will still work properly. Here
we got 2 nodes, so we can add a quorum to get 3 votes. This is not the subject of the
book, but if you want to avoid the split-brain case, you should consider having 3
nodes or adding a quorum device.

The configuration is empty, so we're going to update it with the crm command:

> crm configure edit

You should replace what you have with the following:

node master1 \
 attributes p_mysql_mysql_master_IP="192.168.33.31" \
 attributes standby="off"
node master2 \
 attributes p_mysql_mysql_master_IP="192.168.33.32" \
 attributes standby="off"
primitive p_mysql ocf:percona:mysql \
 params config="/etc/mysql/my.cnf"\
 pid="/var/run/mysqld/mysqld.pid" \

Chapter 6

[171]

 socket="/var/run/mysqld/mysqld.sock" \
 replication_user="replication" \
 replication_passwd="password" \
 max_slave_lag="60" \
 evict_outdated_slaves="false" \
 binary="/usr/sbin/mysqld" \
 test_user="test_user" \
 test_passwd="password" \
 op monitor interval="5s" role="Master" OCF_CHECK_LEVEL="1" \
 op monitor interval="2s" role="Slave" OCF_CHECK_LEVEL="1" \
 op start interval="0" timeout="60s" \
 op stop interval="0" timeout="60s"
primitive writer_vip ocf:heartbeat:IPaddr2 \
 params ip="192.168.33.100" nic="eth2" \
 op monitor interval="10s" \
 meta target-role="Started"
ms ms_MySQL p_mysql \
 meta master-max="1" master-node-max="1" clone-max="2" clone-node-
max="1" notify="true" globally-unique="false" target-role="Started"
is-managed="true"
location cli-prefer-writer_vip writer_vip \
 rule $id="cli-prefer-rule-writer_vip" inf: #uname eq master1
colocation writer_vip_on_master inf: writer_vip ms_MySQL:Master
order ms_MySQL_promote_before_vip inf: ms_MySQL:promote writer_
vip:start
property $id="cib-bootstrap-options" \
 dc-version="1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff" \
 cluster-infrastructure="openais" \
 expected-quorum-votes="2" \
 no-quorum-policy="ignore" \
 stonith-enabled="false" \
 last-lrm-refresh="1395506003"
rsc_defaults $id="rsc-options" \
 resource-stickiness="INFINITY"

When you register and quit from Vi, the preceding will be applied automatically.
If you make syntax errors or anything that could be annoying, you'll be notified
and will be prompted to re-edit.

Building a Dual Master Replication

[172]

This is a huge configuration, and it would take too long to explain in detail what
everything does. So we're going to concentrate on what you need to change and
how it works:

• node: These lines are the node names of the MariaDB servers with their
private/public network IP. The p_mysql_mysql_master_IP attributes
indicate the IP to be used when a MySQL change master command is
invoked by other nodes. You need to adapt those lines of course.

• primitive p_mysql: This is information related to the MariaDB instance:
all the required path for socket, PID, binary path, and so on. You have to
enter the replication username and password used everywhere as well.
You also have to enter test_user credentials. Other options are for
cluster monitoring.

• primitive writer_vip: This is the public VIP to access your MariaDB
master. This VIP will be used by your applications to connect to a working
instance of MariaDB. Pacemaker/Corosync will perform the task of giving
you an always working version of your MariaDB master instance.

• ms ms_MySQL: This is where you configure the number of wanted masters
and slaves. With PRM, you can have complex solutions based on MariaDB
replications. Here, we just want a Failover/Fault tolerance system and do
 not need to set up more.

• location cli-prefer-writer_vip: This indicates that we prefer having
the master node on Master1. This is, for example, the case when you boot
the whole cluster (all nodes) at the same time.

• colocation: This indicates that the VIP has to be placed on the
master node!

• order: This indicates that MariaDB should be available to work before
starting the VIP.

• property: This is the cluster property. Here, we declare that we do
not have Shoot The Other Node In The Head (STONITH) configured
(fencing method), and there is no quorum here.

• rsc_defaults: We define resource stickiness here. This part is important when
you have flip-flap on your servers. Suppose your Master1 has a hardware
network card issue which flip-flaps the connectivity. Without this option, the
master and VIP would always want to auto fail back to their preference node.
As we generally do not want to have a disconnection, it's better to set the
stickiness. When your first node is back to a normal state, you can manually
switch to it with a crm command. So, to simplify, it disables the auto failback.

Chapter 6

[173]

If you check the status, you can see it works fine:

> crm_mon -rA

============

Last updated: Sun Mar 23 08:57:46 2014

Last change: Sun Mar 23 08:57:46 2014 via crm_attribute on master1

Stack: openais

Current DC: master2 - partition with quorum

Version: 1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff

2 Nodes configured, 2 expected votes

3 Resources configured.

============

Online: [master1 master2]

Full list of resources:

writer_vip (ocf::heartbeat:IPaddr2): Started master1

 Master/Slave Set: ms_MySQL [p_mysql]

 Masters: [master1]

 Slaves: [master2]

Node Attributes:

* Node master1:

 + master-p_mysql:0 : 1060

 + p_mysql_mysql_master_IP : 192.168.33.31

 + readable : 1

* Node master2:

 + master-p_mysql:1 : 60

 + p_mysql_mysql_master_IP : 192.168.33.32

 + readable : 1

The -rA option shows all/unused resources and permits to autorefresh the status.

You can switch nodes by setting one of the nodes in maintenance. Let's say we want
to move all resources from Master1 to Master2:

> crm node standby master1

> crm node online master1

Building a Dual Master Replication

[174]

Now Master2 is the master and Master1 the slave:

> crm status

============

Last updated: Sun Mar 23 11:24:34 2014

Last change: Sun Mar 23 11:23:58 2014 via crm_attribute on master1

Stack: openais

Current DC: master2 - partition with quorum

Version: 1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff

2 Nodes configured, 2 expected votes

3 Resources configured.

============

Online: [master1 master2]

 writer_vip (ocf::heartbeat:IPaddr2): Started master2

 Master/Slave Set: ms_MySQL [p_mysql]

 Masters: [master2]

 Slaves: [master1]

You have a working master/slave solution that is fault-tolerant on two nodes.
If you want to go ahead with PRM or need more explanation, you can look at the
official documentation at https://github.com/percona/percona-pacemaker-
agents/blob/master/doc/PRM-setup-guide.rst.

DRBD
You may have huge traffic on your master node with a high replication lag that
makes your replication unstable. First of all, try to resolve it by ensuring that you
don't have any network issues and have enough bandwidth. Remember that, for
a dual master replication, a fast local network is recommended (1 GB, 10 GB,
or 40 GB Ethernet, or InfiniBand).

If the problem can not be resolved, you should consider having a block replication
system such as Distributed Replicated Block Device (DRBD) instead of the dual
master replication. DRBD will work along with with Pacemaker/Corosync to get
automatic management. The architecture should looks like this:

Chapter 6

[175]

DRBD2 Node

Pacemaker

DRBD / Slave

DRBD1 Node

Pacemaker

DRBD / Master

MariaDB

VIP

The first step is to create a Pacemaker/Corosync cluster. You can take the previous
configuration for that. To prepare it, perform the following steps:

1. Install an ntp client.
2. Be sure the hostname's nodes are correctly accessible.
3. Generate authkey and copy it to the other node.
4. Install the /etc/corosync/corosync.conf configuration file.
5. Edit the /etc/default/corosync file.
6. Start corosync.

You can now install DRBD manually and load the module:

> aptitude install drbd8-utils

> modprobe drbd

Then, make it persistent by adding it to loadable modules at machine boot:

> echo "drbd" >> /etc/modules

Now, edit the global configuration (/etc/drbd.d/global_common.conf) and
change it as follows:

Global configuration
global {
 # Do not report statistics usage to LinBit
 usage-count no;
}

All resources inherit the options set in this section
common {
 # C (Synchronous replication protocol)
 protocol C;

Building a Dual Master Replication

[176]

 startup {
 # Wait for connection timeout (in seconds)
 wfc-timeout 1 ;
 # Wait for connection timeout, if this node was a degraded
cluster (in seconds)
 degr-wfc-timeout 1 ;
 }

 net {
 # Maximum number of requests to be allocated by DRBD
 max-buffers 8192;
 # The highest number of data blocks between two write
barriers
 max-epoch-size 8192;
 # The size of the TCP socket send buffer
 sndbuf-size 512k;
 # How often the I/O subsystem's controller is forced to
process pending I/O requests
 unplug-watermark 8192;
 # The HMAC algorithm to enable peer authentication at all
 cram-hmac-alg sha1;
 # The shared secret used in peer authentication
 shared-secret "xxx";
 # Split brains
 # Split brain, resource is not in the Primary role on any
host
 after-sb-0pri disconnect;
 # Split brain, resource is in the Primary role on one host
 after-sb-1pri disconnect;
 # Split brain, resource is in the Primary role on both
host
 after-sb-2pri disconnect;
 # Helps to solve the cases when the outcome of the resync
decision is incompatible with the current role assignment
 rr-conflict disconnect;
 }

 handlers {
 # If the node is primary, degraded and if the local copy
of the data is inconsistent
 pri-on-incon-degr "echo Current node is primary, degraded
and the local copy of the data is inconsistent | wall ";
 }

Chapter 6

[177]

 disk {
 # The node downgrades the disk status to inconsistent on
io errors
 on-io-error pass_on;
 # Disable protecting data if power failure (done by
hardware)
 no-disk-barrier;
 # Disable the backing device to support disk flushes
 no-disk-flushes;
 # Do not let write requests drain before write requests of
a new reordering domain are issued
 no-disk-drain;
 # Disables the use of disk flushes and barrier BIOs when
accessing the meta data device
 no-md-flushes;
 }

 syncer {
 # The maximum bandwidth a resource uses for background re-
synchronization
 rate 500M;
 # Control how big the hot area (= active set) can get
 al-extents 3833;
 }
}

In this configuration, we are using Protocol C, which permits DRDB to be in
synchronous mode. We also are using a disconnect mode (after-sb* parameters)
to prevent DRBD from trying to autorepair in a split-brain scenario. It's preferable
to understand why there were issues and to resume manually in some cases.
As you may not be familiar with DRBD, consider using those options.

You also need to set a shared secret (choose what you want as a secret).

We are now going to configure the DRBD device:

resource r0 {
 # DRBD1
 on drbd1 {
 device /dev/drbd0;
 # Disk containing the drbd partition
 disk /dev/mapper/drbd-sql;
 # IP address of this host
 address 192.168.33.41:7788;
 # Store metadata on the same device

Building a Dual Master Replication

[178]

 meta-disk internal;
 }
 # DRBD2
 on drbd2 {
 device /dev/drbd0;
 disk /dev/mapper/drbd-sql;
 address 192.168.33.42:7788;
 meta-disk internal;
 }
}

You may notice that the disk is based on a device mapper. In fact, it's preferable to put
the DRBD device on an LVM volume in case you want to grow the storage in future.

On your dedicated device (/dev/sdb if you used Vagrantfile), we're going to
create the partition, declare the partition as LVM, and create the volume group
and an LV that will take the full size of the VG (just to keep it simple). Finally,
we will restart DRBD and create a filesystem on it. Launch the following
commands on both nodes:

> datas_device=/dev/sdb

> parted -s -a optimal $datas_device mklabel gpt

> parted -s -a optimal $datas_device mkpart primary ext4 0% 100%

> parted -s $datas_device set 1 lvm on

> pvcreate /dev/sdb1

> vgcreate drbd /dev/sdb1

> lvcreate -l 100%FREE -n sql drbd

> /etc/init.d/drbd restart

> drbdadm create-md r0

> drbdadm up r0

Now, only on the first node (drbd1), launch the synchronization:

> drbdadm -- --overwrite-data-of-peer primary r0

You can take a look at the drbd status in the following manner:

> drbd-overview

 0:r0 SyncSource Primary/Secondary UpToDate/Inconsistent C r-----

 [>...................] sync'ed: 5.6% (3959900/4190044)K

When it's finished, it looks like this:

> drbd-overview

 0:r0 Connected Primary/Secondary UpToDate/UpToDate C r-----

Chapter 6

[179]

Now create the filesystem:

> mkfs.ext4 /dev/drbd0

Since we are using MariaDB, we need to disable the start at boot to let Pacemaker/
Corosync manage it:

> update-rc.d -f drbd disable

> update-rc.d -f mysql disable

In the same directory, we're going to clean up some things. On the master node,
do the following:

> /etc/init.d/mysql stop

> mv /var/lib/mysql{,.bak}

> mkdir /var/lib/mysql

> mount /dev/drbd0 /var/lib/mysql

> mv /var/lib/mysql.bak/* /var/lib/mysql/

> rmdir /var/lib/mysql.bak

> umount /var/lib/mysql

Then remove the content of /var/lib/mysql on the other node (drbd2):

> rm -Rf /var/lib/mysql

> mkdir /var/lib/mysql

We do not need to set a replication for MariaDB, as this will be a single instance
block replicated by DRBD.

Edit the cluster configuration as shown:

> crm configure edit

node drbd1

node drbd2

primitive drbd_mysql ocf:linbit:drbd \

 params drbd_resource="r0" \

 op monitor interval="29s" role="Master" \

 op monitor interval="31s" role="Slave"

primitive fs_mysql ocf:heartbeat:Filesystem \

 params device="/dev/drbd0" directory="/var/lib/mysql/" fstype="ext4"

primitive ip_mysql ocf:heartbeat:IPaddr2 \

 params ip="192.168.33.200" nic="eth2"

primitive mysqld lsb:mysql

group mysql fs_mysql ip_mysql mysqld

Building a Dual Master Replication

[180]

ms ms_drbd_mysql drbd_mysql \

 meta master-max="1" master-node-max="1" clone-max="2" clone-node-
max="1" notify="true"

colocation mysql_on_drbd inf: mysql ms_drbd_mysql:Master

order mysql_after_drbd inf: ms_drbd_mysql:promote mysql:start

property $id="cib-bootstrap-options" \

 dc-version="1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff" \

 cluster-infrastructure="openais" \

 expected-quorum-votes="2" \

 stonith-enabled="false" \

 no-quorum-policy="ignore" \

 last-lrm-refresh="1395600237"

rsc_defaults $id="rsc-options" \

 resource-stickiness="100"

Let's see the explanation of some points:

• drbd_resource: Here, r0 is the DRBD resource name.
• fm parameters: Enter the DRBD device with a mount point and filesystem.
• primitive vip: Set the VIP and network interface name for DRBD

communication. You can use a private dedicated network.

You're now ready to start! Start the corosync service and check the status:

> /etc/init.d/corosync start

> crm_mon -rA

============

Last updated: Sun Mar 23 20:28:12 2014

Last change: Sun Mar 23 18:43:57 2014 via crmd on drbd1

Stack: openais

Current DC: drbd1 - partition with quorum

Version: 1.1.7-ee0730e13d124c3d58f00016c3376a1de5323cff

2 Nodes configured, 2 expected votes

5 Resources configured.

============

Online: [drbd1 drbd2]

Full list of resources:

 Resource Group: mysql

Chapter 6

[181]

 fs_mysql (ocf::heartbeat:Filesystem): Started drbd2

 ip_mysql (ocf::heartbeat:IPaddr2): Started drbd2

 mysqld (lsb:mysql): Started drbd2

 Master/Slave Set: ms_drbd_mysql [drbd_mysql]

 Masters: [drbd2]

 Slaves: [drbd1]

Node Attributes:

* Node drbd1:

 + master-drbd_mysql:0 : 10000

* Node drbd2:

 + master-drbd_mysql:1 : 10000

How to repair a dual master replication
In a dual master replication, you can easily have issues if you do it manually
without a cluster or something else.

There is not much difference between repairing a master/slave and a master/
master replication. However, you should take care of one evident thing: when
you're working on an issue on Master 2 for example, you absolutely need to stop
the slave replication on Master1!

The advantage of doing this is simple; if you make mistakes on Master2, they
won't be replicated on Master1. This helps you to keep your Master2 node as
close as Master1 if you can correctly repair it. However, if you fail, you can
recreate from a dump of your Master2 without impacting Master1 data.

That's why, in a dual master replication, the first thing to do is to stop the
slave replication! If you are not sure which one to stop, it's preferable to stop
all slave replications instead of modifying unwanted data.

Summary
In this chapter, you learned how to build a dual master replication and how to
use high level software for high availability and load balancing. The complexity
of some software such as Pacemaker/Corosync demands some practice before
going live with production.

In the next chapter, we'll see additional solutions from MariaDB 10 that help to
set up complex infrastructures.

MariaDB Multimaster Slaves
You're now familiar with slave and dual master replications. You've seen their benefits
as well. However, other very interesting features are available since MariaDB 10.

Most of these features are for advanced usages. However, they could be used in a more
classical way to avoid manual data manipulations (like a multimaster slave solution).

Multimaster slave replication
The multimaster slave replication, also known as multisource replication, uses the
GTID mechanism to provide this feature:

Content
Management

System

Master
s

Slave ETL Data Warehouse

Click-stream data

Online E-
Commerce
Application

s s s

Master
s s s

Master
s s s s

s

MariaDB Multimaster Slaves

[184]

Here, for example, you have a master database with slaves for a CMS application.
On the other hand, you've got a master and multiple slaves for your e-commerce
application. Data could be huge and it is dispersed across several databases and tables.

In this kind of situation, when you want to aggregate data, you generally need
to perform tricks with triggers. Alternatively, you need to use any other kind of
complicated solution.

That's when multisource replication comes into action. From multiple master or
slave databases/tables, you can build a database that will contain data from multiple
databases/tables. This is very useful to get all data you want as up-to-date as possible
without huge amounts of work.

So if you need to aggregate data easily without needing an Extract-Transform-Load
(ETL), use multisource replication. You'll then be able to send that data to your data
warehouse or Big Data analytics with an ETL for example or Hadoop; the limitation
for multisource replication is 64 hosts.

Setting up a multisource replication
To make it simple, let's start with two masters with different content and a slave that
will take the full content of both MariaDB instances:

Slave:
1- Master CMS

2- Master eCommerce

Master CMS Master eCommerce

The following is the technical information required by the schema:

• Master1: 192.168.33.31
• Master2: 192.168.33.32
• Slave1: 192.168.33.33

Chapter 7

[185]

If you do not put on any restrictions, then unless you really know
what you are doing, all database names must be unique across
servers! You'll get a slave replication issue in that case.

You can use a Vagrantfile with the following content for this situation:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :master1, :role => 'db', :ip =>
'192.168.33.31' }, # master node 1
 { :name => :master2, :role => 'db', :ip =>
'192.168.33.32' }, # master node 2
 { :name => :slave1, :role => 'db', :ip =>
'192.168.33.33' }, # slave1
]

$install_common = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties openntpd
INSTALL

$install = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team

MariaDB Multimaster Slaves

[186]

Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mariadb-
server percona-toolkit
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.network :hostonly, opts[:ip]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install_common
 config.vm.provision "shell", inline: $install
 end
 end
end

On both the master nodes, use the following minimal MariaDB configuration:

[mysqld]
server-id=1
gtid_strict_mode=1
bind-address = 0.0.0.0
log_bin=/var/log/mysql/mariadb-bin
expire_logs_days=10
sync_binlog = 1
slave_compressed_protocol = 1
binlog_format = row

You should take care about server IDs. All master nodes should
have different IDs. If it's not the case, you'll get into trouble if you
try to replicate from the multisource slave back to your master.

Chapter 7

[187]

On both the master nodes, create the user that will be allowed to replicate data:

MariaDB [(none)]> CREATE USER 'REPLICATION'@'192.168.33.33' IDENTIFIED BY
'PASSWORD';

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO
'REPLICATION'@'192.168.33.33';

MariaDB [(none)]> FLUSH PRIVILEGES;

On the slave node, add the following configuration in the configuration file:

[mysqld]
server-id=3
gtid_strict_mode=1
bind-address = 0.0.0.0
slave_compressed_protocol = 1
binlog_format = row
read_only

Do not forget to restart all MariaDB services after applying configuration changes.
You're ready to get the GTID position on both masters. Let's do it for Master1:

MariaDB [(none)]> SELECT @@GLOBAL.GTID_CURRENT_POS;

+---------------------------+

| @@GLOBAL.gtid_current_pos |

+---------------------------+

| 0-1-2145 |

+---------------------------+

Now take a look on the slave connection name. You will find it empty because no
replication is set up yet:

MariaDB [(none)]> SELECT @@DEFAULT_MASTER_CONNECTION;

+-----------------------------+

| @@default_master_connection |

+-----------------------------+

| |

+-----------------------------+

We're now ready to set up the default master connection. To do this, you need to
inform MariaDB that you want to create a replication on a specific master node,
with two new parameters.

MariaDB Multimaster Slaves

[188]

The first parameter is used to give a name to that replication:

MariaDB [(none)]> SET @@DEFAULT_MASTER_CONNECTION='MASTER1';

The selected replication indicates where we're currently working on master1.
You can verify this:

MariaDB [(none)]> SELECT @@DEFAULT_MASTER_CONNECTION;

+-----------------------------+

| @@default_master_connection |

+-----------------------------+

| master1 |

+-----------------------------+

In our case, to avoid any misunderstanding, it is strongly recommended
that you set the default master connection name equal to the hostname.
In a larger infrastructure with several slaves, you may consider naming
it with the project name (here 'cms' or 'e-commerce').

The second new parameter is in the change master command. You need to set
the name of the replication you want to take action on. Here, we're still on Master1,
so do the following:

MariaDB [(none)]> SET GLOBAL GTID_SLAVE_POS = "0-1-2145";

MariaDB [(none)]> CHANGE MASTER 'MASTER1' TO MASTER_HOST='192.168.33.31',
MASTER_USER='REPLICATION', MASTER_PASSWORD='PASSWORD', MASTER_USE_
GTID=SLAVE_POS;

The Master1 node is configured on the slave but not yet started. Let's finish the slave
configuration for Master2:

MariaDB [(none)]> SET @@DEFAULT_MASTER_CONNECTION='MASTER2';

MariaDB [(none)]> SET GLOBAL GTID_SLAVE_POS = "0-1-2145";

MariaDB [(none)]> CHANGE MASTER 'MASTER2' TO MASTER_HOST='192.168.33.32',
MASTER_USER='REPLICATION', MASTER_PASSWORD='PASSWORD', MASTER_USE_
GTID=SLAVE_POS;

As now we've finished setting up the replication for both masters, we could start all
at once:

MariaDB [(none)]> START ALL SLAVES;

Chapter 7

[189]

Then, take a look at the current messages:

MariaDB [(none)]> SHOW WARNINGS;
+-------+------+-------------------------+
| Level | Code | Message |
+-------+------+-------------------------+
| Note | 1937 | SLAVE 'master2' started |
| Note | 1937 | SLAVE 'master1' started |
+-------+------+-------------------------+
2 rows in set (0.00 sec)

There's also a command to take a look at all slave statuses at once:

MariaDB [(none)]> SHOW ALL SLAVES STATUS\G ;

*************************** 1. row ***************************

 Connection_name: master1

 Slave_SQL_State: Slave has read all relay log; waiting for
the slave I/O thread to update it

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.31

[...]

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

[...]

 Gtid_Slave_Pos: 0-1-2145

*************************** 2. row ***************************

 Connection_name: master2

 Slave_SQL_State: Slave has read all relay log; waiting for
the slave I/O thread to update it

 Slave_IO_State: Waiting for master to send event

 Master_Host: 192.168.33.32

[...]

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

[...]

 Gtid_Slave_Pos: 0-1-2145

2 rows in set (0.00 sec)

The multimaster slave replication is now running! You can test it by creating
a database on Master1; it will appear on the Slave1 node. Create a database on
Master2 and it will also appear on Slave1. You need to be careful about database
duplication, or it will break one of the replications and you'll need to repair it.

MariaDB Multimaster Slaves

[190]

One last thing, which we have already discussed, is that you
should be really sure about the replication you're working on
(@@DEFAULT_MASTER_CONNECTION) before making changes!
Double check each time!

Other options
Like classical replication options, you can apply a replication's restrictions on a
per-slave basis:

• replicate_do_db, replicate_do_table
• replicate_ignore_db, replicate_ignore_table
• replicate_wild_do_table, replicate_wild_ignore_table

Similar to how we used the start option, you can stop all your slaves at once:

MariaDB [(none)]> STOP ALL SLAVES;

When you want to reset a replication status, you need to indicate on which
replication you want to do it:

MariaDB [(none)]> RESET SLAVE 'MASTER1';

Summary
Since the beginning of the book, you've seen a lot of replication methods and usages.
You're now familiar with read replications and dual masters. But what if the problem
is not reads but writes? That's the subject of the next chapter—Galera Cluster.

Galera Cluster – Multimaster
Replication

In the previous chapters, we saw solutions such as slave / multislave / master
replications, slave with cluster, and load balancers, but there were no solutions
that could provide several write replications. This is where Galera Cluster comes
into the picture, bringing that and other features that will be discussed in detail in
this chapter.

Galera Cluster is a synchronous multimaster solution created by Codership.
It's a patch for MySQL and MariaDB with its own commands and configuration.
On MariaDB, it has been officially promoted as the MariaDB Cluster.

Galera Cluster provides certification-based replication. This means that each node
certifies the replicated write set against other write sets. You don't have to worry
about data integrity, as it manages it automatically and very well. Galera Cluster
is a young product, but is ready for production.

If you have already heard of MySQL Cluster, don't be confused; this is not the
same thing at all. MySQL Cluster is a solution that has not been ported to MariaDB
due to its complexity, code, and other reasons. MySQL Cluster provides availability
and partitioning, while Galera Cluster provides consistency and availability. Galera
Cluster is a simple yet powerful solution.

Galera Cluster – Multimaster Replication

[192]

How Galera Cluster works
The following are some advantages of Galera Cluster:

• True multimaster: It can read and write to any node at any time
• Synchronous replication: There is no slave lag and no data is lost at

node crash
• Consistent data: All nodes have the same state (same data exists between

nodes at a point in time)
• Multithreaded slave: This enables better performance with any workload
• No need of an HA Cluster for management: There are no master-slave

failover operations (such as Pacemaker, PCR, and so on)
• Hot standby: There is no downtime during failover
• Transparent to applications: No specific drivers or application changes

are required
• No read and write splitting needed: There is no need to split the read and

write requests
• WAN: Galera Cluster supports WAN replication

Galera Cluster needs at least three nodes to work properly (because of the notion
of quorum, election, and so on). You can also work with a two-node cluster, but
you will need an arbiter (hence three nodes). The arbiter could be used on another
machine available in the same LAN of your Galera Cluster, if possible.

The multimaster replication has been designed for InnoDB/XtraDB. It doesn't mean
you can't perform a replication with other storage engines!

If you want to use other storage engines, you will be limited by the following:

• They can only write on a single node at a time to maintain consistency.
• Replication with other nodes may not be fully supported.
• Conflict management won't be supported.
• Applications that connect to Galera will only be able to write on a single

node (IP/DNS) at the same time.

Chapter 8

[193]

Internet

Load balancing mechanism (DNS, HTTP redirect, etc.)

HTTP
server

App
server

DBMS
server

Galera Replication

HTTP
server

App
server

DBMS
server

HTTP
server

App
server

DBMS
server

HTTP
server

App
server

DBMS
server

As you can see in the preceding diagram, HTTP and App servers speak directly to
their respective DBMS servers without wondering which node of the Galera Cluster
they are targeting.

Usually, without Galera Cluster, you can use a cluster software such as Pacemaker/
Corosync to get a VIP on a master node that can switch over in case a problem occurs.
No need to get PCR in that case; a simple VIP with a custom script will be sufficient to
check whether the server is in sync with others is enough.

Galera Cluster uses the following advanced mechanisms for replication:

• Transaction reordering: Transactions are reordered before commitment to
other nodes. This increases the number of successful transaction certification
pass tests.

• Write sets: This reduces the number of operations between nodes by writing
sets in a single write set to avoid too much node coordination.

• Database state machine: Read-only transactions are processed on the local
node. Write transactions are executed locally on shadow copies and then
broadcasted as a read set to the other nodes for certification and commit.

• Group communication: High-level abstraction for communication between
nodes to guarantee consistency (gcomm or spread).

Galera Cluster – Multimaster Replication

[194]

To get consistency and similar IDs between nodes, Galera Cluster uses GTID, similar
to MariaDB 10 replication. However, it doesn't use the MariaDB GTID replication
mechanism at all, as it has its own implementation for its own usage.

Galera Cluster limitations
Galera Cluster has limitations that prevent it from working correctly.

Do not go live in production if you haven't checked that your
application is in compliance with the limitations listed.

The following are the limitations:

• Galera Cluster only fully supports InnoDB tables. TokuDB is planned but
not yet available and MyISAM is partially supported.

• Galera Cluster uses primary keys on all your tables (mandatory) to avoid
different query execution orders between all your nodes. If you do not
do it on your own, Galera will create one. The delete operation is not
supported on the tables without primary keys.

• Locking/unlocking tables and lock functions are not supported. They will
be ignored if you try to use them.

• Galera Cluster disables query cache.
• XA transactions (global transactions) are not supported.
• Query logs can't be directed to a table, but can be directed to a file instead.
• Other less common limitations exist (please refer to the full list if you want

to get them all: http://galeracluster.com/documentation-webpages/
limitations.html) but in most cases, you shouldn't be annoyed with
those ones.

The basics of installation and
configuration
In this section, we will discuss the basics of the installation and configuration.
As there are a lot of options and things to understand, we'll concentrate first on
how to get something working in a simple way. Then, we'll see configuration
options in more detail.

Chapter 8

[195]

To avoid confusion, we'll use InnoDB exclusively
in this configuration.

Installation
If you want to test it with Vagrant, you can use the following Vagrantfile here:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :galera1, :role => 'gc', :ip => '192.168.33.31' }, #
galera cluster node 1
 { :name => :galera2, :role => 'gc', :ip => '192.168.33.32' }, #
galera cluster node 2
 { :name => :galera3, :role => 'gc', :ip => '192.168.33.33' }, #
galera cluster node 3
 { :name => :garb, :role => 'gc', :ip => '192.168.33.34' }, #
galera quorum
 { :name => :lb, :role => 'lb', :ip => '192.168.33.40' }, #
load balancer
 { :name => :galera4, :role => 'gc', :ip => '192.168.33.41' }, #
galera DR cluster node 1
 { :name => :galera5, :role => 'gc', :ip => '192.168.33.42' }, #
galera DR cluster node 2
 { :name => :galera6, :role => 'gc', :ip => '192.168.33.43' }, #
galera DR cluster node 3
]

$install_common = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties openntpd
INSTALL

$install = <<INSTALL

Galera Cluster – Multimaster Replication

[196]

apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://mirrors.linsrv.net/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install percona-
toolkit mariadb-galera-server galera rsync xinetd
INSTALL

$install_lb = <<INSTALL
add-apt-repository 'deb http://ftp.fr.debian.org/debian/ wheezy-
backports main'
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install haproxy
tcpdump keepalived
sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy
echo "net.ipv4.ip_nonlocal_bind = 1" >> /etc/sysctl.conf
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.customize ["modifyvm", :id, "--cpus", 2]
 config.vm.network :hostonly, opts[:ip]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install_common
 # Install HAProxy for load balancer server or
 if opts[:role] == 'lb'
 config.vm.provision "shell", inline: $install_lb
 else

Chapter 8

[197]

 config.vm.provision "shell", inline: $install
 config.vm.customize ["modifyvm", :id, "--memory", 768]
 end
 end
 end
end

The manual ways to install Galera Cluster are discussed next.

1. We need at least three servers to make it work, so ensure that you have
them. On all servers, we'll need to have a MariaDB repository to be
configured as the Galera Cluster is packaged inside:
> apt-get install python-software-properties

> apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db

> add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/
repo/10.0/debian wheezy main'

> apt-get update

2. Now we're ready to install Galera Cluster:
> aptitude install mariadb-galera-server galera

3. We will also need servers to be time-synced. That's why we'll install an
NTP server:
> aptitude install openntpd

4. We also need to get rsync for a method of data synchronization that we'll
see later in this chapter:
> aptitude install rsync

You can also install Xtrabackup as there is an interesting solution with it!

Configuration files
To be clear, the configuration will be split into two files:

• The classical my.cnf file
• Specific Galera Cluster configuration

If not split, the Galera Cluster configuration needs to be in the [mysqld] (ini)
statement. However, to make it clear, we're going to use a dedicated file for Galera.
This will permit us to override some options in the classical my.cnf configuration,
thereby ensuring that we're in compliance with Galera Cluster requirements.

Galera Cluster – Multimaster Replication

[198]

MariaDB configuration
Edit the MariaDB configuration file and be sure those options are enabled and
correctly set in /etc/mysql/my.cnf:

[mysqld]
bind-address = 0.0.0.0
datadir = /var/lib/mysql
innodb_buffer_pool_size = 10G
innodb_log_file_size = 100M
innodb_file_per_table
innodb_flush_log_at_trx_commit = 2

Ensure that you've properly adjusted all of these values and that this configuration is
the same on all Galera nodes.

If you don't run the same configuration on all servers,
you may have replication errors.

Galera configuration
Now we're going to talk about the biggest part of the configuration file. For Galera,
we're going to create a dedicated file for this purpose and override all MariaDB
configurations that are mandatory for Galera to avoid a non-understandable situation.

So create a configuration file (/etc/mysql/conf.d/galera.cnf) with the
following content:

Galera-specific config file.

[mysqld]
Galera Cluster
wsrep_provider = /usr/lib/galera/libgalera_smm.so
wsrep_cluster_name='mariadb_cluster'
wsrep_node_name=galera1
wsrep_node_address="192.168.33.31"
wsrep_cluster_address = 'gcom://192.168.33.31,192.168.33.32,192.168.3
3.33'
wsrep_retry_autocommit = 0
wsrep_sst_method = rsync
wsrep_provider_options="gcache.size = 512M; gcache.name = /tmp/galera.
cache; gcache.page_size = 100M"
wsrep_slave_threads=16

Chapter 8

[199]

#wsrep_replication_myisam = 1
#wsrep_sst_receive_address = <x.x.x.x>
#wsrep_notify_cmd="script.sh"

There are a lot of options here; we're going to see why they will be of interest to us:

• wrep_provider: This is the path where the Galera plugin is located.
This allows the loading of Galera Cluster when MariaDB boots.

• wsrep_cluster_name: This is the name of the cluster. It's generally used
when you have multiple servers in the same network subnet. This is to
prevent unwanted nodes from joining the wrong cluster.

• wsrep_node_name: This is the unique current node name. You should
absolutely avoid getting the same node name on several configurations.
This helps a lot in diagnosing an issue.

• wsrep_node_address: If you're using a dedicated and private network for
Galera communication (strongly recommended), you can set this option.
Otherwise, use the public IP of your current node. Like the previous option,
this should also be unique.

• wsrep_cluster_address: This is a list of the cluster's members. That means
all the listed nodes will be masters and part of Galera Cluster.

• wsrep_provider_options: This allows enabling additional options. The
following are the additional options that we're using:

 ° gcache.size: This is a dedicated cache for Galera. It is buffered on
disk cache and should be smaller than the database size. It is used
to store replication requests when they come, apply them, and so on.
You need to grow it on high traffic load if you want all your nodes
to be at the same page every time. Otherwise, you won't be in a full
synchronization mode.

 ° gcache.name: This is the name and the path where gcache is to be
stored. You can use a dedicated SSD disk to get better performance.

 ° gcache.page_size: This is the size of the page files in the
page storages.

• wsrep_retry_autocommit: When a conflict is detected, this options allows
setting the number of retries to commit before failure.

• wsrep_sst_method: This is the transfer method between nodes. Others also
exist; we'll see them in detail later. Rsync is the fastest method.

• wsrep_slave_threads: This defines how many threads to use for applying
slave write sets.

Galera Cluster – Multimaster Replication

[200]

• wsrep_replication_myisam: This permits you to activate MyISAM
replication. But as there is no transaction with MyISAM, you should avoid it.

• wsrep_sst_receive_address: This permits you to force an IP and is generally
used in situations where you reach other servers through a VIP and the remote
servers don't see this server coming with the correct IP address.

• wsrep_notify_cmd: This executes a script on each Galera event. It could
be used when a node is not a cluster member anymore; this script will be
launched and will send an e-mail.

Now the MariaDB options should be overridden:

Other MariaDB options
binlog_format = ROW
innodb_autoinc_lock_mode = 2
innodb_flush_log_at_trx_commit = 2
innodb_locks_unsafe_for_binlog = 1
query_cache_size = 0

The following options should be overridden:

• binlog_format: This defines the log format
• innodb_autoinc_lock_mode: This changes how a lock mechanism should

be used
• innodb_flush_log_at_trx_commit: This optimizes performance but can

be dangerous if there is a power outage on a whole Galera Cluster (data may
be lost)

• query_cache_size: This disables query cache

First boot
The first boot is very important and you should start the first node with the
following parameter:

--wsrep_cluster_address='gcomm://'

The gcomm parameter specifies which nodes are in the cluster. However, the first
time, we should specify one. By adding an empty line, it promotes a new cluster.

Chapter 8

[201]

Start new cluster

Galera1 Galera2 Galera3

Here we can see that Galera1 has started as a new cluster while the others are shut
down for the moment.

Then, we'll start other nodes and they will automatically register and integrate
the cluster.

New cluster started start those nodes

Galera1 Galera2 Galera3

We can now start the other nodes as the first one has started.

The first thing to do is to stop the current running MariaDB instances:

> service mysql stop

Then we'll create a new cluster:

> service mysql start --wsrep_cluster_address='gcomm://'

Never use an empty gcomm parameter to join a cluster; otherwise,
you may break the current cluster status.

Galera Cluster – Multimaster Replication

[202]

If you look at the logs, you should see something like this:

Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: Flow-
control interval: [16, 16]
Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: New
cluster view: global state: bc0dfb32-c4e1-11e3-855c-56855ec795da:0,
view# 3: Primary, number of nodes: 1, my index: 0, protocol version 2
Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: wsrep_
notify_cmd is not defined, skipping notification.
Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: REPL
Protocols: 5 (3, 1)
Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: Assign
initial position for certification: 0, protocol version: 3
Apr 15 21:06:46 galera1 mysqld: 140415 21:06:46 [Note] WSREP: Service
thread queue flushed.
Apr 15 21:06:51 galera1 mysqld: 140415 21:06:51 [Note]
WSREP: cleaning up d7e02f49-c4e1-11e3-82d1-02ff8a9aaf54
(tcp://192.168.33.32:4567)

You can connect and check the current status:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_%';

+---------------------------+--------------------- --------------+

| Variable_name | Value |

+----------------------------+------------------- ---------------+

[...]

| wsrep_local_state_comment | Synced |

[...]

| wsrep_incoming_addresses | 192.168.33.31:3306 |

| wsrep_cluster_conf_id | 3 |

| wsrep_cluster_size | 1 |

| wsrep_cluster_state_uuid | bc0dfb32-c4e1-11e3-855c-56855ec795da |

| wsrep_cluster_status | Primary |

| wsrep_connected | ON |

[...]

| wsrep_ready | ON |

+---------------------------+--------------------------------------+

46 rows in set (0.00 sec)

Chapter 8

[203]

Here is important information to know the status of the cluster:

• wsrep_local_state_comment: This gives the current status of the node.
Here are the possible values:

 ° Joining: The node is currently joining the cluster
 ° Donor/Desynced: The node is in Donor mode (replicating data

to another node) or not up-to-date with other nodes
 ° Joined: The node has joined the cluster
 ° Synced: The node is a cluster's member

• wsrep_cluster_size: This gives the number of node members in the
Galera Cluster.

• wsrep_cluster_state_uuid: This is the unique cluster ID. All nodes
should have the same UUID to be sure they are connected to each other.

• wsrep_cluster_conf_id: This is the configuration ID that should be the
same on all nodes to be sure their configurations are on the same page.

• wsrep_cluster_status: This indicates the current status of the replication
for a node. The statuses can be any of the following:

 ° Primary: The node is in a master state
 ° Non-primary: The node is not a master
 ° Disconnected: The node is not connected to a cluster

• wsrep_connected: This indicates network connectivity for replication.
• wsrep_ready: This indicates the node is ready and is able to handle

SQL transactions.

As the first node is ok, the new cluster is created. Do not forget to change node name
and IP in the Galera configuration for Galera2 and Galera3 nodes.

Then, to integrate them in the cluster, simply start MariaDB:

> service mysql start

You may wonder how do they know how to integrate the cluster? The answer is
simple—wsrep_cluster_address. Each address will be tested in the written order.
That's why both nodes will integrate by contacting the first node.

Galera Cluster – Multimaster Replication

[204]

When integrated, you should see the following status:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_%';

+---------------------------+---------------------------------------+

| Variable_name | Value |

+---------------------------+---------------------------------------+

[...]

| wsrep_local_state | 4 |

| wsrep_local_state_comment | Synced |

[...]

| wsrep_incoming_addresses | 192.168.33.32:3306,192.168.33.33:3306,192.1
68.33.31:3306 |

| wsrep_cluster_conf_id | 5 |

| wsrep_cluster_size | 3 |

| wsrep_cluster_state_uuid | bc0dfb32-c4e1-11e3-855c-56855ec795da |

| wsrep_cluster_status | Primary |

| wsrep_connected | ON |

[...]

| wsrep_ready | ON |

+---------------------------+---------------------------------------+

46 rows in set (0.00 sec)

When a node is joining, you should see something like this in the logs of Galera1 in
/var/log/syslog:

mysqld: #011group UUID = bc0dfb32-c4e1-11e3-855c-56855ec795da
mysqld: 140416 18:30:55 [Note] WSREP: Flow-control interval: [28, 28]
mysqld: 140416 18:30:55 [Note] WSREP: New cluster view: global state:
bc0dfb32-c4e1-11e3-855c-56855ec795da:0, view# 5: Primary, number of
nodes: 3, my index: 2, protocol version 2
mysqld: 140416 18:30:55 [Note] WSREP: wsrep_notify_cmd is not defined,
skipping notification.
mysqld: 140416 18:30:55 [Note] WSREP: REPL Protocols: 5 (3, 1)
mysqld: 140416 18:30:55 [Note] WSREP: Assign initial position for
certification: 0, protocol version: 3
mysqld: 140416 18:30:55 [Note] WSREP: Service thread queue flushed.
mysqld: 140416 18:30:57 [Note] WSREP: Node 1.0 (galera3) requested
state transfer from '*any*'. Selected 0.0 (galera2)(SYNCED) as donor.
mysqld: 140416 18:30:59 [Note] WSREP: 0.0 (galera2): State transfer to
1.0 (galera3) complete.
mysqld: 140416 18:30:59 [Note] WSREP: Member 0 (galera2) synced with
group.

Chapter 8

[205]

mysqld: 140416 18:31:01 [Note] WSREP: 1.0 (galera3): State transfer
from 0.0 (galera2) complete.
mysqld: 140416 18:31:01 [Note] WSREP: Member 1 (galera3) synced with
group.
ntpd[2376]: peer 88.191.228.138 now valid

You can now test by creating a database on any node; it will be automatically
replicated to others.

Now all nodes are aware of the others (even the Galera1 node) and you can check it
easily using the following command:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_%';

[...]

| wsrep_incoming_addresses | 192.168.33.32:3306,192.168.33.33:3306,19
2.168.33.31:3306 |

The last thing to do is to replicate the debian.cnf under /etc/mysql/ from one
node to the other nodes. Then, you have to change the password of that user with
the one indicated in the debian.cnf file to replicate it across all nodes:

MariaDB [(none)]> SET PASSWORD FOR 'debian-sys-maint'@'localhost' =
PASSWORD('password');

MariaDB [(none)]> FLUSH PRIVILEGES;

Usages and understandings
There are a lot of configuration options, and some of them depend on your needs.
We'll see here what choices we have, what is the best for your needs, and how to
use them.

Transfer methods
Several transfer methods exist and all have their pros and cons. Why should you
change it? This is simple; when you need to integrate a node in a current cluster,
a running node is designed to change state and become a Donor. The Donor will
be the dedicated node to transfer data to the new node.

When a node is in the Donor mode, transactions are locked
on that node until it finishes the transfer of data.

Galera Cluster – Multimaster Replication

[206]

Depending on the transfer method you choose, it will be more or less faster to create
a new node. Here is what a Donor looks like when it is in Donor mode:

MariaDB [(NONE)]> SHOW global STATUS LIKE 'wsrep%stat%';
+---------------------------+--------------------------------------+
| Variable_name | VALUE |
+---------------------------+--------------------------------------+
wsrep_local_state_uuid	bc0dfb32-c4e1-11e3-855c-56855ec795da
wsrep_local_state	2
wsrep_local_state_comment	Donor/Desynced
wsrep_cluster_state_uuid	bc0dfb32-c4e1-11e3-855c-56855ec795da
wsrep_cluster_status	PRIMARY
+---------------------------+--------------------------------------+
5 ROWS IN SET (0.00 sec)

If you're not using a load balancer in front of your Galera
Cluster, you will need to remove the donor node from it to
avoid issues. Then, when it will change its state, you can
reintegrate it in the Cluster.

There are two kinds of data transfer:

• State Snapshot Transfer (SST): This is the way to create full backups
• Incremental State Transfer (IST): This is the way to transfer the missing data

All replication mechanisms cannot do both SST and IST.

Using mysqldump
The mysqldump solution can perform an SST but not IST data transfer, which means
on large databases, an SST could take several days if you integrate a new node in the
cluster. However, this method doesn't require any additional tools to work.

You need to create a user to make it work:

MariaDB [(NONE)]> CREATE USER 'sst_user'@'%' IDENTIFIED BY 'sst_
password';
MariaDB [(NONE)]> GRANT ALL ON *.* TO 'sst_user'@'%' IDENTIFIED BY 'sst_
password';
MariaDB [(NONE)]> FLUSH PRIVILEGES;

Then, in the Galera configuration (galera.cnf), you need to enter these credentials:

wsrep_sst_auth = 'sst_user:sst_password'

Chapter 8

[207]

Then, when you add a new node in the cluster, the SST method will be applied.
The major problem of that solution is if you have already got a node in the cluster,
but it was down for a certain amount of time, so it won't be able to resume the
replication and get missing data back. It will do an SST transfer instead of an IST
transfer when you integrate the node in the cluster.

Using Xtrabackup
Xtrabackup is a fast (but not the fastest) solution to perform SST and IST transfers.
The advantage of Xtrabackup is the required lock time, which is the lowest possible.
However, the replication takes time but is faster than the mysqldump solution.

First of all, you need to install Xtrabackup (already done if you're using
Vagrantfile):

> apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A

> add-apt-repository 'deb http://repo.percona.com/apt wheezy main'

echo 'Package: *

Pin: release o=Percona Development Team

Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref

> aptitude update

> aptitude install xtrabackup

Then configure your SST method in the Galera configuration (galera.cnf):

wsrep_sst_method = xtrabackup

Using rsync
The rsync method is the fastest way to do IST and SST transfers. It will lock a
transaction on the donor node for a longer duration as compared to Xtrabackup.

You need to install rsync:

> aptitude install rsync

Then, you need to declare this method in your Galera configuration file (galera.cnf):

wsrep_sst_method = rsync

Galera Cluster – Multimaster Replication

[208]

Dedicating a donor node
You may want to dedicate a node as a Donor. This can simplify some backup processes
or any other task that requires changing a synced node in the donor node.

You can, for example, configure Galera3 to be in the donor node in the Galera
configuration file (galera.cnf):

wsrep_sst_donor=galera3

You can change it on the fly if you want (for example, if you've lost Galera3):

MariaDB [(NONE)]> set global wsrep_sst_donor=galera2;

Starting after a complete blackout
With the basic configuration, you can see how Galera Cluster works. If you try to kill
a node and restart it, it will automatically rejoin the cluster and get missing data from
other nodes.

If you have a power outage on your Galera Cluster, you will need to do it manually.
It is unfortunately not a perfect solution to boot your cluster, with or without all nodes.
I hope a feature will be included in the future versions to make this automated.

However, there are some interesting options to help you configure a node to boot in
a specific situation:

• pc.wait_prim=no: This waits for a primary component for an indefinite time
(request mysqldump as an SST replication method)

• pc.bootstrap=1: This bootstraps the primary node (avoid starting the node
with an empty 'gcomm://' value

The content in the Galera configuration file (galera.cnf) on all your servers should
look like the following:

gcomm://galera1?pc.waitprim=no&pc.bootstrap=1,galera2,galera3

So when all the servers are started at the same time and no one is declared
as primary, Galera1 will take the lead and others will automatically join.
This configuration only works with mysqldump as the wsrep_sst_method value.
It doesn't work with rsync or Xtrabackup.

Chapter 8

[209]

Consensus clustering and maintenance
In a classic method of consensus clustering, when you're losing the majority (N/2+1) of
your nodes, the cluster will completely fail. This is how a cluster like Galera works.

When you want to perform maintenance on your servers hosting Galera, you can
shut down all your nodes instead of one and Galera will still be working. Why?
Because you didn't lose your servers! You gracefully shut them down. This is the
difference here; Galera automatically recalculates the total node size to make the
cluster always available even with only one node!

Garb – the quorum solution
If you want to start building a Galera Cluster but do not have enough machines to
build the full infrastructure yet, you can use Garb. It can also be used when you lose
a node, you back up a node, or where the required nodes in the cluster is minimal:

Galera1 Galera2

Garb service

This will provide an extra fake node to avoid a split-brain or a broken cluster.

If you're using the Vagrant file, there is a given node for Garb usage called garb.
You can test it on that node.

Galera Cluster – Multimaster Replication

[210]

The Garb configuration is an easy task. You need to edit the configuration file in
/etc/default/garb:

Copyright (C) 2012 Coedership Oy
This config file is to be sourced by garb service script.
A space-separated list of node addresses (address[:port]) in the
cluster
GALERA_NODES="192.168.33.31:4567 192.168.33.32:4567
192.168.33.33:4567"

Galera Cluster name, should be the same as on the rest of the nodes.
GALERA_GROUP="mariadb_cluster"

Optional Galera internal options string (e.g. SSL settings)
see http://www.codership.com/wiki/doku.php?id=galera_parameters
GALERA_OPTIONS=""

Log file for garbd. Optional, by default logs to syslog
LOG_FILE= ""

To make it work, you need to uncomment and fill the following fields:

• GALERA_NODES: Specify each node of the cluster with the port delimited
by a space character

• GALERA_GROUP: Include the name of the wsrep_cluster_name of the
Galera Cluster (you've entered it in galera.cnf configuration file)

Now, configure it to boot automatically when the server starts and start the
daemon now:

> update-rc.d -f garb defaults

> service garb start

Now if you look at a Galera node, you'll find a new size in the cluster:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_cluster_size';

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| wsrep_cluster_size | 4 |

+--------------------+-------+

1 row in set (0.00 sec)

Chapter 8

[211]

Performance tuning
Some tuning can be done to get better performance. But as usual, this depends on
your current requirement; you should only consider tuning Galera when you've
been running for at least 24 hours with the traffic you're expecting.

Parallel slave threads
Parallel slave threads can give better performances (this is not guaranteed but will
not be bad), so activating them is a good thing.

A correct calculation of this is to take four threads per physical core. So if you have
eight cores on your current node, update this setting in the Galera configuration file
(galera.cnf):

wsrep_slave_threads=32

You should avoid setting this to a value more than the wsrep_cert_deps_distance
value.

Gcache size
Gcache size is something important to get good performance. We will see here how
to calculate at minimum the size of Gcache corresponding to your usage.

Using mysqldump as a transfer method will require getting a bigger Gcache size.
This is mainly because the mysqldump method only supports SST and not IST.

So, to know the minimum Gcache size you should use, you need to calculate the
write rate by getting wsrep_received_bytes with interval times.

Here is the formula:

(received_bytes_value2 - received_bytes_value1) / (time2 - time1)

Galera Cluster – Multimaster Replication

[212]

Designing redundant architectures
Galera Cluster is fantastic for getting as many master or slave nodes as possible.
However, if you have a high traffic, you can dedicate some nodes as read only as well.

Read and write nodes
The problem of having dedicated nodes for read purposes is the time taken to
synchronize all nodes. The more Galera nodes you have, the more you need
time to replicate data. Even if it's super fast, this is to be expected.

So what kinds of solutions exist? You can mix classical/GTID replication and Galera
Cluster. This way, you can dedicate as many read servers as you want connected to
a Galera node to get a very fast read access. Also, you can have a Galera Cluster to
get a fast and redundant write cluster. In that case, you do not have SPOF. Here is
an example of kind of infrastructure:

Write transactions
Read transactions

Read Slaves 1 Read Slaves 2

Galera Cluster

Chapter 8

[213]

Load balanced architecture
In the previous chapters, we saw how to load balance on several MariaDB slave
nodes with HAProxy, and it works pretty well. Also, HAProxy knows how to
speak with MariaDB nodes.

Internet

Load balancing mechanism (DNS, HTTP redirect, etc.)

HTTP
server

App
server

Galera Replication

HTTP
server

App
server

HTTP
server

App
server

HTTP
server

App
server

JDBC,
Haproxy...

JDBC,
Haproxy...

JDBC,
Haproxy...

JDBC,
Haproxy...

DBMS
server

DBMS
server

DBMS
server

However, it doesn't know how to speak with Galera nodes and we will help it to
do this. First of all, install HAProxy:

> add-apt-repository 'deb http://ftp.fr.debian.org/debian/ wheezy-

backports main'

> aptitude update

> aptitude install haproxy

> sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy

Galera Cluster – Multimaster Replication

[214]

Then, include the following configuration in /etc/haproxy/haproxy.cfg:

global
 # log redirection (syslog)
 log /dev/log local0
 log /dev/log local1 notice
 # maximum of connections for haproxy
 maxconn 4096
 # chroot for security reasons
 chroot /var/lib/haproxy
 # user/group for haproxy process
 user haproxy
 group haproxy
 # act as a daemon
 daemon
 # enable stats unix socket
 stats socket /var/lib/haproxy/stats mode 777 level admin

defaults
 # use gloval log declaration
 log global
 # default check type
 mode http
 # only log when closing session
 option tcplog
 # only log failed connections
 # retry 3 times before setting node as failed
 # redispatch traffic to other servers
 option dontlognull retries 3 option redispatch
 # maximum connection for the backend
 maxconn 2000
 # timeouts
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

enable web check health interface on port 80
listen haproxy 0.0.0.0:80
 mode http
 stats enable
 # set credentials
 stats auth admin:password

Chapter 8

[215]

loadbalance on Galera
listen galera-nodes 0.0.0.0:3306
 # use tcp method
 mode tcp
 # round robin mechanism
 balance roundrobin
 # tcp keepalive (pipelining) on both side (clt/srv)
 option tcpka
 # perform http request
 option httpchk
 # set all read only nodes
 # inter: interval of check in milliseconds
 server galera1 192.168.33.31:3306 check port 9200 inter 2000 rise
3 fall 3
 server galera2 192.168.33.32:3306 check port 9200 inter 2000 rise
3 fall 3
 server galera3 192.168.33.33:3306 check port 9200 inter 2000 rise
3 fall 3

Here, we're simply asking to do a HTTP request and HAProxy will check the HTTP
return code on port 9200.

Now, on a Galera node, create a dedicated user for HAProxy check:

MariaDB [(none)]> CREATE USER 'galera_check'@'127.0.0.1' IDENTIFIED BY
'password';

MariaDB [(none)]> FLUSH PRIVILEGES;

Adapt the user and password as you want. Then, on all Galera nodes you will need to
add this script in /usr/bin/galera_check:

> wget -O /usr/bin/galera_check https://raw.githubusercontent.com/
severalnines/haproxy/master/mysqlchk.sh.galera

Then, update the beginning of the script with the same credentials you just created:

#!/bin/bash
[...]
MYSQL_HOST="127.0.0.1"
MYSQL_PORT="3306"
MYSQL_USERNAME="galera_check"
MYSQL_PASSWORD="password"
MYSQL_OPTS="-N -q -A"
[...]

Galera Cluster – Multimaster Replication

[216]

The preceding script has been created by Severalnines (http://www.severalnines.
com) and has been adapted for Debian. This script will be used by xinetd when the
port 9200 will be targeted. So create a xinted configuration in /etc/xinetd.d/
xinetd_galera:

service mysqlchk
{
 flags = REUSE
 socket_type = stream
 port = 9200
 wait = no
 user = nobody
 server = /usr/bin/galera_check
 log_on_failure += USERID
 disable = no
 only_from = 0.0.0.0/0
 per_source = UNLIMITED
}

A better thing would be to allow only HAProxy IPs instead
of everybody (0.0.0.0).

Add the following information to your /etc/services nodes:

> echo -e "galera_check\t9200/tcp\t\t\t# galera_check" >> /etc/services

To finish up, change the rights and restart services on all Galera nodes:

> chmod 755 /usr/bin/galera_check
> service xinetd restart

On the load balancer server, restart the HAProxy service and you should see all
Galera nodes up and running:

Chapter 8

[217]

WAN replication
Suppose you want to have a Galera Cluster distributed across several countries.
Let's say: France, Germany, Great Britain, and Spain:

The biggest problems here are the latency and possible timeouts as we are not in a
local environment. Even if we duplicate each WAN line, add redundancy, and so
on, we are not as safe as in a LAN environment.

That's why some options exist to change/grow timeout parameters. The following
are the options you can add to the wsrep provider:

wsrep_provider_options = "evs.keepalive_period = PT3S; evs.inactive_
check_period = PT10S; evs.suspect_timeout = PT30S; evs.inactive_
timeout = PT1M; evs.install_timeout = PT1M"

The explanations are as follows:

• evs.keepalive_period: This describes how often keepalive beacons will
be emitted (3 seconds).

• evs.inactive_check_period: This describes how often the check of peer
inactivity will occur (10 seconds).

• evs.suspect_timeout: This is the inactivity period when the node will be
considered as dead by other nodes. If all nodes validate it, it will be pulled
off the cluster (30 seconds).

• evs.inactive_timeout: This is the inactivity limit where the node will be
set as dead (1 minute). The evs.suspect_timeout value can bypass this.

• evs.install_timeout: This is the timeout on waiting for install message
acknowledgments.

You can, of course, grow those values if you think that your network bandwidth is
not as performant and stable as it should be.

Galera Cluster – Multimaster Replication

[218]

Disaster recovery
Galera is a synchronized replication between all of its nodes while classical/GTID
replication is asynchronous. You can mix both replications to get a disaster recovery
(DR) solution, as shown in the following diagram:

Galera2

Galera1

Galera3 Galera5

Galera4

Galera6

Classical/GTID Replication

Datacentre 1 Datacentre 2

Here, we got both advantages:

• Galera Cluster is synced between all nodes
• The DR doesn't reduce the speed of the master cluster

Here is how to set up this kind of architecture:

1. You need to set up the first Galera Cluster.
2. Build your DR Galera Cluster.
3. Sync data between a master node on Galera to a designated slave node

on Galera DR.
4. Create a dual master replication (without any VIP or cluster software to

avoid complicated split-brain).

In this chapter, you learned how to create a Galera Cluster, so create both kinds
Galera clusters.

Do not forget to change the Galera Cluster name.

Chapter 8

[219]

Then, you need to adapt the MariaDB configuration to enable classical/GTID
replication. The thing to understand here is that as Galera nodes in a cluster are
identical, the MariaDB configuration should be identical as well. So the following
is the configuration for the first Galera Cluster:

server-id = 1
auto_increment_increment = 2
log_bin = /var/log/mysql/mariadb-bin
log_bin_index = /var/log/mysql/mariadb-bin.index
sync_binlog = 1
expire_logs_days = 10
max_binlog_size = 100M
log_slave_updates = 1

You should apply it on all nodes of your Galera Cluster. Do not change the value
of server-id on the same cluster, it should remain the same.

To finish up, apply the same configuration on the other Galera Cluster and do not
forget to change the server-id.

Then, as usual for classical/GTID replication, you need to create a dedicated user
and password for replication purposes. Now, select one node on each Galera Cluster
and configure each one with the change master command:

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO
'replication'@'192.168.33.%';

MariaDB [(none)]> FLUSH PRIVILEGES;

MariaDB [(none)]> CHANGE MASTER TO MASTER_HOST='192.168.33.XX', MASTER_
USER='replication', MASTER_PASSWORD='password', MASTER_LOG_FILE='mariadb-
bin.0000XX', MASTER_LOG_POS=XXX;

MariaDB [(none)]> START SLAVE;

Now the configuration is finished and everything should be working properly.

If a problem occurs on the first datacenter, you can easily switch to the other one. Delta
data will automatically replicate to the master Galera Cluster when it is available.

Tests and issues
Galera Cluster is a great and powerful solution. However, issues could happen and
we're going to see here how to resolve them.

First of all, and as always, look at the logs (syslog by default); important information
is written there and most of the time the problem will be explicit!

Galera Cluster – Multimaster Replication

[220]

Paused replication
Sometimes, during a very high load write demand, the Cluster may stop replicating
during this phase. Generally, this is not a good situation and you should avoid
this kind of query as much as possible.

One solution can be to use an intermediate software layer to avoid it, for example,
a Advanced Message Queuing Protocol (AMQP) software such as RabbitMQ or
ZeroMQ. The setup of this kind of tool is out of the scope of this book.

To detect the paused time replication, you need to look at the flow control status.
If it's equal to 1, that means the replication is paused; if it's 0, then it's ok:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_%';

+----------------------------+--------------------------------------+

| Variable_name | Value |

+----------------------------+--------------------------------------+

[...]

| wsrep_flow_control_paused | 0.000000 |

There's a tool named galera-status developed by one of my colleagues (https://
github.com/fridim) from eNovance; this tool helps to know the status of a Galera
Cluster and has a nice presentation. You can get the tool using the following command:

> wget https://raw.githubusercontent.com/fridim/galera-status/master/
galera-status

> chmod 755 galera-status

When you launch it, you will have something like the following:

Chapter 8

[221]

Break Galera
One of the first things you want to test when you've set up a Galera Cluster is the
failure of nodes. Let's see an example on how to test it.

From a node (for example Galera2), run the following command:

> watch -n1 "mysql -e \"SHOW STATUS LIKE 'wsrep_cluster_size'\""

Variable_name Value

wsrep_cluster_size 4

This will show you the number of current connected nodes. Then, kill mysqld of
another node (if you can perform insertions at that time, it would benefit us for
testing purposes), let's say Galera1:

> pkill -9 mysqld

You should see the number of the cluster size reduced to 3. That's fine. Continue to
insert data on the other nodes and start Galera1:

> service mysqld start

It should integrate the cluster automatically and get the delta data back. That's it!

Split-brain
A split-brain can occur if you loose more than a half of your cluster nodes. This could
be problematic if you absolutely need to get it working, even in a degraded mode.

So if you really want to activate the cluster in a degraded state, you should first
search the most up-to-date node by launching the following command on each
active node:

MariaDB [(none)]> SHOW STATUS LIKE 'wsrep_last_committed';

When you've found the node with the highest value, reset the quorum on this node
using the following command:

MariaDB [(none)]> SET GLOBAL wsrep_provider_options='pc.bootstrap=1';
MariaDB [(none)]> SET GLOBAL wsrep_provider_options='pc.ignore_quorum=0';

This will make this node the new master; all nodes will synchronize with this one
and you'll recover your cluster and get it up and running.

When you fully recover your Galera Cluster, do not
forget to roll back those values.

Galera Cluster – Multimaster Replication

[222]

Summary
In this chapter, we've seen how to set up a synchronous replication with Galera
Cluster. This is an advanced step in classical/GTID replications. You can now
start to build scalable solutions and some usages.

In the next chapter, we'll see another scaling solution with Spider, also called sharding.

Spider – Sharding Your Data
Spider is a specific engine made for MySQL/MariaDB. It has been integrated
in MariaDB 10 which makes it one of the new and major features. It's a specific
storage engine dedicated to shard data across several MariaDB servers.

It should act as a proxy to be able to work properly:

CLIENT

SPIDER

TABLE 1

TABLE 1

BACKEND

You can see in the preceding diagram that a client is talking directly to Spider to get
access to its backend table content.

Spider – Sharding Your Data

[224]

However, the goal of Spider is to shard your data across multiple backend servers,
as illustrated in the following diagram:

CLIENT

SPIDER

TABLE 1

TABLE 1

BACKEND

TABLE 1

BACKEND

Sharding will split your data on several servers to speed up read and write queries.
However, in this case, we need to replicate our shards to avoid data loss, as shown
in the following diagram:

CLIENT

SPIDER 1

SBTEST
PART 1
PART 2

BACKEND 1

SBTEST
PART 1

SBTEST
PART 2

XA 2PC

BACKEND 2

Chapter 9

[225]

Spider monitors itself to produce SQL errors when one of the backend tables is not
available. As you can see, there are three Spider servers here to avoid a split-brain
(classical cluster-consensus).

When Spider creates a table, the table links to a remote table
that can be of any storage engine type.

Let's study the Spider features now:

• Table link: With Spider, available tables on multiple MariaDB servers are
accessible like on a single table instance

• XA transaction: XA transactions are supported to be able to synchronize
or update data over multiple MariaDB instances

• Table partitioning: This can create a partition table on multiple servers
• Speed: Spider uses several servers instead of one to boost the performance

In this chapter, you'll see an introduction to the Spider engine. Let's introduce some
basics to understand an infrastructure that is based on Spider:

• Data node: This acts as the data storage node
• Spider node: This lies at the entrance of user access (load balance,

failover, and so on)
• Monitoring node: This monitors data nodes for high availability

The preceding three roles are independent and can be separated.

Configuring Spider
As in other chapters, Vagrantfile is included to create an architecture sample
to help you test different scenarios in this chapter:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [

Spider – Sharding Your Data

[226]

 { :name => :spider1, :role => 'db', :ip => '192.168.33.31' }, #
spider node 1
 { :name => :backend1, :role => 'db', :ip => '192.168.33.41' }, #
shard 1
 { :name => :backend2, :role => 'db', :ip => '192.168.33.42' }, #
shard 2
]

$install_common = <<INSTALL
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties openntpd
INSTALL

$install = <<INSTALL
mkfs.ext4 -F /dev/sdb
mkdir -p /var/lib/mysql
echo "/dev/sdb /var/lib/mysql ext4 noatime,nodiratime,
discard 0 0" >> /etc/fstab
mount /var/lib/mysql
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install percona-
toolkit mariadb-server sysbench htop tmux vim
INSTALL

$install_lb = <<INSTALL
add-apt-repository 'deb http://ftp.fr.debian.org/debian/ wheezy-
backports main'
aptitude update

Chapter 9

[227]

DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install haproxy
tcpdump keepalived
sed -i "s/ENABLED=0/ENABLED=1/" /etc/default/haproxy
echo "net.ipv4.ip_nonlocal_bind = 1" >> /etc/sysctl.conf
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.customize ["modifyvm", :id, "--cpus", 2]
 config.vm.network :hostonly, opts[:ip]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 config.vm.provision "shell", inline: $install_common
 # Install HAProxy for load balancer server or
 if opts[:role] == 'lb'
 config.vm.provision "shell", inline: $install_lb
 else
 config.vm.customize ["modifyvm", :id, "--memory", 1024]
 file_to_disk = 'mdb-disk_' + opts[:name].to_s + '.vdi'
 config.vm.customize ['createhd', '--filename', file_to_
disk, '--size', 10 * 1024]
 config.vm.customize ['storageattach', :id, '--storagectl',
'SATA', '--port', 1, '--device', 0, '--type', 'hdd', '--medium', file_
to_disk]
 config.vm.provision "shell", inline: $install
 end
 end
 end
end

The first thing to do on Spider is to enable it on Spider's host. It is not activated
by default on MariaDB 10; however, it is built-in. To enable it, new tables and
procedures have to be created. A SQL file is given to make all the prerequisites to
activate it. You simply have to load it:

> mysql < /usr/share/mysql/install_spider.sql

Spider – Sharding Your Data

[228]

You can now check if it is activated:

> mysql -e 'SELECT engine, support FROM information_schema.engines;'

+--------------------+---------+

| engine | support |

+--------------------+---------+

| SPIDER | YES |

| MRG_MyISAM | YES |

| MyISAM | YES |

| BLACKHOLE | YES |

| CSV | YES |

| PERFORMANCE_SCHEMA | YES |

| ARCHIVE | YES |

| InnoDB | DEFAULT |

| FEDERATED | YES |

| Aria | YES |

| MEMORY | YES |

+--------------------+---------+

We're now ready to create our first shard and use backend servers.

Creating your first shard
You're now ready to create your first shard! It is not a complicated thing. In previous
chapters, we talked about load balancers like HAProxy. This is a quite similar usage
here as Spider will proxy (and of course split) data to several backend servers.

We will start with a simple setup:

CLIENT

SPIDER 1

TABLE 1
PART 1
PART 2

XA 2PC

PART 3

SPIDER 1

TABLE 1
PART 1
PART 2
PART 3

SPIDER 1

TABLE 1
PART 1
PART 2
PART 3

BACKEND

TABLE 1
PART 1
PART 2

BACKEND

TABLE 1
PART 1
PART 2

BACKEND

TABLE 1
PART 1
PART 2

Chapter 9

[229]

As you can see, a Spider server (spider1/192.168.33.31) will split data
across our first backend (backend1/192.168.33.41) and the second backend
(backend2/192.168.33.42).

The first thing to do is to create a Spider user to allow it to write on the backend
servers. On all backends, create a Spider user with all rights to make it simple
(more restricted rights are strongly recommended of course):

MariaDB [(none)]> create user 'spider_user'@'192.168.33.31' identified by
'password';

MariaDB [(none)]> grant all privileges on *.* to 'spider_
user'@'192.168.33.31' identified by 'password';

MariaDB [(none)]> flush privileges;

Change the password to a better one. On all backends, we now have to create the
same identical database with the same structure.

It is mandatory to get the same database and table structures on
your backends (where Spider has to split your data).

Create a backend database on all servers:

MariaDB [(none)]> CREATE DATABASE backend;

It is strongly recommended to have a primary key on your
physical tables to avoid errors with some Spider functions such
as spider_copy_tables.

Now insert the following table on all backends:

MariaDB [(none)]> CREATE TABLE backend.sbtest (

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=InnoDB;

As you can see, we used the InnoDB engine on the backends! You can use any engine
you want on backends (Aria, TokuDB, and so on). Only the Spider servers require
the Spider engine.

Spider – Sharding Your Data

[230]

We've now finished with backends! Let's configure the Spider engine now on
the spider1 server. First off all, you need to teach your Spider engine how to
communicate with backends:

MariaDB [(none)]> CREATE SERVER backend1

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.33.41',

 DATABASE 'backend',

 USER 'spider_user',

 PASSWORD 'password',

 PORT 3306

);

MariaDB [(none)]> CREATE SERVER backend2

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.33.42',

 DATABASE 'backend',

 USER 'spider_user',

 PASSWORD 'password',

 PORT 3306

);

CREATE SERVER is a MySQL/MariaDB feature and not a
Spider-specific feature. Spider will just use it.

As you can see, we're doing both here, creating backends and registering the
credentials/information connections. You can at any time check which databases
are sharded with their defined backends using the following command:

Chapter 9

[231]

We can easily see here the backend database sharding its data to server backend1
and backend2. On the backends, we created a table with the InnoDB engine; we're
now going to create the same table but with the Spider engine rather than InnoDB:

MariaDB [(none)]> CREATE TABLE backend.sbtest
(
 id int(10) unsigned NOT NULL AUTO_INCREMENT,
 k int(10) unsigned NOT NULL DEFAULT '0',
 c char(120) NOT NULL DEFAULT '',
 pad char(60) NOT NULL DEFAULT '',
 PRIMARY KEY (id),
 KEY k (k)
) ENGINE=spider COMMENT='database "backend", table "sbtest"'
 PARTITION BY KEY (id)
(
 PARTITION pt1 COMMENT = 'srv "backend1"',
 PARTITION pt2 COMMENT = 'srv "backend2"'
);

You must have noticed that while specifying table structure, we also indicated
Spider connection parameters in the comments. Let's explain them:

• Engine: We specified Spider as the engine to be used and have added
a comment to help you understand the information related to it. Some
users like to add all connection parameters in the comment field. It is up
to you to see what you want to add inside comments.

• Partition by key: We ask Spider to shard with the id column of the
table. Here, you can also define the column on which you want to make
your shard.

• Partition: This parameter lets us select which available backend should
be used to store data.

You can now check your table configuration using the following command:

Spider – Sharding Your Data

[232]

+---------+--------------+---------+----------+----------------+----+

| backend | sbtest#P#pt1 | 0 | backend1 | sbtest | 1 |

| backend | sbtest#P#pt2 | 0 | backend2 | sbtest | 1 |

+---------+--------------+---------+----------+----------------+----+

2 rows in set (0.01 sec)

We can see here the backend database on sbtest table, which replicates the first
partition (pt1) to the first backend (backend1) and the second partition (pt2) to the
second backend (backend2).

Now it's play time! You may recognize the name and table structure of sbtest which
is the default table used by the sysbench tool. The sysbench tool will help us insert
random data into a temporary table and then we will insert them into the Spider
table. From the spider1 server, create a temporary table:

MariaDB [(none)]> create database sysbench;

Let's generate some data in this newly created database:

> sysbench --test=oltp --db-driver=mysql --mysql-table-engine=innodb
--mysql-user=root --mysql-password='' --mysql-host=localhost --mysql-
port=3306 --oltp-table-size=1000000 --mysql-db=sysbench prepare

Now, let's inject this temporary data inside the Spider engine:

MariaDB [(none)]> insert into backend.sbtest (id,k,c,pad) select * from
sysbench.sbtest;

Query OK, 1000000 rows affected (14.59 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

That's it! It works like a charm.

Let's count on all servers how many lines we've got:

MariaDB [(none)]> select count(*) from backend.sbtest;

You should see something like the following number of entries:

• spider1: 1000000

• backend1: 603585

• backend2: 396415

You must have noticed that the sum of backend1 and backend2 is equal to spider1.

Now if you look at the content of the sbtest table on backend1, you'll see unpaired
IDs at the beginning of table, while you'll see paired IDs on backend2.

Chapter 9

[233]

Sharding replication
You've now seen what sharding is, how it works, and have understood the concept,
but how to deal with high availability? If you remember, in the previous chapters
we talked about replication, and the most advanced among them is Galera Cluster.

The first idea you may have is to combine multiple technologies such as Galera to
make a scalable (sharded) and highly available architecture such as the following:

Galera Cluster / Spider Backend1

Node2

Node1

Node3

KeepAlived

LoadBalancer2

LoadBalancer1

Galera Cluster / Spider Backend2

Node2

Node1

Node3

KeepAlived

LoadBalancer2

LoadBalancer1

Spider 1

Spider 2

VIP

Client

KeepAlived

VIP

VIP

This is a good solution—one of the best. However, the price of this architecture
may be very high and even more if you want a lot of shards. So what kind of other
solutions do we have?

Spider, by default, embeds a replication mechanism. That means each shard could
have its own shard replicated to another node. Let's try this.

Spider – Sharding Your Data

[234]

Creating replicated shards
First of all, you need data to add. We will reuse the data generated by sysbench
(in the sysbench database). If you do not have those data, launch the sysbench
tool again.

Then, create a replication database on all backends:

MariaDB [(none)]> create database backend_replication;

If you already have data, you have to copy them to the other host; if not, you can
skip this section. Run the following commands on the Spider1 host:

> mysqldump --host=192.168.33.41 --user=spider_user --password=password
backend sbtest | mysql --host=192.168.33.42 --user=spider_user
--password=password backend_replication

> mysqldump --host=192.168.33.42 --user=spider_user --password=password
backend sbtest | mysql --host=192.168.33.41 --user=spider_user
--password=password backend_replication

MariaDB [(none)]> DROP TABLE backend.sbtest;

Here, we are dumping the sbtest table in the backend database:

• From the backend1 server to the backend2 server in the
backend_replication database

• From the backend2 server to the backend1 server in the
backend_replication database

This is to get a copy of a shard on the other host (as replication on the same host
makes no sense). To finish up, drop the sbtest table as we need to recreate a new
Spider configuration.

Now, declare two new hosts on the spider1 server that will be dedicated
to replication:

CREATE SERVER backend1_replication

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.33.41',

 DATABASE 'backend_replication',

 USER 'spider_user',

 PASSWORD 'password',

 PORT 3306

);

CREATE SERVER backend2_replication

 FOREIGN DATA WRAPPER mysql

Chapter 9

[235]

OPTIONS(

 HOST '192.168.33.42',

 DATABASE 'backend_replication',

 USER 'spider_user',

 PASSWORD 'password',

 PORT 3306

);

Then, declare the new table using the Spider engine and with the replication
information in the comment fields:

CREATE TABLE backend.sbtest

(

 id int(10) unsigned NOT NULL AUTO_INCREMENT,

 k int(10) unsigned NOT NULL DEFAULT '0',

 c char(120) NOT NULL DEFAULT '',

 pad char(60) NOT NULL DEFAULT '',

 PRIMARY KEY (id),

 KEY k (k)

) ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_replication", mbk "2",
mkd "2", msi "3306", link_status "0 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_replication", mbk "2",
mkd "2", msi "3306", link_status "0 0"'

);

In the comment fields, we can see the following:

• backend1: This server manages the backend2_replication database on
the same host.

• backend2: This server manages the backend1_replication database on
the same host.

• mbk (Monitoring Background Kind) and mkd (Monitoring Kind): These are set
to value 2 which means it will monitor the table without the WHERE clause.

• msi: This option does a basic monitoring on the MariaDB TCP port.
• link_status: This gives instructions on the status each time an ALTER

TABLE statement will run without any changes. It is set to 0 to disable it.

Spider – Sharding Your Data

[236]

You can now take a look at the Spider table configuration host:

As you can see, we've got two new entries corresponding to the replicated shards.
The link_status set to 1 indicates the shards are in a normal state, a value of 2
indicates a recovery mode, 3 means abnormal, and lastly 0 means we do not want
to make changes.

Spider HA monitoring
To avoid errors when you're losing a node, Spider includes high availability
monitoring. That means if a shard is lost, it still will be able to answers queries as
it will use the replicated shard instead. In that configuration, there is no SPOF and
we created a sharding configuration (more read/write performances) plus high
availability (fault tolerance).

To set this Spider monitoring up, you have to declare the Spider node as a
monitoring node:

MariaDB [(none)]> CREATE SERVER mon

 FOREIGN DATA WRAPPER mysql

OPTIONS(

 HOST '192.168.33.31',

 DATABASE 'backend',

 USER 'spider_user',

 PASSWORD 'password',

 PORT 3306

);

Chapter 9

[237]

Once again, you need to adapt the options according to your needs. You will be
able to see it appearing in the server table:

MariaDB [(none)]> select Server_name from mysql.servers where Server_name
= 'mon';

+-------------+

| Server_name |

+-------------+

| mon |

+-------------+

1 row in set (0.00 sec)

Now we're going to activate the monitoring:

MariaDB [(none)]> INSERT INTO mysql.spider_link_mon_servers VALUES
('%','%','%',3306,'mon',NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL
,NULL,0,NULL,NULL);

We're asking the Spider to monitor any Spider registered databases and any table.
The configuration is now done. If a node fails, it will automatically switch the node's
shard connections to the other available shards.

The monitoring node shouldn't be a SPOF. That's why it's strongly recommended to
add more Spider monitoring nodes with a load balancer on top of it.

Recovering data after server failure
Spider monitoring is now set up and we have sharding and replication ready on the
server; let's now test it to see if it works as expected. An easy test is to create a simple
shell script that will try to request data inside shards and on Spider:

#!/bin/bash

spider1='mysql'
backend1='mysql --host=192.168.33.41 --user=spider_user
--password=password'
backend2='mysql --host=192.168.33.42 --user=spider_user
--password=password'

echo -e "\n##### data spider1 #####"
$spider1 -e 'select count(*) from backend.sbtest;'
$spider1 -e 'select * from backend.sbtest where id < 10 LIMIT 4;'

Spider – Sharding Your Data

[238]

echo -e "\n##### data backend1 #####"
$backend1 -e 'select count(*) from backend.sbtest;'
$backend1 -e 'select * from backend.sbtest LIMIT 3;'

echo -e "\n##### data backend2 #####"
$backend2 -e 'select count(*) from backend.sbtest;'
$backend2 -e 'select * from backend.sbtest LIMIT 3;'

Of course, you need to adapt this to your needs. However, if you launch it, you can
see everything works as expected:

data spider1

+----------+

| count(*) |

+----------+

| 1000000 |

+----------+

+----+---+---+--+

| id | k | c | pad |

+----+---+---+--+

| 1 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 2 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 3 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 4 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

+----+---+---+--+

data backend1

+----------+

| count(*) |

+----------+

| 603585 |

+----------+

+----+---+---+--+

| id | k | c | pad |

+----+---+---+--+

| 1 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 3 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 5 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

+----+---+---+--+

Chapter 9

[239]

data backend2

+----------+

| count(*) |

+----------+

| 396415 |

+----------+

+----+---+---+--+

| id | k | c | pad |

+----+---+---+--+

| 2 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 4 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 6 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

+----+---+---+--+

If you now stop the MariaDB service on backend1 and launch the Spider test script
again, you'll see something like the following:

data spider1

+----------+

| count(*) |

+----------+

| 1000000 |

+----------+

+----+---+---+--+

| id | k | c | pad |

+----+---+---+--+

| 1 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 2 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 3 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

| 4 | 0 | | qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt |

+----+---+---+--+

data backend1

ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.33.41' (111
"Connection refused")

ERROR 2003 (HY000): Can't connect to MySQL server on '192.168.33.41' (111
"Connection refused")

...

Spider – Sharding Your Data

[240]

You can see from the preceding output that the backend1 server is not accessible;
however, the Spider server still returns paired and unpaired IDs as it automatically
uses the spider1 replication available on the backend2 server.

Now if you look at spider_tables, you will notice that the link_status
has changed:

Our running backend2 gets a link_status equal to 1, while the stopped backend1
server is not available anymore and sets its link_status value equal to 3.

What will happen when backend1 comes back online? Unfortunately it will not
synchronize diff data and come back online by itself. At the moment, since Spider
is a new concept, it is not mature enough to do it on its own. However, such
mechanisms are planned in the roadmap. Manual actions are required to recover
when a server is up after a failure.

The first thing to do is to inform Spider that we're going to make changes on main
shards located on the server that failed. For that, we are going to set those shards
in maintenance mode.

The main shard that was not accessible was backend1. That's why we're going to set
it in maintenance mode:

ALTER TABLE backend.sbtest

ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_replication" mbk "2",
mkd "2", msi "3306", link_status "2 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_replication" mbk "2",
mkd "2", msi "3306", link_status "0 0"'

);

Chapter 9

[241]

It may be a little bit confusing, but in fact you need to set a link status for each shard.
In the first line, the backend1 shard set its value to 2 while backend2_replication
set its value to 0. We can't stop all shards on a single partition (here pt1); Spider
denies it. So we're going to process the recovery of backend1 first, then you'll need
to do the same operation for backend2_replication.

Now we're going to copy the working shard tables to the failed one. Launch the
following command:

MariaDB [(none)]> select spider_copy_tables('backend.
sbtest#P#pt2','1','0');

+--+

| spider_copy_tables('backend.sbtest#P#pt2','1','0') |

+--+

| 1 |

+--+

1 row in set (2 min 14.61 sec)

A little bit of explanation is required here. Here we've taken the first partition (pt2)
of the sbtest table in the backend database, selected the shard with the link_id
equal to 1, and the destination link ID (0). As you can see, it could take a while
synchronizing the data.

Now, you can set back the Spider configuration to be in the correct configuration:

ALTER TABLE backend.sbtest

ENGINE=spider COMMENT='wrapper "mysql", table "sbtest"'

 PARTITION BY KEY (id)

(

 PARTITION pt1 COMMENT = 'srv "backend1 backend2_replication" mbk "2",
mkd "2", msi "3306", link_status "1 0"',

 PARTITION pt2 COMMENT = 'srv "backend2 backend1_replication" mbk "2",
mkd "2", msi "3306", link_status "0 0"'

);

You're now done with backend1. You need to perform the same operation for
backend2_replication to get back in a fully working sharding replication mode.

Spider – Sharding Your Data

[242]

Performance tuning
The first thing you may have noticed is the slowness involved by the network in a
sharding mode. This is absolutely normal, you can't expect to have the same speed
compared to one local server if your requests are basic. So how to deal with those
problems? Let's see how.

Spider parameters
Spider includes a large set of parameters by default. Like most of the engines, you
can change the default parameters to speed up the query time.

The bgs mode
One of the most important settings is spider_bgs_mode. By default, it is disabled to
optimize memory usage. However, you can change its value if your Spider servers
have enough RAM to support it. If you change the default value, you can perform a
read query in parallel when the plan prunes multiple partitions.

To change it, you can do the following on the fly in your current session:

MariaDB [(none)]> set spider_bgs_mode=2;

Otherwise, you can activate it for your all your sessions in your MariaDB
configuration file (/etc/mysql/my.cnf):

[mysqld]
spider_bgs_mode=2;

The connection recycle mode
To make Spider recycle by all sessions:

MariaDB [(none)]> spider_conn_recycle_mode=1;

To make it persistent, add this in your MariaDB configuration:

[mysqld]
spider_conn_recycle_mode=1;

Chapter 9

[243]

Statistics tables
You can gain up to 10 percent additional performance when enabling Independent
Storage Engine Statistics because they are used by the optimizer:

MariaDB [(none)]> set global use_stat_tables='preferably';

To make to persistent, add it in your MariaDB configuration:

[mysqld]
use_stat_tables='preferably';

Remote SQL logs
Logs can be sent to remote backends; by default, they are on the Spider server with
MariaDB logs. This can be good for security reasons (avoids log loss); however, this
is not good for performance. You should disable it:

MariaDB [(none)]> spider_remote_sql_log_off=1;

To make it persistent, add the following in your MariaDB configuration:

[mysqld]
spider_remote_sql_log_off=1;

Number of shards
Will the number of shards and backends change the performance? Yes! The number
of shards can change the performance of the solution. For example, having a big
shard is generally not the best solution. It's like having a big table.

With MariaDB, when you have a big table, it is common to use table partitioning
because you can gain a lot of performance for write statements with that technique.
With Spider, it's quite the same; if you think your tables will be too big, then you
have to shard them more.

Creating more shards can easily help you reduce the wait time by half during a long
query. When you're requesting through Spider, multiple backends can work quickly
on small queries and then Spider aggregates it to reply to the client. As the small
queries are made on multiple servers, the working time of your backends are smaller
than if it was on a single server. That's why having small shards with many backends
is the best way to get better performance.

Spider – Sharding Your Data

[244]

Summary
In this chapter, you learned how to shard data. It was difficult (because the product
is young) to cover all the aspects of Spider regarding performance and features in
this chapter; however, if you want to go ahead, you have to look at Direct SQL
(Map Reduce on remote backend) with UDF functions.

Spider is a newly introduced technology in MariaDB, and this chapter was an
introduction to it. Spider covers a lot of missing aspects, but surely will evolve
faster in the coming years (as it was recently introduced in MariaDB).

Monitoring
Monitoring is one of the most important things to do when you have MariaDB
in production. It helps to be proactive and avoid having performance issues.
Monitoring can alert you when the usage approaches its limits, which could
otherwise cause service disruption.

A lot of monitoring tools exist; some of them are closed source with a paid license,
while others are free and/or open source. In this chapter, we will focus on one of
the better known free solutions: Nagios. Why? In fact for the following reasons:

• It's free for download and use (core version only)
• It's been a popular software for a long time (more than 10 years)
• It's one of the most popular monitoring tools
• It's very stable for production
• Plugins can be written in any language
• Plugins can be easily reused on other projects (Shinken, Naemon, Sensu,

and so on)

We're now going to see how to use Nagios depending on your architecture.
In addition, we'll see what you can monitor and what is essential or optional.

By default, Nagios is embedded in Debian packages—a list of plugins. However,
there is none for MariaDB. That's why we will need to use an additional package
to get additional plugins.

Here is what you need to use packages:

> aptitude install nagios3 nagios-plugins

We won't see here how Nagios works, because it would be too long to explain and
several books already cover that subject. Instead, we're going to cover what are the
monitoring plugins for MariaDB and how to use them.

Monitoring

[246]

There is an important thing to take into account—having a dedicated user
for monitoring!

Monitoring does not need a write access. It needs privileges such
as SELECT or PROCESS replication clients and others, based on
the plugin. You should not use monitoring with more privileges
than necessary (for example, with root user!).

Single instance
On a single instance (that's also available for replication and Galera), you can
check several things.

First of all, you can check that your MariaDB instance is responding correctly:

> /usr/lib/nagios/plugins/check_mysql

Uptime: 141 Threads: 19 Questions: 298 Slow queries: 0 Opens: 55
Flush tables: 2 Open tables: 39 Queries per second avg: 2.113

This check creates a basic connection to your MariaDB instance and gives
additional information.

If you really want to have a smaller check, you can simply make a connection
and then disconnect.

Do not simply do create a TCP connection.

Avoid creating a TCP connection (with the check_tcp plugin) because creating a
TCP connection will keep the SQL connection open. The problem is that you can
reach the maximum SQL connection limit simply because of monitoring. You can
avoid this problem using mysql_check because it properly disconnects the SQL
session before closing the TCP connection.

Another check exists that permits us to manually check other parameters
(as follows). To do it, you will need to specify a mode:

• connection-time: This is the time to connect to the server
• uptime: This is the time the server has been running
• threads-connected: This is the number of currently open connections
• threadcache-hitrate: This is the hit rate of the thread-cache

Chapter 10

[247]

• threads-created: This is the number of threads created per sec
• threads-running: This is the number of currently running threads
• threads-cached: This is the number of currently cached threads
• connects-aborted: This is the number of aborted connections per sec
• clients-aborted: This is the number of aborted connections

(because the client died) per second
There are other options to check MyISAM or InnoDB engine statuses. To get the
full list, launch the following command:

> /usr/lib/nagios/plugins/check_mysql_health

For some of those modes, you can set a warning and critical threshold. For example,
for the number of connected threads, you can set a warning and a critical alarm.

Let's say we want to be warned when the number of connected threads reach
50 and get critical alerts when the number of connections reaches more than 80.
We'll use the following command to do so:

> /usr/lib/nagios/plugins/check_mysql_health --mode threads-connected
--warning 50 --critical 80

OK - 1 client connection threads | threads_connected=1;50;80

All these options are very interesting. However, this is more dependent on system
health and not on the stored data.

That's why another script exists and informs you, for example, if a query returns
the correct number of rows. A very simple and useless (in most cases, but here is
just used for demonstration) check would be to count the number of created users
and alerts on a warning and critical threshold. We're using COUNT for that:

> /usr/lib/nagios/plugins/check_mysql_query -q "select count(*) from
mysql.user" -w 2 -c 6

QUERY WARNING: 'select count(*) from mysql.user' returned 5.000000

Here, we've asked for warning if more than two users are present, and if more
than six users are present in a critical state.

It can be useful, for example, if you're using a temporary table to store elements
before preprocessing them. To ensure that this table doesn't grow until there is no
space left on the server, you can use this check to get notified. This will inform you
that the processing tools are working properly.

Monitoring

[248]

Replication
With check_mysql, there is a simple way to know the replication status with an
additional argument:

> /usr/lib/nagios/plugins/check_mysql -S

Uptime: 143 Threads: 19 Questions: 302 Slow queries: 0 Opens: 55
Flush tables: 2 Open tables: 39 Queries per second avg: 2.111 Slave IO:
Yes Slave SQL: Yes Seconds Behind Master: 0

This will inform you about slave I/O and SQL status (the most important information).

The other information is Seconds Behind Master, which denotes the delta between
the master and the slave. This is an all-in-one check and may be enough for your needs.

However, you may want to set thresholds to Seconds Behind Master or disable it.
Here it is not possible, but you can use the check_mysql_health check instead.

The following are some interesting options:

• slave-lag: This is the value of Seconds Behind Master
• slave-io-running: This gives information regarding the running slave I/O

(copying binlog from master host)
• slave-sql-running: This gives information regarding the running slave

SQL (playing binlog copied by the I/O thread)

As you know, slave-io and slave-sql are mandatory to be sure the slave is
working fine. However, slave-lag is the option we were searching for!

You can define the warning and critical delta you are comfortable with. Remember
that depending on your bandwidth, distance, and activity, the lag may be more or
less important. It generally takes time to find the best value (depending on your
network/activity architecture) and it may generate unwanted alerts (because of
slow queries/network link issues and so on).

Galera Cluster
On Galera, you know that there are a lot of options and things to check to ensure that
the nodes are working fine.

Percona made a script for Nagios to manage all essentials parameters and to ensure
that Galera Cluster is working fine. In fact, it was able to parse the result of the
Galera SHOW STATUS LIKE 'wsrep_%' and look at if it finds a matched string or not.

Chapter 10

[249]

To install the script, you need to have the Percona repository set correctly and then
you can install the package:

> apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A

> add-apt-repository 'deb http://repo.percona.com/apt wheezy main'

> echo 'Package: *

Pin: release o=Percona Development Team

Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref

> aptitude update

> aptitude install percona-nagios-plugins

The plugins will be installed under /usr/lib64/nagios/plugins.

First of all, what you generally want to do is to check the cluster size, to be sure all
your nodes are here. Let's say we have three Galera Cluster nodes, as we saw in
Chapter 8, Galera Cluster – Multimaster Replication. What we really want to know is
whether our Galera Clusters are in a good state, and not really the number of nodes.
So once again, we're going to play with warning and critical threshold. The following
is an example:

> /usr/lib64/nagios/plugins/pmp-check-mysql-status -x wsrep_cluster_size
-C '<=' -w 2 -c 1

OK wsrep_cluster_size = 3 | wsrep_cluster_size=3;2;1;0;

You can see here we've got a three-node cluster. The warning alert will be raised
when only two nodes remain, whereas a critical alert will be raised when a single
node remains. You need to adjust those parameters depending on your cluster size
and the performances you're expecting.

Another interesting check is to know the state of a specific node. It's good to know
how your cluster goes, but it's interesting to know which server is part or not part of
the cluster. Here is the code to do so:

> /usr/lib64/nagios/plugins/pmp-check-mysql-status -x wsrep_cluster_
status -C == -T str -c non-Primary

OK wsrep_cluster_status (str) = Primary | wsrep_cluster_
status=Primary;;non-Primary;0;

We can see here that the current node is in a primary state, which means it is part of
the cluster.

Monitoring

[250]

Yet another check is to know if the node is properly synced. It may be important to
know when a node is in Donor mode or Unsynced. Here is the code to check it:

> /usr/lib64/nagios/plugins/pmp-check-mysql-status -x wsrep_local_state_
comment -C '!=' -T str -w Synced

OK wsrep_local_state_comment (str) = Synced | wsrep_local_state_
comment=Synced;;Synced;0;

The final important check is to know the flow control status. A flow control can
be paused, which means data is not up-to-date on this host; this can be caused by
several things (big write load, donor mode, and so on). To avoid having that bad
surprise, you can add a check to warn if that value goes over 10 percent, and be
critical over 80 percent:

> /usr/lib64/nagios/plugins/pmp-check-mysql-status -x wsrep_flow_control_
paused -w 0.1 -c 0.8

OK wsrep_flow_control_paused = 0.000000 | wsrep_flow_control_
paused=0.000000;0.1;0.8;0;

Here, we can see that everything is ok as we're at 0.000000.

Other monitoring solutions
Monitoring generally means being alerted. However, monitoring can also be
graphing, historical data, log centralization, log correlation altering, and so on.
We're going to see some free and open source solutions here that can be useful,
in addition to Nagios.

In the following sections, we won't dive deep into existing solutions, as that
could cover several dedicated books; however, you will see what is the key to
good monitoring and what solutions exist.

Graphs
Using graphs to view history is very important. It helps to know what happened
in the past and what the evolution of MariaDB was (or any other component).

Chapter 10

[251]

For example, it can be interesting to have an idea of the number of threads during
a year. It can help to understand if an application is usually updated, how is it
evolving, and if modifications have to be made on the application side or on the
MariaDB architecture side.

The most popular solution is called Cacti, which uses RRD to graph data. You can
find it at http://www.cacti.net/. It's a web-based solution based on SNMP or other
kinds of custom scripts. The following is an example of what a graph looks like:

Another solution is PNP4Nagios. It is a Nagios-based solution. By default, Nagios
checks return data that will be processed by Nagios itself for status and alerting. In
addition, other information can be passed at the end of the checks, which is called
performance data. The performance data are metrics that permit PNP4Nagios to
automatically graph.

http://www.cacti.net/

Monitoring

[252]

This is an easy-to-setup solution when you've got performance data on all your
checks. The disadvantage is that not every check gets performance data. As checks
are open source, you can edit them to implement performance data (http://nagios.
sourceforge.net/docs/3_0/perfdata.html). PNP4Nagios is a web-based solution
as well:

http://nagios.sourceforge.net/docs/3_0/perfdata.html
http://nagios.sourceforge.net/docs/3_0/perfdata.html

Chapter 10

[253]

As you can see, it uses RRDTool to produce graphs and could be well integrated in
the Nagios interface. Munin is another solution. The advantage of this one is that
it automatically detects software on your system and will graph the basic metrics.
Of course you can add checks that can be automatically detected and graphed with
Munin. The following is what a graph looks like with Munin:

Monitoring

[254]

The last solution in the following bullet list is required if you've got a huge
infrastructure and need more than that. For example, if you need more real-time
information, a scalable solution, and high-level performance information on your
running MariaDB instances, you can use the following:

• Graphite: This is a scalable real-time graphing GUI solution
(http://graphite.wikidot.com/)

• Collectd: This is a very fast tool for gathering statistics
(http://collectd.org/)

• Statd: This is a frontend proxy for Graphite
(https://github.com/etsy/statsd)

Graphite is of course the most complicated one to set up, but the most advanced
one compared to others:

http://graphite.wikidot.com/
http://collectd.org/
https://github.com/etsy/statsd

Chapter 10

[255]

Logs
Logs are important! They are really important when you start having a replication
or Galera Cluster. It is simpler to centralize logs in order to compare them easily
between two nodes.

The simplest solution consists of forwarding syslog (syslog, rsyslog, syslog-ng, and
so on) to a centralized server. You can store then in raw files or you can add them in
a MariaDB backend and take a look at it with a web interface such as php-syslog-
ng/Logzilla:

If you need a more powerful solution with high scalability and very fast search,
you need to take a look at the following:

• Logstash/Flume/Fluentd: These are log collectors that can be used
through syslog or a logfile. Then they distribute to Elasticsearch.

• Elasticsearch: This is a distributed, real-time search/analytics engine.
It gives a full-text search solution based on Lucene.

• Kibana: This is a web interface for Elasticsearch.

This solution requires extra space for Elasticsearch indexes, so you really need more
than the occupied space by the logs.

Monitoring

[256]

Summary
In this chapter, we saw how to monitor solutions for your MariaDB instances.
We also saw other methods to monitor and see performance status, and we
finally saw log solutions.

In the next chapter, we'll talk about one very important thing—backup.

Backups
In the previous chapter, we saw how to monitor MariaDB instances and statistics
for performance. This is very important, but one of the most important things that
cannot be forgotten is backups.

There are several ways to create backups. Each one has their pros and cons of course.
Some of them are related to the technology you're using while others depend on
your constraints.

We saw some of those tools in the previous chapters, but they were for specific cases.
We're going to see them here in a broader perspective that will help you choose the
most convenient one that suits your needs.

To make it simpler, here is a Vagrantfile that will install and configure a lot of
things for you:

-*- mode: ruby -*-
vi: set ft=ruby :
Vagrantfile API/syntax version. Don't touch unless you know what
you're doing!
#
VAGRANTFILE_API_VERSION = "2"

Insert all your Vms with configs
boxes = [
 { :name => :backup, :role => 'db', :ip =>
'192.168.33.31' },
]

$install = <<INSTALL
aptitude update

Backups

[258]

DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install python-
software-properties openntpd
apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
0xcbcb082a1bb943db
apt-key adv --keyserver keys.gnupg.net --recv-keys 1C4CBDCDCD2EFD2A
add-apt-repository 'deb http://ftp.igh.cnrs.fr/pub/mariadb/repo/10.0/
debian wheezy main'
add-apt-repository 'deb http://repo.percona.com/apt wheezy main'
echo 'Package: *
Pin: release o=Percona Development Team
Pin-Priority: 100' > /etc/apt/preferences.d/00percona.pref
aptitude update
DEBIAN_FRONTEND=noninteractive aptitude -y -o Dpkg::Options::="--
force-confdef" -o Dpkg::Options::="--force-confold" install mariadb-
server percona-toolkit
INSTALL

Vagrant::Config.run do |config|
 # Default box OS
 vm_default = proc do |boxcnf|
 boxcnf.vm.box = "deimosfr/debian-wheezy"
 end

 boxes.each do |opts|
 vm_default.call(config)
 config.vm.define opts[:name] do |config|
 config.vm.network :hostonly, opts[:ip]
 config.vm.host_name = "%s.vm" % opts[:name].to_s
 file_to_disk = 'osd-disk_' + opts[:name].to_s + '.vdi'
 config.vm.customize ['createhd', '--filename', file_to_disk,
'--size', 8 * 1024]
 config.vm.customize ['storageattach', :id, '--storagectl',
'SATA', '--port', 1, '--device', 0, '--type', 'hdd', '--medium', file_
to_disk]
 config.vm.provision "shell", inline: $install
 end
 end
end

Chapter 11

[259]

Using mysqldump
mysqldump is the default backup method that comes with MariaDB. It is an old
and popular method. Here is an example of a classical dump with some options:

> mysqldump -uroot -p -P3306 --opt --routines --triggers --events
--single-transaction --master-data=2 -A > alldb.sql

Here is the explanation:

• -u: This is the username.
• -p: This is the password (leave it empty if you want to be prompted).
• -P: This is the port number.
• --opt: This is an all-in-one option. It includes the following:

 ° --add-drop-table: This will add the drop queries before
creating a new table

 ° --add-locks: This gives faster insertions on restore
 ° --create-options: This adds all MariaDB options in the

create statement
 ° --disable-keys: This speeds up the restore because indexes

are created after and not during import
 ° --extended-insert: This uses multirow inserts to speed up

the import
 ° --lock-tables: This locks tables before dumping them
 ° --quick: This is used for large tables
 ° --set-charset: This adds the charset in the dump

• --routines: This includes procedures and functions in the dump.
• --triggers: This adds triggers in the dump.
• --events: This adds mysql.event in the dump.
• --single-transaction: This gets a consistent state for the InnoDB engine.
• --master-data: This, when set to 2, adds the master binlog file and position

information in the dump.
• -A: This is used to dump all databases. You can specify a database name

instead if you don't want to dump everything.

Backups

[260]

mysqldump works very well with most engines. It is generally used to back up small
to medium databases. A big advantage is its simplicity. Being easy to use, it remains
one of the best and most commonly used methods.

To restore a dump in a specified database, use the following command:

> mysql -uroot -p database < dump.sql

Here, we imported the SQL dump file into the database named database.

The major problem is the time and the CPU consumption. When you create a backup,
it dumps in the entire contents of a database in SQL format, for example, in file.
Creating it is cost effective, and restoring can take a while as well on big databases.

Compression
mysqldump doesn't provide compression by default, and the compression will
increase the CPU usage of the server. The final size of the dump can be reduced
by a factor of 10 and more.

Let's try 7-Zip! First of all, install it:

> aptitude install p7zip-full

Now, we can create a dump and pipe the output to 7z to compress on the fly:

> mysqldump -u$user -p$password --opt --add-drop-table --routines
--triggers --events --single-transaction --master-data=2 database_name |
7z a -t7z -mx=9 -si dump.sql.7z

All mysqldump options were explained, so let's now focus on the 7z command:

• -a: This appends or creates a new filename.
• -t: This sets the compression algorithm. 7z is one of the best, as it performs

compressions in a relatively short time.
• -mx: This is the compression level, ranging from 1 (lower) to 9 (higher).

The lower you compress, the faster it is; the higher you compress, the
slower it will be.

• -si: This reads data from stdin (the piping of mysqldump command).
• dump.sql.7z: This is the output name and path where the compressed

dump is stored.

Chapter 11

[261]

Compression is an important solution that needs to be taken into account if you're
low on disk space availability. However, the additional time required for backup and
CPU usage should be taken into account if you're running it on a production server.

When you want to restore a backup, you will need to uncompress it first and then
restore it. Of course, you can do it on the fly:

> 7z x -so dump.sql.7z | mysql database_name

Using mysqlhotcopy
mysqlhotcopy is a little bit less known; however, it is faster than mysqldump and is
available with standard MariaDB. The limitation of this tool is that it only works for
MyISAM and Archive tables.

To back up locally, use the following command:

> mysqlhotcopy user password /var/lib/mysql/my_database --allowold –
keepold

Here is the explanation of the options:

• allowold: This will rename a backup directory as _old if the already exists
• Keepold: This prevents the previous backup from getting removed
• /var/lib/mysql/my_database: This sets the path to your production

database

If you want to send the backup to a distant server, use the following command:

> mysqlhotcopy --user=user --password=pass user user@host:/home/mon_
backup --allowold --keepold

mysqlhotcopy locks tables while performing backups and then unlocks them once
done. It doesn't back up in the SQL format, rather it backs up files. If you have a huge
amount of data, even though if it's faster than mysqldump, it will lock your tables
during the backup time; this could take too much of the acceptable time.

When you want to restore the backup, you need to perform the following steps:

1. Stop MariaDB.
2. Copy backups and paste them in the datadir of MariaDB.
3. Restore writes on it with correct permissions.
4. Start MariaDB.

This is easy but requires a shut down of the MariaDB instance.

Backups

[262]

LVM
Logical volume manager (LVM) allows you to create a quick snapshot that can be
used for backups. Apart from that, you can perform migration with easy rollback.
This is a little bit out of the scope of this chapter, but as it is quick and could be very
useful, we'll discuss it.

LVM is not a MariaDB tool, but a device mapper solution providing snapshot
solutions. If you're using advanced filesystems such as ZFS or BTRFS, you can
also use the snapshot feature to create backups.

Snapshot
To make a usable MariaDB datadir snapshot, you first need to lock your tables:

MariaDB [(none)]> flush tables with read lock;

Now we're sure there will be no changes on our instance. Let's create the snapshot
on the system:

> lvcreate --snapshot -n snap_mariadb -L 2G /dev/data/mariadb

Here is a list of used commands:

• --snapshot: This indicates we want to create an LVM snapshot
• -n: This is the name of the snapshot
• -L: This is the size of the snapshot
• /dev/data/mariadb: This is the logical volume path

Now you can release locked tables:

MariaDB [(none)]> unlock tables;

To know what happens when you create a LVM snapshot, you first need to know
that a new volume is attached to the logical volume. LVM in fact works with an
exception table that traces modified blocks (also called Copy on Write). When a
block tends to be modified on the logical source volume, it is then copied to the
snapshot and modified.

If you didn't reserve enough space for your snapshot, don't
worry; you can resize it with the lvresize command.

Chapter 11

[263]

No changes are made on the logical source volume. So the table is modified to
inform the changes occurred on those blocks. On the next access, the file will be
read from the snapshot to get the latest changes.

Removing snapshots
Let's say you've created a snapshot, made modifications on your database,
and want to keep them because it works the way you want.

You can keep the logical source volume and remove the snapshot:

> lvremove /dev/data/snap_mariadb

It's ok now, there is no snapshot anymore; your data is all up to date.

Rollback
Now let's suppose that the changes that you made are bad and you don't want it
anymore. What you want is to rollback to your previous working version. We're
going to use the merge option:

> lvconvert --merge /dev/data/snap_mariadb

 Can't merge over open origin volume

 Merging of snapshot snap_mariadb will start next activation.

Merging won't be done on the fly as the volume is already used. You will need
to reactivate LVM for that partition. This will involve a downtime. You need to
proceed in the following order:

1. Stop MariaDB.
2. Unmount the logical volume.
3. Deactivate the logical volume.
4. Activate the logical volume.
5. Mount the logical volume.
6. Start MariaDB.
7. Ok, now you're ready to do perform merging:

> service mysql stop || exit 1

> umount /var/lib/mysql

> lvchange -an /dev/data/mariadb

> lvchange -ay /dev/data/mariadb

> mount /var/lib/mysql

> service mysql start

Backups

[264]

That's it. If you now look in the /dev/mapper folder, you won't see any
snapshot anymore.

Backup
Backing up is now an easy task when you've created the snapshot. However,
be sure you've allowed enough space for the snapshot during the backup time
to avoid resizing it during the backup.

It is very easy to create a backup with LVM. However, it won't be a SQL dump
(logical dump), but binary dump files will be copied instead. How does it work?
When you're creating a snapshot, you are using another logical volume for the
changes. However, the logical source volume is still available for read operations and it
doesn't change at all. You can then mount it and copy the data of your MariaDB files.

Now, suppose you want to use the LVM snapshot to create your backups. Here is
how to technically achieve it using the previous command:

MariaDB [(none)]> flush tables with read lock;

> lvcreate --snapshot -n snap_mariadb -L 2G /dev/data/mariadb

MariaDB [(none)]> unlock tables;

The snapshot is ready; let's mount the logical source volume somewhere, copy the
data to a backup folder, and remove the snapshot:

> mount -o ro /dev/data/snap_mariadb /mnt

> mkdir /backups

> rsync –az –delete /mnt/* /backups

> umount /mnt

> lvremove /dev/data/snap_mariadb

That's it! You've now got a consistent backup easily created. When you want to
restore, you will just have to replace (when MariaDB is stopped) the datadir files
from the backup to your MariaDB instance path (/var/lib/mysql by default).

Xtrabackup
Xtrabackup is the best solution to create backups for several reasons:

• It's fast in creating a backup
• It's fast in restoring a backup
• It locks a table for a very short time

Chapter 11

[265]

• It can stream compressed databases
• It can perform incremental backups
• It allows you to compress your backups
• It allows you to encrypt your backups

In most cases, it's a better solution to backup, as it is very fast and doesn't need to
lock the tables for a long time (only a few milliseconds). However, you need to take
care about what you're backing up, as Xtrabackup only backs up InnoDB/XtraDB
and MyISAM engines.

To install Xtrabackup, we saw in the previous chapters that you need to first
configure the Percona repository and then install Xtrabackup.

Full backup
We'll see here how to create the first backup which will be a full backup. You can
start creating it by running the following command:

> innobackupex --rsync --compress --compress-threads=$(grep
-c '^processor' /proc/cpuinfo) --use-memory=1G --user=username
--password=pass --databases=dbname /mnt

innobackupex: Backup created in directory '/mnt/2014-05-24_17-17-38'

innobackupex: MySQL binlog position: filename 'mariadb-bin.000014',
position 328

140524 17:17:41 innobackupex: Connection to database server closed

140524 17:17:41 innobackupex: completed OK!

You do not need to specify the database name if you want to back up all the
databases. We're using some additional parameters in this command:

• rsync: This is used to speed up the process (that involves having the
rsync binary installed on your server).

• compress: This adds the compression.
• compress-threads: This is the number of threads used for compression.

You can replace this with a defined number or let grep automatically count
how many cores you've got on your server.

• use-memory: This value is set to accelerate Xtrabackup jobs.
• /mnt: This parameter tells where to store the backups. Here, we want to back

up in /backups, which will create a folder with the date of the day with the
hour of backup (for example, /mnt/2014-05-24_17-17-38).

Backups

[266]

If you prefer transferring your backup directly to another host, you can use the
xbstream option:

> innobackupex --stream=xbstream ./ | ssh root@192.168.33.32 "xbstream -x
-C /mnt/"

Incremental backup
Incremental backup is a very nice feature that can save a lot of disk space. To work
with incremental backups, the first thing you need to have is a full backup:

> innobackupex --rsync /mnt

[...]

innobackupex: Backup created in directory '/mnt/2014-05-24_17-17-38'

innobackupex: MySQL binlog position: filename 'mariadb-bin.000014',
position 328

140524 17:17:41 innobackupex: Connection to database server closed

140524 17:17:41 innobackupex: completed OK!

Everything ran fine here. Now we're ready to start an incremental backup:

> innobackupex --rsync --incremental-basedir=/mnt/2014-05-24_17-17-38/
--incremental /mnt/

[...]

innobackupex: Backup created in directory '/mnt/2014-05-24_17-18-25'

innobackupex: MySQL binlog position: filename 'mariadb-bin.000014',
position 328

140524 17:18:28 innobackupex: Connection to database server closed

140524 17:18:28 innobackupex: completed OK!

The following are the explanations of the parameters used:

• --incremental-basedir: This sets the path of the full backup directory
• --incremental: This sets the path where to store the incremental backup

Now if you take a look at the size of the backup's folders, you'll find the following:

> du -sh /mnt/*

14M /mnt/2014-05-24_17-17-38

1.2M /mnt/2014-05-24_17-18-25

Note that the first line corresponds to the full (biggest size) and the second line to the
incremental backup (smallest size). We are good!

Chapter 11

[267]

Restoring from a full backup
Perform the following steps to restore from a full backup:

1. If you've created a compressed backup, you first need to decompress it.
Launch the following command with the path of the full backup:
> innobackupex --decompress /mnt/2014-05-24_17-17-38

2. To restore a backup, you first need to prepare your backup to be restored.
Select the path of your full backup:
> innobackupex --apply-log /mnt/2014-05-24_17-17-38

[...]

InnoDB: Starting shutdown...

InnoDB: Shutdown completed; log sequence number 1867798

140524 17:35:33 innobackupex: completed OK!

3. To restore the full backup, stop MariaDB and remove the current content of
the database:
> service mysql stop

> rm -Rf /var/lib/mysql/*

4. You can now ask to restore using the copy-back parameter as an argument
and the path of the full backup in the last parameter:
> innobackupex --copy-back /mnt/2014-05-24_17-17-38/

innobackupex: Starting to copy InnoDB log files

innobackupex: in '/mnt/2014-05-24_17-17-38'

innobackupex: back to original InnoDB log directory '/var/lib/
mysql'

innobackupex: Copying '/mnt/2014-05-24_17-17-38/ib_logfile1' to '/
var/lib/mysql/ib_logfile1'

innobackupex: Copying '/mnt/2014-05-24_17-17-38/ib_logfile0' to '/
var/lib/mysql/ib_logfile0'

innobackupex: Finished copying back files.

140524 17:58:22 innobackupex: completed OK!

5. To finish, restore rights and start MySQL:

> chown -R mysql. /var/lib/mysql

> service mysql start

Backups

[268]

Restoring from an incremental backup
Perform the following steps to restore from an incremental backup:

1. Like for the full backup, the first thing to do is to prepare the full backup,
but this time with a new option (redo-only):
> innobackupex --apply-log --redo-only /mnt/2014-05-24_17-17-38

[...]

InnoDB: Starting shutdown...

InnoDB: Shutdown completed; log sequence number 1867798

140524 18:56:38 innobackupex: completed OK!

2. Now you need to merge the incremental backup to the full backup:
> innobackupex --apply-log --incremental-dir=/mnt/2014-05-24_17-
18-25/ /mnt/2014-05-24_17-17-38

[...]

140524 19:05:21 innobackupex: completed OK!

3. Then, as seen earlier, you need to prepare the backup for restore:
> service mysql stop

> rm -Rf /var/lib/mysql/*

4. Then restore the backup:

> innobackupex --copy-back /mnt/2014-05-24_17-17-38/

> chown -R mysql. /var/lib/mysql

> service mysql start

You've now seen all the common ways to use Xtrabackup.

Galera backup
Backup of Galera is not a complicated task; it just requires organization. This is
simply because when you're doing a backup, your node goes in Donor mode.
Using Xtrabackup will reduce the Donor mode time as compared to a classical
dump and helps in quickly integrating a new node.

Chapter 11

[269]

If you want to back up a Galera node with mysqldump, it is strongly recommended
to use a load balancer (such as HAProxy) to move out the cluster node that provides
data for backups. If you put in place what has been seen in Chapter 8, Galera Cluster –
Multimaster Replication, there won't be any problem. When a node is in Donor mode,
it will automatically be removed from the load balancer and will automatically be
reintegrated while it gets finished and synced.

If you have no special constraints and can use Xtrabackup, it's better. To create
a backup, you need to add a new option dedicated for Galera Cluster, which will
create a xtrabackup_galera_info file with Galera information inside. If you do not
use it, you won't be able to create incremental backups. So, to backup, perform the
following steps:

> innobackupex --rsync --galera-info /mnt

To restore, there is nothing much to do; proceed like a classical MariaDB instance:

> service mysql stop

> rm -Rf /var/lib/mysql/*

> innobackupex --copy-back /mnt/2014-05-24_17-17-38/

> chown -R mysql. /var/lib/mysql

However, to start it, you will need to set the UUID state at the moment of the
backup. This will integrate the node in the Galera Cluster. The following is
how to do it:

1. If you now take a look at xtrabackup_galera_info, you will see the
local node UUID state:
> cat /mnt/2014-05-24_17-17-38/xtrabackup_galera_info

5c9f6a1b-cd43-11e3-ad13-22007f7479c5:688

2. To finish, integrate the cluster in the following manner:

> service mysql start --wsrep_cluster_
address='gcomm://192.168.33.31' --wsrep_start_position="5c9f6a1b-
cd43-11e3-ad13-22007f7479c5:688 "

Backups

[270]

You need to specify a working node of the current Galera Cluster (wsrep_cluster_
address) and set the UUID position with the wsrep_start_position parameter
previously taken in the xtrabackup_galera_info file.

Remember that when you integrate a node in a Galera Cluster, a
delta copy has to be created, so a node will be set as Donor during
integrating. This will permit the new node to get the delta between
the backup and the current state. It will then be up-to-date, synced,
and the donor node will remain synced as well.

It is possible to predict this kind of thing by forcing the donor node. This will permit
to move out the load balancer, such as a node, defining it as Donor and integrating
back in the load balancer once its job has finished. You can force a node to be the
main donor node using the following command:

MariaDB [(none)]> SET global wsrep_sst_donor='192.168.33.31';

Summary
Backup is something important, and several methods exist for it. There is no best
solution; there are many backup tools and you generally have to choose one that
fits your needs. Other tools exist that have not been covered because of their license,
price, or maturity level. The MariaDB world is growing very fast and new solutions
are going to emerge, bringing more simplicity and features.

Index
A
acceleration card 10
advanced mechanisms, Galera Cluster

database state machine 193
group communication 193
transaction reordering 193
write sets 193

Advanced Message Queuing Protocol
(AMQP) software 220

AMD
functionalities 16

architectures, Galera Cluster
designing 212
disaster recovery (DR) 218
load balanced architecture 213-216
read and write nodes 212
WAN replication 217

architecture types, MariaDB 13, 14
ARCHIVE engine 36
Aria engine 36
Atomicity, Consistency, Isolation,

Durability(ACID) 83
auto-increment-increment 148
auto-increment-offset 148
automatic management

about 156
DRBD 174-179
HAProxy 156-158
Pacemaker 164-174
Percona Replication Manager 164-174

B
backup

creating 257
restoring 261

backup, LVM 264
Battery Backup Unit (BBU) 11
bgs mode, Spider 242
binlogs

analyzing 124
binlogs cache 70
binlogs, nontransactional caches 71
binlogs, transactional caches 70
BIOS power management optimization

about 15
constructor name options 16
C-States 16
disks optimization 20
filesystem optimization 20
hardware, dedicating with cgroups 25
hardware optimization, dedicating

with NUMA 31, 32
power management optimization 17
P-States 16

BLACKHOLE engine 36
BTREE index engine 93
buffer pool instances, InnoDB 84

C
cache size, TokuDB 88, 89
cascade slaves 127
Cassandra 37
certificate authority (CA)

about 137
building 137, 138

certificates
checking 141
generating 137

CFQ scheduler 20

[272]

cgconfig daemon
used, for automatic solution 28-30

cgroups
hardware, dedicating with 25

cgroups, creating
automatic solution, cgconfig

daemon used 28-30
manual solution 26-28

classical dump
options 259

classical replication
migrating, to GTID replication 113, 114

classic engines, MySQL
ARCHIVE 36
BLACKHOLE 36
CSV 36
InnoDB 35
MEMORY 36
MERGE 36
MyISAM 35

client certificates
building 139-141

client SSL
MariaDB, configuring for 143

Collectd
about 254
URL 254

Completely Fair Queuing (CFQ) 20
compression 260, 261
compression feature, TokuDB 90, 91
compression options 145
compression type, TokuDB

LZMA 90
QUICKLZ 90
UNCOMPRESSED 90
ZLIB 90

configuration
testing 120

configuration file
using 161

Connect engine 37
connection recycle mode, Spider 242
connections 68, 69
consensus clustering 209
constructor name options 16
Copy on Write 262
Corosync 164

CPU 13
cpufreq 17, 18
cpuidle 18, 19
CRUD (Create/Update/Delete) 37
C-States 16
CSV engine 36

D
data

recovering, after server failure 237-241
databases

optimizing 39
data node 225
data transfer, Galera Cluster

Incremental State Transfer (IST) 206
State Snapshot Transfer (SST) 206

deadline scheduler 20
demand caching 10
disaster recovery (DR)

about 218, 219
advantages 218

disk arrays 12
disk optimization

kernel I/O scheduler 20, 21
partition alignment 21
SSD optimization 22
SWAP 25

disks
about 8
Hybrid drives 9
SAS magnetic drives 9
SATA magnetic drives 8, 9
SSDs 9

Distributed Replicated Block Device. See
DRBD

DNS cache server 67, 68
DNS connections 66, 67
donor node

dedicating 208
DRBD 174-179
dual master replication

about 147-149
configuring 149-155
installing 149-155
repairing 181

[273]

E
Elasticsearch 255
Error-Correcting Code memory (ECC

memory) 13
explain command 42, 43, 93
Extract-Transform-Load (ETL) 184

F
FederatedX 36
filesystem optimization

filesystem options 23-25
first boot, Galera Cluster

performing 200-205
first shard

creating 228-232
flush method, InnoDB 85
flush method, TokuDB 88
full backup

about 265
restoring from 267

functionalities
disabled, for Intel 16

Fusion-io direct acceleration cards 12

G
Galera1 201
Galera backup 268, 269
Galera Cluster

about 191, 248, 249
advanced mechanisms 193
advantages 192
configuration 194
configuration files 197
first boot, performing 200-205
installing 195
installing manually 197
issues, resolving 219
limitations 194
nodes, testing 221
performance tuning 211
redundant architectures, designing 212
starting 208
tests 219
usages 205
working 192, 193

Galera Cluster, advantages
consistent data 192
hot standby 192
multithreaded slave 192
synchronous replication 192
transparent to applications 192
true multimaster 192
WAN 192

Galera Cluster configuration
Galera configuration file, creating 198
MariaDB configuration file, editing 198

Galera Cluster, usages
consensus clustering 209
donor node, dedicating 208
Garb, using 209, 210
maintenance, performing 209
transfer methods 205

Galera configuration file
creating 198
gcache.name 199
gcache.page_size 199
gcache.size 199
MariaDB options, overriding 200
wrep_provider 199
wsrep_cluster_address 199
wsrep_cluster_name 199
wsrep_node_address 199
wsrep_node_name 199
wsrep_notify_cmd 200
wsrep_provider_options 199
wsrep_replication_myisam 200
wsrep_retry_autocommit 199
wsrep_slave_threads 199
wsrep_sst_method 199
wsrep_sst_receive_address 200

GALERA_GROUP 210
GALERA_NODES 210
Garb

about 209
configuration file, editing 210
using 209, 210

Gcache size 211
global statistics 66
Global Transaction ID. See GTID
graph

about 251
using 251, 254

[274]

Graphite 254
GTID 109
GTID replication

about 99, 108
advantages 108
classical replication, migrating to 113, 114
GTID slave node, configuring 110
master node, configuring 109
master node, preparing 110
slave, creating 111
slave, starting 111, 112
slave status, checking 112, 113

GTID slave node
configuring 110

H
HandlerSocket 37
HAProxy

about 156-159
configuring 117-119
installing 117, 157, 213
Keepalived 161-163
maintenance mode 159
statistics 159
using 213

Hard Disk Drives (HDDs) 8
hardware

dedicating, with cgroups 25
selecting 8

hardware optimization
dedicating, with NUMA 31, 32

hardware, selecting
acceleration card 10
CPU 13
disk arrays 12
disks 8
Fusion-io direct acceleration cards 12
levels 10, 11
RAID cards 10, 11
RAM 12, 13

HASH index engine 93
HATop

about 160
using 160

Heartbeat 164
hybrid drives 9

I
IBMDB2I 36
incremental backup

about 266
restoring from 268

Incremental State Transfer (IST) 206
index

about 92, 93
types 93

index engines
about 93
BTREE 93
HASH 93
RTREE 93

InnoDB
about 35, 79
buffer pool instances 84
flush method 85
logs 82-84
pool size 80, 81
redo logs 81, 82
statistics 80, 81
transaction commits 82-84

innodb_buffer_pool_instances
parameter 84

innotop 62, 63
installation, TokuDB 86
intel_idle driver 18
issues resolving, Galera Cluster

paused replication 220
split-brain 221

K
Keepalived 161-163
kernel I/O scheduler 20, 21
key buffer, MyISAM

about 91
Key_reads_requests variable 92
Key_reads variable 92
Key_writes_requests variable 92
Key_writes variable 92

Kibana 255

[275]

L
Linux kernel website

URL 21
load balanced architecture, Galera Cluster

architectures 213-216
logbin information 106
Logical volume manager. See LVM
logs 255
logs, InnoDB 82, 84
Logstash/Flume/Fluentd 255
logs, TokuDB 89
look-ahead caching 10
LVM

about 262
backup 264
snapshot 262

lvresize command 262

M
maintenance, Galera Cluster

performing 209
maintenance mode

about 159
configuration file, using 161
HATop, using 160
Unix Socket, using 159

Man In The Middle (MITM) 135
manual solution, cgroups 26-28
MariaDB

about 7
architecture types 13, 14
configuring, for client SSL 143
configuring, for master SSL 141, 142
configuring, for SSL 141
features 8
hardware requisites 8
history 7, 8
MySQL, migrating to 33-35
performances 13, 14

MariaDB Cluster 191
MariaDB compatibility

URL 33
MariaDB engines

about 35-37
Aria 36

Cassandra 37
Connect 37
FederatedX 36
HandlerSocket 37
IBMDB2I 36
PBXT 36
Sequence 37
SphinxSE 36
Spider 37
TokuDB 37
XtraDB 36

MariaDB instances
Collectd 254
Graphite 254
Statd 254

MariaDB options, overriding
binlog_format 200
innodb_autoinc_lock_mode 200
innodb_flush_log_at_trx_commit 200
query_cache_size 200

master
slave, switching to 124-126

master node, GTID replication
configuring 109, 110

master node, replication
configuring 100, 101
preparing 101, 102

master SSL
MariaDB, configuring for 141, 142

MediaWiki
URL 41

MEMORY engine 36
MERGE engine 36
middle slaves

replication performance, speeding up
for 129, 130

modes
operations, performing 62

monitoring node 225
monitoring solutions

about 250
graph, using 250-254
logs 255

multimaster slave replication
about 183, 184
multisource replication, setting up 184-189

[276]

options 190
setting up 184-189

MyISAM
about 35, 91
key buffer 91, 92

MySQL
migrating, to MariaDB 33-35

mysqldump
about 102, 206
compression 260, 261
options 260
using 103, 104, 206, 259, 260

mysqlhotcopy
options 261
using 261

mysqlsla 63, 64
mysqltuner 94, 96
mytop 61, 62

N
Nagios 245
ncurses 160
nontransactional caches, binlogs 71
Non-Uniform Memory Access. See NUMA
noop scheduler 20
NUMA

hardware optimization, dedicating 31, 32
number of shards 243

O
Online Transaction Processing (OLTP) 51
open tables 73, 74
options, fine-tune parallel replication 115
options, replications

replicate_do_db 132
replicate_do_table 132
replicate_ignore_db 133
replicate_ignore_table 133
replicate_wild_do_table 132
replicate_wild_ignore_table 134

P
Pacemaker 164-174
parallel replication 115

parallel slave threads 211
partition alignment 21
PBXT 36
Percona Replication Manager

about 164-174
URL 174

Percona Toolkits
about 54
pt-duplicate-key-checker 58, 59
pt-index-usage 59, 60
pt-mysql-summary 57
pt-query-digest 54
pt-stalk 55, 56
pt-summary 56
URL 54

performance schema 49
performance schema, features

URL 49
performance tuning

about 242
number of shards 243
Spider, parameters 242

performance tuning, Galera Cluster
Gcache size 211
parallel slave threads 211

pool size, InnoDB 80
power management optimization

about 17
cpufreq 17, 18
cpuidle 18, 19

PrimeBase XT. See PBXT
process list progression 60, 61
profiling 47, 48
P-States 16
pt-duplicate-key-checker 58, 59
pt-index-usage 59, 60
pt-mysql-summary 57
pt-query-digest 54
pt-stalk tool 55, 56
pt-summary tool 56

Q
query cache

about 75
modifying 77, 78

[277]

scenarios 75
values, viewing 76

query_cache_type parameter
values 76

R
RAID 0 11
RAID 1 11
RAID 5 11
RAID 6 11
RAID 10 11
RAID cards 10, 11
Raid levels

RAID 0 11
RAID 1 11
RAID 5 11
RAID 6 11
RAID 10 11
solutions 11

RAM 12, 13
read and write nodes, Galera Cluster

architectures 212
read cache

Demand caching 10
Look-ahead caching 10

read transactions
configuration, testing 120
HAProxy, configuring 117-119
HAProxy, installing 117
load balancing 115, 116
web health, checking 119

redo logs, InnoDB 81, 82
Redundant Array of Independent Disks

(RAID) 9
remote SQL logs, Spider 243
replicated shards

creating 234-236
replication

about 97, 98
need for 97
options 132-134
sharding 233
restricting 131-134
troubleshooting 120
use cases 120
working 99, 100

replication mechanisms
GTID replication 99
standard replication 99

replication performance
speeding up, for middle slaves 129, 130

replication, reasons
data analysis 97
disaster recovery 97
high availability, providing 97
scale out reads 97
security 97

replication status 248
replication, working

master node, configuring 100, 101
master node, preparing 101
slave, creating 102
slave node, configuring 102
slave status, checking 106, 108

rollback, snapshot 263
rotation speeds

10K rpms 9
15K rpms 9

rsync method
about 207
using 207

RTREE index engine 93

S
SAS magnetic drives 9
SATA magnetic drives

about 9
5400 rpms 8
7200 rpms 8

Sequence engine 37
server certificate

building 138, 139
Severalnines

URL 216
shard

data, recovering after server failure 237-241
replicated shards, creating 234-236
Spider HA, monitoring 236, 237

Shoot The Other Node In The Head
(STONITH) 172

show explain command 46

[278]

SHOW SLAVE STATUS command 131
single instance

checking 246, 247
Single Point of Failure (SPOF) 147
skip-innodb option 130
SkySQL 7
slave

creating 102
designing, in multiple continents 134, 135
switching, to master 124, 125

slave cascading
performing 128, 129

slave, creating
mysqldump, using 103, 104
Xtrabackup, using 104-106

slave, GTID replication
creating 111
starting 111, 112

slave node, replication
configuring 102

slave status command 143
slave status, GTID replication

checking 112, 113
slave status, replication

checking 106-108
slow queries 41, 42
slow query log feature 41, 42
slow query logs 43, 45
snapshot

about 262
removing 263
rollback 263

Solid State Drives (SSDs) 9
solutions, SQL errors

correct 123
GTID 123
skip 123

speed, Spider 225
Sphinx Search Engine (SphinxSE) 36
Spider

about 37, 223-225
configuring 225, 227

Spider, features
speed 225
table link 225
table partitioning 225
XA transaction 225

Spider HA
monitoring 236, 237

Spider node 225
Spider, parameters

bgs mode 242
connection recycle mode 242
remote SQL logs 243
statistics tables 243

split-brain 221
SQL errors 120-123
SSD optimization 22
SSL

MariaDB, configuring for 141
SSL replication 135
standard replication 99
Statd

about 254
URL 254

State Snapshot Transfer (SST) 206
statistics

resetting 66
statistics, InnoDB 80, 81
statistics tables, Spider 243
status information, Galera Cluster 203
storage engines

databases, summarizing 78, 79
InnoDB 79
MyISAM 91
optimizing 78
XtraDB 80

SWAP 25
swappiness value 25
Sysbench

- cpu 51
- fileio 51
- memory 51
- mutex 51
- oltp 51
- threads 51
about 51-53

T
table link, Spider 225
table partitioning, Spider 225
temporary directory, TokuDB 90
temporary tables 71

[279]

Tiny Tiny RSS
URL 41

TokuDB
about 37, 86
cache size 88, 89
compression feature 90, 91
flush method 88
installing 86
logs 89
temporary directory 90
transaction commits 89

TokuKV 87
Tokutek 86
transactional caches, binlogs 70
transaction commits, InnoDB 82-84
transaction commits, TokuDB 89
transfer methods, Galera Cluster

about 205
mysqldump, using 206
rsync, using 207
Xtrabackup, using 207

troubleshooting, replication
about 120
binlogs, analyzing 124
recovering 124-126
slave, switching to master 124-126
SQL errors 120-123

U
Uniform Memory Architecture (UMA) 31
Unix Socket

using 159
use cases, replication 120
user statistics 50, 51
Using_Gtid parameter 113

V
Vagrantfile

db 98
lb 98
requisites 14

values, temporary tables
Created_tmp_disk_tables 72
Created_tmp_files 72
Created_tmp_tables 72

values, transactional cache
Binlog_cache_disk_use 70
Binlog_cache_use 70

variables, query cache
Qcache_free_memory 76
Qcache_hits 76
Qcache_inserts 76
Qcache_lowmem_prunes 76
Qcache_not_cached 77
query_cache_limit 78
query_cache_size 78

Virtual IP (VIP) 161
Virtual Router Redundancy Protocol

(VRRP) 161

W
WAN replication, Galera

Cluster architectures 217
web health

checking 119
write-back caching 10
write cache

write-back caching 10
write-through caching 10

write-through caching 10

X
XA transaction, Spider 225
Xtrabackup

about 103, 207, 264, 265
full backup 265
full backup, restoring from 267
incremental backup 266
incremental backup, restoring from 268
using 104-207

XtraDB engine 36, 80

Thank you for buying
MariaDB High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with MariaDB
ISBN: 978-1-78216-809-6 Paperback: 100 pages

Learn how to use MariaDB to store your data easily
and hassle-free

1. A step-by-step guide to installing and
configuring MariaDB.

2. Includes real-world examples that help you
learn how to store and maintain data on
MariaDB.

3. Written by someone who has been involved
with the project since its inception.

MariaDB Cookbook
ISBN: 978-1-78328-439-9 Paperback: 282 pages

Over 95 recipes to unlock the power of MariaDB

1. Enable performance-enhancing optimizations.

2. Connect to different databases and file formats.

3. Filled with clear step-by-step instructions that
can be run on a live database.

Please check www.PacktPub.com for information on our titles

Pentaho Data Integration
Beginner's Guide
Second Edition
ISBN: 978-1-78216-504-0 Paperback: 502 pages

Get up and running with the Pentaho Data Integration
tool using this hands-on, easy-to-read guide

1. Manipulate your data by exploring,
transforming, validating, and integrating it.

2. Learn to migrate data between applications.

3. Explore several features of Pentaho Data
Integration 5.0.

4. Connect to any database engine, explore the
databases, and perform all kinds of operations
on databases.

Pentaho Data Integration 4
Cookbook
ISBN: 978-1-84951-524-5 Paperback: 352 pages

Over 70 recipes to solve ETL problems using
Pentaho Kettle

1. Manipulate your data by exploring,
transforming, validating, integrating, and more.

2. Work with all kinds of data sources such as
databases, plain files, and XML structures,
among others.

3. Use Kettle in integration with other
components of the Pentaho Business
Intelligence Suite.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Performance Introduction
	MariaDB history
	Choosing the appropriate hardware
	Disks
	SATA magnetic drives
	SAS magnetic drives
	Hybrid drives
	SSDs

	RAID and acceleration cards
	RAID cards and levels
	Fusion-io direct acceleration cards
	Disk arrays
	RAM
	CPU

	Architecture types and performances
	BIOS power management optimization
	C-States
	P-States
	Constructor name options
	Power management optimization
	cpufreq
	cpuidle

	Disk and filesystem optimization
	Kernel disks' I/O schedulers
	Partition alignment
	SSD optimization
	Filesystem options
	SWAP

	Dedicating hardware with cgroups
	Manual solution
	Automatic solution using the cgconfig daemon

	Dedicating hardware optimization with NUMA

	Migrating from MySQL to MariaDB
	Introduction to MariaDB engines
	Summary

	Chapter 2: Performance Analysis
	Slow queries
	The explain command
	Slow query logs
	The show explain command
	Profiling
	Performance schema
	User statistics
	Sysbench
	Percona Toolkits
	pt-query-digest
	pt-stalk
	pt-summary
	pt-mysql-summary
	pt-duplicate-key-checker
	pt-index-usage

	Process list progression
	mytop
	innotop
	mysqlsla
	Summary

	Chapter 3: Performance Optimizations
	Resetting statistics
	Global statistics
	DNS connections
	The DNS cache server

	Maximum connections
	The binlogs cache
	Binlogs for transactional caches
	Binlogs for nontransactional caches

	Temporary tables
	Open tables
	The query cache
	Understanding the query cache
	Modifying the query cache

	Optimizing storage engines
	Summarizing your databases
	InnoDB/XtraDB
	Pool size and statistics
	Redo logs
	Transaction commits and logs
	Buffer pool instances
	The flush method

	TokuDB
	Installation
	The flush method
	Cache size
	Transaction commits and logs
	Temporary directory
	Compression

	MyISAM
	Key buffer

	Index
	Engines
	Types

	mysqltuner
	Summary

	Chapter 4: MariaDB Replication
	How replication works
	Configuring the master node
	Preparing the master node
	Configuring the slave node
	Creating a slave
	Using mysqldump
	Using Xtrabackup

	Checking the slave status

	GTID replication
	What is GTID
	Configuring the master node
	Preparing the master node
	Configuring a GTID slave node
	Creating a slave
	Starting the slave
	Checking the slave status

	Migrating from classical to GTID replication
	Parallel replication
	Load balancing read transactions
	Installing HAProxy
	Configuring HAProxy
	Checking health
	Testing the configuration

	Use cases and troubleshooting
	SQL errors
	Analyzing binlogs
	GTID – switching a slave to master
and recovering

	Summary

	Chapter 5: WAN Slave Architectures
	Cascade slaves
	Speeding up replication performance for
middle slaves

	Restricting replications
	Designing slave in multiple continents
	SSL replication
	Generating certificates
	Building your own CA
	Building your server certificate
	Building your client certificates
	Checking your certificates

	Configuring MariaDB for SSL
	Master SSL
	Client SSL

	Compression options
	Summary

	Chapter 6: Building a Dual Master Replication
	Dual master replication and risks
	Installing and configuring a dual master
	Automatic management
	HAProxy
	Learning about the maintenance mode
	Keepalived

	Pacemaker or Percona Replication Manager
	DRBD

	How to repair a dual master replication
	Summary

	Chapter 7: MariaDB Multimaster Slaves
	Multimaster slave replication
	Setting up a multisource replication
	Other options

	Summary

	Chapter 8: Galera Cluster – Multimaster Replication
	How Galera Cluster works
	Galera Cluster limitations
	The basics of installation and configuration
	Installation
	Configuration files
	MariaDB configuration
	Galera configuration

	First boot

	Usages and understandings
	Transfer methods
	Using mysqldump
	Using Xtrabackup
	Using rsync

	Dedicating a donor node
	Starting after a complete blackout
	Consensus clustering and maintenance
	Garb – the quorum solution
	Performance tuning
	Parallel slave threads
	Gcache size

	Designing redundant architectures
	Read and write nodes
	Load balanced architecture
	WAN replication
	Disaster recovery

	Tests and issues
	Paused replication
	Break Galera
	Split-brain

	Summary

	Chapter 9: Spider – Sharding Your Data
	Configuring Spider
	Creating your first shard
	Sharding replication
	Creating replicated shards
	Spider HA monitoring
	Recovering data after server failure

	Performance tuning
	Spider parameters
	The bgs mode
	The connection recycle mode
	Statistics tables
	Remote SQL logs

	Number of shards

	Summary

	Chapter 10: Monitoring
	Single instance
	Replication
	Galera Cluster
	Other monitoring solutions
	Graphs
	Logs

	Summary

	Chapter 11: Backups
	Using mysqldump
	Compression

	Using mysqlhotcopy
	LVM
	Snapshot
	Removing snapshots
	Rollback

	Backup

	Xtrabackup
	Full backup
	Incremental backup
	Restoring from a full backup
	Restoring from an incremental backup

	Galera backup
	Summary

	Index

