Useful Techniques from Sorting to Encryption

Mastering

Algorithms

O’ RE"_LY® Kyle Loudon

vww allitebooks.conl

http://www.allitebooks.org

Programming

O’REILLY"
Mastering Algorithms with C

There are many books on data structures and algorithms, and some books contain-

ing code for C libraries, but this book gives you a unique combination of theoretical
background and working code. In offering robust solutions for everyday program-
ming tasks, Mastering Algorithms with € avoids the abstract style of most classic
data structures and algorithms texts but still provides all the information you need to
understand the purpose and use of common programming techniques.

Implementations, as well as interesting, real-world examples of each data structure and algorithm,
are shown in the text. Full source code appears on the accompanying disk.

Using an exceptionally clean programming style and writing style, Kyle Loudon shows you how

to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and
graphs. He shows you how to use algorithms for sorting, searching, numerical analysis, data com-
pression, data encryption, common graph problems, and computational geometry. He also describes
the relative efficiency of all implementations. The compression and encryption chapters not only
give you working code for reasonably efficient solutions, they explain concepts in an approachable
manner for people who never have had the time or expertise to study them in depth.

Anyone with a basic understanding of the C language can use this book. In order to provide main-
tainable and extendable code, an extra level of abstraction (such as pointers to functions) is used in
examples where appropriate. Understanding that these techniques may be unfamiliar to some pro-

grammers, Loudon explains them clearly in the introductory chapters.

Contents include:

e Pointers e Numerical methods
e Recursion e Data compression
e Analysis of algorithms e Data encryption

e Data structures (lists, stacks, queues, sets, e Graph algorithms

hash tables, trees, heaps, priority queues,
and graphs)

e Geometric algorithms

e Sorting and searching

www.oreilly.com

US $39.95 CAN $58.95
ISBN: 978-1-56592-453-6

3:-59:9.5
TR i

7815657924536

vww .allitebooks.cond

http://www.allitebooks.org

Mastering Algorithms with C

WWW.aI I itebooks.cogl

http://www.allitebooks.org

M.al I itebooks.cogl

http://www.allitebooks.org

Mastering Algorithms with C

Kyle Loudon

O’REILLY"

Beijing - Cambridge - Farnbam - Kéin - Paris - Sebastopol - Taipei - Tokyo

vww .allitebooks.cond

http://www.allitebooks.org

Mastering Algorithms with C
by Kyle Loudon

Copyright © 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Editor: Andy Oram
Production Editor: Jeffrey Liggett

Printing History:

August 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O'Reilly Media, Inc. Mastering Algorithms with C, the image of sea horses, and
related trade dress are trademarks of O’'Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover. . .
=== This book uses RepKover’, a durable and flexible lay-flat binding.

ISBN-13: 978-1-565-92453-6
M1 [5/08]

M.al I itebooks.cogl

http://www.allitebooks.org

Table of Contents

Prefaiceccccoioiiiiiiiiiiiiiiiie e, Xi
L Preliminariesooeioeoeeieeieeieeieeeeeeenis 1
L. ITIVOAUCLION ... e e, 3

An Introduction to Data StIUCIUIEScc.ccovviiiviiiaiiieeiiieeeiiee et 4

An Introduction to AlGOrithmsccccooiiiiiiiiii e 5

A Bit About Software Engineeringc.ccccceeviiriiiiiiiiieniiiiiaeeenie e 8
How to Use This BOOKccciiiiiiiiiiiiiiiccic e 10

2. Pointer Manipulation ... 11
Pointer FunNdamentalsc.cccoooiiiiiiiiiiiii e 12
Storage AlIOCAIONoiiiiiiiiiiiiii e 12
Aggregates and Pointer Arithmeticoocoviiiiiiiiiiii e 15
Pointers as Parameters t0 FUNCHONSuuiiiiiiiiiiiiieeie 17
Generic Pointers and CaStScc.ooiiiiiiiiiiiiiieeiiie ettt 21
FUunction POINTETSooiiiiiiiiiiii e 23
QUESHONS ANA ANSWELS ..oeiiiviiiiieiiiiiee e ettt e et e e et e e et e e e e sbbae e e eeiaraee e 24
REIALEA TOPICS eveitiiiiieii ittt 25

3. ROCUFSION ...t 27
BasiC RECUTSION ..o 28
Tl RECULSION. .o e 32
QUESHONS ANA ANSWELS ...eiiiiiiiiiiie it et ettt 34
REIALEA TOPICS ittt 37

v

vww .allitebooks.cond

http://www.allitebooks.org

vi Table of Contents
4. Analysis of AIGOTIIDINS ..o, 38
WOrst-Case ANALYSIScooiiiiiiiiiiie e 39
O -NOTATIOML ittt e e 40
Computational COMPIEXILY ...oeviiriiiiiiiiie et 42
Analysis Example: INSertion SOITccoiiiiiiiiiiiiiie et 45
QUESHONS ANA ANSWELS ...eiiiiiiiiiiieiiie ettt ettt 47
REIALEA TOPICS -vevtieieieiie ettt et 48
II. Data SIructiures ..., 49
5. LinRed LiSLSc.ccococoiiiiiiiiiiiiiiiiiteeeee e 51
Description of Linked LiSESc..coiiiiiiiiiiiiiiiiie et 52
Interface for LINKed LiSEScooiiiiiiiiiiiieiicie e 53
Implementation and Analysis of Linked LiStScccoceviiiiiiiiiiniiiieiiee 56
Linked List Example: Frame Managementccccoooceevvireiiieeniieeniieanennn 65
Description of Doubly-Linked LiStSc.ccociiiiiiiiiiiiiiiiiieicieeieeecee 68
Interface for Doubly-Linked LiStScccoiiiiiiiiiiiiieiiiiie st 68
Implementation and Analysis of Doubly Linked ListSccccccoeviiiiinnnne 72
Description of Circular LIStSccccciiiiiiiiiiiiiiiiiiiciiiie e 82
Interface for Circular LISESc.coovviiiiiiiiiiiiiiieit et 82
Implementation and Analysis of Circular LiStSccccocvviiiiiiiiiiiiiiiiiie 84
Circular List Example: Second-Chance Page Replacementc.ccccceeee 91
QUESHONS ANA ANSWETS ...viiiviiiiiiieiiee et e ettt 94
Related TOPICS ..o iuiiiiiiiiiieiiie et 96
6. Stacks and QUEIUES ..., 98
Description Of StACKSiiviiiiiiciicc e 99
Interface fOr StACKSciiiiiiiiiiiii 100
Implementation and Analysis Of Stackscccccooeiiiiiiiiiiiiiiii 102
Description Of QUEUEScciiiiiiiiiiiiiiiiiieic e 105
Interface for Queues
Implementation and Analysis of QUEUESccoooiiiiiiiiiiiiiiiii 107
Queue Example: Event Handlingcccoooviviiiiiiiiiicc 110
QUuESHONS ANA ANSWETS ...eiiiiviiiiiiieiiie ettt 113
Related TOPICS ..oiiiiiiiiii it 114
To SCIS oo, 115
DeSCription Of SELSc.ociuiiiiiiiiiiii it 116
INtErface fOr SELS ..viiiiiiiiiiiiiiiit e 119

WWW.aI I itebooks.cogl

http://www.allitebooks.org

Table of Contents vii

8.

10.

Implementation and Analysis Of SEtscoccoviiiiiiiiiiiiiiiiii 122
Set Example: Set COVEIINGvviiiiiiiiiieiiie et 133
QUESHONS ANA ANSWELS ...eiiiiiiiiiiieeiiie ettt ettt e e 138
REIAted TOPICS eveieieitieiieeie ettt 140
Hash Tables ...t 141
Description of Chained Hash Tablesccccoociiiiiiiiiiiiiiii 143
Interface for Chained Hash Tablesccccocoviiiiiiiiini, 147
Implementation and Analysis of Chained Hash Tablescccccooee. 149
Chained Hash Table Example: Symbol Tablesccccooceiiiiiiiienii 157
Description of Open-Addressed Hash Tablesccccocooiiiiiiiiinnnnn, 161
Interface for Open-Addressed Hash Tables ..o, 164
Implementation and Analysis of Open Addressed Hash Tables 166
QUESHONS ANA ANSWELS ...eiiiiiiiiiiiieeiiieeiie ettt e e 176
REIAtEA TOPICS eveveieieieiieeie ettt 177
THOOS ... 178
Description Of BiNary TIEESeeviiiiiiiieiiieie ettt 180
Interface for Binary TIEESccooviiiiriiiiiiiiiioiiee e 183
Implementation and Analysis of Binary Treescccccoovviviiiniininninnnne. 187
Binary Tree Example: EXpression Processingcccccovoeveevieiiiieniieennn, 199
Description of Binary Search Treesc.ccccoovviiiiiiiiniiiiiiniiieiciceic, 203
Interface for Binary Search Treescoccovviiiiiiiiiiiiiiic e 204
Implementation and Analysis of Binary Search Treesc.cccoeveeirne. 206
QUESHONS ANA ANSWELS ...eiiiiiiiiiiiieeiiie ettt e 230
REIAtEA TOPICS evivviaiiieiieeie ettt 233
Heaps and Priority QUELES ..o, 235
Description Of HEAPSviiviiiiiiieiiiieie ettt 236
Interface for HEAPS ..iiiiiiiiiiiiiiei e 237
Implementation and Analysis of HEapscccccoviiviiniiiiiiiiicicie 239
Description of Priority QUEUESccoeiuiiiiiiiiiiiieii et 250
Interface for Priority QUEUESoovviiiiiiiiiiiieiiiie e 251
Implementation and Analysis of Priority QUeuesccccocvvviinirinnnnne. 252
Priority Queue Example: Parcel Sortingccccoovoieiiiiiiiiiieiie, 254
QUESHONS ANA ANSWELS ...eiiiiiiiiiiiieiiiie ettt ettt e 256
REIAted TOPICS eveviieiiieiieeie ettt 258

WWW.aI I itebooks.cogl

http://www.allitebooks.org

viii Table of Contents
1. GEAPDS ... 259
Description Of GIAPRSoviiiiiiiiiiieii e 2061
Interface fOor Graphisocioiiiiiiiiiiii 267
Implementation and Analysis of Graphsccccocoiiiiiiiiiiiii 270
Graph Example: Counting Network HOPSccccoocieiiiiiiiiiiiiieiiie, 284
Graph Example: Topological SOrtingcccoceeiiiiiiiiniiiiiniiiiiiec, 290
QUuESHONS ANA ANSWETS ...eiiiiviiiiiiieiiie ettt 295
Related TOPICS ..iiuiiiiiiiii it 297
III. AIGOTIIDINSccoovooiivooi s 299
12, Sorting and Searching ..., 301
Description Of INSEItion SOtcccocviiiiiiiiiiiiiiiii e 303
Interface for INSEItiON SOITcoiiiiiiiiiiiiiii e 303
Implementation and Analysis of Insertion SOrtcccoocivviiiiiniiennenne. 304
Description of QUICKSOLTc.ooiiiiiiiiiiiiiiiii e 307
Interface for QUICKSOTTcivviiiiiiiiiiiiii e 308
Implementation and Analysis of QUICKSOItcccooiiiiiiiiiiiiiiieic e, 308
Quicksort Example: Directory LIStNGScocovviiiiiiiiniiiiiieeeeceec e 314
Description Of MEIZE SOTTiiiiiiiiiiii ittt 317
Interface fOr MErGe SOTT ..c..iiiiiiiiiiiiieii ettt 318
Implementation and Analysis of Merge SOrtcccccocivviiviiniiniiniieninnn, 318
Description of COUNtING SOtccviiiiiiiiiiiiieee e 324
Interface for COUNtING SOtcoiiiiiiiiiiieiie et 325
Implementation and Analysis of Counting SOrtcccccovvviiiniiniiiennne, 325
Description Of RAIX SOTTiiiiiiiiiiiiiiee e 329
Interface fOr RAAIX SOTT ..oooiiiiiiieeee e 329
Implementation and Analysis of RadiX SOItccccccoeiiiiiiniiiininiinennn, 330
Description of Binary Searchcccoiiiiiiiiiii 333
Interface for Binary Searchcccoociiiiiiiiiiiiii 334
Implementation and Analysis of Binary Search ..o, 334
Binary Search Example: Spell Checkingcccoooviiniiiiiiiiiii 337
QUESHONS ANA ANSWELS ..oiiiiiiiiieeiiiiiie e ettt e e et e e et e e a e e e iveeeas 339
REIALEA TOPICS .vivviiriieiieeite et 341
13. Numerical MetDOCSc.cccoooeeeeeeeeeeeeeeeeee e, 343
Description of Polynomial Interpolationcccccoveivviiiiiiiiiiiiicie 344
Interface for Polynomial Interpolationcccoocioiiiiiiiiiiiiiieee e 348
Implementation and Analysis of Polynomial Interpolation 349

WWW.aI I itebooks.cogl

http://www.allitebooks.org

Table of Contents ix

14.

15.

16.

Description of Least-Squares EStmationcccoocovviniiiiiiiiiiienieaeee 352
Interface for Least-Squares ESHMAtIONccooviiiiiiiiiiiiiieecieeie e 353
Implementation and Analysis of Least-Squares Estimation 354
Description of the Solution of EQUAtONSccccoviiiiiiiiiiiiieiecc 355
Interface for the Solution of EQUAtIONSccooiiiiiiiiiiiii i 360
Implementation and Analysis of the Solution of Equations 360
QUuESHONS ANA ANSWETS ...eiiiiviiiiiiieiiie ettt 362
Related TOPICS ..iiuiiiiiiiii it 363
Data COMPIESSIONcoccooovveieeeieeeieeeeeeeeeeee e, 365
Description of Bit OPerationsccccccieviiviiiiiiiiiiiiiiiiiee e, 369
Interface for Bit OPEerationsccoociiiieiiiiieii et 369
Implementation and Analysis of Bit Operationsccccccevcviviiivieennene. 370
Description of Huffman Codingcccoviiiiiiiiiiiiniiic 375
Interface for Huffman Codingcccooiiiiiiiiiiiiiiiii 379
Implementation and Analysis of Huffman Codingcccocoviiiiiinnnn. 380
Huffman Coding Example: Optimized Networkingc.ccccooiiininnnn, 396
Description Of LZ77 ..cocviiiiiiiiiiiiiie e 399
INterface fOr LZ77 oot 402
Implementation and Analysis Of LZ77ccccccocvviiiiiiiiiiiinieiiec, 403
QUESHONS ANA ANSWETS ...eiiivviiiiiiieiiie ettt 418
Related TOPICS ..oiuiiiiiiiie it 420
Daita ENCrYDEIOT ..ot 422
Description Of DES ...iciiiiiiiiiii e 425
Interface fOr DES ..ottt 432
Implementation and Analysis of DESccccoooiiiiiiiiiiiii 433
DES Example: Block Cipher MOdescccoovviiiiiiiiiniiniiiieiece 445
Description Of RSA ..o 448
Interface fOr RSA ..ot 452
Implementation and Analysis of RSAcoccoiiiiiiiniinii 452
QUuESHONS ANA ANSWETS ...eiiiiviiiiiiieiiie ettt 456
Related TOPICS ..iiuiiiiiiiieiiie e 458
Graph AIGOTItIMScc.c..cocoooeiiiiiiiieiiiee e, 460
Description of Minimum Spanning Treesccccoeviiiiiininiiniinieiennn, 463
Interface for Minimum Spanning TIEEScccccevvieriiniieiieaiiaiienee e 465
Implementation and Analysis of Minimum Spanning Trees 466
Description of Shortest Pathsc.cccoiiiiiiiiiiiiic 472

Interface for ShOrtest PAthSooovvvviiiiiiiiii e 474

x Table of Contents
Implementation and Analysis of Shortest Pathsccccccoviiiiiiiiiine. 475
Shortest Paths Example: Routing Tablesc.ccocoeiiiiiiiiiiiiiie 481
Description of the Traveling-Salesman Problem ..., 485
Interface for the Traveling-Salesman Problem ..o, 487
Implementation and Analysis of the Traveling-Salesman Problem 488
QUESHONS ANA ANSWELS ...eiiiiiiiiiiiieiiieeiie ettt e e 493
REIAted TOPICS eveieieitieiieeie ettt 495

17. Geometric AIGOTIIDMIS ..o 496
Description of Testing Whether Line Segments Intersectc........... 499
Interface for Testing Whether Line Segments INt€rsectccccoevevvenne. 502
Implementation and Analysis of Testing Whether Line
SEEMENLS TNLEISECT ..eiiiiiiiiiiiiiiiii ettt 503
Description of Convex HUILSccoccoiiiiiiiiiiiiiie 505
Interface for Convex HUILS ..o 507
Implementation and Analysis of Convex Hullscccoociviiiiiniinnn. 507
Description of Arc Length on Spherical Surfacescccooeiiiiiii. 512
Interface for Arc Length on Spherical Surfaces ..., 515
Implementation and Analysis of Arc Length on Spherical Surfaces 515
Arc Length Example: Approximating Distances on Earth 517
QUESHONS ANA ANSWELS ...viiiiiiiiiiieeiiie ettt ettt 520
REIAtEA TOPICS ereiiieieieiieeie ettt 523

Preface

When 1 first thought about writing this book, I immediately thought of O'Reilly &
Associates to publish it. They were the first publisher I contacted, and the one I
most wanted to work with because of their tradition of books covering “just the
facts.” This approach is not what one normally thinks of in connection with books
on data structures and algorithms. When one studies data structures and algo-
rithms, normally there is a fair amount of time spent on proving their correctness
rigorously. Consequently, many books on this subject have an academic feel about
them, and real details such as implementation and application are left to be
resolved elsewhere. This book covers how and why certain data structures and
algorithms work, real applications that use them (including many examples), and
their implementation. Mathematical rigor appears only to the extent necessary in
explanations.

Naturally, I was very happy that O'Reilly & Associates saw value in a book that
covered this aspect of the subject. This preface contains some of the reasons I
think you will find this book valuable as well. It also covers certain aspects of the
code in the book, defines a few conventions, and gratefully acknowledges the
people who played a part in the book’s creation.

Organization

This book is divided into three parts. The first part consists of introductory mate-
rial that is useful when working in the rest of the book. The second part presents
a number of data structures considered fundamental in the field of computer sci-
ence. The third part presents an assortment of algorithms for solving common
problems. Each of these parts is described in more detail in the following sec-
tions, including a summary of the chapters each part contains.

xi

Xxii Preface

Part 1

Part I, Preliminaries, contains Chapters 1 through 4. Chapter 1, Introduction, intro-
duces the concepts of data structures and algorithms and presents reasons for
using them. It also presents a few topics in software engineering, which are
applied throughout the rest of the book. Chapter 2, Pointer Manipulation, dis-
cusses a number of topics on pointers. Pointers appear a great deal in this book,
so this chapter serves as a refresher on the subject. Chapter 3, Recursion, covers
recursion, a popular technique used with many data structures and algorithms.
Chapter 4, Analysis of Algorithms, presents the analysis of algorithms. The tech-
niques in this chapter are used to analyze algorithms throughout the book.

Part Il

Part II, Data Structures, contains Chapters 5 through 11. Chapter 5, Linked Lists,
presents various forms of linked lists, including singly-linked lists, doubly-linked
lists, and circular lists. Chapter 6, Stacks and Queues, presents stacks and queues,
data structures for sorting and returning data on a last-in, first-out and first-in, first-
out order respectively. Chapter 7, Sets, presents sets and the fundamental mathe-
matics describing sets. Chapter 8, Hash Tables, presents chained and open-
addressed hash tables, including material on how to select a good hash function
and how to resolve collisions. Chapter 9, Trees, presents binary and AVL trees.
Chapter 9 also discusses various methods of tree traversal. Chapter 10, Heaps and
Priority Queues, presents heaps and priority queues, data structures that help to
quickly determine the largest or smallest element in a set of data. Chapter 11,
Grapbs, presents graphs and two fundamental algorithms from which many graph
algorithms are derived: breadth-first and depth-first search.

Part Il

Part III, Algorithms, contains Chapters 12 through 17. Chapter 12, Sorting and
Searching, covers various algorithms for sorting, including insertion sort, quick-
sort, merge sort, counting sort, and radix sort. Chapter 12 also presents binary
search. Chapter 13, Numerical Methods, covers numerical methods, including algo-
rithms for polynomial interpolation, least-squares estimation, and the solution of
equations using Newton’s method. Chapter 14, Data Compression, presents algo-
rithms for data compression, including Huffman coding and LZ77. Chapter 15,
Data Encryption, discusses algorithms for DES and RSA encryption. Chapter 16,
Graph Algorithms, covers graph algorithms, including Prim’s algorithm for mini-
mum spanning trees, Dijkstra’s algorithm for shortest paths, and an algorithm for
solving the traveling-salesman problem. Chapter 17, Geometric Algorithms, pre-
sents geometric algorithms, including methods for testing whether line segments
intersect, computing convex hulls, and computing arc lengths on spherical surfaces.

Preface Xiii

Key Features

There are a number of special features that I believe together make this book a
unique approach to covering the subject of data structures and algorithms:

Consistent format for every chapter
Every chapter (excluding those in the first part of the book) follows a consis-
tent format. This format allows most of the book to be read as a textbook or a
reference, whichever is needed at the moment.

Clearly identified topics and applications
Each chapter (except Chapter 1) begins with a brief introduction, followed by
a list of clearly identified topics and their relevance to real applications.

Analyses of every operation, algorithm, and example
An analysis is provided for every operation of abstract datatypes, every algo-
rithm in the algorithms chapters, and every example throughout the book.
Each analysis uses the techniques presented in Chapter 4.

Real examples, not just trivial exercises
All examples are from real applications, not just trivial exercises. Examples like
these are exciting and teach more than just the topic being demonstrated.

Real implementations using real code
All implementations are written in C, not pseudocode. The benefit of this is
that when implementing many data structures and algorithms, there are con-
siderable details pseudocode does not address.

Questions and answers for further thought
At the end of each chapter (except Chapter 1), there is a series of questions
along with their answers. These emphasize important ideas from the chapter
and touch on additional topics.

Lists of related topics for further exploration
At the end of each chapter (except Chapter 1), there is a list of related topics
for further exploration. Each topic is presented with a brief description.

Numerous cross references and call-outs
Cross references and call-outs mark topics mentioned in one place that are
introduced elsewhere. Thus, it is easy to locate additional information.

Insightful organization and application of topics
Many of the data structures or algorithms in one chapter use data structures
and algorithms presented elsewhere in the book. Thus, they serve as exam-
ples of how to use other data structures and algorithms themselves. All depen-
dencies are carefully marked with a cross reference or call-out.

Xiv Preface

Coverage of fundamenial topics, plus more
This book covers the fundamental data structures and algorithms of computer
science. It also covers several topics not normally addressed in books on the
subject. These include numerical methods, data compression (in more detail),
data encryption, and geometric algorithms.

About the Code

All implementations in this book are in C. C was chosen because it is still the most
general-purpose language in use today. It is also one of the best languages in
which to explore the details of data structures and algorithms while still working at
a fairly high level. It may be helpful to note a few things about the code in this
book.

All code focuses on pedagogy first
There is also a focus on efficiency, but the primary purpose of all code is to
teach the topic it addresses in a clear manner.

All code bas been fully tested on four platforms
The platforms used for testing were HP-UX 10.20, SunOs 5.6, Red Hat Linux 5.
1, and DOS/Windows NT/95/98. See the readme file on the accompanying
disk for additional information.

Headers document all public interfaces
Every implementation includes a header that documents the public interface.
Most headers are shown in this book. However, headers that contain only
prototypes are not. (For instance, Example 12-1 includes sort.h, but this
header is not shown because it contains only prototypes to various sorting
functions.)

Static functions are used for private functions
Static functions have file scope, so this fact is used to keep private functions
private. Functions specific to a data structure or algorithm’s implementation
are thus kept out of its public interface.

Naming conventions are applied throughout the code
Defined constants appear entirely in uppercase. Datatypes and global vari-
ables begin with an uppercase character. Local variables begin with a lower-
case character. Operations of abstract datatypes begin with the name of the
type in lowercase, followed by an underscore, then the name of the opera-
tion in lowercase.

All code contains numerous comments
All comments are designed to let developers follow the logic of the code with-
out reading much of the code itself. This is useful when trying to make con-
nections between the code and explanations in the text.

Preface Xv

Structures have typedefs as well as names themselves
The name of the structure is always the name in the typedef followed by an
underscore. Naming the structure itself is necessary for self-referential struc-
tures like the one used for linked list elements (see Chapter 5). This approach
is applied everywhere for consistency.

All void functions contain explicit returns
Although not required, this helps quickly identify where a void function
returns rather than having to match up braces.

Conventions

Most of the conventions used in this book should be recognizable to those who
work with computers to any extent. However, a few require some explanation.

Bold italic
Nonintrinsic mathematical functions and mathematical variables appear in this
font.

Constant width italic
Variables from programs, names of datatypes (such as structure names), and
defined constants appear in this font.

Italic
Commands (as they would be typed in at a terminal), names of files and
paths, operations of abstract datatypes, and other functions from programs
appear in this font.

lg x
This notation is used to represent the base-2 logarithm of x, log, x. This is the
notation used commonly in computer science when discussing algorithms;
therefore, it is used in this book.

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but
you may find that features have changed (or even that we have made mistakes!). Please

XvVi Preface

let us know about any errors you find, as well as your suggestions for future editions, by
writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

htp.//www.oreilly.com/catalog/masteralgoc/
For more information about this book and others, see the O’Reilly web site:

bttp.//www.oreilly.com

Acknowledgments

The experience of writing a book is not without its ups and downs. On the one
hand, there is excitement, but there is also exhaustion. It is only with the support
of others that one can truly delight in its pleasures and overcome its perils. There
are many people I would like to thank.

First, I thank Andy Oram, my editor at O’Reilly & Associates, whose assistance has
been exceptional in every way. I thank Andy especially for his continual patience
and support. In addition, I would like to thank Tim O’Reilly and Andy together for
their interest in this project when it first began. Other individuals I gratefully
acknowledge at O’Reilly & Associates are Rob Romano for drafting the technical
illustrations, and Lenny Muellner and Mike Sierra, members of the tools group,
who were always quick to reply to my questions. I thank Jeffrey Liggett for his
swift and detailed work during the production process. In addition, I would like to
thank the many others I did not correspond with directly at O’Reilly & Associates
but who played no less a part in the production of this book. Thank you, everyone.

Several individuals gave me a great deal of feedback in the form of reviews. I owe
a special debt of gratitude to Bill Greene of Intel Corporation for his enthusiasm

Preface Xvii

and voluntary support in reviewing numerous chapters throughout the writing pro-
cess. I also would like to thank Alan Solis of Com21 for reviewing several chap-
ters. I thank Alan, in addition, for the considerable knowledge he has imparted to
me over the years at our weekly lunches. I thank Stephen Friedl for his meticu-
lous review of the completed manuscript. I thank Shaun Flisakowski for the
review she provided at the manuscript’s completion as well. In addition, I grate-
fully acknowledge those who looked over chapters with me from time to time and
with whom I discussed material for the book on an ongoing basis.

Many individuals gave me support in countless other ways. First, I would like to
thank Jeff Moore, my colleague and friend at Jeppesen, whose integrity and pur-
suit of knowledge constantly inspire me. During our frequent conversations, Jeff
was kind enough to indulge me often by discussing topics in the book. Thank
you, Jeff. T would also like to thank Ken Sunseri, my manager at Jeppesen, for cre-
ating an environment at work in which a project like this was possible. Further-
more, I warmly thank all of my friends and family for their love and support
throughout my writing. In particular, I thank Marc Loudon for answering so many
of my questions. I thank Marc and Judy Loudon together for their constant encour-
agement. I thank Shala Hruska for her patience, understanding, and support at the
project’s end, which seemed to last so long.

Finally, T would like to thank Robert Foerster, my teacher, for the experiences we
shared on a 16K TRS-80 in 1981. I still recall those times fondly. They made a
wonderful difference in my life. For giving me my start with computers, I dedicate
this book to you with affection.

M.al I itebooks.cogl

http://www.allitebooks.org

Preliminaries

This part of the book contains four chapters of introductory material. Chapter 1,
Introduction, introduces the concepts of data structures and algorithms and pre-
sents reasons for using them. It also presents a few topics in software engineering
that are applied throughout the rest of the book. Chapter 2, Pointer Manipulation,
presents a number of topics on pointers. Pointers appear a great deal in this book,
so this chapter serves as a refresher on the subject. Chapter 3, Recursion, presents
recursion, a popular technique used with many data structures and algorithms.
Chapter 4, Analysis of Algorithms, describes how to analyze algorithms. The tech-
niques in this chapter are used to analyze algorithms throughout the book.

Introduction

When I was 12, my brother and I studied piano. Each week we would make a trip
to our teacher’s house; while one of us had our lesson, the other would wait in
her parlor. Fortunately, she always had a few games arranged on a coffee table to
help us pass the time while waiting. One game I remember consisted of a series of
pegs on a small piece of wood. Little did T know it, but the game would prove to
be an early introduction to data structures and algorithms.

The game was played as follows. All of the pegs were white, except for one,
which was blue. To begin, one of the white pegs was removed to create an empty
hole. Then, by jumping pegs and removing them much like in checkers, the game
continued until a single peg was left, or the remaining pegs were scattered about
the board in such a way that no more jumps could be made. The object of the
game was to jump pegs so that the blue peg would end up as the last peg and in
the center. According to the game’s legend, this qualified the player as a “genius.”
Additional levels of intellect were prescribed for other outcomes. As for me, I felt
satisfied just getting through a game without our teacher’s kitten, Clara, pouncing
unexpectedly from around the sofa to sink her claws into my right shoe. T sup-
pose being satisfied with this outcome indicated that T simply possessed “common
sense.”

I remember playing the game thinking that certainly a deterministic approach
could be found to get the blue peg to end up in the center every time. What I was
looking for was an algorithm. Algorithms are well-defined procedures for solving
problems. It was not until a number of years later that I actually implemented an
algorithm for solving the peg problem. I decided to solve it in LISP during an arti-
ficial intelligence class in college. To solve the problem, I represented information
about the game in various data structures. Data structures are conceptual organi-
zations of information. They go hand in hand with algorithms because many algo-
rithms rely on them for efficiency.

4 Chapter 1: Introduction

Often, people deal with information in fairly loose forms, such as pegs on a board,
notes in a notebook, or drawings in a portfolio. However, to process information
with a computer, the information needs to be more formally organized. In addi-
tion, it is helpful to have a precise plan for exactly what to do with it. Data struc-
tures and algorithms help us with this. Simply stated, they help us develop
programs that are, in a word, elegant. As developers of software, it is important to
remember that we must be more than just proficient with programming languages
and development tools; developing elegant software is a matter of craftsmanship.
A good understanding of data structures and algorithms is an important part of
becoming such a craftsman.

An Introduction to Data Structures

Data comes in all shapes and sizes, but often it can be organized in the same way.
For example, consider a list of things to do, a list of ingredients in a recipe, or a
reading list for a class. Although each contains a different type of data, they all
contain data organized in a similar way: a list. A list is one simple example of a
data structure. Of course, there are many other common ways to organize data as
well. In computing, some of the most common organizations are [linked lists,
stacks, queues, sets, bash tables, trees, heaps, priority queues, and graphs, all of
which are discussed in this book. Three reasons for using data structures are effi-
ciency, abstraction, and reusability.

Efficiency

Data structures organize data in ways that make algorithms more efficient. For
example, consider some of the ways we can organize data for searching it.
One simplistic approach is to place the data in an array and search the data by
traversing element by element until the desired element is found. However,
this method is inefficient because in many cases we end up traversing every
element. By using another type of data structure, such as a hash table (see
Chapter 8, Hash Tables) or a binary tree (see Chapter 9, Trees) we can search
the data considerably faster.

Abstraction
Data structures provide a more understandable way to look at data; thus, they
offer a level of abstraction in solving problems. For example, by storing data
in a stack (see Chapter 6, Stacks and Queues), we can focus on things that we
do with stacks, such as pushing and popping elements, rather than the details
of how to implement each operation. In other words, data structures let us
talk about programs in a less programmatic way.

Reusability
Data structures are reusable because they tend to be modular and context-free.
They are modular because each has a prescribed interface through which

An Introduction to Algorithms 5

access to data stored in the data structure is restricted. That is, we access the
data using only those operations the interface defines. Data structures are
context-free because they can be used with any type of data and in a variety
of situations or contexts. In C, we make a data structure store data of any type
by using void pointers to the data rather than by maintaining private copies of
the data in the data structure itself.

When one thinks of data structures, one normally thinks of certain actions, or
operations, one would like to perform with them as well. For example, with a list,
we might naturally like to insert, remove, traverse, and count elements. A data
structure together with basic operations like these is called an abstract datatype.
The operations of an abstract datatype constitute its public interface. The public
interface of an abstract datatype defines exactly what we are allowed to do with it.
Establishing and adhering to an abstract datatype’s interface is essential because
this lets us better manage a program’s data, which inevitably makes a program
more understandable and maintainable.

An Introduction to Algorithms

Algorithms are well-defined procedures for solving problems. In computing, algo-
rithms are essential because they serve as the systematic procedures that comput-
ers require. A good algorithm is like using the right tool in a workshop. It does the
job with the right amount of effort. Using the wrong algorithm or one that is not
clearly defined is like cutting a piece of paper with a table saw, or trying to cut a
piece of plywood with a pair of scissors: although the job may get done, you have
to wonder how effective you were in completing it. As with data structures, three
reasons for using formal algorithms are efficiency, abstraction, and reusability.

Efficiency
Because certain types of problems occur often in computing, researchers have
found efficient ways of solving them over time. For example, imagine trying to
sort a number of entries in an index for a book. Since sorting is a common
task that is performed often, it is not surprising that there are many efficient
algorithms for doing this. We explore some of these in Chapter 12, Sorting
and Searching.

Abstraction
Algorithms provide a level of abstraction in solving problems because many
seemingly complicated problems can be distilled into simpler ones for which
well-known algorithms exist. Once we see a more complicated problem in a
simpler light, we can think of the simpler problem as just an abstraction of the
more complicated one. For example, imagine trying to find the shortest way
to route a packet between two gateways in an internet. Once we realize that
this problem is just a variation of the more general single-pair shortest-paths

6 Chapter 1: Introduction

problem (see Chapter 16, Graph Algorithbms), we can approach it in terms of this
generalization.

Reusability
Algorithms are often reusable in many different situations. Since many well-
known algorithms solve problems that are generalizations of more compli-
cated ones, and since many complicated problems can be distilled into
simpler ones, an efficient means of solving certain simpler problems poten-
tially lets us solve many others.

General Approaches in Algorithm Design

In a broad sense, many algorithms approach problems in the same way. Thus, it is
often convenient to classify them based on the approach they employ. One rea-
son to classify algorithms in this way is that often we can gain some insight about
an algorithm if we understand its general approach. This can also give us ideas
about how to look at similar problems for which we do not know algorithms. Of
course, some algorithms defy classification, whereas others are based on a combi-
nation of approaches. This section presents some common approaches.

Randomized algorithms

Randomized algorithms rely on the statistical properties of random numbers. One
example of a randomized algorithm is quicksort (see Chapter 12).

Quicksort works as follows. Imagine sorting a pile of canceled checks by hand.
We begin with an unsorted pile that we partition in two. In one pile we place all
checks numbered less than or equal to what we think may be the median value,
and in the other pile we place the checks numbered greater than this. Once we
have the two piles, we divide each of them in the same manner and repeat the
process until we end up with one check in every pile. At this point the checks are
sorted.

In order to achieve good performance, quicksort relies on the fact that each time
we partition the checks, we end up with two partitions that are nearly equal in
size. To accomplish this, ideally we need to look up the median value of the
check numbers before partitioning the checks. However, since determining the
median requires scanning all of the checks, we do not do this. Instead, we ran-
domly select a check around which to partition. Quicksort performs well on
average because the normal distribution of random numbers leads to relatively
balanced partitioning overall.

Divide-and-conquer algorithms

Divide-and-conquer algorithms revolve around three steps: divide, conquer, and
combine. In the divide step, we divide the data into smaller, more manageable

An Introduction to Algorithms 7

pieces. In the conquer step, we process each division by performing some opera-
tion on it. In the combine step, we recombine the processed divisions. One exam-
ple of a divide-and-conquer algorithm is merge sort (see Chapter 12).

Merge sort works as follows. As before, imagine sorting a pile of canceled checks
by hand. We begin with an unsorted pile that we divide in half. Next, we divide
each of the resulting two piles in half and continue this process until we end up
with one check in every pile. Once all piles contain a single check, we merge the
piles two by two so that each new pile is a sorted combination of the two that
were merged. Merging continues until we end up with one big pile again, at
which point the checks are sorted.

In terms of the three steps common to all divide-and-conquer algorithms, merge
sort can be described as follows. First, in the divide step, divide the data in half.
Next, in the conquer step, sort the two divisions by recursively applying merge
sort to them. Last, in the combine step, merge the two divisions into a single
sorted set.

Dynamic-programming solutions

Dynamic-programming solutions are similar to divide-and-conquer methods in that
both solve problems by breaking larger problems into subproblems whose results
are later recombined. However, the approaches differ in how subproblems are
related. In divide-and-conquer algorithms, each subproblem is independent of the
others. Therefore, we solve each subproblem using recursion (see Chapter 3,
Recursion) and combine its result with the results of other subproblems. In
dynamic-programming solutions, subproblems are not independent of one
another. In other words, subproblems may share subproblems. In problems like
this, a dynamic-programming solution is better than a divide-and-conquer
approach because the latter approach will do more work than necessary, as shared
subproblems are solved more than once. Although it is an important technique
used by many algorithms, none of the algorithms in this book use dynamic
programming.

Greedy algorithms

Greedy algorithms make decisions that look best at the moment. In other words,
they make decisions that are locally optimal in the hope that they will lead to
globally optimal solutions. Unfortunately, decisions that look best at the moment
are not always the best in the long run. Therefore, greedy algorithms do not
always produce optimal results; however, in some cases they do. One example of
a greedy algorithm is Huffman coding, which is an algorithm for data compres-
sion (see Chapter 14, Data Compression).

The most significant part of Huffman coding is building a Huffman tree. To build a
Huffman tree, we proceed from its leaf nodes upward. We begin by placing each

8 Chapter 1: Introduction

symbol to compress and the number of times it occurs in the data (its frequency)
in the root node of its own binary tree (see Chapter 9). Next, we merge the two
trees whose root nodes have the smallest frequencies and store the sum of the fre-
quencies in the new tree’s root. We then repeat this process until we end up with
a single tree, which is the final Huffman tree. The root node of this tree contains
the total number of symbols in the data, and its leaf nodes contain the original
symbols and their frequencies. Huffman coding is greedy because it continually
seeks out the two trees that appear to be the best to merge at any given time.

Approximation algorithms

Approximation algorithms are algorithms that do not compute optimal solutions;
instead, they compute solutions that are “good enough.” Often we use approxima-
tion algorithms to solve problems that are computationally expensive but are too
significant to give up on altogether. The traveling-salesman problem (see
Chapter 16) is one example of a problem usually solved using an approximation
algorithm.

Imagine a salesman who needs to visit a number of cities as part of the route he
works. The goal in the traveling-salesman problem is to find the shortest route
possible by which the salesman can visit every city exactly once before returning
to the point at which he starts. Since an optimal solution to the traveling-salesman
problem is possible but computationally expensive, we use a heuristic to come up
with an approximate solution. A heuristic is a less than optimal strategy that we
are willing to accept when an optimal strategy is not feasible.

The traveling-salesman problem can be represented graphically by depicting the
cities the salesman must visit as points on a grid. We then look for the shortest
tour of the points by applying the following heuristic. Begin with a tour consisting
of only the point at which the salesman starts. Color this point black. All other
points are white until added to the tour, at which time they are colored black as
well. Next, for each point v not already in the tour, compute the distance between
the last point # added to the tour and ». Using this, select the point closest to «,
color it black, and add it to the tour. Repeat this process until all points have been
colored black. Lastly, add the starting point to the tour again, thus making the tour
complete.

A Bit About Software Engineering

As mentioned at the start of this chapter, a good understanding of data structures
and algorithms is an important part of developing well-crafted software. Equally
important is a dedication to applying sound practices in software engineering in
our implementations. Software engineering is a broad subject, but a great deal can

A Bit About Software Engineering 9

be gleaned from a few concepts, which are presented here and applied through-
out the examples in this book.

Modularity

One way to achieve modularity in software design is to focus on the develop-
ment of black boxes. In software, a black box is a module whose internals are
not intended to be seen by users of the module. Users interact with the mod-
ule only through a prescribed interface made public by its creator. That is, the
creator publicizes only what users need to know to use the module and hides
the details about everything else. Consequently, users are not concerned with
the details of how the module is implemented and are prevented (at least in
policy, depending on the language) from working with the module’s inter-
nals. These ideas are fundamental to data hiding and encapsulation, princi-
ples of good software engineering enforced particularly well by object-
oriented languages. Although languages that are not object-oriented do not
enforce these ideas to the same degree, we can still apply them. One example
in this book is the design of abstract datatypes. Fundamentally, each datatype
is a structure. Exactly what one can do with the structure is dictated by the
operations defined for the datatype and publicized in its header.

Readability
We can make programs more readable in a number of ways. Writing mean-
ingful comments, using aptly named identifiers, and creating code that is self-
documenting are a few examples. Opinions on how to write good comments
vary considerably, but a good fundamental philosophy is to document a
program so that other developers can follow its logic simply by reading its
comments. On the other hand, sections of self-documenting code require few,
if any, comments because the code reads nearly the same as what might be
stated in the comments themselves. One example of self-documenting code in
this book is the use of header files as a means of defining and documenting
public interfaces to the data structures and algorithms presented.

Simplicity
Unfortunately, as a society we tend to regard “complex” and “intelligent” as
words that go together. In actuality, intelligent solutions are often the simplest
ones. Furthermore, it is the simplest solutions that are often the hardest to
find. Most of the algorithms in this book are good examples of the power of
simplicity. Although many of the algorithms were developed and proven
correct by individuals doing extensive research, they appear in their final form
as clear and concise solutions to problems distilled down to their essence.

Consistency
One of the best things we can do in software development is to establish cod-
ing conventions and stick to them. Of course, conventions must also be easy

10 Chapter 1: Introduction

to recognize. After all, a convention is really no convention at all if someone
else is not able to determine what the convention is. Conventions can exist on
many levels. For example, they may be cosmetic, or they may be more related
to how to approach certain types of problems conceptually. Whatever the
case, the wonderful thing about a good convention is that once we see it in
one place, most likely we will recognize it and understand its application
when we see it again. Thus, consistency fosters readability and simplicity as
well. Two examples of cosmetic conventions in this book are the way com-
ments are written and the way operations associated with data structures are
named. Two examples of conceptual conventions are the way data is
managed in data structures and the way static functions are used for private
functions, that is, functions that are not part of public interfaces.

How to Use This Book

This book was designed to be read either as a textbook or a reference, whichever
is needed at the moment. It is organized into three parts. The first part consists of
introductory material and includes chapters on pointer manipulation, recursion,
and the analysis of algorithms. These subjects are useful when working in the rest
of the book. The second part presents fundamental data structures, including
linked lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, and
graphs. The third part presents common algorithms for solving problems in sort-
ing, searching, numerical analysis, data compression, data encryption, graph the-
ory, and computational geometry.

Each of the chapters in the second and third parts of the book has a consistent for-
mat to foster the book’s ease of use as a reference and its readability in general.
Each chapter begins with a brief introduction followed by a list of specific topics
and a list of real applications. The presentation of each data structure or algorithm
begins with a description, followed by an interface, followed by an implementa-
tion and analysis. For many data structures and algorithms, examples are pre-
sented as well. Each chapter ends with a series of questions and answers, and a
list of related topics for further exploration.

The presentation of each data structure or algorithm starts broadly and works
toward an implementation in real code. Thus, readers can easily work up to the
level of detail desired. The descriptions cover how the data structures or algo-
rithms work in general. The interfaces serve as quick references for how to use the
data structures or algorithms in a program. The implementations and analyses pro-
vide more detail about exactly how the interfaces are implemented and how each
implementation performs. The questions and answers, as well as the related top-
ics, help those reading the book as a textbook gain more insight about each chap-
ter. The material at the start of each chapter helps clearly identify topics within the
chapters and their use in real applications.

WWW.aI I itebooks.cogl

http://www.allitebooks.org

Pointer Manipulation

In C, for any type T, we can form a corresponding type for variables that contain
addresses in memory where objects of type T reside. One way to look at variables
like this is that they actually “point to” the objects. Thus, these variables are called
pointers. Pointers are very important in C, but in many ways, they are a blessing
and a curse. On the one hand, they are a powerful means of building data struc-
tures and precisely manipulating memory. On the other hand, they are easy to
misuse, and their misuse often leads to unpredictably buggy software; thus, they
come with a great deal of responsibility. Considering this, it is no surprise that
pointers embody what some people love about C and what other people hate.
Whatever the case, to use C effectively, we must have a thorough understanding
of them. This chapter presents several topics on pointers and introduces several of
the techniques using pointers that are employed throughout this book.

This chapter covers:

Pointer fundamentals
Including one of the best techniques for understanding pointers: drawing dia-
grams. Another fundamental aspect of pointer usage is learning how to avoid
dangling pointers.

Storage allocation
The process of reserving space in memory. Understanding pointers as they
relate to storage allocation is especially important because pointers are a vir-
tual carte blanche when it comes to accessing memory.

Aggregates and pointer arithmetic
In C, aggregates are structures and arrays. Pointer arithmetic defines the rules
by which calculations with pointers are performed. Pointers to structures are
important in building data structures. Arrays and pointers in C use pointer
arithmetic in the same way.

11

12 Chapter 2: Pointer Manipulation

Pointers as parameters lo functions
The means by which C simulates call-by-reference parameter passing. In C, it
is also common to use pointers as an efficient means of passing arrays and
large structures.

Pointers to pointers
Pointers that point to other pointers instead of pointing to data. Pointers to
pointers are particularly common as parameters to functions.

Generic pointers and casts
Mechanisms that bypass and override C’s type system. Generic pointers let us
point to data without being concerned with its type for the moment. Casts
allow us to override the type of a variable temporarily.

Function pointers
Pointers that point to executable code, or blocks of information needed to
invoke executable code, instead of pointing to data. They are used to store
and manage functions as if they were pieces of data.

Pointer Fundamentals

Recall that a pointer is simply a variable that stores the address where a piece of
data resides in memory rather than storing the data itself. That is, pointers contain
memory addresses. Even for experienced developers, at times this level of indirec-
tion can be a bit difficult to visualize, particularly when dealing with more compli-
cated pointer constructs, such as pointers to other pointers. Thus, one of the best
things we can do to understand and communicate information about pointers is to
draw diagrams (see Figure 2-1). Rather than listing actual addresses in diagrams,
pointers are usually drawn as arrows linking one location to another. When a
pointer points to nothing at all—that is, when it is set to NULL—it is illustrated as a
line terminated with a double bar (see Figure 2-1, step 4).

As with other types of variables, we should not assume that a pointer points any-
where useful until we explicitly set it. It is also important to remember that noth-
ing prevents a pointer in C from pointing to an invalid address. Pointers that point
to invalid addresses are sometimes called dangling pointers. Some examples of
programming errors that can lead to dangling pointers include casting arbitrary
integers to pointers, adjusting pointers beyond the bounds of arrays, and deallocat-
ing storage that one or more pointers still reference.

Storage Allocation

When we declare a pointer in C, a certain amount of space is allocated for it, just
as for other types of variables. Pointers generally occupy one machine word, but

Storage Allocation 13

Mter iptr = &a; Afier yptr = iptr; Affer *5ptr = 100; Affer kptr = NULL;
a D a a 100 a 100
iptr o— iptr o—/a iptr o—/a iptr o—/a
iptr iptr —| iptr — | iptr — |
kptr kptr kptr kptr — 1|

Assuming the declorafions int a, *iptr, *jptr, *kptr;

Figure 2-1. An illustration of some operations with pointers

their size can vary. Therefore, for portability, we should never assume that a
pointer has a specific size. Pointers often vary in size as a result of compiler set-
tings and type specifiers allowed by certain C implementations. It is also impor-
tant to remember that when we declare a pointer, space is allocated only for the
pointer itself; no space is allocated for the data the pointer references. Storage for
the data is allocated in one of two ways: by declaring a variable for it or by allo-
cating storage dynamically at runtime (using malloc or realloc, for example).

When we declare a variable, its type tells the compiler how much storage to set
aside for it as the program runs. Storage for the variable is allocated automatically,
but it may not be persistent throughout the life of the program. This is especially
important to remember when dealing with pointers to automatic variables. Auto-
matic variables are those for which storage is allocated and deallocated automati-
cally when entering and leaving a block or function. For example, since iptr is
set to the address of the automatic variable a in the following function f, iptr
becomes a dangling pointer when f returns. This situation occurs because once f
returns, a is no longer valid on the program stack (see Chapter 3, Recursion).

int f(int **iptr) {

int a = 10;
*iptr = &a;
return 0;

}

In C, when we dynamically allocate storage, we get a pointer to some storage on
the heap (see Chapter 3). Since it is then our responsibility to manage this storage
ourselves, the storage remains valid until we explicitly deallocate it. For example,
the storage allocated by malloc in the following code remains valid until we call
Jfree at some later time. Thus, it remains valid even after g returns (see Figure 2-2),
unlike the storage allocated automatically for a previously. The parameter iptr is
a pointer to the object we wish to modify (another pointer) so that when g returns,

14 Chapter 2: Pointer Manipulation

iptr contains the address returned by malloc. This idea is explored further in the
section on pointers as parameters to functions.

#include <stdlib.h>
int g(int **iptr) ({

if ((*iptr = (int *)malloc(sizeof (int))) == NULL)
return -1;

return 0;

}

(1] (2] ©

(alling g (&3ptr) ; After dynamic allocation After returning from g

iptr

iptr iptr

heap heap heap

Figure 2-2. Pointer operations in returning storage dynamically allocated in a function

Pointers and storage allocation are arguably the areas of C that provide the most
fodder for the language’s sometimes bad reputation. The misuse of dynamically
allocated storage, in particular, is a notorious source of memory leaks. Memory
leaks are blocks of storage that are allocated but never freed by a program, even
when no longer in use. They are particularly detrimental when found in sections
of code that are executed repeatedly. Fortunately, we can greatly reduce memory
leaks by employing consistent approaches to how we manage storage.

One example of a consistent approach to storage management is the one used for
data structures presented in this book. The philosophy followed in every case is
that it is the responsibility of the user to manage the storage associated with the
actual data that the data structure organizes; the data structure itself allocates stor-
age only for internal structures used to keep the data organized. Consequently,
only pointers are maintained to the data inserted into the data structure, rather
than private copies of the data. One important implication of this is that a data
structure’s implementation does not depend on the type and size of the data it

Aggregates and Pointer Aritbmetic 15

stores. Also, multiple data structures are able to operate on a single copy of data,
which can be useful when organizing large amounts of data.

In addition, this book provides operations for initializing and destroying data struc-
tures. Initialization may involve many steps, one of which may be the allocation of
memory. Destroying a data structure generally involves removing all of its data
and freeing the memory allocated in the data structure. Destroying a data struc-
ture also usually involves freeing all memory associated with the data itself. This is
the one exception to having the user manage storage for the data. Since manag-
ing this storage is an application-specific operation, each data structure uses a
function provided by the user when the data structure is initialized.

Aggregates and Pointer Arithmetic

One of the most common uses of pointers in C is referencing aggregate data.
Aggregate data is data composed of multiple elements grouped together because
they are somehow related. C supports two classes of aggregate data: structures
and arrays. (Unions, although similar to structures, are considered formally to be
in a class by themselves.)

Structures

Structures are sequences of usually heterogeneous elements grouped so that they
can be treated together as a single coherent datatype. Pointers to structures are an
important part of building data structures. Whereas structures allow us to group
data into convenient bundles, pointers let us link these bundles to one another in
memory. By linking structures together, we can organize them in meaningful ways
to help solve real problems.

As an example, consider chaining a number of elements together in memory to
form a linked list (see Chapter 5, Linked Lists). To do this, we might use a struc-
ture like ListEIlmt in the following code. Using a ListElmt structure for each
element in the list, to link a sequence of list elements together, we set the next
member of each element to point to the element that comes after it. We set the
next member of the last element to NULL to mark the end of the list. We set the
data member of each element to point to the data the element contains. Once we
have a list containing elements linked in this way, we can traverse the list by fol-
lowing one next pointer after another.

typedef struct ListElmt_ {

void *data;
struct ListElmt_ *next;

} ListElmt;

16 Chapter 2: Pointer Manipulation

The ListElmt structure illustrates another important aspect about pointers with
structures: structures are not permitted to contain instances of themselves, but they
may contain pointers to instances of themselves. This is an important idea in build-
ing data structures because many data structures are built from components that
are self-referential. In a linked list, for example, each ListEImt structure points to
another ListEImt structure. Some data structures are even built from structures
containing multiple pointers to structures of the same type. In a binary tree (see
Chapter 9, Trees), for example, each node has pointers to two other binary tree
nodes.

Arrays

Arrays are sequences of homogeneous elements arranged consecutively in mem-
ory. In C, arrays are closely related to pointers. In fact, when an array identifier
occurs in an expression, C converts the array transparently into an unmodifiable
pointer that points to the array’s first element. Considering this, the two following
functions are equivalent.

Array Reference Pointer Reference
int £() { int g() {

int a[10], *iptr; int a[10], *iptr;
iptr = a; iptr = a;

iptr[0] = 5; *iptr = 5;
return 0O; return 0;

} }

To understand the relationship between arrays and pointers in C, recall that to
access the ith element in an array &, we use the expression:

ali]

The reason that this expression accesses the ith element of a is that C treats a in
this expression the same as a pointer that points to the first element of a. The
expression as a whole is equivalent to:

*(a + 1)

which is evaluated using the rules of pointer arithmetic. Simply stated, when we
add an integer i to a pointer, the result is the address, plus i times the number of
bytes in the datatype the pointer references; it is not simply the address stored in
the pointer plus i bytes. An analogous operation is performed when we subtract
an integer from a pointer. This explains why arrays are zero-indexed in C; that is,
the first element in an array is at position 0.

Pointers as Parameters to Functions 17

For example, if an array or pointer contains the address 0x10000000, at which a
sequence of five 4-byte integers is stored, a[3] accesses the integer at address
0x1000000c. This address is obtained by adding (3)(4) = 12,4 = ¢4 to the address
0x10000000 (see Figure 2-3a). On the other hand, for an array or pointer referenc-
ing twenty characters (a string), a[3] accesses the character at address
0x10000003. This address is obtained by adding (3)(1) = 3;; = 314 to the address
0x10000000 (see Figure 2-3b). Of course, an array or pointer referencing one piece
of data looks no different from an array or pointer referencing many pieces. There-
fore, it is important to keep track of the amount of storage that a pointer or array
references and to not access addresses beyond this.

The conversion of a multidimensional array to a pointer is analogous to convert-
ing a one-dimensional array. However, we also must remember that in C, multi-
dimensional arrays are stored in row-major order. This means that subscripts to the
right vary more rapidly than those to the left. To access the element at row 7 and
column jin a two-dimensional array, we use the expression:

alil[3]

C treats a in this expression as a pointer that points to the element at row 0, col-
umn 0 in a. The expression as a whole is equivalent to:

((a + 1) + 3)

o

Ater a[3] = 10; After b[3] = 'x’;
a (0x10000000) b (0x10000000)
(0x10000004) (0x10000004) .
(0x10000008) (0x10000008)
(0x1000000c) 10 (0x1000000c)
(0x10000010) (0x10000010)

Assuming the declarafions int a[5]; char b[20]

Figure 2-3. Using pointer arithmetic to reference an array of (a) integers and (b) characters

Pointers as Parameters to Functions

Pointers are an essential part of calling functions in C. Most importantly, they are
used to support a type of parameter passing called call-by-reference. In call-by-
reference parameter passing, when a function changes a parameter passed to it,

18 Chapter 2: Pointer Manipulation

the change persists after the function returns. Contrast this with call-by-value
parameter passing, in which changes to parameters persist only within the func-
tion itself. Pointers are also an efficient means of passing large amounts of data in
and out of functions, whether we plan to modify the data or not. This method is
efficient because only a pointer is passed instead of a complete copy of the data.
This technique is used in many of the examples in this book.

Call-by-Reference Parameter Passing

Formally, C supports only call-by-value parameter passing. In call-by-value param-
eter passing, private copies of a function’s calling parameters are made for the
function to use as it executes. However, we can simulate call-by-reference parame-
ter passing by passing pointers to parameters instead of passing the parameters
themselves. Using this approach, a function gets a private copy of a pointer to
each parameter in the caller’s environment.

To understand how this works, first consider swap1, which illustrates an incorrect
implementation of a function to swap two integers using call-by-value parameter
passing without pointers. Figure 2-4 illustrates why this does not work. The func-
tion swap2 corrects the problem by using pointers to simulate call-by-reference
parameter passing. Figure 2-5 illustrates how using pointers makes swapping pro-
ceed correctly.

Incorrect Swap Correct Swap

void swapl (int x, int y) { void swap2 (int *x, int *y) {
int tmp; int tmp;

tmp = x; x = y; y = tmp; tmp = *x; *x = *y; *y = tmp;
return; return;

} }

One of the nice things about C and call-by-reference parameter passing is that the
language gives us complete control over exactly how parameter passing is per-
formed. One disadvantage, however, is that this control can be cumbersome since
we often end up having to dereference call-by-reference parameters numerous
times in functions.

Another use of pointers in function calls occurs when we pass arrays to functions.
Recalling that C treats all array names transparently as unmodifiable pointers, pass-
ing an array of objects of type T in a function is equivalent to passing a pointer to
an object of type T. Thus, we can use the two approaches interchangeably. For
example, function f7 and function f2 are equivalent.

Pointers as Parameters to Functions 19

Calling swa?l(a, b); After tg: x; Aflerxo: vi After yo=tmp;
a 10 ‘ 10 a 10 ‘ 10
b 2 b 20 b 2 b 2
X 10 X 10 X 20 X 20
y 20 y 20 y 20 y 10
tmp tmp 10 tmp 10 tmp 10

Figure 2-4. An illustration of swap1, which uses call-by-value parameter passing and fails to
swap two integers in the caller’s environment

Calling swap?(&a, &b) ; After txg = *x; After *xo= *y; After *2 tmp;
! 10 ! 10 ! 20 ! 20
b 0 |« ° 2 b 20 b 10
X—/ X..—/ e .—/ X /
y _— y _— y — y —
tmp tmp 10 tmp 10 tmp 10

Figure 2-5. An illustration of swap2, which simulates call-by-reference parameter passing
and successfully swaps two integers in the caller’s environment

Array Reference Pointer Reference
int fl(int al]) { int £2(int *a) {
af0] = 5; *a = 5;

return 0; return 0;

} }

Usually the approach chosen depends on a convention or on wanting to convey
something about how the parameter is used in the function. When using an array
parameter, bounds information is often omitted since it is not required by the com-
piler. However, including bounds information can be a useful way to document a
limit the function imposes on a parameter internally. Bounds information plays a
more critical role with array parameters that are multidimensional.

20 Chapter 2: Pointer Manipulation

When defining a function that accepts a multidimensional array, all but the first
dimension must be specified so that pointer arithmetic can be performed when
elements are accessed, as shown in the following code:

int g(int al[l1[2]) {
al2]1[0] = 5;
return 0;

}

To understand why we must include all but the first dimension, imagine a two-
dimensional array of integers with three rows and two columns. In C, elements are
stored in row-major order at increasing addresses in memory. This means that the
two integers in the first row are stored first, followed by the two integers in the
second row, followed by the two integers of the third row. Therefore, to access an
element in any row but the first, we must know exactly how many elements to
skip in each row to get to elements in successive rows (see Figure 2-6).

o (b

0 1 [ojo1 (oI (1ol [1m [2101 [211]
0 5
1 —2x sizeof(int}—»

——2x sizeof{int}—»
2 5 —2x sizeof(int)—»

increasing addresses

Figure 2-6. Writing 5 to row 2, column 0, in a 2X 3 array of integers (a) conceptually and
(b) as viewed in memory

Pointers to Pointers as Parameters

One situation in which pointers are used as parameters to functions a great deal in
this book is when a function must modify a pointer passed into it. To do this, the
function is passed a pointer to the pointer to be modified. Consider the operation
list_rem_next, which Chapter 5 defines for removing an element from a linked list.
Upon return, data points to the data removed from the list:

int list_rem next(List *list, ListElmt *element, void **data);

Since the operation must modify the pointer data to make it point to the data
removed, we must pass the address of the pointer data in order to simulate call-
by-reference parameter passing (see Figure 2-7). Thus, the operation takes a
pointer to a pointer as its third parameter. This is typical of how data is removed
from most of the data structures presented in this book.

M.al I itebooks.cogl

http://www.allitebooks.org

Generic Pointers and Casts 21

o (2] 3]

After setting *data
(alling 1ist_rem next (..., (void **)&iptr); to the integer removed After returning from list_rem_next

An integer to be removed - -
from a linked list “ “
iptr :l iptr infr

data data

Figure 2-7. Using a_function to modify a pointer to point to an integer removed from a
linked list

Generic Pointers and Casts

Recall that pointer variables in C have types just like other variables. The main rea-
son for this is so that when we dereference a pointer, the compiler knows the type
of data being pointed to and can access the data accordingly. However, some-
times we are not concerned about the type of data a pointer references. In these
cases we use generic pointers, which bypass C’s type system.

Generic Pointers

Normally C allows assignments only between pointers of the same type. For exam-
ple, given a character pointer sptr (a string) and an integer pointer iptr, we are
not permitted to assign sptr to iptr or iptr to sptr. However, generic pointers
can be set to pointers of any type, and vice versa. Thus, given a generic pointer
gptr, we are permitted to assign sptr to gptr or gptr to sptr. To make a
pointer generic in C, we declare it as a void pointer.

There are many situations in which void pointers are useful. For example, con-
sider the standard C library function memcpy, which copies a block of data from
one location in memory to another. Because memcpy may be used to copy data of
any type, it makes sense that its pointer parameters are void pointers. Void point-
ers can be used to make other types of functions more generic as well. For exam-
ple, we might have implemented the swap2 function presented earlier so that it
swapped data of any type, as shown in the following code:

#include <stdlib.h>
#include <string.h>

int swap2 (void *x, void *y, int size) {

22 Chapter 2: Pointer Manipulation

void *tmp;

if ((tmp = malloc(size)) == NULL)
return -1;

memcpy (tmp, X, size); memcpy(x, y, size); memcpy(y, tmp, size);
free (tmp) ;

return 0;

}

Void pointers are particularly useful when implementing data structures because
they allow us to store and retrieve data of any type. Consider again the ListEImt
structure presented earlier for linked lists. Recall that this structure contains two
members, data and next. Since data is declared as a void pointer, it can point to
data of any type. Thus, we can use ListEImt structures to build any type of list.

In Chapter 5, one of the operations defined for linked lists is /ist_ins_next, which
accepts a void pointer to the data to be inserted:

int list_ins next(List *1list, ListElmt *element, void *data);

To insert an integer referenced by iptr into a list of integers, 1ist, after an ele-
ment referenced by element, we use the following call. C permits us to pass the
integer pointer iptr for the parameter data because data is a void pointer.

retval = list_ins_next (&list, element, iptr);

Of course, when removing data from the list, it is important to use the correct type
of pointer to retrieve the data removed. Doing so ensures that the data will be
interpreted correctly if we try to do something with it. As discussed earlier, the
operation for removing an element from a linked list is [list_rem_next (see
Chapter 5), which takes a pointer to a void pointer as its third parameter:

int list_rem next (List *1list, ListElmt *element, void **data);

To remove an integer from 1ist after an element referenced by element, we use
the following call. Upon return, iptr points to the data removed. We pass the
address of the pointer iptr since the operation modifies the pointer itself to make
it point to the data removed.

retval = list_rem next (&list, element, (void **)&iptr);

This call also includes a cast to make iptr temporarily appear as a pointer to a
void pointer, since this is what /list_rem_next requires. As we will see in the next
section, casting is a mechanism in C that lets us temporarily treat a variable of one
type as a variable of another type. A cast is necessary here because, although a
void pointer is compatible with any other type of pointer in C, a pointer to a void
pointer is not.

Function Pointers 23

Ccasts

To cast a variable t of some type T to another type S, we precede t with S in
parentheses. For example, to assign an integer pointer iptr to a floating-point
pointer fptr, we cast iptr to a floating-point pointer and then carry out the
assignment, as shown:

fptr = (float *)iptr;

(Although casting an integer pointer to a floating-point pointer is a dangerous
practice in general, it is presented here as an illustration.) After the assignment,
iptr and fptr both contain the same address. However, the interpretation of the
data at this address depends on which pointer we use to access it.

Casts are especially important with generic pointers because generic pointers can-
not be dereferenced without casting them to some other type. This is because
generic pointers give the compiler no information about what is being pointed to;
thus, it is not clear how many bytes should be accessed, nor how the bytes should
be interpreted. Casts are also a nice form of self-documentation when generic
pointers are assigned to pointers of other types. Although the cast is not necessary
in this case, it does improve a program’s readability.

When casting pointers, one issue we need to be particularly sensitive to is the way
data is aligned in memory. Specifically, we need to be aware that applying casts to
pointers can undermine the alignment a computer expects. Often computers have
alignment requirements so that certain hardware optimizations can make access-
ing memory more efficient. For example, a system may insist that all integers be
aligned on word boundaries. Thus, given a void pointer that is not word aligned,
if we cast the void pointer to an integer pointer and dereference it, we can expect
an exception to occur at runtime.

Function Pointers

Function pointers are pointers that, instead of pointing to data, point to execut-
able code or to blocks of information needed to invoke executable code. They are
used to store and manage functions as if they were pieces of data. Function point-
ers have a type that is described in terms of a return value and parameters that the
function accepts. Declarations for function pointers look much like declarations for
functions, except that an asterisk (*) appears before the function name, and the
asterisk and name are surrounded by parentheses for reasons of associativity. For
example, in the following code, match is declared as a pointer to a function that
accepts two void pointers and returns an integer:

int (*match) (void *keyl, void *key2);

This declaration means that we can set match to point to any function that accepts
two void pointers and returns an integer. For example, suppose match_int is a

24 Chapter 2: Pointer Manipulation

function that accepts two void pointers to integers and returns 1 if the integers
match, or 0 otherwise. Assuming the previous declaration, we could set match to
point to this function by executing the following statement:

match = match_int;

To execute a function referenced by a function pointer, we simply use the func-
tion pointer wherever we would normally use the function itself. For example, to
invoke the function referenced by match earlier, we execute the following state-
ment, assuming x, y; and retval have been declared as integers:

retval = match(&x, &y);

One important use of function pointers in this book is to encapsulate functions
into data structures. For example, in the implementation of chained hash tables
(see Chapter 8, Hash Tables), the data structure has a match member similar to the
function pointer just described. This pointer is used to invoke a function when-
ever we need to determine whether an element we are searching for matches an
element in the table. We assign a function to this pointer when the table is initial-
ized. The function we assign has the same prototype as match but internally com-
pares two elements of the appropriate type, depending on the type of data in the
table for which the table has been defined. Using a pointer to store a function as
part of a data structure is nice because it is yet another way to keep an implemen-
tation generic.

Questions and Answers

Q: One of the difficulties with pointers is that often when we misuse them, our
errors are not caught by the compiler at compile time; they occur at runtime.
Which of the following result in compile-time errors? Which of the following
result in runtime errors? Why?

a) char *sptr = "abc", *tptr; b) char *sptr = "abc", *tptr;
*tptr = sptr; tptr = sptr;

¢) char *sptr = "abc", *tptr; d) int *iptr = (int *)10;
*tptr = *sptr; *iptr = 11;

e) int *iptr = 10; f) int *iptr = (int *)10;
*iptr = 11; iptr = NULL;

A: a) A compile-time error occurs because when we dereference tptr, we get a
character, whereas sptr is a pointer to a character. Thus, the code is trying to
assign a character pointer to a character, which is a type conflict. b) No error
occurs because both tptr and sptr are character pointers. ¢) A runtime error
is likely to occur because no storage has been allocated for tptr. When we

Rela

ted Topics 25

dereference tptr, we cannot be sure where it points. d) A runtime error is
likely to occur because assigning an integer pointer a fixed address is danger-
ous. When dereferencing iptr, we try to write 11 at address 10, which is
probably invalid. e) A compile-time error or warning occurs because the code
is trying to initialize an integer pointer to an integer, which is a type conflict.
f) No error occurs because although the code first performs the dangerous
step of initializing iptr to a fixed address, it is then immediately reset to
NULL, which is valid.

Recall that calculations with pointers are performed using pointer aritbmetic. If
p contains the address Ox10000000, what address does the following expres-
sion access? How many bytes are accessed at this address?

*(p + 5)

The answer to this question depends on the type of p. Recall that when we
add an integer i to a pointer p, the result is not the address stored in p plus i
bytes, but the address in p, plus i times the number of bytes in the datatype p
references. Since the question does not state p’s type, it is not possible to
determine the address accessed as a result of the expression. The type of p is
also required to determine how many bytes p accesses. Therefore, it is also
impossible to determine the number of bytes accessed.

The operation list_rem_next removes an element from a linked list (see
Chapter 5). If iptr is an integer pointer we would like set to an integer
removed from a list, how might we call list_rem_next as an alternative to the
approach presented in the chapter? A prototype for the function is shown bere,
where 1ist is the list, element references the element preceding the one to
remove, and upon return, data references the data removed.

int list_rem next(List *1list, ListElmt *element, void **data);

An alternative way to call /ist_rem_next is shown here. In this approach, iptr
is cast to a void pointer instead of a pointer to a void pointer. This method is
acceptable because void pointers are compatible with all others. However, our
original approach is clearer because it is consistent with the prototype of /list_
rem_mnext.

retval = list_rem next (&list, element, (void *)é&iptr);

Related Topics

C++

An object-oriented language that enforces many practices of good software
engineering. As one example, it supports constructors and destructors for
datatypes. These mechanisms provide a compact way of managing memory

26 Chapter 2: Pointer Manipulation

within instances of the type, thus avoiding many of the problems associated
with memory leaks and pointers in C.

Heap-based allocation
The type of memory allocation provided by the C functions malloc and
realloc. Heap-based allocation is often called dynamic storage allocation. This

allows a program to request more memory as it needs it rather than allocating
a fixed amount at compile time.

Recursion

Recursion is a powerful principle that allows something to be defined in terms of
smaller instances of itself. Perhaps there is no better way to appreciate the signifi-
cance of recursion than to look at the mysterious ways nature uses it. Think of the
fragile leaf of a fern, in which each individual sprig from the leaf’s stem is just a
smaller copy of the overall leaf. Think of the repeating patterns in a reflection, in
which two shiny objects reflect each other. Examples like these convince us that
even though nature is a great force, in many ways it has a paradoxical simplicity
that is truly elegant. The same can be said for recursive algorithms; in many ways,
recursive algorithms are simple and elegant, yet they can be extremely powerful.

In computing, recursion is supported via recursive functions. A recursive function
is a function that calls itself. Each successive call works on a more refined set of
inputs, bringing us closer and closer to the solution of a problem. Most develop-
ers are comfortable with the idea of dividing a larger problem into several smaller
ones and writing separate functions to solve them. However, many developers are
less comfortable with the idea of solving a larger problem with a single function
that calls itself. Admittedly, looking at a problem in this way can take some get-
ting used to. This chapter explores how recursion works and shows how to define
some problems in a recursive manner. Some examples of recursive approaches in
this book are found in tree traversals (see Chapter 9, Trees), breadth-first and
depth-first searches with graphs (see Chapter 11, Graphs), and sorting (see
Chapter 12, Sorting and Searching).

This chapter covers:

Basic recursion
A powerful principle that allows a problem to be defined in terms of smaller
and smaller instances of itself. In computing, we solve problems defined recur-
sively by using recursive functions, which are functions that call themselves.

27

28 Chapter 3: Recursion

Tail recursion
A form of recursion for which compilers are able to generate optimized code.
Most modern compilers recognize tail recursion. Therefore, we should make
use of it whenever we can.

Basic Recursion

To begin, let’s consider a simple problem that normally we might not think of in a
recursive way. Suppose we would like to compute the factorial of a number 7.
The factorial of 7, written 7, is the product of all numbers from 7 down to 1. For
example, 4! = (4)(3)(2)(1). One way to calculate this is to loop through each num-
ber and multiply it with the product of all preceding numbers. This is an iterative
approach, which can be defined more formally as:

n = (n)(n=-1)(n-2)...(1)

Another way to look at this problem is to define n! as the product of smaller facto-
rials. To do this, we define 7! as n times the factorial of n — 1. Of course, solving
(7 — D! is the same problem as 7!, only a little smaller. If we then think of (72 — 1)!
as n—1times (n — 2)!, (n - 2)! as n— 2 times (n — 3)!, and so forth until 7 = 1, we
end up computing #!. This is a recursive approach, which can be defined more
formally as:

Fn) 1 ifn=0,n=1
n -
nF(n-1) if n>1

Figure 3-1 illustrates computing 4! using the recursive approach just described. It
also delineates the two basic phases of a recursive process: winding and unwind-
ing. In the winding phase, each recursive call perpetuates the recursion by mak-
ing an additional recursive call itself. The winding phase terminates when one of
the calls reaches a terminating condition. A terminating condition defines the state
at which a recursive function should return instead of making another recursive
call. For example, in computing the factorial of 7, the terminating conditions are
n =1 and n = 0, for which the function simply returns 1. Every recursive func-
tion must have at least one terminating condition; otherwise, the winding phase
never terminates. Once the winding phase is complete, the process enters the
unwinding phase, in which previous instances of the function are revisited in
reverse order. This phase continues until the original call returns, at which point
the recursive process is complete.

Example 3-1 presents a C function, fact, that accepts a number n and computes its
factorial recursively. The function works as follows. If n is less than 0, the func-
tion returns 0, indicating an error. If n is 0 or 1, the function returns 1 because 0!

Basic Recursion

29

F(4)=4xF(3) winding phase
F(3)=3xF(2)
F(1)=1 terminating condition

F(2)=(2)(1) unwinding phase
F(3)=(3)(2)
F(4) = (4)(6)

24 recursion complefe

Figure 3-1. Computing 4! recursively

and 1! are both defined as 1. These are the terminating conditions. Otherwise, the
function returns the result of n times the factorial of n— 1. The factorial of n—1 is
computed recursively by calling fact again, and so forth. Notice the similarities

between this implementation and the recursive definition shown earlier.

Example 3-1. Implementation of a Function for Computing Factorials Recursively

/***

* *
B it fact.c - *
* *

'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k*************************/

#include "fact.h"

/***

* *
e e fact --——-------———————— *
* *

***/

int fact(int n) {

/**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**************************

* *
* Compute a factorial recursively. *
* *

***/

if (n < 0)
return 0;
else if (n == 0)
return 1;
else if (n == 1)
return 1;
else
return n * fact(n - 1);

30 Chapter 3: Recursion

To understand how recursion really works, it helps to look at the way functions
are executed in C. For this, we need to understand a little about the organization
of a C program in memory. Fundamentally, a C program consists of four areas as it
executes: a code area, a static data area, a heap, and a stack (see Figure 3-2a). The
code area contains the machine instructions that are executed as the program runs.
The static data area contains data that persists throughout the life of the program,
such as global variables and static local variables. The heap contains dynamically
allocated storage, such as memory allocated by malloc. The stack contains infor-
mation about function calls. By convention, the heap grows upward from one end
of a program’s memory, while the stack grows downward from the other (but this
may vary in practice). Note that the term heap as it is used in this context has
nothing to do with the heap data structure presented in Chapter 10, Heaps and
Priority Queues.

When a function is called in a C program, a block of storage is allocated on the
stack to keep track of information associated with the call. Each call is referred to
as an activation. The block of storage placed on the stack is called an activation
record or, alternatively, a stack frame. An activation record consists of five regions:
incoming parameters, space for a return value, temporary storage used in evaluat-
ing expressions, saved state information for when the activation terminates, and
outgoing parameters (see Figure 3-2b). Incoming parameters are the parameters
passed into the activation. Outgoing parameters are the parameters passed to func-
tions called within the activation. The outgoing parameters of one activation
record become the incoming parameters of the next one placed on the stack. The
activation record for a function call remains on the stack until the call terminates.

Returning to Example 3-1, consider what happens on the stack as one computes
4!. The initial call to fact results in one activation record being placed on the stack
with an incoming parameter of n = 4 (see Figure 3-3, step 1). Since this activation
does not meet any of the terminating conditions of the function, fact is recursively
called with 7 set to 3. This places another activation of fact on the stack, but with
an incoming parameter of 7 = 3 (see Figure 3-3, step 2). Here, n = 3 is also an
outgoing parameter of the first activation since the first activation invoked the sec-
ond. The process continues this way until 7 is 1, at which point a terminating con-
dition is encountered and fact returns 1 (see Figure 3-3, step 4).

Once the n = 1 activation terminates, the recursive expression in the 7 = 2 activa-
tion is evaluated as (2)(1) = 2. Thus, the n = 2 activation terminates with a return
value of 2 (see Figure 3-3, step 5). Consequently, the recursive expression in the
n = 3 activation is evaluated as (3)(2) = 6, and the »n = 3 activation returns 6 (see
Figure 3-3, step 6). Finally, the recursive expression in the 7 = 4 activation is eval-
uated as (4)(6) = 24, and the n = 4 activation terminates with a return value of 24
(see Figure 3-3, step 7). At this point, the function has returned from the original
call, and the recursive process is complete.

WWW.aI I itebooks.cogl

http://www.allitebooks.org

Basic Recursion

31

o

code area

static data area

o

incoming parameters

return value

femporary storage

saved state information

outgoing parameters

Figure 3-2. The organization in memory of (a) a C program and (b) an activation record

=4 | [n=4 -1 n=4 =4 =4 | ([t]
: | ? ? ? ? ? E|(ne)=24] ¢
n=3 n=3 n=3 n=13 n=3 . /n=3
.................... ? ? ?] n)2) = 64—
n=1 n=1 n=1 /n=1
? ? (n)(1) =24 .
n=1 n=1
[terminating condition
winding phase T | I unwinding phase

Figure 3-3. The stack of a C program while computing 4! recursively

The stack is a great solution to storing information about function calls because its
last-in, first-out behavior (see Chapter 6, Stacks and Queues) is well suited to the
order in which functions are called and terminated. However, stack usage does
have a few drawbacks. Maintaining information about every function call until it
returns takes a considerable amount of space, especially in programs with many

32 Chapter 3: Recursion

recursive calls. In addition, generating and destroying activation records takes time
because there is a significant amount of information that must be saved and
restored. Thus, if the overhead associated with these concerns becomes too great,
we may need to consider an iterative approach. Fortunately, we can use a special
type of recursion, called tail recursion, to avoid these concerns in some cases.

Tail Recursion

A recursive function is said to be tail recursive if all recursive calls within it are tail
recursive. A recursive call is tail recursive when it is the last statement that will be
executed within the body of a function and its return value is not a part of an
expression. Tail-recursive functions are characterized as having nothing to do dur-
ing the unwinding phase. This characteristic is important because most modern
compilers automatically generate code to take advantage of it.

When a compiler detects a call that is tail recursive, it overwrites the current acti-
vation record instead of pushing a new one onto the stack. The compiler can do
this because the recursive call is the last statement to be executed in the current
activation; thus, there is nothing left to do in the activation when the call returns.
Consequently, there is no reason to keep the current activation around. By replac-
ing the current activation record instead of stacking another one on top of it, stack
usage is greatly reduced, which leads to better performance in practice. Thus, we
should make recursive functions tail recursive whenever we can.

To understand how tail recursion works, let’s revisit computing a factorial recur-
sively. First, it is helpful to understand the reason the previous definition was not
tail recursive. Recall that the original definition computed n! by multiplying »
times (72 — 1)! in each activation, repeating this for n = n — 1 until n = 1. This defi-
nition was not tail recursive because the return value of each activation depended
on multiplying » times the return value of subsequent activations. Therefore, the
activation record for each call had to remain on the stack until the return values of
subsequent calls were determined. Now consider a tail-recursive definition for
computing 7!, which can be defined formally as:

F) a fn=0,n=1
n,a) =
F(n-1,na) if n>1

This definition is similar to the one presented earlier, except that it uses a second
parameter, a (initially set to 1), which maintains the value of the factorial com-
puted thus far in the recursive process. This prevents us from having to multiply
the return value of each activation by 7. Instead, in each recursive call, we let a =
na and n = n — 1. We continue this until #» = 1, which is the terminating condi-
tion, at which point we simply return a. Figure 3-4 illustrates the process of

Tail Recursion

33

computing 4! using this approach. Notice how there is no work that needs to be
performed during the unwinding phase, a signature of all tail-recursive functions.

F(41)=F(3,4) winding phase
F(3,4)=F(2,12)
F(2,12) = F(1, 24)
F(1,24) =24 terminating condition

unwinding phase
24 recursion complete

Figure 3-4. Computing 4! in a tail-recursive manner

Example 3-2 presents a C function, facttail, that accepts a number n and com-
putes its factorial in a tail-recursive manner. This function also accepts the addi-
tional parameter a, which is initially set to 1. The function facttail is similar to fact,
except that it uses a to maintain the value of the factorial computed thus far in the
recursion. Notice the similarities between this implementation and the tail-

recursive definition.

Example 3-2. Implementation of a Function for Computing Factorials
in a Tail-Recursive Manner

/***

* *
K e facttail.c - *
* *

HRKKKKKKKKKKXKXIK KKK KK AKIK XK X I I Ak kA A I X I Xk hhhhhhhhkhkh Xk xkkhkkkkhkkxxx /

#include "facttail.h"

/***

* *
ettt facttail -—--—--—-—————— *
* *

***/

int facttail (int n, int a) {

JRIKIKKKKKKKKKKXIK KKK KK KKK KXI X I I R Rk kAR I X I Xk k ok hkhhhhkhkh Xk xkkhkkkkhkhkhxk

* *
* Compute a factorial in a tail-recursive manner. *
* *

***/

if (n < 0)
return 0;
else if (n == 0)
return 1;

34 Chapter 3: Recursion

Example 3-2. Implementation of a Function for Computing Factorials
in a Tail-Recursive Manner (continued)

else if (n == 1)
return a;
else
return facttail(n - 1, n * a);

}

The function in Example 3-2 is tail recursive because the single recursive call to
Jacttail is the last statement executed before returning from the call. It just hap-
pens that this is the last statement of facttail as well, but this does not have to be
the case. In other words, there could have been other statements after the recur-
sive call, provided they were executed only when the recursive call was not.
Figure 3-5 illustrates the limited activity on the stack while computing 4! using this
tail-recursive function. Contrast this with the activity on the stack in Figure 3-3.

n=4 n=3 n=2 |
a=1 a=4 a=12 | : :
? ? ? Pl u]
n=3 n=12 n=1
a=4 a=12 a=24

I winding phase |
m {7 current activation [ferminating condlition

Figure 3-5. The stack of a C program while computing 4/ in a tail-recursive manner

Questions and Answers

Q: The following recursive definition has an error. What is it, and how can we fix
it? For a positive integer n, the definition, in its proper form, is common in for-
mally computing the running time of divide-and-conquer algorithms, such as
merge sort (see Chapter 12). Merge sort divides a set of data in half, then
divides the halves in half, and continues this way until each division contains
a single element. Then, during the unwinding phase, the divisions are merged
to produce a final sorted set.

1 if n=2
I(n) =
2T(n/2)+n if n =1, n>2

Questions and Answers 35

A: The problem with this definition is that it never reaches the terminating condi-
tion, n = 0, for any initial value of n greater than 0. To fix the problem, it
needs an obtainable terminating condition. The condition n = 1 works well,
which means we should also change the second condition in the function. A
recursive definition with an acceptable terminating condition is presented
here:

1 ifn=1
T(n) =
2T(n/2)+n if n>1

This happens to be the correct definition for the running time of merge sort.
Such a function is called a recurrence. In more formal analysis, recurrences
are used frequently to describe the running times of recursive algorithms.

Q: Describe a recursive approach for computing the prime factors of a number.
Determine whether the approach is tail recursive, and describe why or why not.

A: Recursion is a natural way to find the prime factors of a number because fac-
toring is really just the same problem over and over again, only a little smaller,
as we determine each factor. A recursive approach to this problem can be
defined as shown:

Pumn if »n is prime
F(n,P) =

F(n/i, P U i); i is smallest prime factor of 7 if » is not prime

This definition says that to determine the prime factors of a number 7 recur-
sively, determine its smallest prime factor i, record this in a set of factors P,
and repeat the process for n = n/i. Continue this way until # is found to be
prime itself, which is the terminating condition. This definition is tail recursive
because there is nothing that needs to be done during the unwinding phase,
as Figure 3-6 confirms.

F(2409, {) = F(803, {3}) winding phase
F(803,{3}) = F(73,13, 11}) :
F(73,{3, 113) = {3, 11, 73} terminating condition

unwinding phase
{3, 11, 73} recursion complete

Figure 3-6. Computing the prime factors of 2409 in a tail-recursive manner

36

Chapter 3: Recursion

Considering how the stack is used in executing recursive functions, what hap-
pens when the winding phase of a recursive process never terminates, perbaps
as a result of a malformed terminating condition, as in the first question?

If the terminating condition of a recursive function is never reached, eventu-
ally the stack grows past an acceptable size and the program aborts from a
stack overflow. A special pointer, called the frame pointer, addresses the top
frame on the stack. It’s the stack pointer that points to the actual top of the
stack (that is, the point where the next stack frame will be pushed). There-
fore, although a system could use the frame pointer to determine stack over-
flow, it probably is the stack pointer that would normally be used.

Recursive functions frequently offer simple yet concise ways to describe useful
computations. Describe the computation that the following recursive definition
describes:

{1 if n=1
H(n) = .
H(n-1)+(1/n) if n>1

This recursive definition calculates a series like the following one, called the
bharmonic series. For positive integers 7, the function calculates the nth har-
monic number. (The calculation proceeds in reverse order from what is
shown, but the following form is more recognizable.)

H(n) = 1+1+1+1+1+_ A_+l
2 3 4 5 n
Is the function in the previous question tail recursive? If so, describe why. If not,

describe why not and present a tail-recursive version.

The function defined in the previous question is not tail recursive because the
return value of the recursive call is used in an expression. This expression
becomes the return value of the current call. Therefore, each activation must
remain on the stack until it gets the return value of subsequent activations. To
make this function tail recursive, we can use an approach like the one pre-
sented earlier in the chapter for computing a factorial in a tail-recursive man-
ner. We use an additional parameter a to keep a tally of the total value of the
series computed thus far in the recursion. Formally, a tail-recursive version of
the function in the previous question is as follows:

a+1 if m=1

H(n,a) =
¢) {H(n—l,a+1/n) if n>1

Related Topics 37

Related Topics

Compiler design
The basics behind the code translators that ultimately dictate how efficiently
programs will run, at least at the instruction level. Whereas generally in algo-
rithm design we focus on complexity as a measure of performance (see
Chapter 4, Analysis of Algorithms), understanding the issues compilers deal
with in translating code can help us tune performance in practice. Understand-
ing tail recursion is a good example.

Tail recursion elimination
A process in which the final tail-recursive call in a function is replaced with an
iterative control structure. This does not change the outcome of the function,
but helps avoid the overhead of an extra function call. Tail recursion elimina-
tion is a fundamental principle studied in compiler design.

Recursion trees
lustrations that help us visualize calling sequences with recursive functions.
Recursion trees vary in their formality. Figures 3-1 and 3-4 for recursively com-
puting a factorial and Figure 3-6 for determining the prime factors of a num-
ber are recursion trees. Recursion trees are most often used with functions
containing two or more recursive calls within each activation.

Analysis of Algorithms

Whether we are designing an algorithm or applying one that is widely accepted, it
is important to understand how the algorithm will perform. There are a number of
ways we can look at an algorithm’s performance, but usually the aspect of most
interest is how fast the algorithm will run. In some cases, if an algorithm uses sig-
nificant storage, we may be interested in its space requirement as well. Whatever
the case, determining how an algorithm performs requires a formal and determin-
istic method.

There are many reasons to understand the performance of an algorithm. For exam-
ple, we often have a choice of several algorithms when solving problems. Under-
standing how each performs helps us differentiate between them. Understanding
the burden an algorithm places on an application also helps us plan how to use
the algorithm more effectively. For instance, garbage collection algorithms, algo-
rithms that collect dynamically allocated storage to return to the heap (see
Chapter 3, Recursion), require considerable time to run. Knowing this, we can be
careful to run them only at opportune moments, just as LISP and Java do, for
example.

This chapter covers:

Worst-case analysis
The metric by which most algorithms are compared. Other cases we might
consider are the average case and best case. However, worst-case analysis
usually offers several advantages.

O-notation
The most common notation used to formally express an algorithm’s perfor-

mance. O-notation is used to express the upper bound of a function within a
constant factor.

38

Worst-Case Analysis 39

Computational complexity
The growth rate of the resources (usually time) an algorithm requires with
respect to the size of the data it processes. O-notation is a formal expression
of an algorithm’s complexity.

Worst-Case Analysis

Most algorithms do not perform the same in all cases; normally an algorithm’s per-
formance varies with the data passed to it. Typically, three cases are recognized:
the best case, worst case, and average case. For any algorithm, understanding what
constitutes each of these cases is an important part of analysis because perfor-
mance can vary significantly between them. Consider even a simple algorithm
such as linear search. Linear search is a natural but inefficient search technique in
which we look for an element simply by traversing a set from one end to the
other. In the best case, the element we are looking for is the first element we
inspect, so we end up traversing only a single element. In the worst case, how-
ever, the desired element is the last one we inspect, in which case we end up
traversing all of the elements. On average, we can expect to find the element
somewhere in the middle.

Reasons for Worst-Case Analysis

A basic understanding of how an algorithm performs in all cases is important, but
usually we are most interested in how an algorithm performs in the worst case.
There are four reasons why algorithms are generally analyzed by their worst case:

e Many algorithms perform to their worst case a large part of the time. For
example, the worst case in searching occurs when we do not find what we are
looking for at all. Imagine how frequently this takes place in some database
applications.

e The best case is not very informative because many algorithms perform
exactly the same in the best case. For example, nearly all searching algo-
rithms can locate an element in one inspection at best, so analyzing this case
does not tell us much.

¢ Determining average-case performance is not always easy. Often it is difficult
to determine exactly what the “average case” even is. Since we can seldom
guarantee precisely how an algorithm will be exercised, usually we cannot
obtain an average-case measurement that is likely to be accurate.

e The worst case gives us an upper bound on performance. Analyzing an algo-
rithm’s worst case guarantees that it will never perform worse than what we
determine. Therefore, we know that the other cases must perform at least as
well.

40 Chapter 4: Analysis of Algorithms

Although worst-case analysis is the metric for many algorithms, it is worth noting
that there are exceptions. Sometimes special circumstances let us base perfor-
mance on the average case. For example, randomized algorithms such as quick-
sort (see Chapter 12, Sorting and Searching) use principles of probability to virtu-
ally guarantee average-case performance.

O-Notation

O-notation is the most common notation used to express an algorithm’s perfor-
mance in a formal manner. Formally, O-notation expresses the upper bound of a
function within a constant factor. Specifically, if g(») is an upper bound of f(n),
then for some constant c it is possible to find a value of #, call it 7, for which any
value of n 2 ny will result in f(n) < cg(n).

Normally we express an algorithm’s performance as a function of the size of the
data it processes. That is, for some data of size n, we describe its performance
with some function f(7). However, while in many cases we can determine f
exactly, usually it is not necessary to be this precise. Primarily we are interested
only in the growth rate of f, which describes how quickly the algorithm’s perfor-
mance will degrade as the size of the data it processes becomes arbitrarily large.
An algorithm’s growth rate, or order of growth, is significant because ultimately it
describes how efficient the algorithm is for arbitrary inputs. O-notation reflects an
algorithm’s order of growth.

Simple Rules for O-Notation

When we look at some function f(7) in terms of its growth rate, a few things
become apparent. First, we can ignore constant terms because as the value of »n
becomes larger and larger, eventually constant terms will become insignificant. For
example, if 7(n) = n + 50 describes the running time of an algorithm, and 7, the
size of the data it processes, is only 1024, the constant term in this expression
already constitutes less than 5% of the running time. Second, we can ignore con-
stant multipliers of terms because they too will become insignificant as the value
of 7 increases. For example, if 71(n) = n2 and T,(n) = 10n describe the running
times of two algorithms for solving the same problem, » only has to be greater
than 10 for 7} to become greater than 75. Finally, we need only consider the
highest-order term because, again, as n increases, higher-order terms quickly out-
weigh the lower-order ones. For example, if 7(n) = n2 + n describes the running
time of an algorithm, and 7 is 1024, the lesser-order term of this expression consti-
tutes less than 0.1% of the running time. These ideas are formalized in the follow-
ing simple rules for expressing functions in O-notation.

WWW.aI I itebooks.cogl

http://www.allitebooks.org

O-Notation 41

e Constant terms are expressed as O(1). When analyzing the running time of an
algorithm, apply this rule when you have a task that you know will execute in
a certain amount of time regardless of the size of the data it processes. For-
mally stated, for some constant c:

O(c) = O(1)

e Multiplicative constants are omitted. When analyzing the running time of an
algorithm, apply this rule when you have a number of tasks that all execute
in the same amount of time. For example, if three tasks each run in time
T(n) = n, the result is O(3n), which simplifies to O(7). Formally stated, for
some constant ¢:

O(cT) = cO(T) = O(T)

e Addition is performed by taking the maximum. When analyzing the running
time of an algorithm, apply this rule when one task is executed after another.
For example, if 77(n) = n and T5(n) = n? describe two tasks executed sequen-
tially, the result is O(7n) + O(n2), which simplifies to O(#2). Formally stated:

O(T)) + O(T,) = O(T,+T,) = max(O(T,), O(T,))

e Multiplication is not changed but often is rewritten more compactly. When
analyzing the running time of an algorithm, apply this rule when one task
causes another to be executed some number of times for each iteration of
itself. For example, in a nested loop whose outer iterations are described by
7; and whose inner iterations by 75, if 77() = n and T)(n) = n, the result is
O O(n), or O(n?2). Formally stated:

O(T)O(T,) = O(T,T,)

O-Notation Example and Why It Works

The next section discusses how these rules help us in predicting an algorithm’s
performance. For now, let’s look at a specific example demonstrating why they
work so well in describing a function’s growth rate. Suppose we have an algo-
rithm whose running time is described by the function 7(n) = 372 + 10n + 10.
Using the rules of O-notation, this function can be simplified to:

O(T(n)) = O(3n* +10n+10) = O(31°) = O(n?)

This indicates that the term containing 72 will be the one that accounts for most of
the running time as » grows arbitrarily large. We can verify this quantitatively by
computing the percentage of the overall running time that each term accounts for
as n increases. For example, when 7z = 10, we have the following:

42 Chapter 4: Analysis of Algorithms

Running time for 372°: 3(10)°/(3(10)> + 10(10) + 10) = 73.2%
Running time for 10: 10(10)/(3(10)2 +10(10) +10) = 24.4%
Running time for 10: 10/(3(10)% +10(10) + 10) = 2.4%

Already we see that the 72 term accounts for the majority of the overall running
time. Now consider when 7 = 100:

Running time for 37°: 3(100)°/(3(100)° + 10(100) + 10)

96.7% (Higher)
Running time for 107: 10(100)/(3(100)2 +10(100) + 10) = 3.2% (Lower)
Running time for 10: 10/(3(100)2 +10(100) + 10) < 0.1% (Lower)

Here we see that this term accounts for al/most all of the running time, while the
significance of the other terms diminishes further. Imagine how much of the run-
ning time this term would account for if 7 were 100!

Computational Complexity

When speaking of the performance of an algorithm, usually the aspect of interest
is its complexity, which is the growth rate of the resources (usually time) it
requires with respect to the size of the data it processes. O-notation describes an
algorithm’s complexity. Using O-notation, we can frequently describe the worst-
case complexity of an algorithm simply by inspecting its overall structure. Other
times, it is helpful to employ techniques involving recurrences and summation for-
mulas (see the related topics at the end of the chapter), and statistics.

To understand complexity, let’s look at one way to surmise the resources an algo-
rithm will require. It should seem reasonable that if we look at an algorithm as a
series of k statements, each with some cost (usually time) to execute, ¢; we can
determine the algorithm’s total cost by summing the costs of all statements from ¢;
to ¢, in whatever order each is executed. Normally statements are executed in a
more complicated manner than simply in sequence, so this has to be taken into
account when totaling the costs. For example, if some subset of the statements is
executed in a loop, the costs of the subset must be multiplied by the number of
iterations. Consider an algorithm consisting of k = 6 statements. If statements 3, 4,
and 5 are executed in a loop from 1 to n and the other statements are executed
sequentially, the overall cost of the algorithm is:

T'(n) = c;+tcytn(egtcites)teg

Using the rules of O-notation, this algorithm’s complexity is O(72) because the con-
stants are not significant. Analyzing an algorithm in terms of these constant costs is
very thorough. However, recalling what we have seen about growth rates,

Computational Complexity 43

remember that we do not need to be so precise. When inspecting the overall
structure of an algorithm, only two steps need to be performed: we must deter-
mine which parts of the algorithm depend on data whose size is not constant, and
then derive functions that describe the performance of each part. All other parts of
the algorithm execute with a constant cost and can be ignored in figuring its over-
all complexity.

Assuming 7(n) in the previous example represents an algorithm’s running time, it
is important to realize that O(n), its complexity, says little about the actual time
the algorithm will take to run. In other words, just because an algorithm has a low
growth rate does not necessarily mean it will execute in a small amount of time. In
fact, complexities have no real units of measurement at all. They describe only
how the resource being measured will be affected by a change in data size. For
example, saying that 7(7) is O(n) conveys only that the algorithm’s running time
varies proportionally to 7, and that n is an upper bound for 7(7n) within a con-
stant factor. Formally, we say that 7(»n) < c¢n, where ¢ is a constant factor that
accounts for various costs not associated with the data, such as the type of com-
puter on which the algorithm is running, the compiler used to generate the
machine code, and constants in the algorithm itself.

Many complexities occur frequently in computing, so it is worthwhile to become
familiar with them. Table 4-1 lists some typical situations in which common com-
plexities occur. Table 4-2 lists these common complexities along with some calcu-
lations illustrating their growth rates. Figure 4-1 presents the data of Table 4-2 in a
graphical form.

Table 4-1. Some Situations Wherein Common Complexities Occur

Complexity | Example

o) Fetching the first element from a set of data

g m Splitting a set of data in half, then splitting the halves in half, etc.

o(n) Traversing a set of data

O(nlg n) Splitting a set of data in half repeatedly and traversing each half

Oo(n2) Traversing a set of data once for each member of another set of equal size
o2n) Generating all possible subsets of a set of data

o(n) Generating all possible permutations of a set of data

Table 4-2. The Growth Rates of the Complexities in Table 4-1

n=1 ‘ n=16 ‘ n=256 n=4K n= 064K n=1M
o) 1.000E+00 | 1.000E+00 | 1.000E+00 | 1.000E+00 | 1.000E+00 | 1.000E+00
O(lg n) 0.000E+00 | 4.000E+00 | 8.000E+00 | 1.200E+01 | 1.600E+01 | 2.000E+01
Oo(n) 1.000E+00 | 1.600E+01 | 2.560E+02 | 4.096E+03 | 6.554E+04 | 1.049E+06

O(nlg n) | 0.000E+00 | 6.400E+01 | 2.048E+03 | 4.915E+04 | 1.049E+06 | 2.097E+07

44

Chapter 4: Analysis of Algorithms

Table 4-2. The Growth Rates of the Complexities in Table 4-1 (continued)

n=1 n=16 n=256 n=4K n = 64K n=1M
O(n?2) 1.000E+00 | 2.560E+02 | 6.554E+04 | 1.678E+07 | 4.295E+09 | 1.100E+12
o2n) 2.000E+00 | 6.554E+04 | 1.158E+77 _ . o
o(n) 1.000E+00 | 2.092E+13 — — S _
1 Ol
200 \0(2”) 0("2) O(Illg Il)
150
100
50
0(n)
0(lg n)
o(1)
0 10 20 30 4"

Figure 4-1. A graphical depiction of the growth rates in Tables 4-1 and 4-2

Just as the complexity of an algorithm says little about its actual running time, it is
important to understand that no measure of complexity is necessarily efficient or
inefficient. Although complexity is an indication of the efficiency of an algorithm,
whether a particular complexity is considered efficient or inefficient depends on
the problem. Generally, an efficient algorithm is one in which we know we are
doing the best we can do given certain criteria. Typically, an algorithm is said to
be efficient if there are no algorithms with lower complexities to solve the same
problem and the algorithm does not contain excessive constants. Some problems
are intractable, so there are no “efficient” solutions without settling for an approxi-
mation. This is true of a special class of problems called NP-complete problems
(see the related topics at the end of the chapter).

Although an algorithm’s complexity is an important starting point for determining
how well it will perform, often there are other things to consider in practice. For
example, when two algorithms are of the same complexity, it may be worthwhile
to consider their less significant terms and factors. If the data on which the algo-
rithms’ performances depend is small enough, even an algorithm of greater com-
plexity with small constants may perform better in practice than one that has a

Analysis Example: Insertion Sort 45

lower order of complexity and larger constants. Other factors worth considering
are how complicated an algorithm will be to develop and maintain, and how we
can make the actual implementation of an algorithm more efficient. An efficient
implementation does not always affect an algorithm’s complexity, but it can reduce
constant factors, which makes the algorithm run faster in practice.

Analysis Example: Insertion Sort

This section presents an analysis of the worst-case running time of insertion sort, a
simple sorting algorithm that works by inserting elements into a sorted set by scan-
ning the set to determine where each new element belongs. A complete descrip-
tion of insertion sort appears in Chapter 12. The code for the sort is shown in
Example 4-1.

We begin by identifying which lines of code are affected by the size of the data to
be sorted. These are the statements that constitute the nested loop, whose outer
part iterates from 1 to size — 1 and whose inner part iterates from j — 1 to wher-
ever the correct position for the element being inserted is found. All other lines
run in a constant amount of time, independent of the number of elements to be
sorted. Typically, the generic variable 7 is used to refer to the parameter on which
an algorithm’s performance depends. With this in mind, the outer loop has a run-
ning time of 7(n) = n — 1, times some constant amount of time. Examining the
inner loop and considering the worst case, we assume that we will have to go all
the way to the other end of the array before inserting each element into the sorted
set. Therefore, the inner loop iterates once for the first element, twice for the sec-
ond, and so forth until the outer loop terminates. Effectively, this becomes a sum-
mation from 1 to 7 — 1, which results in a running time of 7(») = (n(n + 1)/2) — n,
times some constant amount of time. (This equation is from the well-known for-
mula for summing a series from 1 to n.) Consequently:

O(T(n)) = O(%2+g—n) = o(”;) = o(nd)

Example 4-1. Implementation of Insertion Sort from Chapter 12

/***

* *
e TSttt issort.c ———=————mmmmm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "sort.h"

46 Chapter 4: Analysis of Algorithms

Example 4-1. Implementation of Insertion Sort from Chapter 12 (continued)

/***

* *
Rt Tt issort -—-----———————m— *
* *

***/

int issort(void *data, int size, int esize, int (*compare) (const void *keyl,
const void *key2)) {

char *a = data;
void *key;
int i,

J;

/***

* *
* Allocate storage for the key element. *
* *

***/

if ((key = (char *)malloc(esize)) == NULL)
return -1;

/***

* *
* Repeatedly insert a key element among the sorted elements. *
* *

***/

for (j = 1; j < size; j++) {

memcpy (key, &al[j * esize], esize);
i=3-1;

/**

* *
* Determine the position at which to insert the key element. *
* *

**/

while (i >= 0 && compare(&al[i * esize], key) > 0) {

memcpy (&a[(i + 1) * esize], &al[i * esize], esize);
i--;

memcpy (&al (i + 1) * esize], key, esize);

Questions and Answers 47

Example 4-1. Implementation of Insertion Sort from Chapter 12 (continued)

/***

* *
* TFree the storage allocated for sorting. *
* *

***/

free (key) ;
return 0;

}

Questions and Answers

Q: From lowest to highest, what is the correct order of the complexities O(n?2),
0oGBm, 02m), O(n21g n), O, O(nlg v, O(n3), O(n), Olg), O(n)?

A: From lowest to highest, the correct order of these complexities is O(1), O(g n),
O(n), O(nlg n), O(12), 02 1g n), O(n3), OR7), O3, O(n).

Q: What are the complexities of Ty(n) = 3nlg n + 1g n; T,(n) = 21 + n3 + 25; and
Iz(n, B =k + n, where k < n? From lowest to bighest, what is the correct order
of the resulting complexities?

A: Using the rules of O-notation, the complexities of T;, 75, and Tj respectively
are O(nlg nm), O27), and O(n). From lowest to highest, the correct order of
these complexities is O(n), O(nlg 1), and O27).

Q: Suppose we have written a procedure to add m square matrices of size n X n. If
adding two square matrices requires O(n?) running time, what is the complex-
ity of this procedure in terms of m and n?

A: To add m matrices of size n X n, we must perform m — 1 additions, each
requiring time O(72). Therefore, the overall running time of this procedure is:

O(m—1)0(n?) = O(m)O(n?) = O(mn?)

Q: Suppose we have two algoritbms to solve the same problem. One runs in time
T1(n) = 400n, whereas the other runs in time Ty(n) = n2. What are the complex-
ities of these two algorithms? For what values of n might we consider using the
algorithm with the bigher complexity?

A: The complexity of 7; is O(n), and the complexity of 7, is O(n2). However, the
algorithm described by 77 involves such a large constant coefficient for » that
when n < 400, the algorithm described by 7, would be preferable. This is a
good example of why we sometimes consider other factors besides the com-
plexity of an algorithm alone.

48

Chapter 4: Analysis of Algorithms

How do we account for calls such as memcpy and malloc in analyzing real
code? Although these calls often depend on the size of the data processed by an
algoritbm, they are really more of an implementation detail than part of an
algorithbm itself.

Usually calls such as memcpy and malloc are regarded as executing in a con-
stant amount of time. Generally, they can be expected to execute very effi-
ciently at the machine level regardless of how much data they are copying or
allocating. Of course, their exact efficiency may depend on the computer on
which they execute as well as other factors (particularly in the case of malloc,
which depends on the state of the system at the moment it is called).

Related Topics

Recurrences

Functions frequently used in the formal analysis of recursive algorithms.
Recurrences are represented as recursive functions. A recursive function is a
function that calls itself (see Chapter 3). Each successive call works on a more
refined set of inputs, bringing us closer and closer to a solution. They are use-
ful in describing the performance of recursive algorithms because they allow
us to describe an algorithm’s performance in terms of invoking the algorithm
on a more and more refined set of inputs.

Summation formulas

Mathematical formulas useful in simplifying summations that describe the run-
ning times of algorithms. Summations occur frequently as the result of analyz-
ing iterative control structures.

®-notation, Q-notation, o-notation, and w-notation

Additional notations used to represent information about an algorithm’s perfor-
mance. Whereas O-notation expresses the upper bound of a function within a
constant factor, ©-notation expresses a bound from above and below. Q-
notation expresses strictly a lower bound within a constant factor. o-notation
and w-notation are analogous to O-notation and Q-notation but are more pre-
cise. O-notation often is used informally where other notations would be more
specific.

NP-complete problems

A class of problems for which no polynomial-time algorithms are known, but
for which no proof exists refuting the possibility either. Thus, NP-completeness
has long been one of the most perplexing vexations in computer science. A
polynomial-time algorithm is one whose complexity is less than or equal to
O(nR), where k is some constant. Many useful and deceptively difficult prob-
lems fall into this class, such as the traveling-salesman problem (see
Chapter 16, Graph Algorithms).

L1

Data Structures

This part of the book contains seven chapters on data structures. Chapter 5, Linked
Lists, presents various forms of linked lists, including singly-linked lists, doubly-
linked lists, and circular lists. Chapter 6, Stacks and Queues, presents stacks and
queues, data structures for sorting and returning data on a last-in, first-out and
first-in, first-out order respectively. Chapter 7, Sets, presents sets and the funda-
mental mathematics describing sets. Chapter 8, Hash Tables, presents chained and
open-addressed hash tables, including material on how to select a good hash func-
tion and how to resolve collisions. Chapter 9, Trees, presents binary and AVL trees.
It also discusses various methods of tree traversal. Chapter 10, Heaps and
Priority Queues, presents heaps and priority queues, data structures that help to
quickly determine the largest or smallest element in a set of data. Chapter 11,
Graphbs, presents graphs and two fundamental algorithms from which many graph
algorithms are derived: breadth-first and depth-first searches.

M.al I itebooks.cogl

http://www.allitebooks.org

Linked Lists

Linked lists are some of the most fundamental data structures. Linked lists consist
of a number of elements grouped, or /inked, together in a specific order. They are
useful in maintaining collections of data, similar to the way that arrays are often
used. However, linked lists offer important advantages over arrays in many cases.
Specifically, linked lists are considerably more efficient in performing insertions
and deletions. Linked lists also make use of dynamically allocated storage, which
is storage allocated at runtime. Since in many applications the size of the data is
not known at compile time, this can be a nice attribute as well.

This chapter covers:

Singly-linked lists
The simplest linked lists, in which elements are linked by a single pointer.
This structure allows the list to be traversed from its first element to its last.

Doubly-linked lists
Linked lists in which elements are linked by two pointers instead of one. This
structure allows the list to be traversed both forward and backward.

Circular lists
Linked lists in which the last element is linked to the first instead of being set
to NULL. This structure allows the list to be traversed in a circular fashion.

Some applications of linked lists are:

Mailing lists
Lists such as the ones found in email applications. Since it is difficult to pre-
dict how long a mailing list may be, a mailer might build a linked list of
addresses before sending a message.

51

52 Chapter 5: Linked Lists

Scrolled lists
Components found in graphical user interfaces. Often data associated with
items in scrolled lists is not displayed. One approach to managing this “hid-
den” data is to maintain a linked list wherein each element stores the data for
one item in the scrolled list.

Polynomials
An important part of mathematics not inherently supported as a datatype by
most languages. If we let each element of a linked list store one term, linked
lists are useful in representing polynomials (such as 3x2 + 2x + 1).

Memory management (illustrated in this chapter)
An important role of operating systems. An operating system must decide how
to allocate and reclaim storage for processes running on the system. A linked
list can be used to keep track of portions of memory that are available for
allocation.

LISP
An important programming language in artificial intelligence. LISP, an acro-
nym for LISt Processor, makes extensive use of linked lists in performing sym-
bolic processing.

Linked allocation of files
A type of file allocation that eliminates external fragmentation on a disk but is
good only for sequential access. Each block of a file contains a pointer to the
file’s next block.

Other data structures
Some data structures whose implementations depend on linked lists are stacks,
queues, sets, hash tables, and graphs, all of which are presented in this book.

Description of Linked Lists

Singly-linked list, usually simply called linked lists, are composed of individual ele-
ments, each linked by a single pointer. Each element consists of two parts: a data
member and a pointer, called the next pointer. Using this two-member structure, a
linked list is formed by setting the next pointer of each element to point to the
element that follows it (see Figure 5-1). The next pointer of the last element is set
to NULL, a convenient sentinel marking the end of the list. The element at the start
of the list is its head; the element at the end of the list is its fail.

To access an element in a linked list, we start at the head of the list and use the
next pointers of successive elements to move from element to element until the
desired element is reached. With singly-linked lists, the list can be traversed in
only one direction—from head to tail—because each element contains no link to
its predecessor. Therefore, if we start at the head and move to some element, and

Interface for Linked Lists 53

then wish to access an element preceding it, we must start over at the head
(although sometimes we can anticipate the need to know an element and save a
pointer to it). Often this weakness is not a concern. When it is, we use a doubly-
linked list or circular list.

Conceptually, one thinks of a linked list as a series of contiguous elements. How-
ever, because these elements are allocated dynamically (using malloc in C), it is
important to remember that, in actuality, they are usually scattered about in mem-
ory (see Figure 5-2). The pointers from element to element therefore are the only
means by which we can ensure that all elements remain accessible. With this in
mind, we will see later that special care is required when it comes to maintaining
the links. If we mistakenly drop one link, it becomes impossible to access any of
the elements from that point on in the list. Thus, the expression “You are only as
strong as your weakest link” is particularly fitting for linked lists.

head
*—>

'd 'd 'd 'd

m 1 data [next pointer || NULL .@VA

Figure 5-1. Elements linked together to form a linked list
‘

m [date] next pointer IINULL

Figure 5-2. Elements of a linked list linked but scattered about an address space

Interface for Linked Lists

list_init

void list_init(List *1ist, void (*destroy) (void *data)) ;
Return Value None.
Description Initializes the linked list specified by 1ist. This operation must

be called for a linked list before the list can be used with any other operation.
The destroy argument provides a way to free dynamically allocated data when

54 Chapter 5: Linked Lists

list_destroy is called. For example, if the list contains data dynamically allocated
using malloc, destroy should be set to free to free the data as the linked list is
destroyed. For structured data containing several dynamically allocated members,
destroy should be set to a user-defined function that calls free for each dynami-
cally allocated member as well as for the structure itself. For a linked list contain-
ing data that should not be freed, destroy should be set to NULL.

Complexity o)

list_destroy

void list_destroy(List *1ist);

Return Value None.

Description Destroys the linked list specified by l1ist. No other operations
are permitted after calling [list_destroy unless list_init is called again. The [list_
destroy operation removes all elements from a linked list and calls the function

passed as destroy to list_init once for each element as it is removed, provided
destroy was not set to NULL.

Complexity O(n), where 7 is the number of elements in the linked list.

list_ins next

int list_ins next(List *1ist, ListElmt *element, const void *data);

Return Value 0 if inserting the element is successful, or —1 otherwise.
Description Inserts an element just after element in the linked list specified
by list. If element is NULL, the new element is inserted at the head of the list.
The new element contains a pointer to data, so the memory referenced by data

should remain valid as long as the element remains in the list. It is the responsibil-
ity of the caller to manage the storage associated with data.

Complexity o

list_ rem_next

int list_rem next(List *1ist, ListElmt *element, void **data) ;

Return Value 0 if removing the element is successful, or —1 otherwise.
Description Removes the element just after element from the linked list speci-
tied by list. If element is NULL, the element at the head of the list is removed.

Upon return, data points to the data stored in the element that was removed. It is
the responsibility of the caller to manage the storage associated with the data.

Complexity o)

Interface for Linked Lists 55

list_size

int list_size(const List *1ist);

Return Value Number of elements in the list.

Description Macro that evaluates to the number of elements in the linked list
specified by list.

Complexity o)

list_bhead

ListElmt *1list_head(const List *1ist);

Return Value Element at the head of the list.

Description Macro that evaluates to the element at the head of the linked list
specified by 1ist.

Complexity o)

list_tail

ListElmt *1list_tail (const List *1ist);

Return Value Element at the tail of the list.

Description Macro that evaluates to the element at the tail of the linked list
specified by list.

Complexity o)

list_is_bead

int list_is head(const ListElmt *element) ;

Return Value 1 if the element is at the head of the list, or 0 otherwise.

Description Macro that determines whether the element specified as element
is at the head of a linked list.

Complexity o)

list is tail

int list_is_tail(const ListElmt *element) ;

Return Value 1 if the element is at the tail of the list, or 0 otherwise.

56 Chapter 5. Linked Lists

Description Macro that determines whether the element specified as element
is at the tail of a linked list.

Complexity oD

list data

void *1list_data(const ListElmt *element) ;

Return Value Data stored in the element.

Description Macro that evaluates to the data stored in the element of a linked
list specified by element.

Complexity o

list_next

ListElmt *1list_next (const ListElmt *element) ;

Return Value Element following the specified element.

Description Macro that evaluates to the element of a linked list following the
element specified by element.

Complexity o

Implementation and Analysis
of Linked Lists

Recall that each element of a linked list consists of two parts: a data member and a
pointer to the next element in the list. The structure ListEImt represents an indi-
vidual element of a linked list (see Example 5-1). As you would expect, this struc-
ture has two members that correspond to those just mentioned. The structure List
is the linked list data structure (see Example 5-1). This structure consists of five
members: size is the number of elements in the list, match is a member not used
by linked lists but by datatypes that will be derived later from linked lists,
destroy is the encapsulated destroy function passed to /ist_init, head is a pointer
to the first of the linked elements, and tail is a pointer to the tail element.

Example 5-1. Header for the Linked List Abstract Datatype

/***

* *
e TiSt.h mmm oo *
* *

***/

Implementation and Analysis of Linked Lists

Example 5-1. Header for the Linked List Abstract Datatype (continued)

#ifndef LIST H
#define LIST H

#include <stdlib.h>

/***

* *
* Define a structure for linked list elements. *
* *

***/

typedef struct ListElmt_ {

void *data;
struct ListElmt_ *next;
} ListElmt;

/***

* *
* Define a structure for linked lists. *
* *

***/

typedef struct List_ {

int size;

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

ListElmt *head;

ListElmt *tail;

} List;

/***

* *
K Public Interface -----------———---m—— *
* *

***/
void list_init(List *list, void (*destroy) (void *data));

void list_destroy(List *1list);

int list_ins next(List *list, ListElmt *element, const void *data);

int list rem next(List *1list, ListElmt *element, void **data);

#define list_size(list) ((list)->size)

58 Chapter 5: Linked Lists

Example 5-1. Header for the Linked List Abstract Datatype (continued)

#define list_head(list) ((list)->head)

#define list_tail(list) ((list)->tail)

#define list_is head(list, element) ((element) == (list)->head ? 1 : 0)
#define list_is_tail (element) ((element)->next == NULL ? 1 : 0)

#define list_data(element) ((element)->data)

#define list_next (element) ((element)->next)

#endif

list_init

The /list_init operation initializes a linked list so that it can be used in other opera-
tions (see Example 5-2). Initializing a linked list is a simple operation in which the
size member of the list is set to 0, the destroy member to destroy, and the
head and tail pointers to NULL.

The runtime complexity of /ist_init is O(1) because all of the steps in initializing a
linked list run in a constant amount of time.

list_destroy

The list_destroy operation destroys a linked list (see Example 5-2). Primarily this
means removing all elements from the list. The function passed as destroy to list_
init is called once for each element as it is removed, provided destroy was not
set to NULL.

The runtime complexity of [list_destroy is O(n), where n is the number of ele-
ments in the list. This is because the O(1) operation list_rem_next must be called
once for each element.

list_ins next

The list_ins_next operation inserts an element into a linked list just after a speci-
fied element (see Example 5-2). The call sets the new element to point to the data
passed by the caller. The actual process of inserting the new element into the list
is a simple one, but it does require some care. There are two cases to consider:
insertion at the head of the list and insertion elsewhere.

Generally, to insert an element into a linked list, we set the next pointer of the
new element to point to the element it is going to precede, and we set the next
pointer of the element that will precede the new element to point to the new
element (see Figure 5-3). However, when inserting at the head of a list, there is no

Implementation and Analysis of Linked Lists 59

element that will precede the new element. Thus, in this case, we set the next
pointer of the new element to the current head of the list, then reset the head of
the list to point to the new element. Recall from the interface design in the previ-
ous section that passing NULL for element indicates that the new element should
be inserted at the head. In addition to these tasks, whenever we insert an element
at the tail of the list, we must update the tail member of the list data structure to
point to the new tail. Last, we update the size of the list by incrementing its size
member.

element

'd 'd 'd '

a/

element

2 B A e g T
m 1 data ' j
1 next pointer []

Figure 5-3. Inserting an element into a linked list

The runtime complexity of /list_ins_next is O(1) because all of the steps in insert-
ing an element into a linked list run in a constant amount of time.

list rem_next

The list_rem_next operation removes from a linked list the element just after a
specified element (see Example 5-2). The reasons for removing the element just
after, as opposed to the element itself, are discussed in the questions and answers
at the end of the chapter. As with inserting an element, this call requires consider-
ation of two cases: removing an element from the head of the list and removing
one elsewhere.

The actual process of removing the element from the list is a simple one, but it too
requires some care (see Figure 5-4). Generally, to remove an element from a
linked list, we set the next pointer of the element preceding the one being
removed to point to the element after the element being removed. However, when
removing an element from the head of a list, there is no element that precedes the
element being removed. Thus, in this case, we set the head of the list to point to
the element after the one being removed. As with insertion, NULL serves nicely as

60 Chapter 5. Linked Lists

a sentinel passed in element to indicate that the element at the head of the list
should be removed. In addition to these tasks, whenever we remove the element
at the tail of the list, we must update the tail member of the list data structure to
point to the new tail, or to NULL if removing the element has caused the list to
become empty. Last, we update the size of the list by decreasing the size mem-
ber by 1. Upon return, data points to the data from the element removed.

element

—

'd 'd

m [data] next pointer

Figure 5-4. Removing an element from a linked list

The runtime complexity of list_rem_next is O(1) because all of the steps in remov-
ing an element from a linked list run in a constant amount of time.

list_size, list_bead, list_tail, list_is_tail,
list_data, and list_next
These macros implement some of the simpler linked list operations (see

Example 5-1). Generally, they provide an interface for accessing and testing mem-
bers of the List and ListEImt structures.

The runtime complexity of these operations is O(1) because accessing and testing
members of a structure are simple tasks that run in a constant amount of time.

Example 5-2. Implementation of the Linked List Abstract Datatype

/**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**************************

* *
Bttt list.c —=—=————— *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "list.h"

/***

* *
K list_init -------————m—m *
* *

'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k*************************/

void list_init(List *1list, void (*destroy) (void *data)) {

Implementation and Analysis of Linked Lists

61

Example 5-2. Implementation of the Linked List Abstract Datatype (continued)

/***

* *
* Initialize the list. *
* *

***/

list->size = 0;
list->destroy = destroy;
list->head = NULL;
list->tail = NULL;

return;

/***
* *
K list_destroy ----—--———————————————mo *
* *

***/

void list_destroy(List *list) {

void *data;

/***

* *
* Remove each element. *
* *

***/

while (list_size(list) > 0) {

if (list_rem next(list, NULL, (void **)&data) == 0 && list->destroy !=
NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

list->destroy(data) ;

}
}
/***
* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

62 Chapter 5. Linked Lists

Example 5-2. Implementation of the Linked List Abstract Datatype (continued)

memset (list, 0, sizeof (List));

return;

/***
* *
K list_ins next -------—————-—————————o————o *
* *

‘k**/

int list_ins next(List *1list, ListElmt *element, const void *data) {

ListElmt *new_element;

/***

* *
* Allocate storage for the element. *
* *

***/

if ((new_element = (ListElmt *)malloc (sizeof (ListElmt))) == NULL)
return -1;

/***

* *
* Insert the element into the list. *
* *

***/

new_element->data = (void *)data;

if (element == NULL) ({

/**

* *
* Handle insertion at the head of the list. *
* *

**/

if (list_size(list) == 0)
list->tail = new_element;

new_element->next = list->head;
list->head = new_element;

else {

Implementation and Analysis of Linked Lists

63

Example 5-2. Implementation of the Linked List Abstract Datatype (continued)

/**

* *
* Handle insertion somewhere other than at the head. *
* *

‘k***/

if (element->next == NULL)
list->tail = new_element;

new_element->next = element->next;
element->next = new_element;

}

/***
* *
* Adjust the size of the list to account for the inserted element. *
* *

***/

list->size++;

return 0;

/***
* *
e LT list_rem next —------—————————————————————— *
* *

***/

int list_rem next(List *list, ListElmt *element, void **data) {

ListElmt *0ld_element;

/***

* *
* Do not allow removal from an empty list. *
* *

‘k**/

if (list_size(list) == 0)
return -1;

/***

* *
* Remove the element from the list. *
* *

‘k**/

if (element == NULL) {

64 Chapter 5. Linked Lists

Example 5-2. Implementation of the Linked List Abstract Datatype (continued)

/**

* *
* Handle removal from the head of the list. *
* *

‘k***/

*data = list->head->data;
old_element = list->head;
list->head = list->head->next;

if (list_size(list) == 1)
list->tail = NULL;

else {

/**

* *
* Handle removal from somewhere other than the head. *
* *

**/

if (element->next == NULL)
return -1;

*data = element->next->data;
0ld_element = element->next;
element->next = element->next->next;

if (element->next == NULL)
list->tail = element;

}

/***
* *
* Free the storage allocated by the abstract datatype. *
* *

***/

free(old_element) ;

/***

* *
* Adjust the size of the list to account for the removed element. *
* *

***/

list->size--;

return 0;

Linked List Example: Frame Management 65

Linked List Example: Frame
Management

An interesting application of linked lists is found in the way some systems sup-
port virtual memory. Virtual memory is a mapping of address space that allows a
process (a running program) to execute without being completely in physical
memory, the real memory of the system. One advantage of this is that a process
can make use of an address space that is much larger than that which the physi-
cal memory of the system would allow otherwise. Another advantage is that multi-
ple processes can share the memory of the system while running concurrently.

A process running in virtual memory deals with virtual addresses. These are
addresses that seem like physical addresses to the process, but that the system
must translate before using. Address translation takes place using a page table and
is fast due to dedicated hardware. Each process has its own page table that maps
pages of its virtual address space to frames in physical memory. When a process
references a particular virtual address, the appropriate entry in its page table is
inspected to determine in which physical frame the page resides (see Figure 5-5).
When a process references a virtual address not yet in a frame, a page fault occurs
and a frame is allocated in physical memory. Why pages of a process are removed
from physical memory is another matter. One occasion for removing a page, how-
ever, is when a page is accessed infrequently relative to other pages and its frame
is needed elsewhere.

This example addresses the management of frames that has just been described.
For this, two functions are presented, alloc_frame and free_frame (see
Example 5-3). The alloc_frame and free_frame functions employ a linked list to
maintain the frames that are available to be allocated. The alloc_ frame function
retrieves the number of a free frame from a list of available frames. Given a spe-
cific page, this number is placed in the page table to indicate in which physical
frame the page is to reside. The free_frame function accepts a frame number and
places it back into the list of available frames once a page has been removed from
physical memory. Both functions assume that before either is called, the operating
system has inserted into the list all frames that it wishes to make available. The
example for circular lists later in this chapter addresses what happens when alloc_
Sframe is called and the list is empty.

A linked list is a good way to manage frames because frame allocation involves
frequent insertions and deletions, and these operations are performed at the head
of the list. The runtime complexity of both alloc_frame and free_frame is O(1)
because the two functions simply call list_rem_next and list_ins_next respectively,
which are both O(1) operations.

66 Chapter 5. Linked Lists

frame 0
1
2 C
3 D
page 0 A entry for page 0 51 .
! B 1199 .
9 C 9) 50
3 D 3 3 31 A

virtual memory page fable 98
99 B
physical memory

Figure 5-5. A virtual memory system

Example 5-3. Implementation of Functions for Managing Frames

JRIKIKKKKKKKKKXIK KKK KK KKK KXI X I I IRk kAR I X I Xk ko hhhhhhhkh Ak Xk xkkhkhkkhkhkhxk

* *
F e frames.c ---—---------- *
* *

***/

#include <stdlib.h>

#include "frames.h"
#include "list.h"

/***

* *
K e alloc_frame -----————————————————— *
* *

HRIKKKKKKKKKXKXIK KKK KKK KK IK XK X I I R h R Rk I A I X I Xk h ko hhhhhhh Ak Xk xhxhkkkkhkhxxx /

int alloc_frame(List *frames) {

int frame number,
*data;

if (list_size(frames) == 0)

Linked List Example: Frame Management

67

Example 5-3. Implementation of Functions for Managing Frames (continued)

/**

* *
* Return that there are no frames available. *
* *

‘k***/

return -1;
else {

if (list_rem next (frames, NULL, (void **)&data) != 0)

/***

* *
* Return that a frame could not be retrieved. *
* *

‘k**/

return -1;

else {

/***

* *
* Store the number of the available frame. *
* *

***/

frame number = *data;
free(data) ;

return frame number;

/***
* *
e free_frame ------——------- - *
* *

‘k**/

int free frame(List *frames, int frame_number) {

int *data;

/***

* *
* Allocate storage for the frame number. *
* *

***/

68 Chapter 5. Linked Lists

Example 5-3. Implementation of Functions for Managing Frames (continued)

if ((data = (int *)malloc(sizeof (int))) == NULL)
return -1;

/***

* *
* Put the frame back in the list of available frames. *
* *

‘k**‘k*/

*data = frame_number;

if (list_ins next (frames, NULL, data) != 0)
return -1;
return O0;

}

Description of Doubly-Linked Lists

Doubly-linked lists, as their name implies, are composed of elements linked by
two pointers. Each element of a doubly-linked list consists of three parts: in addi-
tion to the data and the next pointer, each element includes a pointer to the previ-
ous element, called the prev pointer. A doubly-linked list is formed by composing
a number of elements so that the next pointer of each element points to the ele-
ment that follows it, and the prev pointer points to the element preceding it. To
mark the head and tail of the list, we set the prev pointer of the first element and
the next pointer of the last element to NULL.

To traverse backward through a doubly-linked list, we use the prev pointers of
consecutive elements in the tail-to-head direction. Thus, for the cost of an addi-
tional pointer for each element, a doubly-linked list offers greater flexibility than a
singly-linked list in moving about the list. This can be useful when we know
something about where an element might be stored in the list and can choose
wisely how to move to it. For example, one flexibility that doubly-linked lists pro-
vide is a more intuitive means of removing an element than singly-linked lists.

Interface for Doubly-Linked Lists

dlist_init

void dlist_init (DList *1ist, void (*destroy) (void *data));

Return Value None.

Interface for Doubly-Linked Lists 69

Description Initializes the doubly-linked list specified by 1ist. This operation
must be called for a doubly-linked list before the list can be used with any other
operation. The destroy argument provides a way to free dynamically allocated
data when dlist_destroy is called. It works in a manner similar to that described for
list_destroy. For a doubly-linked list containing data that should not be freed,
destroy should be set to NULL.

Complexity o)

dlist_destroy

void dlist_destroy (DList *1ist);

Return Value None.

Description Destroys the doubly-linked list specified by 1ist. No other opera-
tions are permitted after calling dlist_destroy unless dlist_init is called again. The
dlist_destroy operation removes all elements from a doubly-linked list and calls the

function passed as destroy to dlist_init once for each element as it is removed,
provided destroy was not set to NULL.

Complexity O(n), where 7 is the number of elements in the doubly-linked list.

dlist_ins next

int dlist_ins next (DList *1ist, DListElmt *element, const void *data) ;

Return Value 0 if inserting the element is successful, or —1 otherwise.

Description Inserts an element just after element in the doubly-linked list
specified by list. When inserting into an empty list, element may point any-
where, but should be NULL to avoid confusion. The new element contains a
pointer to data, so the memory referenced by data should remain valid as long
as the element remains in the list. It is the responsibility of the caller to manage
the storage associated with data.

Complexity o)

dlist_ins_prev

int dlist_ins prev(DList *1ist, DListElmt *element, const void *data) ;

Return Value 0 if inserting the element is successful, or —1 otherwise.

Description Inserts an element just before element in the doubly-linked list
specified by list. When inserting into an empty list, element may point any-
where, but should be NULL to avoid confusion. The new element contains a
pointer to data, so the memory referenced by data should remain valid as long

70 Chapter 5: Linked Lists

as the element remains in the list. It is the responsibility of the caller to manage
the storage associated with data.

Complexity oD

dlist_ remove

int dlist_remove (DList *1ist, DListElmt *element, void **data) ;

Return Value 0 if removing the element is successful, or —1 otherwise.

Description Removes the element specified as element from the doubly-
linked list specified by Iist. Upon return, data points to the data stored in the
element that was removed. It is the responsibility of the caller to manage the stor-
age associated with the data.

Complexity o)

dlist_size

int dlist_size(const DList *1ist);

Return Value Number of elements in the list.

Description Macro that evaluates to the number of elements in the doubly-
linked list specified by 1ist.

Complexity o)

dlist_bhead

DListElmt *dlist_head(const DList *1ist);

Return Value Element at the head of the list.

Description Macro that evaluates to the element at the head of the doubly-
linked list specified by 1ist.

Complexity o

dlist_tail

DListElmt *dlist_tail (const DList *1ist);

Return Value Element at the tail of the list.

Description Macro that evaluates to the element at the tail of the doubly-
linked list specified by 1ist.

Complexity o

Interface for Doubly-Linked Lists 71

dlist_is_bead

int dlist_is head(const DListElmt *element) ;

Return Value 1 if the element is at the head of the list, or 0 otherwise.

Description Macro that determines whether the element specified as element
is at the head of a doubly-linked list.

Complexity o)

dlist is tail

int dlist_is tail (const DListElmt *element) ;

Return Value 1 if the element is at the tail of the list, or 0 otherwise.

Description Macro that determines whether the element specified as element
is at the tail of a doubly-linked list.

Complexity o)

dlist _data

void *dlist_data(const DListElmt *element) ;

Return Value Data stored in the element.

Description Macro that evaluates to the data stored in the element of a dou-
bly-linked list specified by element.

Complexity o)

dlist_next

DListElmt *dlist_next (const DListElmt *element) ;

Return Value Element following the specified element.

Description Macro that evaluates to the element of a doubly-linked list follow-
ing the element specified by element.

Complexity o)

dlist_prev

DListElmt *dlist_prev(const DListElmt *element) ;

Return Value Element preceding the specified element.

Description Macro that evaluates to the element of a doubly-linked list preced-
ing the element specified by element.

Complexity o)

72 Chapter 5: Linked Lists

Implementation and Analysis
of Doubly Linked Lists

Recall that each element of a doubly-linked list consists of three parts: a data
member, a pointer to the next element, and a pointer to the previous element. The
structure DListEImt represents an individual element of a doubly-linked list (see
Example 5-4). As you would expect, this structure has three members correspond-
ing to those just mentioned. The structure DList is the doubly-linked list data
structure (see Example 5-4). This structure has members analogous to the ones
used for singly-linked lists.

Example 5-4. Header for the Doubly-Linked List Abstract Datatype

/***

* *
e dlist.h —mmmmmmmmmmmmm e *
* *

***/

#ifndef DLIST H
#define DLIST H

#include <stdlib.h>

/**‘k**

* *
* Define a structure for doubly-linked list elements. *
* *

***/

typedef struct DListElmt_ {
void *data;
struct DListElmt_ ‘*prev;
struct DListElmt_ *next;

} DListElmt;

/***

* *
* Define a structure for doubly-linked lists. *
* *

‘k**‘k*/

typedef struct DList_ {

int size;

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

Implementation and Analysis of Doubly Linked Lists 73

Example 5-4. Header for the Doubly-Linked List Abstract Datatype (continued)

DListElmt *head;
DListElmt *tail;
} DList;

/***

* *
I ittt Ll b Public Interface ------—-———————————mmo—— *
* *

***/
void dlist_init(DList *1list, void (*destroy) (void *data));

void dlist_destroy (DList *1list);

int dlist_ins_next (DList *1list, DListElmt *element, const void *data);

int dlist_ins_prev(DList *1list, DListElmt *element, const void *data);

int dlist_remove (DList *1list, DListElmt *element, void **data);

#define dlist_size(list) ((list)->size)

#define dlist_head(list) ((list)->head)

#define dlist_tail(list) ((list)->tail)

#define dlist_is_head(element) ((element)->prev == NULL ? 1 : 0)

#define dlist_is_tail (element) ((element)->next == NULL ? 1 : 0)
#define dlist_data(element) ((element)->data)

#define dlist next (element) ((element)->next)

#define dlist_prev(element) ((element)->prev)

#endif

dlist_init

The dlist_init operation initializes a doubly-linked list so that it can be used in other
operations (see Example 5-5). Initialization is the same as with a singly-linked list.

The runtime complexity of dlist_init is O(1) because all of the steps in initializing
a doubly-linked list run in a constant amount of time.

dlist_destroy

The dlist_destroy operation destroys a doubly-linked list (see Example 5-5). Prima-
rily this means removing all elements from the list. The function passed as

74 Chapter 5: Linked Lists

destroy to dlist_init is called once for each element as it is removed, provided
destroy was not set to NULL.

The runtime complexity of dlist_destroy is O(n), where n is the number of ele-
ments in the list. This is because the O(1) operation dlist_remove must be called
once for each element.

dlist_ins_next

The dlist_ins_next operation inserts an element into a doubly-linked list just after a
specified element (see Example 5-5). Inserting an element in a doubly-linked list is
similar to inserting one in a singly-linked list. The primary difference is that in
addition to managing the next pointers, we must manage the prev pointers to
keep the list linked properly in the reverse direction (see Figure 5-6).

element
(1
'Y 'Y 'Y |
e 5 L | |4
)
element
o
R B S 5 M B B 5 M B B 1 M B2 I
o e
element
(3]
LT T4 T a4 LT T4 T T«
e
element
(4
——> 7 " — -— |
m 1 data [prev pointer
1 next pointer L" "‘j

Figure 5-6. Inserting an element into a doubly-linked list with dlist_ins_next

Implementation and Analysis of Doubly Linked Lists 75

The runtime complexity of dlist_ins_next is O(1) because all of the steps in insert-
ing an element into a doubly-linked list run in a constant amount of time.

dlist_ins_prev

The dlist_ins_prev operation inserts an element into a doubly-linked list just
before a specified element (see Example 5-5). Inserting an element in a doubly-
linked list is similar to inserting one in a singly-linked list. As with dlist_ins_next,
the primary difference is that in addition to managing the next pointers, we must
manage the prev pointers to keep the list linked properly in the reverse direction.

The runtime complexity of dlist_ins_previs O(1) because all of the steps in insert-
ing an element into a doubly-linked list run in a constant amount of time.

dlist_ remove

The dlist_remove operation removes a specified element from a doubly-linked list
(see Example 5-5). The primary difference from a singly-linked list is that in addi-
tion to managing the next pointers, we must manage the prev pointers to keep
the list linked properly in the reverse direction. Another difference is that in a
doubly-linked list, it is possible to remove the specified element rather than the
one just after it because there is a pointer back to the previous element.

The runtime complexity of dlist_remove is O(1) because all of the steps in remov-
ing an element from a doubly-linked list run in a constant amount of time.

dlist_size, dlist_bead, dlist_tail, dlist_is_bead,
dlist_is_tail, dlist_data, dlist_next, and dlist_prev
These macros implement some of the simpler doubly-linked list operations (see

Example 5-4). Generally, they provide an interface for accessing and testing mem-
bers of the DList and DListElmt structures.

The runtime complexity of these operations is O(1) because accessing and testing
members of a structure are simple tasks that run in a constant amount of time.

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype

/***

* *
e ittt dlist.c —===—————m—mm *
* *

***/

#include <stdlib.h>
#include <string.h>

76 Chapter 5. Linked Lists

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)

#include "dlist.h"

/***

* *
R e e e dlist_init ——=—---mmmmm e *
* *

***/

void dlist_init(DList *1list, void (*destroy) (void *data)) {

/***

* *
* Initialize the list. *
* *

***/

list->size = 0;
list->destroy = destroy;
list->head = NULL;

list->tail = NULL;

return;
/*****‘k***
* *
et dlist_destroy ------—-—————————————————— *
* *

***/

void dlist_destroy (DList *1list) {

void *data;

/***

* *
* Remove each element. *
* *

***/

while (dlist_size(list) > 0) {

if (dlist_remove(list, dlist_tail(list), (void **)&data) == 0 && list->
destroy != NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

list->destroy(data) ;

Implementation and Analysis of Doubly Linked Lists

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)
}

}

/***
* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

memset (1ist, 0, sizeof (DList));

return;

/***
* *
F e dlist_ins_next ---------—————-————————— *
* *

***/

int dlist_ins_next (DList *1list, DListElmt *element, const void *data) {

DListElmt *new_element;

/***

* *
* Do not allow a NULL element unless the list is empty. *
* *

***/

if (element == NULL && dlist_size(list) != 0)
return -1;

/***

* *
* Allocate storage for the element. *
* *

***/

if ((new_element = (DListElmt *)malloc (sizeof (DListElmt))) == NULL)
return -1;

/***

* *
* 1Insert the new element into the list. *
* *

***/

new_element->data = (void *)data;

78 Chapter 5: Linked Lists

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)

if (dlist_size(list) == 0) {

/**

* *
* Handle insertion when the list is empty. *
* *

**/

list->head = new_element;
list->head->prev = NULL;
list->head->next = NULL;
list->tail = new_element;

else {

/**

* *
* Handle insertion when the list is not empty. *
* *

**/

new_element->next element->next;
new_element->prev = element;

if (element->next == NULL)
list->tail = new_element;
else
element->next->prev = new_element;

element->next = new_element;

}

/***
* *
* Adjust the size of the list to account for the inserted element. *
* *

***/

list->size++;

return 0;

/***
* *
et ittt dlist_ins_prev -—----------————mm—m e *
* *

***/

int dlist_ins_prev(DList *1list, DListElmt *element, const void *data) {

Implementation and Analysis of Doubly Linked Lists

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)

DListElmt *new_element;

/***

* *
* Do not allow a NULL element unless the list is empty. *
* *

***/

if (element == NULL && dlist_size(list) != 0)
return -1;

/***

* *
* Allocate storage to be managed by the abstract datatype. *
* *

***/

if ((new_element = (DListElmt *)malloc (sizeof (DListElmt))) == NULL)
return -1;

/***

* *
* 1Insert the new element into the list. *
* *

***/

new_element->data = (void *)data;

if (dlist_size(list) == 0) {

/**

* *
* Handle insertion when the list is empty. *
* *

**/

list->head = new_element;
list->head->prev = NULL;
list->head->next = NULL;
list->tail = new_element;

else {

/**

* *
* Handle insertion when the list is not empty. *
* *

**/

new_element->next = element;
new_element->prev = element->prev;

80 Chapter 5: Linked Lists

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)

if (element->prev == NULL)
list->head = new_element;
else
element->prev->next = new_element;

element->prev = new_element;

/***

* *
* Adjust the size of the list to account for the new element. *
* *

***/

list->size++;

return 0;

/***
* *
* e dlist_remove -----—-—————————————————————— *
* *

***/

int dlist_remove (DList *1list, DListElmt *element, void **data) {

/***

* *
* Do not allow a NULL element or removal from an empty list. *
* *

***/

if (element == NULL || dlist_size(list) == 0)
return -1;

/***

* *
* Remove the element from the list. *
* *

***/

*data = element->data;

if (element == list->head) {

/**

* *

Implementation and Analysis of Doubly Linked Lists

81

Example 5-5. Implementation of the Doubly-Linked List Abstract Datatype (continued)

* Handle removal from the head of the list. *
* *

**/

list->head = element->next;

if (list->head == NULL)
list->tail = NULL;

else
element->next->prev = NULL;

else {

/**

* *
* Handle removal from other than the head of the list. *
* *

‘k***/

element->prev->next = element->next;

if (element->next == NULL)
list->tail = element->prev;
else
element->next->prev = element->prev;

}

/***
* *
* Free the storage allocated by the abstract datatype. *
* *

‘k**/

free(element) ;

/***

* *
* Adjust the size of the list to account for the removed element. *
* *

***/

list->size--;

return 0;

82 Chapter 5: Linked Lists

Description of Circular Lists

The circular list is another form of linked list that provides additional flexibility in
traversing elements. A circular list may be singly-linked or doubly-linked, but its
distinguishing feature is that it has no tail. In a circular list, the next pointer of the
last element points back to its first element rather than to NULL. In the case of a
doubly-linked circular list, the prev pointer of the first element is set to point to the
last element as well.

Whether dealing with a singly-linked or doubly-linked circular list, we never need
to worry about reaching an element from which we can traverse no further as we
move from element to element. Instead, the traversal simply continues back to the
first element, or, in the case of a doubly-linked circular list, back to the last ele-
ment. Traversing a list in this manner produces a circular pattern (see Figure 5-7),
hence its name.

head
~——> | » | > | »

m] data [next pointer

Figure 5-7. Elements linked together to form a circular list

The circular list presented in the following sections is a singly-linked circular list.
Therefore, we are concerned only with maintaining a link from the last element
back to the first element. In practice, whether to make use of a singly-linked circu-
lar list or one that is doubly-linked depends on the same reasoning presented ear-
lier for choosing between singly-linked and doubly-linked lists that are not circular.

Interface for Circular Lists

clist_init

void clist_init(CList *1ist, void (*destroy) (void *data));

Return Value None.

Description Initializes the circular list specified by 1ist. This operation must
be called for a circular list before the list can be used with any other operation.
The destroy argument provides a way to free dynamically allocated data when
clist_destroy is called. It works in a manner similar to that described for /ist_destroy.

Interface for Circular Lists 83

For a circular list containing data that should not be freed, destroy should be set
to NULL.

Complexity oD

clist_destroy

void clist_destroy (CList *1ist);

Return Value None.

Description Destroys the circular list specified by 1ist. No other operations
are permitted after calling clist_destroy unless clist_init is called again. The clist_
destroy operation removes all elements from a circular list and calls the function

passed as destroy to clist_init once for each element as it is removed, provided
destroy was not set to NULL.

Complexity O(n), where 7 is the number of elements in the circular list.

clist_ins_next

int clist_ins_next (CList *list, CListElmt *element, const void *data);

Return Value 0 if inserting the element is successful, or —1 otherwise.

Description Inserts an element just after element in the circular list specified
by list. When inserting into an empty list, element may point anywhere but
should be NULL to avoid confusion. The new element contains a pointer to data,
so the memory referenced by data should remain valid as long as the element
remains in the list. It is the responsibility of the caller to manage the storage asso-
ciated with data.

Complexity o)

clist_rem_next

int clist_rem next (CList *list, CListElmt *element, void **data);

Return Value 0 if removing the element is successful, or —1 otherwise.
Description Removes the element just after element from the circular list
specified by 1ist. Upon return, data points to the data stored in the element that

was removed. It is the responsibility of the caller to manage the storage associated
with the data.

Complexity o)

84 Chapter 5: Linked Lists

clist_size

int clist_size(const CList *1ist);

Return Value Number of elements in the list.

Description Macro that evaluates to the number of elements in the circular list
specified by list.

Complexity o)

clist_bead

CListElmt *clist_head(const CList *1ist);

Return Value Element at the head of the list.

Description Macro that evaluates to the element at the head of the circular list
specified by 1ist.

Complexity o)

clist_data

void *clist_data(const CListElmt *element) ;

Return Value Data stored in the element.

Description Macro that evaluates to the data stored in the element of a circu-
lar list specified by element.

Complexity o)

clist_next

CListElmt *clist_next (const CListElmt *element) ;

Return Value Element following the specified element.

Description Macro that evaluates to the element of a circular list following the
element specified by element.

Complexity o)

Implementation and Analysis
of Circular Lists

As with a singly-linked list, each element of a circular list consists of two parts: a
data member and a pointer to the next element. The structure CListElmt

Implementation and Analysis of Circular Lists 85

represents an individual element of a circular list (see Example 5-6). As you would
expect, this structure has two members corresponding to those just mentioned.
The structure CList is the circular list data structure (see Example 5-6). This struc-
ture is similar to the one used for singly-linked lists, but it does not contain the
tail member.

Example 5-6. Header for the Circular List Abstract Datatype

/***

* *
K clist.h ———=————————— *
* *

***/

#ifndef CLIST H
#define CLIST H

#include <stdlib.h>

/***

* *
* Define a structure for circular list elements. *
* *

***/

typedef struct CListElmt_ {

void *data;
struct CListElmt_ *next;

} CListElmt;

/***

* *
* Define a structure for circular lists. *
* *

***/

typedef struct CList_ {

int size;

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

CListElmt *head;

} CList;

/***

* *
ottt Public Interface --------——-————————om— *
* *

***/

86 Chapter 5. Linked Lists

Example 5-6. Header for the Circular List Abstract Datatype (continued)

void clist_init(CList *list, void (*destroy) (void *data));

void clist_destroy(CList *list);

int clist_ins_next (CList *1list, CListElmt *element, const void *data);
int clist_rem next (CList *1list, CListElmt *element, void **data);
#define clist_size(list) ((list)->size)

#define clist_head(list) ((list)->head)

#define clist_data(element) ((element)->data)
#define clist_next (element) ((element)->next)
#endif

clist_init

The clist_init operation initializes a circular list so that it can be used in other
operations (see Example 5-7). Initialization is the same as with a singly-linked list
that is not circular, with the exception that there is no tail member to initialize.

The runtime complexity of clist_init is O(1) because all of the steps in initializing a
circular list run in a constant amount of time.

clist_destroy

The clist_destroy operation destroys a circular list (see Example 5-7). Primarily this
means removing all elements from the list. The function passed as destroy to
clist_init is called once for each element as it is removed, provided destroy was
not set to NULL.

The runtime complexity of clist_destroy is O(n), where n is the number of ele-
ments in the list. This is because the O(1) operation clist_rem_next must be called
once for each element.

clist_ins next

The clist_ins_next operation inserts an element into a circular list just after a speci-
fied element (see Example 5-7). Inserting an element in a singly-linked circular list
is similar to inserting one in a singly-linked list that is not circular. The primary dif-
ference occurs when we are inserting into an empty list. In this case, we must set
the next pointer of the inserted element to point back to itself. This allows for the
circular traversal of a list containing even just one element. It also ensures the
proper insertion of elements in the future.

Implementation and Analysis of Circular Lists 87

The runtime complexity of clist_ins_next is O(1) because all of the steps in insert-
ing an element into a circular list run in a constant amount of time.

clist_ rem_mnext

The clist_rem_next operation removes from a circular list the element just after a
specified element (see Example 5-7). Removing an element from a singly-linked
circular list is similar to removing an element from one that is not circular.

The runtime complexity of clist_rem_next is O(1) because all of the steps in
removing an element from a circular list run in a constant amount of time.

clist_size, clist_bhead, clist_data, and clist_next

These macros implement some of the simpler circular list operations (see
Example 5-0). Generally, they provide an interface for accessing and testing mem-
bers of the CList and CListElmt structures.

The runtime complexity of these operations is O(1) because accessing and testing
members of a structure are simple tasks that run in a constant amount of time.

Example 5-7. Implementation of the Circular List Abstract Datatype

/***

* *
X e clist.c ———=—————-—-—-—-—mmm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "clist.h"

/***

* *
B ittt i clist_init -------—-—mm—mm *
* *

***/

void clist_init(CList *1list, void (*destroy) (void *data)) {

/***

* *
* Initialize the list. *
* *

***/

list->size = 0;
list->destroy = destroy;
list->head = NULL;

88 Chapter 5: Linked Lists

Example 5-7. Implementation of the Circular List Abstract Datatype (continued)

return;

/***
* *
F e clist_destroy -----—-—----———-—————mm——— *
* *

***/

void clist_destroy (CList *1list) {
void *data;

/***

* *
* Remove each element. *
* *

***/

while (clist_size(list) > 0) {

if (clist_rem next(list, list->head, (void **)&data) == 0 && list->destroy
!= NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

list->destroy(data) ;

}
}
/***
* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

memset (1ist, 0, sizeof(CList));

return;

/***
* *
F e clist_ins next ---——-----————-————————— *
* *

***/

Implementation and Analysis of Circular Lists

Example 5-7. Implementation of the Circular List Abstract Datatype (continued)

int clist_ins_next (CList *list, CListElmt *element, const void *data) {

CListElmt *new_element;

/***

* *
* Allocate storage for the element. *
* *

***/

if ((new_element = (CListElmt *)malloc (sizeof (CListElmt))) == NULL)
return -1;

/***

* *
* Insert the element into the list. *
* *

***/

new_element->data = (void *)data;

if (clist_size(list) == 0) {

/**

* *
* Handle insertion when the list is empty. *
* *

**/

new_element->next = new_element;
list->head = new_element;

else {

/**

* *
* Handle insertion when the list is not empty. *
* *

‘k***/

new_element->next = element->next;
element->next = new_element;

}

/***
* *
* Adjust the size of the list to account for the inserted element. *
* *

***/

90 Chapter 5: Linked Lists

Example 5-7. Implementation of the Circular List Abstract Datatype (continued)

list->size++;

return 0;

/***
* *
K clist_rem next -------————————————————————o *
* *

‘k**/

int clist_rem next (CList *1list, CListElmt *element, void **data) {

CListElmt *0ld_element;

/***

* *
* Do not allow removal from an empty list. *
* *

***/

if (clist_size(list) == 0)
return -1;

/***

* *
* Remove the element from the list. *
* *

***/

*data = element->next->data;

if (element->next == element) {

/**

* *
* Handle removing the last element. *
* *

**/

old _element = element->next;
list->head = NULL;

else {

/**

* *
* Handle removing other than the last element. *
* *

‘k***/

Circular List Example: Second-Chance Page Replacement 91

Example 5-7. Implementation of the Circular List Abstract Datatype (continued)

0ld_element = element->next;

element->next = element->next->next;

if (old_element == clist_head(list))
list->head = o0ld_element->next;

/**‘k**

* *
* Free the storage allocated by the abstract datatype. *
* *

***/

free(old_element) ;

/***

* *
* Adjust the size of the list to account for the removed element. *
* *

***/
list->size--;

return 0;

Circular List Example: Second-Chance
Page Replacement

Earlier we saw how a singly-linked list might be used to manage frame allocation
in a virtual memory system. One issue not addressed, however, was how a system
allocates new frames when the list of available frames is empty. To deal with this,
a system frees a frame by moving a page from physical memory to a disk called a
swap disk. The system uses a page-replacement algorithm to determine which
frame is best to free at a given moment. One example of a page-replacement algo-
rithm is the second-chance algorithm, sometimes called the clock algorithm.

Ideally, it would be great if all pages of a process resided in physical memory at
once, but usually this is not possible. Typically, many processes may be running
on a system simultaneously, all competing for its physical memory. Sometimes
even a single process may have such a large address space that it cannot fit itself
into physical memory. Faced with having to replace a page at some point, then, it
should seem reasonable that the best page for a system to replace is the one that it
will not access for the longest time to come. However, since it can’t predict the
future, a system sometimes uses an assumption that the past will be a reasonable
indication of the future and replaces the page that has been accessed least
recently. This is known as least recently used, or LRU, page replacement.

92 Chapter 5: Linked Lists

The second-chance algorithm is one approach to implementing an LRU page-
replacement scheme. It works by maintaining a circular list of pages that are cur-
rently in physical memory. For simplicity, consider each element in the list to store
only a page number and a reference value, which is set to either 1 or 0. In prac-
tice, each element contains other information as well. All pages initially have a ref-
erence value of 0. Whenever the page is accessed by the system (as in a process
reading from or writing to the page, for example), its reference value is set to 1.

When a frame is needed, the system uses the circular list and the reference values
it maintains to determine which page should give up its frame. To determine this,
it moves through the list until it finds a reference value of 0. As it traverses each
page, the system resets the page’s reference value from 1 to 0. Once it encounters
a 0, it has found a page that has not been accessed by the system since the last
cycle through the list; thus, it is the page least recently used. This page is then
replaced in physical memory with the new page, and the new page is inserted in
place of the old one in the list. If all pages have been accessed since the algo-
rithm was last run, the system ends up making a complete cycle through the list
and replaces the page at which it started.

The example here is an implementation of this page-replacement strategy. It uses a
function called replace_page (see Examples 5-8 and 5-9). The function accepts a
single argument called current, which points to the element of a circular list con-
taining the page at which to begin searching (see Figure 5-8). As the list is tra-
versed, the algorithm inspects the reference member of the Page structure
stored in each element to determine whether it is 1 or 0. If it is 1, it resets it to 0
and goes to the next page; if it is 0, it has found the page to replace. Eventually, if
all pages have been traversed, the circular nature of the list will land the algo-
rithm back on the page at which it began. This time the page’s reference value will
be 0 (because it was reset when it was first encountered), and it is returned as the
page to be replaced. Upon return, current points to the page at which the search
ended. This becomes the page at which to begin the next time a frame is neededA
circular list models this problem nicely because it allows a system to cycle through
pages just as the algorithm requires. The runtime complexity of replace_page is
O(n), where n is the number of pages in the circular list. This is because, in the
worst case, the algorithm may need to make a complete cycle through the list to
find the page to replace.

Example 5-8. Implementation of Second-Chance Page Replacement

/***

* *
X page.C ———----mm s m oo *
* *

***/

#include "clist.h"
#include "page.h"

Circular List Example: Second-Chance Page Replacement

93

Example 5-8. Implementation of Second-Chance Page Replacement (continued)

/***

* *
e replace_page ---—--—-—-——-————————————————————— *
* *

‘k**/

int replace page (CListElmt **current) {

/***

* *
* (Circle through the list of pages until one is found to replace. *
* *

***/

while (((Page *) (*current)->data)->reference != 0) {

((Page *) (*current)->data)->reference = 0;
*current = clist_next (*current) ;

return ((Page *) (*current)->data)->number;

Example 5-9. Header for Second-Chance Page Replacement

/***

* *
* e page.h -——-—-——-—-———— *
* *

***/

#ifndef PAGE_H
#define PAGE_H

#include "clist.h"

/***

* *
* Define a structure for information about pages. *
* *

***/

typedef struct Page_ {

int number ;
int reference;

} Page;

94 Chapter 5: Linked Lists

Example 5-9. Header for Second-Chance Page Replacement (continued)

/***

* *
K Public Interface -----------———---m—— *
* *

***/

int replace page (CListElmt **current) ;

#endif

o current

0 current

m 1 page number [T reference value

Figure 5-8. Second-chance page-replacement algorithm (a) at the start of a run and (b) after
a page has been replaced

Questions and Answers

Q: Some advantages of linked lists over arrays have already been mentioned. How-
ever, there are occasions when arrays bave advantages over linked lists. When
are arrays preferable?

A: Linked lists present advantages over arrays when we expect to insert and
remove elements frequently. However, arrays themselves offer some advan-
tages when we expect the number of random accesses to overshadow the
number of insertions and deletions. Arrays are strong in this case because their
elements are arranged contiguously in memory. This contiguous arrangement
allows any element to be accessed in O(1) time by using its index. Recall that
to access an element of a linked list, we must have a pointer to the element
itself. Getting a pointer to an element can be expensive if we do not know a
great deal about the pattern in which the elements will be accessed. In
practice, for many applications, we end up traversing at least part of the list.

Questions and Answers 95

Arrays are also advantageous when storage is at a premium because they do
not require additional pointers to keep their elements “linked” together.

Q: How do the operations of linked lists for inserting, removing, and accessing ele-
ments compare with similar ones for arrays?

A: Recall that all of the operations presented for each of the linked list variations
in this chapter had runtime complexities of O(1), with the exception of the
destroy operations. Indeed, this seems tough to beat. What the analyses for
linked lists do not show, however, is that for many linked list operations,
retrieving a pointer to a specific element in the list can involve a significant
cost. For example, if we are not careful, in the worst case we could end up
traversing the entire list at a cost of O(7), where 7 is the number of elements
in the list. On the other hand, a well-suited application, such as the frame
management example presented in this chapter, may have virtually no over-
head for this at all. Therefore, it is important to look at the specifics of the
application. With arrays, insertion and removal are both O(#n) operations
because in the worst case of accessing position 0, all other elements must be
moved one slot to adjust for the addition or deletion of the element. Access-
ing an element in an array is an O(1) operation, provided we know its index.

Q: Suppose we would like to build a list_ins_pos function on top of the linked list
implementation in this chapter to insert an element after a specified position,
akin to an array. For example, suppose we would like to specify that an ele-
ment should be inserted after the tenth element instead of providing a pointer to
it. What is the runtime complexity of this function?

A: This function has a runtime complexity of O(7) because generally the only
means of knowing when we are at a specific position in a linked list is to start
at the head and count the number of elements while moving to it. Here is an
application that suffers profoundly from the access problem described in the
previous question. That is, the insertion operation itself is O(1), but getting to
the required position in the list is O(#n).

Q: Recall that list_rem_next removes an element from a singly-linked list after a
specified element. Why is no operation provided for singly-linked lists to remove
the specified element itself, analogous to the dlist_remove operation for doubly-
linked lists? (One can ask the same for the circular list implementation.)

A: In the singly-linked list and circular list implementations, each element does
not have a pointer to the one preceding it. Therefore, we cannot set the pre-
ceding element’s next pointer to the element after the one being removed. An
alternative approach to the one we selected would be to start at the head
element and traverse the list, keeping track of each element preceding the
next until the element to be removed is encountered. However, this solution is

96

Chapter 5: Linked Lists

unattractive because the runtime complexity of removing an element from a
singly-linked list or circular list degrades to O(7). Another approach would be
to copy the data of the element following the specified element into the one
specified and then remove the following element. However, this seemingly
benign O(1) approach generates the dangerous side effect of rendering a
pointer into the list invalid. This could be a surprise to a developer maintain-
ing a pointer to the element after the one thought to be removed! The
approach we selected, then, was to remove the element after the specified
one. The disadvantage of this approach is its inconsistency with the dlist_
remove operation of the doubly-linked list implementation. However, this is
addressed by the naming convention, using _rem_next as the suffix for remov-
ing an element after the one specified, and _remove to indicate that the speci-
fied element itself will be removed. In a doubly-linked list, recall that we can
remove precisely the element specified because each element has a pointer to
the one that precedes it.

Recall that each of the linked list data structures presented in this chapter bas a
size member. The List and DList data structures also contain a tail mem-
ber. Why are each of these members included?

By updating these members dynamically as elements are inserted and
removed, we avoid the O(») runtime complexity of traversing the list each
time its tail element or size is requested. By maintaining these members, fetch-
ing a list’s tail element or size becomes an O(1) operation without adding any
complexity to the operations for inserting and removing elements.

Insertion before the head of a list using NULL for the element argument is used
only in the singly-linked list implementation. Why is this not necessary for
doubly-linked lists or circular lists?

Insertion before the head element of a doubly-linked list is possible using the
prev pointer of the head element itself. In a circular list, an element is inserted
before the head by inserting the element after the last element using clist_ins_
next. Remember, in a circular list, the last element points back to the first
element.

Related Topics

Doubly-linked circular lists

Variations of the circular list presented in this chapter, which was singly-
linked. Doubly-linked circular lists allow traversals both forward and back-
ward, as well as in a circular fashion.

Related Topics 97

Linked list arrays
A dynamic approach to multidimensional arrays. Elements maintain additional
pointers as well as positional information to keep the array properly linked
and accessible.

Multilists
Data structures allowing greater flexibility in how elements are linked together.
For example, multiple pointers might be used to form several lists through a
set of elements, each representing a separate ordering of the elements.

Cursors
One approach to simulating linked allocation in languages that do not inher-
ently support it. Cursors are useful in FORTRAN and other languages without
pointer types.

Stacks and Queues

Often it is important to store data so that when it is retrieved later, it is automati-
cally presented in some prescribed order. One common way to retrieve data is in
the opposite order as it was stored. For example, consider the data blocks a pro-
gram maintains to keep track of function calls as it runs. These blocks are called
activation records. For a set of functions {f;, f;, 5} in which £ calls £, and f; calls f;,
a program allocates one activation record each time one of the functions is called.
Each record persists until its function returns. Since functions return in the oppo-
site order as they were called, activation records are retrieved and relinquished in
the opposite order as they were allocated. Another common way to retrieve data is
in the same order as it was stored. For example, this might be useful with a bunch
of things to do; often we want to do the first item first and the last item last. Stacks
and queues are simple data structures that help in such common situations.

This chapter covers:

Stacks
Efficient data structures for storing and retrieving data in a last-in, first-out, or
LIFO, order. This allows us to retrieve data in the opposite order as it was
stored.

Queues
Efficient data structures useful for storing and retrieving data in a first-in, first-
out, or FIFO, order. This allows us to retrieve data in the same order as it was
stored.

Some applications of stacks and queues are:

Semaphores
Programmatic devices for synchronizing access to shared resources. When a
process encounters a semaphore, it performs a test to determine whether

98

Description of Stacks 99

someone else is currently accessing the resource the semaphore protects. If so,
the process blocks and waits until another process signals that the resource is
available. Since many processes may be waiting on a resource, some imple-
mentations of semaphores use a queue to determine who is next to go.

Event bandling (illustrated in this chapter)
A critical part of real-time programming. In real-time systems, events fre-
quently occur when the system is not quite ready to handle them. Therefore, a
queue keeps track of events so that they can be processed at a later time in
the order they were received.

X Window System
A network-based, graphical window system in which graphics are displayed
on servers under the direction of client programs. X is a specific example of a
system that does event handling. To manage events, it uses a queue to store
events until they can be processed.

Producer-consumer problem
A generalization for modeling cooperating processes wherein one process, the
producer, writes to a queue shared by another process, the consumer, which
reads from it. The producer-consumer problem is a classic one to study
because many applications can be described in terms of it.

Function calls in C
An essential part of modular programming. When we call a function in a C
program, an activation record containing information about the call is pushed
onto a stack called the program stack. When a function terminates, its activa-
tion record is popped off the stack. A stack is the perfect model for this
because when functions call one another, they return in the opposite order as
they were called.

Abstract stack machines
An abstraction used by compilers and hand-held calculators to evaluate
expressions (see the example in Chapter 9, Trees).

Description of Stacks

The distinguishing characteristic of a stack is that it stores and retrieves data in a
last-in, first-out, or LIFO, manner. This means that the last element placed on the
stack is the first to be removed. A convenient way to think of a stack is as a can of
tennis balls. As we place balls in the can, the can is filled up from the bottom to
the top. When we remove the balls, the can is emptied from the top to the bot-
tom. Furthermore, if we want a ball from the bottom of the can, we must remove
each of the balls above it. In computing, to place an element on the top of a stack,
we push it; to remove an element from the top, we pop it (see Figure 6-1).

100 Chapter 6: Stacks and Queues

Sometimes it is useful to inspect the element at the top of a stack without actually
removing it, in which case we peek at it.

fop

fop

top

3
5

(1] (2] ©

Figure 6-1. A stack (1) with some elements already stacked; (2) after pushing 8, 9, and 2;
and (3) after popping 2 and 9

Vi | |G |[©O |N
v | | O

Interface for Stacks

stack_init

void stack_init(Stack *stack, void (*destroy) (void *data)) ;

Return Value None.

Description Initializes the stack specified by stack. This operation must be
called for a stack before the stack can be used with any other operation. The
destroy argument provides a way to free dynamically allocated data when stack_
destroy is called. For example, if the stack contains data dynamically allocated
using malloc, destroy should be set to free to free the data as the stack is
destroyed. For structured data containing several dynamically allocated members,
destroy should be set to a user-defined function that calls free for each dynami-
cally allocated member as well as for the structure itself. For a stack containing
data that should not be freed, destroy should be set to NULL.

Complexity o)

stack_destroy

void stack_destroy (Stack *stack);
Return Value None.
Description Destroys the stack specified by stack. No other operations are

permitted after calling stack_destroy unless stack_init is called again. The stack_
destroy operation removes all elements from a stack and calls the function passed

Interface for Stacks 101

as destroy to stack_init once for each element as it is removed, provided
destroy was not set to NULL.

Complexity O(n), where #n is the number of elements in the stack.

stack_push

int stack_push(Stack *stack, const void *data);

Return Value 0 if pushing the element is successful, or —1 otherwise.

Description Pushes an element onto the stack specified by stack. The new
element contains a pointer to data, so the memory referenced by data should
remain valid as long as the element remains in the stack. It is the responsibility of
the caller to manage the storage associated with data.

Complexity o)

stack_pop

int stack_pop(Stack *stack, void **data) ;

Return Value 0 if popping the element is successful, or —1 otherwise.

Description Pops an element off the stack specified by stack. Upon return,
data points to the data stored in the element that was popped. It is the responsi-
bility of the caller to manage the storage associated with the data.

Complexity o)

stack_peek

void *stack_peek (const Stack *stack);

Return Value Data stored in the element at the top of the stack, or NULL if the
stack is empty.

Description Macro that evaluates to the data stored in the element at the top
of the stack specified by stack.

Complexity o)

stack_size

int stack_size(const Stack *stack);

Return Value Number of elements in the stack.

Description Macro that evaluates to the number of elements in the stack speci-
fied by stack.

Complexity o)

102 Chapter 6: Stacks and Queues

Implementation and Analysis of Stacks

The structure Stack is the stack data structure. One way to implement a stack is
as a linked list. A simple way to do this is to typedef Stack to List (see
Example 6-1). In addition to simplicity, using a typedef has the benefit of making
the stack somewhat polymorphic. Informally, polymorphism is a principle nor-
mally associated with object-oriented languages that allows an object (a variable)
of one type to be used in place of another. This means that because the stack is a
linked list, and hence has the same properties as a linked list, we can use linked
list operations on it in addition to those of a stack. Thus, the stack can behave like
a linked list when we want it to.

As an example, suppose we want to traverse the elements of a stack, perhaps so
we can display them or determine whether a specific element resides in the stack.
To do this, we get the element at the head of the list using /ist_head and traverse
the list using /ist_next. Using only stack operations, we would have to pop the ele-
ments one at a time, inspect them, and push them onto another stack temporarily.
Then, after accessing all of the elements, we would need to rebuild the original
stack by popping the elements off the temporary stack and pushing them back
onto the original one. This method would be less efficient and undoubtedly would
look less than intuitive in a program.

Example 6-1. Header for the Stack Abstract Datatype

/***

* *
K stack.h - *
* *

***/

#ifndef STACK_H
#define STACK_H

#include <stdlib.h>

#include "list.h"

/***

* *
* Implement stacks as linked lists. *
* *

***/

typedef List Stack;

/***

* *
K Public Interface --------——-——————mooe——— *
* *

***/

Implementation and Analysis of Stacks 103

Example 6-1. Header for the Stack Abstract Datatype (continued)

#define stack_init list_init

#define stack_destroy list_destroy

int stack_push(Stack *stack, const void *data);

int stack_pop(Stack *stack, void **data);

#define stack_peek(stack) ((stack)->head == NULL ? NULL : (stack)->head->data)
#define stack_size list_size

#endif

stack_init

The stack_init operation initializes a stack so that it can be used in other opera-
tions (see Example 6-1). Since a stack is a linked list and requires the same initial-
ization, stack_init is defined to [list_init.

The runtime complexity of stack_init is the same as /ist_init, or O(1).

stack_destroy

The stack_destroy operation destroys a stack (see Example 6-1). Since a stack is a
linked list and requires being destroyed in the same manner, stack_destroy is
defined to [ist_destroy.

The runtime complexity of stack_destroy is the same as [list_destroy, or O(n),
where 7 is the number of elements in the stack.

stack_push

The stack_push operation pushes an element onto the top of a stack by calling
list_ins_next to insert an element pointing to data at the head of the list (see
Example 6-2).

The runtime complexity of stack_push is the same as /list_ins_next, or O(1).

stack_pop

The stack_pop operation pops an element off the top of a stack by calling /list_
rem_next to remove the element at the head of the list (see Example 6-2). The
list_rem_next operation sets data to point to the data from the element removed.

The runtime complexity of stack_pop is the same as list_rem_next, or O(1).

104 Chapter 6: Stacks and Queues

stack_peek, stack_size

These macros implement two simple stack operations (see Example 6-1). The
stack_peek macro provides a way to inspect the element at the top of a stack with-
out actually popping it, and stack_size evaluates to the size of a stack. Both of
these operations work by accessing members of the Stack structure.

The runtime complexity of these operations is O(1) because accessing members of
a structure is a simple task that runs in a constant amount of time.

Example 6-2. Implementation of the Stack Abstract Datatype

/***

* *
e it stack.c -—--—--—mm—mmmm o *
* *

***/

#include <stdlib.h>

#include "list.h"
#include "stack.h"

/***

* *
* e stack_push --—--------—-———- *
* *

***/

int stack_push(Stack *stack, const void *data) {

/***

* *
* Push the data onto the stack. *
* *

***/

return list_ins_next (stack, NULL, data);

/***

* *
* e stack_pop ---——-———————————-————— *
* *

***/

int stack_pop(Stack *stack, void **data) {

/***

* *
* Pop the data off the stack. *
* *

***/

Interface for Queues 105

Example 6-2. Implementation of the Stack Abstract Datatype (continued)

return list_rem next (stack, NULL, data);

}

Description of Queues

The distinguishing characteristic of a queue is that it stores and retrieves data in a
Sfirst-in, first-out, or FIFO, manner. This means that the first element placed in the
queue is the first to be removed. A convenient way to think of a queue is as a line
at the post office. In fact, anyone who has been to England knows that to form a
line there is known colloquially as “queuing up.” As the line grows, newcomers
join in at the tail. When a clerk becomes available, the person at the head of the
line goes next. In computing, to place an element at the tail of a queue, we
enqueue it; to remove an element from the head, we dequeue it (see Figure 6-2).
Sometimes it is useful to inspect the element at the head of a queue without actu-
ally removing it, in which case we peek at it.

o head tail
5 3
0 head tail
5 3 8 9 2
0 head tail
8 9 2

Figure 6-2. A queue (1) with some elements already enqueued; (2) after enqueuing 8, 9, and
2; and (3) after dequeuing 5 and 3

Interface for Queues

queue_init

void queue_init (Queue *queue, void (*destroy) (void *data)) ;

Return Value None.

Description Initializes the queue specified by gueue. This operation must be
called for a queue before the queue can be used with any other operation. The

106 Chapter 6: Stacks and Queues

destroy argument provides a way to free dynamically allocated data when
queue_destroy is called. Tt works in a manner similar to that described for stack_
destroy. For a queue containing data that should not be freed, destroy should be
set to NULL.

Complexity o

queue_destroy

void queue_destroy (Queue *queue) ;

Return Value None.

Description Destroys the queue specified by queue. No other operations are
permitted after calling gueue_destroy unless queue_init is called again. The queue_
destroy operation removes all elements from a queue and calls the function passed

as destroy to queue_init once for each element as it is removed, provided
destroy was not set to NULL.

Complexity O(n), where 7 is the number of elements in the queue.

queue_enqueue

int queue_enqueue (Queue *queue, const void *data) ;

Return Value 0 if enqueuing the element is successful, or —1 otherwise.

Description Enqueues an element at the tail of the queue specified by gueue.
The new element contains a pointer to data, so the memory referenced by data
should remain valid as long as the element remains in the queue. It is the respon-
sibility of the caller to manage the storage associated with data.

Complexity o)

queue_dequeue

int queue_dequeue (Queue *queue, void **data) ;

Return Value 0 if dequeuing the element is successful, or —1 otherwise.
Description Dequeues an element from the head of the queue specified by
gueue. Upon return, data points to the data stored in the element that was

dequeued. It is the responsibility of the caller to manage the storage associated
with the data.

Complexity o

Implementation and Analysis of Queues 107

queue_peek

void *queue_peek (const Queue *queue) ;

Return Value Data stored in the element at the head of the queue, or NULL if
the queue is empty.

Description Macro that evaluates to the data stored in the element at the head
of the queue specified by queue.

Complexity o)

queue_size

int queue_size(const Queue *queue);

Return Value Number of elements in the queue.

Description Macro that evaluates to the number of elements in the queue
specified by queue.

Complexity o)

Implementation and Analysis of Queues

The structure Queue is the queue data structure. It is implemented as a typedef to
List (see Example 6-3), just as was described for stacks.

Example 6-3. Header for the Queue Abstract Datatype

/***

* *
K e queue.h ———--—————-—— *
* *

‘k**‘k*/

#ifndef QUEUE_H
#define QUEUE_H

#include <stdlib.h>

#include "list.h"

/**‘k**

* *
* Implement queues as linked lists. *
* *

***/

typedef List Queue;

108 Chapter 6: Stacks and Queues

Example 6-3. Header for the Queue Abstract Datatype (continued)

/***

* *
K Public Interface -----------———---m—— *
* *

***/

#define queue_init list_init

#define queue destroy list_destroy

int queue_enqueue (Queue *queue, const void *data);

int queue_dequeue (Queue *queue, void **data);

#define queue_peek (queue) ((queue)->head == NULL ? NULL : (queue)->head->data)
#define queue_size list_size

#endif

queue_init

The qgueue_init operation initializes a queue so that it can be used in other opera-
tions (see Example 6-3). Since a queue is a linked list and requires the same initial-
ization, gueue_init is defined to /list_init.

The runtime complexity of queue_init is the same as list_init, or O(1).

queue_destroy

The queue_destroy operation destroys a queue (see Example 6-3). Since a queue is
a linked list and requires being destroyed in the same manner, queue_destroy is
defined to [ist_destroy.

The runtime complexity of queue_destroy is the same as [list_destroy, or O(n),
where 7 is the number of elements in the queue.

queue_enqueue

The queue_enqueue operation enqueues an element at the tail of a queue by call-
ing list_ins_next to insert an element pointing to data at the tail of the list (see
Example 6-4).

The runtime complexity of queue_enqueue is the same as /list_ins_next, or O(1).

queue_dequeue

The queue_dequeue operation dequeues an element from the head of a queue by
calling [list_ rem_next to remove the element at the head of the list (see

Implementation and Analysis of Queues 109

Example 6-4). The list_rem_next operation sets data to point to the data from the
element removed.

The runtime complexity of gueue_dequeue is the same as list_rem_next, or O(1).

queue_peek, queue_size

These macros implement two simple queue operations (see Example 6-3). The
queue_peek macro provides a way to inspect the element at the head of a queue
without actually dequeuing it, and queue_size evaluates to the size of a queue.
Both of these operations work by accessing members of the Queue structure.

The runtime complexity of these operations is O(1) because accessing members of
a structure is a simple task that runs in a constant amount of time.

Example 6-4. Implementation of the Queue Abstract Datatype

/***

* *
e queue.C —————————---—————— - *
* *

***/

#include <stdlib.h>

#include "list.h"
#include "queue.h"

/***

* *
* queue_enqueue -——----------—-—-———— - oo *
* *

***/

int queue_enqueue (Queue *queue, const void *data) {

/***

* *
* Enqueue the data. *
* *

***/

return list_ins_next (queue, list_tail (queue), data);

/***
* *
* queue_dequeue -—--—-----—-———————————— oo *
* *

***/

110 Chapter 6: Stacks and Queues

Example 6-4. Implementation of the Queue Abstract Datatype (continued)

int queue_dequeue (Queue *queue, void **data) {

/***

* *
* Dequeue the data. *
* *

***/

return list_rem next (queue, NULL, data);

}

Queue Example: Event Handling

One popular application of queues is handling events in event-driven applica-
tions. Event-driven applications execute largely under the direction of real-time
occurrences called events. In a graphical user interface developed in Java, X, or
Windows, for example, the behavior of an application depends a great deal on
key presses, mouse movements, and other events triggered by the user. Other
examples of event-driven applications occur frequently in control systems such as
those found in aircraft or factory equipment.

In nearly all event-driven applications, events can occur at any moment, SO queues
play an important role in storing events until an application is ready to deal with
them. A queue works well for this because applications handle events more or less
in the same order as they occur.

Example 6-5 presents two functions for handling events: receive_event and
process_event. Both functions operate on a queue containing events of type Event.
Event is defined in event.h, which is not shown. An application calls receive_event
to enqueue an event it has been notified about. Exactly how an application is noti-
fied of an event varies, but notification often begins with a hardware interrupt.
When the application decides it is time to process an event, it calls process_event.
Inside of process_event, an event is dequeued from the event queue and is passed
to an application-specific dispatch function. The dispatch function is passed to
process_event as the parameter dispatch. The purpose of the dispatch function is
to take the appropriate action to handle the event. There are two approaches
dispatch can take to do this: it can process the event synchronously, so that no
other processing is performed until handling the event is completed; or it can pro-
cess the event asynchronously, in which case it starts a separate process to handle
the event while the main process moves on. Asynchronous event handling usually
is more efficient, but it requires particularly careful coordination between the main
and subordinate processes.

Queue Example: Event Handling 111

The runtime complexity of receive_event is O(1) because it simply calls the O(1)
queue operation queue_enqueue. The runtime complexity of process_event
depends on the dispatch function it invokes. The rest of process_event runs in a
constant amount of time.

Example 6-5. Implementation of Functions for Handling Events

/***

* *
e it events.c -—--—------—--m—m——m— oo *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "event.h"
#include "events.h"

#include "queue.h"

/***

* *
Bt receive_event —-----—————-—————————— *
* *

***/

int receive_event (Queue *events, const Event *event) {

Event *new_event;

/***

* *
* Allocate space for the event. *
* *

***/

if ((new_event = (Event *)malloc(sizeof (Event))) == NULL)
return -1;

/***

* *
* Make a copy of the event and enqueue it. *
* *

***/

memcpy (new_event, event, sizeof (Event));

if (queue_enqueue (events, new_event) != 0)
return -1;

return 0;

112 Chapter 6: Stacks and Queues

Example 6-5. Implementation of Functions for Handling Events (continued)

/***

* *
e process_event —-—-—----—————————————————————— *
* *

***/
int process_event (Queue *events, int (*dispatch) (Event *event)) ({
Event *event;

if (queue_size(events) == 0)

/**

* *
* Return that there are no events to dispatch. *
* *

**/

return -1;
else {

if (queue_dequeue (events, (void **)&event) != 0)

/***

* *
* Return that an event could not be retrieved. *
* *

***/

return -1;

else {

/***

* *
* Call a user-defined function to dispatch the event. *
* *

***/

dispatch (event) ;
free(event) ;

return 0;

Questions and Answers 113

Questions and Answers

O:

A:

If Stack and Queue are not made typedefs of List, what are the implications
Jfor the stack and queue abstract datatypes?

Making Stack and Queue both typedefs of List has some nice benefits, but
alternative approaches could be chosen to implement these data structures.
For example, Stack and Queue could be made their own unique structures
consisting of the same members as List. However, this would not allow the
use of linked list operations in the implementation. Another approach would
be to implement stacks and queues as structures that each contain a linked list
member. This would allow the use of linked list operations in the implementa-
tion, but it does not model very nicely what stacks and queues really are. That
is, stacks and queues do not have linked lists as part of them; they are linked
lists.

Why is there no stack_next macro for stacks and no queue_next macro for
queues? These operations would have provided a way to traverse the members of
a stack or queue, respectively.

By implementing the Stack and Queue data structures as typedefs of List,
there is no need for these operations because we can call /list_next. This is
good because traversing the members of a stack or queue is not generally part
of the normal behavior of these abstract datatypes. By making a developer use
operations of a linked list when a stack or queue needs to act like one, we
maintain a pure interface to the stack and queue.

Sometimes we need to remove an element from a queue out of sequence (i.e.,
Sfrom somewhere other than the bead). What would be the sequence of queue
operations to do this if in a queue of five requests, (reqq, . . ., reqs), we wish to
process reqq, reqs, and reqs immediately while leaving req, and reqy in the
queue in order? What would be the sequence of linked list operations to do this
if we morph the queue into a linked list?

Using queue operations, we dequeue req; for processing, dequeue reg, and
re-enqueue it, dequeue regs for processing, dequeue reg; and re-enqueue it,
and dequeue regs for processing. Because we re-enqueued regq, and regy, the
queue now contains only these requests in order. Removing requests out of
sequence is more intuitive when we treat the queue as a linked list and apply
linked list operations to it. In this case, we simply call /ist_next to traverse the
requests one at a time and /ist_rem_next to remove the appropriate requests.

114 Chapter 6: Stacks and Queues

Related Topics

Polymorphism
A principle that allows an object (a variable) of one type to be used in place
of another provided the two share some common characteristics. Polymor-
phism is an important part of object-oriented languages. However, even in
languages that do not support it inherently, we can apply certain techniques to
provide polymorphic behavior to some degree.

Double-ended queues
Often called deques (pronounced “decks”) for short. A deque is a more flexi-
ble queue that allows insertions and deletions at both its head and tail.

Circular queues
Queues akin to circular lists. As with circular lists, circular queues do not have
a tail. Instead, the last element in the queue is linked back to the first element
so that the queue can be traversed in a circular fashion.

Sets

Sets are collections of distinguishable objects, called members, grouped together
because they are in some way related. Two important characteristics of sets are
that their members are unordered and that no members occur more than once.
Sets are an important part of discrete mathematics, an area of mathematics particu-
larly relevant to computing. In computing, we use sets to group data, especially
when we plan to correlate it with other data in the future. Some languages, such
as Pascal, support sets intrinsically, but C does not. Therefore, this chapter pre-
sents a set abstract datatype.

This chapter covers:

Set principles
The fundamental mathematics describing sets. Like other mathematical objects,
sets can be described in terms of some definitions, basic operations, and
properties.

Sets
Abstract datatypes based on the mathematical concept of a set. Sets are unor-
dered collections of related members in which no members occur more than
once.

Some applications of sets are:

Data correlation
Determining interesting relationships between sets of data. For example, the
intersection of two sets tells which members are present in both sets. The dif-
Sference of two sets tells which members of the first set do not appear in the
second set.

115

116 Chapter 7: Sets

Set covering (illustrated in this chapter)
An optimization problem that nicely models many problems of combinatorics
and resource selection. For example, imagine trying to form a team from a
large set of candidate players, each with a certain set of skills. We might use
the set-covering abstraction to form the smallest team possible possessing a
certain set of skills overall. That is, for any skill required by the team as a
whole, at least one player on the team should possess the skill.

Mathematics with sets
Specifically, combinatorics and probability. Sets have their own principles and
rules that computers help apply. Computers are especially useful when work-
ing with large sets, which may contain many thousands of members. Opera-
tions with sets of this size, like operations in mathematics with large numbers,
are very tedious to carry out by hand.

Graphs
Data structures typically used to model problems defined in terms of relation-
ships or connections between objects (see Chapter 11, Graphs). The most
common way to represent a graph is using adjacency lists. An adjacency list
contains the vertices adjacent to a single vertex. One way to represent an adja-
cency list is as a set of adjacent vertices.

Graph algorithms
Algorithms that solve problems modeled by graphs (see Chapter 16, Graph
Algoritbms). Frequently, graph algorithms use sets to group vertices or edges
together. For example, Kruskal’s algorithm for computing minimum spanning
trees (see the related topics at the end of Chapter 16) uses one set to keep
track of edges in the minimum spanning tree as it grows. It uses sets of verti-
ces to avoid cycles in the tree.

Relational algebra

The theoretical query language for database systems. Fundamentally, set the-
ory forms the basis for all query languages. For example, suppose we query a
database of problem reports at a software company using SQL (Structured
Query Language). We query the database for all developers who are working
on problems classified with either a status of OPEN, meaning the developer is
working on a problem, or WAIT, meaning the developer has not started.
Effectively, this query is the union of all records that have either status.

Description of Sets

Sets are unordered collections of related members in which no members occur
more than once. Formally, sets are written with braces around them. Thus, if Sis a
set containing the members 1, 2, and 3, then S = {1, 2, 3}. Of course, because a set

Description of Sets 117

is unordered, this is the same as writing § = {3, 2, 1}. If a member, m, is in a set, S,
then membership is indicated by writing m € S; otherwise, m ¢ S. For example, in
the set S=1{1, 2, 3}, 2 € S, but4 ¢ S. To effectively use sets, we should be familiar
with some definitions, basic operations, and properties.

Definitions

1. A set containing no members is the empty set. The set of all possible members
is the universe. (Of course, sometimes the universe is difficult to determine!)
In set notation:

S = U is the universe; S = @ is the empty set

2. Two sets are equal if they contain exactly the same members. For example, if
S =11, 2,3}, S, =13, 2, 1}, and S5 = {1, 2, 4}, then) is equal to S,, but S is
not equal to S3. In set notation:

S, =S, means §; and S, are equal; S, # S, means S, and S, are not equal

3. One set, S, is a subset of another set, S,, if S, contains all of the members of
$y. For example, if § = {1, 3}, 5, = {1, 2, 3}, and 83 = {1, 2}, then &) is a subset
of §,, but §; is not a subset of S3. In set notation,

§, € S, means S, is a subset of S,; §; & S, means S, is not a subset of §,

Basic Operations

1. The union of two sets, §; and S,, is a set, S, that contains all of the members
of §; in addition to all of the members of S,. For example, if §; = {1, 2, 3} and
S, = {3, 4}, then S, = {1, 2, 3, 4}. In set notation:

S, U S, represents the union of §; and S,

2. The intersection of two sets, §; and S, is a set, S, that contains only the mem-
bers that exist in both §; and S,. For example, if §; = {1, 2, 3} and S, = {1, 2},
then §; = {1, 2}. In set notation:

S, N S, represents the intersection of §; and S,

3. The difference of two sets, S} and S,, is a set, S, that contains all of the mem-
bers of §; except those in §,. For example, if §; = {1, 2, 3} and S, = {3, 4}, then
Sy = {1, 2}. In set notation:

S, — S, represents the difference of §; and S,

118 Chapter 7: Sets

Properties

1. The intersection of a set with the empty set is the empty set. The union of a
set with the empty set is the original set. This behavior is described by the
empty set laws:

SN =0
sugd =S8

2. The intersection of a set with itself is the original set. Similarly, the union of a
set with itself is the original set. This behavior is described by the idempo-

tency laws:
SNS =S8
SusS=3S§

3. The intersection of a set, §;, with another set, S, results in the same set as the
intersection of S, with §;. The same is true for the union of two sets. This
behavior is described by the commutative laws:
5,N8, =8NS,

SUS, =508,

4. The intersection of a number of sets can be performed in any order (see
Figure 7-1). The same is true for the union of a number of sets. This behavior
is described by the associative lauws:

SIN(5,NS8) = (5NS)N S
S1U(S,08) = (5US,)uU s,

5. The intersection of a set with the union of two others can be carried out in a
distributed manner. The same is true for the union of a set with the intersec-
tion of two others. This behavior is described by the distributive laws:
SIN(5,U8) = (5N SH)U (S NS;)

S1U(5,NS8;) = (${US)N(5US;)

6. The intersection of a set with the union of itself and another results in the
original set. The same is true for the union of a set with the intersection of
itself and another. This behavior is described by the absorption laws:
5,N(S,US,) =5,

S,U(S,NS,) =5,

Interface for Sets 119

Figure 7-1. The associativity of set intersections (property 4) illustrated using a Venn
diagram (see the related topics at the end of the chapter)

7. An interesting result occurs when the difference of one set is taken with either
the intersection or union of two others. The resulting behavior is described by
DeMorgan’s laws:

S =(8,U8;) = (5,=8,) N (S;=S5)
$1=(8,1 8 = (5,-8,) U(S;—S5;)

Interface for Sets

set_init

void set_init(Set *set, int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data)) ;

Return Value None.

Description Initializes the set specified by set. This operation must be called
for a set before the set can be used with any other operation. The match argu-
ment is a function used by various set operations to determine if two members
match. Tt should return 1 if key1 is equal to key2, and 0 otherwise. The destroy
argument provides a way to free dynamically allocated data when set_destroy is
called. For example, if the set contains data dynamically allocated using malloc,
destroy should be set to free to free the data as the set is destroyed. For struc-
tured data containing several dynamically allocated members, destroy should be
set to a user-defined function that calls free for each dynamically allocated mem-
ber as well as for the structure itself. For a set containing data that should not be
freed, destroy should be set to NULL.

Complexity o)

set_destroy

void set_destroy(Set *set);

Return Value None.

120 Chapter 7: Sets

Description Destroys the set specified by set. No other operations are permit-
ted after calling set_destroy unless set_init is called again. The set_destroy opera-
tion removes all members from a set and calls the function passed as destroy to
set_init once for each member as it is removed, provided destroy was not set to
NULL.

Complexity O(n), where 7 is the number of members in the set.

set_insert

int set_insert (Set *set, const void *data);
Return Value 0 if inserting the member is successful, 1 if the member is already
in the set, or —1 otherwise.

Description Inserts a member into the set specified by set. The new member
contains a pointer to data, so the memory referenced by data should remain
valid as long as the member remains in the set. It is the responsibility of the caller
to manage the storage associated with data.

Complexity O(n), where 7 is the number of members in the set.

set_remove

int set_remove(Set *set, void **data);

Return Value 0 if removing the member is successful, or —1 otherwise.

Description Removes the member matching data from the set specified by
set. Upon return, data points to the data stored in the member that was
removed. It is the responsibility of the caller to manage the storage associated with
the data.

Complexity O(n), where #n is the number of members in the set.

set_union

int set_union(Set *setu, const Set *setl, const Set *set2);
Return Value 0 if computing the union is successful, or —1 otherwise.
Description Builds a set that is the union of setl and set2. Upon return,

setu contains the union. Because setu points to data in setl and set2, the data
in setl and set2 must remain valid until setu is destroyed with set_destroy.

Complexity O(mn), where m and » are the number of members in setl and
set2, respectively.

Interface for Sets 121

set_intersection

int set_intersection(Set *seti, const Set *setl, const Set *set2);

Return Value 0 if computing the intersection is successful, or —1 otherwise.

Description Builds a set that is the intersection of setl and set2. Upon
return, seti contains the intersection. Because seti points to data in setl, the
data in setl must remain valid until seti is destroyed with set_destroy.

Complexity O(mn), where m and n are the number of members in setl and
set2, respectively.

set_difference

int set_difference(Set *setd, const Set *setl, const Set *set2);

Return Value 0 if computing the difference is successful, or —1 otherwise.

Description Builds a set that is the difference of setl and set2. Upon return,
setd contains the difference. Because setd points to data in setl, the data in
setl must remain valid until setd is destroyed with set_destroy.

Complexity O(mn), where m and » are the number of members in setl and
set2, respectively.

set_is_member

int set_is_member (const Set *set, const void *data) ;

Return Value 1 if the member is found, or 0 otherwise.

Description Determines whether the data specified by data matches that of a
member in the set specified by set.

Complexity O(n), where 7 is the number of members in the set.

set_is_subset

int set_is_subset (const Set *setl, const Set *set2);

Return Value 1 if the set is a subset, or 0 otherwise.

Description Determines whether the set specified by setl is a subset of the
set specified by set2.

Complexity O(mn), where m and » are the number of members in setl and
set2, respectively.

122 Chapter 7: Sets

set_is_equal

int set_is_equal (const Set *setl, const Set *set2);

Return Value 1 if the two sets are equal, or 0 otherwise.

Description Determines whether the set specified by setl is equal to the set
specified by set2.

Complexity O(mn), where m and » are the number of members in setl and
set2, respectively.

set_size

int set_size(const Set *set);

Return Value Number of members in the set.

Description Macro that evaluates to the number of members in the set speci-
fied by set.

Complexity o)

Implementation and Analysis of Sets

The structure Set is the set data structure. A good way to implement a set is as a
linked list. A simple way to do this is to typedef Set to List (see Example 7-1). In
addition to simplicity, using a typedef has the benefit of making the set somewhat
polymorphic, just as was described for stacks and queues (see Chapter 6, Stacks
and Queues). Thus, because the set is a linked list, we can use linked list opera-
tions on it when we want it to act like one. The biggest benefit of this with sets is
that we can use [ist_next to traverse a set, and [list_rem_next to remove members
without having to identify them by the data they store. Recall that set_remove only
removes members keyed by their data, which can be a problem when we do not
know the members a set contains.

In general, the set operations presented here are somewhat costly, primarily
because many of them search for members of one set in another by traversing
each member. However, we can improve the running times of these operations by
using a more efficient searching technique, such as hashing (see Chapter 8, Hash
Tables). Nevertheless, the implementation provided here is a general-purpose
approach whose performance is adequate for small to medium-sized sets of data.

Example 7-1. Header for the Set Abstract Datatype

/***

* *
e set.h ------—svo----- *
* *

‘k**‘k*/

Implementation and Analysis of Sets 123

Example 7-1. Header for the Set Abstract Datatype (continued)

#ifndef SET H
#define SET H

#include <stdlib.h>

#include "list.h"

/***

* *
* Implement sets as linked lists. *
* *

***/

typedef List Set;

/***

* *
K Public Interface -----------———---m—— *
* *

***/

void set_init(Set *set, int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data));

#define set_destroy list_destroy

int set_insert(Set *set, const void *data);

int set_remove(Set *set, void **data);

int set_union(Set *setu, const Set *setl, const Set *set2);

int set_intersection(Set *seti, const Set *setl, const Set *set2);
int set_difference(Set *setd, const Set *setl, const Set *set2);
int set_is_member (const Set *set, const void *data) ;

int set_is_subset (const Set *setl, const Set *set2);

int set_is_equal (const Set *setl, const Set *set2);

#define set_size(set) ((set)->size)

#endif

sel_init

The set_init operation initializes a set so that it can be used in other operations
(see Example 7-2). Since a set is a linked list, /ist_init is called to initialize it. The
match member is set to match by hand because this member is not used by
linked lists and is therefore not set by [list_init.

124 Chapter 7: Sets

The runtime complexity of set_init is the same as /ist_init, or O(1).

set_destroy

The set_destroy operation destroys a set (see Example 7-1). Since a set is a linked
list and requires being destroyed in the same manner, set_destroy is defined to list_
destroy.

The runtime complexity of set_destroy is the same as /list_destroy, or O(n), where n
is the number of members in the set.

set_insert

The set_insert operation inserts a member into a set (see Example 7-2). Since a
member must not occur more than once in a set, set_is_member is called to make
sure that the set does not already contain the new member. As long as the mem-
ber does not already exist in the set, /ist_ins_next is called to insert the member.

The runtime complexity of set_insert is O(n) because set_is_member runs in O(n)
time, and [list_ins_next runs in O(1).

set_remove

The set_remove operation removes a member from a set by traversing it using /list_
next until match determines that the member to be removed has been found (see
Example 7-2). The pointer prev points just before the member to be removed
since this is required by /list_rem_next. The list_rem_next operation sets data to
point to the data from the member removed.

The runtime complexity of set_remove is O(n), where n is the number of ele-
ments in the set. This is because, in the worst case, the entire set must be tra-
versed in order to find the member to be removed. This results in » times O(1),
the cost of the statements within the loop, for a running time of O(7) overall.
Once the member is found, list_rem_next removes it in O(1) time.

set_union

The set_union operation builds a set, setu, which is the union of the sets setl
and set2 (see Example 7-2). First, setu is initialized by calling set_init. Next, the
members of setl are inserted into setu by calling /list_ins_next repeatedly for
each member of setl. Finally, the members of set2 are inserted into setu in a
similar manner except that set_is_member is called before each insertion to ensure
that no members are duplicated in setu.

The runtime complexity of set_union is O(mmn), where m is the size of setl and n
is the size of set2. In the first loop, each member of setl is traversed and

Implementation and Analysis of Sets 125

inserted into setu, which results in a running time of O(m). In the second loop,
each element of set?2 is traversed, which results in 7 times the cost of the state-
ments within this loop. This loop contains the O(m) operation set_is_member.
Therefore, the overall complexity of the loop is O(mn). Since the two loops are
executed one after another, the complexity of set_union is the more expensive of
the two, or O(mn).

setl_intersection

The set_intersection operation builds a set, seti, which is the intersection of the
sets setl and set2 (see Example 7-2). First, seti is initialized by calling set_init.
Next, for each member of setl, set_is_member is called to determine whether the
member is in set2. If so, the member is inserted into seti.

The runtime complexity of set_intersection is O(mn), where m is the size of setl
and 7 is the size of set2. This is because for each member in setl, the O(n)
operation set_is_member is called to determine whether the member is in set2.

set_difference

The set_difference operation builds a set, setd, which is the difference of the sets
setl and set2 (see Example 7-2). First, setd is initialized by calling set_init.
Next, for each member of setl, set_is_member is called to determine whether the
member is in set2. If not, the member is inserted into setd.

The runtime complexity of set_difference is O(mn), where m is the size of setl
and 7 is the size of set2. This is because for each member in setl, the O(n)
operation set_is_member is called to determine whether the member is in set2.

set_is_member

The set_is_member operation determines whether a particular member exists in a
set (see Example 7-2). This is accomplished by traversing the set using /ist_next
until either a member matching data is found or all members are traversed.

The runtime complexity of set_is_member is O(n), where n is the number of mem-
bers in the set. This is because, in the worst case, the entire set must be traversed
to find the member for which we are searching.

set_is _subset

The set_is_subset operation determines whether one set, setl, is a subset of
another set, set2 (see Example 7-2). Since a set that is a subset of another must
be the same size or smaller, we begin by comparing sizes. If this test fails, then
setl is not a subset of set2. Otherwise, setl is traversed using /list_next until

126 Chapter 7: Sets

either a member of setl that is not in set2 is found or all members are tra-
versed. If we find a member of setl not in set2, then setl is not a subset of
set2. If we end up traversing all members of setl, then setl is a subset of set2.

The runtime complexity of set_is_subset is O(mn), where m is the size of setl
and 7 is the size of set2. This is because for each member in setl, the O(n)
operation set_is_member is called to determine whether the member is in set2.

set_is_equal

The set_is_equal operation determines whether one set, setl, is equal to another
set, set2 (see Example 7-2). Since two sets that are equal must be the same size,
we begin by comparing sizes. If the two sets are not the same size, then they are
not equal. If the two sets are the same size, we need only return the result of
whether setl is a subset of set2. This is determined by calling set_is_subset.

The runtime complexity of set_is_equal is O(mn), where m is the size of setl and
n is the size of set2. This is because set_is_subset runs in O(mn) time.

set_size

This macro evaluates to the size of a set (see Example 7-1). It works by accessing
the size member of the Set structure.

The runtime complexity of set_size is O(1) because accessing a member of a struc-
ture is a simple task that runs in a constant amount of time.

Example 7-2. Implementation of the Set Abstract Datatype

/***

* *
e set.c —————m—mmmm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "list.h"
#include "set.h"

/***

* *
ettt set_init - *
* *

***/

void set_init(Set *set, int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data)) {

Implementation and Analysis of Sets 127

Example 7-2. Implementation of the Set Abstract Datatype (continued)

/***

* *
* 1Initialize the set. *
* *

***/

list_init(set, destroy);
set->match = match;

return;

/***
* *
e set_insert ---—-——-----——-——————————— - *
* *

***/

int set_insert(Set *set, const void *data) {

/***

* *
* Do not allow the insertion of duplicates. *
* *

***/

if (set_is_member (set, data))
return 1;

/***

* *
* Insert the data. *
* *

***/

return list_ins_next(set, list_tail(set), data);

/***
* *
e set_remove -----—---—————————————————— oo *
* *

***/

int set_remove(Set *set, void **data) {

ListElmt *member,
*prev;

128 Chapter 7: Sets

Example 7-2. Implementation of the Set Abstract Datatype (continued)

/***

* *
* Find the member to remove. *
* *

***/

prev = NULL;

for (member = list_head(set); member != NULL; member = list_next (member)) {

if (set->match(*data, list_data (member)))
break;

prev = member;

/***
* *
* Return if the member was not found. *
* *

***/

if (member == NULL)
return -1;

/***

* *
* Remove the member. *
* *

***/

return list_rem next (set, prev, data);

/***
* *
* set_union -- *
* *

***/

int set_union(Set *setu, const Set *setl, const Set *set2) {
ListElmt *member ;
void *data;

/***

* *
* 1Initialize the set for the union. *
* *

***/

Implementation and Analysis of Sets 129

Example 7-2. Implementation of the Set Abstract Datatype (continued)

set_init (setu, setl->match, NULL);

/***

* *
* 1Insert the members of the first set. *
* *

***/

for (member = list_head(setl); member != NULL; member = list_next (member)) {
data = list_data (member) ;
if (list_ins next(setu, list_tail(setu), data) != 0) {

set_destroy (setu) ;
return -1;

/***
* *
* Insert the members of the second set. *
* *

***/

for (member = list_head(set2); member != NULL; member = list_next (member)) {

if (set_is_member (setl, list_data(member))) {

/***

* *
* Do not allow the insertion of duplicates. *
* *

***/

continue;

else {
data = list_data (member) ;
if (list_ins next(setu, list_tail(setu), data) != 0) {

set_destroy (setu) ;
return -1;

130 Chapter 7: Sets

Example 7-2. Implementation of the Set Abstract Datatype (continued)
}

return 0;

/***
* *
K set_intersection ---------—-———————mm—— *
* *

***/

int set_intersection(Set *seti, const Set *setl, const Set *set2) {

ListElmt *member ;

void *data;

/***

* *
* 1Initialize the set for the intersection. *
* *

***/

set_init(seti, setl->match, NULL);

/***

* *
* 1Insert the members present in both sets. *
* *

***/

for (member = list_head(setl); member != NULL; member = list_next (member)) {

if (set_is_member (set2, list_data(member))) {

data = list_data (member) ;

if (list_ins_next(seti, list_tail(seti), data) != 0) {

set_destroy (seti);
return -1;

return 0;

Implementation and Analysis of Sets 131

Example 7-2. Implementation of the Set Abstract Datatype (continued)

/***

* *
K set_difference ----------——--——mmm *
* *

***/

int set_difference(Set *setd, const Set *setl, const Set *set2) {
ListElmt *member ;
void *data;

/***

* *
* 1Initialize the set for the difference. *
* *

***/

set_init (setd, setl->match, NULL);

/***

* *
* 1Insert the members from setl not in set2. *
* *

***/

for (member = list_head(setl); member != NULL; member = list_next (member)) {

if (!set_is_member (set2, list_data(member))) {

data = list_data (member) ;

if (list_ins_next(setd, list_tail(setd), data) != 0) {

set_destroy (setd) ;
return -1;

return 0;

/***
* *
K e set_is_member ---------—————————————— *
* *

***/

int set_is_member (const Set *set, const void *data) {

132 Chapter 7: Sets

Example 7-2. Implementation of the Set Abstract Datatype (continued)

ListElmt *member ;

/***

* *
* Determine if the data is a member of the set. *
* *

***/

for (member = list_head(set); member != NULL; member = list_next (member)) {

if (set->match(data, list_data (member)))

return 1;
return 0;
/***
* *
F e set_is_subset ---------———————— *
* *

***/

int set_is_subset (const Set *setl, const Set *set2) {

ListElmt *member ;

/***

* *
* Do a quick test to rule out some cases. *
* *

***/

if (set_size(setl) > set_size(set2))
return 0;

/***

* *
* Determine if setl is a subset of set2. *
* *

***/

for (member = list_head(setl); member != NULL; member = list_next (member)) {

if (!set_is_member (set2, list_data (member)))
return 0;

return 1;

Set Example: Set Covering 133

Example 7-2. Implementation of the Set Abstract Datatype (continued)

/***

* *
K set_is_equal ------—————————————————— *
* *

***/

int set_is_equal (const Set *setl, const Set *set2) {

/***

* *
* Do a quick test to rule out some cases. *
* *

***/

if (set_size(setl) != set_size(set2))
return 0;

/***

* *
* Sets of the same size are equal if they are subsets. *
* *

***/

return set_is_subset (setl, set2);

Set Example: Set Covering

Set covering is an optimization problem that nicely models many problems of
combinatorics and resource selection. Here is the idea: given a set Sand a set P of
subsets A4; to A4,, of §, set C, which is composed of one or more sets from P, is said
to cover S if each member in S is contained in at least one of the subsets in C in
addition, C contains as few sets from P as possible.

As an example, imagine trying to form a team from a large set of candidate play-
ers, each with a certain set of skills. The goal is to form the smallest team possible
possessing a certain set of skills overall. That is, for any skill required by the team
as a whole, at least one player on the team must possess the skill. Let § be the
skills that must be present on the team, and let P be the sets of skills possessed by
various candidate players. The various player skill sets in P that are placed in set C
together must cover all of the skills in set S. But remember, we must select as few
players as possible.

The algorithm presented here for set covering is an approximation algorithm (see
Chapter 1, Introduction). It does not always obtain the best solution, but it does
come within a logarithmic bound. The algorithm works by repeatedly picking a set
from P that covers the most members not yet covered in S. In other words, it tries

134 Chapter 7: Sets

to cover as much of § as it can as early as it can. Thus, the algorithm is greedy
(see Chapter 1). As each set is selected from P, it is removed, and its members are
removed from S as well. When there are no members left to cover in S, the cover
set C'is complete.

Let’s look at finding the optimal covering of a set of twelve skills §={a, b, ¢, d, e,
f, g, h, i, j, k, I} considering a set of seven candidate players P = {4, ..., A5}. The
players in P have the following assortments of skills: 4; = {a, b, ¢, d}, 4, = {e, f, g,
h, i}, A3 ={j, k, I, Ay ={a, e}, 45 = {b, f, g}, 4g = {c, d, g, h, k, I}, and 45 = {l}. The
optimal covering is C = {4;, A, As}. The algorithm presented here selects the set
C = {4g, Ay, Ay, Az} (see Figure 7-2).

A, covers 6 members out of 12 not yet covered Aycovers 3 members out of 6 not yet covered
Aol b [d A-iaiaihl [d
A kA 4
Aiei i oalg h A-fiel iFoa]g h

A <4 A <4
[[k | {4 [| k | A

A covers 2 members out of 3 not yet covered Aqcovers the last member not yet covered
Aol b [d Ao b e d
A kA 4
Aofiei ifoalgl h Aolei ifalgi h

A <4 A <4
i k1[4 il [L4

Figure 7-2. A set covering problem

Examples 7-3 and 7-4 present a function, cover, that determines a nearly optimal
covering of S considering the subsets 4; to 4,, in P. The function has three argu-
ments: members is the set Sto be covered, subsets is the set of subsets in P, and
covering is the set C returned as the covering. The function modifies all three
sets passed to it, so copies should be made before calling the function, if necessary.

To begin, covering is initialized by calling set_init. The outermost loop iterates as
long as there are noncovered members in members and the algorithm has not run

Set Example: Set Covering 135

out of subsets for the covering. Inside this loop, during each iteration, it finds the
set in subsets that produces the largest intersection with members. It then adds
this set to the covering and removes its members from members. Last in the loop,
the selected set is removed from subsets. If the outermost loop terminates with
members not empty, then a complete covering was not possible using the sets in
subsets. This is also the case if during any iteration none of the sets in subsets
intersects with members. The function cover returns 0 if it finds a covering, 1 if a
covering is not possible, or —1 otherwise.

The runtime complexity of coveris O(m3), where m is the initial number of mem-
bers in members. This occurs when there is exactly one subset in subsets for
each member in members; consequently, there are m subsets. In this case, set-
intersection runs in O(m) time because each subset contains only one member to
traverse when computing the intersection with members. Thus, the inner loop of
coveris O(m?2) and this loop is executed m times.

Example 7-3. Header for Set Covering

/***

* *
et cover.h ———---———-m *
* *

***/

#ifndef COVER_H
#define COVER_H

#include "set.h"

/***

* *
* Define a structure for subsets identified by a key. *
* *

***/

typedef struct KSet_ {

void *key;
Set set;
} KSet;

/***

* *
K Public Interface --------——-——————mooe——— *
* *

***/

int cover (Set *members, Set *subsets, Set *covering);

#endif

136 Chapter 7: Sets

Example 7-4. Implementation of a Function for Set Covering

/***

* *
e COVEr.C ——=———=—=———————— = *
* *

***/

#include <stdlib.h>
#include "cover.h"
#include "list.h"

#include "set.h"

/***

* *
K e COVEer —————————————————— - *
* *

***/

int cover (Set *members, Set *subsets, Set *covering) {

Set intersection;
KSet *subset;
ListElmt *member,

*max_member ;

void *data;

int max_size;

/***

* *
* 1Initialize the covering. *
* *

***/

set_init (covering, subsets->match, NULL) ;

/***

* *
* Continue while there are noncovered members and candidate subsets. *
* *

***/

while (set_size(members) > 0 && set_size(subsets) > 0) {

/**

* *
* Find the subset that covers the most members. *
* *

**/

Set Example: Set Covering 137

Example 7-4. Implementation of a Function for Set Covering (continued)

max_size = 0;

for (member = list_head(subsets); member != NULL; member =
list_next (member)) {

if (set_intersection(&intersection, &((KSet *)list_data (member))->set,
members) != 0) {

return -1;

if (set_size(&intersection) > max_size) {

max_member = member;
max_size = set_size(&intersection);

set_destroy (&intersection) ;

}

/**
* *
* A covering is not possible if there was no intersection. *
* *

**/

if (max_size == 0)
return 1;

/**

* *
* 1Insert the selected subset into the covering. *
* *

**/

subset = (KSet *)list_data (max_member) ;

if (set_insert(covering, subset) != 0)
return -1;

/**

* *
* Remove each covered member from the set of noncovered members. *
* *

**/

for (member = list_head(&((KSet *)list_data (max_member))->set); member !=
NULL; member = list_ next (member)) {

data = list_data (member) ;

138 Chapter 7: Sets

Example 7-4. Implementation of a Function for Set Covering (continued)

if (set_remove (members, (void**)&data) == 0 && members->destroy != NULL)
members->destroy (data) ;

/**

* *
* Remove the subset from the set of candidate subsets. *
* *

**/

if (set_remove (subsets, (void **)&subset) != 0)
return -1;

/***

*

*

*

*

No covering is possible if there are still noncovered members. *

*

***/

if

(set_size (members) > 0)
return -1;

return 0;

Questions and Answers

O:

Instead of implementing set_is_subset as shown, bhow could we use other set
operations to determine if one set, Sy, is a subset of another set, S,? Why is set_
is_subset provided?

In set notation, if § N S, = §;, then §; < S,. Therefore, we could use a combi-
nation of the set_intersection and set_is_equal operations. Whether we imple-
ment this operation as shown or use set_intersection and set_is_equal, its run-
time complexity is O(m#n), where m is the size of §; and n is the size of S,.
However, in the case of calling set_intersection and set_is_equal, the running
time is actually closer to T(m, n) = 2mn because both set_intersection and set_
is_equal run in T(m, n) = mn times some constant. Compare this with the
operation set_is_subset, which runs closer to 7(m, n) = mn. Although the
complexities of the two methods are the same, calling set_intersection and set_
is_equal requires approximately double the time in practice.

Instead of implementing set_is_equal as shown, how could we use other set
operations to determine if one set, S, is equal to another set, S,?

Questions and Answers 139

A:

In set notation, if §; — S, = @ and S, — § = &, then § = S,. Therefore, we
could implement this, albeit less efficiently, using two calls to set_difference
and two calls to set_size.

Instead of implementing set_intersection as shown, how could we use the set_
difference operation to compute the intersection of two sets, S and S,?

In set notation, §; N S, = 8§ — (8§ — &). Therefore, we could implement this,
albeit less efficiently, using two calls to set_difference.

Why was list_ins_next used instead of set_insert to insert members into the sets
built within set_union, set_intersection, and set_difference?

Recall that the running time of set_insert is O(7n) because it traverses a set to
ensure that the member being inserted is not duplicated. Since the set_union,
set_intersection, and set_difference operations ensure this already, it is consid-
erably more efficient to call the O(1) operation /ist_ins_next instead.

Suppose we bave three sets, S1 = {1, 2, 31, S, = {1, 4, 5}, and S; = {1}. What is
the result of the set operations Sy U Sy, S;—(S; M S3), and (Sy M Sy) — S37?

S] \ SZ = {1, 2, 3, 4, 5}, Sl - (SZ M Ss) = {2, 3}, and (S] M Sz) - 53 =d.

Using the properties and basic operations presented for sets, simplify ((S; N'Sy)

(((S; NS U (S, N 8)) = (5, N (S, U SN U (SN S)
Applying the distributive law produces:

(SN (S v 53)) (5N (Sv 55))) u((s; NSy
Applying set difference produces:

DU NS,
Applying the empty set law produces:

SN,

The symmetric difference of two sets consists of those members that are in either
of the two sets, but not both. The notation for the symmetric difference of two
sets, Sy and S,, is Sy A S,. How could we implement a symmetric difference

operation using the set operations presented in this chapter? Could this opera-
tion be implemented more efficiently some other way?

In set notation, §; A S, = (81 — 8) U (S, — . Therefore, we could implement
this operation using two calls to set_difference followed by a call to set_umnion.
This produces a worst-case running time of 7(m, n) = 3mn times some con-
stant, for a complexity of O(mn), where m is the size of §; and # is the size of

140 Chapter 7: Sets

S,. For example, consider the sets S; = {1, 2, 3} and S, = {4, 5, 6}, which repre-
sent a worst-case scenario. To compute §; — S5, we must search all of S, for
each member in §;, which results in the set {1, 2, 3}. Similarly, to compute S, —
S1, we must search all of §; for each member of S,, which results in the set {4,
5, 6}. Since both sets are the same size as the original sets, sizes m and n, their
union is another operation that runs in time proportionate to m times »n. How-
ever, since we know that the sets produced by §; — S, and S, — §; will not
generate any duplicate members between them, we could avoid the use of
set_union and simply insert each member into the final set by calling the O(1)
operation [list_ins_next once for each member m + n times. This is a better
implementation in practice, but it does not change the overall complexity.

Q: A multiset (see the related topics at the end of the chapter) is a type of set that
allows members to occur more than once. How would the runtime complexities
of inserting and removing members with a multiset compare with the opera-
tions for inserting and removing members in this chapter?

A: When inserting a member into a set, in which members may not be dupli-
cated, we must search the entire set to ensure that we do not duplicate a
member. This is an O(#n) process. Removing a member from a set is O(n) as
well because we may have to search the entire set again. In a multiset, insert-
ing a member is considerably more efficient because we do not have to
traverse the members looking for duplicates. Therefore, we can insert the new
member in O(1) time. In a multiset, removing a member remains an O(7) pro-
cess because we still must search for the member we want to remove.

Related Topics

Venn diagrams
Graphical representations of sets that help determine the results of set opera-
tions visually. For example, a Venn diagram depicting two intersecting sets
consists of two slightly overlapping circles. The overlapping regions represent
the intersection of the sets.

Bit-vector representation
A representation for sets useful when the universe is small and known. Each
member in the universe is represented as a bit in an array. If a member exists
in the set, its bit is set to 1; otherwise, its bit is set to 0.

Multisets
Sets in which members may be duplicated. In some problems the restriction of
no duplicate members is too strict. A multiset is an alternative type of set for
these problems.

Hash Tables

Hash tables support one of the most efficient types of searching: hashing. Funda-
mentally, a hash table consists of an array in which data is accessed via a special
index called a key. The primary idea behind a hash table is to establish a mapping
between the set of all possible keys and positions in the array using a hash func-
tion. A hash function accepts a key and returns its hash coding, or hash value.
Keys vary in type, but hash codings are always integers.

Since both computing a hash value and indexing into an array can be performed
in constant time, the beauty of hashing is that we can use it to perform constant-
time searches. When a hash function can guarantee that no two keys will gener-
ate the same hash coding, the resulting hash table is said to be directly addressed.
This is ideal, but direct addressing is rarely possible in practice. For example,
imagine a phone-mail system in which eight-character names are hashed to find
messages for users in the system. If we were to rely on direct addressing, the hash
table would contain more than 268 = (2.09)10!! entries, and the majority would be
unused since most character combinations are not names.

Typically, the number of entries in a hash table is small relative to the universe of
possible keys. Consequently, most hash functions map some keys to the same
position in the table. When two keys map to the same position, they collide. A
good hash function minimizes collisions, but we must still be prepared to deal
with them. This chapter presents two types of hash tables that resolve collisions in
different ways.

This chapter covers:

Chained bhash tables
Hash tables that store data in buckets. Each bucket is a linked list that can
grow as large as necessary to accommodate collisions.

141

142 Chapter 8: Hash Tables

Open-addressed hash tables
Hash tables that store data in the table itself instead of in buckets. Collisions
are resolved using various methods of probing the table.

Selecting a hash function
The crux of hashing. By distributing keys in a random manner about the table,
collisions are minimized. Thus, it is important to select a hash function that
accomplishes this.

Collision resolution
Methods of managing when several keys map to the same index. Chained
hash tables have an inherent way to resolve collisions. Open-addressed hash
tables use various forms of probing.

Some applications of hash tables are:

Database systems
Specifically, those that require efficient random access. Generally, database
systems try to optimize between two types of access methods: sequential and
random. Hash tables are an important part of efficient random access because
they provide a way to locate data in a constant amount of time.

Symbol tables (illustrated in this chapter)
The tables used by compilers to maintain information about symbols from a
program. Compilers access information about symbols frequently. Therefore, it
is important that symbol tables be implemented very efficiently.

Tagged buffers

A mechanism for storing and retrieving data in a machine-independent man-
ner. Each data member resides at a fixed offset in the buffer. A hash table is
stored in the buffer so that the location of each tagged member can be ascer-
tained quickly. One use of a tagged buffer is sending structured data across a
network to a machine whose byte ordering and structure alignment may not
be the same as the original host’s. The buffer handles these concerns as the
data is stored and extracted member by member.

Data dictionaries
Data structures that support adding, deleting, and searching for data. Although
the operations of a hash table and a data dictionary are similar, other data
structures may be used to implement data dictionaries. Using a hash table is
particularly efficient.

Associative arrays
Most commonly used in languages that do not support structured types. Asso-
ciative arrays consist of data arranged so that the nth element of one array
corresponds to the nth element of another. Associative arrays are useful for
indexing a logical grouping of data by several key fields. A hash table helps to
key into each array efficiently.

Description of Chained Hash Tables 143

Description of Chained Hash Tables

A chained hash table fundamentally consists of an array of linked lists. Each list
forms a bucket in which we place all elements hashing to a specific position in the
array (see Figure 8-1). To insert an element, we first pass its key to a hash func-
tion in a process called hashing the key. This tells us in which bucket the element
belongs. We then insert the element at the head of the appropriate list. To look up
or remove an element, we hash its key again to find its bucket, then traverse the
appropriate list until we find the element we are looking for. Because each bucket
is a linked list, a chained hash table is not limited to a fixed number of elements.
However, performance degrades if the table becomes too full.

buketathi)=0| ”
bucket at h(k) =1 d e e (H |
buketath(k)=2| ”

L— |
bucket at h(k) = 3 1 @3 4 do
bucket at h(k) = 4 P .//—> .//—{ \ ﬁlwl:ext pointer

Figure 8-1. A chained hash table with five buckets containing a total of seven elements

Collision Resolution

When two keys hash to the same position in a hash table, they collide. Chained
hash tables have a simple solution for resolving collisions: elements are simply
placed in the bucket where the collision occurs. One problem with this, however,
is that if an excessive number of collisions occur at a specific position, a bucket
becomes longer and longer. Thus, accessing its elements takes more and more
time.

Ideally, we would like all buckets to grow at the same rate so that they remain
nearly the same size and as small as possible. In other words, the goal is to distrib-
ute elements about the table in as uniform and random a manner as possible. This
theoretically perfect situation is known as uniform hashing; however, in practice it
usually can only be approximated.

Even assuming uniform hashing, performance degrades significantly if we make
the number of buckets in the table small relative to the number of elements we

144 Chapter 8: Hash Tables

plan to insert. In this situation, all of the buckets become longer and longer. Thus,
it is important to pay close attention to a hash table’s load factor. The load factor
of a hash table is defined as:

=n/m

where 7 is the number of elements in the table and m is the number of positions
into which elements may be hashed. The load factor of a chained hash table indi-
cates the maximum number of elements we can expect to encounter in a bucket,
assuming uniform hashing.

For example, in a chained hash table with m = 1699 buckets and a total of n =
3198 elements, the load factor of the table is o = 3198/1699 = 2. Therefore, in this
case, we can expect to encounter no more than two elements while searching any
one bucket. When the load factor of a table drops below 1, each position will
probably contain no more than one element. Of course, since uniform hashing is
only approximated, in actuality we end up encountering somewhat more or less
than what the load factor suggests. How close we come to uniform hashing ulti-
mately depends on how well we select our hash function.

Selecting a Hash Function

The goal of a good hash function is to approximate uniform hashing, that is, to
spread elements about a hash table in as uniform and random a manner as possi-
ble. A hash function b is a function we define to map a key k to some position x
in a hash table. x is called the hash coding of k. Formally stated:

b(k) = x

Generally, most hashing methods assume & to be an integer so that it may be eas-
ily altered mathematically to make » distribute elements throughout the table more
uniformly. When £ is not an integer, we can usually coerce it into one without
much difficulty.

Precisely how to coerce a set of keys depends a great deal on the characteristics of
the keys themselves. Therefore, it is important to gain as much of a qualitative
understanding of them in a particular application as we can. For example, if we
were to hash the identifiers found in a program, we might observe that many have
similar prefixes and suffixes since developers tend to gravitate toward variables
such as sampleptr, simpleptr, and sentryptr. A poor way to coerce these
keys would be any method depending strictly on characters at the beginning and
end of the keys, since this would result in many of the same integers for k& On the
other hand, we might try selecting characters from four positions that have the
propensity to be somewhat random, permute them in a way that randomizes them
further, and stuff them into specific bytes of a four-byte integer. Whatever

Description of Chained Hash Tables 145

approach we choose for coercing keys, the most important thing to remember,
again, is that a hash function should distribute a set of keys about a hash table in a
uniform and random manner.

Division method

Once we have a key k represented as an integer, one of the simplest hashing
methods is to map it into one of m positions in a table by taking the remainder of
k divided by m. This is called the division method. Formally stated:

b(k) = kmod m

Using this method, if the table has m = 1699 positions, and we hash the key & =
25,657, the hash coding is 25,657 mod 1699 = 172. Typically, we should avoid val-
ues for m that are powers of 2. This is because if m = 2P, h becomes just the p
lowest-order bits of k. Usually we choose m to be a prime number not too close to
a power of 2, while considering storage constraints and load factor.

For example, if we expect to insert around 7 = 4500 elements into a chained hash
table, we might choose m = 1699, a good prime number between 210 and 211
This results in a load factor of o = 4500/1699 = 2.6, which indicates that generally
two or three elements will reside in each bucket, assuming uniform hashing.

Multiplication method

An alternative to the division method is to multiply the integer key & by a con-
stant 4 in the range 0 < A < 1; extract the fractional part; multiply this value by the
number of positions in the table, m; and take the floor of the result. Typically, A4 is
chosen to be 0.618, which is the square root of 5, minus 1, all divided by 2. This
method is called the multiplication method. Formally stated:

b(k) = | m(kA mod 1) |, where A= (/5-1)/2 = 0.618

An advantage to this method is that m, the number of positions in the table, is not
as critical as in the division method. For example, if the table contains m = 2000
positions, and we hash the key k = 6341, the hash coding is [(2000)((6341)(0.618)
mod 1] = [(2000)(3918.738 mod 1| = L(2000)(0.738) = 1476.

In a chained hash table, if we expect to insert no more than 7 = 4500 elements,
we might let m = 2250. This results in a load factor of o = 4500/2250 = 2, which
indicates that no more than two traversals should be required to locate an ele-
ment in any bucket, assuming uniform hashing. Again, notice how this method of
hashing allows more flexibility in choosing m to suit the maximum number of tra-
versals acceptable to us.

Example 8-1 presents a hash function that performs particularly well for strings. It
coerces a key into a permuted integer through a series of bit operations. The

146 Chapter 8: Hash Tables

resulting integer is mapped using the division method. The function was adapted
from Compilers: Principles, Techniques, and Tools (Reading, MA: Addison-Wesley,
1986), by Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, who attributed it to P. J.
Weinberger as a hash function that performed well in hashing strings for his
compiler.

Example 8-1. A Hash Function That Performs Well for Strings

/***

* *
ettt hashpjw.c ——--—=————-——m—mm *
* *

***/

#include "hashpjw.h"

/***

* *
e ettt bl bt hashpjw —---—-=—-=———————— o *
* *

***/

unsigned int hashpjw(const void *key) {
const char *ptr;

unsigned int val;

/***

* *
* Hash the key by performing a number of bit operations on it. *
* *

***/

val = 0;
ptr = key;
while (*ptr != '\0') {

unsigned int tmp;
val = (val << 4) + (*ptr);
if (tmp = (val & 0x£0000000)) {

val = val ~ (tmp >> 24);
val = val " tmp;

ptr++;

Interface for Chained Hasb Tables 147

Example 8-1. A Hash Function That Performs Well for Strings (continued)

/***

* *
* 1In practice, replace PRIME TBLSIZ with the actual table size. *
* *

‘k**‘k*/

return val % PRIME TBLSIZ;

}
Interface for Chained Hash 1ables

chtbl_init

int chtbl_init(CHTbl *htbl, int buckets, int (*h) (const void *key),
int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data)) ;

Return Value 0 if initializing the hash table is successful, or —1 otherwise.

Description Initializes the chained hash table specified by htbl. This opera-
tion must be called for a chained hash table before the hash table can be used
with any other operation. The number of buckets allocated in the hash table is
specified by buckets. The function pointer h specifies a user-defined hash func-
tion for hashing keys. The function pointer match specifies a user-defined func-
tion to determine whether two keys match. It should return 1 if key? is equal to
key2, and 0 otherwise. The destroy argument provides a way to free dynami-
cally allocated data when chtbl_destroy is called. For example, if the hash table
contains data dynamically allocated using malloc, destroy should be set to free to
free the data as the hash table is destroyed. For structured data containing several
dynamically allocated members, destroy should be set to a user-defined function
that calls free for each dynamically allocated member as well as for the structure
itself. For a hash table containing data that should not be freed, destroy should
be set to NULL.

Complexity O(m), where m is the number of buckets in the hash table.

chtbl_destroy

void chtbl_destroy (CHTbl *htbl) ;
Return Value None.
Description Destroys the chained hash table specified by htbl. No other

operations are permitted after calling chtbl_destroy unless chtbl_init is called again.
The chtbl_destroy operation removes all elements from a hash table and calls the

148 Chapter 8: Hash Tables

function passed as destroy to chtbl_init once for each element as it is removed,
provided destroy was not set to NULL.

Complexity O(m), where m is the number of buckets in the hash table.

chtbl_insert

int chtbl_insert (CHTbl *htbl, const void *data) ;
Return Value 0 if inserting the element is successful, 1 if the element is already

in the hash table, or —1 otherwise.

Description Inserts an element into the chained hash table specified by htbl.
The new element contains a pointer to data, so the memory referenced by data
should remain valid as long as the element remains in the hash table. It is the
responsibility of the caller to manage the storage associated with data.

Complexity o)

chtbl_remove

int chtbl_remove (CHTbl *htbl, void **data) ;

Return Value 0 if removing the element is successful, or —1 otherwise.

Description Removes the element matching data from the chained hash table
specified by htbl. Upon return, data points to the data stored in the element that
was removed. It is the responsibility of the caller to manage the storage associated
with the data.

Complexity o)

chtbl_lookup

int chtbl_lookup (const CHTbl *htbl, void **data) ;

Return Value 0 if the element is found in the hash table, or -1 otherwise.

Description Determines whether an element matches data in the chained
hash table specified by htbl. If a match is found, data points to the matching
data in the hash table upon return.

Complexity oD

chtbl_size

int chtbl_size (CHTbl *htbl);

Return Value Number of elements in the hash table.

Implementation and Analysis of Chained Hash Tables 149

Description Macro that evaluates to the number of elements in the chained
hash table specified by hthbI.

Complexity oD

Implementation and Analysis
of Chained Hash Tables

A chained hash table consists of an array of buckets. Each bucket is a linked list
containing the elements that hash to a certain position in the table. The structure
CHTDbI is the chained hash table data structure (see Example 8-2). This structure
consists of six members: buckets is the number of buckets allocated in the table;
h, match, and destroy are members used to encapsulate the functions passed to
chtbl_init; size is the number of elements currently in the table; and table is the
array of buckets.

Example 8-2. Header for the Chained Hash Table Abstract Datatype

/***

* *
S chtbl .h = mm oo *
* *

***/

#ifndef CHTBL_H
#define CHTBL_H

#include <stdlib.h>

#include "list.h"

/***

* *
* Define a structure for chained hash tables. *
* *

***/

typedef struct CHTbl_ {

int buckets;

int (*h) (const void *key);

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

int size;

List *table;

} CHTDb1;

150 Chapter 8: Hash Tables

Example 8-2. Header for the Chained Hash Table Abstract Datatype (continued)

/***

* *
K Public Interface -----------———---m—— *
* *

***/

int chtbl_init (CHTbl *htbl, int buckets, int (*h) (const void *key), int
(*match) (const void *keyl, const void *key2), void (*destroy) (void *data));

void chtbl_destroy (CHTbl *htbl) ;

int chtbl_insert (CHTbl *htbl, const void *data);
int chtbl_remove (CHTbl *htbl, void **data);

int chtbl_lookup (const CHTbl *htbl, void **data);
#define chtbl_size(htbl) ((htbl)->size)

#endif

chtbl_init

The chtbl_init operation initializes a chained hash table so that it can be used in
other operations (see Example 8-3). Initializing a chained hash table is a simple
operation in which we allocate space for the buckets; initialize each bucket by
calling /ist_init; encapsulate the h, match, and destroy functions; and set the
size member to 0.

The runtime complexity of chtbl_init is O(m), where m is the number of buckets
in the table. This is because the O(1) operation /ist_init must be called once for
each of the m buckets. All other parts of the operation run in a constant amount of
time.

chtbl_destroy

The chtbl_destroy operation destroys a chained hash table (see Example 8-3). Pri-
marily this means removing the elements from each bucket and freeing the mem-
ory chtbl_init allocated for the table. The function passed as destroy to chtbl_init
is called once for each element as it is removed, provided destroy was not set to
NULL.

The runtime complexity of chtbl_destroy is O(m), where m is the number of buck-
ets in the table. This is because /ist_destroy is called once for each bucket. In each
bucket, we expect to remove a number of elements equal to the load factor of the
hash table, which is treated as a small constant.

Implementation and Analysis of Chained Hash Tables 151

chtbl_insert

The chtbl_insert operation inserts an element into a chained hash table (see
Example 8-3). Since a key is not allowed to be inserted into the hash table more
than once, chitbl_lookup is called to make sure that the table does not already con-
tain the new element. If no element with the same key already exists in the hash
table, we hash the key for the new element and insert it into the bucket at the
position in the hash table that corresponds to the hash coding. If this is success-
ful, we increment the table size.

Assuming we approximate uniform hashing well, the runtime complexity of chtbl_
insert is O(1), since chtbl_lookup, hashing a key, and inserting an element at the
head of a linked list all run in a constant amount of time.

chtbl_remove

The chtbl_remove operation removes an element from a chained hash table (see
Example 8-3). To remove the element, we hash its key, search the appropriate
bucket for an element with a key that matches, and call /ist_rem_next to remove it.
The pointer prev maintains a pointer to the element before the one to be
removed since /list_rem_next requires this. Recall that /ist_rem_next sets data to
point to the data removed from the table. If a matching key is not found in the
bucket, the element is not in the table. If removing the element is successful, we
decrease the table size by 1.

Assuming we approximate uniform hashing well, the runtime complexity of chtbl_
remove is O(1). This is because we expect to search a number of elements equal
to the load factor of the hash table, which is treated as a small constant.

chitbl_lookup

The chtbl_lookup operation searches for an element in a chained hash table and
returns a pointer to it (see Example 8-3). This operation works much like chtbl_
remove, except that once the element is found, it is not removed from the table.

Assuming we approximate uniform hashing well, the runtime complexity of chtbi_
lookup is O(1). This is because we expect to search a number of elements equal to
the load factor of the hash table, which is treated as a small constant.

chtbl_size

This macro evaluates to the number of elements in a chained hash table (see
Example 8-2). It works by accessing the size member of the CHTbI structure.

The runtime complexity of chtbl_size is O(1) because accessing a member of a
structure is a simple task that runs in a constant amount of time.

152 Chapter 8: Hash Tables

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype

/***

* *
K e chtbl.c —-—————-——-—————— *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "list.h"
#include "chtbl.h"

/***

* *
K chtbl init -----------——-— *
* *

***/

int chtbl_init (CHTbl *htbl, int buckets, int (*h) (const void *key), int
(*match) (const void *keyl, const void *key2), void (*destroy) (void*data)) {

int i;

/***

* *
* Allocate space for the hash table. *
* *

***/

if ((htbl->table = (List *)malloc (buckets * sizeof (List))) == NULL)
return -1;

/***

* *
* Initialize the buckets. *
* *

***/

htbl->buckets = buckets;

for (i = 0; 1 < htbl->buckets; i++)
list_init (&htbl->table[i], destroy);

/***

* *
* Encapsulate the functions. *
* *

***/

htbl->h = h;
htbl->match = match;
htbl->destroy = destroy;

Implementation and Analysis of Chained Hash Tables 153

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype (continued)

/***

* *
* Initialize the number of elements in the table. *
* *

‘k**/

htbl->size = 0;

return 0;

/***
* *
e chtbl_destroy -------------——————————————— *
* *

***/
void chtbl_destroy (CHTbl *htbl) {
int i;

/***

* *
* Destroy each bucket. *
* *

***/

for (i = 0; 1 < htbl->buckets; i++) {

list_destroy (&htbl->table[i]);

}

/***
* *
* Free the storage allocated for the hash table. *
* *

***/

free (htbl->table) ;

/***

* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

‘k**/

memset (htbl, 0, sizeof (CHTbl));

return;

154 Chapter 8: Hash Tables

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype (continued)

/***

* *
K chtbl_insert -------------————m *
* *

***/

int chtbl_insert (CHTbl *htbl, const void *data) {

void *temp;
int bucket,
retval;

/***

* *
* Do nothing if the data is already in the table. *
* *

***/

temp = (void *)data;

if (chtbl_lookup (htbl, &temp) == 0)
return 1;

/***

* *
* Hash the key. *
* *

***/

bucket = htbl->h(data) % htbl->buckets;

/***

* *
* 1Insert the data into the bucket. *
* *

***/

if ((retval = list_ins next (&htbl->table[bucket], NULL, data)) == 0)
htbl->size++;

return retval;

/***
* *
e chtbl_remove -------—-—-———————————————— *
* *

***/

int chtbl_remove (CHTbl *htbl, void **data) {

Implementation and Analysis of Chained Hash Tables 155

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype (continued)

ListElmt *element,
*prev;
int bucket;

/***

* *
* Hash the key. *
* *

***/

bucket = htbl->h(*data) % htbl->buckets;

/***

* *
* Search for the data in the bucket. *
* *

***/

prev = NULL;

for (element = list_head(&htbl->table[bucket]); element != NULL; element =
list_next (element)) {

if (htbl->match(*data, list_data(element))) {

/***

* *
* Remove the data from the bucket. *
* *

***/

if (list_rem next (&htbl->table[bucket], prev, data) == 0) {

htbl->size--;
return 0;

else {

return -1;

prev = element;

156 Chapter 8: Hash Tables

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype (continued)

/***

* *
* Return that the data was not found. *
* *

‘k**/

return -1;

/***
* *
F e chtbl_lookup -—----—-————————————m——— *
* *

***/

int chtbl_lookup (const CHTbl *htbl, void **data) {

ListElmt *element;

int bucket;

/***

* *
* Hash the key. *
* *

***/

bucket = htbl->h(*data) % htbl->buckets;

/***

* *
* Search for the data in the bucket. *
* *

‘k**/

for (element = list_head(&htbl->table[bucket]); element != NULL; element =
list_next (element)) {

if (htbl->match(*data, list_data(element))) {

/***

* *
* Pass back the data from the table. *
* *

***/

*data = list_data(element) ;
return 0;

Chained Hash Table Example: Symbol Tables 157

Example 8-3. Implementation of the Chained Hash Table Abstract Datatype (continued)

/***

* *
* Return that the data was not found. *
* *

‘k**‘k*/

return -1;

Chained Hash Table Example:
Symbol Tables

An important application of hash tables is the way compilers maintain information
about symbols encountered in a program. Formally, a compiler translates a pro-
gram written in one language, a source language such as C, into another lan-
guage, which is a set of instructions for the machine on which the program will
run. In order to maintain information about the symbols in a program, compilers
make use of a data structure called a symbol table. Symbol tables are often imple-
mented as hash tables because a compiler must be able to store and retrieve infor-
mation about symbols very quickly.

Several parts of a compiler access the symbol table during various phases of the
compilation process. One part, the lexical analyzer, inserts symbols. The lexical
analyzer is the part of a compiler charged with grouping characters from the
source code into meaningful strings, called lexemes. These are translated into syn-
tactic elements, called tokens, that are passed on to the parser. The parser per-
forms syntactical analysis. As the lexical analyzer encounters symbols in its input
stream, it stores information about them into the symbol table. Two important
attributes stored by the lexical analyzer are a symbol’s lexeme and the type of
token the lexeme constitutes (e.g., an identifier or an operator).

The example presented here is a very simple lexical analyzer that analyzes a string
of characters and then groups the characters into one of two types of tokens: a
token consisting only of digits or a token consisting of something other than digits
alone. For simplicity, we assume that tokens are separated in the input stream by a
single blank. The lexical analyzer is implemented as a function, lex (see Examples
8-4 and 8-5), which a parser calls each time it requires another token.

The function works by first calling the next_token function (whose implementa-
tion is not shown) to get the next blank-delimited string from the input stream
istream If next token returns NULL, there are no more tokens in the input
stream. In this case, the function returns Iexit, which tells the parser that there
are no more tokens to be processed. If next_token finds a string, some simple

158 Chapter 8: Hash Tables

analysis is performed to determine what type of token the string represents. Next,
the function inserts the lexeme and token type together as a Symbol structure into
the symbol table, symtbl, and returns the token type to the parser. The type
Symbol is defined in symbol.h, which is not included in this example.

A chained hash table is a good way to implement a symbol table because, in addi-
tion to being an efficient way to store and retrieve information, we can use it to
store a virtually unlimited amount of data. This is important for a compiler since it
is difficult to know how many symbols a program will contain before lexical
analysis.

The runtime complexity of Jex is O(1), assuming next_token runs in a constant
amount of time. This is because lex simply calls chtbl_insert, which is an O(1)
operation.

Example 8-4. Header for a Simple Lexical Analyzer

/***

* *
* e lex.h -—————————— *
* *

***/

#ifndef LEX H
#define LEX H

#include "chtbl.h"

/***

* *
* Define the token types recognized by the lexical analyzer. *
* *

***/

typedef enum Token_ {lexit, error, digit, other} Token;

/***

* *
X Public Interface ----------------o——— *
* *

***/
Token lex(const char *istream, CHTbl *symtbl) ;
#endif

Example 8-5. Implementation of a Simple Lexical Analyzer

/***

* *
K e lex.c ——————————mmm *
* *

***/

Chained Hash Table Example: Symbol Tables 159

Example 8-5. Implementation of a Simple Lexical Analyzer (continued)

#include <ctype.h>
#include <stdlib.h>
#include <string.h>

#include "chtbl.h"
#include "lex.h"
#include "symbol.h"

/***

* *
Bt ittt lex ———————m e *
* *

***/

Token lex(const char *istream, CHTbl *symtbl) {
Token token;
Symbol *gymbol ;
int length,
retval,
i;

/***

* *
* Allocate space for a symbol. *
* *

‘k**/

if ((symbol = (Symbol *)malloc (sizeof (Symbol))) == NULL)
return error;

/***

* *
* Process the next token. *
* *

‘k**/

if ((symbol->lexeme = next_token(istream)) == NULL) {

/**

* *
* Return that there is no more input. *
* *

**/

free (symbol) ;
return lexit;

else {

160 Chapter 8: Hash Tables

Example 8-5. Implementation of a Simple Lexical Analyzer (continued)

/**

* *
* Determine the token type. *
* *

‘k***/

symbol->token = digit;
length = strlen(symbol->lexeme) ;

for (i = 0; 1 < length; i++) {

if (!isdigit (symbol->lexeme[i]))
symbol->token = other;

memcpy (&token, &symbol->token, sizeof (Token)) ;

/**

* *
* Insert the symbol into the symbol table. *
* *

‘k***/

if ((retval = chtbl_insert (symtbl, symbol)) < 0) {

free (symbol) ;
return error;

else if (retval == 1) {

/***

* *
* The symbol is already in the symbol table. *
* *

‘k**/

free (symbol) ;

/***
* *
* Return the token for the parser. *
* *

‘k**/

return token ;

Description of Open-Addressed Hash Tables 101

Description of Open-Addressed
Hasbh Tables

In a chained hash table, elements reside in buckets extending from each position.
In an open-addressed hash table, on the other hand, all elements reside in the table
itself. This may be important for some applications that rely on the table being a
fixed size. Without a way to extend the number of elements at each position, how-
ever, an open-addressed hash table needs another way to resolve collisions.

Collision Resolution

Whereas chained hash tables have an inherent means of resolving collisions, open-
addressed hash tables must handle them in a different way. The way to resolve
collisions in an open-addressed hash table is to probe the table. To insert an ele-
ment, for example, we probe positions until we find an unoccupied one, and
insert the element there. To remove or look up an element, we probe positions
until the element is located or until we encounter an unoccupied position. If we
encounter an unoccupied position before finding the element, or if we end up tra-
versing all of the positions, the element is not in the table.

Of course, the goal is to minimize how many probes we have to perform. Exactly
how many positions we end up probing depends primarily on two things: the load
factor of the hash table and the degree to which elements are distributed uni-
formly. Recall that the load factor of a hash table is oo = n/m, where 7 is the num-
ber of elements and m is the number of positions into which the elements may be
hashed. Notice that since an open-addressed hash table cannot contain more ele-
ments than the number of positions in the table (n > m), its load factor is always
less than or equal to 1. This makes sense, since no position can ever contain more
than one element.

Assuming uniform hashing, the number of positions we can expect to probe in an
open-addressed hash table is:

1/(1-0)

For an open-addressed hash table that is half full (whose load factor is 0.5), for
example, the number of positions we can expect to probe is 1/(1 — 0.5) = 2.
Table 8-1 illustrates how dramatically the expected number of probes increases as
the load factor of an open-addressed hash table approaches 1 (or 100%), at which
point the table is completely full. In a particularly time-sensitive application, it may
be advantageous to increase the size of the hash table to allow extra space for
probing.

162 Chapter 8: Hash Tables

Table 8-1. Expected Probes as a Result of Load Factor, Assuming Uniform Hashing

Load Factor (%) Expected Probes
<50 <1/(1-050) =2
80 1/(1-0.80) =5
90 1/(1-0.90) =10
95 1/(1-0.95) =20

How close we come to the figures presented in Table 8-1 depends on how closely
we approximate uniform hashing. Just as in a chained hash table, this depends on
how well we select our hash function. In an open-addressed hash table, however,
this also depends on how we probe subsequent positions in the table when colli-
sions occur. Generally, a hash function for probing positions in an open-addressed
hash table is defined by:

b(k, i) = x

where kis a key, i is the number of times the table has been probed thus far, and
x is the resulting hash coding. Typically, » makes use of one or more auxiliary
bash functions selected for the same properties as presented for chained hash
tables. However, for an open-addressed hash table, » must possess an additional
property: as i increases from 0 to m — 1, where m is the number of positions in the
hash table, all positions in the table must be visited before any position is visited
twice; otherwise, not all positions will be probed.

Linear probing

One simple approach to probing an open-addressed hash table is to probe succes-
sive positions in the table. Formally stated, if we let ¢ go between 0 and m — 1,
where m is the number of positions in the table, a hash function for linear prob-
ing is defined as:

b(k, i) = (b'(R)+ i) mod m

The function b'is an auxiliary hash function, which is selected like any hash func-
tion; that is, so that elements are distributed in a uniform and random manner. For
example, we might choose to use the division method of hashing and let h'(k) = k
mod m. In this case, if we hash an element with key & = 2998 into a table of size
m = 1000, the hash codings produced are (998 + 0) mod 1000 = 998 when i = 0,
(998 + 1) mod 1000 = 999 when 7= 1, (998 + 2) mod 1000 = 0 when i = 2, and so
on. Therefore, to insert an element with key &= 2998, we would look for an unoc-
cupied position first at position 998, then 999, then 0, and so on.

The advantage of linear probing is that it is simple and there are no constraints on
m to ensure that all positions will eventually be probed. Unfortunately, linear
probing does not approximate uniform hashing very well. In particular, linear

Description of Open-Addressed Hash Tables 163

probing suffers from a phenomenon known as primary clustering, in which large
chains of occupied positions begin to develop as the table becomes more and
more full. This results in excessive probing (see Figure 8-2).

o After inserting k = 37, 83, 97, 78, 14 with no collisions

0 10
78 14|37 83 97
o Inserting an element with k= 59;i=0, 1
59 ™~
78 1437159 |83 97

o Inserting an element with k= 25;i=0,1,2,3,4

25V VT
78| |14[37(59(83]|25| |97

o Inserting an element with k=72;i=10,1,2
712V
78 14137 159|83 (25|72 97

Figure 8-2. Linear probing with h(k, i) = (kmod 11 + i) mod 11

Double bashing

One of the most effective approaches for probing an open-addressed hash table
focuses on adding the hash codings of two auxiliary hash functions. Formally
stated, if we let i go between 0 and m — 1, where m is the number of positions in
the table, a hash function for double hashing is defined as:

bk, i) = (b, (k) + ib,(k)) mod m

The functions b and b, are auxiliary hash functions, which are selected like any
hash function: so that elements are distributed in a uniform and random manner.
However, in order to ensure that all positions in the table are visited before any
position is visited twice, we must adhere to one of the following procedures: we
must select m to be a power of 2 and make b, always return an odd value, or we
must make m prime and design b, so that it always returns a positive integer less
than m.

Typically, we let hy(k) = kmod m and h,(k) = 1 + (kmod m"), where m'is slightly
less than m, say, m — 1 or m — 2. Using this approach, for example, if the hash table
contains m = 1699 positions (a prime number) and we hash the key & = 15,385, the

164 Chapter 8: Hash Tables

positions probed are (94 + (0)(113)) mod 1699 = 94 when i = 0, and every 113th
position after this as 7 increases.

The advantage of double hashing is that it is one of the best forms of probing,
producing a good distribution of elements throughout a hash table (see
Figure 8-3). The disadvantage is that m is constrained in order to ensure that all
positions in the table will be visited in a series of probes before any position is
probed twice.

o After inserting k = 37, 83, 97, 78, 14 with no collisions

0 10
78 14|37 83 97
o Inserting an element with k= 59;i=0, 1
59 ~,
78 14|37 83 97| 59
0 Inserting an element with k= 25;i=0, 1
...X‘ 25 e
25|78 14|37 83 97 (59

o Inserting an element with k=72;i=0, 1
127,
25178 14|37 83|72 97 (59

Figure 8-3. Hashing the same keys as Figure 8-2 but with double hashing, where h(k, i) =
(k mod 11 +i(1 + k mod 9)) mod 11

Interface for Open-Addressed
Hash Tables

obtbl_init

int ohtbl_init (OHTbl *htbl, int positions, int (*hl) (const void *key)
int (*h2) (const void *key), int (*match) (const void *keyl
const void *key2), void (*destroy) (void *data)) ;

Return Value 0 if initializing the hash table is successful, or —1 otherwise.

Description Initializes the open-addressed hash table specified by htbl. This
operation must be called for an open-addressed hash table before the hash table
can be used with any other operation. The number of positions to be allocated in
the hash table is specified by positions. The function pointers h1 and h2 specify

Interface for Open-Addressed Hash Tables 165

user-defined auxiliary hash functions for double hashing. The function pointer
match specifies a user-defined function to determine if two keys match. It should
perform in a manner similar to that described for chtbl_init. The destroy argu-
ment provides a way to free dynamically allocated data when obtbl_destroy is
called. It works in a manner similar to that described for chtbl_destroy. For an
open-addressed hash table containing data that should not be freed, destroy
should be set to NULL.

Complexity O(m), where m is the number of positions in the hash table.

obtbl_destroy

void ohtbl_destroy (OHTbl *htbl);

Return Value None.

Description Destroys the open-addressed hash table specified by htbl. No
other operations are permitted after calling ohtbl_destroy unless ohtbl_init is called
again. The obtbl_destroy operation removes all elements from a hash table and

calls the function passed as destroy to obtbl_init once for each element as it is
removed, provided destroy was not set to NULL.

Complexity O(m), where m is the number of positions in the hash table.

obtbl_insert

int ohtbl_insert (OHTbl *htbl, const void *data) ;
Return Value 0 if inserting the element is successful, 1 if the element is already

in the hash table, or —1 otherwise.

Description Inserts an element into the open-addressed hash table specified
by htbl. The new element contains a pointer to data, so the memory referenced
by data should remain valid as long as the element remains in the hash table. It is
the responsibility of the caller to manage the storage associated with data.

Complexity o)

obtbl_remove

int ohtbl_remove (OHTbl *htbl, void **data);

Return Value 0 if removing the element is successful, or —1 otherwise.
Description Removes the element matching data from the open-addressed
hash table specified by htbl. Upon return, data points to the data stored in the

element that was removed. It is the responsibility of the caller to manage the stor-
age associated with the data.

Complexity o

166 Chapter 8: Hash Tables

obtbl_lookup

int ohtbl_lookup (const OHTbl *htbl, void **data);

Return Value 0 if the element is found in the hash table, or -1 otherwise.

Description Determines whether an element matches data in the open-
addressed hash table specified by htbl. If a match is found, upon return data
points to the matching data in the hash table.

Complexity o)

obtbl_size

int ohtbl_size(const OHTbl *htbl);

Return Value Number of elements in the hash table.

Description Macro that evaluates to the number of elements in the open-
addressed hash table specified by htbl.

Complexity o)

Implementation and Analysis
of Open Addressed Hash Tables

An open-addressed hash table fundamentally consists of a single array. The struc-
ture OHTbI is the open-addressed hash table data structure (see Example 8-6). This
structure consists of eight members: positions is the number of positions allo-
cated in the hash table; vacated is a pointer that will be initialized to a special
storage location to indicate that a particular position in the table has had an
element removed from it; hl, h2, match, and destroy are members used to
encapsulate the functions passed to obtbl_init; size is the number of elements
currently in the table; and table is the array in which the elements are stored.

The vacated member requires a bit of discussion. Its purpose is to support the
removal of elements. An unoccupied position in an open-addressed hash table
usually contains a NULL pointer. However, when we remove an element, we can-
not set its data pointer back to NULL because when probing to look up a subse-
quent element, NULL would indicate that the position is unoccupied and no more
probes should be performed. In actuality, one or more elements may have been
inserted by probing past the removed element while it was still in the table.

Considering this, we set the data pointer to the vacated member of the hash table
data structure when we remove an element. The address of vacated serves as a
special sentinel to indicate that a new element may be inserted at the position.
This way, when probing to look up an element, we are assured that a NULL really
means to stop probing.

Implementation and Analysis of Open Addressed Hash Tables 167

Example 8-6. Header for the Open-Addressed Hash Table Abstract Datatype

/***

* *
Y Ohtbl.h ——mmmmmmmmm oo *
* *

***/

#ifndef OHTBL_H
#define OHTBL,_H

#include <stdlib.h>

/***

* *
* Define a structure for open-addressed hash tables. *
* *

***/

typedef struct OHTb1l_ {

int positions;

void *vacated;

int (*hl) (const void *key);

int (*h2) (const void *key) ;

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data);

int size;

void **table;

} OHTb1;

/***

* *
o ittt bl b Public Interface ------—-———————————mmom *
* *

***/

int ohtbl_init (OHTbl *htbl, int positions, int (*hl) (const void *key), int
(*h2) (const void *key), int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data));

void ohtbl_destroy (OHTbl *htbl) ;

int ohtbl_insert (OHTbl *htbl, const void *data);

int ohtbl_remove (OHTbl *htbl, void **data);

int ohtbl_lookup (const OHTbl *htbl, void **data);

#define ohtbl_size(htbl) ((htbl)->size)

#endif

168 Chapter 8: Hash Tables

obhtbl_init

The obtbl_init operation initializes an open-addressed hash table so that it can be
used in other operations (see Example 8-7). Initializing an open-addressed hash
table is a simple operation in which we allocate space for the table; initialize the
pointer in each position to NULL; encapsulate the hl, h2, match and destroy
functions; initialize vacated to its sentinel address; and set the size member to 0.

The runtime complexity of ohtbl_init is O(m), where m is the number of posi-
tions in the table. This is because the data pointer in each of the m positions must
be initialized to NULL, and all other parts of the operation run in a constant
amount of time.

ohtbl_destroy

The obtbl_destroy operation destroys an open-addressed hash table (see
Example 8-7). Primarily this means freeing the memory obtbl_init allocated for the
table. The function passed as destroy to ohtbl_init is called once for each ele-
ment as it is removed, provided destroy was not set to NULL.

The runtime complexity of ohtbl_destroy is O(m), where m is the number of posi-
tions in the hash table. This is because we must traverse all positions in the hash
table to determine which are occupied. If destroy is NULL, ohtbl_destroy runs in
O(1) time.

ohtbl_insert

The obtbl_insert operation inserts an element into an open-addressed hash table
(see Example 8-7). Since an open-addressed hash table has a fixed size, we first
ensure that there is room for the new element to be inserted. Also, since a key is
not allowed to be inserted into the hash table more than once, we call obtbl_
lookup to make sure the table does not already contain the new element.

Once these conditions are met, we use double hashing to probe the table for an
unoccupied position. A position in the table is unoccupied if it points either to
NULL or the address in vacated, a special member of the hash table data struc-
ture that indicates that a position has had an element removed from it. Once we
find an unoccupied position in the table, we set the pointer at that position to
point to the data we wish to insert. After this, we increment the table size.

Assuming we approximate uniform hashing well and the load factor of the hash
table is relatively small, the runtime complexity of obtbl_insert is O(1). This is
because in order to find an unoccupied position at which to insert the element, we
expect to probe 1/(1 — o) positions, a number treated as a small constant, where o
is the load factor of the hash table.

Implementation and Analysis of Open Addressed Hash Tables 169

ohtbl_remove

The obtbl_remove operation removes an element from an open-addressed hash
table (see Example 8-7). To remove the element, we use double hashing as in
obtbl_insert to locate the position at which the element resides. We continue
searching until we locate the element or NULL is found. If we find the element, we
set data to the data being removed and decrease the table size by 1. Also, we set
the position in the table to the vacated member of the hash table data structure.

Assuming we approximate uniform hashing well, the runtime complexity of obtbl_
remove is O(1). This is because we expect to probe 1/(1 — o) positions, a number
treated as a small constant, where o is the largest load factor of the hash table
since calling ohtbl_init. The reason that the performance of this operation depends
on the largest load factor and thus does not improve as elements are removed is
that we must still probe past vacated positions. The use of the vacated member
only improves the performance of ohtbl_insert.

ohtbl_lookup

The ohtbl_lookup operation searches for an element in an open-addressed hash
table and returns a pointer to it (see Example 8-7). This operation works similarly
to ohtbl_remove, except that the element is not removed from the table.

Assuming we approximate uniform hashing well, the runtime complexity of obtbl_
lookup is the same as obtbl_remouve, or O(1). This is because we expect to probe
1/(1 — o» positions, a number treated as a small constant, where o is the largest
load factor of the hash table since calling obtbl_init. The reason that performance
depends on the largest load factor since calling ohtbl_init is the same as described
for ohtbl_remove.

ohtbl_size

This macro evaluates to the number of elements in an open-addressed hash table
(see Example 8-6). It works by accessing the size member of the OHTbI structure.

The runtime complexity of ohtbl_size is O(1) because accessing a member of a
structure is a simple task that runs in a constant amount of time.

Example 8-7. Implementation of the Open-Addressed Hash Table

Abstract Datatype

/***
* *
K e ohtbl.c --------—-—-———— *
* *

***/

170 Chapter 8: Hash Tables

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

#include <stdlib.h>
#include <string.h>

#include "ohtbl.h"

/***

* *
* Reserve a sentinel memory address for vacated elements. *
* *

***/

static char vacated;

/***

* *
Bttt ohtbl_init ---------———— *
* *

***/

int ohtbl_init (OHTbl *htbl, int positions, int (*hl) (const void *key), int
(*h2) (const void *key), int (*match) (const void *keyl, const void *key2),
void (*destroy) (void *data)) {

int i;

/***

* *
* Allocate space for the hash table. *
* *

***/

if ((htbl->table = (void **)malloc (positions * sizeof (void *))) == NULL)
return -1;

/***

* *
* Initialize each position. *
* *

***/

htbl->positions = positions;

for (i = 0; 1 < htbl->positions; i++)
htbl->table[i] = NULL;

/***

* *

* Set the vacated member to the sentinel memory address reserved for this. *
* *

***/

htbl->vacated = &vacated;

Implementation and Analysis of Open Addressed Hash Tables 171

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

/***

* *
* Encapsulate the functions. *
* *

***/

htbl->hl = hil;

htbl->h2 h2;
htbl->match = match;
htbl->destroy = destroy;

/***

* *
* Initialize the number of elements in the table. *
* *

***/

htbl->size = 0;

return 0;

/***
* *
¥ ohtbl_destroy ------------—-——-———————————— *
* *

***/

void ohtbl_destroy (OHTbl *htbl) {
int i;
if (htbl->destroy != NULL) {

/**

* *
* Call a user-defined function to free dynamically allocated data. *
* *

**/

for (i = 0; 1 < htbl->positions; i++) {

if (htbl->table[i] != NULL && htbl->table[i] != htbl->vacated)
htbl->destroy (htbl->table[i]) ;

172 Chapter 8: Hash Tables

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

/***

* *
* TFree the storage allocated for the hash table. *
* *

***/

free (htbl->table) ;

/***

* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

memset (htbl, 0, sizeof (OHTbl));

return;

/***
* *
X ohtbl_insert ----------------o *
* *

***/

int ohtbl_insert (OHTbl *htbl, const void *data) {

void *temp;
int position,
i;

/***

* *
* Do not exceed the number of positions in the table. *
* *

***/

if (htbl->size == htbl->positions)
return -1;

/***

* *
* Do nothing if the data is already in the table. *
* *

***/

temp = (void *)data;

if (ohtbl_lookup (htbl, &temp) == 0)
return 1;

Implementation and Analysis of Open Addressed Hash Tables 173

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

/***

* *
* Use double hashing to hash the key. *
* *

***/
for (i = 0; 1 < htbl->positions; i++) {
position = (htbl->hl(data) + (i * htbl->h2(data))) % htbl->positions;

if (htbl->table[position] == NULL || htbl->table[position] == htbl->
vacated) {

/***

* *
* Insert the data into the table. *
* *

***/

htbl->table[position] = (void *)data;
htbl->size++;

return 0;
}
}
/***
* *
* Return that the hash functions were selected incorrectly. *
* *

***/

return -1;

/***
* *
* e ohtbl_remove ---------——————-————————————— *
* *

***/

int ohtbl_remove (OHTbl *htbl, void **data) {

int position,
i;

/***

* *
* Use double hashing to hash the key. *
* *

***/

174 Chapter 8: Hash Tables

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

for (i = 0; 1 < htbl->positions; i++) {
position = (htbl->hl(*data) + (i * htbl->h2(*data))) % htbl->positions;

if (htbl->table[position] == NULL) {

/***

* *
* Return that the data was not found. *
* *

***/

return -1;

else if (htbl->table[position] == htbl->vacated) {

/***

* *
* Search beyond vacated positions. *
* *

***/

continue;

else if (htbl->match(htbl->table[position], *data)) {

/***

* *
* Pass back the data from the table. *
* *

***/

*data = htbl->table[position];
htbl->table[position] = htbl->vacated;
htbl->size--;

return 0;

/***
* *
* Return that the data was not found. *
* *

***/

Implementation and Analysis of Open Addressed Hash Tables 175

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

return -1;

/***
* *
* e ohtbl_lookup --------————-———————————————— *
* *

***/

int ohtbl_lookup (const OHTbl *htbl, void **data) {

int position,
i;

/***

* *
* Use double hashing to hash the key. *
* *

***/

for (i = 0; 1 < htbl->positions; i++) {

position = (htbl->hl(*data) + (i * htbl->h2(*data))) % htbl->positions;

if (htbl->table[position] == NULL) {

/***

* *
* Return that the data was not found. *
* *

***/

return -1;

else if (htbl->match(htbl->table[position], *data)) {

/***

* *
* Pass back the data from the table. *
* *

***/

*data = htbl->table[position];
return 0;

176 Chapter 8: Hash Tables

Example 8-7. Implementation of the Open-Addressed Hash Table
Abstract Datatype (continued)

/***

*

*

*

*

Return that the data was not found. *
*

***/

return -1;

}

Questions and Answers

O:

In the implementation of chained bash tables presented in this chapter, the
actual hash code used for accessing the table is the hash code modulo the table
size. Why is this?

This transformation ensures that the hash coding does not position us past the
end of the table. Although the hash function should ensure this itself, it is
worthwhile for the hash table implementation to provide the guarantee as
well, especially since the hash function is provided by the caller. However,
this is not the same reason that the modulo is performed when double hash-
ing a key in an open-addressed hash table. In this case, the process of double
hashing may produce a hash coding that falls outside of the bounds of the
table, even for two auxiliary hash functions each producing hash codings
within the table. This is because the two hash codings are added together.

Why are hash tables good for random access but not sequential access? For
example, in a database system in which records are to be accessed in a sequen-
tial fashion, what is the problem with bashing?

Hash tables are excellent for random access because each key hashes us pre-
cisely to where we need to be in the table to access the data, or at least within
a few steps when a collision occurs. However, hash tables do not support
sequential access. After hashing to some position, we have no way to deter-
mine where the next smallest or largest key resides. Compare this with a
linked list containing elements that are sorted. Assuming some initial position
in the list, the next key is easy to determine: we simply look at the next ele-
ment in the list.

What is the worst-case performance of searching for an element in a chained
hash table? How do we ensure that this case will not occur?

A chained hash table performs the worst when all elements hash into a single
bucket. In this case, searching for an element is O(7), where 7 is the number
of elements in the table. A ridiculous hash function that would result in this

Related Topics 177

performance is h(k) = ¢, where ¢ is some constant within the bounds of the
hash table. Selecting a good hash function ensures that this case will not
occur. If the hash function approximates uniform hashing well, we can expect
to locate an element in constant time.

Q: What is the worst-case performance of searching for an element in an open-
addressed bash table? How do we ensure that this case will not occur?

A: The worst-case performance of searching for an element in an open-addressed
hash table occurs once the hash table is completely full and the element we
are searching for is not in the table. In this case, searching for an element is an
O(m) operation, where m is the number of positions in the table. This case
can occur with any hash function. To ensure reasonable performance in an
open-addressed hash table, we should not let the table become more than
80% full. If we choose a hash function that approximates uniform hashing
well, we can expect performance consistent with what is presented in
Table 8-1.

Related Topics

Direct-address tables
A simple type of hash table in which there is a one-to-one mapping between
all possible keys and positions in the table. Since no two keys map to the
same position, there is no need for collision resolution. However, if there are
many possible keys, the table will be large. Generally, direct addressing works
well when the universe of possible keys is small.

Linear congruential generators
A common class of random number generators. Understanding the principles
behind random number generators can help in devising good hash functions.

Quadpratic probing
An alternative to linear probing and double hashing for probing an open-
addressed hash table. In quadratic probing, the sequence of positions probed
is determined using a quadratic-form hash function. In general, quadratic
probing performs better than linear probing, but it does not perform as well as
double hashing. Quadratic probing results in secondary clustering, a form of
clustering that is less severe than the primary clustering of linear probing.

Universal hashing
A hashing method in which hashing functions are generated randomly at run-
time so that no particular set of keys is likely to produce a bad distribution of
elements in the hash table. Because the hash functions are generated ran-
domly, even hashing the same set of keys during different executions may
result in different measures of performance.

Trees

Picture a family tree, the draw sheet of a tournament, or the roots of a plant; these
are all good examples of a tree’s organization as a data structure. In computing, a
tree consists of elements called nodes organized in a hierarchical arrangement. The
node at the top of the hierarchy is called the root. The nodes directly below the
root are its children, which in turn usually have children of their own. With the
exception of the root, each node in the hierarchy has exactly one parent, which is
the node directly above it. The number of children a node may parent depends on
the type of tree. This number is a tree’s branching factor, which dictates how fast
the tree will branch out as nodes are inserted. This chapter focuses on the binary
tree, a relatively simple but powerful tree with a branching factor of 2. Tt also
explores binary search trees, binary trees organized specifically for searching.

This chapter covers:

Binary trees
Trees containing nodes with up to two children. The binary tree is a very pop-
ular type of tree utilized in a wide variety of problems. It provides the founda-
tion for more sophisticated tree structures as well.

Traversal methods
Techniques for visiting the nodes of a tree in a specific order. Because the

nodes of a tree are organized in a hierarchical fashion, there are several
options for traversing them.

Tree balancing
A process used to keep a tree as short as possible for a given number of
nodes. This is especially important in search trees, wherein height influences
the overall performance of the tree a great deal.

178

Trees 179

Binary search trees
Binary trees organized specifically for searching. Binary search trees are good
for searching data in which we expect to perform insertions and deletions.

Rotations
Methods for keeping binary search trees balanced. Specifically, this chapter
explores AVL rotations, the rotations applied to AVL (Adel’'son-Vel’skii and
Landis) trees. An AVL tree is one type of balanced binary search tree.

Some applications of trees are:

Huffman coding
A method of data compression that uses a Huffman tree to compress a set of
data (see Chapter 14, Data Compression). A Huffman tree is a binary tree that
determines the best way to assign codes to symbols in the data. Symbols
occurring frequently are assigned short codes, whereas symbols occurring less
frequently are assigned longer ones.

User interfaces
Examples are graphical user interfaces and interfaces to file systems. In graphi-
cal user interfaces, windows take on a hierarchical arrangement forming a
tree. Every window, except the top-level window, has one parent from which
it is started, and each window may have several children launched from it.
Directories in hierarchical file systems have a similar organization.

Database systems
In particular, those that require both efficient sequential and random access
while performing frequent insertions and deletions. The B-tree, a tree charac-
terized generally as a balanced search tree with a large branching factor, is
especially good in this situation (see the related topics at the end of the chap-
ter). Typically the branching factor of a B-tree is optimized so that disk I/O is
minimized when accessing records in the database.

Expression processing (illustrated in this chapter)
A task performed frequently by compilers and hand-held calculators. One
intuitive way to process arithmetic expressions is with an expression tree, a
binary tree containing a hierarchical arrangement of an expression’s operators
and operands.

Artificial intelligence

A discipline that addresses many problems traditionally difficult for comput-
ers, such as logic-based games like chess. Many Al problems are solved using
decision trees. A decision tree consists of nodes that represent states in a prob-
lem. Each node is a point at which a decision must be made to continue. Each
branch represents a conclusion derived from a series of decisions. Using vari-
ous rules of logic, branches that cannot possibly contain desired conclusions
are pruned, thus decreasing the time to a solution.

180 Chapter 9: Trees

Event schedulers
Applications for scheduling and triggering real-time events. Often real-time
systems require looking up and retrieving the latest information associated
with events as they are triggered. A binary search tree can help make looking
up information efficient.

Priority queues
Data structures that use a binary tree to keep track of which element in a set
has the next highest priority (see Chapter 10, Heaps and Priority Queues). Pri-
ority queues offer a better solution than having to keep a set completely
sorted.

Description of Binary Trees

A binary tree is a hierarchical arrangement of nodes, each having up to two nodes
immediately below it. The nodes immediately below a node are called its chil-
dren. The node above each child is called its parent. Nodes can also have sib-
lings, descendants, and ancestors. As you might expect, the siblings of a node are
the other children of its parent. The descendants of a node are all of the nodes
branching out below it. The ancestors of a node are all the nodes along the path
between it and the root. The performance associated with a tree often is dis-
cussed in terms of its height, the number of levels in which nodes reside. As we
will see, tree terminology is as much familial as it is arboreal (see Figure 9-1).

Each node in a binary tree contains three parts: a data member and two pointers
called the left and right pointers. Using this three-member structure, we form a
binary tree by setting the /Jeft and right pointers of each node to point to its chil-
dren (see Figure 9-2). If a node does not have a child to its left or right, we set the
appropriate pointer to NULL, a convenient sentinel that marks the end of a
branch. A branch is a series of nodes beginning at the root and ending at a leaf
node. Leaf nodes are the nodes along the fringe of the tree that have no children.
Sometimes when working with several trees at once, the trees are said to form a
Jforest.

Traversal Methods

Traversing a binary tree means visiting its nodes one at a time in a specific order.
Compared with some linked data structures, such as linked lists, how to traverse
the nodes of a binary tree may not be immediately apparent. In fact, there are
many ways in which we can proceed. Typically, one of four types of traversals is
used: preorder, inorder, postorder, or level order. The example of expression trees
later in this chapter presents recursive implementations of the preorder, inorder,
and postorder traversals. For now, let’s look at how each traversal works.

Description of Binary Trees 181

6o

m © rootnode Q parent of 60 and 75 Q) ancestors of 03 and 25 Q) children of 67
@ leafnodes i descendants of 67 i77: siblings branch

Figure 9-1. Common tree terminology illustrated with a four-level binary tree

I roof

o Rl

ol
11

[
—fo
(o
[

m 1 data] left pointer [right pointer || NULL

Figure 9-2. Nodes linked together to form a binary tree

Traversing a tree is particularly simple if we think of the tree recursively as being
composed of many smaller subtrees. Figure 9-3 illustrates each traversal. Although
these traversals are presented in the context of binary trees, each can be general-
ized to other types of trees as well.

Preovrder traversal

In a preorder traversal for a given subtree, we first traverse its root, then to the left,
and then to the right. As we explore subtrees to the left and right, we proceed in a
similar manner using the left or right node as the root of the new subtree. The pre-
order traversal is a depth-first exploration, like that presented for graphs in
Chapter 11, Grapbs.

182 Chapter 9: Trees

Inorder traversal

In an inorder traversal for a given subtree, we first traverse to the left, then to the
root, and then to the right. As we explore subtrees to the left and right, we pro-
ceed in a similar manner using the left or right node as the root of the new subtree.
Postorder traversal

In a postorder traversal for a given subtree, we first traverse to the left, then to the
right, and then to the root. As we explore subtrees to the left and right, we pro-
ceed in a similar manner using the left or right node as the root of the new subtree.

Level-order traversal

To traverse a binary tree in a level-order fashion, visit its nodes beginning at the
root and proceed downward, visiting the nodes at each level from left to right. The
level-order traversal is a breadth-first exploration, like that presented for graphs in
Chapter 11.

0?& O rorder @
(1) (19)
&—® ®\ (5 @\
)
@ Fostorder @ © Level order
®)) @—
@/\@ ® o= —@
©

Figure 9-3. Traversing a binary tree in (a) preorder, (b) inorder, (c) postorder, and (d) level
order

Tree Balancing

Balancing a tree is the process of keeping it as short as possible for a given num-
ber of nodes. This means making sure that one level of the tree is completely full

Interface for Binary Trees 183

before allowing a node to exist at the next level. Formally, a tree is balanced if all
leaf nodes are at the same level or, if not, all leaf nodes are in the last two levels
and the second-to-last level is full. For example, the tree in Figure 9-1 is balanced
because all leaf nodes are in the third and fourth levels, and the third level is full.
On the other hand, the tree in Figure 9-3 is not balanced. A balanced tree is lefi-
balanced if all leaves occupy only the leftmost positions in the last level. The tree
in Figure 9-4 is a left-balanced tree. We will see one important application of bal-
anced trees when binary search trees are discussed later in this chapter. In
Chapter 10 we will see how a left-balanced binary tree helps to implement a heap
and priority queue.

)
(09 ©
(09 (19 W ®
@) @)

Figure 9-4. A left-balanced binary tree

Interface for Binary Trees

This interface provides basic operations for manipulating binary trees. However, it
does not provide operations for inserting and removing individual nodes that are
not leaves, because these operations require adjusting other nodes in the tree in
some application-specific way to accommodate the node that is inserted or
removed.

bitree_init

void bitree_init (BiTree *tree, void (*destroy) (void *data));

Return Value None.

Description Initializes the binary tree specified by tree. This operation must
be called for a binary tree before the tree can be used with any other operation.
The destroy argument provides a way to free dynamically allocated data when
bitree_destroy is called. For example, if the tree contains data dynamically allo-
cated using malloc, destroy should be set to free to free the data as the binary

184 Chapter 9: Trees

tree is destroyed. For structured data containing several dynamically allocated
members, destroy should be set to a user-defined function that calls free for each
dynamically allocated member as well as for the structure itself. For a binary tree
containing data that should not be freed, destroy should be set to NULL.

Complexity o

bitree_destroy

void bitree destroy(BiTree *tree);

Return Value None.

Description Destroys the binary tree specified by tree. No other operations
are permitted after calling bitree_destroy unless bitree_init is called again. The
bitree_destroy operation removes all nodes from a binary tree and calls the func-

tion passed as destroy to bitree_init once for each node as it is removed, pro-
vided destroy was not set to NULL.

Complexity O(n), where 7 is the number of nodes in the binary tree.

bitree_ins_left

int bitree_ins_left (BiTree *tree, BiTreeNode *node, const void *data) ;

Return Value 0 if inserting the node is successful, or -1 otherwise.

Description Inserts a node as the left child of node in the binary tree speci-
fied by tree. If node already has a left child, bitree_ins_left returns —1. If node is
NULL, the new node is inserted as the root node. The tree must be empty to insert
a node as the root node; otherwise, bitree_ins_left returns —1. When successful, the
new node contains a pointer to data, so the memory referenced by data should
remain valid as long as the node remains in the binary tree. It is the responsibility
of the caller to manage the storage associated with data.

Complexity o

bitree_ins_right

int bitree_ins_right (BiTree *tree, BiTreeNode *node, const void *data) ;

Return Value 0 if inserting the node is successful, or —1 otherwise.

Description This operation is similar to bitree_ins_lefl, except that it inserts a
node as the right child of node in the binary tree specified by tree.

Complexity o)

Interface for Binary Trees 185

bitree_rem_left

void bitree _rem left (BiTree *tree, BiTreeNode *node) ;

Return Value None.

Description Removes the subtree rooted at the left child of node from the
binary tree specified by tree. If node is NULL, all nodes in the tree are removed.
The function passed as destroy to bitree_init is called once for each node as it is
removed, provided destroy was not set to NULL.

Complexity O(n), where 7 is the number of nodes in the subtree.

bitree_rem_right

void bitree_rem_ right (BiTree *tree, BiTreeNode *node) ;

Return Value None.

Description This operation is similar to bitree_rem_left, except that it removes
the subtree rooted at the right child of node from the binary tree specified by
tree.

Complexity O(n), where 7 is the number of nodes in the subtree.

bitree_merge

int bitree_merge (BiTree *merge, BiTree *left, BiTree *right, const void *data);
Return Value 0 if merging the trees is successful, or —1 otherwise.

Description Merges the two binary trees specified by left and right into the
single binary tree merge. After merging is complete, merge contains data in its
root node, and left and right are the left and right subtrees of its root. Once the

trees have been merged, left and right are as if bitree_destroy had been called
on them.

Complexity o)

bitree_size

int bitree_size(const BiTree *tree);

Return Value Number of nodes in the tree.

Description Macro that evaluates to the number of nodes in the binary tree
specified by tree.

Complexity o)

186 Chapter 9: Trees

bitree_root

BiTreeNode *bitree_root (const BiTree *tree);

Return Value Node at the root of the tree.

Description Macro that evaluates to the node at the root of the binary tree
specified by tree.

Complexity o)

bitree_is_eob

int bitree_is_eob(const BiTreeNode *node) ;

Return Value 1 if the node marks the end of a branch, or 0 otherwise.

Description Macro that determines whether the node specified as node marks
the end of a branch in a binary tree.

Complexity o)

bitree_is_leaf

int bitree_isleaf (const BiTreeNode *node) ;

Return Value 1 if the node is a leaf node, or 0 otherwise.

Description Macro that determines whether the node specified as node is a
leaf node in a binary tree.

Complexity o)

bitree_data

void *bitree_data(const BiTreeNode *node) ;

Return Value Data stored in the node.

Description Macro that evaluates to the data stored in the node of a binary
tree specified by node.

Complexity o)

bitree_left

BiTreeNode *bitree_left (const BiTreeNode *node) ;

Return Value Left child of the specified node.

Description Macro that evaluates to the node of a binary tree that is the left
child of the node specified by node.

Complexity o)

Implementation and Analysis of Binary Trees 187

bitree_right

BiTreeNode *bitree_right (const BiTreeNode *node) ;

Return Value Right child of the specified node.

Description Macro that evaluates to the node of a binary tree that is the right
child of the node specified by node.

Complexity o)

Implementation and Analysis
of Binary Trees

Recall that each node of a binary tree consists of three parts: a data member and
two pointers to its children. The structure BiTreeNode represents an individual
node of a binary tree (see Example 9-1). As you would expect, this structure has
three members that correspond to those just mentioned. The structure BiTree is
the binary tree data structure (see Example 9-1). This structure consists of four
members: size is the number of nodes in the tree, compare is a member not used
by binary trees but by datatypes that will be derived later from binary trees,
destroy is the encapsulated destroy function passed to bitree_init, and root is a
pointer to the top of the node hierarchy.

Example 9-1. Header for the Binary Tree Abstract Datatype

/***

* *
ettt bitree.h - *
* *

‘k**‘k*/

#ifndef BITREE_H
#define BITREE_H

#include <stdlib.h>

/***

* *
* Define a structure for binary tree nodes. *
* *

***/

typedef struct BiTreeNode {
void *data;
struct BiTreeNode_ *left;
struct BiTreeNode_ *right;

} BiTreeNode;

188 Chapter 9: Trees

Example 9-1. Header for the Binary Tree Abstract Datatype (continued)

/***

* *
* Define a structure for binary trees. *
* *

‘k**/

typedef struct BiTree_ {

int size;

int (*compare) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

BiTreeNode *root;

} BiTree;

/***

* *
o ittt bl b Public Interface ------—-——-————————mmm *
* *

***/

void bitree init (BiTree *tree, void (*destroy) (void *data));

void bitree_destroy (BiTree *tree);

int bitree_ins_left (BiTree *tree, BiTreeNode *node, const void *data);

int bitree_ins_right (BiTree *tree, BiTreeNode *node, const void *data);

void bitree rem left (BiTree *tree, BiTreeNode *node) ;

void bitree rem_ right (BiTree *tree, BiTreeNode *node);

int bitree_merge (BiTree *merge, BiTree *left, BiTree *right, const void *data);

#define bitree size(tree) ((tree)->size)

#define bitree root (tree) ((tree)->root)

#define bitree_is_eob(node) ((node) == NULL)

#define bitree_is_leaf (node) ((node)->left == NULL && (node)->right == NULL)
#define bitree data(node) ((node)->data)

#define bitree_left (node) ((node)->left)
#define bitree_right (node) ((node)->right)

#endif

Implementation and Analysis of Binary Trees 189

bitree_init

The bitree_init operation initializes a binary tree so that it can be used in other
operations (see Example 9-2). Initializing a binary tree is a simple operation in
which we set the size member of the tree to 0, the destroy member to
destroy, and the root pointer to NULL.

The runtime complexity of bitree_init is O(1) because all of the steps in initializ-
ing a binary tree run in a constant amount of time.

bitree_destroy

The bitree_destroy operation destroys a binary tree (see Example 9-2). Primarily
this means removing all nodes from the tree. The function passed as destroy to
bitree_init is called once for each node as it is removed, provided destroy was
not set to NULL.

The runtime complexity of bitree_destroy is O(»n), where n is the number of nodes
in the binary tree. This is because bitree_destroy simply calls bitree_rem_left, which
runs in O(n) time, where 7 is the number of nodes in the tree.

bitree_ins_left

The bitree_ins_left operation inserts a node into a binary tree as the left child of a
specified node (see Example 9-2). The call sets the new node to point to the data
passed by the caller. Linking the new node into the tree is accomplished by set-
ting the Ieft pointer of node to point to the new node. If node is NULL and the
tree is empty, we set the root member of the tree data structure to the new node.
We update the size of the tree by incrementing the size member.

The runtime complexity of bitree_ins_left is O(1) because all of the steps in insert-
ing a node into a binary tree run in a constant amount of time.

bitree_ins_right

The bitree_ins_right operation inserts a node into a binary tree as the right child of
a specified node (see Example 9-2). This operation works similarly to bitree_ins_
left, except that linking the new node into the tree is accomplished by setting the
right pointer of node to point to the new node.

The runtime complexity of bitree_ins_right is O(1) because all of the steps in
inserting a node into a binary tree run in a constant amount of time.
bitree_rem_left

The bitree_rem_left operation removes the subtree rooted at the left child of a
specified node (see Example 9-2). Nodes are removed by performing a postorder

190 Chapter 9: Trees

traversal beginning at the left child of node. If node is NULL, we begin the tra-
versal at the root node. The function passed as destroy to bitree_init is called
once for each node as it is removed, provided destroy was not set to NULL. As
each node is removed, we update the size member of the tree data structure as
well.

The runtime complexity of bitree_rem_left is O(n), where n is the number of
nodes in the subtree rooted at the left child of node. This is because bitree_rem_
left performs a postorder traversal to visit each of the nodes in the subtree while
all other parts of the operation run in a constant amount of time.

bitree_rem_right

The bitree_rem_right operation removes the subtree rooted at the right child of a
specified node (see Example 9-2). This operation works much like bitree_rem_left,
except that nodes are removed by performing a postorder traversal beginning at
the right child of node.

The runtime complexity of bitree_rem_right is O(n), where n is the number of
nodes in the subtree rooted at the right child of node. This is because bitree_rem_
right performs a postorder traversal to visit each of the nodes in the subtree while
all other parts of the operation run in a constant amount of time.

bitree_merge

The bitree_merge operation merges two binary trees into a single binary tree (see
Example 9-2). First, we initialize merge by calling bitree_init. Next, we insert data
into the merged tree at its root. The merged tree’s left and right children are then
set to be the root nodes of Ieft and right, and the size of the tree is adjusted to
reflect the sizes of the subtrees. Last, we detach the nodes now in the merged tree
from the original trees and set the size of each tree to 0.

The runtime complexity of bitree_merge is O(1) because all of the steps in merg-
ing two binary trees run in a constant amount of time.

bitree_size, bitree_root, bitree_is_eob, bitree_is_leaf,
bitree_data, bitree_left, bitree_right
These macros implement some of the simpler binary tree operations (see

Example 9-1). Generally, they provide an interface for accessing and testing mem-
bers of the BiTree and BiTreeNode structures.

The runtime complexity of these operations is O(1) because accessing and testing
members of a structure are simple tasks that run in a constant amount of time.

Implementation and Analysis of Binary Trees 191

Example 9-2. Implementation of the Binary Tree Abstract Datatype

/***

* *
ettt bitree.c ——=—-—————————— *
* *

‘k**/

#include <stdlib.h>
#include <string.h>

#include "bitree.h"

/***

* *
B aimintataleit b bitree_init ----------————————— *
* *

***/

void bitree init (BiTree *tree, void (*destroy) (void *data)) {

/***

* *
* 1Initialize the binary tree. *
* *

***/

tree->size = 0;
tree->destroy = destroy;
tree->root = NULL;

return;

/***
* *
K bitree_destroy ----------—--———————mm———— *
* *

‘k**/

void bitree destroy (BiTree *tree) {

/***

* *
* Remove all the nodes from the tree. *
* *

***/

bitree_rem left (tree, NULL) ;

/***

* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

192 Chapter 9: Trees

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

memset (tree, 0, sizeof (BiTree));

return;

/***
* *
K bitree_ins_left ---—------- *
* *

‘k**/

int bitree_ins_left (BiTree *tree, BiTreeNode *node, const void *data) {

BiTreeNode *new_node,
**pogition;

/***

* *
* Determine where to insert the node. *
* *

***/

if (node == NULL) {

/**

* *
* Allow insertion at the root only in an empty tree. *
* *

**/

if (bitree_size(tree) > 0)
return -1;

position = &tree->root;

else {

/**

* *
* Normally allow insertion only at the end of a branch. *
* *

**/

if (bitree_left (node) != NULL)
return -1;

position = &node->left;

Implementation and Analysis of Binary Trees 193

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

/***

* *
* Allocate storage for the node. *
* *

‘k**/

if ((new_node = (BiTreeNode *)malloc (sizeof (BiTreeNode))) == NULL)
return -1;

/***

* *
* Insert the node into the tree. *
* *

‘k**/

new_node->data (void *)data;
new_node->left NULL;
new_node->right = NULL;
*position = new_node;

/***

* *
* Adjust the size of the tree to account for the inserted node. *
* *

***/

tree->size++;

return 0;

/***
* *
I] bitree_ins_right ---—-—-———=—————————— *
* *

***/

int bitree_ins_right (BiTree *tree, BiTreeNode *node, const void *data) {

BiTreeNode *new_node,
**position;

/***

* *
* Determine where to insert the node. *
* *

***/

if (node == NULL) {

194 Chapter 9: Trees

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

/**

* *
* Allow insertion at the root only in an empty tree. *
* *

‘k***/

if (bitree_size(tree) > 0)
return -1;

position = &tree->root;

else {

/**

* *
* Normally allow insertion only at the end of a branch. *
* *

‘k***/

if (bitree_right (node) != NULL)
return -1;

position = &node->right;

/***
* *
* Allocate storage for the node. *
* *

***/

if ((new_node = (BiTreeNode *)malloc (sizeof (BiTreeNode))) == NULL)
return -1;

/***

* *
* Insert the node into the tree. *
* *

***/

new_node->data (void *)data;
new_node->left NULL;
new_node->right = NULL;
*position = new_node;

/***

* *
* Adjust the size of the tree to account for the inserted node. *
* *

‘k**/

Implementation and Analysis of Binary Trees 195

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

tree->size++;

return 0;

/***
* *
K bitree_rem left ---—--------m *
* *

‘k**/

void bitree _rem left (BiTree *tree, BiTreeNode *node) {

BiTreeNode **position;

/***

* *
* Do not allow removal from an empty tree. *
* *

***/

if (bitree_size(tree) == 0)
return;

/***

* *
* Determine where to remove nodes. *
* *

***/

if (node == NULL)
position = &tree->root;
else
position = &node->left;

/***

* *
* Remove the nodes. *
* *

***/
if (*position != NULL) {

bitree_rem left (tree, *position);
bitree_rem right (tree, *position);

if (tree->destroy != NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

196 Chapter 9: Trees

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

tree->destroy ((*position)->data) ;

free (*position) ;
*position = NULL;

/**

* *
* Adjust the size of the tree to account for the removed node. *
* *

**/

tree->size--;

return;

/***
* *
K bitree rem right ----—---------———o——- *
* *

‘k**/

void bitree rem_right (BiTree *tree, BiTreeNode *node) {

BiTreeNode **position;

/***

* *
* Do not allow removal from an empty tree. *
* *

***/

if (bitree_size(tree) == 0)
return;

/***

* *
* Determine where to remove nodes. *
* *

***/

if (node == NULL)

position = &tree->root;
else

position = &node->right;

Implementation and Analysis of Binary Trees 197

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

/***

* *
* Remove the nodes. *
* *

‘k**/

if (*position != NULL) {

bitree_rem left (tree, *position);
bitree_rem right (tree, *position);

if (tree->destroy != NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

tree->destroy ((*position) ->data) ;

free (*position) ;
*position = NULL;

/**

* *
* Adjust the size of the tree to account for the removed node. *
* *

**/

tree->size--;

return;

/***
* *
F e bitree_merge ----—------——————— *
* *

***/

int bitree_merge (BiTree *merge, BiTree *left, BiTree *right, const void
*data) {

198 Chapter 9: Trees

Example 9-2. Implementation of the Binary Tree Abstract Datatype (continued)

/***

* *
* Initialize the merged tree. *
* *

‘k**/

bitree_init (merge, left->destroy);

/***

* *
* Insert the data for the root node of the merged tree. *
* *

***/

if (bitree_ins_left (merge, NULL, data) != 0) {

bitree_destroy (merge) ;
return -1;

}

/***
* *
* Merge the two binary trees into a single binary tree. *
* *

‘k**/

bitree_root (merge) ->left = bitree_root (left);
bitree_root (merge) ->right = bitree_root (right) ;

/***

* *
* Adjust the size of the new binary tree. *
* *

‘k**/

merge->size = merge->size + bitree_size(left) + bitree_ size(right);

/***

* *
* Do not let the original trees access the merged nodes. *
* *

***/

left->root = NULL;
left->size = 0;
right->root = NULL;
right->size = 0;

return 0;

Binary Tree Example: Expression Processing 199

Binary Tree Example:
Expression Processing

One intuitive way to process arithmetic expressions with a computer is using an
expression tree. An expression tree is a binary tree consisting of nodes containing
two types of objects: operators and terminal values. Operators are objects that
have operands; terminal values are objects that have no operands.

The idea behind an expression tree is simple: the subtrees rooted at the children
of each node are the operands of the operator stored in the parent (see
Figure 9-5). Operands may be terminal values, or they may be other expressions
themselves. Expressions are expanded in subtrees; terminal values reside in leaf
nodes. One of the nice things about this idea is how easily an expression tree
allows us to translate an expression into one of three common representations:
prefix, infix, and postfix. To obtain these representations, we simply traverse the
tree using a preorder, inorder, or postorder traversal.

Traversing the tree in Figure 9-5 in preorder, for example, yields the prefix expres-
sion X / — 74 10 32 + 23 17. To evaluate a prefix expression, we apply each opera-
tor to the two operands that immediately follow it. Thus, the prefix expression just
given is evaluated as:

(x(/ (= 74 10)32)(+23 17)) = 80

Infix expressions are the expressions we are most familiar with from mathematics,
but they are not well suited to processing by a computer. If we traverse the tree of
Figure 9-5 using an inorder traversal, we get the infix expression 74 — 10 / 32 X 23
+ 17. Notice that one of the difficulties with infix expressions is that they do not
inherently identify in which order operations should be performed, whereas prefix
and postfix expressions do. However, we can remedy this situation in an infix
expression by parenthesizing each part of the expression as we traverse it in the
tree. Fully parenthesized, the previous infix expression is evaluated as:

(((74-10)/32)x (23 +17)) = 80

Postfix expressions are well suited to processing by a computer. If we traverse the
tree of Figure 9-5 in postorder, we get the postfix expression 74 10 — 32 / 23 17 + X.
To evaluate a postfix expression, we apply each operator to the two operands
immediately preceding it. Thus, the postfix expression just given is evaluated as:

(((74 10 =) 32 /)(23 17+)x) = 80

One reason postfix expressions are well suited to computers is that they are easy
to evaluate with an abstract stack machine, an abstraction used by compilers and
hand-held calculators. To process a postfix expression using an abstract stack

200 Chapter 9: Trees

Figure 9-5. An expression tree for the expression (74— 10)/32)X (23 + 17)

machine, we proceed as follows. First, we move from left to right through the
expression, pushing values onto the stack until an operator is encountered. Next,
the operands required by the operator are popped, the operator is applied to
them, and the result is pushed back on the stack. This procedure is repeated until
the entire expression has been processed, at which point the value of the expres-
sion is the lone item remaining on the stack (see Figure 9-6).

17
10 32 23 40
74 64 2 80
(empty) 64 2 2 80
push74 pop40 push32 pop32 puwsh23 popl7 popd0
push 10 pop 74 pop64 push17 pop23 pop2
apply — apply / apply + apply x
push 64 push 2 push 40 push 80

Figure 9-6. An abstract stack machine processing the postfix expression 74 10— 32/23 17 +X

Example 9-3 illustrates how to produce the prefix, infix, and postfix representa-
tions of an expression stored in an expression tree. For this, three functions are
provided, preorder, inorder, and postorder, which traverse a binary tree in preor-
der, inorder, and postorder, respectively. Each function accepts two arguments:
node and 1ist.

To begin a traversal, we set node to the root node of the expression tree we wish
to traverse. Successive recursive calls set node to the node at the top of the sub-
tree about to be traversed. On the initial call to each function, we also pass into
list an empty linked list already initialized with /Jist_init. For each of the

Binary Tree Example: Expression Processing 201

traversals, nodes are placed into the list in the order they are encountered. When
the initial call in the recursion returns, 1ist contains the preorder, inorder, or pos-

torder listing of the nodes, as appropriate. Notice how a recursive implementation

of these traversals nicely models the definitions presented earlier in the chapter.

Example 9-3. Implementation of Functions for Traversing a Binary Tree

/***

* *
B ettt traverse.c ---------—-——--—-—————— oo *
* *

***/

#include "list.h"
#include "traverse.h"

/***

* *
et preorder -—-—--—----—--—-—————-————————————— *
* *

***/

int preorder (const BiTreeNode *node, List *1list) {

/***

* *
* Load the list with a preorder listing of the tree. *
* *

***/

if (!bitree_is_eob(node)) {

if (list_ins next(list, list_tail(list), bitree_data(node)) != 0)
return -1;

if (!'bitree_is_eob(bitree left (node)))
if (preorder (bitree left (node), list) != 0)
return -1;

if (!bitree_is_eob(bitree_right (node)))
if (preorder (bitree_ right (node), list) != 0)
return -1;

return 0;

/***
* *
Bttt inorder -------—--————————m *
* *

***/

202 Chapter 9: Trees

Example 9-3. Implementation of Functions for Traversing a Binary Tree (continued)

int inorder (const BiTreeNode *node, List *list) {

/***

* *
* Load the list with an inorder listing of the tree. *
* *

***/

if (!bitree_is_eob(node)) {

if (!'bitree_is_eob(bitree left (node)))
if (inorder (bitree_left (node), list) != 0)
return -1;

if (list_ins_next(list, list_tail(list), bitree_data(node)) != 0)
return -1;

if (!bitree_is_eob(bitree_right (node)))
if (inorder (bitree_right(node), list) != 0)
return -1;

return 0;

/***
* *
K e postorder —--------————————————————————— *
* *

***/

int postorder (const BiTreeNode *node, List *1list) {

/***

* *
* Load the list with a postorder listing of the tree. *
* *

***/

if (!bitree_is_eob(node)) {

if (!bitree_is_eob(bitree left (node)))
if (postorder (bitree_left (node), list) != 0)
return -1;

if (!bitree_is_eob(bitree_right (node)))
if (postorder (bitree_ right (node), list) != 0)
return -1;

if (list_ins next(list, list_tail(list), bitree_data(node)) != 0)
return -1;

Description of Binary Search Trees 203

Example 9-3. Implementation of Functions for Traversing a Binary Tree (continued)

}

return 0;

Description of Binary Search Trees

Binary search trees are binary trees organized specifically for searching. To search
for a node in a binary search tree, we start at the root of the tree and descend
level by level until we find the node we are looking for. When we encounter a
node greater than the desired node, we follow its left pointer. When we encoun-
ter a node that is less, we follow its right pointer. For example, to locate 15 in the
tree of Figure 9-7, start at the root and move to the left since 15 is less than 20,
then to the right since 15 is greater than 09, at which point we find 15. If we reach
the end of a branch before locating the desired node, it does not exist.

Of course, the process of searching a binary tree depends on nodes having been
inserted in a similar way. Thus, to insert a node, we start at the root of the tree
and descend level by level, moving left or right as appropriate. When we reach
the end of a branch, we make the insertion. For example, to insert 65 into the tree
of Figure 9-7, we start at the root and move to the right since 65 is greater than 20,
then to the right again since 65 is greater than 53, and then to the left since 65 is
less than 79. This point is the end of a branch, so we insert the key as the left
child of 79. Duplicate keys are not allowed.

X
@ @ @

Figure 9-7. A binary search tree, including the patbs traced while locating 15 and inserting 65

Binary search trees are efficient structures for searching because in the worst case,
we only end up searching the data in one branch, instead of having to search
every piece of data. Thus, searching becomes an O(lg »n) operation, where 7 is the
number of nodes in the tree, provided the tree is kept balanced. Recall that
keeping a tree balanced means that it will be as short as possible for a given

204 Chapter 9: Trees

number of nodes. Keeping a binary search tree balanced is important because it
means that no branch we search will be exceptionally long.

To understand further the importance of keeping a binary search tree balanced,
consider what happens as a binary search tree becomes more and more unbal-
anced. As this occurs, searching for a node approaches O(n), which is no better
than searching from one end of the data to the next. For example, imagine a
binary search tree containing 216 words from a dictionary inserted in alphabetical
order (see Figure 9-8). In this case, the tree consists of a single branch to the right,
and searching for a word could require inspecting as many as 216 words. How-
ever, if we insert the words in a random fashion, the tree should end up at least
somewhat balanced, and we can expect to traverse closer to lg 216 = 16 words in
the worst case. Since normally the order in which nodes are inserted and removed
is not something we can control, we cannot rely on this method to keep a tree
balanced. Instead, we must take a more proactive approach.

Figure 9-8. A poorly balanced binary search tree consisting of a single branch to the right

Interface for Binary Search Trees

bistree_init

void bistree_init (BisTree *tree, void (*compare) (const void *keyl,
const void *key2), void (*destroy) (void *data));

Return Value None.
Description Initializes the binary search tree specified by tree. This opera-

tion must be called for a binary search tree before the tree can be used with any
other operation. The function pointer compare specifies a user-defined function

Interface for Binary Search Trees 205

to compare elements. This function should return 1 if keyl > key2, 0 if keyl =
key2, and -1 if keyl < key2. The destroy argument provides a way to free
dynamically allocated data when bistree_destroy is called. It works in a manner
similar to that described for bitree_destroy. For a binary search tree containing data
that should not be freed, destroy should be set to NULL.

Complexity o)

bistree_destroy

void bistree_destroy (BisTree *tree);

Return Value None.

Description Destroys the binary search tree specified by tree. No other oper-
ations are permitted after calling bistree_destroy unless bistree_init is called again.
The bistree_destroy operation removes all nodes from a binary search tree and

calls the function passed as destroy to bistree_init once for each node as it is
removed, provided destroy was not set to NULL.

Complexity O(n), where 7 is the number of nodes in the binary search tree.

bistree_insert

int bistree_insert (BisTree *tree, const void *data);

Return Value 0 if inserting the node is successful, 1 if the node is already in the
tree, or —1 otherwise.

Description Inserts a node into the binary search tree specified by tree. The
new node contains a pointer to data, so the memory referenced by data should
remain valid as long as the node remains in the binary search tree. It is the
responsibility of the caller to manage the storage associated with data.

Complexity O(lg n), where n is the number of nodes in the binary search
tree.

bistree_remove

int bistree_ remove (BisTree *tree, const void *data);

Return Value 0 if removing the node is successful, or —1 otherwise.

Description Removes the node matching data from the binary search tree
specified by tree. In actuality, this operation only performs a lazy removal, in
which the node is simply marked as hidden. Thus, no pointer is returned to the
data matching data. The data in the tree must remain valid even after it has been
removed. Consequently, the size of the binary search tree, as returned by bistree_

206 Chapter 9: Trees

size, does not decrease after removing a node. This approach is explained further
in the implementation and analysis section.

Complexity O(g n), where n is the number of nodes in the binary search
tree.

bistree_lookup

int bistree lookup (const BisTree *tree, void **data);

Return Value 0 if the data is found in the binary search tree, or —1 otherwise.

Description Determines whether a node matches data in the binary search
tree specified as tree. If a match is found, data points to the matching data in the
binary search tree upon return.

Complexity O(lg n), where n is the number of nodes in the binary search
tree.

bistree_size

int bistree size(const BisTree *tree);

Return Value Number of nodes in the tree.

Description Macro that evaluates to the number of nodes in the binary search
tree specified by tree.

Complexity o)

Implementation and Analysis
of Binary Search Trees

As described earlier, binary search trees perform well only if the tree remains bal-
anced. Unfortunately, keeping a binary search tree balanced is a more difficult
problem than it may at first appear. Nevertheless, there are a few clever
approaches one can take. One of the best approaches is to implement the tree as
an AVL tree.

An AVL (Adel'son-Vel’skii and Landis) tree is a special type of binary tree that
stores an extra piece of information with each node: its balance factor. The bal-
ance factor of a node is the height of the subtree rooted at its left child minus the
height of the subtree rooted at its right child (see Figure 9-9). As nodes are
inserted, an AVL tree adjusts itself so that all balance factors stay +1, -1, or 0. A
subtree whose root node has a balance factor of +1 is said to be left-heavy. A sub-
tree whose root node has a balance factor of —1 is said to be right-heavy. A subtree

Implementation and Analysis of Binary Search Trees 207

whose root node has a balance factor of 0 is considered balanced. By keeping its
subtrees nearly balanced, an AVL tree stays approximately balanced overall.

Figure 9-9. An AVL tree, including balance factors

The basic means of searching and inserting nodes in an AVL tree is the same as
described earlier. However, when we insert a node into an AVL tree, we have
some additional work to do after the node descends to its appropriate position.
First, we must account for the change in balance factors that occurs as a result of
the insertion. Also, if any balance factor becomes 2, we must rebalance the tree
from that point down, which is done by performing an operation called a rotation.

Rotations in AVL Trees

A rotation rebalances part of an AVL tree by rearranging nodes while preserving
the relationship wherein the left is smaller than the parent and the parent is
smaller than the right, which must be maintained for the tree to remain a binary
search tree. After the rotation, the balance factors of all nodes in the rotated sub-
tree are +1, —1, or 0.

There are only four types of rotations that ever have to be performed. These are
the LL (lefi-lefD), LR (lefi-righD, RR (right-righD), and RL (right-lefD) rotations. The
functions rotate_left and rotate_right, presented later in Example 9-5, implement
each of these rotations. To understand when we need to apply each rotation, let x
represent the node we have just inserted into its proper location in an AVL tree,
and let A be the nearest ancestor of x whose balance factor has changed to 2.

LL rotation

We perform an LL, or left-left, rotation when x lies in the left subtree of the left
subtree of A (see Figure 9-10). Let left be the left child of A. To perform an LL rota-
tion, we set the left pointer of A to the right child of left, the right pointer of /left to
A, and the pointer referencing A to left. After the rotation, we set the balance fac-
tors of both A and /eft to 0. All other balance factors do not change.

208 Chapter 9: Trees

o After setting the left pointer of Ato the right child of feff

Mde left
@O @

° left subtree of the left subtree of A X

0 After setting the right poiner of leftto A o After setting the pointer referencing A fo left and updating
the balance factors of A and feft

Figure 9-10. An LL rotation in an AVL tree

LR rotation

We perform an LR, or left-right, rotation when x lies in the #ight subtree of the left
subtree of A (see Figure 9-11). Let left be the left child of A and grandchild be the
right child of left. To perform an LR rotation, we set the right child of /left to the
left child of grandchild, the left child of grandchild to left, the left child of A to
the right child of grandchild, the right child of grandchild to A, and finally the
pointer referencing A to grandchild.

Adjusting the balance factors of nodes after an LR rotation depends on the original
balance factor of grandchild. Figure 9-12 illustrates the three cases to consider. If
the original balance factor of grandchild was +1, we set the balance factor of A to —
1 and /eft to 0. If the original balance factor of grandchild was 0, we set the bal-
ance factors of both 4 and /left to 0. If the original balance factor of grandchild was
-1, we set the balance factor of 4 to 0 and that of /eft to +1. In all cases, we set the
new balance factor of grandchild to 0. All other balance factors do not change.

RR rotation

We perform an RR, or right-right, rotation when x lies in the right subtree of the
right subtree of A. The RR rotation is symmetric to the LL rotation. Let right be the
right child of A. To perform an RR rotation, we set the right pointer of 4 to the left
child of right, the left pointer of right to A, and the pointer referencing A to right.
After the rotation, we set the balance factors of both 4 and left to 0. All other bal-
ance factors do not change.

Implementation and Analysis of Binary Search Trees

209

o After inserfing x o After setting the right pointer of feff to the left child
of grandchild

grandchild
° right subtree of the left
subtree of A

o After setting the left pointer of grandchild to left o After setting the left pointer to A to the right child
of grandchild
node o node o

(NULL)

grandchild _Q_ node

o After setting the pointer referencing A to grandchild and
updating the balance factors of A, left, and grandchild

Figure 9-11. An LR rotation in an AVL tree

RL rotation

We perform an RL, or right-left, rotation when x lies in the left subtree of the right
subtree of A. The RL rotation is symmetric to the LR rotation. Let right be the right
child of 4 and grandchild be the left child of right. To perform an RL rotation, we
set the left child of right to the right child of grandchild, the right child of grand-
child to right, the right child of A to the left child of grandchild, the left child of

grandchild to A, and finally the pointer referencing A to grandchild.

Adjusting the balance factors of nodes after an RL rotation depends on the origi-
nal balance factor of grandchild. There are three cases to consider. If the original
balance factor of grandchild was +1, we set the balance factor of 4 to 0 and that

210 Chapter 9: Trees

CASE 1: xis inserted as the left child of grandchild

o Before rotation, the balance factor of grandchild is +1 o After the rotation, the halance factor of Ais -1, leftis 0,
and grandchild s 0

grandchild
0
° right subtree of the left
subtree of A

CASE 2: xis inserted as grandchild

o Before the rotation, the balance factor of grandchild is 0 o After the rotation, the halance factor of Ais 0, leftis 0,
and grandchild is 0

grandchild 0 node

é grandchild

CASE 3: xis inserted as the right child of grandchild

o Before the rotation, the balance factor of grandchild is —1 o After the rotation, the halance factor of Ais 0, leftis +1,
and grandchild s 0

left @]
é grandchild
®

Figure 9-12. Updating balance factors after an LR rotation in an AVL tree

of right to —1. If the original balance factor of grandchild was 0, we set the bal-
ance factors of both A4 and /left to 0. If the original balance factor of grandchild
was —1, we set the balance factor of A to +1 and that of left to 0. In all cases, we
set the new balance factor of grandchild to 0. All other balance factors do not
change. These adjustments are symmetric to those shown in Figure 9-12 for an LR
rotation.

The structure BisTree is the binary search tree data structure. A good way to
implement a binary search tree is to use the binary tree abstract datatype discussed
earlier. Thus, BisTree is implemented as a typedef to BiTree (see Example 9-4).

Implementation and Analysis of Binary Search Trees 211

In addition to simplicity, using a typedef has the benefit of making the binary
search tree somewhat polymorphic, just as described for stacks and queues (see
Chapter 6, Stacks and Queues). This means that we can use binary tree operations
on a binary search tree in addition to those operations defined specifically for
binary search trees.

Since keeping a binary search tree balanced requires that each node store more
than just the data placed in the tree, a structure, AvIiNode, is defined for each
node to contain (see Example 9-4). An AvINode structure consists of three mem-
bers: data is the data stored in the node, hidden is a member used to mark a
node when it is removed, and factor is the node’s balance factor. The implemen-
tation presented here also uses identifiers to represent the possible values for bal-
ance factors. Example 9-4 equates AVI, LEFT HFAVY to 1, AVL,_BALANCED to 0,
and AVI,_RGT HEAVY to —1.

Example 9-4. Header for the Binary Search Tree Abstract Datatype

/***

* *
ettt bistree.h --—----—————m *
* *

***/

#ifndef BISTREE H
#define BISTREE H

#include "bitree.h"

/***

* *
* Define balance factors for AVL trees. *
* *

***/

#define AVL,_LFT HEAVY 1
#define AVL, BALANCED 0
#define AVL_RGT_HEAVY -1

/***

* *
* Define a structure for nodes in AVL trees. *
* *

***/

typedef struct AviNode ({

void *data;
int hidden;
int factor;

} AvlNode;

212 Chapter 9: Trees

Example 9-4. Header for the Binary Search Tree Abstract Datatype (continued)

/***

* *
* Implement binary search trees as binary trees. *
* *

***/

typedef BiTree BisTree;

/***

* *
I ittt Ll b Public Interface ------—-———————————mmo—— *
* *

***/

void bistree_init (BisTree *tree, int (*compare) (const void *keyl, const void
*key2), void (*destroy) (void *data));

void bistree_destroy (BisTree *tree);

int bistree_ insert (BisTree *tree, const void *data);
int bistree remove (BisTree *tree, const void *data);
int bistree lookup (BisTree *tree, void **data);
#define bistree size(tree) ((tree)->size)

#endif

bistree_init

The bistree_init operation initializes a binary search tree so that it can be used in
other operations (see Example 9-5). Since a binary search tree is a binary tree, we call
bitree_init to initialize it. The compare member is set to compare by hand because
this member is not used by binary trees and therefore is not set by bitree_init.

The runtime complexity of bistree_init is the same as bitree_init, or O(1).

bistree_destroy

The bistree_destroy operation destroys a binary search tree (see Example 9-5). To
do this, we employ the support of two additional functions, destroy_left and
destroy_right, which recursively destroy the left and right subtrees beneath a node.
These functions work similarly to the bitree_rem_left and bitree_rem_right func-
tions defined previously for binary trees. Separate functions are required for binary
search trees so that we can destroy the data referenced by a node’s AviNode struc-
ture as well as free the AvIiNode structure itself.

The runtime complexity of bistree_destroy is the same as bitree_destroy, or O(n),
where # is the number of nodes in the tree.

Implementation and Analysis of Binary Search Trees 213

bistree_insert

The bistree_insert operation inserts a node into a binary search tree (see
Example 9-5). The operation works by recursively calling insert to descend to the
point at which the actual insertion should be made. Once we insert the node, we
update balance factors on our way back up the tree as the recursion unwinds. If,
in so doing, any balance factor reaches 12, we perform a rotation.

We begin by checking whether we are inserting a node into an empty tree. If this
is the case, we simply insert the node and set its balance factor to AVI, BALANCED.
Otherwise, we compare the data to be inserted with that of the current node to
determine the direction in which to move. We proceed as we described earlier for
inserting a node into a binary search tree. When the data we are inserting is less
than that of the current node we are traversing, we make a recursive call that
moves us to the left. When the data is greater, we make a recursive call that moves
us to the right. Once we locate the point at which to make the insertion, we allo-
cate an AvIlNode structure and insert it into the tree as the appropriate child of the
current node. If the data to be inserted matches that of a node hidden as a result
of being removed, we destroy the data currently in the node, insert the new data
in its place, and mark the node as no longer hidden. In this case, rebalancing is
not required.

Except after replacing a previously hidden node, we next determine how the bal-
ance of the tree has been affected so that we can make repairs if necessary.
Whether we have inserted the node to the left or right, we set balanced to 0 to
indicate that the insertion may have upset the balance of the tree. This causes a
switch statement to be executed that adjusts the balance factor of the current
node. Adjusting the balance factor of the current node may, in turn, upset the bal-
ance factors of nodes higher in the tree. Thus, as we reenter each activation of
insert, we update the balance factor of the node traversed at that level, provided
balanced is still 0. Once we determine that no more updates are required, we set
balancedto 0 to inform previous activations of this decision.

The switch statements that determine how to update balance factors also deter-
mine when rotations should be performed. The actual function we call to perform
the rotation, either rotate_left or rotate_right, determines the type of rotation to
apply: either LL or LR if we call rotate_left, or RR or RL if we call rotate_right.
Since rotations change the balance factors of nodes, each rotation function also
adjusts balance factors. The best way to understand the process of updating bal-
ance factors and performing rotations is to trace through the example in
Figure 9-13.

Earlier it was mentioned that the runtime complexity of inserting a node into a
perfectly balanced binary search tree is O(lg 7). However, since an AVL tree keeps

214 Chapter 9: Trees

0 After inserting 27, 45, and 34 in order 0 After performing an RL rotation
=2 0

O nodes rotated

@ inserted node causing
the rotafion

Figure 9-13. Inserting nodes into an AVL tree

itself only approximately balanced, one might wonder how this affects
performance. It turns out that the worst-case running time of inserting a node into
an AVL tree is T(n) = 1.5k 1g n, where k is some constant, 7 is the number of
nodes in the tree, and T(n) = klg n is the time to insert a node into a perfectly
balanced binary tree. Just as with insertion into a perfectly balanced tree, this
results in a runtime complexity of O(lg 7). However, the constant of 1.5 does
influence performance somewhat in practice.

bistree_remove

The bistree_remove operation removes a node from a binary search tree (see
Example 9-5). For this operation, we apply a rather simplistic heuristic termed lazy
removal, in which we hide nodes instead of actually removing them. To hide a

Implementation and Analysis of Binary Search Trees 215

node, we set the hidden member of its AvINode structure to 1. If we insert the
same data again later, we simply make the node visible again by setting its
hidden member back to 0 (see bistree_insert). In practice, this approach is accept-
able if we do not expect to remove many nodes relative to the number we insert.
If we plan to remove a large number of nodes, we might consider actually remov-
ing the node and adjusting the tree. To locate the node to hide, we recursively call
bide until we reach the node we are looking for. Once we hide the node, there is
no need to rebalance the tree because we did not change its structure. Thus, we
set balancedto 1.

The analysis of removing a node from an AVL tree is the same as for inserting a
node. Thus, the runtime complexity of bistree_remove is O(lg n).

bistree_lookup

The bistree_lookup operation searches for a node within a binary search tree and
returns a pointer to the data member of its AvINode structure (see Example 9-5).
The operation works by calling Jlookup recursively to descend through the tree
until the desired node is found. At each level, we first check if we have reached
the end of a branch. If we reach the end of a branch, the node we are looking for
does not exist. Otherwise, we move to either the left or right in the same manner
as described for bistree_insert. The recursion terminates once we encounter the
desired node, at which point we return 0.

The analysis of searching an AVL tree is the same as for inserting a node. Thus,
the runtime complexity of bistree_lookup is O(lg n).
bistree_size

This macro evaluates to the size of a set (see Example 9-4). It works by accessing
the size member of the BisTree structure.

The runtime complexity of bistree_size is O(1) because accessing a member of a
structure is a simple task that runs in a constant amount of time.

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype

/***

* *
ettt bistree.c ——=———————m——m——— *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "bistree.h"
static void destroy_ right (BisTree *tree, BiTreeNode *node) ;

216 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/***

* *
e rotate left ----- - *
* *

‘k**/

static void rotate_ left (BiTreeNode **node) {

BiTreeNode *left,
*grandchild;

left = bitree_left (*node) ;

if (((AvlNode *)bitree data(left))->factor == AVL_ LFT HEAVY) {

/**
* *
* Perform an LL rotation. *
* *

‘k***/

bitree_left(*node) = bitree_ right(left);

bitree_right (left) = *node;

((AvlNode *)bitree_data(*node))->factor = AVI, BALANCED;
((AvlNode *)bitree data(left))->factor = AVL_BALANCED;
*node = left;

else {

/**

* *
* Perform an LR rotation. *
* *

**/

grandchild = bitree_right (left);

bitree_right (left) = bitree_left (grandchild);
bitree_left (grandchild) = left;

bitree_left (*node) = bitree_right (grandchild) ;
bitree_right (grandchild) = *node;

switch (((AvlNode *)bitree_data(grandchild))->factor) {
case AVL_LFT HEAVY:
((AvlNode *)bitree_data(*node))->factor = AVI, RGT HEAVY;
((AvlNode *)bitree_ data(left))->factor = AVL_BALANCED;

break;

case AVL_BALANCED:

Implementation and Analysis of Binary Search Trees

217

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

((AvlNode *)bitree data(*node))->factor = AVI, BALANCED;
((AvlNode *)bitree data(left))->factor = AVL_BALANCED;
break;

case AVL_RGT_HEAVY:
((AvlNode *)bitree data(*node))->factor = AVI, BALANCED;

((AvlNode *)bitree_data(left))->factor = AVL,_LFT HEAVY;
break;

((AvlNode *)bitree_data(grandchild))->factor = AVL_BALANCED;
*node = grandchild;

return;

/***
* *
K rotate_right -------------mo *
* *

‘k**/

static void rotate_right (BiTreeNode **node) {

BiTreeNode *right,
*grandchild;

right = bitree_right (*node) ;

if (((AvlNode *)bitree_data(right))->factor == AVL_RGT HEAVY) {

/**
* *
* Perform an RR rotation. *
* *

‘k***/

bitree_right (*node) = bitree left(right);

bitree_left (right) = *node;

((AvlNode *)bitree_data(*node))->factor = AVI, BALANCED;
((AvlNode *)bitree_data(right))->factor = AVI, BALANCED;
*node = right;

else {

218

Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**

*

* Perform an RL rotation.
*

*

*

*

**/

grandchild = bitree_left(right);
bitree_left(right) = bitree_right (grandchild) ;
bitree_right (grandchild) = right;
bitree_right (*node) = bitree left (grandchild) ;
bitree_left (grandchild) = *node;

switch (((AvlNode *)bitree_data(grandchild))->factor) {
case AVL LFT HEAVY:
((AvlNode *)bitree_data(*node))->factor = AVL,_BALANCED;
((AvlNode *)bitree_data(right))->factor = AVL_RGT HEAVY;
break;
case AVL_BALANCED:
((AvlNode *)bitree_data(*node))->factor = AVL,_BALANCED;
((AvlNode *)bitree data(right))->factor = AVI, BALANCED;
break;
case AVL_RGT HEAVY:
((AvlNode *)bitree_data(*node))->factor = AVL,_LFT HEAVY;

((AvlNode *)bitree data(right))->factor = AVI, BALANCED;
break;

((AvlNode *)bitree_data(grandchild))->factor = AVL_BALANCED;
*node = grandchild;

return;

/***

***/

static void destroy left (BisTree *tree, BiTreeNode *node)

BiTreeNode **pogition;

{

Implementation and Analysis of Binary Search Trees 219

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/***

* *
* Do not allow destruction of an empty tree. *
* *

***/

if (bitree_size(tree) == 0)
return;

/***

* *
* Determine where to destroy nodes. *
* *

***/

if (node == NULL)
position = &tree->root;
else
position = &node->left;

/***

* *
* Destroy the nodes. *
* *

***/
if (*position != NULL) {

destroy_left (tree, *position);
destroy_right (tree, *position);

if (tree->destroy != NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

tree->destroy (((AviNode *) (*position)->data)->data);

}

/**
* *
* Free the AVL data in the node, then free the node itself. *
* *

**/

free((*position)->data) ;
free (*position) ;
*position = NULL;

220 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**

* *
* Adjust the size of the tree to account for the destroyed node. *
* *

‘k***/

tree->size--;

return;

/***
* *
* e destroy_right -------------———--—————— *
* *

***/

static void destroy_ right (BisTree *tree, BiTreeNode *node) {

BiTreeNode **pogition;

/***

* *
* Do not allow destruction of an empty tree. *
* *

‘k**/

if (bitree_size(tree) == 0)
return;

/***

* *
* Determine where to destroy nodes. *
* *

‘k**/

if (node == NULL)

position = &tree->root;
else

position = &node->right;

/***

* *
* Destroy the nodes. *
* *

***/

if (*position != NULL) {

Implementation and Analysis of Binary Search Trees

221

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

destroy_left (tree, *position);
destroy_right (tree, *position);

if (tree->destroy != NULL) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

tree->destroy (((AvlNode *) (*position)->data)->data);

}

/**
* *
* Free the AVL data in the node, then free the node itself. *
* *

**/

free((*position)->data) ;
free (*position) ;
*position = NULL;

/**

* *
* Adjust the size of the tree to account for the destroyed node. *
* *

**/

tree->size--;

return;

/***
* *
Rt Tt insert --------——————m— *
* *

***/

static int insert (BisTree *tree, BiTreeNode **node, const void *data, int
*balanced) {

Av1Node *avl_data;

int cmpval,
retval;

222 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/***

* *
* 1Insert the data into the tree. *
* *

‘k**/

if (bitree_is_eob(*node)) {

/**

* *
* Handle insertion into an empty tree. *
* *

**/

if ((avl_data = (AvlNode *)malloc (sizeof (AviNode))) == NULL)
return -1;

avl_data->factor = AVI, BALANCED;
avl_data->hidden 0;
avl_data->data = (void *)data;

return bitree_ins_left(tree, *node, avl_data);

else {

/**

* *
* Handle insertion into a tree that is not empty. *
* *

‘k***/

cmpval = tree->compare (data, ((AvlNode *)bitree_data(*node))->data);

if (cmpval < 0) {

/***

* *
* Move to the left. *
* *

***/

if (bitree_is_eob(bitree_left(*node))) {

if ((avl_data = (AvlNode *)malloc (sizeof (AvlNode))) == NULL)
return -1;

avl_data->factor = AVIL_BALANCED;
avl_data->hidden = 0;
avl_data->data = (void *)data;

if (bitree_ins_left(tree, *node, avl_data) != 0)
return -1;

Implementation and Analysis of Binary Search Trees 223

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)
*balanced = 0;

else {

if ((retval = insert(tree, &bitree_left(*node), data, balanced))
1= 0) {

return retval;

/***
* *
* Ensure that the tree remains balanced. *
* *

***/
if (! (*balanced)) {
switch (((AvlNode *)bitree_data(*node))->factor) {
case AVL_LFT HEAVY:
rotate_left (node) ;
*balanced = 1;
break;

case AVL_BALANCED:

((AvlNode *)bitree_data(*node))->factor = AVI_LFT HEAVY;
break;

case AVL_RGT_HEAVY:

((AvlNode *)bitree_data(*node))->factor = AVI, BALANCED;
*balanced = 1;

} /* if (cmpval < 0) */
else if (cmpval > 0) {

/***

* *
* Move to the right. *
* *

***/

224 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

if (bitree_ is_eob(bitree_right (*node))) {
if ((avl_data = (AvlNode *)malloc (sizeof (AviNode))) == NULL)
return -1;

avl_data->factor AVIL, BAT.ANCED;

avl_data->hidden = 0;
avl_data->data = (void *)data;
if (bitree_ins_right (tree, *node, avl_data) != 0)

return -1;

*balanced = 0;

else {

if ((retval = insert(tree, &bitree_right(*node), data, balanced))
1= 0) {

return retval;

/***

* *

* Ensure that the tree remains balanced. *

* *

***/

if (! (*balanced)) {
switch (((AvlNode *)bitree_data(*node))->factor) {
case AVL_LFT HEAVY:
((AvlNode *)bitree data(*node))->factor = AVI, BALANCED;
*balanced = 1;
break;

case AVL_BALANCED:

((AvlNode *)bitree_ data(*node))->factor = AVI_RGT HEAVY;
break;

case AVL_RGT_HEAVY:

rotate_right (node) ;
*balanced = 1;

Implementation and Analysis of Binary Search Trees 225

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)
}

} /* if (cmpval > 0) */

else {

/***

* *
* Handle finding a copy of the data. *
* *

***/

if (! ((AvlNode *)bitree_data(*node))->hidden) {

/**

* *
* Do nothing since the data is in the tree and not hidden. *
* *

**/

return 1;

else {

/**

* *
* Insert the new data and mark it as not hidden. *
* *

**/

if (tree->destroy != NULL) {

/***

* *
* Destroy the hidden data since it is being replaced. *
* *

‘k**/

tree->destroy (((AviNode *)bitree_data (*node))->data);

((AvlNode *)bitree data(*node))->data = (void *)data;
((AvlNode *)bitree_data(*node))->hidden = 0;

/**

* *
* Do not rebalance because the tree structure is unchanged. *
* *

**/

226 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

*balanced = 1;

return 0;

/**

* *
R hide ——m—mmmmmmmmmmm e *
* *

**/

static int hide(BisTree *tree, BiTreeNode *node, const void *data) ({

int cmpval,
retval;

if (bitree_is_eob(node)) {

/**

* *
* Return that the data was not found. *
* *

**/

return -1;

cmpval = tree->compare (data, ((AvliNode *)bitree_data(node))->data);

if (cmpval < 0) {

/**

* *
* Move to the left. *
* *

**/

retval = hide(tree, bitree_left (node), data);

else if (cmpval > 0) {

Implementation and Analysis of Binary Search Trees

227

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**
* *
* Move to the right. *
* *

‘k***/

retval = hide(tree, bitree right(node), data);

else {

/**

* *
* Mark the node as hidden. *
* *

‘k***/

((AvlNode *)bitree_data(node))->hidden = 1
retval = 0;

return retval;

}

/**

**/

static int lookup (BisTree *tree, BiTreeNode *node, void **data) {

int cmpval,
retval;
if (bitree_is_eob(node)) {

/**

*

* *
* Return that the data was not found.
* *

‘k***/

return -1;

cmpval = tree->compare (*data, ((AvlNode *)bitree_data(node))->data);

if

(cmpval < 0) {

228 Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**

* *
* Move to the left. *
* *

‘k***/

retval = lookup (tree, bitree_left (node), data);

else if (cmpval > 0) {

/**

* *
* Move to the right. *
* *

‘k***/

retval = lookup (tree, bitree_right (node), data);

else {

if (! ((AvlNode *)bitree_data(node))->hidden) {

/***

* *
* Pass back the data from the tree. *
* *

***/

*data = ((AvlNode *)bitree_data (node))->data;
retval = 0;

else {

/***

* *
* Return that the data was not found. *
* *

‘k**/

return -1;

return retval;

Implementation and Analysis of Binary Search Trees

229

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**

* *
K bistree init -----------—— *
* *

**/

void bistree init (BisTree *tree, int (*compare) (const void *keyl, const void
*key2), void (*destroy) (void *data)) {

/**

* *
* Initialize the tree. *
* *

**/

bitree_init (tree, destroy);
tree->compare = compare;

return;

/**
* *
F e bistree destroy ------——-----——-—-——---———- *
* *

**/

void bistree destroy(BisTree *tree) ({

/**

* *
* Destroy all nodes in the tree. *
* *

**/

destroy_left (tree, NULL);

/**

* *

* No operations are allowed now, but clear the structure as a precaution. *
* *

**/

memset (tree, 0, sizeof (BisTree));

return;

230

Chapter 9: Trees

Example 9-5. Implementation of the Binary Search Tree Abstract Datatype (continued)

/**

**/

int

int

bistree_insert (BisTree *tree, const void *data) {

balanced = 0;

return insert (tree, &bitree root(tree), data, &balanced);

/**

**/

int

bistree remove (BisTree *tree, const void *data) {

return hide(tree, bitree root(tree), data);

/**

**/

int

bistree_lookup (BisTree *tree, void **data) {

return lookup (tree, bitree_ root (tree), data);

Questions and Answers

O:

Akin to doubly-linked lists, some trees maintain pointers from child nodes back
to their parvents in addition to the normal pointers from parvents to their chil-
dren. Some trees maintain pointers between sibling nodes as well. Why might
we do this?

In general, maintaining additional pointers gives us greater flexibility in how
we traverse a tree. For example, maintaining pointers from a parent to its chil-
dren and from a child to its parent lets us move both up and down through a
tree. Maintaining pointers between siblings gives us an easy way to traverse
through a node’s children without accessing the parent. One benefit of linked

Questions and Answers 231

siblings is found in B+-trees, a type of balanced search tree in which pointers
are used to link leaf nodes together. By linking leaf nodes, we effectively form
a linked list at the bottom of the tree. This provides an efficient means of
looking up a particular key and then retrieving others that either precede or
follow it in a sequence. Database systems do this to support efficient random
and sequential access simultaneously. Of course, the disadvantage is some
overhead and complication in managing the sibling pointers as children are
inserted and removed.

Q: Recall that the example on expression processing used a linked list to return the
appropriate ordering of the nodes to the caller. This example illustrates two data
structures pointing to the same data. What precautions would we need to take
in destroying each instance of these datatypes?

A: All of the data structures presented in this book follow the convention that
only a pointer is maintained to the data inserted into the data structure. There-
fore, it is the responsibility of the caller to manage the storage associated with
the data itself. In the case of a binary tree and a linked list pointing to the
same physical data in memory, it is important that we pass a function to free
the data only to one of the initialization operations. The other operation must
set destroy to NULL. Of course, this approach assumes that the data being
shared was dynamically allocated in the first place. If the data structures point
to data that was not dynamically allocated, destroy should be set to NULL in
both initialization operations since there is nothing to free.

Q: In bitree_rem_left and bitree_rem_right, why was a postorder traversal used to
remove the appropriate subtree? Could a preorder or inorder traversal have
been used instead?

A: Tt is essential to use a postorder traversal here because a subtree must be
removed in its entirety before removing its parent. A preorder traversal ends
up removing the parent first, thus freeing the parent and making it impossible
to access its children. An inorder traversal also does not work because we still
end up removing the parent before its right subtree.

Q: How do we find the smallest node in a binary search tree? What is the runtime
complexity to do this in both an unbalanced and balanced binary search tree,
in the worst case? How do we find the largest node in a binary search tree?
What are the runtime complexities for this?

A: The smallest node in a binary search tree is the node that is the furthest to the
left. To locate this node, we descend through the tree by following left point-
ers until reaching the end of the branch. In an unbalanced binary search tree,
this requires O(») time in the worst case, where 7 is the number of nodes in
the tree. This occurs when the tree consists of a single branch to the left, for

232 Chapter 9: Trees

example. However, if we keep the tree balanced, no branch will be longer
than Ign nodes. Thus, the runtime complexity of searching for the smallest
node in this case is O(lg 7). Finding the largest node is a similar process,
except that the largest node is the one that is the furthest to the right in the
tree. The runtime complexities for this are the same as for locating the small-
est node. If we are interested only in determining the smallest (or largest) ele-
ment in a set of data repeatedly, we use a priority queue (see Chapter 10).

Q: When might we choose to make use of a tree with a relatively large branching
Jfactor, instead of a binary tree, for example?

A: Larger branching factors keep a tree shorter for a given number of nodes, pro-
vided the tree remains relatively balanced. Therefore, a large branching factor
is desirable when an application is particularly sensitive to the height of the
tree. Search trees are a good example, although typically the difference in per-
formance attributed to larger branching factors is not that significant when the
tree resides in memory. This is one reason that binary trees are most common
for searching in memory. However, when searching in the considerably slower
world of secondary storage, a larger branching factor can make a substantial
difference. In this situation, typically some type of B-tree is used (see the
related topics at the end of the chapter).

Q: In a binary search tree, the successor of some node x is the next largest node
afterx. For example, in a binary search tree containing the keys 24, 39, 41, 55,
87, 92, the successor of 41 is 55. How do we find the successor of a node in a
binary search tree? What is the runtime complexity of this operation?

A: To determine the successor of some node x in a binary search tree, first we
locate x. Next, we follow its right pointer, and then from this node, follow as
many left pointers as possible until the end of the branch is reached. The
node at the end of this branch is the successor of x. The runtime complexity
of locating either x or its successor is O(lg 7).

Q: In a binary search tree, recall that to insert a node, we trace a specific path to
determine the proper point at which to actually insert it. As more and more
nodes are inserted into a tree, certain areas within the tree become restricted to
certain values. Ultimately, this is why a tree falls out of balance and rotations
are performed. In the binary search tree of Figure 9-14, what are the possible
values for a node inserted at x?

A: 1In Figure 9-14, any node we insert at x must contain a value greater than 44
and less than 49 because any node to the left of 49 must be less than 49. On
the other hand, the only way for a node to end up in the right subtree of 44 is
to be greater than 44.

Related Topics 233

Figure 9-14. A balanced binary search tree

Related Topics

k-ary trees
Trees that have a branching factor of k& Branching factors of more than two
children per node are useful when modeling certain situations, such as the 1-
to-n relationship of a parent window and its children in a graphical window-
ing system, or a directory structure in a file system.

Red-black trees

Binary search trees that keep themselves approximately balanced by maintain-
ing a color with each node, which is either red or black. By enforcing a policy
about how nodes can be colored along a branch, red-black trees ensure that
no branch will ever become more than twice as long as any other. The worst-
case running time of searching a red-black tree is 7(») = 2k lg n, where 7 is
the number of nodes in the tree, kis some constant, and 7(n) = klg n is the
time to search a perfectly balanced tree.

Tries

Search trees used primarily to search sets of variable-length strings. Conceptu-
ally, the nodes at each level in a trie (pronounced “try”) represent all characters
found at a particular position in the strings being searched. For example, the
nodes immediately below the root represent all possible characters in position 1
of the strings, the next level represents all possible characters in position 2, and
so forth. Thus, to look up a string, we start at the root and at each level follow
the pointer to the node containing the next character in the string we are
searching for. This procedure results in search times that are dependent on the
size of the search string rather than the number of strings being searched.

B-trees, B+-trees, and B*trees
Search trees typically used by database systems to improve the performance of
accessing data stored on secondary storage devices. Generally, node size is
optimized to coincide with the block size of the secondary storage device. All

234 Chapter 9: Trees

types of B-trees are balanced and typically have a large branching factor. This
reduces the number of levels that must be traversed to get at a particular
record, thus saving costly accesses to I/O.

10

Heaps and
Priority Queues

Many problems rely on being able to determine quickly the largest or smallest ele-
ment from a set that is undergoing frequent insertions and deletions. One way to
approach this problem is to keep a set sorted. This way, the largest or smallest ele-
ment, depending on whether we sort the data in ascending or descending order, is
always the one at the beginning of the set. However, sorting a set over and over
again is costly. In addition, because it is not our goal to keep every element in
order, we end up doing more work than we really need to. To quickly determine
only the largest or smallest element, we need only keep this element where we
can find it. Heaps and priority queues let us do this in an efficient way.

This chapter covers:

Heaps
Trees organized so that we can determine the node with the largest value
quickly. The cost to preserve this property is less than that of keeping the data
sorted. We can also organize a heap so that we can determine the smallest
value just as easily.

Priority queues
Data structures naturally derived from heaps. In a priority queue, data is
organized in a heap so that we can determine the node with the next highest
priority quickly. The “priority” of an element can mean different things in dif-
ferent problems.

Some applications of heaps and priority queues are:

Sorting
Specifically, an algorithm called heapsort. In heapsort, the data to be sorted
begins in a heap. Nodes are extracted from the heap one at a time and placed
at the end of a sorted set. As each node is extracted, the next node for the

235

236 Chapter 10: Heaps and Priority Queues

sorted set percolates to the top of the heap. Heapsort has the same runtime
complexity as quicksort (see Chapter 12, Sorting and Searching), but a good
implementation of quicksort usually beats it by a small constant factor in
practice.

Task scheduling
For example, that performed by operating systems to determine which process
is next to run on a CPU. Operating systems continually change the priorities of
processes. A priority queue is an efficient way to ensure that the highest-
priority process is next to get the CPU.

Parcel sorting (illustrated in this chapter)
A process used by delivery companies to prioritize the routing of parcels. As
parcels are scanned, high priorities are assigned to those requiring urgent
delivery. Parcels that are less urgent are assigned lower priorities. A computer
system might use a priority queue as an efficient means of ensuring that the
highest priority parcels move through the system the fastest.

Huffman coding
A method of data compression that uses a Huffman tree to assign codes to
symbols in the data (see Chapter 14, Data Compression). Frequently occurring
symbols are assigned short codes, whereas symbols occuring less frequently
are assigned longer ones. The Huffman tree is built by merging smaller binary
trees two by two. The two trees merged at each step are extracted from a pri-
ority queue because we merge the two with the smallest key values.

Load balancing
Often usage statistics are maintained about a number of servers handling simi-
lar tasks. As connection requests arrive, a priority queue can be used to deter-
mine which server is best able to accommodate a new request.

Description of Heaps

A heap is a tree, usually a binary tree, in which each child node has a smaller
value than its parent. Thus, the root node is the largest node in the tree. We may
also choose to orient a heap so that each child node has a larger value than its
parent. In this case, the root node is the smallest node. Trees like these are par-
tially ordered because, although the nodes along every branch have a specific
order to them, the nodes at one level are not necessarily ordered with respect to
the nodes at another. A heap in which each child is smaller than its parent is fop-
beavy. This is because the largest node is on top (see Figure 10-1). A heap in
which each child is larger than its parent is bottom-heavy.

Heaps are left-balanced (see Chapter 9, Trees), so as nodes are added, the tree
grows level by level from left to right. A particularly good way to represent left-
balanced binary trees, and therefore heaps, is to store nodes contiguously in an

Interface for Heaps 237

array in the order we would encounter them in a level traversal (see Chapter 9).
Assuming a zero-indexed array, this means that the parent of each node at some
position 7 in the array is located at position L(i — 1)/2], where |] means to ignore
the fractional part of (i — 1)/2. The left and right children of a node are located at
positions 27 + 1 and 27 + 2. This organization is especially important for heaps
because it allows us to locate a heap’s last node quickly: the last node is the right-
most node at the deepest level. This is important in implementing certain heap
operations.

0 1 2 3 4 5 6 7 8 9 10

25(20)22|17(19|10|12(15{07]|09(18

Figure 10-1. A top-beavy beap (a) conceptually and (b) represented in an array

Interface for Heaps

beap_init

void heap_init (Heap *heap, int (*compare) (const void *keyl, const void *key2)
void (*destroy) (void *data));

Return Value None.

Description Initializes the heap specified by heap. This operation must be
called for a heap before the heap can be used with any other operation. The
compare argument is a function used by various heap operations to compare
nodes when fixing the heap. This function should return 1 if keyl > key2, O if
keyl = key2, and -1 if keyl < key2 for a top-heavy heap. For a bottom-heavy
heap, compare should reverse the cases that return 1 and —1. The destroy argu-
ment provides a way to free dynamically allocated data when heap_destroy is

238 Chapter 10: Heaps and Priority Queues

called. For example, if the heap contains data dynamically allocated using malloc,
destroy should be set to free to free the data as the heap is destroyed. For
structured data containing several dynamically allocated members, destroy
should be set to a user-defined function that calls free for each dynamically allo-
cated member as well as for the structure itself. For a heap containing data that
should not be freed, destroy should be set to NULL.

Complexity o)

beap_destroy

void heap_destroy (Heap *heap) ;

Return Value None.

Description Destroys the heap specified by heap. No other operations are
permitted after calling heap_destroy unless heap_init is called again. The beap_
destroy operation removes all nodes from a heap and calls the function passed as

destroy to heap_init once for each node as it is removed, provided destroy was
not set to NULL.

Complexity O(n), where 7 is the number of nodes in the heap.

beap_insert

int heap_ insert (Heap *heap, const void *data) ;

Return Value 0 if inserting the node is successful, or —1 otherwise.

Description Inserts a node into the heap specified by heap. The new node
contains a pointer to data, so the memory referenced by data should remain
valid as long as the node remains in the heap. It is the responsibility of the caller
to manage the storage associated with data.

Complexity O(lg n), where n is the number of nodes in the heap.

beap_extract

int heap_extract (Heap *heap, void **data) ;

Return Value 0 if extracting the node is successful, or —1 otherwise.

Description Extracts the node at the top of the heap specified by heap. Upon
return, data points to the data stored in the node that was extracted. It is the
responsibility of the caller to manage the storage associated with the data.

Complexity O(lg n), where n is the number of nodes in the heap.

Implementation and Analysis of Heaps 239

beap_size

int heap_size(const Heap *heap);
Return Value Number of nodes in the heap.

Description Macro that evaluates to the number of nodes in the heap speci-
fied by heap.

Complexity o)

Implementation and Analysis of Heaps

The heap implemented here is a binary tree whose nodes are arranged hierarchi-
cally in an array. The structure Heap is the heap data structure (see Example 10-1).
This structure consists of four members: size is the number of nodes in the heap,
compare and destroy are members used to encapsulate the functions passed to
heap_init, and tree is the array of nodes in the heap.

Example 10-1. Header for the Heap Abstract Datatype

/***

* *
e heap.h -~-------------------"0¢-0---——— *
* *

‘k**‘k*/

#ifndef HEAP H
#define HEAP H

/***

* *
* Define a structure for heaps. *
* *

‘k**‘k*/

typedef struct Heap_ {

int size;

int (*compare) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

void **tree;

} Heap;

/***

* *
ottt Tl b Public Interface ------—-——-————————mmm— *
* *

***/

240 Chapter 10: Heaps and Priority Queues

Example 10-1. Header for the Heap Abstract Datatype (continued)

void heap_init (Heap *heap, int (*compare) (const void *keyl, const void *key2),
void (*destroy) (void *data));

void heap_destroy (Heap *heap) ;

int heap_ insert (Heap *heap, const void *data);

int heap_extract (Heap *heap, void **data);

#define heap_size(heap) ((heap)->size)

#endif

beap_init

The heap_init operation initializes a heap so that it can be used in other opera-
tions (see Example 10-2). Initializing a heap is a simple operation in which we set
the size member of the heap to 0, the destroy member to destroy, and the
tree pointer to NULL.

The runtime complexity of heap_init is O(1) because all of the steps in initializing
a heap run in a constant amount of time.

beap_destroy

The beap_destroy operation destroys a heap (see Example 10-2). Primarily this
means removing all nodes from the heap. The function passed as destroy to
beap_init is called once for each node as it is removed, provided destroy was
not set to NULL.

The runtime complexity of beap_destroy is O(n), where n is the number of nodes
in the heap. This is because we must traverse all nodes in the heap in order to
free the data they contain. If destroy is NULL, heap_destroy runs in O(1) time.

beap_insert

The heap_insert operation inserts a node into a heap (see Example 10-2). The call
sets the new node to point to the data passed by the caller. To begin, we reallo-
cate storage to enable the tree to accommodate the new node. The actual process
of inserting the new node initially places it into the last position in the array.
When this causes the heap property to be violated, we must rebeapify the tree
(see Figure 10-2).

Implementation and Analysis of Heaps 241

o After making 24 the lust node

Figure 10-2. Inserting 24 into a top-bheavy bheap

To reheapify a tree after inserting a node, we need only consider the branch in
which the new node has been inserted, since the tree was a heap to begin with.

242 Chapter 10: Heaps and Priority Queues

Starting at the new node, we move up the tree level by level, comparing each
child with its parent. At each level, if a parent and child are in the wrong order,
we swap their contents. This process continues until we reach a level at which no
swap is required, or we reach the top of the tree. Last, we update the size of the
heap by incrementing the size member of the heap data structure.

The runtime complexity of heap_insert is O(lg n), where n is the number of nodes
in the tree. This is because heapification requires moving the contents of the new
node from the lowest level of the tree to the top in the worst case, a traversal of
lg n levels. All other parts of the operation run in a constant amount of time.

beap_extract

The heap_extract operation extracts the node at the top of a heap (see
Example 10-2). To begin, we set data to point to the data stored in the node
being extracted. Next, we save the contents of the last node, reallocate a smaller
amount of storage for the tree, and decrease the tree size by 1. After we are cer-
tain this has succeeded, we copy the contents of the saved last node to the root
node. When this causes the heap property to be violated, we must reheapify the
tree (see Figure 10-3).

To reheapify a tree after extracting a node, we start at the root node and move
down the tree level by level, comparing each node with its two children. At each
level, if a parent and its children are in the wrong order, we swap their contents
and move to the child that was the most out of order. This process continues until
we reach a level at which no swap is required, or we reach a leaf node. Last, we
update the size of the heap by decreasing the size member of the heap data
structure by 1.

The runtime complexity of beap_extract is O(lg n), where n is the number of
nodes in the tree. This is because heapification requires moving the contents of
the root node from the top of the tree to a leaf node in the worst case, a traversal
of Ig n levels. All other parts of the operation run in a constant amount of time.

beap_size

This macro evaluates to the number of nodes in a heap (see Example 10-1). It
works by accessing the size member of the Heap structure.

The runtime complexity of heap size is O(1) because accessing a member of a
structure is a simple task that runs in a constant amount of time.

Implementation and Analysis of Heaps

243

o After saving 25 and 18, and reallocation

7 8 9
0 1 2 3 4 5 6 1 8 10
251201 22| 171910 1215|0709 |18

0 1 2 3 4 5 6 7 8§ 9
22 (20| 18|17 (19|10 12(15)07 |09
L swapped —

Figure 10-3. Extracting 25 from a top-beavy beap

244 Chapter 10: Heaps and Priority Queues

Example 10-2. Implementation of the Heap Abstract Datatype

/***

* *
e heap.c - *
* *

‘k**/

#include <stdlib.h>
#include <string.h>

#include "heap.h"

/***

* *
* Define private macros used by the heap implementation. *
* *

***/

#define heap_parent (npos) ((int) (((npos) - 1) / 2))

#define heap_left (npos) (((npos) * 2) + 1)

#define heap_right (npos) (((npos) * 2) + 2)

/***

* *
I e DL L e heap_init —--------—mmmmmm e *
* *

***/

void heap_init (Heap *heap, int (*compare) (const void *keyl, const void *key2),
void (*destroy) (void *data)) {

/***

* *
* TInitialize the heap. *
* *

***/

heap->size = 0;
heap->compare = compare;
heap->destroy = destroy;
heap->tree = NULL;

return;

/***
* *
* e heap_destroy --------—------———————--—————- *
* *

***/

Implementation and Analysis of Heaps 245

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

void heap_destroy (Heap *heap) {
int i;

/***

* *
* Remove all the nodes from the heap. *
* *

***/

if (heap->destroy != NULL) {

for (i = 0; 1 < heap_size(heap); i++) {

/***

* *
* Call a user-defined function to free dynamically allocated data. *
* *

***/

heap->destroy (heap->tree[i]) ;

}
}
/***
* *
* Free the storage allocated for the heap. *
* *

***/

free (heap->tree) ;

/***

* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

memset (heap, 0, sizeof (Heap)):;

return;

/***
* *
F e heap_insert ----——---------- *
* *

***/

246 Chapter 10: Heaps and Priority Queues

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

int heap_insert (Heap *heap, const void *data) {

void *temp;
int ipos,
Ppos;

/***

* *
* Allocate storage for the node. *
* *

***/

if ((temp = (void **)realloc (heap->tree, (heap_size(heap) + 1) * sizeof
(void *))) == NULL) {

return -1;

else {

heap->tree = temp;

}

/***
* *
* Insert the node after the last node. *
* *

***/

heap->tree[heap_size(heap)] = (void *)data;

/***

* *
* Heapify the tree by pushing the contents of the new node upward. *
* *

***/

ipos = heap_size (heap) ;
ppos = heap_parent (ipos) ;

while (ipos > 0 && heap->compare (heap->tree[ppos], heap->tree[ipos]) < 0) {

/**

* *
* Swap the contents of the current node and its parent. *
* *

‘k***/

temp = heap->treelppos];
heap->tree[ppos] = heap->tree[ipos];
heap->tree[ipos] = temp;

Implementation and Analysis of Heaps

247

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

/**

* *
* Move up one level in the tree to continue heapifying. *
* *

‘k***/

ipos = ppos;

ppos = heap_parent (ipos) ;
}
/***
* *
* Adjust the size of the heap to account for the inserted node. *
* *

***/

heap->size++;

return 0;

/***
* *
* e heap_extract -------—---—--—————————————- *
* *

***/

int heap extract (Heap *heap, void **data) {

void *save,
*temp;

int ipos,
1pos,
rpos,
mpos ;

/***

* *
* Do not allow extraction from an empty heap. *
* *

‘k**/

if (heap_size(heap) == 0)
return -1;

/***

* *
* Extract the node at the top of the heap. *
* *

‘k**/

248 Chapter 10: Heaps and Priority Queues

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

*data = heap->tree([0];

/***

* *
* Adjust the storage used by the heap. *
* *

***/

save = heap->treel[heap size(heap) - 1];

if (heap_size(heap) - 1 > 0) {

if ((temp = (void **)realloc (heap->tree, (heap_size(heap) - 1) * sizeof
(void *))) == NULL) {

return -1;

else {

heap->tree = temp;

}

/**
* *
* Adjust the size of the heap to account for the extracted node. *
* *

**/

heap->size--;

else {

/**

* *
* Manage the heap when extracting the last node. *
* *

**/

free (heap->tree) ;
heap->tree = NULL;
heap->size = 0;
return 0;

Implementation and Analysis of Heaps 249

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

/***

* *
* Copy the last node to the top. *
* *

***/

heap->tree[0] = save;

/***

* *
* Heapify the tree by pushing the contents of the new top downward. *
* *

***/

ipos = 0;
1pos heap_left (ipos) ;
rpos = heap_right (ipos) ;

while (1) {

/**

* *
* Select the child to swap with the current node. *
* *

**/

heap_left (ipos) ;
heap_right (ipos) ;

1lpos
rpos

if (1lpos < heap size(heap) && heap->compare (heap->tree[lpos], heap->
tree[ipos]) > 0) {

mpos = lpos;

else {

mpos = ipos;

if (rpos < heap_size(heap) && heap->compare (heap->tree[rpos], heap->
tree[mpos]) > 0) {

mpos = rpos;

250 Chapter 10: Heaps and Priority Queues

Example 10-2. Implementation of the Heap Abstract Datatype (continued)

/**
* *

* When mpos is ipos, the heap property has been restored. *

* *

‘k**‘k*/

if (mpos == ipos) {

break;

else {

/***

* *
* Swap the contents of the current node and the selected child. *
* *

***/

temp = heap->tree[mpos];
heap->tree[mpos] = heap->tree[ipos];
heap->tree[ipos] = temp;

/***
* *
* Move down one level in the tree to continue heapifying. *
* *

‘k**‘k*/

ipos = mpos;

}
}
return 0;
}

Description of Priority Queues

Priority queues are used to prioritize data. A priority queue consists of elements
organized so that the highest priority element can be ascertained efficiently. For
example, consider maintaining usage statistics about a number of servers for which
you are trying to do load balancing. As connection requests arrive, a priority
queue can be used to determine which server is best able to accommodate the
new request. In this scenario, the server with least usage is the one that gets the
highest priority because it is the best one to service the request.

Interface for Priority Queues 251

Interface for Priority Queues

pqueue_init

void pqueue_init (PQueue *pqueue, int (*compare) (const void *keyl,
const void *key2), void (*destroy) (void *data)) ;

Return Value None.

Description Initializes the priority queue specified by pgueue. This operation
must be called for a priority queue before it can be used with any other opera-
tion. The compare argument is a function used by various priority queue opera-
tions in maintaining the priority queue’s heap property. This function should
return 1 if keyl > key2, 0 if keyl = key2, and -1 if keyl < key2 for a priority
queue in which large keys have a higher priority. For a priority queue in which
smaller keys have a higher priority, compare should reverse the cases that return 1
and —1. The destroy argument provides a way to free dynamically allocated data
when pqueue_destroy is called. For example, if the priority queue contains data
dynamically allocated using malloc, destroy should be set to free to free the data
as the priority queue is destroyed. For structured data containing several dynami-
cally allocated members, destroy should be set to a user-defined function that
calls free for each dynamically allocated member as well as for the structure itself.
For a priority queue containing data that should not be freed, destroy should be
set to NULL.

Complexity o)

pqueue_destroy

void pqueue_destroy (PQueue *pgueue) ;

Return Value None.

Description Destroys the priority queue specified by pgueue. No other opera-
tions are permitted after calling pqueue_destroy unless pqueue_init is called again.
The pqueue_destroy operation extracts all elements from a priority queue and calls

the function passed as destroy to pqueue_init once for each element as it is
extracted, provided destroy was not set to NULL.

Complexity O(n), where 7 is the number of elements in the priority queue.

pqueue_insert

int pqueue_insert (PQueue *pqueue, const void *data) ;

Return Value 0 if inserting the element is successful, or —1 otherwise.

252 Chapter 10: Heaps and Priority Queues

Description Inserts an element into the priority queue specified by pgueue.
The new element contains a pointer to data, so the memory referenced by data
should remain valid as long as the element remains in the priority queue. It is the
responsibility of the caller to manage the storage associated with data.

Complexity O(lg n), where #n is the number of elements in the priority queue.

pqueue_extract

int pgqueue_extract (PQueue *pgueue, void **data) ;

Return Value 0 if extracting the element is successful, or —1 otherwise.

Description Extracts the element at the top of the priority queue specified by
pgueue. Upon return, data points to the data stored in the element that was
extracted. It is the responsibility of the caller to manage the storage associated
with the data.

Complexity O(lg n), where 7 is the number of elements in the priority queue.

pqueue_peek

void *pqueue_peek (const PQueue *pqueue) ;

Return Value Highest priority element in the priority queue, or NULL if the pri-
ority queue is empty.

Description Macro that evaluates to the highest priority element in the priority
queue specified by pgueue.

Complexity o)

pqueue_size

int pqueue_size(const PQueue *pqueue) ;

Return Value Number of elements in the priority queue.

Description Macro that evaluates to the number of elements in the priority
queue specified by pgueue.

Complexity o)

Implementation and Analysis
of Priority Queues

There are several ways to implement a priority queue. Perhaps the most intuitive
approach is simply to maintain a sorted set of data. In this approach, the element

Implementation and Analysis of Priority Queues 253

at the beginning of the sorted set is the one with the highest priority. However,
inserting and extracting elements require resorting the set, which is an O(n) pro-
cess in the worst case, where # is the number of elements. Therefore, a better
solution is to keep the set partially ordered using a heap. Recall that the node at
the top of a heap is always the one with the highest priority, however this is
defined, and that repairing the heap after inserting and extracting data requires
only O(lg ») time.

A simple way to implement a priority queue as a heap is to typedef PQueue to
Heap (see Example 10-3). Since the operations of a priority queue are identical to
those of a heap, only an interface is designed for priority queues and the heap
datatype serves as the implementation (see Examples 10-2 and 10-3). To do this,
each priority queue operation is simply defined to its heap counterpart. The one
exception to this is pqueue_peek, which has no heap equivalent. This operation
works just like pqueue_extract, except that the highest priority element is only
returned, not removed.

Example 10-3. Header for the Priority Queue Abstract Datatype

/***

* *
K e pqueue.h ————------————————— *
* *

‘k**/

#ifndef PQUEUE_H
#define PQUEUE_H

#include "heap.h"

/***

* *
* Implement priority queues as heaps. *
* *

***/

typedef Heap PQueue;

/***

* *
ottt Public Interface --------——-————————om— *
* *

***/

#define pqueue_init heap_init

#define pqueue_destroy heap_destroy

#define pqueue_insert heap_insert

254 Chapter 10: Heaps and Priority Queues

Example 10-3. Header for the Priority Queue Abstract Datatype (continued)

#define pqueue_extract heap_extract
#define pqueue_peek (pqueue) ((pqueue)->tree == NULL ? NULL : (pqueue)->tree[0])
#define pqueue_size heap_size

#endif

Priority Queue Example: Parcel Sorting

Most delivery services offer several options for how fast a parcel can be delivered.
Generally, the more a person is willing to pay, the faster the parcel is guaranteed
to arrive. Since large delivery services handle millions of parcels each day, priori-
tizing parcels during the sorting process is important. This is especially true when
space associated with a delivery mechanism becomes limited. In this case, parcels
with the highest priority must go first. For example, if an airplane is making only
one more trip for the day back to a central hub from a busy metropolitan area, all
parcels requiring delivery the next day had better be on board.

One way to ensure that parcels heading to a certain destination are processed
according to the correct prioritization is to store information about them in a prior-
ity queue. The sorting process begins by scanning parcels into the system. As each
parcel is scanned, its information is prioritized in the queue so that when parcels
begin to move through the system, those with the highest priority will go first.

Example 10-4 presents two functions, get parcel and puit_parcel, both of which
operate on a priority queue containing parcel records of type Parcel. Parcel is
defined in parcel.h, which is not shown. A sorter calls put_parcel to load informa-
tion about a parcel into the system. One member of the Parcel structure passed
to put_parcel is a priority code. The put_parcel function inserts a parcel into the
priority queue, which prioritizes the parcel among the others. When the sorter is
ready to move the next parcel through the system, it calls get_parcel. The get_
parcel function fetches the parcel with the next-highest priority so that parcels are
processed in the correct order.

A priority queue is a good way to manage parcels because at any moment, we are
interested only in the parcel with the next highest priority. Therefore, we can
avoid the overhead of keeping parcels completely sorted. The runtime complexi-
ties of get_parcel and put_parcel are both O(lg n) because the two functions sim-
ply call pqueue_extract and pqueue_insert respectively, which are both O(g)
operations.

Priority Queue Example: Parcel Sorting 255

Example 10-4. Implementation of Functions for Sorting Parcels

/***

* *
K e parcels.C ———————————————————————— - *
* *

‘k**/

#include <stdlib.h>
#include <string.h>

#include "parcel.h"
#include "parcels.h"
#include "pqueue.h"

/***

* *
F e get_parcel ----——-—-———————————————— *
* *

***/

int get_parcel (PQueue *parcels, Parcel *parcel) {

Parcel *data;

if (pqueue_size (parcels) == 0)

/**

* *
* Return that there are no parcels. *
* *

**/

return -1;
else {

if (pqueue_extract (parcels, (void **)&data) != 0)

/***

* *
* Return that a parcel could not be retrieved. *
* *

***/

return -1;

else {

/***

* *
* Pass back the highest-priority parcel. *
* *

***/

256 Chapter 10: Heaps and Priority Queues

Example 10-4. Implementation of Functions for Sorting Parcels (continued)

memcpy (parcel, data, sizeof (Parcel));
free(data) ;

return 0;

/***
* *
* e put_parcel -----——-—————————————————————— *
* *

***/

int put_parcel (PQueue *parcels, const Parcel *parcel) {

Parcel *data;

/***

* *
* Allocate storage for the parcel. *
* *

***/

if ((data = (Parcel *)malloc (sizeof (Parcel))) == NULL)
return -1;

/***

* *
* Insert the parcel into the priority dqueue. *
* *

***/

memcpy (data, parcel, sizeof (Parcel));

if (pqueue_insert (parcels, data) != 0)
return -1;

return 0;

Questions and Answers

Q: To build a beap from a set of data using the interface presented in this chapter,
we call heap_insert once for each element in the set. Since heap_insert runs in
O(lg n) time, building a beap of n nodes requires O(n lg n) time. What is an
alternative to this approach that runs in O(n) time?

Questions and Answers 257

A:

An alternative to calling heap_insert repeatedly is to start with an array of nodes
that we heapify by pushing data downward just as is done in heap_insert. In
this approach, we first heapify the tree whose root is at position /2] -1, then
heapify the tree whose root is at position | 17/2] - 2, and continue this process
until we heapify the tree rooted at position 0. This approach relies on the
observation that the nodes at [7/2] to 7 — 1 (in a zero-indexed array) are one-
node heaps themselves because they are the leaf nodes. Building a heap in
this way is efficient because although there are [7/2] — 1 operations that run
in O(lg n) time, a tighter analysis reveals that even in the worst case only half
the heapifications require comparing data at more than one level. This results
in an O(») running time overall. On the other hand, when calling heap_insert
repeatedly, half the heapifications could require traversing all Ig # levels in the
worst case. Thus, building a heap in this way runs in O(n lg n) time.

Why are heap_parent, heap_left, and heap_right defined in heap.c, whereas
the other heap macro, heap_size, is defined in heap.h?

The macros heap_parent, bheap_left, and beap_right quickly determine the
position of a node’s parent, left child, and right child in a tree represented in
an array. The reason these macros are not defined in heap.h is that they are
not a part of the public heap interface. That is, a developer using a heap
should not be permitted to traverse a heap’s nodes indiscriminately. Instead,
access to the heap is restricted to those operations defined by the interface
published in heap.hb.

Recall that left-balanced binary trees are particularly well-suited to arrays. Why
is this not true of all binary trees?

Left-balanced binary trees are particularly well-suited to arrays because no
nodes go unused between positions 0 and 7 — 1, where 7 is the number of
nodes in the tree. Array representations of binary trees that are not left-
balanced, on the other hand, contain gaps of unused nodes. For example,
suppose a binary tree of 10 levels is completely full through 9 levels, but in
the tenth level only 1 node resides at the far right. In contiguous storage, the
node at the far right of the tenth level resides at position 210 — 2 = 1022 (in a
zero-indexed array). The node at the far right of the ninth level resides at posi-
tion 29 — 2 = 510. This results in (1022 — 510) — 1= 511 empty positions out of
the total 1023 positions required to represent the tree. Thus, only 50% of the
array is being used.

Suppose we are using a priority queue to prioritize the order in which tasks are
scheduled by an application. If the system continually processes a large num-
ber of high-priority tasks, what problems might the system exhibit? How can we
correct this?

258 Chapter 10: Heaps and Priority Queues

A: When high-priority elements are continually being inserted into a priority
queue, lower-priority elements may never rise to the top. In a task scheduler,
for example, the lower-priority tasks are said to be experiencing starvation. To
manage this, typically a system employs some mechanism to increase a task’s
priority gradually as its time in the queue grows. Thus, even in a busy system
flooded by high-priority tasks, a low-priority task eventually will obtain a high
enough priority to rise to the top. Operating systems frequently use an
approach like this to ensure that lower-priority processes are not completely
starved of CPU time.

Related Topics

Fibonacci heaps
Collections of heap-ordered trees. Fibonacci heaps are used sometimes in
computing minimum spanning trees and finding single-source shortest paths
(see Chapter 17, Geometric Algorithms).

k-ary heaps
Heaps built from trees with a branching factor of & Although not as common

as heaps that are binary trees, a k-ary heap may be worth considering for
some problems.

11

Graphs

Graphs are some of the most flexible data structures in computing. In fact, most
other data structures can be represented as graphs, although representing them in
this way is usually more complicated. Generally, graphs are used to model prob-
lems defined in terms of relationships or connections between objects. Objects in a
graph may be tangible entities such as nodes in a network or islands in a river, but
they need not be. Often objects are less concrete, such as states in a system or
transactions in a database. The same is true for connections and relationships
among the objects. Nodes in a network are physically connected, but the connec-
tions between states in a system may simply indicate a decision made to get from
one state to the next. Whatever the case, graphs model many useful and interest-
ing computational problems.

This chapter covers:

Graphs
Flexible data structures typically used to model problems defined in terms of
relationships or connections between objects. Objects are represented by verti-
ces, and the relationships or connections between the objects are represented
by edges between the vertices.

Search methods
Techniques for visiting the vertices of a graph in a specific order. Generally,
either breadth-first or depth-first searches are used. Many graph algorithms are
based on these basic methods of systematically exploring a graph’s vertices.

Some applications of graphs are:

Graph algorithms
Algorithms that solve problems modeled by graphs (see Chapter 16, Graph
Algoritbms). Many graph algorithms solve problems related to connectivity and

259

260 Chapter 11: Graphs

routing optimization. For example, Chapter 16 explores algorithms for comput-
ing minimum spanning trees, finding shortest paths, and solving the traveling-
salesman problem.

Counting network hops (illustrated in this chapter)
Counting the smallest number of nodes that must be traversed from one node
to reach other nodes in an internet. This information is useful in internets in
which the most significant costs are directly related to the number of nodes
traversed.

Topological sorting (illustrated in this chapter)
A linear ordering of vertices in a directed acyclic graph so that all edges go
from left to right. One of the most common uses of topological sorting is in
determining an acceptable order in which to carry out a number of tasks that
depend on one another.

Graph coloring
A process in which we try to color the vertices of a graph so that no two verti-
ces joined by an edge have the same color. Sometimes we are interested only
in determining the minimum number of colors required to meet this criterion,
which is called the graph’s chromatic number.

Hamiltonian-cycle problems
Problems in which one works with hamiltonian cycles, paths that pass
through every vertex in a graph exactly once before returning to the original
vertex. The traveling-salesman problem (see Chapter 16) is a special case of
hamiltonian-cycle problem. In the traveling-salesman problem, we look for the
hamiltonian cycle with the minimum cost.

Clique problems
Problems in which one works with regions of a graph where every vertex is
connected somehow to every other. Regions with this property are called
cliques. Some clique problems focus on determining the largest clique that a
graph contains. Other clique problems focus on determining whether a graph
contains a clique of a certain size at all.

Conflict serializability

A significant aspect of database optimization. Rather than executing the
instructions of transactions one transaction after another, database systems typ-
ically try to reorder a schedule of instructions to obtain a higher degree of
concurrency. However, a serial schedule of instructions cannot be reordered
arbitrarily; a database system must find a schedule that is conflict serializable.
A conflict serializable schedule produces the same results as a serial schedule.
To determine if a schedule is conflict serializable, a precedence graph is used
to define relationships among transactions. If the graph does not contain a
cycle, the schedule is conflict serializable.

Description of Grapbs 201

Description of Grapbs

Graphs are composed of two types of elements: vertices and edges. Vertices repre-
sent objects, and edges establish relationships or connections between the objects.
In many problems, values, or weights, are associated with a graph’s edges; how-
ever, such problems will not be considered further until Chapter 16.

Graphs may be either directed or undirected. In a directed graph, edges go from
one vertex to another in a specific direction. Pictorially, a directed graph is drawn
with circles for its vertices and arrows for its edges (see Figure 11-1a). Sometimes
the edges of a directed graph are referred to as arcs. In an undirected graph,
edges have no direction; thus, its edges are depicted using lines instead of arrows
(see Figure 11-1b).

N

/
® @

Figure 11-1. Two grapbs: (a) a directed graph and (b) an undirected graph

Formally, a graph is a pair G = (V, E), where V is a set of vertices and FE is a
binary relation on V. In a directed graph, if an edge goes from vertex u to vertex
v, E contains the ordered pair (#, v). For example, in Figure 11-1a, V= {1, 2, 3, 4}
and E=1{(1, 2), (1, 3), (1, 49, (2, 3), (2, 4, (3, 2), (3, D}. By convention, parenthe-
ses are used instead of braces for sets that represent edges in a graph. In an undi-
rected graph, because an edge (u, v) is the same as (v, w), either edge is listed in
E, but not both. Thus, in Figure 11-1b, V= {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4,
(2, 3), (2, 4), (3, 9}. Edges may point back to the same vertex in a directed graph,
but not in an undirected graph.

Two important relations in graphs are adjacency and incidence. Adjacency is a
relation between two vertices. If a graph contains the edge (u, v), vertex v is said
to be adjacent to vertex u. In an undirected graph, this implies that vertex u is
also adjacent to vertex ». In other words, the adjacency relation is symmetric in
an undirected graph. This is not necessarily true in a directed graph. For exam-
ple, in Figure 11-1a, vertex 2 is adjacent to vertex 1, but vertex 1 is not adjacent
to vertex 2. On the other hand, vertices 2 and 3 are adjacent to each other. A
graph in which every vertex is adjacent to each other is called complete.

2062 Chapter 11: Graphs

Incidence is a relation between a vertex and an edge. In a directed graph, the
edge (u, v) is incident from or leaves vertex u and is incident to or enters vertex v.
Thus, in Figure 11-1a, edge (1, 2) is incident from vertex 1 and incident to vertex
2. In a directed graph, the in-degree of a vertex is the number of edges incident to
it. Its out-degree is the number of edges incident from it. In an undirected graph,
the edge (u, v) is incident on vertices u and v. In an undirected graph, the degree
of a vertex is the number of edges incident on it.

Often one talks about paths in a graph. A path is a sequence of vertices traversed
by following the edges between them. Formally, a path from one vertex u to

another vertex #” is a sequence of vertices (¢, vy, ¥y, . . ., ¥} in which u = ¢, and
u' = vy, and all (v; — 4, v) are in Efor i=1, 2, ... k Such a path contains the
edges (v, vp), (vq, vy, . . ., (U, _1, vp) and has a length of k. If a path exists from

to u’, u’ is reachable from u. A path is simple if it has no repeated vertices.

A cycle is a path that includes the same vertex two or more times. That is, in a
directed graph, a path is a cycle if one of its edges leaves a vertex and another
enters it. Thus, Figure 11-2a contains the cycle {1, 2, 4, 1}. Formally, in a directed
graph, a path forms a cycle if ¢, = v, and the path contains at least one edge. In
an undirected graph, a path (v, vy, vy, ..., vp) forms a cycle if ¢, = v}, and no verti-
ces are repeated from v to vp. Graphs without cycles are acyclic. Directed acyclic
graphs are given the special name dag (see Figure 11-2b).

Connectivity is another important concept in graphs. An undirected graph is con-
nected if every vertex is reachable from each other by following some path. If this
is true in a directed graph, we say the graph is strongly connected. Although an
undirected graph may not be connected, it still may contain certain sections that
are connected, called connected components. If only parts of a directed graph are
strongly connected, the parts are strongly connected components (see Figure 11-3).

Certain vertices have special significance in keeping a graph or connected
component connected. If removing a vertex disconnects a graph or component,
the vertex is an articulation point. For example, in Figure 11-4, vertices 4 and 5
are articulation points because if either of them is removed, the graph becomes
disconnected. Upon removing these vertices, the graph has two connected compo-
nents, {1, 2, 3} and {6, 7, 8}. Any edge whose removal disconnects a graph is called
a bridge. A connected graph with no articulation points is biconnected. Although a
graph may not be biconnected, it still may contain biconnected components.

The most common way to represent a graph in a computer is using an adjacency-
list representation. This consists of a linked list of adjacency-list structures. Each
structure in the list contains two members: a vertex and a list of vertices adjacent
to the vertex (see Figure 11-5).

In a graph G = (V, E), if two vertices # and v in V form an edge (¢, v) in E, ver-
tex v is included in the adjacency list of vertex u. Thus, in a directed graph, the

Description of Graphs 203

e o e

v

Figure 11-2. Two grapbhs: (a) a directed graph containing the cycle {1, 2, 4, 1}, and (b) a
directed acyclic graph, or dag

o e

Figure 11-3. A directed graph with two strongly connected components, (1, 2, 3} and {4, 5, 6}

Figure 11-4. An undirected graph with articulation points 4 and 5, and the bridge (4, 5)

total number of vertices in all adjacency lists is the same as the total number of
edges. In an undirected graph, since an edge (u, v) implies an edge (v,), vertex
v is included in the adjacency list of vertex u, and vertex u is included in the adja-
cency list of vertex ». Thus, the total number of vertices in all adjacency lists in this
case is twice the total number of edges.

204 Chapter 11: Graphs

qpheﬂd
//—.
W
//'.
W
//'.
W
C/'.
5|ef— 6 .//—H deam
r//' 1 next pointer
b 6[s]—— A (/—{ \ 1 adjacency-list structure
° [l NULL
=

Figure 11-5. An adjacency-list representation of the directed graph from Figure 11-3

Typically, adjacency lists are used for graphs that are sparse, that is, graphs in
which the number of edges is less than the number of vertices squared. Sparse
graphs are common. However, if a graph is dense, we may choose to represent it
using an adjacency-matrix representation (see the related topics at the end of the
chapter). Adjacency-matrix representations require O(VE) space.

Search Methods

Searching a graph means visiting its vertices one at a time in a specific order.
There are two important search methods from which many important graph algo-
rithms are derived: breadth-first search and depth-first search.

Breadtbh-first search

Breadth-first search (see Figure 11-6) explores a graph by visiting all vertices adja-
cent to a vertex before exploring the graph further. This search is useful in a num-
ber of applications, including finding minimum spanning trees and shortest paths
(see Chapter 16 and the first example in this chapter).

To begin, we select a start vertex and color it gray. We color all other vertices in
the graph white. The start vertex is also placed alone in a queue. The algorithm
then proceeds as follows: for each vertex in the queue (initially only the start ver-
tex), we peek at the vertex at the front of the queue and explore each vertex adja-
cent to it. As each adjacent vertex is explored, its color will be white if it has not

Description of Graphs 265

o Initially, starting at 1 (queve = 1) o After exploring vertices adjacent to 1 (queve = 2, 3)

i
i

o After exploring vertices adjacent to 2 (queve = 3, 4) o After exploring vertices adjacent to 3 (queue = 4)

i
D

o After exploring vertices adjacent to 4 (queue = empty)

i

Figure 11-6. Breadth-first search starting at vertex 1; vertex 5 is unreachable from 1

been discovered yet. In this case, we color the vertex gray, indicating it has been
discovered, and enqueue it at the end of the queue. If its color is not white, it has
already been discovered, and the search proceeds to the next adjacent vertex.

Once all adjacent vertices have been explored, we dequeue the vertex at the front
of the queue and color it black, indicating we are finished with it. We continue
this process until the queue is empty, at which point all vertices reachable from
the start vertex are black. Figure 11-6 illustrates breadth-first search with a directed
graph. Breadth-first search works with undirected graphs as well.

In addition to simply visiting vertices, breadth-first search can be used to keep
track of useful information. For example, we can record the number of vertices
traversed before reaching each vertex, which turns out to be the shortest path to
each vertex in graphs whose edges are not weighted. In Figure 11-6, the shortest

266 Chapter 11: Graphs

path from vertex 1 to either vertex 2 or 3 consists of one hop, recorded when we
first discover vertex 2 and 3. The shortest path from vertex 1 to vertex 4 consists of
two hops: one hop is recorded as we discover vertex 2 from 1, and another is
recorded when we discover vertex 4 from 2. We can also use breadth-first search
to generate a breadth-first tree. A breadth-first tree is the tree formed by maintain-
ing the predecessor of each vertex as we discover it. Since a vertex is discovered
only once (when we color it gray), it has exactly one predecessor, or parent. In
Figure 11-6, the edges highlighted in gray are branches of the tree.

Depth-first search

Depth-first search (see Figure 11-7) explores a graph by first visiting undiscovered
vertices adjacent to the vertex most recently discovered. Thus, the search continu-
ally tries to explore as deep as it can. This makes depth-first search useful in a
number of applications, including cycle detection and topological sorting (see the
second example in this chapter).

To begin, we color every vertex white and select a vertex at which to start. The
algorithm then proceeds as follows: first, we color the selected vertex gray to indi-
cate it has been discovered. Then, we select a new vertex from the set of undis-
covered vertices adjacent to it, which are white, and repeat the process. When
there are no white vertices adjacent to the currently selected vertex, we have
searched as deep as possible. Thus, we color the currently selected vertex black to
indicate that we are finished with it, and we backtrack to explore the white verti-
ces adjacent to the previously selected vertex.

We continue this process until the vertex we selected as the start vertex has no
more white vertices adjacent to it. This process visits only the vertices reachable
from the vertex at which we start. Therefore, the entire process must be repeated
for each vertex in the graph. For example, in Figure 11-7, vertex 4 would not get
visited without this step. When we restart at a vertex that is already black, the
search stops immediately, and we move on to the next vertex. Figure 11-7 illus-
trates depth-first search with a directed graph. Depth-first search works with undi-
rected graphs as well.

In addition to simply visiting vertices, a depth-first search can be used to keep
track of some useful information. For example, we can record the times at which
each vertex is discovered and finished. Depth-first search also can be used to pro-
duce a depth-first forest. A depth-first forest is a set of trees, each formed by main-
taining the predecessor of each vertex as it is discovered. Since a vertex is discov-
ered only once (when we color it gray), it has exactly one predecessor, or parent.
Each tree contains the vertices discovered in searching exactly one connected
component. In Figure 11-7, the edges highlighted in gray are branches in the trees.

Interface for Graphs

267

o Initially, starting at 1 o After discovering 1, 2, and 3 and finishing 3

@ /f @ @
0 After backiracking from 3 to 2, then discovering 0 After backiracking from 5 to 2 and finishing 2

&
%

0 After backiracking from 2 to 1 and finishing 1 0 After starting at 4, then discovering and finishing it

7

»

-2
-2

o

Figure 11-7. Depth-first search starting at vertex 1
Interface for Graphs

graph_init

void graph_init (Graph *graph, int (*match) (const void *keyl, const void *key2),

void (*destroy) (void *data)) ;

Return Value None.

Description Initializes the graph specified by graph. This operation must be
called for a graph before the graph can be used with any other operation. The
match argument is a function used by various graph operations to determine if
two vertices match. It should return 1 if keyl is equal to key2, and 0 otherwise.
The destroy argument provides a way to free dynamically allocated data when
graph_destroy is called. For example, if the graph contains data dynamically

2068 Chapter 11: Graphs

allocated using malloc, destroy should be set to free to free the data as the graph
is destroyed. For structured data containing several dynamically allocated mem-
bers, destroy should be set to a user-defined function that calls free for each
dynamically allocated member as well as for the structure itself. For a graph con-
taining data that should not be freed, destroy should be set to NULL.

Complexity o)

graph_destroy

void graph_destroy (Graph *graph) ;

Return Value None.

Description Destroys the graph specified by graph. No other operations are
permitted after calling graph_destroy unless graph_init is called again. The graph_
destroy operation removes all vertices and edges from a graph and calls the func-
tion passed as destroy to graph_init once for each vertex or edge as it is
removed, provided destroy was not set to NULL.

Complexity O(V +E), where Vis the number of vertices in the graph and E is
the number of edges.

graph_ins_vertex

int graph_ins_vertex(Graph *graph, const void *data) ;
Return Value 0 if inserting the vertex is successful, 1 if the vertex already exists,

or —1 otherwise.

Description Inserts a vertex into the graph specified by graph. The new ver-
tex contains a pointer to data, so the memory referenced by data should remain
valid as long as the vertex remains in the graph. It is the responsibility of the caller
to manage the storage associated with data.

Complexity O(V), where Vis the number of vertices in the graph.

graph_ins_edge

int graph_ins_edge (Graph *graph, const void *datal, const void *data2);

Return Value 0 if inserting the edge is successful, 1 if the edge already exists, or
-1 otherwise.

Description Inserts an edge from the vertex specified by datal to the vertex
specified by dataZ2 in the graph specified by graph. Both vertices must have been
inserted previously using graph_ins_vertex. The new edge is represented with a
pointer to dataZ2 in the adjacency list of the vertex specified by datal, so the

Interface for Graphs 269

memory referenced by data2 should remain valid as long as the edge remains in
the graph. It is the responsibility of the caller to manage the storage associated
with data2. To enter an edge (u, v) in an undirected graph, call this operation
twice: once to insert an edge from # to v, and again to insert the implied edge
from v to u. This type of representation is common for undirected graphs.

Complexity O(V), where Vis the number of vertices in the graph.

graph_rem_vertex

int graph_rem vertex (Graph *graph, void **data);

Return Value 0 if removing the vertex is successful, or —1 otherwise.

Description Removes the vertex matching data from the graph specified by
graph. All edges incident to and from the vertex must have been removed previ-
ously using graph_rem_edge. Upon return, data points to the data stored in the
vertex that was removed. It is the responsibility of the caller to manage the stor-
age associated with the data.

Complexity O(V +E), where Vis the number of vertices in the graph and E is
the number of edges.

graph_rem_edge

int graph rem edge(Graph *graph, const void *datal, void **data2);

Return Value 0 if removing the edge is successful, or —1 otherwise.

Description Removes the edge from datal to data2 in the graph specified by
graph. Upon return, data2 points to the data stored in the adjacency list of the
vertex specified by datal. It is the responsibility of the caller to manage the stor-
age associated with the data.

Complexity O(V), where Vis the number of vertices in the graph.

grapb_adjlist

int graph_adjlist (const Graph *graph, const void *data, AdjList **adjlist);

Return Value 0 if retrieving the adjacency list is successful, or —1 otherwise.

Description Retrieves vertices that are adjacent to the vertex specified by data
in graph. The adjacent vertices are returned in the form of an AdjList structure,
a structure containing the vertex matching data and a set of vertices adjacent to it.
A pointer to the actual adjacency list in the graph is returned, so it must not be
manipulated by the caller.

Complexity O(V), where Vis the number of vertices in the graph.

270 Chapter 11: Grapbs

grapb_is_adjacent

int graph_is_adjacent (const Graph *graph, const void *datal, const void *data2);

Return Value 1 if the second vertex is adjacent to the first vertex, or 0 other-
wise.

Description Determines whether the vertex specified by data2 is adjacent to
the vertex specified by datal in graph.

Complexity O(V), where Vis the number of vertices in the graph.

graph_adjlists

List graph_adjlists(const Graph *graph) ;

Return Value List of adjacency-list structures.

Description Macro that evaluates to the list of adjacency-list structures in
graph. Each element in the list is an AdjList structure. The actual list of adja-

cency-list structures in the graph is returned, so it must not be manipulated by the
caller.

Complexity o

graph_vcount

int graph vcount (const Graph *graph) ;

Return Value Number of vertices in the graph.

Description Macro that evaluates to the number of vertices in the graph speci-
fied by graph.

Complexity o)

graph_ecount

int graph_ecount (const Graph *graph) ;

Return Value Number of edges in the graph.

Description Macro that evaluates to the number of edges in the graph speci-
fied by graph.

Complexity o)

Implementation and Analysis of Graphs

An adjacency-list representation of a graph primarily consists of a linked list of
adjacency-list structures. Each structure in the list contains two members: a vertex

Implementation and Analysis of Grapbs 271

and a list of vertices adjacent to the vertex. In the implementation presented here,
an individual adjacency list is represented by the structure AdjList (see
Example 11-1). As you would expect, this structure has two members that corre-
spond to those just mentioned. Each adjacency list is implemented as a set (see
Chapter 7, Sets) for reasons discussed in the questions and answers at the end of
the chapter. The structure Graph is the graph data structure (see Example 11-1).
This structure consists of five members: vcount is the number of vertices in the
graph, ecount is the number of edges, match and destroy are members used to
encapsulate the functions passed to graph_init, and adjlists is the linked list of
adjacency-list structures. Example 11-1 also defines an enumerated type for vertex
colors, which are often used when working with graphs.

Example 11-1. Header for the Graph Abstract Datatype

/***

* *
K graph.h -—-—-———-———— *
* *

***/

#ifndef GRAPH H
#define GRAPH_H

#include <stdlib.h>

#include "list.h"
#include "set.h"

/***

* *
* Define a structure for adjacency lists. *
* *

***/

typedef struct AdjList_ {

void *vertex;
Set adjacent;
} AdjList;

/***

* *
* Define a structure for graphs. *
* *

***/

typedef struct Graph_ {

int vecount ;
int ecount;

272 Chapter 11: Grapbs

Example 11-1. Header for the Graph Abstract Datatype (continued)

int (*match) (const void *keyl, const void *key2);
void (*destroy) (void *data) ;

List adjlists;

} Graph;

/***

* *
* Define colors for vertices in graphs. *
* *

***/

typedef enum VertexColor_ {white, gray, black} VertexColor;

/***

* *
K Public Interface -----------———---m—— *
* *

***/

void graph_init (Graph *graph, int (*match) (const void *keyl, const void
*key2), void (*destroy) (void *data));

void graph_destroy (Graph *graph) ;

int graph_ins_vertex (Graph *graph, const void *data);

int graph_ins_edge (Graph *graph, const void *datal, const void *data2);
int graph_rem vertex(Graph *graph, void **data);

int graph_rem_ edge (Graph *graph, void *datal, void **data2);

int graph_adjlist (const Graph *graph, const void *data, AdjList **adjlist);

int graph_is_adjacent (const Graph *graph, const void *datal, const void
*data2) ;

#define graph adjlists(graph) ((graph)->adjlists)

#define graph vcount (graph) ((graph)->vcount)
#define graph_ecount (graph) ((graph)->ecount)
#endif

grapb_init

The graph_init operation initializes a graph so that it can be used in other opera-
tions (see Example 11-2). Initializing a graph is a simple operation in which we set

Implementation and Analysis of Grapbs 273

the vecount and ecount members of the graph to 0, encapsulate the match and
destroy functions, and initialize the list of adjacency-list structures.

The runtime complexity of graph_init is O(1) because all of the steps in initializ-
ing a graph run in a constant amount of time.

graph_destroy

The graph_destroy operation destroys a graph (see Example 11-2). Primarily this
means removing each adjacency-list structure, destroying the set of vertices it con-
tains, and freeing the memory allocated to its vertex member by calling the func-
tion passed as destroy to graph_init, provided destroy was not set to NULL.

The runtime complexity of graph_destroy is O(V +E), where V is the number of
vertices in the graph and E is the number of edges. This is because we make V
calls to the O(1) operation /ist_rem_next, and the total running time of all calls to
set_destroy is O(E).

graph_ins_vertex

The graph_ins_vertex operation inserts a vertex into a graph (see Example 11-2).
Specifically, the call inserts an AdjList structure into the list of adjacency-list
structures and sets its vertex member to point to the data passed by the caller.
We begin by ensuring that the vertex does not already exist in the list. After this,
we insert the vertex by calling /ist_ins_next to insert the AdjList structure at the
tail of the list. Last, we update the count of vertices in the graph by incrementing
the vcount member of the graph data structure.

The runtime complexity of graph_ins_vertex is O(V), where V is the number of
vertices in the graph. This is because searching the list of vertices for a duplicate is
an O(V) operation. The call to list_ins_next is O(1).

grapb_ins_edge

The graph_ins_edge operation inserts an edge into a graph (see Example 11-2). To
insert an edge from the vertex specified by datal to the vertex specified by
data2, we insert data2 into the adjacency list of datal. We begin by ensuring
that both vertices exist in the graph. After this, we insert the vertex specified by
dataZ into the adjacency list of datal by calling set_insert. The call to set_insert
returns an error if the edge already exists. Last, we update the count of edges in
the graph by incrementing the ecount member of the graph data structure.

The runtime complexity of graph_ins_edge is O(V), where V'is the number of ver-
tices in the graph. This is because searching the list of adjacency-list structures and
calling set_insert are both O(V) operations.

274 Chapter 11: Graphs

graph_rem_vertex

The graph_rem_vertex operation removes a vertex from a graph (see
Example 11-2). Specifically, the call removes an AdjList structure from the list of
adjacency-list structures. We begin by ensuring that the vertex does not exist in
any adjacency list, that the vertex does exist in the list of adjacency-list structures,
and that the adjacency list of the vertex is empty. After this, we remove the vertex
by calling 1ist_rem next to remove the appropriate AdjList structure from the
list. Last, we update the count of vertices in the graph by decreasing its vcount
member of the graph data structure by 1.

The runtime complexity of graph_rem_uvertex is O(V +E), where V is the number
of vertices in the graph and E is the number of edges. This is because searching
every adjacency list is O(V +E), searching the list of adjacency-list structures is
O(V), and calling /list_rem_next is O(1).

graph_rem_edge

The graph_rem_edge operation removes an edge from a graph (see
Example 11-2). Specifically, the call removes the vertex specified by data2 from
the adjacency list of datal. We begin by ensuring that the first vertex exists in the
graph. Once this has been verified, we remove the edge by calling set_remove to
remove the vertex specified by dataZ2 from the adjacency list of datal. The call to
set_remove returns an error if dataZ2 is not in the adjacency list of datal. Last, we
update the count of edges in the graph by decreasing the ecount member of the
graph data structure by 1.

The runtime complexity of graph_rem_edge is O(V), where V is the number of
vertices in the graph. This is because searching the list of adjacency-list structures
and calling set_remove are both O(V) operations.

graph_adjlist

The graph_adjlist operation returns the AdjList structure containing the set of
vertices adjacent to a specified vertex (see Example 11-2). To do this, we search
the list of adjacency-list structures until we find the one that contains the specified
vertex.

The runtime complexity of graph_adjlist is O(V), where V is the number of verti-
ces in the graph. This is because searching the list of adjacency-list structures runs
in O(V) time.

graph_is_adjacent

The graph_is_adjacent operation determines whether a specified vertex is adja-
cent to another (see Example 11-2). To do this, we locate the adjacency-list

Implementation and Analysis of Graphs 275

structure of the vertex specified by datal and call set_is_member to determine if
dataZ2 is in its adjacency list.

The runtime complexity of graph_adjlist is O(V), where V is the number of verti-
ces in the graph. This is because searching the list of adjacency-list structures and
calling set_is_member are both O(V) operations.

graphb_adjlists, grapb_vcount, graph_ecount

These macros implement some of the simpler graph operations (see
Example 11-1). Generally, they provide an interface for accessing and testing
members of the Graph structure.

The runtime complexity of these operations is O(1) because accessing members of
a structure is a simple task that runs in a constant amount of time.

Example 11-2. Implementation of the Graph Abstract Datatype

/***

* *
e graph.c ———————————————————— *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "graph.h"
#include "list.h"

#include "set.h"

/***

* *
B ittt graph_init ----------—-——m *
* *

***/

void graph init (Graph *graph, int (*match) (const void *keyl, const void
*key2), void (*destroy) (void *data)) {

/***

* *
* Initialize the graph. *
* *

***/

graph->vcount = 0;
graph->ecount = 0;
graph->match = match;
graph->destroy = destroy;

276 Chapter 11: Graphs

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

/***

* *
* Initialize the list of adjacency-list structures. *
* *

‘k**/

list_init (&graph->adjlists, NULL) ;

return;

/***
* *
e graph_destroy ---------————---———————————— *
* *

‘k**/

void graph destroy (Graph *graph) {

AdjList *adjlist;

/***

* *
* Remove each adjacency-list structure and destroy its adjacency list. *
* *

***/
while (list_size(&graph->adjlists) > 0) {
if (list_rem next (&graph->adjlists, NULL, (void **)&adjlist) == 0) {
set_destroy (&adjlist->adjacent) ;

if (graph->destroy != NULL)
graph->destroy (adjlist->vertex) ;

free(adjlist);

}
}
/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Destroy the list of adjacency-list structures, which is now empty. *
* *

***/

list_destroy (&graph->adjlists) ;

Implementation and Analysis of Grapbs 277

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

/***

* *
* No operations are allowed now, but clear the structure as a precaution. *
* *

***/

memset (graph, 0, sizeof (Graph)) ;

return;

/***
* *
K graph_ins_vertex -------—-———-—————————————— *
* *

***/

int graph_ins_vertex(Graph *graph, const void *data) {

ListElmt *element;
AdjList *adjlist;
int retval;

/***

* *
* Do not allow the insertion of duplicate vertices. *
* *

***/

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

if (graph->match(data, ((AdjList *)list_data(element))->vertex))

return 1;
/***
* *
* 1Insert the vertex. *
* *

***/

if ((adjlist = (AdjList *)malloc(sizeof (AdjList))) == NULL)
return -1;

adjlist->vertex = (void *)data;
set_init (&adjlist->adjacent, graph->match, NULL) ;

278 Chapter 11: Grapbs

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

if ((retval = list_ins_next (&graph->adjlists, list_tail (&graph->adjlists),
adjlist)) !'= 0) {

return retval;

}

/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Adjust the vertex count to account for the inserted vertex. *
* *

***/

graph->vcount++;

return 0;

/***
* *
F e graph_ins_edge ----------————-————m-————- *
* *

***/

int graph_ins_edge (Graph *graph, const void *datal, const void *data2) {
ListElmt *element;

int retval;

/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Do not allow insertion of an edge without both its vertices in the graph. *
* *

***/

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

if (graph->match(data2, ((AdjList *)list_data(element))->vertex))
break;

if (element == NULL)
return -1;

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

if (graph->match(datal, ((AdjList *)list_data(element))->vertex))
break;

Implementation and Analysis of Graphs 279

Example 11-2. Implementation of the Graph Abstract Datatype (continued)
}

if (element == NULL)
return -1;

/***

* *
* 1Insert the second vertex into the adjacency list of the first vertex. *
* *

***/

if ((retval = set_insert (&((AdjList *)list_data(element))->adjacent, data2))
1= 0) {

return retval;

}

/***
* *
* Adjust the edge count to account for the inserted edge. *
* *

***/

graph->ecount++;

return 0;

/***
* *
e graph_rem vertex ----—----—--—-————————————————— *
* *

***/

int graph_rem vertex(Graph *graph, void **data) {

ListElmt *element,
*temp,
*prev;

AdjList *adjlist;

int found;

/***

* *
* Traverse each adjacency list and the vertices it contains. *
* *

***/

280 Chapter 11: Grapbs

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

prev = NULL;
found = 0;

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

/**

* *
* Do not allow removal of the vertex if it is in an adjacency list. *
* *

**/

if (set_is_member (&((AdjList *)list_data(element))->adjacent, *data))
return -1;

/**

* *
* Keep a pointer to the vertex to be removed. *
* *

**/

if (graph->match(*data, ((AdjList *)list_data(element))->vertex)) {

temp = element;

found = 1;
}
/**
* *
* Keep a pointer to the vertex before the vertex to be removed. *
* *

**/

if (!found)
prev = element;

/***
* *
* Return if the vertex was not found. *
* *

***/

if (!found)
return -1;

/***

* *
* Do not allow removal of the vertex if its adjacency list is not empty. *
* *

***/

Implementation and Analysis of Grapbs 281

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

if (set_size(&((AdjList *)list_data(temp))->adjacent) > 0)
return -1;

/***

* *
* Remove the vertex. *
* *

***/

if (list_rem next (&graph->adjlists, prev, (void **)&adjlist) != 0)
return -1;

/***

* *
* Free the storage allocated by the abstract datatype. *
* *

***/

*data = adjlist->vertex;
free(adjlist);

/***

* *
* Adjust the vertex count to account for the removed vertex. *
* *

***/

graph->vcount--;

return 0;

/***
* *
e graph_rem edge ------——-——————————————————— *
* *

***/

int graph_rem edge (Graph *graph, void *datal, void **data2) {
ListElmt *element;

/***

* *
* Locate the adjacency list for the first vertex. *
* *

***/

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

282 Chapter 11: Grapbs

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

if (graph->match(datal, ((AdjList *)list_data(element))->vertex))
break;

if (element == NULL)
return -1;

/***

* *
* Remove the second vertex from the adjacency list of the first vertex. *
* *

***/

if (set_remove (& ((AdjList *)list_data(element))->adjacent, data2) != 0)
return -1;

/***

* *
* Adjust the edge count to account for the removed edge. *
* *

***/

graph->ecount--;

return 0;

/***
* *
e Sttt graph_adjlist ---------——-——-——m *
* *

***/

int graph adjlist(const Graph *graph, const void *data, AdjList **adjlist) {

ListElmt *element,
*prev;

/***

* *
* Locate the adjacency list for the vertex. *
* *

***/

prev = NULL;

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

if (graph->match(data, ((AdjList *)list_data(element))->vertex))
break;

Implementation and Analysis of Grapbs 283

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

prev = element;

/***
* *
* Return if the vertex was not found. *
* *

***/

if (element == NULL)
return -1;

/***

* *
* Pass back the adjacency list for the vertex. *
* *

***/

*adjlist = list_data(element);

return 0;

/***
* *
F e graph_is_adjacent --------------—-————————— *
* *

***/

int graph is_adjacent (const Graph *graph, const void *datal, const void
*data2) {

ListElmt *element,
*prev;

/***

* *
* Locate the adjacency list of the first vertex. *
* *

***/

prev = NULL;

for (element = list_head(&graph->adjlists); element != NULL; element =
list_next (element)) {

if (graph->match(datal, ((AdjList *)list_data(element))->vertex))
break;

prev = element;

284 Chapter 11: Grapbs

Example 11-2. Implementation of the Graph Abstract Datatype (continued)

/***

* *
* Return if the first vertex was not found. *
* *

‘k**‘k*/

if (element == NULL)
return 0;

/***

* *
* Return whether the second vertex is in the adjacency list of the first. *
* *

‘k**‘k*/

return set_is_member (& ((AdjList *)list_data(element))->adjacent, data2);

Graph Example: Counting NetworkR Hops

Graphs play an important part in solving many networking problems. One prob-
lem, for example, is determining the best way to get from one node to another in
an internet, a network of gateways into other networks. One way to model an
internet is using an undirected graph in which vertices represent nodes, and edges
represent connections between the nodes. With this model, we can use breadth-
first search to help determine the smallest number of traversals, or hops, between
various nodes.

For example, consider the graph in Figure 11-8, which represents an internet of six
nodes. Starting at node;, there is more than one way we can reach node;. The
paths (node|, node,, nodey), (node|, nodes, node, nodey), and {(node,, nodes,
nodes, nodey) are all acceptable. Breadth-first search determines the shortest path,
(nodey, node,, node,), which requires two hops.

This example presents a function, Hfs (see Examples 11-3 and 11-4), that imple-
ments breadth-first search. It is used here to determine the smallest number of
hops between nodes in an internet. The function has three arguments: graph is a
graph, which in this problem represents the internet; start is the vertex repre-
senting the starting point; and hops is the list of hop counts that is returned. The
function modifies graph, so a copy should be made before calling the function, if
necessary. Also, vertices returned in hops are pointers to the actual vertices from
graph, so the caller must ensure that the storage in graph remains valid as long
as hops is being accessed. Each vertex in graph is a BfsVertex structure (see
Example 11-3), which has three members: data is a pointer to the data associated

Graph Example: Counting Network Hops 285

hops =0

Figure 11-8. Hop counts after performing a breadth-first search on an internet of six nodes

with the vertex, color maintains the color of the vertex during the search, and
hops maintains the number of hops to the vertex from the start node. The match
function for graph, which is set by the caller when initializing the graph with
graph_init, should compare only the data members of BfsVertex structures.

The bfs function performs breadth-first search as described earlier in this chapter.
To keep track of the minimum number of hops to each vertex, we set the hop
count of each vertex to the hop count of the vertex to which it is adjacent plus 1.
We do this for each vertex as we discover it, and color it gray. Colors and hop
counts for each vertex are maintained by the BfsVertex structures in the list of
adjacency-list structures. At the end, we load hops with all vertices whose hop
counts are not —1. These are the vertices that were reachable from the start node.

The runtime complexity of 5fsis O(V + E), where V is the number of vertices in
the graph and E is the number of edges. This is because initializing the colors of
the vertices and ensuring that the start node exists both run in O(V) time, the loop
in which the breadth-first search is performed in O(V + E) time, and loading the
list of hop counts is O(V).

Example 11-3. Header for Breadth-First Search

/***

* *
S bfS.h —m—mmmm e *
* *

***/

#ifndef BFS_H
#define BFS_H

#include "graph.h"
#include "list.h"

286 Chapter 11: Graphs

Example 11-3. Header for Breadth-First Search (continued)

/***

* *
* Define a structure for vertices in a breadth-first search. *
* *

‘k**/

typedef struct BfsVertex_ {

void *data;
VertexColor color;
int hops;

} BfsVertex;

/***

* *
K Public Interface -----------———---m—— *
* *

‘k*****‘k**‘k**‘k**‘k********‘k*****‘k********‘k**************‘k**********************/
int bfs(Graph *graph, BfsVertex *start, List *hops);
#endif

Example 11-4. Implementation of a Function for Breadth-First Search

/***

* *
* e bfs.c ----------—-»--"-"-"-"-"-"---""-0—-—-""--—- *
* *

***/

#include <stdlib.h>

#include "bfs.h"

#include "graph.h"
#include "list.h"
#include "queue.h"

/***

* *
e] *
* *

***/

int bfs(Graph *graph, BfsVertex *start, List *hops) {

Queue queue;

AdjList *adjlist,
*clr_adjlist;

Graph Example: Counting Network Hops 287

Example 11-4. Implementation of a Function for Breadth-First Search (continued)

BfsVertex *clr_vertex,
*adj_vertex;

ListElmt *element,
*member ;

/***

* *
* Initialize all of the vertices in the graph. *
* *

***/

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

clr_vertex = ((AdjList *)list_data(element))->vertex;

if (graph->match(clr_vertex, start)) {

/***

* *
* Initialize the start vertex. *
* *

***/

clr_vertex->color = gray;
clr_vertex->hops = 0;

else {

/***

* *
* 1Initialize vertices other than the start vertex. *
* *

***/

clr_vertex->color = white;
clr_vertex->hops = -1;

}

/***
* *
* Initialize the queue with the adjacency list of the start vertex. *
* *

***/

queue_init (&gqueue, NULL) ;

288 Chapter 11: Grapbs

Example 11-4. Implementation of a Function for Breadth-First Search (continued)

if (graph_adjlist(graph, start, &clr_adjlist) != 0) {

queue_destroy (&queue) ;
return -1;

}
if (queue_enqueue (&queue, clr_adjlist) != 0) {

queue_destroy (&gueue) ;

return -1;
}
/***
* *
* Perform breadth-first search. *
* *

***/

while (queue_size(&queue) > 0) {

adjlist = queue_peek (&queue) ;

/**

* *
* Traverse each vertex in the current adjacency list. *
* *

‘k***/

for (member = list_head(&adjlist->adjacent); member != NULL; member =
list_next (member)) {

adj_vertex = list_data (member) ;

/***

* *
* Determine the color of the next adjacent vertex. *
* *

***/

if (graph_adjlist(graph, adj_vertex, &clr_adjlist) != 0) {

queue_destroy (&queue) ;
return -1;

clr_vertex = clr_adjlist->vertex;

Graph Example: Counting Network Hops 289

Example 11-4. Implementation of a Function for Breadth-First Search (continued)

/***
* *
* Color each white vertex gray and enqueue its adjacency list. *
* *

‘k**/

if (clr_vertex->color == white) {

clr_vertex->color = gray;
clr_vertex->hops = ((BfsVertex *)adjlist->vertex)->hops + 1;

if (queue_enqueue (&queue, clr_adjlist) != 0) {

queue_destroy (&queue) ;
return -1;

/********‘k********‘k********‘k********‘k********‘k*****************************
* *
* Dequeue the current adjacency list and color its vertex black. *
* *

**/

if (queue_dequeue (&queue, (void **)&adjlist) == 0) {

((BfsVertex *)adjlist->vertex)->color = black;

else {

queue_destroy (&gueue) ;
return -1;

queue_destroy (&queue) ;

/***
* *
* Pass back the hop count for each vertex in a list. *
* *

‘k**/

list_init(hops, NULL);

290 Chapter 11: Graphs

Example 11-4. Implementation of a Function for Breadth-First Search (continued)

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

/**

* *
* Skip vertices that were not visited (those with hop counts of -1). *
* *

‘k**‘k*/

clr_vertex = ((AdjList *)list_data(element))->vertex;
if (clr_vertex->hops != -1) {
if (list_ins_next (hops, list_tail (hops), clr_vertex) != 0) {

list_destroy (hops) ;
return -1;

return O0;

Graph Example: Topological Sorting

Sometimes we encounter problems in which we must determine an acceptable
ordering by which to carry out tasks that depend on one another. Imagine a set of
classes at a university that have prerequisites, or a complicated project in which
certain phases must be completed before other phases can begin. To model prob-
lems like these, we use a directed graph, called a precedence graph, in which ver-
tices represent tasks and edges represent dependencies between them. To show a
dependency, we draw an edge from the task that must be completed first to the
task that depends on it.

For example, consider the directed acyclic graph in Figure 11-9a, which repre-
sents a curriculum of seven courses and their prerequisites: CS100 has no prereq-
uisites, CS200 requires CS100, CS300 requires CS200 and MA100, MA100 has no
prerequisites, MA200 requires MA100, MA300 requires CS300 and MA200, and
CS150 has no prerequisites and is not a prerequisite itself.

Depth-first search helps to determine an acceptable ordering by performing a topo-
logical sort on the courses. Topological sorting orders the vertices in a directed
acyclic graph so that all edges go from left to right. In the problem involving

Graph Example: Topological Sorting 291

D D G

Figure 11-9. Courses and their prevequisites (a) in a directed acyclic graph and (b) in one
topological sorting

course prerequisites, this means that all prerequisites will appear to the left of the
courses that require them (see Figure 11-9b). Formally, a topological sort of a
directed acyclic graph G = (V, E) is a linear ordering of its vertices so that if an
edge (u, v) exists in G, then u appears before v in the linear ordering. In many
cases, there is more than one ordering that satisfies this.

This example presents a function, dfs (see Examples 11-5 and 11-6), that imple-
ments depth-first search. It is used here to sort a number of tasks topologically.
The function has two arguments: graph is a graph, which in this problem repre-
sents the tasks to be ordered, and ordered is the list of topologically sorted verti-
ces that is returned. The function modifies graph, so a copy should be made
before calling the function, if necessary. Also, vertices returned in ordered are
pointers to the actual vertices from graph, so the caller must ensure that the stor-
age in graph remains valid as long as ordered is being accessed. Each vertex in
graph is a DfsVertex structure (see Example 11-5), which has two members:
data is a pointer to the data associated with the vertex, and color maintains the
color of the vertex during the search. The match function for graph, which is set
by the caller when initializing the graph with graph_init, should compare only the
data members of DfsVertex structures.

The dfs function performs depth-first search as described earlier in this chapter.
The function dfs_main is the actual function that executes the search. The last
loop in dfs ensures that we end up searching all components of graphs that are
not connected, such as the one in Figure 11-9a. As each vertex is finished and col-
ored black in dfs_main, it is inserted at the head of ordered At the end, ordered
contains the topologically sorted list of vertices.

The runtime complexity of dfs is O(V + E), where V is the number of vertices in
the graph and E is the number of edges. This is because initializing the colors of
the vertices runs in O(V) time, and the calls to dfs_main run in O(V + E) overall.

292 Chapter 11: Grapbs

Example 11-5. Header for Depth-First Search

/***

* *
L AfS.h —mmmmmmm e *
* *

‘k**/

#ifndef DFS_H
#define DFS_H

#include "graph.h"
#include "list.h"

/***

* *
* Define a structure for vertices in a depth-first search. *
* *

‘k**/

typedef struct DfsVertex_ {

void *data;
VertexColor color;
} DfsVertex;

/***

* *
o ittt bl b Public Interface ------—-———————————mmom *
* *

***/
int dfs(Graph *graph, List *ordered) ;
#endif

Example 11-6. Implementation of a Function for Depth-First Search

/***

* *
et dfs.c ———————————— *
* *

***/

#include <stdlib.h>

#include "dfs.h"
#include "graph.h"
#include "list.h"

Graph Example: Topological Sorting 293

Example 11-6. Implementation of a Function for Depth-First Search (continued)

/***

* *
ettt dfs_main ---------—--————— *
* *

***/

static int dfs_main(Graph *graph, AdjList *adjlist, List *ordered) {
AdjList *clr_adjlist;

DfsVertex *clr_vertex,
*adj_vertex;

ListElmt *member ;

/***

* *
* Color the vertex gray and traverse its adjacency list. *
* *

***/

((DfsVertex *)adjlist->vertex)->color = gray;

for (member = list_head(&adjlist->adjacent); member != NULL; member =
list_next (member)) {

/**

* *
* Determine the color of the next adjacent vertex. *
* *

**/

adj_vertex = list_data (member) ;

if (graph_adjlist(graph, adj_vertex, &clr_adjlist) != 0)
return -1;

clr_vertex = clr_adjlist->vertex;

/**

* *
* Move one vertex deeper when the next adjacent vertex is white. *
* *

**/

if (clr_vertex->color == white) {

if (dfs_main(graph, clr_adjlist, ordered) != 0)
return -1;

294 Chapter 11: Grapbs

Example 11-6. Implementation of a Function for Depth-First Search (continued)

/***

* *
* Color the current vertex black and make it first in the list. *
* *

***/

((DfsVertex *)adjlist->vertex)->color = black;

if (list_ins_next (ordered, NULL, (DfsVertex *)adjlist->vertex) != 0)
return -1;

return 0;

/***
* *
I i it dfs - *
* *

***/
int dfs(Graph *graph, List *ordered) ({
DfsVertex *vertex;

ListElmt *element;

/***

* *
* Initialize all of the vertices in the graph. *
* *

***/

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

vertex = ((AdjList *)list_data(element))->vertex;
vertex->color = white;

/***
* *
* Perform depth-first search. *
* *

***/

list_init(ordered, NULL) ;

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

Questions and Answers 295

Example 11-6. Implementation of a Function for Depth-First Search (continued)

/**

* *
* Ensure that every component of unconnected graphs is searched. *
* *

**/

vertex = ((AdjList *)list_data(element))->vertex;
if (vertex->color == white) {
if (dfs_main(graph, (AdjList *)list_data(element), ordered) != 0) {

list_destroy (ordered) ;
return -1;

return 0;

Questions and Answers

Q: In the graph implementation presented in this chapter, why is a linked list used

A:

Sfor the list of adjacency-list structures but sets are used for the adjacency lists?

Many adjacency-list representations of graphs consist of an array of adjacency
lists, with each element in the array corresponding to one vertex in the graph.
The implementation in this chapter deviates from this model. First, it uses a
linked list in place of the array because the list can dynamically expand and
contract as we insert and remove vertices. Second, it uses sets for the adja-
cency lists because the vertices they contain are not ordered, and the primary
operations associated with adjacency lists (inserting and removing vertices,
and testing for membership) are well-suited to the set abstract datatype pre-
sented earlier. Perhaps the list of adjacency-list structures could have been
implemented using a set as well, but this was ruled out because the primary
operation here is to locate the adjacency lists of specific vertices. A linked list
is better suited to this than a set.

Suppose we model an internet using a graph (as shown earlier in this chapter)
and we determine that the graph contains an articulation point. What are the
implications of this?

296 Chapter 11: Grapbs

A: Graphs have many important uses in network problems. If in a graph model-
ing an internet we determine that there is an articulation point, the articula-
tion point represents a single point of failure. Thus, if a system residing at an
articulation point goes down, other systems are forced into different con-
nected components and as a result will no longer be able to communicate
with each other. Therefore, in designing large networks in which connectivity
is required at all times, it is important that there be no articulation points. We
can curb this problem by placing redundancies in the network.

Q: Consider a graph that models a structure of airways, bighways in the sky on
which airplanes are often required to fly. The structure consists of two types of
elements: navigational facilities, called navaids for short, and airways that
connect navaids, which are typically within a bundred miles of each other. Air-
ways may be bidirectional or one-way. At certain times some airways are not
available for use. Suppose during one of these times we would like to determine
whether we can still reach a particular destination. How can we determine
this? What is the runtime complexity of solving this problem?

A: 1If we perform breadth-first search from our starting point in the airway struc-
ture, we can reach any destination if we discover it during the search. Other-
wise, the destination must reside in a component of the graph that became
unreachable when an airway was made unavailable. The closed airway consti-
tutes a bridge in the graph. This problem can be solved in O(V +E) time,
where V'is the number of navaids and E is the number of airways in the struc-
ture. This is the runtime complexity of breadth-first search.

Q: Suppose we would like to use a computer to model states in a system. For exam-
ple, imagine the various states of a traffic-light system at an intersection and
the decisions the system bas to make. How can we use a graph to model this?

A: Directed graphs are good for modeling state machines, such as the traffic-light
system mentioned here. In a directed graph, we let vertices represent the vari-
ous states, and edges represent the decisions made to get from one state to
another. Edges in the graph are directed because a decision made to get from
one state to the next does not imply that the decision can be reversed.

Q: When discussing depth-first search, it was mentioned that sometimes it is use-
Jful to keep track of discovery and finishing times for each vertex. The start time
of a vertex is a sequence number recorded when the vertex is discovered for the
Sfirst time and we color it gray. The finishing time of a vertex is a sequence
number recovded when we are finished with the vertex and color it black. In
the implementation of depth-first search presented in this chapter, these times
were not recorded. How could we modify the implementation to record them?

Related Topics 297

A:

Discovery and finishing times recorded during depth-first search are impor-
tant to some algorithms. To record these times, we use a counter that incre-
ments itself each time we color a vertex either gray or black. As a vertex is
colored gray, we record the current value of the counter as its discovery time.
As a vertex is colored black, we record the current value of the counter as its
finishing time. In the implementation presented in this chapter, we could add
two members to the DfsVertex structure to keep track of these times for each
vertex.

The transpose of a directed graph is a graph with the direction of its edges
reversed. Formally, for a directed graph G = (V, E), its transpose is indicated as
GT. How could we form the transpose of a graph assuming an adjacency-list
representation? What is the runtime complexity of this?

To form the transpose GT of a graph G = (V, E), we traverse the adjacency list
of each vertex u in V. As we traverse each list, we make sure that vertex v and
u have both been inserted into GT by calling graph_ins_vertex for each ver-
tex. Next, we call graph_ins_edge to insert an edge from v to u into GT. Each
call to graph_ins_vertex runs in O(V) time. This operation is called 2E times,
where E is the number of edges in G. Of course, some of these calls will not
actually insert the vertex if it was inserted previously. Each call to graph_ins_
edge runs in O(V) time. This operation is called once for each edge in G as
well. Thus, using this approach, the overall time to transpose a graph is
O(VE).

At the start of this chapter, it was mentioned that many data structures can be
represented as graphs. How might we think of a binary tree as a graph?

A binary tree is a directed acyclic graph with the following characteristics.
Each node has up to two edges incident from it and one edge incident to it,
except for the root node, which has only the two edges incident from it.
Edges incident from a vertex connect it with its children. The edge incident to
a vertex connects its parent to it. Thus, the adjacency list of each vertex con-
tains its children.

Related Topics

Hypergraphs

Graphs similar to undirected graphs but which contain hyperedges. Hyper-
edges are edges that connect an arbitrary number of vertices. In general, most
operations and algorithms for graphs, such as the ones described in this chap-
ter, can be adapted to work with hypergraphs as well.

298 Chapter 11: Graphs

Multigraphs
Graphs similar to undirected graphs but which allow multiple edges between
the same two vertices. As with hypergraphs, in general, most operations and
algorithms for graphs can be adapted to work with multigraphs as well.

Adjacency-matrix representation

A graph representation that consists of a V' XV matrix, where V is the number
of vertices in the graph. If an edge exists between two vertices u and v, we set
a flag in position [z, v] in the matrix. An adjacency-matrix representation is
typically used for dense graphs, in which the number of edges is close to the
number of vertices squared. Although the interface presented in this chapter
may appear to reflect the specifics of an adjacency-list representation, there are
things we could do to support this interface for an adjacency-matrix represen-
tation as well, thus keeping the details of the actual implementation hidden.

111

Algorithms

This part of the book contains six chapters on algorithms. Chapter 12, Sorting and
Searching, covers various algorithms for sorting, including insertion sort, quicksort,
merge sort, counting sort, and radix sort. Chapter 12 also presents binary search.
Chapter 13, Numerical Methods, covers numerical methods, including algorithms
for polynomial interpolation, least-squares estimation, and the solution of equa-
tions using Newton’s method. Chapter 14, Data Compression, presents algorithms
for data compression, including Huffman coding and LZ77. Chapter 15, Data
Encryption, presents algorithms for DES and RSA encryption. Chapter 16, Graph
Algorithms, covers graph algorithms, including Prim’s algorithm for minimum span-
ning trees, Dijkstra’s algorithm for shortest paths, and an algorithm for solving the
traveling-salesman problem. Chapter 17, Geometric Algorithms, presents geometric
algorithms, including methods for testing whether line segments intersect, comput-
ing convex hulls, and computing arc lengths on spherical surfaces.

12

Sorting and Searching

Sorting means arranging a set of elements in a prescribed order. Normally a sort is
thought of as either ascending or descending. An ascending sort of the integers
{5, 2, 7, 1}, for example, produces {1, 2, 5, 7}, whereas a descending sort pro-
duces {7, 5, 2, 1}. In general, sorting serves to organize data so that it is more
meaningful. Although the most visible application of sorting is sorting data to
display it, often sorting is used to organize data in solving other problems, some-
times as a part of other formal algorithms.

In general, sorting algorithms are divided into two classes: comparison sorts and
linear-time sorts. Comparison sorts rely on comparing elements to place them in
the correct order. Surprisingly, not all sorting algorithms rely on making compari-
sons. For those that do, it is not possible to sort faster than in O(n lg n) time.
Linear-time sorts get their name from sorting in a time proportional to the number
of elements being sorted, or O(7). Unfortunately, linear-time sorts rely on certain
characteristics in the data, so we cannot always apply them. Some sorts use the
same storage that contains the data to store output as the sort proceeds; these are
called in-place sorts. Others require extra storage for the output data, although
they may copy the results back over the original data at the end.

Searching is the ubiquitous task of locating an element in a set of data. The sim-
plest approach to locating an element takes very little thought: we simply scan the
set from one end to the other. This is called flinear search. Generally, it is used
with data structures that do not support random access very well, such as linked
lists (see Chapter 5, Linked Lists). An alternative approach is to use binary search,
which is presented in this chapter. Other approaches rely on data structures devel-
oped specifically for searching, such as hash tables (see Chapter 8, Hash Tables)
and binary search trees (see Chapter 9, Trees). This chapter covers:

301

302 Chapter 12: Sorting and Searching

Insertion sort
Although not the most efficient sorting algorithm, insertion sort has the virtue
of simplicity and the ability to sort in place. Its best application is for incre-
mental sorting on small sets of data.

Quicksort
An in-place sorting algorithm widely regarded as the best for sorting in the
general case. Its best application is for medium to large sets of data.

Merge sort
An algorithm with essentially the same performance as quicksort, but with
twice its storage requirements. Ironically, its best application is for very large
sets of data because it inherently facilitates working with divisions of the origi-
nal unsorted set.

Counting sort
A stable, linear-time sorting algorithm that works with integers for which we
know the largest value. Its primary use is in implementing radix sort.

Radix sort
A linear-time sorting algorithm that sorts elements digit by digit. Radix sort is
well suited to elements of a fixed size that can be conveniently broken into
pieces, expressible as integers.

Binary search
An effective way to search sorted data in which we do not expect frequent
insertions or deletions. Since resorting a set of data is expensive relative to
searching it, binary search is best when the data does not change.

Some applications of sorting and searching algorithms are:

Order statistics
Finding the ith smallest element in a set. One simplistic approach is to select
the ith element out of the set once it has been sorted.

Binary search
An efficient search method that relies on sorted data. Binary search works fun-
damentally by dividing a sorted set of data repeatedly and inspecting the ele-
ment in the middle of each division.

Directory listings (illustrated in this chapter)
Listings of files in a file system that have been organized into groups. Gener-
ally, an operating system will sort a directory listing in some manner before
displaying it.

Database systems
Typically, large systems containing vast amounts of data that must be stored
and retrieved quickly. The amount of data generally stored in databases makes
an efficient and flexible approach to searching the data essential.

Interface for Insertion Sort 303

Spell checkers (illustrated in this chapter)
Programs that check the spelling of words in text. Validation is performed
against words in a dictionary. Since spell checkers frequently deal with long
strings of text containing many thousands of words, they must be able to
search the set of acceptable words efficiently.

Spreadsheets
An important part of most businesses for managing inventory and financial
data. Spreadsheets typically contain diverse data that is more meaningful when
sorted.

Description of Insertion Sort

Insertion sort is one of the simplest sorting algorithms. It works like the approach
we might use to systematically sort a pile of canceled checks by hand. We begin
with a pile of unsorted checks and space for a sorted pile, which initially contains
no checks. One at a time, we remove a check from the unsorted pile and, consid-
ering its number, insert it at the proper position among the sorted checks. More
formally, insertion sort takes one element at a time from an unsorted set and
inserts it into a sorted one by scanning the set of sorted elements to determine
where the new element belongs. Although at first it may seem that insertion sort
would require space for both the sorted and unsorted sets of data independently,
it actually sorts in place.

Insertion sort is a simple algorithm, but it is inefficient for large sets of data. This is
because determining where each element belongs in the sorted set potentially
requires comparing it with every other element in the sorted set thus far. An
important virtue of insertion sort, however, is that inserting a single element into a
set that is already sorted requires only one scan of the sorted elements, as opposed
to a complete run of the algorithm. This makes insertion sort efficient for incre-
mental sorting. This situation might occur, for example, in a reservation system of
a large hotel. Suppose one display in the system lists all guests, sorted by name,
and is updated in real time as new guests check in. Using insertion sort, resorting
requires only a single sweep of the data to insert a new name into the list.

Interface for Insertion Sort

issort

int issort(void *data, int size, int esize, int (*compare) (const void *keyl,
const void *key2));

Return Value 0 if sorting is successful, or —1 otherwise.

304 Chapter 12: Sorting and Searching

Description Uses insertion sort to sort the array of elements in data. The
number of elements in data is specified by size. The size of each element is
specified by esize. The function pointer compare specifies a user-defined func-
tion to compare elements. This function should return 1 if keyl > key2, 0 if keyl
= key2, and -1 if keyl < key2 for an ascending sort. For a descending sort,
compare should reverse the cases returning 1 and —1. When issort returns, data
contains the sorted elements.

Complexity O(n2), where n is the number of elements to be sorted.

Implementation and Analysis
of Insertion Sort

Insertion sort works fundamentally by inserting elements from an unsorted set one
at a time into a sorted set. In the implementation presented here, both of these
sets reside in data, a single block of contiguous storage. Initially, data contains
the unsorted set consisting of size elements. As issort runs, data gradually
becomes consumed by the sorted set until when issort returns, data is completely
sorted. Although this implementation uses contiguous storage, insertion sort can
easily be adapted to work with linked lists efficiently, something not all sorts can
claim.

Insertion sort revolves around a single nested loop (see Example 12-1). The outer
loop, 7, controls which element from the unsorted set is currently being inserted
among the sorted elements. Since the element just to the right of the sorted set is
always the next to be inserted, we can also think of j as the position dividing the
sorted and unsorted sets in data. For each element at position j, an inner loop,
i, is used to cycle backward through the set of sorted elements until the proper
position for the element is found. As we move backward through the set, each
element at position i is copied one position to the right to make room for the
insertion. Once j reaches the end of the unsorted set, data is sorted (see
Figure 12-1).

The runtime complexity of insertion sort focuses on its nested loops. With this in
mind, the outer loop has a running time of 7(») = n — 1, times some constant
amount of time, where 7 is the number of elements being sorted. Examining the
inner loop in the worst case, we assume that we will have to go all the way to the
left end of the array before inserting each element into the sorted set. Therefore,
the inner loop could iterate once for the first element, twice for the second, and so
forth until the outer loop terminates. The running time of the nested loop is repre-
sented as a summation from 1 to 7 — 1, which results in a running time of 7(n) =
(n (n+ 1)/2) — n, times some constant amount of time. (This is from the well-
known formula for summing a series from 1 to n.) Using the rules of O-notation,

Implementation and Analysis of Insertion Sort

305

o | @ !
dota | 23 (211 76| 16|52 | 43 dota | 21 (23| 76| 16|52 | 43

Lsorted!

@ ¢ 0o ¢
dota)21 | 23| 76| 16 | 52 | 43 dota] 16 | 21| 23| 76 | 52 | 43
L sorfed — L sorfed ——

=5
o Vv 0
data| 16 | 21| 23| 52|76 | 43 data| 16 | 21| 23| 43|52|76
L sorfed——— ‘

sorfed

Figure 12-1. Sorting with insertion sort

this simplifies to O(#72). When we use insertion sort in an incremental sort, its run-
time complexity is O(7). Insertion sort sorts in place, so its space requirement is

only that occupied by the data to be sorted.

Example 12-1. Implementation of Insertion Sort

JRIKIKKKKKKKKKXIK KKK KK KKK KXI X I I IRk kAR I X I Xk ko hhhhhhhkh Ak Xk xkkhkhkkhkhkhxk

* *
e it issort.c ———=——————mmm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "sort.h"

/***

* *
K e issort -—----——————— *
* *

HRIKKKKKKKKKXKXIK KKK KKK KK IK XK X I I R h R Rk I A I X I Xk h ko hhhhhhh Ak Xk xhxhkkkkhkhxxx /

int issort(void *data, int size, int esize, int (*compare) (const void *keyl,
const void *key2)) {

char *a = data;
void *key;
int i,

J;

306 Chapter 12: Sorting and Searching

Example 12-1. Implementation of Insertion Sort (continued)

/***

* *
* Allocate storage for the key element. *
* *

‘k**/

if ((key = (char *)malloc(esize)) == NULL)
return -1;

/***

* *
* Repeatedly insert a key element among the sorted elements. *
* *

‘k**/

for (j = 1; j < size; j++) {

memcpy (key, &alj * esize], esize);
i=3-1;

/**

* *
* Determine the position at which to insert the key element. *
* *

**/

while (i >= 0 && compare(&al[i * esize], key) > 0) {

memcpy (&al[(i + 1) * esize], &al[i * esize], esize);
i--;

memcpy (&a[(i + 1) * esize], key, esize);

}

/***
* *
* Free the storage allocated for sorting. *
* *

***/

free (key) ;

return 0;

Description of Quicksort 307

Description of Quicksort

Quicksort is a divide-and-conquer sorting algorithm (see Chapter 1, Introduction).
It is widely regarded as the best for general use. Like insertion sort, it is a compari-
son sort that sorts in place, but its efficiency makes it a better choice for medium
to large sets of data.

Returning to the example of sorting a pile of canceled checks by hand, we begin
with an unsorted pile that we partition in two. In one pile we place all checks
numbered less than or equal to what we think may be the median value, and in
the other pile we place the checks greater than this. Once we have the two piles,
we divide each of them in the same manner, and we repeat the process until we
end up with one check in every pile. At this point, the checks are sorted.

Since quicksort is a divide-and-conquer algorithm, it is helpful to consider it more
formally in terms of the three steps common to all divide-and-conquer algorithms:

1. Divide: partition the data into two partitions around a partition value.
2. Conquer: sort the two partitions by recursively applying quicksort to them.

3. Combine: do nothing since the partitions are sorted after the previous step.

Considering its popularity, it may be surprising that the worst case of quicksort is
no better than the worst case of insertion sort. However, with a little care we can
make the worst case of quicksort so unlikely that we can actually count on the
algorithm performing to its average case, which is considerably better. The key to
reliably achieving quicksort’s average-case performance lies in how we choose the
partition value in the divide step.

Quicksort performs badly when we choose partition values that continually force
the majority of the elements into one partition. Instead, we need to partition the
elements in as balanced a manner as possible. For example, partitioning around
10 in the set {15, 20, 18, 51, 36, 10, 77, 43} results in the unbalanced partitions of
{10} and {20, 18, 51, 36, 15, 77, 43}. On the other hand, partitioning around 36
results in the more balanced partitions of {15, 20, 18, 10} and {36, 51, 77, 43}.

One approach that works well in choosing partition values is to select them ran-
domly. Statistically, this prevents any particular set of data from eliciting bad
behavior, even if we try to bog down the algorithm intentionally. We can improve
partitioning further by randomly choosing three elements and selecting their
median as the partition value. This is called the median-of-three method, which
virtually guarantees average-case performance. Because this approach to partition-
ing relies on the statistical properties of random numbers to help the performance
of quicksort overall, quicksort is a good example of a randomized algorithm (see
Chapter 1).

308 Chapter 12: Sorting and Searching

Interface for Quicksort

qksort

int gksort(void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2));

Return Value 0 if sorting is successful, or —1 otherwise.

Description Uses quicksort to sort the array of elements in data. The num-
ber of elements in data is specified by size. The size of each element is speci-
fied by esize. The arguments i and k define the current partition being sorted
and initially should be 0 and size - 1, respectively. The function pointer
compare specifies a user-defined function to compare elements. It should per-
form in a manner similar to that described for issort. When gksort returns, data
contains the sorted elements.

Complexity O(n lg n), where n is the number of elements to be sorted.

Implementation and Analysis
of Quicksort

Quicksort works fundamentally by recursively partitioning an unsorted set of ele-
ments until all partitions contain a single element. In the implementation pre-
sented here, data initially contains the unsorted set of size elements stored in a
single block of contiguous storage. Quicksort sorts in place, so all partitioning is
performed in data as well. When gksort returns, data is completely sorted.

As we have seen, an important part of quicksort is how we partition the data. This
task is performed in the function partition (see Example 12-2). This function parti-
tions the elements between positions 1 and k in data, where 1 is less than k.

We begin by selecting a partition value using the median-of-three method men-
tioned earlier. Once the partition value has been selected, we move from k to the
left in data until we find an element that is less than or equal to it. This element
belongs in the left partition. Next, we move from 1 to the right until we find an
element that is greater than or equal to the partition value. This element belongs in
the right partition. Once two elements are found in the wrong partition, they are
swapped. We continue in this way until i and k cross. (You may want to con-
sider how we know that if any one element is in the wrong partition, there is
always one that can be swapped with it.) Once i and k cross, all elements to the
left of the partition value are less than or equal to it, and all elements to the right
are greater (see Figure 12-2).

Implementation and Analysis of Quicksort 309

o *i=0 *k=7 e *i=l +k=6

dota (24 152 | 11(94|28(36(14|80 dore (24 152 11(94|28|36(14|80

e +i:] +I(:6 0 +i:3*k:4

dota| 24 (14| 119428 | 36| 52| 80 dota| 24 (14| 119428 | 36| 52| 80
b swopped————

i=3 k=4 i=j=k=3
(5 vy 0 v
dota {24 | 14| 11|28 (94| 36| 52 80 data {24 | 14| 11|28 (94| 36| 52|80
L swapped -

Figure 12-2. Partitioning around 28

Now we look at how the recursion proceeds in gksort (see Example 12-2). On the
initial call to gksort, i is set to 0 and k is set to size — 1. We begin by calling
partition to partition data between positions i and k. When partition returns, j is
assigned the position of the element that defines where the elements between 1
and k are partitioned. Next, we call gksort recursively for the left partition, which
is from position i to j. Sorting left partitions continues recursively until an activa-
tion of gksort is passed a partition containing a single element. In this activation, 1
will not be less than k, so the call terminates. In the previous activation of gksort,
this causes an iteration to the right partition, from position 7 + 1 to k. Overall, we
continue in this way until the first activation of gksort terminates, at which point
the data is completely sorted (see Figure 12-3).

The analysis of quicksort centers around its average-case performance, which is
widely accepted as its metric. Even though the worst case of quicksort is no better
than that of insertion sort, O(#2), quicksort reliably performs much closer to its
average-case running time, O(n lg n), where 7 is the number of elements being
sorted.

Determining the runtime complexity for the average case of quicksort depends on
the assumption that there will be an even distribution of balanced and unbal-
anced partitions. This assumption is reasonable if the median-of-three method for
partitioning is used. In this case, as we repeatedly partition the array, it is helpful
to picture the tree shown in Figure 12-3, which has a height of (Ig n) + 1. Since for
the top Ig n levels of the tree, we must traverse all 7 elements in order to form the
partitions of the next level, quicksort runs in time O(n lg 7). Quicksort sorts in
place, so its space requirement is only that occupied by the data to be sorted.

310 Chapter 12: Sorting and Searching

Lis the left partition

dora (2415211194128 36(14(80 R is the right partition

j=3 (see Figure 12-2)
24 (14|11 28 Jaf36]s52(80

11|14 24 (28 36 | 52 94 | 80

j=0 j=0 j=0 j=0

11 14 24 28 36 52 80 94
‘ sorfed !

Figure 12-3. Sorting with quicksort assuming optimal partitioning

Example 12-2. Implementation of Quicksort

/***

* *
ettt gksort.c ——--—-——-—-mmmm—m *
* *

'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k*************************/

#include <stdlib.h>
#include <string.h>

#include "sort.h"

/***

* *
K compare_int —-—-—-————————————— *
* *

***/

static int compare_int (const void *intl, const void *int2) {

/**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**************************

* *
* Compare two integers (used during median-of-three partitioning) . *
* *

***/

if (*(const int *)intl > *(const int *)int2)
return 1;

else if (*(const int *)intl < *(const int *)int2)
return -1;

else
return 0;

Implementation and Analysis of Quicksort 311

Example 12-2. Implementation of Quicksort (continued)

/***

* *
ettt partition ------------—————— *
* *

***/

static int partition(void *data, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2)) {

char *a = data;

void *pval,
*temp;

int r(3];

/***

* *
* Allocate storage for the partition value and swapping. *
* *

***/

if ((pval = malloc(esize)) == NULL)
return -1;

if ((temp = malloc(esize)) == NULL) {

free(pval) ;
return -1;

}

/***
* *
* Use the median-of-three method to find the partition value. *
* *

***/

r[0] = (rand() % (k - 1 + 1)) + i;
r[l] = (rand() % (k - i + 1)) + i;
r[2] = (rand() % (k - 1 + 1)) + 1i;
issort(r, 3, sizeof(int), compare_ int);
memcpy (pval, &alr[l] * esize], esize);

/***

* *
* Create two partitions around the partition value. *
* *

***/

i--;
k++;

312 Chapter 12: Sorting and Searching

Example 12-2. Implementation of Quicksort (continued)
while (1) {

/**

* *
* Move left until an element is found in the wrong partition. *
* *

**/

do {
k--;
} while (compare(&alk * esize], pval) > 0);

/**

* *
* Move right until an element is found in the wrong partition. *
* *

**/

do {

i++;
} while (compare(&al[i * esize], pval) < 0);
if (1 >= k) {

/***

* *
* Stop partitioning when the left and right counters cross. *
* *

***/

break;

else {

/***

* *
* Swap the elements now under the left and right counters. *
* *

***/

memcpy (temp, &al[i * esize], esize);
memcpy (&a[i * esize], &alk * esize], esize);
memcpy (&a [k * esize], temp, esize);

Implementation and Analysis of Quicksort 313

Example 12-2. Implementation of Quicksort (continued)

/***

* *
* Free the storage allocated for partitioning. *
* *

‘k**/

free(pval) ;
free(temp) ;

/***

* *
* Return the position dividing the two partitions. *
* *

‘k**/

return k;

/***
* *
K e gksort —-—-—-—----————————— *
* *

***/

int gksort (void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2)) {

int J:

/***

* *
* Stop the recursion when it is not possible to partition further. *
* *

‘k**/

while (i < k) {

/**

* *
* Determine where to partition the elements. *
* *

**/

if ((j = partition(data, esize, i, k, compare)) < 0)
return -1;

/**

* *
* Recursively sort the left partition. *
* *

**/

314 Chapter 12: Sorting and Searching

Example 12-2. Implementation of Quicksort (continued)

if (gksort(data, size, esize, i, j, compare) < 0)
return -1;

/**

* *
* Iterate and sort the right partition. *
* *

‘k**‘k*/

i=3+1;
}
return 0;
}

Quicksort Example: Divectory Listings

In a hierarchical file system, files are typically organized conceptually into directo-
ries. For any directory, we may want to see a list of the files and subdirectories the
directory contains. In Unix, we do this with the /s command, for example. At the
command prompt in Windows, we do this with the dir command.

This section presents a function called directls, which implements the same basic
functionality that /s provides. It uses the system call readdir to create a listing of
the directory specified in path (see Examples 12-3 and 12-4). Just as Is does in the
default case, directls sorts the listing by name. Because we allocate the listing
using realloc as we build it, it is the responsibility of the caller to free it with free
once it is no longer needed.

The runtime complexity of directls is O(n lg n), where n is the number of entries
in the directory being listed. This is because retrieving » directory entries is an
operation that runs in O(#) time overall, while the subsequent call to gksort sorts
the entries in O(7 lg 7) time.

Example 12-3. Header for Getting Directory Listings

/**‘k**

* *
B ittt directls.h ———=———————m——m *
* *

***/

#ifndef DIRECTLS_H
#define DIRECTLS_H

#include <dirent.h>

Quicksort Example: Directory Listings 315

Example 12-3. Header for Getting Directory Listings (continued)

/***

* *
* Define a structure for directory entries. *
* *

***/
typedef struct Directory._ {
char name [MAXNAMLEN + 1];

} Directory;

/***

* *
K Public Interface -----------———---m—— *
* *

***/
int directory(const char *path, Directory **dir);
#endif

Example 12-4. Implementation of a Function for Getting Directory Listings

/***

* *
Bttt directls.c ——====——m—mmmmm e *
* *

***/

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "directls.h"
#include "sort.h"

/***

* *
B ittt et compare_dir ———————-——m——m e *
* *

***/

static int compare_dir (const void *keyl, const void *key2) {
int retval;

if ((retval = strcmp(((const Directory *)keyl)->name, ((const Directory *)
key2) ->name)) > 0)
return 1;

else if (retval < 0)
return -1;

316 Chapter 12: Sorting and Searching

Example 12-4. Implementation of a Function for Getting Directory Listings (continued)

else

return 0;
}
/***
* *
K directls -——-—————————————— *
* *

***/

int directls(const char *path, Directory **dir) {

DIR *dirptr;

Directory *temp;

struct dirent *curdir;

int count,
i;

/***

* *
* Open the directory. *
* *

***/

if ((dirptr = opendir (path)) == NULL)
return -1;

/***

* *
* Get the directory entries. *
* *

***/

*dir = NULL;
count = 0;

while ((curdir = readdir (dirptr)) != NULL) {
count++;

if ((temp = (Directory *)realloc(*dir, count * sizeof (Directory))) ==
NULL) {

free(*dir) ;
return -1;

else {

Description of Merge Sort 317

Example 12-4. Implementation of a Function for Getting Directory Listings (continued)

*dir = temp;

strepy (((*dir) [count - 1]) .name, curdir->d_name) ;

closedir (dirptr) ;

/***

* *
* Sort the directory entries by name. *
* *

***/

if (gksort(*dir, count, sizeof (Directory), 0, count - 1, compare_dir) != 0)
return -1;

/***

* *
* Return the number of directory entries. *
* *

***/

return count;

Description of Merge Sort

Merge sort is another example of a divide-and-conquer sorting algorithm (see
Chapter 1). Like quicksort, it relies on making comparisons between elements to
sort them. However, it does not sort in place.

Returning once again to the example of sorting a pile of canceled checks by hand,
we begin with an unsorted pile that we divide in half. Next, we divide each of the
resulting two piles in half and continue this process until we end up with one
check in every pile. Once all piles contain a single check, we merge the piles two
by two so that each new pile is a sorted combination of the two that were merged.
Merging continues until we end up with one big pile again. At this point, the
checks are sorted.

As with quicksort, since merge sort is a divide-and-conquer algorithm, it is helpful
to consider it more formally in terms of the three steps common to all divide-and-
conquer algorithms:

1. Divide: we divide the data in half.

2. Conquer: we sort the two divisions by recursively applying merge sort to them.

318 Chapter 12: Sorting and Searching

3. Combine: we merge the two divisions into a single sorted set.

The distinguishing component of merge sort is its merging process. This is the pro-
cess that takes two sorted sets and merges them into a single sorted one. As we
will see, merging two sorted sets is efficient because we need only make one pass
through each set. This fact, combined with the predictable way the algorithm
divides the data, makes merge sort in all cases as good as the average case of
quicksort.

Unfortunately, the space requirement of merge sort presents a drawback. Because
merging cannot be performed in place, merge sort requires twice the space of the
unsorted data. This significantly reduces its desirability in the general case since
we can expect to sort just as fast using quicksort, without the extra storage
requirement. However, merge sort is nevertheless valuable for very large sets of
data because it divides the data in predictable ways. This allows us to divide the
data into more manageable pieces ourselves, use merge sort to sort them, and
then perform as many merges as necessary without having to keep the entire set
of data in memory all at once.

Interface for Merge Sort

mgsort

int mgsort (void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2));

Return Value 0 if sorting is successful, or —1 otherwise.

Description Uses merge sort to sort the array of elements in data. The num-
ber of elements in data is specified by size. The size of each element is speci-
fied by esize. The arguments i and k define the current division being sorted
and initially should be 0 and size — 1, respectively. The function pointer compare
specifies a user-defined function to compare elements. It should perform in a man-
ner similar to that described for issort. When mgsort returns, data contains the
sorted elements.

Complexity O(n lg n), where n is the number of elements to be sorted.

Implementation and Analysis
of Merge Sort

Merge sort works fundamentally by recursively dividing an unsorted set of ele-
ments into single-element divisions and merging the divisions repeatedly until a
single set is reproduced. In the implementation presented here, data initially con-
tains the unsorted set of size elements stored in a single block of contiguous

Implementation and Analysis of Merge Sort 319

storage. Since merging is not performed in place, mgsort allocates additional stor-
age for the merges. Before mgsort returns, the final merged set is copied back into
data.

As we have seen, an important part of merge sort is the process of merging two
sorted sets into a single sorted one. This task is performed by the function merge
(see Example 12-5), which merges the sets defined from position i to j and from
Jj + 1to kin data into a single sorted one from i to k.

Initially, ipos and jpos point to the beginning of each sorted set. Merging contin-
ues as long as there are still elements in at least one of the sets. While this is true,
we proceed as follows. If one set has no elements remaining to be merged, we
place all elements remaining in the other set into the merged set. Otherwise, we
look at which set contains the next element that should be placed in the merged
set to keep it properly ordered, place that element in the merged set, and incre-
ment ipos or jpos to the next element depending on from which set the ele-
ment came (see Figure 12-4).

ipos=0 jpos =4 ipos=0 jpos=5
0 v 0 v
dota) 11(70(72|82(10(25| 36|44 dota| 11170 (72| 82|10 25(36|44
L left division—— L right division—

m m| 10

0 *ipos =1 *ipos =5 o *ipos =1 *ipos =7

dora(11170 72(82]|10|25(36|44 doa| 11170 | 72(82)| 10| 25(36| 44

m[10| 11 m[1011|2536 44

6 *ipos =3

daa(11170 72(82|10|25(36| 44

merged

Figure 12-4. Merging two sorted sets

Now we look at how the recursion proceeds in mgsort (see Example 12-5). On the
initial call to mgsort, i is set to 0 and k is set to size — 1. We begin by dividing
data so that j is set to the position of the middle element. Next, we call mgsort

320 Chapter 12: Sorting and Searching

for the left division, which is from position i to j. We continue dividing left divi-
sions recursively until an activation of mgsort is passed a division containing a sin-
gle element. In this activation, i will not be less than k, so the call terminates. In
the previous activation of mgsort, this causes mgsort to be invoked on the right
division of the data, from position 7 + 1 to k. Once this call returns, we merge the
two sets. Overall, we continue in this way until the last activation of mgsort per-
forms its merge, at which point the data is completely sorted (see Figure 12-5).

wo[82] 70 11] 7225 36 [44] 10] Finecimien,
L R
82(70| 11|72 25 36 | 44 [10
L R L R
82 [70 1|72 25 | 36 a4 {10
L R L R L R L R

82 70 11 72 25 36 44 10

L R L R L R L R
70 | 82 11|72 25136 10 | 44
L sored” Lsorted” Lsorted Lsorted”
L R L R
11170|72(82 10)25]| 36(44
e sorted—— (see Fi L sorted——
[[(seefigurel 2-4) R
10| 11]125|36(44)|70|72| 82

sorfed

Figure 12-5. Sorting with merge sort

An analysis of merge sort is simplified when we realize that the algorithm is very
predictable. If we divide a set of data repeatedly in half as shown in Figure 12-5,
lg n levels of divisions are required before all sets contain one element, where 7 is
the number of elements being sorted. For two sorted sets of p and g elements,
merging runs in O(p + ¢) time because a single pass must be made through each
set to produce a merged one. Since for each of the Ig » levels of divisions we end
up traversing all 7 elements to merge the sets at that level, merge sort runs in time
O(n 1g m). Because we cannot merge elements in place, merge sort requires twice
the space occupied by the data to be sorted.

Implementation and Analysis of Merge Sort 321

Example 12-5. Implementation of Merge Sort

/***

* *
K e mMUSOrt.Cc ——=——=—=————————— *
* *

‘k**/

#include <stdlib.h>
#include <string.h>

#include "sort.h"

/***

* *
o merge —-—-—-————-——---———————————————————— *
* *

***/

static int merge(void *data, int esize, int i, int j, int k, int (*compare)
(const void *keyl, const void *key2)) {

char *a = data,
*m’.

int ipos,
jpos,
mpos ;

/***

* *
* Initialize the counters used in merging. *
* *

‘k**/

|

o u. p-
+
[y

ipos
jpos
mpos =

/***

* *
* Allocate storage for the merged elements. *
* *

***/

if ((m = (char *)malloc(esize * ((k - i) + 1))) == NULL)
return -1;

/***

* *
* Continue while either division has elements to merge. *
* *

***/

while (ipos <= j || jpos <= k) {

322 Chapter 12: Sorting and Searching

Example 12-5. Implementation of Merge Sort (continued)
if (ipos > Jj) {

/***

* *

* The left division has no more elements to merge.
*

*
*

***/

while (jpos <= k) {

memcpy (&m[mpos * esize], &al[jpos * esize], esize);

jpos++;

mpOoS++;
}
continue;
}

else if (jpos > k) {

/***

* *
* The right division has no more elements to merge. *
* *

***/

while (ipos <= j) {

memcpy (&m[mpos * esize], &al[ipos * esize], esize);

ipos++;
mpos++;
}
continue;
}
/**
* *
* Append the next ordered element to the merged elements. *
* *

**/

if (compare(&a[ipos * esize], &al[jpos * esize]) < 0) {

memcpy (&m[mpos * esize], &al[ipos * esize], esize);
ipos++;
mpos++;

Implementation and Analysis of Merge Sort

323

Example 12-5. Implementation of Merge Sort (continued)

else {

memcpy (&m[mpos * esize], &al[jpos * esize], esize);

jpos++;
mpoS++;
}

}
/***
* *
* Prepare to pass back the merged data. *
* *

***/

memcpy (&a[i * esize], m, esize * ((k - i) + 1));

/***

* *
* Free the storage allocated for merging. *
* *

‘k**/

free(m);

return 0;
/***
* *
e MgSOrt —=——————————— *
* *

‘k**/

int mgsort (void *data, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2)) {

.

int

/***

* *
* Stop the recursion when no more divisions can be made. *
* *

***/

if (1 < k) {

/**

* *
* Determine where to divide the elements. *
* *

**/

324 Chapter 12: Sorting and Searching

Example 12-5. Implementation of Merge Sort (continued)
jo= (Ant) (((L +k -1)) / 2);

/**

* *
* Recursively sort the two divisions. *
* *

**/

if (mgsort(data, size, esize, i, j, compare) < 0)
return -1;

if (mgsort(data, size, esize, j + 1, k, compare) < 0)
return -1;

/**

* *
* Merge the two sorted divisions into a single sorted set. *
* *

**/

if (merge(data, esize, i, j, k, compare) < 0)
return -1;

return 0;

Description of Counting Sort

Counting sort is an efficient, linear-time sorting algorithm that works by counting
how many times each element of a set occurs to determine how the set should be
ordered. By avoiding the comparisons that have been a part of the sorting meth-
ods presented thus far, counting sort improves on the O(n lg 7) runtime bound of
comparison sorts.

Counting sort does have some limitations. The most significant is that it works
only with integers or data that can be expressed in some integer form. This is
because counting sort makes use of an array of counts indexed by the integer ele-
ments themselves to keep track of how many times each one occurs. For exam-
ple, if the integer 3 occurs in the data four times, 4 will be stored initially at
position 3 in the array of counts. Also, we must know the largest integer in the set
in order to allocate enough space for the counts.

Aside from being fast, an important virtue of counting sort is that it is stable. Sta-
ble sorts leave elements that have equal values in the same order as they appear

Implementation and Analysis of Counting Sort 325

in the original set. This is an important attribute in some cases, as we will see with
radix sort.

Interface for Counting Sort

ctsort

int ctsort(int *data, int size, int k);

Return Value 0 if sorting is successful, or —1 otherwise.

Description Uses counting sort to sort the array of integers in data. The num-
ber of integers in data is specified by size The argument k specifies the maxi-
mum integer in data, plus 1. When ctsort returns, data contains the sorted inte-
gers.

Complexity O(n + k), where n is the number of integers to be sorted and & is
the maximum integer in the unsorted set, plus 1.

Implementation and Analysis
of Counting Sort

Counting sort works fundamentally by counting how many times integer elements
occur in an unsorted set to determine how the set should be ordered. In the
implementation presented here, data initially contains the unsorted set of size
integer elements stored in a single block of contiguous storage. Additional storage
is allocated to store the sorted data temporarily. Before ctsort returns, the sorted
set is copied back into data.

After allocating storage, we begin by counting the occurrences of each element in
data (see Example 12-6). These are placed in an array of counts, counts, indexed
by the integer elements themselves (see Figure 12-6, step 1b). Once the occur-
rences of each element in data have been counted, we adjust the counts to reflect
the number of elements that will come before each element in the sorted set. We
do this by adding the count of each element in the array to the count of the ele-
ment that follows it (see Figure 12-6, step 1c). Effectively, counts then contains
the offsets at which each element belongs in the sorted set, temp.

To complete the sort, we place each element in temp at its designated offset (see
Figure 12-6, steps 2a—f). The count for each element is decreased by 1 as temp is
updated so that integers appearing more than once in data appear more than once
in temp as well.

The runtime complexity of counting sort is O(n + k), where 7 is the number of inte-
gers in the data and ks the largest integer value in the set being sorted, plus 1. This is

326 Chapter 12: Sorting and Searching

@ Initial unsorted set mAﬁer counting the occurrence of each integer in dafa
dota(O | 4|1 (3|1 |2(4])1| drjO(4]| 131|241

outs| 0 | 0] 0] 0] O ounts| T 1 3111112

mAher adjusting the counts to reflect counts of previous elements

da| O (4| 1|31 [2[4]1

counts[4] = occurrences of 4
counts[3] = occurrences of 3
counts[2] = occurrences of 2
counts[1] = occurrences of 1
ounts| 114151 61| 8 counts[0] = occurrences of 0

@Aher inserting 1 into temp and decreasing counts [1] ; @Aher inserting 4 info temp and decreasing couplsé[4]
- Vi

v
dta) 0 | 4| 131|241 dta] 0 | 4 (1] 3|1(2]4]1
counts | 1 3(5|61|8 counts | 1 3(5(6|7
femp 1 femp 1 4

@Aﬂer inserting 2 info femp and decreasingscounts (21 @Aﬂer inserting 4 info femp and d'ecr:using counts[1]

vi= yi=
o0 | 413|124 do| 0 [a{1|3] 1|24
ons| 13| 4a|6]7 oms| 12| 4|67
temp 1(2 4 femp 1112 4
@ it inserting 3 into oo dcsig cuns 13 mAfier*iFiesﬁng 0 nto femp and decreasing counts[0]
oo | 4131|240 do| 0 [a4 1|3] 1|24
oms| 12| a|5]7 ons| 0| 1] 4]5]6
temp 1{1|2]3 al emfo|1|1|1]|2]3|4]34

Figure 12-6. Sorting with counting sort

because counting sort consists of three loops, two that run in time proportional to 7,
and one that runs in time proportional to & For space, counting sort requires two
arrays of size »n and an array of size k.

Implementation and Analysis of Counting Sort 327

Example 12-6. Implementation of Counting Sort

/***

* *
K e ctsort.c ———-—————mm *
* *

‘k**/

#include <stdlib.h>
#include <string.h>

#include "sort.h"

/***

* *
* e ctsort --------—-mmmmm oo *
* *

***/

int ctsort(int *data, int size, int k) {

int *counts,
*temp;
int i,
J;

/***

* *
* Allocate storage for the counts. *
* *

***/

if ((counts = (int *)malloc(k * sizeof(int))) == NULL)
return -1;

/***

* *
* Allocate storage for the sorted elements. *
* *

***/

if ((temp = (int *)malloc(size * sizeof(int))) == NULL) {

free(counts) ;
return -1;

/***
* *
* Initialize the counts. *
* *

***/

for (1 = 0; i < k; i++)
counts[i] = 0;

328 Chapter 12: Sorting and Searching

Example 12-6. Implementation of Counting Sort (continued)

/***

* *
* Count the occurrences of each element. *
* *

***/

for (j = 0; j < size; j++)
counts[data[j]l] = counts[data[j]l] + 1;

/***

* *
* Adjust each count to reflect the counts before it. *
* *

***/

for (1 = 1; i < k; i++)
counts[i] = counts[i] + counts[i - 1];

/***

* *
* Use the counts to position each element where it belongs. *
* *

***/

for (j = size - 1; j >=0; j--) {

temp[counts[datal[j]l] - 1] = dataljl;
counts[data[j]] = counts[data[j]l] - 1;

}

/***
* *
* Prepare to pass back the sorted data. *
* *

***/

memcpy (data, temp, size * sizeof (int));

/***

* *
* Free the storage allocated for sorting. *
* *

***/

free(counts) ;
free (temp) ;

return 0;

Interface for Radix Sort 329

Description of Radix Sort

Radix sort is another efficient, linear-time sorting algorithm. It works by sorting
data in pieces called digits, one digit at a time, from the digit in the least signifi-
cant position to the most significant. Using radix sort to sort the set of radix-10
numbers {15, 12, 49, 16, 36, 40}, for example, produces {40, 12, 15, 16, 36, 49} after
sorting on the least significant digit, and {12, 15, 16, 36, 40, 49} after sorting on the
most significant digit.

It is very important that radix sort use a stable sort for sorting on the digit values
in each position. This is because once an element has been assigned a place
according to the digit value in a less significant position, its place must not change
unless sorting on one of the more significant digits requires it. For example, in the
set given earlier, when 12 and 15 were sorted on the digits in the most significant
position, since both integers contained a “1,” a nonstable sort may not have left
them in the order they were placed when sorted by their least significant digit. A
stable sort ensures that these two are not reordered. Radix sort uses counting sort
because, aside from being stable, it runs in linear time, and for any radix, we
know the largest integer any digit may be.

Radix sort is not limited to sorting data keyed by integers, as long as we can
divide the elements into integer pieces. For example, we might sort a set of strings
as radix-28 values. Or we might sort a set of 64-bit integers as four-digit, radix-216
values. Exactly what value we choose as a radix depends on the data itself and
minimizing pn + pk considering space constraints, where p is the number of digit
positions in each element, 7 is the number of elements, and k is the radix (the
number of possible digit values in any position). Generally, we try to keep & close
to and no more than 7.

Interface for Radix Sort

rxsort

int rxsort(int *data, int size, int p, int k);

Return Value 0 if sorting is successful, or —1 otherwise.

Description Uses radix sort to sort the array of integers in data. The number
of integers in data is specified by size. The argument p specifies the number of
digit positions in each integer. The argument k specifies the radix. When rxsort
returns, data contains the sorted integers.

Complexity O(pn + pk), where n is the number of integers to be sorted, & is
the radix, and p is the number of digit positions.

330 Chapter 12: Sorting and Searching

Implementation and Analysis
of Radix Sort

Radix sort works fundamentally by applying counting sort one position at a time
to a set of data. In the implementation presented here, data initially contains the
unsorted set of size integer elements stored in a single block of contiguous stor-
age. When rxsort returns, data is completely sorted.

If we understand counting sort, the operation of radix sort is simple. A single loop
governs the position on which we are currently sorting (see Example 12-7). Posi-
tion by position, we apply counting sort to shuffle and reshuffle the elements,
beginning with the least significant position. Once we have shuffled the elements
by the digits in the most significant position, sorting is complete (see Figure 12-7).
A simple approach involving exponentiation and modular arithmetic is used to
obtain each digit value. This works well for integers. Different types of data
require different approaches. Some approaches may require considering machine-
specific details, such as byte ordering and word alignment.

data data data data
302 611 901 102
253 901 302 253
611 302 102 302
901 102 611 529
529 253 529 611
102 n=0 529 n=1 253 a=2 | 901
sorfed . sorfed sorfed

Figure 12-7. Sorting integers as radix-10 numbers with radix sort

Not surprisingly, the runtime complexity of radix sort depends on the stable sort-
ing algorithm chosen to sort the digits. Because radix sort applies counting sort
once for each of the p positions of digits in the data, radix sort runs in p times the
runtime complexity of counting sort, or O(pn + phk). Its space requirement is the
same as for counting sort: two arrays of size 7 and an array of size k.

Example 12-7. Implementation of Radix Sort

JRIKIKKKKKKKKKXIK KKK KK KKK KXI X I I IRk kAR I X I Xk ko hhkhhhhkhkh Xk xhkhkhkhhkhkhxk

* *
* e rxsort.c ———-——-—--—-————mm o *
* *

***/

Implementation and Analysis of Radix Sort 331

Example 12-7. Implementation of Radix Sort (continued)

#include <limits.h>
#include <math.h>

#include <stdlib.h>
#include <string.h>

#include "sort.h"

/***

* *
* e rxsort -----------—-—————— *
* *

***/

int rxsort(int *data, int size, int p, int k) {

int *counts,
*temp;

int index,
pval,
i,
3,
n;

/***

* *
* Allocate storage for the counts. *
* *

‘k**/

if ((counts = (int *)malloc(k * sizeof (int))) == NULL)
return -1;

/***

* *
* Allocate storage for the sorted elements. *
* *

‘k**/

if ((temp = (int *)malloc(size * sizeof(int))) == NULL)
return -1;

/***

* *
* Sort from the least significant position to the most significant. *
* *

‘k**/

for (n = 0; n < p; n++) {

332 Chapter 12: Sorting and Searching

Example 12-7. Implementation of Radix Sort (continued)

/**

* *
* 1Initialize the counts. *
* *

‘k***/

for (i = 0; 1 < k; i++)
counts[i] = 0;

/**

* *
* Calculate the position value. *
* *

‘k***/

pval = (int)pow((double)k, (double)n);

/**

* *
* Count the occurrences of each digit value. *
* *

**/

for (3 = 0; J < size; j++) {

index = (int) (dataljl / pval) % k;
counts[index] = counts[index] + 1;

}

/**
* *
* Adjust each count to reflect the counts before it. *
* *

‘k***/

for (i = 1; 1 < k; i++)
counts[i] = counts[i] + counts[i - 1];

/**

* *
* TUse the counts to position each element where it belongs. *
* *

‘k*****************‘k********‘k**************‘k********‘k**********************/
for (j = size - 1; j >= 0; j--) {
index = (int) (datal[j] / pval)

$ k
temp [counts[index] - 1] = dataljl]
counts[index] = counts[index] - 1

7

Description of Binary Search 333

Example 12-7. Implementation of Radix Sort (continued)

/**

* *
* Prepare to pass back the data as sorted thus far. *
* *

**/

memcpy (data, temp, size * sizeof (int));

}

/***
* *
* Free the storage allocated for sorting. *
* *

***/

free(counts) ;
free (temp) ;

return 0;

}

Description of Binary Search

Binary search is a technique for searching that works similarly to how we might
systematically guess numbers in a guessing game. For example, suppose someone
tells us to guess a number between 0 and 99. The consistently best approach is to
begin with 49, the number in the middle of 0 and 99. If 49 is too high, we try 24,
the number in the middle of the lower half of 0 to 99 (0 to 48). Otherwise, if 49 is
too low, we try 74, the number in the middle of the upper half of 0 to 99 (50 to
99). We repeat this process for each narrowed range until we guess right.

Binary search begins with a set of data that is sorted. To start the search, we
inspect the middle element of the sorted set. If the element is greater than the one
we are looking for, we let the lower half of the set be the new set to search. Oth-
erwise, if the element is less, we let the upper half be the new set. We repeat this
process on each smaller set until we either locate the element we are looking for
or cannot divide the set any further.

Binary search works with any type of data provided we can establish an ordering
among the elements. It is a simple algorithm, but as you might suspect, its reli-
ance on sorted data makes it inefficient for sets in which there are frequent inser-
tions and deletions. This is because for each insertion or deletion, we must ensure
that the set stays sorted for the search to work properly. Keeping a set sorted is
expensive relative to searching it. Also, elements must be in contiguous storage.
Thus, binary search is best utilized when the set to be searched is relatively static.

334 Chapter 12: Sorting and Searching

Interface for Binary Search

bisearch

int bisearch(void *sorted, void *target, int size, int esize,
int (*compare) (const void *keyl, const void *key2);

Return Value Index of the target if found, or —1 otherwise.

Description Uses binary search to locate target in sorted, a sorted array of
elements. The number of elements in sorted is specified by size. The size of
each element is specified by esize. The function pointer compare specifies a
user-defined function to compare elements. This function should return 1 if keyl
> key2, 0 if keyl = key2, and -1 if keyl < key2.

Complexity O(g n), where 7 is the number of elements to be searched.

Implementation and Analysis
of Binary Search

Binary search works fundamentally by dividing a sorted set of data repeatedly and
inspecting the element in the middle of each division. In the implementation pre-
sented here, the sorted set of data resides in sorted, a single block of contiguous
storage. The argument target is the data we are searching for.

This implementation revolves around a single loop controlled by the variables
left and right, which define the boundaries of the current set in which we are
focusing our search (see Example 12-8). Initially, we set left and right to 0 and
size — 1, respectively. During each iteration of the loop, we set middle to the
middle element of the set defined by left and right. If the element at middle is
less than the target, we move the left index to one element after middle. Thus,
the next set searched is the upper half of the current set. If the element at middle
is greater than the target, we move the right index to one element before middle.
Thus, the next set searched is the lower half of the current set. As the search con-
tinues, left moves from left to right, and right moves from right to left. The
search terminates once we encounter the target at middle, or when left and
right cross, if the target is not found. Figure 12-8 illustrates this process.

The runtime complexity of binary search depends on the maximum number of divi-
sions possible during the searching process. For a set of 7 elements, we can per-
form up to lg n divisions. For binary search, this represents the number of inspec-
tions that we could end up performing in the worst case: when the target is not
found, for example. Therefore, the runtime complexity of binary search is O(lg).

Implementation and Analysis of Binary Search

335

o *Iefh 0 yighl: 9

sorted [10 | 14 | 21| 38| 45|47 (53| 81| 8799
\]

search set

left=0 middle = 4 right =9
2] v v
sored | 10 | 14| 21| 38| 45| 47| 53| 81| 87|99

left=5 right =9
(3 Y Y

sorted (10 [14 | 21| 38| 45(47 |53 |81 87|99
L search set ———

left=5 iddle=7 | right=9
o *e *ml e *ng

sorfed [10 | 14 | 21 (38| 45| 47 (53| 81| 8799

left=5 right = 6
(5] vy

sorfed [10 | 14 | 21| 38| 45|47 (53| 81| 8799

o left = middle = * Vighi =6

sorfed [10 | 14 | 21| 38| 45| 47 (53| 81| 8799

Figure 12-8. Searching for 47 using binary search

Example 12-8. Implementation of Binary Search

/***

* *
Bttt bisearch.c —-----=-—-—————mmm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "search.h"

/**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**************************

* *
e ittt bisearch ---------——-———— *
* *

***/

336 Chapter 12: Sorting and Searching

Example 12-8. Implementation of Binary Search (continued)

int bisearch(void *sorted, const void *target, int size, int esize, int
(*compare) (const void *keyl, const void *key2)) {

int left,
middle,
right;

/***

* *
* Continue searching until the left and right indices cross. *
* *

***/

left = 0;
right = size - 1;

while (left <= right) {
middle = (left + right) / 2;
switch (compare(((char *)sorted + (esize * middle)), target)) {

case -1:

/***

* *
* Prepare to search to the right of the middle index. *
* *

‘k**/

left = middle + 1;
break;

case 1:

/***

* *
* Prepare to search to the left of the middle index. *
* *

***/

right = middle - 1;
break;

case 0:

/***

* *
* Return the exact index where the data has been found. *
* *

***/

return middle;

Binary Search Example: Spell Checking 337

Example 12-8. Implementation of Binary Search (continued)

}
}
/***
* *
* Return that the data was not found. *
* *

***/

return -1;

Binary Search Example: Spell Checking

Using spell checkers has become an expected part of preparing all types of docu-
ments. From a computing standpoint, a basic spell checker works simply by
checking words in a string of text against a dictionary. The dictionary contains the
set of acceptable words.

The example presented here consists of a function, spell (see Examples 12-9 and
12-10), that checks the spelling of words from a string of text one word at a time.
The function accepts three arguments: dictionary is a sorted array of acceptable
strings, size is the number of strings in the dictionary, and word is the word to
check. The function calls bisearch to look up word in dictionary:. If it finds the
word, it is spelled correctly.

The runtime complexity of spell is O(lg n), the same time as bisearch, where 7 is
the number of words in dictionary. The runtime complexity of checking an
entire document is O(m 1g 1), where m is the number of words in the text to vali-
date and 7 is the number of words in the dictionary.

Example 12-9. Header for Spell Checking

/**‘k**

* *
K e spell.h ———-—------ *
* *

***/

#ifndef SPELL_H
#define SPELL_H

/**‘k**

* *
* Define the maximum size for words in the dictionary. *
* *

***/

338 Chapter 12: Sorting and Searching

Example 12-9. Header for Spell Checking (continued)

#define SPELL_SIZE 31

/***

* *
I ittt Ll b Public Interface ------—-———————————mmo—— *
* *

***/
int spell (char (*dictionary) [SPELL_SIZE], int size, const char *word) ;
#endif

Example 12-10. Implementation of a Function for Spell Checking

/***

* *
et spell.c ———————————————— *
* *

***/

#include <string.h>

#include "search.h"
#include "spell.h"

/***

* *
B ettt compare_sty -—-----—--------—m——m e *
* *

***/

static int compare_str (const void *strl, const void *str2) {
int retval;

if ((retval = strcmp((const char *)strl, (const char *)str2)) > 0)
return 1;

else if (retval < 0)
return -1;

else

return 0;
/***
* *
K e spell ————————————— *
* *

***/

int spell(char (*dictionary) [SPELL_SIZE], int size, const char *word) ({

Questions and Answers 339

Example 12-10. Implementation of a Function for Spell Checking (continued)

/***

*

*

*

*

Look up the word. *

*

***/

if (bisearch(dictionary, word, size, SPELL_SIZE, compare_str) >= 0)

return 1;

else

return 0;

Questions and Answers

0.

Suppose we need to sort all of the customer records for a worldwide investment
firm by name. The data is so large it cannot be fit into memory all at once.
Which sorting algorithm should we use?

Merge sort. Aside from running efficiently in O(n lIg n) time, the predictable
way that merge sort divides and merges the data lets us easily manage the
data ourselves to efficiently bring it in and out of secondary storage.

Suppose we are maintaining a list of sorted elements in a user interface. The list
is relatively small and the elements are being entered by a user one at a time.
Which sorting algorithm should we use?

Insertion sort. The runtime complexity of insertion sort when inserting a sin-
gle element into a list that is already sorted is O(n).

Suppose we need to sort 10 million 8O-character strings representing DNA infor-
mation from a biological study. Which sorting algorithm should we use?

Radix sort. However, precisely how radix sort performs in relation to other
sorting algorithms depends on the radix value we choose and our space con-
straints. An important consideration in selecting radix sort is that the elements
in the data are a fixed size and can be broken into integer pieces.

Suppose we need to sort 10,000 C structures containing information about the
Slight schedule for an airline. Which sorting algorithm should we use?

Quicksort. Tt is the best general-case sorting algorithm and is excellent for
medium to large sets of data.

Recall that the interfaces to gksort and mgsort require that i and k be passed
by the caller. Why is this, and how could we avoid it in practice?

The arguments i and k are necessary to define smaller and smaller subsets of
the data while recursing. An alternative to the caller providing these is to place

340 Chapter 12: Sorting and Searching

each function in a wrapper. Wrappers generally provide cleaner public inter-
faces to functions that are otherwise cumbersome to call directly. Wrapping
gksort, for example, gives us the opportunity to alleviate making the caller
pass i and k, since we know that initially these always should be set to 0 and
size — 1. Wrapping gksort also gives us the opportunity to encapsulate a call
to srand, which seeds the random number generator and prevents certain
inputs from consistently eliciting bad behavior. This is something like what the
standard library function gsort actually does. A wrapper might be imple-
mented for gksort in Unix as shown below:

#include <unistd.h>
#include <stdlib.h>

#include "sort.h"

int gsrt(void *data, int size, int esize, int (*compare) (const void *keyl,
const void *key2)) {

srand (getpid()) ;
return gksort (data, size, esize, 0, size - 1, compare);

}

Q: Inrxsort, recall that counting sort is implemented explicitly rather than by call-
ing ctsort. Why might this bave been done?

A: Because radix sort works by considering only a single digit of the elements at
a time, our counting sort implementation would have had to accept additional
parameters to tell it which digit to consider as well as how to obtain each digit
value. Recall that modular arithmetic was used in the implementation pre-
sented in this chapter, but other techniques might be more appropriate for
some data. For example, for long strings we might choose to offset two bytes
at a time into the string to form digits. Accounting for these application-spe-
cific considerations in counting sort would have complicated it substantially.
Therefore, a slightly modified form of counting sort was included in the radix
sort implementation.

Q: Suppose we have 220 128-bit elements that we would like to sort. What would be
the efficiency of sorting these using quicksort? What would be the efficiency of
sorting these as radix-210 numbers using radix sort? Which approach would be
better? Suppose we have 210 128-bit elements rather than 220 elements. How do
quicksort and radix sort compare in this case?

A: Sorting with quicksort requires O(n Ig n) = (220)(20) = (2.10)(107) times some
constant amount of time. Considering the elements as radix-216 numbers, the
number of digit positions, p, is 8, and the number of possible digit values, &, is

Related Topics 341

216, Therefore, sorting with radix sort requires O(pn + pk) = (8)(220) + (8)(216)
= (8.91)(106) times some constant amount of time. If the space requirements
of radix sort are acceptable, radix sort is more than twice as efficient as quick-
sort. In the second case, sorting with quicksort requires O(n lg n) = (210)(10)
= 10,240 times some constant amount of time. Radix sort requires O(pn + pk)
= (8)(210) + (8)(216) = 532480 times some constant amount of time, or 50
times as much time as quicksort! Here is an example of why k& is typically cho-
sen to be close to and no more than #n. Had we used a radix of 28, radix sort
would have required O(pn + pk) = (16)(28) + (16)(28) = 8160 times some con-
stant amount of time, and would have been slightly better than quicksort.
However, it is worth noting that the space requirement of radix sort may
negate small benefits in time in many cases.

Q: In a sorted set, the successor of some node x is the next largest node after x. For
example, in a sorted set containing the keys 24, 39, 41, 55, 87, 92, the succes-
sor of 41 is 55. How do we find the successor of an element x using binary
search? What is the runtime complexity of this operation?

A: In a sorted set, to determine the successor of some element x using binary
search, first we locate x. Next, we simply move one element to the right. The
runtime complexity of locating either x or its successor is O(lg »).

Related Topics

Bubble sort
An inefficient O(#2) sorting algorithm that works by exchanging neighboring
elements to propagate one element at a time to its correct position in the
sorted set.

Tournament sort
An O(n lg n) algorithm that requires three times the space of the data. It
works by pairing up elements to promote a “winner” as the next element to
be placed in the sorted set.

Heapsort
An efficient sorting algorithm that uses a heap (see Chapter 10, Heaps and
Priority Queues) to build a sorted set. Heapsort runs in O(n lg n) and sorts in
place. However, a good implementation of quicksort generally beats it by a
small constant factor.

Introsort
A sorting algorithm that behaves like quicksort, but detects when it would be

better to switch to heapsort. By doing this, in some cases it gains a slight per-
formance advantage over quicksort.

342 Chapter 12: Sorting and Searching

Bucket sort
A linear-time sorting algorithm on average for data that is uniformly randomly
distributed. It works by distributing the data into several buckets and sorting
the buckets to produce a sorted set.

15

Numerical Methods

Numerical methods are algorithms in numerical analysis. Numerical analysis is the
study of problems in which numbers and approximation play an especially signifi-
cant role. Computers are particularly well-suited to problems in numerical analysis
because many such problems, while essentially involving common mathematical
operations, require a lot of them. In the early days of computing, scientists monop-
olized computers with problems like this, which were far too intensive to be car-
ried out by hand. Even today, problems in numerical analysis still occupy a good
part of the cycles of some of the largest computers in the world. Hence, numerical
analysis is a vast subject, and many numerical methods are as complicated and spe-
cific as the mathematical problems they solve. This chapter presents three numeri-
cal methods that are relatively simple but applicable to a wide variety of problems.
This chapter covers:

Polynomial interpolation
A method of approximating values of a function for which values are known
at only a few points. Fundamental to this method is the construction of an
interpolating polynomial p,(2) of degree < n, where n + 1 is the number of
points for which values are known.

Least-squares estimation
A method of determining estimators b; and b, for a function y(x) = bjx + by so
that y(x) is a best-fit line through a set of n points (xg, 3p), - - ., (X, _ 1, Yy 1)
A best-fit line using least-squares estimation minimizes the sum of squared ver-
tical distances between each point (x;, yp, i=0, ..., n—1, and a correspond-
ing point (x;, y(x;)) along y(x).

Solution of equations
The process of finding roots of equations having the form f(x) = 0. Whereas
for some equations it is possible to determine exact roots, a great deal of the
time a method of approximation must be used.

343

344 Chapter 13: Numerical Methods

Some applications of numerical methods are:

Linear regression models
Statistical models in which there is a linear-form relationship between an inde-
pendent variable x and a variable y that depends on it. Least-squares
estimators help to predict values of y for values of x we have not observed
experimentally.

Curve fitting
The process of fitting a curve to a number of points. If the points for which
we have values are located at meaningful places on the curve we are trying to
fit, and we know values at enough points, interpolation helps us draw a
smooth curve.

Scatter plots
Statistical tools that help ascertain the relationship between an independent
variable x and a variable y that depends on it. Using least-squares estimators
to draw a best-fit line through a linear-form scatter plot helps with this.

Approximating functions
The process of determining the value of a function at points for which exact
values are not known. This can be done by constructing an interpolating poly-
nomial of the appropriate degree.

Function tables
Tables containing values of computationally expensive functions or models of
complicated physical phenomena. Often it is too costly to compute and store
values of a function with the granularity required at some later time. Thus, we
store a limited number of points and interpolate between them.

Scientific computing
An area in which solving equations is one of the most fundamental problems
routinely performed.

Description of Polynomial Interpolation

There are many problems that can be described in terms of a function. However,
often this function is not known, and we must infer what we can about it from
only a small number of points. To do this, we interpolate between the points. For
example, in Figure 13-1, the known points along f(x) are x, . . ., xg, shown by cir-
cular black dots. Interpolation helps us get a good idea of the value of the
function at points z,, 21, and 2, shown by white squares. This section presents
polynomial interpolation.

Fundamental to polynomial interpolation is the construction of a special polyno-
mial called an interpolating polynomial. To appreciate the significance of this

Description of Polynomial Interpolation 345

Xj=e f(X,‘) =0 f(Z,')

i
0| 40| -30 | -30(-259
1 [=35 15[-20] 2.042
5 4 2 =25 25| -1.0(0.9952
3 15 15
X 4 00 [05
5 151 15
6 25| 25
7 351 15
8 40 | 3.0

5

Figure 13-1. Interpolation with nine points to find the value of a function at other points

polynomial, let’s look at some principles of polynomials in general. First, a polyno-
mial is a function of the form:

p(x) = a0+a1x+a2x2+ ... ta x

where ay, . . ., a, are coefficients. Polynomials of this form are said to have degree
n, provided a,, is nonzero. This is the power form of a polynomial, which is espe-
cially common in mathematical discussions. However, other forms of polynomials
are more convenient in certain contexts. For example, a form particularly relevant
to polynomial interpolation is the Newton form:

p(x) = agta(x—c)ta(x—c)(x—c)+ ... ta,(x—c)(x—c)...(x—c,)
where ay, . . ., a, are coefficients and ¢q, . . ., ¢, are centers. Notice how when
e, . . ., ¢, are all 0, the Newton form of a polynomial reduces to the power form
above.

Constructing an Interpolating Polynomial

Now that we understand a bit about polynomials, let’s look at how to construct
the polynomial that interpolates a function f(x). To interpolate f(x), a polynomial
D,(2) of degree < n is constructed using n + 1 points, X, . . ., X, known along
f(x). The points x, . . ., x,, are called interpolation points. Using p,(2), we approx-
imate the value of f(x) at x=z. Interpolation requires that point z be on the inter-
val [x, x,,). p,(2) is constructed using the formula:

Pu(2) = flxgl+ flxg x1(z =) + flxg, %, %,1(2 = x0) (2 —)
oo flxg s x l(z=xp) (=) L (X,)

where x;, . . ., x,, are the points along f(x) for which values are known, and fIx;],
e o fIxg, - .., x,,) are divided differences, which are derived from x, . . ., x,, and

346 Chapter 13: Numerical Methods

the values of f(x) at these points. This is called the Newton formula for interpolat-
ing polynomials. Notice its similarities with the Newton form of polynomials in
general. Divided differences are computed using the formula:

f(x;) ifi=j
f[-x,'; ,.X‘j] = f[xl'-q.]a '--a-xj]_f[xi, .‘.,.X']»_l]

x].—xi

if i<y

Notice that this formula shows that for divided differences when i < j we must
have computed other divided differences beforehand. For example, to compute
SIxg, x1, X, x3], values are required for flxy, x,, x3] and f1x, %1, ;] in the numer-
ator. Fortunately, we can use a divided-difference table to help compute divided
differences in a systematic manner (see Figure 13-2).

A divided-difference table consists of several rows. The top row stores xp, . . ., X,
The second row stores values for flxpl, . . ., flx,]. To compute each divided
difference in the remainder of the table, we draw a diagonal from each divided dif-
ference back to flx] and flx] (shown as dotted lines for flx;, x,, x3] in
Figure 13-2). To get x; and x; in the denominator, we then proceed straight up from
Slx] and flx]. The two divided differences in the numerator are those immedi-
ately above the one being computed. When the table is complete, the coefficients
for the interpolating polynomial are the divided differences at the far left of each
row, beginning with the second row (shown in light gray in Figure 13-2).

Evaluating an Interpolating Polynomial

Once we have determined the coefficients of the interpolating polynomial p,(2),
we evaluate the polynomial once for each point at which we would like to know
the value of f For example, say we know the values of fat four points: x, = =3.0,
J(xp) = -5.0; xy = =2.0, flxp = -1.1; x, = 2.0, f(xy) = 1.9; and x3 = 3.0, flx3) = 4.8;
and we would like to know the value of fat z, = -2.5, z; = 0.0, z, = 1.0, and z3 =
2.5. Since we know four points along f; the interpolating polynomial will have a
degree of 3. Figure 13-3 is the divided-difference table for determining the coeffi-
cients of p3(2).

Once we have obtained the coefficients from the divided-difference table, we con-
struct p3(z) using the Newton formula for interpolating polynomials presented ear-
lier. Using the coefficients from Figure 13-3, the interpolating polynomial is:

P3(2) = =5.0+3.9(z+3.0) +(=0.63)(2 +3.0)(z + 2.0) + 0.1767(2 + 3.0)(2 + 2.0)(z — 2.0)

Next, we evaluate this polynomial once at each point z. For example, at z, = -2.5
we perform the following calculation:

DP3(=2.5) = =5.0+3.9(0.5) + (=0.63)(0.5)(=0.5) + 0.1767(0.5)(=0.5)(=4.5) = —2.694

Description of Polynomial Interpolation

347

%] X .
Flx] fix]]]
f(X[)) f(X]) f(Xz) f(Xg)

flxgx] f [x].,xz] . f [X;,X3] .
flx]-flxg] flxgl—-flx] fixs]= flxgl

X=Xy X9—X] . X3—Xg

f[XOIx]lXZ] f[X],XQ,Xg]
final = flox] | | Flgxl—ifDoxl
X)—Xo X3 X
Flxo 1, %.%3]
FLxy, x5 = fLxg x1,%9]
X3~ X 3 coefficents of ps(2)

Figure 13-2. A divided-difference table for determining the coefficients of an interpolating

polynomial of degree 3
Gon
flxpl fixi flxgl flx3]
flxg) =-5.0 flx)=-1.1 flx)=19 flxs)=4.8
flxgx] flx, %] fLxg,x3]
“11--50 _49 19--11 _475 48-19 _99
-20--30 20--20 30-20
f[Xo,X],Xz] f[X]:Xerfi]
075-39 _ 043 29-075 _ 43
20--30 3.0--20
f[X01X11X21X3]
0.43--0.63 _ 1747
30--30 1 coefficents of ps(2)

Figure 13-3. A divided-difference table producing the coefficients—5.0, 3.9, —0.63, and 0.1767

348 Chapter 13: Numerical Methods

The value of fat z, 2, and z3 is determined in a similar manner. The results are
tabulated and plotted in Figure 13-4.

y | +5
i | x=e| fix) | z=00| flz)
0 =30 | =50 -2.51-2.694
1 =20 | -1.1 0.0 | 0.8000
2 2.0 1.9 251 3.044
E + 3| 30| 43
X
-5

Figure 13-4. Interpolating a function f(x) using the polynomial p3(z) presented in the text

Now that we have an understanding of how to interpolate a function, it is impor-
tant to briefly mention the subject of error. As with any approximation method, it
is important to understand that an interpolating polynomial usually has some
amount of error associated with it. To minimize this error, qualitatively speaking,
we must construct an interpolating polynomial using enough points along f(x),
and ones properly spaced, so that the resulting polynomial gives an accurate
impression of the function’s character. Naturally, quantitative methods do exist for
bounding the error associated with interpolation, but this book will not address
them (see the related topics at the end of the chapter).

Interface for Polynomial Interpolation

interpol

int interpol (const double *x, const double *fx, int n, double *z, double *pz,
int m);

Return Value 0 if interpolating is successful, or —1 otherwise.

Description Determines the value of a function at specified points using poly-
nomial interpolation. Points at which values are known are specified by the caller
in x. The known values of the function at each point in x are specified in fx
Points at which values are to be determined are specified in z The values calcu-
lated for the points passed in z are returned in pz. The number of values in x and
fx is specified as n. The number of points in z (and thus returned in pz) is speci-
fied as m. It is the responsibility of the caller to manage the storage associated with
X, fx, z, and pz.

Implementation and Analysis of Polynomial Interpolation 349

Complexity O(mn?), where m is the number of values to determine and # is
the number of points at which values are known.

Implementation and Analysis
of Polynomial Interpolation

Polynomial interpolation works fundamentally by determining the value of an
interpolating polynomial at a number of desired points. To obtain this polyno-
mial, first we must determine its coefficients by computing divided differences.

The interpol operation begins by allocating space for the divided differences as
well as for the coefficients to be determined (see Example 13-1). Note that since
the entries in each row in a divided-difference table depend only on the entries
computed in the row before it (see Figures 13-2 and 13-3), we do not have to
keep all of the table around at once. Thus, we allocate space only for the largest
row, which has n entries. Next, we initialize the first row in the table with the val-
ues in fx. This is so that we are ready to compute what equates to the third row
of the divided-difference table. (Nothing needs to be done for the first two rows
because these entries are already stored in x and £x.) The final initialization step is
to store the value of £x[0] in coeff[0] since this is the first coefficient of the
interpolating polynomial.

The process of computing divided differences revolves around a single nested
loop, which uses the formula for divided differences discussed earlier in the chap-
ter. In terms of Figures 13-2 and 13-3, the outer loop, k, counts the number of
rows for which entries must be computed (excluding the rows for x and fx). The
inner loop, i, controls which entry is being computed in the current row. As we
complete the entries in each row, the value in table[0] becomes the next coeffi-
cient for the interpolating polynomial. Thus, we store this value in coeff[k].
Once we have determined all coefficients for the interpolating polynomial, we
evaluate the polynomial at each point in z. The results are stored in pz.

The runtime complexity of interpol is O(mn?2), where m is the number of values in
z (and values returned in pz), and 7 is the number of values in x (and fx). The
factor 72 comes from the following. For each iteration of the loop controlled by 7,
we multiply one factor more than the previous term into the current term. Thus,
when j is 1, term requires one multiplication; when 7 is 2, term requires two
multiplications, and so forth until when j is n— 1, term requires 7 — 1 multiplica-
tions. Effectively, this becomes a summation from 1 to n — 1, which results in a
running time of 7(») = (n (n + 1)/2) — n, times some constant amount of time.
(This is from the well-known formula for summing an arithmetic series from 1 to
n.) In O-notation, this simplifies to O(72). The factor m in O(mn2) comes from
evaluating the interpolating polynomial once for each point in z. The first nested

350 Chapter 13: Numerical Methods

loop, in which divided differences are computed, is O(72). Thus, this term is not
significant relative to mn2, which has the additional factor m.

Example 13-1. Implementation of Polynomial Interpolation

/***

* *
K interpol.c ————=—————m—mm *
* *

***/

#include <stdlib.h>
#include <string.h>

#include "nummeths.h"

/***

* *
Bt interpol --------—-————————-—————— - *
* *

***/

int interpol (const double *x, const double *fx, int n, double *z, double
*pz, int m) {

double term,
*table,
*coeff;

int i,
3,
k;

/***

* *
* Allocate storage for the divided-difference table and coefficients. *
* *

***/

if ((table = (double *)malloc(sizeof (double) * n)) == NULL)
return -1;

if ((coeff = (double *)malloc(sizeof (double) * n)) == NULL) {

free(table);
return -1;

/***
* *
* TInitialize the coefficients. *
* *

***/

Implementation and Analysis of Polynomial Interpolation 351

Example 13-1. Implementation of Polynomial Interpolation (continued)

memcpy (table, fx, sizeof (double) * n);

/***

* *
* Determine the coefficients of the interpolating polynomial. *
* *

***/
coeff[0] = table[0];
for (k = 1; k < n; k++) {

for (1 = 0; i <n - k; i++) {

j =1+ k;
table[i] = (table[i + 1] - tablel[i]) / (x[3j] - x[i]);

coeff[k] = table[0];

free(table) ;

/***

* *
* Evaluate the interpolating polynomial at the specified points. *
* *

***/

for (k = 0; k < m; k++) {

pz[k] = coeff[0];

for (j = 1; j <n; j++) {

term = coeff[jl;

for (1 = 0; i < j; i++)
term = term * (z[k] - x[i]);

pzl[k] = pz[k] + term;

free(coeff) ;

return 0;

352 Chapter 13: Numerical Methods

Description of Least-Squares Estimation

Least-squares estimation determines estimators b; and b, for a function p(x) = byx +
by so that y(x) is a best-fit line through a set of n points (xy, 1), - . -, (X, _ 1, Yy -
A best-fit line using least-squares estimation minimizes the sum of squared vertical
distances between each point (x; yp), i=0, ..., n— 1 and a corresponding point
(x;, y(xp) along y(x). This is one way of defining a line so that each point (x; ¥,
is as close as possible to it.

Perhaps the most important application of least-squares estimation is to make
inferences about a linear-form relationship between two variables. Given an inde-
pendent variable x and a variable y that depends on it, estimators b; and b, allow
us to calculate the expected value of y at values of x for which we have not actu-
ally observed y. This is particularly meaningful when x and y are related by a sta-
tistical relationship, which is an inexact relationship. For example, imagine how
the number of new employees hired each month at a consulting firm is related to
the number of hours the firm bills. Generally, as the firm hires more employees, it
will bill more hours. However, there is not an exact number of hours it bills for a
given number of employees. Contrast this with a functional relationship, which is
exact. For example, a functional relationship might be one between the amount of
money the firm charges for a project and the time the project requires. This rela-
tionship is exact if we assume that given a project of a certain length, there is an
exact amount of money the firm will charge.

To understand how least-squares estimation works, recall that the distance r
between two points (xq, yp) and (x,, »,) is defined as:

r= Jlg=x)?+ (=92

Since the points (x;) and (x; p(xp) have the same x-coordinate, the line
between them is vertical. Consequently, this formula tells us that the distance
between these points is simply the difference in j-coordinates, or | Vi — y(xp) |. This
difference is called the deviation of y; at x;.

Consider for a moment why the squared deviations are used to compute b; and
by, and not simply the deviations themselves. The reason is primarily anachronis-
tic. When we minimize the sum of the errors, we end up with simultaneous equa-
tions that are linear. Before computers, these were the easiest to solve. Another
justification can be made on the basis of probability theory. Simply stated, the
probability that b, and &, are optimal for the observed values of (x;, y,) is propor-
tional to a negative exponential containing the sum of all (y; — y(x;))2. Thus, when
we minimize the summation of squared deviations, we maximize the probability
that b, and &, are good estimators as well. Yet another justification is that by
squaring the deviations, more emphasis is given to larger deviations. Since in a

Interface for Least-Squares Estimation 353

normal distribution there are fewer instances of large deviations, this gives more
weight to the deviations that occur less frequently.

To compute b; and &y, we use the following formulas, where x and y are the
coordinates of n points. These are derived from the simultaneous equations we
mentioned above but did not show. The X (sigma) symbol in the formulas is used
as a concise way of saying “sum all.”

BOYAIRD V) RIPRD MTRC Vol
ny = (X’ !
Figure 13-5 illustrates computing b and b, for a set of n = 9 points (%,)p), - - -

(xg, 13). The results of the calculations that need to be performed appear in the
table. Using the values from the table, b; and b, are calculated using:

b, = QBT =(0)03) _ 551, = (C03)=05519C05) _ 10
(9)(64.75) = (=0.5)" 9

y+5 i X; Yi X2 | xy;

0| =0 =30 160] 120

1| 30| 0] 90| 30

9| 20| 20| 40| 40

3| 215 05 | 225] 075

4] 05| 10| 05| -05

50 10 oo 10| 00

6| 20| 15| 40| 30

71 35| 10| 1225] 35

8| 40| 25| 160] 100

-5 sum| 05 | 0.5 | 6475 3575

Figure 13-5. Least-squares estimation and the best-fit line that results

Substituting these values into y(x) = b;x + b yields y(x) = 0.5519x — 0.0249. Fig-
ure 13-5 plots this line with the points used to determine it. From the standpoint of
least-squares estimation, no other line is a better fit for the data than this one.

Interface for Least-Squares Estimation

Isqe

void lsge(const double *x, const double *y, int n, double *bl, double *b0);

Return Value None.

354 Chapter 13: Numerical Methods

Description Uses least-squares estimation to obtain by and &, in py(x) = byx +
by so that y(x) is a best-fit line through a set of points. The x-coordinates of the
points are specified in x The j-coordinates are specified in y. The number of
points is specified in n. The operation returns the appropriate values in b1 and b0.

Complexity O(n), where n is the number of points used in determining b
and by

Implementation and Analysis
of Least-Squares Estimation

The implementation of least-squares estimation presented here requires us to do
little more than compute a few summations and apply the results to the formulas
presented earlier. The operation begins by summing all values for x; in sumx, all
values for y; in sumy; all values of x;2 in sumx2, and all values of x;y; in sumxy
(see Example 13-2). Once we have completed this, we compute b; and b, using
the formulas presented earlier.

The runtime complexity of Isge is O(n), where n is the number of points used to
determine b; and b,. This is because a single loop that iterates # times is used to
compute the summations.

Example 13-2. Implementation of Least-Squares Estimation

/***

* *
e lsge.c === *
* *

‘k**‘k*/

#include <math.h>

#include "nummeths.h"

/**‘k**

* *
F e lsge ——————————————————— *
* *

***/

void lsge(const double *x, const double *y, int n, double *bl, double *b0) {

double sumx,

sumy’,
sumx2,

Sumxy';

int i;

Description of the Solution of Equations 355

Example 13-2. Implementation of Least-Squares Estimation (continued)

/***

* *
* Compute the required summations. *
* *

‘k**‘k*/

sumx = 0.0;
sumy = 0.0;
sumx2 = 0.0;
sumxy = 0.0;

for (1 = 0; i < n; i++) {

sumx = sumx + x[i];

sumy = sumy + y[il;

sumx2 = sumx2 + pow(x[i], 2.0);

sumxy = sumxy + (x[i] * y[i]l);
}
/***
* *
* Compute the least-squares estimators. *
* *

***/

*bl = (sumxy - ((sumx * sumy)/ (double)n)) / (sumx2-(pow(sumx,2.0)/(double)n));
*b0 = (sumy - ((*bl) * sumx)) / (double)n;

return;

}

Description of the Solution of Equations

One of the most fundamental problems in scientific computing is solving equa-
tions of the form f(x) = 0. This is often referred to as finding the roots, or zeros, of
Sf(x). Here, we are interested in the real roots of f(x), as opposed to any complex
roots it might have. Specifically, we will focus on finding real roots when f(x) is a
polynomial.

Finding Roots with Newton’s Method

Although factoring and applying formulas are simple ways to determine the roots
of polynomial equations, a great majority of the time polynomials are of a large
enough degree and sufficiently complicated that we must turn to some method of
approximation. One of the best approaches is Newton’s method. Fundamentally,
Newton’s method looks for a root of f(x) by moving closer and closer to it

356 Chapter 13: Numerical Methods

through a series of iterations. We begin by choosing an initial value x = x; that we
think is near the root we are interested in. Then, we iterate using the formula:

S(xy)

i+1 = xi_m

R

until x; , ¢ is a satisfactory approximation. In this formula, f(x) is the polynomial
for which we are trying to find a root, and f(x) is the derivative of f(x).

Computing the Derivative of a Polynomial

The derivative of a function is fundamental to calculus and can be described in
many ways. For now, let’s simply look at a formulaic description, specifically for
polynomials. To compute the derivative of a polynomial, we apply to each of its
terms one of two formulas:

d d r r—1

—k=0,—kx = krx

dx dx
where kis a constant, 7 is a rational number, and x is an unknown. The symbol
d/dx means “derivative of,” where x is the variable in the polynomial. For each
term that is a constant, we apply the first formula; otherwise, we apply the sec-
ond. For example, suppose we have the function:

f(x) = X +5x7+3x+4

In order to compute f(x), the derivative of f(x), we apply the second formula to the
first three terms of the polynomial, and the first formula to the last term, as follows:

-1 (2-1) -

£ = M3 +5)2)a% T+ 3)1)A" T 0 = 327+ 1000+ 3

Sometimes it is necessary to compute higher-order derivatives as well, which are
derivatives of derivatives. For example, the second derivative of f(x), written f"(x),
is the derivative of f/(x). Similarly, the third derivative of f(x), written f"(x), is the
derivative of f"(x), and so forth. Thus, to compute the second derivative of f(x) in
the previous equation, we compute the derivative of f(x), as follows:

(2-1) 1-1

J7(x) = (3)(2)x +(10)(1)x +0 = 6x+10

Understanding the First and Second Derivative

Now let’s look at what derivatives really mean. To use Newton’s method properly,
it is important to understand the meaning of the first and second derivative in
particular.

The value of the first derivative of f(x) at some point x = x, indicates the slope of
S0 at point xp; that is, whether f(x) is increasing (sloping upward from left to

Description of the Solution of Equations 357

right) or decreasing (sloping downward). If the value of the derivative is positive,
f(x is increasing; if the value is negative, f(x) is decreasing; if the value is zero,
Sf(x) is neither increasing nor decreasing. The magnitude of the value indicates
how fast f(x) is increasing or decreasing. For example, Figure 13-6a depicts a
function whose value increases within the shaded regions; thus, these are the
regions where the first derivative is positive. The plot of the first derivative crosses
the x-axis at the points where the slope of f(x) changes sign.

The value of the second derivative of f(x) at some point x = x; indicates the con-
cavity of f(x) at point x, that is, whether the function is opening upward or
downward. The magnitude of the value indicates how extreme the concavity is. In
Figures 13-6a and 13-6¢, the dotted line indicates the point at which the concavity
of the function changes sign. This is the point at which the plot of the second
derivative crosses the x-axis.

Another way to think of the value of the derivative of f(x) at some point x = ¢ is
as the slope of the line tangent to f(x) at ¢, expressed in point-slope form. The
point-slope form of a line is:

y=Jlo) = f()(x=0)

Thus, if f(x) = x3 — x2 — 3x + 1.8 as shown in Figure 13-6a, the equation of the
line tangent to f(x) at ¢ = 1.5 as can be determined as follows. Figure 13-6d is a
plot of this line along with f(x).

P=((1.5)° =(1.5)=3(1.5) + 1.8) = (3(1.5)° =2(1.5) =3)(x—(1.5))
y+1.575 = 0.75(x—1.5)

Selecting an Initial Point for Newton’s Method

Now that we understand a little about derivatives, let’s return to Newton’s method.
Paramount to Newton’s method is the proper selection of an initial iteration point
Xy. In order for Newton’s method to converge to the root we are looking for, the
initial iteration point must be “near enough” and on the correct side of the root we
are seeking. There are two rules that must be followed to achieve this:

1. Determine an interval [a, b] for x, where one and only one root exists. To do
this, choose a and b so that the signs of f(a) and f(b) are not the same and
f'(x) does not change sign. If f(@) and f(b) have different signs, the interval
contains at least one root. If the sign of f'(x) does not change on [a, b], the
interval contains only one root because the function can only increase or
decrease on the interval.

2. Choose either x = a or x, = b so that f(x) has the same sign as f"(x) on the
interval [a, b]. This also implies that f(x) does not change sign on the inter-
val. Recall that the second derivative of f(x) is an indication of concavity. If

358 Chapter 13: Numerical Methods

O (x0=0-x-3x+18 O rx=3-2x-3
y 3 y 45
-5 o -5 L | G +5
7 W A X
s i
° f'(x) = 6x-2 0 The line tangent at point (1.5,f(1.5))
y, #3 y 45
-5 +5 -5 +5
X X
s =

Figure 13-6. The meaning of the first and second derivatives of f(x)

J""(x) does not change sign and x, is chosen so that f(x,) has the same sign as
[f"(x), each successive iteration of Newton’s method will converge closer to the
root on the interval [a, b] (see Figure 13-7).

In each of the four parts of Figure 13-7, f(x) is shown as a heavy line, and a and b
are shown as vertical dotted lines. If f(a) matches the criteria just given, iteration
begins at a and tangent lines slope from a toward the root to which we would like
to converge. If f(b) matches the criteria above, iteration begins at b and tangent
lines slope from b toward the root to which we would like to converge.

How Newton’s Method Works

As an example, suppose we would like to find the roots of f(x) = x3 — a2 — 3x + 1.8.
Figure 13-8 illustrates that this function appears to have three roots: one on the
interval [-2, —1], another on the interval [0, —1], and a third on the interval [2, 3].
Once we have an idea of the number and location of a function’s roots, we test
each interval against the rules for selecting an initial iteration point. To do this, we
need to know the following:

Description of the Solution of Equations 359

O+ 0+ Flb)+ O - "0+ fla) +

X

Figure 13-7. Convergence of Newton’s method

f(x) = xﬁ—x2—3x+ 1.8, f(x) = 3x2—2x—5, f7(x) = 6x=2

Using this information, we see that the interval [-2, —1] satisfies the first rule
because f(-2) = —4.2 and f(-1) = 2.8, and f(x) does not change sign on the inter-
val: it is always positive. Considering this, we know there is, in fact, one and only
one root on the interval [-2, —1]. To satisfy the second rule, we see that f"(x) does
not change sign on the interval: it is negative. We select x; = -2 as the initial itera-
tion point since f(-2) = —4.2 is also negative. Figure 13-8 illustrates calculating the
root on this interval to within 0.0001 of its actual value. We end up iterating five
times to obtain this approximation.

i [xi=2, 1] x105,11] x[2, 31
0 | —2.00000 | 0.500000 | 2.00000
1| -1.67692 | 0.553846 | 2.04000
2 | 159763 | 0554349 | 2.03850

-5 5 3 | 159287 | 0.554350 | 2.03850
4

-1.59285

Figure 13-8. Calculating the three real roots of f(x) = x3— x2— 3x + 1.8 = 0 to within 0.0001
of their actual values

Moving to the root on the interval [0, 1], we see that the first rule is satisfied just as
for the previous interval. However, the sign of f"(x) is not constant on this

360 Chapter 13: Numerical Methods

interval; therefore, the interval does not satisfy the second rule. Suspecting that the
root is closer to 1 than 0, we try the interval [0.5, 1] next, which corrects the prob-
lem. The first rule is satisfied because f(0.5) = 0.175 and f(1) = -1.2, and f(x)
does not change sign on the interval: it is negative. To complete the second rule,
we select x; = 0.5 since f(0.5) = 0.175 is positive and has the same sign as f"(x)
over the interval [0.5, 1]. Figure 13-8 illustrates calculating the root on this interval
to within 0.0001 of its actual value. We end up iterating four times to obtain this
approximation. Calculating the third root proceeds in a similar manner.

Interface for the Solution of Equations

root

int root (double (*f) (double x), double (*g) (double x), double *x, int *n,
double delta)

Return Value 0 if a root is found, —1 otherwise.

Description Computes the root of f to which Newton’s method converges
given an initial iteration point. This point is specified in x[0]. The derivative of £
is specified in g The argument n is the maximum number of iterations to per-
form. The argument delta is the difference between successive approximations at
which to stop iterating. Upon return, successive values of x calculated during the
iteration process are returned in the x array. Upon return, n contains the number
of values in array x It is the responsibility of the caller to manage the storage
associated with x.

Complexity O(n), where 7 is the maximum number of iterations the caller
wishes to perform.

Implementation and Analysis
of the Solution of Equations

Recall that solving an equation of the form f(x) = 0 means finding its roots. The
root operation locates the real root to which Newton’s method converges given an
initial iteration point.

The root operation revolves around a single loop (see Example 13-3), which calcu-
lates successive approximations using the Newton iteration formula. In the imple-
mentation presented here, £ is the function for which we are approximating the
root, and g is the derivative of f. After each iteration, we determine whether the
current approximation of the root is satisfactory. An approximation is deemed sat-
isfactory when the difference between it and that of the previous iteration is less

Implementation and Analysis of the Solution of Equations 361

than delta. If after n iterations a satisfactory root still has not been found, root
terminates.

The runtime complexity of root is O(n), where n is the maximum number of itera-
tions the caller wishes to perform. The worst case occurs when we do not find the
root we are looking for.

Example 13-3. Implementation for the Solution of Equations

/***

* *
* e root.c ——-----mmm e *
* *

***/

#include <math.h>

#include "nummeths.h"

/***

* *
K e root —————-—————m—m— *
* *

‘k**/

int root (double (*f) (double x), double (*g) (double x), double *x, int *n,
double delta) {

int satisfied,
i;

/***

* *
* Use Newton's method to find a root of f. *
* *

‘k**/

i=0;
satisfied = 0;

while (!satisfied && i + 1 < *n) {

/**

* *
* Determine the next iteration of x. *
* *

**/

x[i + 1] = x[i] - (£(x[i]) / g(x[i]));

/**

* *
* Determine whether the desired approximation has been obtained. *
* *

**/

362 Chapter 13: Numerical Methods

Example 13-3. Implementation for the Solution of Equations (continued)

if (fabs(x[i + 1] - x[i]) < delta)
satisfied = 1;

/**

* *
* Prepare for the next iteration. *
* *

**/

1++;
}
/***
* *
* Even without iterating, indicate that one value has been stored in x. *
* *

***/

if (1 == 0)
*n = 1;
else

*n=1+1;

/***

* *
* Return whether a root was found or the maximum iterations were reached. *
* *

***/

if (satisfied)
return 0;
else
return -1;

Questions and Answers

Q: In the discussion of polynomial interpolation, we stated that we need to choose
enough points to give an accurate impression of the function we are interpolat-
ing. What bappens if we do not use enough points?

A: Interpolating a function with not enough points, or poorly placed points, leads
to an interpolating polynomial that does not accurately reflect the function we
think we are interpolating. A simple example is interpolating a quadratic poly-
nomial (a parabola when plotted) with only two points. Interpolation with two
points results in a line, which is far from a parabola!

Q: Using the guidelines presented in this chapter, how many interpolation points
should we use to interpolate the function f(x) = x5 + 2.8x3 — 3.3x2 — x +4.17

Related Topics 363

A:

When interpolating a function that we know is a polynomial itself, we can get
a good impression of the function by using 7 + 1 well-placed points, where 7
is the degree of the polynomial. In this example, the polynomial has a degree
of 5, so we should use six well-placed interpolation points. This results in an
interpolating polynomial that has the same degree as f(x).

Recall that to approximate a root of an equation using Newton’s method, we
select an interval [a, b] on which the root exists and iterate closer and closer to
it. What if we choose this interval much larger than needed, but in such a way
that both rules mentioned in this chapter are still satisfied?

The discussion of Newton’s method mentioned two rules that must be satis-
fied in order to guarantee the algorithm’s success: we need to determine an
interval [a, b] where one and only one root exists; and we need to choose x,
the initial iteration point, so that f(x;) has the same sign as f"(x) over the
interval. Provided these rules are satisfied, the interval [a, b] can be as large as
we would like to make it. However, Newton’s method will require more itera-
tions to converge if we use an interval that is excessively large. Therefore, typ-
ically a relatively small interval convenient to the problem should be chosen.

In the implementation of root, what symptoms might we notice if we have vio-
lated one the rules of Newton’s method that guarantee convergence?

If we follow the rules presented in this chapter, Newton’s method guarantees
convergence to the root that exists on the interval [a, b] containing the initial
iteration point, x,. Various symptoms help to determine when we have vio-
lated these rules. For example, successive approximations that appear to be
diverging instead of converging indicate a problem. Another symptom is con-
vergence to a root other than the one we expect. For example, suppose we
think there is a root near —2 (perhaps by plotting the function), but we end up
finding a root near 9. In order to relay these symptoms back to the caller, root
returns both an array of the approximations obtained in successive iterations
of Newton’s method and an array of values for f(x) computed using the
approximations. Normally, successive values for f(x) should approach 0. The
parameter n of the root operation provides a way to keep a divergent series
from running too long.

Related Topics

Numerical Representation in Computers

The representation of numbers in computers is finite. Consequently, comput-
ers are limited in the way they can work with certain types of numbers, such
as those that are extremely small or large. An understanding of these limita-

3064 Chapter 13: Numerical Methods

tions is important before undertaking most serious work in numerical analy-
sis. This chapter assumes an understanding of these limitations.

Error approximation
An important part of more substantial work with numerical methods. Numeri-
cal analysis is replete with approximation methods, and inherent in any
approximation is some amount of error. Often it is important to quantify this.

Derivatives of functions
A fundamental part of calculus. The numerical methods presented in this
chapter required only a primitive understanding of derivatives. However, for
many numerical methods, a more complete understanding of derivatives and
calculus is essential.

Muller’s method
An algorithm for finding both the real and complex roots of equations. Com-
plex roots are complex numbers, which result from taking the square root of
negative numbers. This chapter focused on finding real roots.

Data Compression

Data compression is the process of reducing the number of bits used to represent
data. It is one of the most significant results of information theory, an area of
mathematics that addresses various ways to manage and manipulate information.
Data compression entails two processes: in one process the data is compressed, or
encoded, to reduce its size; in a second process it is uncompressed, or decoded, to
return it to its original state.

To understand why data compression is possible, we must first understand that all
data can be characterized by some informational content, called its entropy (a term
borrowed from thermodynamics). Compression is possible because most data is
represented with more bits than its entropy suggests is optimal. To gauge the
effectiveness of compression, we look at the ratio of the size of the compressed
data divided by its original size, and subtract this from 1. This value is known as
the data’s compression ratio.

In the broadest sense, data compression methods are divided into two classes:
lossy and lossless. In lossy compression we accept a certain loss of accuracy in
exchange for greater compression ratios. This is acceptable in some applications,
such as graphics and sound processing, provided the degradation is managed
carefully. However, frequently we use lossless compression, which ensures that an
exact copy of the original data is reproduced when uncompressed.

This chapter focuses on lossless compression, for which there are two general
approaches: minimum redundancy coding and dictionary-based methods. Mini-
mum redundancy coding achieves compression by encoding symbols that occur
with great frequency using fewer bits than for those that occur less often.
Dictionary-based methods encode data in terms of tokens that take the place of
redundant phrases. Example 14-1 is a header for the compression methods pre-
sented in this chapter.

365

366 Chapter 14: Data Compression

This chapter covers:

Bit operations
An important part of data compression because most methods require operat-
ing on data one bit at a time to some degree. C provides a number of bitwise
operators that can be used to implement an extended class of bit operations.

Huffman coding
One of the oldest and most elegant forms of compression based on minimum
redundancy coding. Fundamental to Huffman coding is the construction of a
Huffman tree, which is used both to encode and decode the data. Huffman
coding is not the most effective form of compression, but it runs fast both
when compressing and uncompressing data.

LZ77 (Lempel-Ziv-1977)
One of the fundamental methods of dictionary-based compression. LZ77 uses
a sliding window and a look-ahead buffer to encode symbols in terms of
phrases encountered earlier in the data. LZ77 generally results in better com-
pression ratios than Huffman coding, but with longer compression times.
However, uncompressing data is generally very fast.

Some applications of lossless data compression are:

Software distribution
The process of delivering software on various media. When distributing soft-
ware on physical media, such as compact discs or magnetic tapes and dis-
kettes, reducing the amount of storage required can produce considerable cost
savings in mass distributions.

Archiving
Collecting groups of files into organized libraries. Typically, archives contain
large amounts of data. Thus, after creating archives, frequently we compress
them.

Mobile computing
An area of computing in which devices typically have limited amounts of
memory and secondary storage. Mobile computing generally refers to comput-
ing with small, portable devices such as advanced programmable calculators,
electronic organizers, and other personal computing devices.

Optimized networking (illustrated in this chapter)
Compression is used especially when sending large amounts of data across
wide-area networks. Bandwidth at certain points along wide-area networks is
often limited. Although compressing and uncompressing data does require
time, in many network applications the cost is well justified.

Embedded applications
An area of computing similar to mobile computing in that devices typically have
somewhat limited amounts of memory and secondary storage. Examples of

Data Compression 367

embedded applications are lab instruments, avionics (aircraft electronics), VCRs,
home stereos, and other pieces of equipment built around microcontrollers.

Database systems
Typically, large systems that can be optimized by reducing their size to some
extent. Databases may be compressed at the record or file level.

Online manuals
Manuals that are accessed directly on a computer. Online manuals are typi-
cally of considerable size, but many sections are not accessed on a regular
basis. Therefore, it is common to store them in a compressed form and
uncompress sections only as they are needed.

Example 14-1. Header for Data Compression

/***

* *
* e compress.h ---——--------—--—— *
* *

***/

#ifndef COMPRESS_H
#define COMPRESS_H

#include "bitree.h"

/***

* *
* Define a structure for nodes of Huffman trees. *
* *

***/

typedef struct HuffNode_ {

unsigned char symbol ;
int freq;
} HuffNode;

/***

* *
* Define a structure for entries in Huffman code tables. *
* *

***/

typedef struct HuffCode_ {

unsigned char used;
unsigned short code;
unsigned char size;

} HuffCode;

368 Chapter 14: Data Compression

Example 14-1. Header for Data Compression (continued)

/***

* *
* Define the number of bits required for LZ77 token members. *
* *

***/

#define LZ77_TYPE_BITS 1
#define LZ77_WINOFF_BITS 12
#define LZ77_BUFLEN_BITS 5
#define LZ77_NEXT_BITS 8

/***

* *
* Define the size of the sliding window and the look-ahead buffer for *
* Lz77. Each must be less than or equal to 2 raised to LZ77_WINOFF_BITS *
* and Lz77_BUFLEN_BITS respectively. *
* *
***/
#define LZz77_WINDOW_SIZE 4096

#define LZ77_BUFFER_SIZE 32

/***

* *
* Define the number of bits for LZ77 phrase tokens. *
* *

***/

#define LZ77_PHRASE_BITS (LZ77_TYPE_BITS+LZ77_WINOFF_BITS\
+LZ77_NEXT BITS+LZ77_BUFLEN_BITS)

/***

* *
* Define the number of bits for LZ77 symbol tokens. *
* *

***/

#define LZ77_SYMBOL_BITS (LZ77_TYPE_BITS+LZ77_NEXT_BITS)

/***

* *
K Public Interface -----------———---m—— *
* *

***/

int huffman_ compress (const unsigned char *original, unsigned char
**compressed, int size);

int huffman uncompress (const unsigned char *compressed, unsigned char
**original) ;

int 1z77_compress (const unsigned char *original, unsigned char **compressed,
int size);

Interface for Bit Operations 369

Example 14-1. Header for Data Compression (continued)

int 1z77_uncompress (const unsigned char *compressed, unsigned char
**original) ;

#endif

Description of Bit Operations

When compressing and uncompressing data, often we need to perform opera-
tions on less than a single byte. Therefore, before discussing various methods of
data compression, it is important to become familiar with some basic operations
for working with data one bit at a time. These operations are necessary because
bit operators in C work only with intrinsic integral operands, which are small. The
operations presented in this section work with buffers containing any number of
bits. Note that the set of operations presented here is rather incomplete. Specifi-
cally, only those that are used in this chapter and in Chapter 15, Data Encryption,
are defined.

Interface for Bit Operations

bit_get

int bit_get (const unsigned char *bits, int pos);

Return Value State of the desired bit: 1 or 0.

Description Gets the state of the bit at position pos in the buffer bits. The
leftmost position in the buffer is 0. The state returned is either 1 or 0.

Complexity oD

bit_set

void bit_set (unsigned char *bits, int pos, int state);

Return Value None.

Description Sets the state of the bit at position pos in the buffer bits to the
value specified by state. The leftmost position in the buffer is 0. The state must
be 1 or 0.

Complexity o)

370 Chapter 14: Data Compression

bit_xor

void bit_xor (const unsigned char *bitsl, const unsigned char *bits2,
unsigned char *bitsx, int size);

Return Value None.

Description Computes the bitwise XOR (exclusive OR) of the two buffers
bitsl and bits2, each containing size bits, and returns the result in bitsx. The
bitwise XOR of two binary operands yields 0 in each position i of the result where
in position i of the operands the bits are the same, and 1 in each position where
the bits are different. For example, 11010 @ 01011 = 10001 (& denotes XOR). It is
the responsibility of the caller to manage the storage required by bitsx.

Complexity O(B), where B is the number of bits in each buffer.

bit_rot_left

void bit_rot_left (unsigned char *bits, int size, int count) ;

Return Value None.

Description Rotates the buffer bits, containing size bits, to the left count
bits. After the operation, the leftmost count bits become the count rightmost bits
in the buffer, and all other bits are shifted accordingly.

Complexity O(nP), where n is the number of bits rotated to the left and B is
the number of bits in the buffer.

Implementation and Analysis
of Bit Operations

Each bit operation works with a buffer of data defined as a pointer to an unsigned
character. This pointer points to as many bytes as are required to represent the
number of bits in the buffer. If the number of bits in the buffer is not a multiple of
8, some bits in the final byte are not used.

bit_get

The bit_get operation gets the state of a bit in a buffer (see Example 14-2). To do
this, we determine in which byte the desired bit resides and then use a mask to
get the specific bit from that byte. The bit set to 1 in mask determines which bit
will be read from the byte. We use a loop to shift this bit into the proper position.
We fetch the desired bit by indexing to the appropriate byte in bits and apply-
ing the mask.

Implementation and Analysis of Bit Operations 371

The runtime complexity of bit_get is O(1). This is because all of the steps in get-
ting the state of a bit in a buffer run in a constant amount of time.

bit_set

The bit_set operation sets the state of a bit in a buffer (see Example 14-2). This
operation works similarly to bit_get, except that it uses the mask to set the state of
the specified bit rather than to get it.

The runtime complexity of bit_set is O(1). This is because all of the steps in get-
ting the state of a bit in a buffer run in a constant amount of time.

bit_xor

The bit_xor operation computes the bitwise XOR (exclusive OR) of two buffers,
bitsl and bits2, and places the result in another buffer, bitsx (see
Example 14-2). To do this, we compare the bit in position i of bitsl with the bit
in position i of bits2. If the bits are the same, we set the bit in position i of
bitsx to 0; otherwise, we set the bit in position i of bitsx to 1. This process
continues for as many bits are in each buffer, as specified by size.

The runtime complexity of bit_xoris O(B), where B is the number of bits in each
buffer. This is because the loop in the operation iterates once for each bit.

bit_rot_left

The bit_rot_left operation rotates a buffer a specified number of bits to the left (see
Example 14-2). We begin by saving the leftmost bit of the leftmost byte and then
shifting each byte one bit to the left. As we shift each byte, we set the rightmost
bit of the preceding byte to the bit shifted off the left of the current byte. Once we
have shifted the last byte, we set its rightmost bit to the bit shifted off the first
byte. This process is repeated as many times as the number of bits to be rotated.

The runtime complexity of bit_rot_left is O(nf), where n is the number of bits
rotated to the left and B is the number of bits in the buffer. This is because for
each rotation, (/8) + 1 shifts are performed to the left.

Example 14-2. Implementation of Bit Operations

/***

* *
L = = *
* *

***/

#include <string.h>

#include "bit.h"

372 Chapter 14: Data Compression

Example 14-2. Implementation of Bit Operations (continued)

/***

* *
Rt Tt bit_get -—----—————— *
* *

***/
int bit_get (const unsigned char *bits, int pos) {

unsigned char mask;

int i;

/***

* *
* Set a mask for the bit to get. *
* *

***/

mask = 0x80;

for (i = 0; 1 < (pos % 8); i++)
mask = mask >> 1;

/***

* *
* Get the bit. *
* *

***/

return (((mask & bits[(int) (pos / 8)]) == mask) ? 1 : 0);

}
/***
* *
Rt Tt bit_set -----——— *
* *

***/

void bit_set (unsigned char *bits, int pos, int state) {

unsigned char mask;

int i;

/***

* *
* Set a mask for the bit to set. *
* *

***/

mask = 0x80;

Implementation and Analysis of Bit Operations 373

Example 14-2. Implementation of Bit Operations (continued)

for (1 = 0; 1 < (pos % 8); i++)
mask = mask >> 1;

/***

* *
* Set the bit. *
* *

***/

if (state)

bits[pos / 8] = bits[pos / 8] | mask;
else

bits[pos / 8] = bits[pos / 8] & (~mask);

return;

/***
* *
Rt Tt bit_xor -------—-———— *
* *

***/

void bit_xor (const unsigned char *bitsl, const unsigned char *bits2, unsigned
char *bitsx, int size) {

int i;

/***

* *
* Compute the bitwise XOR (exclusive OR) of the two buffers. *
* *

***/
for (i = 0; i < size; i++) {

if (bit_get(bitsl, i) != bit_get(bits2, 1))
bit_set(bitsx, i, 1);

else
bit_set (bitsx, i, 0);

return;

/***
* *
K bit_rot_left --—--------— *
* *

***/

374 Chapter 14: Data Compression

Example 14-2. Implementation of Bit Operations (continued)
void bit_rot_left (unsigned char *bits, int size, int count) {
int fbit,

1bit,

i,

Ji

/***

* *
* Rotate the buffer to the left the specified number of bits. *
* *

***/

if (size > 0) {

for (j = 0; Jj < count; j++) {

for (i = 0; i <= ((size - 1) / 8); i++) {

/**

* *
* Get the bit about to be shifted off the current byte. *
* *

**/

1bit = bit_get(&bits[i], 0);
if (1 == 0) {

/***

* *
* Save the bit shifted off the first byte for later. *
* *

***/

fbit = 1bit;

else {

/***

* *
* Set the rightmost bit of the previous byte to the leftmost *
* bit about to be shifted off the current byte. *
* *

‘k**/

bit_set(&bits[i - 1], 7, 1lbit);

Description of Huffman Coding 375

Example 14-2. Implementation of Bit Operations (continued)

/**

* *
* Shift the current byte to the left. *
* *

‘k**‘k*/

bits[i] = bits[i] << 1;

}

/**‘k**
* *
* Set the rightmost bit of the buffer to the bit shifted off the *
* first byte. *
* *

***/

bit_set(bits, size - 1, fbit);

}
}
return;
}

Description of Huffman Coding

One of the oldest and most elegant forms of data compression is Huffman coding,
an algorithm based on minimum redundancy coding. Minimum redundancy cod-
ing suggests that if we know how often different symbols occur in a set of data,
we can represent the symbols in a way that makes the data require less space. The
idea is to encode symbols that occur more frequently with fewer bits than those
that occur less frequently. It is important to realize that a symbol is not necessarily
a character of text: a symbol can be any amount of data we choose, but it is often
one byte’s worth.

Entropy and Minimum Redundancy

To begin, let’s revisit the concept of entropy introduced at the beginning of the
chapter. Recall that every set of data has some informational content, which is
called its entropy. The entropy of a set of data is the sum of the entropies of each
of its symbols. The entropy S of a symbol z is defined as:

S, =-lgpP,

376 Chapter 14: Data Compression

where P, is the probability of z being found in the data. If it is known exactly how
many times z occurs, P, is referred to as the frequency of z. As an example, if z
occurs 8 times in 32 symbols, or one-fourth of the time, the entropy of z is:

—lg(1/4) = 2 bits

This means that using any more than two bits to represent z is more than we
need. If we consider that normally we represent a symbol using eight bits (one
byte), we see that compression here has the potential to improve the representa-
tion a great deal.

Table 14-1 presents an example of calculating the entropy of some data contain-
ing 72 instances of five different symbols. To do this, we sum the entropies con-
tributed by each symbol. Using “U” as an example, the total entropy for a symbol
is computed as follows. Since “U” occurs 12 times out of the 72 total, each
instance of “U” has an entropy that is calculated as:

—lg(12/72) = 2.584963 bits

Consequently, because “U” occurs 12 times in the data, its contribution to the
entropy of the data is calculated as:

(2.584963)(12) = 31.01955 bits

In order to calculate the overall entropy of the data, we sum the total entropies
contributed by each symbol. To do this for the data in Table 14-1, we have:

31.01955 + 36.00000 + 23.53799 + 33.94552 + 36.95994 = 161.46300 bits

If using 8 bits to represent each symbol yields a data size of (72)(8) = 576 bits, we
should be able to compress this data, in theory, by up to:

1—(161.463000/576) = 72.0%

Table 14-1. The Entropy of a Set of Data Containing 72 Instances of 5 Different Symbols

Symbol Probability Entropy of Each Instance Total Entropy
U 12/72 2.5849063 31.01955
v 18/72 2.000000 36.00000
W 7/72 3.362570 23.53799
X 15/72 2.263034 33.94552
Y 20/72 1.847997 30.95994

Building a Huffman Tree

Huffman coding presents a way to approximate the optimal representation of data
based on its entropy. It works by building a data structure called a Huffman tree,

Description of Huffman Coding 377

which is a binary tree (see Chapter 9, Trees) organized to generate Huffman codes.
Huffman codes are the codes assigned to symbols in the data to achieve compres-
sion. However, Huffman codes result in compression that only approximates the
data’s entropy because, as you may have noticed in Table 14-1, the entropies of
symbols often come out to be fractions of bits. Since the actual number of bits
used in Huffman codes cannot be fractions in practice, some codes end up with
slightly too many bits to be optimal.

Figure 14-1 illustrates the process of building a Huffman tree from the data in
Table 14-1. Building a Huffman tree proceeds from its leaf nodes upward. To
begin, we place each symbol and its frequency in its own tree (see Figure 14-1,
step 1). Next, we merge the two trees whose root nodes have the smallest fre-
quencies and store the sum of the frequencies in the new tree’s root (see
Figure 14-1, step 2). This process is then repeated until we end up with a single
tree (see Figure 14-1, step 5), which is the final Huffman tree. The root node of
this tree contains the total number of symbols in the data, and its leaf nodes con-
tain the original symbols and their frequencies. Because Huffman coding continu-
ally seeks out the two trees that appear to be the best to merge at any given time,
it is a good example of a greedy algorithm (see Chapter 1, Introduction).

Compressing and Uncompressing Data

Building a Huffman tree is part of both compressing and uncompressing data. To
compress data using a Huffman tree, given a specific symbol, we start at the root
of the tree and trace a path to the symbol’s leaf. As we descend along the path,
whenever we move to the left, we append 0 to the current code; whenever we
move to the right, we append 1. Thus, in Figure 14-1, step 6, to determine the
Huffman code for “U” we move to the right (1), then to the left (10), and then to
the right again (101). The Huffman codes for all of the symbols in the figure are:

U=101,V=01,W=100,X=00,Y =11

To uncompress data using a Huffman tree, we read the compressed data bit by bit.
Starting at the tree’s root, whenever we encounter O in the data, we move to the
left in the tree; whenever we encounter 1, we move to the right. Once we reach a
leaf node, we generate the symbol it contains, move back to the root of the tree,
and repeat the process until we exhaust the compressed data. Uncompressing data
in this manner is possible because Huffman codes are prefix free, which means
that no code is a prefix of any other. This ensures that once we encounter a
sequence of bits that matches a code, there is no ambiguity as to the symbol it
represents. For example, notice that 01, the code for “V,” is not a prefix of any of
the other codes. Thus, as soon as we encounter 01 in the compressed data, we
know that the code must represent “V.”

378 Chapter 14: Data Compression

In|I|u||y, with each symbol in its own tree o After merging the frees containing frequencies 7 and 12

PDERD DD
[EA O symbol O frequency @ @
i7% roof nodes of binary trees

e After merging the frees containing frequencies 15 and 18 o After merging the frees containing frequencies 19 and 20

@@ o € b
O, UIROISS

o After merging the frees cunlmnlng frequencies 33 und 39 o Generunng the Huffman code for the symbol “U”

o@,

z § OO
0/ \! o/ \!
SAYAA AN
\J5/ \18/ \20/
0 1
AAYAA
\Z/ \12/

Figure 14-1. Building a Huffman tree from the symbols and frequencies in Table 14-1

Effectiveness of Huffman Coding

To determine the reduced size of data compressed using Huffman coding, we cal-
culate the product of each symbol’s frequency times the number of bits in its Huff-
man code, then add them together. Thus, to calculate the compressed size of the
data presented in Table 14-1 and Figure 14-1, we have:

(12)(3) + (18)(2) +(7)(3) + (15)(2) +(20)(2) = 163 bits

Assuming that without compression each of the 72 symbols would be represented
with 8 bits, for a total data size of 576 bits, we end up with the following compres-
sion ratio:

1—(163/576) = 71.7%

Interface for Huffman Coding 379

Once again, considering the fact that we cannot take into account fractional bits in
Huffman coding, in many cases this value will not be quite as good as the data’s
entropy suggests, although in this case it is very close.

In general, Huffman coding is not the most effective form of compression, but it
runs fast both when compressing and uncompressing data. Generally, the most
time-consuming aspect of compressing data with Huffman coding is the need to
scan the data twice: once to gather frequencies, and a second time actually to
compress the data. Uncompressing the data is particularly efficient because decod-
ing the sequence of bits for each symbol requires only a brief scan of the Huff-
man tree, which is bounded.

Interface for Huffman Coding

buffman_compress

int huffman_compress (const unsigned char *original, unsigned char **compressed,
int size);

Return Value Number of bytes in the compressed data if compressing the data

is successful, or —1 otherwise.

Description Uses Huffman coding to compress a buffer of data specified by
original, which contains size bytes. The compressed data is written to a buffer
returned in compressed Since the amount of storage required in compressed is
unknown to the caller, huffman_compress dynamically allocates the necessary
storage using malloc. 1t is the responsibility of the caller to free this storage using
Jfree when it is no longer needed.

Complexity O(n), where #n is the number of symbols in the original data.

buffman_uncompress

int huffman uncompress (const unsigned char *compressed, unsigned

char **original) ;
Return Value Number of bytes in the restored data if uncompressing the data is
successful, or —1 otherwise.

Description Uses Huffman coding to uncompress a buffer of data specified by
compressed. It is assumed that the buffer contains data previously compressed
with huffman_compress. The restored data is written to a buffer returned in
original. Since the amount of storage required in original may not be known
to the caller, huffman_uncompress dynamically allocates the necessary storage
using malloc. 1t is the responsibility of the caller to free this storage using free
when it is no longer needed.

Complexity O(n), where 7 is the number of symbols in the original data.

380 Chapter 14: Data Compression

Implementation and Analysis
of Huffman Coding

With Huffman coding, we try to compress data by encoding symbols as Huffman
codes generated in a Huffman tree. To uncompress the data, we rebuild the Huff-
man tree used in the compression process and convert each code back to the sym-
bol it represents. In the implementation presented here, a symbol in the original
data is one byte.

buffman_compress

The bhuffman_compress operation (see Example 14-3) compresses data using Huff-
man coding. It begins by scanning the data to determine the frequency of each
symbol. The frequencies are placed in an array, fregs. After scanning the data,
the frequencies are scaled so that each can be represented in a single byte. This is
done by determining the maximum number of times any symbol occurs in the
data and adjusting the other frequencies accordingly. Since symbols that do not
occur in the data should be the only ones with frequencies of 0, we perform a
simple test to ensure that any nonzero frequencies that scale to less than 1 end up
being set to 1 instead of 0.

Once we have determined and scaled the frequencies, we call build_tree to build
the Huffman tree. The build_tree function begins by inserting into a priority queue
one binary tree for each symbol occurring at least once in the data. Nodes in the
trees are HuffNode structures (see Example 14-1). This structure consists of two
members: symbol is a symbol from the data (used only in leaf nodes), and freqis
a frequency. Each tree initially contains only a single node, which stores one sym-
bol and its scaled frequency as recorded and scaled in the fregs array.

To build the Huffman tree, we use a loop to perform size — 1 merges of the trees
within the priority queue. On each iteration, we call pqueue_extract twice to
extract the two binary trees whose root nodes have the smallest frequencies. We
then sum the frequencies, merge the trees into a new one, store the sum of the
frequencies in the new tree’s root, and insert the new tree back into the priority
queue. We continue this process until, after size — 1 iterations, the only tree
remaining in the priority queue is the final Huffman tree.

Using the Huffman tree built in the previous step, we call build_table to build a
table of the Huffman codes assigned to every symbol. Each entry in the table is a
HuffCode structure. This structure consists of three members: used is a flag set to
1 or 0 indicating whether the entry has a code stored in it, code is the Huffman
code stored in the entry, and size is the number of bits the code contains. Each
code is a short integer because it can be proven (although this is not shown here)

Implementation and Analysis of Huffman Coding 381

that when all frequencies are scaled to fit within one byte, no code will be longer
than 16 bits.

We build the table by traversing the Huffman tree using a preorder traversal (see
Chapter 9). In each activation of build_table, code keeps track of the current Huff-
man code being generated, and size maintains the number of bits it contains. As
we traverse the tree, each time we move to the left, we append 0 to the code;
each time we move to the right, we append 1. Once we encounter a leaf node, we
store the Huffman code into the table of codes at the appropriate entry. As we
store each code, we call the network function htons as a convenient way to ensure
that the code is stored in big-endian format. This is the format required when we
actually generate the compressed data in the next step as well as when we uncom-
press it.

While generating the compressed data, we use ipos to keep track of the current
byte being processed in the original data, and opos to keep track of the current bit
we are writing to the buffer of compressed data. To begin, we write a header that
will help to rebuild the Huffman tree in huffman_uncompress. The header con-
tains a four-byte value for the number of symbols about to be encoded followed
by the scaled frequencies of all 256 possible symbols, including those that are 0.
Finally, to encode the data, we read one symbol at a time, look up its Huffman
code in the table, and write each code to the compressed buffer. We allocate
space for each byte in the compressed buffer as we need it.

The runtime complexity of buffman_compress is O(n), where n is the number of
symbols in the original data. Only two parts of the algorithm depend on the size
of the data: the part in which we determine the frequency of each symbol, and the
part in which we read the data so we can compress it. Each of these runs in O(7)
time. The time to build the Huffman tree does not affect the complexity of
buffman_compress because the running time of this process depends only on the
number of different symbols in the data, which in this implementation is a con-
stant, 256.

buffman_uncompress

The buffman_uncompress operation (see Example 14-3) uncompresses data com-
pressed with huffman_compress. This operation begins by reading the header
prepended to the compressed data. Recall that the first four bytes of the header
contain the number of encoded symbols. This value is stored in size. The next
256 bytes contain the scaled frequencies for all symbols.

Using the information stored in the header, we call build_tree to rebuild the Huff-
man tree used in compressing the data. Once we have rebuilt the tree, the next
step is to generate the buffer of restored data. To do this, we read the compressed

382 Chapter 14: Data Compression

data bit by bit. Starting at the root of the Huffman tree, whenever we encounter a
bit that is 0 in the data, we move to the left; whenever we encounter a bit that is
1, we move to the right. Once we encounter a leaf node, we have obtained the
Huffman code for a symbol. The decoded symbol resides in the leaf. Thus, we
write this symbol to the buffer of restored data. After writing the symbol, we repo-
sition ourselves at the root of the tree and repeat the process. We use ipos to
keep track of the current bit being processed in the compressed data, and opos to
keep track of the current byte we are writing to the buffer of restored data. Once
opos reaches size, we have regenerated all of the symbols from the original data.

The runtime complexity of huffman_uncompress is O(n), where 7 is the number
of symbols in the original data. This is because for each of the n symbols we
decode, the number of levels we must descend in the Huffman tree is a bounded
constant that depends on the number of different symbols in the data: in this
implementation, 256. The time to build the Huffman tree does not affect the com-
plexity of bhuffman_uncompress because this process depends only on the num-
ber of different symbols in the data.

Example 14-3. Implementation of Huffman Coding

/***

* *
K e huffman.c ----——-----------——— *
* *

***/

#include <limits.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>

#include "bit.h"
#include "bitree.h"
#include "compress.h"
#include "pgqueue.h"

/***

* *
K e compare_freq -------------——-—mm *
* *

***/

static int compare_freg(const void *treel, const void *tree2) {

Huf fNode *rootl,
*root2;

Implementation and Analysis of Huffman Coding 383

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
* Compare the frequencies stored in the root nodes of two binary trees. *
* *

***/

rootl
root2

(HuffNode *)bitree_data(bitree_root ((const BiTree *)treel));
(HuffNode *)bitree_data(bitree_root ((const BiTree *)tree2));

if (rootl->freqg < root2->freq)
return 1;

else if (rootl->freq > root2->freq)
return -1;

else

return 0;
/***
* *
e destroy_tree --------————————————————————— *
* *

***/

static void destroy_ tree(void *tree) {

/***

* *
* Destroy and free one binary tree from the priority queue of trees. *
* *

***/

bitree_destroy (tree) ;
free(tree);

return;

/***
* *
K build_tree --------———————————— *
* *

***/

static int build_tree(int *fregs, BiTree **tree) {

BiTree *init,
*merge,
*left,
*right;

PQueue pqueue;

384 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

HuffNode *data;
int size,
(e

/***
* *

* Initialize the priority queue of binary trees. *

* *

***/

*tree = NULL;
pgueue_init (&pqueue, compare freq, destroy_tree);
for (¢ = 0; ¢ <= UCHAR MAX; c++) {

if (fregs[c] != 0) {

/***

* *
* Set up a binary tree for the current symbol and its frequency. *
* *

***/

if ((init = (BiTree *)malloc (sizeof (BiTree))) == NULL) {

pqueue_destroy (&pgqueue) ;
return -1;

bitree_init(init, free);
if ((data = (HuffNode *)malloc (sizeof (HuffNode))) == NULL) {

pqueue_destroy (&pgqueue) ;
return -1;

data->symbol = c;
data->freq = fregslcl;

if (bitree_ins_left(init, NULL, data) != 0) {

free(data) ;
bitree_destroy(init) ;
free(init);
pqueue_destroy (&pqueue) ;
return -1;

Implementation and Analysis of Huffman Coding

385

Example 14-3. Implementation of Huffman Coding (continued)

/***
* *
* Insert the binary tree into the priority queue. *
* *

***/

if (pqueue_insert (&pqueue, init) != 0) {

bitree_destroy (init) ;
free(init);
pqueue_destroy (&pqueue) ;
return -1;

}
}
}
/***
* *
* Build a Huffman tree by merging trees in the priority queue. *
* *

***/

size = pqueue_size (&pqueue) ;

for (¢ = 1; ¢ <= size - 1; c++) {

/**

* *
* Allocate storage for the next merged tree. *
* *

**/

if ((merge = (BiTree *)malloc(sizeof (BiTree))) == NULL) {

pqueue_destroy (&pqueue) ;
return -1;

/**
* *
* Extract the two trees whose root nodes have the smallest frequencies. *
* *

**/

if (pqueue_extract (&pqueue, (void **)&left) != 0) {

pqueue_destroy (&pqueue) ;
free (merge) ;
return -1;

386 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

}
if (pqueue_extract (&pqueue, (void **)&right) != 0) {

pqueue_destroy (&pqueue) ;

free (merge) ;

return -1;
}
/**
* *
* Allocate storage for the data in the root node of the merged tree. *
* *

**/

if ((data = (HuffNode *)malloc (sizeof (HuffNode))) == NULL) {
paueue_destroy (&pgqueue) ;

free (merge) ;
return -1;

memset (data, 0, sizeof (HuffNode)) ;

/**

* *
* Sum the frequencies in the root nodes of the trees being merged. *
* *

**/

data->freq = ((HuffNode *)bitree_data(bitree_ root (left)))->freq +
((HuffNode *)bitree data(bitree_root (right)))->freq;

/**

* *
* Merge the two trees. *
* *

**/
if (bitree_merge (merge, left, right, data) != 0) {
pgueue_destroy (&pqueue) ;

free (merge) ;
return -1;

}

/********‘k********‘k********‘k********‘k********‘k*****************************
* *
* Insert the merged tree into the priority queue and free the others. *
* *

**/

Implementation and Analysis of Huffman Coding 387

Example 14-3. Implementation of Huffman Coding (continued)

if (pqueue_insert (&pqueue, merge) != 0) {

pqueue_destroy (&pqueue) ;
bitree_destroy (merge) ;
free (merge) ;

return -1;

}

free(left) ;

free(right) ;
}
/***
* *
* The last tree in the priority queue is the Huffman tree. *
* *

***/

if (pqueue_extract (&pqueue, (void **)tree) != 0) {

pqueue_destroy (&pqueue) ;
return -1;

else {

pqueue_destroy (&pqueue) ;

return 0;

/***
* *
F build table ----—-—————————— *
* *

***/

static void build _table(BiTreeNode *node, unsigned short code, unsigned char
size, HuffCode *table) {

if (!bitree_is_eob(node)) {

if (!'bitree_is_eob(bitree_left(node))) {

388 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
* Move to the left and append 0 to the current code. *
* *

‘k**/

build_table(bitree_left(node), code << 1, size + 1, table);

if (!bitree_is_eob(bitree_right (node))) {

/***

* *
* Move to the right and append 1 to the current code. *
* *

‘k**/

build_table(bitree_right (node), (code << 1) | 0x0001, size + 1, table);

if (bitree_is_eob(bitree_left (node))&&bitree_is_eob (bitree_right (node))) {

/***

* *
* Ensure that the current code is in big-endian format. *
* *

‘k**/

code = htons (code) ;

/***

* *
* Assign the current code to the symbol in the leaf node. *
* *

***/

table[((HuffNode *)bitree_data(node))->symbol].used = 1;
table[((HuffNode *)bitree_data(node))->symbol].code = code;
table[((HuffNode *)bitree_data(node))->symbol].size = size;

return;

Implementation and Analysis of Huffman Coding 389

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
e huffman compress ----------—----"--"--"-"--————— *
* *

‘k**/

int huffman_compress (const unsigned char *original, unsigned char
**compressed, int size) {

BiTree *tree;
HuffCode table[UCHAR MAX + 1];

int fregs [UCHAR MAX + 1],

max,

scale,

hsize,

ipos,

opos,

cpos,

c,

i;

unsigned char *comp,
*temp;

/***

* *
* Initially, there is no buffer of compressed data. *
* *

***/

*compressed = NULL;

/***

* *
* Get the frequency of each symbol in the original data. *
* *

‘k**/

c <= UCHAR_MAX; c++)

for (c = 0;
c] = 0;

fregs|

ipos = 0

if (size > 0) {
while (ipos < size) {

fregs[original [ipos]]++;
ipos++;

390 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
* Scale the frequencies to fit into one byte. *
* *

***/

max = UCHAR MAX;

for (c = 0; ¢ <= UCHAR MAX; c++) {

if (fregslc] > max)
max = fregsl[c];

for (¢ = 0; ¢ <= UCHAR MAX; c++) {

scale = (int) (fregs([c] / ((double)max / (double)UCHAR MAX)) ;

if (scale == 0 && fregs([c] != 0)
fregs[c] = 1;
else

fregs[c] = scale;

}

/***
* *
* Build the Huffman tree and table of codes for the data. *
* *

***/

if (build_tree(freqgs, &tree) != 0)
return -1;

for (¢ = 0; ¢ <= UCHAR_MAX; c++)
memset (&table[c], 0, sizeof (HuffCode)) ;

build_table (bitree_root (tree), 0x0000, 0, table);

bitree_destroy(tree) ;
free(tree);

/***

* *
* Write the header information. *
* *

***/

hsize = sizeof (int) + (UCHAR_MAX + 1);

if ((comp = (unsigned char *)malloc (hsize)) == NULL)
return -1;

Implementation and Analysis of Huffman Coding 391

Example 14-3. Implementation of Huffman Coding (continued)

memcpy (comp, &size, sizeof (int));

for (¢ = 0; ¢ <= UCHAR_MAX; c++)
comp [sizeof (int) + c] = (unsigned char) fregsl(c];

/***

* *
* Compress the data. *
* *

***/

ipos = 0;
opos = hsize * 8;

while (ipos < size) {

/**

* *
* Get the next symbol in the original data. *
* *

**/

c = original[ipos];

/**

* *
* Write the code for the symbol to the buffer of compressed data. *
* *

**/

for (i = 0; 1 < tablelc].size; i++) {

if (opos % 8 == 0) {

/**

* *
* Allocate another byte for the buffer of compressed data. *
* *

**/

if ((temp = (unsigned char *)realloc (comp, (opos / 8) + 1)) == NULL) {

free (comp) ;
return -1;

comp = temp;

392 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

cpos = (sizeof (short) * 8) - tablelc].size + i;
bit_set (comp, opos, bit_get((unsigned char *)&table([c].code, cpos)):;

Opos++;
}
ipos++;
}
/***
* *
* Point to the buffer of compressed data. *
* *

***/

*compressed = comp;

/***

* *
* Return the number of bytes in the compressed data. *
* *

‘k**/

return ((opos - 1) / 8) + 1;

/***
* *
F e huffman_uncompress ----------—-——————————————— *
* *

***/

int huffman uncompress (const unsigned char *compressed, unsigned char
**original) {

BiTree *tree;
BiTreeNode *node;

int freqgs [UCHAR MAX + 1],
hsize,
size,
ipos,
opos,
state,
(e

unsigned char *orig,
*temp;

Implementation and Analysis of Huffman Coding 393

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
* Initially there is no buffer of original data. *
* *

***/

*original = orig = NULL;

/***

* *
* Get the header information from the buffer of compressed data. *
* *

***/

hsize = sizeof (int) + (UCHAR_MAX + 1);
memcpy (&size, compressed, sizeof (int));

c <= UCHAR_MAX; c++)

for (c = 0;
c] = compressed[sizeof (int) + c];

fregs|

/***

* *
* Rebuild the Huffman tree used previously to compress the data. *
* *

***/

if (build_tree(freqgs, &tree) != 0)
return -1;

/***

* *
* Uncompress the data. *
* *

***/

ipos = hsize * §;
opos 0;
node = bitree root (tree) ;

while (opos < size) {

/**

* *
* Get the next bit in the compressed data. *
* *

**/

state = bit_get (compressed, ipos);
ipos++;

if (state == 0) {

394 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

/***

* *
* Move to the left. *
* *

***/

if (bitree is eob(node) || bitree_is eob(bitree left(node))) {

bitree_destroy (tree) ;
free(tree);
return -1;

else
node = bitree_ left (node) ;

else {

/***
* *
* Move to the right. *
* *

***/

if (bitree is_eob(node) || bitree_is_eob(bitree right(node))) {

bitree_destroy (tree) ;
free(tree);
return -1;

else
node = bitree right (node) ;

if (bitree_is_eob(bitree_left (node))&&bitree_is_eob (bitree_right (node))) {

/***
* *

* Write the symbol in the leaf node to the buffer of original data. *
* *

***/

if (opos > 0) {

if ((temp = (unsigned char *)realloc(orig, opos + 1)) == NULL) {

Implementation and Analysis of Huffman Coding

395

Example 14-3. Implementation of Huffman Coding (continued)

bitree_destroy(tree) ;
free(tree);
free (orig) ;
return -1;

orig = temp;

else {
if ((orig = (unsigned char *)malloc(l)) == NULL) {
bitree_destroy (tree) ;

free(tree);
return -1;

origl[opos] = ((HuffNode *)bitree_data (node))->symbol;
OpOS++;

/***

* *
* Move back to the top of the tree. *
* *

***/

node = bitree_root (tree);

bitree_destroy (tree) ;
free(tree);

/***

* *
* Point to the buffer of original data. *
* *

***/

*original = orig;

/***

* *
* Return the number of bytes in the original data. *
* *

***/

396 Chapter 14: Data Compression

Example 14-3. Implementation of Huffman Coding (continued)

return opos;

}

Huffman Coding Example:
Optimized Networking

Transferring data across a network can be a time-consuming process, particularly
across slow wide-area networks. One approach to managing this problem is to
compress the data before sending it and then uncompress it when it is received.
Although sometimes the time spent compressing and uncompressing data may not
be worth the savings in time across the network, in many network applications
this cost is well justified. This example presents two functions, send_comp and
recv_comp (see Example 14-4), that send and receive data in a compressed format.

The send_comp function sends data by first compressing it and then calling the
standard socket function send. To send the data, send_comp requires four argu-
ments: s is a socket descriptor for which a connection has already been estab-
lished, data is the buffer of data to send, size is the size of the data, and flags
is the normal flags argument passed to send. To begin the sending process, we
compress the data in data by calling buffman_compress. Next, we send the size
of the compressed data, as returned by buffman_compress, so that space can be
allocated on the receiving end. This is part of a simple protocol we establish with
the receiver. Last, we send the compressed data itself and then free it as the inter-
face to huffman_compress suggests.

The recv_comp function uses the standard socket function recv to receive data sent
by send_comp. To receive the data, recv_comp requires four arguments: s is a
socket descriptor for which a connection has already been established, data is a
pointer that recv_comp will set to the uncompressed data, size is the size of the
data as set by recv_comp on return, and flags is the normal flags argument
passed to recv. To begin the receiving process, we receive the size of the data and
allocate a buffer. Next, we receive the compressed data and call bhuffman_
uncompress to uncompress it. Since buffman_uncompress dynamically allocates
space for the uncompressed data using malloc, and recv_comp returns this pointer,
it is the responsibility of the caller of recv_comp to call free when the data is no
longer needed. Last, we free the buffer we allocated to receive the data.

The runtime complexities of send_comp and recv_comp are both O(n), where n is
the number of symbols sent or received. These complexities are both O(7)
because the two functions call buffman_compress and buffman_uncompress
respectively, which are both O(7) operations.

Huffman Coding Example: Optimized Networking 397

Example 14-4. Implementation of Functions for Optimized Networking

/***

* *
e transfer.c --—-———---------—— *
* *

***/

#include <sys/types.h>
#include <sys/socket.h>

#include "compress.h"
#include "transfer.h"

/***

* *
K e send_comp —-—-—-—=—————————————————————————— *
* *

***/

int send_comp(int s, const unsigned char *data, int size, int flags) {

unsigned char *compressed;

int size_comp;

/***

* *
* Compress the data. *
* *

***/

if ((size_comp = huffman_compress (data, &compressed, size)) < 0)
return -1;

/***

* *
* Send the compressed data preceded by its size. *
* *

***/

if (send(s, (char *)&size_comp, sizeof (int), flags) != sizeof (int))
return -1;

if (send(s, (char *)compressed, size_comp, flags) != size comp)
return -1;

/***

* *
* Free the buffer of compressed data. *
* *

***/

free (compressed) ;

398 Chapter 14: Data Compression

Example 14-4. Implementation of Functions for Optimized Networking (continued)

return 0;

/***
* *
Bttt reCV_COMp —————————————————————————————— *
* *

***/

int recv_comp(int s, unsigned char **data, int *size, int flags) {
unsigned char *compressed;
int size comp;

/***

* *
* Receive the compressed data preceded by its size. *
* *

***/

if (recv(s, (char *)&size_comp, sizeof (int), flags) != sizeof (int))
return -1;

if ((compressed = (unsigned char *)malloc(size_comp)) == NULL)
return -1;

if (recv(s, (char *)compressed, size comp, flags) != size comp) {

free (compressed) ;
return -1;

/***
* *
* Uncompress the data. *
* *

***/

if ((*size = huffman_uncompress (compressed, data)) < 0)
return -1;

/***

* *
* Free the buffer of compressed data. *
* *

***/

free (compressed) ;

Description of LZ77 399

Example 14-4. Implementation of Functions for Optimized Networking (continued)

return 0;

}

Description of LZ77

LZ77 (Lempel-Ziv-1977) is a simple but surprisingly effective form of data com-
pression that takes an entirely different approach from Huffman coding. LZ77 is a
dictionary-based method, which means that it tries to compress data by encoding
long strings of symbols, called phrases, as small tokens that reference entries in a
dictionary. Compression is achieved by using relatively small tokens in place of
longer phrases that appear several times in the data. As with Huffman coding, it is
important to realize that a symbol is not necessarily a character of text: a symbol
can be any amount of data we choose, but it is often one byte’s worth.

Maintaining a Dictionary of Phrases

Different dictionary-based compression methods use various approaches for main-
taining their dictionaries. LZ77 uses a look-abead buffer and a sliding window.
LZ77 works by first loading a portion of the data into the look-ahead buffer. To
understand how the look-ahead buffer stores phrases that effectively form a dictio-
nary, picture the buffer as a sequence of symbols s, ..., s, and P, as a set of
phrases constructed from the symbols. From the sequence s, ..., s, we form n
phrases, defined as:

Pb = {(S])y (519 52)5 s 5(513 e ’SyL)}

This means that if the look-ahead buffer contains the symbols (A, B, D), for exam-
ple, the phrases in the buffer are {(A), (A, B), (A, B, D)}. Once data passes through
the look-ahead buffer, it moves into the sliding window and becomes part of the
dictionary. To understand how phrases are represented in the sliding window,
consider the window to be a sequence of symbols s, . . ., s, and P, to be a set
of phrases constructed from these symbols. From the sequence s, .. ., s, we form
the set of phrases as follows:

Puy: {pl; P2> A 7p)n}7 Where pl': {(si): (51'751'4-1)7 o y(sz‘a Si+17 ot Sm)}

Thus, if the sliding window contains the symbols (A, B, C), the phrases in the win-
dow, and hence the dictionary, are {(A), (A, B), (A, B, O), (B), (B, O), (O)}. The
main idea behind LZ77 is to look continually for the longest phrase in the look-
ahead buffer that matches a phrase currently in the dictionary. In the look-ahead
buffer and sliding window just described, the longest match is the two-symbol
phrase (A, B).

400 Chapter 14: Data Compression

Compressing and Uncompressing Data

As we compress the data, two situations can exist between the look-ahead buffer
and the sliding window at any given moment: there can either be a phrase of
some length that matches, or there may be no match at all. When there is at least
one match, we encode the longest match as a phrase token. Phrase tokens contain
three pieces of information: the offset in the sliding window where the match
begins, the number of symbols in the match, and the first symbol in the look-
ahead buffer after the match. When there is no match, we encode the unmatched
symbol as a symbol token. Symbol tokens simply contain the unmatched symbol
itself, so no compression is accomplished. In fact, we will see that symbol tokens
actually contain one bit more than the symbol itself, so a slight expansion occurs.

Once the appropriate token has been generated that encodes some number of
symbols 7, we shift # symbols out one end of the sliding window and replace
them at the other end by the same number of symbols shifted out of the look-
ahead buffer. Next, we refill the look-ahead buffer. This process keeps the sliding
window up to date with only the most recent phrases. The exact number of
phrases maintained by the sliding window and look-ahead buffer depends on their
size.

Figure 14-2 illustrates the compression of a string using LZ77 with a sliding win-
dow of 8 bytes and a look-ahead buffer of 4 bytes. In practice, typical sizes for
sliding windows are around 4K (4096 bytes). Look-ahead buffers are generally less
than 100 bytes.

We uncompress data by decoding tokens and keeping the sliding window
updated in a manner analogous to the compression process. As we decode each
token, we copy the symbols that the token encodes into the sliding window.
Whenever we encounter a phrase token, we consult the appropriate offset in the
sliding window and look up the phrase of the specified length that we find there.
Whenever we encounter a symbol token, we generate the single symbol stored in
the token itself. Figure 14-3 illustrates uncompressing the data compressed in
Figure 14-2.

Effectiveness of LZ77

The amount of compression achieved using LZ77 depends on a number of fac-
tors, such as the size chosen for the sliding window, the size set for the look-
ahead buffer, and the entropy of the data itself. Ultimately, the amount of com-
pression depends on the number of phrases we are able to match and their
lengths. In most cases, LZ77 results in better compression ratios than Huffman
coding, but compression times are considerably slower.

Description of LZ77 401

o Initially

[[T 111 [ale]ale[c[e[ale]a]8[c]al0]

o After not finding any phrase from ABAB in the sliding window and encoding A as the symbol token A
| [[[][] [ale]alelc[e[ale]a]B[c[alo] A

o After not finding any phrase from BABC in the sliding window and encoding B as the symbol token B
E[T LT 111 Ja[lATe[ce[aTs [aTe[c]alo] (a®

@ At finding AB at offset 6 in the sliding window and encoding AB as the phrase token (6, 2, ()
% | 1111 [ale]afslc|sfals|als[c|alo] iAB 6,2, 0
@ ter finding BAB ot ofset 4 inthe slding window and encoding BAB asthe phras foken (4, 3, A
E=— T [[la[ale[c[BIARIA[s[c[ap] ‘6, 2,04,3 &)
@ e finding BC at offset 2 in the lding indow and encoding BC s the phrase foken for (2,2, A
E——[s[a[s[c[s[]B]a[B]c[A]D] A B (6,2 Q4,3 A (22 A
@ After not finding D in the sliding window and encoding D s the symbol token D
E———as[[s|c[s]aJB]a[B[c]a]0] AB(6,2,Q (4,3, M (22 MD
© Vot remaining inthe ook head buffer
E———=a[s[a[s[c[s[A]B]A]8]c[A]D] AB(6,2,C) (4,3 A (2,2 AD

m 3 sliding window =1 look-ahead buffer T2 original data - compressed data

>

Figure 14-2. Compressing the string ABABCBABABCAD using LZ77

Compressing data with LZ77 is time-consuming because we spend a lot of time
searching the sliding window for matching phrases. However, in general, uncom-
pressing data with LZ77 is even faster than ucompressing data with Huffman cod-
ing. Uncompressing data with LZ77 is fast because each token tells us exactly
where to read symbols out of the buffer. In fact, we end up reading from the slid-
ing window only as many symbols as in the original data.

402 Chapter 14: Data Compression

0 Initially

mmn=——— O

o After decoding the symbol token A

B(6,2,Q)(4,3 A (22 A)D

o After decoding the symbol token B

[[] [ABEM—"+-== 6,204,380 (2,2,0D

IIIEEEBEE 1(4,3,0)(2,2,A)D

o After decoding the phrase token (4, 3, A)

|

BIAIBICIBIAIBIA% (2,2,A)D

o After decoding the phrase token (2, 2, A)
==——N0NC cIBIAIBIAIBICIA§ D
o After decoding the symhol token D

==—="nN0NNk B|A|B|A|B|C|A|D§

m 3 sliding window =1 restored data <22 compressed data

Figure 14-3. Uncompressing the string compressed in Figure 14-2 using LZ77
Interface for LZ77

Iz77_compress

int 1z77_compress (const unsigned char *original, unsigned char **compressed,

int size);
Return Value Number of bytes in the compressed data if compressing the data
is successful, or —1 otherwise.

Description Uses LZ77 to compress a buffer of data specified by original,
which contains size bytes. The compressed data is written to a buffer returned in
compressed. Since the amount of storage required in compressed is unknown to

Implementation and Analysis of LZ77 403

the caller, [z77_compress dynamically allocates the necessary storage using malloc.
It is the responsibility of the caller to free this storage using free when it is no
longer needed.

Complexity O(n), where 7 is the number of symbols in the original data.

Iz77_uncompress

int 1z77_uncompress (const unsigned char *compressed, unsigned char **original);

Return Value Number of bytes in the restored data if uncompressing the data is
successful, or —1 otherwise.

Description Uses LZ77 to uncompress a buffer of data specified by
compressed. It is assumed that the buffer contains data previously compressed
with /z77_compress. The restored data is written to a buffer returned in original.
Since the amount of storage required in original may not be known to the
caller, [z77_uncompress dynamically allocates the necessary storage using malloc.
It is the responsibility of the caller to free this storage using free when it is no
longer needed.

Complexity O(n), where 7 is the number of symbols in the original data.

Implementation and Analysis of LZ77

With LZ77, we try to compress data by encoding phrases from a look-ahead buffer
as tokens referencing phrases in a sliding window. To uncompress the data, we
decode each token into the phrase or symbol it represents. To do this, we must
continually update the sliding window so that at any one time it looks the same as
it did during the compression process. In the implementation presented here, a
symbol in the original data is one byte.

Iz77_compress

The [z77_compress operation (see Example 14-5) compresses data using LZ77. It
begins by writing the number of symbols in the data to the buffer of compressed
data and initializing the sliding window and look-ahead buffer. The look-ahead
buffer is then loaded with symbols.

Compression takes place inside of a loop that iterates until there are no more sym-
bols to process. We use ipos to keep track of the current byte being processed in
the original data, and opos to keep track of the current bit we are writing to the
buffer of compressed data. During each iteration of the loop, we call compare_win
to determine the longest phrase in the look-ahead buffer that matches one in the
sliding window. The compare_win function returns the length of the longest match.

404 Chapter 14: Data Compression

When a match is found, compare_win sets offset to the position of the match in
the sliding window and next to the symbol in the look-ahead buffer immediately
after the match. In this case, we write a phrase token to the compressed data (see
Figure 14-4a). Phrase tokens in the implementation presented here require 12 bits
for offsets because the size of the sliding window is 4K (4096 bytes). Phrase
tokens require 5 bits for lengths because no match will exceed the length of the
look-ahead buffer, which is 32 bytes. If a match is not found, compare_win returns
0 and sets next to the unmatched symbol at the start of the look-ahead buffer. In
this case, we write a symbol token to the compressed data (see Figure 14-4b).
Whether we write a phrase or symbol token to the compressed data, before actu-
ally writing the token, we call the network function hton/ as a convenient way to
ensure that the token is in big-endian format. This is the format required when we
actually store the compressed data as well as when we uncompress it.

o

|'| | offset in sliding window (12 bits) | length (5 bits) | unmatched symbol (8 bits)

‘ 26 bits ‘
|0| unmatched symhol (8 bits) |

‘ 9 bits ‘

Figure 14-4. The structure of (a) a phrase token and (b) a symbol token in LZ77

Once we write the appropriate token to the buffer of compressed data, we adjust
the sliding window and the look-ahead buffer. To move the data through the slid-
ing window, we shift data in from the right side of the window and out the left.
We do the same for the look-ahead buffer. The number of bytes we move is equal
to the number of symbols we encode in the token.

The runtime complexity of /z77_compress is O(n), where n is the number of sym-
bols in the original data. This is because for each of the #7/c¢ tokens in which the
data is encoded, where 1/c is a constant factor that represents how efficiently sym-
bols are encoded in phrase tokens, we call compare_win once. The compare_win
function runs in a constant amount of time because the size of the sliding window
and look-ahead buffer are both constant. However, these constants are large and
contribute significantly to the overall running time of Ilz77_compress. Thus, the
runtime complexity of /z77_compress is O(n), but its actual running time is greatly
affected by constant factors. This explains the generally slow performance of LZ77
when compressing data.

Implementation and Analysis of LZ77 405

[z77_uncompress

The 1277 _uncompress operation (see Figure 14-4) uncompresses data previously
compressed with [z77 _compress. It begins by reading the number of symbols in
the compressed data and initializing the sliding window and look-ahead buffer.

Uncompressing the data takes place inside a loop that iterates until there are no
more symbols to process. We use ipos to keep track of the current bit being pro-
cessed in the compressed data, and opos to keep track of the current byte we are
writing to the buffer of restored data. During each iteration of the loop, we first
read one bit from the compressed data to determine the type of token we are
about to decode.

At the start of interpreting a token, if the first bit read is 1, we have encountered a
phrase token. Thus, we read each of its members, look up the phrase in the slid-
ing window, and write the phrase to the buffer of restored data. As we look up
each phrase, we call the network function ntoh/ to ensure that the byte ordering of
its offset and length in the window are correct for the system. This step is required
because both the offset and length are in big-endian format when read from the
compressed data. The look-ahead buffer is used as a convenient place to tempo-
rarily store the data before copying it into the sliding window. Last, we write the
unmatched symbol encoded by the token. If the first bit read for the token is 0, we
have encountered a symbol token. In this case, we write the one unmatched sym-
bol it encodes to the buffer of restored data.

Once we write the decoded data to the buffer of restored data, we adjust the slid-
ing window. To move the data through the sliding window, we shift the decoded
data in from the right side of the window and out the left. The number of bytes
we move is equal to the number of symbols we decode from the token.

The runtime complexity of [z77 uncompress is O(n), where n is the number of
symbols in the original data. This is because for each of the #/c tokens in which
the data is encoded, where 1/c is a constant factor that represents how efficiently
symbols are encoded in phrase tokens, we perform the constant-time operation of
copying symbols from the sliding window to the buffer of restored data. Thus, the
runtime complexity of [z77 uncompress is O(n). Its lack of significant constant
factors explains its generally superior performance to huffman_uncompress and its
vast improvement in actual running time over /z77_compress.

Example 14-5. Implementation of LZ77

/***

* *
e 1277.C =mmmmmmm e *
* *

***/

406 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>

#include "bit.h"
#include "compress.h"

/***

* *
B ittt compare_win —-——-—-———=-——-———— *
* *

***/

static int compare win(const unsigned char *window, const unsigned char
*buffer, int *offset, unsigned char *next) ({

int match,
longest,
i,
3,
k;

/***

* *
* 1Initialize the offset, although it is valid only once a match is found. *
* *

***/

*offset = 0;

/***

* *
* If no match is found, prepare to return 0 and the next symbol in the *
* look-ahead buffer. *
* *

***/

longest = 0;
*next = buffer[0];

/***

* *
* Look for the best match in the look-ahead buffer and sliding window. *
* *

***/

for (k = 0; k < LzZ77_WINDOW_SIZE; k++) {

Implementation and Analysis of LZ77

407

Example 14-5. Implementation of LZ77 (continued)

/**

*

* Determine how many symbols match in the sliding window at offset k.
*

**/

while (i < LZ77_WINDOW_SIZE && j < LZ77_BUFFER SIZE - 1) {

if (window[i] !'= buffer[j])
break;

match++;
1++;
J++;

/**

*

* Keep track of the offset, length, and next symbol for the best match.

*

**/

if (match > longest) {
*offset = k;

longest = match;
*next = buffer([j];

return longest;

/***

***/

int 1z77_compress (const unsigned char *original, unsigned char **compressed,
int size) {

unsigned char window [LZz77_WINDOW_SIZE],
buffer[Lz77_BUFFER_SIZE],
*comp,
*temp,
next;

408 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

int offset,
length,
remaining,
hsize,
ipos,
opos,
tpos,
i;

/***

* *
* Make the pointer to the compressed data not valid until later. *
* *

***/

*compressed = NULL;

/***

* *
* Write the header information. *
* *

***/

hsize = sizeof (int);

if ((comp = (unsigned char *)malloc (hsize)) == NULL)
return -1;

memcpy (comp, &size, sizeof (int));

/***

* *
* Initialize the sliding window and the look-ahead buffer. *
* *

***/

memset (window, 0, LZ77_WINDOW_SIZE) ;
memset (buffer, 0, LZ77_BUFFER_SIZE) ;

/***

* *
* Load the look-ahead buffer. *
* *

***/

ipos = 0;

for (i = 0; i < LZ77_BUFFER_SIZE && ipos < size; i++) {

buffer[i] = originall[ipos];
ipos++;

Implementation and Analysis of LZ77 409

Example 14-5. Implementation of LZ77 (continued)

/***

* *
* Compress the data. *
* *

‘k**/

opos = hsize * 8;
remaining = size;

while (remaining > 0) {

if ((length = compare win(window, buffer, &offset, &next)) != 0) {

/***

* *
* Encode a phrase token. *
* *

***/

token = 0x00000001 << (LZ77_PHRASE_BITS - 1);

/***

* *
* Set the offset where the match was found in the sliding window. *
* *

‘k**/

token = token | (offset << (LZ77_PHRASE_BITS - LZ77_TYPE BITS -
LZ77_WINOFF_BITS)) ;

/***

* *
* Set the length of the match. *
* *

‘k**/

token = token | (length << (LZ77_PHRASE BITS - LZ77_TYPE BITS -
LZ77_WINOFF_BITS - LZz77_BUFLEN_BITS)) ;

/***

* *
* Set the next symbol in the look-ahead buffer after the match. *
* *

‘k**/

token = token | next;

/***

* *
* Set the number of bits in the token. *
* *

***/

410 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

tbits = LZ77_PHRASE BITS;

else {

/***

* *
* Encode a symbol token. *
* *

‘k**/

token = 0x00000000;

/***

* *
* Set the unmatched symbol. *
* *

***/

token = token | next;

/***

* *
* Set the number of bits in the token. *
* *

***/

tbits = LZ77_SYMBOL_BITS;

/**
* *
* Ensure that the token is in big-endian format. *
* *

**/

token = htonl (token) ;

/**

* *
* Write the token to the buffer of compressed data. *
* *

**/

for (i = 0; 1 < tbits; i++) {

if (opos % 8 == 0) {

Implementation and Analysis of LZ77 411

Example 14-5. Implementation of LZ77 (continued)

/**

* *
* Allocate another byte for the buffer of compressed data. *
* *

‘k***/

if ((temp = (unsigned char *)realloc (comp, (opos / 8) + 1)) == NULL) {

free (comp) ;
return -1;

comp = temp;

tpos = (sizeof (unsigned long) * 8) - tbits + 1i;
bit_set (comp, opos, bit_get((unsigned char *)&token, tpos));

OpOS++;
}
/**
* *
* Adjust the phrase length to account for the unmatched symbol. *
* *

**/

length++;

/**

* *
* Copy data from the look-ahead buffer to the sliding window. *
* *

**/

memmove (&window([0], &window[length], LZ77_WINDOW_SIZE - length);
memmove (&window [Lz77_WINDOW_SIZE - length], &buffer[0], length);

/**

* *
* Read more data into the look-ahead buffer. *
* *

**/

memmove (&buffer[0], &buffer[length], LZ77_BUFFER_SIZE - length);

for (i = LZ77_BUFFER_SIZE - length; i<LZ77_BUFFER _SIZE && ipos<size; i++) {

buffer[i] = original[ipos];
ipos++;

412 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

/**

* *
* Adjust the total symbols remaining by the phrase length. *
* *

‘k***/

remaining = remaining - length;

}

/***
* *
* Point to the buffer of compressed data. *
* *

***/

*compressed = comp;

/***

* *
* Return the number of bytes in the compressed data. *
* *

‘k**/

return ((opos - 1) / 8) + 1;

/***
* *
F e 1z77_uncompress —-—-—-—-—————=—————=————————————— *
* *

***/

int 1z77_uncompress (const unsigned char *compressed, unsigned char
**original) {

unsigned char window [LZz77_WINDOW_SIZE],
buffer[Lz77_BUFFER_SIZE],
*orig,
*temp,
next;

int offset,
length,
remaining,
hsize,
size,
ipos,
opos,
tpos,
state,
i;

Implementation and Analysis of LZ77 413

Example 14-5. Implementation of LZ77 (continued)

/***

* *
* Make the pointer to the original data not valid until later. *
* *

***/

*original = orig = NULL;

/***

* *
* Get the header information. *
* *

***/

hsize = sizeof (int);
memcpy (&size, compressed, sizeof (int));

/***

* *
* Initialize the sliding window and the look-ahead buffer. *
* *

***/

memset (window, 0, LZ77_WINDOW_SIZE) ;
memset (buffer, 0, LZ77_BUFFER_SIZE);

/***

* *
* Uncompress the data. *
* *

***/

ipos = hsize * §;
opos = 0;
remaining = size;

while (remaining > 0) {

/**

* *
* Get the next bit in the compressed data. *
* *

**/

state = bit_get (compressed, ipos);
ipos++;

if (state == 1) {

414 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

/***

* *
* Handle processing a phrase token. *
* *

***/

memset (&offset, 0, sizeof(int));
for (i = 0; i < Lz77_WINOFF_BITS; i++) {
tpos = (sizeof(int) * 8) - LZ77_WINOFF_BITS + i;

bit_set ((unsigned char *)&offset, tpos, bit_get (compressed, ipos));
ipos++;

memset (&length, 0, sizeof (int));
for (i = 0; i < LZ77_BUFLEN_BITS; i++) {
tpos = (sizeof (int) * 8) - Lz77_BUFLEN_BITS + i;

bit_set ((unsigned char *)&length, tpos, bit_get (compressed, ipos));
ipos++;

next = 0x00;
for (i = 0; i < LZ77_NEXT BITS; i++) {

tpos = (sizeof (unsigned char) * 8) - LZ77_NEXT BITS + 1i;
bit_set ((unsigned char *)&next, tpos, bit_get (compressed, ipos));

ipos++;
}
/***
* *
* Ensure that the offset and length have the correct byte ordering *
* for the system. *
* *

***/

offset = ntohl (offset) ;
length = ntohl (length) ;

/***

*

* Write the phrase from the window to the buffer of original data.

*

*

*

*

***/

i=0;

Implementation and Analysis of LZ77

415

Example 14-5. Implementation of LZ77 (continued)

if (opos > 0) {

if

((temp = (unsigned char *)realloc(orig, opos+length+1l)) == NULL)

free(orig) ;
return -1;

{

}
orig = temp;
}

else {
if ((orig = (unsigned char *)malloc(length + 1)) == NULL)

return -1;

}

while (i < length && remaining > 0) {
origl[opos] = window[offset + i];
OpOS++;
/**
* *
* Record each symbol in the look-ahead buffer until ready to *
* update the sliding window. *
* *
‘k*****‘k**‘k********‘k*****‘k**‘k********‘k*****‘k**‘k**********************/
buffer[i] = window[offset + i];
i++;
/**
* *
* Adjust the total symbols remaining to account for each symbol *
* consumed. *
* *
**/
remaining--;

}

/***

*

* Write the unmatched symbol to the buffer of original data.

*

*

*

*

***/

416 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

if (remaining > 0) {

orig[opos] = next;
OpOS++;

/**

* *
* Also record this symbol in the look-ahead buffer. *
* *

**/

buffer[i] = next;

/**
* *
* Adjust the total symbols remaining to account for the unmatched *

* symbol. *

* *

**/

remaining--;

}

/***
* *
* Adjust the phrase length to account for the unmatched symbol. *
* *

***/

length++;

else {

/***

* *
* Handle processing a symbol token. *
* *

***/
next = 0x00;
for (i = 0; i < LZ77_NEXT BITS; i++) {

tpos = (sizeof (unsigned char) * 8) - LZ77_NEXT BITS + 1i;

bit_set ((unsigned char *)&next, tpos, bit_get (compressed, ipos));
ipos++;

Implementation and Analysis of LZ77

417

Example 14-5. Implementation of LZ77 (continued)

/***

* *
* Write the symbol to the buffer of original data. *
* *

***/

if (opos > 0) {

if ((temp = (unsigned char *)realloc(orig, opos + 1)) == NULL) {

free(orig) ;
return -1;

orig = temp;

else {

if ((orig = (unsigned char *)malloc(l)) == NULL)
return -1;

orig[opos] = next;
OpOS++;

/***

* *
* Record the symbol in the look-ahead buffer until ready to update *
* the sliding window. *
* *

***/

if (remaining > 0)
buffer[0] = next;

/***

* *
* Adjust the total symbols remaining to account for the unmatched *
* symbol. *
* *

***/

remaining--;

/***

* *
* Set the phrase length to account for the unmatched symbol. *
* *

***/

418 Chapter 14: Data Compression

Example 14-5. Implementation of LZ77 (continued)

length = 1;
}
/**
* *
* Copy the look-ahead buffer into the sliding window. *
* *

**/

memmove (&window([0], &window[length], LZ77_WINDOW_SIZE - length);
memmove (&window [Lz77_WINDOW_SIZE - length], &buffer[0], length);

/***

*

*

*

*
Point to the buffer of original data. *
*

***/

*original = orig;

/***

*

*

*

*
Return the number of bytes in the original data. *
*

***/

return opos;

Questions and Answers

Q: There are certain cases where compressing data may generate poor results.

A:

When might we encounter this with Huffman coding?

Effective compression with Huffman coding depends on symbols occurring in
the data at varying frequencies. If all possible symbols occur at nearly the
same frequency, poor compression results. Huffman coding also performs
poorly when used to compress small amounts of data. In this case, the space
required by the table in the header negates the compression achieved in the
data. Fortunately, these limitations are not normally a problem because the
symbols in most data are not uniformly distributed, and we are usually not
interested in compressing small amounts of data.

Q: Just as with Huffman coding, there arve certain cases in which LZ77 achieves

poor compression. What are some of these cases?

Questions and Answers 419

A:

Effective compression with LZ77 depends on being able to encode many
sequences of symbols using phrase tokens. If we generate a large number of
symbol tokens and only a few phrase tokens representing predominantly short
phrases, poor compression results. An excessive number of symbol tokens
may even cause the compressed data to be larger than the original data itself.
This occurs when the sliding window is made too small to take advantage of
recurring phrases effectively.

In the implementation of both Huffman coding and LZ77 presented in this
chapter, the end of the compressed data is recognized by counting symbols. This
means we must store a symbol count along with the compressed data itself.
What is another approach to recognizing the end of the data? What impact
would this bave on each implementation?

When uncompressing data, we must have a way to determine exactly where
the data ends. An alternative to storing a symbol count is to encode a special
end-of-data symbol. In the implementations in this chapter, this would mean
encoding 257 symbols instead of 256. To account for this with Huffman cod-
ing, we need only make the symbol member of the HuffNode structure a
short integer instead of an unsigned character. Thus, the size of the com-
pressed data is affected very little. On the other hand, in the implementation
of LZ77, without substantial changes to the way we interpret tokens, we
would need to store an extra bit with each token to represent the 257 possi-
ble symbols. Thus, the size of the compressed data would increase, making
this method less effective than simply counting symbols.

With LZ77, what factors must be balanced in selecting the size of the sliding
window? What factors must be balanced in selecting the size of the look-ahead

buffer?

Recall that the implementation of LZ77 presented in this chapter used a slid-
ing window 4K (4096 bytes) in size and a look-ahead buffer of 32 bytes,
which are common choices. The size of the sliding window determines how
far back in the data we search for matching phrases. Generally, it is a good
idea to search quite far back to allow a good opportunity for matches. How-
ever, we must balance this against the time it takes to search through the slid-
ing window. Also, we must balance this against the space penalty of using
more bits for offsets in phrase tokens. The size we choose for the look-ahead
buffer determines the maximum length of phrases we can match. If the data
has many long phrases that are duplicated, choosing a buffer size that is too
small results in multiple phrase tokens where we might otherwise get just one.
However, we must balance this against the space penalty of using more bits
for lengths in phrase tokens.

In Huffman coding, how might we decrease the space required by the header at
the front of compressed data? Are there any problems associated with this?

420 Chapter 14: Data Compression

A: Recall that in the implementation of Huffman coding presented in this chapter
a header was prepended to the compressed data. This header contained a
table of 256 entries, one entry for each possible symbol. If several symbols
have frequencies of 0, this is somewhat wasteful. For example, when com-
pressing ASCII text, many symbols are not used, so their frequencies are 0. A
better approach to storing the table in this case is to use count runs. A count
run consists of the value of a starting symbol ¢ followed by a length / It tells
us that the next / entries in the table will be entries for the symbols ¢, ¢ + 1,

.., ¢+ 1—1. In many cases, this reduces the size of the table. However, when
the table is nearly full to begin with, it actually increases the table size slightly.

Q: Ome of the most costly aspects of LZ77 is scanning the sliding window for
maltching phrases. How can we improve the performance of this?

A: LZ77 looks for matching phrases by comparing portions of the sliding win-
dow to portions of the look-ahead buffer essentially symbol by symbol. A
more effective approach is to replace the sliding window with some type of
data structure for efficient searching. For example, we might use a hash table
(see Chapter 8, Hash Tables) or a binary search tree (see Chapter 9) to store
phrases encountered earlier. In fact, this is the approach employed by several
more efficient variations of LZ77 (see the related topics at the end of the chap-
ter).

Q: Considering the performance differences and compression normally achieved
by Huffman coding and LZ77, when might we use one over the other?

A: LZ77 generally results in better compression than Huffman coding, but with a
significant performance penalty during the compression process. One situation
in which this might not pose a problem is the distribution of large software
packages. LZ77 works well here because the data only needs to be com-
pressed once (at the production facility), and clients benefit from the
considerably faster operation of uncompressing the data. On the other hand,
suppose we are sending large amounts of data across a network interactively
and would like to compress it before each transmission. In this case, for every
transmission, we must compress data on one end of the connection and
uncompress it on the other. Therefore, it is best to use Huffman coding. We
may not achieve as much compression as with LZ77, but compressing and
uncompressing together are faster.

Related Topics

Lossy compression
A broad class of approaches to data compression that do not produce an exact
copy of the original data when the data is uncompressed. Lossy compression

Related Topics 421

is useful primarily in graphics and sound applications, where a certain loss of
accuracy is acceptable in exchange for greater compression ratios, provided
the degradation is carefully managed.

Statistical modeling

The engine behind data compression methods based on minimum redun-
dancy coding. This chapter worked with an order-0 model, which simply
determines the probability of any one symbol occurring in the data. Higher-
order models look at the probabilities associated with combinations of sym-
bols to get a more accurate determination of the data’s entropy. For example,
if we encounter the symbol “Q” in text data, in many languages the probabil-
ity is high that the next symbol will be “U.” Higher-order models take consid-
erations like this into account.

Shannon-Fano coding
The first form of minimum redundancy coding. Interestingly, it came about in
the 1940s, apart from computers, as a result of experiments in information the-
ory during World War II. Shannon-Fano coding is similar to Huffman coding,
but it builds its tree from the top down instead of the bottom up.

Adaptive Huffman coding
A variation of Huffman coding that does not require that the table of frequen-
cies be passed along with the compressed data. Instead, a statistical model is
adapted as the data is compressed and uncompressed. The main benefit of
adaptive Huffman coding is in using statistical models greater than the order-0
model described earlier. An order-0 model does not require much space, but
the substantial space requirements of higher-order models make prepending a
table impractical.

Arithmetic coding
A popular method of data compression that addresses the inaccuracies in
Huffman coding brought about by entropies that are fractional values of bits.
Arithmetic coding avoids this by encoding data as a single, very long floating-
point value that can be uniquely decoded.

LZ78 (Lempel-Ziv-1978) and LZW (Lempel-Ziv-Welch) compression
Variations of LZ77 that use more effective methods than a sliding window to
keep track of previously seen phrases. Generally, each method uses some
type of data structure for efficient searching, such as a hash table (Chapter 8),
a binary tree (see Chapter 9), or a trie (see the related topics at the end of
Chapter 9), and applies some unique approach to optimizing the process of
encoding and decoding phrases.

15

Data Encryption

Data encryption, or cryptography, is the science of secrecy. Its purpose is to keep
information in the hands of those who should have it and out of the hands of
those who should not. Considering such a statement, it probably comes as no sur-
prise that cryptographic algorithms, called ciphers, historically have had profound
political, social, and ethical implications. Data encryption, like data compression, is
another product of information theory, an area of mathematics that addresses vari-
ous ways to manage and manipulate information. Data encryption entails two pro-
cesses: in one process we encipher recognizable data, called plaintext, into an
unrecognizable form, called ciphertext; in a second process we decipher the
ciphertext back into the original plaintext. The main idea behind a cipher is that
the transformation from ciphertext to plaintext should be easy if we are allowed to
read the data, yet impractical if we are not.

Ciphers use a special piece of information, called a key, for security. Once a key
has been used to encipher some data, only someone who knows the correct key
can decipher it. In fact, a fundamental characteristic of any good cipher is that its
security revolves around a key, or even several. Furthermore, the security of a
good cipher does not rely on keeping the cipher’s algorithm a secret. This idea is
similar to the security offered by a safe: even though everyone knows how a safe
works, we cannot get inside without the combination that opens the door.

One way to classify modern ciphers is by how they use keys. In this regard, a
cipher is either symmetric or asymmetric. In symmetric ciphers, the same key is
used both to encipher and decipher data. Consequently, anyone who knows the
key is able to encipher data as well as decipher it. In asymmetric ciphers, usually
called public-key ciphers, the key used to encipher data is different from the key
used to decipher it. The key used to encipher data is called the public key; the key
used to decipher data is called the private key. The public and private keys work

422

Data Encryption 423

together so that only a specific private key deciphers the data enciphered using a
specific public key. Thus, just because a party knows how to encipher data does
not necessarily mean it can decipher data; it must possess the correct private key.
Example 15-1 is a header for the ciphers presented in this chapter.

This chapter covers:

DES (Data Encryption Standard)
One of the most popular symmetric ciphers. Today it is considered reason-
ably secure, but increases in the speed of computers continue to make this
method less and less secure over time. DES is considered a very efficient
cipher, even when implemented in software.

RSA (Rivest-Shamir-Adleman)
One of the most popular public-key ciphers. RSA is considered very secure.
However, it is much slower than DES. Thus, it is often used to encrypt smaller
amounts of data, such as keys for other types of encryption, and digital signa-
tures.

Some applications of data encryption are:

Digital cash
A means of conducting financial transactions so that they can be authenti-
cated but not traced. Transactions must be authenticated so that parties
involved in the transaction are not cheated. They must be untraceable so that
the privacy of each party is protected. In practice, these are difficult require-
ments to support in tandem without special protocols.

Authentication servers
Servers charged with solving the problem of two parties at different ends of a
network talking securely. The parties must be able to exchange keys while at
the same time being sure that they are talking to one another rather than an
impostor. Authentication servers accomplish this with a variety of protocols
that rely on encryption.

Electronic mail
Data in email is typically sent across insecure channels, such as the Internet.
The widespread use and abuse of the Internet has made encrypting sensitive
electronic messages especially important in recent years.

National security
Matters of diplomacy and national defense. Historically, encryption has played
a critical role in a great number of military matters. Embassies constantly trans-
mit and receive sensitive diplomatic information, which must be kept secret,
using encryption. National security has long been the main argument cited by
the U.S. government for treating encryption technologies much like muni-
tions, with strict controls over exportation.

424 Chapter 15: Data Encryption

Digital signatures

A method of validating to whom data really belongs, much like signing a
name to a document. One method of creating a digital signature is with a
public-key cipher. To do this, party A enciphers some data using its private
key and sends it to another party B. B, thinking the data is from A4, validates
this by deciphering the data with A4’s public key. If this deciphers the data, the
data must be from A.

Computerized elections

A futuristic concept in which voting must be secure. Secure voting has several
interesting requirements, many of which require varying degrees of secrecy.
For example, no one should be able to determine for whom someone else
voted, but it may be important to know whether someone voted at all.

Smart cards

Small plastic cards containing miniature computers and small amounts of
memory. Typically, smart cards are used for various forms of credit, such as in
paying for phone calls, train rides, or postage stamps. Other smart cards pro-
vide access to computers and open doors to buildings. Smart cards use
encryption because they can do potentially powerful things like alter bank
accounts and provide access to secure environments.

Example 15-1. Header for Data Encryption

/***

***/

#ifndef ENCRYPT H
#define ENCRYPT H

/***

*

*

*

*

*

In a secure implementation, Huge should be at least 400 decimal digits, *
instead of the 10 below (ULONG_MAX = 4294967295) . *

*

***/

typedef unsigned long Huge;

/***

*

*

*

*

Define a structure for RSA public keys. *
*

***/

typedef struct RsaPubKey {

Description of DES 425

Example 15-1. Header for Data Encryption (continued)

Huge e;
Huge n;
} RsaPubKey;

/***

* *
* Define a structure for RSA private keys. *
* *

***/

typedef struct RsaPriKey_ {

Huge d;
Huge n;

} RsaPriKey;

/***

* *
K Public Interface -----------———---m—— *
* *

***/

void des_encipher (const unsigned char *plaintext, unsigned char *ciphertext,
const unsigned char *key);

void des_decipher (const unsigned char *ciphertext, unsigned char *plaintext,
const unsigned char *key);

void rsa_encipher (Huge plaintext, Huge *ciphertext, RsaPubKey pubkey) ;
void rsa_decipher (Huge ciphertext, Huge *plaintext, RsaPriKey prikey) ;

#endif

Description of DES

DES (Data Encryption Standard) is one of the most popular symmetric ciphers.
DES is symmetric because it uses a single key both to encipher and decipher data.
This is useful in situations in which parties that encipher data are allowed to deci-
pher data as well. DES is a block cipher, which means that it processes data in
fixed-size sections called blocks. The block size of DES is 64 bits. If the amount of
data to be encrypted is not an even multiple of 64 bits, it is padded in some appli-
cation-specific way.

DES is considered reasonably secure, and it runs fast, even in software. However,
as with many ciphers, the security of DES has never been proven publicly. Never-
theless, the algorithm has stood up to years of cryptanalysis, which does suggest a

426 Chapter 15: Data Encryption

certain level of confidence. Even so, as computing speeds continue to increase,
DES becomes less and less secure. Today, its security is challenged regularly in
contests that offer cash prizes to those who can crack messages encrypted with
DES the fastest.

At its essence, the security of DES revolves around smoke and mirrors, or in cryp-
tographic lingo, the principles of confusion and diffusion. The goal of confusion is
to hide any relationship between the plaintext, the ciphertext, and the key. The
goal of diffusion is to spread the effect of bits in the plaintext and the key over as
much of the ciphertext as possible. Together, these make cryptanalysis very
difficult.

With DES, we encipher a block of plaintext by performing a series of permuta-
tions and substitutions on it. Exactly how the permutations and substitutions affect
the original plaintext is essentially a function of 16 subkeys, K, K3, . .., K,
derived from a starting key, K;, which is the key we provide. To encipher a block
of plaintext, each subkey is applied to the data in order (Kj, K5, . . ., Kjg) using a
series of operations repeated 16 times, once for each key. Each iteration is called a
round. Deciphering a block of ciphertext uses the same process but with the keys
applied in reverse order (K6, Kis, . . ., K7).

Computing Subkeys

The first step in DES is to compute the 16 subkeys from the initial key. Figure 15-1
illustrates this process. DES uses a key that is 56 bits; however, the key we pro-
vide is a 64-bit value. This is so that in hardware implementations every eighth bit
can be used for parity checking. In software, the extra bits are simply ignored. To
obtain the 56-bit key, we perform a key transformation as shown in Table 15-1. To
interpret this table, read from left to right, top to bottom. Each position p in the
table contains the position of the bit from the initial key that occupies position p in
the transformed key. For example, using Table 15-1, bit 57 of the initial key
becomes bit 1 of the transformed key, bit 49 becomes bit 2, and so forth. The con-
vention is to number bits from left to right starting at 1.

Table 15-1. The Key Transformation in DES

57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23 15, 7, 62, 54, 46, 38, 30, 22,
14 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4

)

After transforming the key to 56 bits, we compute the subkeys. To do this, we first
divide the 56-bit key into two 28-bit blocks. Next, for each subkey, we rotate both
blocks an amount that depends on the round in which the subkey will be used

Description of DES 427

| Ky (64 bis) |

| K (56 bis) |
ubkey for round 1 [

’

Figure 15-1. Computing subkeys in DES

(see Table 15-2), then rejoin the blocks. After this, we reduce the 56-bit subkey
formed from the rejoined blocks to 48 bits by permuting it as shown in Table 15-3.
(This table is read like Table 15-1.) Note that Table 15-3 contains two fewer col-
umns because 8 bits are discarded. This permutation is called the permuted choice.
This process is repeated once for each of the 16 subkeys. All together, the goal
here is to ensure that we apply different bits from the initial key to the data in
each round.

Table 15-2. The Number of Rotations per Round for DES Subkeys

Round | 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
Rotations‘ 11 2 2 2 2 2 2 1 2 2 2 2 2 2 1

428 Chapter 15: Data Encryption

Table 15-3. The Permuted Choice for DES Subkeys

14, 17, 11, 24, 1, , 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 20, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32

o W

Encipbering and Deciphering Data Blocks

Once we have prepared the subkeys, we are ready to encipher or decipher data
blocks. Figure 15-2 illustrates this process. We begin by permuting the 64-bit data
block as shown in Table 15-4. (This table is read like Table 15-1.) This permuta-
tion is aptly named the initial permutation. It does not enhance the security of
DES, but is believed to have been added to make data easier to load into DES
chips before the advent of 16-bit and 32-bit buses. Although anachronistic, the per-
mutation should still be performed in order to comply with the DES standard. After
the initial permutation, the 64-bit data block is divided into two 32-bit blocks, L
and Ry.

Table 15-4. The Initial Permutation for Data Blocks in DES

58, 50, 42, 34, 26, 18, 10,
62, 54, 46, 38, 30, 22, 14,
57, 49, 41, 33, 25 17, 9,
61, 53, 45, 37, 29, 21, 13,

60, 52, 44, 36, 28 20, 12,
64, 56, 48, 40, 32, 24, 16,
59, 51, 43, 35, 27, 19, 11,
63, 55, 47, 39, 31, 23, 15,

AR S N

N 0 A

After completing the initial permutation, the data block moves through a series of
operations that are repeated for 16 rounds. The goal of each round i is to com-
pute Z; and R;, which are used by the next round, until we finally end up with the
data block Rygl15. We begin each round with Z;_ 1 and R;_ 4, and expand R;_1
from 32 to 48 bits using the expansion permutation, as shown in Table 15-5. (This
table is read like Table 15-1.) The primary purpose of this permutation is to create
an avalanche effect when enciphering data. This makes one bit in the data block
affect more bits in the step to follow, and thus produces diffusion. Once the
expansion permutation is complete, we compute the XOR (denoted @) of the 48-
bit result and Kj, the subkey for the round. This produces an intermediate 48-bit
result, which is called Rj;,;. If we let E be the expansion permutation, the opera-
tions thus far in the round can be expressed as:

R = E(R;_1) ® K,

Next, R;,; undergoes eight substitutions performed using eight separate S-boxes.
Each S-box j takes a six-bit block from position 6j to 65 + 6 in R;,; and looks up a

Description of DES 429

ciphertext or plaintext (64 bits) |

inifial permutation

| I, (32bis) R, (32 bis) |

encipher

round 16___

i _encipher) k or decipher
(o] e
' A ———— i !
: Y :
; v \ 4 :
| Rig=L,s® F(R oK) | | Lo=Ris |

| plaintext or ciphertext (64 bits) |

Figure 15-2. Enciphering and decipbering data blocks in DES

four-bit value for it in a table (see Table 15-6). This value is written to a buffer at
position 4 (see Figure 15-3).

430 Chapter 15: Data Encryption

Table 15-5. The Expansion Permutation for Data Blocks in DES

32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,

8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,

24, 25, 26, 27, 28 29 28 29 30, 31, 32 1
j=1 j=2 ji=3 j=4 ji=5 =6 ji=1 ji=8

001010(101110)101011}011110]101011|101100(101000]100001

1111 0001 1001 1111 1110 1100 1100 0010

Figure 15-3. Eight S-box substitutions for a data block in DES

To read Table 15-6, find S-box j, look up the row number having the two-bit value
formed by the first and last bit of the six-bit block, and find the column having the
four-bit value formed by the middle bits of the six-bit block (both zero-indexed). For
example, in Figure 15-2, the third six-bit block in R;;,; is 101011. Therefore, we con-
sult the third S-box in Table 15-6 to find 9, the four-bit value found in row 11, = 3
and column 0101, = 5 (both zero-indexed). S-boxes add confusion to the data, and
more than anything else give DES its security. Consequently, they have also long
been the source of great scrutiny. Some groups even suspect that they may include a
back door by their designers. No one knows, or at least admits to knowing.

Table 15-6. The S-Box Substitutions for Data Blocks in DES

SBox 1
14, 4, 13, 1, 2, 15, 11, 8 3, 10, 6, 12, 5 9 0, 7,
0, 15, 7, 4 14, 2, 13, 1, 10, 6, 12, 11, 9, 5 3 8
.1, 14, 8, 13, , 2, 11, 15, 12, 9, 7, 3, 10, 5 0,
15, 12, 8 2, 4 9 1, 7, 5 11, 3, 14, 10, 0, 6, 13
SBox 2
15, 1, 8 14, 6, 11, 3, 4, 9 7, 2 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8 14, 12, o0, 1, 10, 6, 9 11, 5,
0, 14, , 11, 10, 4, 13, 1, 5 8 12, 6, 9, 3 2 15
13, 8 10, 1, 3, 15, 4, 2, 11, 6 7, 12, 0, 5 14, 9

Description of DES 431

Table 15-6. The S-Box Substitutions for Data Blocks in DES (continued)

S-Box 3
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3 , 6, 10, 2, 8 5 14, 12, 11, 15 1,
13, 6, 4, 9 8 15, , , 11, 1, 2, 12, 5, 10, 14, 7
1, 10, 13, 0, 6, 9, , .4, 15, 14, 3, 11, 5, 2, 12

S-Box 4
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8 11, 5, 6, 15, .3, 4, 7, 2 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, , 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, , 14

S-Box 5
2, 12, 4, 1, 7, 10, 11, 6, 8 5 3 15, 13, 0, 14, 9,
14, 11, , 12, 4, 7, 13, , , , 15, 10, 3, 9 8 6,
4, , 1, 11, 10, 13, 7, 8, 15, , 12, 5, 6, 3, , 14
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, , 3

S-Box 6
12, 1, 10, 15, 9, 2, , 8, . 13, 3, 4, 14, 7, , 11,
10, 15, 4, 2, 7, 12, 9, , , 1, 13, 14, 0, 11, , 8,
9, 14, 15, 5 2 8 12, 3 7. 0, 4, 10, 1, 13, 11, .
4, 3 2 12, 9 5 15 10, 11, 14, 1, 7, 6, 0, 8, 13

S-Box 7
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, , 10, 6, ,
13, 0, 11, 7, 4, 9, , 10, 14, 3, 5, 12 , 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, , , 9,)
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, , 3, 12

S-Box 8
13, 2, 8 4, 6, 15, 11, 1, 10, 9, 3, 14, 5 0, 12, 7,
, 15, 13, 8, 10, 3, 7, 4, 12, 5 6, 11, 0, 14, 9, 2
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5 8,
, 1, 14, 7, 4, 10, 8 13, 15 12, 9, 0, 3, 5 6, 11

Once we have completed the S-box substitutions, the result is a 32-bit value that
we permute using a P-box, as shown in Table 15-7. (This table is read like
Table 15-1.)

Table 15-7. The P-Box Permutation for Data Blocks in DES

16, 7, 20, 21, 29, 12, 28 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9 19, 13, 30, 6, 22, 11, 4, 25

432 Chapter 15: Data Encryption

At this point, it is convenient to think of the operations in the round as a function,
typically denoted as /. If b;is the jth six-bit block of Ry, S;is the jth S-box, and P
is the P-box permutation, this function is defined as:

[= P(S(b), Sy(by), ..., Sy(by)

The last operation in each round is to compute the XOR of the 32-bit result of f
and the original left block passed into the round, Z; _ 1. Once this is complete, we
swap the left and right blocks and begin the next round. In the last round, how-
ever, we do not swap the left and right blocks. All together, the computations for
L; and R; in each round can be concisely expressed as follows:

Li= R,
Ri= L 1@ f(R,_y, K)

When all 16 rounds have been completed, we concatenate the final right block,
Ry, with the final left block, Ljg, to produce the 64-bit block Rigl16. (Recall that
the left and right blocks are not swapped in the final round; thus, we have the last
right block on the left and the last left block on the right.) The final step is to per-
mute Rjgl1 as shown in Table 15-8. This permutation is aptly named the final
permutation. It simply undoes what the initial permutation did earlier. When enci-
phering data, the result is a 64-bit block of ciphertext; when deciphering data, it is
the original 64-bit block of plaintext.

Table 15-8. The Final Permutation for Data Blocks in DES

40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, S50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25

Interface for DES

des_encipber

void des_encipher (const unsigned char *plaintext, unsigned char *ciphertext,
unsigned char *key);

Return Value None.

Description Uses DES to encipher one 64-bit block of plaintext specified by
plaintext. Specify the 64-bit key in key. (Recall that every eighth bit of this key
is ignored, resulting in a 56-bit key.) The 64-bit block of ciphertext is returned in
ciphertext. It is the responsibility of the caller to manage the storage required in
ciphertext. To encipher a large buffer of data, call des_encipher in accordance

Implementation and Analysis of DES 433

with a block cipher mode (see the example later in this chapter). For efficiency,
des_encipher can reuse the subkeys computed during a previous call. To enable
this, set key to NULL in subsequent calls.

Complexity o)

des_decipher

void des_decipher (const unsigned char *ciphertext, unsigned char *plaintext,
unsigned char *key);

Return Value None.

Description Uses DES to decipher one 64-bit block of ciphertext specified by
ciphertext. It is assumed that ciphertext contains data previously enciphered
with des_encipber. Specify the 64-bit key in key. (Recall that every eighth bit of
this key is ignored, resulting in a 56-bit key.) The 64-bit block of plaintext is
returned in plaintext. It is the responsibility of the caller to manage the storage
required in plaintext. To decipher a large buffer of data, call des_decipber in
accordance with the block cipher mode used to encipher the data. For efficiency,
des_decipber can reuse the subkeys computed during a previous call. To enable
this, set key to NULL in subsequent calls.

Complexity o

Implementation and Analysis of DES

Considering the amount of bit twiddling in DES, it probably comes as no surprise
that it is frequently implemented in hardware. Even the figures and terminology asso-
ciated with DES (diagrams drawn with boxes and lines, and terms such as S-boxes
and P-boxes) tend to suggest a certain affinity toward hardware implementations.
Nevertheless, software implementations have their place as well. In software, it is
helpful to have several basic operations to assist in carrying out the numerous per-
mutations, transformations, and substitutions that DES requires. For this purpose,
the implementation presented here makes use of the bit operations presented in
Chapter 14, Data Compression. The details of each permutation, transformation,
and substitution are defined by the tables at the beginning of Example 15-2. These
match the tables presented earlier in the text.

des_encipher

The des_encipber operation (see Example 15-2) enciphers a 64-bit block of plain-
text using DES. Since one of the nice properties of DES is that the same process
can be used both to encipher and decipher data, des_encipber simply calls des_
main, which des_decipher calls as well. The des_main function uses its

434 Chapter 15: Data Encryption

direction argument to determine whether to encipher or decipher the data pro-
vided in source. The direction argument simply alters the order in which sub-
keys are applied. In the case of des_encipber, we set direction to encipher.

The des_main function begins by testing whether key is NULL. This allows a caller
of des_encipher to reuse subkeys computed during a previous call. To accommo-
date this, we declare the subkeys array as static. If key is not NULL, we compute
the subkeys. To do this, we perform the steps presented earlier. The key transfor-
mation is performed using the function permute, which permutes bits in a buffer
according to a specified table. Assuming that in each position i of a table there is
some value p, permute permutes the buffer passed to it by moving the bit at posi-
tion p to position 2.

To transform the key, we pass permute the table Des_Transform (the same table
as in Table 15-1). The necessary rotations are performed by calling the bit opera-
tion bit_rot_left. This operation rotates a buffer to the left by a specified number of
bits. To rotate the 28-bit subkey blocks the correct amount for each round, we
pass bit_rot_left the appropriate element from the table Des_Rotations (the same
table as in Table 15-2). We apply the permuted choice to each subkey by calling
permute and passing it the table Des Permuted (the same table as in Table 15-3).

To encipher a data block, we begin by performing the initial permutation. To do
this, we call permute and pass it the table Des_Initial (the same table as in
Table 15-4). Next, we divide the data into two 32-bit blocks, 1blk and rblk.
Recall that most of the work in enciphering data takes place in a series of opera-
tions repeated over 16 rounds. The majority of each round is spent computing the
value of the function f; which is stored in fblk as we go.

We begin each round by performing an expansion permutation on rblk To do
this, we call permute and pass it the table Des Expansion (the same table as in
Table 15-5). Next, we call the bit operation bit_xor to compute the XOR of the
expanded right block and the appropriate subkey. The subkey depends on the
round we are executing and whether we are enciphering or deciphering data.
Once the XOR has been computed, we perform a series of S-box substitutions on
the result. Des_Sbox defines the eight S-boxes used by DES (the same S-boxes as
in Table 15-6). We look up each substitution exactly as described earlier. That is,
for each six-bit block 7 in the current fblk, the first and last bits are joined to
determine the appropriate row in the table defined by Des_Shox, and the middle
four bits are joined to form the column. We complete the computation of /by per-
forming the P-box permutation. To do this, we call permute and pass it the table
Des_Pbox (the same table as in Table 15-7). We complete each round by comput-
ing the XOR of Iblk and the value of function f, and swapping 1blk and rblk.

We repeat this process 16 times, once for each round. After all 16 rounds are com-
plete, we copy rblk into the first 32 bits of target and 1blk into the second 32

Implementation and Analysis of DES 435

bits (effectively negating the last swap of the left and right blocks, as is required).
At last, we perform the final permutation by calling permute and passing it the
table Des_Final (the same table as in Table 15-8).

The runtime complexity of des_encipher is O(1) because all of the steps in enci-
phering a block of data run in a constant amount of time.

des_decipher

The des_decipher operation (see Example 15-2) deciphers a 64-bit block of cipher-
text enciphered using DES. Like des_encipher, des_decipher actually calls des_
main to decipher the data, but with direction set to decipher. Thus, des_
decipber works just like des_encipher, except that the subkeys are applied in
reverse order. Specifically, in des_main, for each round 1 (starting at 0), we apply
the subkey in element 15 — i of subkeys.

The runtime complexity of des_decipher is O(1) because all of the steps in deci-
phering a block of data run in a constant amount of time.

Example 15-2. Implementation of DES

/***

* *
* e des.c ——————————————————mm *
* *

***/

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "bit.h"
#include "encrypt.h"

/***

* *
* Define a mapping for the key transformation. *
* *

***/

static const int DesTransform[56] = {

57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4

436 Chapter 15: Data Encryption

Example 15-2. Implementation of DES (continued)

/***

* *
* Define the number of rotations for computing subkeys. *
* *

***/

static const int DesRotations[16] = {

1, 1,2,2,2,2,2,2,1,2,2,2,2,2,2,1

}:

/***

* *
* Define a mapping for the permuted choice for subkeys. *
* *

***/

static const int DesPermuted[48] = {

14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32

}:

/***

* *
* Define a mapping for the initial permutation of data blocks. *
* *

***/

static const int DesInitial[64] = {

58, 50, 42, 34, 26, 18, 10,
62, 54, 46, 38, 30, 22, 14,
57, 49, 41, 33, 25, 17, 9,
61, 53, 45, 37, 29, 21, 13,

60, 52, 44, 36, 28, 20, 12,
64, 56, 48, 40, 32, 24, 16,

U= o N
N W oo

, 63, 55, 47, 39, 31, 23, 15,

}:

/***

* *
* Define a mapping for the expansion permutation of data blocks. *
* *

***/

static const int DesExpansion[48] = {

32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,

Implementation and Analysis of DES 437

Example 15-2. Implementation of DES (continued)

16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1

}i

/***

* *
* Define tables for the S-box substitutions performed for data blocks. *
* *

***/

static const int DesSbox[8][4][16] = {

{
{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
{0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
{4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
{15, 12, 8, 2, 4, 9, 1, 7, 5,11, 3, 14, 10, 0, 6, 13},
Y,
{
{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
{3, 13, 4, 7,15, 2, 8, 14, 12, o0, 1, 10, 6, 9, 11, 5},
{0 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
{13, 8, 10, 1, 3, 15, 4, 2,11, 6, 7, 12, 0, 5, 14, 9},
3,
{
{10, o0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
{13, 6, 4, 9, 8,15, 3, 0,11, 1, 2, 12, 5, 10, 14, 7},
{1, 10, 13, 0o, 6, 9, 8, 7, 4,15, 14, 3, 11, 5, 2, 12},
+,
{
{7, 13, 14, 3, 0, 6, 9,10, 1, 2, 8, 5,11, 12, 4, 15},
{13, 8, 11, 5, 6, 15, O, 3, 4, 7, 2,12, 1, 10, 14, 09},
{10, 6, 9, o0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
{3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5,11, 12, 7, 2, 14},
Y,
{
{2, 12, 4, 1, 17, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 09},
{14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
{4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
{1, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
3,
{
{12, 1, 10, 15, 9, 2, 6, 8, O, 13, 3, 4, 14, 7, 5, 11},
{10, 15, 4, 2, 7,12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
{9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
{4, 3, 2,12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},

438 Chapter 15: Data Encryption

Example 15-2. Implementation of DES (continued)

{

{4, 11, 2, 14, 15, o0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},

{13, o, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},

{1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},

{6,611, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},

Iy

{

{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},

{1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},

{7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},

{2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11},

Iy
};
/********‘k**‘k**‘k*****‘k***********‘k**‘k********‘k**‘k*****************************
* *
* Define a mapping for the P-box permutation of data blocks. *
* *

***/

static const int DesPbox[32] = {

16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25

}i

/***

* *
* Define a mapping for the final permutation of data blocks. *
* *

***/

static const int DesFinal[64] = {

40, 8, 48, 16, 56, 24, 64, 32, 39,
38, 6, 46, 14, 54, 22, 62, 30, 37,
36, 4, 44, 12, 52, 20, 60, 28, 35,
34, 2, 42, 10, 50, 18, 58, 26, 33,

45, 13, 53, 21, 61, 29,
43, 11, 51, 19, 59, 27,
, 41, 9, 49, 17, 57, 25

R Ww o g

}i

/***

* *
* Define a type for whether to encipher or decipher data. *
* *

***/

typedef enum DesEorD_ {encipher, decipher} DesEorD;

Implementation and Analysis of DES 439

Example 15-2. Implementation of DES (continued)

/***

* *
e permute ——-——-—-—-———————————————— *
* *

***/
static void permute(unsigned char *bits, const int *mapping, int n) {
unsigned char temp[8];

int i;

/***

* *
* Permute the buffer using an n-entry mapping. *
* *

***/

memset (temp, 0, (int)ceil(n / 8));

for (i = 0; i < n; i++)
bit_set(temp, i, bit_get(bits, mappingl[i] - 1));

memcpy (bits, temp, (int)ceil(n / 8));

return;

/***
* *
B ittt des_main ----—-—————————m— *
* *

***/

static int des_main(const unsigned char *source, unsigned char *target, const
unsigned char *key, DesEorD direction) {

static unsigned char subkeys[16][7];

unsigned char temp

int row,

440 Chapter 15: Data Encryption

Example 15-2. Implementation of DES (continued)

'U\PT"—‘-

/***

* *
* If key is NULL, use the subkeys as computed in a previous call. *
* *

***/

if (key != NULL) {

/**

* *
* Make a local copy of the key. *
* *

‘k***/

memcpy (temp, key, 8);

/**

* *
* Permute and compress the key into 56 bits. *
* *

**/

permute (temp, DesTransform, 56);

/**

* *
* Split the key into two 28-bit blocks. *
* *

**/

memset (lkey, 0, 4);
memset (rkey, 0, 4);

for (j = 0; j < 28; j++)
bit_set(lkey, j, bit_get(temp, 3j));

for (j = 0; j < 28; j++)
bit_set(rkey, j, bit_get(temp, j + 28));

/**

* *
* Compute the subkeys for each round. *
* *

**/

for (i = 0; i < 16; i++) {

Implementation and Analysis of DES

441

Example 15-2. Implementation of DES (continued)

/***

* *
* Rotate each block according to its round. *
* *

‘k**/

bit_rot_left(lkey, 28, DesRotations[il]);
bit_rot_left(rkey, 28, DesRotations[il]);

/***

* *
* Concatenate the blocks into a single subkey. *
* *

‘k**/

for (j = 0; Jj < 28; j++)
bit_set (subkeys[i], j, bit_get(lkey, 3j));

for (j = 0; Jj < 28; j++)
bit_set (subkeys[i], j + 28, bit_get(rkey, j)):;

/***

* *
* Do the permuted choice permutation. *
* *

‘k**/

permute (subkeys|[i], DesPermuted, 48);

/***
* *
* Make a local copy of the source text. *
* *

‘k**/

memcpy (temp, source, 8);

/***

* *
* Do the initial permutation. *
* *

***/

permute (temp, DesInitial, 64);

/***

* *
* Split the source text into a left and right block of 32 bits. *
* *

***/

442 Chapter 15: Data Encryption

Example 15-2. Implementation of DES (continued)

memcpy (1blk, &temp[0], 4);
memcpy (rblk, &temp[4], 4);

/***

* *
* Encipher or decipher the source text. *
* *

‘k**/

for (i = 0; 1 < 16; i++) {

/**

* *
* Begin the computation of f. *
* *

**/

memcpy (fblk, rblk, 4);

/**

* *
* Permute and expand the copy of the right block into 48 bits. *
* *

**/

permute (fblk, DesExpansion, 48);

/**

* *
* Apply the appropriate subkey for the round. *
* *

‘k***/

if (direction == encipher) {

/***

* *
* For enciphering, subkeys are applied in increasing order. *
* *

***/

bit_xor (fblk, subkeys[i], xblk, 48);
memcpy (fblk, xblk, 6);

else {

/***

* *
* For deciphering, subkeys are applied in decreasing order. *
* *

‘k**/

Implementation and Analysis of DES 443

Example 15-2. Implementation of DES (continued)

bit_xor (fblk, subkeys[15 - 1], xblk, 48);
memcpy (fblk, xblk, 6);

/**
* *
* Do the S-box substitutions. *
* *

**/

p = 0;

for (j = 0; J < 8; j++) {

/***

* *
* Compute a row and column into the S-box tables. *
* *

‘k**/

row = (bit_get(fblk, (j * 6)+0) * 2) + (bit_get(fblk, (j * 6)+5) * 1);
col (bit_get (fblk, (3 * 6)+1) * 8) + (bit_get(fblk, (7 * 6)+2) * 4) +
(bit_get (fblk, (3 * 6)+3) * 2) + (bit_get(fblk, (j * 6)+4) * 1);

/***

* *
* Do the S-box substitution for the current six-bit block. *
* *

***/

sblk = (unsigned char)DesSbox[j] [row] [col];

for (k = 4; k < 8; k++) {

bit_set (fblk, p, bit_get (&sblk, k));

pt+;
/**
* *
* Do the P-box permutation to complete f. *
* *

‘k***/

permute (fblk, DesPbox, 32);

444 Chapter 15: Data Encryption

Example 15-2. Implementation of DES (continued)

/**

* *
* Compute the XOR of the left block and f. *
* *

‘k***/

bit_xor (lblk, fblk, xblk, 32);

/**

* *
* Set the left block for the round. *
* *

**/

memcpy (1blk, rblk, 4);

/**

* *
* Set the right block for the round. *
* *

**/

memcpy (rblk, xblk, 4);

}

/***
* *
* Set the target text to the rejoined final right and left blocks. *
* *

***/

memcpy (&target [0], rblk, 4);
memcpy (&target[4], 1lblk, 4);

/***

* *
* Do the final permutation. *
* *

***/

permute (target, DesFinal, 64);

return 0;

/***
* *
* e des_encipher -------—---—-———————————————- *
* *

***/

DES Example: Block Cipber Modes 445

Example 15-2. Implementation of DES (continued)

void des_encipher (const unsigned char *plaintext, unsigned char *ciphertext,
const unsigned char *key) {

des_main(plaintext, ciphertext, key, encipher);
return;

}

/***

* *
K des_decipher ----------——————————mm *
* *

‘k**‘k*/

void des_decipher (const unsigned char *ciphertext, unsigned char *plaintext,
const unsigned char *key) {

des_main (ciphertext, plaintext, key, decipher);
return;

}

DES Example: Block Cipher Modes

Most block ciphers, such as DES, encipher and decipher data in 64-bit blocks.
Since nearly all of the work done with ciphers involves more data than this, we
end up invoking the cipher over and over again to process all of the blocks. The
specific manner in which a block cipher is invoked repeatedly is called a block
cipher mode.

The simplest way to process several blocks of data is to append each block of
ciphertext we generate to others generated before it. This primitive approach is
called ECB, or electronic code book. Its simplicity makes it very popular, but it is
relatively insecure. Its main problem is that for any given key, a specific block of
plaintext always enciphers to the same block of ciphertext wherever it appears in
the data. This means that if an adversary cracks even a small section of the data,
he can begin to develop a code book for cracking other sections as well. A better
approach is CBC, or cipher block chaining.

CBC mode avoids the problems of ECB by augmenting a block cipher with simple
operations and feedback. Feedback makes each block of ciphertext depend in
some way on actions performed earlier. In CBC mode, previous blocks of cipher-
text serve as feedback so that even the same block of plaintext is likely to enci-
pher into a different block of ciphertext each time it appears.

For previous blocks of ciphertext to serve as feedback, before we encipher a block
of plaintext, we XOR it with the block of ciphertext generated before it. When we

446 Chapter 15: Data Encryption

decipher the ciphertext, we XOR each deciphered block back with the block of
ciphertext it follows. Simply stated:

C,= E(P,®C,_))

1

P, = C,_,®Dy(C)

1 1

where C; and P; are the ith blocks of ciphertext and plaintext from buffers € and
P, and Eg and Dg are the encipher and decipher operations using key K.

Usually we add one random block of data to the beginning of the plaintext. This is
so that even when an adversary has some idea what the first block of plaintext
contains, it cannot be used to start replicating the chaining sequence. This block is
called the initialization vector. We encipher it normally, without any feedback,
then use it as the feedback when enciphering and deciphering the first real block
of plaintext.

Example 15-3 presents an implementation of two functions, cbc_encipher and cbc_
decipber, that encipher and decipher a buffer of data using DES in CBC mode. The
cbe_encipher function takes a buffer of plaintext containing size bytes and enci-
phers it using key as the key. It assumes that the first block of plaintext is actually
the 64-bit initialization vector. The cbc_decipber function takes a buffer of cipher-
text containing size bytes and deciphers it using key as the key. For symmetry,
the initialization vector is deciphered as well and is returned as the first block of
plaintext.

The runtime complexities of cbc_encipher and cbc_decipher are both O(n), where
n is the number of blocks enciphered or deciphered. This is because the two func-
tions simply call the O(1) operations des_encipher and des_decipber, respectively,
once for each block.

Example 15-3. Implementation of Functions for DES in CBC Mode

/***

* *
Bttt cbc.c ——————————mmmm e *
* *

***/

#include <stdlib.h>

#include "bit.h"
#include "cbc.h"
#include "encrypt.h"

/***

* *
K cbc_encipher ------------—————m *
* *

***/

DES Example: Block Cipher Modes 447

Example 15-3. Implementation of Functions for DES in CBC Mode (continued)

void cbc_encipher (const unsigned char *plaintext, unsigned char *ciphertext,
const unsigned char *key, int size) {

unsigned char temp[8];
int i;

/***

* *
* Encipher the initialization vector. *
* *

***/

des_encipher (&plaintext[0], &ciphertext[0], key);

/***

* *
* Encipher the buffer using DES in CBC mode. *
* *

‘k**/

while (i < size) {
bit_xor (&plaintext[i], &ciphertext[i - 8], temp, 64);
)

des_encipher (temp, &ciphertext[i], NULL);
i=1+8;

return;

/***

e Sttt cbc_decipher ---------——-——m—mm *

***/

void cbc_decipher (const unsigned char *ciphertext, unsigned char *plaintext,
const unsigned char *key, int size) {

unsigned char temp[8];
int i;

/***

* *
* Decipher the initialization vector. *
* *

‘k**/

448 Chapter 15: Data Encryption

Example 15-3. Implementation of Functions for DES in CBC Mode (continued)

des_decipher (&ciphertext[0], &plaintext[0], key);

/***

* *
* Decipher the buffer using DES in CBC mode. *
* *

***/
i=28;
while (i < size) {

des_decipher (&ciphertext[i], temp, NULL) ;
bit_xor (&ciphertext[i - 8], temp, &plaintext[i], 64);
i=1+8;

return;

Description of RSA

RSA (Rivest-Shamir-Adleman) is one of the most popular asymmetric, or public-
key, ciphers. RSA is asymmetric because the key used to encipher data is not the
same key used to decipher it. Like DES, RSA is a block cipher, but the block size
varies depending on the size of the keys. If the amount of data to be encrypted is
not an even multiple of this size, it is padded in some application-specific way.

One important implication of RSA being an asymmetric cipher is that when trans-
mitting data across a network, the key used to encipher the data does not have to
be transmitted with the data itself. Thus, there is less chance of having the key
compromised. RSA is also useful when parties enciphering data are not allowed to
decipher the data of others. Parties who wish to encipher data use one key, which
is considered public, while parties allowed to decipher the data use a second key,
which they keep private.

RSA is considered very secure, but it runs considerably slower than DES. As with
DES, the security of RSA has never been proven, but it is related to the difficult
problem of factoring large numbers (numbers containing at least 200 decimal dig-
its). Since no efficient solutions are known for this problem, it is conjectured that
there are no efficient ways to crack RSA.

RSA is based on principles that are less obtuse than the numerous permutations
and substitutions performed in DES. Fundamentally, enciphering and decipher-
ing data revolves around modular exponentiation, an operation in modular
aritbmetic. Modular arithmetic is integer arithmetic as usual except that when we

Description of RSA 449

work modulo 7, every result x is replaced with a member of {0, 1, ..., n— 1} so
that x mod # is the remainder of x/n. For example, 40 mod 11 = 7 because 40/11 = 3
with a remainder of 7. Modular exponentiation is the process of computing a? mod .

Computing Public and Private Keys

In RSA, the public key and private key work together as a pair. The public key is
used to encipher a block of data, after which only the corresponding private key
can be used to decipher it. When generating keys, we follow a few steps to ensure
that this marriage works. These steps also ensure that there is no practical way to
determine one key from the other.

To begin, we select two large prime numbers, which are called p and g (see the
related topics at the end of the chapter). Considering today’s factoring technology,
these each should be at least 200 decimal digits to be considered secure in prac-
tice. We then compute 7, the product of these numbers:

n = pq

Next, we choose a small odd integer e, which will become part of the public key.
The most important consideration in choosing e is that it should have no factors
in common with (p — D(g — D. In other words, e is relatively prime with (p — 1)
(g— 1. For example, if p =11 and g = 19, then n = (11D(19) = 209. Here we might
choose e = 17 because (p — D(g — 1 = (10)(18) = 180, and 17 and 180 have no
common factors. Common choices for e are 3, 17, and 65,537. Using one of these
values does not jeopardize the security of RSA because deciphering data is a func-
tion of the private key.

Once we have chosen a value for e, we compute a corresponding value d, which
will become part of the private key. To do this, we compute the multiplicative
inverse of e, modulo (p — 1)(g — 1), as follows:

d=¢" mod(p-1)(g-1)

The way to think of this is: what value of d satisfies ed mod (p — 1)(g— 1) = 1? For
example, in the equation 174 mod 180 = 1, one possible value for d is 53. Other
possibilities are 233, 413, 593, and so forth. An extension of Euclid’s algorithm is
used to compute multiplicative modular inverses in practice (see the related topics
at the end of the chapter). In this book, code is provided for using & and e but not
for deriving them.

Now that we have values for both e and d, we publish (e, n) as the public key P
and keep (d, n) secret as the private key S, as shown:

P = (e n)
S = (d, n)

450 Chapter 15: Data Encryption

Parties who encipher data use P. Those who decipher data use S. To ensure that
even someone who knows P cannot compute S, the values used for p and g must
never be revealed.

The security offered by P and S together comes from the fact that multiplication is
a good one-way function. One-way functions are fundamental to cryptography.
Simply stated, a one-way function is a function that is relatively easy to compute in
one direction but impractical to reverse. For example, in RSA, multiplying p and ¢
is a one-way function because although multiplying p and ¢ is easy, factoring n
back into p and ¢ is extremely time-consuming, provided the values chosen for p
and q are large enough.

The steps performed to compute P and S have their origin in some interesting
properties of Euler’s function (pronounced “oiler”). In particular, these properties
allow us to do useful things with modular exponentiation. Euler’s function,
denoted ¢(7), defines how many numbers less than n are relatively prime with n.
Two numbers are said to be relatively prime if their only common factor is 1. As
an example of Euler’s function, ¢(8) = 4 because there are four numbers less than
8 that are relatively prime with 8, namely 1, 3, 5, and 7.

Euler’s function has two properties that are particularly relevant to RSA. First,
when 7 is prime, ¢(7) = n — 1. This is because the only factors of #n are 1 and #;
thus, 7 is relatively prime with all of the # — 1 numbers before it. Another interest-
ing property is that ¢(n) is the exponential period modulo n for numbers relatively
prime with 7. This means that for any number a < 7 relatively prime with 7, a®™
mod 7 = 1. For example, 14 mod 8 = 1, 3* mod 8 = 1, 5% mod 8 = 1, and 7% mod 8
= 1. Multiplying both sides of this equation by a yields:

(a)(a¢(n) mod n) = (1)(a), or A mod n=a

Hence, 1> mod 8 = 1, 3° mod 8 = 3, 5° mod 8 = 5, and 7° mod 8 = 7. This alge-
braic adjustment is powerful because for some equation ¢ = m® mod #, it lets us
find a value d so that ¢ mod n = m. This is the identity that allows us to enci-
pher data in RSA and then decipher the data back as shown below:

mq)(n) +1

d o d ed
¢ mod n=(m") mod n=m" mod n= mod 7 = m mod n

The relationship of Euler’s function with exponential periods guarantees that any
block of data we encipher will decipher again uniquely. To find d, we solve the
equation d = e~1¢(») + 1. Unfortunately, there is not always an integer solution to
d= e lo(n) + 1. For example, consider if e =5 and n = 13. In this case, d = (1/
513 - 1) + 1 = (1/5)(13). To deal with this, we compute d modulo ¢(7). In
other words, d = (¢1¢(n) + 1) mod 6 (1), which can be simplified to:

d = ¢ mod o(n)

Description of RSA 451

We can make this simplification because (¢(7) + 1) mod ¢(7) = (¢(n) + 1) — ¢(»)
= 1. We can verify this by inserting any number in place of ¢(7n). Notice the simi-
larity between this equation and the one used for d earlier in the steps for comput-
ing keys. This provides a way to compute d from e and 7. Of course, since e and
n are public and potentially known to an adversary, one might ask: doesn’t this
give an adversary the same opportunity to compute the private key? At this point it
is worth examining where RSA’s security comes from.

RSA gets its security from the critical fact that Euler's function is multiplicative.
This means that if p and g are relatively prime (which they are if we choose them
both to be prime), then ¢(pg = ¢(Pd(g. Thus, if we have two primes p and g,
and n = pq, then ¢() = (p — (g — 1), and most importantly:

d=¢" mod (p-1)(g—1)

Therefore, even though an adversary might know both e and 7, in order to com-
pute d, she would have to know ¢(#72), which can only be determined in a practical
manner by knowing both p and ¢g. Since these are not known, the adversary is left to
factor n, an extremely time-consuming process, provided the values chosen for p
and q are large enough.

Encipbering and Deciphering Data Blocks

To encipher and decipher data with RSA, we first need to choose a block size. To
do this, we must ensure that the largest value that the block can store, considering
its total number of bits, is less than n. For example, if p and g are primes containing
200 decimal digits, 7 will be just under 400 decimal digits. Therefore, we should
choose a block size small enough to store only those numbers with less than this
many decimal digits. In practice, we often choose the block size in bits to be the
largest power of 2 less than 7. For example, if n were 209, we would choose a
block size of 7 bits because 27 = 128 is less than 209, but 28 = 256 is greater.

To encipher a block of plaintext M the ith block of data from a buffer M, we use
the public key (e, n) to take the numerical value of M, raise it to the power of e,
and take the result modulo 7. This yields a block of ciphertext C;. The modulo n
operation ensures that C; will fit into the same size block as the plaintext. Thus, to
encipher a block of plaintext:

Cl.=Mfmod n

It was mentioned earlier that Euler’s function is the basis for using modular expo-
nentiation to encipher data using this equation and, in the equation that follows,
for being able to get the original plaintext back. To decipher a block of cipher-
text Cj, the ith block of ciphertext from a buffer C, we use the private key (d, n)
to take the numeric value of Cj, raise it to the power of d, and take the result

452 Chapter 15: Data Encryption

modulo 7. This yields the original block of plaintext M;. Thus, to decipher a block
of ciphertext:

M; = C? mod n

Interface for RSA

rsa_encipher

void rsa_encipher (Huge plaintext, Huge *ciphertext, RsaPubKey pubkey) ;

Return Value None.

Description Uses RSA to encipher one block of plaintext specified by
plaintext. Specify the public key (e, 7) in the RsaPubKey structure pubkey. A
block the same size as plaintext is returned in ciphertext. It is the responsi-
bility of the caller to manage the storage required in ciphertext. To encipher a
large buffer of data, call rsa_encipher in accordance with a block cipher mode
(see the example earlier in this chapter).

Complexity o)

rsa_decipber

void rsa_decipher (Huge ciphertext, Huge *plaintext, RsaPriKey prikey) ;

Return Value None.

Description Uses RSA to decipher one block of ciphertext specified by
ciphertext. Specify the private key (d, n) in the RsaPriKey structure prikey. A
block the same size as ciphertext is returned in plaintext. It is the responsi-
bility of the caller to manage the storage required in plaintext. To decipher a
large buffer of data, call rsa_decipher in accordance with the block cipher mode
used to decipher the data.

Complexity o)

Implementation and Analysis of RSA

Because encryption with RSA requires little more than computing @” mod n, a
basic implementation is relatively simple: all we need is a function to perform
modular exponentiation. However, to make RSA secure, recall that we must use
large integers. This complicates things. Specifically, all arithmetic must be per-
formed with integers that are twice the size of the keys. (We will see in a moment
that this doubling is required for the modular exponentiation process.) Thus, if the

Implementation and Analysis of RSA 453

keys are 200 decimal digits, we need an abstract datatype that supports integers
with at least 400 decimal digits.

Since support for large-integer arithmetic is not provided in this book, the RSA
implementation presented here must depend on another library. Several are avail-
able. Instead of providing this support, the datatype Huge has been defined (see
Example 15-1). In a secure implementation we can typedef this to a large-integer
abstract datatype of our choice. The only other requirement is that we replace
each operator in expressions containing Huge integers with operations defined for
the type. For purposes of illustration in the implementation presented here, Huge
is made a typedef to an unsigned long integer, an intrinsic type that usually offers
10 decimal digits. This means that the implementation as it exists in Example 15-4
supports keys up to only 5 decimal digits. Thus, the implementation is functional,
but it would not be considered secure without redefining Huge to a larger type.

rsa_encipber

The rsa_encipher operation (see Example 15-4) enciphers a block of plaintext
using RSA. It does this by calling the function modexp, which computes a? mod n,
where a is the block of plaintext, and b and n are members e and n of the public
key. For efficiency, modexp uses a method called binary square and multiply to
perform modular exponentiation.

The binary square and multiply method avoids the huge intermediate result
produced by a? when a and b are both large. For example, imagine comput-
ing a” mod n when a, b, and n are all integers containing 200 decimal digits. The
result is a 40,000-digit integer modulo a 200-digit integer! Since this eventually
yields an integer of 200 decimal digits, the goal is to avoid the 40,000-digit inter-
mediate result.

The binary square and multiply method computes a” mod n primarily as the
product of several squares (see Figure 15-4). We start with the binary representa-
tion of b and process bits from the right. For each bit in b, we square a, take the
result modulo 7, and store this value back into a. Each time we encounter a bit in
b that is 1, we multiply the current value of a times another register y (initially 1)
and store the result back into . Once we reach the most significant bit in b, y
contains the value of a” mod 7. Throughout the process, the largest value ever
computed is @2. Therefore, if a is an integer containing 200 decimal digits, we
never have to deal with integers larger than 400 digits, which is a considerable
improvement over the 40,000-digit number mentioned a moment ago. The shaded
areas of Figure 15-4 illustrate this process for 511 mod 53 = 48,828,125 mod 53 =
20. In this calculation, the largest value we end up handling is 422 = 1764, as
opposed to 511 = 48 828 125.

454 Chapter 15: Data Encryption

The runtime complexity of #sa_encipher is O(1) because all of the steps in enci-
phering a block of data run in a constant amount of time. Since the block size is
constant, the loop in modexp runs in a constant amount of time.

b y a
1011 | amod n aZmod n
5mod 53 =5 52mod 53 = 25
101 | (amod n) (a®modn) mod n = a®modn (aZmodn)2 mod n = a*modn
(5)(25) md 53=19 (25) mod 53=42
10 (a*modn)? mod n = a¥modn

(42) mod 53=15

1 | (a3mod n)(a®mod n) mod n = a'"modn
(19)(15) mod 53 = 20

Figure 15-4. Modular exponentiation using the binary square and multiply method

rsa_decipher

The rsa_decipher operation (see Example 15-4) deciphers a block of ciphertext
enciphered using RSA. It does this by calling the function modexp, which com-
putes a®? mod n, where a is the block of ciphertext, and » and n are members d
and 7 of the private key. This proceeds in the same manner as described for 7sa_
encipber.

The runtime complexity of rsa_decipher is O(1) because all of the steps in deci-
phering a block of data run in a constant amount of time. Since the block size is
constant, the loop in modexp runs in a constant amount of time.

Example 15-4. Implementation of RSA

JRIKIKKKKKKKKKKXIK KKK KK KKK K XK X I I KRR kA A I AR Xk ko hhhhhhkh Ak Xk xkkhkhkhhkhkhxk

* *
Btk b bttt rsa@.C ——— === --—————————— oo *
* *

***/

#include "encrypt.h"

/***

* *
K e modexp —————————=——————————— *
* *

HRIKKKKKKKKKXKXIK KKK KK KK XK XI X I h Ak kAR I X I Xk ke hhhhhhhkhkh Xk xkxhxkkkhkhxxx /

static Huge modexp (Huge a, Huge b, Huge n) {

Huge yi

Implementation and Analysis of RSA 455

Example 15-4. Implementation of RSA (continued)

/***

* *
* Compute pow(a, b) % n using the binary square and multiply method. *
* *

‘k**/

y =1;

while (b != 0) {

/**

* *
* For each 1 in b, accumulate y. *
* *

**/

if (b & 1)
y=(y*a) %n;

/**

* *
* Square a for each bit in b. *
* *

**/

a=(a*a) %n;

/**

* *
* Prepare for the next bit in b. *
* *

‘k***/

b=Db>1;
return y;
/***
* *
* rsa_encipher -- *
* *

***/

void rsa_encipher (Huge plaintext, Huge *ciphertext, RsaPubKey pubkey) {

*ciphertext = modexp (plaintext, pubkey.e, pubkey.n);

return;

456 Chapter 15: Data Encryption

Example 15-4. Implementation of RSA (continued)

/***

***/

void rsa_decipher (Huge ciphertext, Huge *plaintext, RsaPriKey prikey) {

*plaintext = modexp (ciphertext, prikey.d, prikey.n);

return;

}

Questions and Answers

O:

Suppose we would like to encrypt a file containing flags that enable or disable
certain attributes in an application based on the features a customer bhas paid
Sfor. Which method of encryption presented in this chapter would be best suited
to this scenario?

Since in this scenario only one party, the application itself, needs to read the
file, it makes sense to use a symmetric cipher such as DES. Before installing
the file, we encipher it with a key that only the application knows about.
Whenever the application needs to read the file, it deciphers it using the same
key.

Suppose a party A is making sensitive requests for data across the Internet to
another party B. B is the only one who should be able to decipher the data
enciphered by A, and A is the only one who should be able to decipber data enci-
pbered by B specifically for A. B also receives requests from several other par-
ties, all of whom should not be able to bear what each other is saying. Which
method of encryption from this chapter would be best in this scenario?

Since all parties must be able to communicate with B but without anyone else
being able to decipher the communications, we should use a public-key
cipher such as RSA. Consider the case of A making a request to B. A makes
his request to B by enciphering the request with B’s public key. When B
receives the request, B deciphers it using her own private key. Once B has
validated that A sent the request (perhaps using a digital signature), she enci-
phers a reply using A’s public key. Once A receives the reply from B, A deci-
phers the message using his own private key.

With DES, we encipher and decipher data by performing a series of permuta-
tions and substitutions. Exactly bow these permutations and substitutions affect
the data is essentially a function of 16 subkeys, derived from an initial key that

Questions and Answers

457

we provide. In general, the security of DES is greatest when most of the subkeys
differ from one anotber. Unfortunately, certain initial keys lead to situations in
which all subkeys are identical. These initial keys are called weak keys. DES has

Sfour weak keys. What are they?

To generate subkeys in DES, we first transform the key from 64 bits to 56 bits.
Once the key has been transformed, we divide it into two 28-bit blocks and
perform a number of other operations that are repeated during each round. If
either of the two 28-bit blocks contains bits that are all the same, these opera-
tions have no effect. Thus, we end up with subkeys that are identical for every
round, and the initial key is considered weak. The four weak keys of DES and
what they become are shown in Table 15-9.

Table 15-9. Weak Keys in DES Before and After the Key Transformation

Becomes

Key

0101 0101 0101 0101
1F1F 1F1F 1F1F 1F1F
EOEO EOEO F1F1 F1F1
FEFE FEFE FEFE FEFE

0000000 0000000
0000000 FFFFFFF
FFFFFFF 0000000
FFFFFFF FFFFFFF

O:

Avoiding weak keys is one security issue in DES. Another issue is avoiding semi-
weak keys. Semiweak keys come in pairs. Two keys form a semiweak key pair if
the subkeys they produce arve in the opposite order. This means that if we use
one key from the pair to re-encipher the ciphertext generated using the other
key, we effectively get the same result as deciphering the cipbertext with the orig-
inal key. DES bas six semiweak key pairs. What are they? Why are semiweak
keys a problem?

The problem with semiweak key pairs in DES is that by re-enciphering the
ciphertext with one key in the pair we essentially end up performing the same
operation as deciphering the ciphertext with the other key. Thus, effectively
we have two keys that can decipher the data, which makes semiweak keys
undesirable. The six semiweak key pairs of DES are shown in Table 15-10.

Table 15-10. Semiweak Key Pairs in DES

Key 1

Key 2

O1FE O1FE O1FE O1FE
1FEO 1FEO OEF1 OEF1
01EO O1EO O1F1 O01F1
1EFE 1EFE OEFE OEFE
011F 011F O10E 010E
EOFE EOFE F1FE F1FE

FEO1 FEO1 FEO1 FEO1
EO1F EO1F F10E F10E
E001 E001 F101 F101
FE1F FE1F FEOE FEOE
1FO1 1F01 0EO1 OEO1
FEEO FEEO FEF1 FEF1

458 Chapter 15: Data Encryption

Q: Some applications of DES use keys that are generated randomly. In applica-
tions like this, what precautions might we take against the use of weak and
semiweak keys, if any?

A: Considering the number of keys listed in Tables 15-9 and 15-10 combined, it’s
evident that out of 250 possible keys in DES, weak and semiweak keys are
rare. Nevertheless, applications that use randomly generated keys often check
to make sure a candidate key is not weak or semiweak before using it. On the
other hand, since checking every key is somewhat wasteful considering how
infrequent weak and semiweak keys are, many applications simply don’t
worry about them.

Q: RSA is a block cipher, which means that it processes data one block at a time.
Whereas DES always uses a block size of 64 bits, the block size of RSA varies
depending on the value of n, where n = pq. What happens if we mistakenly
choose the block size so that some blocks of plaintext contain values greater
than or equal to n?

A: The problem with a block of plaintext containing a value greater than or equal
to n is that when we encipher and decipher blocks, the modular exponentia-
tion operation is modulo 7. This means that all blocks generated as either
ciphertext or plaintext contain values less than 7. Therefore, if the original
block of plaintext contains a value greater than or equal to #, after encipher-
ing and deciphering the block, we will not end up with the plaintext we
started with.

Q: This chapter discussed two common block cipher modes, ECB and CBC. What
are some of the advantages each offers? What are some of the drawbacks?

A: ECB and CBC both have advantages and disadvantages. ECB is simple, but its
lack of feedback makes it considerably less secure than CBC. However, by not
using feedback, ECB has some flexibilities. For example, with ECB, since no
block depends on any other block having been processed before it, we can
process blocks out of sequence or in parallel. The most significant advantage
of CBC is that it conceals patterns in the plaintext well. However, its use of
feedback means that we must encipher blocks in order. On the other hand,
deciphering data in CBC mode does not have this restriction. To decipher
data, we require feedback only from the ciphertext itself, not any of the blocks
deciphered previously.

Related Topics

Finding large prime numbers
An essential part of computing secure keys for RSA. One of the best methods
for doing this is the Miller-Rabin algorithm, which also makes use of Euclid’s

Related Topics 459

algorithm. Miller-Rabin is probabilistic, so on rare occasions it may yield a
number that is in fact composite (in fact, this is extremely rare, but neverthe-
less possible). For this reason, primes generated in this fashion are sometimes
called industrial-grade primes.

Modular arithmetic
A type of arithmetic particularly useful in encryption as well as other areas of
computer science. Modular arithmetic is integer arithmetic as usual except that
when we are working modulo 7, every result x is replaced with a member of
{0, 1, ..., n— 1} so that x mod # is the remainder of x/7.

Arithmetic with large integers
An essential part of secure implementations of RSA. In RSA, to be secure con-
sidering current factoring technology, we must choose keys that have at least
200 decimal digits. This means that all integer arithmetic must be performed
with integers of at least 400 digits.

Euclid’s greatest common divisor algorithm
A method of computing greatest common divisors, and one of the oldest
known algorithms. The algorithm is particularly relevant to RSA because we
can extend it to help compute multiplicative modular inverses.

CFB (cipber feedback) and OFB (output feedback)

Common block cipher modes in addition to the ECB and CBC modes pre-
sented in this chapter. CFB uses ciphertext for feedback in such a way that a
block cipher appears more like a stream cipher. Stream ciphers process data in
continuous streams instead of one block at a time. This can be useful in net-
work applications, where data often arrives in bursts that are not aligned with
the block size. OFB is another method of running a block cipher as a stream
cipher, but the feedback is independent of both the plaintext and ciphertext.

Cryptographic protocols
Step-by-step procedures executed by two or more parties in order to commu-
nicate with each other in a secure manner. It is important to realize that many
problems in data security require more than just simply enciphering and deci-
phering data. Often we need to establish secure protocols, of which ciphers
are only a part.

Graph Algorithms

Graphs are flexible data structures that model problems defined in terms of rela-
tionships or connections between objects (see Chapter 11, Graphs). This chapter
presents algorithms that work with graphs. As we will see, many graph algorithms
resemble the fundamental ones for breadth-first and depth-first search introduced
in Chapter 11. Breadth-first and depth-first search are important to many other
graph algorithms because they offer good ways of exploring the structure of a
graph in a systematic manner.

One significant difference between the algorithms of Chapter 11 and the ones in
this chapter, however, is that the algorithms here work with weighted graphbs. In a
weighted graph, each edge is assigned a value, or weight, which is represented
pictorially as a small number beside the edge. Although weights can mean many
things, in general they represent a cost associated with traversing an edge.
Weighted graphs and their algorithms have an enormous capacity to model real
problems. Example 16-1 is a header for the graph algorithms presented in this
chapter.

This chapter covers:

Minimum spanning lrees
Trees that serve as abstractions of many connectivity problems. A minimum
spanning tree is a tree that connects all vertices in an undirected, weighted
graph at a minimum cost.

Shortest paths
The result of solving various types of shortest-path problems. A shortest path
is a path that connects one vertex to another in a directed, weighted graph at
a minimum cost.

460

Graph Algoritbms 461

Traveling-salesman problem
A surprisingly difficult problem in which we look for the shortest tour that vis-
its every vertex in a complete, undirected, weighted graph exactly once before
returning to the first vertex.

Some applications of graph algorithms are:

Efficient pipelines
A practical concern in transporting water, oil, and other liquids. If distribution
points for the pipeline are represented as vertices in a graph, and candidate
connections between the points as edges are weighted by the cost to connect
the points, a minimum spanning tree gives us the best way to lay a pipeline
that connects all of the distribution points.

Routing tables (illustrated in this chapter)
Tables used by routers to help direct data through an internet. The purpose of
a router is to move data closer to its final destination. In one type of routing,
routers periodically compute shortest paths to one another so each knows the
best next step for sending data to certain destinations.

Delivery services
Services that typically visit numerous locations to pick up and deliver pack-
ages. Solving the traveling-salesman problem can indicate the most efficient
way for a vehicle operated by a service to visit every location exactly once
before returning to its starting point.

Communication networks
Networks containing many different types of equipment including telephone
lines, relay stations, and satellite systems, all of which must be located in an
optimal manner. An optimal arrangement can be determined by computing a
minimum spanning tree for the weighted graph that models the network.

Routing airplanes
An optimization problem particularly important to airlines and air traffic con-
trol agencies. Often airplanes cannot fly directly from one point to another.
Instead, they weave their way through airway structures, or highways in the
sky, considering winds, monetary charges for traversing airspace, and air traf-
fic control restrictions. The best route between two points is the path with the
minimum weight defined in terms of factors like these.

Closed transport systems
Systems in which railroad cars or conveyor carts repeatedly tour several
points. Systems like these might be used to deliver parts in a factory or to
move inventory in and out of a warehouse. Solving the traveling-salesman
problem can indicate the best way to construct the system.

462 Chapter 16: Graph Algorithms

Wiring circuit boards

An optimization problem in electronics manufacturing. Often it is necessary to
make the pins of several components on a circuit board electrically equivalent
by establishing a connection between them. If each pin is represented as a
vertex in a graph, and candidate connections as edges weighted by the
amount of wire required for the connection, a minimum spanning tree gives
us the best way to connect the pins.

Traffic monitoring

The process of watching changes in traffic flow to determine the best route
between two points in a city. To avoid excessive traffic delays, we can use a
weighted graph to model the flow of traffic along roadways and look for the

path from intersection to intersection with the minimum traffic.

Example 16-1. Header for Graph Algorithms

/***

* *
e graphalg.h -----------——- *
* *

***/

#ifndef GRAPHALG_H
#define GRAPHALG_H

#include "graph.h"
#include "list.h"

/***

* *
* Define a structure for vertices in minimum spanning trees. *
* *

***/

typedef struct MstVertex_ {

void *data;
double weight;
VertexColor color;
double key;

struct MstVertex_ *parent;

} MstVertex;

/***

* *
* Define a structure for vertices in shortest-path problems. *
* *

***/

Description of Minimum Spanning Trees 463

Example 16-1. Header for Graph Algorithms (continued)

typedef struct PathVertex ({

void *data;
double weight;
VertexColor color;
double d;

struct PathVertex *parent;

} PathVertex;

/***

* *
* Define a structure for vertices in traveling-salesman problems. *
* *

‘k**‘k*/

typedef struct TspVertex_ {

void *data;
double X,

yi
VertexColor color;
} TspVertex;

/***

* *
o ittt bl b Public Interface ------—-———————————mmom *
* *

***/

int mst(Graph *graph, const MstVertex *start, List *span, int (*match) (const
void *keyl, const void *key2));

int shortest (Graph *graph, const PathVertex *start, List *paths, int (*match)
(const void *keyl, const void *key2));

int tsp(List *vertices, const TspVertex *start, List *tour, int (*match)
(const void *keyl, const void *key2));

#endif

Description of Minimum Spanning Trees

Picture a number of pegs on a board connected by pieces of string. Assuming that
every peg is reachable from any other by traveling along one or more strings,
imagine a game in which the object is to remove some of the strings until all of

464 Chapter 16: Graph Algorithms

the pegs remain connected using the least amount of string. This is the idea
behind a minimum spanning tree. Formally stated, given an undirected, weighted
graph G = (V, E), a minimum spanning tree is the set 7 of edges in E that connect
all vertices in V at a minimum cost. The edges in 7 form a tree because each ver-
tex ends up with exactly one parent that precedes it in the span, with the excep-
tion of the first vertex, which is the root of the tree.

Prim’s Algorithm

One approach to computing a minimum spanning tree is Prim’s algoritbm. Prim’s
algorithm grows a minimum spanning tree by adding edges one at a time based
on which looks best at the moment. The fact that Prim’s algorithm adds edges
using this approach makes it greedy (see Chapter 1, Introduction). Although
greedy algorithms often yield approximations rather than optimal solutions, Prim’s
algorithm actually provides an optimal result.

Fundamentally, the algorithm works by repeatedly selecting a vertex and explor-
ing the edges incident on it to determine if there is a more effective way to span
the vertices explored thus far. The algorithm resembles breadth-first search
because it explores all edges incident on a vertex before moving deeper in the
graph. To determine the vertex to select at each stage, we maintain a color and a
key value with every vertex.

Initially, we set all colors to white and we set all key values to e, which repre-
sents an arbitrarily large value greater than the weight of any edge in the graph.
We set the key value of the vertex at which to start the span to 0. As the algo-
rithm progresses, we assign to all vertices except the start vertex a parent in the
minimum spanning tree. A vertex is part of the minimum spanning tree only after
it is colored black. Before this time, its parent can fluctuate.

Prim’s algorithm proceeds as follows. First, from among all white vertices in the
graph, we select the vertex # with the smallest key value. Initially, this will be the
start vertex since its key value is 0. After we select the vertex, we color it black.
Next, for each white vertex v adjacent to u, if the weight of the edge (u, v) is less
than the key value of v, we set the key value of v to the weight of (#, v) and we
set the parent of v to u. We then repeat this process until all vertices have been
colored black. As the minimum spanning tree grows, it consists of all edges in the
graph that have a black vertex on either end.

Figure 16-1 illustrates the computation of a minimum spanning tree using Prim’s
algorithm. In the figure, the key value and parent of each vertex are displayed
beside the vertex. The key value is to the left of the slash, and the parent is to the
right. The edges shaded in light gray are the edges in the minimum spanning tree
as it grows. The minimum spanning tree computed in the figure has a total weight
of 17.

Interface for Minimum Spanning Trees 465

o Initially, starting at @ 0 After selecting a

o After selecting d 0 The minimum spanning tree, after selecting £ and then e
0/-- 0/--

Figure 16-1. Computing a minimum spanning tree using Prim’s algorithm
Interface for Minimum Spanning Trees

mst

int mst(Graph *graph, const MstVertex *start, List *span, int (*match)

(const void *keyl, const void *key2));
Return Value 0 if computing the minimum spanning tree is successful, or —1
otherwise.

Description Computes a minimum spanning tree for an undirected, weighted
graph specified by graph. The minimum spanning tree is computed starting from
the vertex specified by start. The operation modifies graph, so a copy should be

466 Chapter 16: Graph Algorithms

made before calling the operation, if necessary. Each vertex in graph must con-
tain data of type MstVertex. Assign a weight to each edge by setting the weight
member of the MstVertex structure passed as data2 to graph_ins_edge. Use the
data member of each MstVertex structure to store data associated with the ver-
tex, such as an identifier. The match function for graph, which is set by the caller
when initializing the graph with graph_init, should compare only the data mem-
bers of MstVertex structures. This is the same function that should be passed as
the match argument to mst. Once computed, information about the minimum
spanning tree is returned in span, which is a list of MstVertex structures. In
span, the vertex whose parent is set to NULL is the vertex at the root of the mini-
mum spanning tree. The parent member of every other vertex points to the ver-
tex that precedes it in the span. The vertices in span point to actual vertices in
graph, so the caller must ensure that the storage in graph remains valid as long
as span is being accessed. Use [ist_destroy to destroy span once it is no longer
needed.

Complexity O(EV?2), where Vis the number of vertices in the graph and E is
the number of edges. However, with a little improvement to the implementation
presented here, Prim’s algorithm runs in O(Elg V) time (see the related topics at
the end of the chapter).

Implementation and Analysis
of Minimum Spanning Trees

To compute a minimum spanning tree for an undirected, weighted graph, we first
need a way to represent weighted graphs using the basic abstract datatype for
graphs presented in Chapter 11. We also need a way to keep track of the informa-
tion that Prim’s algorithm requires for vertices and edges. This is the point of the
MstVertex structure; it is used for vertices in graphs for which we plan to com-
pute minimum spanning trees (see Example 16-2). The structure consists of five
members: data is the data associated with the vertex, weight is the weight of the
edge incident to the vertex, color is the color of the vertex, key is the key value
of the vertex, and parent is the parent of the vertex in the minimum spanning
tree.

Building a graph of MstVertex structures is nearly the same as building a graph
containing other types of data. To insert a vertex into the graph, we call graph_
ins_vertex and pass an MstVertex structure for data. Similarly, to insert an edge,
we call graph_ins_edge and pass MstVertex structures for datal and dataZ2.
When we insert a vertex, we set only the data member of the MstVertex struc-
ture. When we insert an edge, we set the data member of datal, and the data
and weight members of data2. In data2, the weight member is the weight of
the edge from the vertex represented by datal to the vertex represented by

Implementation and Analysis of Minimum Spanning Trees 467

data2. In practice, weights are usually computed and stored as floating-point
numbers. Since key values are computed from the weights, these are floating-point
numbers as well.

The mst operation begins by initializing every vertex in the list of adjacency-list
structures. We set the initial key value of each vertex to DBL,_MAX, except the start
vertex, whose key value is set to 0.0. Recall that in the graph abstract datatype, a
graph was represented as a list of adjacency-list structures, each of which con-
tained one vertex and a set of vertices adjacent to it (see Chapter 11). We use the
vertex stored in each adjacency-list structure to maintain the color, key value, and
parent of the vertex. The point of maintaining this information in the list of adja-
cency-list structures, as opposed to vertices in the adjacency lists themselves, is
that we can keep it in one place. Whereas a single vertex may appear in numer-
ous adjacency lists, each vertex appears in the list of adjacency-list structures
exactly once.

At the center of Prim’s algorithm is a single loop that iterates once for each vertex
in the graph. We begin each iteration by selecting the vertex that has the smallest
key value among the white vertices. We color this vertex black where it resides in
the list of adjacency-list structures. Next, we traverse the vertices adjacent to the
selected vertex. As we traverse each vertex, we look up its color and key value in
the list of adjacency-list structures. Once we have located this information, we
compare it with the color and key value of the selected vertex. If the adjacent ver-
tex is white and its key value is less than that of the selected vertex, we set the
key value of the adjacent vertex to the weight of the edge between the selected
vertex and the adjacent vertex; we also set the parent of the adjacent vertex to the
selected vertex. We update this information for the adjacent vertex where it resides
in the list of adjacency-list structures. We then repeat this process until all vertices
have been colored black.

Once the main loop in Prim’s algorithm terminates, we are finished computing the
minimum spanning tree. At this point, we insert each black MstVertex structure
from the list of adjacency-list structures into the linked list span. In span, the
vertex whose parent is set to NULL is the vertex at the root of the minimum
spanning tree. The parent member of every other vertex points to the vertex that
precedes it in the span. The weight member of each MstVertex structure is not
populated because it is needed only for storing weights in adjacency lists.
Figure 16-2 shows the list of MstVertex structures returned for the minimum
spanning tree computed in Figure 16-1.

The runtime complexity of mst is O(EV2), where V is the number of vertices in
the graph and E is the number of edges. This comes from the main loop, in which
we select vertices and compare weights and key values. For each of the V vertices
we select, we first traverse V elements in the list of adjacency-list structures to
determine which white vertex has the smallest key value. This part of the main

468 Chapter 16: Graph Algorithms

0 dia b c d e f
- weight |, | |, | | -
black color |7 [black |7 [black |¢7| [black | ¢] [black |¢7] [black | ¢]
0 ke 6 4 2 1 4
NULL parent C a b f b

Figure 16-2. The list returned by mst for the minimum spanning tree computed in Figure 16-1

loop is O(V?2) overall. Next, for each vertex adjacent to the vertex we select, we
consult the list of adjacency-list structures for information about whether to change
its key value and parent. Over all V vertices, the list is consulted E times, once for
each of the E edges in all of the adjacency lists together. Each of these consulta-
tions requires O(V) time to search the list. Therefore, for all V vertices that we
select, an O(V) operation is performed E times. Consequently, this part of the loop
is O(EV?2), and the main loop overall is O(V2 + EV2), or O(EV?2). Since the loops
before and after the main loop are O(V), the runtime complexity of mst is
O(EV?2). However, recall that with a little improvement (discussed at the end of
the chapter), Prim’s algorithm runs in O(Elg V) time.

Example 16-2. Implementation for Computing Minimum Spanning Trees

/***

* *
X mst.c —-——-——m—mm e *
* *

'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k*************************/

#include <float.h>
#include <stdlib.h>

#include "graph.h"
#include "graphalg.h"
#include "list.h"

/**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**'k**************************

* *
e mst ——-————————— *
* *

***/

int mst (Graph *graph, const MstVertex *start, List *span, int (*match) (const
void *keyl, const void *key2)) {

AdjList *adjlist;

MstVertex *mst_vertex,
*adj_vertex;

Implementation and Analysis of Minimum Spanning Trees 469

Example 16-2. Implementation for Computing Minimum Spanning Trees (continued)

ListElmt *element,
*member ;
double minimum;
int found,
i;

/***

* *
* 1Initialize all of the vertices in the graph. *
* *

***/

found = 0;

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

mst_vertex = ((AdjList *)list_data(element))->vertex;

if (match(mst_vertex, start)) {

/***
* *
* Initialize the start vertex. *
* *

***/

mst_vertex->color = white;
mst_vertex->key = 0;
mst_vertex->parent = NULL;
found = 1;

else {

/***

* *
* Initialize vertices other than the start vertex. *
* *

***/

mst_vertex->color = white;
mst_vertex->key = DBL_MAX;
mst_vertex->parent = NULL;

470 Chapter 16: Graph Algorithms

Example 16-2. Implementation for Computing Minimum Spanning Trees (continued)

/***

* *
* Return if the start vertex was not found. *
* *

***/

if (!found)
return -1;

/***

* *
* Use Prim's algorithm to compute a minimum spanning tree. *
* *

***/

while (i < graph_vcount (graph)) {

/**

* *
* Select the white vertex with the smallest key value. *
* *

**/

minimum = DBL_MAX;

for (element = list_head(&graph _adjlists(graph)); element != NULL; element
= list_next (element)) {

mst_vertex = ((AdjList *)list_data(element))->vertex;
if (mst_vertex->color == white && mst_vertex->key < minimum) {

minimum = mst_vertex->key;

adjlist = list_data(element);
}
}
/**
* *
* Color the selected vertex black. *
* *

**/

((MstVertex *)adjlist->vertex)->color = black;

/**

* *
* Traverse each vertex adjacent to the selected vertex. *
* *

**/

Implementation and Analysis of Minimum Spanning Trees

471

Example 16-2. Implementation for Computing Minimum Spanning Trees (continued)

for

(member = list_head(&adjlist->adjacent); member != NULL; member =
list_next (member)) {

adj_vertex = list_data (member) ;

/***
* *

* Find the adjacent vertex in the list of adjacency-list structures. *
* *

***/

for (element = list_head(&graph adjlists(graph)); element != NULL;
element = list_next (element)) {

mst_vertex = ((AdjList *)1list_data(element))->vertex;

if (match(mst_vertex, adj_vertex)) {

/***

* *
* Decide whether to change the key value and parent of the *
* adjacent vertex in the list of adjacency-list structures. *
* *

***/

if (mst_vertex->color == white && adj_vertex->weight <
mst_vertex->key) {

mst_vertex->key = adj_vertex->weight;
mst_vertex->parent = adjlist->vertex;

break;

/**

*

*

*

*
Prepare to select the next vertex. *
*

**/

1+4;

472 Chapter 16: Graph Algorithms

Example 16-2. Implementation for Computing Minimum Spanning Trees (continued)

/***

* *
* Load the minimum spanning tree into a list. *
* *

‘k**‘k*/

list_init(span, NULL);

for (element = list_head(&graph_adjlists(graph)); element != NULL; element =
list_next (element)) {

/**

* *
* Load each black vertex from the list of adjacency-list structures. *
* *

**/

mst_vertex = ((AdjList *)1list_data(element))->vertex;
if (mst_vertex->color == black) {
if (list_ins next(span, list_tail(span), mst_vertex) != 0) {

list_destroy(span) ;
return -1;

}
}
}
return 0;
}

Description of Shortest Paths

Finding the shortest path, or minimum-weight path, from one vertex to another in
a graph is an important distillation of many routing problems. Formally stated,
given a directed, weighted graph G = (V] E), the shortest path from vertex s to fin
Vis the set S of edges in E that connect s to ¢ at a minimum cost.

When we find S, we are solving the single-pair shortest-path problem. To do this,
in actuality we solve the more general single-source shortest-paths problem, which
solves the single-pair shortest-path problem in the process. In the single-source
shortest-paths problem, we compute the shortest paths from a start vertex s to all
other vertices reachable from it. We solve this problem because no algorithm is
known to solve the single-pair shortest-path problem any faster.

Description of Shortest Paths 473

Dijkstra’s Algorithm

One approach to solving the single-source shortest-paths problem is Dijkstra’s
algorithm (pronounced “Dikestra”). Dijkstra’s algorithm grows a shortest-paths tree,
whose root is the start vertex s and whose branches are the shortest paths from s
to all other vertices in G. The algorithm requires that all weights in the graph be
nonnegative. Like Prim’s algorithm, Dijkstra’s algorithm is another example of a
greedy algorithm that happens to produce an optimal result. The algorithm is
greedy because it adds edges to the shortest-paths tree based on which looks best
at the moment.

Fundamentally, Dijkstra’s algorithm works by repeatedly selecting a vertex and
exploring the edges incident from it to determine whether the shortest path to
each vertex can be improved. The algorithm resembles a breadth-first search
because it explores all edges incident from a vertex before moving deeper in the
graph. To compute the shortest paths between s and all other vertices, Dijkstra’s
algorithm requires that a color and shortest-path estimate be maintained with
every vertex. Typically, shortest-path estimates are represented by the variable d.

Initially, we set all colors to white, and we set all shortest-path estimates to oo,
which represents an arbitrarily large value greater than the weight of any edge in
the graph. We set the shortest-path estimate of the start vertex to 0. As the algo-
rithm progresses, we assign to all vertices except the start vertex a parent in the
shortest-paths tree. The parent of a vertex may change several times before the
algorithm terminates.

Dijkstra’s algorithm proceeds as follows. First, from among all white vertices in the
graph, we select the vertex # with the smallest shortest-path estimate. Initially, this
will be the start vertex since its shortest-path estimate is 0. After we select the ver-
tex, we color it black. Next, for each white vertex v adjacent to u, we relax the
edge (u, v). When we relax an edge, we determine whether going through u
improves the shortest path computed thus far to v. To make this decision, we add
the weight of (#, v) to the shortest-path estimate for u. If this value is less than or
equal to the shortest-path estimate for v, we assign the value to v as its new
shortest-path estimate, and we set the parent of v to u. We then repeat this pro-
cess until all vertices have been colored black. Once we have computed the
shortest-paths tree, the shortest path from s to another vertex ¢ can be determined
by starting at ¢ in the tree and following successive parents until we reach s. The
path in reverse is the shortest path from s to

Figure 16-3 illustrates the computation of the shortest paths between a and all
other vertices in the graph. The shortest path from a to b, for example, is {a, ¢, f, b),
which has a total weight of 7. The shortest-path estimate and parent of each ver-
tex are displayed beside the vertex. The shortest-path estimate is to the left of the

474 Chapter 16: Graph Algorithms

slash, and the parent is to the right. The edges shaded in light gray are the edges
in the shortest-paths tree as it changes.

o Initially, starting at @ 0 After selecting a

Figure 16-3. Computing shortest paths using Dijkstra’s algorithm

Interface for Shortest Paths

shortest

int shortest (Graph *graph, const PathVertex *start, List *paths, int (*match)
(const void *keyl, const void *key2));

Return Value 0 if computing the shortest paths is successful, or —1 otherwise.

Implementation and Analysis of Shortest Paths 475

Description Computes shortest paths between start and all other vertices in
a directed, weighted graph specified by graph. The operation modifies graph, so
a copy should be made before calling the operation, if necessary. Each vertex in
graph must contain data of type PathVertex. Assign a weight to each edge by
setting the weight member of the PathVertex structure passed as data2 to
graph_ins_edge. Use the data member of each PathVertex structure to store
data associated with the vertex, such as an identifier. The match function for
graph, which is set by the caller when initializing the graph with graph_init,
should compare only the data members of PathVertex structures. This is the
same function that should be passed as the match argument to shortest. Once com-
puted, information about the shortest paths is returned in paths, which is a list of
PathVertex structures. In paths, the parent of the start vertex is set to NULL.
The parent member of every other vertex points to the vertex that precedes it in
the shortest path from the start vertex. The vertices in paths point to actual verti-
ces in graph, so the caller must ensure that the storage in graph remains valid as
long as paths is being accessed. Use [ist_destroy to destroy paths once it is no
longer needed.

Complexity O(EV?2), where Vis the number of vertices in the graph and E is
the number of edges. However, with a little improvement (similar to that dis-
cussed for Prim’s algorithm at the end of the chapter), Dijkstra’s algorithm can run
in O(E1g V) time.

Implementation and Analysis
of Shortest Paths

To compute the shortest paths from a vertex to all others reachable from it in a
directed, weighted graph, the graph is represented in the same manner as
described for minimum spanning trees. However, we use the PathVertex struc-
ture instead of MstVertex for vertices (see Example 16-3). The PathVertex
structure allows us to represent weighted graphs as well as keep track of the infor-
mation that Dijkstra’s algorithm requires for vertices and edges. The structure con-
sists of five members: data is the data associated with the vertex, weight is the
weight of the edge incident to the vertex, color is the color of the vertex, d is
the shortest-path estimate for the vertex, and parent is the parent of the vertex
in the shortest-paths tree. We build a graph consisting of PathVertex structures
in the same manner as described for building graphs with MstVertex structures.

The shortest operation begins by initializing every vertex in the list of adjacency-list
structures. We set the initial shortest-path estimate for each vertex to DBL_MAX,
except the start vertex, whose estimate is set to 0.0. The vertex stored in each
adjacency-list structure is used to maintain the color, shortest-path estimate, and

476 Chapter 16: Graph Algorithms

parent of the vertex, for the same reasons as mentioned for computing minimum
spanning trees.

At the center of Dijkstra’s algorithm is a single loop that iterates once for each ver-
tex in the graph. We begin each iteration by selecting the vertex that has the
smallest shortest-path estimate among the white vertices. We color this vertex
black where it resides in the list of adjacency-list structures. Next, we traverse the
vertices adjacent to the selected vertex. As we traverse each vertex, we look up its
color and shortest-path estimate in the list of adjacency-list structures. Once we
have located this information, we call relax to relax the edge between the selected
vertex and the adjacent vertex. If relax needs to update the shortest-path estimate
and parent of the adjacent vertex, it does so where the adjacent vertex resides in
the list of adjacency-list structures. We then repeat this process until all vertices
have been colored black.

Once the main loop in Dijkstra’s algorithm terminates, we are finished computing
the shortest paths from the start vertex to all other vertices reachable from it in the
graph. At this point, we insert each black PathVertex structure from the list of
adjacency-list structures into the linked list paths. In paths, the parent of the start
vertex is set to NULL. The parent member of every other vertex points to the ver-
tex that precedes it in the shortest path from the start vertex. The weight member
of each PathVertex structure is not populated because it is needed only for stor-
ing weights in adjacency lists. Figure 16-4 shows the list of PathVertex structures
returned for the shortest paths computed in Figure 16-3.

a dita b ¢ d e f

- weight

ook catr 1€ [block [« | [Block |« " [black | ¢ [Block [« | " [Block | <]
] 7 y 9 3 5
NULL parent f a b ¢ ¢

Figure 16-4. The list returned by the operation shortest for the shortest paths computed in
Figure 16-3

The runtime complexity of shortest is O(EV2), where V is the number of vertices
in the graph and E is the number of edges. This comes from the main loop, in
which we select vertices and relax edges. For each of the Vvertices we select, we
first traverse V elements in the list of adjacency-list structures to determine which
white vertex has the smallest shortest-path estimate. This part of the main loop is
O(V?2) overall. Next, for each vertex adjacent to the vertex we select, the list of
adjacency-list structures is consulted for the information needed to relax the edge
between the two vertices. Over all V vertices that we select, the list is consulted E
times, once for each of the E edges in all of the adjacency lists together. Each of

Implementation and Analysis of Shortest Paths 477

these consultations requires O(V) time to search the list. Therefore, for all V verti-
ces that we select, an O(V) operation is performed E times. Consequently, this
part of the loop is O(EV?2), and the main loop overall is O(V2 + EV2) or
O(EV 2). Since the loops before and after the main loop are O(V), the runtime
complexity of shortest is O(EV 2). However, recall that with a little improvement
(similar to that discussed for Prim’s algorithm at the end of the chapter), Dijkstra’s
algorithm can run in O(E1lg V) time.

Example 16-3. Implementation for Computing Shortest Paths

/**

* *
F e shortest.c -~-———-------------"———- *
* *

**/

#include <float.h>
#include <stdlib.h>

#include "graph.h"
#include "graphalg.h"
#include "list.h"
#include "set.h"

/***

* *
K e relax ——---—-————————————————— *
* *

***/

static void relax(PathVertex *u, PathVertex *v, double weight) {

/***

* *
* Relax an edge between two vertices u and v. *
* *

***/

if (v->d > u->d + weight) {

v->d = u->d + weight;
v->parent = u;

return;

/***
* *
F e shortest —---——---------- *
* *

***/

478 Chapter 16: Graph Algorithms

Example 16-3. Implementation for Computing Shortest Paths (continued)

int shortest (Graph *graph, const PathVertex *start, List *paths, int (*match)
(const void *keyl, const void *key2)) {

AdjList *adjlist;

PathVertex *pth_vertex,
*adj_vertex;

ListElmt *element,
*member ;
double minimum;
int found,
i;

/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Initialize all of the vertices in the graph. *
* *

***/

found = 0;

for (element = list_head(&graph adjlists(graph)); element != NULL; element =
list_next (element)) {

pth vertex = ((AdjList *)list_data(element))->vertex;

if (match(pth_vertex, start)) {

/***
* *
* Initialize the start vertex. *
* *

***/

pth_vertex->color = white;
pth_vertex->d = 0;
pth_vertex->parent = NULL;
found = 1;

else {

/***

* *
* Initialize vertices other than the start vertex. *
* *

***/

Implementation and Analysis of Shortest Paths

479

Example 16-3. Implementation for Computing Shortest Paths (continued)

pth _vertex->color = white;
pth _vertex->d = DBL_MAX;
pth_vertex->parent = NULL;

}
}
/***
* *
* Return if the start vertex was not found. *
* *

***/

if (!found)
return -1;

/***
* *

* TUse Dijkstra's algorithm to compute shortest paths from the start vertex. *
* *

***/

i=0;

while (i < graph_vcount (graph)) {

/**

* *
* Select the white vertex with the smallest shortest-path estimate. *
* *

‘k***/

minimum = DBL_MAX;

for (element = list_head(&graph_adjlists(graph)); element != NULL; element
= list_next(element)) {

pth_vertex = ((AdjList *)1list_data(element))->vertex;

if (pth_vertex->color == white && pth vertex->d < minimum) {

minimum = pth_vertex->d;
adjlist = list_data(element) ;

}
}
/**
* *
* Color the selected vertex black. *
* *

**/

480 Chapter 16: Graph Algorithms

Example 16-3. Implementation for Computing Shortest Paths (continued)
((PathVertex *)adjlist->vertex)->color = black;

/**

* *
* Traverse each vertex adjacent to the selected vertex. *
* *

**/

for (member = list_head(&adjlist->adjacent); member != NULL; member =
list_next (member)) {

adj_vertex = list_data (member) ;

/***
* *

* Find the adjacent vertex in the list of adjacency-list structures. *
* *

***/

for (element = list_head(&graph adjlists(graph)); element != NULL;
element = list_next (element)) {

pth vertex = ((AdjList *)list_data(element))->vertex;

if (match(pth_vertex, adj_vertex)) {

/***

* *
* Relax the adjacent vertex in the list of adjacency-list *
* structures. *
* *

‘k**/

relax(adjlist->vertex, pth vertex, adj_vertex->weight) ;

/**
* *
* Prepare to select the next vertex. *
* *

**/

1+4;

Shortest Paths Example: Routing Tables 481

Example 16-3. Implementation for Computing Shortest Paths (continued)

/***

* *
* Load the vertices with their path information into a list. *
* *

‘k**‘k*/

list_init(paths, NULL);

for (element = list_head(&graph_adjlists(graph)); element != NULL; element =
list_next (element)) {

/**

* *
* Load each black vertex from the list of adjacency-list structures. *
* *

**/

pth_vertex = ((AdjList *)1list_data(element))->vertex;
if (pth_vertex->color == black) {
if (list_ins next (paths, list_tail (paths), pth vertex) != 0) {

list_destroy (paths) ;
return -1;

return 0;

Shortest Paths Example: Routing Tables

One application in which shortest paths play an important role is routing data
between networks in an internet. Routing is the process of making informed deci-
sions about how to move data from one point to another. In an internet, this is
accomplished by propagating small sections of the data, or packets, along inter-
connected points called gateways. As each packet passes through a gateway, a
router looks at where the packet eventually needs to go and decides to which
gateway it should be sent next. The goal of each router is to propagate a packet
closer and closer to its final destination.

In order to propagate a packet closer to its destination, each router maintains
information about the structure, or fopology, of the internet. It stores this

482 Chapter 16: Graph Algorithms

information in a routing table. A routing table contains one entry for each gate-
way the router knows how to reach. Each entry specifies the next gateway to
which packets destined for another gateway should be sent.

So that packets are continually sent along the best route possible, routers periodi-
cally update their routing tables to reflect changes in the internet. In one type of
routing, called shortest path first routing, or SPF routing, every router maintains its
own map of the internet so that it can update its routing table by computing short-
est paths between itself and other destinations. Its map is a directed, weighted
graph whose vertices are gateways and whose edges are connections between the
gateways. Each edge is weighted by the performance most recently observed for a
connection. From time to time, routers exchange information about topology and
performance using a protocol designed especially for this purpose.

Example 16-4 is a function, route, that computes the information necessary to
update one entry in a routing table using SPF routing. The function accepts the list
of path information returned in the paths argument of shortest. It uses this infor-
mation to determine to which gateway a router should send a packet next to reach
its destination most effectively.

To complete an entire table for a specific gateway, we first call shortest with the
gateway passed as start. Next, for each destination to be included in the routing
table, we call route with the destination passed as destination. We pass the
same function for match as was provided to graph_init for the graph from which
paths was generated. The route function follows parent pointers in paths from
the destination back to the gateway and returns the best choice for moving a
packet closer to its destination in next. The vertex returned in next points to the
actual vertex in paths, so the storage in paths must remain valid as long as next
is being accessed.

Figure 16-5a illustrates the computation of a routing table for a router at gw; in the
internet shown (modeled using a graph similar to the one in Figure 16-3).
Figure 16-5b illustrates the computation of the routing table for a router at gw,.
Notice how the shortest paths are different depending on where we start in the
internet. Also, notice that in Figure 16-5b there is no way to reach gw;, so there is
no entry for it in the table.

The runtime complexity of route is O(n2), where n is the number of gateways in
paths. This is because we look up in paths the parent of each vertex between
the destination we are interested in and the starting point in the internet. If the
shortest path between us and the destination contains every gateway in paths, in
the worst case we may have to search the list of gateways 7 times to find every
parent.

Shortest Paths Example: Routing Tables

483

o destination | gw; | gw, | gws | gwy| gws | gw, o destination qwy | gws| gw,| gws | gy
next ~ [9W3| gw3| gws| gw3) gu3 next | 9W3| gWa| gWs | GWe

Figure 16-5. Routing tables computed for gateways (a) gw; and (b) gw,, in an internet

Example 16-4. Implementation of a Function for Updating Entries
in Routing Tables

JRIKIKKKKKKKKKKXIK KKK KK KKK KXI X I I Kk h kAR I X I Xk ko hhkhhhhkhkh Xk xkkhkhhkhkhkhxk

* *
* e route.c -----—-——-—-————m— *
* *

***/

#include <stdlib.h>

#include "graphalg.h"
#include "list.h"
#include "route.h"

JRIKIKKKKKKKKKKXIK KKK KK KKKKXI X I I Rk kAR I X I Xk ko hkhhhhkhkh Xk xhkhkhhkhkhkhxk

* *
Btk b bttt route —---------—-——————m— *
* *

***/

int route(List *paths, PathVertex *destination, PathVertex **next, int
(*match) (const void *keyl, const void *key2)) {

PathVertex *temp,
*parent;

ListElmt *element;

int found;

/***

* *
* Locate the destination in the list of gateways. *
* *

***/

484 Chapter 16: Graph Algorithms

Example 16-4. Implementation of a Function for Updating Entries
in Routing Tables (continued)

found = 0;

for (element = list_head(paths); element != NULL; element =
list_next(element)) {

if (match(list_data(element), destination)) {

temp = list_data(element);
parent = ((PathVertex *)list_data(element))->parent;

found = 1;
break;
}

}
/***
* *
* Return if the destination is not reachable. *
* *

***/

if (!found)
return -1;

/***

* *
* Compute the next gateway in the shortest path to the destination. *
* *

***/

while (parent != NULL) {

temp = list_data(element) ;
found = 0;

for (element = list_head(paths); element != NULL; element =
list_next (element)) {

if (match(list_data(element), parent)) {
parent = ((PathVertex *)list_data(element))->parent;

found = 1;
break;

Description of the Traveling-Salesman Problem 485

Example 16-4. Implementation of a Function for Updating Entries
in Routing Tables (continued)

/**
* *

* Return if the destination is not reachable. *

* *

**/

if (!found)
return -1;

*next = temp;

return 0;

Description of the Traveling-Salesman
Problem

Imagine a salesman who needs to visit a number of cities as part of the route he
works. His goal is to travel the shortest possible distance while visiting every city
exactly once before returning to the point at which he starts. This is the idea
behind the traveling-salesman problem.

In a graph, a tour in which we visit every other vertex exactly once before return-
ing to the vertex at which we started is called a hamiltonian cycle. To solve the
traveling-salesman problem, we use a graph G = (V, E) as a model and look for
the hamiltonian cycle with the shortest length. G is a complete, undirected,
weighted graph, wherein V'is a set of vertices representing the points we wish to
visit and E is a set of edges representing connections between the points. Each
edge in E is weighted by the distance between the vertices that define it. Since G
is complete and undirected, E contains V (V- 1)/2 edges.

One way to solve the traveling-salesman problem is by exploring all possible per-
mutations of the vertices in G. Using this approach, since each permutation repre-
sents one possible tour, we simply determine which one results in the tour that is
the shortest. Unfortunately, this approach is not at all practical because it does not
run in polynomial time. A polynomial-time algorithm is one whose complexity is
less than or equal to O(#%), where k is some constant. This approach does not run
in polynomial time because for a set of V vertices, there are V! possible permuta-
tions; thus, exploring them all requires O(V]) time, where V! is the factorial of V,
which is the product of all numbers from Vdown to 1.

486 Chapter 16: Graph Algorithms

In general, nonpolynomial-time algorithms are avoided because even for small
inputs, problems quickly become intractable. Actually, the traveling-salesman
problem is a special type of nonpolynomial-time problem called NP-complete. NP-
complete problems are those for which no polynomial-time algorithms are known,
but for which no proof refutes the possibility either; even so, the likelihood of
finding such an algorithm is extremely slim. With this in mind, normally the
traveling-salesman problem is solved using an approximation algorithm (see
Chapter 1).

Applying the Nearest-Neighbor Heuristic

One way to compute an approximate traveling-salesman tour is to apply the
nearest-neighbor beuristic. This works as follows. We begin with a tour consisting
of only the vertex at the start of the tour. We color this vertex black. All other verti-
ces are white until added to the tour, at which point we color them black as well.
Next, for each vertex v not already in the tour, we compute a weight for the edge
between the last vertex u added to the tour and v». Recall that the weight of an
edge from u to v in the traveling-salesman problem is the distance between u and
v. We compute this using the coordinates of the points that each vertex represents.
The distance r between two points (x, 1) and (x;,,),) is defined by the formula:

r= A/(xz_xﬂz + (yz_yl)z

Using this formula, we select the vertex closest to u, color it black, and add it to
the tour. We then repeat this process until all vertices have been colored black. At
this point, we add the start vertex to the tour again to form a complete cycle.

Figure 16-6 illustrates a solution to the traveling-salesman problem using the near-
est-neighbor heuristic. Normally when a graph is drawn for the traveling-salesman
problem, the edges connecting every vertex to each other are not explicitly shown
since the edges are understood. In the figure, each vertex is displayed along with
the coordinates of the point it represents. The dashed lines at each stage show the
edges whose distances are being compared. The darkest line is the edge added to the
tour. The tour obtained using the nearest-neighbor heuristic has a length of 15.95.
The optimal tour has a length of 14.71, which is about 8% shorter.

The nearest-neighbor heuristic has some interesting properties. Like the other algo-
rithms in this chapter, it resembles breadth-first search because it explores all of
the vertices adjacent to the last vertex in the tour before exploring deeper in the
graph. The heuristic is also greedy because each time it adds a vertex to the tour,
it does so based on which looks best at the moment. Unfortunately, the nearest
neighbor added at one point may affect the tour in a negative way later. Neverthe-
less, the heuristic always returns a tour whose length is within a factor of 2 of the

Interface for the Traveling-Salesman Problem 487

o Initially, starting at a o After selecting ¢ o After selecting f
g(55) (5,5) g055)
f(24) f(24) K f24) | .+~
13) 43 | c(1,3) a3 | 37 dud)
e(6,3) 0 elsl) Tl el6d)
b(5,2) =575 h(5,2)
a(21) a(21) a(21)
o After selecting d o After selecting b o After selecting e
g(55) g(5,5) g055)
f24). .- f(24) P f(2.4)
<3 T i «(1.3) d143) c(1.3) d43)
T elsd) ¢(63) 6,3)
(5,2) h(5.2) b(5,2)
a(21) 21 a(21)
o After selecting g o The tour, after selecting a again An optimal tour
y(5,3) g(5,5) g(5,3)
f(24) f(24) f(24) . —
c13) d43) (1.3 (443) <(1.3) d43)
63) / 63) 63)
b (52) h(5.2) (5,2)
a(21) a(2,1) a(21)

Figure 16-6. Solving the traveling-salesman problem using the nearest-neighbor beuristic

optimal tour length, and in many cases it does better than this. Other techniques
exist to improve a tour once we have computed it. One technique is to apply an
exchange beuristic (see the related topics at the end of the chapter).

Interface for the Traveling-Salesman
Problem

tsp

int tsp(List *vertices, const TspVertex *start, List *tour, int (*match)
(const void *keyl, const void *key2))

Return Value 0 if computing the approximate traveling-salesman tour is success-
ful, or -1 otherwise.

488 Chapter 16: Graph Algorithms

Description Computes an approximate traveling-salesman tour of the points
specified as vertices in vertices. The tour begins at the vertex specified by
start. The operation modifies vertices, so a copy should be made before call-
ing the operation, if necessary. Each element in vertices must be of type
TspVertex. Use the data member of each TspVertex structure to store data
associated with the vertex, such as an identifier. Use the x and y members of the
structure to specify the coordinates associated with the vertex. The function speci-
fied by match determines whether two vertices match. It should only compare the
data members of TspVertex structures. The tour is returned in tour, which is a
list of T'spVertex structures. Each vertex appears in tour in the order it would be
encountered during the tour. The elements in tour point to the actual vertices in
vertices, so the caller must ensure that the storage in vertices remains valid as
long as tour is being accessed. Use [list_destroy to destroy tour once it is no
longer needed.

Complexity O(V2), where V is the number of vertices to visit in the tour.

Implementation and Analysis
of the Traveling-Salesman Problem

To solve the traveling-salesman problem, we begin with a graph that is repre-
sented simply as a list of vertices. In this representation, an edge connecting every
pair of vertices is implied. Each vertex in the list is a TspVertex structure (see
Example 16-5). This structure consists of four members: data is the data associ-
ated with the vertex, x and y are coordinates for the point the vertex represents,
and color is the color of the vertex.

The #sp operation begins by coloring every vertex white, except the start vertex,
which is colored black and added to the tour immediately. The coordinates of the
start vertex are also recorded so that we can compute distances between it and
every other vertex during the first iteration of the main loop. In the main loop, we
add all of the remaining vertices to the tour. During each iteration, we look for the
white vertex closest to the last vertex. Each time we add a vertex, we record its
coordinates for the next iteration and color the vertex black. After the loop termi-
nates, we add the start vertex again to complete the tour.

The runtime complexity of #sp is O(V2), where Vis the number of vertices to visit
in the tour. This is because for each of the V — 1 iterations of the main loop, we
search the vertices in the graph to determine which is white and needs a distance
computed to it. Notice that O(V'2) is quite an improvement over the runtime com-
plexity for computing an optimal tour, which was O(VD.

Implementation and Analysis of the Traveling-Salesman Problem 489

Example 16-5. Implementation for Solving the Traveling-Salesman Problem

/***

* *
K e £Sp.C ———mmmmmm e *
* *

‘k**/

#include <float.h>
#include <math.h>
#include <stdlib.h>

#include "graph.h"
#include "graphalg.h"
#include "list.h"

/***

* *
Bttt bbb tsp -----———mm *
* *

***/

int tsp(List *vertices, const TspVertex *start, List *tour, int (*match)
(const void *keyl, const void *key2)) {

TspVertex *tsp_vertex,
*tsp_start,
*selection;

ListElmt *element;

double minimum
distance,
X,
yi

int found,
i;

/***

* *
* Initialize the list for the tour. *
* *

***/

list_init(tour, NULL);

/***

* *
* Initialize all of the vertices in the graph. *
* *

‘k**/

found = 0;

490 Chapter 16: Graph Algorithms

Example 16-5. Implementation for Solving the Traveling-Salesman Problem (continued)

for (element = list_head(vertices); element != NULL; element =
list_next (element)) {

tsp vertex = list_data(element) ;

if (match(tsp_vertex, start)) {

/***

* *
* Start the tour at the start vertex. *
* *

***/

if (list_ins next(tour, list_tail(tour), tsp_vertex) != 0) {

list_destroy(tour) ;
return -1;

}

/***
* *
* Save the start vertex and its coordinates. *
* *

***/

tsp_start = tsp vertex;
tsp_vertex->x;
tsp_vertex->y;

X
Y

/***

* *
* Color the start vertex black. *
* *

‘k**/

tsp_vertex->color = black;
found = 1;

else {

/***

* *
* Color all other vertices white. *
* *

***/

tsp_vertex->color = white;

Implementation and Analysis of the Traveling-Salesman Problem 491

Example 16-5. Implementation for Solving the Traveling-Salesman Problem (continued)

/***

* *
* Return if the start vertex was not found. *
* *

‘k**/

if (!found) {

list_destroy(tour) ;
return -1;

}

/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Use the nearest-neighbor heuristic to compute the tour. *
* *

***/

i=0;

while (i < list_size(vertices) - 1) {

/**

* *
* Select the white vertex closest to the previous vertex in the tour. *
* *

**/

minimum = DBL,_MAX;

for (element = list_head(vertices); element != NULL; element =
list_next (element)) {

tsp_vertex = list_data(element) ;

if (tsp_vertex->color == white) {
distance = sqrt (pow(tsp_vertex->x-x,2.0) + pow(tsp_vertex->y-y,2.0));
if (distance < minimum) {

minimum = distance;
selection = tsp_vertex;

492 Chapter 16: Graph Algorithms

Example 16-5. Implementation for Solving the Traveling-Salesman Problem (continued)

/**

* *
* Save the coordinates of the selected vertex. *
* *

‘k***/

selection->x;
selection->y;

X
Y

/**

* *
* Color the selected vertex black. *
* *

‘k***/

selection->color = black;

/**

* *
* 1Insert the selected vertex into the tour. *
* *

**/

if (list_ins_next(tour, list_tail(tour), selection) != 0) {

list_destroy(tour) ;
return -1;

/**
* *
* Prepare to select the next vertex. *
* *

‘k***/

1++;
}
/***
* *
* Insert the start vertex again to complete the tour. *
* *

***/

if (list_ins next(tour, list_tail(tour), tsp_start) != 0) {

list_destroy(tour) ;
return -1;

Questions and Answers 493

Example 16-5. Implementation for Solving the Traveling-Salesman Problem (continued)

return 0;

}

Questions and Answers

Q: In the implementations presented for computing minimum spanning trees and

shortest paths, weighted graphs are represented by storing the weights of edges
in the graphs themselves. What is an alternative to this?

For graphs containing edges weighted by factors that do not change fre-
quently, the approach used in this chapter works well. However, a more gen-
eral way to think of an edge’s weight is as a function w(u, v), where u and v
are the vertices that define the edge to which the weight function applies. To
determine the weight of an edge, we simply call the function as needed. An
advantage to this approach is that it lets us compute weights dynamically in
applications where we expect weights to change frequently. On the other
hand, a disadvantage is that if the weight function is complicated, it may be
inefficient to compute over and over again.

When solving the traveling-salesman problem, we saw that computing an opti-
mal tour is intractable except when the tour contains very few points. Thus, an
approximation algoritbm based on the nearest-neighbor beuristic was used.
What is another way to approximate a traveling-salesman tour? What is the
running time of the approach? How close does the approach come to an opti-
mal tour?

Another approach to solving the traveling-salesman problem using an approxi-
mation algorithm is to compute a minimum spanning tree, then traverse the
tree using a preorder traversal (see Chapter 9, Trees). The running time of this
approach is O(EV2), assuming we use the mst operation provided in this
chapter. As with the nearest-neighbor heuristic, this approach always pro-
duces a tour that has a length within a factor of 2 of the optimal tour length.
To verify this, let Tj;¢7 be the length of the minimum spanning tree, 7,pp be
the length of any approximate tour we compute, and 7py be the length of
the optimal tour. Since both the minimum spanning tree and the optimal tour
span all vertices in the tree, and no span is shorter than the minimum span-
ning tree, Ty < Topr. Also, Typp £ 2Tyer because only in the worst case
does an approximate tour trace every edge of the minimum spanning tree
twice. Therefore, T pp < 2Tpr. This is summarized as follows:

T <T

MST = * OPT”? T

appS 2T o7 =T 4pp< 2T opr

494

Chapter 16: Graph Algorithms

O:

When computing a minimum spanning tree using Prim’s algorithm, if we start
the algorithm at a different vertex, is it possible to obtain a different tree for the
same graph?

Especially in large graphs, as Prim’s algorithm runs, it is not uncommon to find
several white vertices with the same key value when looking for the one that
is the smallest. In this case, we can select any of the choices since all are
equally small. Depending on the vertex we select, we end up exploring a dif-
ferent set of edges incident from the vertex. Thus, we can get different edges
in the minimum spanning tree. However, although the edges in the minimum
spanning tree may vary, the total weight of the tree is always the same, which
is the minimum for the graph.

Recall that when we solve the traveling-salesman problem, we use a graph
whose structure is inspected for the hamiltonian cycle with the shortest length.
Do all graphs contain bamiltonian cycles?

Not all graphs contain hamiltonian cycles. This is easy to verify in a simple
graph that is not connected, or in a directed acyclic graph. However, we never
have to worry about this with complete graphs. Complete graphs contain
many hamiltonian cycles. Determining whether a graph contains a hamiltonian
cycle is another problem that, like the traveling-salesman problem, is NP-
complete. In fact, many graph problems fall into this class of difficult problems.

The implementation of Prim’s algorithm presented in this chapter runs in
O(EV2) time. However, a better implementation runs in O(E g V). How could
we improve the implementation presented here to achieve this?

The implementation of Prim’s algorithm in this chapter runs in O(EV?2) time
because for each vertex in the graph, we scan the list of vertices to determine
which is white and has the minimum key value. We can improve this part of
the algorithm dramatically by using a priority queue (see Chapter 10,
Heaps and Priority Queues). Recall that extracting the minimum value from a
priority queue is an O(1) operation, and maintaining the heap property of the
priority queue is O(lg 7), where 7 is the number of elements. This results in a
runtime complexity of O(E lg V) for Prim’s algorithm overall. However, the
priority queue must support operations for decreasing values already in the
queue and for locating a particular value efficiently so that it can be modified.
Since the priority queue presented in Chapter 10 does not support these oper-
ations, Prim’s algorithm was implemented here without this improvement.

Normally when we compute a minimum spanning lree, we do so for a con-
nected graph. What bappens if we try computing a minimum spanning tree for
a graph that is not connected?

Related Topics 495

A:

Recall that a graph is connected if every vertex is reachable from each other
by following some path. If we try to compute a minimum spanning tree for a
graph that is not connected, we simply get a minimum spanning tree for the
connected component in which the start vertex lies.

Related Topics

Bellman-Ford algoritbm

Another approach to solving the single-source shortest-paths problem. Unlike
Dijkstra’s algorithm, the Bellman-Ford algorithm supports graphs whose edges
have negative weights. Its runtime complexity is O(VE), where Vis the num-
ber of vertices in the graph and E is the number of edges.

Kruskal’s algorithm

Another approach to computing minimum spanning trees. The algorithm
works as follows. To begin, we place every vertex in its own set. Next, we
select edges in order of increasing weight. As we select each edge, we deter-
mine whether the vertices that define it are in different sets. If this is the case,
we insert the edge into a set that is the minimum spanning tree and take the
union of the sets containing each vertex; otherwise, we simply move on to the
next edge. We repeat this process until all edges have been explored.
Kruskal’s algorithm has a runtime complexity of O(E lg E), assuming we use a
priority queue to manage the edges, where E is the number of edges in the
graph.

All-pairs shortest-paths problem

An additional type of shortest-path problem in which we find the shortest
paths between every pair of vertices in a graph. One way to solve this prob-
lem is to solve the single-source shortest-paths problem once for each vertex
in the graph. However, it can be solved faster using a dedicated approach.

Exchange beuristics

Heuristics designed to help improve approximate traveling-salesman tours that
are reasonable to begin with, such as a tour computed using the nearest-
neighbor heuristic. Generally, an exchange heuristic works by repeatedly try-
ing to exchange edges already in the tour with others that may be better. As
each exchange is made, the length of the tour is recalculated to see if the tour
has been improved.

Geometric Algorithms

Geometric algorithms solve problems in computational geometry. Computational
geometry is an area of mathematics in which we perform calculations related to
geometric objects, such as points, lines, polygons, and the like. One interesting
characteristic of problems in computational geometry is that many have a dis-
tinctly visual quality about them. In fact, for many problems we can find solutions
simply by looking at visual representations of them. For example, how difficult is
it visually to determine whether two line segments intersect? On the other hand,
because computing requires more of a computational approach, even coming up
with solutions for seemingly simple problems like this can be deceptively chal-
lenging. This chapter presents three fundamental geometric algorithms. The first
two perform basic operations that are used frequently in solving more compli-
cated problems in computational geometry. The third is a relatively simple exam-
ple of a three-dimensional geometric algorithm. Example 17-1 is a header for the
algorithms presented in this chapter. This chapter covers:

Testing whether line segments intersect
Using a simple algorithm consisting of two steps: first, we test whether the
bounding boxes of the line segments intersect, and then we test whether the
line segments straddle each other. If both tests are successful, the two line seg-
ments intersect.

Convex bulls
Minimum-size convex polygons that enclose sets of points. A polygon is con-
vex if any line segment connecting two points inside the polygon lies com-
pletely inside the polygon itself.

Arc length on spherical surfaces
The distance along an arc between two points on the surface of a sphere. Spe-
cifically, we calculate the length of the arc that lies in the same plane as

496

Geometric Algorithms 497

imaginary lines drawn from the center of the sphere to either endpoint of the
arc on the sphere’s surface.

Some applications of geometric algorithms are:

Farthest-pair problems
Problems in which we determine which two points in a set are located the far-
thest apart. It can be shown that these points must lie on the convex hull
enclosing all of the points. Thus, the number of pairs whose distances are
compared can be greatly reduced by first computing a convex hull.

Approximating distances on Earth (illustrated in this chapter)
An interesting application of arc lengths on spherical surfaces. However, since
the Earth is not a perfect sphere but an ellipsoid, the distance computed is
only an approximation.

Restricted regions
Polygons that enclose areas not to be entered from outside. For example, mili-
tary organizations define restricted regions in which unauthorized aircraft are
not permitted to fly. If the track of an aircraft consists of a series of line seg-
ments beginning outside of the region, a simple way to determine whether a
proposed route of flight transgresses the region is to test whether any seg-
ment on the track intersects with any segment defining the region.

Physical enclosures
Structures that surround a number of objects, such as buildings or natural phe-
nomena. Often one of the requirements in constructing a large enclosure is to
build it using the least amount of materials. To do this, we can model the
objects as points and compute the convex hull around them.

Robotics
An exciting area of research in which automated, artificially intelligent devices
use geometric algorithms for vision and control. For example, a robot with
navigational capabilities must be able to move around objects that get in its
way and analyze various shapes to recognize where it is.

Cartographic information systems
Database systems containing geographical data generally used for mapping.
Often this information is manipulated using geometric algorithms. For exam-
ple, we might want to compute the distance between two geographical points
stored in the system.

Virtual reality systems
Examples are flight simulators, systems for architectural visualization, and sys-
tems for molecular modeling. One important aspect of virtual reality systems is
their use of computer graphics involving geometric algorithms.

498 Chapter 17: Geomelric Algorithms

Example 17-1. Header for Geometric Algoritbms

/***

* *
e geometry.h ---------——--- *
* *

‘k**/

#ifndef GEOMETRY_H
#define GEOMETRY_H

#include "list.h"

/***

* *
* Define an approximation for Pi. *
* *

***/

#ifndef PI
#define PI 3.14159
#endif

/***

* *
* Define macros for comparisons. *
* *

‘k**/

#define MIN(X, V) (((x) <
#define MAX (X, y) (((x) > (¥)

<
J

(x) = (v))
(x) = (¥))

)

/***

* *
* Define macros for converting between degrees and radians. *
* *

‘k**/

#define DEGTORAD (deg) (((deg) * 2.0 * PI) / 360.0)
#define RADTODEG (rad) (((rad) * 360.0) / (2.0 * PI))

/***

* *
* Define a structure for points in rectilinear coordinates. *
* *

‘k**/

typedef struct Point_ {

double X,

Y,
Z;

} Point;

Description of Testing Whether Line Segments Intersect 499

Example 17-1. Header for Geometric Algoritbms (continued)

/***

* *
* Define a structure for points in spherical coordinates. *
* *

‘k**‘k*/

typedef struct SPoint_ {

double rho,
theta,
phi;

} SPoint;

/***

* *
I ittt Ll b Public Interface ------—-——-————————mmm *
* *

***/
int lint (Point pl, Point p2, Point p3, Point p4);

int cvxhull (const List *P, List *polygon);

void arclen(SPoint pl, SPoint p2, double *length);

#endif

Description of Testing Whether Line
Segments Intersect

One fundamental problem in computational geometry is determining whether two
line segments intersect. Line segments are lines that have a beginning and an end.
The points that define either end are a line segment’'s endpoints. To determine
whether two line segments intersect, we first need to understand a little about
lines and line segments in general.

One representation of a line is point-intercept form, or y = mx + b, where m is the
line’s slope and b is where the line crosses the j-axis. Using this, for any value of
x, we can compute a corresponding value for y (see Figure 17-1a). For a line seg-
ment with endpoints p; = (x;,) and p, = (x,, 1), the slope m and j-intercept b
are calculated by applying the following formulas:

m= M b= Y, — mx

(X, — X)’ 1 1

Using m and b, the line segment is represented as a line in point-intercept form
with endpoints p; and p, understood (see Figure 17-1b).

500

Chapter 17: Geomelric Algorithms

O y=2+1,p=01),p,=101,3)
y o +5

-5 -5

Figure 17-1. (a) A line and (b) a line segment with endpoints p; and p,

Standard Test for Intersecting Line Segments

One way to determine whether two line segments intersect is first to determine the
intersection point p; = (x;, ;) of the two lines on which each segment lies, then
determine whether p; is on both segments. If p; is on both segments, the line seg-
ments intersect. We start with the point-intercept representations of the two lines
on which the segments lie, which are:

Yiiner = Miine1Xrinel + blinel’ Yiinez = Miine2Xline2 + blinez

The following formulas are used to compute p; = (x;, ;). Notice that one special
case we must avoid when computing x; is two lines with slopes that are equal. In
this case, the denominator in the expression for x; becomes 0. This occurs when
two lines are parallel, in which case the segments will not intersect unless they lie
on top of one another to some extent.

(blinez - blinel)

X, = ———= y.= m,. X + b,.
i _ » S linel**linel linel
(mlineZ mlinel)

Once we've computed p;, we perform the following tests to determine whether the
point is actually on both line segments. In these tests, p; = (xq,) and p, = (X, 1)
are the endpoints of one line segment, and p; = (x3, 33) and py = (x4,)4) are the
endpoints of the other. If each of the tests is true, the line segments intersect.

(x —x)(x;—x,)20

(=)= 9,)20

(x5 —x)(x;—x4) 20

(3=2)(;—y9) 20

Description of Testing Whether Line Segments Intersect 501

This approach is common for determining whether line segments intersect. How-
ever, because the division required while calculating x; is prone to round-off error
and precision problems, in computing we take a different approach.

Computer Test for Intersecting Line Segments

In computing, to determine whether two lines intersect, a two-step process is
used: first, we perform a quick rejection test. If this test succeeds, we then per-
form a straddle test. Two line segments intersect only when the quick rejection test
and straddle test both succeed.

We begin the quick rejection test by constructing a bounding box around each line
segment. The bounding box of a line segment is the smallest rectangle that sur-
rounds the segment and has sides that are parallel to the x-axis and y-axis. For a
line segment with endpoints p; = (xy, ¥ and p, = (x,,)5), the bounding box is
the rectangle with lower left point (min(x;, x,), min(y;, ¥;)) and upper right point
(max(xy, x), max(yy, »»)) (see Figure 17-2). The bounding boxes of two line seg-
ments intersect if all of the following tests are true:

max(x;, x,) 2 min(x;, x,)
max(xz, x;) 2 min(xy, x;)
max(y,, ¥,) 2 min(ys, y,)

max(s, ;) 2 min(y,, »,)

If the bounding boxes of the line segments intersect, we proceed with the strad-
dle test. To determine whether one segment with endpoints p; and p, straddles
another with endpoints p3 and p4, we compare the orientation of p; relative to p,
with that of py relative to p, (see Figure 17-2). Each point’s orientation conveys
whether the point is clockwise or counterclockwise from p, with respect to p;. To
determine the orientation of p; relative to p, with respect to p;, we look at the
sign of:

z1 = (x5 =x) (¥, — ¥ — (3= (%, —)

If z is positive, ps is clockwise from p,. If z is negative, p3 is counterclockwise
from p,. If it is O, the points are on the same imaginary line extending from p;. In
this case, the points are said to be collinear. To determine the orientation of p; rel-
ative to p, with respect to p;, we look at the sign of:

z, = (X4_x1)(y2_y1)_(y4_y1)(x2_x1)

If the signs of z; and 2z, are different, or if either is 0, the line segments straddle
each other. Since if we perform this test, we have already shown that the bound-
ing boxes intersect, the line segments intersect as well.

502 Chapter 17: Geomelric Algorithms

o Step 1: OK 0 Step 1: Fails

Step 2: OK (p, <0, p,>0) Step 2: Not applied
y 45 yo+5

Py

-5 -5
OSIepI:OK OSiepl:OK
Step 2: Fails (p, >0, p,>0) Step 2: OK (p, = 0, p, <0)
Y45 y 45

Figure 17-2. Testing whether line segments intersect using the quick rejection test (step 1) and
straddle test (step 2)

Figure 17-2 illustrates testing whether various pairs of line segments intersect using
the quick rejection and straddle tests. The equations just given come from repre-
senting the line segments from p; to ps, py to p,, and p; to py as vectors U, V, and
W (see the related topics at the end of the chapter) and using the signs of the
z-components of the cross products U X V and W X V as gauges of orientation.

Interface for Testing Whether Line
Segments Intersect

lint

int lint(Point pl, Point p2, Point p3, Point p4);

Return Value 1 if the two line segments intersect, or 0 otherwise.

Implementation and Analysis of Testing Whether Line Segments Intersect 503

Description Tests whether two line segments intersect. Specify one line seg-
ment using its endpoints as p0 and pl. Specify the second line segment using its
endpoints as p3 and p4. Each point is a structure of type Point. Although Point
has three members for representing points in three dimensions, we can use it to
represent points in two dimensions by setting z to 0. Since the /int operation
works in two dimensions, it ignores the z-coordinate of each point.

Complexity o)

Implementation and Analysis of lesting
Whetber Line Segments Intersect

To test whether two line segments intersect, we first must have a way to represent
each segment. Let pl1 and p2 define the endpoints of one of the segments and p3
and p4 define the endpoints of the other. Each endpoint is a Point structure. This
structure consists of three members, x, y, and z, that are the coordinates of a
point. Recall that we ignore all z-coordinates since /int works in two dimensions.

The lint operation (see Example 17-2) begins by performing the quick rejection
test. This test uses two macros, MIN and MAX (see Example 17-1). These return
the minimum and maximum of two values, respectively. The quick rejection test
determines whether the bounding boxes of two line segments intersect. If this test
succeeds, the algorithm continues with the straddle test; otherwise, it returns
immediately that the line segments do not intersect. The straddle test determines
the orientation of p3 relative to p2 and of p4 relative to p2 with respect to pl. It
then determines the orientation of pl relative to p4 and of p2 relative to p4 with
respect to p3. If the orientations of the points in either computation are different
or 0, the straddle test succeeds, and the algorithm returns that the line segments
intersect; otherwise, the line segments do not intersect. The quick rejection and
straddle tests are performed using the methods described earlier.

The runtime complexity of lint is O(1) because all of the steps in testing whether

two line segments intersect run in a constant amount of time.

Example 17-2. Implementation for Testing Whether Line Segments Intersect

/***

* *
Bttt lint.c ——====————— *
* *

***/

#include "geometry.h"

/***

* *
K lint ——=———— *
* *

***/

504 Chapter 17: Geomelric Algorithms

Example 17-2. Implementation for Testing Whether Line Segments Intersect (continued)

int lint(Point pl, Point p2, Point p3, Point p4) {

double zl,
z2,
z3,
z4;

int sl,
s2,
s3,
s4;

/***

* *
* Perform the quick rejection test. *
* *

‘k**/

if ('(MAX(pl.x, p2.x) >= MIN(p3.X, p4.xX) && MAX(p3.x, p4.x)
>= MIN(pl.x, p2.x%x) && MAX(pl.y, p2.y) >= MIN(p3.y, pd.y)
&& MAX(p3.y, pd.y) >= MIN(pl.y, p2.y))) { {

return 0;
}
/***
* *
* Determine whether the line segments straddle each other. *
* *

***/

if ((zl = ((P3.x - pl.x)*(P2.y - pl.y)) - ((P3.y - pl.y)*(p2.x - pl.x))) < 0)
sl = -1;
else if (zl1 > 0)

sl = 1;
else
sl =0;

if ((z2 = ((pd.x - Pl.xX)*(P2.y - pl.y)) - ((pd.y - pl.y)*(p2.x - pl.x))) < 0)
s2 = -1;
else if (z2 > 0)

s2 =1;
else
s2 = 0;

if ((z3 = ((pl.x - p3.x)*(pd.y - P3.y)) - ((Pl.y - p3.y)*(pd.x - p3.x))) < 0)
s3 = -1;
else if (z3 > 0)

s3 = 1;
else
s3 = 0;

if ((z4 = ((P2.x - P3.xX)*(pd.y - P3.y)) - ((P2.y - p3.y)*(p4d.x - p3.%x))) < 0)
s4 = -1;

else if (z4 > 0)
sd = 1;

Description of Convex Hulls 505

Example 17-2. Implementation for Testing Whether Line Segments Intersect (continued)

else
sd4 = 0;

if ((sl * s2 <= 0) && (s3 * s4 <= 0))
return 1;

/***

* *
* Return that the line segments do not intersect. *
* *

***/

return 0;

}

Description of Convex Hulls

The convex hull of a set of points is the smallest convex polygon that encloses all
points in the set. A polygon is convex if any line segment connecting two points
inside the polygon lies completely inside the polygon itself (see Figure 17-3a); oth-
erwise, the polygon is concave (see Figure 17-3b). To picture the convex hull for a
set of points, imagine a series of pegs on a board. If we wrap a string tightly
around the outermost pegs, the shape of the string is the convex hull.

° N

N

Figure 17-3. (a) A convex polygon and (b) a concave polygon

Jarvis’s March

One way to construct the convex hull for a set of points P is to use a method
called Jarvis’s march. Jarvis’s march constructs a convex hull in two sections,
called the right chain and left chain. The right chain consists of all points in the
convex hull from the lowest point (the one with the smallest j-coordinate) to the
highest. If two points are equally low, the lowest point is considered to be the one
that is also the furthest to the left (the one with the smallest a-coordinate). The left

506 Chapter 17: Geomelric Algorithms

chain consists of all points from the highest point back to the lowest. If two points
are equally high, the highest point is considered to be the one that is also the fur-
thest to the right.

We begin by finding the lowest point in P (as described a moment ago), adding it
to the convex hull, and initializing another variable, p,, to it. Next, we look at each
point p; in P, excluding p,, and locate the point p, that is clockwise from all oth-
ers with respect to p,. Picture a clock face centered on py. In the right chain, we
start at the 3 o’clock position and sweep counterclockwise until we encounter a
point. In the left chain, we start at 9 o’clock and sweep counterclockwise. Once
we find p,, we add it to the convex hull, we set p, to p,, and repeat the process
until p, is the point at which we started.

Returning to the peg analogy, in the right chain, selecting each point p, is similar
to tying a string to the current p,, pulling it taut to the right, and then advancing
the string counterclockwise until it touches another point. In the left chain, the
process is similar to pulling the string taut to the left before advancing it counter-
clockwise. Figure 17-4 illustrates this process.

Q-2 ,p-01) Or-041)p=1-34

(white points are
collinear)

-5

(white points are
collinear)

-5 -5

Figure 17-4. Computing the convex bhull for a set of 10 points

Implementation and Analysis of Convex Hulls 507

Computationally, to determine the point clockwise from all other points with
respect to p,, we traverse each point p; in P, except p,, and keep track of the best
choice for p. as we go. For each p; in P, we compare the orientation of p; relative
to the p. we have found thus far using the expression for z that follows. If z is
greater than 0, p; is clockwise from p,. with respect to p,, and we reset p. to the
current p; One nice thing about this approach is that we do not need to worry
about whether we are computing the right or left chain, as the mathematics han-
dles this for us.

z = (xi_x())(yc_yo) _(yi_y())(xc_x())

One special case occurs when z is 0. This means that p; and p, are collinear with
respect to py. In this case, the most clockwise point is considered to be the one
furthest from p, (in Figure 17-4, see the computation of z where p, = (-2, —4),
p;=1(0,-2), and p. = (2, 0) in step 1, and where p, = (-3, 4), p; = (-3, 2), and p, =
(-3, -1 in step 3). To determine the distance » between p, = (x,),) and a point
pj=(x;, ¥y, where p;is either p; or p., we use the following equation:

r = Jx—x) (7= 9)°

Interface for Convex Hulls

cuoxbull

int cvxhull (const List *P, List *polygon) ;

Return Value 0 if computing the convex hull is successful, or —1 otherwise.

Description Computes the convex hull for a list of points specified in P. Each
element in P must be of type Point. Since the cuxhull operation works in two
dimensions, like /int, it ignores the z-coordinate in each Point structure. The con-
vex hull is returned in polygon, which is a list of Point structures. The elements
in polygon point to the actual points in P, so the caller must ensure that the stor-
age in P remains valid as long as polygon is being accessed. Use [ist_destroy to
destroy polygon once it is no longer needed.

Complexity O(nh), where n is the total number of points, and b is the num-
ber of points in the convex hull.

Implementation and Analysis
of Convex Hulls

To compute the convex hull of a set of points, we begin with a list containing
each point. Each point in the list is a Point structure. This structure consists of

508 Chapter 17: Geomelric Algorithms

three members, x, y; and z, which are the coordinates of a point. Recall that we
ignore all z-coordinates since the operation works in two dimensions.

The cuxhull operation (see Example 17-3) begins by locating the lowest point
passed to it in P. To determine this, we traverse all points while keeping track of
which has the smallest j-coordinate. If two points share the smallest y-coordinate,
we choose the point that has the smallest x-coordinate. This results in the lowest
and leftmost point. Once we have identified this point, we set p0 to it.

The actual process of constructing the convex hull takes place within a nested
loop. At the start of the outer loop, we insert p0 into the convex hull. On the first
iteration of the loop, p0 is the lowest point. As the algorithm progresses, each suc-
cessive iteration of the outer loop yields a new p0. Within the inner loop, we
traverse each point pi in P to determine the next p0. Specifically, as we traverse
each point, pc maintains the point determined to be clockwise from all others thus
far with respect to the current p0. To determine whether a given pi is clockwise
from the current pc, we use the method presented earlier. That is, if z is greater
than 0, pi is clockwise from pc, in which case we reset pc to pi. If pi and pc are
collinear, we set pc to pi only if pi is further from p0 than pc. Thus, once we
have traversed all of the points in the list, pc is the point that is clockwise to all
others with respect to p0. At this point, we reset p0 to pc and repeat the process
until p0 is the point at which we started. Once we reach this point, all points in
the convex hull have been inserted into polygon at the top of the outer loop.

The runtime complexity of cuxbull is O(nb), where n is the total number of points,
and b is the number of points in the convex hull. The loop in which the lowest
point is determined runs in O(7) time because we must traverse all points to deter-
mine which is the lowest. The nested loops together are O(nh) because for each
point inserted into the convex hull, we must traverse all other points to determine
which is next to insert. Since locating the lowest point and constructing the con-
vex hull are carried out sequentially, the runtime complexity of coxbull is O(nh).

Example 17-3. Implementation for Computing Convex Hulls

/***

* *
et cvxhull.c ——————————————————————— - *
* *

***/

#include <math.h>
#include <stdlib.h>

#include "geometry.h"
#include "list.h"

/***

Implementation and Analysis of Convex Hulls 509

Example 17-3. Implementation for Computing Convex Hulls (continued)

***/

int cvxhull (const List *P, List *polygon) {
ListElmt *element;

Point *min,
*1low,
*p0,
*pi,
*pc;
double z,
lengthl,
length2;

int count;

/***

* *
* Find the lowest point in the list of points. *
* *

***/

min = list _data(list_head(P));

for (element = list_head(P); element != NULL; element = list_next (element)) {

p0 = list_data(element);

/**

* *
* Keep track of the lowest point thus far. *
* *

**/

if (p0->y < min->y) {

min = p0;
low = list_data(element) ;

else {

/***

* *
* If a tie occurs, use the lowest and leftmost point. *
* *

***/

if (p0->y == min->y && p0->x < min->x) {

510 Chapter 17: Geomelric Algorithms

Example 17-3. Implementation for Computing Convex Hulls (continued)

min = p0;
low = list_data(element) ;

}
}
}
/*****‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k**‘k********************
* *
* Initialize the list for the convex hull. *
* *

***/

list_init(polygon, NULL) ;

/***

* *
* Perform Jarvis's march to compute the convex hull. *
* *

‘k**/

p0 = low;

do {

/**

* *
* Insert the new p0 into the convex hull. *
* *

**/

if (list_ins_next (polygon, list_tail (polygon), p0) != 0) {

list_destroy (polygon) ;
return -1;

}

/**
* *
* Find the point pc that is clockwise from all others. *
* *

**/

count = 0;

for (element = list_head(P); element != NULL; element =
list_next (element)) {

Implementation and Analysis of Convex Hulls 511

Example 17-3. Implementation for Computing Convex Hulls (continued)

/***

* *
* Skip p0 in the list of points. *
* *

***/

if ((pi = list_data(element)) == p0)
continue;

/***

* *
* Count how many points have been explored. *
* *

***/

count++;

/***

* *
* Assume the first point to explore is clockwise from all others *
* until proven otherwise. *
* *

***/

if (count == 1) {

pc = list_data(element);

continue;
}
/***
* *
* Determine whether pi is clockwise from pc. *
* *

***/

if ((z = ((pi->x - p0->x) * (pc->y - p0->y)) - ((pi->y - p0->y) * (pc->x
- p0->x))) > 0) {

/**

* *
* The point pi is clockwise from pc. *
* *

**/

512 Chapter 17: Geomelric Algorithms

Example 17-3. Implementation for Computing Convex Hulls (continued)

/**‘k**

* *
* If pi and pc are collinear, select the point furthest from p0. *
* *

**/

lengthl
length2

sqgrt (pow (pi->x - p0->x, 2.0) + pow(pi->y - pO->y, 2.0));
sqgrt (pow (pc—>x - p0->x%x, 2.0) + pow(pc—->y - p0->y, 2.0));

if (lengthl > length2) {

/***
* *
* The point pi is further from pO than pc. *

* *

‘k**‘k*/

pc = pi;

/**
* *

* Prepare to find the next point for the convex hull. *

* *

**/

p0 = pc;

/**‘k**
* *

* Continue until reaching the lowest point again. *

* *

**/

} while (p0 != low);

return 0;

Description of Arc Length
on Spherical Surfaces

Many problems require computing the distance between two points. When we are
interested in the distance between points along a straight line, we apply the well-
known distance formula derived from the Pythagorean theorem. However, if we
are interested in the distance between points along a curved surface, the problem

Description of Arc Length on Spherical Surfaces 513

becomes more difficult. Fortunately, computing the minimum distance, or arc
length, between two points on a spherical surface is a special case that is rela-
tively simple. To begin, let’s look at two different coordinate systems, rectilinear
coordinates and spherical coordinates.

Rectilinear and Spherical Coordinates

The rectilinear coordinate system is the coordinate system that is most familiar to
us. In rectilinear coordinates, a point’s location is specified using three values, x;, j,
z, which are its positions along the x-axis, j-axis, and z-axis. Referring to
Figure 17-5, the z-axis is positive going upward. Standing at the arrow looking for-
ward, the x-axis is positive to the right, and the j-axis is positive straight ahead.
From this vantage point, the positive directions for x and y look the same as in
two dimensions. Thus, to locate (3, 4, 5), for example, we move three units to the
right along the x-axis, four units ahead parallel to the j-axis, and five units up par-
allel to the z-axis (see Figure 17-5).

o Moving 3 units along the x-axis o Moving 4 units parallel to the y-axis 0 Moving 5 units parallel to the z-axis

4 z z

~a
/

Figure 17-5. Locating the point (3, 4, 5) in a rectilinear coordinate system

In spherical coordinates, a point’s location is specified in terms of a distance p
(tho) and two angles, 0 (theta) and ¢ (phi): p is the distance along an imaginary
line from the origin to the point (a radius), 0 is the angle the point forms from the
positive x-axis toward the positive j-axis, and ¢ is the angle the point forms from
the positive z-axis heading toward the positive x-axis. To locate (5, 30, 45), for
example, we move five units up the z-axis, sweep 45 degrees from the positive
z-axis toward the positive x-axis, and spin 30 degrees from the positive x-axis
toward the positive jraxis (see Figure 17-6). (Notice that it is easier to visualize ¢
before 6 even though 6 precedes ¢ in the triple.)

Conwverting Between Coordinate Systems

When speaking about an arc on a spherical surface, it is often convenient to have
its endpoints specified in spherical coordinates. Therefore, the algorithm presented
here assumes this representation to begin with. However, to compute an arc’s

514 Chapter 17: Geomelric Algorithms

OMoving p = 5 units up the z-axis 0 Rotating ¢ = 45 degrees from the 0 Rotating © = 30 degrees from the
positive z-axis toward the positive positive x-axis foward the positive
X-OXis y-axis
z z z
/ o
S~ ‘43 1
X y X Y X y

Figure 17-6. Locating the point (5, 30, 45) in a spherical coordinate system

length, we will need its endpoints in rectilinear coordinates. Consequently, the first
step is to convert the points p; = (p, 81, ¢ and p, = (p, 05, ¢,) to the rectilinear
equivalents p; = (xq, ¥, 21) and p, = (%,)5, 2»). To do this, we start with the fol-
lowing equations. Of course, the locations of the points do not change, only their
representations.

x = psingcosO
Y = psin®sin®
pcoso

z

Another relationship between p and the rectilinear coordinates x, y, and z is:

p= /x2+y2+22

This formula calculates the distance from a point to the origin in three dimensions.

Computing the Length of an Arc

Now we are ready to compute the length of the arc between p; and p, on the
sphere. First, we picture two imaginary lines extending from the center of the
sphere to each of the points (see Figure 17-7a) and calculate o, the angle between
them. To do this, we use the formula:

o = Cos—l(x1x2 tnt 2122]
0?
where cos-1 is the inverse cosine of the argument in parentheses. Think of an
inverse cosine this way: the cosine of what angle gives us the value of the argu-
ment in parentheses? The expression in the numerator of the argument comes
from treating the imaginary line segments from the center of the sphere to p; and
Do as vectors U and V (see the related topics at the end of the chapter) and com-
puting the dot product U - V.

Interface for Arc Length on Spherical Surfaces 515

Figure 17-7. The length of an arc as viewed (a) on a sphere and (b) in the plane containing
the lines from the center of the sphere to each point

The lines that form a lie in a plane that slices across the sphere. The importance of
o is that where the sphere and this plane intersect, a circle is projected onto the
plane with the same radius as the sphere (see Figure 17-7b). Since the arc between
points p; and p, lies along a section of this circle, o helps to determine how much
of the circle’s perimeter the arc covers. This is determined from the percentage
o./2m, since there are 2w radians in a circle. Using this and the circumference of the
circle, 2mp, we see that the length s of the arc between p; and p, is (0/2m)(27p),
which simplifies to the equation that follows. This is the equation that is used in
the implementation presented later:

s = op

Interface for Arc Length
on Spherical Surfaces

arclen

void arclen(SPoint pl, SPoint p2, double *Iength)

Return Value None.

Description Computes the length of an arc between points pl1 and p2 on a
spherical surface. Each point is a structure of type Spoint, a point in spherical
coordinates. Specify the radius of the sphere as the rho member of each SPoint
structure. Specify the theta and phi members of each SPoint structure in radi-
ans. The length of the arc is returned in length.

Complexity o)

516 Chapter 17: Geomelric Algorithms

Implementation and Analysis of Arc
Length on Spherical Surfaces

To compute the length of an arc on a spherical surface, we first must have a way
to define the arc’s endpoints. For this, arclen accepts the two points pl and p2.
Each endpoint is an SPoint structure. This structure consists of three members,
rho, theta, and phi, which are the spherical coordinates for a point expressed in
radian measure.

The arclen operation (see Example 17-4) begins by converting spherical coordi-
nates into rectilinear coordinates using the equations presented earlier. Recall that
this allows us to calculate the angle between the lines extending from the center
of the sphere to either point on its surface. Next, we simply multiply this angle by
the radius of the sphere to obtain the length of the arc from pl to p2.

The runtime complexity of arclen is O(1) because all of the steps in computing
the length of an arc on a spherical surface run in a constant amount of time.

Example 17-4. Implementation for Computing Arc Length on Spherical Surfaces

/***

* *
et arclen.c —-—-—-———————-——————————————— - *
* *

***/

#include <math.h>

#include "geometry.h"

/***

* *
et arclen -—-—-—-—-————————————— *
* *

***/

void arclen(SPoint pl, SPoint p2, double *length) {

Point pl_rct,
p2_rct;

double alpha,
dot;

/***

* *
* Convert the spherical coordinates to rectilinear coordinates. *
* *

***/

pl_rct.x = pl.rho * sin(pl.phi) * cos(pl.theta);

Arc Length Example: Approximating Distances on Earth 517

Example 17-4. Implementation for Computing Arc Length on Spherical Surfaces (continued)

pl_rct.y = pl.rho * sin(pl.phi) * sin(pl.theta);
pl_rct.z = pl.rho * cos(pl.phi);

p2_rct.x = p2.rho * sin(p2.phi) * cos(p2.theta);
p2_rct.y = p2.rho * sin(p2.phi) * sin(p2.theta);
p2_rct.z p2.rho * cos(p2.phi);

/**‘k**

* *
* Get the angle between the line segments from the origin to each point. *
* *

***/

dot = (pl_rct.x * p2_rct.x) + (pl_rct.y * p2_rct.y) + (pl_rct.z * p2_rct.z);
alpha = acos(dot / pow(pl.rho, 2.0));

/**‘k**

* *
* Compute the length of the arc along the spherical surface. *
* *

***/
*length = alpha * pl.rho;

return;

Arc Length Example: Approximating
Distances on Earth

One application of computing arc lengths on spherical surfaces is approximating
distances between points on Earth. Sometimes these are called great-circle dis-
tances. Of course, the earth is not a perfect sphere but an ellipsoid slightly squat-
ter from north to south than east to west. That is, if we were to orbit the earth
along the prime meridian, we would find the distance traveled to be less than that
of orbiting the earth along the equator. Still, treating the earth as a sphere usually
gives reasonable approximations.

To compute the distance between two points on Earth, we first need a way to
locate each point. In geography, points are usually located in terms of latitude and
longitude. Latitudes sweep from 0 at the equator to 90 degrees at either pole. For
points north of the equator, the letter “N” is appended to the latitude, and for
points south, an “S” is appended. Often, degrees north of the equator are thought
of as positive and degrees south of the equator as negative. Longitudes sweep
from 0 at the prime meridian to 180 degrees in either direction. For points to the
west of the prime meridian, the letter “W” is appended to the longitude, and for
points to the east, an “E” is appended. Often, degrees west of the prime merid-

518 Chapter 17: Geomelric Algorithms

ian are thought of as positive and degrees east of the prime meridian as nega-
tive. For example, Paris is approximately 49.010 degrees to the north of the
equator and 2.548 degrees to the east of the prime meridian. Therefore, its posi-
tion is 49.010N, 2.548E, or 49.010, —2.548 (see Figure 17-8a).

To approximate the distance between two points on Earth given their latitude and
longitude, we first translate each point into spherical coordinates and convert all
angles from degrees to radians. Then, we simply compute the length of the arc
between the points. Recall that a point in spherical coordinates is given by the tri-
ple (r, 8, 0). In terms of the earth, ris the distance along an imaginary line from
the earth’s center to a point on its surface; that is, 7 is the earth’s radius, which is
3440.065 nautical miles. The coordinate 6 is the angle the point forms with the
prime meridian. Thus, 0 corresponds to longitude. However, since positive
longitudes are to the west and positive values of 8 are the opposite direction, to
obtain 0 from degrees longitude, we reverse the sign of the longitude. The coordi-
nate ¢ is the angle a point forms with an imaginary line extending vertically from
the center of the earth to the north pole. Thus, ¢ corresponds to latitude. How-
ever, since latitudes are relative to the equator and not the north pole, to obtain ¢
from degrees latitude, we reverse the sign of the latitude and add 90 degrees.

As an example, to compute the distance between Paris, France (49.010N, 2.548E)
and Perth, Australia (31.940S, 115.967E), we begin by converting their latitudes
and longitudes to spherical equivalents: (3440.065, 2.548, 40.990) for Paris and
(3440.065, 115.967, 121.940) for Perth. Next, we convert the angles in each point
to radians. Last, we compute the length of the arc between the points, which is
7706 nautical miles (see Figure 17-8b).

Figure 17-8. Computing the distance between (a) Paris and (b) Perth

This example presents a function, geodist (see Examples 17-5 and 17-6), that
approximates the distance between two points on Earth using the method just
described. The function accepts the latitude and longitude for each point as Iatl
and Ionli, and lat2 and Ion2. It returns the distance between the points in d

Arc Length Example: Approximating Distances on Earth 519

After performing some initial validation of the latitudes and longitudes, geodist
converts the latitude and longitude representations into spherical coordinates,
stores each representation in pl and p2 with all angles converted to radians, and
calls arclen to compute the distance.

The runtime complexity of geodist is O(1) because all of the steps in computing a
great-circle distance run in a constant amount of time.

Example 17-5. Header for a Function for Approximating Distances on Earth

/***

* *
K geodist.h —=——=————m— *
* *

***/

#ifndef GEODIST H
#define GEODIST H

/***

* *
* Define the radius of the earth in nautical miles. *
* *

***/

#define EARTH_RADIUS 3440.065

/***

* *
K Public Interface --------——-——————mooe——— *
* *

***/
int geodist (double latl, double lonl, double lat2, double lon2, double *d);
#endif

Example 17-6. Implementation of a Function for Approximating Distances on Earth

/***

* *
e ittt geodist.c —=——=————mmmm o *
* *

***/

#include "geodist.h"
#include "geometry.h"

/***

———————————————————————————————— geodist ——-—mmmmmmmmmmm e

***/

int geodist (double latl, double lonl, double lat2, double lon2, double *d) {

520 Chapter 17: Geomelric Algorithms

Example 17-6. Implementation of a Function for Approximating Distances on Earth

SPoint pl,

p2;

/***

*

*

*

*

Validate the coordinates. *
*

***/

if

if

(latl < -90.0 || latl > 90.0 || lat2 < =-90.0 || lat2 > 90.0)
return -1;

(lonl < -180.0 || lonl > 180.0 || lon2 < -180.0 || lon2 > 180.0)
return -1;

/***

*

*

*

*

*

Convert each latitude and longitude to spherical coordinates in radians *

using the earth's radius for rho. *
*

***/

pl.
pl.
.phi = (DEGTORAD(-1.0 * latl)) + DEGTORAD(90.0);

pl

p2.
p2.
.phi = (DEGTORAD(-1.0 * lat2)) + DEGTORAD(90.0);

P2

rho = EARTH_RADIUS;
theta = -1.0 * DEGTORAD (lonl) ;

rho = EARTH_RADIUS;
theta = -1.0 * DEGTORAD(lon2) ;

/***

*

*

*

*

Compute the distance between the points. *
*

***/

arclen(pl, p2, 4);

return 0;

Questions and Answers

O:

A:

One application of geometric algorithms mentioned at the start of this chapter
was determining whether the track of an object transgresses a restricted region.
If we assume that the track we follow begins oultside of the restricted region, a
simple approach to this problem is to determine whether any line segment in the
track intersects with any line segment defining the restricted region. What is the
running time of this approach if we use the lint operation presented in this
chapter?

The runtime complexity of this approach is O(nm), where n is the number of
line segments in the track and m is the number of line segments defining the

Questions and Answers 521

restricted region. This is because for each of the 7 line segments in the track,
we call /int once for each of the m line segments in the restricted region.
Since lint runs in a constant amount of time, the runtime complexity of the
solution overall is O(nm).

Q: Determining the orientation of two points with respect to a third is an impor-
tant part of the algorithms presented for determining whether line segmenis
intersect and computing convex bulls. Formally, given poinis py, p,, and ps,
we determine the orientation of ps relative to p, with respect to py by treating
the line segments from py to p, and py to p3 as vectors U and V. We then use
the sign of the z-component of the cross product UX V as a gauge of orienta-
tion. What is the orientation of the points if we compute the cross product Vx U?
In other words, given a specific orientation of ps relative (o p,, what is the ori-
entation of p, relative to ps?

A: The answer to this question is a matter of perspective. Imagine two people
facing forward in a room with a door behind them. Unless the two individu-
als line up perfectly with the door (one in front of the other), person A4 will
see person B to his left, whereas person B will see person A to his right, and
vice versa. The neat thing about cross products is that they reflect this per-
spective mathematically. When we compute the orientation of ps relative to p,
with respect to p;, we get an indication of where ps is from the perspective of
Py For example, p; may be clockwise from p,. When we compute the orien-
tation of p, relative to ps;, we get an indication of where p, is from the per-
spective of ps;. These perspectives are always equal but opposite to one
another (except in the boundary case when p, and p3 form a straight line with
pp. That is, U x V is always equal to but of opposite sign as V x U (if p, and
p3 form a straight line with p;, UX V and V x U are both 0, and the line seg-
ments from p; to p, and p; to ps are collinear). The formula given earlier in
the chapter for z; when testing for intersecting line segments comes from U X
V. To compute V x U, we exchange the positions of x, and x3 and of y, and
3 in the formula. This yields an equivalent result but with the sign reversed.
Therefore, if ps is clockwise from p,, for example, this tells us that p, is coun-
terclockwise from ps, as we would expect.

Q- To test whether two line segments from points py {0 p, and ps 10 p4 intersect, we
[first examine whether the bounding boxes of the line segments intersect and
then compare the orientation of p3 relative to p, with that of p4 relative to p;.
In what situation do the bounding boxes intersect when the orientations of both
p3 and p4 are 0? Is it possible to bave bounding boxes that do not intersect
when the orientations of ps and p4 are both 0?

A: Recall that when the orientation of either p3 or py is 0, it means that the line
segment from either p; to p5 or p; to py is collinear with the line segment from
Py to p,. If the bounding boxes of the two line segments intersect as well, this
tells us that at least some parts of the segments overlay each other (see
Figure 17-9a). Therefore, the line segments intersect. On the other hand, it is

522

Chapter 17: Geomelric Algorithms

possible to have two line segments that are collinear without intersecting. This
occurs when the segments would overlay each other if either were long
enough, but neither has the length necessary to do so (see Figure 17-9b).

0 Step 1: 0K 0 Step 1: Fails

Step 2: 0K (p, =0, p,= 0) Step 2: Not applied

-5 -5

Figure 17-9. Collinear line segments whose bounding boxes (a) intersect and (b) do not
intersect

O:

In this chapter we learned that the smallest polygon surrounding a set of points
is called a convex bull. This name implies that the polygon is always convex.
Why is this?

Recall that a polygon is convex if any line segment connecting two points
inside the polygon lies completely inside the polygon itself; otherwise, the
polygon is concave. To understand why a convex hull is always convex, con-
sider a concave polygon that surrounds a set of points. For any sequence of
three points p;, p,, and ps defining a concave region, if we replace the edges
from p; to p, and p, to ps with a single edge from p; to p3, we can reduce
the size of the polygon while keeping p, enclosed. We know that the size of
the polygon will be reduced because it is always shorter to go from one point
to another than through a third point first. We know that p, will still be
enclosed by the resulting polygon because the angle from p, to pj is less than
the angle from p; to p,. Therefore, since a convex polygon will always be
shorter than any concave one that encloses the same points, a convex hull
must be convex (see Figure 17-10).

Suppose in the approximation for distances on Earth presented in this chapter
we would like to improve the method used in the function geodist. Specifically,
we would like to do something to take into account the change in the Earth’s
radius at different latitudes and longitudes. How can we do this?

One way to make this improvement is to use the fact that both points passed
into geodist have their own value for the spherical coordinate p. When we
treat the Earth as a perfect sphere, we set the rho member of each point to

Related Topics 523

Figure 17-10. Showing that the smallest polygon enclosing a set of points is always convex

the same value since we are considering the distance from the Earth’s center
to the surface to be the same everywhere. However, a better approach would
be to set rho for each point to the actual distance from the center of the Earth
to the point and then compute an average of the two rho members for the
radius of the arc. Although this does not perfect the distance computation, it
does generally improve it.

Related Topics

Vectors
Mathematical quantities having both magnitude and direction. A vector con-
sists of several components, one for each axis of the coordinate system. If we
draw a vector as a line segment starting at the origin, a vector’s components
are values that describe how far we must move along each axis to reach the
point at which the vector ends. Some operations with vectors include addi-
tion, subtraction, dot products, cross products, and magnitudes.

Testing whether any two line segments intersect
A generalization of the test provided earlier in this chapter for determining
whether two line segments intersect. However, rather than simply applying this
test over and over again to test whether any line segments in a set intersect, it
is best to use a dedicated approach. Using a dedicated approach, the problem
can be solved in O(n 1g n) time, where # is the number of line segments.

Grabam’s scan
An alternative approach to Jarvis’s march for computing convex hulls. Graham’s
scan works by maintaining a stack of candidate points for the convex hull. Each
point is pushed onto the stack once. All points not in the convex hull are even-
tually popped off the stack so that when the algorithm terminates, the stack
contains only the points in the convex hull. Graham’s scan has a runtime com-
plexity of O(nlg n), where n is the number of points in the set to enclose.

Index

Symbols efficiency, 40, 44
geometric (see geometric algorithms)

graph (see graph algorithms)
reasons for using, 5-6
reusability, 6

alloc_frame function, 65-68

O-notation, 48
Q-notation, 48
w-notation, 48

A all-pairs shortest-paths problem, 495
abstract datatypes, 5 ancestor nodes, 180
abstract stack machines, 99, 199 approximating distances on Earth, 497,
abstraction, 4 517-520
activation records, 30-31, 98 approximating functions, 344
activations, 30 approximation algorithms, 8
adaptive Huffman coding, 421 arc length, 512-520
Adel’'son-Vel’skii and Landis (AVL) approximating distances on
trees, 206-230 Earth, 517-520
adjacency, 261 coordinate conversion, 513
adjacency-list representation of a description of, 512-514
graph, 262 example of, 517-520
adjacency-matrix representation of a formula, 514
graph, 204, 298 geodist function, 519
AdjList structure, 271 great-circle distances, 517
aggregate data, 15 implementation and analysis of, 515
algorithms, 5-8 interface for, 515
abstraction, 4 rectilinear coordinate system, 512
analysis of, 38-48 spherical coordinate system, 513, 517
classification of, 6-8 using latitude and longitude, 517
approximation, 8 arcs, 261
divide-and-conquer, 6 archiving, 366
dynamic-programming solutions, 7 arclen function, 515-516
greedy, 7 arithmetic coding, 421
randomized, 6 arithmetic with large integers, 459
defined, 5

525

526

Index

arrays, 16-20

as pointers, 16

associative, 142

bounds information, 19-20

in hash tables, 141

in heaps, 237

versus linked lists, 94

multi-dimensional, 17

passed to functions, 18, 20
articulation points, 262, 295
artificial intelligence, 179
associative arrays, 142
asymmetric ciphers (see public-key ciphers)
authentication servers, 423
automatic variables, 13
avalanche effect, 428
average-case performance, 39
AVL (Adel’son-Vel’skii and Landis)

trees, 206230

AvINode structure, 211

B

B*-trees, 233
B+-trees, 231, 233
B-trees, 179, 232-233
balance factor, 206
balanced trees, 183
Bellman-Ford algorithm, 495
best-case analysis, 39
best-fit lines, 343, 352-353
bfs function, 284-290
BfsVertex structure, 284-285
biconnected components, 262
biconnected graphs, 262
binary search, 302, 333-339
description of, 333
example of, 337-339
implementation and analysis
of, 334-337
interface for, 334
binary search trees, 179, 203-230
AVL trees, 206
balancing, 203, 206, 213, 232-233
description of, 203
destroy, 205, 212
find smallest node, 231
implementation and analysis
of, 206-230
initialize, 204, 212

insert node, 205, 213-214

interface for, 204-206

keys, 203

lazy removal, 214

lookup data, 206

red-black trees, 233

remove node, 205, 214

rotations, 179, 207-214

size of, 205

successor of node, 232

traversal methods, 231
binary square and multiply method, 453
binary trees, 178, 180-203, 234

ancestor nodes, 180

arrays for storage, 257

balancing, 182

branches, 180

branching factor, 178

child nodes, 178, 180, 186

description of, 180-183

destroy, 184, 189

example of, 199-202

forest, 180

as graphs, 297

heaps, 236

height of, 180

Huffman tree, 376

implementation and analysis

of, 187-198

initialize, 183, 189

inorder traversal, 182

insert node, 184, 189

interface for, 183-187

leaf node, 180, 186

level-order traversals, 182

merge, 185, 190

parent nodes, 178, 180

postorder traversal, 182

preorder traversal, 181

remove subtree, 185, 189

root node, 186

size of, 185

traversal methods, 178, 180-182
bisearch function, 334, 337
BisTree structure, 210
bistree_destroy, 205, 212, 229
bistree_init, 204, 212, 229
bistree_insert, 205, 213, 221, 230
bistree_lookup, 206, 215, 227, 230

Index

527

bistree_remove, 205, 214, 230
bistree_size, 206
bit operations, 3006, 369-375

description of, 369

get bit state, 369-370

implementation and analysis

of, 370-375

interface for, 369

rotate bits left, 370-371

set bit state, 369, 371

XOR computation, 370-371
bit_get, 369-370, 372
BiTree structure, 187
bitree_data, 186
bitree_destroy, 184, 189, 191
bitree_init, 183, 189, 191
bitree_ins_left, 184, 189, 192
bitree_ins_right, 184, 189, 193
bitree_is_eob, 186
bitree_is_leaf, 186
bitree_left, 186
bitree_merge, 185, 197
BiTreeNode structure, 187
bitree_rem_left, 185, 189, 195
bitree_rem_right, 185, 190, 196
bitree_right, 187
bitree_root, 186
bitree_size, 185
bit_rot_left, 370-371, 373
bit_set, 369, 371-372
bit-vector representation of a set, 140
bit_xor, 370-371, 373
black boxes, 9
block cipher modes, 445-448
block ciphers, 425
bottom-heavy heaps, 236
bounding boxes, 496, 501
branches, 180
branching factor, 178, 232-233
breadth-first search, 264, 284-290
breadth-first trees, 266
bridges, 262, 296
bubble sort, 341
bucket sort, 342
buckets, 141, 143
build_table function, 387
build_tree function, 383

C
C++, 25

call-by-reference parameter passing, 17, 19

call-by-value parameter passing, 18
cartographic information systems, 497
casts, 23
CBC, 445-448
cbc_decipher function, 446-448
cbc_encipher function, 446-448
CFB, 459
chained hash tables, 141, 143160
buckets, 141, 143, 147
collision resolution, 143
description of, 143-147
destroy, 147, 150
example of, 157-160
hash functions, 143
hashing keys, 143
implementation and analysis
of, 149-157
initialize, 147, 150
insert element, 148, 151
interface for, 147-149
keys, 143
load factor, 144
lookup data, 148, 151
multiplication method, 145
remove element, 148, 151
size of, 148, 151
symbol tables, 157-160
uniform hashing, 143
child nodes, 178, 180
chromatic number, 260
CHTbI structure, 149
chtbl_destroy, 147, 150
chtble_insert, 148, 151
chtble_lookup, 148, 151
chtbl_init, 147, 150, 152
chtbl_insert, 154
chtbl_lookup, 156
chtbl_remove, 148, 151, 154
chtbl_size, 148, 151
cipher block chaining (CBC), 445, 448
cipher feedback (CFB), 459
ciphers, 422
ciphertext, 422
circular lists, 51, 82-93
description of, 82
destroy, 83, 86

528

Index

circular lists (continued)
doubly-linked, 96
example of, 91-94
implementation and analysis of, 84-91
initialize, 82, 86
insert next element, 83, 86
insertion before head, 96
interface for, 82-84
next element, 84
remove element, 83, 87
second-chance page replacement, 91-93
size of, 84
circular queues, 114
cliques, 260
ClList structure, 85
clist_data, 84
clist_destroy, 83, 86
CListElmt structure, 85
clist_head, 84
clist_init, 82, 86
clist_ins_next, 83, 86
clist_next, 84
clist_rem_next, 83, 87
clist_size, 84
clock algorithm, 91
closed transport systems, 461
collinear points, 501
collision resolution, 142-143, 161
coloring graphs, 260
combinatorics, 133
comments, 9
communications networks, 461
compare_dir function, 315
compare_freq function, 382
compare_int function, 310
compare_str function, 338
compare_win function, 406
comparison sorts, 301
compilers, 158
compiler design, 37
hash tables, 157
compile-time errors from pointers, 24
complete graphs, 261
complexity (see computational complexity)
components of vectors, 523
compression ratio, 365
compression (see data compression)
computational complexity, 42, 44, 47-48
growth rates, 44

relation to running time, 43
table of situations, 43
computational geometry, 496
computerized election, 424
concave polygon, 505, 522
concavity of a function, 357
conflict-serializability, 260
confusion principle, 426
connected components, 262
connected graphs, 262
consistency of code, 9
constant-time searches, 141
convex hulls, 496, 505-512
chains, 505
computation, 506
convex polygon, 505
description of, 505-506
Graham’s scan, 523
implementation and analysis
of, 507-512
interface for, 507
Jarvis’s march, 505
smallest polygon, 521
convex polygon, 505, 522
count edges, 270
count runs, 420
counting network hops, 260
counting sort, 302, 324, 326-328
description of, 324
implementation and analysis
of, 325-328
interface for, 325
in radix sort, 329
stable attribute, 324
cover function, 133-137
cryptographic algorithms, 422
cryptographic protocols, 459
cryptography (see data encryption)
ctsort function, 325-328
cursors, 97
curve fitting, 344
cvxhull function, 507-508
cycles, 262

D

dags (see directed acyclic graphs)

dangling pointers, 12

data compression, 365-421
adaptive Huffman coding, 421

Index

529

applications of, 366
arithmetic coding, 421
compression ratio, 365
dictionary-based methods, 365
entropy, 365
Huffman coding, 375-399
Lempel-Ziv-1977 (LZ77), 399-418
Lempel-Ziv-1978 (LZ78), 421
Lempel-Ziv-Welch (LZW), 421
lossless, 365
lossy, 365, 420
minimum redundancy coding, 365
Shannon-Fano coding, 421
data correlation, 115
data dictionaries, 142
data encryption, 422-459
applications of, 423
Data Encryption Standard
(DES), 425-456
Rivest-Shamir-Adleman (RSA), 448-456
Data Encryption Standard (DES), 423,
425-448
decipher function, 433
description of, 425432
encipher function, 432
example of, 445-448
implementation and analysis
of, 433445
interface for, 432
semiweak key pairs, 457
weak keys, 456
data hiding, 9
data structures, 4
abstraction, 4
defined, 3
destruction, 15
efficiency, 4
encapsulated functions, 24
initialization, 15
pointers in, 5
reasons for using, 4
reusability, 4
storage management, 15
two pointing to the same data, 231
database queries, 116
database systems, 302
binary trees in, 179
B+-trees, B*-trees, and B-trees in, 233
data compression in, 367

hash tables in, 142

query languages, 116
decision trees, 179
delivery services, 2306, 254, 461
dense graphs, 264
depth-first forests, 266
depth-first search, 266-267, 290-296
deques, 114
dequeue event, 110
derivatives of functions, 364
DES (see Data Encryption Standard)
descendant nodes, 180
des_decipher function, 433, 435
des_encipher function, 432433
des_main function, 433
destroy_left function, 212, 218
destroy_right function, 212, 220
destroy_tree function, 383
dfs function, 291, 294
dfs_main function, 291, 293-295
DfsVertex structure, 291-292
dictionary-based compression, 366
diffusion principle, 426
digital cash, 423
digital signatures, 424
Dijkstra’s algorithm, 473
direct-address tables, 177
directed acyclic graphs, 260, 262, 290
directed graphs, 261, 263
directory listings, 302, 314-317
discovery times, 296
dispatch function, 110
divided-difference tables, 346-347
division method (hashing), 145
DList structure, 72-73
dlist_data, 71, 73, 75
dlist_destroy, 69, 73, 76
DListElmt structure, 72
dlist_head, 70
dlist_init, 68, 73
dlist_ins_next, 69, 74
dlist_ins_prev, 69, 75
dlist_is_head, 71
dlist_is_tail, 71
dlist_next, 71
dlist_prev, 71
dlist_remove, 70, 75
dlist_size, 70
dlist_tail, 70

530

Index

double hashing, 163-164
double-ended queues, 114
doubly-linked circular lists, 82, 96
doubly-linked lists, 68-81

description of, 68

destroy, 73

implementation and analysis of, 72-81

initialize, 73

insert element, 74

interface for, 68-71

remove element, 70, 75

size of, 70
dynamic allocation, 13-14
dynamic storage allocation, 26
dynamic-programming solutions, 7

E

ECB (Electronic Code Book), 445

edges, 259

efficiency (in algorithms), 40, 44

efficient pipelines, 461

electronic mail, 423

embedded applications, 366

encapsulation, 9

encryption (see data encryption)

endpoints, 499

enqueue event, 110

entropy, 365, 375

equal sets, 122, 126

equations, solving, 355

error approximation, 364

Euclid’s greatest common divisor
algorithm, 459

Euler’s function, 450

event handling, 99, 110-112

event-driven applications, 110

events, 110

exchange heuristic, 495

expansion permutation, 428-430, 434

exponential period, 450

expression processing, 179

expression trees, 199-203

F

fact function, 28-30
factorial, 28, 32

facttail function, 33
farthest-pair problems, 497

feedback, 445
Fibonacci heaps, 258
FIFO (first-in, first-out), 105
file allocation, linked, 52
final permutation, 432
finishing times, 296
first-in, first-out (FIFO), 105
frame management, 65, 91-93
frame pointer, 36
free_frame function, 65-68
function calls

activation records, 98

C, 99

execution of, 31, 98
function pointers, 12, 23
function tables, 344
functional relationship, 352

G

garbage collection algorithms, 38
gateways, 481
generic pointers, 21
geodist function, 519
geometric algorithms, 496-523
applications of, 497
arc length, 512-520
convex hulls, 505-512
Jarvis’s march, 505
testing line segment
intersection, 499-502
get_parcel function, 255
Graham’s scan, 523
graph algorithms, 460463
all-pairs shortest-paths problem, 495
applications of, 460
Bellman-Ford algorithm, 495
breadth-first search, 265, 284-290
depth-first search, 266-267, 290-296
Dijkstra’s algorithm, 473
Kruskal’s algorithm, 495
shortest paths, 472485
single-pair shortest-path problem, 472
single-source shortest-paths
problem, 472
traveling-salesman problem, 485-493
Graph structure, 271
graph_adilist, 269, 274, 282
graph_adjlists, 270
graph_destroy, 268, 273, 276

Index

531

graph_ecount, 270
graph_init, 267, 272, 275
graph_ins_edge, 208, 273, 278
graph_ins_vertex, 268, 273, 277
graph_is_adjacent, 270, 274, 283
graph_rem_edge, 269, 274, 281
graph_rem_vertex, 269, 274, 279
graphs, 116, 259, 263298, 460
acyclic, 262-263, 290
adjacency, 261
adjacency-list representation, 202, 264,
270
adjacency-matrix representation, 264,
298
algorithms (see graph algorithms)
applications of, 259, 461
arcs, 261
articulation points, 262, 295
biconnected, 262
breadth-first search, 264-265, 284—290,
296
bridges, 262-263
coloring, 260
connected, 262
connected components, 262
count edges, 271
count vertices, 271
counting network hops, 284-290
cycles, 262
dense, 264
description of, 261-267
destroy, 268, 273
determine adjacency, 270, 275
directed, 261, 263, 296
directed acyclic, 260, 262, 290
edges, 259, 261
examples of, 284-295
hamiltonian cycles, 485, 494
hops, 284
implementation and analysis, 270-284
incidence, 262
in-degree, 262
initialize, 267, 272
insert edge, 268, 273
insert vertex, 268, 273
interface for, 267-270
internet, 295
multigraphs, 298
out-degree, 262

paths, 262
precedence, 290
remove edge, 269, 274
remove vertex, 269, 274
retrieve adjacency list, 269, 274
search methods, 259, 264—267
sparse, 204
strongly connected, 262
topological sorting, 290-295
transpose of, 297
undirected, 261
vertices, 259, 261
weighted, 460
graph_vcount, 270
great-circle distances, 517
greedy algorithm, 7
growth rate, 40

H

hamiltonian cycles, 260, 485, 494
harmonic series, 36
hash coding, 141
hash functions, 141
hash tables, 141-177
applications of, 142
chained, 143-147
colliding keys, 141
collision resolution, 142
direct-address tables, 177
directly addressed, 141
key, 141
load factor, 144
multiplication method, 145
open-addressed, 142, 161-176
quadratic probing, 177
random number generators, 177
selecting a hash function, 142
symbol tables, 142
uniform hashing, 143
universal hashing, 177
hash values, 141
hashing, 141-146
by division method, 145
by multiplication method, 145
hashpjw function, 146
Heap structure, 239
heap-based allocation, 26
heap_destroy, 238, 240, 244
heap_extract, 238, 242, 247

532

heap_init, 237, 240, 244
heap_insert, 238, 240, 245, 256
heap_left, 244, 249, 257
heap_parent, 244, 246-247
heap_right, 244, 249, 257
heaps, 235-254
applications of, 235
balancing, 236
bottom-heavy, 236
description of, 236
destroy, 238, 240
extract node, 238, 243
Fibonacci, 258
heapification, 257
initialize, 237, 240
insert node, 238, 240-241
interface for, 237-239
k-ary, 258
partial ordering, 236
reheapify, 241-242
size of, 239, 242
stored as arrays, 237
top-heavy, 236
heap_size, 239, 242
heapsort, 235, 341
heuristic, 8
hide function, 215, 226, 230
hierarchical file system, 314
HuffCode structure, 367
Huffman coding, 7, 179, 366, 375-399
adaptive, 421
build code table, 380
compressing/uncompressing
data, 377-382
description of, 375-379
effectiveness, 378, 418
end of data, 419
entropy, 375
frequency, 376, 380
header, 419
Huffman codes, 377
Huffman trees, 7, 376-378
implementation and analysis
of, 380-396
interface for, 379
minimum redundancy coding, 375
optimized networking, 396-399
receive compressed data, 396
send compressed data, 396
versus Lempel-Ziv-1977 (LZ77), 420

huffman_compress function, 379-380, 389,

396

huffman_uncompress function, 379, 381,

392, 396
HuffNode structure, 367, 380
hypergraphs, 297

1

incidence, 261
incremental sorting, 303
industrial-grade primes, 459
infix expressions, 199
information theory, 365, 422
initial permutation, 428
initialization vector, 446
inorder function, 200-201
inorder traversal, 182, 199
in-place sorts, 301
insertion sort, 45, 302306, 339
description of, 303
implementation and analysis
of, 304-306
interface for, 303
integers, large, 459
internets
point of failure, 296
routing tables, 481
security, 456
shortest route problem, 284
SPF routing, 482
topology, 481
interpol function, 348

interpolation (see polynomial interpolation)

intersection of lines (see line segment
intersection, testing)

intersection of sets, 121, 125

introsort, 341

issort function, 303-306

J

Jarvis’s march, 505
Java, 38, 110

K

k-ary heaps, 258

k-ary trees, 233

keys, 141

Kruskal’s algorithm, 495
KSet structure, 135

Index

533

L

last-in, first-out (LIFO), 99
latitude, 517
leaf nodes, 180
least recently used (LRU) page
replacement, 91
least-squares estimation, 343, 352-355
best-fit line, 352
description of, 352-353
formulas, 353
implementation and analysis of, 354
interface for, 353
left-balanced trees, 183
Lempel-Ziv-1977 (LZ77), 366, 399—418
compress data, 400, 402—403
description of, 399401
dictionary, 399
effectiveness, 400, 418
implementation and analysis
of, 403—418
interface for, 402
look-ahead buffer, 399, 419
phrase tokens, 400, 404—405, 409
sliding window, 399, 404—405, 419-420
symbol tokens, 400
tokens, 399-418
uncompress data, 400, 403, 405, 412
versus Huffman coding, 420
Lempel-Ziv-1978 (LZ78), 421
Lempel-Ziv-Welch (LZW), 421
level-order traversal, 182
lex function, 157
lexemes, 157
lexical analyzers, 157
LIFO (last-in, first-out), 99
line segment intersection, testing, 496, 499
bounding box, 501
collinear segments, 522
computer test
quick rejection test, 501
straddle test, 501
description of, 499-502
implementation and analysis
of, 503-504
interface for, 502
line representation, 499
standard test, 500
linear congruential generators, 177
linear probing, 162-163, 177

linear regression models, 344
linear search, 301
linear-time sorts, 301
lines, 499-501
point-intercept form, 499
point-slope form, 357
linked file allocation, 52
linked list arrays, 97
linked lists, 15, 25, 51-97
applications of, 52
versus arrays, 51, 94
in chained hash tables, 143-160
circular (see circular lists)
cursors, 97
destroy, 54, 58
doubly-linked, 51, 68-81
file allocation, 52
frame management, 65
head, 52, 55
initialize, 53, 58
insert element, 54, 58
interface for, 53
memory management, 52
multilists, 97
next element, 56, 71
in operating systems, 52
polynomials, 52
previous element, 71
remove elements, 54, 59-60, 95
singly-linked lists, 51-68
size of, 55, 60-68
tail, 52,59, 96
virtual memory implementation, 65-66,
68
lint function, 499, 502, 520
LISt Processor (LISP), 38, 52
List structure, 113
list_data, 56, 58, 60
list_destroy, 54, 57, 61, 103, 108
ListElmt structure, 56
list_head, 55, 58, 60
list_init, 53, 56, 60, 103, 108
list_ins_next, 54, 57, 62, 65, 68, 103, 108,
139
list_is_head, 55, 58
list_is_tail, 55, 58, 60
list_next, 56, 58, 60, 113, 122
list_rem_next, 54, 57-61, 63, 65, 67, 103,
108, 122

534 Index

list_size, S5, 57, 60 Muller’s method, 364

list_tail, 55, 58, 60 multigraphs, 298

load balancing, 236, 250 multilists, 97

load factor, 144 multiplication method (hashing), 145
longitude, 517 multiset, 140

look-ahead buffer, 399

lossless compression, 365 N

lossy compression, 365, 420

Isqe function, 353

1z77_compress function, 402—-403, 407
1z77_uncompress function, 403, 405, 412
LZ77 (see Lempel-Ziv-1977)

national security, 423
nearest-neighbor heuristic, 486—487
networking problems, 284

Newton form of a polynomial, 345
Newton formula for interpolating

]I:Zz;/;’ 25; polynomials, 346
’ next_token function, 157
notations (algorithm analysis)
M O-notation, 40-42, 45, 48
mailing lists, 51 o-notation, 48
median-of-three method, 307 ®-notation, 48
members, 115, 121, 125 Q-notation, 48
memory w-notation, 48
addresses, pointers to, 12 NP-complete problems, 48, 486
leaks, 14 numerical analysis, 343
management, 52 numerical methods, 343
organization of, 30 numerical representation, 363
physical versus virtual, 65
merge sort, 7, 302, 317-324, 339 (6}

description of, 317
implementation and analysis
of, 318-324
interface for, 318
merging process, 318
mgsort function, 318-324, 339
Miller-Rabin algorithm, 458
minimum redundancy coding, 365, 375
minimum spanning trees, 460, 463,
465472
description of, 463-465
implementation and analysis
of, 466472
interface for, 465
list returned by mst function, 468
Prim’s algorithm, 464, 467, 494
minimum-weight paths (see shortest paths)
mobile computing, 366

modexp function, 453456 double hashing, 163-164

modular arithmetic, 459) . .
duls dati 454 implementation and analysis
modular exponentiation, of, 166-176

modularity of code, 9
mst function, 465, 468
MstVertex structure, 466

object-oriented languages, 102
OFB (Output Feedback), 459
OHTDbI structure, 166
ohtbl_destroy, 165, 168, 171
ohtbl_init, 164, 168, 170
ohtbl_insert, 165, 168, 172
ohtbl_lookup, 166, 169, 175
ohtbl_remove, 165, 169, 173
ohtbl_size, 166, 169
O-notation, 40-42, 45, 47
examples of, 41
simple rules for, 40
o-notation, 48
open-addressed hash tables, 142, 161-176
auxiliary hash functions, 162
collision resolution, 161
description of, 161-164
destroy, 165, 168

initialize, 164, 168
insert element, 165, 168
interface for, 164166

Index

535

linear probing, 163
load factor, 161
lookup element, 166, 169
primary clustering, 163
probing, 161
remove element, 165, 169
secondary clustering, 177
size of, 166, 169
uniform hashing, 161
vacated element, 168
operations on data structures, 5
operators (expression trees), 199
optimized networking, 366
order of growth, 40
order statistics, 302
orientation of points, 501, 520

P

packets, 481

page fault, 65

Page structure, 92

page table, 65

page-replacement algorithm, 91

parameter passing, 17-19
call-by-reference, 17-20
call-by-value, 18

parcel sorting, 236, 254

Parcel structure, 254

parent nodes, 180

parents, 178

parsers, 157

partially ordered tree, 236

partition function, 308

partitions, 307-314

paths, 262

PathVertex structure, 475

P-box permutation, 432, 434

performance, 38
average-case analysis, 39
best-case analysis, 39
computational complexity, 42, 44
data size, effects of, 45
growth rate, 40
insertion sort example, 45
notations, 48
O-notation, 40, 48
order of growth, 40
resources required, 42
worst-case analysis, 39, 45

permute function, 434, 439-440, 442
phrase tokens, 400, 404—405
physical enclosures, 497
physical versus virtual memory, 65
plaintext, 422
Point structure, 498, 502, 507
pointers, 11-26
alignment requirements, 23
arithmetic, 17, 25
arrays, 16
arrays, passing to functions, 18, 20
to automatic variables, 13
casts, 23, 25
cursors, 97
dangling, 12
data structures and, 14
defined, 12
dereferencing, 23-24
diagramming, 12
function pointers, 23
fundamentals, 12
generic, 21-22
to pointers, passing, 20
relationship with arrays, 16
self-referencing structures, 16
sizing, 12
storage allocation, 12, 14
storage management, 14
void, 21
point-intercept form of a line, 499
point-slope form of a line, 357
polygons, 505, 522
concave, 505, 522
convex, 505, 522
polymorphism, 102, 114
polynomial interpolation, 343-351
coefficients, 346
description of, 344-348
divided differences, 349
divided-difference table, 346-347
error, 348
evaluation, 346
implementation and analysis
of, 349-351
interface for, 348
interpolation points, 345
Newton form of a polynomial, 345
Newton formula, 346
number of points required, 362
power form of a polynomial, 345

536

Index

polynomials, 52, 345
interpolating, 344-348
Newton form of, 345
power form of, 345

polynomial-time algorithm, 48, 485

postfix expressions, 199

postorder function, 200-202

postorder traversal, 182, 199, 231

power form of a polynomial, 345

PQueue structure, 251

pqueue_destroy, 251

pqueue_extract, 252

pqueue_init, 251

pqueue_insert, 251

pqueue_peek, 252-253

pqueue_size, 252

precedence graphs, 290

prefix expressions, 199

preorder function, 200-201

preorder traversal, 181, 199, 231

Prim’s algorithm, 464-4065, 467, 494

prime factors, determining, 35

prime numbers, finding large, 458

priority queues, 180, 235, 250
applications of, 235
description of, 250
destroy, 251
example of, 254
extract element, 252
heap for, 253
implementation and analysis of, 252
initialize, 251
insert element, 251
interface for, 251
peek, 252
size of, 252
starvation, 257

probing, 161-164, 166
by double hashing, 163
linear, 162, 177
quadratic, 177

process_event function, 110

producer-consumer problem, 99

program stack, 99

programming practices, 8

public interface, 5, 9

public-key ciphers, 422, 448

Q
gksort function, 308-314
gsrt function, 340
Queue structure, 105
queue_dequeue, 106, 108
queue_destroy, 106, 108
queue_enqueue, 106, 108
queue_init, 105, 108
queue_peek, 107, 109
queues, 98, 105-113, 235
circular, 114
dequeue, 106, 108
dequeue event, 110
destroy, 106, 108
double-ended, 114
enqueue, 106, 108
enqueue event, 110
event handling, 110
example of, 110-112
implementation and analysis
of, 107-110
initialize, 105, 108
interface for, 105
peek, 107, 109
size of, 107, 109
queue_size, 107, 109
quick rejection test, 501
quicksort, 6, 302, 307-317, 339
description of, 307
example of, 314-317
implementation and analysis
of, 308-314
interface for, 308
median-of-three method, 307
partitioning, 308
wrapper, 339

R

radix sort, 302, 329-333, 339-340
counting sort, 329
description of, 329
digits, 329
implementation and analysis

of, 330-333
interface for, 329
stable requirement, 329

random number generators, 177

randomized algorithms, 6

readability of code, 9

receive_event function, 110

Index

537

rectilinear coordinate system, 512513
recurrences, 35, 48
recursion, 27-37
basic recursion, 28, 30, 32
malformed terminating condition, 36
merge sort, 318-319
overhead, 32
quicksort partitioning, 308
recurrences, 48
stack, 30-32
stack overflow, 36
tail recursion, 32, 35
tail recursion elimination, 37
terminating condition, 28, 35
unwinding phase, 28
winding phase, 28
recv_comp function, 396
red-black trees, 233
relational algebra, 116
relationships
functional, 352
represented by graphs, 259
statistical, 352
relax function, 473
replace_page function, 92-94
resolving collisions, 142-143, 161
resource selection, 133
restricted regions testing, 497
return, recursive function, 28
Rivest-Shamir-Adleman (RSA)
encryption, 423, 448-456
binary square and multiply method, 453
decipher function, 452, 454
encipher function, 452
Euclid’s greatest common divisor
algorithm, 459
Huge datatype, 453
implementation and analysis
of, 452-456
interface for, 452
Internet security, 456
keys, 448-451
modular exponentiation, 448, 453
prime numbers, finding large, 458
robotics, 497
root of an equation, 355, 358
root function, 360
root nodes, 178, 181
rotate_left function, 207, 216

rotate_right function, 207, 217
route function, 482-483
routers, 481
routing airplanes, 461
routing tables, 461, 481, 483485
route function, 482-483
shortest function, 482
SPF routing, 482
RSA (Rivest-Shamir-Adleman)
encryption, 423, 448-456
rsa_decipher function, 452, 454
rsa_encipher function, 452-453
RsaPriKey structure, 425
RsaPubKey structure, 424
running time, relation to complexity, 43
runtime errors from pointers, 24
rxsort function, 329-331

S

S-box substitutions, 430, 434—443
scatter plots, 344
scientific computing, 344
scrolled lists, 52
searching

applications of, 142, 259

with binary search, 333-339

with binary search trees, 203-230

in graphs

breadth-first search, 264, 284-290
depth-first search, 266-267

with hash tables, 143-177

linear, 301
second-chance page replacement, 91-94
semaphores, 98
semiweak key pairs, 457
send_comp function, 396
set covering, 116, 133-138
Set structure, 122
set_destroy, 119, 124
set_difference, 121, 125, 131, 139
set_init, 119, 123, 126, 134
set_insert, 120, 124, 127
set_intersection, 121, 125, 130, 138-139
set_is_equal, 122, 126, 133, 138
set_is_member, 121, 125, 131
set_is_subset, 121, 125, 132, 138
set_remove, 120, 124, 127
sets, 115-140

absorption laws, 118

538 Index

sets (continued) singly-linked lists, 51-68
applications of, 115-116 sliding window, 399
associative laws, 118 slope, 356
bit-vector representation, 140 smart cards, 424
commutative laws, 118 software distribution, 366
covering, 133 solution of equations, 343, 355-362
DeMorgan’s laws, 119 convergence, 363
description of, 116-119 derivatives of functions, 356
destroy, 119, 124 implementation and analysis of, 360
determine membership, 121, 125 initial point selection, 357
difference, 117, 121, 125 interval size effects, 363
distributive laws, 118 Newton’s method, 355, 357, 359-361
empty, 117 roots, 355
empty set laws, 118 sorting, 301, 303, 307, 317, 324, 329-333
equal, 117, 122, 126 applications of, 302
idempotency laws, 118 bubble sort, 341
implementation and analysis bucket sort, 342
of, 122-133 comparison sorts, 301
initialize, 119, 123 counting sort, 302
insert member, 120, 124, 140 heapsort, 235, 341
interface for, 119-122 insertion sort, 302
intersection, 117-119, 121, 125 introsort, 341
linked list implementation, 122 linear-time sorts, 301, 324, 329
membership, 117 merge sort, 302
multisets, 140 priority queues, 180, 254
remove member, 120, 124 quicksort, 302
size of, 122, 126 radix sort, 302, 339
subsets, 117, 121, 125 single element insertions, 339
symmetric difference, 139 stable attribute, 324, 330
union, 117-118, 120, 124 successors, finding, 341
Venn diagrams, 119, 140 topological, 260, 290-295
set_size, 122, 126 tournament sort, 341
set_union, 120, 124, 128 sparse graphs, 264
Shannon-Fano coding, 421 spell checkers, 303, 337-339
shortest function, 474 spell function, 337
shortest path first (SPF) routing, 482 spherical coordinate system, 513
shortest paths, 460, 472485 spherical surfaces, 512-520
description of, 472474 SPoint structure, 499, 515
example of, 481-485 spreadsheets, 303
implementation and analysis SQL (Structured Query Language), 116
of, 475-481 stable sorts, 324
interface for, 474 stack frame, 30
list returned by shortest function, 476 Stack structure, 102, 113
relaxation, 476 stack_destroy, 100, 103
SPF routing, 482 stack_init, 100, 103
sibling nodes, 180, 230 stack_peek, 101, 104
simplicity of code, 9 stack_pop, 101, 103
single-pair shortest-path problem, 472 stack_push, 101, 103

single-source shortest-paths problem, 472 stack_size, 101

Index

539

stacks, 30, 98, 100-105
applications of, 98
data structure, 102
description of, 99
destroy, 100, 103
frame pointer, 36
implementation and analysis
of, 102-105
initialize, 100, 103
interface for, 100-101, 113
overflow, 36
peek, 100-101, 104
pop, 99, 101, 103
push, 99, 101, 103
recursion, 31
size of, 101, 104
tail recursion, 34
starvation, 258
statistical modeling, 421
statistical relationship, 352
storage allocation, 13
straddle test, 501
stream ciphers, 459
strongly connected components, 262
strongly connected graphs, 262
Structured Query Language (SQL), 116
structures, 9, 15
subkey computation, 426
subsets, 117, 121, 125
summation formulas, 48
Symbol structure, 158
symbol tables, 142, 157-160
lexemes, 157
lexical analyzers, 157
parsers, 157
tokens, 157
symbol tokens, 400, 404
symmetric ciphers, 425
system states model, 296

T

tagged buffers, 142

tail recursion, 32

tail recursion elimination, 37

task scheduling, 236

terminal values (expression trees), 199
terminating condition, 28

testing line segment intersection (see line

segment intersection, testing)

tokens, 157, 399-418
compiler, 157
Lempel-Ziv-1977 (LZ77), 399, 403
phrase tokens, 404
symbol tokens, 404
top-heavy heaps, 236
topological sorting, 260, 290-295
topology of networks, 481
tournament sort, 341
traffic monitoring, 462
transpose of a graph, 297
traveling-salesman problem, 8, 260, 461,
485, 487493
closed transport systems, 461
description of, 485-487
exchange heuristic, 495
implementation and analysis
of, 488493
interface for, 487
minimum spanning tree
approximation, 493
nearest-neighbor heuristic, 486-487
traversal methods, 178, 180-182, 201-202
expression trees, 199
inorder traversal, 182, 199
level-order traversal, 182
postorder traversal, 182, 199, 231
preorder traversal, 181, 199, 231
recursive, 201
trees, 178, 235
applications of, 179

B*, 233
B+-, 231, 233
B-, 232-233

balancing, 178
binary, 178, 180-234
binary search, 179, 203-230
decision, 179
k-ary, 233
partially ordered, 236
red-black, 233
traversal of (see traversal methods)
tries, 233
tsp function, 487, 489
TspVertex structure, 463, 488
typedef, 102

540 Index

U

undirected graphs, 261
uniform hashing, 143
union of sets, 120, 124
universal hashing, 177
unwinding phase, 28
user interfaces, 179

|4

variables
automatic, 13
casts, 23
storage allocation, 13
types, 23
vector components, 523
vectors, 502, 523
Venn diagrams, 119, 140
vertices, 259, 261
virtual addresses, 65
virtual memory, 65
page-replacement algorithm, 91
versus physical memory, 65
virtual reality systems, 497
void pointers, 21

w

weak keys, 456
weighted graphs, 460
winding phase, 28
wiring circuit boards, 462
worst-case analysis, 39
wrapper function, 340

X
X Window System, 110

About the Author

Kyle Loudon is a software engineer at Jeppesen Dataplan in Los Gatos, California,
where he leads the graphical interface development group in developing flight
planning software used by commercial airlines, corporate flight departments, and
other facets of general aviation. Before Jeppesen, Kyle worked as a system
programmer for IBM. Kyle’s technical interests include operating systems,
networking, and human-computer interaction. Kyle attended Purdue University,
where in 1992 he received a B.S. in computer science and a minor in French, and
was elected to Phi Beta Kappa. While at Purdue, he coordinated and taught a
course for three years in the Department of Computer Science. During this time he
also wrote his first book, Understanding Computers, a practical and conceptual
introduction to computers. Currently he is patiently pursuing an advanced degree
while continuing to work in Silicon Valley’s software industry.

Aside from computers, Kyle has enjoyed playing and teaching tennis for a number
of years. He also enjoys mountain biking, skiing, and on occasion, golf with
friends on courses that favor a sometimes overactive slice. In addition, Kyle enjoys
various forms of theater, great food, and several styles of music and art; he is a
wishful but hopeless pianist and artist himself. Kyle found his present position at
Jeppesen after he started flying airplanes in 1992. Currently he is an active pilot
holding a commercial pilot certificate with the FAA.

Colopbon

Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animals on the cover of Mastering Algorithms with C are sea horses. Sea
horses are of the family Syngnathidae, genus Hippocampus. The word “hippo-
campus” comes from the Greek for “bent horse.” The sea horse’s unusual-looking
body is formed by 50 or so bony plates that encircle the body to create rings of
armor. Within their narrow snouts are tubes through which they feed, sucking in
plankton and tiny fish larvae. The male sea horse has a pouch in his belly, into
which a female lays 100 or more eggs at a time. The male fertilizes the eggs in the
pouch and carries them until they hatch, ten days to six weeks later, depending on
the sea horse species.

Sea horses are found mostly in shallow tropical and subtropical waters, although
there are some ocean-dwelling sea horse species. All sea horses use their pelvic

and pectoral fins for steering. They swim slowly, in an upright position, and take
frequent breaks. During these breaks they wrap their prehensile tails around a
piece of seaweed or coral to anchor themselves. In addition to providing a resting
place, the seaweed and coral provide good camouflage for the sea horse.

The largest sea horse species is the Pacific sea horse, measuring approximately 12
inches long. The smallest is the dwarf sea horse, which measures only an inch and
a half long.

Jeffrey Liggett was the production editor for Mastering Algorithms with C; Cindy
Kogut was the copyeditor; Ellie Fountain Maden was the proofreader; Sebastian
Banker provided production assistance; Claire Cloutier LeBlanc, Nancy Wolfe
Kotary, and Melanie Wang provided quality control. Robert Romano and Rhon
Porter created the illustrations using Adobe Photoshop 5 and Macromedia Free-
Hand 8. Mike Sierra provided FrameMaker technical support. William Meyers
wrote the index with production assistance by Seth Maislin and Brenda Miller.

Hanna Dyer designed the cover of this book based on a series design by Edie
Freedman. The illustration is by Lorrie LeJeune. The cover layout was produced by
Kathleen Wilson with QuarkXPress 3.32 using the ITC Garamond font. Kathleen
Wilson designed the diskette label. Whenever possible, our books use RepKover™,
a durable and flexible lay-flat binding. If the page count exceeds RepKover’s limit,
perfect binding is used.

The inside layout was designed by Alicia Cech based on a series design by Nancy
Priest. The inside layout was implemented in FrameMaker 5.5.6 by Mike Sierra.
The text and heading fonts are ITC Garamond Light and Garamond Book. This
colophon was written by Clairemarie Fisher O’Leary.

	Table of Contents
	Preface
	Organization
	Part I
	Part II
	Part III

	Key Features
	About the Code
	Conventions
	How to Contact Us
	Acknowledgments

	I
	Introduction
	An Introduction to Data Structures
	An Introduction to Algorithms
	General Approaches in Algorithm Design
	Randomized algorithms
	Divide-and-conquer algorithms
	Dynamic-programming solutions
	Greedy algorithms
	Approximation algorithms

	A Bit About Software Engineering
	How to Use This Book

	Pointer Manipulation
	Pointer Fundamentals
	Storage Allocation
	Aggregates and Pointer Arithmetic
	Structures
	Arrays

	Pointers as Parameters to Functions
	Call-by-Reference Parameter Passing
	Pointers to Pointers as Parameters

	Generic Pointers and Casts
	Generic Pointers
	Casts

	Function Pointers
	Questions and Answers
	Related Topics

	Recursion
	Basic Recursion
	Tail Recursion
	Questions and Answers
	Related Topics

	Analysis of Algorithms
	Worst-Case Analysis
	Reasons for Worst-Case Analysis

	O-Notation
	Simple Rules for O-Notation
	O-Notation Example and Why It Works

	Computational Complexity
	Analysis Example: Insertion Sort
	Questions and Answers
	Related Topics

	II
	Linked Lists
	Description of Linked Lists
	Interface for Linked Lists
	list_init
	list_destroy
	list_ins_next
	list_rem_next
	list_size
	list_head
	list_tail
	list_is_head
	list_is_tail
	list_data
	list_next

	Implementation�and�Analysis of�Linked�Lists
	list_init
	list_destroy
	list_ins_next
	list_rem_next
	list_size, list_head, list_tail, list_is_tail, list_data, and list_next

	Linked�List�Example:�Frame Management
	Description of Doubly-Linked Lists
	Interface for Doubly-Linked Lists
	dlist_init
	dlist_destroy
	dlist_ins_next
	dlist_ins_prev
	dlist_remove
	dlist_size
	dlist_head
	dlist_tail
	dlist_is_head
	dlist_is_tail
	dlist_data
	dlist_next
	dlist_prev

	Implementation and Analysis of�Doubly�Linked Lists
	dlist_init
	dlist_destroy
	dlist_ins_next
	dlist_ins_�prev
	dlist_remove
	dlist_size, dlist_head, dlist_tail, dlist_is_head, dlist_is_tail, dlist_data, dlist_next, and dli...

	Description of Circular Lists
	Interface for Circular Lists
	clist_init
	clist_destroy
	clist_ins_next
	clist_rem_next
	clist_size
	clist_head
	clist_data
	clist_next

	Implementation and Analysis of�Circular Lists
	clist_init
	clist_destroy
	clist_ins_next
	clist_rem_next
	clist_size, clist_head, clist_data, and clist_next

	Circular List Example: Second-Chance Page Replacement
	Questions and Answers
	Related Topics

	Stacks and Queues
	Description of Stacks
	Interface for Stacks
	stack_init
	stack_destroy
	stack_�push
	stack_�pop
	stack_�peek
	stack_size

	Implementation and Analysis of Stacks
	stack_init
	stack_destroy
	stack_�push
	stack_�pop
	stack_�peek, stack_size

	Description of Queues
	Interface for Queues
	queue_init
	queue_destroy
	queue_enqueue
	queue_dequeue
	queue_�peek
	queue_size

	Implementation and Analysis of Queues
	queue_init
	queue_destroy
	queue_enqueue
	queue_dequeue
	queue_�peek, queue_size

	Queue Example: Event Handling
	Questions and Answers
	Related Topics

	Sets
	Description of Sets
	Definitions
	Basic Operations
	Properties

	Interface for Sets
	set_init
	set_destroy
	set_insert
	set_remove
	set_union
	set_intersection
	set_difference
	set_is_member
	set_is_subset
	set_is_equal
	set_size

	Implementation and Analysis of Sets
	set_init
	set_destroy
	set_insert
	set_remove
	set_union
	set_intersection
	set_difference
	set_is_member
	set_is_subset
	set_is_equal
	set_size

	Set Example: Set Covering
	Questions and Answers
	Related Topics

	Hash Tables
	Description of Chained Hash Tables
	Collision Resolution
	Selecting a Hash Function
	Division method
	Multiplication method

	Interface for Chained Hash Tables
	chtbl_init
	chtbl_destroy
	chtbl_insert
	chtbl_remove
	chtbl_lookup
	chtbl_size

	Implementation�and�Analysis of�Chained�Hash�Tables
	chtbl_init
	chtbl_destroy
	chtbl_insert
	chtbl_remove
	chtbl_lookup
	chtbl_size

	Chained�Hash�Table�Example: Symbol�Tables
	Description�of�Open-Addressed Hash�Tables
	Collision Resolution
	Linear probing
	Double hashing

	Interface�for�Open-Addressed Hash�Tables
	ohtbl_init
	ohtbl_destroy
	ohtbl_insert
	ohtbl_remove
	ohtbl_lookup
	ohtbl_size

	Implementation�and�Analysis of Open Addressed�Hash�Tables
	ohtbl_init
	ohtbl_destroy
	ohtbl_insert
	ohtbl_remove
	ohtbl_lookup
	ohtbl_size

	Questions and Answers
	Related Topics

	Trees
	Description of Binary Trees
	Traversal Methods
	Preorder traversal
	Inorder traversal
	Postorder traversal
	Level-order traversal

	Tree Balancing

	Interface for Binary Trees
	bitree_init
	bitree_destroy
	bitree_ins_left
	bitree_ins_right
	bitree_rem_left
	bitree_rem_right
	bitree_merge
	bitree_size
	bitree_root
	bitree_is_eob
	bitree_is_leaf
	bitree_data
	bitree_left
	bitree_right

	Implementation�and�Analysis of�Binary�Trees
	bitree_init
	bitree_destroy
	bitree_ins_left
	bitree_ins_right
	bitree_rem_left
	bitree_rem_right
	bitree_merge
	bitree_size, bitree_root, bitree_is_eob, bitree_is_leaf, bitree_data, bitree_left, bitree_right

	Binary�Tree�Example: Expression�Processing
	Description of Binary Search Trees
	Interface for Binary Search Trees
	bistree_init
	bistree_destroy
	bistree_insert
	bistree_remove
	bistree_lookup
	bistree_size

	Implementation�and�Analysis of�Binary�Search�Trees
	Rotations in AVL Trees
	LL rotation
	LR rotation
	RR rotation
	RL rotation

	bistree_init
	bistree_destroy
	bistree_insert
	bistree_remove
	bistree_lookup
	bistree_size

	Questions and Answers
	Related Topics

	Heaps�and Priority�Queues
	Description of Heaps
	Interface for Heaps
	heap_init
	heap_destroy
	heap_insert
	heap_extract
	heap_size

	Implementation and Analysis of Heaps
	heap_init
	heap_destroy
	heap_insert
	heap_extract
	heap_size

	Description of Priority Queues
	Interface for Priority Queues
	pqueue_init
	pqueue_destroy
	pqueue_insert
	pqueue_extract
	pqueue_�peek
	pqueue_size

	Implementation�and�Analysis of�Priority�Queues
	Priority Queue Example: Parcel Sorting
	Questions and Answers
	Related Topics

	Graphs
	Description of Graphs
	Search Methods
	Breadth-first search
	Depth-first search

	Interface for Graphs
	graph_init
	graph_destroy
	graph_ins_vertex
	graph_ins_edge
	graph_rem_vertex
	graph_rem_edge
	graph_adjlist
	graph_is_adjacent
	graph_adjlists
	graph_vcount
	graph_ecount

	Implementation and Analysis of Graphs
	graph_init
	graph_destroy
	graph_ins_vertex
	graph_ins_edge
	graph_rem_vertex
	graph_rem_edge
	graph_adjlist
	graph_is_adjacent
	graph_adjlists, graph_vcount, graph_ecount

	Graph Example: Counting Network Hops
	Graph Example: Topological Sorting
	Questions and Answers
	Related Topics

	III
	Sorting and Searching
	Description of Insertion Sort
	Interface for Insertion Sort
	issort

	Implementation and Analysis of Insertion Sort
	Description of Quicksort
	Interface for Quicksort
	qksort

	Implementation�and�Analysis of�Quicksort
	Quicksort Example: Directory Listings
	Description of Merge Sort
	Interface for Merge Sort
	mgsort

	Implementation�and�Analysis of�Merge�Sort
	Description of Counting Sort
	Interface for Counting Sort
	ctsort

	Implementation�and�Analysis of�Counting�Sort
	Description of Radix Sort
	Interface for Radix Sort
	rxsort

	Implementation�and�Analysis of�Radix�Sort
	Description of Binary Search
	Interface for Binary Search
	bisearch

	Implementation�and�Analysis of�Binary�Search
	Binary Search Example: Spell Checking
	Questions and Answers
	Related Topics

	Numerical Methods
	Description of Polynomial Interpolation
	Constructing an Interpolating Polynomial
	Evaluating an Interpolating Polynomial

	Interface for Polynomial Interpolation
	interpol

	Implementation�and�Analysis of�Polynomial�Interpolation
	Description of Least-Squares Estimation
	Interface for Least-Squares Estimation
	lsqe

	Implementation and Analysis of Least-Squares Estimation
	Description of the Solution of Equations
	Finding Roots with Newton’s Method
	Computing the Derivative of a Polynomial
	Understanding the First and Second Derivative
	Selecting an Initial Point for Newton’s Method
	How Newton’s Method Works

	Interface for the Solution of Equations
	root

	Implementation�and�Analysis of�the�Solution�of�Equations
	Questions and Answers
	Related Topics

	Data Compression
	Description of Bit Operations
	Interface for Bit Operations
	bit_�get
	bit_set
	bit_xor
	bit_rot_left

	Implementation�and�Analysis of�Bit�Operations
	bit_�get
	bit_set
	bit_xor
	bit_rot_left

	Description of Huffman Coding
	Entropy and Minimum Redundancy
	Building a Huffman Tree
	Compressing and Uncompressing Data
	Effectiveness of Huffman Coding

	Interface for Huffman Coding
	huffman_compress
	huffman_uncompress

	Implementation�and�Analysis of�Huffman�Coding
	huffman_compress
	huffman_uncompress

	Huffman�Coding�Example: Optimized�Networking
	Description of LZ77
	Maintaining a Dictionary of Phrases
	Compressing and Uncompressing Data
	Effectiveness of LZ77

	Interface for LZ77
	lz77_compress
	lz77_uncompress

	Implementation and Analysis of LZ77
	lz77_compress
	lz77_uncompress

	Questions and Answers
	Related Topics

	Data Encryption
	Description of DES
	Computing Subkeys
	Enciphering and Deciphering Data Blocks

	Interface for DES
	des_encipher
	des_decipher

	Implementation and Analysis of DES
	des_encipher
	des_decipher

	DES Example: Block Cipher Modes
	Description of RSA
	Computing Public and Private Keys
	Enciphering and Deciphering Data Blocks

	Interface for RSA
	rsa_encipher
	rsa_decipher

	Implementation and Analysis of RSA
	rsa_encipher
	rsa_decipher

	Questions and Answers
	Related Topics

	Graph Algorithms
	Description of Minimum Spanning Trees
	Prim’s Algorithm

	Interface for Minimum Spanning Trees
	mst

	Implementation and Analysis of�Minimum Spanning Trees
	Description of Shortest Paths
	Dijkstra’s Algorithm

	Interface for Shortest Paths
	shortest

	Implementation and Analysis of�Shortest�Paths
	Shortest Paths Example: Routing Tables
	Description of the Traveling-Salesman Problem
	Applying the Nearest-Neighbor Heuristic

	Interface for the Traveling-Salesman Problem
	tsp

	Implementation and Analysis of�the�Traveling-Salesman Problem
	Questions and Answers
	Related Topics

	Geometric Algorithms
	Description of Testing Whether Line Segments Intersect
	Standard Test for Intersecting Line Segments
	Computer Test for Intersecting Line Segments

	Interface for Testing Whether Line Segments Intersect
	lint

	Implementation and Analysis of Testing Whether Line Segments Intersect
	Description of Convex Hulls
	Jarvis’s March

	Interface for Convex Hulls
	cvxhull

	Implementation�and�Analysis of�Convex�Hulls
	Description of Arc Length on�Spherical�Surfaces
	Rectilinear and Spherical Coordinates
	Converting Between Coordinate Systems
	Computing the Length of an Arc

	Interface�for�Arc�Length on�Spherical�Surfaces
	arclen

	Implementation and Analysis of Arc Length on Spherical Surfaces
	Arc Length Example: Approximating Distances on Earth
	Questions and Answers
	Related Topics

	Index

