
www.allitebooks.com

http://www.allitebooks.org

Mastering AngularJS Directives

Develop, maintain, and test production-ready directives
for any AngularJS-based application

Josh Kurz

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering AngularJS Directives

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Published: June 2014

Production Reference: 1090614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-158-8

www.packtpub.com

Cover Image by Josh Kurz (jkurz25@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Josh Kurz

Reviewers
Pete Bacon Darwin

Lee Howard

Darius Riggins

Iwan van Staveren

Ruoyu Sun

Commissioning Editor
Kunal Parikh

Acquisition Editor
Subho Gupta

Content Development Editor
Neil Alexander

Technical Editors
Pragnesh Bilimoria

Indrajit A. Das

Shashank Desai

Copy Editors
Dipti Kapadia

Insiya Morbiwala

Aditya Nair

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Ameesha Green

Maria Gould

Paul Hindle

Linda Morris

Indexer
Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Josh Kurz is a client-side technician who constantly pushes the realms of frontend
technologies by mixing new-age theories and proven Computer Science concepts.
He has successfully shown that AngularJS can be used to create some of the fastest,
most usable data visualization applications while working at Turner. He also has a
true passion for open source code and believes it is one of the reasons for his success.
Currently, outside of work, he is practicing to become a black belt in Jiu Jitsu.

I would like to dedicate this book to the people who helped make
this book a reality. Many of these people are part of the AngularJS
community and push the bounds of what is conceivable every day.
The technical editors of this book all deserve a round of applause,
as they have done such a wonderful job. My co-workers at Turner
also help raise the bar every day, showing me what it takes to be
a professional. I would also like to thank Invidia Studios for the
amazing artwork. Last but not least, my wonderful fiancé deserves
the most appreciation, as she is so patient and caring and has helped
in more ways than I can even begin to express.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Pete Bacon Darwin is a freelance programmer who is currently working with the
AngularJS team at Google. He has a degree in Math from Cambridge University. He
worked for a bunch of consulting companies before giving it all up to look after his
kids and do coding in the background.

When he isn't coding or parenting, Pete teaches Aikido and wishes he could find
time to do more climbing and mountaineering.

Pete co-authored Mastering Web Application Development with AngularJS,
Packt Publishing.

Darius Riggins is a veteran full-stack developer who focuses on solving
challenging problems with creative solutions.

Ruoyu Sun is a designer and developer living in Hong Kong. He is passionate
about programming and has contributed to several open source projects. He founded
several tech start-ups using a variety of technology before going into the industry.
He is the author of the book Designing for XOOPS, O'Reilly Media.

I would like to thank all my friends and family, who have always
supported me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Tools of the Trade 9

Introduction to directives 10
Directive Definition Object API 11

Priority 11
Terminal 11
Scope 12
Controller 17
Require 19
ControllerAs 20
Restrict 20
Template 21
TemplateUrl 23
Replace 23
Transclude 23
Compile 25
Link 27
Wrapping up definition objects 30

Summary 31
Chapter 2: Building a Stopwatch Directive 33

Breaking down the stopwatch 33
Stopwatch requirements 34
The basics of testing 36
Creation tests 38

Writing the stopwatch 40
Stopwatch's business logic 42

Business logic tests 44
Optimizing the stopwatch 47

Stopwatch's filter 49
Summary 50

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Harnessing External JavaScript Libraries
with Directives 51

Incorporating third-party libraries 52
Testing directives that use third-party libraries 54
Wrapping the gauge.js file 55

Testing the gauge directive 55
Writing the gauge directive 56

Writing scope interaction tests 58
Wrapping the fullCalendar.js file 60

Introduction to the calendar directive 60
Testing the fullCalendar directive 62

Testing the calendar's initialization and MVC functionality 62
Writing the fullCalendar directive 64

Summary 69
Chapter 4: Compiling the Advantages 71

Common use cases for compiling the DOM 72
Using transclusion in a directive 73

Unveiling transclusion 74
Creating recursive directives 77

The custom recursive tree directive 78
Using transclusion and a templateUrl with the treeNode directive 78

Testing the treeNode directive 79
The treeNodeTemplate directive 80

The treeNode directive using only transclusion 81
Testing the treeNode directive 82
The treenodeNoTemplate directive 83

Compiling templates and their many values 84
Introduction to the media player directive 85

Requirements for the media player directive 85
Testing the media player directive 86
Writing the media player directive 87

Breaking down the media player directive 90
Utilizing advanced templates 90

The mediaelement templates 91
The flowplayer templates 92

Summary 95
Chapter 5: Communication between Directives 97

Testing integrated directives 97
Integration tests 98

Using scope objects for communication 99
Using child scopes 100
Creating a wasFast directive 102

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Unit testing 103
Integration tests 103
Implementing the wasFast directive 105

Creating a fastRunner directive 106
Integration testing 108
Implementing the fastRunner directive 108

How to use isolate scopes 109
Relying on the $rootScope function 113
Broadcasting to other directives 113
Communicating with media players 114

Integration testing for the bbBroadcastingPlayer directive 114
Implementing the bbBroadcastPlayer directive 116

Collaborating with controllers 117
Requiring the basics 117
Using controllers for the bbPlayer directive 118

Integration testing 118
Implementing the bbPlayer and bbPlayerContainer directives 119

Creating a fastClicker directive 120
Integration testing 121
Writing the fastClicker directive 122
Wiring up the stopwatch 123

Summary 125
Chapter 6: Working with Live Data 127

Techniques that drive directives 128
The $q library 129
How should data be watched for changes? 131

Doing a deep watch on $rootScope.data 132
Doing a shallow watch on $rootScope.data 132

Directives can be in charge 134
Testing directives that control data 135

Testing bbPhoneDetails 135
Writing the bbPhoneDetails directive 140

Working with D3 141
The YouTube views bar chart 142
The stockTicker directive 146

Summary 152
Chapter 7: Optimization and Code Quality 153

AngularJS code quality 154
The importance of templates 154
Necessary DOM manipulations 155

Optimization of the directives 156
Tools for monitoring performance 157
The digest cycle 157

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Less bindings yield faster results 159
Solving the problem with the bbOneBinders directive 160

The bbOneBinders directive 161
The bbOneBinders tests 162

Summary 166
Chapter 8: Directives and Animations 167

Providing animations 168
CSS-based animations 171

Working with ngClass and transitions 171
Working with ngClass and animations 174
Working with ngIf and transitions 175

JavaScript-based animations 177
Custom effeckt.CSS animations 179

Summary 184
Chapter 9: Conclusion 185

A directive's building blocks 185
Third-party libraries 186
The compile cycle 187
Testing directives 187
Directive intercommunication 188
Quality and performance 189
Animations 189
Summary 190

Index 191

Preface
AngularJS offers a new outlook on web development that is changing more and
more opinions everyday. The reason people are agreeing with AngularJS's direction
is because of its orthogonal views on encapsulation and separation. Separation of
logic into structurally defined realms is AngularJS's specialty, and this truth allows
more focus to be placed on domain specific logic.

Directives offer the biggest form of encapsulation inside AngularJS applications.
This is true because of its focus on separating the view from the model. For years,
developers have combined different types of client-side logic that has no business
being coupled together. The decoupling of the view and model has begun to take
full effect in modern web applications, and AngularJS directives have been built
with this mindset at their core.

Many say that directives are the most difficult piece of AngularJS to learn. People
say this because directives take a new approach to JavaScript conventions, which
has not been done before. There are not many libraries that focus on declarative
approaches to handle the relationship between HTML and JavaScript. These new
concepts seem difficult at first glance, but once their logic is understood, things fall
into place rather quickly.

Many use cases can be solved with a simple directive or a set of directives that work
in unison with each other. We will go over how to create these simple directives and
how to train your mind to immediately consider them as solutions. The stages that
this book goes through build on top of a singular idea. This idea is how to properly
take some data model, and effectively render it and all of its changes in the view.

Once directives are understood for what they are, many great use cases can be
accomplished with them. Some of the most important directives are actually built
into the core itself, with the same tools available to any application. This book shows
us how to use the different options made available by AngularJS to create a wide
range of directives that serve many different purposes.

Preface

[2]

The differences between the directives created in this book are pretty broad. There
are stopwatches, stoplights, media players, and stock charts, which can not only
work together but also work individually just as well. The only central theme to
each is that they are considered black belt directives and, as such, are tested and
implemented just like any other production-ready software.

What this book covers
Chapter 1, The Tools of the Trade, introduces us to what a directive is, how it is created,
and the different options that can be used to create them. Its main purpose is to
introduce directives from a high-level perspective so that anyone can digest their
meaning. To do this, the chapter is broken down into different parts that consist of
basic examples showcasing the use of the different options.

Chapter 2, Building a Stopwatch Directive, introduces us to the first directive that we
build in this book. The stopwatch building process goes through iterations that shed
light on different design aspects. Throughout the design process, the directive is
tested thoroughly to prove that its logic is correct and that any change made to it
does not introduce bugs.

Each decision that went into the architecture of the directive is discussed and
explained by showing the change, and then going into details about that change.
The overall goal of the chapter is to create a useful directive that can be used in many
different applications and to get ideas stirring about your own custom directives.

Chapter 3, Harnessing External JavaScript Libraries with Directives, discusses how
many applications rely on third-party libraries to accomplish advanced DOM
manipulation. These libraries can be integrated smoothly with any AngularJS
application and can still abide by the concepts made by the majority in the
community. The purpose of this chapter is to showcase best practices when
integrating third-party libraries into AngularJS applications.

Chapter 4, Compiling the Advantages, shows you how being able to utilize AngularJS's
compile cycle at will is useful in many different instances. There are few use cases
that require the use of the $compile service, and these are discussed in detail.
This chapter also showcases how useful it can be to generate DOM attached to
AngularJS's scope in conjunction with third-party libraries and dynamic templates.

Chapter 5, Communication between Directives, shows that directives are very useful
in normal circumstances. They are even more useful when they work in unison
with each other to accomplish similar tasks. There are many ways to get directives
to work together. Some ways include basic scope inheritance, and others include
sharing portions of execution context.

Preface

[3]

This chapter takes a deep dive into the many possible ways to get directives to work
with each other. No matter what their relationship, there is always a way to get two
directives to work in collaboration. The examples here also help showcase how to write
integration tests in order to prove the logic being used to integrate works as desired.

Chapter 6, Working with Live Data, shows that data is what makes applications
important. If it were not for the data, then there would be no reason to push the
Web forward. This chapter showcases the philosophies behind developing directives
and their approach to working with live data.

Since the data is coming from a live source, we have kept scale in mind throughout
the design of all of these examples. The scale considerations bring a large focus on
different ways to write directives that deal with large amounts of data.

Chapter 7, Optimization and Code Quality, shows the importance of making sure that
an application is fast and how the ability to stay agile is detrimental to its lifespan.
AngularJS gives us many opportunities to write clean, fast code that does amazing
things. However, with all great things comes great responsibility.

AngularJS can be used in inefficient ways that can drastically slow down a web page.
This chapter showcases some things to watch out for when writing directives. Since
directives are the main reason to create massive amounts of bindings, we go over
how to keep the total number of bindings to a minimum. This chapter also goes over
the benefits that AngularJS brings in terms of quality code and what this means for
organized HTML views.

Chapter 8, Directives and Animations, shows why directives play an important role
in how animations are integrated. This is because AngularJS animations have been
built in a way to create another encapsulation layer that plays directly by working
alongside directives. This chapter shows us how to use the animation service in core
directives and how to create custom directives that use animations.

Chapter 9, Conclusion, wraps up the book with an overall summary of closing
statements. There are references made to all the sections of the book, and each is
given an overview. The overall goal is to finalize the ideas and concepts that have
been portrayed.

What you need for this book
This book has been written to work with the 1.2.x branch. The directives that have
been created will work with future versions of AngularJS, but there may be slight
changes that need to occur in these future versions.

Preface

[4]

The examples that have been built are being showcased at http://
angulardirectives.joshkurz.net/ and in the GitHub repo, https://github.
com/joshkurz/Black-Belt-AngularJS-Directives. The instructions to install the
project can be located in the README file on the GitHub repo and here.

The following are the normal requirements for today's project standards:

• npm install -g grunt-cli http-server
• npm install
• bower install
• grunt
• *grunt protractor

All of the necessary modules are installed via npm. Grunt is used in this project
to create the build file, which is tested against and used in angulardirectives.
joshkurz.net. Protractor is used for all E2E tests in this book. To run Protractor
tests, a web server needs be hosting the files on localhost. It is recommended to use
the npm module http-server. Once you have these packages installed and all of the
tests pass, you can play around with whatever you want inside the repo. Please send
a PR if you would like to contribute to the project as well.

Who this book is for
If you are a developer who has previous JavaScript experience and some AngularJS
experience, this is the book for you. New AngularJS users will be able to follow
the concepts of this book, but there may be some references to AngularJS-specific
material that is not fully defined in the book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, directive names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The ngInclude directive creates an opportunity to write clean organized views."

http://angulardirectives.joshkurz.net/
http://angulardirectives.joshkurz.net/
https://github.com/joshkurz/Black-Belt-AngularJS-Directives
https://github.com/joshkurz/Black-Belt-AngularJS-Directives
angulardirectives.joshkurz.net

Preface

[5]

A block of code is set as follows:

$routeProvider.when('/mediaelement', {
 templateUrl:'directives/demo/mediaelement/
 mediaelementView.tpl.html',
 reloadOnSearch: false,
 controller:'mediaelementCtrl'
 });

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 $routeProvider.when('/mediaelement', {
 templateUrl:'directives/demo/mediaelement/
 mediaelementView.tpl.html',
 reloadOnSearch: false,
 controller:'mediaelementCtrl'
 });

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. You can also download the code from GitHub at
any time by going to https://github.com/joshkurz/Black-Belt-AngularJS-
Directives.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/joshkurz/Black-Belt-AngularJS-Directives
https://github.com/joshkurz/Black-Belt-AngularJS-Directives
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[7]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Tools of the Trade
The leading edge of web development moves quicker than most mortal humans
can keep up with. There are so many different techniques to learn and harness that
it can sometimes seem overwhelming. Thankfully, there is a wonderful JavaScript
framework called AngularJS that helps us mere mortals become something greater.

AngularJS offers many different facets of technology that can be used to accomplish
different tasks efficiently and effectively. There is no specific implementation that
AngularJS is built from that is more powerful than a directive. A directive may be
defined as an official or authoritative instruction. This is a modern nontechnical term
for a directive. In AngularJS, directives still follow this definition; however, a more
technical description could be a set of instructions, the ultimate goal of which is to
read or write HTML.

Directives can be used to solve many different use cases related to Document Object
Model (DOM). Directives allow developers to create new HTML elements that can
do almost anything inside AngularJS. Teaching the browser new functionality to
provide DOM manipulation, creation, and event detection is a new idea that is just
becoming popular.

AngularJS takes a different approach to how JavaScript and HTML5 work in unison
with each other. There is no longer a need to constantly traverse the DOM tree for
every bit of functionality that needs to be created. Directives allow for a declarative
approach, which separates DOM manipulation logic and business logic. This
separation means that our new applications are more readable, testable, and
perform better.

www.allitebooks.com

http://www.allitebooks.org

The Tools of the Trade

[10]

Introduction to directives
When first learning about AngularJS, directives can create a magical illusion that hides
the logic associated with the view's actions. This hidden logic is by design and is the
reason AngularJS is so popular. The gory details of every directive are not important
to some developers, but these details are the lifeblood of custom directives.

A directive is essentially just a JavaScript factory function that is defined inside
of a given AngularJS module. The function returns an object that holds a set of
instructions for the AngularJS HTML compiler. This object can either be a function
that is run once the element is linked to the scope (link function) or a JSON
representation of more advanced instructions that ultimately should also contain a
link function. Returning a JSON instruction representation is referred to as returning
a definition object and is the community-preferred method of writing directives.

Definition objects can have a finite number of options, made available by the
AngularJS public directive API. Let's break down a simple definition object as follows:

var definitionObject = {
 restrict: 'EA',
 link: function(scope, element, attrs){
 element.text('Hello Directive World');
 }
};

Downloading the example code
You can download the example code files for all Packt books that you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you. The code can also be found at https://github.com/
joshkurz/Black-Belt-AngularJS-Directives/tree/master/
chapters.

This definition object has two properties that instruct the AngularJS compiler to do
specific tasks. These instructions state that the directive can only be created on an
element or attribute, and once it's found, to set its text to 'Hello World'. The specific
syntax needed to add this directive to the AngularJS compiler is as follows:

app.directive('bbHelloWorld', function(){
 return definitionObject;
});

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/tree/master/chapters
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/tree/master/chapters
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/tree/master/chapters

Chapter 1

[11]

The directive is named bbHelloWorld because we are namespacing
all of our directives with bb. This is a community-preferred method of
directive writing because creating reusable code that does not interfere
with other applications is the goal.

Now that our directive has been created, we can use it in any HTML template that
is part of our ng application. To call this directive, we write something like the
following lines of code:

<bb-hello-world></bb-hello-world>

The output will be as follows:
Hello Directive World

This was an example of the most basic type of directive. There is nothing wrong
with creating simple directives that accomplish basic tasks, but AngularJS allows for
all levels of directives to be written. The complete Definition Object API should be
understood to create more advanced directives.

Directive Definition Object API
The compiler is given instructions from the directive's definition object. These
instructions can be integers, strings, booleans, or JavaScript objects. Their purpose
is to give the developer many different options of control when initializing and
dynamically manipulating DOM according to the given model.

Priority
The priority integer is used when multiple directives are set on the same element.
AngularJS collects all of the known directives on an element by any of the defined
restrict properties and runs each directive's compile, prelink, and postlink
functions in a given order. The order is specified by priority. Lower priority
compile and prelink functions are run last; however, the postlink function is the
opposite. The default value is zero. Negative values are allowed in case directives
need to be compiled after default directives.

Terminal
The terminal field is a Boolean whose default value is false. The terminal value
of a directive applies to lower priority directives defined on the same element
and all of their child directives. Setting a terminal field to true states that the
applicable directives will not compile during the initial directive collection.
The initial collection can be run in AngularJS during the initial bootstrap or
a manual $compile function call.

The Tools of the Trade

[12]

An HTML example looks like the following:

<div directive-one directive-two directive-three>
 <directive-four></directive-four>
</div>

The following code snippet shows how the directive definition of a terminal
directive looks:

app.directive('directiveTwo', function() {
 return {
 priority: 10,
 terminal: true,
 link: function(scope,element,attrs) {
 //link logic
 }
 }
});

If directiveOne and directiveThree have a priority lower than 10, then they will
not run on this given div element. The directiveFour directive will not run because
it is a child of the terminal directive. Just because these elements have not been run
during the initial collection phase does not mean that they cannot be run at a later
time, depending upon other directive definition objects that could have been set.

The terminal option is used in the core library by a few different
directives. The most notable are ngRepeat, ngIf, and ngInclude.

Scope
A scope is a JavaScript object that is created by AngularJS during the initial
bootstrap. This initial scope is referred to as the $rootScope directive and can be
created in two different ways. The ngApp directive or angular.bootstrap can be
called on an element. Either way, the result is the same.

Once the application has been bootstrapped and a $rootScope directive has been
created, subsequent child directives are in charge of creating new types of scopes.
Together, these new scopes create a hierarchy of communication channels. There
are specific rules for how each channel is allowed to communicate with each other.

Chapter 1

[13]

The following two different types of scopes denote the communication rules that are
observed by the scope hierarchy:

• The child scope
• The isolate scope

These two scope objects have different types of communication abilities. Child
scopes are created using normal JavaScript prototypal inheritance, which means
they inherit their parents' attributes but have their own context. Isolate scopes create
a separate context that only has a root scope as a commonality between itself and its
defining scope.

The scope is what drives a directive's ability to keep its view in sync with its
associated data models. The scope can hold any number of data models and can
either watch their values for changes or just read from them. There are three different
options available when creating new scopes via a directive definition object: defining
scopes, child scopes, and isolate scopes. Let's go over an example of a simple app and
its scope hierarchy in the following diagram:

scopeA(Defining)

scopeA

scopeB

scopeB(Child) scopeB(Isolate)

scopeB

directiveA

directiveB

$rootScope

scopeA

The Tools of the Trade

[14]

There are two directives present in the demo application represented by the
preceding diagram. Each cylinder is a directive that either creates its own scope or
uses its defining scope. For example, the directiveA cylinder creates scopeA and
directiveB creates either scopeB or uses its defining scope, that is, scopeA. Let's
say that directiveA creates a child scope called scopeA. Depending upon the scope
definition of directiveB, three options are available for the scope it creates. The
directiveB cylinder could just use its defining scope. A new child scope could be
made, which would create prototypal inheritance from scopeA. Lastly, an isolate
scope could be created, which would prevent directiveA from accidentally reading
or writing to scopeA.

There is a specific syntax that is used to create the following three possible options
for the scope of a directive:

• False/default: This is to use the defining/containing scope as the directives
own scope

• True: This is to create a new scope, which prototypically inherits from the
defining/containing scope

• Object hash: This is to create an isolate scope (the hash defines the details
of the scope)

Two directives that do not create new scopes are ngShow and ngHide. These
directives perform tasks declared on the element's attributes depending upon the
defined scope. Since the directive is not actually ever going to change the model
itself, it is safe for it to exist on the defining scope. Directives that alter the model
in some way should either be given a child scope or an isolate scope.

Child scopes are useful when creating directives that live around other directives of
their kind. This is because child scopes are not accessible to sibling elements; so by
writing to a child scope, the directive is ensuring that none of its siblings will have
any of their data overwritten. Child scopes create a prototypal inheritance model.
There are some nuances to dealing with child scopes that are covered in detail in
Chapter 5, Communication between Directives.

Chapter 1

[15]

Isolate scopes are probably the most widely used scope option in directives in the
open source community. This is because of the different options that are available
with it. These options allow for a very unique and special functionality. There are
three options available when defining an isolate scope variable. These options are
the values of the isolate scopes definitions. Isolate scopes allow for special types of
data binding.

Isolate scopes are defined by three available values
that perform different types of data binding.

The following code snippets shows scope variables:

 // String representation of a defining scope's variables
Javascript: Scope: {'name': '@'}
HTML: <div bb-stop-watch name="{{localName}}"></div>

// An expression executed on the defining scope
Javascript: Scope: {'name' : '&'}
HTML: <div bb-stop-watch name="newName = localName + ' ha ha'"></div>

 // Two Way Data Binding
 JavaScript: Scope: {'name': '='}
HTML: <div bb-stop-watch name="localName"></div>

All of these defined local scope variables are called scope.name, which are passed
by a directive attribute called name as well. The attribute could be called something
other than name, with a syntax that specifies the attributes names. The following code
snippet is the same example, just with different attribute's names that define the value:

 // String representation of a defining scope's variables
JavaScript: Scope: {'name': '@theName'}
HTML: <div bb-stop-watch the-name="{{localName}}"></div>

// An expression executed on the defining scope
JavaScript: Scope: {'name' : '&theName'}
HTML: <div bb-stop-watch the-name=
 "newName = localName + ' ha ha'"></div>

 // Two Way Data Binding
 JavaScript: Scope: {'name': '=theName'}
HTML: <div bb-stop-watch the-name="localName"></div>

The Tools of the Trade

[16]

Each of these variables performs specific tasks as denoted by the comments above
the scope definitions in the preceding code snippet. The first represents a string that
is interpolated from the defining scope. The second represents an expression that
returns some variable to be set as the local scope attribute definition. The expression
used in the preceding example is simple, but these can be defined on any scope and
can be as complex as needed.

Expressions that are set inside of curly brackets in an AngularJS
application will be evaluated on every digest. This means that the
developer should be careful to not set expensive expressions that
could cause the digest cycle to take longer than 50 ms.

The third variable is used to create two-way data binding between the parent and
its isolate scopes. This means that a watch is set on the variable automatically, and
once one of the variables changes, all of the variables that reference each other will
change as well. This is one of the most common AngularJS tactics and also one of the
most spectacular.

The following is another example of three different input directives that utilize each
one of the methods:

 */ HTML Templates */
<div bb-string term="{{term}}"></div>
<div bb-expression term="theTerm = term + ' AngularJS Directives'"></
div>
 <div bb-two-way term="term"></div>

*/ Demo Javascript Module */
angular.module('demoApp', [])
.controller('demoCtrl', function($scope){
 $scope.term = 'How To Master';
})
.directive('bbString', function(){
 return {
 scope: { term: '@'},
 template: '<input ng-model="term">'
 }
})
.directive('bbExpression', function(){
 return {
 scope: { term: '&'},
 template: '<input ng-model="term">',
 link: function(scope, element, attrs){

Chapter 1

[17]

 scope.term = scope.term();
 }
 }
})
.directive('bbTwoWay', function(){
 return {
 scope: { term: '='},
 template: '<input ng-model="term">'
 }
});

Take a look at the following screenshot that shows the differences between the
different directives:

How To Master

How To Master AngularJS Directives

How To Master

Typing into the first or second directives will not alter the parent
$scope.term variable, but typing into the third input will alter the
first directive's model and its parent directives. A live example is
available at http://jsfiddle.net/joshkurz/x22y2/.

There is a fourth type of scope that can be used inside of a directive. This scope is
only created when the directive is utilizing transclusion. The scope created is a child
of the definition scope, and when inserted into the directive element, it becomes a
sibling of the directive scope, whatever it may be.

Controller
The controller definition option creates mostly all the controllers created in an
AngularJS application. This is not a very common insight, but it is true. Even the
AngulaJS routing functions that associate a controller with a specific URL, wrap
their associated template with ngController and feed the data used in the route
definition of this directive.

A controller is a constructor that creates a new context (that is… this) that can
define its own variables and functions every time its own constructor function is
called. This constructor function can be called in various ways. Some common ways
are to have a controller associated with a route, using an ngController directive
directly, or create a custom directive that properly uses the named controller
option to initialize a new instance of a controller.

http://jsfiddle.net/joshkurz/x22y2/

The Tools of the Trade

[18]

The controller option is a string or inline function. If the value is a string, then it
maps to a controller constructor function set on a module that the directive
is tied too. Controllers and directives work together to keep the view aligned with
the model.

The main purpose of having directives utilize their own private controllers is for
interdirective communication. This is most commonly a requirement with reusable
directives that work independently of each other, but depend on shared resources
that instruct state changes. A directive can require any amount of controllers
necessary to perform its tasks, whatever they may be.

A qualifier for a controller option is a set of directives that will always have
a parent-child relationship and have the need to communicate with each other.
The parent directive should have the main controller defined on its definition
object. The child directive should require this controller.

Let's build a simple bbStopLight directive that is broken down by two individual
directives that share a parent-child relationship. The parent bbStopLightContainer
directive is used to contain all of the child bbStopLight directives. The
bbStopLightContainer directive is in control of which bbStopLight will be active.
This information needs to be communicated to all the associated directives.

For the following example, we only show the parent bbStopLightContainer
directive; the child bbStopLight directive will be discussed at a later time:

// The container for the stopLight's
angular.module('TrafficLight')
 .directive('bbStopLightContainer', [function() {
 return {
 controller: 'bbStopLightCtrl',
 scope: {options: '='}
 };
 }])
.controller('bbStopLightCtrl', function($scope,$interval){

 // setting options to the function's context
 this.options = $scope.options;

 this.setNextState = function(){
 state = $scope.options.state;
 // setting next state logic
 };

Chapter 1

[19]

 $interval(this.setNextState,this.options.interval);
 });

If the value of the controller value defined on the definition object
is an @ sign, then the controller name will be the directive's name,
for example, stop-light="stopLightCtrl". This is how
ngController works.

Directive controllers are meant to create a medium for communication. This medium
is used by the directive controllers to pass objects between related directives. Some
nonintuitive behaviors of the directive's controllers are that the only objects accessible
in the actual directives via the require field are defined on the function's context. This
means that setting functions and attributes on the controller's scope object will not
allow for its objects to be shared in directives that require it. The controller's scope is
specific to the controller itself and is not shared between directives.

The bbStopLightContainer directive can always refer to what its current state is.
Now that we have a parent container directive that will control the information for
all our stoplights, it's time to create a bbStopLight directive and show how it works
in collaboration with this new controller.

Require
The require field is a string or an array of strings. Each string represents a directive
that provides a controller. The require field is essentially a key that helps AngularJS
map the controller we want to pass into the link function. This is done during the
pre and post stages of the link functions, which means the controllers are available
in both as the fourth parameter. The controller that is passed into a directive during
the link function is a representation of either a controller on a parent directive or the
current directive. This is why directives that use require must have some type of
relationship with the directive that they require a controller from.

The following four different options are available when initializing the require field
on a definition object:

• require: 'directiveName' – This option searches for a directive on the
current element; if not found, it throws an error

• require: '?directiveName' – If a directive is not present on an element,
this option passes a null value to the link function

• require: '^directiveName' – This option searches for a directive on an
element's parent directives, and if not found, throws an error

• require: '^?directiveName' – This option searches the parent directives
for the directive and passes a null value to the link function if not found

www.allitebooks.com

http://www.allitebooks.org

The Tools of the Trade

[20]

Once the controller is passed to the directive, it can be read from, or written to, and
this is true for any other directive that requires that controller. This gives direct
access to the directives that require it and to other directives that also require the
same instance of this controller. Remember that the shared controller is an instance of
the controller that is created on the directive that calls the controller constructor. This
opens up many options for child directives that perform specific tasks, depending on
the state of the parent directive and its controller.

Let's allow the bbStoplight directive to communicate with its parent controller
(bbStopLightContainer) by adding the require field to its definition object with
the help of the following code snippet:

 // now bbStopLight requires the bbStopLightContainers Controller
angular.module('TrafficLight')
 .directive('bbStopLight', function(svgService) {
 return {
 require: '^bbStopLightContainer',
 scope: {},
 link: function(scope,element,attrs,stopLightCtrl) {
 // the logic that determines what to do with the
 // linked stop light element
 }
 };
});

Now, we can access the bbStopLightCtrl directive's objects that are publicly
exposed, which means we can set our own options for each specific stoplight
and turn it on or off. To do this, we could observe the values for a change on the
bbStopLightCtrl directive and update the bbStopLight directive accordingly.

ControllerAs
The controllerAs field is a string that represents an alternative way to reference
the directive's controller from the template. Once the controllerAs field has been
set to a name, the function context (this) turns into the string representation of the
controllerAs value.

It is the same as using $scope.controllerAsValue = this and being able to
reference it inside of the HTML or template.

Restrict
The Restrict field is a character value that represents how the directive is defined in
the DOM. AngularJS has a built-in compile function that is run on initialization and
at the developer's choice. The $compile service is its public access point. This compile

Chapter 1

[21]

function collects directives and parses the DOM tree recursively, looking for directives
by matching each element's nodeType to the list of directives attached to the defined
app's modules. There are four different types of representations a directive can have,
and all of them are denoted by the Restrict option listed as follows:

• Restrict: 'A' – This option represents the directive that is an attribute of
the element (default), which implies that Angular is looking for <div my-
directive></div >

• Restrict: 'E' – This option represents the directive that is an element,
which implies that Angular is looking for <my-directive></my-directive>

• Restrict: 'C' – This option represents the directive that is a class
definition, which implies that Angular is looking for <div class="my-
directive"></div>

• Restrict: 'M' – This option represents the directive that is a comment,
which implies that Angular is looking for <!-- directive: my-directive
attrs-->

Any of the options of the restrictions mentioned in the preceding list can
be combined together to create a directive that can have multiple options.
Cross-browser compatibility is the biggest reason to go with the A restriction
most of the time. IE 8 and 9 require special shivs to work with element directives,
and there are some issues that IE has with reading comment directives as well.
Class directives work across browsers, and when used properly, can be useful.
The comment directive can have special use cases, such as when compiling a
directive and creating a compiled comment directive, which are not seen by
the user.

Template
The template option is a string or a function that returns a string. The string
represents the HTML that the directives inject into the DOM once fully compiled
and linked. Templates are very useful and help keep HTML source files clean and
readable. Directives can be created inside of other directive templates; they allow
for nested dynamic directive creation possibilities.

Templates have access to the directive's scope during the linking phase of a directive.
This allows for any scope variable or function to be added to the template and
utilized in the same fashion as any other HTML markup inside of an AngularJS
application. The only stipulation is that the developer has to make sure that the
objects being used in the template are actually available in the directive's scope.

The Tools of the Trade

[22]

Being able to determine what will be active on the directive's scope
during runtime depends upon how the scope is defined in the
definition object and where it lives in the DOM tree.

When the template value is a function, the two parameters available during
runtime are tElem and tAttrs, which are the element and attributes that the
directive has access to during the compile phase. However, the values of the
attributes are pre-interpolated, so they must be hardcoded values in HTML
so that significant value can be derived from them. This allows the developer
to request dynamic templates with the $http service depending on the attributes
set on the element and the values that are taken from the app's current state.

Inside the template function, any variable that has been Dependency
Injected into the directive's functional context will be available and can
be utilized to determine conditions.

The following is an example of an Animated Menu directive that utilizes the
template function just to showcase its syntax:

angular.module('Menus', [])
 .directive('bbAnimatedMenu', [function(){
 return{
 restrict: 'EA',
 replace: true,
 template: function(tElem, tAttrs){
 return '<div class="animated-menu animated-menu-
 vertical animated-menu-left">' +
 '{{hello}}' +
 '</div>';
 },
 link: function(scope, elem, attrs){
 scope.showMenu = function() {};
 }
 };
}])

.controller('menuCtrl', function($scope){
 $scope.hello = 'Hello';
 $scope.hello2 = ' World';
})

// This directive is Called in HTML with this syntax
<div bb-animated-menu test="{{hello}}"><div>

Chapter 1

[23]

Inside the template function, the tElem and tAttrs objects are exactly equal to
what they are in the static DOM. This is because the template function is run before
the compile phase even happens, and there has been no interpolation on the hello
attribute. The final result in the menu will be a div parameter, with the correlating
CSS classes and some text that reads Hello World. An example of this function is
available at http://jsfiddle.net/joshkurz/qJfa4/3/.

It is apparent that this function could be cleaned up to some extent,
and that is exactly what the templateUrl field is for.

TemplateUrl
The TemplateUrl option is a string or a function that returns a string, which maps
to a template located in templateCache or needs to be requested via HTTP. This
is the field that should be utilized instead of the template when writing directives
in production. Utilizing the templateUrl field allows directives to be much more
readable, and the same goes for the templates themselves.

Once the template is fetched, the exact same rules apply as the template field. The
templateUrl function utilizes the same tElem and tAttrs objects as the template
option. The benefit to using templateUrl is the added readability.

Using templateUrl as a function is very important and allows for directives to be
able to use dynamic templates based off of attribute values. This is a very declarative
approach to programming and writing directives. The benefits are grand and allow
for a flexible directive that can be used in many different ways.

Replace
The replace field is a Boolean that has a default value of false. If replace is set
to true, then the element will replace the defining element in the DOM during the
compile phase. This is useful when the defining directive is present just for syntactical
purposes and the template holds all of the real DOM that the view should hold. If
replace is false, then the template element will just be appended as a child of the
defining element. false is the default value of replace.

Transclude
The Transclude option is a Boolean or a string that has a default value of false.
If transclude is set to true, then AngularJS will copy the element's child elements
from the DOM before compiling the template to store a link function for later use.
If transclude is set to 'element', then AngularJS will compile the entire element and
store its link function for later use.

http://jsfiddle.net/joshkurz/qJfa4/3/

The Tools of the Trade

[24]

There are a few other directive options that work well with transclusion. Earlier, we
alluded to a terminal being useful when transclusion is used by directives. This is
because any directive that uses the terminal option would not allow its children
or other directives with a lower priority to be compiled. The transclude function
forces them to be compiled, but their link functions are used at a specified time
rather than upon directive initialization. Transclude also works with the replace
option in a similar manner. If the defining directive uses replace, then its original
contents will be lost without transclusion.

The transclude process takes place during the directive's compile phase. When
compiling a node, if a transclusion option has been set, then either that node's
specified elements or its child elements will be passed into another compile function
call. This compile function returns a separate link function that is passed into the
directives link function as the fifth parameter. The link function is prebound to a
new transclusion scope, which is a child scope of the defining scope. Even though the
transclude function is prebound to the correct scope, it can be overwritten when
the transclude function is called. A normal use case of passing a different scope is
to create a new child scope from the directive's scope and pass that new scope in.

Let's add some transclusion to the animated-menu directive and see how we can
access its values, as shown in the following code snippet:

app.directive('bbAnimatedMenu', function(){
 return{
 restrict: 'EA',
 replace: true,
 transclude: true,
 templateUrl: 'animatedMenu.tpl.html',
 link: function(scope, elem, attrs, nullCtrl, transcludeFn){
 //setting a variable that represents the cloned element,
 //which is where the original contents of this element were
 //before the compile function ran and generated the new
 //templated element.
 var clonedElement = transcludeFn(function(clone){
 return clone;
 });
 elem.append(clonedElement);
 scope.showMenu = function() {};
 }
 };
});

Chapter 1

[25]

Now that we are transcluding the menu, it can semantically create content that was
relevant to the defining scope. This allows for the fulfillment of requirements that
call for generating the DOM based upon $parent level scope objects that are not
accessible inside of the directive through suggested means. This also keeps original
bindings intact through prototypal inheritance. Transcluding this way is also great
for readability, and it keeps the templates limited to content related to specific
directives. A live demo is available at http://jsfiddle.net/joshkurz/qJfa4/4/.

There is also a directive called ngTransclude that allows the developer to insert
the transcluded DOM into a specified place in the template of a directive. The
ngTransclude directive is useful when a simple clone of the original contents is
needed inside a new templated element.

A simple example of ng-transclude being used on a directive is shown in the
following code snippet:

angular.module('DemoExamples').directive
 ('demoTransclusion', function(){
 return{
 restrict: 'EA',
 transclude: true,
 template: '<div class="container">' +
 '<div ng-transclude><div>' +
 '</div>',
 // simplified for readability
 };
}]);

Now, the compiled and linked DOM will be inserted into the div element where the
ng-transclude attribute is set. This is great for clean, easy cloning when there are
no additional changes that need to be made to the original contents.

Compile
The Compile option is a function that returns either an object or a single post-link
function. If the returned item is an object, then it can contain two fields, which are
either pre or post. The purpose of the compile function is to offer optimization
techniques that can be run before the directive's DOM is linked to a scope. The
compile function does not have access to any scope. This means that any attribute
that is read during the compile phase will be the pre-interpolated value.

http://jsfiddle.net/joshkurz/qJfa4/4/

The Tools of the Trade

[26]

The life cycle of the compile function depends on its definition,
but the order in which it is called depends on the priority set by the
definition object. If a directive has a higher priority, then its compile
function will be run before those that have a lower compile value and
that are set on the same element.

This directive option is not to be confused with the $compile service that AngularJS
offers in its API as a Dependency Injected variable. The difference is that this
compile function does not traverse the given element to register any associated
directives. The compile option's main purpose it to return a variable link function
that defines how the directive should be linked to the DOM and scope.

The compile function is the basis of all core and custom directives. Normally, when
creating directives, there is no need to utilize this field because its returned value is
exactly the same as the link function would be.

An example compile function for the animated menu is shown in the following
code snippet:

compile: function(tElem, tAttrs){

 return function(scope, elem, attrs, nullCtrl, transcludeFn){
 var clonedElement = transcludeFn(function(clone){
 return clone;
 });
 elem.append(clonedElement);
 scope.showMenu = function() {};
 }

}

The tElem and tAttrs objects are template values that are
preinterpolated. Only template alterations should be made inside the
context of the compile functions. DOM manipulation, event registration,
and compiling should be done in the returned link function.

The compile function returns the exact same link function that the animated menu
used in the previous transclude example. The difference is that now the link
function has access to the templated attributes and elements. This opens up many
options for different use cases, such as directives with variable link functions,
because the template or the application state could determine which link function
should be returned.

Chapter 1

[27]

Another example of the compile function utilizing the pre and post objects is shown
in the following code snippet:

compile: function(tElem, tAttrs){

 return {
 pre: function(scope, elem, attrs, controller, transcludeFn){
 scope.showMenu = function() {
 elem.toggleClass('animated-menu-push-toright');
 };
 },
 post: function(scope,elem,attrs,controller,transcludeFn){
 var clonedElement = transcludeFn(function(clone){
 return clone;
 });
 elem.append(clonedElement);

 scope.showMenu();
 }
 }
}

The pre and post object fields, used in this version of the animated menu's compile
function, both return link functions. The difference is that the pre function will
always be run before any post link function that is defined on the animatedMenu
directive. It is also not safe to perform DOM manipulation in the pre link function
because the post link function will fail to locate specific elements.

Another important factor about the compile function is how it performs some of
its optimization techniques. Any directive that uses transclude, such as ngRepeat,
will compile directives only once. The link function will be run many times, which
proves that placing logic in the compile phase, that does not need scope interaction,
is faster.

Link
The link definition option can either be a function or an object. If the link definition
is a function, then it is considered a postlink function. If the link definition is
an object, then it can contain pre or post object keys that map to individual link
functions that are run in a synchronous order. The post link function is the only place
where DOM manipulation, which depends on scope variables, should occur in an
AngularJS application. This is so all of the elements can be precompiled and their
scope linked to DOM data. Doing so will ensure that all elements are available at the
correct time and that the specific directive logic has been performed as intended.

The Tools of the Trade

[28]

The link function is synonymous with the compile function's returned object. Most
of the examples that we have used in this chapter so far contain link functions. This
is because most directives only contain link function definitions. The link function
is the last function to be called from a directive's definition. If the element contains
multiple directives, then the link function is considered a composite link function
that holds the data set by all of the other directives on the given element and its
child elements.

Directives are collected recursively in AngularJS. Their link functions are run in the
opposite order that they are compiled in. AngularJS traverses the DOM, starting at
the root, and compiles every directive it finds. Then, as AngularJS comes back up
the tree, each post link function is run. The parent directive will only run its post
link function once all of the child directives have already done so. If a directive was
compiled first, then its DOM and scope will be linked last.

Almost all of a directive's logic will be placed inside of the link function. This is
because it is the safest place to perform DOM manipulation as we can ensure that
all of the directive's child elements are compiled and linked. It is common to find
directives with fat link functions. Although this is not a wonderful technique, it is
used in the community often.

The bbStopLight directive creates an SVG element based on the
width and height of the defining element and watches the parent
container for state changes.

Let's take a look at a detailed version of the bbStopLight link function in the
following code snippet:

link: function(scope,element,attrs,stopLightCtrl) {

 var context = element[0].getContext('2d');

 scope.options = angular.extend({
 attrsState: attrs.state,
 height: element[0].height,
 width: element[0].width
 },stopLightCtrl.options);

 function getStopLightState(){
 return stopLightCtrl.options.state;
 }

 svgService.setUpStopLight(context,scope.options);

Chapter 1

[29]

 scope.$watch(getStopLightState, function(newV,oldV){
 if(newV !== oldV){
 svgService.changeColor(context,scope.options.
attrsState,newV);
 }
 });
}

The link function for the bbStopLight directive consists of a couple of different
functions. First, a context variable is set as a canvas element. This will be used as a
parameter in the coming functions, so we can perform all of the SVG-related tasks
we need to. Note that the specific isolated scope has an object value set to it, which
are the options for the parent container and some extended information that is
specific to an instance of the bbStopLight directive.

Once we have the context and the options, we can initialize the SVG circle that
represents the bbStopLight directive. The svgService has been injected to the
context of this directive so that we can call its specific SVG functions. This is so
we can keep the cyclomatic complexity down inside of the link function.

Keeping the cyclomatic complexity low in link functions is especially
important and easily achievable by utilizing services and factories. This
also opens up more room to test individual functions that may not have
been testable if left as private functions in the link function's context.

Now that we have our bbStopLight directive set, we need to set its color. The color
should be #ccc or the color of the current state of the container only if it matches
the isolated bbStopLight. This is done by setting up a watch on the scope and
calling getStopLightState on every digest. During the first digest, this function
will run because the comparison of newV and oldV will be true because oldV will
equal undefined on the first digest. Once svgService.changeColor runs, our
bbStopLight directive will be the color that it is supposed to be. Then, every time
the interval fires in the controller of bbStopLigthContainer, this watch will be fired
and the svgService.changeColor method will be run, subsequently changing the
color of bbStopLight to its correct state.

www.allitebooks.com

http://www.allitebooks.org

The Tools of the Trade

[30]

The following output shows the change in the color of the traffic light:

The link functions are where the bulk of the logic for a specific
directive gets located. The reason for this is that in the post link
function, all of the compiled information about a directive and its
child elements is known.

Wrapping up definition objects
The definition object is a set of instructions used when AngularJS compiles and links
the DOM against a specified scope. The whole purpose of a definition object is to
separate out the logic behind building DOM structures that live in the AngularJS
digest cycle. Once completely linked, these DOM structures offer a versatile and
dynamic solution to manipulating the view.

Each individual definition field has a distinct purpose and subsequently should be
used if the requirements for the given directive call for it. This is not a commonly
used set of definition object fields. The use of each field depends widely on individual
implementation. Because of this, it is good to know when and where to use each
definition field and how to use the fields in correlation with each other.

Chapter 1

[31]

Summary
We have gone over every definition object option available in detail and the method
to utilize these on directives for different purposes. We have successfully created
a traffic light that consists of two directives, a directive controller, and a service.
We also created an animated menu that utilizes different aspects of the compile
definition field to create its link function that is needed to accomplish its tasks.

Another focus of this chapter, was on how and when to use individual definition
fields according to specific requirements for individual directives. In every case, the
definition fields needed can vary, but there are some very similar concepts that can
be reused through almost every directive.

DOM manipulation, which depends on scope variables or child elements, should only
be done inside the post-linking function returned by the compile definition. This is to
ensure that all of the directive's elements and child elements are compiled, evaluated,
and interpolated against the given directive's scope and transcluded scope.

The templates used in a directive can be very complex and should always be put
into templateUrl for the best readability possible. The readability is advantageous
for both the directive and the template. Also, one of the major advantages of using
a templateUrl option is that we can create a declarative directive that uses
dynamic templates.

Transclusion should be performed when the contents of a DOM element need to be
cloned and attached to the newly linked element. It is possible to transclude just the
directive's child elements or the entire directive itself. Transclusion works great with
other options such as terminal or replace.

The scope field is very important and should be used correctly. There are three
different types of scopes that a directive can have. These scopes have specific
purposes and their own set of benefits. The most robust scope is the isolate scope
option that allows for the directive to use two-way data.

These directive definition object options offer different ways of accomplishing simple
to very advanced tasks. The key to controlling how and when to use these options
correctly lays in knowing them in detail and practicing their utilization.

In the next chapter, we will build our first directive. This directive will utilize many
of the options we have described in this chapter. We will also go over some different
types of testing techniques.

Building a Stopwatch
Directive

The stopwatch is a full-fledged example of how to build an AngularJS directive from
start to finish. This chapter will cover the correct way to break down requirements
and consolidate them into actionable items. We will explain how the directive API
offers different ways to accomplish similar tasks and how to best choose what
options accomplish tasks in the most efficient and readable manner.

The purpose of this chapter is to showcase simple and efficient techniques when
writing directives. We do this by writing a stopwatch and showing how to accomplish
its set of requirements. The stopwatch's definition object could be set up in different
ways. We will first see how to create the stopwatch in its most simple form and then
add optimization techniques that make the stopwatch more advanced.

Breaking down the stopwatch
Many implementations of stopwatches are available all over the Web, which use
various different techniques and styles. This book's stopwatch is meant to be simpler
and easier to implement inside of a modern web app. The directive API offers the
options needed to create a sleek and straightforward piece of code that completes all
the given requirements. Each of the stopwatch's requirements can be accomplished
in many ways inside of an AngularJS context.

We will go over each requirement needed to build a stopwatch. When we break
down each requirement, we will start to see what definition object options
could be used to perform the task at hand. The major differences between the
implementations that will be discussed are how to best set up a directive's link
function and when and how to use some more advanced directive API options.

Building a Stopwatch Directive

[34]

Stopwatch requirements
The stopwatch has the following set of requirements that need to be fulfilled and be
able to work with multiple stopwatches on the same page:

• The ability to track its own time
• The ability to start and stop on command
• The ability to reset to zero on command
• The ability to log each lap

The requirements can be accomplished in different ways. It would be common to
write this directive with a link function that is full of logic that accomplishes all
of these requirements. Writing directives whose link functions contain all of the
implementation logic is standard and accomplishes the basic requirements; however,
writing directives in this manner does not facilitate the most readable, concise code.

A simple pseudo code example of this is as follows:

{
 scope: true,
 link: function(scope, element, attrs){
 scope.startStop = function(){//stop or start the timer}
 scope.reset = function(){//reset the timer}
 scope.logTime = function(){//log time}
 }
}

This example shows a simple link function and a scope object. The link function
sets the required functions onto a child scope. We know that it is a child scope
because the scope option evaluates to true. This means that the directive will
be able to communicate with its defining scope through prototypical inheritance.
This implementation of the directive API options will ultimately accomplish the
requirements, but it could get out of hand quickly as we add more and more logic
to the stopwatch.

Prototypical inheritance is a JavaScript design pattern that allows for
objects to inherit from the prototypes of parent objects. This is a basic
JavaScript model that is used heavily in AngularJS $scope objects,
which are prototype objects that either prototypically inherit from
their parent in the DOM or from $rootScope.

Chapter 2

[35]

Deciding whether or not to use a child scope or an isolate scope is not always
intuitive and requires a breakdown of what the directive is doing. Usually, isolate
scopes are required when templates are needed to accomplish a directive's use cases.
Many times, a directive only needs a child scope. In the case of the stopwatch, all we
are doing is tracking the amount of time from a start and stop point. This is a simple
use case that can be accomplished with just a child scope that allows for declarative
markup inside of the stopwatch's child DOM elements.

Child scopes are meant for directives that expose public functions to its DOM
elements. These public scope functions can be used in combination with other
directives that can all work together on the same child scope. Child scopes allow
the developer a medium to express normal JavaScript scopes into HTML, which is a
revolutionary concept in itself.

An isolate scope is meant for a directive that has a specific API that should be
exposed onto its scope. These directives are used when a reusable element is being
created that either contains a template or the element's transcluded DOM. So, the
overall rule is that if a directive needs to consolidate and force a specific API to its
surroundings, it should use an isolate scope. A directive can benefit in many ways
from using an isolate scope, but they should be held back as the last resort for a
directive to accomplish its given requirements.

The negative aspect of using the previous format to write a directive is that the link
function will be very large and contain logic that is not specific to the life cycle of the
directive. To combat against the link function getting out of hand, it is very common
to write services or factories that contain business logic. This business logic can then
be injected into the directive's closure, giving the link function access to its exposed
context. Creating directives with custom helper services is highly recommended to
keep redundancy low and readability high.

The stopwatch could also be written with a controller that contains its implementation
logic. This would allow for the separation of concerns, which would lead to more
readable code. Writing the stopwatch with a controller also allows for a simple,
reusable API that can be used in other directives that share some parent-child
relationship. An isolate scope would be required if the directive was using a controller.
This is because the controller is instantiated before the child scope is linked to the
DOM. An Isolate Scope is created in a different order to create the isolation from the
current prototypical pattern and allow for all linking phases to use the correct isolate
scope object.

Building a Stopwatch Directive

[36]

Even though we are not 100 percent certain as to how we would
like to implement the specific details of the stopwatch, we can
still write some simple tests that prove its creation logic.

The basics of testing
The Test Driven Development (TDD) process is a very maintainable development
standard and is what AngularJS is built on. No quality AngularJS application or
directive should go untested, and the extent of the tests should always be ever
expanding. We will now talk about some of the tests that the directive uses to prove
its logic. These tests will help explain how the directive will be created in the DOM
before any code is written.

When writing tests for directives, the AngularJS lifecycle is much
more apparent, and the "AngularJS Magic" that people refer to
starts to reveal itself. This helps when trying to understand what a
directive's lifecycle is and how it works at the basic level.

Testing directives is especially important. Directives are one of the hardest concepts
to grasp in AngularJS, and DOM manipulation techniques are notoriously buggy
when implemented incorrectly. Since AngularJS comes baked in with its own tests,
there is no excuse not to test. As more tests are written, it becomes more apparent
how the internals of AngularJS work.

Jasmine is the testing framework that is used in conjunction with Karma.
Karma is the built-in test runner for AngularJS applications. A brief
overview of how to set up Karma can be found at https://github.
com/karma-runner/karma-jasmine

The unit tests should prove the basic logic behind the stopwatch's functionality and
check if the stopwatch can be initialized correctly. The unit tests should not only prove
the logic behind the code, but they should also help achieve a more advanced level of
understanding as to what exactly it will take to most efficiently create the directive.

https://github.com/karma-runner/karma-jasmine
https://github.com/karma-runner/karma-jasmine

Chapter 2

[37]

There are different ways to break down the describe blocks that are used to test
directives. Each describe block should hold logic that performs like functions so that
the readability of the tests remains high. In this chapter, we will break them down
into the following three categories:

• Tests that prove the initial creation of the directive
• Factory/Service interactions
• Filter tests

The specific tests that will be shown are all part of the overall describe block of the
stopwatch; it utilizes two modules and sets some global variables that are injected
into the directive. These three service instances that are being injected into each of
the tests are needed to call functions inside of the tests themselves, as they have their
own specific uses while testing.

The following code snippet shows the predefined context of the stopwatch's clauses:

beforeEach(module('AngularBlackBelt.Stopwatch'));

beforeEach(inject(function (_$rootScope_, _$compile_,_$interval_) {
 scope = _$rootScope_.$new();
 $compile = _$compile_;
 $interval = _$interval_;
 scope.options = {
 interval: 100,
 log: []
 };
}));

The first beforeEach clause sets the context of the tests. Specifically, beforeEach
calls the angular.module function, which either searches for a predefined
module or sets a new module instance. In this specific case, it finds the predefined
AngularBlackBelt.Stopwatch module and loads it into the execution context.

The second beforeEach clause utilizes the AngularJS injector function to find
services that will be used to perform the tests. We wrap the Angular factories
with underscores, so we can assign them to local variables. This is one way to add
dependencies in tests. These services each have a specific purpose and are essential
to the test's passing; however, they are not essential to the logic that the tests are
meant to prove.

Building a Stopwatch Directive

[38]

Creation tests
The creation tests of the stopwatch are to prove that the directive either failed to be
initialized or was created as expected. Once the creation occurs, the intended scope
objects should also be linked to the DOM's scope and contain their proper objects.
These tests are very basic, but they serve as the base of our directive's tests and will
allow us to add more in the future easily.

The following test will help us ensure that the correct options get passed into the
directive. This test is supposed to always throw an exception because we are not
passing any options into the directive. The directive needs at least an empty object,
so it has a reference in memory to allow for AngularJS data binding to take effect in
the DOM.

it('should throw an error if there are no options set on the element',
 function() {
 expect(function(){
 var stopwatch = $compile('<div bb-stopwatch></div>')(scope);
 scope.$apply();
 }).toThrow('Must pass an options object
 for the stopwatch to work correctly.');
});

The following test shows that if all of the directives' initialization requirements are
met, then errors will not be thrown. We compile the directive and add it to the digest
cycle so that we can mimic real interactions with DOM or $scope. This is being done
with the $compile service method.

After the stopwatch is compiled, we call the $apply method. The $apply method
runs the first digest cycles, which allows us to run all the watcher functions and
initialize the directive as it would be in production. Refer to the following code:

it('Should not throw an error with an options object', function()
 {
 expect(function(){
 scope.optionsObject = {};
 var stopwatch = $compile('<div bb-stopwatch
 options="optionsObject"></div>')(scope);
 scope.$apply();
 }).not.toThrow();
});

The preceding test proves that all we need is an empty object for the directive to
initialize successfully. It is important to understand why the $apply function is
being used in the test. Directives are initialized before the first digest cycle starts.
In production, a digest cycle can cause a directive to show an error if that directive

Chapter 2

[39]

is dependent on the digest cycle for initialization. So, because of this, we add the
$apply function to closely mimic what would ensue in a live application.

In a specific case when creating a stopwatch, we will need a type of interval that calls
an updateTime function. An interval is needed so that we can constantly update the
elapsedTime function. The interval frequency should either be set from an object or
as a default value. In this case, the default value is 100. This test showcases that if no
interval field is passed into the directive, the default interval will be set as 100. Refer
to the following code:

it('Should set the default interval value to 100 milliseconds',
 function() {
 var stopwatch = $compile('<div bb-stopwatch
 options="newObject"></div>')(scope);
 scope.$apply();
 expect(stopwatch.scope().options.interval).toBe(100);
});

Different functions are available to the angular.element object.
Here, we call the scope function because we want to test the
stopwatch's scope to make sure that it sets the correct values. If we
used an isolate scope, we use isolateScope as the function to test
with instead.

The $compile function returns a link function that can be run with a scope
parameter to interpolate its template values. This link function returns an angular
element. The angular element is almost equivalent to a $(element) object, and if
jQuery is included in the window, then it is.

The following code snippet proves that if we send a custom interval into the
stopwatch, it will override the default value:

it('Should contain all relative functions', function() {
 var stopwatch = $compile('<div bb-stopwatch
 options="options"></div>')(scope);
 scope.$apply();
 expect(stopwatch.scope().stopTimer).not.toBe(undefined);
 expect(stopwatch.scope().startTimer).not.toBe(undefined);
 expect(stopwatch.scope().resetTimer).not.toBe(undefined);
});

The previous creation tests prove that the directive does not throw any unexpected
errors when being created and sets the appropriate default values on the scope once
initialized. Now, we can move on and write the directive to showcase how to write
the basics of the stopwatch directive and evolve it into a more advanced one.

www.allitebooks.com

http://www.allitebooks.org

Building a Stopwatch Directive

[40]

Writing the stopwatch
Most directives use a link function to achieve their functionality in collaboration
with AngularJS scope objects. This is because the link function is usually all that is
required to accomplish most requirements that a directive has. The reason the link
function (post link) is so useful is because it is always run when the directive's DOM
and child scope have been attached to their associated AngularJS scope. This allows
us to ensure that all the data properties are present and all the DOM elements have
been compiled into an AngularJS context.

In this case, we are using a basic child scope declaration for the directive. This allows
for the directive to achieve its functionality inside of its own private scope, which
inherits from its defining scope. This inheritance is what allows for data binding
between the parent and child scopes, and it is the simplest way to achieve the
directive. Refer to the following code:

app.directive('bbStopwatch', ['StopwatchFactory',
 function(StopwatchFactory){
 return {
 restrict: 'EA',
 scope: true,
 link: function(scope, elem, attrs){

 if (!attrs.options){
 throw new Error('Must Pass an options object from the
 Controller For the Stopwatch to Work Correctly.');
 }

 var stopwatchService = new
 StopwatchFactory(scope[attrs.options]);

 scope.startTimer = stopwatchService.startTimer;
 scope.stopTimer = stopwatchService.stopTimer;
 scope.resetTimer = stopwatchService.resetTimer;

 }
 };
}])

The directive is namespaced with a bb, Black-Belt, because it is the
best practice to namespace directives. This is so other projects can
easily plug and play the directives.

Chapter 2

[41]

The business logic is placed inside of the stopwatchService function, which is
being created by the StopwatchFactory function. This is fed to the options object
as a parameter and creates a new service object that will be used to manipulate the
elapsedTime object. This is a very clean and organized way to write directives.
The stopwatchFactory function can now be tested separately, allowing for the
separation of the DOM logic that we were expecting to see using AngularJS.

The bbStopwatch function uses a child scope. As we prove in our tests, the directive
will throw an error if the options attribute is not defined. This is because the
stopwatch is dependent on the knowledge about exactly where it will be reading and
writing from. By feeding the directive a hash object, we allow for a more organized
input/output channel for the stopwatch that fixes any prototypical inheritance issue
that the child scope would have caused.

When writing to a hash object from inside of a child scope, the
hash object's properties will still reference its variables from its
defining scope.

There are many benefits to just using a child scope in a directive. Some of these
include simplicity, a prototypical inheritance model, and expected template
behavior. The child scope created by the bbStopwatch function is accessible via any
DOM that is defined as a child of the bbStopwatch function. This means that we
can now place a stopwatch directive on any element and attach the link function's
$scope methods to it.

In JavaScript, the $scope options will look like the following code:

$scope.stopwatchOptions = {interval: 100};

In HTML, the $scope methods will look like the following code:

<div bb-stopwatch options="stopwatchOptions">
 {{stopwatchOptions.elapsedTime}}
 <button ng-click="startTimer()">Start</button>
 <button ng-click="stopTimer()">Stop</button>
 <button ng-click="resetTimer()">Reset</button>
</div>

This allows for very dynamic creations of DOM, which can be reused throughout an
application with many different implementation patterns. Another benefit of using
child scopes is that we keep the definition context of the scope variables that we are
passing into the directive.

Building a Stopwatch Directive

[42]

If we were using an isolate scope in this instance, we would define the
stopwatchOptions.elapsedTime function inside of the curly brackets as the
options.elapsedTime function because the isolate scope created would not
prototypically inherit from the parent scope and would set its own value based on its
definition object. This is not 100 percent apparent and could cause readability issues.

This is the simplest form of the stopwatch directive. A working version of the
stopwatch directive can be found at http://jsfiddle.net/joshkurz/5LCXU.

Stopwatch's business logic
The factory function used for the stopwatch is where all the main logic is placed.
Since the logic is reusable and can be used in other places around our application,
we created a factory. This factory returns a singleton object that can be created
many times, which allows the stopwatch directive to accomplish its most important
requirements. The majority of the work is done in this factory; however, it is
organized in a clean and readable manner.

There is only one dependency that the factory relies on to be successful in
its attempts to provide the stopwatch's functionality. This dependency is the
$interval service, which fires a closure function at a set time in a repeated form.
The $interval service is a wrapper for the native JavaScript window.setInterval
method, but it calls $scope.$apply on every execution, and the $interval service
offers a simple way to cancel its current interval.

The full analysis for this can be found after the source code. The following code
snippet is the full StopwatchFactory function:

stopwatch.factory('StopwatchFactory', ['$interval',
 function($interval){

 return function(options){

 var startTime = 0,
 currentTime = null,
 offset = 0,
 interval = null,
 self = this;

 if(!options.interval){
 options.interval = 100;
 }

 options.elapsedTime = new Date(0);

http://jsfiddle.net/joshkurz/5LCXU

Chapter 2

[43]

 self.running = false;

 function pushToLog(lap){
 if(options.log !== undefined){
 options.log.push(lap);
 }
 }

 self.updateTime = function(){
 currentTime = new Date().getTime();
 var timeElapsed = offset + (currentTime - startTime);
 options.elapsedTime.setTime(timeElapsed);
 };

 self.startTimer = function(){
 if(self.running === false){
 startTime = new Date().getTime();
 interval =
 $interval(self.updateTime,options.interval);
 self.running = true;
 }
 };

 self.stopTimer = function(){
 if(self.running === false) {
 return;
 }
 self.updateTime();
 offset = offset + currentTime - startTime;
 pushToLog(currentTime - startTime);
 $interval.cancel(interval);
 self.running = false;
 };

 self.resetTimer = function(){
 startTime = new Date().getTime();
 options.elapsedTime.setTime(0);
 timeElapsed = offset = 0;
 };

 return self;

 };

}]);

Building a Stopwatch Directive

[44]

That's a lot of code, but it's the biggest function definition the stopwatch contains.
One of the most important takeaways from this snippet is that the factory's contexts
is referenced as the self object, and the most important function is set to it. This is
so we can offer a public API. We return the self object, which means that anything
that is set to it will be available as a public function. This is how JavaScript replicates
a private/public functional context model. This is very useful in all JavaScript
applications and especially when writing directives. The cleanliness and readability
of the code is much higher in this case than if we were to add this entire context into
a directive's link function.

We also use the self object to assist us with referencing issues. This is so we can
still reference updateTime inside of the interval callback function. When the interval
fires, the context of the function is nonexistent, and so is the this object, because it is
only available inside of the factory's context.

The rest of the logic is to allow the stopwatch to track its elapsedTime while
fulfilling all of its initial requirements.

Business logic tests
The main purpose of having a factory contain the logic for the stopwatch is to keep
track of the elapsedTime function in its isolated instance that is clean and testable.
Adding a factory to the directive also cuts down cyclomatic complexity, which helps
the overall readability and maintainability of the code. The factory allows us to create
functions that have consolidated logic that can be publicly referenced in a JavaScript
execution context, allowing for testing possibilities. Business logic is very important
for testing in isolation as it does not depend on integrations of any type to complete
its overall task.

The following code snippet is the beforeEach function that sets the service object to
be used in the factory's unit tests:

beforeEach(inject(function
 (_$rootScope_,_$interval_,StopwatchFactory) {
 scope = _$rootScope_.$new();
 $interval = _$interval_;
 scope.options = {
 interval: 100,
 log: []
 };
 stopwatchService = new StopwatchFactory(scope.options);
}));

Chapter 2

[45]

The StopwatchFactory function uses the Date object to set its elapsed time. We do
not want to stub the Date object for the tests. This is because we want the factory's
functions to act exactly how they would in production. It is for this reason that we
are testing how many times the updateTime function is being called, because we
trust that the JavaScript Date object always sets the right time.

The test creates a new instance of the StopwatchFactory function, which will be
interacted with in the same manner that a directive would be interacted with. This
will prove that the logic is correct. The next factory test shows that once the interval
is flushed for 1000 milliseconds, the controller's updateTime function is called 10
times since the default interval time is 100 milliseconds. To accomplish this, we set a
spy object on the updateTime function.

Now, we need to prove that when we start the timer and clock, the timeout is
flushed for x milliseconds and the updateTime function is called x/interval times.
This test uses the $interval.flush function to mock how much time has passed.
This allows us to force the interval in the factory function to fire, which then calls
the updateTime function. Refer to the following code:

it('Should call updateTime when the timer is started and should
 call it every 100 milliseconds', function() {
 spyOn(stopwatchService, 'updateTime');
 jasmine.Clock.useMock();
 stopwatchService.startTimer();
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(10);
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(20);
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(30);
});

The following test makes sure that the stopwatchService function is not calling
the updateTime function at every interval if the stopTimer method has been called:

it('Should not call updateTime if the timer is stopped',
 function() {
 spyOn(stopwatchService , 'updateTime');
 stopwatchService.startTimer();
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(10);
 //calls update time one more time whenever we stop the timer
 so the elapsedTime has the most up to date time.

Building a Stopwatch Directive

[46]

 stopwatchService.stopTimer();
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(11);
});

The following test proves that the stopwatchService function is logging the time
at the appropriate instances:

it('Should append to the options log object', function() {
 spyOn(stopwatchService , 'updateTime');
 stopwatchService.startTimer();
 $interval.flush(1000);
 //calls update time one more time whenever we stop the timer so
 the elapsedTime has the most up to date time.
 stopwatchService.stopTimer();
 expect(scope.options.log.length).toBe(1);
});

When these tests have passed, it will prove that the factory is updating the
elapsedTime object as expected and the interval can be stopped and started on
command. It also proves that the factory works with a log array and appends
messages to it correctly.

Now, we need to make sure that we are clearing the stopwatch's interval correctly
and not letting it hang around at all. When working with intervals, one has to be
very careful to make sure that no intervals are left behind.

Let's consider a production example. If the stopwatch is compiled on a scope, which
is set underneath a view and the view switches, that scope broadcasts a $destroy
event. This $destory event cleans up the scope objects, but it does not destroy the
stopwatch interval automatically.

This is a very big problem, but it can be solved rather easily. The next test proves that
once the killTimer method is called, the updateTimer function will never be called
again. The following code snippet shows that we can programmatically stop the
timer and disallow any more intervals to fire:

it('Should not call updateTime if the interval has been
 destroyed', function() {
 spyOn(stopwatchService , 'updateTime');
 stopwatchService.startTimer();
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(10);
 stopwatchService.cancelTimer();
 $interval.flush(1000);
 expect(stopwatchService.updateTime.callCount).toBe(10);
});

Chapter 2

[47]

Note how the callCount function is still 10, even after the interval.flush()
function. This proves that the interval was destroyed as expected, and no more
subsequent calls to updateTime were made. All we have to do now is add a
subscribe function on the $destory event that calls this factory function, and we
can ensure that our intervals will always be cleaned up. This test would fail with the
current bbStopwatch directive.

Optimizing the stopwatch
Now that we have created the directive in a super simple form, let's optimize it a
little more and also add some functionality. The original bbStopwatch function
accomplishes all of the original requirements. Some great optimization techniques
that could be achieved on the stopwatch would be to use a compile function instead
of a link function or clean up intervals when scopes are destroyed.

The compile function is used in different situations, but mostly, it is an optimization
tool that allows for pre-interpolated DOM to conditionally be checked or manipulated.
In the case of the stopwatch, we use it to short circuit the directive if the initial option's
attribute requirements are not met. Any type of element or attribute conditions that
must be met for the directive to achieve successful creation, which is not reliant
upon scope objects or that element's children, should be implemented during the
compile phase.

To accomplish this, all we have to do is take the attributes being checked from the
link function and place the logic in the compile function. It is important to know
that because we do this, the attributes check will only be run once per directive, and
the directive will not have to run its expensive link function if the conditions are not
met. This is a minor optimization, but it is the correct implementation. Refer to the
following code:

compile: function(tElem, tAttrs){

 if (!tAttrs.options){
 throw new Error('Must Pass an options object from the
 Controller For the Stopwatch to Work Correctly.');
 }

 return function(scope, elem, attrs, controller, transclude){
 // same exact link function as we had before.
 };
}

Building a Stopwatch Directive

[48]

Now, the stopwatch will call its compile function first and make sure that the
requirements are met. If the requirements are indeed met, the link function will be
returned and instantiated with its associated scope in the same manner as before.

Since the stopwatch uses the $interval service that comes with Angular Version
1.2.x, its pretty easy to set, clear, and allow an interval to run without having to
worry about calling the scope.$apply() function ourselves. The only caveat is that
at the moment the $interval service of AnguarJS does not automatically clear the
interval when the $interval object's specific context is destroyed.

The following text can be found at http://javascript.info/tutorial/memory-
leaks#setinterval-settimeout:

"For setInterval, the completeness occurs on clearInterval. That may
lead to memory leaks when the function actually does nothing, but the interval
is not cleared."

It is for this reason that we add an observer method and wait for the scope's
$destroy method to execute. By adding the destroy event observer, we make sure
that the interval is cleared according to plan. The following code snippet ensures that
we do not have any memory leaks associated with the stopwatch's interval functions:

scope.$on('$destroy', function(node){
 stopwatchService.cancelTimer();
});

Many directives could benefit from using this approach. There are many variables
that get left behind when scopes are destroyed. These variables are not able to
become garbage collected, which means that a memory leak has occurred. Getting
used to always clearing out intervals, timeouts, and other, nonreferenced local
variables when the scope is destroyed is the best practice.

The stopwatch's interval function is made available by a tiny addition to the
stopwatchFactory function. Refer to the following code:

self.cancelTimer = function(){
 $interval.cancel(interval);
 }}

Once this has code has been added the factory, the stopwatch has the ability to cancel
its own interval at any time.

http://javascript.info/tutorial/memory-leaks#setinterval-settimeout
http://javascript.info/tutorial/memory-leaks#setinterval-settimeout

Chapter 2

[49]

Stopwatch's filter
The stopwatch relies on a filter that converts the elapsedTime Date object into a
readable format. This filter is used inside of whichever DOM element is representing
the time. This shows even more separation of the presentation logic that the core
stopwatch functionality does not rely on. The following code snippet shows how the
logic would be used in HTML:

<div class="stopwatch numbers">
 {{options.elapsedTime | stopwatchTime}}
</div>

The code is very simple and not exactly relevant to how the stopwatch works
internally, so we will just show a test to prove that it works. There are four tests on
the Black Belt repo, but they all serve the same purpose, which is to make sure that
the filter returns the correct stopwatch time format depending on the date object that
it is being passed. In the following code snippet, we test that the filter returns a string
that represents that 1 hour has passed:

it('Should have 1 hour elapsed', function() {
 stopwatchTimeFilter = $filter('stopwatchTime');
 var newDate = new Date(1000 * 60 * 60);
 expect(stopwatchTimeFilter(newDate)).toBe('1:0:0:0');
});

The stopwatch is complete. We have successfully created our first, working
AngularJS directive. This directive has many use cases and can be used in the
production of applications all over the Web. You can find the live example at
http://jsfiddle.net/joshkurz/5LCXU/6/. The following screenshot is an
example of how the stopwatch functions; it is shown on the Black Belt site
(http://angulardirectives.joshkurz.net/dist/#/stopwatch):

www.allitebooks.com

http://jsfiddle.net/joshkurz/5LCXU/6/
http://angulardirectives.joshkurz.net/dist/#/stopwatch
http://www.allitebooks.org

Building a Stopwatch Directive

[50]

Summary
The stopwatch is now fully functional and ready for production. There are many
things it can be used for. Some more advanced use cases could be called for the
stopwatch to work in collaboration with other directives that depend on the
elapsedTime object, or having some resource function post the logs to a server.
All of these are possible and easily achievable now that the basics are implemented.

The main cause for creating the stopwatch was not because there were no
stopwatches on the Web, but to showcase the different options available when
creating a directive and how these options help decouple many aspects of
AngularJS development.

The stopwatch directive utilizes three main options made public by the directive
API. The Scope, Compile, and Link fields give the directive the ability to achieve
many of its requirements in a simple and organized format.

AngularJS makes it very easy to decouple many different aspects of the stopwatch's
logic. No selectors are needed, which can constrain a piece of code whose purpose
is to manipulate DOM according to some model object. In this specific case, we
get rid of the need for DOM selectors by allowing AngularJS scopes to work with
declarative DOM. Now, there is no need to even write code to update this directive's
HTML. This is monumental, and a wonderful example of why AngularJS is at the
leading edge of the JavaScript MVC/MVVM/MV* framework technology.

The main concern we came across when building the stopwatch was to make sure
that it did not leak memory by allowing its interval to live forever. This concern
was taken care of by the $on observer method, which is available to all scope objects
inside of an AngularJS application. Since all of the scopes emit a $destory event
that traverses all the child scopes, cleaning up is easy. If there were any other objects
that would be considered dangling references left inside of the destroyed scope, the
stopwatch would set them equal to null here as well.

In later chapters, we will be implementing the directive to an application, allowing it
to communicate and work in collaboration with other directives and controllers.

Harnessing External
JavaScript Libraries

with Directives
JavaScript is a powerful language that gives the developer many different
opportunities to build rich, dynamic web pages and applications. It can take years to
master the language and know all of the different possibilities available. This is when
third-party libraries come into play. Time is a necessity in every application's life cycle.
AngularJS works beautifully with these JavaScript libraries when used correctly.

There are a plethora of different JavaScript libraries that are built with jQuery. Most
of these libraries focus on manipulating the DOM for various reasons. The open
source world offers many of these wonderful jQuery plugins free of charge. Since
there are so many different types of jQuery plugins available that offer much of the
basic requirements needed for a modern web application, there is much value in
knowing how to incorporate any third-party library into an AngularJS application.

The AngularJS community is large and vibrant. Many of these jQuery plugins have
already been created by the community and are easily available. AngularUI is the
most popular online organization, which is known for creating well-built and
well-tested directives. Some of their directives utilize third-party libraries, and
some are written with pure AngularJS scripts.

This chapter builds two directives that utilize third-party libraries. One uses a
third-party gauge library and one is the fullCalendar directive from AngularUI.
The purpose of all the directives built in this chapter is to showcase different
techniques to integrate these third-party libraries into the AngularJS digest cycle.

Harnessing External JavaScript Libraries with Directives

[52]

The main differences in the community techniques for creating directives comes by
way of how the developer incorporates ngModel to tie a dataset to the AngularJS
life cycle. The ngModel directive is a core directive that is used by many elements to
declaratively set the watch functions in HTML markup. Refer to the following code:

<input ng-model="theString">
{{theString}}

Now, whatever we type into the input will automatically be updated inside of the
curly brackets. This is one of the most spectacular features AngularJS offers, and
it is all because of the ngModel directive and its isolated scope.

Working with third-party libraries calls for the need of an
isolate scope because we want as many options for data
binding available to us as possible.

It should be made clear that if a third-party library's purpose is to manipulate
and dynamically create the DOM, it should be converted into a directive. There are
third-party libraries that do not need to be wrapped as directives, and their methods
can be used with factories and services. Socket.IO is a great example of a library
that could be used without the need to create a directive to utilize its features. Once
libraries such as Socket.IO have been wrapped correctly in an injectable factory or
service, they can be used with other directives to accomplish the DOM-related tasks.

Incorporating third-party libraries
jQuery is by far the most popular JavaScript library available. It offers many
functions whose purpose is to control the DOM efficiently and effectively. AngularJS
teaches us that these methods should only be used inside of directives. Now, with
AngularJS, there is much less need to create directives with IDs and crawl the DOM
using selectors. The element is always available, either precompiled or postcompiled,
inside of a directive.

It should be noted that AngularJS offers a jQLite object that is a much smaller version
of jQuery, but it does offer many of the same powerful functions. The need to include
jQuery comes when incorporating other third-party libraries that depend on it into
an application.

Chapter 3

[53]

When building directives from scratch, it is usually easier to
write pure AngularJS implementations. These usually come out
simpler and more effective than directives that are integrated
with untested third-party libraries.

The following are the three essential requirements behind wrapping any
jQuery-based library with AngularJS:

• The data that the directive uses needs to be watched for changes
• The directive's DOM should be updated when changes occur
• The events emitted by the third-party library need to call $apply and resync

the model if they change that data in any way

The AngularJS digest cycle is the basis for the model being kept in sync with the
view at all times. The only way jQuery-based libraries can be used in the proper
AngularJS manner is if their events and data are hooked into this digest cycle.

There are many different techniques used in the community to accomplish this
requirement. The main purpose they all accomplish is to call the third-party libraries'
main function on the element provided by the directive's link function.

Let's not forget that the only reason we are writing a directive that
uses a third-party library is because it does some very advanced
DOM manipulation.

The link function is the only place where third-party libraries should ever be called
on an element. When a specific directive's link function is invoked, the directive and
its child directives get compiled by AngularJS and their templates interpolated with
the directive's given scope. This ensures that all of the necessary DOM and scope
elements are in place and can be used accordingly.

All third-party libraries are not the same, and some need to be used in different ways
to achieve the required result. They all do have one thing in common; that is, they
need to call their libraries' main function on their DOM element.

The first step to writing any directive that uses a third-party library is pretty much
the same as writing any other AngularJS directive (writing tests).

Harnessing External JavaScript Libraries with Directives

[54]

Testing directives that use third-party
libraries
Application-wide unit tests and end-to-end tests have been around for a long time.
JavaScript testing has just recently started to build momentum in the community.
That said, older third-party libraries do not usually have quality testing suites, which
means that they were not built for testing. So, subsequently they will probably have a
lot of private functions and variables that are not accessible to scopes outside of their
closures. This is not always an issue, but in some cases it can be troublesome when
trying to test third-party directives in a TTD manner.

Testing libraries such as Jasmine and Mocha allow for different types of function
spying, which are a large part of the solution to testing third-party libraries. The spy
function can expose the methods called by the object being watched, the method call
count, and the parameters used. These spy functions can prove that the directive has
called the appropriate library function. From there, we will trust that the third-party
library is going to do what it documents that it does.

The following code snippet is a sample test that creates a spy on a sample third-party
library function and tests to make sure that once the directive is created, the third-party
library function is called:

it('should make sure the thirdPartyFunction is called, function ()
 {
 spyOn($.fn, 'thirdPartyFunction');
 expect($.fn.thirdPartyFunction.callCount).toBe(0);
 $compile('<div sample-directive></div>')(scope);
 expect($.fn.thirdPartyFunction.callCount).toBe(1);
});

Not all third-party libraries add their main function to the jQuery $ object, as shown
in the following code:

App.directive('sampleDirective', function(){
 return {
 scope:{localVar: 'ngModel'},
 link: function(scope, element, attrs){
 //calling the third party function on the element
 element.thirdPartyFunction();
 }
 };
});

This is as basic of an example as it gets. The thirdPartyFunction is being called
on the Angular element, which is the same as using a jQuery selector to perform the
DOM-related task that it was included for.

Chapter 3

[55]

Not all JavaScript libraries hook themselves as a prototype function to jQuery. Some
use different techniques to expose the libraries' functionalities to the application
node. If this is the case, they are accessible for spying by some other means rather
than directly on the function itself. In some instances, a constructor is attached to the
window object as a new function. The constructor's prototype methods can be spied
on and checked for the proper calls that should have been made. This is the case in
the following example.

In other instances, the function is not a constructor but a closure exposed on the
window, much like the $ object or the angular object. These types of libraries are
easily spyable in the same manner as well, as shown in the previous example.

Wrapping the gauge.js file
Many websites have requirements, such as showcasing data in different formats, so
that the user can consolidate and consume the data as fast and effectively as possible.
Gauges help provide some of this functionality. There are many different gauge
libraries available for use in the open source market. For this example, the decision
was to go with gauge.js (http://bernii.github.io/gauge.js).

Gauge.js is a simple, canvas-based library that has an easy API for rendering gauges
in a wide variety of formats. When coupled with AngularJS, its power becomes
focused and intensified. For this implementation, we need to do the following:

• Render the gauge on a canvas element
• Attach the value and the options to the $scope function
• Make sure the gauge updates itself when its current value or options change

Once these requirements are met, the gauge will be completed, and it can be
incorporated into any AngularJS application.

Testing the gauge directive
To test the gauge directive, the requirements need to be proven. The following tests
prove that the directive can only be applied to canvas elements, and that when the
scope changes, the directive calls the correct function:

describe('Creating A gauge-js Directive', function () {

 it('should throw an error if not set on a canvas
 element',function(){
 expect(function(){
 var gauge = $compile('<div gauge-js></div>')(scope);

http://bernii.github.io/gauge.js

Harnessing External JavaScript Libraries with Directives

[56]

 }).toThrow('guage-js can only be set on a canvas element.
 DIV will not work.');
 });

 it('should not throw an error when creating on a canvas
 element', function() {
 expect(function(){
 var gauge = $compile('<canvas gauge-js current-value="value"
 options="configOptions"></canvas>')(scope);
 }).not.toThrow();
 });

This following test is a little different. Since we know that we are going to be relying
on a watch function to update our directive when scope objects change, we need to
call the $scope.$apply function to simulate this. The $apply function will fire the
directive's watch function, which in turn will call the gauge constructor with the
appropriate parameters.

it('should set the Gauge when the directive is compiled and linked
 to the DOM', function() {
 spyOn(Gauge.prototype, 'setOptions').andCallThrough();
 var gauge = $compile('<canvas gauge-js current-value="value"
 options="configOptions"></canvas>')(scope);
 scope.$apply();
 expect(Gauge.prototype.setOptions)
 toHaveBeenCalledWith(scope.configOptions);
 });

});

The first two tests prove that the element was created, and that if it was created on
any other type of object than a canvas, that it will throw the proper error. The last
test sets a spy on the gauge's prototype function, setOptions, and makes sure that it
is called with the correct parameters during the initialization of the gauge.

Writing the gauge directive
The gauge directive is simple, but when bound together with AngularJS, it is a very
powerful tool. The main demo that gauge.js uses can be found at http://bernii.
github.io/gauge.js/. This example showcases how the gauge can be utilized when
its inputs automatically update the gauge (view). The example shown here includes
over 140 lines of code. The full directive and example in AngularJS is only 80 lines of
code, and this includes the HTML for the view, as shown in the following code:

http://bernii.github.io/gauge.js/
http://bernii.github.io/gauge.js/

Chapter 3

[57]

angular.module('GaugeJs', []).directive('gaugeJs', function(){
 return {
 restrict: 'A',
 scope: {
 options:'=',
 currentValue: '=ngModule'
 },
 compile: function(tElem, tAttrs){

 if (tElem[0].tagName !== 'CANVAS') {
 throw new Error('guage-js can only be set on a canvas element.
 ' + tElem[0].tagName + ' will not work.');
 }

 return function(scope, element, attrs){

 var gauge;

 function setGauge(options){
 gauge = new Gauge(element[0]).setOptions(scope.options);
 gauge.maxValue = scope.options.maxValue; // set max gauge
 value
 gauge.set(scope.currentValue);
 }

 scope.$watch('options', function(newV, oldV){
 setGauge(scope.options);
 },true);

 scope.$watch('currentValue', function(newV,oldV){
 if(scope.currentValue > scope.options.maxValue){
 gauge.set(scope.options.maxValue);
 } else {
 gauge.set(scope.currentValue);
 }
 });
 };
 }
 };
});

The gauge constructor has to be fed a raw canvas element. This is because of the
inner workings of the gauge.js library.

Harnessing External JavaScript Libraries with Directives

[58]

Some libraries vary and take the wrapped jQLite or jQuery objects.
Some only work with the raw element.

Once the gauge constructor is initialized and rendered, the only requirements left to
achieve are the automatic updates.

The two watch functions take care of all the data binding updates that the gauge
needs. The directive performs two different types of watches here. The first
watch function is a deep watch. This will traverse the JSON options and check for
differences. If there are differences, the watch function will be fired and the gauge
will be reset with the new options. The second watch function just observes the
scope.currentValue variable. The currentValue function is set with ngModule
so that this directive follows normal AngularJS directive implementation. The
currentValue variable does not need to be watched with a deep watcher because
we are not working with a JSON object at this point.

This is all it takes to render the gauge directive. The full demo has been reconstructed
and can be found at http://jsfiddle.net/joshkurz/8W2Z5/. Now, we have a
fully functional gauge that can be altered and updated from any controller methods,
as shown in the following screenshot:

Writing scope interaction tests
The following set of tests prove that the scope variables are attached inside
of the isolate scope, and whenever they are changed, the gauge updates itself
automatically. These tests are more closely related to the integration of the AngularJS
scope variables and how their changes affect the gauge directive, as shown in the
following code:

describe('Testing the Scope of a Gauge Directive', function () {

 var gauge,
 gaugeScope;

http://jsfiddle.net/joshkurz/8W2Z5/

Chapter 3

[59]

 beforeEach(function(){
 gauge = $compile('<canvas gauge-js ng-module="value"
 options="configOptions"></canvas>')(scope);
 gaugeScope = gauge.isolateScope();
 });

 it('make sure the isolateScope has the correct values attached',
 function() {
 expect(gaugeScope.currentValue).toBe(25);
 expect(gaugeScope.options).toBe(scope.configOptions);
 });

 it('when the currentValue changes the gauge is updated
 correctly', function() {
 var oldDataUrl = gauge[0].toDataURL();
 scope.value = 100;
 scope.$apply();
 expect(gauge[0].toDataURL()).not.toBe(oldDataUrl);
 });

 it('when the options change the gauge updates itself',
 function() {
 var oldDataUrl = gauge[0].toDataURL();
 scope.configOptions = 1000;
 scope.$apply();
 expect(gauge[0].toDataURL()).not.toBe(oldDataUrl);
 });

});

The first test in this describe statement makes sure that the isolate scope of the
gauge directive is set with the correct values. This is done by creating a gaugeScope
object before each of the tests form the isolateScope method provided by the
compiled directive.

The isolateScope method is only available to directives that actually
have an isolate scope.

The second test proves that the gauge automatically updates itself when the parent
value changes. Since the gauge library does not offer any get methods for the current
gauge, we have to create a workaround by testing the dataUrl function.

www.allitebooks.com

http://www.allitebooks.org

Harnessing External JavaScript Libraries with Directives

[60]

The third test is similar to the second; however, instead of the value, the options will
be changed. When any one of the options is changed, the gauge should update itself
as well. This proves all of the initial requirements for the gauge directive. The gaugeJs
directive showcases a simple way to wrap a third-party library into a usable AngularJS
directive. The main purpose of the directive is to take care of all updates automatically,
according to the changes in the model. This takes care of many of the lines of
Boilerplate JavaScript, which can be replaced with the required business logic.

Wrapping the fullCalendar.js file
The Arshaw fullCalendar jQuery plugin is by far the most popular calendar plugin
available in the open source world. The options that come as stock are mostly all a
developer needs to create a rich, enterprise-level application that depends on
some type of calendar functionality. The calendar can do amazing things, and
when AngularJS is added to the picture, these amazing things become very easy
to implement.

There are a few requirements that the calendar plugin has to be considered complete
in all aspects; they are as follows:

• The calendar's events and options should be watched for changes
• The entire fullCalendar API should be available from a controller
• Multiple calendars must work together in the same view flawlessly
• The calendar should work with all documented types of events
• The calendar should update itself whenever any of its events change

Introduction to the calendar directive
Every library that needs to be incorporated into an AngularJS application is going
to be implemented slightly differently. Many simple directives do not need any
type of advanced functionality to check for changes and call their update functions
for themselves.

Writing the fullCalendar directive is a little trickier than most. This is because of
the functionality required to watch all of the events and call the correct functionality
at the appropriate time. Most of the code of the calendar directive is used to watch
the events and keep track of their state.

Chapter 3

[61]

The calendar's event objects are very large and reference themselves. Due to this fact,
they cannot be watched directly because the calendar directive creates digest errors
to do so. Workarounds have to be made throughout the life cycle of the calendar
directive to keep the model and view in sync.

Many advanced-level directives evolve as they progress. The calendar directive has
been through a lot of changes since the beginning of its creation. The first calendar
directive just watched the length of the events array and would update whenever
this length changed. This was a very simple implementation, and the pitfalls of only
watching the length of the array are obvious. The second approach was to use an
array of event sources and watch its own length and the length of all of the objects
inside it. This opened the calendar's API up almost fully and allowed for much more
advanced calendars to be created.

Watching large objects can cause AngularJS to bog down and throw
errors. This is why the decision was made to watch just the length
of the array.

The third and current form of the directive uses a very advanced tracking technique
(written by Gleb Mazovetskiy) to watch the events in the event sources array. This
tracking technique is built by taking a fingerprint of each event in the calendar
directive. The fingerprint hash object uses a string representation of each event as its
keys and a custom representation of each event as the keys' value. This fingerprint
object is stored in memory inside of the directive's closure and watched by every digest
for changes. This simply means that if the fingerprint object changes in any way, the
calendar directive will call the corresponding fullCalendar method. The method
that is called will be specific to the change that occurred to the fingerprint object.

The following code shows a test that proves that the calendar directive calls
its correct method depending upon the change in an event's title. The calendar
directive is in charge of knowing which function to call depending upon what
changes are made to the events that the calendar directive is using to render its
DOM elements.

it('should make sure that if we just change the title of the event
that it updates itself', function () {
 var calendarCalls = $.fn.fullCalendar.mostRecentCall.
args[0].eventSources;
 scope.events[0].title = 'change title';
 scope.$apply();
 calendarCalls = $.fn.fullCalendar.mostRecentCall.args[0];
 expect(calendarCalls).toEqual('updateEvent');
});

Harnessing External JavaScript Libraries with Directives

[62]

Testing the fullCalendar directive
There are three types of tests for the fullCalendar directive. The first set of tests
builds the calendar in the DOM and spy on the fullCalendar jQuery function
exposed by the library. The second set of tests works directly with the calendar's
controller and makes sure that all of the change tracking is going according to plan.
The third set of tests works with the different types of configurations, which are set
before the calendar is compiled.

This is a subset of the full test suite that the calendar has. These tests were chosen
to best showcase how to test third-party libraries. Only the first and second sets are
detailed in this book.

The fullCalendar method is a prototype method that is exposed on the jQuery $
object. This allows for Jasmine to spy on this method and check to make sure that
it is being called with the correct options depending upon the changes we make to
the model.

The tests use an array of events; they are declared in a beforeEach clause at the
beginning of the spec file. The eventSources array is an array of event sources.

The following code snippet is an on-event source. This is what builds the calendar
and is the source of what drives the calendars. The tests use these events to prove
that their functionality is working as expected.

scope.events = [
 {title: 'All Day Event',start: new Date(y, m, 1),url:
 'http://www.angularjs.org'},
 {title: 'Long Event',start: new Date(y, m, d - 5),end: new
 Date(y, m, d - 2)},
 {id: 999,title: 'Repeating Event',start: new Date(y, m, d - 3,
 16, 0),allDay: false},
 {id: 999,title: 'Repeating Event',start: new Date(y, m, d + 4,
 16, 0),allDay: true}];
$scope.eventSources = [$scope.events];

Testing the calendar's initialization and MVC
functionality
Some would say that the following test does not need an apply function to work
properly, but it is required since the calendar directive relies on the watch function
for its initialization:

beforeEach(function(){
 spyOn($.fn, 'fullCalendar');
 $compile('<div ui-calendar="uiConfig.calendar"

Chapter 3

[63]

 ng-model="eventSources"></div>')(scope);
 scope.$apply();
});

The following test is checking to prove that we called the initial fullCalendar
method with the correct objects. The objects are based on the events that we have
in our $scope.events array.

it('should set up the calendar with the correct options and events',
function () {
 expect($.fn.fullCalendar.mostRecentCall.args[0].eventSources[0]
 length).toBe(4);
 expect($.fn.fullCalendar.mostRecentCall.args[0]
 eventSources[0][0]title).toBe('All Day Event');
 expect($.fn.fullCalendar.mostRecentCall.args[0]
 eventSources[0][0].url).toBe('http://www.angularjs.org');

});

Test to make sure that when an event is added to the calendar, everything is updated
with the new event. This event's purpose is to prove that whenever the view model
changes, the directive automatically calls the correct function accordingly. The
$apply function is called to fire a digest on the calendar's scope, which will fire its
watch function, as shown in the following code:

it('should call its renderEvent method', function () {
 expect($.fn.fullCalendar.mostRecentCall.args[0].eventSources[0].
 length)
 .toEqual(4);
 expect($.fn.fullCalendar.callCount).toEqual(1);
 scope.addChild(scope.events);
 scope.$apply();
 expect($.fn.fullCalendar.callCount).toEqual(2);
 expect($.fn.fullCalendar.mostRecentCall.args[0])
 toEqual('renderEvent');
 scope.addChild(scope.events);
 scope.$apply();
 expect($.fn.fullCalendar.callCount).toEqual(3);
 expect($.fn.fullCalendar.mostRecentCall.args[0])
 toEqual('renderEvent');
});

Harnessing External JavaScript Libraries with Directives

[64]

The next test proves that the calendar works with different types of events. It works
with an object called calEventsExt, which is an events object in the extended form.
This is shown as follows:

scope.calEventsExt = {
 color: '#f00',
 textColor: 'yellow',
 events: [//eventObjects]
};
it('should make sure the calendar can work with extended event
 sources', function () {
 scope.eventSources.push(scope.calEventsExt);
 scope.$apply();
 var fullCalendarParam = $.fn.fullCalendar
 mostRecentCall.args[0];
 expect(fullCalendarParam).toEqual('rerenderEvents');
});

This section was about proving simple interactions with the calendar directive that
are rendered in the DOM. We mimicked interactions that take place in production
environments, as well as made sure that the initialization goes according to plan in
different circumstances.

Writing the fullCalendar directive
Writing the fullCalendar directive is similar to writing other directives that utilize
third-party libraries. There is more code involved with the calendar directive, but the
truth remains that all third-party directives rely on calling the third-party initialization
function on the element provided by the directive's compile and link functions.

The calendar directive is no different in these circumstances. The calendar calls its
fullCalendar initialization method inside of a watch function to check for changes
to its options object. This is a recommended technique as it provides two methods of
functionality. The directive is initialized upon the first digest, and whenever any of the
options change, the directive automatically recreates itself with the new options.

The calendar directive follows normal directive creation practices, but it also
uses advanced techniques to attach functions, which it relies upon to update itself
correctly. These methods will be discussed in depth. The full source can be found in
the AngularUI repository at https://github.com/angular-ui/ui-calendar.

angular.module('ui.calendar', [])
.constant('uiCalendarConfig', {})
.controller('uiCalendarCtrl', function(//changeWatcher logic){})
.directive('uiCalendar',

https://github.com/angular-ui/ui-calendar

Chapter 3

[65]

 ['uiCalendarConfig',function(uiCalendarConfig) {

 return {
 restrict: 'A',
 scope: {eventSources:'=ngModel'},
 controller: 'uiCalendarCtrl',
 link: function(scope, elm, attrs, controller) {

 //These are the local variables. The eventSourceWatcher and
 eventsWatcher are created by calling a controller
 constructor function. These objects used to set custom
 eventWatcher functions inside of the calendar's closure.
 var sources = scope.eventSources,
 sourcesChanged = false,
 eventSourcesWatcher = controller.changeWatcher(sources,
 controller.sourcesFingerprint),
 eventsWatcher = controller.changeWatcher(controller
 allEvents, controller.eventsFingerprint),
 options = null;
 //The getOptions functions resets the local calendarSettings
 options objects which is used to update the calendar upon
 initialization and any time these options change.
 function getOptions(){
 var calendarSettings = attrs.uiCalendar ?
 scope.$parent.$eval(attrs.uiCalendar) : {},
 fullCalendarConfig;

 fullCalendarConfig = controller
 getFullCalendarConfig(calendarSettings,
 uiCalendarConfig);

 options = { eventSources: sources };
 angular.extend(options, fullCalendarConfig);

 var options2 = {};
 for(var o in options){
 if(o !== 'eventSources'){
 options2[o] = options[o];
 }
 }
 return JSON.stringify(options2);
 }

 scope.destroy = function(){

Harnessing External JavaScript Libraries with Directives

[66]

 if(attrs.calendar) {
 scope.calendar = scope.$parent[attrs.calendar] =
 elm.html('');
 } else {
 scope.calendar = elm.html('');
 }
 };

 scope.init = function(){
 scope.calendar.fullCalendar(options);
 };

 eventSourcesWatcher.onAdded = function(source) {
 scope.calendar.fullCalendar('addEventSource', source);
 sourcesChanged = true;
 };

 eventSourcesWatcher.onRemoved = function(source) {
 scope.calendar.fullCalendar('removeEventSource', source);
 sourcesChanged = true;
 };

 eventsWatcher.onAdded = function(event) {
 scope.calendar.fullCalendar('renderEvent', event);
 };

 eventsWatcher.onRemoved = function(event) {
 scope.calendar.fullCalendar('removeEvents', function(e)
 { return e === event; });
 };

 eventsWatcher.onChanged = function(event) {
 scope.calendar.fullCalendar('updateEvent', event);
 };

 eventSourcesWatcher.subscribe(scope);
 eventsWatcher.subscribe(scope, function(newTokens,
 oldTokens) {
 if (sourcesChanged === true) {
 sourcesChanged = false;
 // prevent incremental updates in this case
 return false;
 }
 });

Chapter 3

[67]

 scope.$watch(getOptions, function(newO,oldO){
 scope.destroy();
 scope.init();
 });
 }
 };
}]);

The main points that should be expressed about the calendar directive are its
organization techniques, its subscription process, how it wraps functions in apply
method, and how it makes the calendar object public on its defining scope.

The calendar directive uses the controller to help organize its functions in a manner
that reduces complexity. This is mainly to maintain high readability and allow for
reusability. Now that the calendar has its own controller, any other directive can
share its state and help alter the events as well, which opens up many windows for
extending an application's functionality.

The calendar controller returns a subscription object that is used to set the onAdded,
onChanged, and onRemoved functions. This subscription process allows the calendar
controller to only contain functionality that is specific to its creation and teardown
that renders it in the DOM.

Subscription-based functions allow for the calendar to remain very
testable and easily extendable by developers who do not know about
the change watcher functionality.

One of the requirements that the calendar controller has is that it needs to be able
to call any fullCalendar method from a controller method. To accomplish this, the
calendar controller allows for the user to define a calendar attribute to the directive
with some string. This string will then be used as the key when setting the calendar
object, returned by fullCalendar, to the $parent scope. Since the directive utilizes
an isolate scope, we can assure that it has a parent scope whenever it is being
initialized. This allows for the developer to choose what the name of the calendar
should be in the markup.

The calendar controller makes it possible to add functions to its option set by
means of passing in the $scope functions as values. These functions are called by the
calendar controller outside of the AngularJS digest cycle, and in turn, each function
should call the $apply method.

Harnessing External JavaScript Libraries with Directives

[68]

The calendar controller knows which functions to call the apply method on.
It is set inside of the controller whenever the calendar controller gets its options.
Each option is traversed over, and if it is a function, it is wrapped in a timeout
function. The timeout function is the safest way to call an $apply method outside of
AngularJS. This is because it is an asynchronous method that ensures that a digest
will be fired on the JavaScript execution thread, as shown in the following code:

wrapFunctionWithScopeApply = function(functionToWrap){
 var wrapper;

 if (functionToWrap){
 wrapper = function(){
 // This happens outside of angular context so we need to
 wrap it in a timeout which has an implied apply.
 // In this way the function will be safely executed on the
 next digest.

 var args = arguments;
 $timeout(function(){
 functionToWrap.apply(this, args);
 });
 };
 }

 return wrapper;
};

Now, the developer can write methods for the fullCalendar directive, and they do
not need to worry about whether they should call the apply method or not. When
writing directives, it is recommended that the directive take care of calling apply
method if it is ever needed, as shown in the following code:

/* alert on Resize */
$scope.alertOnResize = function(event, dayDelta, minuteDelta,
 revertFunc, jsEvent, ui, view){
 $scope.alertMessage = ('Event Resized to make dayDelta ' +
 minuteDelta);
};

The fullCalendar directive has been created and tested properly. We have
gone over all of the details behind its internals except for the controller itself.
The controller code is more advanced and not specifically relevant to third-party
directives in general. It can be viewed in the AngularUI GitHub repository.

All of the initial requirements have been met for calendar, so now it can be installed
on any production AngularJS application fluently and effectively. The live example
can be found at http://embed.plnkr.co/UGaI1FytAbIbqsfJPTzU/preview.

http://embed.plnkr.co/UGaI1FytAbIbqsfJPTzU/preview

Chapter 3

[69]

Summary
There are many different ways to incorporate third-party libraries into AngularJS
applications. These methods vary depending on the type of library that is being
incorporated into the application. If the third-party library's main purpose is to
manipulate and control the view layer, it should be made into a directive. This
allows for AngularJS to control the timing of the libraries' initialization calls.

It is very common to use an isolate scope when working with third-party directives.
This allows for directives to easily use the common ngModel attribute and ensures
that they do not interfere with other directives. Isolate scopes also give directives
extra data binding features for free.

Every third-party library directive that is written should have the proper test suites
that make sure that its proper functions are being called at the given time and that
it is being created in the DOM accordingly. Writing tests for third-party directives
can be different from writing native AngularJS directive tests. This usually calls for
spy methods; they allow the tests to ensure that the third-party library is calling the
correct functions at the correct time.

Since many useful directives have already been written and are being maintained
on GitHub, it's fairly easy to find any type of directive and just start using it right
away. The real bonus points are in knowing how to create these without the help of
the community. This is a very large confidence booster because anything is possible
for the application now, and it does not have to depend on others in the open
source community.

Compiling the Advantages
The directives made so far in this book have been fairly trivial. While they utilized
many different available directive definition object properties, they have not really
been focused on dynamic DOM manipulation. The purpose of this chapter is to
showcase how a directive can dynamically create and destroy new HTML that is
compiled and linked to the AngularJS DOM tree.

The $compile service offered by AngularJS is used in a few places throughout
the AngularJS core. The initial bootstrap, which AngularJS uses to jumpstart an
application, is just one big compile. From there on, any directive that utilizes
compile will be adding more content to the already compiled DOM.

Using the $compile service is the equivalent of calling angular.
bootstrap on a given element.

The compiler searches for interesting factors about the semantic markup, such as
curly brackets or restricted directives. Once the interesting objects are found, their
templates are gathered and their compile functions are run. The service returns a
composite link function that serves as the glue between the DOM and the model.

The $compile service is needed in advanced situations. Some
good examples of directives that compile DOM are ngInclude and
ngView.

The $compile function can be used anywhere inside of an application but should
only be used inside of directives. Some developers say that $compile can be used
inside of controllers without affecting an application. This is true in many cases, but
it is always safe to do any type of DOM manipulation inside of the link function.
This is so that AngularJS has the opportunity to consolidate all of the application's
data and we are guaranteed that all elements and attributes will be set.

Compiling the Advantages

[72]

A controller's factory function is always initialized before the directive's link
function, which means that it is not safe to do DOM manipulation. Filters should also
never use the $compile function. A filter is initialized on every digest, which means
that an element that is compiled in the $digest cycle would be compiled on every
single digest. This would really go against all Angular Zen philosophies.

The compile provider is the one that does the bulk of the work for the $compile
service. This is the closure that takes care of all DOM traversal inside an AngularJS
application. Collecting directives and applying their definition objects is the compile
provider's main concern. This is a very detailed and advanced process, which
includes many different steps. The main high-level steps are as follows:

• Collecting the directives
• Applying each conditional definition object
• Recursively running each directive's compile function in the order

of priority

The compile definition function's main purpose is to optimize the creation of the
directive and to return the link function. The optimization comes into play by only
compiling an element once, no matter how many times its link function is run.

The link function that is returned is a composite pre link and post link function.
What does this mean? There are two stages in the linking phase. The first linking
phase is performed after the scope object has been created for the element, but not
its children. The second linking phase is the post link function. During the post link
function's execution, all children DOM elements and their scopes are guaranteed
to be existent. Because of this guarantee, most of the logic is placed inside of a
directive's link function.

The composite link function is an array of link functions built from a single
element's directives. The composite link array will run each function synchronously,
one after the other. This order is specified by the priority of the directive and is
the opposite for post link functions. Once this process is done, the element will be
attached to the DOM and will be fully interpolated.

Common use cases for compiling
the DOM
There are a given set of common requirements for using the $compile service
in an AngularJS application. The following requirements have been collected by
researching many different directives that use the $compile service and from the
interjections made about how AngularJS provides the ability to transclude DOM:

Chapter 4

[73]

• Directives that use transclusion
• Recursive directives
• Template-based directives
• DOM manipulation testing

This list breaks down the different possibilities to manually compile DOM. The
following sections will go over transclusion, recursion, and template-based directives.
DOM manipulation testing is used throughout the entire book, so we will not cover
this in detail.

The research was taken from the AngularJS AnugularUI
repositories, various Stack Overflow posts, and the
AngularJS irc channel.

Using transclusion in a directive
The following quote can be found in the documentation of transclusion (visit
http://en.wikipedia.org/wiki/Transclusion):

"In computer science, transclusion is the inclusion of a document or part of a
document into another document by reference."

AngularJS uses transclusion to separate DOM from its original container and place
it in a new container. The separated DOM is stored in memory and wrapped in
a closure function, which returns a new linking function. The returned linking
function allows access to the prebound template. Optionally, the binding can be
overridden by any scope passed into the function as the first parameter.

What does this mean? Any semantic markup can be yanked from the DOM and
placed anywhere inside of the directive's DOM. Take for example the following
simple markup:

 <super-component>
 {{world}}
 </super-component>
Here is the definition object for the superComponent.
.directive('superComponent', function () {
 return {
 restrict:'E',
 template: '<div>{{hello}}
 </div>',
 transclude: true,
 scope: true,

http://en.wikipedia.org/wiki/Transclusion

Compiling the Advantages

[74]

 link :function(scope, element, attrs){
 scope.hello = ' HELLO!';
 }

 };
});

This directive uses ng-transclude to apply its transclusion. The ng-transclude
function tells the application where to put all of the transcluded DOM elements.
This is the simplest way to utilize transclusion in a directive.

The final DOM rendering depends upon what $scope.world equals in its defining
$scope. Let's say that we have some input with an ng-model="world" attribute
and its value equals WORLD…. The example can be found at http://jsfiddle.net/
joshkurz/JNndE/. The final DOM rendering would look as follows:

Unveiling transclusion
At a high level, transclusion is a simple idea, and AngularJS offers simple
functionality to allow this process to take place anywhere in the DOM.
The lower-level details of transclusion are a bit more complicated and
require an in-depth understanding of the compile function.

Transclusion implicitly calls the compile function, which means that anytime a
directive transcludes HTML, it will compile it as well. Transclusion uses the exact
same compile function as the injectable compile service. This is how transclusion
offers you the ability to create sibling relationships inside whatever scope it is
defined in. This means that any transcluded element's binding will always stay
intact, unless further specified by the user.

The element that is transcluded by a directive can vary depending upon the
instruction given by the directive's definition object (that is, element or true).
The need for either type of transclusion depends upon the use case.

http://jsfiddle.net/joshkurz/JNndE/
http://jsfiddle.net/joshkurz/JNndE/

Chapter 4

[75]

The ngRepeat function uses element transclusion to copy its contents
and compile them once.

Transclusion is also a wonderful optimization technique. The link function of
a compiled element can run more than once in the life cycle of an AngularJS
application. In contrast, the compile function only runs once. This means that
transclusion is the perfect candidate for a directive whose purpose is to duplicate
DOM over and over again.

This example uses ngRepeat to create the superComponent directive.

The JavaScript code is as follows:
.controller('SuperCtrl', ['$scope', function ($scope) {
 $scope.numbers = [1,2,3,4,5,6,7,8,9,10];
 }]);

The HTML code is as follows:
 <div ng-controller="SuperCtrl">
 <div ng-repeat="number in numbers">
 <super-component>
 {{number}}
 </super-component>
 </div>
 </div>

What will this block of HTML do? How many times will superComponent be
compiled and linked in the DOM? These questions are essential to understanding
the nature of transclusion.

Let's cut straight to the chase. The superComponent directive is only compiled once in
this example. Its link function will run ten times. This is because of how ng-repeat
treats the superComponent directive. The entire element is stored and compiled in
memory during the application's bootstrap. This means that anytime a number is
added to the number's array, ngRepeat will just call its transcluded link function to
place the superComponent directive after the previous element in the DOM. In this
case, the ten superComponent directives will be appended to div that ngRepeat is
instantiated on.

The ngRepeat function uses the transclude function that is passed into the link
function to insert the newly interpolated DOM into the element. This is an advanced
way to accomplish the DOM insertion. The main reason to use this process is to
overwrite the scope of the element being transcluded. In the ngRepeat function's
case, it is a must-have functionality because every iteration of ngRepeat requires
its own fresh child scope. Let's super charge our superComponent by using this
advanced technique to accomplish the transclusion desired.

Compiling the Advantages

[76]

Here is the souped-up version of the superComponent directive. Let's assume that
we are still calling this directive inside of ngRepeat that runs off an array of ten
numbers, and each child scope created by ngRepeat has an associated number value.
Refer to the following code:

.directive('superComponent', function () {
 return {
 restrict:'E',
 template: '<div>{{hello}}</div>',
 transclude: true,
 replace: true,
 scope: true,
 compile: function(tElem,tAttrs){
 return function(scope, element, attrs, ctrl, transclude){
 scope.hello = 'HELLO ';
 scope.number = "World " + scope.number;
 transclude(scope, function(clone){
 element.append(clone);
 });
 }
 }
 };
})

The main point of interest here is the transclude object passed into the link
function as the fifth parameter. This is the link function that has been compiled
and prebound to its original scope. Now, we want to add something extra to the
child scope's declaration of the number variable. So, in the link function, we
prepend the number with the string World, and then pass the directive's scope into
the transclude function. The transclusion function interpolates the precompiled
element based on the scope that is passed in, and then calls the attach function,
which is its second parameter.

The first scope parameter is optional and does not have to be used. The transclusion
function will use its original scope if its first parameter is a function.

The clone is then appended to the element. The directive also sets the replace property
on the definition object because we want the transcluded span element to be placed
directly next to the template. If the replace property is not set, then the transclude
element will be appended next to the superComponent DIV in the DOM.

Chapter 4

[77]

The example can be found at http://jsfiddle.net/joshkurz/JNndE/2/. The final
result is 10 DIV elements with Hello World + {{number}} as their preinterpolated
text, shown as follows:

Transclusion can also be accomplished in a custom fashion without using the
transclude property on a definition object. This can be useful in many different
advanced use cases.

Creating recursive directives
A recursive directive calls itself however many times it is needed based upon some
data object. The object can be organized in any way, but most commonly it is based
on a parent-child model. This means that there are nested objects within nested
objects that will make up the overall structure of the finally rendered DOM.

The recursive directives are needed for various use cases. The most classic cases
for a recursive directive are a drop-down menu or a nested comment directive. Any
directive that builds a similar template based on a data model and has a need to call
itself is a perfect candidate for a recursive directive. AngularJS makes it very simple
to allow directives that call themselves. However, the following are a few caveats that
we must go over before we start describing how to make recursive directives:

• Always compile the contents of the element so that we do not get into an
infinite loop

• The directive can use transclusion, but the transcluded nodes need to use
ngIf to determine whether the element should be rendered in the DOM

In computer science, the recursive functions are known to be expensive and
dangerous if used incorrectly. They are also known to be wonderfully useful, and
the only solution to some very difficult problems when used correctly. This is no
different when working with recursive directives.

Compiling the Advantages

[78]

Each individual recursive directive needs to compile its children and so on and so
forth. This will render an entirely new DOM structure with very little code. Let's go
over an example tree directive, and explain how to accomplish this functionality in
a couple of different ways.

The custom recursive tree directive
A tree directive is very useful when creating nested navigation that changes
depending on different variables. The DOM nodes that make up the navigation are
created based off of a data model that represents the structure of the tree. The structure
has a root element which has children, which can have children. We are going to
show a couple of different ways to achieve this recursive behavior in AngularJS.

All of the examples used in this section are going to be working with this data model.
Refer to the following code:

 { name : "Super Grandpa",

 children: [{
 name : "Super Man",

 children: [{
 name : "Super Boy",

 children: []
 },
 {
 name : "Super Girl",

 children: []
 }]
 }]
 }

Using transclusion and a templateUrl with the
treeNode directive
The treeNode directive takes any DOM element that is specified in the semantic
markup and recursively assigns new nodes to the DOM based off of the original
transcluded element. This directive accomplishes this by using ng-transclude
combined with a template fetched from the template cache.

Chapter 4

[79]

A template cache is used in all of the directives in this book that use the templateUrl
function, instead of making an HTTP request for the template. This is for performance
and testing reasons.

Testing the treeNode directive
The treeNode directive's requirements are to render transcluded DOM as many
times as necessary based off of the data model given. Refer to the following code:

describe('Creating The Tree Node With A Template Directive',
 function () {
 var treeNode;

 // We are compiling the element before every test, so that we
 have it in memory and we can make sure that it is
 initialized without errors every time.
 beforeEach(function(){
 treeNode = $compile('<div tree-node-template
 family="node">' +
 '{{
 family.name }}' +
 '</div>')(scope);
 scope.$apply();
 expect(treeNode).not.toBe(undefined);
 });

 //This test proves that the treeNode directive creates 4 a
 tags inside of the element.
 it('should Expect the tree node to have the correct amount of
 a tags', function() {
 expect(treeNode.find('a').length).toBe(4);
 });

 //This test proves that the text of the treeNode directive's a
 tags is correct.
 it('should Expect the tree node to have the correct text for
 each child a', function() {
 var treeANodes = treeNode.find('a');
 expect($(treeANodes[0]).text()).toBe('Super Grandpa');
 expect($(treeANodes[1]).text()).toBe('Super Man');
 expect($(treeANodes[2]).text()).toBe('Super Boy');
 expect($(treeANodes[3]).text()).toBe('Super Girl');
 });

 //This test proves that the directive is working with dynamic

Compiling the Advantages

[80]

 scope changes accordingly.
 it('should Expect the tree node to update itself when the
 nodes change their visibility', function() {
 expect(treeNode.find('a').length).toBe(4);
 scope.node.children[0].show = false;
 scope.$apply();
 expect(treeNode.find('a').length).toBe(2);
 scope.node.show = false;
 scope.$apply();
 expect(treeNode.find('a').length).toBe(1);
 });
 });

All of these tests in collaboration with each other prove that the treeNode directive
creates the DOM elements as expected. We do not need to test any further since the
directive uses transclusion and has the ability to use any type of DOM element. In
order to prove that it is recursively assigning DOM, the initial tests should suffice.

The treeNodeTemplate directive
The treeNodeTemplate directive stores its contents in memory during the compile
phase. This allows the directive to be created and recreated without the need to
compile itself again. This copies the same functionality that transclude uses.
We cannot utilize the pure transclude function because AngularJS cannot see
the parent transcluded directive during the compile phase and will throw errors.
This is very important when working with the recursive directives because by
saving the template element in the memory, we are being as efficient as the normal
transclude process and we are able to accomplish the given requirements. Refer to
the following code:

angular.module('treeNodeTemplateModule',
 ['directives/treeNodes/treeNodeTemplate.tpl.html'])
.directive("treeNodeTemplate", function($compile) {
 return {
 restrict: "EA",
 transclude: true,
 scope: {family: '='},
 templateUrl: 'directives/treeNodes/treeNodeTemplate
 tpl.html',
 compile: function(tElement, tAttr) {
 var contents = tElement.contents().remove();
 var compiledContents;
 return function(scope, element, attrs, ctrl, transclude) {
 //setting the value to true so the tree will always
 start open. This could be a configuration of some

Chapter 4

[81]

 sort.
 scope.family.show = true;

 if(!compiledContents){
 compiledContents = $compile(contents, transclude);
 }

 compiledContents(scope, function(clone) {
 element.append(clone);
 });
 };
 }
 };
 });

The transclude function is passed into the compile function so that every
recursively compiled element has a reference to the original transcluded element.
This is the key to allow the recursion to work as expected because now the directive
and every subsequent child directive have a reference to their defining scope's
context. The example can be seen here http://plnkr.co/edit/E9qJmb?p=preview.

The treeNode directive using only
transclusion
The next directive that we will create is going to do the exact same thing as the prior
directive, except that it will not use a template at all. This allows you to have an
even more flexible semantic markup, which gives the directive more use and makes
it more valuable to an application. It is also more efficient because it only has to
compile itself once by leaning on ngRepeat and its template DOM. This optimization
shows that using pure transcluded content to accomplish recursion can be slightly
better than using a template.

The tests that we have written do almost the same thing as the treeNodeTemplate
directive. The only difference is that the nodes are not initially open. This means
that the order in which the tests check DOM elements is the opposite. This makes
it apparent that the recursion is working as intended on both directives without
duplicating the test logic.

http://plnkr.co/edit/E9qJmb?p=preview

Compiling the Advantages

[82]

Testing the treeNode directive
The following is the treeNode template that is being compiled to make this test
generate its given elements:

treeNode = $compile('<div tree-node-no-template>' +
 '<ul id="testList" class="list-group">' +
 '<li class="list-group-item">' +
 '<span class="btn" ng-show="node.children
 && !node.show" ng-click="node.show=!node
 show">[+]' +
 '<span class="btn" ng-show="node.children &&
 node.show" ng-click="node.show=!node
 show">[-]' +
 '{{node.name}}' +
 '' +
 '<li ng-if="$parent.node.show" class="list-group-item"
 ng-repeat="node in node
 children" ng-transclude>' +
 '' +
 '</div>')(scope);

The next test proves the following two most important requirements:

• The treeNode function is rendering the DOM correctly
• The treeNode function is updating itself on any change in the model

Refer to the following code:

it('should Expect the tree node to update itself when the nodes
 change their visibility', function() {
 expect(treeNode.find('a').length).toBe(1);
 scope.node.show = true;
 scope.$apply();
 expect(treeNode.find('a').length).toBe(2);
 expect($(treeNode.find('a')[1]).text()).toBe('[+][-]Super
 Man');
 scope.node.children[0].show = true;
 scope.$apply();
 expect(treeNode.find('a').length).toBe(4);
 expect($(treeNode.find('a')[2]).text()).toBe('[+][-]Super
 Boy');
 expect($(treeNode.find('a')[3]).text()).toBe('[+][-]Super
 Girl');
});

Chapter 4

[83]

This test uses an a tag as its selector. We are using a jQuery method to find the child
a elements inside of the compiled treeNode function. Each treeNode tag is expected
to contain two spans and the node name as the text. These spans are written in the
semantic markup that would otherwise be written in the source code of an application.
These elements could be anything, but the a tag was chosen to wrap all of the DOM
elements that are being recursed because it is easy to track and test with jQuery.

It is ok to have special conditions in tests as long as they do not alter the environment
in which the directive will operate. This is another way of saying that you shouldn't
alter a directive's source just so a test will pass.

The treenodeNoTemplate directive
The treeNodeNoTemplate directive showcases a different way to provide recursive
directive behavior. This directive is more flexible and dynamic than its prior
counterpart only because it does not use a template. Using just transclusion allows
you to perform more dynamic use cases rather than creating multiple templates
based upon each use case. The example can be found at http://plnkr.co/edit/
QD8KfOhwy2xOoxb0NN6g?p=preview.

Refer to the following code:

angular.module('treeNodeNoTemplateModule', [])
.directive('treeNodeNoTemplate', ['$compile', function($compile) {
 return {
 restrict: 'EA',
 scope: true,
 compile: function(element, attr) {
 var $template = element.clone().contents();
 element.html(''); // clear contents

 var linkFn = $compile($template, function(scope,
 cloneAttachFn) {
 return linkFn(scope, cloneAttachFn);
 });

 return function($scope, $element, $attr) {

 linkFn($scope, function(contents) {
 $element.append(contents);
 });
 };

 }
 };
}]);

http://plnkr.co/edit/QD8KfOhwy2xOoxb0NN6g?p=preview
http://plnkr.co/edit/QD8KfOhwy2xOoxb0NN6g?p=preview

Compiling the Advantages

[84]

The treeNodeNoTemplate directive does almost exactly the same thing as its sibling
treeNodeTemplate directive that uses a template. The main difference is that this
directive is much more optimized than its templated sibling. This is because the
compile and link functions are only called once during the entire life cycle of
the directive. No matter how the model changes, the recursive directives do not
have to make subsequent link function calls. This is because the directive relies
on ngInclude and ngRepeat to do all of its dirty work. All the directive has to do
is create itself in the DOM and link its scope to its template. The main gotcha here,
that is not apparent, is that transclude is actually not being called on the definition
object and no transclusion function is being passed into the link function. Instead,
the directive creates its own custom transclusion function in the compile phase,
which in this case is being called the linkFn function. This linkFn function takes the
place of the transclude function found in the prior directive.

What is the significance of using a custom transclusion function?

Because of the recursive nature of this directive, the transclusion option cannot be
used. If a transclude property is added to the directive and it is used instead of the
custom linkFn function created, then AngularJS will throw an error.

These two directives accomplish some wonderful recursive techniques with very
little effort from the developer's standpoint. However, note that this same treeNode
directive can be accomplished with just a combination of ngInclude and ngRepeat.
The example can be found at http://angulardirectives.joshkurz.net/dist/#/
treeNodes.

Compiling templates and their many
values
Using a dynamic template is not the same as using the template or templateUrl
function available in the directive definition object. This is because both the functions
do does not have access to the scope and are actually a hardcoded value in the
source or a variable returned by a function. The ngInclude directive take this a
step further and allows custom template compilation based upon a scope variable.
Today, ngInclude interpolates its source value and updates its own DOM contents
whenever the source changes. This is common practice among directives that deal
with compiling templates, and we are going to focus on this dynamic nature of
AngularJS. This means that our directives will have access to the scope when they
determine which template to compile. There are many advantages to using this
method, but there are some disadvantages as well.

It is not always in the directive's best interest to interpolate the URL it is going to use
as a template.

http://angulardirectives.joshkurz.net/dist/#/treeNodes
http://angulardirectives.joshkurz.net/dist/#/treeNodes

Chapter 4

[85]

The disadvantages of interpolating a templateUrl directive or template in the
link function are related to performance and security. The link function is fairly
expensive, and if not used carefully, it can run many times and cause memory leaks.
This also leads to performance issues that can cause lag and other related issues. The
security risks involve directives that could potentially allow HTML injection attacks.
HTML injection attacks can be minimized by using the $sce service of AngularJS.
The $sce service is a security service that makes sure that interpolated strings pass
variable high-level injection attacks.

Injection attacks and other client-side security issues are always best
thwarted by securing the server to its maximum capacity.

The advantages vastly outweigh the disadvantages, and if the requirements call for
the use of dynamically defined templates, then they must be implemented. Let's look
at the directive that utilizes dynamic templates to render its DOM.

Introduction to the media player directive
There are many different types of video players in the market today, which come in
many different shapes and sizes. We are going to create one video player that will
work with multiple libraries—One Media Player to Rule Them All. The directive has a
strong focus on templates rather than on exposing a public API. This will allow the
video player directive to remain as flexible as possible.

The templates for the video player can vary greatly and can range from simple to
very complex. The point of creating the directive is to allow any video template to
use any video player library or a pure HTML5 video player template that uses no
third-party library to control its functionality.

Requirements for the media player directive
The requirements for the media player directive open the doors for many options
regarding video players. These requirements are very general and force the directive
to allow the use of multiple libraries or multiple templates. This dynamic-template
functionality is only possible because of the $compile service and its ability to
generate live interpolated DOM. The following are the requirements for the media
player directive:

• Needs to work with multiple third-party libraries
• Should be able to be a pure HTML5 video player
• Should update itself if its template changes

Compiling the Advantages

[86]

These requirements call for a generic directive that can work with almost any type
of media-element library. This approach will allow the mediaPlayer directive to
create any number of video templates that can be used by any number of third-party
libraries to create the expected media DOM elements. The ability to conditionally use
any media library based upon a scope variable creates many possible use cases.

Testing the media player directive
To test this directive, we need to make sure that it can be created for all of its possible
scenarios. The different test cases created are a combination of different templates and
media types. These tests just make sure that there are no errors thrown during the
compiling of the directive and make sure the correct third-party library being called.

There are more tests for the bbMediaPlayer directive
in the Black Belt repo. These were chosen to prove that
the directive does in fact work with multiple libraries and
dynamic templates.

The first test uses the third-party media library, which is called mediaelement.js.
This test spies on the mediaelementplayer function so that we can make sure that it
is being called on the media element. The only odd piece about this test is the use of
the $timeout service function. Refer to the following code:

it('create a mediaelement object when media-type and template url
 are interpolated strings and call the mediaelement method with
 the correct options', function() {
 spyOn($.fn, 'mediaelementplayer');
 scope.mediaType = "mediaelementplayer";
 scope.template = "directives/mediaelement/mediaelement.tpl.html";
 scope.$apply();
 var mediaPlayer = $compile('<div bb-media-player
 media-type="{{mediaType}}" video-config="goodVideoObj"
 template-url="{{template}}"></div>')(scope);
 scope.$apply();
 $timeout.flush();
 expect($.fn.mediaelementplayer.callCount).toBe(1);
 expect($.fn.mediaelementplayer.mostRecentCall
 args[0]).toBe(scope.goodvideoObj);
});

Chapter 4

[87]

This test proves that bbMediaPlayer works with the flowplayer method, which is
another third-party library. This is the same test as the previous one, except that it
uses a different template and media type. Refer to the following code:

it('create a flowplayer object when media-type and template url
 are interpolated string and call the flowplayer method with the
 correct options', function() {
 spyOn($.fn, 'flowplayer');
 scope.mediaType = "flowplayer";
 scope.template = "directives/mediaPlayer/flowplayer.tpl.html";
 scope.$apply();
 var mediaPlayer = $compile('<div bb-media-player
 media-type="{{mediaType}}" video-config="goodVideoObj"
 template-url="{{template}}"></div>')(scope);
 scope.$apply();
 $timeout.flush();
 expect($.fn.flowplayer.callCount).toBe(1);
 expect($.fn.flowplayer.mostRecentCall.args[0])
 toBe(scope.goodvideoObj);
});

The following test proves that mediaPlayer works with a pure HTML5 template
as well:

it('create a pure HTML5 media element', function() {
 expect(function(){
 var mediaPlayer = $compile('<div bb-media-player
 video-config="goodVideoObj" template-url="directives/
 mediaPlayer/pureHtml5Player.tpl.html"></div>')(scope);
 scope.$apply();
 $timeout.flush();
}).not.toThrow() });

Writing the media player directive
The bbMediaPlayer directive is a powerful tool that allows multiple types of media
content to be distributed to its users. There are many benefits of using a directive
that can accomplish a wide range of use cases. To accomplish this wide range of use
cases, the bbMediaPlayer directive uses the $compile service to dynamically create
DOM and interpolate scope variables with the template DOM.

The bbMediaPlayer directive is installed and initialized in the DOM as follows:

<div media-player media-type="{{mediaType}}"
 video-config="activeVideo" template-
 url="{{currentFlowplayer}}"></div>

Compiling the Advantages

[88]

This directive points to a template that is compiled in the link function, allowing
the interpolated string to be read and linked to the defining isolated scope. The
activeVideo object will be available on the isolate scope object inside of the
template for any other media type. The mediaType attribute states which media
library should be called on the element.

One of the main advantages of working with templates that compile DOM is that
once they are written and fully tested, they can be utilized in an infinite amount of
ways. Developers of many different skill sets can write templates, which means that
an application's development and progress does not rely on experienced developers.
Directives of this nature allow rapid development to ensue.

The following is an example of a simple template:

<div class="pureHTML5Player">
 <video autoplay>
 <source type="video/mp4" ng-src="{{trustSrc
 (videoConfig.playlist[0], '.mp4')}}">
 <source type="video/ogg" ng-src="{{trustSrc
 (videoConfig.playlist[0], '.ogv')}}">
 </video>
</div>

This template is as simple as it gets for video elements. The HTML5 valid browsers
will pick up on the video tag and render the video as expected. This video will not
have any controls associated with it, but these can be written or a third-party library
can be used to accommodate the missing controls.

The directive itself is quite simple and utilizes basic logic to accomplish its
requirements. Refer to the following code:

angular.module('AngularBlackBelt.mediaPlayer',
 ['directives/mediaPlayer/flowplayer.tpl.html'
 ,'directives/mediaPlayer/flowplayerSlideshow.tpl.html',
 'directives/mediaPlayer/pureHtml5Player.tpl.html'])
.directive('bbMediaPlayer', ['$sce', '$compile', '$templateCache',
 '$timeout', function($sce, $compile, $templateCache, $timeout) {
 return {
 restrict: 'A',
 scope: {
 videoConfig: '='
 },
 compile: function(tElem,tAttrs){

 if (!tAttrs.templateUrl){
 throw new Error('Must Give media-player a templateUrl

Chapter 4

[89]

 to look for.');
 }

 return function(scope, element, attrs) {

 if (typeof scope.videoConfig !== 'object'){
 throw new Error('videoConfig must be an object');
 }

 var newElement,
 mediaPlayer;

 function getConfigurations(){
 scope.videoConfig.templateUrl = attrs.templateUrl;
 return scope.videoConfig;
 }

 scope.trustSrc = function(filePath,ext) {
 return $sce.trustAsResourceUrl(filePath + ext);
 };

 function init(){
 newElement = $compile($templateCache.get
 (attrs.templateUrl).trim())(scope);
 element.html('').append(newElement);
 $timeout(function(){
 if(attrs.mediaType && attrs.mediaType !== ''){
 mediaPlayer = newElement[attrs.mediaType]
 (scope.videoConfig.options);
 }
 });
 }

 scope.$watch(getConfigurations, function(newV,oldV) {
 init();
 },true);

 scope.$on('$destroy', function(node){
 if(mediaPlayer.remove){
 mediaPlayer.remove();
 }
 mediaPlayer = null;
 element.html('');
 });

Compiling the Advantages

[90]

 };
 }
 };
}])

Breaking down the media player directive
The mediaPlayer directive is broken down into three separate important pieces,
which together make the full functionality available. The three pieces consist of the
attributes that are watched, which are templateUrl and mediaType. The attributes
that are watched allow the directive to recompile itself whenever they change.
Using the $templateCache service allows the directive to be faster and almost
mimic perfect synchronization. Not using HTTP to request for HTML templates also
provides a sense of security. The last security feature provided by the mediaPlayer
directive is the use of the core $sce service.

The $sce service is a security service that provides different types
of security features for HTML injection and Cross-Origin Resource
Sharing (CORS).

The trustAsResourceUrl method allows the application to request video files that
are hosted on different domains. The video files are the only files being requested
outside of the server because all of the templates are stored in the template cache
during the build time. This plays a large role in the security of the directive, which
should be a priority when dealing with directives that compile templates from a
dynamic source.

The templates are added into the module definition array as the first parameter
of the angular.module function. This puts the templates into the template cache.
These are the only templates available to the directive, unless more templates are
programmatically put into the template cache. This is a security feature that the
mediaPlayer directive utilizes to help stop HTML injection. This is the second
reason why the $templateCache service is important to the bbMediaPlayer
directive, the first reason being performance.

Utilizing advanced templates
Template-based directives offer advanced functionality because the templates can be
as complex as the developer wants. They can even have other AngularJS directives
inside of them. These directives will be compiled by the mediaPlayer directive and
will be called inside of the template.

Chapter 4

[91]

This fact allows the mediaPlayer directive to be very powerful while keeping it
simple. Let's go over some different examples of advanced templates that utilize
AngularJS directives inside of them to accomplish the functionality that gives the
mediaPlayer directive a master's touch.

The mediaelement templates
The mediaelement template is a third-party library that utilizes HTML templates,
which contain video tags arranged in certain ways, and converts them into a media
player with many different types of features. The library sets a function named
mediaelementplayer onto the $.fn object, which is what is used as the directive
media type. The Black Belt demo uses the following two different types of the
mediaelement templates:

• Basic mediaelement templates that work with a statically hosted video file
from archive.org

• A YouTube mediaelement template that allows mediaelement to stream
videos directly from YouTube

Refer to the following code for the mediaelement template:

<video width="100%" height="100%" preload="none"
 ng-attr-poster="{{videoConfig.thumbnail}}"
 ng-src="{{trustSrc(videoConfig.filePath, '.mp4')}}">
 <source ng-src="{{trustSrc(videoConfig.filePath, '.mp4')}}"
 type="video/mp4">
 <source ng-src="{{trustSrc(videoConfig.filePath, '.webm')}}"
 type="video/webm">
 <source ng-src="{{trustSrc(videoConfig.filePath, '.ogv')}}"
 type="video/ogg">
 <object width="100%" height="100%" type="application/
 x-shockwave-flash" data="{{trustSrc(videoConfig.filePath,
 '.swf')}}">
 <param name="movie" value="{{trustSrc(videoConfig.filePath,
 '.swf')}}">
 <param name="flashvars" value="controls=true&
 file={{trustSrc(videoConfig.filePath, '.mp4')}}">
 </object>
</video>

This template uses another core directive called ngAttrPoster. This directive sets
the poster attribute whenever it is interpolated. The reason that it is needed is
because the browser sets the poster attribute with the interpolated values before
AngularJS gets a chance to interpolate its value. This is common with AngularJS
directives that work with default attributes.

http://archive.org

Compiling the Advantages

[92]

The ngAttr directive is a core directive that works with any
attribute placed after the Attr directive. This is a very useful
and flexible directive.

The template uses ngSrc to set its source tag because of the same issue that the
poster attribute has with the interpolation values of AngularJS. In this specific case,
ngSrc calls the trustSrc method provided by the mediaPlayer directive. The rest of
the template uses pure HTML5 syntax to set the video element as needed.

The YouTube template that is used is transformed by mediaelement into an embed
element. The template is simple to write and is a very powerful tool when used
correctly. The Black Belt application uses a demo that utilizes AngularUI's typeahead
by hitting YouTube's API and sets the video of this template based off of the chosen
result. The end result is useful and attractive to any level of a user. The demo can
be found at http://angulardirectives.joshkurz.net/dist/#/mediaelement.
Refer to the following code:

<video width="100%" height="100%" preload="none">
 <source type="video/youtube" src="{{trustSrc(videoConfig.
filePath, '')}}" />
</video>

The flowplayer templates
Flowplayer is another third-party media library. The benefits of using it include
default HTML5 support and more options to create real-life video players. The
directive is initialized a little differently than the previous implementation. This is
because here we use interpolated values to set the media-type attribute. This could
have been used in the previous mediaelement instantiation of the media player.
Refer to the following screenshot:

http://angulardirectives.joshkurz.net/dist/#/mediaelement

Chapter 4

[93]

Refer to the following HTML code for the media player:

<div media-player media-type="{{mediaType}}" video-
config="activeVideo" template-url="{{currentFlowplayer}}"></div>

This HTML gives the media player the ability to dynamically change everything
about itself. At the whim of any change in the scope variable, these values could
dramatically alter the look, feel, and functionality of the mediaPlayer directive.
The ability to utilize a single directive in many different possible scenarios is a huge
plus and is attainable by using the $compile service with a combination of directives
that follow this template style.

The following two templates created for the Black Belt application accomplish two
separate use cases:

• Utilize the ng-repeat directive to provide the playlist for the media player
• Create a mock of a flowplayer demo, which uses a pre-roll before allowing

the user to watch videos

The template that utilizes ng-repeat to provide the playlist functionality is further
proof that the sky is the limit for this directive and other directives of this nature.
Refer to the following code:

<div id="dots" class="player">
 <video autoplay>
 <source type="video/mp4" ng-src="{{trustSrc
 (videoConfig.playlist[0], '.mp4')}}">
 <source type="video/ogg" ng-src="{{trustSrc
 (videoConfig.playlist[0], '.ogv')}}">
 </video>

 <div class="fp-playlist">
 <a ng-repeat="video in videoConfig.playlist"
 href="{{video}}.mp4" id="dot{{$index}}">
 </div>
</div>

This template will be rendered as a video player that has little dots at the bottom-left
of the player, which stand for each available video in the playlist. The playlist can
be altered live during runtime, which results in the mediaPlayer directive updating
itself and re-initializing the template. The final result is a dynamic video player that
utilizes a playlist that is fed and controlled by AngularJS. The demo can be found at
http://angulardirectives.joshkurz.net/dist/#/flowplayer.

http://angulardirectives.joshkurz.net/dist/#/flowplayer

Compiling the Advantages

[94]

The second template example for the mediaPlayer directive is to showcase more of
the endless possibilities available with the mediaPlayer directive and the simplicity
of the semantics and implementation when dealing with AngularJS templates to
accomplish complex tasks. Refer to the following code:

<div class="flowplayer">
 <video>
 <source type="video/mp4" src="http://stream.flowplayer.org/
 download/640x240.mp4">
 <source type="video/webm" src="http://stream.flowplayer.org/
 download/640x240.webm">
 <source type="video/ogg" src="http://stream.flowplayer.org/
 download/640x240.ogv">
 </video>

 <div class="fp-playlist">
 <a class="is-advert" href="http://stream.flowplayer.org/
 download/640x240.mp4">
 <a ng-repeat="video in videoConfig.playlist"
 href="{{video}}.mp4">Video {{$index + 1}}
 </div>

 <div class="preroll-cover">pre-roll</div>
</div>

This template renders a pre-roll ad right when the first play is hit. This would be a
great opportunity for companies to make money off of ad plays or to self promote a
product. The functionality is already built into the flowplayer, and this template just
unleashes its power into the AngularJS environment.

The mediaPlayer directive is completed, and its functionality is full of wonderful
features available to any application that is in need of utilizing media as a medium to
connect and interact with users. The $compile function has given the mediaPlayer
directive the ability to utilize any user-generated template. This feature, alongside
the ability to work with different third-party libraries for video functionality, is what
makes this directive so unique and useful.

Chapter 4

[95]

Summary
The $compile service made available by AngularJS's provider system is very
powerful. Directives are always going to be the safest place for its dynamic use,
which is true because of the order of operations performed by AngularJS's compile
cycle. AngularJS uses the $compile service internally on many different occasions.
The most important being the initial bootstrap phase, which is what brings
AngularJS to life.

Any time the $compile service is used in an application is just another mini
bootstrapping that is spawned by some programmatic function. This means that to
bring some piece of HTML into an AngularJS application, it must be compiled and
linked to the DOM.

Since the $compile service collects and conditionally applies definition objects to
all of the directives in an associated piece of DOM, when does the $scope function
come into play?

The $compile service returns a link function whose sole purpose is to attach a given
scope object to a piece of DOM element and interpolate all of its bindings and events
accordingly. The reason the compile and linking phase are broken into two different
pieces is for optimization purposes and overall logic separation.

In this chapter, we covered how the compile cycle works in detail and how to
incorporate this dynamic process into your own applications correctly. Most of the
time, there is no need for custom compilation in an application, but there are a few
instances that do require the use of AngularJS's compile functionality.

The different use cases for calling the compile function in a directive are as follows:

• Directives that use transclusion
• Recursive directives
• Dynamic template-based directives

These use cases make up the majority of the directives that utilize dynamic DOM
creation and breakdown. Transclusion is not apparently calling the compile
function, but don't let the genius of the AngularJS framework confuse you.
Transclusion is nothing more than a mechanism to rip a piece of a DOM out of
the tree during the compile phase and storing its transpiled link function in the
memory to be called at a later time.

Compiling the Advantages

[96]

The recursive directives are built on the idea of transclusion and use its optimized
ideologies to create complex DOM elements with very minimal code. These DOM
elements are semantically much more simple than their static counterparts which
use many lines to accomplish what the recursive directives can do in much less.
To show case transclusion and recursion, we created a treeNode directive that
accomplishes the same functionality in two different ways.

Dynamic template-based directives are the bases for two major AngularJS core
directives. The ngInclude and ngView directives are the two major directives that
allow applications to control HTML in a simplified and organized format. To showcase
the power of template-based directives, we created a mediaPlayer directive. The
mediaPlayer directive can compile any template that has been placed in AngularJS's
$templateCache. This is so that the directive can work in an almost perfectly
synchronous manner, speeding up the entire compile and linking processes.

The benefits of using the compile function in an application are enormous. The
compile service is a sword yielded by only the strongest and most apt AngularJS
developers and once its process is mastered, the rest of the way becomes simpler.

Communication between
Directives

Directives are meant to control DOM and be in charge of their own view layer.
Many directives need to be able to work in collaboration with each other to achieve
certain requirements. There are many ways to write directives that allow this type of
behavior. We will be going over many possible types of directive communication in
this chapter.

Collectively, these are the methods that are used to communicate with each other.
Each has advantages and disadvantages, which will be discussed and explained.
The main topics that will be covered in this chapter are:

• Utilizing scope objects to share data between related directives
• Using services to share data and function context
• Broadcasting, emitting, and listening for specific events
• Using require and directive controllers to communicate and

share functionality

Testing integrated directives
The act of communication infers that multiple parties are going to be working in
unison with each other. This fact suggests that the unit testing processes that have
been taken so far in this book will not suffice. When testing multiple directives
together, it is common to use integration testing.

Integration tests can be provided by the tools used in all of the tests
previously written in this book.

Communication between Directives

[98]

Integration tests
The use of multiple modules together to prove specific use cases is considered an
integration test. Testing multiple directives working in collaboration with each other
is expected when proving communication between directives is working properly.
To accomplish this, multiple directives need to be integrated and compiled together.
The integration in this book is referring to the creation of an element that has
multiple directives appended to each other inside of a containing element.
This type of integration is how all of the integration tests are carried out.

Let's go over a basic example of an integration test.

This test describes two modules that could interact with each other. Let's assume
that the JavaScript for the module1 directive will update the module2 directive's
test attribute when clicked. The main focus here is to see how the integration tests
are written so that there is no confusion about how and why different directives are
being compiled in one DOM element. Refer to the following code:

describe('Basic Communication with Directives', function () {

 beforeEach(module('BasicCommunicationExamples'))

 var directives,
 bbDirective1,
 bbDirective2;

 beforeEach(function(){
 var integration = angular.element('<div>' +
 '<div bb-directive1></div>' +
 '<div bb-directive2></div>' +
 '</div>');
 directives = $compile(integration)(scope);
 scope.$apply();
 bbDirective1 = $(directives.find('.directive')[0]);
 bbDirective2 = $(directives.find('.directive')[1]);
 });

 it('should start with a message that says Not Clicked',
function(){
 expect(bbDirective1.text()).toBe('Not Clicked');
 expect(bbDirective2.text()).toBe('Not Clicked');
 });

 it('should alter each others text when clicked', function(){
 bbDirective1.click();

Chapter 5

[99]

 expect(bbDirective2.text()).toBe('bbDirective1 Clicked');
 bbDirective2.click();
 expect(bbDirective1.text()).toBe('bbDirective2 Clicked');
 });
 });

These tests prove that bbDirective1 and bbDirective2 are interacting with each
other exactly as they are supposed to. There are two key takeaways to pay attention
to when looking at this describe block:

• Both directives are compiled together in one integrated DIV
• Each directive is taken out of the DIV and interacted with specifically

All of the integration tests in this chapter will compile DOM elements in this combined
fashion. The directives are compiled together in one integrated DIV to prove their
collaboration with each other works in a manner that would be used in a production
environment. This allows the best quality tests to be written and executed.

Using scope objects for communication
Communication between directives can be by means of many different interactions.
The most common and easy to achieve is to use the common $scope object. This is
usually the first form of communication developers use when writing directives that
communicate with each other.

When writing directives that communicate and use model objects, it is recommended
to follow certain development ideologies related to code organization and
declaration. The following are the two major related AngularJS ideologies that
should always be implemented when writing directives, to create the most
extendable and readable code base:

• Declaratively define what variables a directive watches as an attribute
• Avoid forcing directives to write to their defining scope

Using the scope for more advanced communication than simple examples can
become troublesome once other directives and controller methods start editing data.
The reason for the trouble is because it can be hard to debug what directives are
writing to what variables. This is when child and isolate scopes come into play.
Child and isolate scopes allow directives to use their own private scope object that
can be read by only specific scopes that live in the correct hierarchy. By using a child
or isolate scope, the directive can now safely write to its own scope with less chance
of polluting its defining scope.

Communication between Directives

[100]

Using child scopes
Child scopes offer the ability to mimic basic JavaScript inheritance in the DOM tree.
This is useful when creating directives whose data always communicates in a child
that has lower value than a parent or a parent that has lower value than a child path.
Child scope directives offer the following two types of functionality:

• Read from the parent and only write to its own private scope
• Read and write to both parent and private scope

The ability to achieve each individually depends on the instance of the data type
that is being read from or written to. The reason for this is the prototypical nature
of JavaScript.

JavaScript defines its variables with a prototypical inheritance model. This means
that the global scope is the parent and all functions create their own private child
prototypical scope instance. This instance will read from its own scope for variable
definitions and then move upward until it finds a scope with the defined variable.
Non-intuitive prototypical issues can be caused by writing to variables that are
defined on parent scopes inside of child scopes. This can be seen in AngularJS as
well and is a common issue among new developers.

Let's look at a basic example and break down what is happening with an
AngularJS example.

The following code snippet shows how a child scope is implemented using HTML:

<div ng-app="scopeDemonstration">

 Parent: <input ng-model="hey">
 Child 1: <div bb-hello-child></div>
 Child 2: <div bb-hello-child></div>
 Child 3: <div bb-hello-child></div>

</div>

The following code snippet shows how a child scope is implemented using JavaScript:

angular.module('scopeDemonstration', [])
.directive('bbHelloChild',
function () {
 return {
 restrict: 'A',
 scope: true,
 template: '<input ng-model="hey">'
 };

Chapter 5

[101]

 }
)

The ngModel directive does not create a child scope. It creates a controller that is
used by the core input directive to update its defining scope every time the text
input changes. Each bbHelloChild directive uses a text input in collaboration with
ngModel as well.

Let's go over a series of possibilities that could happen in this example and
explain the output. The live example can be found at http://jsfiddle.net/
joshkurz/4q68V/ with the following possibilities:

• Entering a value for the Parent input: All of the children will be updated
because they do not have a string literal named scope.hey located in them.

• Entering values first for the Parent input and then for Child 1: Only the
input model for Child 1 is updated. JavaScript will find scope.hey in the
child scope and will not search any higher in the scope hierarchy.

• Entering values first for the Child 1 input and then for Parent: Only Child
2 and Child 3 will be updated with the new parent model.

Possibility 2 is true because once Child 1 has been typed into, it will receive a value
written to its scope named hey. The Child 2 and Child 3 inputs do not have this
hey value, so they continue to read up the prototypical scope hierarchy until they see
that the Parent does. The Parent value is what is read and displayed into the input.

Some people consider this to be unexpected behavior, but it is basic JavaScript 101.
Writing the data model in a flat structure like this allows child scopes to only read
from the parent scope, which in some instances is what the directive should do.

To allow the child scope to write to the parent, the data model needs to be an object
rather than just a string literal. This can be achieved in different ways. The most
common way is to use DOT notation to access the variables and set the ngModel
value equal to an object with the key value hey attached to it.

An example of bypassing the nuances of scope inheritance can be found at
http://jsfiddle.net/joshkurz/4q68V/1/.

The following code shows the implementation using HTML:

Parent Scope HTML Declaration: <input ng-model="hey.hello">

This same technique can be used in the bbHelloChild directive.

http://jsfiddle.net/joshkurz/4q68V/
http://jsfiddle.net/joshkurz/4q68V/
http://jsfiddle.net/joshkurz/4q68V/1/

Communication between Directives

[102]

The following code shows the implementation using JavaScript:

template: '<input ng-model="hey.hello">'

Let's go over the same inputs and see what outputs they render now that we are
using an object to store our string values. Refer to the following possibilities:

• Enter a value for the Parent input: All of the children will be updated because
they do not have an object named scope.hey located on their context

• Enter values first for the Parent input and then for Child 1: All of the inputs
will be updated because the child scope.hey object is a reference to the
parent scope.hey object

• Enter values first for the Child 1 input and then for Parent: Child 2 and
Child 3 will be updated with the new parent model, but Child 1 was
typed into first and it created its own scope.hey object, which cannot be
overwritten by Parent

Great directives can be written once these concepts are understood. Let's create some
advanced examples using child scopes. These examples will communicate with our
previously created bbStopwatch directive.

Creating a wasFast directive
The bbStopwatch directive creates an array of log times. These log times can be viewed
in any desired manner. The wasFast directive creates a child scope that prototypically
inherits from its parent. The wasFast directive reads from the stopwatch's log array
and determines whether each value was fast or not based off of some arbitrary
conditions. The final result is an element that renders an informative message based on
the speed and adds an associated CSS class to pretty up the message.

The following are the requirements for the wasFast directive:

• Needs to be able to work with any scope name as the actual log value
• Should render text based off of the log value
• Should append an associated time class to the element

Chapter 5

[103]

Unit testing
The describe block for the wasFast directive proves all of its basic requirements.
For the sake of simplicity, we are only showing the first unit test in the describe
block. The others prove that the average and slow conditions work as expected.
The test examples can be found at https://github.com/joshkurz/Black-Belt-
AngularJS-Directives/commit/40cdb849fa9f7f5e053b77a077da2515ae0fab04#
diff-1cda6f2d12e35eac4676b5ce60648baeR102. Refer to the following code:

describe('The wasFast directive', function () {
 var wasFast;
 function compileWasFast(){
 wasFast = $compile('<div was-fast time="testLog"></div>')(scope);
 scope.$apply();
 }

 it('should append the correct super fast text and the fast class to
the
 directive', function() {
 scope.testLog = 100;
 compileWasFast();
 expect(wasFast.text()).toBe('0.1 seconds (Super Dog Speed)');
 expect(wasFast.children().eq(0).hasClass('fast')).toBe(true);
 });
});

This test is basic and proves that the wasFast directive is setting the correct class to
the element based on the log value it is reading.

Integration tests
The combination of isolate scopes and child scopes are used to fulfill the final
integrated communication requirements in this next example. The wasFast directive
has a child scope that reads the stopwatch's log value. The log value is being iterated
over in an ngRepeat directive.

Once the wasFast directive is initialized in the DOM, it will create its correct values;
this was shown in the preceding unit test. Refer to the following code:

describe('Integration between the stopwatch and the wasFast
directive',
 function () {

 var integration,
 logs,
 stopwatch;

https://github.com/joshkurz/Black-Belt-AngularJS-Directives/commit/40cdb849fa9f7f5e053b77a077da2515ae0fab04#diff-1cda6f2d12e35eac4676b5ce60648baeR102
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/commit/40cdb849fa9f7f5e053b77a077da2515ae0fab04#diff-1cda6f2d12e35eac4676b5ce60648baeR102
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/commit/40cdb849fa9f7f5e053b77a077da2515ae0fab04#diff-1cda6f2d12e35eac4676b5ce60648baeR102

Communication between Directives

[104]

 beforeEach(function(){
 var preCompileElement = angular.element('<div>' +
 '<div class="stopwatch"
options="stopwatch"
 bb-stopwatch override="true">' +
 '<button ng-click=
 "startTimer()">start</button>'+
 '<button ng-click=
 "stopTimer()">stop</button>'+
 '</div>' +
 '<div class="logs" ng-repeat="log in
 stopwatch.log">'+
 ' <div class="wasFast" was-fast
 time="log"></div>' +
 ' <div class="fastRunner" fast-runner
 time="log" pics="testPics"></div>'
+
 '</div>' +
 '</div>');

 integration = $compile(preCompileElement)(scope);
 scope.$apply();
 stopwatch = integration.find('.stopwatch');
 });

 it('should append a super fast child to the directive', function()
{
 logs = integration.find('.logs');
 expect(logs.children().length).toBe(0);
 expect(scope.stopwatch.log.length).toBe(0);
 $(stopwatch.children()[0]).click();
 $(stopwatch.children()[1]).click();
 logs = integration.find('.logs');
 expect(scope.stopwatch.log.length).toBe(1);
 expect(logs.children().eq(0).text().split('(')[1]).toBe('Super
Dog
 Speed)');
 });
});

Chapter 5

[105]

The following are some important things to take away from this test:

• The bbStopwatch and wasFast directives are being created together in the
same element. This can be confusing to look at because of the stringified
template. This is the fastest and most efficient way to compile large chunks
of DOM in an integration test.

• We are using jQuery to find and interact with the directives inside of the
integration element.

• We are splitting the text value of the wasFast directive because the start and
stop clicks were synchronous, and there is no way to tell how much time
actually went by.

Implementing the wasFast directive
The wasFast directive is a simple directive that has most of its logic implemented
in the link function. The directive inherits its data from its defining scope. The
wasFast directive is expecting a time attribute to be set on the directive, which is
read from the child scope. The following final result of the wasFast directive is a
paragraph element that has an associated class and text that represents the speed
and the time:

• Super Dog Speed: 0.803 seconds
• Human Speed: 2.436 seconds
• Super Slow Speed: 20.623 seconds

The following example is using ngRepeat to iterate over the logs in the
bbStopwatch.log. The time attribute is important because it is telling the
directive the name of the scope variable it should be looking for:

 <div class="log" ng-repeat="log in stopwatch.log">
 <div was-fast time="log"></div>
 </div>

This is the actual directive. As you can see, there aren't many special features to it.
Its purpose is to allow for a clean HTML markup. This is accomplished by
appending a paragraph element to the wasFast directive with its associated
information, as shown in the following code:

app.directive('wasFast', function () {
 return {
 restrict:'EA',
 scope: true,
 template: '<p class="wideLoad" ng-
class="speedClass">{{logText}}<p>',

Communication between Directives

[106]

 link: function(scope, element, attrs){

 scope.logText = scope[attrs.time]/1000 + ' seconds';

 if(scope[attrs.time] < 1000){
 scope.speedClass = 'fast';
 scope.logText += ' (Super Dog Speed)';
 } else if(scope[attrs.time] < 5000){
 scope.speedClass = 'average';
 scope.logText += ' (Human Speed)';
 } else {
 scope.speedClass = 'slow';}
 scope.logText += ' (Super Slow Speed)';
 }
 };
});

The directive gets the scope time and divides it by 1000. This converts the
milliseconds into seconds and makes the time more readable. The logText function
is a string that gets set at the beginning of the linking phase. Then conditions are
checked and the values are appended to this string to represent what the time frame
means. During these conditional statements, the class is set as well. The logText
function is bound to the paragraph elements text via the curly brackets and the class
is bound via ngClass.

The wasFast directive communicates with its parent scope to determine what time
should be displayed in its DOM. This is a simple directive that provides a very
effective and efficient way to display a conditional representation of how fast the
logged time variable was. Using child scopes to communicate across directives is a
very clean and natural expression of how directives can work with each other.

Creating a fastRunner directive
We want to go one step further and create another directive that animates a GIF across
the screen to represent the time. Let's assume that the time frame is associated with
a runner and we want to show GIFs of different types of runners moving across the
screen. To do this, we create another directive that is called fastRunner. This directive
will be a marquee element that has some image and speed associated with it.

The requirements for the fastRunner directive are as follows:

• Render a marquee element with some dynamic speed
• Render an image element with some dynamic source

Chapter 5

[107]

Since the speed data is already being calculated inside of the wasFast directive, we
can use wasFast to create fastRunner. This will allow the scopes to communicate
the speed and image data that the fastRunner directive needs to implement itself.

To accomplish this, we will edit the wasFast directive to compile and append the
fastRunner directive. Only the wasFast link function will be edited to accomplish
this integration.

The first change is to add the following variables to the link function:

var runner = ''",
runnerSpeed = 0;

The next change is to assign appropriate values to runner and runnerSpeed inside
each of the wasFast condition, as follows:

if(scope[attrs.time] < 1000){
 speedClass = 'fast';
 runnerSpeed = 100;
 runner = '/dist/images/runningDog.gif';
 scope.logText += ' (Super Dog Speed)}

Each condition has specific values that will be set
depending upon the speed that was calculated.

The last change is to $compile and append the fastRunner directive to the wasFast
element as follows:

var fastRunnerElem angular.element('<div fast-runner runner="' +
 runner + '" speed="' + runnerSpeed + '"></div>')
var runnerNode = $compile(fastRunnerElement)(scope);
element.append(runnerNode);

Now wasFast is fully equipped and ready to integrate with
the fastRunner directive.

Communication between Directives

[108]

Integration testing
The integration test that proves a collaboration between wasFast and fastRunner
will be an adjustment of the integration test written for wasFast and bbStopwatch.
The only difference will be that we will now be checking for marquee elements and
image source attributes.

So the only change will be the addition of two assertions as follows:

expect(integration.find('marquee').attr('scrollamount'))
 toBe('100');
expect(integration.find('img').attr('src'))
 toBe('/images/runningDog.gif');

These assertions prove that the integration was a success. The wasFast
directive is creating and communicating the correct scope values to the
fastRunner directive.

Implementing the fastRunner directive
Let's write the actual fastRunner directive. The fastRunner directive sets a watcher
on its scope that looks for changes in its attributes. This watcher updates the scope
variables whenever the directive's attributes change. This is theoretically manually
setting up a binding on the attribute's value; the only difference is now there is only
one binding rather than two. Refer to the following code:

.directive('fastRunner', function () {
 return {
 restrict:'EA',
 template: '<marquee behavior="scroll"
 scrollamount="{{speed}}" direction="right"><img
 ng-src="{{runner}}"/></marquee>',
 link: function(scope, element, attrs){

 function getTheAttrs(){
 return attrs.runner + attrs.speed;
 }

 scope.$watch(getTheAttrs, function(){
 scope.runner = attrs.runner;
 scope.speed = parseInt(attrs.speed,10);
 });
 }
 };
});

Chapter 5

[109]

The fastRunner directive creates a marquee element that scrolls a GIF across the
screen that represents the speed of a runner. The optimization techniques used here
bring the number of watchers from 2 to 1.

The following is the output of the implementation:

An alternative that could have been used would have required the wasFast directive
to use an isolate scope whose value was two way data bound.

How to use isolate scopes
Isolate scopes are very important and offer many advantages to single page
applications. The advantages provide special types of communication patterns
that side-step JavaScript's prototypical inheritance patterns. Isolate scopes offer
the following two types of communication techniques:

• One-way data binding
• Two-way data binding

Communication between directives using isolate scopes starts with the parent scope.
The parent scope will hold the data model that a directive requires for successful
communication with another directive that uses that same model.

Communication between Directives

[110]

Think of isolated scopes as the pipe from these scopes that go directly to the directive.
There are different types of pipes available that can be used by each directive. Refer to
the following diagram:

Directive B

Controller

Two-way data binding One-way data binding

Directive A

The different pipes offer multiple forms of communication. The different forms are
available via the scope definition object key value. While both one and two-way data
binding allow directives to communicate with controllers in different ways. Only
two-way data binding allows directives to communicate with each other on a sibling
basis rather than using a parent child model.

A directive that uses two-way data binding can write to a directive that only uses
one-way data binding. This is because once two-way data binding is instantiated, the
isolate scope gets access to edit the data, which is the same as defining the scope's
data. When the isolate scope updates a model value and there are directives that rely
on that data model, those directives are also updated. No matter what environment
the two-way data bound directive lives in, its data is always available to both parties.
If one party changes the data, the other party will automatically notice and update
itself as needed. This is because the edits are actually happening to the same data
model, which follows AngularZen philosophy, which states that the model is the
single source of truth.

Let's rewrite the wasFast and fastRunner directives to use isolate scopes. This will
allow both of the directives to be initialized in the DOM as siblings, rather than forcing
wasFast to create the fastRunner directive.

The tests that we wrote previously do not have to be changed. All of the final
integration should work in the exact same way. The difference is how the view is
initialized. Now we are going to create the fastRunner directive in the DOM template.

Chapter 5

[111]

The ng-repeat function that renders the wasFast directive will have
another child. The extra child will be the fastRunner directive.

The following code is before implementing the isolate scope:

<div class="log" ng-repeat="log in stopwatch.log">
 <div was-fast time="log"></div>
</div>

The following code is after implementing the isolate scope:

<div class="log" ng-repeat="log in stopwatch.log">
 <div was-fast time="log"></div>
 <div class="fastRunner" fast-runner time="log"
 pics="pics"></div>
</div>

The number of view layer possibilities increase by initializing each directive with
two-way data binding. If the log values are changed by any source at any moment,
all of the directives' (stopwatch, wasFast, and fastRunner) log values will be
updated automatically. We write each directive to auto-update its own view by
setting a watcher on time, which will call a function to update its view accordingly.

The new scope and link option value for wasFast has been refactored to only include
logic that is specific to its own view. This alleviates any crossover and confusion
when working with these directives.

The following code shows the refactored wasFast scope and link options:

scope: {time : '='},
link: function(scope, element, attrs){

 function changeMessage(){
 scope.logText = scope.time/1000 + ' seconds';
 if(scope.time < 1000){
 scope.speedClass = 'fast';
 scope.logText += ' (Super Dog Speed)';
 } else if(scope.time < 5000){
 scope.speedClass = 'average';
 scope.logText += ' (Human Speed)';
 } else {
 scope.speedClass = 'slow';
 scope.logText += ' (Super Slow Speed)';
 }

Communication between Directives

[112]

 }
 scope.$watch('time',changeMethod);
}

Now, every time the time value changes, the view for this isolate scope
will be updated with its associated values. The same goes for the new
fastRunner directive.

The following code shows the refactored fastRunner scope and link options:

scope: {time: '=', pics: '='},
template: '<marquee behavior="scroll"
 scrollamount="{{runnerSpeed}}" direction="right"><img ng-
 src="{{pics[runnerSpeed]}}"/></marquee>',
link: function(scope, element, attrs){

 function changeSpeed(){
 if(scope.time < 1000){
 scope.runnerSpeed = 100;
 } else if(scope.time < 5000){
 scope.runnerSpeed = 10;
 } else {
 scope.runnerSpeed = 1;
 }
 }

 scope.$watch('time', function(newV,oldV){
 changeSpeed();
 });
}

The biggest change to this directive is how the images are being passed into the
scope. This allows business logic to be placed in the controller where it belongs.
The only item that is being changed in the directive on each time change is the
runnerSpeed variable, which is now the key to the pictures array. The isolate scope
makes this easy to achieve without having to evaluate parent scopes and creating
logic that depends on scope relationships.

Another great benefit of using the = sign to represent the isolated scope is that now
we can pass in the actual log value and not try to read it off of a child scope. This
means that we can now watch the last value of an array. This results in a much more
declarative view. Refer to the following code:

<div was-fast time="stopwatch.log[stopwatch.log
 length-1]"></div>

Chapter 5

[113]

The directive will update itself every time a new log value is appended to the
stopwatch's log. There are a plethora of obvious advantages to being able to assign
values to directives in this declarative manner.

Relying on the $rootScope function
The following quote can be found in the documentation of AngularJS
(visit http://docs.angularjs.org/api/ng.$rootScope):

"Every application has a single root scope. All other scopes are descendant scopes of
the root scope."

The $rootScope function plays a very important role in AngularJS. It is the only
scope object all view layers have access to at all times for free. Whatever is set on
the $rootScope function can be accessed in any child or isolated scope, unless
prototypical inheritance gets in the way. The high availability of this service is the
reason for its misuse in applications. There are times when using $rootScope is
good, but then there are times when custom services should be created.

Some good use cases for using $rootScope are in services, where there is no access
to any other scope. Another great use case is for propagating messages up or down
the scope tree so that all facets of an application receive a given notification.

Broadcasting to other directives
Directives are always linked to a scope variable. This scope variable has multiple
public methods available. Three of these methods are $broadcast, $emit, and $on.
The $broadcast and $emit functions are meant to dispatch messages across an
application. Either message dispatcher function can be used, but depending on the
parent-child relationship of the scopes actively listening for messages, there is a
correct choice for which method to use.

When broadcasting an event, the message flows in a parent-to-child fashion from
the defining scope. This means that if a message is broadcasted on the $rootScope
function, then all scopes will be able to interact with that event. The interaction will
only occur if a given scope has set up an $on listener function for that specific event.
The $emit function is the inverse of $broadcast. Its job is to dispatch messages in an
upward crawl through the scope tree.

http://docs.angularjs.org/api/ng.$rootScope

Communication between Directives

[114]

When a $broadcast or $emit function is fired, two parameters are passed into the
$on function that is listening to the event. The first parameter is the event object,
which has specific arguments that can search for unique values and functions
that can stop the propagation of the notification to further scopes. The specific
arguments can be found at http://docs.angularjs.org/api/ng.$rootScope.
Scope#methods_$on.

The second parameter passed into the listener function is the custom argument
that was passed into the $broadcast or $emit function. This could be any object
that is specific to the application and the notification being undertaken.

Directives can $broadcast messages on the $rootScope function to ensure
that wherever the listener is, it will get the message. There are optimization
best practices to only call a $broadcast or $emit function depending on the
parent-child relationship. These optimizations speed up the overall time it takes
for the message to get to its final destination. Using the $rootScope function to
invoke communication throughout an entire application is ok and not considered
bad practice if the parent-child relationship is not always apparent.

Communicating with media players
Let's take an example based off of a Stack Overflow post, which can be found at
http://stackoverflow.com/questions/18780402/angularjs-communication-
between-directives.

The overall goal is to create a set of directives that communicate with each other in
a way that only allows one player to be on at any given time. When a directive is
turned on, all of the other directives need to be turned off.

Integration testing for the bbBroadcastingPlayer
directive
Let's go ahead and write an integration test that proves these directives do work in
unison with each other and communicate the correct data with each other. Refer to
the following code:

describe('Broadcasting events between the players', function () {
 var controllerPlayer;
 beforeEach(function(){
 var integration = angular.element('<div>' +
 '<div class="player" bb-broadcast-player></div>' +
 '<div class="player" bb-broadcast-player></div>' +
 '<div class="player" bb-broadcast-player></div>' +
 '<div class="player" bb-broadcast-player></div>' +

http://docs.angularjs.org/api/ng.$rootScope.Scope#methods_$on
http://docs.angularjs.org/api/ng.$rootScope.Scope#methods_$on
http://stackoverflow.com/questions/18780402/angularjs-communication-between-directives
http://stackoverflow.com/questions/18780402/angularjs-communication-between-directives

Chapter 5

[115]

 '</div>');

 controllerPlayer = $compile(integration)(scope);
 scope.$apply();
 });

 it('Should start out with its text reading no and then once
 clicked change it to yes.', function(){
 var bbPlayer = $(controllerPlayer.find('.player')[0]);
 expect(bbPlayer.text().trim()).toBe('is playing: no');
 bbPlayer.find('.btn').click();
 expect(bbPlayer.text().trim()).toBe('is playing: yes');
 });

it('Should only ever have one yes at a given time', function(){
 var players = controllerPlayer.find('.player');
 var bbPlayer1 = $(players[0]);
 var bbPlayer2 = $(players[1]);
 var bbPlayer3 = $(players[2]);
 var bbPlayer4 = $(players[3]);
 expect(bbPlayer1.text().trim()).toBe('is playing: no');
 expect(bbPlayer2.text().trim()).toBe('is playing: no');
 expect(bbPlayer3.text().trim()).toBe('is playing: no');
 expect(bbPlayer4.text().trim()).toBe('is playing: no');
 bbPlayer1.find('.btn').click();
 expect(bbPlayer1.text().trim()).toBe('is playing: yes');
 expect(bbPlayer2.text().trim()).toBe('is playing: no');
 expect(bbPlayer3.text().trim()).toBe('is playing: no');
 expect(bbPlayer4.text().trim()).toBe('is playing: no');
 bbPlayer3.find('.btn').click();
 expect(bbPlayer1.text().trim()).toBe('is playing: no');
 expect(bbPlayer2.text().trim()).toBe('is playing: no');
 expect(bbPlayer3.text().trim()).toBe('is playing: yes');
 expect(bbPlayer4.text().trim()).toBe('is playing: no');
 });

});

This test is compiling multiple directives into one integration element. This
integration element is being interacted with to prove that all directives inside of
the integration are communicating and working correctly. Specifically, we are
first testing to make sure all of the element's text reads no. The next test checks if a
directive is clicked, its text should be yes but all of the other directives' text should
be no. This is a pretty verbose test to prove such a simple concept, but the proof is in
the pudding as they say.

Communication between Directives

[116]

Implementing the bbBroadcastPlayer directive
The bbBroadcastPlayer directive uses a child scope because it is writing to the
scope and we want to make sure that its defining scope is not polluted by any of its
values. The most important concept that goes into this implementation is the fact
that it is using $rootScope to broadcast the event. The $rootScope function is used
because there is no parent-child relationship between the player directives. They
all create their own child scope, so emitting or broadcasting an event from their own
scope would be pointless. Refer to the following code:

angular.module('broadcastingDirectives', [])
.directive('bbBroadcastPlayer', ['$rootScope',
 function ($rootScope) {
 return {
 restrict: 'A',
 replace: false,
 scope: true,
 templateUrl: 'directives/communicationExamples/
 playerTemplate.tpl.html',
 link: function (scope, iElement, iAttrs, controller) {

 scope.player = {isPlaying : 'no'} ;

 scope.play = function() {
 $rootScope.$broadcast('turnOff');
 scope.player.isPlaying = 'yes' ;
 };

 scope.$on('turnOff', function(event){
 scope.player.isPlaying = 'no';
 });
 }
 };
}
]);

When the listener function is fired, the isPlaying value of the player is set to
no. Since the $broadcast and $emit functions are blocking functions and are run
synchronously, we can safely turn off all values and then set the clicked scope
player.isPlaying value to yes.

Using a directive controller can accomplish this exact functionality.

Chapter 5

[117]

Collaborating with controllers
Normal controllers that are used in AngularJS applications hold business logic and
drive data model manipulation. There are slight differences between application
controllers and directive controllers. Directive controllers are more like service
objects. They are singletons and can be shared between directives of the same
element or children of the instantiated controller.

To request a controller, a directive needs to have a specific definition object parameter,
called require set. The require value defines which directive or directives should
inject their controller instances into the link function requesting them. To require
another directive's controller, the requiring directive must be declared on the same
element or be a child of the directive instantiating the controller.

A controller's context is made available to a directive's link function once it has been
injected. The controller's context is whatever is set onto this value of the controller's
closure. This gives controllers the ability to offer a public API to directives, which
in turn makes it possible to reuse business logic across associated directives. The
controller's context also offers communication possibilities between all directives
that share its instantiation.

Requiring the basics
The benefits of requiring a controller versus injecting a service is to embed the actual
functional context with the link function, which means a directive's scope can have
access to another directive's execution context. To create a directive that shares its
controller's context means that it has something worth sharing. An example could
be two directives that will always live together like a carousel and its slides, or a
directive that will share its data and functionality with other directives, such
as ngModel.

The main use cases for the require option are basic, but cover a wide variety of
possibilities. There are two basic use cases for require, as follows:

• The directive needs to share data with another directive
• Another directive's controller has useful functionality that is needed to

accomplish a set of tasks

These are very general and cover 99 percent of the total use cases for require. Some
specific directives that utilize controllers in the core are ngModel, ngForm, and ngSwith.
These directives allow other directives the ability to have access to their controller's
public context. This opens up many doors in terms of usability and functionality.

Communication between Directives

[118]

Communication and reusable APIs are essential to the health of an application.
They increase the ability to keep code duplication down and allow the logical
interaction with shared data across all layers of an application.

The biggest gotcha when working with controllers and requiring them in other
directives is to make sure that the parent-child relationship is correct and known.
A directive cannot require a directive's controller if it has no relationship with it in
the DOM. Only a directive that is defined on the same element or is a child of the
required directive can actually use the requested controller. There is a specific syntax
to define how require values should look for the directive's definition object.
This syntax can be read about in more detail in Chapter 1, The Tools of the Trade, and
can also be found at http://docs.angularjs.org/api/ng.$compile in the section
about require.

Using controllers for the bbPlayer directive
The bbBroadcastingPlayer directive created in the section prior to this was
notifying other directives when a specific event happened to ensure that they were
all in sync with each other. This same functionality can be accomplished by means
of using a directive controller to keep track of the players. Using a controller gives
a more efficient medium to accomplish this type of communication and is more
extendable for future use cases that could come along.

Integration testing
The test that is used is exactly the same as the test for the broadcasting directive.
The only difference is the integration element that is used. Now we are calling the
bbPlayer directive, and it has a container directive called bbPlayerContainer.
Refer to the following code:

beforeEach(function(){
 var integration = angular.element('<div bb-player-container>'
 +
 '<div class="player" bb-player></div>' +
 '<div class="player" bb-player></div>' +
 '<div class="player" bb-player></div>' +
 '<div class="player" bb-player></div>' +
 '</div>');

 controllerPlayer = $compile(integration)(scope);
 scope.$apply();
})

http://docs.angularjs.org/api/ng.$compile

Chapter 5

[119]

The same integration test should pass in the exact same way as it did when we
were broadcasting the click event throughout the entire application's scope tree.
The test was about proving that clicking on a directive will set that player's text to
yes and all others to no. There should never be two players with yes as their text
values at one time.

Implementing the bbPlayer and bbPlayerContainer
directives
The player container is needed because this is where the controller is going to be
created. The directive that is in charge of initializing the controller is always either
the parent of or at least set on the same directive that is doing the requiring. Refer to
the following code:

angular.module('controllerPlayers',
 []).directive('bbPlayerContainer', [
 function () {
 return {
 restrict: 'A',
 controller: function(){

 var players = [];
 this.addPlayer = function(player){
 players.push(player);
 };
 this.turnOffPlayers = function(){
 for(var i = 0;i < players.length;i++){
 players[i].isPlaying = 'no';
 }
 };
 }
 };
 }
]);

The bbPlayerContainer directive does not have a link function. This is because
its not doing any DOM manipulation. Its sole purpose it to keep track of its child
players and create a public API that each player can use. This public API will offer
a player the ability to turn off all players and add themselves to the array of players.
Refer to the following code:

angular.module('controllerPlayers', [])
.directive('bbPlayer', [
 function () {

Communication between Directives

[120]

 return {
 restrict: 'A',
 replace: false,
 require: '^bbPlayerContainer',
 scope: true,
 templateUrl: 'directives/communicationExamples/
 playerTemplate.tpl.html',
 link: function (scope, element, attrs, controller) {

 scope.player = {isPlaying : 'no'};

 scope.play = function() {
 controller.turnOffPlayers();
 scope.player.isPlaying = 'yes' ;
 };

 controller.addPlayer(scope.player);
 }
 };
 }
]);

The newly refactored bbPlayer directive is using the require definition parameter
to locate the bbPlayerContainer controller. The ^ sign in front of the directive
being required tells AngularJS to look at this directive's parents for a directive called
bbPlayerContainer. If it is found, it will add it as the fourth parameter. There
are two other options used to require data as well. A live example can be found at
http://jsfiddle.net/joshkurz/B8x3Q/3/.

Creating a fastClicker directive
The bbStopLight directive has already been created, but it does not really do
anything special or eye catching by itself. The purpose of bbStopLight is to tell
an object when it is ok to perform a task. Let's create a directive that requires the
bbStopLight controller to know when to perform its given instructions.

The directive that will be created is going to be called fastClicker. Its purpose will
be to become active and clickable once the stopLight directive turns green. This is a
simple directive that will showcase how to use a controller of another directive and
reuse their public APIs to accomplish new requirements.

http://jsfiddle.net/joshkurz/B8x3Q/3/

Chapter 5

[121]

The bbStopLight directive transcludes its DOM to accomplish its final form.
The fastClicker directive will be a child of bbStopLight and live inside of its
transcluded DOM. Usually, directives that use transclusion have the ability to
offer their controllers for other directives to require. This is only for a more flexible
development standard and can be bypassed by using a directive that offers the
ability to use dynamic templates.

Integration testing
This integration test will be very easy to achieve since this directive is so simple
and only has two requirements.

The following are the requirements for fastClicker:

• Disable the button when the stopLight is not green
• Enable the button when the stopLight is green

This integration test can be coded as follows:

describe('Creating A fastClicker directive inside a stopLight
directive',
 function () {

 var stopLight,
 fastClicker;

 beforeEach(function(){
 var integration = angular.element('<div bb-stop-light-container
 options="options">' +
 '<canvas bb-stop-light></canvas>' +
 '<canvas bb-stop-light></canvas>' +
 '<canvas bb-stop-light></canvas>' +
 '<fast-clicker options="stopwatch"
 bb-stopwatch></fast-clicker>' +
 '</div>');
 stopLight = $compile(integration)(scope);
 scope.$apply();
 fastClicker = stopLight.find('fast-clicker');
 ctrl = $controller('bbStopLightCtrl', {$scope: scope, $interval:
 $interval});
 scope.$apply();
 });

 it('should activate its own button', function() {
 var fastClickerChild = fastClicker.children()[0];

Communication between Directives

[122]

 expect(fastClickerChild.hasAttribute("disabled")).toBe(true);
 expect(ctrl.options.state).toBe('red');
 ctrl.setNextState();
 ctrl.setNextState();
 scope.$apply();
 expect(ctrl.options.state).toBe('green');
 expect(fastClickerChild.hasAttribute("disabled")).toBe(false);
 });

 it('should allow for clicking the fast clicker and log the time',
 function() {
 expect(scope.stopwatch.log.length).toBe(0);
 ctrl.setNextState();
 ctrl.setNextState();
 scope.$apply();
 $(fastClicker.children()[0]).click();
 expect(scope.stopwatch.log.length).toBe(1);
 });
});

The integration element that is being created contains the fastClicker directive.
This should render an object that is disabled when the stoplight is not green. This
test proves that this use case has occurred successfully. To do this, the most import
aspect of the test is how the controller is created in the beforeEach block. This
controller is created so that we can programmatically call its public functions to
trip the fastClicker directive into falling into its enabled state.

Writing the fastClicker directive
The fastClicker directive has a basic template, which uses ngDisabled to
accomplish its requirement. This is a simplification that AngularJS provides
developers with when creating directives that add and take away attributes
such as disabled and certain classes. Refer to the following code:

<button class="btn" ng-click="stopRaceTimer()"
 ng-disabled="canClick() == false">Race</buton>

Stock AngularJS directives should be used as much as possible rather
than creating custom directives.

Chapter 5

[123]

The following code is the JavaScript for fastClicker:

app.directive('fastClicker', function () {
 return {
 restrict:'EA',
 template: 'directives/communicationExamples/fastClicker.tpl.html',
 require: '^bbStopLightContainer',
 link: function(scope, element, attrs, ctrl){
 scope.canClick = function(){
 if(ctrl.options.state === 'green'){
 return true;
 } else {
 return false;
 }
 };
 }
 };
});

What the fastClicker directive is doing is requiring the bbStopLightContainer
controller, which holds all of the public state information. This directive is not
stopping the stoplight when it becomes green, so the end result would be a button
that is flipping from enabled to disabled on some interval when the stoplight is ON.
An example can be found at http://jsfiddle.net/joshkurz/SupQ2/.

Wiring up the stopwatch
The fastClicker directive is nice, but it doesn't really do anything cool. Let's
integrate it with the bbStopwatch directive so it can start and stop a timer, which
will subsequently update the stopwatch's time log array. Remember that by updating
the stopwatch's time array, we will be able to create the wasFast and fastRunner
directives as well. This will combine every example in this chapter together, but will
be fairly simple to achieve now that the leg work is out of the way.

To add the stopwatch controller to the fastClicker directive, all we have to do
is update the require option in the fastClicker directive and write the correct
HTML markup.

The correct markup will include the addition of a stopwatch attribute to the
fastClicker directive and setting its options attribute, which is two way
data bound.

http://jsfiddle.net/joshkurz/SupQ2/

Communication between Directives

[124]

Now the fastClicker directive will look as follows:

<fast-clicker options="stopwatch" bb-stopwatch></fast-clicker>

To gain access to the bb-stopwatch controller from inside of the fastClicker
directive, we will require the bb-stopwatch controller. Now, fastClicker is
requiring multiple controllers, which means the syntax in the directive needs
to be updated. Refer to the following code:

require: ['?stopwatch', '^stopLightContainer']

Since the stopwatch directive is being set onto the same element, we could not add
any special selector (? or ^), but we still want our previous test to pass, so we add the
question mark in front of the stopwatch, giving the fastClicker directive the option
to be set on the stopwatch directive or not.

The final changes to the fastClicker directive are shown as follows:

angular.module('AngularBlackBelt.fastClicker', ['AngularBlackBelt.
StopWatch'])
.directive('fastClicker', function () {
 return {
 restrict:'EA',
 templateUrl: 'directives/communicationExamples/fastClicker.
tpl.html',
 require: ['?bbStopwatch', '^bbStopLightContainer'],
 link: function(scope, element, attrs, ctrl){

 var raceTime = new Date();
 scope.canClick = function(){
 if(ctrl[1].options.state === 'green'){
 ctrl[1].killInterval();
 ctrl[0] && ctrl[0].stopwatchService.startTimer();
 return true;
 } else {
 return false;
 }
 };

 scope.stopRaceTimer = function(){
 ctrl[0] && ctrl[0].stopwatchService.stopTimer();
 ctrl[1].setNextState();
 };
 }
 };
})

Chapter 5

[125]

The most obvious change is that now we are requesting the controller functions
from an array of controllers rather than just one controller object. We are also
short-circuiting the stopwatch's controller from calling itself if it is not present.
This allows the tests to remain passing and does not introduce any breaking changes
into our application. The final result can be found at http://angulardirectives.
joshkurz.net/dist/#/stoplight.

Summary
Communicating across directives is an essential technique that most applications
require to fulfill advanced requirements. There are many different ways to carry
out interdirective communication, and each way has its own purpose and place.

Using scope objects to share data across directives is common in many applications
and often doesn't even require a directive to achieve. The first directive written in
this chapter showcased the differences between using child scopes and isolated
scopes to communicate data.

Broadcasting and emitting data helps let other directives know what events and
activities are happening across the application. The difference between a broadcaster
and an emitter is that a broadcaster notifies up the scope tree and the emitter notifies
downward. If there is no parent-child relationship between the directives then the
$rootScope function can be used to make sure that all the directives listening for the
event will be notified correctly.

Directive controllers can be shared and injected into other directives via the require
options made available on the directive's definition object. This option tells the
compiler that the directive would like access to a specified directive's controller.
Using another directive controller gives the requesting directive access to its entire
public context. Using directive controllers is a clean and efficient way to achieve
inter-directive communication.

Communication between directives is a very important aspect directives. Many
requirements are based on integrations between two or more different components
inside of an application. These components must be able to share and manipulate data
in efficient and effective ways.

http://angulardirectives.joshkurz.net/dist/#/stoplight
http://angulardirectives.joshkurz.net/dist/#/stoplight

Working with Live Data
Big Data is a new field that is growing every day. HTML5 and JavaScript
applications are being used to showcase these large volumes of data in many new
interesting ways. Some of the latest client implementations are being accomplished
with libraries such as AngularJS. This is because of its ability to efficiently handle
and organize data in many forms.

Making business-level decisions off of real-time data is a revolutionary concept.
Humans have only been able to fathom metrics based off of large-scale systems, in
real time, for the last decade at most. During this time, the technology to collect large
amounts of data has grown tremendously, but the high-level applications that use
this data are only just catching up.

Anyone can collect large amounts of data with today's complex distributed systems.
Displaying this data in different formats that allow for any level of user to digest
and understand its meaning is currently the main portion of what the leading-edge
technology is trying to accomplish. There are so many different formats that raw
data can be displayed in. The trick is to figure out the most efficient ways to showcase
patterns and trends, which allow for more accurate business-level decisions to
be made.

We live in a fast paced world where everyone wants something done in real time.
Load times must be in milliseconds, new features are requested daily, and deadlines
get shorter and shorter. The Web gives companies the ability to generate revenue
off a completely new market and AngularJS is on the leading edge. This new market
creates many new requirements for HTML5 applications. JavaScript applications are
becoming commonplace in major companies. These companies are using JavaScript
to showcase many different types of data from inward to outward facing products.

Working with Live Data

[128]

Working with live data sets in client-side applications is a common practice and is
the real world standard. Most of the applications today use some type of live data to
accomplish some given set of tasks. These tasks rely on this data to render views that
the user can visualize and interact with. There are many advantages of working with
the Web for data visualization, and we are going to showcase how these tie into an
AngularJS application.

AngularJS offers different methods to accomplish a view that is in charge of elegantly
displaying large amounts of data in very flexible and snappy formats. Some of these
different methods feed directives' data that has been requested and resolved, while
others allow the directive to maintain control of the requests. We will go over these
different techniques of how to efficiently get live data into the view layer by creating
different real-world examples. We will also go over how to properly test directives
that rely on live data to achieve their view successfully.

Techniques that drive directives
Most standard data requirements for a modern application involve an entire view
that depends on a set of data. This data should be dependent on the current state of
the application. The state can be determined in different ways. A common tactic is to
build URLs that replicate a snapshot of the application's state. This can be done with
a combination of URL paths and parameters.

URL paths and parameters are what you will commonly see change when you
visit a website and start clicking around. An AngularJS application is made up of
different route configurations that use the URL to determine which action to take.
Each configuration will have an associated controller, template, and other forms of
options. These configurations work in unison to get data into the application in the
most efficient ways.

AngularUI also offers its own routing system. This UI-Router is a simple
system built on complex concepts, which allows nested views to be
controlled by different state options. This concept yields the same result
as ngRoute, which is to get data into the controller; however, UI-Router
does it in a more eloquent way, which creates more options. AngularJS
2.0 will contain a hybrid router that utilizes the best of each.

Once the controller gets the data, it feeds the retrieved data to the template views.
The template is what holds the directives that are created to perform the view layer
functionality. The controller feeds directives' data, which forces the directives to
rely on the controllers to be in charge of the said data. This data can either be fed
immediately after the route configurations are executed or the application can wait
for the data to be resolved.

Chapter 6

[129]

AngularJS offers you the ability to make sure that data requests have been successfully
accomplished before any controller logic is executed. The method is called resolving
data, and it is utilized by adding the resolve functions to the route configurations.
This allows you to write the business logic in the controller in a synchronous manner,
without having to write callbacks, which can be counter-intuitive.

The XHR extensions of AngularJS are built using promise objects. These promise
objects are basically a way to ensure that data has been successfully retrieved or to
verify whether an error has occurred. Since JavaScript embraces callbacks at the core,
there are many points of failure with respect to timing issues of when data is ready
to be worked with. This is where libraries such as the Q library come into play. The
promise object allows the execution thread to resemble a more synchronous flow,
which reduces complexity and increases readability.

The $q library
The $q factory is a lite instantiation of the formally accepted Q library
(https://github.com/kriskowal/q). This lite package contains only the
functions that are needed to defer JavaScript callbacks asynchronously, based
on the specifications provided by the Q library. The benefits of using this object
are immense, when working with live data.

Basically, the $q library allows a JavaScript application to mimic synchronous
behavior when dealing with asynchronous data requests or methods that are not
thread blocked by nature. This means that we can now successfully write our
application's logic in a way that follows a synchronous flow.

ES6 (ECMAScript6) incorporates promises at its core. This will
eventually alleviate the need, for many functions inside the $q library
or the entire library itself, in AngularJS 2.0.

The core AngularJS service that is related to CRUD operations is called $http.
This service uses the $q library internally to allow the powers of promises to be
used anywhere a data request is made. Here is an example of a service that uses the
$q object in order to create an easy way to resolve data in a controller. Refer to the
following code:

 this.getPhones = function() {
 var request = $http.get('phones.json'),
 promise;

 promise = request.then(function(response) {
 return response.data;
 },function(errorResponse){

https://github.com/kriskowal/q

Working with Live Data

[130]

 return errorResponse;
 });

 return promise;
 }

Here, we can see that the phoneService function uses the $http service, which
can request for all the phones. The phoneService function creates a new request
object, that calls a then function that returns a promise object. This promise object is
returned synchronously. Once the data is ready, the then function is called and the
correct data response is returned.

This service is best showcased correctly when used in conjunction with a resolve
function that feeds data into a controller. The resolve function will accept the
promise object being returned and will only allow the controller to be executed
once all of the phones have been resolved or rejected.

The rest of the code that is needed for this example is the application's configuration
code. The config process is executed on the initialization of the application. This
is where the resolve function is supposed to be implemented. Refer to the
following code:

var app = angular.module('angularjs-promise-example',
 ['ngRoute']);

app.config(function($routeProvider){
 $routeProvider.when('/', {
 controller: 'PhoneListCtrl',
 templateUrl: 'phoneList.tpl.html',
 resolve: {
 phones: function(phoneService){
 return phoneService.getPhones();
 }
 }
 }).otherwise({ redirectTo: '/' });
})

app.controller('PhoneListCtrl', function($scope, phones) {

 $scope.phones = phones;

});

Chapter 6

[131]

A live example of this basic application can be found at http://plnkr.co/edit/
f4ZDCyOcud5WSEe9L0GO?p=preview.

Directives take over once the controller executes its initial context. This is where
the $compile function goes through all of its stages and links directives to the
controller's template. The controller will still be in charge of driving the data that is
sitting inside the template view. This is why it is important for directives to know
what to do when their data changes.

How should data be watched for changes?
Most directives are on a need-to-know basis about the details of how they receive
the data that is in charge of their view. This is a separation of logic that reduces
cyclomatic complexity in an application. The controllers should be in charge of
requesting data and passing this data to directives, through their associated
$scope object.

Directives should be in charge of creating DOM based on what data they receive and
when the data changes. There are an infinite number of possibilities that a directive
can try to achieve once it receives its data. Our goal is to showcase how to watch live
data for changes and how to make sure that this works at scale so that our directives
have the opportunity to fulfill their specific tasks.

There are three built-in ways to watch data in AngularJS. Directives use the
following methods to carry out specific tasks based on the different conditions
set in the source of the program:

• Watching an object's identity for changes
• Recursively watching all of the object's properties for changes
• Watching just the top level of an object's properties for changes

Each of these methods has its own specific purpose. The first method can be used if
the variable that is being watched is a primitive type. The second type of method is
used for deep comparisons between objects. The third type is used to
do a shallow watch on an array of any type or just on a normal object.

Let's look at an example that shows the last two watcher types. This example is going
to use jsPerf to showcase our logic. We are leaving the first watcher out because it
only watches primitive types and we will be watching many objects for different
levels of equality.

http://plnkr.co/edit/f4ZDCyOcud5WSEe9L0GO?p=preview
http://plnkr.co/edit/f4ZDCyOcud5WSEe9L0GO?p=preview

Working with Live Data

[132]

This example sets the $scope variable in the app's run function because we want
to make sure that the jsPerf test resets each data set upon initialization. Refer to the
following code:

app.run(function($rootScope) {
 $rootScope.data = [
 {'bob': true}, {'frank': false}, {'jerry': 'hey'}, {'bargle':
 false},
 {'bob': true}, {'bob': true}, {'frank': false}, {'jerry':
 'hey'},{'bargle': false},{'bob': true},{'bob': true},
 {'frank': false}];
});

This run function sets up our data object that we will watch for changes. This will
be constant throughout every test we run and will reset back to this form at the
beginning of each test.

Doing a deep watch on $rootScope.data
This watch function will do a deep watch on the data object. The true flag is the key
to setting off a deep watch. The purpose of a deep comparison is to go through every
object property and compare it for changes on every digest. This is an expensive
function and should be used only when necessary. Refer to the following code:

app.service('Watch', function($rootScope) {
 return {
 run: function() {
 $rootScope.$watch('data', function(newVal, oldVal) {
 },true);
 //the digest is here because of the jsPerf test. We are using
 this run function to mimic a real environment.
 $rootScope.$digest();
 }
};
});

Doing a shallow watch on $rootScope.data
The shallow watch is called whenever a top-level object is changed in the data object.
This is less expensive because the application does not have to traverse n levels of
data. Refer to the following code:

app.service('WatchCollection', function($rootScope) {
 return {
 run: function() {
 $rootScope.$watchCollection('data', function(n, o) {

Chapter 6

[133]

 });
 $rootScope.$digest();
 }
};
});

During each individual test, we get each watcher service and call its run function.
This fires the watcher on initialization, and then we push another test object to the
data array, which fires the watch's trigger function again. That is the end of the
test. We are using jsperf.com to show the results. Note that the watchCollection
function is much faster and should be used in cases where it is acceptable to
shallow watch an object. The example can be found at http://jsperf.com/
watchcollection-vs-watch/5. Refer to the following screenshot:

This test implies that the watchCollection function is a better choice to watch an
array of objects that can be shallow watched for changes. This test is also true for an
array of strings, integers, or floats.

This brings up more interesting points, such as the following:

• Does our directive depend on a deep watch of the data?
• Do we want to use the $watch function, even though it is slow and

memory taxing?
• Is it possible to use the $watch function if we are using large data objects?

http://jsperf.com
http://jsperf.com/watchcollection-vs-watch/5
http://jsperf.com/watchcollection-vs-watch/5

Working with Live Data

[134]

So far, the directives that have been used in this book have used the watch function
to watch data directly, but there are other methods to update the view if our
directives depend on deep watchers and very large data sets.

Directives can be in charge
There are some libraries that believe that elements can be in charge of when they
should request data. Polymer (http://www.polymer-project.org/) is a JavaScript
library that allows DOM elements to control how data is requested, in a declarative
format. This is a slight shift from the processes that have been covered so far in this
chapter, when thinking about what directives are meant for and how they should
receive data. Let's come up with an actual use case that could possibly allow this
type of behavior.

Let's consider a page that has many widgets on it. A widget is a directive that needs
a set of large data objects to render its view. To be more specific, lets say we want
to show a catalog of phones. Each phone has a very large amount of data associated
with it, and we want to display this data in a very clean simple way.

Since watching large data sets can be very expensive, what will allow directives to
always have the data they require, depending on the state of the application? One
option is to not use the controller to resolve the Big Data and inject it into a directive,
but rather to use the controller to request for directive configurations that tell the
directive to request certain data objects. Some people would say this goes against
normal conventions, but I say it's necessary when dealing with many widgets in the
same view, which individually deal with large amounts of data.

This method of using directives to determine when data requests
should be made is only suggested if many widgets on a page
depend on large data sets.

To create this in a real-life example, let's take the phoneService function, which
was created earlier, and add a new method to it called getPhone. Refer to the
following code:

this.getPhone = function(config) {
 return $http.get(config.url);
};

Now, instead of requesting for all the details on the initial call, the original
getPhones method only needs to return phone objects with a name and id value.
This will allow the application to request the details on demand. To do this, we do
not need to alter the getPhones method that was created earlier. We only need to
alter the data that is supplied when the request is made.

http://www.polymer-project.org/

Chapter 6

[135]

It should be noted that any directive that is requesting data should be
tested to prove that it is requesting the correct data at the right time.

Testing directives that control data
Since the controller is usually in charge of how data is incorporated into the view,
many directives do not have to be coupled with logic related to how that data is
retrieved. Keeping things separate is always good and is encouraged, but in some
cases, it is necessary that directives and XHR logic be used together. When these
use cases reveal themselves in production, it is important to test them properly.

So far, this book has not been focused on tests, which care about how data is
retrieved and whether that data is correct. The previous tests in the book use two
very generic steps to prove business logic. These steps are as follows:

• Create, compile, and link DOM to the AngularJS digest cycle
• Test scope variables and DOM interactions for correct outputs

Now, we will add one more step to the process. This step will lie in the middle of the
two steps. The new step is as follows:

• Make sure all data communication is fired correctly

AngularJS makes it very simple to allow additional resource related logic. This is
because they have a built-in backend service mock, which allows many different
ways to create fake endpoints that return structured data. The service is called
$httpBackend.

Testing bbPhoneDetails
To showcase how to use $httpBackend, we have created tests for the
bbPhoneDetails directive. The bbPhoneDetails directive makes requests for
its own information. This information could be very large, which means special
precautions need to be taken when requesting for many phones on the same page.
This potentially large data is being separated by individual requests for each
individual directive.

Working with Live Data

[136]

The bbPhoneDetails directive has a small set of requirements. Refer to the
following requirements:

• Ability to request for data based on a configuration object
• If this configuration object changes, then request for new information
• Handle all error cases, with regards to requests, correctly

To write tests that prove these requirements, we start by creating a simple describe
block that contains all of the services we will need. This describe block also contains
our first look at how to use the $httpBackend service.

/*
 These tests showcase how directives can communicate with remote
 resources to accomplish their desired views.
*/
describe('bbPhoneListApp Demo', function () {
 'use strict';

 var scope, $compile, $httpBackend;

 beforeEach(module('bbPhoneListApp'));
 beforeEach(inject(function (_$rootScope_,
 $compile,_$httpBackend_) {
 scope = _$rootScope_;
 $compile = _$compile_;
 $httpBackend = _$httpBackend_;

 $httpBackend.whenGET('test-phone.json')
 .respond({
 "age": 1,
 "id": "xxx-xxx-xxxx",
 "imageUrl": "testPhone.jpg",
 "name": "Amazing Phone",
 "snippet": "This is a Super Duper Phone"
 });

 $httpBackend.whenGET('test-phone2.json')
 .respond({
 "age": 2,
 "id": "yyy-xxx-xxxx",
 "imageUrl": "testPhone2.jpg",
 "name": "Cool Phone",
 "snippet": "This is a Super Amazing Phone"
 });

Chapter 6

[137]

 $httpBackend.whenGET('error.json')
 .respond(404);
 }));

 beforeEach(function(){
 scope.configObj = {url: "test-phone.json"};
 successPhoneLinkFn = $compile('<div bb-phone-details
 config="configObj"></div>');
 errorPhoneLinkFn = $compile('<div bb-phone-details
 config="configObj"></div>');
 });

The $httpBackend service is being injected as any normal service.
This is made possible because we have included angular-mocks.
js in our grunt setup. You can refer to https://github.com/
joshkurz/Black-Belt-AngularJS-Directives/blob/master/
karma.conf.js.

The preceding described block is the parent-level closure that will hold all of our
tests. The first beforeEach block calls the bbPhoneListApp module to inject its
context into the scope of the test. The second beforeEach block contains the most
important piece of code, with regards to how bbPhoneDetails accomplishes its
requirements. This is the $httpBackend service. The third beforeEach clause
defines the link functions that are used, which contain the compiled directives.

In the following tests, we will be using the bbPhoneDetails directive to make
different requests. These different requests will expect different responses depending
upon the actual request. To accomplish this functionality, we are using the whenGET
method provided by the $httpBackend service. This method takes a string as a
variable that will match a request that can be made in an it clause. If a match is
made, then it will respond with the specified data, which will serve as the constant
that will prove our tests are successful.

There are more $httpBackend functions available for specific testing
cases. These can be found at https://docs.angularjs.org/api/
ngMock/service/$httpBackend.

https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/karma.conf.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/karma.conf.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/karma.conf.js
https://docs.angularjs.org/api/ngMock/service/$httpBackend
https://docs.angularjs.org/api/ngMock/service/$httpBackend

Working with Live Data

[138]

Refer to the following test case, which proves our first requirement:

it('should contain the correct scope parameters based upon the
configuration file', function(){
 successPhoneLinkedDOM = successPhoneLinkFn(scope);
 //apply needed, because the directive is watching the config
 for changes.
 //the directive's watch would never fire if this apply was not
 present.
 scope.$apply();
 //flush function will execute the $httpBackend functions that
 have
 //successfully matched. This will throw an error if nothing
 //matches.
 $httpBackend.flush();
 var phoneScope = successPhoneLinkedDOM.isolateScope();
 expect(phoneScope.phone.age).toBe(1);
 expect(phoneScope.phone.id).toBe("xxx-xxx-xxxx");
 expect(phoneScope.phone.imageUrl).toBe("testPhone.jpg");
 expect(phoneScope.phone.name).toBe("Amazing Phone");
 expect(phoneScope.phone.snippet).toBe("This is a Super Duper
 Phone");
});

This test proves that the bbPhoneDetails directive is making the correct requests
based on the configuration object it is using as input. Since we are using the flush()
function, provided by $httpBackend, we can show that specific requests are being
made. This is because all requests that are made during the execution of this test
will not execute their respond function until the flush() function is fired. In this
specific case, the directive requests details for the test-phone.json file. The data is
retrieved and used correctly inside the directive, and this is proven by testing each
attribute of the phone for accuracy.

The next test case that we will write will be for the second logical pathway that this
directive could use, depending on how the request it makes plays out. This will be
the error scenario that could take place if a file was requested for, which did not
exist. Refer to the following test case:

it('should contain a phone object that has only an error value',
 function(){
 scope.configObj.url = "error.json";
 errorPhoneLinkedDOM = errorPhoneLinkFn(scope);
 scope.$apply();
 $httpBackend.flush();
 var phoneScope = errorPhoneLinkedDOM.isolateScope();
 expect(phoneScope.phone.error).toBe('no file exists');

Chapter 6

[139]

 expect(phoneScope.phone.age).toBe(undefined);
});

The error scenario is proven by using the $httpBackend service to return a 404 error
code when a specific request is made. The directive should handle this error and any
other error correctly.

Since we are using the AngularJS promise system inside of the directive,
we can ensure that if a 404 error is handled correctly, then all other error
scenarios will work.

The last requirement that must be met occurs when the directive's configuration
object changes in any way. This should force a new request that will subsequently
update the directive's scope objects with the new data. Refer to the following test case:

it('should request for new data when the config file changes',
 function(){
 var successPhoneLinkedDOM = successPhoneLinkFn(scope);
 scope.$apply();
 $httpBackend.flush();
 scope.configObj.url = 'test-phone2.json';
 //force the directive to go through a digest cycle, which should
fire a watch function
 //which should request for new data.
 scope.$apply();
 $httpBackend.flush();
 var phoneScope = successPhoneLinkedDOM.isolateScope();
 expect(phoneScope.phone.age).toBe(2);
 expect(phoneScope.phone.id).toBe("yyy-xxx-xxxx");
 expect(phoneScope.phone.imageUrl).toBe("testPhone2.jpg");
 expect(phoneScope.phone.name).toBe("Cool Phone");
 expect(phoneScope.phone.snippet).toBe("This is a Super Amazing
 Phone");
});

This last test proves that the directive updates itself and makes new requests whenever
its configuration object changes. The test is essentially the first test minus any
expect functions plus more logic that changes configObj.url and checks to make
sure that the updates were made correctly. The key to these tests is to make sure to call
flush(), so that all the pending requests can be processed accordingly.

Working with Live Data

[140]

There are more details with regards to these specific tests, which
can be found in the Black Belt repo at https://github.com/
joshkurz/Black-Belt-AngularJS-Directives/blob/
master/directives/BigData/tests/bbPhoneDetails.
spec.js.

Now that the requirements have been laid out correctly, let's move on to writing
the directive in order to see how we can actually make these tests pass.

Writing the bbPhoneDetails directive
Now, we can create a directive that uses an isolated scope and takes a
configuration object that can be watched for changes. Any time that the
configuration object changes, we can go ahead and make a request for the
large data set. Refer to the following code:

app.directive('bbPhoneDetails', ['phoneService',
 function(phoneService){

 function link(scope,element,attrs,controller){

 scope.$watch('config', function(config){
 phoneService.getPhone(config).then(function(request) {
 scope.phone = request.data;
 },function(){
 scope.phone = {error: 'no file exists'};
 });
 },true);

 }

 return {
 restrict: 'A',
 templateUrl: function(tElem,tAttrs){
 return tAttrs.templateUrl || 'phoneDetails.tpl.html';
 },
 scope: {config: '='},
 link: link
 };

}]);

https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/tests/bbPhoneDetails.spec.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/tests/bbPhoneDetails.spec.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/tests/bbPhoneDetails.spec.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/tests/bbPhoneDetails.spec.js

Chapter 6

[141]

The link function used by bbPhoneDetails watches its configuration object for
changes. Once it makes the change, it then calls the getPhone method provided
by the phoneService function. This method returns a promise object, which
is created by the $http service. This promise object is then resolved once the
data has either been requested successfully or an error has occurred. The final
result of all the directives working in unison is the same as when all the data is
requested at once. The difference is that now the data requests can be scaled in
manageable sections. A live example can be found at http://plnkr.co/edit/
mBm7zjGIrBt6GLn9Mo0r?p=preview.

Remember, the objective of this section is to show how directives do not have to
watch huge amounts of data. This is about scaling; even though the demo does
not have a large amount of data being used, it does take this possibility into
consideration. In some cases, separating the XHR requests into smaller chunks is
faster than requesting for all of the data at once and helps create faster digest cycles.
This also yields a better user experience, as the user does not have to wait for all
of the data before the page finally loads. Now, they can see a portion of the page
with lite details, and then they can be shown some type of loading message that the
details are being obtained for each widget.

Working with D3
There are many external libraries that are meant for graphing and displaying large
amounts of data in a nice consolidated, organized view. Some examples of libraries
are flot.js, datatables.js, heatmap.js, and many more. We are going to
describe how to work with one of the most popular visualization libraries.

D3 is very popular and has many different features. AngularJS and D3 work
wonderfully together if used correctly. D3 has wonderful view-level techniques
built inside that work perfectly with the data-binding abilities of AngularJS.

AngularJS watches the model for changes and calls functions depending on whether
the data has changed. The directives written in this section will focus on calling
the D3 function to perform most of the very intrinsic DOM alterations. The unique
portion will be how these directives are tested for accuracy in an AngularJS context
and how they know when to call their D3 related functions.

This section will use a different approach to testing than those used in any of the
previous chapters. We are going to introduce Protractor to test the D3 directives.
Since all of the directives created in this section will require some type of live data
feed, we are going to showcase how to get this real data into the view while testing.

http://plnkr.co/edit/mBm7zjGIrBt6GLn9Mo0r?p=preview
http://plnkr.co/edit/mBm7zjGIrBt6GLn9Mo0r?p=preview

Working with Live Data

[142]

Protractor is an End-2-End testing framework built on top of the
Selenium driver to allow AngularJS applications a simple way to test
bindings and check whether interactions are working as expected.
More details can be found at https://github.com/angular/
protractor.

The YouTube views bar chart
In the Black Belt demo, there is a media element page. This media element page
has a video player that is fed by a bootstrap typeahead directive. The typeahead
directive calls a function in the controller that hits YouTube's API upon every
keystroke. The returned data is a set of data objects that contain information
about videos, in relation to what was typed into the typeahead directive.

Let's build a simple bar graph widget to show a visualization of this YouTube data
and put it into the uiTypeahead drop-down list. This will help our users decide
which video they would like to watch.

This bar chart is going to rely on D3 for all of its major DOM manipulations.
The purpose of the example is to create a real-life example that uses live data.
This directive is not in charge of the requests because the uiTypeahead directive
takes care of that.

The uiTypeahead directive works with promises in a similar fashion
as the bbPhoneDetails directive. The details of this directive can be
found at https://github.com/angular-ui/bootstrap/blob/
master/src/typeahead/typeahead.js.

All the bar chart has to do is know when it should update its DOM with scaled bars
that resemble how many views each video has in relation to the other results. To
build the YouTube bar chart, we need to alter the uiTypeahead template in order to
render and feed our bbBarChart directive. This will allow the uiTypeahead directive
to communicate its data to our bbBarChart directive. The communication will be
through an isolate scope set inside of bbBarChart.

This is as simple as adding one extra li element to the typeahead template, as
shown in the following code:

 <div bb-bar-chart data="matches" set-the-model="selectMatch">

https://github.com/angular/protractor
https://github.com/angular/protractor
https://github.com/angular-ui/bootstrap/blob/master/src/typeahead/typeahead.js
https://github.com/angular-ui/bootstrap/blob/master/src/typeahead/typeahead.js

Chapter 6

[143]

Now, we actually need to write the directive. The directive will be a combination of
specific D3 code and common AngularJS code that controls when the D3 code should
be called.

The most relevant piece to this chapter, which is the watch function, will be shown.
The rest of the code can be found at https://github.com/joshkurz/Black-Belt-
AngularJS-Directives/blob/master/directives/BigData/bbStockChart.js.
Refer to the following code:

 angular.module('AngularBlackBelt.BigData',
 ['AngularBlackBelt.BigDataCharts'])
.directive('bbBarChart', [function(){

 function link(scope,element,attrs){

 //setting up the bar chart svg element
 var svg = d3.select(element[0])
 .append("svg")
 .attr("width", w)
 .attr("height", h);

 function redraw(data){
 svg.selectAll('*').remove();
 // redrawing the directive with d3 specific DOM
 manipulation code.
 //when we are calling this function we are also adding
 //event handlers that use the scope.setTheModel function
 //so we can communicate with the typeahead function and
 set
 //its internal model
 svg.selectAll("rect")
 .on('mouseover', tip.show)
 .on('mouseout', tip.hide)
 .on('click', function(event,clickData){
 scope.setTheModel(clickData);
 scope.$apply();
 });
 }

 scope.$watch('data', function(newData) {
 var graphData = [];
 angular.forEach(newData, function(dataItem) {
 var stats = dataItem.model['yt$statistics'];
 if (stats) {
 graphData.push({

https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/bbStockChart.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/bbStockChart.js

Working with Live Data

[144]

 label: dataItem.label,
 value: parseInt(stats.viewCount, 10)
 });
 } else {
 graphData.push({
 label: dataItem.label,
 value: 0
 });
 }

 if (graphData.length>0) {
 redraw(graphData);
 }
 }, true);}

 return {
 restrict: 'A',
 scope: {data: '=', setTheModel: "="},
 link: link
 };

}]);

The bbBarChart function watches a set of data for changes. Specifically, it watches
data coming from YouTube. This data is not in the exact format we need, to showcase
which video has more views in a bar chart, so we massage the data a bit before we pass
it to the redraw function.

Massaging data before a DOM is created is a normal part of working with client-side
technologies. Sometimes, it is not possible to change the server, so the data must be
altered before we can show it in a view of our choice. In this specific case, we are
just taking the title and the number of views from the data object to be used in the
bbBarChart directive, which renders the data to the view.

D3 takes care of the dirty work. This makes it possible to have a dynamic bar chart
that scales perfectly every time we update our search parameters and new data is
fed into the directive. This demo can be found at http://angulardirectives.
joshkurz.net/dist/#/mediaelement. Refer to the following screenshot:

http://angulardirectives.joshkurz.net/dist/#/mediaelement
http://angulardirectives.joshkurz.net/dist/#/mediaelement

Chapter 6

[145]

E2E tests for bbBarChart
To test the bar chart correctly, we are going to employ Protractor. This is a new
library that is specifically used to write E2E tests for AngularJS. It works with the
Selenium Web Driver and by default, works with Jasmine as well. This will allow us
to spin up a browser window and actually type AngularJS into the input and make
sure that all is working correctly, all with one command.

Once Protractor is set up, all we have to do is write a simple test that queries
YouTube and checks to makes sure that bbBarChart is creating the correct output
based upon what is being typed in. In our controller, we have specified a maximum
results limit when querying YouTube. This limit is 30, and this is how we will
ensure that the bar chart creates the correct number of bars. This test will also
prove that by clicking on a specific bar, we are able to load YouTube videos into
the bbMediaPlayer directive. Refer to the following test:

describe("bbBarChart live data interaction", function () {
 beforeEach(function() {
 browser.get('/dist/#/mediaelement');
 });

 it("should contain a typeahead element and a mediaelement which
 communicate via a barChart", function () {
 var typeahead = element(by.model('result')),
 bars = $$('.menuBar'),
 mediaelementSource = $$('.youtubeSourceObj');

 expect(bars.count()).toEqual(0);
 expect(mediaelementSource.count()).toEqual(0);

Working with Live Data

[146]

 typeahead.sendKeys('AngularJS');
 expect(bars.count()).toEqual(30);
 bars.first().click();
 expect(mediaelementSource.count()).toEqual(1);
 });

});

This is a simple test that will prove our d3BarChart directive is working and is also
working with other directives properly. Some of the individual expectations could
be proven in a unit test and would probably be better suited for a unit test. This
was a brief explanation of Protractor and how it can be used. Using E2E tests in this
manner can be very powerful. It is also a great spectacle to see your site running in
an automated fashion.

The stockTicker directive
Now, let's keep this D3 train rolling, but let's speed it up a bit with data that is
updated by sockets, rather than by user input. Say, we want to create a directive that
works with live ticker updates to the stock market. This would be very useful if we
had users who are interested in specific stocks. To accomplish this, we are going to
use a JavaScript library called PubNub (http://www.pubnub.com/).

One of the most intrinsic portions of the bbStockTicker directive is actually not the
directive itself. It is going to be the pubnubService function. The pubnubService
function is going to take care of all of our subscriptions and ticker updates that we
care about. This is going to be our central hub for communication with the sockets
that we are subscribed to.

To accomplish this, we are going to create a service. This service will initialize
the pubnub object that will be used inside our controllers, which will update our
directive's data. The pubnub service will also be in charge of subscribing to each
ticker that we care about. The tickers will be specific to each view, which means that
the service does not care about which ticker is being subscribed to because it could
be any ticker. Refer to the following code:

angular.module('AngularBlackBelt.demo/BigData',[])
.service('pubnubService', ['$timeout', function($timeout){

 var self = this,
 unsubscribed = {};

 self.pubnub = PUBNUB.init({
 subscribe_key : 'demo',
 publish_key : 'demo'

http://www.pubnub.com/

Chapter 6

[147]

 });

 self.pubnubStockData = {};

 self.subscribeToTicker = function(ticker){
 delete unsubscribed[ticker];
 self.pubnub.subscribe({
 channel : ticker,
 message : $.throttle(3000, function(update,data){
 if(!unsubscribed[ticker]){
 $rootScope.$apply(function(){
 self.pubnubStockData[ticker] = update;
 });
 }
 })
 });
};

 self.unsubscribeToTicker = function(ticker){

 delete self.pubnubStockData[ticker];
 unsubscribed[ticker] = true;
 self.pubnub.unsubscribe({channel: ticker});

 };

}]);

The service allows our controllers to easily subscribe to any ticker they please
without reusing code. One thing of interest in the controller is the throttle method
that is being used. Ben Alman, the creator of Grunt, wrote this throttle function,
which can be found at https://github.com/cowboy/jquery-throttle-debounce.
We are using this function to ensure that the message function callback is only called
every three seconds because PubNub sends us information very often, which causes
way too many digest calls. These digest calls can be a source of slowness in our
app, which is something that we do not want.

The next step is to actually subscribe to the tickers of our choice. To do this, we just
run through an array of tickers and subscribe to each. Refer to the following code:

.controller('BigDataCtrl', ['$scope', 'pubnubService',
 function($scope, pubnubService){
 $scope.tickers = ['ORCL', 'ZNGA', 'EA', 'F', 'FB' , 'TRI'];
 for(var tic in $scope.tickers){
 pubnubService.subscribeToTicker($scope.tickers[tic]);

https://github.com/cowboy/jquery-throttle-debounce

Working with Live Data

[148]

 }
 $scope.stockData = pubnubService.pubnubStockData;
}])

The controller uses the pubnub service to subscribe to six tickers with very
little code. This is a nice, easy way to utilize the pubnub library. This type
of implementation can be used for any publish/subscribe design pattern
implemented in any AngularJS application.

The next step is to write the directive, but first let's come up with a short list of
requirements, as follows:

• The stock chart should update itself whenever its data set changes
• There should be a way to add and remove individual stock symbols

Now, the directive needs to be written. Since we are using D3, there will be
a little bit more code specific to D3 in the directive, which is not specifically
relevant to this chapter, so we will leave this out. The full directive can be found
at https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/
master/directives/BigData/bbStockChart.js. Refer to the following code:

angular.module('AngularBlackBelt.BigDataCharts', [])
.directive('bbStockChart', [function(){

 function link(scope,element,attrs){

 var limit = 60 * 1,
 duration = 750,
 now = new Date(Date.now() - duration),
 color = d3.scale.category20(),
 max = 20,
 x, y, line, svg, axis, paths;

 var width = element.width(),
 height = 500,
 groups = {};

 function resetGroups(tickers){
 //reset the groups the directive
 //uses to create the lines
 }

 function renderGraph() {
 //tick the graph over and redraw the lines
 //this function uses D3 to update the new data

https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/bbStockChart.js
https://github.com/joshkurz/Black-Belt-AngularJS-Directives/blob/master/directives/BigData/bbStockChart.js

Chapter 6

[149]

 //as a new value on the line.
 //we are leaving the D3 code out of this example.
 }

 var killLengthWatcher = scope.$watch('tickers.length',
 function(newVal){
 //reset the element completly
 element.html('');
 //reset the max value so we can rescale
 max = 20;
 //reset the current active groups
 resetGroups(scope.tickers);
 });

 //whenever the data changes we are calling renderGraph which moves
 //the line over with the new data points.
 var killWatcher = scope.$watchCollection('data', renderGraph);

 scope.$on('$destroy', function(elem){
 killWatcher();
 killLengthWatcher();
 scope.data = null;
 scope.tickers = null;
 });
 }

 return {
 restrict: 'A',
 scope: {data: '=',tickers: '='},
 link: link
 };

}]);

The bbStockChart directive watches its data for changes. We are using the
watchCollection function to do this because the ticker pushes new objects to each
ticker's array, which will be picked up by the shallow watch function. As we have
seen, this is much faster than using the normal $watch function. Once the data
changes, which will be every time PubNub pushes some new data to a ticker object,
the D3 graph will tick over one data point. This is done by calling some specific D3
logic to reset and rescale the graph based on a shifted array of data.

Working with Live Data

[150]

The directive also watches the ticker array. So, whenever a new ticker is added
or removed, the directive will update itself with the correct data. The ability to
manipulate which data objects are being used in the visualization is one of the
simplest benefits of AngularJS. These simple steps make the directive responsive
to any data changes that are made inside the controller's logic.

Again, the logic is not super advanced, but the overall output of this directive and
of all the pieces working together is a nice working component that updates itself
automatically. This can be seen at http://angulardirectives.joshkurz.net/
dist/#/stockchart.

E2E tests for bbStockChart
The E2E tests that have been written for the bbStockChart prove that the stock
chart updates itself whenever something changes in its subscribed groups. This will
be done by actually clicking buttons in our view, which subscribe and unsubscribe
tickers to live pubnub data. We are also going to prove that the directive is working
with real data by making sure that each path in our chart is using the correct
classnames, which correlate to the data that the pubnub service is subscribed too.
Refer to the following tests:

describe("bbStockChart live data interaction", function () {
 beforeEach(function() {
 browser.get('/dist/#/stockchart');
 });

 it("should contain a d3 chart", function () {
 var elements = $$('.chart');
 expect(elements.count()).toBe(1);
 });

 it("should contain 6 path elements with the correct class
 names", function () {
 var orcl = $$('.ORCL'),
 znga = $$('.ZNGA'),
 ea = $$('.EA'),
 f = $$('.F'),
 fb = $$('.FB'),
 tri = $$('.TRI');

http://angulardirectives.joshkurz.net/dist/#/stockchart
http://angulardirectives.joshkurz.net/dist/#/stockchart

Chapter 6

[151]

 expect(orcl.count()).toBe(1);
 expect(znga.count()).toBe(1);
 expect(ea.count()).toBe(1);
 expect(f.count()).toBe(1);
 expect(fb.count()).toBe(1);
 expect(tri.count()).toBe(1);
 });

 it('should add/remove GOOG to the graph when the add/remove
 button is clicked', function() {
 var googAddBtn = element(
 by.repeater('ticker in addTickers').
 row(0)),
 googRemoveBtn = element(
 by.repeater('ticker in tickers').
 row(6)),
 goog = $$('.GOOG');

 expect(goog.count()).toEqual(0);
 googAddBtn.click();
 expect(goog.count()).toEqual(1);
 googRemoveBtn.click();
 expect(goog.count()).toEqual(0);
 });
});

When using Protractor, there is some special functionality to learn. This functionality
deals with selecting elements in the view to test. There are many different ways to
select elements inside of an AngularJS application with Protractor. In this example,
we are using $$ and the element.by function to get items of interest. The elements
that are retrieved are tested for correctness, and if all is good, the tests pass.

D3 works wonderfully with AngularJS, depending upon the implementation
details. AngularJS offers many ways to separate logic that is relative to how data is
requested. Depending on the set of given requirements, certain steps should be taken
to bring data into the view. If this is done correctly, no matter which library is used
to visualize the data, it will work in collaboration with AngularJS.

Working with Live Data

[152]

Summary
Using live data in HTML5 applications is a must for production-level apps. What is
important, is the data and how this data is displayed. There are many different ways
to harness large amounts of data on the server, and these methods are becoming
more commonplace in mom and pop start-up companies. This means that the
deciding benefactor is no longer who can yield the most data, but what can be done
with this data.

AngularJS offers many ways to request data and feed the view layer data that can be
transformed into different visualizations. These methods include using combinations
of services, directives, and controllers to manage how data should be requested and
when it should be requested. Usually, the directive's job is to determine when its
data changes and to update its view accordingly.

There are special cases when dealing with data at scale, which deem it ok for
directives to watch the configuration objects that tell the directive how to
request data. This method is handy; however, it should not be the first solution of a
directive's architecture. Having the controller resolve the data into the view separates
the logic, which overall makes the app simpler and easier to work with.
If a directive must request its own data, then it should be tested properly.

There are many ways to visualize data, and many libraries are built specifically
for this. These libraries can be used in association with directives to accomplish
wonderful components that help users visualize data in many different ways.
AngularJS can help drive many visualization tools by allowing various ways to
feed the view with large amounts of data. This was made apparent in this chapter.

Protractor allows AngularJS developers an easy way to write E2E tests in a similar
fashion as unit tests. These tests use the Selenium Web Driver to support some
amazing things, all powered by the console. It is highly encouraged to write E2E
tests when working with applications that deal with live data.

Optimization and
Code Quality

The demand for HTML5 applications has become greater and greater in the past
few years. To create the utmost preferment and extendable website, a strong focus
needs to be put on optimization and quality code. AngularJS helps us do both with
its design pattern constructs, which offer the ability to reuse code in many different
parts of an application.

AngularJS takes advantage of many different design patterns and allows you to
make an organized application which can be easily extended and optimized. Some
of the high-level design patterns include but are not limited to modules, factories,
prototypes, singletons, and facades. These design patterns are used throughout the
core of AngularJS, and their implementation details have been made public for use in
our applications. This allows any application to take advantage of these basic design
patterns simply and efficiently.

The main advantage of being able to organize HTML5 applications with proper
design patterns is the ability to easily implement efficient and reusable code.
Directives offer different techniques that can clean up code and make logical
executions much faster. AngularJS creates a simple mechanism to separate the
view and model, which allows for increased focus on each individually.

This chapter is broken down into two parts. The first part is about how AngularJS's
internal designs allow us to write better code. The second part of the chapter is
about optimization in an AngularJS context and how directives play a huge role in
this optimization.

Optimization and Code Quality

[154]

AngularJS code quality
AngularJS offers many ways to write good quality JavaScript and HTML. Each
language has its own specific implementation techniques that allow better performance
and overall better organization. Being able to write orthogonal HTML applications
relies upon the separation of the model and the view.

HTML is a domain-specific language that is rigid and built for a specific purpose.
Today's Web is moving faster than what any W3C board can keep up with, and
because of this, the Web must create more specific domain languages. AngularJS has
opened a new vantage point in the reality of what an HTML5 application is. This
reality showcases HTML that is built specifically for the application it lives in.

The importance of templates
HTML and CSS have no real design pattern constructs. There are ways to organize
and define websites that follow strict nomenclature and design standards, but there
is no way to utilize facades or other widely used design patterns in HTML. This is
changing as the Web moves forward and HTML becomes more advanced due to
what developers are able to achieve with it.

Using directives that focus on templates can drastically reduce redundancy and
the total development effort as they allow a more forward approach to the actual
implementation structure of the view. By focusing on clean, organized HTML,
the abilities to reduce LOC and increase the overall readability are revealed.

The most important directive that provides templating possibilities is ngInclude.
This directive is very important and deserves special attention. The ability to separate
logical portions of an application into separate files is important. Reading and
digesting complex information is difficult enough, without the added complexity
of unstructured, unorganized code.

By this point, we should already know how to use ngInclude or other directives that
use templates. This section is not about how to use them, but more about why it is
important to use them. To showcase the difference made by using ngInclude, let's
take a look at the following simple example:

 <div class="navbar navbar-inverse navbar-fixed-top"
 role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 ng-click="showMobileNav = !showMobileNav;"
 data-target=".navbar-collapse">
 Toggle navigation

Chapter 7

[155]

 </button>
 Black Belt Directives
 </div>
 <div class="collapse navbar-collapse" ng-class="{'in':
 showMobileNav}">
 <div ng-include="'directives/demo/templates/bbNavMenu
 tpl.html'"></div>
 </div><!--/.nav-collapse -->
 </div>
 </div>

This example shows how clean HTML can be by using ngInclude. Creating
DOM elements that have an apparent declaration of where the template lives in
the application is beneficial because now we can easily navigate directly to the
bbNavMenu template and make any necessary edits.

Another great use case that can be solved by ngInclude is to replace redundant code
with a template. It is advised to use a template whenever there are chunks of HTML
that have a similar structure. If we follow through with this practice, all future
updates to a site will be much less invasive and less prone to incidental errors.

The application's DOM structure is very important and is overlooked by some
developers. AngularJS has built many tools into its framework to allow a perfect,
concise view construction. Applications that can be updated and redesigned faster are
the applications that will ultimately survive longer in any production environment.

Necessary DOM manipulations
DOM manipulation functions are the most expensive out-of-the-box methods that
ECMAScript offers. This is because in order to accomplish DOM manipulation,
the browser actually fires low-level C++ code to accomplish any set of given
tasks. Saving the amount of DOM manipulations performed can be a very large
optimization booster.

AngularJS separates the model and the view. This statement cannot be said
enough number of times in a chapter about optimization and organization.
For many years, JavaScript business logic and DOM manipulation have been
munged together to create websites in order to provide expected results. Although
this process works, it is not optimal and causes more unforeseen issues than the
structured AngularJS approach.

Optimization and Code Quality

[156]

AngularJS offers the ability to allow much less reflows in an application. It is a
known fact that reducing the amount of reflows in an application can cause a
significant increase in performance. More information about reflows can be found
at https://developers.google.com/speed/articles/reflow?hl=ru.

Almost all DOM alterations are based on model changes that occur in memory.
AngularJS allows applications to use more optimized solutions to control DOM
manipulation executions and minimize reflow. This can be done by only touching
the DOM when the model is stable. A stable model means that all the business logic
has completed execution. Once the model is stable, then, and only then, do we adjust
the DOM.

Directives serve as the separation between the model and the view. This has been
explained in many different ways throughout this book; however, its purpose has
not been fully portrayed. AngularJS uses modularized encapsulation to provide the
ability to logically separate HTML5 applications into their associative categories.
This separation, if used correctly, can bring out the best that JavaScript has to offer.

As in any project, the overall code structure is up to the developer. Using AngularJS
does not automatically make an application good; however, it does shed light on the
proper pathways.

Optimization of the directives
User experience in an application is one of the biggest factors, if not the biggest,
to its overall grade. No application should ever be given a passing grade if it is not
responsive and has a sluggish feel to it. A JavaScript application has the chance to be
on either ends of the speed spectrum because of the wide range of implementation
options. There can be more than a few potential bottlenecks in a JavaScript
application, and even more in an AngularJS application, which should be noted
and approached correctly.

The biggest issue with any AngularJS application that uses the 1.2.0 and above
branch is the digest cycle.

The digest cycle is an AngularJS-specific issue and is the cause of most speed-related
issues. This is because of the thread-blocking nature of the working of the digest
cycle and the issues when working with a lot of data.

https://developers.google.com/speed/articles/reflow?hl=ru

Chapter 7

[157]

Tools for monitoring performance
There are multiple monitoring tools available in each browser that we can take
advantage of. Becoming familiar with the development tools available in Chrome,
Firefox, and Safari is highly recommended as it can help show the main points in an
application's logic. Chrome offers specific tools for AngularJS development, which
allows the monitoring of the digest cycle and other specific AngularJS attributes to
ensure optimum performance. Batarang, built by Brian Ford and Lukas Ruebbelke,
is the name of the custom Chrome plugin. This tool really helps get a higher-level
perspective of the internals of an AngularJS app.

The digest cycle
AngularJS performs data binding by using a method called dirty checking. Data
binding is broken down by individual bindings, which are also individual watcher
functions. A watcher function is a function that is added to a scope's watcher
array. A scope is a JavaScript object which has prototype methods that allow the
organization and communication of data within an AngularJS application. Each
scope has its own array of watcher functions called $$watchers. Each watcher
object in the array has a closure function that has the knowledge of what changes
have occurred to its specific data set.

Running a scope's $digest function affects that scope and all of its children. Each
watcher function in a scope's $$watchers array is in charge of checking if the
data it cares about has changed. This entire $digest process is the slowest part of
AngularJS and can cause very significant performance-related issues if not cautiously
maintained. Knowing the details of the digest cycle can help when trying to
understand how to write fast directives.

The latest AngularJS code base has incorporated one-time
expressions that allow for bindings to occur only once.

At a high-level, the digest cycle is the process of watching data for changes and
running a function when the data does actually change. Some core directives
automatically set up the watcher functions, which can cause unknown slowness to
beginners. Another issue to shed light on is on the fact that custom watchers can
be created manually from any location where a scope is available. Each watcher
function that gets created is pushed to its associated scope's watcher array and is
run any time its scope calls its $digest function.

Optimization and Code Quality

[158]

There are many core directives that automatically set up watchers on their model.
The ngRepeat, ngIf, ngSwitch, ngHide, and ngModel directives set up watchers on
the data that is used to build their view. These are just a few of the core directives
that set up watchers behind the scenes. Using brackets {{}} in AngularJS also sets
up the watcher functions for every expression found inside these brackets.

To create one-time expressions in the 1.3 AngularJS branch, all that is
needed is :: before any expression.

Creating all of these watchers is how AngularJS provides a magical appearance
to newcomers who have just started using the framework. Almost every core
directive sets up some kind of dynamic watcher on its elements' data. Since the
core allows these watcher functions to look at variable expressions, the speed of
the implementations are up to the developer. Let's take a bird's-eye view of an
application and see what happens when a scope calls the $digest function.
Refer to the following diagram:

Watcher Functions

$rootScope

$scopeA $scopeB

$scopeA.1 $scopeA.2 $scopeB.1 $scopeB.2

In the previous screenshot, we have a tree of scopes that have parent-child
relationships. Almost every scope has its own array of watcher functions
that will fire during every digest. Let's say $scopeA calls its $digest function.
This would mean that $scopeA.1 and $scopeA.2 will also call their $digest
functions, subsequently firing every watcher in the parent-child relationship.

Usually, $apply is called, which fires $digest from the root element
and puts every scope into its $digest cycle. This function calls all
watchers at least twice.

Chapter 7

[159]

Once a scope's $digest function is called, all of its children will also fire their
associated $digest functions. Many times, the digest cycle is initialized by calling
scope.$apply, which is the same as calling $rootScope.$digest. The difference
between the two is that $scope.$apply calls each scope's digest function
a minimum of two times. This is why the digest cycle is the biggest cause of
optimization concerns.

The $apply function calls every scopes's $digest function twice for stabilization
purposes, as a previous $digest could have triggered a dirty flag. If this process
triggers an endless amount of $digest functions, AngularJS will throw the infamous
$digest() iterations reached. Aborting! error.

The watcher functions can be set from anywhere inside of an execution context
in which an AngularJS scope object is available. However, most use cases call for
directives to set up watchers because a directive must know when and how to
update the view. The more the watcher functions on each scope, the slower an
application will be. There are a number of ways to speed up applications by creating
directives that accomplish their tasks without setting up the watcher functions, by
not doing repetitive DOM manipulation, or not running unnecessary digests.
These techniques are a part of the optimization techniques that we will cover.

Less bindings yield faster results
The amount of bindings created on a single scope is a major source of failure for the
overall responsiveness of an AngularJS application. Directives can help fix this by
only setting up watchers when necessary. The following are the two scenarios that
require some type of data binding:

• Template needs to be initially interpolated with data and watched
for changes

• Template just needs its initial value and will never be updated

Interpolation is AngularJS's process of taking data from the scope objects and
interjecting it into a template by evaluating a template string onto a scope's matching
data set.

To accomplish one-time binding expressions in pre 1.3 branches, there are multiple
workarounds. The advantages of setting up one-time bindings is immensely
important to application views that do not need to change once they are initialized.

Optimization and Code Quality

[160]

There are a few open source libraries that one-time binding expressions in pre
1.3 branches, there are offer functionalities based on this one-time data binding
philosophy, which can be found at https://github.com/Pasvaz/bindonce and
https://github.com/abourget/abourget-angular. Both libraries attempt to
accomplish this one-time data binding need that AngularJS lacks. The bindonce
repository is a more thorough implementation and provides many of the directives
needed for this type of functionality. Its major fault is a lack of tests.

Solving the problem with the bbOneBinders
directive
Let's look at a simple example of what we are trying to accomplish. Think about a list
of places that have an image and a title. Places do not change their values, so there is
no need for them to have bindings that watch for their values to change.

Here we have a list of places. The places in the list can change, but the places
themselves will not. So, it is not important to keep bindings attached to the place's
values. These unnecessary bindings can slow down an application dramatically
depending upon the number of items in a list. Refer to the following code:

<div ng-app="bbOneBinders" ng-controller="oneBindCtrl">
 <div ng-repeat="place in places">
 <div bb-one-bind-text="place.title"></div>
 <a bb-one-bind-href="place.src"><img class="sampleImg"
 bb-one-bind-src="place.src">
 </div>
 <div bb-one-bind-text="places[0].title"></div>
 <a bb-one-bind-href="places[0].src"><img class="sampleImg"
 bb-one-bind-src="places[0].src">
</div>

This list is relatively simple to achieve without any custom directives. This example is
not about whether it can be done, but rather about how to do something in the most
efficient manner. The preceding example is going to generate a list of geographic
places. These places have attributes that will never change, which means that we do
not need to watch whether they change. The only piece of data we want to use is the
initial value. This causes a need to update its associated DOM element, and then never
have to change the element again. The ngRepeat directive will provide the list with the
ability to change the list of places if need be and it will also allow you to set the places
by any value set after the initial digest.

https://github.com/Pasvaz/bindonce
https://github.com/abourget/abourget-angular

Chapter 7

[161]

The example also uses a second set of HTML elements, which are highlighted in
the preceding code example. This set of HTML elements must not only set their
associated DOM, but also need to be able to wait for this data to actually be available.
This is because the data may not be there at the initial load, and there needs to be a
way to wait for it. A live example of the demo can be found at http://jsfiddle.
net/joshkurz/nZJEp/2/.

To accomplish this task, we are going to create a set of directives that work with a
multitude of different DOM element values. These values will initially watch the
data for changes, and once the watcher function receives the first value, it will call its
associated jQlite method and then immediately remove its watcher function.

The bbOneBinders directive
This block of code creates ten directives. Each directive performs very similar tasks,
which is why it was chosen to write them all in a condensed fashion. The bbOneBind
directives are created inside a forEach loop. This loop iterates over a list of objects
that contain relative information for each directive. Then, inside of the loop, there is
a simple logic that names each directive and sets their functionality as a specific link
function. Refer to the following code:

angular.forEach([
 {tag: 'Src', method: 'attr'}, {tag: 'Text', method: 'text'},
 {tag: 'Href', method: 'attr'}, {tag: 'Class', method:
 'addClass'},
 {tag: 'Html', method: 'html'}, {tag: 'Alt', method: 'attr'},
 {tag: 'Style', method: 'css'}, {tag: 'Value', method: 'attr'},
 {tag: 'Id', method: 'attr'}, {tag: 'Title', method: 'attr'}],
 function(v){
 var directiveName = 'bbOneBind'+v.tag;
 oneBinders.directive(directiveName, function(){
 return {
 restrict: 'EA',
 link: function(scope, element, attrs){
 var rmWatcher = scope.$watch(attrs[directiveName],
 function(newV,oldV){
 if(newV){
 if(v.method === 'attr'){
 element[v.method](v.tag.toLowerCase(),newV);
 } else {
 element[v.method](newV);
 }
 rmWatcher();
 }
 });

http://jsfiddle.net/joshkurz/nZJEp/2/
http://jsfiddle.net/joshkurz/nZJEp/2/

Optimization and Code Quality

[162]

 }
 };
 });
 });

This 25-line block of code creates almost the exact same parity as the popular
bindonce library that we mentioned previously. The only difference is that here we
are not offering any directive that needs to use transclude to perform its tasks. We
wanted to keep this example as simple as possible and showcase the really important
directives that need to be bound only once to increase performance.

At first, it may be obvious that these directives set a watcher function. This watcher
function is run one time, and then removed from its scope's $$watchers array. This
allows the data to be asynchronously set and still keeps the original design concept
of binding once. The result is a set of directives that run very fast in comparison to
normal directives that use regular data binding.

The bbOneBinders tests
The tests for these directives are written in the same fashion as the directives. They
call almost all of the describe blocks inside of a loop, which loop over an array of
strings. These tests check to make sure that the initial binding worked as planned
and that there are no watchers on the $scope object. Pretty simple, but writing tests
in this fashion can go a long way. Refer to the following code:

describe('Creating The bbOneBind* directive', function () {

 angular.forEach(['text','src','href','id','class'
 ,'alt','value','title'], function(v){
 var oneBindNode;
 //Should create bbOneBind*
 beforeEach(function(){
 scope.testValue = 'tester+tester+tester' + v;
 oneBindNode = $compile('<div bb-one-bind-'
 + v + '="testValue"></div>')(scope);
 scope.$apply();
 expect(oneBindNode).not.toBe(undefined);
 });

 it('should have the correct text for the oneTime directive',
 function() {
 if(v === 'text'){
 expect(oneBindNode[v]()).toBe('tester+tester+tester' + v);
 } else if(v === 'class'){
 expect(oneBindNode.hasClass('tester+tester+tester'))

Chapter 7

[163]

 toBe(true);
 } else {
 expect(oneBindNode.attr(v)).toBe('tester+tester+tester');
 }
 });

 it('should not have any watchers on the scope', function() {
 expect(scope.$$watchers.length).toBe(0);
 });
 });

});

This next set of tests is not run inside of a loop. This is because the individual
directives, bbOneBindHtml and bbOneBindStyle, use special test values to prove
that they work. In order to avoid cluttering the previous tests with conditional logic,
it was decided to place the individual directives in their own describe block. Refer to
the following code:

describe('Creating bbOneBindHtml and bbOneBindStyle directive',
 function () {

 it('should set the correct html to the element and destroy the
 watchers', function() {
 scope.testValue = '<p>No Bindings</p>';
 var oneBindHtmlNode = $compile('<div
 bb-one-bind-html="testValue"></div>')(scope);
 scope.$apply();
 expect(oneBindHtmlNode.html()).toBe('<p>No Bindings</p>');
 expect(scope.$$watchers.length).toBe(0);
 });

 it('should set the correct style to the element and destroy the
 watchers', function() {
 scope.testValue = {width: '100px', height: '200px'};
 var oneBindStyleNode = $compile('<div
 bb-one-bind-style="testValue"></div>')(scope);
 scope.$apply();
 expect(oneBindStyleNode.css('height')).toBe('200px');
 expect(oneBindStyleNode.css('width')).toBe('100px');
 expect(scope.$$watchers.length).toBe(0);
 });

});

Optimization and Code Quality

[164]

These tests prove that the bbOneBind directives work as expected.

Now, let's look at another type of test. We are going to do an overall performance
test to see if these directives actually work better than pure AngularJS, and for fun,
let's test against the bindonce library as well. We will test the example that we linked
to on JSFIDDLE, except that the tests will not have images in them.

If all of the directives use the same DOM, then the DOM creation of
each will be a part of the control group.

The goal of this next test is to prove which experimental group, directives that set
up watchers, performs better under stress. Each of the directives are placed inside
of their own ngRepeat directive. This ngRepeat directive will update whenever its
associated array is appended to. We will append each individual array during each
test. This will be our benchmark, and we will see which directive can bind more and
have more operations per second. Refer to the following code:

<div id="myApp" ng-app="OneBinders" ng-controller="oneBindCtrl">
 <div bindonce ng-repeat="place in places">
 <a bo-href="place.src">
 </div>
 <div ng-repeat="place in places2">
 <a bb-one-bind-href="place.src"><span
 bb-one-bind-text="place.title">
 </div>
 <div ng-repeat="place in places3">
 <a ng-href="{{place.src}}">{{place.title}}
 </div>
</div>

The JavaScript that we run for each test just pushes three objects to the designated
array, which in turn fires ngRepeat to create the new DOM elements. The new
DOM elements are linked to the proper scope and create their initial bindings each
time we run the tests in a loop to increase the amount of operations. Refer to the
following screenshot:

Chapter 7

[165]

The results were almost as expected except for the fact that the bindonce library
performs slower than pure AngularJS.

My assumption as to why this happens is because the bindonce approach is overly
complicated. All the bindonce directives require a controller and have many other
options defined on their definition objects. These parameters take more time to
initialize during the initial linking phase. So, keep your directives simple and to the
point. Using simple solutions is usually always the best approach. The live test can
be found at http://jsperf.com/ngbindonce. Refer to the following screenshot:

http://jsperf.com/ngbindonce

Optimization and Code Quality

[166]

There are various ways to accomplish a bind once use case. This was a simple example
to showcase the customization abilities that AngularJS offers in terms of optimizing
the digest cycle. AngularJS v2.0 and even AngularJS v1.3 will offer solutions that
offer this type of functionally as boilerplate or will provide a declarative solution
to this problem.

Summary
This chapter was an overview of how to write healthy, fast AngularJS code. We
made sure to cover the importance of organizing views correctly. We went over the
$digest cycle in detail so as to understand why it is important to make sure that it
is fast. We showed how directives reduce redundancy and allow us to implement
design patterns of our choice inside of AngularJS. We went over a few techniques
that directives can perform directly to speed up AngularJS, and we also mentioned
why AngularJS separates the view and the model.

Almost all performance concerning AngularJS comes by way of a slow digest
cycle. The developer is in charge of making sure that their application is built to
their specifications. These specs state that if an application is going to show many
elements on a page, make sure that those bindings are being taken care of correctly.
This can be done with pagination, using combinations of ngSwitch or ngIf, creating
custom directives that create fewer bindings, or with newer syntax offered by post
1.2.x or a higher core.

There are many more ways to speed up an Angular application than those
mentioned in this chapter. Another great optimization technique available is to make
sure that all declared filters are very fast, but even this is proof that watchers are the
source of most of all issues in AngularJS. If you keep the amount of watchers down
in an application, then your speed will dramatically increase and so will the number
of users.

Overall, having a well-constructed application that is fast and well written will
go a long way. This chapter covers many different techniques that can be used to
write better directives and template views. Using these techniques will make future
directives more readable and faster, which will benefit future applications and
their writers.

Directives and Animations
We know that directives are the only place where DOM manipulation should be
performed inside of an AngularJS application. This fact can give us the assurance
that a properly structured AngularJS application will have readable and testable
logic. Now that the basics of DOM manipulation have been covered, we can create
more advanced use cases. What if we wanted to add animations? Would this mess
with our perfectly structured, handcrafted directives?

The answer is no. AngularJS has created a wonderful module that allows for
simple, easy animation integrations with directives. This is accomplished by
separating animation-specific logic from basic DOM manipulation logic. The
separation creates less complexity and allows for more focus to be placed on
different types of animations.

This chapter is a brief overview of how AngularJS animations work and how to
implement them. We will cover public functions that trigger the JavaScript animations,
and we will show how to utilize the advantages of CSS-based animations. This is a
brief overview of how to implement animations in core and custom directives.

The process of mastering AngularJS animations would require a book of its own.
Animation is such a new subject, and it grows and changes every day. The topics
in this chapter follow the approaches in the stable AngularJS 1.2.* branch.
In AngularJS 1.3.* and higher, some implementation details could be and will
be, changed.

AngularJS is moving at the speed of light, and animations are the fastest moving piece.
This is because they are new and their implementation is not fully complete. The idea
is solid, but it needs time to fully mature before it can be considered 100 percent.

Currently, there are three sets of animation categories that can be implemented
by the $animation service. These categories are organized by the type of DOM
manipulation they achieve. Each different category modifies CSS classes during its
individual animation process. These CSS classes are specific to the type of animation
that is being undertaken.

Directives and Animations

[168]

The following are the specific categories of animations available as hooks in
AngularJS:

• Adding or removing an HTML element from the DOM:
 ° ng-leave, ng-leave-active

 ° ng-enter, ng-enter-active

• Adding or removing CSS classes to an element. The * represents a wildcard,
which means this could be any classname:

 ° *-add, *-add-active

 ° *-remove, *-remove-active

• Moving DOM elements from one position to another:

 ° ng-move, ng-move-active

Some would say that staggering events could possibly be considered the fourth
DOM manipulation category. Staggering events are built from many singular DOM
manipulations and are not a part of this basic category set.

The element's classname is always the key to telling the $animate service where to
look for its specific animation logic. The animation logic can be declared in JavaScript,
CSS, or both. The ability to declare animations in different languages reveals great
power. There are different situations that call for different types of animations to be
used. CSS animations are better for simple to moderately complex animations, and
JavaScript animations are better for very advanced complex animations.

The classes that are added to an element are relevant to the $animate method
being used. These functions are logically named after their purpose. The public
methods, addClass, removeClass, enter, leave, and move, are all related to DOM
manipulation. These functions call any specified custom JavaScript functionality and
add their associated classes at specified times during the animation life cycle.

Providing animations
Animations in AngularJS are specified by CSS classnames. This allows for clean
declarations of what elements should be animated using their classes to associate
their corresponding animations. There are several built-in directives that utilize
animations out of the box in AngularJS. These directives will serve as a good starting
point to learn how to properly write animation code, or the lack of.

Chapter 8

[169]

Very little work needs to be done to allow for AngularJS to animate core directives.
The ngAnimate module should be added to the app's dependencies, and the required
CSS declarations should be added in accordance with the ngAnimate specifications.
This is all that needs to be done to allow many of the core directives to use animation.
Let's take a look at an example of this.

In the following code snippet, we have a normal ngRepeat directive that iterates
over a list of players:

<div class="well container">
 <button class="btn" ng-click="addPlayer()">Add Player</button>
 <table class="table table-hover">
 <thead>
 <tr>
 <th>#</th>
 <th>Name</th>
 <th>Powers</th>
 <th></th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="player in players">
 <td>{{$index}}</td>
 <td>{{player.name}}</td>
 <td>
 <div ng-repeat="power in player.
powers">{{power}}</div>
 </td>
 <td>
 <button class="btn" ng-click="removePlayer($index)
">Remove</button>
 </td>
 </tr>
 </tbody>
 </table>
</div>

The live example of this code can be found at http://jsfiddle.net/
joshkurz/2uJzu/1/.

Now, we want to add animations to this, so let's write some JavaScript. Wait! Oh
yeah, I forgot; we don't have to. Never mind; let's just add ngAnimate and some
special CSS and watch it fly.

http://jsfiddle.net/joshkurz/2uJzu/1/
http://jsfiddle.net/joshkurz/2uJzu/1/

Directives and Animations

[170]

So, first let's add ngAnimate to our app's dependencies as follows:

<script>
 var app = angular.module('animationDemo', ['ngAnimate'])
 //code omitted
</script>

Now, we can add the CSS that we want ngAnimate to use while it adds and removes
the DOM elements from our list of players, as shown in the following code:

<style>
.player-repeat {
 line-height:40px;
 list-style:none;
 box-sizing:border-box;
}

.player-repeat.ng-move,
.player-repeat.ng-enter,
.player-repeat.ng-leave {
 -webkit-transition:all linear 0.2s;
 transition:all linear 0.2s;
}

.player-repeat.ng-leave.ng-leave-active,
.player-repeat.ng-move,
.player-repeat.ng-enter {
 opacity:0;
 max-height:0;
}

.player-repeat.ng-leave,

.player-repeat.ng-move.ng-move-active,

.player-repeat.ng-enter.ng-enter-active {
 opacity:1;
 max-height:40px;
}
</style>

Last but not least, we need to add the player-repeat class to our <tr> element
so that when ngAnimate adds its associated classes, based on the function that
ngRepeat is calling, the transition will take effect. A live example can be found at
http://jsfiddle.net/joshkurz/2uJzu.

http://jsfiddle.net/joshkurz/2uJzu

Chapter 8

[171]

We have successfully added animations to our application without writing any extra
JavaScript. Whoo Whoo. That's a win in my book. There are other directives in the
AngularJS core library that offer this type of plug and play as well. Some use different
classes, such as ng-show and ng-hide. We will go over how these classes actually
trigger animations and how ngAnimate knows how to animate them correctly.

CSS-based animations
Many core directives rely on the $animation service to perform DOM modification.
This is true whether or not ngAnimate is a dependency in an application. The
directives that use $animate can be animated with just CSS and do not need to have
custom logic implemented. Each core directive has its own DOM-related purpose,
which is related to the $animate function that it calls. Usually, core directives either
add and remove elements or add and remove classes to these elements.

The core directives that use $animate use the service so that the developer does not
have to write any extra code to achieve basic animations. These basic animations
usually include fading, rotating, blinking, or various other types of fluid movement.
The $animation service enables these animations by adding and removing certain
classes to an element that are supposed to be defined in CSS. If they are not defined
in CSS, then the animate service will just do the relevant DOM manipulation without
any delay in the execution time.

The classes that the $animate service adds and removes on the element are based on
the method that is called. Each function adds a set of classes that represent the state
of the animation based on the delay that is specified in the CSS. Yes, the $animate
service knows how long the CSS transition or keyframe animations are defined for.

The $animate service calculates an element's computed style to determine different
declarations that have been made in CSS. This is very important because this is how
the $animate service knows how long to wait before firing subsequent methods that
are waiting to be executed. The overall process is the base of how ngAnimate begins
its execution.

Working with ngClass and transitions
The following is a basic example of how to add a custom CSS animation to an
element; it only uses directives provided by the core to trigger the $animate service
to do its dirty work:

<html>
 <div class="bb-table-div">
 <table class="table">

Directives and Animations

[172]

 <thead>
 <th>Name</th>
 </thead>
 <tbody>
 <tr
ng-class="{'bb-cool-trick': superhero.hasEffect == true}"
ng-mouseenter="superhero.hasEffect = true;"
ng-mouseleave="superhero.hasEffect = false;"
ng-repeat="superhero in superheroes">
 <td>
 {{superhero.name}}
 </td>
 </tr>
 </tbody>
 </table>
 </div>
</html>

There is nothing special about this code. The only piece of code relative to the
$animate service is the ngClass directive. This directive uses the $animate service
to add and remove classnames, which will subsequently call the animate service to
look for calculated styles on the element that translate into animations. Every time
the mouse is entered or taken away, the ngClass directive will add or remove the
.bb-cool-trick class. This will call our defined animations, if we have any,
as follows:

<style>
.bb-cool-trick-add{
 background-color: skyblue;
}

.bb-cool-trick-add-active{
 font-weight: bold;
}

.bb-cool-trick {
 font-size: 16px;
 -webkit-transition:all linear 0.2s;
 transition:all linear 0.2s;
 padding:10px;
}
</style>

Chapter 8

[173]

The following is a flowchart that describes the animation actions from start to finish:

The main CSS class is .bb-cool-trick. This class could have settings inside of it that
change the background color, but we don't actually need the $animate service for
that. The relevant CSS classes that allow us to create a functionality, which would not
be possible without ngAnimate, are the .bb-cool-trick-add and .bb-cool-trick-
add-active classes. These classes are only part of the element during the transition, so
we can do cool things while the transition is going on. In this case, we make the whole
background color sky blue and the font bold. Once the transition is complete, the
background will return to its normal state, but the .bb-cool-trick class will still be
on the element unless the mouse pointer is moved away from the page.

As you can see from the preceding CSS, no .bb-cool-trick-remove class is
defined. This means that we will only animate the element when the mouse pointer
moves into the page, but we want to still make sure to call the removeClass method
so the style does not stay on the element. We call the removeClass method by setting
player.hasEffect to false, which subsequently tells ngClass to remove our class
from the element. The final output is a table that has rows, which have a very neat,
split-second hover effect.

Directives and Animations

[174]

Working with ngClass and animations
We can take the previous example one step further and show the details of
each super hero when the mouse enters the row. To do this, we will use the same
method as before; however, this time we will use keyframe animations to alter the
element's styles.

Keyframes are commonly used in CSS3 to create animations. The
ngAnimate module of AngularJS works perfectly with keyframe
stages and can detect the total animation delay given to each element
based on their class.

The following section will show you how to properly use keyframes with the
$animate service.

To add each superhero's powers to the tables, we will create an extra div element in
the table column element. This div element will have an ng-hide class in it when the
superhero.hasEffect variable is not true, as shown in the following code:

<tr ng-class="{'bb-cool-trick': superhero.hasEffect == true}" ng-
mouseenter="superhero.hasEffect = true;" ng-mouseleave="superhero.
hasEffect = false;" ng-repeat="superhero in superheroes">
 <td>
 {{superhero.name}}
 <div ng-class="{'bb-show-powers': superhero.hasEffect
== true, 'ng-hide': !superhero.hasEffect}">

 <li ng-repeat="power in superhero.powers">
 {{power}}

 </div>
 </td>
 </tr>

Once the superhero.hasEffect variable equals true, the .bb-show-powers class
will be added to div. During the same execution, the parent row element will receive
the .bb-cool-trick class. This means that the animation delay we set on bb-show-
powers will wait for the parent element to complete before it runs. No matter how
short the animation is on the child element, if the parent animation is longer, the
child element will have to wait for it to be completed to run its finished function.

Chapter 8

[175]

This timing is based on the CSS code, so be careful to make sure that the delays are
set up correctly. For the following example, we have set the same delays for both the
parent transition and child animations:

.bb-show-powers {
 animation: super-cool-animation 0.2s;
 font-size: 30px;
 background-color: skyblue;
}
@keyframes super-cool-animation {
 0% { opacity: 0; font-size: 10px;}
 50% {opacity: 0.5; font-size: 20px;}
 100% { opacity: 1; font-size: 30px;}
}

It's always best practice to use all of the browser's vendor namespaces
in front of each keyframe and animation declaration. We are omitting
these for the sake of simplicity.

The final effect of this addition to the example is best experienced firsthand. Refer to
http://angulardirectives.joshkurz.net/dist/#/animations for more details.

Working with ngIf and transitions
Let's go back to Chapter 4, Compiling the Advantages, where we built the recursive
treeNode directives. A tree-style menu is a perfect use case for an animation. The
menu should animate when it is expanded or collapsed. This is a natural animation
that people will expect to see when they are navigating within our application.

The best part about the new animation requirement is that we don't even have to
edit the directive to achieve the desired animation. Overall, this allows a faster
development time when integrating animations into applications, and it also shows
the logical separation of how animations are implemented in AngularJS.

The techniques used to animate the treeNode directives will be slightly different
from the previous example. There are differences because now the $animate service
is able to actually add and remove DOM elements.

We created two different treeNode directives that accomplish the exact same task.
Each of these directives will be animated in the same way. They both use the ngIf
directive to accomplish their conditional logic, which ultimately results in a dynamic
menu based on data model. The ngIf directive creates and removes DOM elements
based on the evaluation of a $scope expression.

http://angulardirectives.joshkurz.net/dist/#/animations

Directives and Animations

[176]

Once ngAnimate is included into the application, all that is needed to achieve the
desired animation is the addition of relevant CSS classes. This is true for any core
directive that uses the $animate service. There are many core directives that fire
animation events that add CSS classes to the element during the specified DOM
manipulation events. We can take advantage of these CSS classes with any of the
three available animation options. For the treeNode directive, we are going to use
CSS transitions to show how to wire up animations with the ngIf directive.

The original templates used for the treeNode directives use a CSS class that represents
each parent-level ul element. This CSS class is the base class that all of the animation
logic will be defined from.

For the sake of simplicity, in the following code, we are going to show the treeNode
directive that uses only transclusion:

 <div tree-node-no-template>
 <ul class="list-group">
 <li class="list-group-item">
 <span class="btn" ng-show="node.children && !node.
show" ng-click="node.show=!node.show">[+]
 <span class="btn" ng-show="node.children && node.show"
ng-click="node.show=!node.show">[-]
 {{node.name}}

 <li ng-if="$parent.node.show" class="list-group-item
childNode" ng-repeat="node in node.children" ng-transclude>

 </div>

This HTML describes a directive that uses a recursive technique to render its DOM.
The ngIf directive is the short circuit that tells the compiler when to add and remove
elements. Once an element is added or removed, a class is appended to the element
that has the ngIf directive specified on it. In this case, the element has a childNode
class attached to it. The childNode class will be the parent CSS class that we will use
to define the animations, as follows:

.childNode.ng-enter, .childNode.ng-leave {
 -webkit-transition:all 0.2s;
 transition:all 0.2s;
}

.childNode.ng-leave.ng-leave-active,

.childNode.ng-enter {
 opacity:0;
 max-height:0;

Chapter 8

[177]

}

.childNode.ng-leave,

.childNode.ng-enter.ng-enter-active {
 opacity:1;
 max-height:80px;
}

Here, we specify that we want the element to have opacity of 0 and max-height of
0px when it is first being entered or when it is actively leaving the element. We also
specify that when the element actively enters or when it first leaves the DOM, we
want the opacity to be 1 and the max-height to be 80px. This will give the menu
the appearance of collapsing upwards and downwards as it is being navigated.

This is all we have to do to get animations to work with our directive. Wiring up
core directives to use animations is easy, and wiring up custom directives to use
animations is just as simple.

JavaScript-based animations
There is a large argument going on in the community. On one side, there are the CSS
animators and on the other, the JavaScripters. Both sides believe that their version
of animation techniques is better than the other. The truth is that it depends on the
specific use case.

Luckily, AngularJS has the built-in ability to allow for both. The implementation
details, for JavaScript animations, are based around the same aspects of the CSS-based
animations in AngularJS. Everything is based around CSS classes. The CSS classes that
are added to an element can be a selector that is the key to an animation closure that
holds that class's specific animation logic.

AngularJS animation factory functions are built in the exact same way as services,
factories, directives, and other modules in AngularJS. They are used by injecting the
$animate service into a directive and calling the service functions on an element,
which will trigger an associated animation. The animation will only be triggered
if the focused element, which is passed into the animation service, has a class
associated with it that is also the name of an animation factory function. The function
can define any animation functions that it needs to accomplish its animation with.
These functions will ultimately do a DOM manipulation either before the animation
is completed or after. The difference depends upon the method that is called.

Directives and Animations

[178]

Let's say that we have a simple element that we want to cycle through animations
with a constant interval once it is appended into the DOM. This can be done very
easily, as shown in the following code:

app.directive('glowingDiv', ['$animate', function($animate){
 return {
 restrict: 'AC',
 scope: true,
 templateUrl: 'directives/demo/animations/animateMe.tpl.html',
 link: function(scope, element, attrs){

 var parentNode = element.parent();
 scope.addElement = function(){
 var toBeAnimatedNode = angular.element('<div
class="animateMe">Hey Animate Me</div>');
 $animate.enter(toBeAnimatedNode, parentNode, element);
 };
 }
 };
}]);

This is a super simple directive. All it does is append a new element to the directive's
element when a scope function is called. The relevant piece of code shows how the
element is appended. The $animate service calls the enter function, which takes the
new element, the parent, and the optional element that need to be appended to. This
is the same as calling element.append on the directive element.

The animateMe class, which is part of toBeAnimateNode, is the key that tells
AngularJS to animate the element when it enters DOM. An animation function must
be created to allow the animation to be executed.

The following is the animation factory function that describes the type of animation
that needs to be executed when an element with the '.animateMe' class is entered
into DOM:

app.animation('.animateMe', function(){
 return {
 enter: function(element, done){
 TweenMax.fromTo(element, 0.7, {
 boxShadow: "0px 0px 0px 0px rgba(0,255,0,0.3)"
 }, {
 boxShadow: "0px 0px 20px 10px rgba(0,255,0,0.7)",
 repeat: -1,
 yoyo: true,
 ease: Linear.easeNone,

Chapter 8

[179]

 onComplete: done
 });
 }
 };
});

The enter function is defined inside of the animation module. The ngAnimate
module does not force all functions to be defined inside of a module. There are more
available functions that can be called, but we are only worried about the enter
function. There are an infinite number of animations that can be defined on an
element. This creates a wonderful separation of logic inside of our directive.

We use TweenMax to provide the JavaScript animations to the element.
The logic is simple and to the point. When the element is entered into DOM,
it cycles between the two animations provided by TweenMax. The example can
be viewed at http://angulardirectives.joshkurz.net/dist/#/animations.

Custom effeckt.CSS animations
There are a couple of wonderful open source CSS animation libraries. One of these
libraries can be found at https://github.com/h5bp/Effeckt.css/. This library
has created many types of animations that are based purely on CSS. To accomplish
these animations, the library adds and removes different CSS classes to an element
and adjusts data attributes based on the type of animator that we need to execute.

The JavaScript that is used in this open source library is pretty robust. Some of the
examples are pretty advanced. One of the most impressive examples is a scrollable
list that does many different types of animations to its elements depending on the
direction of the scroll and the elements that are visible in the view port.

To wire this example up in AngularJS, we create a directive that attaches itself to a
list, which is repeated by ngRepeat. This directive's purpose will be to detect a scroll
event and calculate the class to be added to the element. The logic that we create to
provide the ability to detect the class to be added will be an Angular factory.

This factory determines the direction of the list that is being scrolled and whether
or not the element is in the view port. Refer to the following code:

app.factory('scrollDirectionFactory', function(){

 return function(){

 var lastScrollTop;

 return {

http://angulardirectives.joshkurz.net/dist/#/animations
https://github.com/h5bp/Effeckt.css/

Directives and Animations

[180]

 checkElement : function(elTop, elHeight, scrollHeight,
parentHeight) {
 var velocity;
 if (scrollHeight > lastScrollTop) {
 velocity = 'down';
 } else {
 velocity = 'up';
 }
 lastScrollTop = elTop;

 if (elTop - elHeight < scrollHeight && elTop +
elHeight > scrollHeight - parentHeight) {
 return true;
 } else if (elTop >= scrollHeight) {
 if (velocity === 'up') {
 return 'past';
 } else {
 return 'future';
 }
 } else if (elTop <= scrollHeight) {
 if (velocity === 'up') {
 return 'future';
 } else {
 return 'past';
 }
 }
 }
 };

 };

});

This factory function simply looks at different variables that determine where the
element is located in the list as it is being scrolled. There are three different return
values that describe the state of the element. The directive uses this factory function
to know which $animate function to call and what class to pass it to.

Let's first take a look at a test that proves that our directive is working as expected.
This test dispatches a scroll event on a precompiled effecktNode object. Once the
event is dispatched, the directive should call addClass five times because there will
be five child directives in the list. Since we are testing this code in karma, elTop and
scrollTop will always be 0. This means that based on the logic of our scroll direction,
the class being added will always evaluate to past. Refer to the following code:

Chapter 8

[181]

it('should call the addClass method when the element is scrolled',
function(){
 effecktNode[0].dispatchEvent(scrollEvent);
 expect($animate.addClass.callCount).toBe(5);
 expect($animate.addClass.mostRecentCall.args[1])
 .toBe('past');
});

This directive allows each element in its list to be animated in different ways,
as follows:

app .directive('bbCustomEffecktList', ['$animate',
'scrollDirectionFactory', function ($animate, scrollDirectionFactory)
{

 var scrollService = scrollDirectionFactory();

 return {
 restrict: 'AC',
 link: function (scope, element, attrs) {

 var elHeight = element[0].offsetHeight;

 function animateList(event) {

 var scrollTop = event.currentTarget.scrollTop +
 elHeight,
 children = element.find('li'),
 childTop,
 childHeight;

 for (var i = 0; i < children.length; i++) {

 var childEl = angular.element(children[i]);
 childTop = children[i].offsetTop;

 if(!childTop || !childHeight){
 childHeight = children[i].offsetHeight;
 }

 if (isIn =scrollService.checkElement(childTop,
 childHeight, scrollTop, elHeight)) {

 if (isIn === true) {
 $animate.addClass(childEl, 'normal');

Directives and Animations

[182]

 } else if (isIn === 'past') {
 $animate.addClass(childEl, 'past');
 } else if (isIn === 'future') {
 $animate.addClass(childEl, 'future');
 } else {
 $animate.addClass(childEl, 'future');
 }
 }
 }
 }

 element[0].addEventListener('scroll', animateList);
 }
 };
}])

The bbCustomEffecktList directive runs a loop of the element's child directive
every time that element is scrolled. Once the scroll event is fired, we detect the
class that should be added to the element. The class that is added to the element
will trigger a JavaScript animation that is defined in a relevant animation factory
function. Refer to the following code:

app.animation('.effeckt-list-item', function() {
 return {

 addClass : function(element, className, done) {

 function realDone(){
 if(className === 'normal'){
 element.removeClass('past');
 element.removeClass('future');
 } else if(className === 'future'){
 element.removeClass('normal');
 element.removeClass('past');
 } else {
 element.removeClass('normal');
 element.removeClass('future');
 }
 done();

Chapter 8

[183]

 }

 if(className === 'future'){
 TweenMax.from(element, 1.5, {opacity: 0, rotation:-360,
 transformOrigin:"left 50% 200", onComplete: realDone});
 } else if(className === 'normal'){
 TweenMax.to(element, 0.5, {opacity: 1, left: 0, rotation:
 0, onComplete: realDone});
 } else if(className === 'past') {
 TweenMax.to(element, 1.5, {opacity: 0, rotation:360,
 transformOrigin:"left 50% -200", onComplete: realDone});
 }
 }
 };
});

There are three different types of animations that can be executed according to this
animation function. Each animation is determined based on the class that is added to
the element. There are a couple of important takeaways from this function. The most
important is the done function being called after every animation is complete.

The done function is the most important piece of code that any AngularJS JavaScript
animation can call. This function tells AngularJS that the animation is complete, which
fires the DOM close callback function. This is crucial to the overall animation process.
Without calling the done function, there will inevitably be issues with the $animation
code, which is related to the DOM elements not acting in an expected way.

The other important takeaway from this module is how the classes are removed in
the realDone function. The realDone function holds custom logic that needs to be
executed once the animation is complete. We just remove the classnames, even if the
class is not present. The key is that anything can be accomplished inside of a custom
done function. This allows for specific logic to be accomplished, which ensures
that animations act accordingly. The final example can be viewed on the animation
example on the black belt demo site.

Directives and Animations

[184]

Summary
AngularJS has integrated a seamless animation library into its core. The ability
to separate all animation logic from individual directives is very orthogonal and
nonevasive. All animations in AngularJS are based around CSS classes. The two
main types of animations that can be achieved are as follows:

• CSS-based animations
• JavaScript-based animations

Each of these types of animations has their own specific use case. CSS animations
are best used for simple, data-driven animations that need to offer fast-appealing
transitions. JavaScript animations are best for more advanced types of animations.
These advanced animations work seamlessly with animation factory functions.

To support animations in an AngularJS application, all that is needed is the
ngAnimate module and custom animation declarations. These declarations can
either be placed in JavaScript or CSS. This allows for a very nice decoupling
between DOM and animation logic.

Conclusion
Directives offer developers many ways to accomplish functionalities in a simple,
efficient, and testable manner. Many of these different techniques are common
sense, and some must be discovered by research and practice. The overall point of
a directive is to hide DOM-related complexity and create a solid medium between
the model and the view.

Directives are the glue that connects DOM and the model together in MV*
methodologies. In AngularJS-specific terms, this means connecting the scope
together with the template views. Once the two are working together in unison,
the application gets the ability to keep the model as its "source of truth".

If an application can accomplish the architectural feat of only using one model for the
view and the controller, then that application should have a much better chance to
succeed in today's market. A large part of the complexity inside an application comes
by way of editing different sets of data, which achieve ultimately the same result.
AngularJS gives us the ability to design and architect organized application logic.

There are many ways to represent a model and many ways to edit it from inside of
a directive. The directive definition object was created to allow different ways to
instruct a directive on how it should display and edit its associated model or models.

A directive's building blocks
The different options for definition objects and how to use them correctly is what
this entire book is about. Some of the options are simple and can be covered in a
few paragraphs, but some of the options are very detailed and deserve much more
coverage. A directive's use case should be broken down to decide what definition
objects need to be used for a given directive.

Conclusion

[186]

In Chapter 2, Building a Stopwatch Directive, we created a stop watch directive to show
how to use a combination of these directive options. The following is a code snippet
of the stopwatch's definition object:

 return {
 restrict: 'EA',
 scope: {options: '='},
 controller: 'stopwatchCtrl',
 transclude: true,
 compile: function(tElem, tAttrs){
 //code omitted
 }
 };

This object uses many different options, each of which accomplish specific tasks
that are crucial to the stopwatch's functionality. The restrict option simply means
that the AngularJS compiler will only look for stopwatch elements or attributes on
elements as it traverses DOM. The stopwatch can be declared on any element inside
of DOM, which means that it is not bound to any certain DOM structure. This is
because of the powerful transclusion option that allows a directive to use either
its entire HTML or just its inner HTML. The controller and scope options allow
the stopwatch to communicate with its surrounding elements and ultimately help
render the view with the correct elapsed time value. The final option is compile.
The compile option is intrinsic and has much complexity involved with it. A link
function could be used here instead, which is what the compile function returns.
Essentially, the compile function is for optimization purposes and simple DOM
transformations, and the link function is for DOM manipulation in correlation with
an AngularJS scope object.

Third-party libraries
Common third-party libraries such as jQuery, work wonderfully with AngularJS.
Many third-party libraries focus on fast DOM-level manipulation. This DOM-level
manipulation has been notoriously coupled with business logic that it does not need
to be coupled with.

Anytime a DOM-related method is needed, a directive is also needed. The transition
from a normal jQuery mindset can be difficult to achieve in the beginning. One of the
easiest ways to transition ideology is to make sure that you only use DOM-related
methods inside of directives.

Chapter 9

[187]

There are many wonderful, third-party libraries that accomplish complicated tasks
with relatively no extra work. These libraries can be very important in the time line
of a project, as there is no point in reinventing the wheel. Any third-party library can
be incorporated into an AngularJS application.

The community has written many great directives that prove integration examples
with third-party libraries or just explain how to use pure custom directives. It is
important to be able to write custom directives that accomplish specific use cases.
Every project has their own specialties and custom nuances that require specific
attention and custom logic. Once the possibility of wrapping any third-party
library into AngularJS has been mastered, more complex directives can be written.

The compile cycle
To understand directives fully, it is imperative to understand the internal processes of
the AngularJS compile cycle. The compile cycle is an advanced topic that when broken
down into its finite elements becomes simple and digestible. The overall concept of the
compile cycle is a depth-first search of an element and its child elements that collects
directives and runs their associated, defined instructions. These instructions are
synchronously called on the DOM element at specified times in the depth-first search.
This process is broken down by smaller processes, which allows for an overall simple
function that converts the entire DOM into an AngularJS application.

The compile function must be run at the beginning of an application's life cycle and
can be run anytime thereafter. Directives should always be in charge of compiling
new elements into the DOM, unless dealing with callbacks from third-party libraries
that are wrapped with a directive themselves. Directives that compile and create
dynamic DOM in association with a scope object are powerful tools that create the
ability to provide many use cases with simple and effective logic.

Testing directives
Another great way to show non-JavaScript experts how an application's logic should
work in certain situations is to allow them to read the application's tests. AngularJS has
been built with a Test Driven Development (TDD) mindset. This book has made sure
to showcase this philosophy by testing each directive thoroughly. The tests have been
discussed in detail and each decision has been broken down and explained.

Conclusion

[188]

Almost all directives should be tested. The thoroughness of the tests depends on
the complexity of the logic created inside of the directive. All business logic that is
declared inside of a directive should be tested. The creation of DOM elements should
be tested as well. There are different methods of testing directives, but each method
should ensure that the directive accomplished its use cases with many different
inputs and environment variables.

There are multiple types of tests that are needed to prove different directives. Some
of the more intrinsic tests are actually called integration tests. These tests bring in
multiple modules at once and test their involvements with each other. These types of
tests can be very important to ensure the health of an application.

Integration tests usually deem some type of communication.

Directive intercommunication
There are many different ways to accomplish successful communication between
different modules and directives. This book discusses the different communication
methods in detail, with a plethora of different examples and diagrams to help
illustrate the details.

To help display all of the examples created in this book, the website http://
angulardirectives.joshkurz.net/ was created so that the live examples can
be viewed in action. This website has all of the directives that we have written as
examples to showcase their uses and final output. Many examples of directive
communication, templated directives, and third-party libraries integrated with
directives have been covered in this book.

Two examples were created to showcase how to display data that is communicated
via HTTP. One is a Bootstrap's Typeahead directive (by the AngularUI Bootstrap
team https://github.com/angular-ui/bootstrap) that queries YouTube videos
while incorporating a D3 bar graph of the results. The other example is a D3 line
chart that communicates with a socket library that pushes data to the view and
updates the line chart. The important details of these directives are how they receive
their data and update their views. There are different methodologies of how a
directive should watch data and call its main function.

http://angulardirectives.joshkurz.net/
http://angulardirectives.joshkurz.net/
https://github.com/angular-ui/bootstrap

Chapter 9

[189]

Quality and performance
The performance and organization of a website is something that directives play
a huge role in. Directives offer different possibilities of facades and other design
patterns inside of HTML markup. Directives can also drastically increase or decrease
the performance in an AngularJS site. This is because they play directly with the
digest cycle, which determines whether an item has changed or not.

AngularJS uses dirty checking to accomplish data binding. This data binding consists
of many watchers that check variables for changes. These watchers can drastically slow
a page down as they are very expensive in large numbers. There are ways to make sure
the amount of watchers does not exceed an amount that causes "jank" in a page.

In this book, we discussed in detail a custom set of directives that only allow for
bindings to occur once. This set of directives was tested with http://jsperf.com/
to show how higher performance can be achieved using techniques of this nature.
We also discussed where AngularJS could be heading in future and how these
performance issues will be solved at the core.

Creating views that use minimal amounts of HTML can be a big time saver. AngularJS
provides many ways to create quality templates that have focused, to-the-point logic
and contain only relative markup. Some even say that AngularJS is the new HTML6,
but the reality is that the Web is heading in a direction at a speed that only gets faster.
The speed and momentum of the Web will force HTML6 to be more agile and allow
for valid customizations to occur to a specific domain's core elements.

Animations
Once performance and organization have been taken care of and the site is running
smoothly, it is time to add some sugar to it. The sugar that we have to offer is some
sweet animations that work perfectly with core and custom AngularJS directives.
Using CSS as the base of all of the animations, we are able to achieve many simple
and advanced animations. The animation library that has been created by AngularJS
is changing quickly, but the idea of being able to use JavaScript or CSS animations is
never going to change.

The examples regarding animations in this book were basic, but showcased some
powerful techniques. We created a directive that alternates in a glowing fashion,
as well as a list that mimics Effeckt.css animations with no third-party libraries.
Animations with AngularJS are intuitive and fun once the initial learning curve
is overtaken.

http://jsperf.com/

Conclusion

[190]

Summary
Directives offer so many advantages to an application. Some of the biggest
advantages include data binding, templating options, and cross-scope
communication. A directive offers the ability to organize all DOM-related logic in
a manner that ensures that all the DOM logic has been created and can safely be
manipulated or have event handlers attached.

AngularJS development processes are new and different from normal JavaScript
frameworks. The advantages of using AngularJS to create rich web applications are
immense and have opened up new doors. Many developers are using these doors
across the world to create amazing applications with new, interesting directives at
their core. Directives are the main reason AngularJS is so popular, and they will
continue to be that reason.

Index
Symbols
$apply function 56, 63
$apply method 38, 68
$broadcast function 113
$compile function 39, 71
$compile service

requisites 72, 73
$compile service method 38
$digest function 157
$httpBackend functions

URL 137
$interval.flush function 45
$q library 129-131
$rootScope.data

deep watch, performing 132
shallow watch, performing 132-134

$rootScope function 113

A
angular.element object 39
AngularJS

about 154
data, watching 131, 132

AngularJS code quality
DOM manipulation functions 155, 156
templates, need for 154, 155

angular.module function 37, 90
AngularUI repository

URL 64
animations

about 189
and ngClass, working with 174, 175

providing 168-170
apply method 68

B
Batarang 157
bbBarChart

E2E tests, writing for 145, 146
bbBroadcastingPlayer directive

implementing 116
integration test, writing for 114, 115

bbOneBinders directive
about 161, 162
problem, solving with 160
testing 162-165

bbPhoneDetails directive
testing 135-139
writing 140, 141

bbPlayerContainer
implementing 119, 120

bbPlayer directive
controllers, used for 118
implementing 119, 120
integration testing 118

bbStockChart
E2E tests, writing for 150, 151

bbStopLight directive 28
bbStopwatch function 41, 47
beforeEach function 44
Black Belt repo

URL 140
building blocks, directives 185, 186
business logic

about 42-44
testing 44-46

[192]

C
calendar directive 60, 61
calendar initialization

testing 62-64
child scope 13, 14
communication

scope objects, used for 99
compile cycle 187
compile function 25, 27, 47
Compile option 25-27
controllerAs field 20
controller option 17, 19
controllers

benefits 117, 118
collaborating with 117
fastClicker directive, creating 120
used, for bbPlayer directive 118

creation tests 38, 39
Cross-Origin Resource Sharing (CORS) 90
CSS-based animations

about 171
ngClass and transitions 171-175
ngIf and transitions 175-177

currentValue function 58
custom effeckt.CSS animations 179-183

D
D3

about 141
stockTicker directive 146-150
working with 141
YouTube views bar chart 142-144

data
watching, in AngularJS 131, 132

dataUrl function 59
deep watch

performing, on $rootScope.data 132
definition object 30
digest cycle 157-159
Directive Definition Object API

Compile option 25-27
controllerAs field 20
controller option 17, 19
link definition option 27-29
priority integer 11

replace field 23
require field 19, 20
Restrict field 20, 21
scope 12-17
template option 21, 22
TemplateUrl option 23
terminal field 11, 12
Transclude option 23-25

directive intercommunication 188
directives

about 10, 11, 185
driving 128, 129
managing 135
methods, using 131
optimizing 156
testing 135, 187, 188

directives, third-party libraries
testing 54, 55

dirty checking 157
Document Object Model (DOM) 9
DOM manipulation functions 155, 156
done function 183

E
E2E tests

writing, for bbBarChart 145, 146
writing, for bbStockChart 150, 151

elapsedTime function 44
elapsedTime object 46
ES6 (ECMAScript6) 129

F
factory function 180
fastClicker directive

creating 120
integrating, with stopwatch

directive 123-125
integration testing 121, 122
requisites 121
writing 122

fastRunner directive
implementing 108
integration testing 108
requisites 106

flowplayer method 87

[193]

flowplayer templates
using 92-94

fullCalendar directive
initialization, testing 62-64
MVC functionality, testing 62-64
testing 62
writing 64-68

fullCalendar method 61-63, 67

G
gauge directive

testing 55, 56
writing 56-58

gauge.js file
about 55
gauge directive, testing 55, 56
gauge directive, writing 56-58
URL 55

H
hash object 41
hello attribute 23
HTML 154

I
integrated directives

integration tests 98, 99
testing 97

integration testing, bbPlayer directive 118
integration testing, fastClicker

directive 121, 122
integration testing, fastRunner directive 108
integration tests 98, 99
integration tests, wasFast directive 103-105
interval.flush() function 47
isolateScope method 59
isolate scopes

$rootScope function 113
about 13-15
broadcasting, to other directives 113
media players, communicating with 114
one-way data binding 110
two-way data binding 110
using 109-112

J
JavaScript 51
JavaScript-based animations

about 177-179
custom effeckt.CSS animations 179-183

K
Karma, setting up

URL 36
killTimer method 46

L
link definition option 27-29
link function 28, 47, 72, 105
logText function 106

M
mediaelement templates

using 91, 92
media player directive

about 85
breaking 90
flowplayer templates, using 92-94
mediaelement templates, using 91, 92
requisites 85
testing 86, 87
writing 87

media players
communicating with 114
integration test, writing for

bbBroadcastingPlayer
directive 114, 115

mediaType attribute 88
MVC functionality

testing 62-64

N
ngClass

and animations, working with 174, 175
and transitions, working with 171-173

ngIf
and transitions, working with 175-177

[194]

ng-repeat function 111
ngRepeat function 75
ng-transclude attribute 25
ng-transclude function 74

O
one-time bindings

advantages 159
URL 160

one-way data binding 110
options attribute 41

P
performance

monitoring, tools used 157
performance, directives 189
Polymer

URL 134
priority integer 11
promise objects 129
Protractor

URL 142
PubNub

URL 146
pubnubService function 146

Q
Q library

URL 129
quality, directives 189

R
realDone function 183
recursive directive

creating 77, 78
templateUrl, used with treeNode

directive 78
transclusion, used with treeNode

directive 78-81
tree directive 78

reflows
URL 156

removeClass method 173

replace field 23
require field

about 19, 20
options 19

resolve function 130
resolving data 129
Restrict field 20, 21
Restrict options 21
runnerSpeed variable 112

S
scope 12-17, 157
scope.currentValue variable 58
scope function 39, 178
scope interaction tests

writing 58-60
scope objects

child scopes, using 100, 101
fastRunner directive, creating 106, 107
used, for communication 99
wasFast directive, creating 102

scope types
child scope 13
isolate scope 13

self object 44
shallow watch

performing, on $rootScope.data 132-134
Stack Overflow post

URL 114
stockTicker directive 146-150
stopTimer method 45
stopwatch

business logic 42-44
creation tests 38, 39
directive tests, using 36, 37
filter 49
optimizing 47, 48
requisites 34, 35
writing 40, 41

stopwatch attribute 123
stopwatch directive

fastClicker directive, integrating
with 123-125

URL 42
StopwatchFactory function 41, 42

[195]

stopwatchService function 41, 46
subscribe function 47
superhero.hasEffect variable 174
svgService.changeColor method 29

T
template function 22
template option 21, 22
templates

compiling 84, 85
templateUrl

used, with treeNode directive 78
templateUrl directive interpolation

disadvantages 85
templateUrl function 23
TemplateUrl option 23
terminal field 11, 12
Test Driven Development (TDD) 36
third-party libraries

about 186, 187
incorporating 52, 53

throttle function
URL 147

tools
used, for monitoring performance 157

transclude function 24
Transclude option 23-25
transclude property 77
transclusion

URL 73
used, in directive 73-77
used, with treeNode directive 78-81

transclusion function 76

transitions
and ngClass, working with 171-173
and ngIf, working with 175-177

tree directive 78
treeNode directive

templateUrl, using with 79
testing 79-83
transclusion, using with 78-81

treeNode function 82, 83
treenodeNoTemplate directive 83, 84
treeNodeTemplate directive 80, 81
trustAsResourceUrl method 90
two-way data binding 110

U
UI-Router 128
uiTypeahead directive

URL 142
unit testing 103
updateTime function 39, 45

W
wasFast directive

implementing 105, 106
integration tests 103-105
requisites 102
unit testing 103

watcher function 157
watch function 56
widget 134
window.setInterval method 42

Y
YouTube views bar chart 142-144

Thank you for buying
Mastering AngularJS Directives

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant AngularJS Starter
ISBN: 978-1-78216-676-4 Paperback: 66 pages

A concise guide to start building dynamic web
applications with AngularJS, one of the Web's most
innovative JavaScript frameworks

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Take a broad look at the capabilities of
AngularJS, with in-depth analysis of its
key features.

3. See how to build a structured MVC-style
application that will scale gracefully in
real-world applications.

AngularJS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamic directives to fuel your
single-page web applications using AngularJS

1. Learn how to build an AngularJS directive.

2. Create extendable modules for plug-and-play
usability.

3. Build apps that react in real time to changes
in your data model.

Please check www.PacktPub.com for information on our titles

Dependency Injection with
AngularJS
ISBN: 978-1-78216-656-6 Paperback: 78 pages

Design, control, and manage your dependencies with
AngularJS dependency injection

1. Understand the concept of dependency injection.

2. Isolate units of code during testing JavaScript
using Jasmine.

3. Create reusable components in AngularJS.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
AngularJS applications.

Please check www.PacktPub.com for information on our titles

	Preface
	The Tools of the Trade
	Introduction to directives
	Directive Definition Object API
	Priority
	Terminal
	Scope
	Controller
	Require
	ControllerAs
	Restrict
	Template
	TemplateUrl
	Replace
	Transclude
	Compile
	Link
	Wrapping up definition objects

	Summary

	Building a Stopwatch Directive
	Breaking down the stopwatch
	Stopwatch requirements
	The basics of testing
	Creation tests

	Writing the stopwatch
	Stopwatch's business logic
	Business logic tests

	Optimizing the stopwatch
	Stopwatch's filter

	Summary

	Harnessing External JavaScript Libraries
with Directives
	Incorporating third-party libraries
	Testing directives that use third-party libraries
	Wrapping the gauge.js file
	Testing the gauge directive
	Writing the gauge directive
	Writing scope interaction tests

	Wrapping the fullCalendar.js file
	Introduction to the calendar directive
	Testing the fullCalendar directive
	Testing the calendar's initialization and MVC functionality

	Writing the fullCalendar directive

	Summary

	Compiling the Advantages
	Common use cases for compiling
the DOM
	Using transclusion in a directive
	Unveiling transclusion

	Creating recursive directives
	The custom recursive tree directive
	Using transclusion and a templateUrl with the treeNode directive
	Testing the treeNode directive
	The treeNodeTemplate directive

	The treeNode directive using only transclusion
	Testing the treeNode directive
	The treenodeNoTemplate directive

	Compiling templates and their many values
	Introduction to the media player directive
	Requirements for the media player directive
	Testing the media player directive
	Writing the media player directive
	Breaking the media player directive down

	Utilizing advanced templates
	The mediaelement templates
	The flowplayer templates

	Summary

	Communication between Directives
	Testing integrated directives
	Integration tests

	Using scope objects for communication
	Using child scopes
	Creating a wasFast directive
	Unit testing
	Integration tests
	Implementing the wasFast directive

	Creating a fastRunner directive
	Integration testing
	Implementing the fastRunner directive

	How to use isolate scopes
	Relying on the $rootScope function
	Broadcasting to other directives
	Communicating with media players
	Integration testing for the bbBroadcastingPlayer directive
	Implementing the bbBroadcastPlayer directive

	Collaborating with controllers
	Requiring the basics
	Using controllers for the bbPlayer directive
	Integration testing
	Implementing the bbPlayer and bbPlayerContainer directives

	Creating a fastClicker directive
	Integration testing
	Writing the fastClicker directive
	Wiring up the stopwatch

	Summary

	Working with Live Data
	Techniques that drive directives
	The $q library
	How should data be watched for changes?
	Doing a deep watch on $rootScope.data
	Doing a shallow watch on $rootScope.data

	Directives can be in charge
	Testing directives that control data
	Testing bbPhoneDetails

	Writing the bbPhoneDetails directive

	Working with D3
	The YouTube views bar chart
	The stockTicker directive

	Summary

	Optimization and
Code Quality
	AngularJS code quality
	The importance of templates
	Necessary DOM manipulations

	Optimization of the directives
	Tools for monitoring performance
	The digest cycle

	Less bindings yield faster results
	Solving the problem with the bbOneBinders directive
	The bbOneBinders directive
	The bbOneBinders tests

	Summary

	Directives and Animations
	Providing animations
	CSS-based animations
	Working with ngClass and transitions
	Working with ngClass and animations
	Working with ngIf and transitions

	JavaScript-based animations
	Custom effeckt.CSS animations

	Summary

	Conclusion
	A directive's building blocks
	Third-party libraries
	The compile cycle
	Testing directives
	Directive intercommunication
	Quality and performance
	Animations
	Summary

	Index
	h.97b62gaiby2z
	h.gjdgxs
	_GoBack
	_GoBack
	_GoBack
	h.gjdgxs
	h.gjdgxs
	h.1fob9te
	_GoBack
	_GoBack
	h.gjdgxs

