
www.allitebooks.com

http://www.allitebooks.org

Mastering D3.js

Bring your data to life by creating and deploying
complex data visualizations with D3.js

Pablo Navarro Castillo

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering D3.js

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1180814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-627-0

www.packtpub.com

Cover image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Pablo Navarro Castillo

Reviewers
Andrew Berls

Simon Heimler

Lars Kotthoff

Nathan Vander Wilt

Commissioning Editor
Edward Gordon

Acquisition Editors
Nikhil Chinnari

Mohammad Rizvi

Content Development Editor
Sankalp Pawar

Technical Editors
Indrajit A. Das

Humera Shaikh

Copy Editors
Dipti Kapadia

Deepa Nambiar

Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Rekha Nair

Priya Subramani

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Pablo Navarro Castillo is a mathematical engineer and developer. He earned
his Master's degree in Applied Mathematics from École des Mines de Saint-Etienne
in France. After working for a few years in operations research and data analysis,
he began to work as a data visualization consultant and developer.

He has collaborated with Packt Publishing as a technical reviewer for Data Visualization
with D3.js and Data Visualization with D3.js Cookbook. In 2014, he founded Masega, which
is a data visualization agency based in Santiago, Chile, where he currently works.

I wish to thank the Packt Publishing team for their collaboration
in the inception and development of this book. I am also grateful
to the technical reviewers, whose insightful comments and kind
suggestions have been essential to improve the content and
examples of every chapter.

To Miriam, for her patience and continuous support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Andrew Berls is a Ruby and JavaScript developer who lives in Santa Barbara, CA.
He has developed dashboards for www.causes.com using D3.js to visualize social
networks and recently acted as a reviewer for Data Visualization with D3.js Cookbook,
Packt Publishing. Andrew recently completed his degree in Computer Science at the
University of California, Santa Barbara. When he's not programming, you can find
him attempting to cook or hiking up a mountain.

Andrew regularly blogs about web technologies at http://www.andrewberls.com.

Simon Heimler is currently studying and working as a research assistant at
the University of Applied Research in Augsburg in the field of Semantic Content
Management. He has a degree in Interactive Media and over a decade of experience
with web design and development.

www.allitebooks.com

www.causes.com
http://www.allitebooks.org

Lars Kotthoff is a postdoctoral researcher at University College Cork, Ireland,
where he uses artificial intelligence methods to make software faster and better.
When he is not researching ways to make computers more intelligent, he plays
around with JavaScript visualizations. He has extensive experience with D3.js.

Nathan Vander Wilt is a freelance software developer. He offers clients a wide
range of expertise, including everything from creating HTML5 and native application
interfaces to developing low-level control software for embedded and wireless
systems. He especially enjoys solving problems such as peer-to-peer syncing or the
many challenges of digital cartography. In order to stay sane in the suburbs, Nate also
enjoys raising plants, fish, snails, honeybees, chickens, and rabbits with his family.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Data Visualization 7

Defining data visualization 9
Some kinds of data visualizations 10

Infographics 12
Exploratory visualizations 13
Dashboards 14
Learning about data visualization 15

Introducing the D3 library 16
Summary 20

Chapter 2: Reusable Charts 21
Creating reusable charts 21

Creating elements with D3 22
Binding data 23
Encapsulating the creation of elements 25
Creating the svg element 26

The barcode chart 27
Accessor methods 28
Chart initialization 29
Adding data 30
Adding the date accessor function 32
Updating the dataset 35
Fixing the enter and exit transitions 36

Using the barcode chart 37
Creating a layout algorithm 40

The radial layout 40
Computing the angles 43

Using the layout 45
Summary 47

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Creating Visualizations without SVG 49
SVG support in the browser market 49
Visualizations without SVG 50

Loading and sorting the data 50
The force layout method 51
Setting the color and size 54
Creating a legend 59

Polyfilling 62
Feature detection 62
The canvg example 63

Using canvas and D3 66
Creating figures with canvas 66

Creating shapes 68
Integrating canvas and D3 68

Summary 72
Chapter 4: Creating a Color Picker with D3 73

Creating a slider control 73
The drag behavior 74
Creating the slider 75
Using the slider 80

Creating a color picker 81
The color picker selector 82

Adding the color picker window 84
The color picker window 85

Summary 89
Chapter 5: Creating User Interface Elements 91

Highlighting chart elements 91
Creating tooltips 96

Using the tooltip 99
Selecting a range with brushing 101

Creating the area chart 102
Adding brushing 105
The brush listener 107

Summary 108
Chapter 6: Interaction between Charts 109

Learning the basics of Backbone 110
Events 110
Models 110
Collections 110

Table of Contents

[iii]

Views 111
Routers 111

The stock explorer application 112
Creating the stock charts 114

The stock title chart 114
The stock area chart 115

Preparing the application structure 120
The index page 121

Creating the models and collections 122
The stock model 122
The stock collection 123
The application model 124

Implementing the views 125
The title view 125
The stock selector view 126
The stock context view 129
The stock detail view 131
The application view 132

Defining the routes 135
Initializing the application 137

Summary 138
Chapter 7: Creating a Charting Package 139

The development workflow 140
Writing the code 140
Creating a release 141

Semantic Versioning 141
Creating the package contents 142

The heat map chart 144
The matrix layout 153

The project setup 157
Installing the Node modules 157
Building with Grunt 158

Concatenating our source files 159
Minifying the library 161
Checking our code with JSHint 162
Testing our package 163
Registering the sequences of tasks 171

Managing the frontend dependencies 172
Using the package in other projects 174
Summary 177

Chapter 8: Data-driven Applications 179
Creating the application 179

The project setup 180

Table of Contents

[iv]

Generating a static site with Jekyll 183
Creating the application components 187

Creating the models and collections 188
Creating the views 194
The application setup 200

Hosting the visualization with GitHub Pages 204
Hosting the visualization in Amazon S3 205

Configuring Jekyll to deploy files to S3 206
Uploading the site to the S3 bucket 206

Summary 207
Chapter 9: Creating a Dashboard 209

Defining a dashboard 209
Good practices in dashboard design 211
Making a dashboard 212

Defining the purpose of the dashboard 213
Obtaining the data 214
Organizing the information 216
Creating the dashboard sections 217

The students section 217
The courses section 218
The class section 219

Gathering the dashboard sections 220
Summary 221

Chapter 10: Creating Maps 223
Obtaining geographic data 225

Understanding the GeoJSON and TopoJSON formats 226
Transforming and manipulating the files 230

Creating maps with D3 231
Creating a choropleth map 232
Mapping topology 239
Using Mapbox and D3 248
Creating a Mapbox project 249
Integrating Mapbox and D3 251

Summary 256
Chapter 11: Creating Advanced Maps 257

Using cartographic projections 257
Using the Equirectangular projection 258
The Conic Equidistant projection 260
The Orthographic projection 262

Creating a rotating globe 263

Table of Contents

[v]

Creating an interactive star map 268
Choosing our star catalog 269
Drawing the stars 271
Changing the projection and adding rotation 272
Adding colors and labels to the stars 274

Projecting raster images with D3 276
Rendering the raster image with canvas 278
Computing the geographic coordinates of each pixel 280
Reprojecting the image using the Orthographic projection 281

Summary 285
Chapter 12: Creating a Real-time Application 287

Collaborating in real time with Firebase 287
Configuring Firebase 288
Integrating the application with Firebase 289

Creating a Twitter explorer application 291
Creating the streaming server 293

Using the Twitter-streaming API 293
Using Twit to access the Twitter-streaming API 294

Using Socket.IO 297
Implementing the streaming server 302

Creating the client application 308
The application structure 309

Models and collections 310
Implementing the topics views 313
Creating the application view 319
The application setup 321

Summary 325
Index 327

Preface
D3 is an amazing library. On its website, there are hundreds of beautiful examples,
visualizations, and charts created mainly with D3. Looking at the examples, we
soon realize that D3 allows us to create an uncanny variety of visuals. We can find
everything from simple bar charts to interactive maps.

The ability to create almost anything with D3 comes at a price; we must think
about our charts at a more abstract level and learn how to bind data elements with
elements in our page. This association between properties of our data items and
visual attributes of the elements in our chart will allow us to create complex charts
and visualizations.

In real-life projects, we will have to integrate components and charts created with
D3 with other components and libraries. In most of the examples in this book, we
will cover how to integrate D3 with other libraries and tools, creating complete
applications that leverage the best of each library.

Through the examples of this book, we will cover reusable charts using external data
sources, thereby creating user interface elements and interactive maps with D3. At
the end, we will implement an application to visualize topics mentioned on Twitter
in real time.

D3 is a great tool to experiment with visuals and data. I hope you will have fun
following the examples in this book and creating your own visualizations.

What this book covers
Chapter 1, Data Visualization, provides us with examples of interesting visualization
projects and references that help us learn more about data visualization. We also
review some examples of historical relevance and discuss what makes D3 a good
tool to create data-visualization projects.

Preface

[2]

Chapter 2, Reusable Charts, focuses on how to create configurable charts that can
be used in several projects. In this chapter, we discuss how to use selections to
manipulate elements in a web page and use this to create a reusable barcode chart
from scratch. We also create a custom layout algorithm and use it to create a radial
bar chart.

Chapter 3, Creating Visualizations without SVG, discusses the current state of SVG
support in the browser market and provides some strategies to create visualizations
that work in browsers that don't have SVG support. We create an animated bubble
chart using div elements, learn how to detect whether the browser supports SVG,
and use polyfills to render SVG figures using the HTML5 canvas element. We also
learn how to create visualizations using D3 and canvas.

Chapter 4, Creating a Color Picker with D3, introduces concepts that allow us to create
user interaction elements and controls. In this chapter, we use the D3 drag behavior
and the reusable chart pattern to create a slider control. We use this control to create
a color picker based on the CIE Lab color model, which is also a reusable chart.

Chapter 5, Creating User Interface Elements, discusses how to use event listeners
to highlight elements in a chart. We also discuss how to create tooltips and how
to integrate these tooltips with existing charts. We create an area chart and use the
brush behavior to select a range in the chart.

Chapter 6, Interaction between Charts, discusses how to use Backbone to create
structured web applications, separating data from its visual representation, and how
to integrate D3 charts in this architecture. We will learn how to implement models,
views, collections, and routes in order to keep a consistent application state. We will
use this to create an application to explore the time series of stock prices using the
area chart implemented in Chapter 5, Creating User Interface Elements.

Chapter 7, Creating a Charting Package, introduces the development workflow to create
a charting package using D3. We introduce tools and best practices to implement,
organize, and distribute the package. We will also create a sample project that uses
the charting package as an external dependency.

Chapter 8, Data-driven Applications, provides us with an example of a web application
and introduces tools to deploy visualization projects. We create an application that
uses the World Bank data API to create a visualization of the evolution of indicators
of human development. We will learn how to use GitHub pages to host our project
and how to host a static website using Amazon S3.

Chapter 9, Creating a Dashboard, introduces concepts and best practices to create
dashboards. We implement an example dashboard to monitor the performance
of students in a class using D3 and custom charts.

Preface

[3]

Chapter 10, Creating Maps, discusses how to create vector maps using the geographic
functions of D3. We will learn how to obtain geographic data and how to convert it
to GeoJSON and TopoJSON formats, which are more suitable to be used with D3.
We will create a choropleth map with D3 and use the TopoJSON library to visualize
neighbors and boundaries between countries. We will also learn how to create a
custom D3 layer to be used with Mapbox.

Chapter 11, Creating Advanced Maps, introduces some geographic projections and
discusses how to configure projections to center and scale maps at specific locations. We
also use the Orthographic projection to create a rotating globe. We also use a star catalog
and the Stereographic projection to create a fullscreen star map. We will also learn how
to use canvas to project raster images from Earth using the Orthographic projection.

Chapter 12, Creating a Real-time Application, introduces the concepts and tools that are
used to create real-time applications. We will learn how to use Firebase to update
the state of our applications in real time. We will also create a real-time application
to explore the geographic distribution of geotagged tweets that match user-defined
topics using Node, Socket.IO, and D3.

What you need for this book
The code bundle of this book was created using Jekyll, which is a static website
generator. To run most of the examples in the code bundle, you will need a
static web server and a modern web browser. The following list summarizes
the main dependencies:

• A modern web browser
• D3 3.4
• Jekyll or other static web servers
• Text editor

Some chapters require you to install additional frontend libraries, such as Backbone,
TopoJSON, Typeahead, and Bootstrap. Additional instructions on installing these
libraries can be found in the corresponding chapters. In other chapters, we will use
additional software to compile assets or process files. In those cases, installing the
software is optional (the compiled files will be present as well), but it might be useful
for you to install them for your own projects:

• Node and Node packages
• Git
• Make
• TopoJSON
• GDAL

Preface

[4]

Instructions to install these applications can also be found in the corresponding chapters.

Who this book is for
This book is for frontend programmers who want to learn how to create charts,
visualizations, and interactive maps with D3. We will cover everything from
creating basic charts to complex real-time applications, integrating other
libraries and components to create real-life applications.

We assume that you know the fundamentals of HTML, CSS, and JavaScript, but we
review the main concepts as needed.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"In the example file, we have a div element classed as chart-example and with the
ID chart."

A block of code is set as follows:

divItems.enter()
 .append('div')
 .attr('class', 'data-item');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

chart.onClick = function(d) {
 // ...

 // Invoke the user callback.
 onColorChange(color);
};

Any command-line input or output is written as follows:

$ grunt vows

Running "vows:all" (vows) task

(additional output not shown)

Done, without errors.

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text as follows:

"By clicking on Create a Project, we can access the map editor, where we can
customize the colors of land, buildings, and other features; select the base layer
(street, terrain, or satellite) and select the primary language for the features and
locations in the map."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/6270OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/6270OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/6270OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Data Visualization
Humans began to record things long before writing systems were created. When the
number and diversity of things to remember outgrew the capacity of human memory,
we began to use external devices to register quantitative information. Clay tokens
were used as early as 8000-7500 BC to represent commodities like measures of wheat,
livestock, and even units of man labor. These objects were handy to perform operations
that would have been difficult to do with the real-life counterparts of the tokens;
distribution and allocation of goods became easier to perform. With time, the tokens
became increasingly complex, and soon, the limitations of the complex token system
were identified and the system began to be replaced with simpler yet more abstract
representations of quantities, thereby originating the earlier systems of writing.

Keeping records has always had a strong economic and practical drive. Having
precise accounts of grains and pastures for the livestock allowed people to plan
rations for the winter, and knowing about seasons and climate cycles allowed people
to determine when to plant and when to harvest. As we became better at counting
and registering quantitative information, trading with other nations and managing
larger administrative units became possible, thereby providing us with access to
goods and knowledge from other latitudes. We keep records because we think it's
useful. Knowing what we have allows us to better distribute our assets, and knowing
the past allows us to prepare for the future.

Today, we register and store more data than ever. Imagine that you want to go
out for a morning cup of coffee. If you pay in cash, the date, price of the coffee, and
the kind of coffee will be recorded before your coffee was actually prepared. These
records will feed the accounting and stock systems of the store, being aggregated
and transformed to financial statements, staff performance reports, and taxes to
be paid by the store. Paying with credit card will generate a cascade of records in
the accounting system of your bank. We measure things hoping that having the
information will help us to make better decisions and to improve in the future.

Data Visualization

[8]

History demonstrates that gathering and understanding data can help to solve relevant
problems. An example of this is the famous report of John Snow about the Broad Street
cholera outbreak. On August 31, 1854, a major outbreak of cholera was declared in
the Soho district of London. Three days later, 127 people died from the disease. At the
time, the mechanism of transmission of the cholera was not understood. The germ
theory was yet to exist, and the mainstream theory was that the disease spread by a
form of bad air. The physician, John Snow, began to investigate the case, collecting and
classifying facts, recording deaths and their circumstances as well as a great number of
testimonials. Refer to the following screenshot:

Details of the original map made for Snow, displaying the deaths by cholera in the Soho district

Chapter 1

[9]

He gave special attention to the exceptions in the map and noticed that neither
the workhouse inmates nor the brewery workers had been affected. The exceptions
became further proof as he discovered that about 70 employees who worked in
the brewery drank only beer made with water from a pump inside the walls of
the brewery. In the workhouse, which also had its own water pump, only 5 out of
500 died, and further investigation revealed that the deceased were admitted when
the outbreak had already begun. Although the map is convincing enough, Snow's
original report contains more than 150 pages filled with tables and testimonials that
support or raise questions about his theory. The local council decided to disable the
pump by removing its handle, when the outbreak had already began to decline.

The report from John Snow is a great triumph of detective work and data visualization.
He gathered information about the deaths and their circumstances and displayed
them as data points in their geographic context, which made the pattern behind the
causalities visible. He didn't stop at studying the data points; he also investigated
the absence of the disease in certain places, faced the exceptions instead of quietly
dismissing them, and eventually formed stronger evidence to support his case.

In this chapter, we will discuss what makes visual information so effective and
discuss what data visualization is. We will comment about the different kinds
of data visualization works, which gives a list of references to learn more about it.
We will also discuss D3 and its differences with other tools to create visualizations.

Defining data visualization
Our brains are specially adapted to gather and analyze visual information. Images are
easier to understand and recall. We tend to analyze and detect patterns in what we see
even when we are not paying attention. The relation between visual perception and
cognition can be used to our advantage if we can provide information that we want to
communicate in a visual form.

Data Visualization

[10]

Data visualization is the discipline that studies how to use visual perception to
communicate and analyze data. Being a relatively young discipline, there are several
working definitions of data visualization. One of the most accepted definitions states:

"Data visualization is the representation and presentation of data that exploits our
visual perception in order to amplify cognition."

The preceding quote is taken from Data Visualization: A successful design process,
Andy Kirk, Packt Publishing.

There are several variants for this definition, but the essence remains the same—data
visualization is a visual representation of data that aims to help us better understand
the data and its relevant context. The capacity for visual processing of our brains can
also play against us. Data visualization made without proper care can misrepresent
the underlying data and fail to communicate the truth, or worse, succeed in
communicating lies.

The kind of works that fall under this definition are also diverse; infographics,
exploratory tools, and dashboards are data visualization subsets. In the next
section, we will describe them and give some notable examples of each one.

Some kinds of data visualizations
There are countless ways to say things, and there are even more ways to
communicate using visual means. We can create visualizations for the screen or
for printed media, display the data in traditional charts, or try something new. The
choice of colors alone can be overwhelming. When creating a project, a great number
of decisions have to be made, and the emphasis given by the author to the different
aspects of the visualization will have a great impact on the visual output.

Chapter 1

[11]

Among this diversity, there are some forms that are recognizable. Infographics are
usually suited with a great deal of contextual information. Projects more inclined to
exploratory data analysis will tend to be more interactive and provide less guidance.
Of course, this classification is only to provide reference points; the data visualization
landscape is a continuum between infographics, exploratory tools, charts, and data
art. Charles Minard's chart, which shows the number of men in Napoleon's 1812
Russian campaign, is shown in the following screenshot:

Charles Minard's flow map of Napoleon's march

It would be difficult to classify Charles Minard's figure as an infographic or as
a flow chart because it allows for both. The information displayed is primarily
quantitative, but it's shown in a map with contextual information that allows us to
better understand the decline in the Napoleonic forces. There are several dimensions
being displayed at once such as the number of soldiers, the geographic location of
the soldiers during the march, and the temperature at each place. The figure does
amazing work by showing how diminished the forces were when they arrived at
Moscow and how the main enemy was the cold winter.

Data Visualization

[12]

Infographics
Infographics is a form of data visualization that is focused on communicating and
explaining one or more particular views of a subject. It usually contains images,
charts, and annotations, which provides context and enhances the reader's capacity to
understand the main display of information. The award-winning infography about
the right whale (La ballena Franca in original Spanish), created by Jaime Serra and
published in the Argentinian newspaper, Clarin, in 1995 is a great example of how
infographics can be a powerful tool to enlighten and communicate a particular subject.
This can be found at http://3.bp.blogspot.com/_LCqDL30ndZQ/TBPkvZIQaNI/
AAAAAAAAAik/OrjA6TShNsk/s1600/INFO-BALLENA.jpg. A huge painting of the right
whale covers most of the infography area. A small map shows where this species can
be found during their migratory cycles. There are outlines of the right whale alongside
other kinds of whales, comparing their sizes. The image of the whale is surrounded by
annotations about their anatomy that explain how they swim and breathe. Bar charts
display the dramatic decline in their population and how they are recovering at least in
some corners of the globe. All these elements are integrated in a tasteful and beautiful
display that accomplishes its purpose, which is to display data to inform the reader.
The Right Whale, Jaime Serra, 1995, can be seen in the following image:

The Right Whale by Jaime Sierra

There are people who don't consider infographics as proper data visualization
because they are designed to guide the reader through a story with the main facts
already highlighted, as opposed to a chart-based data visualization where the story
and the important facts are to be discovered by the reader.

http://3.bp.blogspot.com/_LCqDL30ndZQ/TBPkvZIQaNI/AAAAAAAAAik/OrjA6TShNsk/s1600/INFO-BALLENA.jpg
http://3.bp.blogspot.com/_LCqDL30ndZQ/TBPkvZIQaNI/AAAAAAAAAik/OrjA6TShNsk/s1600/INFO-BALLENA.jpg

Chapter 1

[13]

Exploratory visualizations
This branch of data visualization is more focused on providing tools to explore and
interpret datasets. These visualizations can be static or interactive. The exploration
can be either looking at the charts carefully or to interact with the visualization to
discover interesting things. In interactive projects, the user is allowed to filter and
interact with the visualizations to discover interesting patterns and facts with little
or no guidance. This kind of project is usually regarded as being more objective and
data centered than other forms.

A great example is The Wealth and Health of Nations, from the Gapminder project
(http://www.gapminder.org/world). The Gapminder World tool helps us explore
the evolution of life in different parts of the world in the last two centuries. The
visualization is mainly composed of a configurable bubble chart. The user can select
indicators such as life expectancy, fertility rates, and even consumption of sugar per
capita and see how different countries have evolved in regard to these indicators.
One of the most interesting setups is to select life expectancy in the y axis, income per
person in the x axis, and the size of the bubbles as the size of the population of each
country. The bubbles will begin to animate as the years pass, bouncing and making
loops as the life expectancy in each country changes. If you explore your own country,
you will soon realize that some of the backward movements are related to economic
crisis or political problems and how some countries that were formerly similar in their
trends in these dimensions diverge. A visualization from Gapminder World, powered
by Trendalyzer from www.gapminder.org, is shown in the following screenshot:

http://www.gapminder.org/world
www.gapminder.org

Data Visualization

[14]

The time series for dozens of variables allow the user to explore this dataset, uncover
stories, and learn very quickly about how countries that are similar in some regards
can be very different in other aspects. The aim of the Gapminder project is to help
users and policy makers to have a fact-based view of the world, and the visualization
certainly succeeds in providing the means to better understand the world.

Dashboards
Dashboards are dense displays of charts that help us to understand the key metrics
of an issue as quickly and effectively as possible. Business intelligence dashboards
and website users' behavior are usually displayed as dashboards. Stephen Few
defines an information dashboard as follows:

"A visual display of the most important information needed to achieve one or more
objectives; consolidated and arranged on a single screen so the information can be
monitored at a glance."

The preceding quote can be found in Information Dashboard Design: The Effective Visual
Communication of Data, Stephen Few, O'Reilly Media.

As the information has to be delivered quickly, there is no time to read long
annotations or to click controls; the information should be visible, ready to be
consumed. Dashboards are usually bundled with complementary information
systems to further investigate issues if they are detected. The distribution of the space
in a dashboard is the main challenge when designing them. Compact charts will be
preferred in this kind of project, as long as they still allow for speedy decoding of
the information. We will learn about designing dashboards in Chapter 9, Creating a
Dashboard. An example dashboard from Chapter 9, Creating a Dashboard, showing the
performance of students in a class can be seen in the following screenshot:

Chapter 1

[15]

This classification mentions only some of the forms of data visualization projects;
most parts of data visualizations won't fit exactly under these labels. There is plenty
of room to experiment with new formats and borrow elements of infographics,
dashboards, and traditional charts to communicate more effectively.

Learning about data visualization
Despite being a young discipline, there are great books on data visualization
and information design. A successful data visualization practitioner should also
know about design, statistics, cognition, and visual perception, but reading data
visualization books is a good start.

Edward Tufte is an expert in information design and his works are a must-read in
this field. They are filled with good and bad examples of information design and
comments about how to better communicate quantitative information. They contain
collections of images from ancient charts and visualizations, which explain their
historic context and the impact they had. The discussion is not restricted to how to
communicate quantitative information; there are examples ranging from natural
history to architecture:

• Visual Explanations: Images and Quantities, Evidence and Narrative, Edward R.
Tufte, Graphics Press

• The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press
• Beautiful Evidence, Edward R. Tufte, Graphics Press
• Envisioning Information, Edward R. Tufte, Graphics Press

Stephen Few is a data visualization consultant who specializes in how to display
and communicate quantitative information, especially in business environments.
His books focus on dashboard and quantitative information and provide actionable
guidelines on how to effectively communicate data:

• Information Dashboard Design: The Effective Visual Communication of Data,
Stephen Few, O'Reilly Series

• Now You See It: Simple Visualization Techniques for Quantitative Analysis,
Stephen Few, Analytics Press

Alberto Cairo teaches visualization at the University of Miami. He has extensive
experience in data journalism and infographics. His most recent book focuses on data
visualization and how good infographics are made. He also has a strong presence
on social media; be sure to follow him at http://twitter.com/albertocairo to be
informed about infographics and data visualization:

• The Functional Art: An introduction to information graphics and visualization,
Alberto Cairo, New Riders

www.allitebooks.com

http://twitter.com/albertocairo
http://www.allitebooks.org

Data Visualization

[16]

Andy Kirk is a data visualization consultant and author. He recently published a
book sharing his experiences in creating data visualizations. He gives guidelines to
plan and make the creation of visualizations more systematic. The book is filled with
actionable advice about how to design and plan our visualization projects. Andy's
blog (http://www.visualisingdata.com) is a great source to be informed about the
latest developments in the field:

• Data Visualization: A Successful Design Process, Andy Kirk, Packt Publishing

There isn't a universal recipe to create good data visualizations, but the experience
and guidelines from experts in the field can help us to avoid mistakes and create
better visualizations. It will take time to have the necessary skills to create great
data visualizations, but learning from experienced people will help us make a safer
journey. As with many other things in life, the key to learning is to practice, get
feedback, and improve over time.

Introducing the D3 library
In 2011, I was working in a hedge fund, and most of my work consisted of processing
and analyzing market data. It mostly consisted of time series, each row containing
a timestamp and two prices: the bid and asking prices for stock options. I had to
assess the quality of two years of market data and find whether there were errors
or gaps between millions of records. The time series were not uniform; there can be
hundreds of records in a couple of seconds or just a few records in an hour. I decided
to create a bar chart that shows how many records there were in each hour for the
two years of data. I created a Python script using the excellent packages NumPy and
Matplotlib. The result was a folder with thousands of useless bar charts. Of course,
the software was not to blame.

In my second attempt, I tried to create a heat map, where the columns represented
hours in a week and the rows represented the weeks of a year. The color of each cell
was proportional to the number of quotes in that hour. After tweaking the colors and
the size of the cells, my first visualization emerged. Success! The pattern emerged.
My coworkers began to gather around, recognizing and explaining the variations
on market activity. The black columns at the end of the chart corresponded to
weekends, when the market was closed. Mondays were brighter and had more
activity than other days. Holidays were easy to spot after a quick consult to the
holidays calendar for the year. More interesting patterns were also discernible; there
was frantic activity at the beginning of the working day and a slight but noticeable
decline at lunch. It was fun and interesting to recognize what we already knew.

http://www.visualisingdata.com

Chapter 1

[17]

However, besides the gaps explained by common sense, there were small gaps that
couldn't be explained with holidays or hungry stock traders. There were hours with
little or no activity; in the context of a year of market activity, we could see that it
was something unusual. A simple heat map allowed us to find the gaps and begin to
investigate the anomalies.

Of course, this first heat map required a better version, one that could allow the
exploring of the dataset more easily. We needed an interactive version to know the
exact date and time of the gaps and how many records there were in each hourly
block. It should also highlight the weekends and holidays. This required better tools,
something that allows for more interaction and that doesn't require Python's virtual
environments and numerous packages to generate the graphics. This search led me
to D3, and I began to learn.

There are several charting packages for web platforms, but D3 excels among
them by its flexibility and strong features. A quick visit to the D3 home page
(http://www.d3js.org) will amaze us with hundreds of examples of what
can be done, from the humble bar chart to beautifully crafted interactive maps.
Newcomers will soon realize that D3 is not a charting package, but is a tool to
bind data items with DOM elements and associate data attributes with visual
properties of the DOM elements. This could sound abstract, but this is all we
need to create almost any chart.

A chart is a visual representation of a dataset. To create a chart, we must associate
attributes of the data items with properties of graphic objects. Let's consider the
following dataset:

x y
2.358820 0.70524774
2.351551 0.71038206
... ...
3.581900 -0.426217726

http://www.d3js.org

Data Visualization

[18]

This series of numbers doesn't have an intrinsic visual representation; we should
encode the attributes of each record and assign them corresponding visual attributes.
Using the most traditional representation for this kind of data, we can represent the
rows as dots on a surface. The position of the dots will be determined by their x and
y attributes. Their horizontal position will be proportional to the x attribute and their
vertical position will be proportional to the y attribute. This will generate the following
scatter plot:

Scatter plot, a visual representation of two-dimensional quantitative data

To help the viewer trace back from position to data attributes, we can add axes,
which are essentially annotations for the visual representation of the data. All charts
work on the same principle, which is associate visual attributes to data attributes.

With D3, we can manipulate attributes of DOM elements based on attributes
of the data items. This is the essence of creating charts. SVG stands for Scalable
Vector Graphics, and in most browsers, SVG images can be included in the page
and thereby become a part of the DOM. In most cases, we will use svg elements to
create charts and other graphic elements. SVG allows us to create basic shapes as
rectangles, circles, and lines as well as more complex elements as polygons and text.
We can color the elements by assigning them classes and adding CSS styles to the
page, or we can use the fill attribute of svg objects. D3 and SVG form a powerful
combination, which we will use to create interactive charts and maps.

Chapter 1

[19]

Of course, there is a price to pay to effectively use these powerful tools. We must learn
and understand how browsers work and know our way with JavaScript, CSS, and
HTML. One of the fundamentals of D3 is that it manipulates DOM elements, knowing
little or nothing about the visual representation of the elements. If we want to create
a circle, D3 doesn't provide a createCircle(x, y, radius) function, but rather we
should append a circle svg element in a DOM node (the element with the container
ID) and set their attributes:

// Appending a circle element to a DOM node
d3.select('#container').append('circle')
 .attr('cx', 10)
 .attr('cy', 10)
 .attr('r', 10);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

As D3 doesn't know anything else other than the fact that we are appending a DOM
element, it is up to us to check whether the parent element is an svg element and that
cx, cy, and r are valid attributes for a circle.

As we mentioned before, D3 doesn't have ready-to-use charts, but has several tools to
make creating visualizations and charts easy. Binding data to DOM elements allows
us to create from bar charts to interactive maps by following similar patterns. We will
learn how to create reusable charts so that we don't have to code them each time we
want to add a chart to a page. For big projects, we will need to integrate our D3-based
charts with third-party libraries that support our need, which is out of the D3 scope.
We will also learn about how to use D3 in conjunction with external libraries.

Fortunately, D3 has a great community of developers. Mike Bostock, the creator of
D3, has created a nice collection of in-depth tutorials about the trickiest parts of D3
and examples demonstrating almost every feature. Users of the library have also
contributed with examples covering a wide range of applications.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Data Visualization

[20]

Summary
In this chapter, we gave a working definition of data visualization, one of the main
fields of application of the D3 library.

This book is about D3 and how to create interactive data visualizations in real-life
settings. We will learn about the inner working of D3 and create well-structured
charts to be used and shared across projects. We will learn how to create complete
applications using D3 and third-party libraries and services as well as how to prepare
our development environment to have maintainable and comfortable workflows.

Learning D3 may take some time, but it's certainly rewarding. The following
chapters are focused on providing the tools to learn how to use D3 and other
tools to create beautiful charts that will add life to your data.

Reusable Charts
In this chapter, we will learn how to create configurable charts and layout algorithms
and how to use these components. One important characteristic of configurable
charts is that we can use them in different contexts without having to change the
code. In this chapter, we will cover the following topics:

• Learn how to create reusable charts
• Create a reusable barcode chart
• Create a reusable layout algorithm
• Use the layout and the barcode chart

We will begin by defining what we understand by reusable charts and construct a
reusable chart from scratch.

Creating reusable charts
A chart is a visual representation of a dataset. As datasets grow in complexity and
number of elements, we might want to encapsulate the chart in a reusable piece of
code to share it and use it in other projects. The success of the reusability of the chart
depends on the choices made during the design process.

We will follow the proposal given in the article Towards Reusable Charts by Mike
Bostock with some modifications. Charts created with this model will have the
following attributes:

• Configurable: The chart appearance and behavior can be modified without
having to change the code of the chart. The chart should expose an API that
allows customization.

Reusable Charts

[22]

• Repeatable: A chart can be rendered in a selection that contains several
elements, displaying independent visualizations in each node. The update
process and the variables associated to the data items must be independent
as well.

• Composable: A consequence of the previous attributes is that a chart can
have inner charts as long as the inner charts follow the same conventions.

We must evaluate which aspects of the chart must be configurable and which aspects
are fixed, because adding more flexibility increases the complexity of the chart.

There are other ways to implement reusability. For instance, the D3.Chart package
by the Miso Project proposes a model that allows extension of the charts in terms of
existing charts, add event-listening capabilities to the charts, and includes the mini
framework D3.layer that allows us to configure life cycle events without changing
the rendering logic of the chart.

We will begin by reviewing the creation and data-binding processes in D3 in order to
construct a reusable chart step by step.

Creating elements with D3
In this section, we will review the mechanism of creation and manipulation of
data-bound DOM elements using D3. To follow the examples in this section, open
the chapter02/01-creating-dom-elements.html file and open the browser's
Developer Tools.

We can use D3 to create and modify the elements in a web page. In the Developer
Tools Console, we can create a new paragraph at the end of the body with a single
command as follows:

> var p = d3.select('body').append('p');

Inspecting the document structure, we can see that an empty paragraph element
was appended at the end of the body. The appended method returns a selection
that contains the new paragraph element. Refer to the following screenshot:

Chapter 2

[23]

As we stored a reference to the paragraph selection in the p variable, we can use this
reference to modify the content of the paragraph as follows:

> p.html('New paragraph.');

The text method will also return the paragraph selection, allowing us to use method
chaining to modify the paragraph font color as follows:

> p.html('blue paragraph').style('color', 'blue');

The style method will once more return the paragraph selection.

Binding data
Before creating a chart, we will create a set of divs bound to a simple dataset and
improve the example step-by-step in order to understand the process of creating
a chart. We will begin with a data array that contains three strings and use D3 to
create three corresponding div elements, each one with a paragraph that contains
the strings. In the example file, we have a div element classed chart-example and
with ID chart. This div element will be used as container for the divs to be created:

<div class="chart-example" id="chart"></div>

In the script, we define our dataset as an array with three strings:

var data = ['a', 'b', 'c'];

For each element, we want to append an inner div, and in each one of them,
we append a paragraph. The container div can be selected using its ID:

var divChart = d3.select('#chart');

Next, we create a selection that contains the divs classed data-item and bind the
data array to this selection:

var divItems = divChart.selectAll('div.data-item')
 .data(data);

Before invoking the data method, keep in mind that the inner divs don't exist yet,
and the selection will be empty. We can check this by creating an empty selection:

// This will return true
> divChart.selectAll('p.test-empty-selection').empty()

Reusable Charts

[24]

The data() method joins the data array with the current selection. At this point, the
data elements in the divItems selection don't have corresponding DOM nodes. The
divItems.enter() selection stores placeholder DOM nodes for the elements to be
created. We can instantiate new divs using the append method:

divItems.enter()
 .append('div')
 .attr('class', 'data-item');

As seen in the preceding example, the append method returns the created divs,
and we can set its class directly. The divItems selection now contains three
div elements, each one bounded to a data item. We can append a paragraph
to each div and set its content:

var pItems = divItems.append('p')
 .html(function(d) { return d; });

The method-chaining pattern allows us to write the same sequence of operations in
one single, compact statement:

d3.select('#chart').selectAll('div.data-item')
 .data(data)
 .enter()
 .append('div')
 .attr('class', 'data-item')
 .append('p')
 .html(function(d) { return d; });

The div elements and their corresponding paragraphs are created inside the
container div. Refer to the following screenshot:

The creation of DOM elements by joining a data array with a selection of div elements

Chapter 2

[25]

Encapsulating the creation of elements
We could add more elements on top of the previous elements, but the code would
become confusing and monolithic. The selection.call method allows us to
encapsulate the creation of the div contents as follows:

d3.select('#chart').selectAll('div.data-item')
 .data(data)
 .enter()
 .append('div')
 .attr('class', 'data-item')
 .call(function(selection) {
 selection.each(function(d) {
 d3.select(this).append('p').html(d);
 });
 });

The call method invokes its argument function, passing the current selection as the
argument and setting the this context to the current selection.

The selection.each method invokes its own argument function, passing the bound
data item to the function. The this context in the function is the current DOM
element; in our case, it's the recently created div.

The argument of the call method can be defined elsewhere. We will define the
initDiv function and use it to create the content of the div:

function initDiv(selection) {
 selection.each(function(data) {
 d3.select(this).append('p')
 .html(data);
 });
}

The initDiv function encapsulates the creation and configuration of the div
contents; the code that creates the elements is more compact, shown as follows:

d3.select('#chart').selectAll('div.data-item')
 .data(data)
 .enter()
 .append('div')
 .attr('class', 'data-item')
 .call(initDiv);

www.allitebooks.com

http://www.allitebooks.org

Reusable Charts

[26]

Creating the svg element
We can use the same structure to create an svg element inside the inner div instead
of the paragraph. We will need to define the width and height of svg as follows:

var width = 400,
 height = 40;

We will change the name of the initDiv function to the more appropriate name,
chart, and replace the creation of the paragraph with the creation of svg and a
background rectangle. Note that we are binding the svg selection to an array with a
single element (the [data] array) and appending the svg and the rectangle only to
the enter() selection as follows:

function chart(selection) {
 selection.each(function(data) {
 // Select and bind the svg element.
 var div = d3.select(this).attr('class', 'data-item'),
 svg = div.selectAll('svg').data([data]),
 svgEnter = svg.enter();

 // Append the svg and the rectangle on enter.
 svgEnter.append('svg')
 .attr('width', width)
 .attr('height', height)
 .append('rect')
 .attr('width', width)
 .attr('height', height)
 .attr('fill', 'white');
 });
}

The code to create the svg element in each div remains the same except for the name
of the chart function, shown as follows:

d3.select('#chart').selectAll('div.data-item')
 .data(data)
 .enter()
 .append('div')
 .attr('class', 'data-item')
 .call(chart);

Chapter 2

[27]

The barcode chart
A barcode chart displays a series of discrete events in a given time interval, showing
the occurrence of each event with a small vertical bar. It uses the position of the bars
as the principal visual variable, giving the reader a clear idea of the distribution of
events in time. It might have a time axis or it might represent a fixed time interval.
As it is a very compact display, a barcode chart can be integrated along with the text
in a paragraph or in a table, giving context and allowing parallel comparison. Refer
to the following screenshot:

An example of barcode charts in a table

In the previous section, we created an svg element using a charting function.
In that implementation, the width and height are global variables, and as we all
know, global variables are evil. A chart can have dozens of configurable values,
and we can't depend on the user to define each one of them properly. To provide
default values and encapsulate the chart-related variables, we will create a closure
(the chart function) and define the variables in its private scope, as follows:

// Closure to create a private scope for the charting function.
var barcodeChart = function() {

 // Definition of the chart variables.
 var width = 600,
 height = 30;

 // Charting function.
 function chart(selection) {
 selection.each(function(data) {
 // Bind the dataset to the svg selection.
 var div = d3.select(this),

Reusable Charts

[28]

 svg = div.selectAll('svg').data([data]);

 // Create the svg element on enter, and append a
 // background rectangle to it.
 svg.enter()
 .append('svg')
 .attr('width', width)
 .attr('height', height)
 .append('rect')
 .attr('width', width)
 .attr('height', height)
 .attr('fill', 'white');
 });
 }

 return chart;
};

Note that the barcodeChart function returns an instance of the chart function,
which will be used to create the chart later. Refer to the following code:

// The Dataset
var data = ['a', 'b', 'c'];

// Get the charting function.
var barcode = barcodeChart();

// Bind the data array with the data-item div selection, and call
// the barcode function on each div.
d3.select('#chart').selectAll('div.data-item')
 .data(data)
 .enter()
 .append('div')
 .attr('class', 'data-item')
 .call(barcode);

Accessor methods
The width and height are attributes of the chart function, and the barcode function
has access to these variables. To allow the user to configure the chart attributes, we
will add accessor methods to the chart. We will also add a margin attribute as follows:

var barcodeChart = function() {

 // Chart Variables.Attributes

Chapter 2

[29]

 var width = 600,
 height = 30,
 margin = {top: 5, right: 5, bottom: 5, left: 5};

 function chart(selection) {
 // Chart creation ...
 }

 // Accessor function for the width
 chart.width = function(value) {
 if (!arguments.length) { return width; }
 width = value;
 // Returns the chart to allow method chaining.
 return chart;
 };

 // Accessor functions for the height and the margin ...

 return chart;
};

Note that when invoked without arguments, the accessor method will return
the variable value. When setting the value, the accessor method will set the value
and return the chart. This allows us to call other accessors using method chaining,
as follows:

// Create and configure the chart.
var barcode = barcodeChart()
 .width(600)
 .height(25);

Chart initialization
In the chart function, we can use the call method to encapsulate the initialization
code. We will add the chart.svgInit method, which will be in charge of setting
the size of the svg element, create a container group for the chart, and add the
background rectangle as follows:

// Initialize the SVG Element

function svgInit(svg) {
 // Set the SVG size
 svg
 .attr('width', width)

Reusable Charts

[30]

 .attr('height', height);

 // Create and translate the container group
 var g = svg.append('g')
 .attr('class', 'chart-content')
 .attr('transform', 'translate(' + [margin.top,
margin.left] + ')');

 // Add a background rectangle
 g.append('rect')
 .attr('width', width - margin.left - margin.right)
 .attr('height', height - margin.top - margin.bottom)
 .attr('fill', 'white');
};

In the chart function, we call the svgInit function that passes the appended
svg element. The chart function is more compact. Refer to the following code:

function chart(selection) {
 selection.each(function(data) {
 // Bind the dataset to the svg selection.
 var div = d3.select(this),
 svg = div.selectAll('svg').data([data]);

 // Call thesvgInit function on enter.
 svg.enter()
 .append('svg')
 .call(svgInit);
 });
}

With the chart structure ready, we can proceed to draw the bars.

Adding data
We will generate a data array by repeatedly adding a random number of seconds
to a date. To compute these random number of seconds, we will generate a random
variable of exponential distribution. The details about how to generate the random
variable are not important; just remember that the randomInterval function returns
a random number of seconds as follows:

// Compute a random interval using an Exponential Distribution
function randomInterval(avgSeconds) {
 return Math.floor(-Math.log(Math.random()) * 1000 * avgSeconds);
};

Chapter 2

[31]

We will create a function that returns an array with objects that have increasing
random dates:

// Create or extend an array of increasing dates by adding
// a number of random seconds.
function addData(data, numItems, avgSeconds) {
 // Compute the most recent time in the data array.
 var n = data.length,
 t = (n > 0) ? data[n - 1].date : new Date();

 // Append items with increasing times in the data array.
 for (var k = 0; k < numItems - 1; k += 1) {
 t = new Date(t.getTime() + randomInterval(avgSeconds));
 data.push({date: t});
 }

 return data;
}

Invoking the function with an empty array as the first argument will generate the
initial data with 150 elements, with an average of 300 seconds between each date:

var data = addData([], 150, 300);

The structure of the data array will be something like the following code:

data = [
 {date: Tue Jan 01 2013 09:48:52 GMT-0600 (PDT)},
 {date: Tue Jan 01 2013 09:49:14 GMT-0600 (PDT)},
 ...
 {date: Tue Jan 01 2013 21:57:31 GMT-0600 (PDT)}
]

With the dataset ready, we can modify the chart function to draw the bars. First, we
compute the horizontal scale, select the container group, and create a selection for
the bars. Refer to the following code:

function chart(selection) {
 selection.each(function(data) {
 // Creation of the SVG element ...

 // Compute the horizontal scale.
 var xScale = d3.time.scale()
 .domain(d3.extent(data, function(d) { return d.date;
 }))

Reusable Charts

[32]

 .range([0, width - margin.left - margin.right]);

 // Select the containing group
 var g = svg.select('g.chart-content');

 // Bind the data to the lines selection.
 var bars = g.selectAll('line')
 .data(data, function(d) { return d.date; });

 // Append the bars on the enter selection ...
 });
}

Each bar should be associated with a date, so we configure the key function to return
the date. We append the line elements on enter and set the initial position and stroke
of the bars as follows:

 // Append the bars on the enter selection
 bars.enter().append('line')
 .attr('x1', function(d) { return xScale(d.date); })
 .attr('x2', function(d) { return xScale(d.date); })
 .attr('y1', 0)
 .attr('y2', height - margin.top - margin.bottom)
 .attr('stroke', '#000')
 .attr('stroke-opacity', 0.5);

We set the stroke-opacity attribute to 0.5, so we can see the overlapping lines.
Finally, the barcode chart has some bars, as shown in the following screenshot:

The first version of the barcode chart

Adding the date accessor function
The current implementation of the chart assumes that the dataset contains objects
with the date attribute. This is an inconvenience, because the user could have a
data array with the date information in an attribute named time, or the user might
need to process other attributes to compute a valid date. We will add a configurable
accessor for the date as follows:

var barcodeChart = function() {

 // Set the default date accessor function

Chapter 2

[33]

 var value = function(d) { return d.date; };

 // chart function ...

 // Accessor for the value function
 chart.value = function(accessorFunction) {
 if (!arguments.length) { return value; }
 value = accessorFunction;
 return chart;
 };

 return chart;
};

We need to replace the references to d.date with invocations to the value method in
the chart function as follows:

function chart(selection) {
 selection.each(function(data) {

 // Creation of the SVG element ...

 // Compute the horizontal scale using the date accessor.
 var xScale = d3.time.scale()
 .domain(d3.extent(data, value))
 .range([0, width - margin.left - margin.right]);
 // ...

 // Bind the data to the bars selection.
 var bars = g.selectAll('line').data(data, value);

 // Create the bars on enter and set their attributes, using
 // the date accessor function.
 bars.enter().append('line')
 .attr('x1', function(d) { return xScale(value(d)); })
 .attr('x2', function(d) { return xScale(value(d)); })
 // set more attributes ...
 .attr('stroke-opacity', 0.5);

A user who has the date information in the time attribute can use the chart by setting
the value accessor without modifying the chart code or the data array:

// This will work if the array of objects with the time attribute.
var barcode = barcodeChart()
 .value(function(d) { return d.time; });

Reusable Charts

[34]

A barcode chart must represent a fixed time interval, but right now, the chart shows
all the bars. We would like to remove the bars that are older than a certain time
interval. We will then add the timeInterval variable:

 // Default time interval.
 var timeInterval = d3.time.day;

Add the corresponding accessor method:

 // Time Interval Accessor
 chart.timeInterval = function(value) {
 if (!arguments.length) { return timeInterval; }
 timeInterval = value;
 return chart;
 };

Then, update the horizontal scale in the chart function:

 // Compute the first and last dates of the time interval
 var lastDate = d3.max(data, value),
 firstDate = timeInterval.offset(lastDate, -1);

 // Compute the horizontal scale with the correct domain
 var xScale = d3.time.scale()
 .domain([firstDate, lastDate])
 .range([0, width - margin.left - margin.right]);

The chart width represents the default time interval, and the user can set the time
interval by using the timeInterval accessor method:

var barcode = barcodeChart()
 .timeInterval(d3.time.day);

The barcode chart length represents 24 hours. The dataset contains events covering
about 11 hours as shown in the following barcode:

Chapter 2

[35]

Updating the dataset
In most parts of the applications, the dataset is not static. The application might
poll the server every couple of minutes, receive a stream of data items, or update
the data on user request. In the case of a barcode chart, the new items will probably
have more recent dates than the existing data items. The barcode chart is supposed
to display the most recent item at the right-hand side of the chart, moving the old bars
to the left-hand side. We can do this by updating the position of the bars as follows:

 // Create the bars on enter ...

 // Update the position of the bars.
 bars.transition()
 .duration(300)
 .attr('x1', function(d) { return xScale(value(d)); })
 .attr('x2', function(d) { return xScale(value(d)); });

The transitions aren't just to make the chart look pretty; they allow the user to follow
the objects as they change. This is called object constancy. If we just move the bars
instantly, the user might have difficulty understanding what happened with the old
bars or realizing whether the chart changed at all. We will add a button to add items
to the dataset in the page as follows:

<button id="btn-update">Add data</button>
<div class="chart-example" id="chart"></div>

We can use D3 to configure the callback for the click event of the button. The callback
function will add 30 new items to the dataset (with 180 seconds between them on an
average) and rebind the selection to the updated dataset as follows:

d3.select('#btn-update')
 .on('click', function() {
 // Add more random data to the dataset.
 data = addData(data, 30, 3 * 60);
 // Rebind the data-item selection with the updated dataset.
 d3.select('#chart').selectAll('div.data-item')
 .data([data])
 .call(barcode);
 });

www.allitebooks.com

http://www.allitebooks.org

Reusable Charts

[36]

Fixing the enter and exit transitions
If we click on the button a couple of times, we will see the new bars appear suddenly,
and then, the existing bars shifting to the left-hand side. We would expect the new bars
to enter by the right-hand side, moving all the bars together to the left-hand side. This
can be achieved by adding the new bars using xScale as it was before adding the new
elements and then updating the position of all the bars at the same time.

This strategy will work, except that we didn't store the previous state of xScale.
We do, however, have access to the data before appending the new elements.
We can access the data bounded to the selection of lines as follows:

 // Select the chart group and the lines in that group
 var g = svg.select('g.chart-content'),
 lines = g.selectAll('line');

The first time we use the chart, the lines selection will be empty; in this case, we
need to use the most recent item of the data array to compute the last date. If the
selection isn't empty, we can use the previous most recent date. We can use the
selection.empty method to check whether or not the chart contains bars as follows:

 // Compute the most recent date from the dataset.
 var lastDate = d3.max(data, value);

 // Replace the lastDate with the most recent date of the
 // dataset before the update, if the selection is not empty.
 lastDate = lines.empty() ? lastDate : d3.max(lines.data(), value);

 // Compute the date of the lastDate minus the time interval.
 var firstDate = timeInterval.offset(lastDate, -1);

 // Compute the horizontal scale with the new extent.
 var xScale = d3.time.scale()
 .domain([firstDate, lastDate])
 .range([0, width - margin.left - margin.right]);

We can bind the data now, and we can create the new bars and set their position
with the old scale:

 // Select the lines and bind the new dataset to it.
 var bars = g.selectAll('line').data(data, value);

 // Create the bars on enter
 bars.enter().append('line')
 .attr('x1', function(d) { return xScale(value(d)); })
 // set more attributes ...
 .attr('stroke-opacity', 0.5);

Chapter 2

[37]

Once the new bars were appended, we can update the xScale domain to include the
most recent items and update the position of all the bars:

 // Update the scale with the new dataset.
 lastDate = d3.max(data, value);
 firstDate = timeInterval.offset(lastDate, -1);
 xScale.domain([firstDate, lastDate]);

 // Update the position of the bars, with the updated scale.
 bars.transition()
 .duration(300)
 .attr('x1', function(d) { return xScale(value(d)); })
 .attr('x2', function(d) { return xScale(value(d)); });

The last thing to do is to remove the bars that don't have corresponding data items,
fading them by changing their stroke opacity to zero:

 // Remove the bars that don't have corresponding data items.
 bars.exit().transition()
 .duration(300)
 .attr('stroke-opacity', 0)
 .remove();

A basic version of the barcode chart is now ready. There are some additional
attributes of the chart that we might want to configure; a user might want to change
the color of the bars, their opacity, the duration of the transitions, or the color of the
background rectangle.

Using the barcode chart
In this section, we will use the barcode chart with a more complex dataset and
learn how to use the chart that is integrated within a table. Imagine that we have
an application that monitors the mention of stocks on Twitter. One element of this
fictional application might be a table that displays the aggregated information about
the stock's mentions and the barcode chart with the mentions of the last day. We
will assume that the data is already loaded on the page. Each data item will have
the name of the stock, an array with mentions, and the average of mentions by hour.
Refer to the following code:

var data = [
 {name: 'AAPL', mentions: [...], byHour: 34.3},
 {name: 'MSFT', mentions: [...], byHour: 11.1},
 {name: 'GOOG', mentions: [...], byHour: 19.2},
 {name: 'NFLX', mentions: [...], byHour: 6.7}
];

Reusable Charts

[38]

The mentions array will have objects with the date attribute. These items can have
other attributes as well. We will create the table structure with D3, binding the rows
of the table body to the data array. We create the table by binding the table element
with a single element array as follows:

// Create a table element.
var table = d3.select('#chart').selectAll('table')
 .data([data])
 .enter()
 .append('table')
 .attr('class', 'table table-condensed');

We append the table head and body:

// Append the table head and body to the table.
var tableHead = table.append('thead'),
 tableBody = table.append('tbody');

We add three cells in the row header to display the column headers:

// Add the table header content.
tableHead.append('tr').selectAll('th')
 .data(['Name', 'Today Mentions', 'mentions/hour'])
 .enter()
 .append('th')
 .text(function(d) { return d; });

We append one row to the table body for each element in the data array:

// Add the table body rows.
var rows = tableBody.selectAll('tr')
 .data(data)
 .enter()
 .append('tr');

For each row, we need to add three cells, one with the stock name, one with the
barcode chart, and the last one with the hourly average of mentions. To add the
name, we simply add a cell and set the text:

// Add the stock name cell.
rows.append('td')
 .text(function(d) { return d.name; });

Chapter 2

[39]

Now, we add a cell with the chart. The data item bound to the row is not an array
with dates, so we can't call the barcode function directly. Using the datum method,
we can bind the data item to the td element. Note that this method does not perform
a join, and thus, it doesn't have the enter and exit selections:

// Add the barcode chart.
rows.append('td')
 .datum(function(d) { return d.mentions; })
 .call(barcode);

The datum method receives a data item directly; it doesn't require an array like the
data method. Finally, we add the last cell with the hourly average of mentions. The
content of this cell is a number, so it must be aligned to the right-hand side:

// Add the number of mentions by hour, aligned to the right.
rows.append('td').append('p')
 .attr('class', 'pull-right')
 .html(function(d) { return d.byHour; });

The barcode charts are integrated in the table, along with other information about the
stock mentions as shown in the following screenshot:

The barcode chart, integrated within a table, displaying fictional Twitter mentions of stocks

We used D3 to create a data-bound table with a chart in each row. We could
have created the structure and header of the table in the HTML document and
bound the data array to the rows in the table body, but we created the entire table
with D3, instead.

If the table will be used in more than one page, we can also think of creating the table
as a reusable chart, using the structure presented in the previous section. We could
even add an attribute and an accessor to set the charting function and use the table
chart with a different chart without having to change the code of the table chart.

Reusable Charts

[40]

Creating a layout algorithm
Every chart makes assumptions about the kind and structure of the data that they
can display. A scatter plot needs pairs of quantitative values, a bar chart requires
categories with a quantitative dimension, and a tree map needs nested objects. To
use a chart, the user will need to group, split, or nest the original dataset to fit the
chart requirements. Functions that perform these transformations are called layout
algorithms. D3 already provides a good set of layouts, from the simple pie layout
to the more complex force layout. In this section, we will lean how to implement
a layout algorithm, and we will use it to create a simple visualization using the
barcode dataset.

The radial layout
The array with dates used in the barcode example can be visualized in several
ways. The barcode chart represents every data item as a small bar in a time interval.
Another useful way to display a series of events is to group them in intervals. The
most common among these kind of visualizations is a bar chart, with one bar for
each time interval and the height of each bar representing the number of events that
occurred in the corresponding time interval.

A radial chart is a circular arrangement of arc segments, each one representing
a category. In this chart, each arc has the same angle, and the area of each arc is
proportional to the number of items in the category. We will create a radial layout
that groups and counts the events in hourly segments and compute the start and
end angles for each arc.

The purpose of a layout algorithm is to allow the user to easily transform its dataset
to the format required by a chart. The layout usually allows a certain amount of
customization. We will implement the layout function as a closure with accessors
to configure the layout behavior as follows:

var radialLayout = function() {

 // Layout algorithm.
 function layout(data) {
 var grouped = [];
 // Transform and returns the grouped data ...
 return grouped;
 }
 return layout;
};

Chapter 2

[41]

The usage of a layout is similar to the usage of the barcode chart. First, we invoke
RadialLayout to get the layout function and then call the layout with the dataset
as the argument in order to obtain the output dataset. We will generate an array of
random dates using the addData function from the previous section:

// Generate a dataset with random dates.
var data = addData([], 300, 20 * 60);

// Get the layout function.
var layout = radialLayout();

// Compute the ouput data.
var output = layout(data);

We need the layout to group and count the data items for each hour and to
compute the start and end angles for each arc. To make the counting process
easier, we will use a map to temporarily store the output items. D3 includes
d3.map, a dictionary-like structure that provides key-value storage:

function layout(data) {
 // Create a map to store the data for each hour.
 var hours = d3.range(0, 24),
 gmap = d3.map(),
 groups = [];

 // Append a data item for each hour.
 hours.forEach(function(h) {
 gmap.set(h, {hour: h, startAngle: 0, endAngle: 0, count: 0});
 });

 // ...

 // Copy the values of the map and sort the output data array.
 groups = gmap.values();
 groups.sort(function(a, b) { return a.hour > b.hour ? 1 : -1; });
 return groups;
}

Reusable Charts

[42]

As the layout must return an array, we will need to transfer the map values to the
grouped array and sort it to return it as the output. The output items don't have any
useful information yet:

[
 {hour: 0, startAngle: 0, endAngle: 0, count: 0},
 ...
 {hour: 23, startAngle: 0, endAngle: 0, count: 0}
]

The next thing to do is to count the items that belong to each hour. To do this,
we iterate through the input data and compute the hour of the date attribute:

 // Count the items belonging to each hour
 data.forEach(function(d) {
 // Get the hour from the date attribute of each data item.
 var hour = d.date.getHours();

 // Get the output data item corresponding to the item
 hour.
 var val = gmap.get(hour);

 // We increment the count and set the value in the map.
 val.count += 1;
 gmap.set(hour, val);
 });

At this point, the output contains the count attribute with the correct value. As we
did in the barcode chart, we will add a configurable accessor function to retrieve the
date attribute:

var radialLayout = function() {
 // Default date accessor
 var value = function(d) { return d.date; }

 function layout(data) {
 // Content of the layout function ...
 }

 // Date Accessor Function
 layout.value = function(accessorFunction) {
 if (!arguments.length) { return value; }
 value = accessorFunction;
 return layout;
};

Chapter 2

[43]

In the layout function, we replace the references to d.date with invocations to the
date accessor method, value(d). The user now can configure the date accessor
function with the same syntax as that in the barcode chart:

// Create and configure an instance of the layout function.
var layout = radialLayout()
 .value(function(d) { return d.date; });

Computing the angles
With the count attribute ready, we can proceed to compute the start and end angles
for each output item. The angle for each arc will be the the same, so we can compute
itemAngle and then iterate through the hours array as follows:

 // Compute equal angles for each hour item.
 var itemAngle = 2 * Math.PI / 24;

 // Adds a data item for each hour.
 hours.forEach(function(h) {
 gmap.set(h, {
 hour: h,
 startAngle: h * itemAngle,
 endAngle: (h + 1) * itemAngle,
 count: 0
 });
 });

The output dataset now has the start and end angles set. Note that each data item has
a value that is 1/24th of the circumference:

[
 {hour: 0, startAngle: 0, endAngle: 0.2618, count: 7},
 {hour: 1, startAngle: 0.2618, endAngle: 0.5236, count: 14},
 ...
 {hour: 23, startAngle: 6.0214, endAngle: 6.2832, count: 17}
]

Here, we used the entire circumference, but a user might want to use a semicircle
or want to start in a different angle. We will add the startAngle and endAngle
attributes and the angleExtent accessor method in order to allow the user to set
the angle extent of the chart:

var radialLayout = function() {

 // Default values for the angle extent.
 var startAngle = 0,

Reusable Charts

[44]

 endAngle = 2 * Math.PI;

 // Layout function ...

 // Angle Extent
 layout.angleExtent = function(value) {
 if (!arguments.length) { return value; }
 startAngle = value[0];
 endAngle = value[1];
 return layout;
 };
};

We need to change the itemAngle variable in order to use the new angle range.
Also, we add the layout start angle to the start and end angles for each output item:

 // Angle for each hour item.
 var itemAngle = (endAngle - startAngle) / 24;

 // Append a data item for each hour.
 hours.forEach(function(h) {
 gmap.set(h, {
 hour: h,
 startAngle: startAngle + h * itemAngle,
 endAngle: startAngle + (h + 1) * itemAngle,
 count: 0
 });
 });

We can configure the start and end angles of the layout to use a fraction of
the circumference:

// Create and configure the layout function.
var layout = radialLayout()
 .angleExtent([Math.PI / 3, 2 * Math.PI / 3]);

In this section, we implemented a simple layout algorithm that counts and groups
an array of events in hours and computes the start and end angles to display
the returned value as a radial chart. As we did in the barcode chart example,
we implemented the layout as a closure with getter and setter methods.

Chapter 2

[45]

Using the layout
In this section, we will use the radial layout to create a radial chart. To keep the code
simple, we will create the visualization without creating a chart function. We begin
by creating a container for the radial chart:

<div class="chart-example" id="radial-chart"></div>

We define the visualization variables and append the svg element to the container.
We append a group and translate it to the center of the svg element:

// Visualization Variables
var width = 400,
 height = 200,
 innerRadius = 30,
 outerRadius = 100;

// Append a svg element to the div and set its size.
var svg = d3.select('#radial-chart').append('svg')
 .attr('width', width)
 .attr('height', height);

// Create the group and translate it to the center.
var g = svg.append('g')
 .attr('transform', 'translate(' + [width / 2, height / 2] + ')');

We represent each hour as an arc. To compute the arcs, we need to create a
radius scale:

// Compute the radius scale.
var rScale = d3.scale.sqrt()
 .domain([0, d3.max(output, function(d) { return d.count; })])
 .range([2, outerRadius - innerRadius]);

As we have the angles and the radius, we can configure the d3.svg.arc generator to
create the arc paths for us. The arc generator will use the startAngle and endAngle
attributes to create the arc path:

// Create an arc generator.
var arc = d3.svg.arc()
 .innerRadius(innerRadius)
 .outerRadius(function(d) {
 return innerRadius + rScale(d.count);
 });

www.allitebooks.com

http://www.allitebooks.org

Reusable Charts

[46]

The arc function receives objects with startAngle, endAngle, and count attributes
and returns the path string that represents the arc. Finally, we select the path objects
in the container group, bind the data, and append the paths:

// Append the paths to the group.
g.selectAll('path')
 .data(output)
 .enter()
 .append('path')
 .attr('d', function(d) { return arc(d); })
 .attr('fill', 'grey')
 .attr('stroke', 'white')
 .attr('stroke-width', 1);

The radial chart represents the number of items in each hour as radial arcs. Refer to
the following screenshot:

We have shown you how to use the radial layout to create a simple visualization.
As we mentioned previously, the layout can be used to create other charts as well.
For instance, if we ignore the start and end angles, we can use the radial layout
to create a bar chart or even use the output data to create a table with the data
aggregated by hour.

Chapter 2

[47]

Summary
In this chapter, we learned how to create a reusable chart and how to add
configuration methods to it so that the chart can be used in several projects
without having to change its code in order to use it. We created a barcode chart
and used it with data with a different format. We also learned how to create a
reusable layout algorithm and how to use it to transform the data source to the
format expected by a chart.

In the next chapter, we will learn how to create data visualizations in D3 for
browsers without SVG support using canvas and div elements.

Creating Visualizations
without SVG

Most of the visualizations created with D3 use the SVG element. SVG graphics are
resolution independent, which means that they can be scaled without pixelation,
and they are relatively easy to create with D3. The SVG elements are also part of the
DOM tree and allow us to select and manipulate individual elements of the figures
and to change their attributes, triggering an automatic update by the browser.

There are a significant number of users who don't use a browser with SVG support,
and sometimes, we can't just forget them. In this chapter, we will examine alternatives
that provide visualizations without using SVG. We will create a visualization using
only the div elements, discuss libraries that provide SVG support for older browsers,
and show an example of integrating D3 and the canvas element.

SVG support in the browser market
The global browser market has a good support for SVG, both in mobile and desktop
browsers. There is, however, a significant portion of users who don't enjoy SVG
support; the most notable examples are the users of Internet Explorer 8.0 and
older as well as users of the stock browser of Android under 3.0.

According to http://caniuse.com/, about 86 percent of the global browser market
has basic SVG support (as of May 2014). Most of the applications can't afford to
leave 14 percent of their users behind. With these users in mind, we will learn how
to create data visualizations without using SVG and how to add SVG support to the
browser using polyfilling. You can check a more up-to-date version of this and other
tables on Can I use... (http://caniuse.com/#feat=svg).

http://caniuse.com/
http://caniuse.com/#feat=svg

Creating Visualizations without SVG

[50]

Visualizations without SVG
In this section, we will create a visualization without using SVG. We will create a
bubble chart to show the usage of browser versions in the browser market. A circle
will represent each browser version; the area of the circle will be proportional to the
global browser usage. Each browser will be assigned a different color. We will use
the force layout to group the bubbles on the screen. To follow the examples, open the
chapter03/01-bubble-chart.html file.

Loading and sorting the data
To make the processing easier, the browser market data was arranged in a JSON file.
The main object will have a name that describes the dataset and an array that will
contain the data for each browser version. Refer to the following code:

{
 "name": "Browser Market",
 "values": [
 {
 "name": "Internet Explorer",
 "version": 8,
 "platform": "desktop",
 "usage": 8.31,
 "current": "false"
 },
 // more items ...
]
}

We will use the d3.json method to load the JSON data. The d3.json method creates
an asynchronous request to the specified URL and invokes the callback argument
when the file is loaded or when the request fails. The callback function receives an
error (if any) and the parsed data. There are similar methods to load text, CSV, TSV,
XML, and HTML files. Refer to the following code:

<script>
 // Load the data asynchronously.
 d3.json('/chapter03/browsers.json', function(error, data) {

 // Handle errors getting or parsing the JSON data.
 if (error) {
 console.error('Error accessing or parsing the JSON file.');

Chapter 3

[51]

 return error;
 }

 // visualization code ...

});
</script>

Note that the callback function will be invoked only when the data is loaded. This
means that the code after the d3.json invocation will be executed while the request
is being made, and the data won't be available at this point. The visualization code
should go either inside the callback or somewhere else and should use events to
notify the charting code that the data is ready. For now, we will add the rendering
code inside the callback.

We will create the circles with the div elements. To avoid the smaller elements being
hidden by the bigger elements, we will sort the items and create the elements in
decreasing usage order, as follows:

 // Access the data items.
 var items = data.values;

 // Sort the items by decreasing usage.
 items.sort(function(a, b) { return b.usage-a.usage; });

The Array.prototype.sort instance method sorts the array in place using a
comparator function. The comparator should receive two array items: a and b. If a
must go before b in the sorted array, the comparator function must return a negative
number; if b should go first, the comparator function must return a positive value.

The force layout method
The force layout is a method to distribute elements in a given area, which avoids
overlap between the elements and keeps them in the drawing area. The position of
the elements is computed based on simple constraints, such as adding a repulsive
force between the elements and an attractive force that pulls the elements towards
the center of the figure. The force layout is specially useful to create bubble and
network charts.

Creating Visualizations without SVG

[52]

Although the layout doesn't enforce any visual representation, it's commonly used to
create network charts, displaying the nodes as circles and the links as lines between
the nodes. We will use the force layout to compute the position of the circles, without
lines between them, as follows:

 // Size of the visualization container.
 var width = 700,
 height = 200;

 // Configure the force layout.
 var force = d3.layout.force()
 .nodes(items)
 .links([])
 .size([width, height]);

As we don't intend to represent the relationships between the browser versions,
we will set the links attribute to an empty array. To start the force computation,
we invoke the start method as follows:

 // Start the force simulation.
 force.start();

The force layout will append additional properties to our data items. Of these new
attributes, we will use only the x and y attributes, which contain the computed
position for each node. Note that the original data items shouldn't have names that
conflict with these new attributes:

{
 "name": "Android Browser",
 "version": 3,
 "platform": "mobile",
 "usage": 0.01,
 "current": "false",
 "index": 0,
 "weight": 0,
 "x": 522.7463498711586,
 "y": 65.54744869936258,
 "px": 522.7463498711586,
 "py": 65.54744869936258
}

Having computed the position of the circles, we can proceed to draw them. As we
promised not to use SVG, we will need to use other elements to represent our circles.
One option is to use the div elements. There are several ways to specify the position
of divs, but we will use absolute positioning.

Chapter 3

[53]

A block element styled with absolute positioning can be positioned by setting its top
and left offset properties (the bottom and right offsets can be specified as well). The
offsets will be relative to their closest positioned ancestors in the DOM tree. If none
of its ancestors are positioned, the offset will be relative to the viewport (or the body
element, depending on the browser). We will use a positioned container div and then
set the position of the divs to absolute. The container element will be the div with
the #chart ID. We will select this to modify its style to use the relative position and
set its width and height to appropriate values, as follows:

<!-- Container div -->
<div id="chart"></div>

We will also set padding to 0 so that we don't have to account for it in the
computation of the inner element positions. Note that in order to specify the
style attributes that represent length, we need to specify the units, except when
the length is zero, as follows:

 // Select the container div and configure its attributes
 var containerDiv = d3.select('#chart')
 .style('position', 'relative')
 .style('width', width + 'px')
 .style('height', height + 'px')
 .style('padding', 0)
 .style('background-color', '#eeeeec');

We can now create the inner divs. As usual, we will select the elements to be created,
bind the data array to the selection, and append the new elements on enter. We will
also set the style attributes to use absolute positioning, and set their offsets and their
width and height to 10px as follows:

 // Create a selection for the bubble divs, bind the data
 // array and set its attributes.
 var bubbleDivs = containerDiv.selectAll('div.bubble')
 .data(items)
 .enter()
 .append('div')
 .attr('class', 'bubble')
 .style('position', 'absolute')
 .style('width', '10px')
 .style('height', '10px')
 .style('background-color', '#222');

Creating Visualizations without SVG

[54]

The force layout will compute the position of the nodes in a series of steps or ticks.
We can register a listener function to be invoked on each tick event and update the
position of the nodes in the listener as follows:

 // Register a listener function for the force tick event, and
 // update the position of each div on tick.
 force.on('tick', function() {
 bubbleDiv
 .style('top', function(d) { return (d.y - 5) + 'px'; })
 .style('left', function(d) { return (d.x - 5)+ 'px';
 });
 });

The divs will move nicely to their positions. Note that we subtract half of the div
width and height when setting the offset. The divs will be centered in the position
computed by the force layout as shown in the following screenshot:

The nodes are nicely positioned, but they all have the same size and color

Setting the color and size
Now that we have our nodes positioned, we can set the color and size of the div
elements. To create a color scale for the nodes, we need to get a list with unique
browser names. In our dataset, the items are browser versions; therefore, most
of the browser names are repeated. We will use the d3.set function to create
a set and use it to discard duplicated names, as follows:

// Compute unique browser names.
var browserList = items.map(function(d) { return d.name; }),
 browserNames = d3.set(browserList).values();

Chapter 3

[55]

With the browser list ready, we can create a categorical color scale. Categorical scales
are used to represent values that are different in kind; in our case, each browser will
have a corresponding color:

 // Create a categorical color scale with 10 levels.
 var cScale = d3.scale.category10()
 .domain(browserNames);

The default range of d3.scale.category10 is a set of 10 colors with similar
lightness but different hue, specifically designed to represent categorical data. We
could use a different set of colors, but the default range is a good starting point. If
we had more than 10 browsers, we would need to use a color scale with more colors.
We will also set the border-radius style attribute to half the height (and width) of
the div in order to give the divs a circular appearance. Note that the border-radius
attribute is not supported in all the browsers but has better support than SVG. In
browsers that don't support this attribute, the divs will be shown as squares:

 // Create a selection for the bubble divs, bind the data
 // array and set its attributes.
 var bubbleDivs = containerDiv.selectAll('div.bubble')
 .data(items)
 .enter()
 .append('div')
 // set other attributes ...
 .style('border-radius', '5px')
 .style('background-color', function(d) {
 return cScale(d.name);
 });

We can now compute the size of the circles. To provide an accurate visual
representation, the area of the circles should be proportional to the quantitative
dimensions that they represent, in our case, the market share of each version. As
the area of a circle is proportional to the square of the radius, the radius of the circles
must be proportional to the square root of the market share. We set the minimum
and maximum radius values and use this extent to create the scale:

 // Minimum and maximum radius
 var radiusExtent = [10, 50];

 // create the layout ...

 // Create the radius scale
 var rScale = d3.scale.sqrt()
 .domain(d3.extent(items, function(d) { return d.usage; }))
 .range(radiusExtent);

www.allitebooks.com

http://www.allitebooks.org

Creating Visualizations without SVG

[56]

We will use the radius to compute the width, height, position, and border radius of
each circle. To avoid calling the scale function several times (and to have cleaner
code), we will add the radius as a new attribute of our data items:

 // Add the radius to each item, to compute it only once.
 items.forEach(function(d) {
 d.r = rScale(d.usage);
 });

We can modify the width, height, and border radius of the divs to use the new
attribute, as follows:

 // Create the bubble divs.
 var bubbleDivs = containerDiv.selectAll('div.bubble')
 .data(items)
 .enter()
 .append('div')
 // set other attributes ...
 .style('border-radius', function(d) { return d.r + 'px'; })
 .style('width', function(d) { return (2 * d.r) + 'px'; })
 .style('height', function(d) { return (2 * d.r) + 'px'; });

We need to update the position of the div elements to account for the new radius:

 // Update the div position on each tick.
 force.on('tick', function() {
 bubbleDiv
 .style('top', function(d) { return (d.y - d.r) + 'px'; })
 .style('left', function(d) { return (d.x - d.r)+ 'px'; });
 });

The first draft of the visualization is shown in the following screenshot:

Chapter 3

[57]

At this point, we have the first draft of our visualization, but there are still some
things that need to be improved. The space around each div is the same, regardless
of the size of each circle. We expect to have more space around bigger circles and less
space around smaller ones. To achieve this, we will modify the charge property of
the force layout, which controls the strength of repulsion between the nodes.

The charge method allows us to set the charge strength of each node. The default
value is -30; we will use a function to set greater charges for bigger circles. In physical
systems, the charge is proportional to the volume of the body; so, we will set the
charge to be proportional to the area of each circle as follows:

// Configure the force layout.
var force = d3.layout.force()
 .nodes(items)
 .links([])
 .size([width, height])
 .charge(function(d) { return -0.12 * d.r * d.r; })
 .start();

We don't know in advance which proportionality constant will give a good layout; we
need to tweak this value until we are satisfied with the visual result. Bubbles created
with chart with the divs and force layout is shown in the following screenshot:

Creating Visualizations without SVG

[58]

Now that we have a good first version of our visualization, we will adapt the code
to use a reusable chart pattern. As you will surely remember, a reusable chart is
implemented as a closure with the setter and getter methods as follows:

function bubbleChart() {

 // Chart attributes ...

 function chart(selection) {
 selection.each(function(data) {

 // Select the container div and configure its
 attributes.
 var containerDiv = d3.select(this);

 // create the circles ...
 });
 }

 // Accessor methods ...

 return chart;
};

The code in the chart function is basically the same code that we have written until
now. We also added accessor methods for the color scale, width, height, and radius
extent, as well as accessor functions for the value, name, and charge function to allow
users to adapt to the repulsion force when using the chart with other datasets. We
can create and invoke the charting function in the callback of d3.json as follows:

d3.json('../data/browsers.json', function(error, data) {

 // Handle errors getting or parsing the JSON data.
 if (error) { return error; }

 // Create the chart instance.
 var chart = bubbleChart()
 .width(500);

 // Bind the chart div to the data array.
 d3.select('#chart')
 .data([data.values])
 .call(chart);
});

Chapter 3

[59]

The visualization is incomplete without a legend, so we will create a legend now.
This time, we will create the legend as a reusable chart from the beginning.

Creating a legend
The legend should display which color represents which browser. It can also have
additional information such as the aggregated market share of each browser. We
must use the same color code as that used in the visualization:

function legendChart() {

// Chart Properties ...

 // Charting function.
 function chart(selection) {
 selection.each(function(data) {

 });
 }

 // Accessor methods ...

 return chart;
};

We will implement the legend as a div element that contains paragraphs; each
paragraph will have the browser name and a small square painted with the
corresponding color. In this case, the data will be a list of browser names. We
will add a configurable color scale to make sure that the legend uses the same
colors that are used in the bubble chart:

function legendChart() {

 // Color Scale
 var cScale = d3.scale.category20();

 // Charting function.
 function chart(selection) {
 // chart content ...
 }

 // Color Scale Accessor
 chart.colorScale = function(value) {
 if (!arguments.length) { return cScale; }

Creating Visualizations without SVG

[60]

 cScale = value;
 return chart;
 };

 return chart;
};

We can create a div for the legend and put it alongside the chart div as follows:

d3.json('/chapter03/browsers.json', function(error, data) {
 // Create an instance of the legend chart.
 var legend = legendChart()
 .colorScale(chart.colorScale());

 // Select the container and invoke the legend.
 var legendDiv = d3.select('#legend')
 .data([chart.colorScale().domain()])
 .call(legend);
});

We used the domain of the chart's color scale as the dataset for the legend and set the
color scale of the legend with the color scale of the chart. This will ensure that you
have the same items and colors in the legend that are in the chart. We also added a
width attribute and its corresponding accessor. In the legend chart function, we can
create the title and the legend items using the data:

 // Select the container element and set its attributes.
 var containerDiv = d3.select(this)
 .style('width', width + 'px');

 // Add the label 'Legend' on enter
 containerDiv.selectAll('p.legent-title')
 .data([data])
 .enter().append('p')
 .attr('class', 'legend-title')
 .text('Legend');

 // Add a div for each data item
 var itemDiv = containerDiv.selectAll('div.item')
 .data(data)
 .enter().append('div')
 .attr('class', 'item');

Chapter 3

[61]

We have labels that show up in the legend, but we need to add a marker with the
corresponding color. To keep things simple, we will add two points and set them
with the same background and text color:

 itemP.append('span').text('..')
 .style('color', cScale)
 .style('background', cScale);

To finish the legend, we will compute the market share of each browser. We will
create a map to store each browser name and its aggregated usage, as follows:

 // Create a map to aggregate the browser usage
 var browsers = d3.map();

 // Adds up the usage for each browser.
 data.values.forEach(function(d) {
 var item = browsers.get(d.name);
 if (item) {
 browsers.set(d.name, {
 name: d.name,
 usage: d.usage + item.usage
 });
 } else {
 browsers.set(d.name, {
 name: d.name,
 usage: d.usage
 });
 }
 });

The final version of the bubble chart is shown in the following screenshot:

Creating Visualizations without SVG

[62]

In this example, we created a simple visualization using the div elements and
displayed them as circles with the help of the border-radius attribute. Using divs
with rounded corners is not the only alternative to create this visualization without
using SVG; we could have used raster images of circles instead of div elements,
using absolute positioning and changing the image width and height.

One great example of a sophisticated visualization made without SVG is the
Electoral Map by the New York Times graphic department (http://elections.
nytimes.com/2012/ratings/electoral-map). In this visualization, the user can
create their own scenarios for the presidential elections of 2012 in the United States.

Polyfilling
A polyfill is a JavaScript library that replicates an API feature for the browsers
that don't have it natively. Usually, a polyfill doesn't add its own API or additional
features; it just adds the missing feature.

Polyfills are available for almost every HTML5 and CSS3 feature, but this doesn't
mean that we can start adding libraries to provide all the modern features in the web
browser. Also, the modern features can conflict with each other, so polyfills must be
included carefully. To support SVG in those browsers, the following two polyfills
can be used:

• svgweb: This provides partial SVG support, falling back to Flash if the
browser doesn't support SVG (https://code.google.com/p/svgweb/).

• canvg: This is an SVG parser written in JavaScript. It parses the SVG element
and renders it using a canvas (https://code.google.com/p/canvg/).

The first step to use a polyfill is to detect whether a feature is available in the browser
or not.

Feature detection
There are several ways to find out whether the browser supports a particular feature.
One of them is to get the user agent attribute of the navigator global object, but this
is highly unreliable because the user can configure the user agent property. Another
option is try to use the feature to check whether it has the methods and properties
that we expect. However, this method is error prone and depends on the particular
feature that we are looking for.

http://elections.nytimes.com/2012/ratings/electoral-map
http://elections.nytimes.com/2012/ratings/electoral-map
https://code.google.com/p/svgweb/
https://code.google.com/p/canvg/

Chapter 3

[63]

The most reliable way is to use the Modernizr library. Despite its name, it doesn't
add any modern features to old browsers; it only detects the availability of the
HTML5 and CSS3 features. However, it does interact well with the libraries that
implement the missing features, providing a script loader to include the libraries in
order to fill the gaps. The library can be customized to include the detection of only
the features that we need.

The library performs a suite of tests to detect which features are available and
which are not, and sets the results of these tests in the Boolean attributes of the
global Modernizr object, add classes to the HTML object that explains which
features are present. The library should be loaded in the header, because the
features that we want to add must be available before the <body> element:

<!-- Include the feature detection library -->
<script src="/assets/js/lib/modernizr-latest.js"></script>

To detect the support of SVG in the browser, we can use the Modernizr.svg
property. We can also use it to properly handle the lack of support:

<script>
 // Handle the availability of SVG.
 if (Modernizr.svg) {
 // Create a visualization with SVG.
 } else {
 // Fallback visualization.
 }
</script>

The canvg example
We will begin our example by creating an SVG image with D3. In this example, we
will create an array of circles in SVG and then display them with canvas using the
canvg library. We begin by including the libraries in the header as follows:

<!-- Canvg Libraries -->
<script src="/assets/js/lib/rgbcolor.js"></script>
<script src="/assets/js/lib/StackBlur.js"></script>
<script src="/assets/js/lib/canvg.js"></script>

Creating Visualizations without SVG

[64]

For now, we will begin as usual by selecting the container div, appending the SVG
element, and setting its width and height:

 // Set the width and height of the figure.
 var width = 600,
 height = 300;

 // Select the container div and append the SVG element.
 var containerDiv = d3.select('#canvg-demo'),
 svg = containerDiv.append('svg')
 .attr('width', width)
 .attr('height', height);

We will generate a data array with one item per circle. We want to have one circle for
each 10 pixels. The position of each circle will be given by the x and y attributes. The
z attribute will contain a number proportional to both x and y; this number will be
used to compute the radius and color scales, as follows:

 // Generate data for the position and size of the rectangles.
 var data = [];
 for (var k = 0; k < 60; k += 1) {
 for (var j = 0; j < 30; j += 1) {
 data.push({
 x: 5 + 10 * k,
 y: 5 + 10 * j,
 z: (k - 50) + (20 - j)
 });
 }
 }

We can create the radius and color scales. Both the scales will use the extent of the z
property to set their domains:

 // Create a radius scale using the z attribute.
 var rScale = d3.scale.sqrt()
 .domain(d3.extent(data, function(d) { return d.z; }))
 .range([3, 5]);

 // Create a linear color scale using the z attribute.
 var cScale = d3.scale.linear()
 .domain(d3.extent(data, function(d) { return d.z; }))
 .range(['#204a87', '#cc0000']);

Chapter 3

[65]

We can now create the circles in the SVG element. We create a selection for the circles
to be created, bind the data array, append the circles on enter, and set their attributes:

 // Select the circle elements, bind the dataset and append
 // the circles on enter.
 svg.selectAll('circle')
 .data(data)
 .enter()
 .append('circle')
 .attr('cx', function(d) { return d.x; })
 .attr('cy', function(d) { return d.y; })
 .attr('r', function(d) { return rScale(d.z); })
 .attr('fill', function(d) { return cScale(d.z); })
 .attr('fill-opacity', 0.9);

Until now, this is a standard D3. In a browser without SVG support, the elements
will be created but not rendered. The canvg function interprets the SVG content and
draws it with canvas instead. The function receives the canvas target (where we want
SVG to be drawn), the SVG string, and an object with options. If it is called without
arguments, the function will convert all the SVG elements present on the page. We
will use this option as follows:

// Replace all the SVG elements by canvas drawings.
canvg();

If you inspect the page, you will see that the SVG element is gone, and in its place,
there is a canvas element of the same size as the original SVG. The visual result is the
same as that without using the canvg polyfill. Note that the event handlers bound to
the original SVG elements won't work. For instance, if we added a callback for the
click event on the circles, the callback for the event won't be invoked in the canvas
version. Using canvg to render an SVG element is shown in the following screenshot:

Creating Visualizations without SVG

[66]

Using canvas and D3
Until now, we have used D3 to create visualizations by manipulating SVG elements
and divs. In some cases, it can be more convenient to render the visualizations using
the canvas elements, for performance reasons or if we need to transform and render
raster images. In this section, we will learn how to create figures with the HTML5
canvas element and how to use D3 to render figures with the canvas element.

Creating figures with canvas
The HTML canvas element allows you to create raster graphics using JavaScript.
It was first introduced in HTML5. It enjoys more widespread support than SVG
and can be used as a fallback option. Before diving deeper into integrating canvas
and D3, we will construct a small example with canvas.

The canvas element should have the width and height attributes. This alone will
create an invisible figure of the specified size:

<!— Canvas Element -->
<canvas id="canvas-demo" width="650px" height="60px"></canvas>

If the browser supports the canvas element, it will ignore any element inside the
canvas tags. On the other hand, if the browser doesn't support the canvas, it will
ignore the canvas tags, but it will interpret the content of the element. This behavior
provides a quick way to handle the lack of canvas support:

<!— Canvas Element -->
<canvas id="canvas-demo" width="650px" height="60px">
<!-- Fallback image -->

</canvas>

If the browser doesn't support canvas, the fallback image will be displayed. Note
that unlike the element, the canvas closing tag (</canvas>) is mandatory. To
create figures with canvas, we don't need special libraries; we can create the shapes
using the canvas API:

<script>
 // Graphic Variables
 var barw = 65,
 barh = 60;

 // Append a canvas element, set its size and get the node.

Chapter 3

[67]

 var canvas = document.getElementById('canvas-demo');

 // Get the rendering context.
 var context = canvas.getContext('2d');

 // Array with colors, to have one rectangle of each color.
 var color = ['#5c3566', '#6c475b', '#7c584f', '#8c6a44',
 '#9c7c39',
'#ad8d2d', '#bd9f22', '#cdb117', '#ddc20b', '#edd400'];

 // Set the fill color and render ten rectangles.
 for (var k = 0; k < 10; k += 1) {
 // Set the fill color.
 context.fillStyle = color[k];
 // Create a rectangle in incremental positions.
 context.fillRect(k * barw, 0, barw, barh);
 }
</script>

We use the DOM API to access the canvas element with the canvas-demo ID and to
get the rendering context. Then, we set the color using the fillStyle method and
use the fillRect canvas method to create a small rectangle. Note that we need to
change fillStyle every time or all the following shapes will have the same color.
The script will render a series of rectangles, each filled with a different color, shown
as follows:

A graphic created with canvas

Canvas uses the same coordinate system as SVG, with the origin in the top-left
corner, the horizontal axis augmenting to the right, and the vertical axis augmenting
to the bottom. Instead of using the DOM API to get the canvas node, we could have
used D3 to create the node, set its attributes, and created scales for the color and
position of the shapes. Note that the shapes drawn with canvas don't exist in the
DOM tree; so, we can't use the usual D3 pattern of creating a selection, binding the
data items, and appending the elements if we are using canvas.

Creating Visualizations without SVG

[68]

Creating shapes
Canvas has fewer primitives than SVG. In fact, almost all the shapes must be drawn
with paths, and more steps are needed to create a path. To create a shape, we need
to open the path, move the cursor to the desired location, create the shape, and close
the path. Then, we can draw the path by filling the shape or rendering the outline.
For instance, to draw a red semicircle centered in (325, 30) and with a radius of 20,
write the following code:

 // Create a red semicircle.
 context.beginPath();
 context.fillStyle = '#ff0000';
 context.moveTo(325, 30);
 context.arc(325, 30, 20, Math.PI / 2, 3 * Math.PI / 2);
 context.fill();

The moveTo method is a bit redundant here, because the arc method moves the
cursor implicitly. The arguments of the arc method are the x and y coordinates
of the arc center, the radius, and the starting and ending angle of the arc. There is
also an optional Boolean argument to indicate whether the arc should be drawn
counterclockwise. A basic shape created with the canvas API is shown in the
following screenshot:

Integrating canvas and D3
We will create a small network chart using the force layout of D3 and canvas instead
of SVG. To make the graph look more interesting, we will randomly generate the
data. We will generate 250 nodes that are sparsely connected. The nodes and links
will be stored as the attributes of the data object:

 // Number of Nodes
 var nNodes = 250,
 createLink = false;

 // Dataset Structure
 var data = {nodes: [],links: []};

Chapter 3

[69]

We will append nodes and links to our dataset. We will create nodes with a radius
attribute and randomly assign it a value of either 2 or 4 as follows:

 // Iterate in the nodes
 for (var k = 0; k < nNodes; k += 1) {
 // Create a node with a random radius.
 data.nodes.push({radius: (Math.random() > 0.3) ? 2 : 4});

 // Create random links between the nodes.
 }

We will create a link with a probability of 0.1 only if the difference between the
source and target indexes are less than 8. The idea behind this way to create links
is to have only a few connections between the nodes:

 // Create random links between the nodes.
 for (var j = k + 1; j < nNodes; j += 1) {

 // Create a link with probability 0.1
 createLink = (Math.random() < 0.1) && (Math.abs(k - j)
 < 8);

 if (createLink) {
 // Append a link with variable distance between
 the nodes
 data.links.push({
 source: k,
 target: j,
 dist: 2 * Math.abs(k - j) + 10
 });
 }
 }

We will use the radius attribute to set the size of the nodes. The links will contain
the distance between the nodes and the indexes of the source and target nodes.
We will create variables to set the width and height of the figure:

 // Figure width and height
 var width = 650,
 height = 300;

Creating Visualizations without SVG

[70]

We can now create and configure the force layout. As we did in the previous section,
we will set the charge strength to be proportional to the area of each node. This time
we will also set the distance between the links using the linkDistance method of
the layout:

// Create and configure the force layout
var force = d3.layout.force()
 .size([width, height])
 .nodes(data.nodes)
 .links(data.links)
 .charge(function(d) { return -1.2 * d.radius * d.radius; })
 .linkDistance(function(d) { return d.dist; })
 .start();

We can create a canvas element now. Note that we should use the node method to
get the canvas element, because the append and attr methods will both return a
selection, which doesn't have the canvas API methods:

// Create a canvas element and set its size.
var canvas = d3.select('div#canvas-force').append('canvas')
 .attr('width', width + 'px')
 .attr('height', height + 'px')
 .node();

We get the rendering context. Each canvas element has its own rendering context. We
will use the '2d' context to draw two-dimensional figures. At the time of writing this,
there are some browsers that support the webgl context; more details are available at
https://developer.mozilla.org/en-US/docs/Web/WebGL/Getting_started_
with_WebGL. Refer to the following '2d' context:

// Get the canvas context.
var context = canvas.getContext('2d');

We register an event listener for the force layout's tick event. As canvas doesn't
remember previously created shapes, we need to clear the figure and redraw all
the elements on each tick:

force.on('tick', function() {
 // Clear the complete figure.
 context.clearRect(0, 0, width, height);

 // Draw the links ...
 // Draw the nodes ...
});

https://developer.mozilla.org/en-US/docs/Web/WebGL/Getting_started_with_WebGL
https://developer.mozilla.org/en-US/docs/Web/WebGL/Getting_started_with_WebGL

Chapter 3

[71]

The clearRect method cleans the figure under the specified rectangle. In this case,
we clean the entire canvas. We can draw the links using the lineTo method. We
iterate through the links by beginning a new path for each link, by moving the cursor
to the position of the source node, and by creating a line towards the target node. We
draw the line with the stroke method:

 // Draw the links
 data.links.forEach(function(d) {
 // Draw a line from source to target.
 context.beginPath();
 context.moveTo(d.source.x, d.source.y);
 context.lineTo(d.target.x, d.target.y);
 context.stroke();
 });

We iterate through the nodes and draw each one. We use the arc method to represent
each node with a black circle:

 // Draw the nodes
 data.nodes.forEach(function(d, i) {
 // Draws a complete arc for each node.
 context.beginPath();
 context.arc(d.x, d.y, d.radius, 0, 2 * Math.PI, true);
 context.fill();
 });

We obtain a constellation of disconnected network graphs slowly gravitating
towards the center of the figure. Using the force layout and canvas to create a
network chart is shown in the following screenshot:

Creating Visualizations without SVG

[72]

We can think that to erase all the shapes and redraw each shape again and again
could have a negative impact on the performance. In fact, sometimes it's faster
to draw the figures using canvas, because this way, the browser doesn't have to
manage the DOM tree of the SVG elements (but we still have to redraw them if
the SVG elements are changed).

Summary
In this chapter, we learned how to handle the lack of SVG support in older browsers.
We learned how to create visualizations using only the div elements and how to
detect the availability of SVG support. We also discussed how to use polyfills to
provide the missing functionality. In particular, we created an example of rendering
SVG with canvas using the canvg library.

In the next chapter, we will create a color picker based on the Lab color model.
We will learn how to use the drag behavior and use it to create a reusable slider
element. Also, we will use the slider to create the color picker.

Creating a Color
Picker with D3

In this chapter, we will implement a slider and a color picker using D3. We will use
the reusable chart pattern to create the slider and the color picker. We will also learn
how to compose reusable charts in order to create more complex components.

Creating a slider control
A slider is a control that allows a user to select a value within a given interval
without having to type it. It has a handle that can be displaced over a base line;
the position of the handler determines the selected value. The value is then used
to update other components of the page. In this section, we will create a slider with
D3 using the reusable chart pattern. We will include an API to change its visual
attributes and modify other elements when the slider value changes. Note that in
HTML5, we can create an input element of type range, which will be displayed as a
slider with configurable minimum and maximum steps and values. The type color
is also available, which allows us to use the native color picker. Native controls
include accessibility features and using the keyboard to control the slider. More
details on the input element can be found in https://developer.mozilla.org/en/
docs/Web/HTML/Element/Input. To follow the examples of this section, open the
chapter04/01-slider.html file.

The final slider component

https://developer.mozilla.org/en/docs/Web/HTML/Element/Input
https://developer.mozilla.org/en/docs/Web/HTML/Element/Input

Creating a Color Picker with D3

[74]

The drag behavior
We will review how to use the drag behavior with a simple example. We will begin
by creating the svg element and put a gray circle in the center:

// Width and height of the figure.
var width = 600, height = 150;

// Create the svg element.
var svg = d3.select('#chart').append('svg')
 .attr('width', width)
 .attr('height', height);

// Append a grey circle in the middle.
var circle = svg.append('circle')
 .attr('cx', width / 2)
 .attr('cy', height / 2)
 .attr('r', 30)
 .attr('fill', '#555');

This will create the svg and circle elements, but the circle can't be moved yet. D3
allows us to detect gestures on an element by using behaviors, which are functions
that create event listeners for gesture events on a container element. To detect the
drag gesture, we can use the drag behavior. The drag behavior detects dragging
events of three types, dragstart, drag, and dragend. We can create and configure
the drag behavior by adding event listeners for one or more drag events; in our case,
we will add a listener for the drag event as follows:

// Create and configure a drag behavior.
var drag = d3.behavior.drag().on('drag', dragListener);

For more details on the D3 drag behavior, consult the D3 wiki page on this subject
at https://github.com/mbostock/d3/wiki/Drag-Behavior. To add the drag
behavior to the circle, we can call the drag function, passing the circle selection
to it or using the call method as follows:

// Add dragging handling to the circle.
circle.call(drag);

When the user drags the circle, the dragListener function will be invoked. The
dragListener function receives the data item bound to the circle (if any), with
the this context set to the container element, in our case, the circle element. In the
dragListener function, we will update the position of the circle. Note that the cx
and cy attributes are returned as strings, and prepending a plus sign will cast these
values to numbers. Refer to the following code:

// Moves the circle on drag.
function dragListener(d) {

https://github.com/mbostock/d3/wiki/Drag-Behavior

Chapter 4

[75]

 // Get the current position of the circle
 var cx = +d3.select(this).attr('cx'),
 cy = +d3.select(this).attr('cy');

 // Set the new position of the circle.
 d3.select(this)
 .attr('cx', cx + d3.event.dx)
 .attr('cy', cy + d3.event.dy);
}

The dragListener function updates the cx and cy attributes of the circle, but it can
change other attributes as well. It can even change properties of other elements. In
the next section, we will use the drag behavior to create a simple SVG slider.

Creating the slider
The slider component will have a configurable width, domain, and a listener
function to be called on the slide. To use the slider, attach it to an svg group. As
the group can be translated, rotated, and scaled, the same slider can be displayed
horizontally, vertically, or even diagonally anywhere inside the SVG element. We
will implement the slider using the reusable chart pattern:

function sliderControl() {
 // Slider Attributes...

 // Charting function.
 function chart(selection) {
 selection.each(function(data) {
 // Create the slider elements...
 });
 }

 // Accessor Methods...

 return chart;
}

We will add attributes for width and domain, as well as their corresponding accessor
methods, chart.width and chart.domain. Remember that the accessor methods
should return the current value if they are invoked without arguments and return
the chart function if a value is passed as an argument:

 function chart(selection) {
 selection.each(function(data) {
 // Select the container group.

Creating a Color Picker with D3

[76]

 var group = d3.select(this);

 // Create the slider content...
 });
 }

We will assume that the slider is created within an svg group, but we could have
detected the type of the container element and handle each case. If it were a div, for
instance, we could append an svg element and then append a group to it. We will
work with the group to keep things simple. We will create the base line using the
svg line element:

 // Add a line covering the complete width.
 group.selectAll('line')
 .data([data])
 .enter().append('line')
 .call(chart.initLine);

We encapsulate the creation of the line in the chart.initLine method.
This function will receive a selection that contains the created line and sets
its position and other attributes:

 // Set the initial attributes of the line.
 chart.initLine = function(selection) {
 selection
 .attr('x1', 2)
 .attr('x2', width - 4)
 .attr('stroke', '#777)
 .attr('stroke-width', 4)
 .attr('stroke-linecap', 'round');
 };

We set the x1 and x2 coordinates of the line. The default value for the coordinates
is zero, so we don't need to define the y1 and y2 coordinates. The stroke-linecap
attribute will make the ends of the line rounded, but we will need to adjust the x1
and x2 attributes to show the rounded corners. With a stroke width of 4 pixels, the
radius of the corner will be 2 pixels, which will be added in each edge of the line.
We will create a circle in the group in the same way:

 // Append a circle as handler.
 var handle = group.selectAll('circle')
 .data([data])
 .enter().append('circle')
 .call(chart.initHandle);

Chapter 4

[77]

The initHandle method will set the radius, fill color, stroke, and position of the
circle. The complete code of the function is available in the example file. We will
create a scale to map the value of the slider to the position of the circle:

 // Set the position scale.
 var posScale = d3.scale.linear()
 .domain(domain)
 .range([0, width]);

We correct the position of the circle, so its position represents the initial value of
the slider:

 // Set the position of the circle.
 handle
 .attr('cx', function(d) { return posScale(d); });

We have created the slider base line and handler, but the handle can't be moved yet.
We need to add the drag behavior to the circle:

 // Create and configure the drag behavior.
 var drag = d3.behavior.drag().on('drag', moveHandler);

 // Adds the drag behavior to the handler.
 handler.call(drag);

The moveHandler listener will update only the horizontal position of the circle,
keeping the circle within the slider limits. We need to bind the value that we are
selecting to the handle (the circle), but the cx attribute will give us the position of the
handle in pixels. We will use the invert method to compute the selected value and
rebind this value to the circle so that it's available in the caller function:

function moveHandle(d) {
 // Compute the future position of the handler
 var cx = +d3.select(this).attr('cx') + d3.event.dx;

 // Update the position if it's within its valid range.
 if ((0 < cx) && (cx < width)) {
 // Compute the new value and rebind the data
 d3.select(this).data([posScale.invert(cx)])
 .attr('cx', cx);
 }
}

Creating a Color Picker with D3

[78]

To use the slider, we will append an SVG figure to the container div and set its width
and height:

// Figure properties.
var width = 600, height = 60, margin = 20;

// Create the svg element and set its dimensions.
var svg = d3.select('#chart').append('svg')
 .attr('width', width + 2 * margin)
 .attr('height', height + 2 * margin);

We can now create the slider function, setting its width and domain:

// Valid range and initial value.
var value = 70, domain = [0, 100];

// Create and configure the slider control.
var slider = sliderControl().width(width).domain(domain);

We create a selection for the container group, bind the data array that contains
the initial value, and append the group on enter. We also translate the group
to the location where we want the slider and invoke the slider function using
the call method:

var gSlider = svg.selectAll('g')
 .data([value])
 .enter().append('g')
 .attr('transform', 'translate(' + [margin, height / 2] + ')')
 .call(slider);

We have translated the container group to have a margin, and we have centered it
vertically. The slider is now functional, but it doesn't update other components or
communicate changes in its value. Refer to the following screenshot:

The slider appended to an SVG group

Chapter 4

[79]

We will add a user-configurable function that will be invoked when the user moves
the handler, along with its corresponding accessor function, so that the user can
define what should happen when the slider is changed:

function sliderControl() {
 // Slider attributes...

 // Default slider callback.
 var onSlide = function(selection) { };

 // Charting function...
 function chart() {...}

 // Accessor Methods
 // Slide callback function
 chart.onSlide = function(onSlideFunction) {
 if (!arguments.length) { return onSlide; }
 onSlide = onSlideFunction;
 return chart;
 };

 return chart;
}

The onSlide function will be called on the drag listener function, passing the
handler selection as an argument. This way, the value of the slider will be passed
to the onSlide function as the bound data item of the selection argument:

function moveHandler(d) {

 // Compute the new position of the handler
 var cx = +d3.select(this).attr('cx') + d3.event.dx;

 // Update the position within its valid range.
 if ((0 < cx) && (cx < width)) {
 // Compute the new value and rebind the data
 d3.select(this).data([posScale.invert(cx)])
 .attr('cx', cx)
 .call(onSlide);
 }
}

Remember that the onSlide function should receive a selection, and through the
selection, it should receive the value of the slider. We will use the onSlide function
to change the color of a rectangle.

Creating a Color Picker with D3

[80]

Using the slider
We use the slider to change the color of a rectangle. We begin by creating the svg
element, setting its width, height, and margin:

// Create the svg element
var svg = d3.select('#chart').append('svg')
 .attr('width', width + 2 * margin)
 .attr('height', height + 3 * margin);

We create a linear color scale; its range will be the colors yellow and red. The domain
of the scale will be the same as that in the slider:

// Create a color scale with the same range that the slider
var cScale = d3.scale.linear()
 .domain(domain)
 .range(['#edd400', '#a40000']);

We add a rectangle in the svg, reserving some space in its upper side to put the slider
on top. We also set its width, height, and fill color:

// Add a background to the svg element.
var rectangle = svg.append('rect')
 .attr('x', margin)
 .attr('y', 2 * margin)
 .attr('width', width)
 .attr('height', height)
 .attr('fill', cScale(value));

We create the slider control and configure its attributes. The onSlide function will
change the rectangle fill color using the previously defined scale:

// Create and configure the slider control.
var slider = sliderControl()
 .domain(domain)
 .width(width)
 .onSlide(function(selection) {
 selection.each(function(d) {
 rectangle.attr('fill', cScale(d));
 });
 });

Chapter 4

[81]

Finally, we append a group to contain the slider and translate it to put it above the
rectangle. We invoke the slider function using the call method:

// Create a group to hold the slider and add the slider to it.
var gSlider = svg.selectAll('g').data([value])
 .enter().append('g')
 .attr('transform', 'translate(' + [margin, margin] + ')')
 .call(slider);

Refer to the following screenshot:

The fill color of the rectangle is controlled by the slider

Creating a color picker
We will implement a color picker using the slider from the previous section. A color
picker is a UI control that allows the user to select a color. Usually, the color picker
is shown as a small, colored rectangle, and when the user clicks on it, a window
is opened with controls to change the color. To follow the code snippets, open the
chapter04/02-color-picker.html file. Refer to the following screenshot:

The color picker selector and window that uses the sliders from the previous section

We will implement the color picker using the reusable chart pattern. This will allow
us to modularize the components in two parts, the color picker selector and the color
picker window. We begin by creating the color picker selector.

Creating a Color Picker with D3

[82]

The color picker selector
The control element will be shown as a small rectangle. When the user clicks on the
rectangle, the color picker will appear, and clicking on the control again will set the
value. We will create a color picker using the CIELAB 1976 color model, which is
informally known as Lab. In this model, L is for lightness, and the a and b parameters
represent colors. This color model aims to be more perceptually uniform than other
models, which means that changes in the color value are perceived as changes of
about the same visual importance. We create the structure of the color picker using
the reusable chart pattern as follows:

function labColorPicker() {

 // Selector Attributes

 // Selector shape
 var width = 30,
 height = 10;

 // Default Color
 var color = d3.lab(100, 0, 0);

 // Charting function
 function chart(selection) {
 selection.each(function() {
 // Creation of the color picker...
 });
 }

 // Width and height accessor methods...

 // Color Accessor
 chart.color = function(value) {
 if (!arguments.length) { return color; }
 color = d3.lab(value);
 return chart;
 };

 return chart;
}

Chapter 4

[83]

The chart.color method receives a color in any format that can be converted by
d3.lab and returns the picker color as a d3.lab object with the current color of the
picker. We can also add accessors for the width and height (not shown for brevity).
To use the color picker, we need to create a container group for it and use the call
method to create the color selector:

// Create the svg figure...

// Create the color picker and set the initial color
var picker = labColorPicker().color('#a40000');

// Create a group for the color picker and translate it.
var grp = svg.append('g')
 .attr('transform', 'translate(' + [offset, offset] + ')')
 .call(picker);

We will translate the group to add a margin between the color picker selector and
the surrounding elements. In the charting function, we will create a selection with a
rectangle, bind the current color to that selection, and create the rectangle on enter:

function chart(selection) {
 selection.each(function() {
 // Create the container group and rectangle
 var group = d3.select(this),
 rect = group.selectAll('rect');

 // Bind the rectangle to the color item and set its
 // initial attributes.
 rect.data([chart.color()])
 .enter().append('rect')
 .attr('width', width)
 .attr('height', height)
 .attr('fill', function(d) { return d; })
 .attr('stroke', '#222')
 .attr('stroke-width', 1);
 });
}

This will create the picker rectangle with the initial color.

Creating a Color Picker with D3

[84]

Adding the color picker window
The color picker window should show up if the color selector is clicked on and hide
it if the selector is clicked on a second time. We will use a div element to create the
color picker window:

 // Bind the rectangle to the data
 rect.data([chart.color()])
 .enter().append('rect')
 // set more attributes ...
 .on('click', chart.onClick);

The openPicker function receives the data item bound to the rectangle. When the
user clicks on the rectangle, the openPicker function will be invoked. This method
will create the color picker window (a div) or remove it if already exists:

var openPicker = function(d) {
 // Select the color picker div and bind the data.
 var div = d3.select('body').selectAll('div.color-picker')
 .data([d]);

 if (div.empty()) {
 // Create the container div, if it doesn't exist.
 div.enter().append('div')
 .attr('class', 'color-picker');
 } else {
 // Remove the color picker div, if it exists.
 d3.select('body').selectAll('div.color-picker')
 .remove();
 }
};

Here, we detect whether the element exists using the empty method. If the selection
is empty, we create the div and set its attributes. If the selection is not empty, we
remove the color picker window. We want the color picker window to appear near
the rectangle; we will use the position of the pointer to locate the window to the
right-hand side of the selector. To position the color picker window, we need to set
its position to absolute, and set its top and left offsets to appropriate values. We also
set a provisional width, height, and background color for the div:

// Create the container div, if it doesn't exist.
div.enter().append('div')
 .attr('class', 'color-picker')
 .style('position', 'absolute')
 .style('left', (d3.event.pageX + width) + 'px')
 .style('top', d3.event.pageY + 'px')

Chapter 4

[85]

 .style('width', '200px')
 .style('height', '100px')
 .style('background-color', '#eee');

We now have a div element that is displayed when the user clicks on it and
hidden when the user clicks again. Most importantly, the window div is bound
to the same data item as the rectangle, and the this context in the onClick method
is the rectangle node. We can now create the color picker window as a reusable chart
and bind it to the color picker selector.

The color picker window
Let's review what we have done so far. The color picker has two parts: the color
picker selector and the color picker window. The color picker window is a div that
appears when the user clicks on the selector and disappears if the user clicks again.
We will use the reusable chart pattern to create the color picker window. Refer to the
following screenshot:

Components of the color picker; we will use the slider from the previous section

We can create the color picker content as an independent chart. For simplicity,
this time, we won't add the width, height, and margins as configurable attributes.
In this case, there are many elements that need to be created and positioned in the
figure; we will only show you the most important ones:

function labColorPickerWindow() {

 // Chart Attributes...
 var margin = 10,
 // set more attributes...
 width = 3 * margin + labelWidth + sliderWidth + squareSize,
 height = 2 * margin + squareSize;

 function chart(selection) {
 selection.each(function(data) {
 // Select the container div and set its style
 var divContent = d3.select(this);

Creating a Color Picker with D3

[86]

 // set the divContent size and position...

 // Create the SVG Element
 var svg = divContent.selectAll('svg')
 .data([data])
 .enter().append('svg');

 // set the svg width and height...
 // add more elements...
 });
 }

 return chart;
};

Again, we have used the basic structure of a reusable chart. Remember that in the
selection.each function, the data is the color of the selector, and the context is the
container div. We begin by adding the square that will show you the selected color:

 // Add the color square
 var colorSquare = svg.append('rect')
 .attr('x', 2 * margin + sliderWidth + labelWidth)
 .attr('y', margin)
 .attr('width', squareSize)
 .attr('height', squareSize)
 .attr('fill', data);

This will put the square to the right-hand side of the window. Next, we will create a
scale to position each slider vertically. The rangePoints method of the scale allows
us to evenly distribute the sliders in the vertical space:

 // Scale to distribute the sliders vertically
 var vScale = d3.scale.ordinal()
 .domain([0, 1, 2])
 .rangePoints([0, squareSize], 1);

We will use this scale to set the position of the groups that will contain the slider
elements for each color component. We create a slider for the l component of the color:

var sliderL = sliderControl()
 .domain([0, 100])
 .width(sliderWidth);
 .onSlide(function(selection) {
 selection.each(function(d) {
 data.l = d;
 updateColor(data);
 });
 });

Chapter 4

[87]

The l component of the color is updated on the slider, and then the updateColor
function is invoked, passing the color as the argument. We add a group to display
the slider and translate it to the appropriate location. Remember that the data bound
to the group is the value that is changed when the user moves the handler:

var gSliderL = svg.selectAll('g.slider-l')
 .data([data.l])
 .enter().append('g')
 .attr('transform', function() {
 var dx = margin + labelWidth,
 dy = margin + vScale(0);
 return 'translate(' + [dx, dy] + ')';
 })
 .call(sliderL);

This will create the first slider. In a similar way, we add a slider for the a and b
color components with its corresponding groups. When the user moves the slider,
the square and the rectangle in the selector should get updated. This chart is
independent of the color picker selector to which we don't have access to the selector
rectangle in this scope. We will add a configurable method that will be invoked
on color change, so the user of labColorWindow can update other components.
The updateColor function will update the color of the square and invoke the
onColorChange function:

// Update the color square and invoke onColorChange
function updateColor(color) {
 colorSquare.attr('fill', color);
 divContent.data([color]).call(onColorChange);
}

Note that the color is bound to the color picker window div, and onColorChange
receives the selection that contains the window. We need to add a default function
and an accessor to configure this function. The default function will be just an empty
function. We can now update the color picker selector, more precisely, the onClick
method, to create the color picker window as follows:

chart.onClick = function(d) {
 // Select the picker rectangle
 var rect = d3.select(this);

 // Select the color picker div and bind the data...
 if (div.empty()) {
 // Create the Color Picker Content
 var content = labColorPickerWindow()
 .onColorChange(function(selection) {

Creating a Color Picker with D3

[88]

 selection.each(function(d) {
 rect.data([d]).attr('fill', d);
 });
 });

 // Create the container div, if it doesn't exist.
 div.enter().append('div')
 .attr('class', 'color-picker')
 // set more attributes....
 .call(content);

 // Bind the data to the rectangle again.
 rect.data([div.datum()]);
 } else {
 // Update the color of the rectangle
 rect.data([div.datum()])
 .attr('fill', function(d) { return d; });

 // Remove the color picker window.
 d3.select('body')
 .selectAll('div.color-picker').remove();
 }
};

We can now select a color using the color picker. There is only one thing missing;
the user will want to do something with the color once it has been changed. We will
add an onChangeColor function and its corresponding accessor to the color picker
window and invoke it at the end of the chart.onClick method. With this function,
the user will be able to use the color to change other components:

chart.onClick = function(d) {
 // ...

 // Invoke the user callback.
 onColorChange(color);
};

To use the color picker, we need to attach it to a selection that contains a group and
configure the onColorChange function:

// Create the color picker
var picker = labColorPicker()
 .color('#fff)
 .onColorChange(function(d) {

Chapter 4

[89]

 // Change the background color of the page
 d3.select('body').style('background-color', d);
 });

// Create a group for the color picker and translate it.
var grp = svg.append('g')
 .attr('transform', 'translate(30, 30)')
 .call(picker);

This will change the background color of the example page when the user selects a
color. In this section, we have used the slider components to create a color picker.
The color picker has two independent components: the selector and the color picker
window. The color picker selector creates an instance of the color picker window
when the user clicks on it and removes the window container when the user clicks
on it again.

Summary
In this chapter, we used the drag behavior and the reusable chart pattern to create a
slider control. This control can be used to allow users to select values within a range.
We used the slider component to create a color picker for the Lab color space. In the
implementation of the color picker, we didn't need to know about the internals of the
slider; we only used the slider's public interface. The composition between reusable
components allows us to create rich components without having to handle the
details of their internal elements.

In the next chapter, we will learn how to create tooltips for our charts and how
to implement more advanced user interface components. We will also create an
area chart that allows us to measure variations between two points in the chart
by using brushing.

Creating User
Interface Elements

In the previous chapter, we learned how to use the drag behavior and SVG elements
to create reusable controls and user interface elements. In this chapter, we will learn
how to create additional elements to complement our projects. When designing
data visualizations, screen real estate is one of the scarcest resources; we need to
get the most out of our pixels without cluttering the screen. One of the strategies to
solve this problem is to add contextual user interface elements, allowing the user to
request any additional information in a quick and nonintrusive way. A tooltip does
just that: it displays additional information about an item without cluttering the
entire visualization.

If the page has a large number of elements, the user can lose track of the important
parts of the visualization or have difficulties in tracking individual elements. One
solution is to highlight the important elements, so we can guide the users' attention
to the most relevant elements in the page.

In this chapter, we will learn how to highlight elements and create reusable tooltips.
We will also create a chart with a brushing control, which will allow us to select an
interval and display additional information about that interval.

Highlighting chart elements
We will create a simple chart depicting a series of circles that represent fruits and
the number of calories we can get from 100 grams of each fruit. To make things
easier, we have created a JSON file with information about the fruits. The file
structure is as follows:

{
 "name": "Fruits",

Creating User Interface Elements

[92]

 "data": [
 {
 "name": "Apple",
 "description": "The apple is the pomaceous fruit..."
 "amount_grams": 100,
 "calories": 52,
 "color": "#FF5149"
 },
 ...
]
}

We will represent each fruit with a circle and arrange them horizontally. We will
map the area of the circle to the calories by serving, coloring them with the color
indicated in the data item. As usual, we will use the reusable chart pattern, creating
a closure function with the chart attributes and a charting function that contains the
rendering logic, as shown in the following code:

function fruitChart() {

 // Chart Attributes
 var width = 600,
 height = 120;

 // Radius Extent
 var radiusExtent = [0, 40];

 // Charting Function
 function chart(selection) {
 selection.each(function(data) {
 // charting function content ...
 });
 }

 // Accessor Methods...

 return chart;
}

Chapter 5

[93]

Although it is unlikely that we will reuse the fruit chart, the reusable chart structure
is still useful because it encapsulates the chart variables and we get cleaner code. In
the charting function, we select the div container, create the svg element, and set its
width and height, as follows:

// Charting Function
function chart(selection) {
 selection.each(function(data) {

 // Select the container div and create the svg selection
 var div = d3.select(this),
 svg = div.selectAll('svg').data([data]);

 // Append the svg element on enter
 svg.enter().append('svg');

 // Update the width and height of the SVG element
 svg.attr('width', width).attr('height', height);

 // add more elements...
 });
}

We want to have the circles evenly distributed in the horizontal dimension. To
achieve this, we will use an ordinal scale to compute the position of each circle,
as shown in the following code:

// Create a scale for the horizontal position
var xScale = d3.scale.ordinal()
 .domain(d3.range(data.length))
 .rangePoints([0, width], 1);

The rangePoints method will configure the scale, dividing the [0,width] range
into the number of elements in the domain. The second argument allows you to add
padding, expressed as a multiple of the distance between two items. We will also
add a scale for the radius, mapping the number of calories to the area of the circle.
As discussed earlier, the area of the circle should be proportional to the quantitative
dimensions that we are representing:

// Maximum number of calories
var maxCal = d3.max(data, function(d) {
 return d.calories;
});

// Create the radius scale

Creating User Interface Elements

[94]

var rScale = d3.scale.sqrt()
 .domain([0, maxCal])
 .rangeRound(radiusExtent);

We will create groups and translate them to the location where we want the circles
and labels. We will append the circles and labels to the groups, as follows:

// Create a container group for each circle
var gItems = svg.selectAll('g.fruit-item').data(data)
 .enter()
 .append('g')
 .attr('class', 'fruit-item')
 .attr('transform', function(d, i) {
 return 'translate(' + [xScale(i), height / 2] + ')';
 });

We can now append the circle, the label that displays the fruit name, and another
label that shows the number of calories per serving. We will set the style of the labels
to align them to the center and set the font size for the labels:

// Add a circle to the item group
var circles = gItems.append('circle')
 .attr('r', function(d) { return rScale(d.calories); })
 .attr('fill', function(d) { return d.color; });

// Add the fruit name
var labelName = gItems.append('text')
 .attr('text-anchor', 'middle')
 .attr('font-size', '12px')
 .text(function(d) { return d.name; });

// Add the calories label
var labelKCal = gItems.append('text')
 .attr('text-anchor', 'middle')
 .attr('font-size', '10px')
 .attr('y', 12)
 .text(function(d) { return d.calories + ' kcal'; });

We can use the chart at this point. We load the JSON file, create and configure the
fruit chart, select the div container, and call the chart, passing the selection as an
argument, as shown in the following code:

// Load and parse the json data
d3.json('/chapter05/fruits.json', function(error, root) {

 // Display the error message

Chapter 5

[95]

 if (error) {
 console.error('Error getting or parsing the data.');
 throw error;
 }

 // Create and configure the chart
 var fruits = fruitChart();

 d3.select('div#chart')
 .data([root.data])
 .call(fruits);
});

We obtained a series of circles where each one represents a fruit, but without any
highlighting yet.

The first draft of the chart, without any highlighting

We will highlight the circles when the pointer moves over the circles by changing the
background color to a brighter color of the same hue and by adding a small border,
returning the circles to their original state when the mouse leaves the element.
The DOM API allows you to bind listeners for events to individual elements, but
the selection.on method allows you to apply a listener to all the elements in a
selection at the same time. As in almost every D3 operator, the this context is set
to the selected element in the listener function. The d3.rgb function constructs a
RGB color from the hexadecimal string. The brighter() method returns a brighter
version of the color. The method receives an optional parameter, k, which can be
used to specify the increment of brightness. The default value is 1, and the brightness
is increased by multiplying each channel by 0.7^-k. We will use this method to
highlight the circles on a mouseover event:

// We add listeners to the mouseover and mouseout events
circles
 .on('mouseover', function(d) {
 d3.select(this)
 .attr('stroke-width', 3)
 .attr('fill', d3.rgb(d.color).brighter())
 .attr('stroke', d.color);
 })

Creating User Interface Elements

[96]

 .on('mouseout', function(d) {
 d3.select(this)
 .attr('stroke-width', 0)
 .attr('fill', d.color);
 });

The elements are now highlighted when the user moves the pointer over the circles.

The highlighted element is brighter and has a small border

This is a very simple example, but the method to highlight elements is the same in
bigger charts. There are other strategies to highlight elements; for instance, a highlight
class can be added or removed when the user moves the cursor over the elements.
This strategy is particularly useful when we don't want to hardcode the styles.

Creating tooltips
A tooltip is a small element that provides contextual information when the user
locates the pointer over an element. This allows you to provide details without
cluttering the visualization. In this section, we will create the tooltip as a reusable
chart but with a different structure than that in the previous examples. In the
previous charts, we bound the data to a selection of containers for the charts; while
in this case, the tooltip chart will be bound to the element on which the tooltip
should appear. This implies that the selection argument in the charting function
contains the elements on which the tooltip will appear. In the case of the fruit chart,
we will want the tooltip to appear when the user moves the pointer over the circles,
follow the pointer as it moves over the circle, and disappear when the pointer leaves
the circle. We will create a tooltip as a reusable chart, but instead of invoking the
tooltip on a selection of containers, we will invoke the tooltip passing it a selection
containing the circle under the cursor. We begin by creating the tooltip chart, bearing
in mind these considerations:

function tooltipChart() {

 // Tooltip Attributes...

 // Charting function
 function chart(selection) {

Chapter 5

[97]

 selection.each(function(d) {
 // Bind the mouse events to the container element
 d3.select(this)
 .on('mouseover', create)
 .on('mousemove', move)
 .on('mouseout', remove);
 });
 }

 // Accessor methods...

 return chart;
}

Here, we added listeners for the mouseover, mousemove, and mouseout events on the
selection argument. The data bound to each element will be passed on to the create,
move, and remove listeners. These functions will create, move, and remove the tooltip,
respectively. To create the tooltip, we will create a div container under the body
element and set its left and top offsets to the pointer position, plus we add a small
offset, as shown in the following code:

// Create the tooltip chart
var create = function(data) {

 // Create the tooltip container div
 var tooltipContainer = d3.select('body').append('div')
 .datum(data)
 .attr('class', 'tooltip-container')
 .call(init);

 // Move the tooltip to its initial position
 tooltipContainer
 .style('left', (d3.event.pageX + offset.x) + 'px')
 .style('top', (d3.event.pageY + offset.y) + 'px');
};

To locate the tooltip near the pointer, we need to set its position to absolute. The
pointer events' style must be set to none so that the tooltip doesn't capture the mouse
events. We set the position and other style attributes in an inline style element. We
also set the style for the tooltip's title and content, as shown in the following code:

<style>
.tooltip-container {
 position: absolute;
 pointer-events: none;

Creating User Interface Elements

[98]

 padding: 2px 4px 2px 6px;
 background-color: #eee;
 border: solid 1px #aaa;
}

.tooltip-title {
 text-align: center;
 font-size: 12px;
 font-weight: bold;
 line-height: 1em;
}

.tooltip-content {
 font-size: 11px;
}
</style>

In the initialization function, we will create the div container for the tooltip and
add paragraphs for the title and the content. We also added the title and content
methods with their corresponding accessors so that the user can configure the title
and content based on the bound data:

// Initialize the tooltip
var init = function(selection) {
 selection.each(function(data) {
 // Create and configure the tooltip container
 d3.select(this)
 .attr('class', 'tooltip-container')
 .style('width', width + 'px');

 // Tooltip Title
 d3.select(this).append('p')
 .attr('class', 'tooltip-title')
 .text(title(data));

 // Tooltip Content
 d3.select(this).append('p')
 .attr('class', 'tooltip-content')
 .text(content(data));
 });
};

Chapter 5

[99]

The chart.move method will update the position of the tooltip as the pointer moves,
changing its left and top offsets. The chart.remove method will just remove the
tooltip from the document:

// Move the tooltip to follow the pointer
var move = function() {
 // Select the tooltip and move it following the pointer
 d3.select('body').select('div.tooltip-container')
 .style('left', (d3.event.pageX + offset.x) + 'px')
 .style('top', (d3.event.pageY + offset.y) + 'px');
};

// Remove the tooltip
var remove = function() {
 d3.select('div.tooltip-container').remove();
};

Using the tooltip
We can use the tooltip in the fruit chart, and add tooltips when the user moves the
pointer over the circles. We will create and configure the tooltip function in the
fruit chart closure, as follows:

function fruitChart() {

 // Create and configure the tooltip
 var tooltip = tooltipChart()
 .title(function(d) { return d.name; })
 .content(function(d) { return d.description; });

 // Attributes, charting function and accessors...

 return chart;
}

In the charting function, we can invoke the tooltip function by passing the
selection of the circles as an argument, as follows:

function fruitChart() {

 // Chart attributes...

 // Charting Function
 function chart(selection) {
 selection.each(function(data) {

Creating User Interface Elements

[100]

 // Charting function content...

 // The event listeners of the tooltip should be
 // namespaced to avoid overwriting the listeners of the
 circles.
 circles
 .on('mouseover', function(d) { ... })
 .on('mouseout', function(d) { ... })
 .call(tooltip);
 });
 }

 // Accessor methods....

 return chart;
}

Remember that the circles already have listeners for the
mouseover and mouseout events. If we add the tooltip as it
is, the first listener will be removed before the new listener is
added, disabling the highlighting.

To register multiple listeners for the same event type, we can add an optional
namespace to the tooltip-related events, as follows:

// Tooltip charting function
function chart(selection) {
 selection.each(function(d) {
 // Bind the mouse events to the container element
 d3.select(this)
 .on('mouseover.tooltip', create)
 .on('mousemove.tooltip', move)
 .on('mouseout.tooltip', remove);
 });
}

Chapter 5

[101]

Now, we have the tooltips and highlighting enabled in the fruit chart.

The tooltip and the highlighting listeners are enabled for the fruit chart

Selecting a range with brushing
In this section, we will create an area chart to display stock prices and use
brushing to allow the user to select an interval and get additional information
about that time interval.

Selecting a time interval with brushing

Creating User Interface Elements

[102]

We will use the time series of the prices of the AAPL stock, available as a TSV file
in the D3 examples gallery. The file contains the date and closing price for the date,
covering almost 5 years of activity, as shown in the following code:

date close
1-May-12 582.13
30-Apr-12 583.98
27-Apr-12 603.00
26-Apr-12 607.70
...

Creating the area chart
We begin by creating the structure of a reusable chart; we will add the width,
height, and margin as the chart attributes, and add their corresponding accessors.
The complete code is available in the chapter05/02-brushing.html file. In the
charting function, we initialize and set the size of the svg element as follows:

// Chart Creation
function chart(selection) {
 selection.each(function(data) {

 // Select the container element and create the svg selection
 var div = d3.select(this),
 svg = div.selectAll('svg').data([data]);

 // Initialize the svg element
 svg.enter().append('svg')
 .call(svgInit);

 // Initialize the svg element
 svg.attr('width', width).attr('height', height);

 // Creation of the inner elements...
 });
}

The svgInit function will be called only on enter, and it will create groups for the axis
and the chart content. We will parse the input data, so we don't have to transform each
item later. To parse the date, we will use the d3.time.format D3 method:

// Configure the time parser
var parseDate = d3.time.format(timeFormat).parse;

// Parse the data

Chapter 5

[103]

data.forEach(function(d) {
 d.date = parseDate(d.date);
 d.close = +d.close;
});

The timeFormat variable is defined as a chart attribute; we also added an accessor
function so that the user can use the chart for other datasets. In this case, the input
date format is %d-%b-%y, that is, the day, abbreviated month name, and year.
We can now create the x and y axis:

// Create the scales and axis
var xScale = d3.time.scale()
 .domain(d3.extent(data, function(d) { return d.date; }))
 .range([0, width - margin.left - margin.right]);

// Create the x axis
var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient('bottom');

// Invoke the xAxis function on the corresponding group
svg.select('g.xaxis').call(xAxis);

We do the same with the y axis, but we will use a linear scale instead of the time
scale and orient the axis to the left side. We can now create the chart content; we
create and configure an area generator that will compute the path and then append
the path to the chart group, as follows:

// Create and configure the area generator
var area = d3.svg.area()
 .x(function(d) { return xScale(d.date); })
 .y0(height - margin.top - margin.bottom)
 .y1(function(d) { return yScale(d.close); });

// Create the area path
svg.select('g.chart').append("path")
 .datum(data)
 .attr("class", "area")
 .attr("d", area);

Creating User Interface Elements

[104]

We will modify the styles for the classes of the axis groups and the area to have a
better-looking chart, as follows:

<style>
.axis path, line{
 fill: none;
 stroke: #222;
 shape-rendering: crispEdges;
}
.axis text {
 font-size: 11px;
}

.area {
 fill: #ddd;
}
</style>

We load the dataset using the d3.tsv function, which retrieves and parses tabular
delimited data. Next, we will configure the chart, select the container element, and
bind the dataset to the selection as follows:

// Load the TSV Stock Data
d3.tsv('/chapter05/aapl.tsv', function(error, data) {

 // Handle errors getting or parsing the data
 if (error) {
 console.error(error);
 throw error;
 }

 // Create and configure the area chart
 var chart = areaChart();

 // Bind the chart to the container div
 d3.select('div#chart')
 .datum(data)
 .call(chart);
});

Chapter 5

[105]

The first version of the area chart

Adding brushing
A brush is a control that allows you to select a range in a chart. D3 provides built-in
support for brushing. We will use brushing to select time intervals in our area chart,
and use it to show the price and date of the edges of the selected interval. We will
also add a label that shows the relative price variation in the interval. We will create
an SVG group to contain the brush elements. We will add this group in the svgInit
method, as follows:

// Create and translate the brush container group
svg.append('g')
 .attr('class', 'brush')
 .attr('transform', function() {
 var dx = margin.left, dy = margin.top;
 return 'translate(' + [dx, dy] + ')';
 });

The group should be added at the end of the svg element to avoid getting it hidden
by the other elements. With the group created, we can add the brush control in the
charting function as follows:

function chart(selection) {
 selection.each(function(data) {
 // Charting function contents...

 // Create and configure the brush

Creating User Interface Elements

[106]

 var brush = d3.svg.brush()
 .x(xScale)
 .on('brush', brushListener);
 });
}

We set the scale of the brush in the horizontal axis, and add a listener for the
brush event. The brush can be configured to select a vertical interval by setting
the y attribute with an appropriate scale and even be used to select areas by setting
both the x and y attributes.

The brushListener function will be invoked if the brush extent changes. The
brushstart and brushend events are also available, but we don't need to use
them at the moment. In the following code, we apply the brush function to the
brush group using the call method of the selection:

var gBrush = svg.select('g.brush').call(brush);

When we invoke the brush function in a group, a series of elements are created. A
background rectangle will capture the brush events. There will also be a rectangle of
the extent class, which will resize as the user changes the brush area. Also, there are
two invisible vertical rectangles at the brush edges; so, it's easier for the user to select
the brush boundary. The rectangles will initially have zero height; we will set the
height to cover the chart area:

// Change the height of the brushing rectangle
gBrush.selectAll('rect')
 .attr('height', height - margin.top - margin.bottom);

We will modify the extent class, so the selected region is visible. We will set its color
to gray and set the fill opacity to 0.05.

Adding brushing to the chart

Chapter 5

[107]

The brush listener
We will add lines to mark the prices at the beginning and end of the selected period,
and add a label to display the price variation in the interval. We begin by adding the
elements in the chart.svgInit function and set some of its attributes. We will create
groups for the line markers and for the text elements that will display the price and
date. We also add a text element for the price variation. We create the brushListener
function in the charting function scope, as shown in the following code:

// Brush Listener function
function brushListener() {
 var s = d3.event.target.extent();

 // Filter the items within the brush extent
 var items = data.filter(function(d) {
 return (s[0] <= d.date) && (d.date<= s[1]);
 });
}

When the brush event is triggered, the brush listener will have access to the event
attributes through the d3.event object. Here, we get the brush extent and use it
to filter the dates that lie within the selected interval. Note that the selection is an
approximation, because there are a limited number of pixels in the screen. At the
beginning of the brush event, the time interval might be too small to contain data
items. We will compute the prices only when at least two items have been selected.
We then select the first and last elements of the item array, as follows:

// Compute the percentual variation of the period
if (items.length > 2) {
 // Get the prices in the period
 priceB = items[0].close;
 priceA = Math.max(items[n - 1].close, 1e-8);

 // Set the lines and text position...
}

Creating User Interface Elements

[108]

Having the first and last elements of the selected period, we can compute the
relative price variation and set the position of the marker lines and labels. We will
also set the color of the variation label to blue if the variation is positive and to red
if it's negative. As the configuration of the positions and labels is rather large, we
won't include the code here. However, the code is available in the chapter05/02-
brushing.html file for reference.

The area chart with brushing and annotations

Summary
In this chapter, we learned how to highlight elements when a user moves the pointer
over them, making it easier for the user to spot the elements under the cursor and
give hints of which elements can provide additional interactions. We created a
reusable tooltip component that can be configured and used in other charts.

We also learned how to use the built-in brush component to create a control in order
to select intervals, and used this control to allow the user to select a time interval
in an area chart. We used the brush area to further annotate the chart with useful
information about variations and the edges of the selected time interval.

In the next chapter, we will learn how to add interaction between chart components
and how to integrate D3 and Backbone to create complex applications.

Interaction between Charts
Visualization projects are usually implemented as single page applications. Single
page applications usually load their code when the browser loads the page and make
requests to retrieve additional data when the user interacts with the page, avoiding
full page reloads. The application can be used while the request is fulfilled, thereby
improving the user experience.

Single page applications generally have a single payload that retrieves the
scripts, styles, and markup required to create the interface. When the user
interacts with UI components and additional data is required, the client-side
code makes asynchronous requests to the server in the background and updates
the corresponding elements when the data is ready, allowing the user to continue
using the application during the request.

This increase in the complexity of client-side applications has led frontend developers
to improve the architecture of client-side components. One of the most successful
designs to face these challenges is the MVC pattern and its many variations.

In this chapter, we will cover the basics of the Backbone library and use D3 with
Backbone to create a stock explorer with several components interacting between
them, maintaining a consistent visualization state. We will also learn how to update
the application URL to reflect a particular state in the application, allowing users to
create bookmarks, navigate, and share the application state.

Interaction between Charts

[110]

Learning the basics of Backbone
Backbone is a JavaScript library that helps us structure applications by implementing
a version of the MV* pattern, which helps us separate different application concerns.
The main Backbone components include models, collections, views, and routers;
all these components communicate among themselves by triggering and listening
to events.

The only hard dependency of Backbone is Underscore, which is a small utility library
that provides functional programming support for collections, arrays, functions, and
objects. It also provides additional utilities, such as a small template engine, which
we will use later. To use the Backbone router and manipulate the DOM, jQuery or
Zepto must also be included.

Events
The Events module can be used to extend an object, giving it the ability to listen and
trigger custom events, such as listening for key presses, or sending an event when
a variable changes. Backbone models, views, collections, and routers have event
support. When we include Backbone in a page, the Backbone object will be available,
and it can be used to listen or trigger events.

Models
In Backbone, a model is a data container. Model instances can be created, validated,
and persisted to a server endpoint. When an attribute of the model is set, the model
triggers a change event. The granularity of the change events allows observers to
listen for a change in a particular attribute or any attribute in the model.

Besides being data containers, models can validate or convert data from its original
format. Models are ignorant of views or external objects observing its changes; a
model only communicates when its attributes are changed.

Collections
Collections are ordered sets of models, which are useful in order to manage
model instances as a set. If a model instance in the collection is modified (added or
removed), the collection will trigger a change event (triggering the add and remove
events in each case).

Chapter 6

[111]

Collections also have a series of enumerable methods that are useful to iterate,
find, group, and compute aggregate functions on the collection elements. Of course,
collections can be also extended to add new methods. Collections can be synced to
the server in order to retrieve records and create new model instances from them and
to push model instances created within the application.

Views
The views are components that render one or more attributes of a model in the
page. Each view has one DOM element bound to it and a corresponding model (or
collection) instance. Usually, the views listen for changes in one or more attributes
of a model. Views can be updated from each other independently when a model
(or some attributes of a model) changes, updating the view without redrawing the
entire page. Note that when using Backbone models and views, the DOM elements
in a view don't have references to the corresponding data elements; the view stores
references to the DOM elements and the model. In D3, the DOM element contains a
reference to the data bound to it.

Views also listen for DOM elements inside the container element. We can bind DOM
events in a child element to a view method. For instance, if a view contains a button,
we can bind the click event of the button with the custom toggleClicked method
of the view. This is commonly used to update a model attribute.

In most Backbone applications, the views are rendered using templates. In most
of the views, we will use D3 to render them instead of templates, but we will also
include an example of a view that has been rendered using Underscore templates.

Routers
The Backbone router allows you to connect URLs to the application, allowing the
application states to have URLs. This allows the user to navigate between visited
application states using the browser's back and forth buttons, save a bookmark,
and share specific application states.

Backbone is a subject on its own and we can't cover all its features in one chapter.
It's a good idea to invest some time learning Backbone or one of its alternatives.

Interaction between Charts

[112]

There are a great number of resources available to help you learn
Backbone. The most complete references are the following:

• Backbone Fundamentals (http://addyosmani.github.
io/backbone-fundamentals): This book, written by Addy
Osmani, describes the Backbone components in depth and has
two complete examples of Backbone-based applications.

• Backbone (http://backbonejs.org): The official website
contains the documentation of the library. The source code of
Backbone is also extensively commented on.

• TodoMVC (http://todomvc.com): As the number of
JavaScript MV* frameworks and libraries that allow you to
structure an application can be overwhelming, the TodoMVC
project contains the same Todo application that was implemented
in the most popular MV* JavaScript frameworks available.

The stock explorer application
In this section, we will use D3 and Backbone to create a single page application to
display a time series of stock prices. The user will be able to select different stocks and
a period of time in order to get a detail view. The page will have several components:

• Context chart: This chart will display the complete series of prices that
are available for the stock. It will have a brush component that selects
a time interval.

• Detail chart: This will be a bigger area chart that will show you the stock
prices for the time interval selected in the context chart.

• Control view: This view will show you a control that selects the stock.
• Stock title: This will display the name of the company.

We will display the control and title view on top of the page, a big area with the
detail view, and a context area chart at the bottom of the page.

http://addyosmani.github.io/backbone-fundamentals
http://addyosmani.github.io/backbone-fundamentals
http://backbonejs.org
http://todomvc.com

Chapter 6

[113]

A diagram of the application components

As you can see, there are several components that should be in sync. If we change the
stock, the area chart should be updated. If we change the time interval in the context
chart, the detail chart must be updated to show you only the selected period. We will
use Backbone to structure this application.

The state of our application can be described by the stock and the time interval that
we want to examine. We will create a model to store the application state and one
view for each component.

The general strategy is that each view will contain an instance of
a D3-based chart, which is created following the reusable chart
pattern. In the initialize method, we will tell the view to listen
for changes in the model and invoke the render method when
one of the model attributes is changed. In the render method of
the view, we will create a selection for the container element of the
view, bind the data corresponding to the selected stock, and invoke
the charting function using the selection.call method. We
will begin by creating reusable charts with D3.

Interaction between Charts

[114]

Creating the stock charts
In this section, we will implement the charts that will be used by the application.
This time, the code of the charts will be in a separated JavaScript file. To follow the
examples in this section, open the chapter06/stocks/js/lib/stockcharts.js
and chapter06/01-charts.html files.

We will begin by creating the stock title chart and then implement the stock area
chart, which we will be using in the context and detail views. Note that the title chart
is not really necessary, but it will be helpful to introduce the pattern that integrates
reusable charts and Backbone.

The stock title chart
The stock title chart is a reusable chart that creates a paragraph with the title of the
stock. As we mentioned previously, it's probably not a good idea to create a chart
just to write a string, but it shows you how to integrate a reusable chart that doesn't
involve SVG with Backbone. It has a configurable title accessor function, so the user
can define the content of the paragraph using the data that is bound to the container
selection. The chart is structured using the reusable chart pattern, as shown in the
following code:

function stockTitleChart() {
 'use strict';

 // Default title accessor
 var title = function(d) { return d.title; };

 // Charting function
 function chart(selection) {
 selection.each(function(data) {
 // Creation and update of the paragraph...
 });
 }

 // Title function accessor
 chart.title = function(titleAccessor) {
 if (!arguments.length) { return title; }
 title = titleAccessor;
 return chart;
 };

 return chart;
}

Chapter 6

[115]

In the charting function, we select the div element and create a selection for the
paragraph. We add the stock-title class to the paragraph in order to allow the
user to modify its style, as shown in the following code:

 // Charting function
 function chart(selection) {
 selection.each(function(data) {

 // Create the selection for the title
 var div = d3.select(this),
 par = div.selectAll('p.stock-title').data([data]);

 // Create the paragraph element on enter
 par.enter().append('p')
 .attr('class', 'stock-title'));

 // Update the paragraph content
 par.text(title);
 });
 }

As usual, we can use the chart by creating and configuring a chart instance,
selecting the container element, binding the data, and invoking the chart using
the selection.call method, as shown in the following code:

// Create and configure the title chart
var titleChart = stockTitleChart()
 .title(function(d) { return d.name; });

// Select the container element, bind the data and invoke
// the charting function on the selection
d3.select('div#chart')
 .data([{name: 'Apple Inc.'}])
 .call(titleChart);

The stock area chart
The stock area chart will display the time series for the stock price as an area chart.
In Chapter 5, Creating User Interface Elements, we implemented an area chart that uses
the brush behavior to select a time interval and annotate the chart with additional
information about the price variation in the period. We will create an improved
version of this chart and use it in the stock explorer application.

Interaction between Charts

[116]

Besides having the usual width, height, and margin attributes and accessors
methods, this chart will have an optional axis, brush behavior, and a configurable
brush listener function so that the user can define actions to be performed on the
brush. The time extent can be also be configured, allowing the user to show only
part of the chart.

We have added all these methods so that we can use two chart instances for different
purposes: one to allow the user to select a time interval and another to display the
selected time interval in more detail. In the chapter06/01-charts.html file, we
created one instance in order to select the time interval:

 var contextAreaChart = stockAreaChart()
 .height(60)
 .value(function(d) { return d.price; })
 .yaxis(false)
 .onBrushListener(function(extent) {
 console.log(extent);
 });

We will use the chart accessor methods to set the height, disable the y axis, and set
the value accessor and the brush listener functions. In this case, the brush listener
function will display the time extent in the browser console on brush.

A stock area chart with the brush behavior enabled

We will use a second instance of the same chart to display a specific time interval.
In this instance, we will disable the brush control and set the initial time extent, the
value, and the date accessors. This chart will display the stock prices between the
from and to dates:

// Set the time extent
var from = new Date('2002/01/01'),
 to = new Date('2004/12/31');

// Create and configure the detail area chart
var detailAreaChart = stockAreaChart()
 .value(function(d) { return d.price; })
 .date(function(d) { return new Date(d.date); })
 .timeExtent([from, to])
 .brush(false);

Chapter 6

[117]

As you have probably guessed, the first instance is intended to control the time
extent of the second chart instance. We will get to that soon; in the meantime,
we will discuss some implications of controlling the time extent of the chart.

A stock area chart with the y-axis enabled and the brush behavior disabled

If we change the time extent of the chart, we will want the chart to reflect its new
state. If the brush is dragged left in the first chart, we will want the area of the second
chart to move to the right-hand side until it matches the interval selected in the first
chart, and if we shorten the time interval in the first chart, we will want the area
of the second chart to compress itself to display the selected interval in the same
horizontal space.

The stock area chart will be implemented as a reusable chart. As most of the chart
structure is similar to the chart presented in the previous section, we will skip some
parts for brevity:

function stockAreaChart() {
 'use strict';

 // Chart Attributes
 var width = 700,
 height = 300,
 margin = {top: 20, right: 20, bottom: 20, left: 20};

 // Time Extent
 var timeExtent;

 // The axis and brush are enabled by default
 var yaxis = true,
 xaxis = true,

Interaction between Charts

[118]

 brush = true;

 // Default accessor functions
 var date = function(d) { return new Date(d.date); };
 var value = function(d) { return +d.value; };

 // Default brush listener
 var onBrush = function(extent) {};

 function chart(selection) {
 selection.each(function(data) {
 // Charting function contents...
 });
 }

 var svgInit = function(selection) { ... };

 // Accessor Methods...

 return chart;
}

In order to have the detail chart moving in sync with the context chart, we will
need to draw the complete series in the detail chart but only displaying the interval
selected with the brush in the context chart. To prevent the area chart from being
visible outside the charting area, we will define a clip path, and only the content
inside the clipping path will be visible:

var svgInit = function(selection) {
 // Define the clipping path
 selection.append('defs')
 .append('clipPath')
 .attr('id', 'clip')
 .append('rect')
 .attr('width', width - margin.left - margin.right)
 .attr('height', height - margin.top - margin.bottom);

 // Create the chart and axis groups...
};

Chapter 6

[119]

The element that will be clipped should reference the clipping path using the
clip-path attribute. In the charting function, we select the container element and
create the SVG element on enter. We also set the SVG element's width and height
and translate the axis, chart, and brush groups. We create the scales and axis (if they
are enabled) and create and configure the area generator to draw the chart area path:

 // Charting function...
 // Add the axes
 if (xaxis) { svg.select('g.xaxis').call(xAxis); }
 if (yaxis) { svg.select('g.yaxis').call(yAxis); }

 // Area Generator
 var area = d3.svg.area()
 .x(function(d) { return xScale(date(d)); })
 .y0(yScale(0))
 .y1(function(d) { return yScale(value(d)); });

We create a selection for the path and bind the time series array to the selection.
We append the path on enter and set its class to stock-area. We set the path data
using the area generator and set the clip-path attribute using the clipPath variable
defined previously:

 // Create the path selection
 var path = svg.select('g.chart').selectAll('path')
 .data([data]);

 // Append the path element on enter
 path.enter().append('path')
 .attr('class', 'stock-area');

 // Set the path data string and clip the area
 path.attr('d', area)
 .attr('clip-path', 'url(#clip)');

We create an envelope brush listener function. In this function, we retrieve the brush
extent and invoke the user-configurable onBrush function, passing the extent as an
argument. We initialize the brush behavior and bind the brushListener function to
the brush event:

 // Brush Listener Function
 function brushListener() {
 timeExtent = d3.event.target.extent();
 onBrush(timeExtent);
 }

 // Brush Behavior

Interaction between Charts

[120]

 var brushBehavior = d3.svg.brush()
 .x(xScale)
 .on('brush', brushListener);

The initial time extent of the chart can be configured. If that's the case, we update the
brush behavior extent, so the brush overlay fits the configured time extent:

 // Set the brush extent to the time extent
 if (timeExtent) {
 brushBehavior.extent(timeExtent);
 }

We call the brush behavior using the selection.call method on the brush group
and set the overlay height:

 if (brush) {
 svg.select('g.brush').call(brushBehavior);

 // Change the height of the brushing rectangle
 svg.select('g.brush').selectAll('rect')
 .attr('height', h);
 }

The preceding charts are implemented following the reusable chart pattern and were
created with D3 only. We will use the charts in a Backbone application, but they can
be used in other applications as standalone charts.

Preparing the application structure
In Backbone projects, it is a common practice to create directories for the models,
views, collections, and routers. In the Chapter06 directory, we created the stocks
directory to hold the files for this application:

stocks/
 css/
 js/
 views/
 models/
 collections/
 routers/
 lib/
 app.js
 data/
 index.html

Chapter 6

[121]

The models, views, collections, and routers folders contain JavaScript files that
contain the Backbone models, views, collections, and routers. We add the D3 charts
to the js/lib directory; additional JavaScript libraries would be there too. There is
also a data folder with JSON files for the stock data. The index.html file contains
the application markup.

The index page
In the header of the page, we include style sheets and JavaScript libraries that we
need for our application. To create the page more quickly, we will use a CSS library
that will add styles to enable uniform fonts, sizes, and default colors among browsers
and define the grid system. A grid system is a set of styles that allows us to define
rows and columns of standard column sizes without having to define the styles for
each size ourselves. We will use Yahoo's Pure CSS modules to use the grid system,
which is a pretty minimal set of CSS modules. These modules are used only in this
page; if you are more comfortable with Bootstrap or other libraries, you are free to
replace the div classes or define the sizes and behaviors of each container yourself.

We will create a container for the application and add the pure-g-r class, which is
a container with responsive behavior enabled. If the viewport is wide, the columns
will be shown side by side; if the user has a small screen, the columns will be shown
stacked. We will also create two child containers, one for the stock control and
title and a second container for the stock area chart, both classed pure-u-1, that is,
containers with full width. The pure container uses fractional sizes to define the div
width; in order to have a div that covers 80 percent of the parent container width, we
can set its class to pure-u-4-5:

<div class="pure-g-r" id="stock-app">
 <!-- Stock Selector and Title -->
 <div class="pure-u-1">
 <div id="stock-control"></div>
 <div id="stock-title"></div>
 </div>
 <div class="pure-u-1 charts">
 <div id="stock-detail"></div>
 <div id="stock-context"></div>
 </div>
</div>

We include the application files at the end of the page so that the markup is rendered
while the remaining assets are loaded:

<!-- Application Components -->
<script src="/chapter06/stocks/js/models/app.js"></script>
<script src="/chapter06/stocks/js/models/stock.js"></script>

Interaction between Charts

[122]

<script src="/chapter06/stocks/js/collections/stocks.js"></script>
<script src="/chapter06/stocks/js/views/stocks.js"></script>
<script src="/chapter06/stocks/js/views/app.js"></script>
<script src="/chapter06/stocks/js/routers/router.js"></script>
<script src="/chapter06/stocks/js/app.js"></script>

Creating the models and collections
Models contain application data and the logic related to this data. For our
application, we will need a model to represent the stock information and the
application model, which will store the visualization state. We will also create a
collection that holds the available stock instances. To avoid polluting the global
namespace, we will encapsulate the application components in the app variable:

var app = app || {};

Adding this line to all the files in the application will allow us to extend the object
with models, collections, and views.

The stock model
The stock model will contain basic information about each stock. It will contain
the stock name (Apple Inc.), the symbol (AAPL), and the URL where the time
series of prices can be retrieved (aapl.json). Models are created by extending
Backbone.Model:

// Stock Information Model
app.Stock = Backbone.Model.extend({

 // Default stock symbol, name and url
 defaults: {symbol: null, name: null, url: null},

 // The stock symbol is unique, it can be used as ID
 idAttribute: 'symbol'
});

Here, we defined the default values for the model to null. This is not really
necessary, but it might be useful to know which properties are expected. We will use
the stock symbol as ID. Besides this, we don't need any further initialization code. As
stock symbols are unique, we will use the symbol as the ID for easier retrieval later.
We can create stock instances by using the constructor and setting the attributes that
pass an object:

var appl = new app.Stock({
 symbol: 'AAPL',

Chapter 6

[123]

 name: 'Apple',
 url: 'aapl.json'
 });

We can set or get its attributes using the accessor methods:

aapl.set('name', 'Apple Inc.');
aapl.get('name'); // Apple Inc.

In this application, we will create and access stock instances using a collection rather
than creating individual instances.

The stock collection
To define a collection, we need to specify the model. When defining the collection,
we can set the URL of an endpoint where the collection records can be retrieved,
which is usually the URL of a REST endpoint. In our case, the URL points towards
a static JSON file that contains the stocks records:

// Stock Collection
app.StockList = Backbone.Collection.extend({
 model: app.Stock,
 url: '/chapter06/stocks/data/stocks.json'
});

Individual stocks can be added to the collection one by one, or they can be fetched
from the server using the collection URL. We can also specify the URL when creating
the collection instance:

// Create a StockList instance
var stockList = new app.StockList({});

// Add one element to the collection
stockList.add({
 symbol: 'AAPL',
 name: 'Apple Inc.',
 url: 'aapl.json'
});
stockList.length; // 1

As we defined the stock symbol as idAttribute, individual stock instances can be
retrieved using the stock's ID. In this case, the stock symbol is the ID of the stock
model, so we can retrieve stock instances using the symbol:

var aapl = stockList.get('AAPL');

Interaction between Charts

[124]

Models use the URL of the collection to construct their own URL. The default URL
will have the form collectionUrl/modelId. If the server provides a RESTful API,
this URL can be used to create, update, and delete records.

The application model
We will create an application model to store and manage the application state.

To define the application model, we extend the Backbone.Model object, adding
the corresponding default values. The stock attribute will contain the current
stock symbol (AAPL), and the data will contain the time series for the current stock:

// Application Model
app.StockAppModel = Backbone.Model.extend({

 // Model default values
 defaults: {
 stock: null,
 from: null,
 to: null,
 data: []
 },

 initialize: function() {
 this.on('change:stock', this.fetchData);
 this.listenTo(app.Stocks, 'reset', this.fetchData);
 },

 // Additional methods...
 getStock: function() {...},
 fetchData: function() {...}
});

We will also set a template for the stock collection data. In this case, the base URL is
chapter06/stocks/data/. As we mentioned previously, there is a JSON file in the
data directory with the data of the available stocks:

 // Compiled template for the stock data url
 urlTemplate: _.template('/chapter06/stocks/data/<%= url %>'),

Chapter 6

[125]

We have also added a fetchData method in order to retrieve the time series for
the corresponding stock. We invoke the template that passes the current stock data
and use the parsed URL to retrieve the stock time series. We use the d3.json method
to get the stock data and set the model data attribute to notify the views that the data
is ready:

 fetchData: function() {
 // Fetch the current stock data
 var that = this,
 stock = this.getStock(),
 url = this.urlTpl(stock.toJSON());

 d3.json(url, function(error, data) {
 if (error) { return error; }
 that.set('data', data.values);
 });
 }

Implementing the views
To integrate the D3-based charts with Backbone Views, we will use the
following strategy:

1. We will create and configure a chart instance as an attribute of the view.
2. In the initialization method, we tell the view to listen for changes on the

model application and render the view on model updates.

The views for the page components are in the chapter06/stocks/js/views/
stocks.js file, and the application view code is in the chapter06/stocks/js/
views/app.js file.

The title view
This view will simply display the stock symbol and name. It's intended to be used
as a title of the visualization. We create and configure an instance of the underlying
chart and store a reference to the chart in the chart attribute. In the initialize
method, we tell the view to invoke the render method when the model's stock
attribute is updated.

Interaction between Charts

[126]

In the render method, we create a selection that will hold the container element of
the view, bind this element to a dataset that contains the current stock, and invoke
the chart using selection.chart:

app.StockTitleView = Backbone.View.extend({

 chart: stockTitleChart()
 .title(function(d) {
 return _.template('<%= symbol %><%= name %>', d);
 }),

 initialize: function() {
 this.listenTo(this.model, 'change:stock', this.render);
 this.render();
 },

 render: function() {
 d3.select(this.el)
 .data([this.model.getStock().toJSON()])
 .call(this.chart);

 return this;
 }
});

Changes to the stock attribute of the application model will trigger the
change:stock event, causing the view to invoke its render method, updating
the D3 chart. In this particular view, using a reusable chart is overkill; for a real-life
problem, we could have used a small Backbone View with a template. We did this
to have a minimal example of reusable charts working with Backbone Views.

Rendered stock title view

The stock selector view
To add some diversity, we will create the selector without using D3. This view will
show you the available stocks as a selection menu, updating the application model's
stock attribute when the user selects a value. In this view, we will use a template. To
create a template, we create a script element of type text/template in the index.html
file and assign it an ID, in our case, stock-selector-tpl:

<script type="text/template" id="stock-selector-tpl">

Chapter 6

[127]

<select id="stock-selector">
 ...
</select>
</script>

Underscore templates can render variables using <%= name %> and execute
JavaScript code using <% var a = 1; %>. Here, for instance, we evaluate the
callback function on each element of the stocks array:

<!-- Create the stocks selector and add its options -->
<% _.each(stocks, function(s) { %>
 <option value="<%= s.symbol %>"><%= s.symbol %></option>
<% }); %>

For each one of the elements of the stocks array, we add an option with the stock
symbol attribute as the value and content of the option element. After rendering the
template with the application data, the HTML markup will be as follows:

<select id="stock-selector">
 <option value="AAPL">AAPL</option>
 <option value="MSFT">MSFT</option>
 <option value="IBM">IBM</option>
 <option value="AMZN">AMZN</option>
</select>

In the Backbone View, we select the content of the script with the stock-selector-
tpl ID, compile the template to use it later, and store a reference to the compiled
template in the template attribute:

// Stock Selector View
app.StockSelectorView = Backbone.View.extend({

 // Compiles the view template
 template: _.template($('#stock-selector-tpl').html()),

 // DOM Event Listeners
 events: {
 'change #stock-selector': 'stockSelected'
 },

 // Initialization and render methods...
});

We set the events attribute, with maps' DOM events of the inner elements of the
view, to methods of the view. In this case, we bind changes to the stock-selector
select element (the user changing the stock) with the stockSelected method.

Interaction between Charts

[128]

In the initialize method, we tell the view to render when the app.Stocks
collection emits the reset event. This event is triggered when new data is fetched
(with the {reset: true} option) and when an explicit reset is triggered. If a new set
of stocks is retrieved, we will want to update the available options. We also listen for
changes to the application model's stock attribute. The current stock should always
be the selected option in the select element:

 initialize: function() {
 // Listen for changes to the collection and the model
 this.listenTo(app.Stocks, 'reset', this.render);
 this.listenTo(this.model, 'change:stock', this.render);
 this.render();
 }

In the render method, we select the container element and set the element content
to the rendered template, writing the necessary markup to display the drop-down
control. We pass a JavaScript object with the stock attribute set to an array that
contains the app.Stocks model's data. Finally, we iterate through the options in
order to mark the option that matches the current stock symbol as selected:

 render: function() {
 // Stores a reference to the 'this context'
 var self = this;

 // Render the select element
 this.$el.html(this.template({stocks: app.Stocks.toJSON()});

 // Update the selected option
 $('#stock-selector option').each(function() {
 this.selected = (this.value === self.model.get('stock'));
 });
 }

Backbone models and collection instances have the JSON method, which transforms
the model or collection attributes to a JavaScript object. This method can be
overloaded if we need to add computed properties besides the existing attributes.
Note that in the each callback, the this context is set to the current DOM element,
that is, the option element. We store a reference to the this context in the render
function (the self variable) in order to reference it later.

Stock selector view allows selecting a stock by symbol

Chapter 6

[129]

The stock context view
The context view contains a small area chart that allows the user to select a time
interval that can be displayed in the detail view:

We will use the same strategy as the one used in the previous views to create and
configure an instance of stockAreaChart, and store a reference to it in the chart
attribute of the view:

app.StockContextView = Backbone.View.extend({

 // Initialize the stock area chart
 chart: stockAreaChart()
 .height(60)
 .margin({top: 5, right: 5, bottom: 20, left: 30})
 .date(function(d) { return new Date(d.date); })
 .value(function(d) { return +d.price; })
 .yaxis(false),

 // Render the view on model changes
 initialize: function() { ... },

 render: function(e) { ... }
});

In the initialize method, we tell the view to listen for changes to the application
model and set the chart brush listener to update the from and to attributes of
the model:

 initialize: function() {

 // Get the width of the container element
 var width = parseInt(d3.select(this.el).style('width'), 10);

 // Bind the brush listener function. The listener will update
 // the model time interval
 var self = this;

 this.chart
 .width(width)
 .brushListener(function(extent) {
 self.model.set({from: extent[0], to: extent[1]});
 });

 // The view will render on changes to the model
 this.listenTo(this.model, 'change', this.render);
 },

Interaction between Charts

[130]

We get the width of the this.el container element using D3 and set the chart width.
This will make the chart use the full width of the user's viewport.

The chart fills the container width in Safari Mobile (iPhone Simulator)

The render method will update the chart's time extent, so it reflects the current state
of the model, creates a selection that holds the container element of the view, binds
the stock data, and invokes the chart using selection.call:

 render: function() {
 // Update the time extent
 this.chart
 .timeExtent([
 this.model.get('from'),
 this.model.get('to')
]);

 // Select the container element and call the chart
 d3.select(this.el)
 .data([this.model.get('data')])
 .call(this.chart);

 return this;
 }

Chapter 6

[131]

This view is the only component that can change the from and to attributes of
the model.

The stock context view uses the brush behavior to set the time interval

The stock detail view
The stock detail view will contain a stock area chart, showing only a given time
interval. It's designed to follow the time interval selected in the stock context view.

We create and configure a stockAreaChart instance, setting the margin, value, and
date accessors and disabling the brushing behavior:

// Stock Detail Chart
app.StockDetailView = Backbone.View.extend({

 // Initialize the stock area chart
 chart: stockAreaChart()
 .margin({top: 5, right: 5, bottom: 30, left: 30})
 .value(function(d) { return +d.price; })
 .date(function(d) { return new Date(d.date); })
 .brush(false),

 // Render the view on model changes
 initialize: function() { ... },
 render: function() { ... }
});

As we did in the context view, we tell the view to invoke the render method on
model changes in the initialize method:

 initialize: function() {

 // Get the width of the container element
 var width = parseInt(d3.select(this.el).style('width'), 10);

 // Set the chart width to fill the container
 this.chart.width(width);

 // The view will listen the application model for changes
 this.listenTo(this.model, 'change', this.render);
 },

Interaction between Charts

[132]

In the render method, we update the chart time extent, so the visible section of the
area chart matches the time interval specified by the application model s from and
to attribute:

 render: function() {

 // Update the chart time extent
 var from = this.model.get('from'),
 to = this.model.get('to');

 this.chart.timeExtent([from, to]);

 // Select the container element and create the chart
 d3.select(this.el)
 .data([this.model.get('data')])
 .call(this.chart);
 }

The detail view shows you the stock prices for the selected time interval

Note that when using object.listenTo(other, 'event', callback), the this
context in the callback function will be the object that listens for the events (object).

The application view
The application view will be in charge of creating instances of the views for each
component of the application.

Chapter 6

[133]

The initialize method binds the reset event of the app.Stocks collection and
then invokes the collection's fetch method, passing the {reset: true} option. The
collection will request the data to the server using its url attribute. When the data
is completely loaded, it will trigger the reset event, and the application view will
invoke its render method:

// Application View
app.StockAppView = Backbone.View.extend({

 // Listen to the collection reset event
 initialize: function() {
 this.listenTo(app.Stocks, 'reset', this.render);
 app.Stocks.fetch({reset: true});
 },

 render: function() { ... }
});

In the render method, we create instances of the views that we just created for each
component. At this point, the current symbol of the application can be undefined, so
we get the first stock in the app.Stocks collection and set the stock attribute of the
model if is not already set.

We proceed to initialize the views for the title, the selector, the context chart, and the
detail chart, passing along a reference to the model instance and the DOM element
where the views will be rendered:

 render: function() {

 // Get the first stock in the collection
 var first = app.Stocks.first();

 // Set the stock to the first item in the collection
 if (!this.model.get('stock')) {
 this.model.set('stock', first.get('symbol'));
 }

 // Create and initialize the title view
 var titleView = new app.StockTitleView({
 model: this.model,
 el: 'div#stock-title'
 });

 // Create and initialize the selector view

Interaction between Charts

[134]

 var controlView = new app.StockSelectorView({
 model: this.model,
 el: 'div#stock-control'
 });

 // Create and initialize the context view
 var contextView = new app.StockContextView({
 model: this.model,
 el: 'div#stock-context'
 });

 // Create and initialize the detail view
 var detailView = new app.StockDetailView({
 model: this.model,
 el: 'div#stock-detail'
 });

 // Fetch the stock data.
 this.model.fetchData();
 return this;
 }

Finally, we tell the model to fetch the stock data to allow the context and detail chart
to be rendered. Remember that when the data is ready, the model will set its data
attribute, notifying the charts to update its contents.

Components of the rendered application

Chapter 6

[135]

Defining the routes
In our application, the state of the visualization can be described by the stock symbol
and the time interval selected in the context chart. In this section, we will connect the
URL with the application state, allowing the user to navigate (using the back button
of the browser) the bookmark and share a particular state of the application.

We define the routes for our application by assigning callbacks for each hash URL
(Backbone provides support for real URLs too). Here, we define two routes, one to
set the stock and one to set the complete state of the application. If the user types
the #stock/AAPL hash fragment, the setStock method will be invoked, passing the
'AAPL' string as the argument. The second route allows you to navigate to a specific
state of the application using a URL fragment of the #stock/AAPL/from/Mon Dec 01
2003/to/Tue Mar 02 2010 form; this will invoke the setState method of the router:

app.StockRouter = Backbone.Router.extend({

 // Define the application routes
 routes: {
 'stock/:stock': 'setStock',
 'stock/:stock/from/:from/to/:to': 'setState'
 },

 // Initialize and route callbacks...
});

The router also has an initialize method, which will be in charge of synchronizing
changes in the application URL with changes in the application model. We will set
the model for the router and configure the router to listen for change events of the
model. At the beginning, the data might not have been loaded yet (and the from and
to attributes might be undefined at this point); in this case, we set the stock symbol
only. When the data finishes the loading, the from and to attributes will change and
the router will invoke its setState method:

 // Listen to model changes to update the url route
 initialize: function(attributes) {
 this.model = attributes.model;
 this.listenTo(this.model, 'change', function(m) {
 if (m.get('from') && m.get('to')) {
 this.setState(m.get('stock'), m.get('from'),
m.get('to'));
 } else {
 this.setStock(m.get('stock'));
 }
 });
 },

Interaction between Charts

[136]

The setStock method updates the symbol attribute of the model. The navigate
method updates the browser URL to reflect the change of stock. Note that we are
using the time interval as a variable of the application state. If we select an interval,
the back button of the browser will get us to the previously selected time intervals.
This might not be desirable in some cases. The choice of which variables should be
included in the URL will depend on the application and the behavior that most users
will expect. In this case for instance, an alternative approach could be to update the
application state on drag start and drag end, not on every change in the interval:

 // Set the application stock and updates the url
 setStock: function(symbol) {
 var urlTpl = _.template('stock/<%= stock %>');

 this.model.set({stock: symbol});
 this.navigate(urlTpl({stock: symbol}), {trigger: true});
 },

The setState method parses the from and to parameters from the URL as dates and
sets the model's stock, from, and to attributes. As we cast the strings to the date,
we can use any format recognizable by the date constructor (YYYY-MM-DD, for
instance), but this will imply that we format the from and to attributes to this format
when the model changes in order to update the URL. We will use the toDateString
method to keep things simple. After setting the model state, we construct the URL
and invoke the navigate method to update the browser URL:

 // Set the application state and updates the url
 setState: function(symbol, from, to) {

 from = new Date(from),
 to = new Date(to);

 this.model.set({stock: symbol, from: from, to: to});

 var urlTpl = _.template('stock/<%= stock %>/from/<%= from
%>/to/<%= to %>'),
 fromString = from.toDateString(),
 toString = to.toDateString();

 this.navigate(urlTpl({stock: symbol, from: fromString,
to: toString}), {trigger: true});
 }

Chapter 6

[137]

The simple addition of a router can make an application way more useful, allowing
users to bookmark and share a particular state of the page and navigate back to
previous states of the application.

The application state is displayed in the browser URL

Initializing the application
Once we have created the application models, collections, views, and router, we can
create the instances for the application model and view. The application initialization
code is in the chapter06/stocks/js/app.js file.

We begin by creating an instance of the app.StockList collection:

// Create an instance of the stocks collection
app.Stocks = new app.StockList();

The collection instances will be retrieved later.

Interaction between Charts

[138]

We create an instance of the application model and an instance of the application
view. We initialize the application model by indicating the model of the view and the
container element ID:

// Create the application model instance
app.appModel = new app.StockAppModel();

// Create the application view
app.appView = new app.StockAppView({
 model: app.appModel,
 el: 'div#stock-app'
});

Finally, we initialize the router, passing the application model as the first argument,
and then we tell Backbone to begin monitoring changes to hashchange events:

// Initializes the router
var router = new app.StockRouter({model: app.appModel});
Backbone.history.start();

Summary
In this chapter, you learned how to create a single page application that integrates
D3 and Backbone. We used the reusable chart pattern and embedded the charts in
Backbone Views, allowing us to enjoy the structure of Backbone and keep all the
visualization components synchronized.

We created the stock explorer application. This application allows the user to choose
and explore the time series of stock prices, allowing the user to select the stock and a
time interval in order to have a detail view of the price variations in that period. We
used Backbone to store the visualization state and the views in sync.

We used a router to connect the visualization state with the URL, allowing us to
share, bookmark, and navigate through visited application states.

In the next chapter, you will learn how to create a charting package, which will
contain a layout and a reusable chart. We will also learn how to configure it to make it
easier to distribute, install, upgrade, and manage its dependencies on other packages.

Creating a Charting Package
Writing good quality software involves several tasks in addition to writing the code.
Maintaining a code repository, testing, and writing consistent documentation are
some of the tasks that need to be done when working with other people. This is also
the case when we write charts and visualizations with D3. If we create a charting
package, we would like to make it easy for others to use it and integrate it in their
projects. In this chapter, we will describe a workflow and the tools that will help us
to create a charting package. In this chapter, we will cover the following tasks:

• Creating a repository: A version control system should be used. In some
cases, this involves configuring a central repository.

• Designing the API: Decide how to organize the code in logic units and how
the package functionality will be exposed.

• Writing the code: Implement the package components and features.
• Testing: The package components should be tested to minimize the risk of

introducing unexpected behavior and breaking the existing functionality.
• Building: The source code isn't shipped as is to build a package. This implies

that at least source files need to be concatenated and a minified version of the
distributable files should be created.

• Hosting the package: The package should be accessible for others to use,
even if it's intended for internal usage.

Also, there are a number of conventions and norms about how these tasks should be
performed. There may be protocols for the following:

• Committing changes: This is a workflow to know how to merge hot fixes or
new features for the next release or the development version of the project.
This may include tasks to be done before you push for changes, such as
testing the code or having code review sessions.

Creating a Charting Package

[140]

• Creating a release: This is a procedure to create, tag, and release new
versions of the software, including how to follow a system to tag releases
with version numbers.

• Writing code: This is a set of coding practices and conventions agreed upon
by the teams.

Most of these tasks and protocols depend on the team and the type of project, but it
is almost certain that a number of them will (or should) be in place.

In this chapter, we will create a D3-based charting package. We will use tools to
check code conventions, test, and build distributable files for our charting package.
Even if the tools that we will use have proven to be successful and are widely used
in frontend projects, you may prefer to use different tools for some of the tasks. Feel
free to explore and discover a toolset more appropriate for your workflow.

The development workflow
In this section, we will provide an overview of the workflow to create and distribute
our charting package. We will also discuss some conventions regarding version
numbers and the process of creating a release, introduce tools that will help us
to manage the dependences with other projects, run the tests, and automate the
package building process.

Writing the code
We begin by creating the project directory and the initial package content. During
the development of our charting package, we need to perform the following actions:

• Implement new features or modify the existing code
• Check whether our code follows the coding guidelines
• Implement tests for the new functionality or create additional tests for the

existing features
• Run tests to ensure that the modifications don't introduce unexpected

behaviors or break the public API
• Concatenate the source files to generate a single JavaScript file that contains

the charting package
• Generate a minified file

Chapter 7

[141]

When implementing new features or fixing bugs, we will modify the code, check
for errors, and run the tests. We will repeat the modify-check-test cycle several times
until we finish implementing the feature or fix the bug. At this point, we will check
and test the code again, build the package, and commit our changes.

As mentioned before, there are many tools that will help us to automate these tasks.
There are a great number of tools to make the frontend workflow easier, and every
developer has his or her preferences and opinions in this regard. In this chapter,
we will use Node.js modules to orchestrate our development tasks. We will use the
following tools:

• Vows: This is an asynchronous, behavior-driven JavaScript testing
framework for Node.js. We will use Vows to test our charting package.

• Grunt: This is a task runner for Node.js. We will use Grunt and some plugins
to check the source files, concatenate, minify, and test our package.

• Bower: This is a frontend package management system. We will configure
our package such that users can install our package and its dependencies
(D3) easily.

Creating a release
Depending on our development workflow, we may want to create a release.
A release is a state of our package that we distribute for it to be used. It's usually
identified with a version number that indicates how much it has changed from the
previous versions.

Semantic Versioning
The version number is especially important in systems with many dependencies.
Depending too much on the functionality provided by a specific version of a package
can lead to a version lock, that is, the inability to update the package without having
to release new versions of our own package. On the other hand, if we update the
package assuming that it's compatible with our software, we will eventually find
that it is not the case and that the package has made changes to the API that are not
compatible with our software.

Semantic Versioning is a useful convention that helps you to know if it's safe to
update a package, as long as it follows the Semantic Versioning convention. The
complete specification of Semantic Versioning 2.0.0 (yes, the specification itself is
versioned) is available at http://semver.org/. The key points of the Semantic
Versioning convention are as follows.

http://semver.org/

Creating a Charting Package

[142]

Each release should be assigned a version number of the form MAJOR.MINOR.
PATCH, with optional identifiers after a dash (1.0.0-beta, for instance). The version
numbers are integers (without leading zeros) and should be incremented when we
create a new release by the following rules:

• MAJOR: This version is used when you make backward-incompatible
changes to the API

• MINOR: This version is used when a new functionality is added without
breaking the API

• PATCH: This version is used for improvements and bug fixes that don't
change the public API

When we increment the MAJOR version, MINOR and PATCH are set to zero;
increments in MINOR will reset the PATCH number to zero. The content of a
release must not be modified; any modification should be released as a new version.

If we follow this convention, users will know that upgrading from 2.1.34 to 2.1.38 is
safe and upgrading from 2.1.38 to 2.2.0 is also safe (and it may provide additional
backward-compatible features), while upgrading from 2.2.0 to 3.0.1 will require
you to check whether the changes in the new version are still compatible with the
existing code. In the next sections, we will create the initial content of the package
and configure the tools to test and build our package.

Creating the package contents
We will create a small package containing a heat map chart and a layout function.
We begin by choosing a name for our project, creating an empty directory, and
initializing the repository. The name of our package will be Windmill. Once we have
created the directory, we can create the initial content. We will organize the code
in components and implement the chart and the helper functions in separate files.
The source code will be organized in folders, one for each component. Later, we will
concatenate the files in the correct order to generate the windmill.js file, containing
all the components of the package:

src/
 chart/
 chart.js
 heatmap.js
 layout/
 layout.js
 matrix.js
 svg/
 svg.js

Chapter 7

[143]

 transform.js
 start.js
 end.js

We add the version attribute and indicate that we will follow the Semantic
Version specification:

!function() {
 var windmill = {version: '0.1.0'}; // semver
 // Charts
 windmill.chart = {};
 windmill.chart.heatmap = function() {...};
 // Other Components...
}();

We can load this file in the browser or using Node.js. In either case, the anonymous
function will be invoked, but nothing more will happen. In order to expose the
package functionality in Node, we need to load D3 as a Node package in the context
of the module and export the contents of the windmill object. This will allow other
Node modules (our tests, for instance) to load our package as a Node module. If the
file is loaded in the browser, we assume that D3 is available and add the windmill
attribute to the global object and set its value to the package contents. Note that
when we run the anonymous function in the global scope, the this context is set to
the global object:

!function() {
 var windmill = {version: '0.1.0'}; // semver

 // Charts
 windmill.chart = {};
 windmill.chart.heatMap = function() {...};

 // Other Components...

 // Expose the package components
 if (typeof module === 'object' && module.exports) {
 // The package is loaded as a node module
 this.d3 = require('d3');
 module.exports = windmill;
 } else {
 // The file is loaded in the browser.
 this.windmill = windmill;
 }
}();

Creating a Charting Package

[144]

To generate this file, we need to concatenate the source files in order. The
src/start.js file will contain the beginning of the function and the package
version, which must be updated in each release:

!function() {
 var windmill = {version: '0.1.0'}; // semver

Each component will add an attribute to the windmill variable. For instance,
the src/chart/chart.js file will contain the following attribute:

 // Charts
 windmill.chart = {};

The src/chart/heatmap.js file will add a function to the chart attribute:

 windmill.chart.heatMap = function() {...};

The matrix layout should be included in the same way. The src/end.js file will
contain the last part of the consolidated file. If the file is loaded as a Node.js module,
the module.exports variable will be defined; we import the D3 library and export
the windmill package. If the file is loaded in the browser, we assign the windmill
object to the window object, making it available as a global variable:

 // Expose the package components
 if (typeof module === 'object'&& module.exports) {
 // The package is loaded as a node module
 this.d3 = require('d3');
 module.exports = windmill;
 } else {
 // The file is loaded in the browser.
 window.windmill = windmill;
 }
}();

The heat map chart
A heat map is a chart that aims to represent the dependency of one quantitative
variable as a function of two ordinal variables.

Chapter 7

[145]

A heat map is a chart that allows you to visualize the dependency between a variable
and two other variables. It resembles a matrix where each cell's color is proportional
to the value of the main variable, and the rows and columns represent the other
variables. Refer to the following screenshot:

A heat map showing the average wind speeds by hour and month

Heat maps are useful to detect patterns and the dependency between the target
variable in the function of the variables represented by the rows and columns.
We will put the code for the heat map chart in the src/chart/heatmap.js file.
We will implement the heat map chart as a reusable chart, but this time, we will
generate the accessor methods automatically to avoid writing similar code for each
chart attribute. We begin by adding the heatmap function as an attribute of the
windmill.chart object:

// HeatMap Chart
windmill.chart.heatmap = function() {
 'use strict';

 function chart(selection) {
 // ...
 }

 return chart;
};

Creating a Charting Package

[146]

Heatmap function usually receives a matrix as data input while heat maps usually
receive a matrix as input data. We can represent a matrix as a nested array or use a
columnar representation of a matrix, where each cell is represented as an item in a
list. Each item has a row, column, and value, indicating the content of each cell in the
matrix (this representation is especially useful for sparse matrices). The default input
data will be an array of objects with at least three attributes: rows, columns, and values:

 var data = [
 {row: 1, column: 1, value: 5.5},
 {row: 1, column: 2, value: 2.5},
 // more items...
 {row: 6, column: 4, value: 7.5}
];

We will add configurable accessor functions so that the user can configure which
attributes will be the rows, columns, and values. As we will generate the accessor
methods automatically, we will hold the chart properties in the attributes object.
This element will be used to generate the accessor methods:

// HeatMap Chart
windmill.chart.heatmap = function() {
 'use strict';

 // Default Attribute Container
 var attributes = {
 width: 600,
 height: 300,
 margin: {top: 20, right: 20, bottom: 40, left: 40},
 colorExtent: ['#000', '#aaa'],
 value: function(d) { return d.value; },
 row: function(d) { return d.row; },
 column: function(d) { return d.column; }
 };

 // Charting function...

 return chart;
}

We set the default values for the width, height, margin, and color extent. We also
define default accessor functions for the rows, columns, and values.

Chapter 7

[147]

We will generate accessor methods for each attribute. We want the generated
accessors to have the same behavior as that of the accessors written explicitly. Also,
we want to be able to overwrite accessors if we need to include more logic than to
simply get or set a value. Until now, we have written the accessor method for the
width attribute as follows:

 chart.width = function(w) {
 if (!arguments.length) { return width; }
 width = w;
 return chart;
 };

If no arguments are passed, the chart.width method will return the current value
of the width variable. If we pass a value, the width value is updated and we return
the chart to allow method chaining. Since our attributes object holds the chart
properties, we should update this method:

 chart['width'] = function(val) {
 if (!arguments.length) { return attributes['width']; }
 attributes['width'] = val;
 return chart;
 };

Here, we avoided hardcoding the width attribute. This will work, but we still have
to write a function that receives a value and modifies the width attribute. We will
create a function that returns an accessor function for a specific attribute:

 // Create an accessor function for the given attribute
 function createAccessor(attr) {
 // Accessor function
 function accessor(value) {
 if (!arguments.length) { return attributes[attr]; }
 attributes[attr] = value;
 return chart;
 }
 return accessor;
 }

We can now assign an accessor function for the width attribute using the
following code:

 // Set the accessor function for the width
 chart['width'] = createAccessor('width');

Creating a Charting Package

[148]

This is still not good enough; we should iterate the properties of the attributes
object and create one accessor method for each property. First, we should check
whether the accessor already exists to avoid overwriting it, and we should verify
that the properties are of the attributes object, and not from the higher accessor
in the prototype chain:

 // Create accessors for each element in attributes
 for (var attr in attributes) {
 if ((!chart[attr]) && (attributes.hasOwnProperty(attr))) {
 chart[attr] = createAccessor(attr);
 }
 }

This will generate an accessor for each property in the attributes object. Note
that the accessors will just get and set the attributes; there are no validations or logic
besides assigning or returning the values. If we need a more complex accessor for an
attribute, we can add it and it won't be overwritten.

The charting function will select the div container and create an svg element to
contain the chart. As we have done before, we will encapsulate the initialization
of the svg element in the chart.svgInit method:

 // Charting function
 function chart(selection) {
 selection.each(function(data) {
 // Initialize the SVG element on enter
 var div = d3.select(this),
 svg = div.selectAll('svg').data([data])
 .enter().append('svg')
 .call(chart.svgInit);
 });
 }

In the chart.svgInit method, we set the dimensions of the svg element and create
groups for the chart and the horizontal and vertical axes:

 // Initialize the SVG Element
 chart.svgInit = function(svg) {

 // Compute the width and height of the charting area
 var margin = chart.margin(),
 width = chart.width() - margin.left - margin.right,
 height = chart.height() - margin.top - margin.bottom,
 translate = windmill.svg.translate;

 // Set the size of the svg element

Chapter 7

[149]

 svg
 .attr('width', chart.width())
 .attr('height', chart.height());

 // Chart Container
 svg.append('g')
 .attr('class', 'chart')
 .attr('transform', translate(margin.left, margin.top));

 // X Axis Container
 svg.append('g')
 .attr('class', 'axis xaxis')
 .attr('transform', translate(margin.left, margin.top +
height));

 // Y Axis Container
 svg.append('g')
 .attr('class', 'axis yaxis')
 .attr('transform', translate(margin.left, margin.top));
 };

Here, we used the accessor method generated previously to access the width, height,
and margin. We can also access these through the attributes object in the charting
code, but the attribute won't be accessible for code using the chart object. In the
charting function, we compute the width and height of the charting area and create
shortcuts for the row, column, and value accessors. Without these shortcuts, we would
need to invoke the row function either as attributes.row(d) or chart.row()(d):

 // Compute the width and height of the chart area
 var margin = chart.margin(),
 width = chart.width() - margin.left - margin.right,
 height = chart.height() - margin.top - margin.bottom;

 // Retrieve the accessor functions
 var row = chart.row(),
 col = chart.column(),
 val = chart.value();

Creating a Charting Package

[150]

We can create the scales for the position and color of the rectangles. We will use
ordinal scales and use the rangeBands range. This option allows you to divide an
interval into n evenly spaced bands, where n is the number of unique elements in
the domain:

 // Horizontal Position
 var xScale = d3.scale.ordinal()
 .domain(data.map(col))
 .rangeBands([0, width]);

 // Vertical Position
 var yScale = d3.scale.ordinal()
 .domain(data.map(row))
 .rangeBands([0, height]);

 // Color Scale
 var cScale = d3.scale.linear()
 .domain(d3.extent(data, val))
 .range(chart.colorExtent());

We can create the rectangles on enter as follows:

 // Create the heatmap rectangles on enter
 var rect = gchart.selectAll('rect').data(data)
 .enter().append('rect');

We can set the width, height, and position of the rectangles, and set the fill color
using the aforementioned scales and accessor functions for the rows, columns, and
values. The width and height are set using the width of a band, which is computed
by the scale:

 // Set the attributes of the rectangles
 rect.attr('width', xScale.rangeBand())
 .attr('height', yScale.rangeBand())
 .attr('x', function(d) { return xScale(col(d)); })
 .attr('y', function(d) { return yScale(row(d)); })
 .attr('fill', function(d) { return cScale(val(d)); });

Finally, we add the axes for the horizontal and vertical axes:

 // Create the Horizontal Axis
 var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient('bottom');

Chapter 7

[151]

 svg.select('g.xaxis').call(xAxis);

 // Create the Vertical Axis
 var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient('left');
 svg.select('g.yaxis').call(yAxis);

We will create an example file for the heat map. In the examples/heatmap.html file,
we create a container div with the chart01 ID:

<div id="chart01"></div>

We will generate a sample data array and create a chart instance, configuring the
width, height, and color extent:

// Generate a sample data array
var data = [];
for (var k = 0; k < 20; k += 1) {
 for (var j = 0; j < 20; j += 1) {
 data.push({
 row: k,
 column: j,
 value: Math.cos(Math.PI * k * j / 60)
 });
 }
}

// Create and configure the heatmap chart
var heatmap = windmill.chart.heatmap()
 .width(600)
 .height(300)
 .colorExtent(['#555, '#ddd']);

Here, the lower values will be dark gray, and the higher values will be blue.
The matrix data contains values for two rows and four columns. We have given
a value for each cell; if there were missing items, the cells would just not be drawn.
We select the container element, bind the data array, and invoke the heat map using
the selection.call method:

 // Create the heatmap chart in the container selection
 d3.select('div#chart01').data([data])
 .call(heatmap);

Creating a Charting Package

[152]

The generated heat map will have eight cells; the color of each cell represents
the value's magnitude corresponding to each row and column. Refer to the
following screenshot:

A heat map with the default styles

We will create and include a style sheet file to get a better-looking axis. As the users
will need the CSS files to use the chart, we should make the styles available to the
users as well. A user could also modify the styles to accommodate the appearance
of the chart to the client application. We will add the windmill.css file to the css
directory and add the following content:

/* Axis lines */
.axis path, line {
 fill: none;
 stroke: #222222;
 shape-rendering: crispEdges;
}
/* Style for the xaxis */
.xaxis {
 font-size: 12px;
 font-family: sans-serif;
}
/* Style for the yaxis */
.yaxis {
 font-size: 12px;
 font-family: sans-serif
}

Chapter 7

[153]

With these styles, the heat map looks better, which can be seen as follows:

The heat map with improved styles

The matrix layout
In the heat map chart, we assumed that we have unique combinations of the rows
and columns in our dataset; having more than one element with the same row and
column would cause two overlapping rectangles.

We will create a layout to aggregate the values with the same rows and columns using
a configurable aggregation function. For instance, we could have the following dataset:

var data = [
 {row: 1, column: 2, value: 5},
 {row: 1, column: 2, value: 4},
 {row: 1, column: 2, value: 9},
 // ...
];

The matrix layout will allow us to group the values and calculate a single
aggregated value, which is usually the sum, count, average, minimum, or maximum
value. We will create the matrix layout in the src/layout/matrix.js file. As in the
heat map chart, we begin by adding the matrix property to the layout object. We
will use the reusable chart pattern, except that the charting function is replaced with
the layout function, which receives the input data and returns the aggregated array:

windmill.layout.matrix = function() {
 'use strict';

 function layout(data) {

Creating a Charting Package

[154]

 //...
 return groupedData;
 }

 return layout;
};

We will use the technique presented in the heat map chart to automatically generate
accessor methods. We add the default accessor methods as follows:

 // Default Accessors
 var attributes = {
 row: function(d) { return d.row; },
 column: function(d) { return d.column; },
 value: function(d) { return d.value; },
 aggregate: function(values) {
 var sum = 0;
 values.forEach(function(d) { sum += d; });
 return sum;
 }
 };

The row, column, and value accessor functions compute the row, column, and value
for each input data element. The aggregate function receives an array of values and
computes a single aggregated value. The default aggregate function will return the
sum of the elements in the input array:

 // Layout function
 function layout(data) {
 // Output data array
 var groupedData = [];

 // Group and aggregate the input values...

 return groupedData;
 }

We begin by grouping the values for each combination of row and column. We
iterate through the input array and compute the item's row, column, and value. The
groupedData array will contain elements with the row, col, and values attributes.
If the groupedData array contains an element with the same row and column as the
current item, we append the value of the item to the values array; if not, we append
a new element to the grouped data array:

 // Group by row and column
 data.forEach(function(d) {

 // Compute the row, column, and value

 row = attributes.row(d);

Chapter 7

[155]

 col = attributes.column(d);
 val = attributes.value(d);

 // Search corresponding items in groupedData
 found = false;

 groupedData.forEach(function(item, idx) {
 if ((item.row === row) && (item.col === col)) {
 groupedData[idx].values.push(val);
 item.values.push(val);
 found = true;
 }
 });

 // Append the item, if not found
 if (!found) {
 groupedData.push({
 row: row,
 col: col,
 values: [val]
 });
 }
 });

We can now aggregate the values using the aggregate function. This function
receives an array and returns a single value. Finally, we remove the values attribute:

 // Aggregate the values
 groupedData.forEach(function(d) {
 // Compute the aggregated value
 d.value = attributes.aggregate(d.values);
 delete d.values;
 });

We generate accessor methods for the layout automatically, with code that is similar
to the code in the heat map chart:

 // Create accessor functions
 function createAccessor(attr) {
 function accessor(value) {
 if (!arguments.length) { return attributes[attr]; }
 attributes[attr] = value;
 return layout;
 }
 return accessor;

Creating a Charting Package

[156]

 }

 // Generate automatic accessors for each attribute
 for (var attr in attributes) {
 if ((!layout[attr]) && (attributes.hasOwnProperty(attr))) {
 layout[attr] = createAccessor(attr);
 }
 }

We will create an example for the matrix layout. In the examples/layout.html file,
we declare a data array with sample data as follows:

 // Sample data array
 var data = [
 {a: 1, b: 1, c: 10},
 {a: 1, b: 1, c: 5},
 // ...
 {a: 2, b: 2, c: 5}
];

Note that for each combination of row and column, we have more than one element
in the array. We define the average function, computing the sum of all the elements
in the input array and dividing the sum by the array's length:

 // Define the aggregation function (average of values)
 var average = function(values) {
 var sum = 0;
 values.forEach(function(d) { sum += d;});
 return sum / values.length;
 }

We create and configure a matrix layout instance, setting the row accessor to be a
function that returns the a attribute of each element, the column function will return
the b attribute, and the value will be the c property. We set the aggregate function
to use our average function:

 // Create and configure a matrix layout instance
 var matrix = windmill.layout.matrix()
 .row(function(d) { return d.a; })
 .column(function(d) { return d.b; })
 .value(function(d) { return d.c; })
 .aggregate(average);

We invoke the layout using the sample data array, obtaining an array that groups the
values by row and column:

 var grouped = matrix(data);

Chapter 7

[157]

The value of each element will be the average value for the items with the same
combination of row and column:

// Output values
grouped = [
 {col: 1, row: 1, value: 7.5},
 // ...
 {col: 2, row: 2, value: 10}
];

The matrix layout allows us to group and aggregate values, making it easier to
format data for the heat map chart. Now that we have the initial content, we will
configure the tools to build and distribute the package.

The project setup
In this section, we will install and configure the tools that we will use to build our
package. We will assume that you know how to use the command line and you
have Node installed on your system. You can install Node by either following the
instructions from Node.js's website (http://nodejs.org/download/) or using a
package manager in Unix-like systems.

Installing the Node modules
The Node Package Manager (npm) is a program that helps us to manage
dependencies between Node projects. As our project could be a dependency
of other projects, we need to provide information about our package to npm.
The package.json file is a JSON file that should contain at least the project name,
version, and dependencies for use and development. For now, we will add just the
name and version:

{
 "name": "windmill",
 "version": "0.1.0",
 "dependencies": {},
 "devDependencies": {}
}

We will install Grunt, Vows, Bower, and D3 using npm. When installing a package,
we can pass an option to save the package that we are installing as a dependency.
With the --save-dev option, we can specify the development dependencies:

$ npm install --save-dev grunt vows bower

http://nodejs.org/download/

Creating a Charting Package

[158]

D3 will be a dependency for our package. If someone needs to use our package,
D3 will be needed; the previous packages will be necessary only for development.
To install the project dependencies, we can use the --save option:

$ npm install --save d3

A directory named node_modules will be created at the topmost level of the project.
This directory will contain the installed modules:

node_modules/
 bower/
 d3/
 grunt/
 vows/

The package.json file will be updated with the dependencies as well:

{
 "name": "windmill",
 "version": "0.1.0",
 "dependencies": {
 "d3": "~3.4.1"
 },
 "devDependencies": {
 "grunt": "~0.4.2",
 "vows": "~0.7.0"
 }
}

Note that the dependencies specify the version of each package. Node.js packages
should follow the Semantic Versioning specification. We will include additional
modules to perform the building tasks, but we will cover that later.

Building with Grunt
Grunt is a task runner for Node.js. It allows you to define tasks and execute
them easily. To use Grunt, we need to have a package.json file with the project
information and the Gruntfile.js file, where we will define and configure our
tasks. The Gruntfile.js file should have the following structure; all the Grunt
tasks and configurations should be in the exported function:

module.exports = function(grunt) {
 // Grunt initialization and tasks
};

Chapter 7

[159]

The Grunt tasks may need configuration data, which is usually passed to the grunt.
initConfig method. Here, we import the package configuration from the package.
json file. This allows you to use the package configuration values in order to generate
banners in target files or to display information in the console when we run tasks:

module.exports = function(grunt) {
 // Initialize the Grunt configuration
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json')
 });
};

There are hundreds of Grunt plugins to automate every development task
with minimal effort. A complete list of the Grunt plugins is available at
http://gruntjs.com/plugins.

Concatenating our source files
The grunt-contrib-concat plugin will concatenate our source files for us. We can
install the plugin as any other Node.js module:

$ npm install --save-dev grub-contrib-concat

To use the plugin, we should enable it and add its configuration as follows:

module.exports = function(grunt) {
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),

 concat: {
 // grunt-contrib-concat configuration...
 }
 });

 // Enable the Grunt plugins
 grunt.loadNpmTasks('grunt-contrib-concat');
};

We add the grunt-contrib-concat configuration. The concat object can contain
one or more targets, each containing an array of sources and a destination path for
the concatenated file. The files in src will be concatenated in order:

 // Initialize the Grunt configuration
 grunt.initConfig({

 // Import the package configuration

http://gruntjs.com/plugins

Creating a Charting Package

[160]

 pkg: grunt.file.readJSON('package.json'),

 // Configure the concat task
 concat: {
 js: {
 src: [
 'src/start.js',
 'src/svg/svg.js',
 'src/svg/transform.js',
 'src/chart/chart.js',
 'src/chart/heatmap.js',
 'src/layout/layout.js',
 'src/layout/matrix.js',
 'src/end.js'
],
 dest: 'windmill.js'
 }
 },
 });

There are options to add a banner too, which can be useful to add a comment
indicating the package name and version. We can run the concat task from the
command line as follows:

$ grunt concat

Running "concat:js" (concat) task

File "windmill.js" created.

Done, without errors.

If we have several targets, we can build them individually by passing the target after
the concat option:

$ grunt concat:js

Running "concat:js" (concat) task

File "windmill.js" created.

Done, without errors.

The windmill.js file contains the sources of our package concatenated in order,
preserving the original spaces and comments.

Chapter 7

[161]

Minifying the library
It's common practice to distribute two versions of the library: one version with
the original format and comments for debugging and another minified version for
production. To create the minified version, we will need the grunt-contrib-uglify
plugin. As we did with the grunt-contrib-concat package, we need to install this
and enable it in the Gruntfile.js file:

module.exports = function(grunt) {
 // ...

 // Enable the Grunt plugins
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
};

We need to add the uglify configuration to the grunt.initConfig method as well.
In uglify, we can have more than one target. The options attribute allows us to
define the behavior of uglify. In this case, we set mangle to false in order to keep
the names of our variables as they are in the original code. If the mangle option is set
to true, the variable names will be replaced with shorter names, as follows:

 // Uglify Configuration
 uglify: {
 options: {
 mangle: false
 },
 js: {
 files: {
 'windmill.min.js': ['windmill.js']
 }
 }
 }

We can run the minification task in the command line using the same syntax as in the
concatenation task:

$ grunt uglify

Running "uglify:js" (uglify) task

File windmill.min.js created.

Done, without errors.

This will generate the windmill.min.js file, which is about half the size of the
original version.

Creating a Charting Package

[162]

Checking our code with JSHint
In JavaScript, it is very easy to write code that doesn't behave as we expect. It could
be a missing semicolon or forgetting to declare a variable in a certain scope. A linter
is a program that helps us to detect potential errors and dangerous constructions by
enforcing a series of coding conventions. Of course, a static code analysis tool can't
detect these if your program is correct. JSHint is a tool that helps us to detect these
potential problems by checking the JavaScript code against code conventions. The
behavior of JSHint can be configured to match our coding conventions.

JSHint is a fork of JSLint, a tool created by Douglas Crockford to check
code against a particular set of coding standards. His choices on coding
style are explained in the book JavaScript: The Good Parts.

In JSHint, the code conventions can be set by writing a jshintrc file, a JSON file
containing a series of flags that will define the JSHint behavior. For instance, a
configuration file might contain the following flags:

{
 "curly": true,
 "eqeqeq": true,
 "undef": true,
 // ...
}

The curly option will enforce the use of curly braces ({ and }) around conditionals
and loops, even if we have only one statement. The eqeqeq option enforces the use
of === and !== to compare objects, instead of == and !=. If you don't have a set of
coding conventions already, I would recommend that you read the list of JSHint
options available at http://www.jshint.com/docs/options/ and create a new
.jshintrc file. Here, the options are listed and explained, so you can make an
informed decision about which flags to enable.

Many editors have support for live linting, but even if the text editor checks the code
as you write, it is a good practice to check the code before committing your changes.
We will enable the grunt-contrib-jshint module and configure it so that we can
check our code easily. We will enable the plugin as follows:

 // Enable the Grunt plugins
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-contrib-jshint');

http://www.jshint.com/docs/options/

Chapter 7

[163]

Next, we configure the plugin. We will check the Gruntfile.js file, our tests, and
the code of our chart:

 jshint: {
 all: [
 'Gruntfile.js',
 'src/svg/*.js',
 'src/chart/*.js',
 'src/layout/*.js',
 'test/*.js',
 'test/*/*.js'
]
 }

We can check our code using the following command lines:

$ grunt jshint

Running "jshint:all" (jshint) task

>> 11 files lint free.

Done, without errors.

Testing our package
Distributing a software package is a great responsibility. The users of our charting
package rely on our code and assume that everything works as expected. Despite our
best intentions, we may break the existing functionality when implementing a new
feature or fixing a bug. The only way to minimize these errors is to extensively test
our code.

The tests should be easy to write and run, allowing us to write the tests as we code
new features and to run the tests before committing changes. There are several
test suites for JavaScript code. In this section, we will use Vows, an asynchronous
behavior-driven test suite for Node.js.

Writing a simple test
In Vows, the largest test unit is a suite. We will begin by creating a simple
test using JavaScript without any libraries. In the test directory, we create
the universe-test.js file.

We will load the vows and assert modules and assign them to the local variables:

// Load the modules
var vows = require('vows'),
 assert = require('assert');

Creating a Charting Package

[164]

We can create a suite now. The convention is to have one suite per file and to
match the suite description with the filename. We create a suite by invoking
the vows.describe method:

// Create the suite
var suite = vows.describe('Universe');

Tests are added to the suite in batches. A suite can have zero or more batches, which
will be executed sequentially. The batches are added using the suite.addBatch
method. Batches allow you to perform tests in a given order:

suite.addBatch({
 //...
});

A batch, in turn, contains zero or more contexts, which describe the behaviors or
states that we want to test. Contexts are run in parallel, and they are asynchronous;
the order in which they will be completed can't be predicted. We will add a context
to our batch, as follows:

suite.addBatch({
 'the answer': {
 //...
 }
});

A context contains a topic. The topic is a value or function that returns an element
to be tested. The vows are the actual tests. The vows are the functions that make
assertions about the topic. We will add a topic to our context as follows:

suite.addBatch({
 'the answer': {
 topic: 42,
 //...
 }
});

In this case, all our vows in the context the answer will receive the value 42 as the
argument. We will add some vows to assert whether the topic is undefined, null, or
a number, and finally, whether the topic is equal to 42. Refer to the following code:

suite.addBatch({
 'the answer': {
 topic: 42,
 "shouldn't be undefined": function(topic) {
 assert.notEqual(topic, undefined);
 },

Chapter 7

[165]

 "shouldn't be null": function(topic) {
 assert.notEqual(topic, null);
 },
 "should be a number": function(topic) {
 assert.isNumber(topic);
 },
 "should be 42": function(topic) {
 assert.equal(topic, 42);
 }
 }
});

To execute all the tests in the test directory as a single entity (instead of having to
run each one separately), we need to export the suite:

suite.export(module);

We can run these tests individually by passing the test path as the argument:

$ vows test/universe-test.js --spec
♢ Universe

 the answer to the Universe
√ shouldn't be undefined
√ shouldn't be null
√ should be a number
√ should be 42

√ OK » 4 honored (0.007s)

We will temporarily modify our topic to introduce an error as follows:

suite.addBatch({
 'the answer': {
 topic: 43,
 //...
 }
});

The output of the test will show which vows were honored and which failed,
displaying additional details for the broken vows. In this case, three vows
where honored and one was broken.

♢ Universe

 the answer
√ shouldn't be undefined

Creating a Charting Package

[166]

√ shouldn't be null
√ should be a number
 should be 42
 » expected 42,
 got 43 (==) // universe-test.js:27

 Broken » 3 honored ∙ 1 broken (0.564s)

This simple example shows you how to create a suite, context, topics, and vows to
test a simple feature. We will use the same structure to test our heat map chart.

Testing the heat map chart
The tests for the heat map chart will be more involved than the test from the
previous example; for one thing, we need to load D3 and the windmill library
as Node modules.

D3 is a library that can be used to modify DOM elements based on data. In node
applications, we don't have a browser and the DOM doesn't exist. To have a
document with a DOM tree, we can use the JSDOM module. When we load D3
as a module, it creates the document and includes JSDOM for us; we don't need
to load JSDOM (or create the document and window objects).

To create a test for the heat map chart, we create the test/chart/heatmap-test.js
file and load the vows, assert, and d3 modules. We also load our charting library as
a local file:

// Import the required modules
var vows = require("vows"),
 assert = require("assert"),
 d3 = require("d3"),
 windmill = require("../../windmill");

We will also add a data array and use it later to create the charts. This array will be
accessible for the vows and contexts in the module, but it won't be exported.

// Sample Data Array
var data = [
 {row: 1, column: 1, value: 5.5},
 {row: 1, column: 2, value: 2.5},
 // ...
 {row: 2, column: 4, value: 7.5}
];

Chapter 7

[167]

The suite will contain tests for the heat map chart. We will describe the suite. It is not
necessary to describe the suite with the path to the method being tested, but it's a
good practice and helps you to locate errors when the tests don't pass.

// Create a Test Suite for the heatmap chart
var suite = vows.describe("windmill.chart.heatmap");

We will add a batch that contains the contexts to be tested. In the first context topic,
we will create a div element, create a chart with the default options, bind the data
array with the div element, and create a chart in the first context topic:

// Append the Batches
suite.addBatch({
 "the default chart svg": {
 topic: function() {

 // Create the chart instance and a sample data array
 var chart = windmill.chart.heatmap();

 // Invoke the chart passing the container div
 d3.select("body").append("div")
 .attr("id", "default")
 .data([data])
 .call(chart);

 // Return the svg element for testing
 return d3.select("div#default").select("svg");
 },

 // Vows...
 }
});

We will create vows to assert whether the svg element exists, its width and height
match the default values, it contains groups for the chart and axis, and the number
of rectangles match the number of elements in the data array:

// Append the Batches
suite.addBatch({
 "the default chart svg": {
 topic: function() {...},
 "exists": function(svg) {
 assert.equal(svg.empty(), false);
 },
 "is 600px wide": function(svg) {

Creating a Charting Package

[168]

 assert.equal(svg.attr('width'), '600');
 },
 "is 300px high": function(svg) {
 assert.equal(svg.attr('height'), '300');
 },
 "has a group for the chart": function(svg) {
 assert.equal(svg.select("g.chart").empty(), false);
 },
 "has a group for the xaxis": function(svg) {
 assert.equal(svg.select("g.xaxis").empty(), false);
 },
 "has a group for the yaxis": function(svg) {
 assert.equal(svg.select("g.yaxis").empty(), false);
 },
 "the group has one rectangle for each data item":
function(svg) {
 var rect = svg.select('g').selectAll("rect");
 assert.equal(rect[0].length, data.length);
 }
 }
});

We can run the test with vows and check whether the default attributes of the chart
are correctly set and the structure of the inner elements is organized as it should be:

$ vows test/chart/heatmap-test.js --spec

♢ windmill.chart.heatmap

 the default chart svg
√ exists
√ is 600px wide
√ is 300px high
√ has a group for the chart
√ has a group for the xaxis
√ has a group for the yaxis
√ the group has one rectangle for each data item

√ OK » 7 honored (0.075s)

In a real-world application, we would have to add tests for many more configurations.

Chapter 7

[169]

Testing the matrix layout
The matrix layout is simpler to test, because we don't need the DOM or even D3.
We begin by importing the required modules and creating a suite, as follows:

// Create the test suite
var suite = vows.describe("windmill.layout.matrix");

We add a small data array to test the layout:

// Create a sample data array
var data = [
 {a: 1, b: 1, c: 10},
 // ...
 {a: 2, b: 2, c: 5}
];

We define an average function, as we did in the example file:

var avgerage = function(values) {
 var sum = 0;
 values.forEach(function(d) { sum += d; });
 return sum / values.length;
};

We add a batch and a context to check the default layout attributes and generate the
layout in the context's topic:

// Add a batch to test the default layout
suite.addBatch({
 "default layout": {
 topic: function() {
 return windmill.layout.matrix();
 },

We add vows to test whether the layout is a function and has the row, column,
and value methods:

 "is a function": function(topic) {
 assert.isFunction(topic);
 },
 "has a row method": function(topic) {
 assert.isFunction(topic.row);
 },
 "has a column method": function(topic) {
 assert.isFunction(topic.column);
 },

Creating a Charting Package

[170]

 "has a value method": function(topic) {
 assert.isFunction(topic.value);
 }
 }
});

We can run the tests using vows test/layout/matrix-test.js --spec, but we
will automate the task of running the tests with Grunt.

Running the tests with Grunt
We will add a test task to the Gruntfile.js file in order to automate the execution
of tests. We will need to install the grunt-vows module:

$ npm install --save-dev grunt-vows

As usual, we need to enable the grunt-vows plugin in the Gruntfile.js file:

 // Enable the Grunt plugins
 grunt.loadNpmTasks('grunt-contrib-concat');
 // ...
 grunt.loadNpmTasks("grunt-vows");

We will configure the task to run all the tests in the test directory. As we have done
when running the tests, we will add the spec option to obtain detailed reporting.
Removing this option will use the default value, displaying each test as a point in
the console:

 vows: {
 all: {
 options: {reporter: 'spec'},
 src: ['test/*.js', 'test/*/*.js']
 }
 },

We could create additional targets to test the components individually as we modify
them. We can now run the task from the command line:

$ grunt vows

Running "vows:all" (vows) task

(additional output not shown)

Done, without errors.

Testing the code doesn't guarantee that you will have bug-free code, but it will
certainly help you to detect unexpected behaviors. A mature software usually
has thousands of tests. At the time of writing, for instance, D3 has about 2,500 tests.

Chapter 7

[171]

Registering the sequences of tasks
We have created and configured the essential tasks for our project, but we can
automate the process further. For instance, while modifying the code, we need to check
and test the code, but we won't need a minified version until we are ready to push the
changes to the repository. We will register two groups of tasks, test and build. The
test task will check the code, concatenate the source files, and run the tests. To register
a task, we give the task a name and add a list of the subtasks to be executed:

 // Test Task
 grunt.registerTask('test', ['jshint', 'concat', 'vows']);

We can execute the test task in the command line, triggering the jshint, concat,
and vows tasks in a sequence:

$ grunt test

We register the build task in a similar way; this task will run jshint, concat, vows,
and uglify in order, generating the files that we want to distribute:

 // Generate distributable files
 grunt.registerTask('build', ['jshint', 'vows', 'concat',
 'uglify']);

A default task can be added too. We will add a default task that just runs the
build task:

// Default task
grunt.registerTask('default', ['build']);

To run the default task, we invoke Grunt without arguments. There are hundreds of
Grunt plugins available; they can be used to automate almost everything. There are
plugins to optimize images, copy files, compile the LESS or SASS files to CSS, minify
the CSS files, monitor files for changes, and run tasks automatically, among many
others. We could automate additional tasks, such as updating the version number in
the source files or running tasks automatically when we modify source files.

The objective of automating tasks is not only to save time, but it also makes it
easier to actually do the tasks and establish a uniform workflow among peers.
It also allows developers to focus on writing code and makes the development
process more enjoyable.

Creating a Charting Package

[172]

Managing the frontend dependencies
If our package is to be used in web applications, we should declare that it depends
on D3 and also specify the version of D3 that we need. For many years, projects just
declared their dependencies on their web page, leaving the task of downloading
and installing the dependencies to the user. Bower is a package manager for web
applications (http://bower.io/). It makes the process of installing and updating
packages easier. Bower is a Node module; it can be installed either locally using npm,
as we did earlier in the chapter, or globally using npm install –g bower:

$ npm install --save bower

This will install Bower in the node_modules directory. We need to create a
bower.json file containing the package metadata and dependencies. Bower
can create this file for us:

$ bower init

This command will prompt us with questions about our package; we need to define
the name, version, main file, and keywords, among other fields. The generated file
will contain essential package information, as follows:

{
 "name": "windmill",
 "version": "0.1.0",
 "authors": [
 "Pablo Navarro"
],
 "description": "Heatmap Charts",
 "main": "windmill.js",
 "keywords": ["chart","heatmap","d3"],
 "ignore": [
 "**/.*","**/.*",
 "node_modules",
 "bower_components",
 "app/_bower_components",
 "test",
 "tests"
],
 "dependencies": {}
}

http://bower.io/

Chapter 7

[173]

Bower has a registry of frontend packages; we can use Bower to search the registry and
install our dependencies. For instance, we can search for the D3 package as follows:

$ bower search d3

Search results:

 d3 git://github.com/mbostock/d3.git

 nvd3 git://github.com/novus/nvd3

 d3-plugins git://github.com/d3/d3-plugins.git

 ...

The results are displayed, showing the package name and its Git endpoint. We can
use either the name or the endpoint to install D3:

$ bower install --save d3

This will create the bower_components directory (depending on your global
configuration) and update the bower.json file, including the D3 library in its most
recent release. Note that we included D3 both in our Node dependencies and in the
Bower dependencies. We included D3 in the Node dependencies to be able to test
our charts (which depend on D3); here, we include D3 as a frontend dependency,
so the other packages that use our charting package can download and install D3
using Bower:

{
 "name": "windmill",
 "version": "0.1.0",
 ...
 "dependencies": {
 "d3": "~3.4.1"
 }
}

We can specify which version of the package we want to include. For instance, we
could have installed the release 3.4.0:

$ bower install d3#3.4.0

We don't need to register the packages to install them with Bower; we can use Bower
to install the unregistered packages using their Git endpoint:

$ bower install https://github.com/mbostock/d3.git

Creating a Charting Package

[174]

The Git endpoint could also be a local repository, or even a ZIP or TAR file:

$bower install /path/to/package.zip

Bower will extract and copy each dependency in the bower_components directory.
To use the packages, we can use a reference to the bower_components directory,
or write a Grunt task to copy the files to another location. We will use the bower_
components directory to create example pages for our charts.

Using the package in other projects
In this section, we will create a minimal web page that uses the windmill package.
We begin by creating an empty directory, initializing the repository, and creating
a README.md file. We create the bower.json file using bower init. We will install
bootstrap to use it in our web page:

$ bower install --save bootstrap

This will download bootstrap and its dependencies to the bower_components
directory. We will install the windmill library using the Git endpoint of the repository:

$ bower install --save https://github.com/pnavarrc/windmill.git

This will download the current version of windmill and the version of D3 on which
windmill depends. The contents of the bower_components directory are as follows:

bower_components/
 bootstrap/
 d3/
 jquery/
 windmill/

In the index page, we will display the average wind speed in a certain city during
2013. We will store the data in the wind.csv file located in the data directory. The
CSV file has three columns that display the data (MM/DD/YY), the hour of the
measurement, and the average speed in meters per second:

Date,Hour,Speed
1/1/13,1,0.2554
1/1/13,2,0.1683
...

Chapter 7

[175]

In the header of the index file, we include D3 and the windmill CSS and
JavaScript files:

<link href="/bower_components/windmill/css/windmill.css"
rel="stylesheet">

<script src="/bower_components/d3/d3.min.js" charset="utf-8"></script>
<script src="/bower_components/windmill/windmill.min.js"></script>

In the body of the page, we add the title and a container div:

<div class="container">
 <h1>Wind Speed</h1>
 <div id="chart01"></div>
</div>

We create and configure the chart and layout. We want to display the average wind
speed by month and hour of the day. We set the rows to be the hours, the columns
to return the month number, and the value to return the speed. We will use the
average function to aggregate values with the same hour and month:

 // Aggregation function (average)
 function average(values) {
 var sum = 0;
 values.forEach(function(d) { sum += d; });
 return sum / values.length;
 }

 // Matrix Layout
 var matrix = windmill.layout.matrix()
 .row(function(d) { return +d.Hour; })
 .column(function(d) { return +d.Date.getMonth(); })
 .value(function(d) { return +d.Speed; })
 .aggregate(average);

We create and initialize the heat map chart, setting the width, height, and color
extent of the chart:

 // Create and configure the heatmap chart
 var heatmap = windmill.chart.heatmap()
 .column(function(d) { return d.col; })
 .width(700)
 .height(350)
 .colorExtent(['#ccc', '#222']);

Creating a Charting Package

[176]

We load the data using d3.csv and parse the dates. We select the container div and
bind the grouped data, as follows:

// Load the CSV data
d3.csv('/data/wind.csv', function(error, data) {

 // Handle errors getting or parsing the data
 if (error) { return error; }
 // Parse the dates
 data.forEach(function(d) {
 d.Date = new Date(d.Date);
 });

 // Create the heatmap chart in the container selection
 d3.select('div#chart01')
 .data([matrix(data)])
 .call(heatmap);
});

The resulting chart will display the variations of wind speed as a function of the
hour of the day and the month. We can see that the wind is stronger between
2 pm and 8 pm and that it is weaker between March and September.

A heat map of the average wind speed by hour and month for 2013

Chapter 7

[177]

Summary
In this chapter, we created a simple charting package with two components,
a layout and a heat map chart. We also discussed the workflow and tasks related
to the creation and distribution of a frontend package. We used Grunt with some
plugins to concatenate, check the code for errors, test, and minify the assets. We
used Vows to create test suites, and Bower to make our package easily installable
in third-party frontend projects.

We created a small project with a single web page, which includes the charting
package as an external dependency, and used it to visualize the average wind
speed by hour and month as a heat map.

In the next chapter, we will learn how to create a data-driven application using
third-party data and how to host the application using GitHub pages and Jekyll.

Data-driven Applications
In this chapter, we will create a data-driven application using data from the
Human Development Data API from the United Nations website. We will use D3
to create a reusable chart component, and use Backbone to structure and maintain
the application state. We will learn how to use Jekyll to create web applications
using templates and a simplified markup language. We will also learn how to host
our static site both on Amazon Simple Storage Service (S3) and GitHub Pages.

Creating the application
In this section, we will create a data visualization to explore the evolution of
the Human Development Index (HDI) for different countries, and show the life
expectancy, education, and income components of the index. We will create the
visualization using D3 and Backbone.

The HDI is a composite statistic of life expectancy, education, and income created to
compare and measure the quality of life in different countries. This indicator is used
by the United Nations Development Program to measure and report the progress of
the ranked countries in these areas.

In this visualization, we want to display how a particular country compares to other
ranked countries in the evolution of the index. We will use the Human Development
Data API to access the time series of the HDI for the ranked countries and to retrieve
information about their main components.

Data-driven Applications

[180]

The chart will show the evolution of the HDI for all the ranked countries,
highlighting the selected country. In the right-hand side pane, we will display
the main components of the HDI: life expectancy at birth, mean and expected years
of schooling, and gross national income per capita (GNI). As there are almost two
hundred ranked countries, we will add a search form with autocompletion to search
among the countries. Selecting a country in the search input field will update the
chart and the right-hand side pane.

A screenshot of the visualization elements

We will implement our application using D3 and Backbone, following the same
pattern as presented in Chapter 6, Interaction between Charts. We will also leverage
other libraries to provide the design elements and the functionality that we need.

The project setup
When creating software, we are continuously modifying our own work and the work
developed for others. The ability to control how those changes are integrated in the
project codebase and how to recover the previous versions is the heart of version
control systems. As with many other tools, there are plenty of tools available, each
with it's own characteristics.

Chapter 8

[181]

Git is a popular version control system. It's distributed, which means that it's not
necessary to have a centralized location as the reference point; each working copy of
the repository can be used as a reference. In this section, we will use Git as a version
control system. We can't include an introduction to Git in this book; you can learn
about Git from its website (http://git-scm.com).

Some content in this chapter is specific to Git and GitHub, a code-hosting repository
based on Git, specifically the sections on how to use GitHub Pages to host static
pages and the setup of the project. The example application can be implemented
even without a version control system or hosting service.

We will begin our application by creating a repository for it in GitHub. To create a
repository, go to http://www.github.com, sign in with your account (or create an
account), and select +New repository. To create a repository, we will need to add a
name and description, and optionally, select a license and add a README file. After
doing this, the repository URL will be generated; we will use this URL to clone the
project and modify it. In our case, the URL of the repository is https://github.
com/pnavarrc/hdi-explorer.git. Cloning the repository will create a new
directory, containing the initial content set on GitHub, if any:

$ git clone https://github.com/pnavarrc/hdi-explorer.git

Alternatively, we could have created an empty directory and initialized a Git
repository in it to begin working on it right away.

$ mkdir hdi-explorer

$ cd hdi-explorer

$ git init

If we decide to use GitHub, we can add a remote repository to push our code.
Remote repositories are locations on the Internet or in a network to make our
code accessible for others. It's customary to set the origin remote to the primary
repository for the project. We can set the origin remote and push the initial version
of our project by executing the following commands in the console:

$ git remote add origin https://github.com/pnavarrc/hdi-explorer.git

$ git push -u origin

In either case, we will have a configured repository that is ready to be worked on.

http://git-scm.com
http://www.github.com

Data-driven Applications

[182]

As you may remember, we learned how to use Bower to manage the frontend
dependencies in Chapter 7, Creating a Charting Package. As we will be using several
libraries, we will begin by creating the bower.json file using bower init. We will set
the name, version, author, description, and home page of our project. Our bower.json
file will contain the basic information of our project as follows:

{
 "name": "hdi-explorer"
 "version": "0.1.0"
 "authors": [
 "Pablo Navarro <pnavarrc@gmail.com>"
],
 "description": "Human Development Index Explorer"
 "main": "index.html"
 "homepage": "http://pnavarrc.github.io/hdi-explorer"
 "private": true,
 "dependencies": {}
}

As mentioned before, we will use D3 and Backbone to create the charts and structure
our application. We will install the dependencies in our project:

$ bower install --save-dev d3 backbone underscore

This will create the bower_components directory and download the packages for
us. We will also need Bootstrap and Font Awesome to include the HDI component
icons. We will install these packages as well. As jQuery is a dependency of Bootstrap,
Bower will install it automatically:

$ bower install --save-dev bootstrap font-awesome typeahead.js

We will use the Typeahead library from Twitter to add autocompletion to
our search form. Installing packages with the --save-dev option will update
our bower.json file, adding the packages to the development dependencies.
These libraries would normally be regular dependencies; we are including them
as development dependencies because we will later create a file with all the
dependencies in that file.

{
 "name": "hdi-explorer"
 // ...
 "devDependencies": {
 "d3": "~3.4.1"
 "bootstrap": "~3.1.0"
 "backbone": "~1.1.0"
 "underscore": "~1.5.2"

Chapter 8

[183]

 "font-awesome": "~4.0.3"
 "typeahead.js": "~0.10.0"
 }
}

Using Bower will help us to manage our dependencies and update the packages
without breaking our application. Bower requires its packages to adhere to
semantic version numbering, and it's smart enough to update only the
nonbackwards-incompatible releases.

Generating a static site with Jekyll
In the previous chapters, we covered how to create data-driven applications and how
to use tools to make this task easier. In this section, we will cover how to generate
websites using Jekyll and host web applications using Jekyll and GitHub Pages.

Jekyll is a simple, blog-aware, static site generator written in Ruby. This means
that we can create a website or blog without having to install and configure web
servers or databases to create our content. To create pages, we can write them in a
simple markup language and compile them in HTML. Jekyll also supports the use
of templates and partial HTML code to create the pages.

In Linux and OS X, we can install Jekyll from the command line. Remember that in
order to use Jekyll, Ruby and RubyGems should be installed. To install Jekyll, run
the following command in the console:

$ gem install jekyll

For other platforms and more installation options, refer to the documentation
available at http://jekyllrb.com/docs/installation/. Jekyll includes a
generator that configures and creates the project boilerplate with sample content
and templates (see jekyll new --help), but this time, we will create the templates,
content, and configuration from scratch. We will begin by creating the subdirectories
and files needed for the Jekyll components:

hdi-explorer/
 _includes/
 navbar.html
 _layouts/
 main.html
 _data/
 _drafts/
 _posts/
 index.md
 _config.yml

http://jekyllrb.com/docs/installation/

Data-driven Applications

[184]

The _config.yml file is a configuration file written in YAML, a serialization
standard similar to JSON but with additional types, support for comments, and
which uses indentation instead of brackets to indicate nesting (for more information,
see http://www.yaml.org/). The content in this file defines how Jekyll will generate
the content and defines some site-wide variables. For our project, the _config.yml
file defines some Jekyll options and the name, base URL, and repository of our site:

Jekyll Configuration
safe: true
markdown: rdiscount
permalink: pretty

Site
name: Human Development Index Explorer
baseurl: http://pnavarrc.github.io/hdi-explorer
github: http://github.com/pnavarrc/hdi-explorer.git

The safe option disables all the Jekyll plugins, the markdown option sets the
markdown language that we will use, and the permalink option defines which
kind of URL we want to generate. There are additional options to set the time
zone and excluded files, among others.

The _layouts directory will contain page templates with placeholders to be replaced
by content. On each page, we can declare which layout we will use in a special area
called the YAML front matter, which we will describe later. The templates can have
variables, such as the {{ content }} tag, and include the {% include navbar.
html %} tag. The content of the variables is defined either in the front matter or in
the _config.yml file. The include tags replace the block with the content of the
corresponding file in the _includes directory. For instance, our main.html template
contains the following base page structure:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>{{ page.title }}</title>
 <link href="{{ site.baseurl }}/hdi.css" rel="stylesheet">
</head>
<body>
 <!-- Navigation Bar -->
 {% include navbar.html %}

 <!-- Content -->

http://www.yaml.org/

Chapter 8

[185]

 <div class="container-fluid">
 {{ content }}
 </div>
</body>
</html>

The value of the {{ site.baseurl }} variable is set in the _config.yml file,
the {{ page.title }} variable will use the value of the font matter of the pages
using the template, and the {{ content }} variable will be replaced with the
content of the files that use the template. In the _config.yml file, we defined the
baseurl variable to http://pnavarrc.github.io/hdi-explorer. When Jekyll
uses this template to generate content, it will replace the {{ site.baseurl }}
variable with http://pnavarrc.github.io/hdi-explorer, and the generated
page will have the complete URL for the CSS style, http://pnavarrc.github.io/
hdi-explorer/hdi.css. A complete reference to the Liquid Templating language
is available at http://liquidmarkup.org/.

The _includes directory contains the HTML fragments to be included in other
pages. This is useful to modularize some parts of our page, such as to separate the
footer, header, or navigation bar. Here, we created the navbar.html file with the
content of our navigation bar:

<!-- Navigation Bar -->
<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <!-- ... more elements -->
 {{ site.name }}
 <!-- ... -->
 </div>
</nav>

The content of the navbar.html file will replace the {% include navbar.html %}
liquid tag in the templates. The files in the _includes directory can also contain
liquid tags, which will be replaced properly.

The _posts directory contains blog posts. Each blog post should be a file with a
name in the YEAR-MONTH-DAY-title.MARKDOWN form. Jekyll will use the filename
to compute the date and URL of each post. The _data directory contains additional
site-wide variables, and the _draft directory contains posts that we will want to
publish later. In this project, we won't create posts or drafts.

http://liquidmarkup.org/

Data-driven Applications

[186]

The index.md file contains content to be rendered using some of the layouts in the
project. The beginning of the file contains the YAML front matter, that is, the lines
between three dashes. This fragment of the file is interpreted as YAML code and
is used to render the templates. For instance, in the main template, we had the {{
page.title }} placeholder. When rendering the page, Jekyll will replace this with
the title variable in the page's front matter. The content after the front matter will
replace the {{ content }} tag in the template.

layout: main
title: HDI Explorer

<!-- Content -->
Hello World

We can add any number of variables to the front matter, but the layout variable is
mandatory; so, Jekyll knows which layout should be used to render the page. In this
case, we will use the main.html layout and set the title of the page to HDI Explorer.
The content of the page can be written in HTML or in text-to-HTML languages, such
as Markdown or Textile. Once we have created the layouts and initial content, we can
use Jekyll to generate the site.

$ jekyll build

This will create the _site directory, which contains all the content of the directory
except the Jekyll-related directories such as _layouts and _includes. In our case,
it will generate a directory containing an index.html file. This file is the result of
injecting the contents of the index.md, navbar.html, and _config.yml files in the
main.html layout. The generated file will look as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>HDI Explorer</title>
 <link href="http://pnavarrc.github.io/hdi-explorer/hdi.css"
rel="stylesheet">
</head>
<body>
 <!-- Navigation Bar -->
 <nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <!-- ... more elements -->

Chapter 8

[187]

 Human Development Index Explorer

 <!-- ... -->
 </div>
 </nav>

 <!-- Content -->
 <div class="content">
 <!-- Content -->
 <p>Hello World</p>
 </div>
</body>
</html>

We can see that the generated file is pure HTML. Using Jekyll allows us to modularize
the page, separate its components, and allows us to focus on writing the actual content
of each page.

Jekyll also allows us to serve the generated pages locally, watching for changes
in the project files. To do this, we need to overwrite the baseurl variable in order
to use the localhost address instead of the value defined in the configuration file.
As the addresses will be relative to the project directory, we can set the base URL
to an empty string:

$ jekyll serve --watch --baseurl=

We can now access our site by pointing the browser to http://localhost:4000 and
use our site. In the next section, we will create the contents of our application using
D3 and Backbone, integrating the JavaScript files, styles, and markup with the Jekyll
templates and pages created in this section.

Creating the application components
We will separate the Backbone application components from the chart; we will put
the models, collections, views, and setup in the js/app directory:

js/
 app/
 models/
 app.js
 country.js
 collections/
 countries.js

Data-driven Applications

[188]

 views/
 country.js
 countries.js
 app.js
 setup.js

In the app.js file, we just define a variable that will have the components of
our application:

// Application container
var app = {};

The setup.js file contains the creation of the model, collection, and view instances;
the binding of the events; and the callbacks of different components. We will review
the models, collections, and views in detail later.

Creating the models and collections
The application model will reflect the application state. In our application, the
selected country defines the state of the application; we will use three-letter
country codes as the only attribute of the application model:

// Application Model
app.ApplicationModel = Backbone.Model.extend({
 // Code of the Selected Country
 defaults: {
 code: ''
 }
});

We will have two additional models: the CountryInformation model will
represent information about the current HDI value and its main components,
and the CountryTrend model will contain information about the country and
time series of HDI measurements.

The data source for these models will be an endpoint of the Human Development
Data API. The API allows us to retrieve data about poverty, education, health,
social integration, and migrations, among many others. A complete list of the API
endpoints and some examples of queries are available at the Human Development
Data API website (http://hdr.undp.org/en/data/api). The API exposes the data
in several formats and receives parameters to filter the data.

http://hdr.undp.org/en/data/api

Chapter 8

[189]

The CountryInformation model will retrieve information about the Human
Development Index and its Components endpoint. For instance, we can access this
endpoint by passing name=Germany as the parameter of the request. The request to
http://data.undp.org/resource/wxub-qc5k.json?name=Germany will return a
JSON file with the main components of the HDI:

[
 {
 "_2011_expected_years_of_schooling_note" :"e",
 "_2012_life_expectancy_at_birth" :"80.6",
 "_2012_gni_per_capita_rank_minus_hdi_rank" :"10",
 "_2012_hdi_value" :"0.920",
 "type" : "Ranked Country",
 "abbreviation" : "DEU",
 "_2010_mean_years_of_schooling" :"12.2",
 "_2011_expected_years_of_schooling" :"16.4",
 "name" : "Germany",
 "_2012_hdi_rank" :"5",
 "_2012_gross_national_income_gni_per_capita" :"35431",
 "_2012_nonincome_hdi_value" :"0.948"
 }
]

We will define the model such that it has the name and code attributes and some
of the information provided by the JSON file. We will add the url, baseurl, and
urltpl attributes to construct the URL for each country, as follows:

// Country Information Model
app.CountryInformation = Backbone.Model.extend({

 // Default attributes, the name and code of the country
 defaults: {
 code: '',
 name: ''
 },

 // URL to fetch the model data
 url: '',

 // Base URL
 baseurl: 'http://data.undp.org/resource/wxub-qc5k.json',

 // URL Template
 urltpl: _.template('<%= baseurl %>?Abbreviation=<%= code %>')
});

Data-driven Applications

[190]

Each country has the abbreviation field; this field contains the code for the country.
We will use this code as the ID of the country. The names of the attributes of the JSON
object contain data; for instance, the _2012_life_expectancy_at_birth attribute
contains the year of the measurement. If we create an instance of the model and
invoke its fetch method, it will retrieve the data from the JSON endpoint and add
attributes to each attribute of the retrieved object. This will be a problem because the
endpoint returns an array and not all the countries have up-to-date measurements. In
the case of Germany, the only object in the array has the _2012_life_expectancy_
at_birth attribute, but in the case of other countries, the most recent measurements
could be from 2010.

To have a uniform representation of the data, we can strip the year out of the attribute
names before we set the attributes for the model. We can do this by setting the parse
method, which is invoked when the data is fetched from the server. In this method, we
will get the first element of the retrieved array and strip the first part of the attributes
beginning with _ to only have attributes of the form life_expectancy_at_birth:

 // Parse the response and set the model contents
 parse: function(response) {

 // Get the first item of the response
 var item = response.pop(),
 data = {
 code: item.abbreviation,
 name: item.name
 };

 // Parse each attribute
 for (var attr in item) {
 if (attr[0] === '_') {
 // Extract the attribute name after the year
 data[attr.slice(6)] = item[attr];
 }
 }

 // Return the parsed data
 return data;
 }

Chapter 8

[191]

We will also add a method to update the model with the selected country in the
application. The setState method will receive the application model and use its
code attribute to construct the URL for the selected country and to fetch the new
information, as follows:

setState: function(state) {
 // Construct the URL and fetch the data
 this.url = this.urltpl({
 baseurl: this.baseurl,
 code: state.get('code')
 });
 this.fetch({reset: true});
}

We will create the CountryTrend model to store the trends of the HDI for each
country, and the Countries collection to store the CountryTrend instances. The
CountryTrend model will hold the country code and name, a flag to indicate whether
the country has been selected or not, and a series of HDI measurements for different
years. We will use the code of the country as an ID attribute:

// Country Trend Model
app.CountryTrend = Backbone.Model.extend({

 // Default values for the Country Trend Model
 defaults: {
 name: '',
 code: '',
 selected: false,
 hdiSeries: []
 },

 // The country code identifies uniquely the model
 idAttribute: 'code'
});

Data-driven Applications

[192]

The Countries collection will contain a set of the CountryTrend instances. The
collection will have an endpoint to retrieve the information for the model instances.
We will need to define the parse method in the CountryTrend model, which will
be invoked automatically before new CountryTrend instances are generated. In the
parse method, we construct an object with the attributes of the new model instance.
The data retrieved for the collection will have the following structure:

{
 _1990_hdi: "0.852"
 _1980_hdi: "0.804"
 _2000_hdi: "0.922"
 // ...
 _2012_hdi: "0.955"
}

Here, the year of the HDI measurement is contained in the key of the object. There
are other attributes also, which we will ignore. We will split the attribute name using
the _ character to extract the year:

 // Parse the country fields before instantiating the model
 parse: function(response) {

 var data = {
 code: response.country_code,
 name: response.country_name,
 selected: false,
 hdiSeries: []
 };

 // Compute the HDI Series
 for (var attr in response) {
 var part = attr.split('_'),
 series = [];

 if ((part.length === 3) && (part[2] === 'hdi')) {
 data.hdiSeries.push({
 year: parseInt(part[1], 10),
 hdi: parseFloat(response[attr])
 });
 }
 }

 // Sort the data items
 data.hdiSeries.sort(function(a, b) {
 return b.year - a.year;
 });

 return data;
 }

Chapter 8

[193]

The data object will contain the country's code, name, the selected flag, and the
array of hdiSeries, which will contain objects that have the year and HDI value.
The Countries collection will contain the CountryTrend instances for each country.
The data will be retrieved from the Human Development Index Trends endpoint.
We set the collection model, the endpoint URL, and a parse method, which will
filter the items that have a country code (there are items for groups of countries).
We will also add a method to set a selected item in order to ensure that there is
only one selected item:

// Countries Collection
app.Countries = Backbone.Collection.extend({

 // Model
 model: app.CountryTrend,

 // JSON Endpoint URL
 url: 'http://data.undp.org/resource/efc4-gjvq.json',

 // Remove non-country items
 parse: function(response) {
 return response.filter(function(d) {
 return d.country_code;
 });
 },

 // Set the selected country
 setSelected: function(code) {

 var selected = this.findWhere({selected: true});

 if (selected) {
 selected.set('selected', false);
 }

 // Set the new selected item
 selected = this.findWhere({code: code});
 if (selected) {
 selected.set('selected', true);
 }
 }
});

We will proceed to create the views for the models.

Data-driven Applications

[194]

Creating the views
The application will have three views: the chart with the trends of HDI values for the
ranked countries, the information view at the right-hand side, and the search form.

CountriesTrendView is a view of the Countries collection, which displays the
evolution of the HDI for the ranked countries. As we did in Chapter 6, Interaction
between Charts, we will create a Backbone View that will contain an instance of a
D3-based chart:

// Countries Trend View
app.CountriesTrendView = Backbone.View.extend({

 // Initialization and render
 initialize: function() {
 this.listenTo(this.collection, 'reset', this.render);
 this.listenTo(this.collection, 'change:selected', this.
render);
 }
});

In the initialize method, we start listening for the reset event of the collection
and the change:selected event, which are triggered when an element of the
collection is selected. In both cases, we will render the view. We will add and
configure an instance of the D3-based chart, hdi.chart.trends:

app.CountriesTrendView = Backbone.View.extend({

 // Initalization and render...

 // Initialize the trend chart
 chart: hdi.chart.trend()
 .series(function(d) { return d.hdiSeries; })
 .x(function(d) { return d.year; })
 .y(function(d) { return d.hdi; }),

 // Initialize and render methods...
});

We will skip the description of the hdi.chart.trend chart for brevity, but as usual,
the chart is implemented using the reusable chart pattern and has accessor methods
to configure its behavior. The chart displays the time series of HDI measurements for
all the ranked countries, highlighting the line bound to a data item with the selected
attribute set to true.

Chapter 8

[195]

The HDI trend chart

In the render method, we get the width of the container element of the view and
update the width of the chart using this value. We select the container element,
bind the collection data to the selection, and invoke the chart:

 // Update the chart width and bind the updated data
 render: function() {
 // Update the width of the chart
 this.chart.width(this.$el.width());

 // Rebind and render the chart
 d3.select(this.el)
 .data([this.collection.toJSON()])
 .call(this.chart);
 },

Data-driven Applications

[196]

We will also add the setState method to change the selected country of the
underlying collection. This method will help us to update the selected item of the
collection when the application model changes the selected country. We will do this
later in the application setup:

 // Update the state of the application model
 setState: function(state) {
 this.collection.setSelected(state.get('code'));
 }

The search form will allow the user to search among the ranked countries to select one
of them. We will use the Typeahead jQuery plugin from Twitter (http://twitter.
github.io/typeahead.js/) to provide autocompletion, and we will populate the
suggestion list with the items in the Countries collection. The Typeahead plugin
contains two components: Bloodhound, the autocompletion engine, and Typeahead,
the plugin that adds autocompletion capabilities to an input field.

In the initialize method, we bind the reset event of the collection to the render
method in order to update the view when the list of country trends is retrieved:

// Search Form View
app.CountriesSearchView = Backbone.View.extend({

 // Initialize
 initialize: function() {
 this.listenTo(this.collection, 'reset', this.render);
 },

 // Events and render methods...
});

The DOM element associated with this view will be a div containing the search form,
which is located in the navigation bar. We assign an ID to the div and to the input field:

<div class="form-group" id="search-country">
 <input type="text" class="form-control typeahead"
 placeholder="Search country"id="search-country-input">
</div>

To provide autocompletion, we need to initialize the autocompletion engine and add
the autocompletion features to the search input item:

 // Render the component
 render: function() {
 // Initialize the autocompletion engine
 // Add autocompletion to the input field
 },

http://twitter.github.io/typeahead.js/
http://twitter.github.io/typeahead.js/

Chapter 8

[197]

We initialize the Typeahead autocompletion engine; setting the datumTokenizer
option is a function that, given a data element, returns a list of strings that should be
associated with the element. In our case, we want to match the country names; so,
we use the whitespace tokenizer and return the country name split by whitespace
characters. The input of the search field will be split using whitespace characters too.
We add the list of elements among which we want to search, which in our case are
the elements in the collection:

 // Render the component
 render: function() {
 // Initialize the autocompletion engine
 this.engine = new Bloodhound({
 datumTokenizer: function(d) {
 return Bloodhound.tokenizers.whitespace(d.name);
 },
 queryTokenizer: Bloodhound.tokenizers.whitespace,
 local: this.collection.toJSON()
 });
 this.engine.initialize();

 // Add autocompletion to the input field...
 },

To add the autocompletion features to the search form, we select the input element of
the view and configure the typeahead options. In our case, we just want to show the
name of the country and use the engine dataset as the source for the autocompletion:

 // Render the element
 this.$el.children('#search-country-input')
 .typeahead(null, {
 displayKey: 'name',
 source: this.engine.ttAdapter()
 });

When the user begins to type in the input field, the options that match the input will
be displayed. When the user selects an option, the typeahead:selected event will
be triggered by the input element. We will add this to the event's hash of the view,
binding the event to the setSelected callback:

 events: {
 'typeahead:selected input[type=text]': 'setSelected'
 },

Data-driven Applications

[198]

Note that the typeahead:selected event is a jQuery event. The callback will receive
the event and the data item selected by the user, and it will update the selected item
in the collection, as follows:

 // Update the selected item in the collection
 setSelected: function(event, datum) {
 this.collection.setSelected(datum.code);
 }

The Typeahead autocompletion in action

The last view will be CountryInformationView. This view is a visual representation
of the CountryInformation model. For this view, we will add the _includes/
country-information.html file with the contents of the template and include
it in the index.md file:

layout: main
title: HDI Explorer

{% include country-information.html %}

<!-- More content... -->

The template will contain several internal div elements; we will show only a part of
the template here:

<!-- Country Information Template -->
<script type="text/template" id="country-summary-template">

<!-- Country Name and Rank -->
<div class="row country-summary-title">
 <div class="col-xs-8"><%= name %></div>

Chapter 8

[199]

 <div class="col-xs-4 text-right">#<%= hdi_rank %></div>
</div>

<!-- HDI Value and Rank of the Country -->
<div class="row country-summary-box">
 <!-- Header -->
 <div class="col-xs-12 country-summary-box-header">
 <i class="fa fa-bar-chart-o fa-fw"></i>
 human development index
 </div>
 <!-- HDI Index -->
 <div class="col-xs-12">
 <div class="col-xs-9">human development index</div>
 <div class="col-xs-3 text-right"><%= hdi_value %></div>
 </div>
 <!-- Country Rank -->
 <div class="col-xs-12">
 <div class="col-xs-9">hdi rank</div>
 <div class="col-xs-3 text-right"><%= hdi_rank %></div>
 </div>
</div>

<!-- More divs with additional information... -->
</script>

Here, we create the structure of the bar on the right-hand side, which will contain the
Human Development Index, rank, life expectancy, education statistics, and income
for the selected country. We will use the Underscore templates to render this view.
The view structure is simpler in this case; we just compile the template, listen to the
changes of country name in the model, and render the template with the model data:

// Country Information View
app.CountryInformationView = Backbone.View.extend({
 // View template
 template: _.template($('#country-summary-template').html()),

 initialize: function() {
 // Update the view on name changes
 this.listenTo(this.model, 'change:name', this.render);
 },

 render: function() {

Data-driven Applications

[200]

 // Render the template
 this.$el.html(this.template(this.model.toJSON()));
 }
});

The rendered view will display the current values for the HDI components

The application setup
With the models, collections, and views created, we can create the respective
instances and bind events to callbacks in order to keep the views in sync. We begin
by creating an instance of the application model and the collection of country HDI
trends. In the js/app/setup.js file, we create and configure the model, collection,
and view instances:

// Application Model
app.state = new app.ApplicationModel();

// HDI Country Trends Collection
app.countries = new app.Countries();

Chapter 8

[201]

After the application's state changes, we will have to update the selected item in the
Countries collection. We bind the change:code event of the application model to
the callback that will update the selected item in the collection:

// Update the selected item in the countries collection
app.countries.listenTo(app.state, 'change:code', function(state){
 this.setSelected(state.get('code'));
});

We need to update the application state when the Countries collection is populated
for the first time. We will set the application state's code attribute to the code of the
first element in the collection of countries. We also bind the change:selected event
of the collection to update the application model:

app.countries.on({
 'reset': function() {
 app.state.set('code', this.first().get('code'));
 },

 'change:selected': function() {
 var selected = this.findWhere({selected: true});
 if (selected) {
 app.state.set('code', selected.get('code'));
 }
 }
});

Note that when we are selecting an item, we are also deselecting another item. Both
the items will trigger the change:selected event, but the application should change
its state only when an item is selected. We can now fetch the countries data, passing
the reset flag to ensure that any existing data is overwritten:

app.countries.fetch({reset: true});

We create an instance of the CountryInformation model and bind the changes to the
code attribute of the application to the changes of the state in the model. The setState
method will fetch the information for the code given by the application state:

// HDI Information
app.country = new app.CountryInformation();
app.country.listenTo(app.state, 'change:code', app.country.setState);

Data-driven Applications

[202]

We can now create instances of the views. We will create an instance of the
CountriesTrendView. This view will be rendered in the div element with
the #chart ID:

// Countries Trend View
app.trendView = new app.CountriesTrendView({
 el: $('div#chart'),
 collection: app.countries
});

We create an instance and configure the CountriesSearchView. This view will be
rendered in the navigation bar:

app.searchView = new app.CountriesSearchView({
 el: $('#search-country'),
 collection: app.countries
});

We also create a CountryInformationView instance, which will be rendered in the
right-hand side of the page:

app.infoView = new app.CountryInformationView({
 el: $('div#table'),
 model: app.country
});

In the index.md file, we create the elements where the views will be rendered and
include the application files. In the main.html layout, we include the CSS styles of
the application, Bootstrap and Font Awesome:

layout: main
title: HDI Explorer

{% include country-information.html %}

<div class="container-fluid">
 <div class="row">
 <div class="col-md-8" id="chart"></div>
 <div class="col-md-4 country-summary" id="table"></div>

Chapter 8

[203]

 </div>
</div>

<scriptsrc="{{ site.baseurl }}/dependencies.min.js"></script>
<scriptsrc="{{ site.baseurl }}/hdi.min.js"></script>

The application served by Jekyll on a localhost

Here, we consolidated jQuery, Bootstrap, Underscore, Backbone, Typeahead, and D3
in the dependencies.min.js file and the application models, collections, views, and
chart in the hdi.min.js file. To create these consolidated files, we created a Gruntfile
and configured concatenation and minification tasks as we did in Chapter 7, Creating
a Charting Package. As the configuration of the tasks is similar to the configuration
presented in the previous chapter, we will skip its description.

It is also worth mentioning that in general, it is not a good practice to include complete
libraries. For instance, we included the complete Bootstrap styles and JavaScript
components, but in the application, we used only a small part of the features.

Bootstrap allows you to include the components individually, reducing the payload
of the page and improving the performance. We also included the Font Awesome
fonts and styles only to include four icons. In a project where performance is crucial,
we will probably include only the components that we really need.

Data-driven Applications

[204]

Hosting the visualization with GitHub
Pages
In the previous section, we created a web application using Jekyll, Backbone, and
D3. With Jekyll, we created a template for the main page and included the minified
JavaScript libraries and styles. With Jekyll, we can compile the markup files to
generate a static website or serve the site without generating a static version using
jekyll serve. In this section, we will publish our site using GitHub Pages, a
hosting service for personal and project sites.

GitHub Pages is a service from GitHub that provides hosting for static websites
created in Jekyll or HTML. To publish our Jekyll site, we need to create a branch
named gh-pages and push the branch to GitHub. If this branch is a Jekyll project or
contains an index.html file, GitHub will serve the content of this branch as a static
site. We can create the branch from the master branch:

$ git checkout -b gh-pages

Next, push the branch to our origin, the GitHub endpoint:

$ git push -u origin gh-pages

This will push the gh-pages branch to GitHub, and GitHub Pages will generate
the site in a few minutes. The application will be published and will be accessible
through an URL of the form http://user.github.io/project-name, in our case,
http://pnavarrc.github.io/hdi-explorer. It's important to remember that the
base URL for the project will be http://user.github.io/project-name. Set the
baseurl variable in the _config.yml file correctly to avoid path problems with the
styles and JavaScript files.

The published version of the HDI Explorer application

http://pnavarrc.github.io/hdi-explorer

Chapter 8

[205]

We can create personal pages as well, but in this case, we would need to create a
repository with a name of the form user.github.io, and the site will be a server
from the http://user.github.io URL. GitHub Pages also allows you to use
custom domains and plain HTML instead of Jekyll. More information about
GitHub Pages can be found in the project site at http://pages.github.com/.

Hosting the visualization in Amazon S3
As an alternative to publishing our pages using GitHub Pages, we can also serve
static sites using Amazon S2. Amazon S3 is a data storage service provided by
Amazon. It can be used to store files of any kind, and in particular, to store and
serve static websites. Amazon S3 stores data with 99.99 percent availability and
scales well in terms of storage capacity, number of requests, and users. It also
provides fine-grained control access, allowing you to store sensible data.

The pricing depends on how much data you store and how many access requests
are made, but it starts at less than 0.1 USD per GB per month, and there is a free tier
available to use the platform at no charge to store up to 5 GB (and 20,000 requests
per month). In this section, we will assume that you have an Amazon Web Services
account. If you don't, you can sign up at http://aws.amazon.com/ and create
an account.

In Amazon S3, the files are stored in buckets. A bucket is a container for objects.
Buckets are stored in one of several regions; the region is usually chosen to optimize
the latency or to minimize costs. The name of the bucket needs to be unique among
the buckets in Amazon.

To host our site, we will create a bucket. To create the bucket, we need to go
to the Amazon S3 console at https://console.aws.amazon.com and select
Create Bucket. Here, we need to name our bucket and assign it a region. We will
name it hdi-explorer and select the default region. When the bucket is created,
we select the bucket and go to Properties. In the Static Website Hosting section,
we can enable the hosting and retrieve the URL of our bucket. We will use this
URL as the base URL of the site.

http://pages.github.com/
http://aws.amazon.com/
https://console.aws.amazon.com

Data-driven Applications

[206]

Configuring Jekyll to deploy files to S3
To deploy static content to Amazon S3, we need to generate a version of the site with
the baseurl variable set to the Amazon S3 endpoint. We will create an alternate
Jekyll configuration file and use it to generate the S3 version of the site. In this case,
we only need to update the base URL of the site, but this new file can have different
configuration values. We will create the _s3.yml file with the following options:

Jekyll Configuration
safe: true
markdown: rdiscount
permalink: pretty
destination: _s3
exclude:
 - bower_components
 - node_modules
 - Gruntfile.js
 - bower.json
 - package.json
 - README.md
Site
name: Human Development Index Explorer
baseurl: http://hdi-explorer.s3-website-us-east-1.amazonaws.com

We set the destination folder to _s3. This will generate the files that we need to
deploy to Amazon in the _s3 directory. We have also excluded the files that are not
needed to serve the page. We can now use this configuration to build the D3 version
of the site:

$ jekyll build --config _s3.yml

We can check whether the links in the generated files point towards the S3 endpoint.

Uploading the site to the S3 bucket
We can upload the files using the web interface in the Amazon AWS console;
however, the interface doesn't allow you to upload complete directories. Instead,
we will use s3cmd, a command-line tool that helps to upload, download, and sync
directories with S3 Buckets. To download and install s3cmd, follow the instructions
available on the project website (http://s3tools.org/s3cmd).

http://s3tools.org/s3cmd

Chapter 8

[207]

Before uploading the files, we need to configure s3cmd to provide the Amazon
security credentials. To generate new access keys, go to your account, then go to
security credentials, and then select Access Keys. You can generate a new pair of
access key ID and secret. These strings allow you to authenticate applications to
access your S3 Buckets.

With the access key and secret, we can configure s3cmd to use it to upload our files:

$ s3cmd --configure

This command will request for our access key ID and secret. We can now upload the
files. As we just want to upload our files, we can simply use the following command:

$ s3cmd sync _s3/ s3://bucket-name

The first time, this will upload the files to your bucket. Once you have the content in
S3, it will keep the bucket synchronized with the _s3 directory and upload only the
files that have changed.

Finally, we need to make our files public so that everyone with the URL can access
the application. To do this, go to the bucket page in the browser, select all the files,
and select Make Public in the Actions menu. The site will now be available at the
bucket endpoint URL.

Summary
In this chapter, we learned how to create static sites with Jekyll and how to integrate
third-party data sources using API endpoints. We used the Human Development
Data API from the United Nations to visualize the evolution of the HDI of the ranked
countries, displaying the main components of this indicator as a table.

To create the application, we used several JavaScript and CSS libraries, and we used
Grunt to concatenate and minify the project assets before publishing the site. We also
learned how to publish sites created with Jekyll using GitHub Pages for projects or
personal pages, and how to configure and use Amazon S3 to host static websites.

In the next chapter, we will learn how to create data visualization dashboards and
how to make our visualizations responsive.

Creating a Dashboard
Dashboards are a special kind of data visualization. They are widely used to monitor
website analytics, business intelligence metrics, and brand presence in social media,
among many other things. Dashboards are especially difficult to design, because a
great amount of information should be displayed in a limited amount of space.

In this chapter, we will define what a dashboard is and discuss some of the strategies
and design patterns that can help us design an effective dashboard. We will design
and create a dashboard to monitor the performance of students in a class.

Defining a dashboard
Before we create our dashboard, it will be useful to clarify what a dashboard is. A
quick search on Google Images will reveal that there isn't any consistent definition of
what a dashboard is. Most of the results are a collection of charts, tables, gauges, and
indicators that seem intended to monitor business performance, website analytics,
and presence of a brand in social media, among many other things. Stephen Few, a
specialist in business intelligence and information design, provides a great definition
of dashboards:

A dashboard is a visual display of the most important information needed to achieve
one or more objectives, which is consolidated and arranged on a single screen so the
information can be monitored at a glance.

Creating a Dashboard

[210]

This definition has several implications. First, dashboards are visual displays of
information. A dashboard can contain text elements, but it's mainly a visual display.
Well-designed graphics and charts are a highly effective medium to communicate
quantitative information. Suppose we have a list with the monthly sales of a person
in value and units sold. We can display this information in a table, as follows:

Series of sales shown as a table

We can also create a line chart with the same information. The following image
displays the same data in a visual form. We have two lines and their corresponding
axes, one for the units sold and another for the value of the monthly sales.

Series of sales, this time as a line chart

In the line chart, we can easily spot seasonal changes in the sales, find the minimum
or maximum value, and identify patterns and changes in sales. Of course, if we need
precision, we will need the table, but if we need to detect changes quickly, the chart
is a better choice.

Dashboards should be designed with a purpose in mind. If our dashboard shows
general information, it won't be useful. We should know what kind of decisions will
be made, which problems need to be detected, and what information will help the
dashboard users make decisions and take action.

Chapter 9

[211]

The dashboard should display the most important information that is needed to
achieve its purpose. This means that it should gather all the relevant data, perhaps
from different sources, to help decision makers detect problems.

The previous definition of dashboards states that the information
in a dashboard should be arranged in a single screen, or more
generally, the dashboard should fit in the eye span of the user. This
is important in order to provide an overall view. The information
should be visible at all times, and the user shouldn't have to scroll
the page to view a chart or click on something to have a modal
window with additional information.

In the next section, we will design and create a dashboard to monitor the
performance of students in a class. We will state the purpose of our dashboard,
list the relevant information that we need, organize this information in sections,
and create charts for each section in order to finally organize our information to
help the user detect problems and take actions to solve them.

Good practices in dashboard design
When designing a dashboard, we need to get the most out of each section of the
screen so that we can design our graphics to maximize the absorption of information.
Some visual attributes are more easily perceived than others, and some of them
can communicate effectively without having to pay full attention to them. These
attributes are called preattentive attributes of visual perception. We will discuss
some of them in the context of dashboard design:

• Color: There are several ways to describe color. One of the color models is
called the HSL model, which is better for humans to understand. In this
model, the color is described by three attributes, hue (what we usually call
color), saturation (intensity of a color), and lightness or brightness. The
perception of color depends on the context. A light color will draw attention
if it's surrounded by dark colors; a highly saturated blue will be flashy if
the background is a pale color. The dashboard should guide the viewer's
attention to issues that require action. To achieve this, we need to choose the
colors wisely, reserving colors with high contrast to elements and areas that
deserve special attention.

Creating a Dashboard

[212]

• Form: Length, width, and size can encode quantitative dimensions
effectively, with different degrees of precision. We can quickly determine
whether a line is twice the length of another, but it can be more difficult to
determine this with the width or the size of circles. Items of different shapes
are perceived as belonging to different categories or kinds of elements.

• Position: The position of items plays an important role in the communication
of information. Scatter plots encode pairs of values with two-dimensional
positions; we are inclined to think that items that are close are related.
Position can also encode hierarchy. Higher items are considered better or
more important than items below them, and items located on the left-hand
side will be seen first if the viewer's language is written from left to right.

We can use all these elements to design the components of our dashboard so the
viewer's attention is directed to the issues that require action. As dashboards usually
contain a huge amount of information, every inch of the screen counts. In desktop
environments, the horizontal space is usually enough, but the vertical space is
scarce. In mobile environments, there is usually more vertical space, but the overall
available space is more challenging.

To use the available space efficiently, we need to select the information that really
counts, and prefer compact charts and graphics. It is essential to use charts and
graphics that are clear and direct, reducing explicit decoding to the absolute minimum.

The dashboard should be well organized in order to allow the user to quickly
locate each piece of information. We will use the aforementioned visual attributes
to establish a clear hierarchy between elements and clearly define sections dedicated
to displaying information about the students, courses, and the entire class.

These are just a few guidelines that should be considered when creating a dashboard;
for more in-depth treatment, please refer to Information Dashboard Design by Stephen
Few (see the reference in Chapter 1, Data Visualization).

Making a dashboard
As we mentioned previously, designing an effective dashboard is a challenging task.
The first step to create a useful dashboard is to determine which questions need to be
answered by the dashboard, which problems need to be detected on time, and why a
dashboard is required.

Once we have determined the purpose of the dashboard, we can begin to gather all
the data that can help us answer the questions and understand the issues stated in
the dashboard purpose. The data can be originated from several sources.

Chapter 9

[213]

We will then need to organize the information in meaningful sections in order to
help the user easily navigate the dashboard and find the required information.

We will also need to choose the visual displays for each piece of data that we want
to put in the dashboard. We need to choose compact displays that are familiar to the
user in order to minimize the amount of effort taken in decoding the information.

In this section, we will design and implement a dashboard to monitor the performance
of students in a class. We will define the purpose of the dashboard, gather the
necessary datasets, choose the charts and graphics that we will use, and organize the
information in sections dedicated to the students, courses, and the entire class.

The dashboard that monitors the performance of students in a class

As the main topic in this section is the design of dashboards and we have created
several charts previously, we won't include the code for the examples. The code for
the charts, each section, and the complete dashboard is available in the chapter09
directory of the code bundle.

Defining the purpose of the dashboard
The dashboard should be an overall view of the performance of the students in a
class. If the scores of all the students in a given course are declining, there might
be a problem with the methodology chosen by the teacher; if the scores of just one
of the students are dropping, that student might be having personal issues that
are interfering with his/her learning. The aim of the dashboard is to display all
the information in order to easily detect problems and make decisions to help the
students or teachers improve the learning process.

Creating a Dashboard

[214]

A teacher will want to detect drops in performance at three levels: an individual
student, the students in a course, or the students in all the courses at the same time.
Besides detecting learning problems, it would be useful to have information that
helps identify possible causes of bad performance. The specific objectives of our
dashboard will be as follows:

• Assess the performance of each student in a course. The most obvious way to
do this is to display the scores of the students in each class. We might want to
identify possible causes of bad performance, such as repeated absences.

• Monitor the aggregated performance of the students in each course. This will
allow us to take action if a great number of students are having issues with a
particular subject.

• Get an overall measure of the performance of the complete class. This will
help us detect problems that could affect the class as a group.

We will need to gather the students' data and decide which information is relevant in
order to achieve these objectives.

Obtaining the data
As we mentioned earlier, we need to monitor the performance of the students,
courses, and the entire class. For this example, the data will be generated with a
script. We will need the absences and scores of the students for each course. We
will assume that we have a JSON endpoint that provides us with the students'
data in the following format:

[
 {
 id: 369
 name: 'Adam Lewis',
 absences: [...],
 courses: [...],
 avgScore: 58.84
 },
 {
 id: 372
 name: 'Abigail Bower',
 absences: [...],
 courses: [...],
 avgScore: 67.78
 },
 ...
]

Chapter 9

[215]

For each student, we will have the name and id attributes. We will also have an
absences attribute, which will contain just a list of dates on which the student
didn't show up to class:

{
 name: 'Adam Lewis',
 absences: [
 '2013-09-06',
 '2013-10-04',
 ...
],
 ...
}

We will also need the scores of the students in their courses. The courses field will
contain a list of the students' courses, and each course will have the course's name
and a list of the scores obtained by the student in the assignments or assessments. For
convenience, we will also add the average score of the students for the current period:

{
 name: 'Adam Lewis',
 absences: [...],
 courses: [
 {
 name: 'Mathematics',
 scores: [
 {date: '2013-09-23', score: 78},
 {date: '2013-10-04', score: 54},
 ...
]
 },
 {
 name: 'Art',
 scores: [...]
 }
],
 avgScore: 58.84
}

We will also need information about the courses of the students. We will assume that
there is a JSON endpoint that provides us with information about the courses:

[
 {
 name: 'Mathematics',
 avgScores: [

Creating a Dashboard

[216]

 {date: '2013-09-18', score: 72.34},
 {date: '2013-10-07', score: 64.45},
 ...
],
 avgScore: 63.21
 },
 {
 name: 'Arts',
 avgScores: [
 {date: '2013-09-16', score: 76.62},
 {date: '2013-10-01', score: 58.53},
 ...
],
 avgScore: 63.21
 }
]

The avgScores attribute will contain a list with the dates of assessment and the
average score obtained by the students. The avgScore attribute will contain the
average of the scores for all the assessments in the current period.

Organizing the information
The next step is to organize the information in logical units. Each section of the
dashboard should help us detect the issues that require attention.

In our example, the organization of the information is fairly direct; there will be
sections for the students, courses, and the complete class.

The students section will help us detect the performance drop of individual students.
We will consider that absences can be an explanatory factor in individual changes in
the assessment scores.

The course section will help us monitor scores, thereby aggregating the scores
of all the students at the same time. Drops in the scores of all the students at the
same time could mean that the cause is a particular subject in the course or the
teaching methodology.

The class section will allow us to monitor the average scores of the entire class,
thereby averaging scores in each course for all the students. Here, the number
of absences will be considered an important factor as well.

Chapter 9

[217]

Creating the dashboard sections
In this section, we will discuss each dashboard section separately, explaining what
information will be present in each section. We will also choose charts to represent
these pieces of information. Later, we will decide how to organize the sections in the
dashboard to make good use of the space and reflect the hierarchy of the information
presented in each area.

The students section
The students section of the dashboard will display the students in a table, displaying
information about each student in rows. The most relevant information will be the
scores, but we will also include the absences from class, because this could be a
possible explanation of changes in performance.

The absences will be displayed using a barcode chart that is similar to the one
presented in Chapter 2, Reusable Charts. This version will be smaller and have a
background. This chart will help teachers know how many students didn't show
up in class and when, whether the absences are concentrated in a certain period,
or whether they are evenly distributed.

Absences for given students, displayed as a barcode chart

We will add a column for each course and display the scores of the students in
the course assignments as a line chart. The scales of the chart will be implicit; they
will always cover from 0 to 100 percent in the y axis and the current period in the
x axis. The background of the chart will highlight score ranges that are considered
important; the area below 25 percent has a different background, and the area
between 25 percent and 75 percent has a different background.

Scores of a student in different classes. The background of the chart highlights
areas of poor and high performance.

Creating a Dashboard

[218]

Finally, we will include the average score of the students in the current period. The
complete students section will gather all these elements.

Students section of the dashboard

The courses section
Monitoring the performance of the courses is as important as monitoring the scores
of individual students. Small drops in the scores for a class could simply mean that
the concepts being taught are a little more difficult than usual, but an important
drop in the average score can have several causes that are worth investigating. For
instance, it could be interesting to know whether there are other courses with similar
behavior, as they could be interfering with each other due to difficult assignments on
the same dates, for instance.

The courses section of the dashboard will show the user the evolution of the scores
of each course and the average score of each course. To display the average score,
we will use bullet charts, which are a compact display that shows us how actual
measures compare with target values. Bullet charts are used to show us the value of
an indicator, adding backgrounds to give context to the indicator's value. In this case,
we will define regions of poor, regular, and good performance, and use the bullet
chart to know the average score of each class based on these regions. The following
figure illustrates a bullet chart:

Chapter 9

[219]

Average scores of the students in each course

The class section
In the class context, we need to know whether there are relevant changes in average
scores of the entire class. We will monitor weekly performance metrics so the
teachers can detect problems before they become too difficult to solve.

We will display the average score of the students in all the courses. The absences
for each week will also be included in the dashboard, so the user can quickly work
out whether scores and absences are related for a particular student. We will list the
date of the Monday of each week, displaying the average score for that week as a
bullet chart. We will also include the average score as a number and the number of
absences in the week as well.

Weekly average scores for all the courses and students in the class

Creating a Dashboard

[220]

Gathering the dashboard sections
The last step is to gather all the sections in one screen. The final layout of the
dashboard will depend on the relative importance of the sections. In this case,
we will organize them from the most granular to the more general, giving more
space to the students section. The rationale behind this is that most of the time, the
performance problems will be at an individual level and less frequently at the level
of a course or class.

We will render each section inside a div element and assign it the section class.
We will add styles to help us differentiate the sections and make logical groups more
evident. We will add a light grey background and add a small border on top of each
section. We also added a small title to give it an additional context.

The completed dashboard. The sections are delimited with a light grey background.

In this example, the title of the dashboard is neither useful nor informative. In a
real-world dashboard, the area of the title would be a good place to add navigation
menus and links to other dashboard sections.

Chapter 9

[221]

Summary
In this chapter, we described the characteristics of good dashboards and discussed
the process behind the design and implementation of dashboards. We learned good
practices to create effective dashboards. We also created an example dashboard to
monitor the performance of the students in a class, including sections to assess the
scores of individual students, courses, and classes.

In the next chapter, we will learn how to use GeoJSON and TopoJSON files to create
maps with D3. We will learn about projections, how to use maps to display data, and
how to integrate D3 with Mapbox.

Creating Maps
Maps are a 2D representation of the relevant features of places. Which features
are relevant will depend on the purpose of the map; a map for a zoo will show the
entrances, thematic areas, gift store, and where each animal is. In this case, there is
no need for the sizes and distances to be precise. In a geologic map, we will need
accurate distances and representations of the rock units and geologic strata.

Positions on the surface of the earth are described by two coordinates, longitude and
latitude. The longitude of a point is the angle between the point and the Greenwich
meridian, and the latitude is the angle between the point and the equator. The
latitude and longitude are the angles measured with respect to the equator and
the Greenwich meridian, as shown in the following diagram:

Creating Maps

[224]

The longitude can take values between -180 and 180, while the latitude can have
values between 90 (the North Pole) and -90 (the South Pole).

Shapes on the earth can be described by listing the coordinates of the points in
their boundary in order. We can, for instance, describe an island by listing the
coordinates of points on the coastline separated by one kilometer in a clockwise
order. This representation won't be perfectly accurate, because it will not represent
the irregularities in the coastline that are smaller than one kilometer in size, but this
will be useful if we only need to have an idea of the shape of the island.

To create a map of a feature, we need to translate the coordinates that describe the
feature to points in a 2D surface. The functions that perform this translation are
called projections. As projections intend to represent a 3D surface in a 2D medium,
distortions will be introduced as follows:

The Mercator projection severely distorts the areas near the poles

Chapter 10

[225]

Each projection has been created in order to minimize distortions of some kind. Some
projections will represent relative directions accurately but not the area of certain
regions; others will do the exact opposite. When using maps, it's important to know
what kinds of distortions are acceptable in each case.

In this chapter, we will learn how to create map-based charts with D3. We will learn
how to obtain, transform, and use geographic data in GeoJSON and TopoJSON
formats to create SVG-based maps. We will create a map to visualize the distortions
introduced by the Mercator projection, coloring each country by its area. Maps in
which regions are colored by a characteristic of the regions (population, income, and
so on) are called choropleths. In this section, we will implement a choropleth map
using D3 and GeoJSON. We will also learn how to use TopoJSON to create maps
with more compact geographic data files, and how to use TopoJSON to display
topologic information, such as the connection between features and boundaries.
Lastly, we will learn how to integrate D3 with Mapbox, an excellent map provider.

Obtaining geographic data
To create a map, we will need files that describe the coordinates of the features that
we intend to include in our map. One of the most reliable sources for medium-scale
geographic data is Natural Earth (http://www.naturalearthdata.com), a
collaborative effort to curate and organize geographic datasets.

The geographic datasets available at Natural Earth are in the public domain and
are available at 1:10,000, 1:50,000, and 1:110,0000 scales. There are vector and raster
datasets, and the map files are classified in three categories:

• Cultural: This contains countries, administrative divisions, states and
provinces, populated places, roads, urban areas, and parks

• Physical: This describes coastlines, land, islands, oceans, rivers, lakes, and
glaciated areas among others

• Raster: This contains images, depicting the relief as shades and with colors
based on climate

http://www.naturalearthdata.com

Creating Maps

[226]

The files are in the ESRI shapefile format, the de facto standard for geographic
data. ESRIshape files represent the geometry of features as sets of points, lines, and
polygons. The files might also contain additional attributes about the features, such
as the name of the place, population in the last census, or the average income of the
population living in that area. A shapefile is a set of several files, which must include
the following three files:

• .shp: Shape format, the geometry of the feature
• .shx: An index to locate the features in the .shp file
• .dbf: The feature attributes in the dBase IV format

The shapefile set can also contain optional files, such as the .prj file, which contains
information of the coordinate system and projection in which the vector data is stored.

Shapefiles are widely used in geographic information systems; however, the
format is not suited for its use in web platforms. We will transform the shapefiles
to JSON-based formats and use D3 to create maps from them.

Understanding the GeoJSON and TopoJSON
formats
The most widely used formats to create maps with D3 are the GeoJSON and
TopoJSON formats. In this section, we will describe both the formats briefly
and learn how to transform ESRIshapefiles to GeoJSON or TopoJSON.

The GeoJSON format encodes geometries, features, or collections of features using
the JSON format. We will describe the central aspects of the GeoJSON format; the
complete specification is available at http://geojson.org/.

A GeoJSON file always contains one top-level object. The GeoJSON object must have
a type attribute; for geometries, the type can be Point, MultiPoint, LineString,
MultiLineString, Polygon, or MultiPolygon. For a collection of geometries,
features, and collections of features, the type will be GeometryCollection, Feature,
or FeatureCollection, respectively. One GeoJSON file can contain a small island or
a collection of countries nested in the top-level object.

The GeoJSON objects that represent geometries must have a coordinates attribute,
whose contents will depend on the type of geometry. For a Point attribute, the
coordinates attribute will be an array of two elements, representing a position:

{"type": "Point", "coordinates": [10.0, 10.0]}

http://geojson.org/

Chapter 10

[227]

A LineString object represents a line, and its coordinates array contains a pair of
locations (the longitude and latitude of a place):

{
 "type": "LineString",
 "coordinates": [[10.0, 10.0], [10.0, 0.0]]
}

A Polygon object is more complex. It's intended to represent a polygon that can
have holes on it. Polygons are represented by first describing the exterior boundary
and then the boundaries of the holes on it. A Polygon object with one hole could be
described with the following GeoJSON object:

{
 "type": "Polygon",
 "coordinates": [
 [[0, 0], [0, 10], [10, 10], [0, 10], [10, 0]],
 [[2, 2], [8, 2], [8, 8], [8, 2], [2, 2]]
]
}

Here, the exterior ring describes a square of size 10, and the hole on it is a
centered square of size 6. Also, there are geometries to describe the collections of
the mentioned geometries; a MultiPoint object will contain an array of points,
a MultiLineString object will contain an array with pairs of points, and a
MultiPolygon object will contain an array of polygons.

A Feature object must have a geometry attribute that will contain a geometry object,
usually Polygon or MultiPolygon. It may have a properties member that can be
used to store nongeographic data about the features, such as the name of the place,
population, or average income. For instance, the following feature object describes
the country of Aruba; it contains about a dozen properties, and the polygon contains
26 points:

{
 "type": "Feature",
 "properties": {
 ...
 "type": "Country",
 "admin": "Aruba",
 "adm0_a3": "ABW",
 ...
 },
 "geometry": {
 "type": "Polygon",

Creating Maps

[228]

 "coordinates": [
 [
 [-69.899121, 12.452001],
 [-69.895703, 12.422998],
 ...
]
]
 }
}

A FeatureCollection object will contain a features array, which will contain
feature objects.

As mentioned earlier, GeoJSON files describe features in terms of their geometry,
and in some cases, they are highly redundant. If two features share a boundary, the
common boundary coordinates will appear twice, once for each feature. Moreover,
the description of the boundary might not match exactly, generating artificial gaps
between the shapes. These shortcomings are addressed by the TopoJSON format
created by Mike Bostock, the creator of D3.

TopoJSON objects encode topologies instead of geometries, that is, describing the
relationship between points, lines, and shapes. In a TopoJSON object, shapes are
described as sequences of arcs, which are essentially boundary segments. Each
arc is defined once, but it can be referenced several times by the shapes that share
that arc. This removes redundancy, making TopoJSON lighter than their GeoJSON
counterparts. The coordinates in TopoJSON files are encoded in a more efficient way,
making TopoJSON even more compact.

The following TopoJSON object represents the country of Aruba. The object contains
an array of arcs, a transform attribute with information on how to decode the
coordinates of the arcs to longitude and latitude, and the objects member, which
contains the description of the features:

{
 "type": "Topology",
 "objects": {
 "aruba": {
 "type": "GeometryCollection",
 "geometries": [
 {

Chapter 10

[229]

 "type": "Polygon",
 "arcs": [[0]]
 }
]
 }
 },
 "arcs": [
 [
 [9798, 1517],
 [201, -1517],
 [-2728, 812],
 ...
]
],
 "transform": {
 "scale": [
 0.000017042719896989698,
 0.00001911323944894461
],
 "translate": [
 -70.06611328125,
 12.422998046874994
]
 }
}

The objects member can contain one or more objects describing geometry, but
instead of listing the coordinates of the geometry object, the arcs array contains a
list of references to the arcs defined at the top level of the TopoJSON object. If several
features share a boundary, they will reference the same arc.

Besides the TopoJSON format, Mike Bostock created utilities to manipulate TopoJSON
and GeoJSON files. The TopoJSON program has two components: the command-line
program and the client-side library. The command-line program allows you to convert
shapefiles, CSV or GeoJSON formats, to TopoJSON. It has options to simplify the
features, combine several files in one output, and add or remove properties from the
original features. The JavaScript library allows you to parse the TopoJSON files and
construct Feature objects. The complete specification of the format and the programs is
available at https://github.com/mbostock/topojson.

https://github.com/mbostock/topojson

Creating Maps

[230]

Transforming and manipulating the files
We might need to manipulate the geographic data files in several ways. We might
want to reduce the level of detail of our features to have smaller files and simpler
features, include additional metadata not present in the original files, or even filter
some features.

To convert the files from one format to another, we will need to install the
Geospatial Data Abstraction Library (GDAL). GDAL provides command-line tools
to manipulate and convert geographic data between different formats, shapefiles and
GeoJSON among them. There are binaries available for Windows, Mac, and Linux
systems on their site, http://www.gdal.org/.

Depending on how we want our files, our workflow will include several steps that
we might need to redo later. It's a good idea to automate this process in a way that
allows us to understand why and how we transformed the files. One way to do this
is to use the make program or a similar system. We will use make to download and
transform the geographic datasets that we need for this chapter.

For the first chart, we will need to download the cultural vectors from Natural
Earth. In a world map, we don't need the most detailed level; we will download
medium-scale data. Then, we will uncompress the shapefiles and use the ogr2ogr
program to transform the shapefiles to GeoJSON.

We will implement these transformations using make. The Makefile is in the
chapter10/data directory of the code bundle. Each step can be done individually
in a terminal provided that it is performed in the correct order. In a Makefile,
we describe each step in the transformation process as a target, which can have
zero or more dependencies. To generate the target file from the dependencies, we
need to perform one or more commands. For instance, to generate the ne_50m_
admin_0_countries.shp target file, we need to uncompress the ne_50m_admin_0_
countries.zip file. This file is a dependency of the target file, because the target
can't be generated if the ZIP file doesn't exist. The command to generate the shapefile
is unzip ne_50m_admin_0_countries.zip. The following Makefile will generate a
GeoJSON file that contains all the countries:

Variables
ADMIN0_URL = http://.../ne_50m_admin_0_countries.zip

Targets

Download the Compressed Shapefiles
ne_50m_admin_0_countries.zip:

http://www.gdal.org/

Chapter 10

[231]

 curl -LO $(ADMIN0_URL)

Uncompress the Shapefiles
ne_50m_admin_0_countries.shp: ne_50m_admin_0_countries.zip
 unzip ne_50m_admin_0_countries.zip
 touch ne_50m_admin_0_countries.shp

Convert the shapefiles to GeoJSON
countries.geojson: ne_50m_admin_0_countries.shp
 ogr2ogr -f GeoJSONcountries.geojso nne_50m_admin_0_countries.shp

The Makefiles manage the dependencies between targets; building the countries.
geojson file will check the dependency chain and run the target commands in the
correct order. To generate the GeoJSON file in one step, run the following command:

$ make countries.geojson

It will download, uncompress, and transform the shapefiles to GeoJSON. It will
only perform the commands to generate the files that are not present in the current
directory; it won't download the ZIP file again if the file is already present.

We can use the GeoJSON file to create a TopoJSON version of the same file.
By default, topojson will strip all the properties of the original file. We can
preserve the properties by using the -p name option:

$ topojson -o countries.topojson -p admin –p continent
 countries.geojson

Note that the file size of the GeoJSON file is about 4.4 M; the TopoJSON file is only
580 K. We will begin by using the countries.geojson file to create our first maps,
and then learn how to use the TopoJSON files to create maps. We will also include
this command in the Makefile to be able to replicate this conversion easily.

Creating maps with D3
In this section, we will create map-charts based on SVG. We will use the GeoJSON
file with the countries to create a choropleth map that shows the distortions
introduced by the Mercator projection.

We will also create maps using the more compact format, TopoJSON, and use
topologic information contained in the file to find the neighbors and specific
frontiers between countries.

Creating Maps

[232]

Creating a choropleth map
In this section, we will create a choropleth map to compare the areas of different
countries. We will paint each country according to its area; countries with greater
areas will be colored with darker colors. In general, the Mercator projection is not
suitable to create choropleth maps showing large areas, as this projection shows the
regions near the poles bigger than they really are. For instance, Antarctica is smaller
than Russia, but using the Mercator projection, it seems bigger. Brazil has a greater
area than Greenland, but with this projection, it looks smaller.

In this example, we will use the Mercator projection to show this effect. Our
choropleth map will allow us to compare the size of the countries. We will use the
GeoJSON file, chapter10/data/countries.geojson, available in the code bundle.
The chapter10/01-countries-geojson.html file displays the contents of the file
for a more convenient inspection of the features and their attributes.

We will begin by reading the contents of the GeoJSON file and creating the SVG
element to display the map. GeoJSON is encoded in the JSON format, so we can
use the d3.json method to retrieve and parse the content from GeoJSON:

d3.json(geoJsonUrl, function(error, data) {

 // Handle errors getting or parsing the GeoJSON file
 if (error) { return error; }

 // Create the SVG container selection
 var div = d3.select('#map01'),
 svg = div.selectAll('svg').data([data]);

 // Create the SVG element on enter
 svg.enter().append('svg')
 .attr('width', width)
 .attr('height', height);
});

The data variable contains the GeoJSON object. In this case, the GeoJSON object
contains a FeatureCollection object, and the features array contains Feature
objects, one for each country.

Chapter 10

[233]

To map the feature coordinates, we will need a projection function. D3 includes
about a dozen of the most used projections, and there are even more available as
plugins (see https://github.com/d3/d3-geo-projection for the complete list).
We will create an instance of the Mercator projection and translate it so that the
point with the coordinates [0, 0] lies in the center of the SVG figure:

// Create an instance of the Mercator projection
var projection = d3.geo.mercator()
 .translate([width / 2, height / 2]);

With this function, we can compute the SVG coordinates of any point on earth.
For instance, we can compute the SVG coordinates of a point in the coast of Aruba
by invoking the projection function with the [longitude, latitude] array as
an argument:

projection([-69.899121, 12.452001])
// [17.004529145013294, 167.1410458329102]

We have the geometric description of each feature; the geometries contain arrays of
coordinates. We could use these arrays to compute the projection of each point and
draw the shapes using the d3.svg.path generator, but this will involve interpreting
the geometries of the features. Fortunately, D3 includes a geographic path generator
that does the work for us:

// Create the path generator and configure its projection
var pathGenerator = d3.geo.path()
 .projection(projection);

The d3.geo.path generator needs the projection to compute the paths. Now, we can
create the path objects that will represent our features:

// Create a selection for the countries
var features = svg.selectAll('path.feature')
 .data(data.features);

// Append the paths on enter
features.enter().append('path')
 .attr('class', 'feature');

// Set the path of the countries
features.attr('d', pathGenerator);

https://github.com/d3/d3-geo-projection

Creating Maps

[234]

We have added the class feature to each path in order to configure its style using
CSS. After including the chapter10/map.css style sheet file, our map will look
similar what is shown in to the following figure:

A map of the world countries, using the Mercator projection with the default scale

We can see that the features are correctly drawn, but we would like to add colors
for the ocean and scale the map to show all the countries. Projections have a scale
method that allows you to set the projection's scale. Note that different projections
interpret the scale in different ways. In the case of the Mercator projection, we can
map the entire world by setting the scale as the ratio between the figure width and
the complete angle, in radians:

// The width will cover the complete circumference
var scale = width / (2 * Math.PI);

// Create and center the projection
var projection = d3.geo.mercator()
 .scale(scale)
 .translate([width / 2, height / 2]);

Chapter 10

[235]

We will also want to add a background to represent the oceans. We could simply
add a SVG rectangle before inserting the features; instead, we will create a feature
object that spans the globe and uses the path generator to create an SVG path. This is
a better approach because if we change the projection later, the background will still
cover the complete globe. Note that we need to close the polygon by adding the first
point in the last position:

var globeFeature = {
 type: 'Feature',
 geometry: {
 type: 'Polygon',
 coordinates: [
 [
 [-179.999, 89.999],
 [179.999, 89.999],
 [179.999, -89.999],
 [-179.999, -89.999],
 [-179.999, 89.999]
]
]
 }
};

To avoid overlapping, the rectangle defined by the coordinates doesn't completely
cover the globe. We can now create the path for the globe and add a style to it,
as we did for the rest of the features:

// Create a selection for the globe
var globe = svg.selectAll('path.globe')
 .data([globeFeature]);

// Append the graticule paths on enter
globe.enter().append('path')
 .attr('class', 'globe');

// Set the path data using the path generator
globe.attr('d', pathGenerator);

We will also add reference lines for the meridians and parallels. These lines are
called as graticules, and D3 includes a generator that returns a MultiLineString
object with the description of the lines:

// Create the graticule feature generator
var graticule = d3.geo.graticule();

// Create a selection for the graticule

Creating Maps

[236]

var grid = svg.selectAll('path.graticule')
 .data([graticule()])

// Append the graticule paths on enter
grid.enter().append('path')
 .attr('class', 'graticule');

// Set the path attribute for the graticule
grid.attr('d', pathGenerator);

We have also added a class to the graticule lines to apply styles using CSS. The map
now looks better:

The map with the oceans and the graticule

Chapter 10

[237]

When creating a choropleth map, one of the most important choices to be made is the
color scale to be used. Color Brewer (http://colorbrewer2.org/) is an online tool
that helps developers and designers to choose good color scales for their maps. There
are color scales for qualitative dimensions as well as for sequential and diverging
quantitative dimensions. The colors of each palette have been carefully chosen so
that there is a good contrast between the colors and they look good on the screen.

For a map that shows a qualitative dimension, the color scale should be composed
of colors that differ primarily in hue but have a similar brightness and saturation.
An example of this could be a map showing which languages are spoken in each
country, as shown in the following figure:

A qualitative color scale doesn't suggest order between the items

For quantitative variables that are sequential, that is, ranging from less to more in
one dimension, a color scale with increasing darkness will be a good choice. For
instance, to display differences in income or housing costs, a sequential scale would
be a good fit, as shown in the following figure:

A sequential color scale is a good choice for ordinal variables

For a quantitative variable that covers two extremes, the color palette should
emphasize the extremes with dark colors of different hue and show the critical
mid-range values with lighter colors. An example of this could be a map that shows
the average winter temperatures, showing the countries with temperatures below
zero in blue, temperatures above zero in red, and the zero value in white, as shown
in the following figure:

A diverging color scale is useful to show variables that cover extremes

http://colorbrewer2.org/

Creating Maps

[238]

In our case, we will use a sequential scale because our quantitative variable is the
area of each country. Countries with a bigger surface will be shown in a darker color.
We will use Color Brewer to generate a sequential palette:

var colorRange = [
 '#f7fcfd',
 '#e0ecf4',
 '#bfd3e6',
 '#9ebcda',
 '#8c96c6',
 '#8c6bb1',
 '#88419d',
 '#6e016b'];

This color palette has eight levels, ranging from almost white to dark purple.
The d3.geo.area method computes the area of a feature in steradians, which is
the measurement unit for solid angles. We will use the d3.scale.quantize scale
to assign the area of each feature to one of the colors of our palette:

// Create the color scale for the area of the features
var colorScale = d3.scale.quantize()
 .domain(d3.extent(data.features, d3.geo.area))
 .range(colorRange);

We use the d3.geo.area method to compute the area of each feature and to compute
the fill color using the color scale:

// Set the path of the countries
features.attr('d', pathGenerator)
 .attr('fill', function(d) {
 return colorScale(d3.geo.area(d));
 });

We obtain a map with each country colored according to its area, as shown in the
following figure:

Chapter 10

[239]

The choropleth that shows the area of each country

When we take a look at the choropleth, we can see several inconsistencies between
the size and the colors. Greenland, for instance, looks twice as big as Brazil, but it's
actually smaller than Brazil, Australia, and the United States.

Mapping topology
As mentioned in the previous section, TopoJSON files are more compact than their
GeoJSON counterparts, but the real power of TopoJSON is that it encodes topology,
that is, information about connectedness and the boundaries of the geometries it
describes. Topology gives us access to more information than just the shapes of
each feature; we can identify the neighbors and boundaries between geometries.

Creating Maps

[240]

In this section, we will use the countries.topojson file to create a world map,
replacing GeoJSON from the previous section. We will also identify and map
the neighboring countries of Bolivia and identify a particular frontier using
the TopoJSON library. As we did in the previous section, we have created the
chapter10/03-countries-topojson.html file to display the contents of the
TopoJSON file for easier inspection.

To create a world map with TopoJSON, we need to create the SVG container and the
projection in the same way that we did with the GeoJSON file. The geographic path
generator expects GeoJSON objects, but at this point, we have a TopoJSON object
that encodes the geometry of our features. The topojson.feature object computes
the GeoJSON Feature or FeatureCollection object, corresponding to the object
given as the second argument. Remember that the object attribute contains the
TopoJSON geometry objects, which have an array of references to the arcs defined
at the top level of the TopoJSON object. In this case, the geodata variable stores a
FeatureCollection object, which we can use to generate the shapes using the same
code as that used earlier:

d3.json(url, function(error, data) {

 // Create the SVG container...

 // Construct the Feature Collection
 var geodata = topojson.feature(data,data.objects.countries);

 // Render the features
});

The geodata object is a FeatureCollection object, and we can use the same
projection and path generator that we used in the last section to generate the
world map:

// Create a selection for the countries and bind the feature data
var features = svg.selectAll('path.feature')
 .data(geodata.features)
 .enter()
 .append('path')
 .attr('class', 'feature')
 .attr('d', pathGenerator);

Chapter 10

[241]

This allows us to replace the GeoJSON file that we used in the previous section with
the TopoJSON file, which is about one-eight the size of the countries.geojson file
and obtains the same result, as shown in the following figure:

The world map using TopoJSON

As TopoJSON files describe geometries by listing references to the arcs, we can verify
that two geometries are neighbors by checking whether they have arcs in common.
The topojson.neighbors method does exactly this, given an array of geometries; it
returns an array with the indices of the neighbors of each geometry object.

Creating Maps

[242]

To illustrate this point, we will create a map that highlights the countries that share
a boundary with Bolivia. We will begin by scaling and centering the map to display
South America. We begin by filtering the countries that belong to South America and
creating a FeatureCollection object for them:

// Construct the FeatureCollection object
var geodata = topojson.feature(data, data.objects.countries);

// Filter the countries in South America
var southAmerica = geodata.features.filter(function(d) {
 return (d.properties.continent === 'South America');
 });

// Create a feature collection for South America
var southAmericaFeature = {
 type: 'FeatureCollection',
 features: southAmerica
 };

We would like to adapt the scale and translation of the projection to just display
South America. D3 provides tools to compute the bounding box and centroid
of a feature:

// Compute the bounds, centroid, and extent of South America
// to configure the projection
var bounds = d3.geo.bounds(southAmericaFeature),
 center = d3.geo.centroid(southAmericaFeature);

The d3.geo.bounds method returns the bottom-left and top-right corners of the
feature's bounding box in geographic coordinates. The d3.geo.centroid method
returns an array with the longitude and latitude of the centroid of the feature.

To compute a scale factor that displays our feature object properly, we need to
know the angular distance between the two corners of our bounding box. We could
also use another characteristic distance of the feature, such as the distance from the
centroid to one of the bounding box corners:

// Compute the angular distance between bound corners
var distance = d3.geo.distance(bounds[0], bounds[1]);

Chapter 10

[243]

The d3.geo.distance method takes two locations and returns the angular distance
between the points (in radians). For the Mercator projection, we can compute the
scale as the ratio between the desired screen size and the angular span of our feature.
We can recompute the scale with the angular distance between the corners of the
bounding box:

// The width will cover the complete circumference
var scale = width / distance;

We can now center and scale our projection. This will show our feature centered in
the screen and at a better scale:

// Create and scale the projection
var projection = d3.geo.mercator()
 .scale(scale)
 .translate([width / 2, height / 2])
 .center(center);

Note that this way of computing the scale will only work with the Mercator
projection. The scales are not consistent among projections, as shown in the
following figure:

Centering and scaling a map around a feature

Creating Maps

[244]

Having centered and scaled the South American continent properly, we can proceed
to compute the neighbors of Bolivia. We begin by obtaining the neighbors of each
country in our dataset:

// Compute the neighbors of each geometry object.
var neighbors =
 topojson.neighbors(data.objects.countries.geometries);

This will return an array with as many elements as the input array. Each element will
be an array with the indices of the neighbor geometries of each object. The geometry
of Bolivia is described by the thirtieth element in the data.objects.countries.
geometries array. The contents of neighbors[30] is the [8, 31, 39, 169, 177]
array; each element is the index of the geometry element of each neighboring country.
To find Bolivia's neighbors, we need to know the index of Bolivia, so, we will search
for it in the geometries array:

// Find the index of Bolivia in the geometries array
var countryIndex = 0;
data.objects.countries.geometries.forEach(function(d, i) {
 if (d.properties.admin === 'Bolivia') {
 countryIndex = i;
 }
});

The neighbors[countryIndex] array will contain the indices of the neighbors of
Bolivia. To display the neighbor's features in the map, we need to compute a feature
that contains their geometries. We can create a GeometryCollection object in order
to use the topojson.feature method to construct the FeatureCollection object
with the neighbors:

// Construct a Geometry Collection with the neighbors
var geomCollection = {
 type: 'GeometryCollection',
 geometries: []
};

// Add the neighbor's geometry object to the geometry collection
neighbors[countryIndex].forEach(function(i) {
 var geom = data.objects.countries.geometries[i];
 geomCollection.geometries.push(geom);
});

Chapter 10

[245]

The geometry collection object we just created contains the geometries of the
countries that share boundaries with Bolivia. We will create a feature collection
object for these geometries in order to add them to the map:

// Construct a Feature object for the neighbors
var neighborFeature = topojson.feature(data, geomCollection);

We can now create the path for the feature containing the neighbors, and add a class
to the path to set its style with CSS:

// Add paths for the neighbor countries
var neighborPaths = svg.selectAll('path.neighbor')
 .data([neighborFeature])
 .enter()
 .append('path')
 .attr('class', 'neighbor')
 .attr('d', pathGenerator);

The countries that share a boundary with Bolivia are highlighted in the
following figure:

Creating Maps

[246]

The TopoJSON file gives us more information. Let's say that we need to show
the frontier between Bolivia and Brazil. We know that this frontier is identifiable,
because we could inspect the geometries for both countries and select the arcs that
are common to both geometries, but there is an easier way. The topojson.mesh
method returns a GeoJSON MultiLineString geometry that represents the mesh
for a given object and geometry. It has an optional argument to filter the arcs that
meet a condition. We will use this method to generate a MultiLineString object,
representing the boundary between Brazil and Bolivia:

// Compute the mesh of the boundary between Brazil and Bolivia
var frontier = topojson.mesh(data, data.objects.countries, function(a,
b) {
 return ((a.properties.admin === 'Brazil') && (b.properties.admin
=== 'Bolivia')) ||
 ((a.properties.admin === 'Bolivia') && (b.properties.admin
=== 'Brazil'));
});

Note that the optional filter receives two TopoJSON geometries, not GeoJSON
features. To obtain the frontier between Brazil and Bolivia, we need to select the arcs
that are shared by both the countries. We can now create a path for the frontier and
add it to our map:

// Add the frontier to the SVG element
var frontierPath = svg.selectAll('path.frontier')
 .data([frontier])
 .enter()
 .append('path')
 .attr('class', 'frontier')
 .attr('d', pathGenerator);

Chapter 10

[247]

The boundary between the two countries is highlighted in the following updated map:

Note that the topojson.mesh method can be used to identify frontiers of any kind.
In other datasets, this can be useful to show or hide internal frontiers or frontiers
with countries that meet certain conditions.

Creating Maps

[248]

In this section, we learned how to use GeoJSON to create SVG-based maps. We have
also learned how to use TopoJSON files to reconstruct GeoJSON objects and create
a map. We've also learned how to create maps that highlight topologic relations
between places, such as highlighting countries that are connected to each other
and show specific boundaries between features.

Using Mapbox and D3
SVG-based maps are great for data visualization projects, but sometimes, we will
need more advanced features in our maps, such as a feature that allows us to search
for an address or location, get information at the street level, or show satellite images.
The most convenient way to provide these features is to integrate our visualization
with map providers such as Google Maps, Yahoo! Maps, or Mapbox. In this section,
we will learn how to integrate D3 with Mapbox, an excellent map provider.

Mapbox is an online platform used to create custom-designed maps for web and
mobile applications. It provides street maps and terrain and satellite view tiles. The
street maps from Mapbox use data from OpenStreetMap, a community-powered
open data repository with frequent updates and accurate information.

A distinctive feature of Mapbox is that it allows customization of the map views.
Users can customize the visual aspects of every feature in their maps. The web
platform has tools to customize the maps, and the desktop tool, TileMill, makes this
customization even easier.

To follow the examples in this section, you will need a Mapbox account. The free
plan allows you to create maps, add markers and features, and get up to 3,000 views
per month. To create a Mapbox account, visit https://www.mapbox.com.

Mapbox counts the views to your map, and each plan has a limit on
the number of views per month. If you create a visualization using
Mapbox and it becomes popular (I hope so!), you might want to
upgrade your account. In any case, you will be notified if you are
about to spend your monthly quota.

The Mapbox JavaScript API is implemented as a Leaflet plugin and includes a
release of Leaflet, an open source library to create interactive map applications.
Leaflet provides an API that allows you to create layers, interactive elements
(such as zooming and panning), add custom markets, and many others. We will
use the Mapbox and Leaflet APIs to create maps and integrate the maps with D3.

https://www.mapbox.com

Chapter 10

[249]

Creating a Mapbox project
We will begin by pointing the browser to https://www.mapbox.com/projects/ and
create a new project. In Mapbox, a project is a map that we can customize according
to our needs. By clicking on Create a Project, we can access the map editor, where
we can customize the colors of land, buildings, and other features; select the base
layer (street, terrain, or satellite); and select the primary language for the features
and locations in the map. We can also add markers and polygons and export them to
KML or GeoJSON in order to use them in other projects. You can also set the map as
private or public, remove geocoding, or remove sharing buttons.

Once we save the map, it will be given a map ID. This ID is necessary to load the
map using the JavaScript API, view the tiles, or embed the map in a page. The ID is
composed of the username and a map handle. To use the JavaScript API, we need
to include the Mapbox.js library and styles. These files can also be downloaded and
installed locally with Bower (bower install --save-devmapbox.js):

<script src='https://api.tiles.mapbox.com/mapbox.js/
 v1.6.2/mapbox.js'></script>
<link href='https://api.tiles.mapbox.com/mapbox.js/
 v1.6.2/mapbox.css'rel='stylesheet' />

To include the map in our page, we need to create a container div and set its position
to absolute. We will also create a container for this div element in order to give the
map container a positioning context:

<div class="map-container">
 <div id="map"></div>
</div>

The top and left offsets of the map container will be governed by the parent element.
For this example, we will add the styles at the top of our page:

<style>
.map-container {
 position: relative;
 width: 600px;
 height: 400px;
}

#map {
 position: absolute;
 top: 0;
 bottom: 0;
 width: 100%;
}
</style>

https://www.mapbox.com/projects/

Creating Maps

[250]

The next step is to create an instance of the map. We can set the view's center and
zoom level by chaining the setView method:

<script>
var mapID = 'username.xxxxxxxx', // replace with your map ID
 center = [12.526, -69.997],
 zoomLevel = 11;

var map = L.mapbox.map('map', mapID)
 .setView(center, zoomLevel);
</script>

The map of Aruba created by Mapbox is shown in the following figure:

The map will be rendered in the container div. Note that the maps support all the
interactions that we expect; we can zoom in or out and drag the map to explore the
surrounding areas.

Chapter 10

[251]

Integrating Mapbox and D3
In this example, we will create a bubble plot map to show the population of the
main cities in Aruba. We have created a JSON file with the necessary information.
The JSON file has the following structure:

{
 "country": "Aruba",
 "description": "Population of the main cities in Aruba",
 "cities": [
 {
 "name": "Oranjestad",
 "population": 28294,
 "coordinates": [12.519, -70.037]
 },
 ...
]
}

To create the bubbles, we will create a layer. Layers are objects attached to a
particular location, such as markers or tiles. Most Leaflet objects are created by
extending the L.Class object, which implements simple classical inheritance and
several utility methods. We will create a D3 layer class by extending the L.Class
object. Layers must at least have an initialize and the onAdd methods. We will also
include the onRemove method to remove the bubbles if the layer is removed. A basic
layer will have the following structure:

var D3Layer = L.Class.extend({

 initialize: function(arguments...) {
 // Initialization code
 },

 onAdd: function(map) {
 // Create and update the bubbles
 },

 onRemove: function(map) {
 // Clean the map
 }
});

Creating Maps

[252]

The initialize method will be invoked when the layer instance is created. The
onAdd method is invoked when the layer is added to the map. It receives the map
object as an argument, which gives us access to the panes, zoom level, and other
properties of the map. The onRemove method is invoked when the layer is removed
from the map, and it also receives the map as an argument.

Whenever the user interacts with the map by dragging or zooming, the map triggers
the viewreset event. This method notifies that the layers need to be repositioned.
The latLngToLayerPoint method can be used to set the new position of the objects,
given their geographic coordinates.

In our case, the initialize method will receive a single data argument, which will
contain the array with the cities of Aruba. We will store the data array as an attribute
of the layer:

 initialize: function(data) {
 this._data = data;
 },

The data array will be accessible from each method of the layer. In the onAdd
method, we will select a pane from the map and append the bubbles to it. The
container div for our bubbles will be the overlay pane of the map, which is a pane
designed to contain custom objects. The overlay pane gets repositioned automatically
each time the user pans the map.

One strategy is to create a single svg container to hold our bubbles and to resize it
each time the user zooms in or out. Another strategy we will use is to create one
svg element for each bubble and position it absolutely using the projection of the
coordinates of each feature. We will create a selection for the svg elements and bind
the data to the selection:

 onAdd: function(map) {

 // Create SVG elements under the overlay pane
 var div = d3.select(map.getPanes().overlayPane),
 svg = div.selectAll('svg.point').data(this._data);

 // Create the bubbles...
 },

To position the SVG elements, we need to project the latitude and longitude of each
point and use these coordinates to set the offsets of our svg containers. We will add
the L.LatLng objects with the coordinates of each city to each data item:

 // Stores the latitude and longitude of each city
 this._data.forEach(function(d) {

Chapter 10

[253]

 d.LatLng = new L.LatLng(d.coordinates[0],
d.coordinates[1]);
 });

We will use this attribute in just a few moments. The svg elements will be created to
contain just one bubble, so they don't overlap other areas of the map. Before setting
the size of the svg elements, we need to compute the radius scale. The area of the
bubbles should be proportional to the population of the city:

 // Create a scale for the population
 var rScale = d3.scale.sqrt()
 .domain([0, d3.max(this._data, function(d) {
 return d.population;
 })])
 .range([0, 35]);

We can now create the svg elements and set their size and position. Note that the svg
element's width and height are twice as big as the radius of the bubble:

 svg.enter().append('svg')
 .attr('width', function(d) {
 return 2 * rScale(d.population);
 })
 .attr('height', function(d) {
 return 2 * rScale(d.population);
 })
 .attr('class', 'point leaflet-zoom-hide')
 .style('position', 'absolute');

We have added the leaflet-zoom-hide class to each svg element so that they are
hidden when the map is being zoomed in or out by the user. We also set the position
of the svg container to absolute. We can finally add the bubbles as usual, appending
a circle to each svg container:

 svg.append('circle')
 .attr('cx', function(d) { return rScale(d.population); })
 .attr('cy', function(d) { return rScale(d.population); })
 .attr('r', function(d) { return rScale(d.population); })
 .attr('class', 'city')
 .on('mouseover', function(d) {
 d3.select(this).classed('highlight', true);
 })
 .on('mouseout', function(d) {
 d3.select(this).classed('highlight', false);
 });

Creating Maps

[254]

We added event listeners for the mouseover and mouseout events. In these events, we
add the highlight class to the circles, which will increase the opacity of the circles.

When the user drags the map, the overlay pane will be moved as well and the
bubbles will be well positioned. When the user zooms in/out of the map, the
viewreset event will be triggered, and we must reposition the svg containers.
We will create an updateBubbles function to update the position of the bubbles
on zoom, and invoke this function on viewreset:

 // Update the position of the bubbles on zoom
 map.on('viewreset', updateBubbles);

When the callback of the viewreset event is invoked, the map.latLngToLayerPoint
projection method is updated with the new zoom level and position. So, we can use
it to set the offsets of the svg elements:

 function updateBubbles() {
 svg
 .style('left', function(d) {
 var dx = map.latLngToLayerPoint(d.LatLng).x;
 return (dx - rScale(d.population)) + 'px';
 })
 .style('top', function(d) {
 var dy = map.latLngToLayerPoint(d.LatLng).y;
 return (dy - rScale(d.population)) + 'px';
 });
 }

Finally, we invoke the updateBubbles method to render the bubbles:

 // Render the bubbles on add
 updateBubbles();

The onRemove method is simpler; we just select the overlay pane and remove all the
svg elements from it:

 onRemove: function(map) {
 var div = d3.select(map.getPanes().overlayPane);
 div.selectAll('svg.point').remove();
 }

Chapter 10

[255]

Having created our layer, we can retrieve the JSON file and append it to the map:

// Retrieve the dataset of cities of Aruba
d3.json('/chapter10/data/aruba-cities.json', function(error, data) {

 // Handle errors getting or parsing the data
 if (error) { return error; }

 // Create a layer with the cities data
 map.addLayer(new D3Layer(data.cities));
});

Our following map shows the bubbles that represent the population of the cities
of Aruba:

A bubble plot map with D3 and Mapbox

Creating Maps

[256]

Summary
In this chapter, we learned how to obtain and transform geographic datasets using
open source tools. We learned how to use and interpret two popular formats for
mapping information for the Web, GeoJSON, and TopoJSON.

We also learned how to create simple charts based on SVG, rendering the geographic
features as svg paths. We created a choropleth map using the Mercator projection
and used TopoJSON to obtain information about topology, allowing us to identify
neighbors and frontiers between countries.

Finally, we learned how to use Mapbox and D3 to create data visualizations for
applications that require street-level detail.

In the next chapter, we will learn how to use other projections to create 3D-like views
of our maps and how to project raster images in our maps.

Creating Advanced Maps
In the last chapter, we learned how to use the GeoJSON and TopoJSON formats
to create map-based charts using SVG. In this chapter, we will explore different
cartographic projections and learn how to use the Orthographic and Stereographic
projections to create 3D-like renderings of our maps.

We will add interaction to our maps by adding drag and zoom behavior, allowing
the user to rotate and zoom the map views. We will use the Orthographic projection
to create a rotating view of the Earth, and we will create a star map using the
Orthographic projection.

We will also learn how to project raster images of the Earth using canvas and D3
projections in order to have realistic renderings of it.

Using cartographic projections
As we mentioned in the previous chapter, cartographic projections are functions
that map positions on the Earth to points on a flat surface. The d3.geo module of D3
implements about a dozen of the most used cartographic projections, and there are
even more cartographic projections available in the extended geographic projections
plugin at https://github.com/d3/d3-geo-projection/.

There are a great number of projections because none of them are appropriate for
every application. The Mercator projection, for instance, was created as a navigation
tool. Straight lines on the Mercator projection are rhumb lines, which are lines of
constant compass bearing. This projection is very useful for navigation, but the areas
near the poles are extremely distorted. The poles, which are points on the surface of
the Earth, are represented as lines that are as long as the equator. The Orthographic
projection, on the other hand, is closer to what we would see from space, creating
a more accurate mental image of how the Earth really is, but it's probably not very
useful to navigate by sea.

https://github.com/d3/d3-geo-projection/

Creating Advanced Maps

[258]

In this section, we will learn how to use more projections and discuss some of their
properties. The examples in this section are in the chapter11/01-projections file
in the code bundle. For the examples in this section, we will use a TopoJSON file
that contains land features, which are generated from the medium-scale shapefiles
from Natural Earth. The Makefile in the chapter11/data folder will download and
transform the necessary files for us.

Using the Equirectangular projection
The Equirectangular projection linearly maps longitude to a horizontal position and
latitude to a vertical position using the same scale. As there are 180 degrees from
pole to pole, and the circumference of the earth covers 360 degrees, the width of a
world map created with this projection will be twice its height. It's mathematical
simplicity is about its only useful property.

To create a world map, we begin by loading the TopoJSON file and using the
topojson.feature method to compute the GeoJSON object, representing the
shapes described in the ne_50m_land object:

d3.json('/chapter11/data/land.json', function(error, data) {

 // Notifies about errors getting or parsing the data
 if (error) { console.error(error); }

 // Construct the GeoJSON features
 var geojson = topojson.feature(data,
 data.objects.ne_50m_land);

 // Create the projection and draw the features...
});

As usual, we set the width and height of the svg container of the map. We select the
container div for the map and append the svg element, setting its width and height:

 // Set the width and height of the svg element
 var width = 600,
 height = 300;

 // Append the svg container and set its size
 var div = d3.select('#map-equirectangular'),
 svg = div.append('svg')
 .attr('width', width)
 .attr('height', height);

Chapter 11

[259]

We create an instance of the d3.geo.equirectangular projection and configure its
scale and translation by chaining the corresponding methods. Note that scales are
not consistent among projections. In this case, in order to show the world map, we
can set the scale either to height / Math.PI or width / (2 * Math.PI). In both
cases, the result will be the same:

 // Create an instance of the Equirectangular projection
 var equirectangular = d3.geo.equirectangular()
 .scale(width / (2 * Math.PI))
 .translate([width / 2, height / 2]);

Once we have the projection created, we can create an instance of the geographic
path generator and set its projection attribute:

 // Create and configure the geographic path generator
 var path = d3.geo.path()
 .projection(equirectangular);

The path generator receives a GeoJSON feature or feature collection and uses the
projection to compute the corresponding svg path string. Finally, we append a path
element to the svg container, bind the feature collection to the selection, and set the
path data string to be computed with the path generator:

 // Append the path of the features to the svg container
 svg.append('path').datum(geojson)
 .attr('class', 'land')
 .attr('d', path);

We will also add parallels and meridians to the figure. D3 has a generator that
creates these lines. The d3.geo.graticule() method returns a configurable
function that creates a feature collection that contains the graticule lines:

 // Create the graticule lines
 var graticule = d3.geo.graticule();

 // Add the graticule to the figure
 svg.append('path').datum(graticule())
 .attr('class', 'graticule')
 .attr('d', path);

Creating Advanced Maps

[260]

A world map created with the Equirectangular projection is shown in the
following screenshot:

The Conic Equidistant projection
The Conic Equidistant projection maps the sphere into a cone whose axis coincides
with the axis of the Earth. The cone can be tangent to the sphere in one parallel or
secant in two parallels, which are called standard parallels. In this projection, the
poles are represented with arcs, and the local shapes are true among the standard
parallels. In the Conic Equidistant projection, the distances among meridians are
proportionally correct. They are better suited to represent regions that have a small
range of latitude, such as regional maps or small countries.

The process to generate a world map with this projection is the same as the previous
process, except that this time, we need to create and configure an instance of the
d3.geo.conicEquidistant projection. For this projection, computing the exact
scale will be more difficult, but it's easy to adjust it until it has the correct size:

 // Create and configure an instance of the projection
 var conic = d3.geo.conicEquidistant()
 .scale(0.75 * width / (2 * Math.PI))
 .translate([width / 2, height / 2]);

Chapter 11

[261]

The world map created with the Conic Equidistant projection is shown in the
following screenshot:

As we mentioned earlier, this projection is not appropriate to display the world map,
but it can represent small areas accurately. We can rotate the projection to center it
around New Zealand and set a bigger scale. We set the standard parallels to 5 degrees
north and 15 degrees south. This will minimize the distortion among these parallels:

 // Create and configure an instance of the projection
 var conic = d3.geo.conicEquidistant()
 .scale(0.85 * width / (Math.PI / 3))
 .rotate([-141, 0])
 .translate([width / 2, height / 2])
 .parallels([5, -15]);

The map of New Zealand using the Conic Equidistant projection is shown in the
following screenshot:

Creating Advanced Maps

[262]

The Orthographic projection
The Orthographic projection is a perspective projection that shows the Earth as
seen from space. This gives us the illusion of a three-dimensional view. Only one
hemisphere can be seen at a time without overlapping. This has minimal distortion
near the center and huge distortion towards the horizon.

To use this projection, we need to set the scale and translation of the projection and
use it to configure the path generator:

 // Create an instance of the Orthographic projection
 var orthographic = d3.geo.orthographic()
 .scale(height / 2)
 .translate([width / 2, height / 2]);

An orthographic view of the Earth is shown in the following screenshot:

To avoid overlapping, we would need to display only the features that are on
the same side as the observer. To do this, we need to clip the projection to hide the
features that are at the other side of the Earth. The clipAngle method allows us to
clip the features beyond the clipping angle. Setting this angle to 90 will modify the
geometry of the features whose angular distance is greater than 90 from the center
of the projection; so, they are not shown in the image:

 // Create an instance of the Orthographic projection
 var orthographic = d3.geo.orthographic()
 .scale(height / 2)
 .translate([width / 2, height / 2])
 .clipAngle(90);

Chapter 11

[263]

The following screenshot shows us Earth from the side of the observer:

An Orthographic view of Earth with clipping

The projections shown in this section are only a small sample of the projections
available in the geographic module of D3. As we can see, the pattern of use of
different projections is always the same, but the parameters of each projection
should be adjusted to get the desired result. In the next section, we will learn
how to use the drag behavior to rotate the globe.

Creating a rotating globe
The Orthographic projection displays the Earth like a 3D object, but it only shows
us one side at a time, and only the center is shown accurately. In this section, we will
use this projection and the zoom behavior to allow the user to explore the features by
rotating and zooming in on the globe.

The code of this example is available in the chapter11/02-rotating file of the code
bundle. We will begin by drawing a globe using the Orthographic projection. As we
did in the previous section, we load the TopoJSON data and construct the GeoJSON
feature collection that represents the ne_50m_land object:

d3.json('/chapter11/data/land.json', function(error, data) {

 // Handle errors getting or parsing the data

Creating Advanced Maps

[264]

 if (error) { console.error(error); }

 // Construct the GeoJSON feature collection using TopoJSON
 var geojson = topojson.feature(data,
 data.objects.ne_50m_land);

 // Create the svg container...
});

We set the width and height of the svg element and use these dimensions to
create and configure an instance of the Orthographic projection. We also select
the container div and append the svg container to the map:

 // Width and height of the svg element
 var width = 600,
 height = 300;

 // Create an instance of the Orthographic projection
 var orthographic = d3.geo.orthographic()
 .scale(height / 2)
 .translate([width / 2, height / 2])
 .clipAngle(90);

 // Append the svg container and set its size
 var div = d3.select('#map-orthographic'),
 svg = div.append('svg')
 .attr('width', width)
 .attr('height', height);

We create an instance of the geographic path generator and set its projection to be
the Orthographic projection instance:

 // Create and configure the geographic path generator
 var path = d3.geo.path()
 .projection(orthographic);

We will add features to represent the globe, the land, and lines for the parallels
and meridians. We will add a feature to represent the globe in order to have a
background for the features. The path generator supports an object of the Sphere
type. An object of this type doesn't have coordinates, since it represents the complete
globe. We will also append the GeoJSON object that contains the land features:

 // Globe
 var globe = svg.append('path').datum({type: 'Sphere'})
 .attr('class', 'globe')

Chapter 11

[265]

 .attr('d', path);

 // Features
 var land = svg.append('path').datum(geojson)
 .attr('class', 'land')
 .attr('d', path);

We will also add the graticule, which is a set of parallels and meridian lines, in order
to give us a more accurate reference for the orientation and rotation of the sphere:

 // Create the graticule generator
 var graticule = d3.geo.graticule();

 // Append the parallel and meridian lines
 var lines = svg.append('path').datum(graticule())
 .attr('class', 'graticule')
 .attr('d', path);

The preceding code will show us the Earth with the same aspect as the previous
section. The strategy to add rotation and zoom to the globe will be to add an invisible
overlay over the globe and add listeners for the pan and zoom gestures using the
zoom behavior. The callback for the zoom event will update the projection rotation
and scale and update the paths of the features using the path generator configured
earlier. To keep the state of the zoom behavior and the projection in sync, we will
store the current rotation angles and the scale of the projection in the state variable:

 // Store the rotation and scale of the projection
 var state = {x: 0, y: -45, scale: height / 2};

We will update the configuration of the projection to use the attributes of this
variable, just for consistency:

 // Create and configure the Orthographic projection
 var orthographic = d3.geo.orthographic()
 .scale(state.scale)
 .translate([width / 2, height / 2])
 .clipAngle(90)
 .rotate([state.x, state.y]);

The zoom and pan should be triggered only when the user performs these gestures
over the globe, not outside. We will create an overlay circle of the same size as the
globe and set its fill-opacity attribute to zero. We will bind the state variable to
the overlay in order to modify it in the zoom callback:

 // Append the overlay and set its attributes
 var overlay = svg.append('circle').datum(state)

Creating Advanced Maps

[266]

 .attr('r', height / 2)
 .attr('transform', function() {
 return 'translate(' + [width / 2, height / 2] + ')';
 })
 .attr('fill-opacity', 0);

We need to create an instance of the zoom behavior and bind it to the overlay. This
will add event listeners for the pan and zoom gestures to the overlay. We will limit
the scale extent to between 0.5 and 8:

 // Create and configure the zoom behavior
 var zoomBehavior = d3.behavior.zoom()
 .scaleExtent([0.5, 8])
 .on('zoom', zoom);

 // Add event listeners for the zoom gestures to the overlay
 overlay.call(zoomBehavior);

When the user zooms or pans the overlay, a zoom event is triggered. The current event
is stored in the d3.event variable. Each event type has its own attributes. In the case
of the zoom event, the zoom translation vector and the scale are accessible through the
d3.event.translate and d3.event.scale attributes. We need to transform the scale
and the translation vector to the appropriate projection scale and rotation:

function zoom(d) {

 // Compute the projection scale and the constant
 var scale = d3.event.scale,
 dx = d3.event.translate[0],
 dy = d3.event.translate[1];

 // Maps the translation vector to rotation angles...
}

The zoom event will be triggered several times when the user performs the drag
gesture. The translate array accumulates the horizontal and vertical translations
from the point where the drag gesture originated. If the user drags the globe from
the left-hand side to the right-hand side, the globe should be rotated 180 degrees,
counterclockwise. We will map the horizontal position of the translation vector to
an angle between 0 and 180 degrees:

 // Maps the translation vector to rotation angles
 d.x = 180 / width * dx; // Horizontal rotation
 d.y = -180 / height * dy; // Vertical rotation

Chapter 11

[267]

If the user drags the North Pole towards the bottom of the image, we will want the
globe to rotate forward. As the latitude is measured from the equator to the poles, we
need to rotate the projection by a negative angle in order to have a rotation forward
from the point of view of the observer. With the rotation angle computed, we can
update the projection's rotate and scale attributes. The zoom scale is a relative
zoom factor, and we need to multiply it by the original size of the map to obtain the
updated scale of the projection:

 // Update the projection with the new rotation and scale
 orthographic
 .rotate([d.x, d.y])
 .scale(scale * d.scale);

To update the image, we need to reproject the features and compute the svg paths.
The path has a reference to the projection instance, so we need to just update all the
paths in the svg with the updated projection:

 // Recompute the paths and the overlay radius
 svg.selectAll('path').attr('d', path);
 overlay.attr('r', scale * height / 2);

We also updated the overlay radius so that the dragging area coincides with
the globe, even if the user changes the zoom level. The globe can be rotated
and zoomed as shown in the following screenshot:

Creating Advanced Maps

[268]

The globe can be rotated and zoomed with mouse or touch gestures, allowing the user
to explore every part of the globe in detail. The strategy to add rotation and zoom
behaviors can be used with any projection, adapting the mapping between the zoom
translation and scale to rotations and scale of the projection. Depending on the level
of detail of the features, there can be some performance issues during the rotation.
The projection and path generation are being done on each rotation step. This can be
avoided by rendering simpler features during the rotation, or even showing just the
graticule when rotating and rendering the features when the user releases the mouse.

The rotation of the globe is not perfect, but it's a good approximation of what we
would expect. For a better (but more complex) strategy, see the excellent article
from Jason Davies at https://www.jasondavies.com/maps/rotate/.

In the next section, we will use the Stereographic projection and the zoom behavior
to create an interactive star map.

Creating an interactive star map
In this section, we will use the Stereographic projection and a star catalog to create
an interactive celestial map. The Stereographic projection displays the sphere as seen
from inside. A star map created with the Stereographic projection is shown in the
following screenshot:

https://www.jasondavies.com/maps/rotate/

Chapter 11

[269]

Celestial coordinate systems describe positions of celestial objects as seen from Earth.
As the Earth rotates on its axis and around the Sun, the position of the stars relative
to points on the surface of the Earth changes. Besides rotation and translation, a
third movement called precession slowly rotates the Earth's axis by one degree every
72 years. The Equatorial coordinate system describes the position of stars by two
coordinates, the declination and the angle from the projection of the Earth's equator
to the poles. This angle is equivalent to the Earth's longitude. The right ascension
is the angle measured from the intersection of the celestial equator to the ecliptic,
measured eastward. The ecliptic is the projection of the Earth's orbit in the celestial
sphere. The right ascension is measured in hours instead of degrees, but it is the
equivalent of longitude.

Choosing our star catalog
To create our star map, we will use the HYG database, which is a celestial catalog
that combines information from the Hipparcos Catalog, the Yale Bright Star Catalog,
and the Gliese Catalog of Nearby Stars. This contains about 120,000 stars, most of
which are not visible to the naked eye. The most recent version of the HYG database
is available at https://github.com/astronexus/HYG-Database.

As we did in the previous sections, we will add targets to Makefile in order to
download and parse the data files that we need. In order to filter and process the
stars of the catalog, we wrote a small Python script that filters out the less bright
stars and writes a GeoJSON file that translates the declination and right ascension
coordinates to equivalent latitudes and longitudes. Note that due to the rotation
of the Earth, the equivalent longitude is not related to the Earth's longitude, but it
would be useful to create our visualization. We can compute a coordinate equivalent
to the right ascension using the longitude = 360 * RA / 24 - 180 expression.
The generated GeoJSON file will have the following structure:

{
 "type": "FeatureCollection",
 "features": [
 {
 "geometry": {
 "type": "Point",
 "coordinates": [-179.6006208, -77.06529438]
 },
 "type": "Feature",
 "properties": {

https://github.com/astronexus/HYG-Database

Creating Advanced Maps

[270]

 "color": 1.254,
 "name": "",
 "mag": 4.78
 }
 },
 ...
]
}

In this case, every feature in the GeoJSON file is a point. We will begin by creating a
chart using the Equirectangular projection to have a complete view of the sky while
we are implementing the map and change the projection to stereographic later. We
begin by loading the GeoJSON data and creating the svg container for the map:

d3.json('/chapter11/data/hyg.json', function(error, data) {

 // Handle errors getting and parsing the data
 if (error) { console.log(error); }

 // Container width and height
 var width = 600, height = 300;

 // Select the container div and creates the svg container
 var div = d3.select('#equirectangular'),
 svg = div.append('svg')
 .attr('width', width)
 .attr('height', height);

 // Creates an instance of the Equirectangular projection...
});

We create and configure an instance of the Equirectangular projection, setting the
scale to display the entire sky in the svg container:

 // Creates an instance of the Equirectangular projection
 var projection = d3.geo.equirectangular()
 .scale(width / (2 * Math.PI))
 .translate([width / 2, height / 2]);

Chapter 11

[271]

Drawing the stars
We will represent the stars with small circles, with bigger circles for brighter stars. For
this, we need to create a scale for the radius, which will map the apparent magnitude
of each star to a radius. Lower magnitude values correspond to brighter stars:

 // Magnitude extent
 var magExtent = d3.extent(data.features, function(d) {
 return d.properties.mag;
 });

 // Compute the radius for the point features
 var rScale = d3.scale.linear()
 .domain(magExtent)
 .range([3, 1]);

By default, the path generator will create circles of constant radius for features of the
Point type. We can configure the radius by setting the path's pathRadius attribute.
As we might use the same path generator to draw point features other than stars, we
will return a default value if the feature doesn't have the properties attribute:

 // Create and configure the geographic path generator
 var path = d3.geo.path()
 .projection(projection)
 .pointRadius(function(d) {
 return d.properties ? rScale(d.properties.mag) : 1;
 });

With our path generator configured, we can append the graticule lines and the
features for the stars to the svg container:

 // Add graticule lines
 var graticule = d3.geo.graticule();

 svg.selectAll('path.graticule-black').data([graticule()])
 .enter().append('path')
 .attr('class', 'graticule-black')
 .attr('d', path);

 // Draw the stars in the chart
 svg.selectAll('path.star-black').data(data.features)
 .enter().append('path')
 .attr('class', 'star-black')
 .attr('d', path);

Creating Advanced Maps

[272]

We obtain the following celestial map, which shows us the graticule and the stars as
small black circles:

Celestial map created with the Equirectangular projection

Changing the projection and adding rotation
We will replace the Equirectangular projection with the Stereographic projection and
add styles to the elements of the map to make it more attractive. We will use the drag
behavior to allow the user to rotate the chart. As we did with the rotating globe, we
will create a variable to store the current rotation of the projection:

 // Store the current rotation of the projection
 var rotate = {x: 0, y: 45};

We can create and configure an instance of the Stereographic projection. We will
choose a suitable scale, translate the projection center to the center of the svg container,
and clip the projection to show only a small part of the sphere at a time. We use the
rotation variable to set the initial rotation of the projection:

 // Create an instance of the Stereographic projection
 var projection = d3.geo.stereographic()
 .scale(1.5 * height / Math.PI)
 .translate([width / 2, height / 2])
 .clipAngle(120)
 .rotate([rotate.x, -rotate.y]);

Chapter 11

[273]

We won't duplicate the code to create the svg container, graticule, and features
because it's very similar to the rotating globe from earlier. The complete code for this
example is available in the chapter11/03-celestial-sphere file. In this example,
we also have an invisible overlay. We create and configure a drag behavior instance
and add event listeners for the drag gesture to the invisible overlay:

 // Create and configure the drag behavior
 var dragBehavior = d3.behavior.drag()
 .on('drag', drag);

 // Add event listeners for drag gestures to the overlay
 overlay.call(dragBehavior);

The drag function will be invoked when the user drags the map. For drag events,
the d3.event object stores the gesture's x and y coordinates. We will transform
the coordinates to horizontal and vertical rotations of the projection with the same
method as the one used in the previous section:

 // Callback for drag gestures
 function drag(d) {
 // Compute the projection rotation angles
 d.x = 180 * d3.event.x / width;
 d.y = -180 * d3.event.y / height;

 // Updates the projection rotation...
 }

We update the projection rotation and the paths of the stars and graticule lines.
As we have clipping in this example, the path will be undefined for stars outside
the clipping angle. In this case, we return a dummy svg command that just moves
the drawing cursor to avoid getting errors:

 // Updates the projection rotation
 projection.rotate([d.x, d.y]);

 // Update the paths for the stars and graticule lines
 stars.attr('d', function(u) {
 return path(u) ? path(u) : 'M 10 10';
 });
 lines.attr('d', path);

Creating Advanced Maps

[274]

In the style sheet file, chapter11/maps.css, we have included styles for this map
to display a dark blue background, light graticule lines, and white stars. The result
is a rotating star map that displays a coarse approximation of how the stars look
from Earth.

Rotating star map created with the Stereographic projection

Adding colors and labels to the stars
We will create a fullscreen version of the star map. The source code for this version
of the map is available in the chapter11/04-fullscreen file in the code bundle.
For this example, we need to set the body element and the container div to cover
the complete viewport. We set the width and height of the body, HTML, and the
container div to 100 percent and set the padding and margins to zero. To create the
svg element with the correct size, we need to retrieve the width and height in pixels,
which are computed by the browser when it renders the page:

 // Computes the width and height of the container div
 var width = parseInt(div.style('width'), 10),
 height = parseInt(div.style('height'), 10);

Chapter 11

[275]

We create the projection and the path generator as done earlier. In this version, we
will add colors to the stars. Each star feature contains the attribute color, which
indicates the color index of the star. The color index is a number that characterizes
the color of the star. We can't compute a precise scale for the color index, but we will
use a color scale that approximates the colors:

 // Approximation of the colors of the stars
 var cScale = d3.scale.linear()
 .domain([-0.3, 0, 0.6, 0.8, 1.42])
 .range(['#6495ed', '#fff', '#fcff6c', '#ffb439',
 '#ff4039']);

We will set the color to the features using the fill attribute of the paths that
correspond to the stars:

 // Add the star features to the svg container
 var stars = svg.selectAll('path.star-color')
 .data(data.features)
 .enter().append('path')
 .attr('class', 'star-color')
 .attr('d', path)
 .attr('fill', function(d) {
 return cScale(d.properties.color);
 });

We will also add labels for each star. Here, we use the projection directly to compute
the position where the labels should be, and we also compute a small offset:

// Add labels for the stars
var name = svg.selectAll('text').data(data.features)
 .enter().append('text')
 .attr('class', 'star-label')
 .attr('x', function(d) {
 return projection(d.geometry.coordinates)[0] + 8;
 })
 .attr('y', function(d) {
 return projection(d.geometry.coordinates)[1] + 8;
 })
 .text(function(d) { return d.properties.name; })
 .attr('fill', 'white');

Creating Advanced Maps

[276]

The star map visualization in fullscreen is shown in the following screenshot:

We create the overlay and the drag behavior and configure the callback of the zoom
event as earlier, updating the position of the labels in the zoom function. Now we
have a fullscreen rotating star map.

Projecting raster images with D3
Until now, we have used svg to create maps. In this section, we will learn how to use
D3 to project raster images in canvas elements. This will allow us to use JPG or PNG
images to generate orthographic views of these images. A raster image reprojected
using the Orthographic projection is shown in the following screenshot:

Chapter 11

[277]

Rendering an image of Earth using the Orthographic projection (or any other
projection) involves manipulating two projections. First, for each pixel in the original
image, we compute its corresponding geographic coordinates using the image
inverse projection. Then, we use the geographic coordinates of each pixel to render
them using the Orthographic projection. Before beginning the implementation of
these steps, we will discuss the inverse method of a projection.

Projections are functions that map geographic coordinates to points on the screen.
The inverse projections do the reverse operation; they take coordinates on the
two-dimensional surface and return geographic coordinates. In the chapter11/05-
raster file, there is an interactive example that computes the geographic coordinates
of the point under the mouse. Note that not all projections in D3 have an inverse
operation. Computing the geographic coordinates of a point under the mouse is
shown in the following screenshot:

Creating Advanced Maps

[278]

To obtain the geographic coordinates that correspond to a point under the cursor,
we can add a callback to the mouseover event over an element:

 // Callback of the mouseover event
 rect.on('mousemove', function() {
 // Compute the mouse position and the corresponding
 // geographic coordinates.
 var pos = d3.mouse(this),
 coords = equirectangular.invert(pos);
 })

The Next Generation Blue Marble images are satellite images of Earth captured,
processed, and shared by NASA. There are monthly images that show Earth with
a resolution of 1 pixel every 500 meters. These images are available in several
resolutions at the NASA Earth Observatory site at http://earthobservatory.
nasa.gov/Features/BlueMarble/. We will use a low-resolution version of the
Blue Marble image in this section.

Rendering the raster image with canvas
This time, we won't use svg to create our visualization, because we need to render
individual pixels in the screen. Canvas is more suitable for this task. We will begin by
creating a canvas element, loading the Blue Marble image, and drawing the image in
the canvas element. We select a container div and append a canvas element, setting its
width and height as follows:

// Canvas element width and height
var width = 600,
 height = 300;

// Append the canvas element to the container div
var div = d3.select('#canvas-image'),
 canvas = div.append('canvas')
 .attr('width', width)
 .attr('height', height);

The canvas element is just a container. To draw shapes, we need to get the 2D
context. Remember that only the 2d context exists:

 // Get the 2D context of the canvas instance
 var context = canvas.node().getContext('2d');

http://earthobservatory.nasa.gov/Features/BlueMarble/
http://earthobservatory.nasa.gov/Features/BlueMarble/

Chapter 11

[279]

Then, we create an instance of Image. We set the image source and set a callback that
can be be invoked when the image is fully loaded:

 // Create the image element
 var image = new Image;
 image.onload = onLoad;
 image.src = '/chapter11/data/world.jpg';

In the onLoad function, we use the canvas context to draw the image. The arguments
of the drawImage method are the image, the offset, and size of the source image
and the offset and size of the target image. In this case, the original image size
is 5400 x 2700 pixels; the target image size is just 600 x 300 pixels:

 // Copy the image to the canvas context
 functiononLoad() {
 context.drawImage(image, 0, 0, image.width, image.height,
 0, 0, width, height);
 }

The Blue Marble image rendered in a canvas element is shown in the
following screenshot:

As the Blue Marble image was created using the Equirectangular projection, we
can create an instance of this projection and use the invert method to compute the
longitude and latitude that corresponds to each pixel:

 // Create and configure the Equirectancular projection
 var equirectangular = d3.geo.equirectangular()
 .scale(width / (2 * Math.PI))
 .translate([width / 2, height / 2]);

Creating Advanced Maps

[280]

Computing the geographic coordinates of
each pixel
We can add an event listener for the mousemove event on the canvas element.
The d3.mouse method returns the position of the mouse relative to its argument,
in this case, the canvas element:

 // Add an event listener for the mousemove event
 canvas.on('mousemove', function(d) {

 // Retrieve the mouse position relative to the canvas
 var pos = d3.mouse(this);

 // Compute the coordinates of the current position
 });

We can use the invert method of the projection to compute the geographic
coordinates of the point under the cursor. To display the geographic coordinates
that correspond to the position of the cursor, we clear a small rectangle of the canvas
content and add fillText to add the label in the upper-left corner of the image:

 // Compute the coordinates of the current position
 var coords = equirectangular.invert(pos);

 // Create a label string, showing the coordinates
 var label = [fmt(coords[0]), fmt(coords[1])].join(', ');

 // Cleans a small rectangle and append the label
 context.clearRect(2, 2, 90, 14);
 context.fillText(label, 4, 12);

Using the invert method to compute geographic coordinates is shown in the
following screenshot:

Chapter 11

[281]

Reprojecting the image using the
Orthographic projection
Until now, we have learned how to copy an image element in canvas and how to
use the invert method of a projection to compute the geographic coordinates that
correspond to a pixel in the canvas element. We will use this to reproject the raster
image using the Orthographic projection instead of the original Equirectangular
projection. The strategy to project the image into a different projection is as follows:

• Insert the source image in the canvas element, setting its width and height.
• Create an instance of the source projection (the projection used to generate

the image) and configure it in a way that if it were used to project the world,
it would fit exactly with the source image.

• Create an empty target image. The size of this image should fit the
target projection.

• Create and configure an instance of the target projection. In this case, we will
use an instance of the Orthographic projection.

• For each pixel in the target image, use the invert method of the target
projection to compute the geographic coordinates that correspond to that
pixel. Using the source projection, compute the pixel coordinates of that
location, and copy the pixel data to the pixel in the target image.

Creating Advanced Maps

[282]

The procedure sounds a little convoluted, but it's basically about copying the pixels
from the source image to the target image using the geographic coordinates in order
to know where each pixel can be copied to.

We begin by drawing the source image in the canvas element once the image is fully
loaded. Images in canvas are represented as arrays. We read the data array of the
source data and created an empty target image and got its data:

// Copy the image to the canvas context
function onLoad() {

 // Copy the image to the canvas area
 context.drawImage(image, 0, 0, image.width, image.height);

 // Reads the source image data from the canvas context
 var sourceData = context.getImageData(0, 0, image.width,
 image.height).data;

 // Creates an empty target image and gets its data
 var target = context.createImageData(image.width,
 image.height),
 targetData = target.data;

 // ...
}

Note that the target image is not shown yet, but we will use it later. In canvas,
images are not stored as matrices; they are stored as arrays. Each pixel has four
elements in the array, which are its red, green, blue, and alpha components. The
rows of the image are stored sequentially in the image array. With this structure, for
an image of 200 x 100 pixels, the index of the red component of the pixel 23 x 12 will
be 4 * (200 * 11 + 23) = 844.

To make things easier, we will iterate the image data as if it were a matrix, computing
the index of each pixel with the aforementioned expression. We iterate in columns
and rows of the target image and compute the corresponding coordinates of the
current pixel using the invert method of the target projection:

// Iterate in the target image
for (var x = 0, w = image.width; x < w; x += 1) {
 for (var y = 0, h = image.height; y < h; y += 1) {

 // Compute the geographic coordinates of the current pixel

Chapter 11

[283]

 var coords = orthographic.invert([x, y]);

 // ...
 }
}

The inverse projection could be undefined for a given pixel; we need to check this
before we try to use it. We can now use the source projection to compute the pixel
coordinates of the current location in the source image. This is the pixel that we need
to copy to the current pixel in the target image:

 // Source and target image indices
 var targetIndex, sourceIndex, pixels;

 // Check if the inverse projection is defined
 if ((!isNaN(coords[0])) && (!isNaN(coords[1]))) {

 // Compute the source pixel coordinates
 pixels = equirectangular(coords);

 // ...
 }

Knowing which source pixel we need to copy, we need to compute the
corresponding index in the source and target image data arrays. The projection
could have returned decimal numbers, so we will need to approximate them to
integers. We will also ensure that the indices of the red channel for both images
should be exactly divisible by four:

 // Compute the index of the red channel
 sourceIndex = 4 * (Math.floor(pixels[0]) + w *
 Math.floor(pixels[1]));
 sourceIndex = sourceIndex - (sourceIndex % 4);

 targetIndex = 4 * (x + w * y);
 targetIndex = targetIndex - (targetIndex % 4);

We can copy the color channels using the indices that were just computed:

 // Copy the red, green, blue and alpha channels
 targetData[targetIndex] = sourceData[sourceIndex];
 targetData[targetIndex + 1] = sourceData[sourceIndex + 1];
 targetData[targetIndex + 2] = sourceData[sourceIndex + 2];
 targetData[targetIndex + 3] = sourceData[sourceIndex + 3];

Creating Advanced Maps

[284]

When we finish iterating, the target image data array should be complete and
ready to be drawn in the canvas container. We can clear the canvas area and
copy the target image:

 // Clear the canvas element and copy the target image
 context.clearRect(0, 0, image.width, image.height);
 context.putImageData(target, 0, 0);

We obtain the Blue Marble image that is displayed using the Orthographic projection.
The Blue Marble image rendered using the Orthographic projection is shown in the
following screenshot:

There is more to know about reprojecting raster images. For instance, Jason Davies
has a demo on projecting raster tiles and adding zoom behavior at http://www.
jasondavies.com/maps/raster/. Also, Nathan Vander Wilt has a well-documented
demo on how to use WebGL to reproject raster images using the GPU at http://
andyet.iriscouch.com/world/_design/webgl/demo2.html.

http://www.jasondavies.com/maps/raster/
http://www.jasondavies.com/maps/raster/
http://andyet.iriscouch.com/world/_design/webgl/demo2.html
http://andyet.iriscouch.com/world/_design/webgl/demo2.html

Chapter 11

[285]

Summary
In this chapter, we used several cartographic projections to create interactive maps
that can be zoomed and rotated. We created a globe that can be rotated and zoomed
using the zoom behavior and the Orthographic projection. We used the Stereographic
projection and the HYG combined catalog to create an interactive star map.

We also learned how to use the canvas elements and a combination of projections to
project raster images of the Earth using arbitrary projections, creating realistic views
of the Earth.

In the next chapter, we will learn how to add social media to our visualization projects
and how to have several users interact with our visualizations at the same time.

Creating a Real-time
Application

In this chapter, we will create a real-time application to explore the distribution of
geotagged tweets containing user-defined topics. Creating this visualization will
involve implementing a server-side application and a client-side application.

The server-side application will handle connections from the clients, receive topics to
be heard on Twitter, and send tweets matching the topics to the corresponding clients.

The client-side application will connect with the streaming server, send it topics as
the user enters the streaming server, receive tweets, and update the visualization as
the tweets arrive.

We will begin this chapter by learning the basics of real-time interaction in
client-side applications. We will use the HDI Explorer application from Chapter 8,
Data-driven Applications, a service that provides the necessary backend to implement
real-time applications.

We will then implement the server-side application using Node, Twit, and Socket.
IO, a library that provides real-time communication support. Lastly, we will use
Backbone, Socket.IO, and D3 to create the client-side application.

Collaborating in real time with Firebase
In some visualization projects, it can be convenient to have the application state
shared among users so that they can collaborate and explore the visualization
as a group.

Creating a Real-time Application

[288]

Adding this feature would usually imply the installation and configuration
of a server and the use of WebSockets or a similar technology to manage the
communication between the server and client-side code in the browser. Firebase is a
service that provides real-time data storage and synchronization between application
instances using the client-side code. If the data changes at one location, Firebase will
notify the connected clients so that they can update the state of the application. It
has libraries for several platforms, including OS X, iOS, Java, and JavaScript. In this
section, we will use Firebase's JavaScript library to add real-time synchronization to
the HDI Explorer application.

Adding synchronization to HDI Explorer doesn't make sense in most cases; it would
be weird if a user is seeing the evolution of the Human Development Index for
one country and it suddenly changes to a different country. On the other hand, if
several users were seeing the same visualization on their respective computers and
discussing it, this would be useful because changing the selected country would
update the visualization for the rest of the users as well, so they would all see the
same content. To differentiate between the two scenarios, we will create a new page
of the HDI Explorer application with synchronization and leave the index and share
pages as they are now. The examples of this section are in the firebase.md file of the
hdi-explorer repository.

Configuring Firebase
To add real-time support to our application, we need to create a Firebase account.
Firebase offers a free plan for development, allowing up to 50 connections and
100 MB of data storage, which is more than enough for our application. Once we
have created our Firebase account, we can add a new application. The name of our
application will be hdi-explorer. This name will be used to generate the URL that
identifies our application, in our case, http://hdi-explorer.firebaseio.com.
By accessing this URL, we can see and modify the application data. We will create
a single object with the code attribute to store the country code of the HDI Explorer
application. Once we have our account and initial data configured, we can install the
JavaScript library with Bower:

$ bower install --save-dev firebase

http://hdi-explorer.firebaseio.com

Chapter 12

[289]

This will install Firebase in the bower_components directory. We will also update the
Gruntfile to concatenate the Firebase library along with the other dependencies of
our application in the dependencies.min.js file. Firebase data for the HDI Explorer
application is shown in the following screenshot:

We can connect to the Firebase application using the Firebase client. We will create a
script element at the end of the firebase.md page that contains the synchronization
code and create an instance of the Firebase reference to our data:

<script>
 // Connect to the Firebase application
 var dataref = new Firebase('https://hdi-explorer.firebaseio.
com/');

 // Application callbacks...
</script>

Integrating the application with Firebase
Before integrating Firebase, we will review the structure of the HDI Explorer
application. We used Backbone to organize the components of the application
and the REST API of the World Bank as the data source for our models.

Our application has three models, that is, the ApplicationModel, CountryTrend,
and CountryInformation models. The application model manages the application
state, which is defined by the three-letter code of the country selected by the
user. The country trend model contains the time series of the aggregated Human
Development Index, and the country information model contains information about
the main components of the index: education, life expectancy, and average income.

Creating a Real-time Application

[290]

The Countries collection contains instances of the CountryTrend model. This
collection has two views, the search view and the chart of the HDI trends. The
CountryInformation model has one associated view, the table of indicators
at the right-hand side of the page. The HDI Explorer application is shown in
the following screenshot:

All these elements are initialized in the app/setup.js file; instances are created
and the callbacks for the change:code event in the application model are defined.
The views will update themselves when the user selects a country in the search
field. To synchronize the application state among the connected users, we need to
synchronize the country code.

We can read the data from Firebase through asynchronous callbacks. These callbacks
will be invoked in the same way for both the initial state and for the changes in the
data. Events will be triggered if any object under the current location is changed,
added, removed, or moved. The value event will be triggered for any of these
modifications. We will use this event to update the application state as follows:

// Update the application state
dataref.on('value', function(snapshot) {
 app.state.set('code', snapshot.val().code);
});

Chapter 12

[291]

When something changes under the current location (such as the country code), the
value event will be triggered, and the callback will be called with a snapshot of the
current data as the argument. The snapshot will contain the most up-to-date object,
representing the state of our application. We can access the object by calling the
val() method of the snapshot and get the value of the current country code.

If we modify the value of the code in Firebase, users connected to the same URL will
have their application instances updated. We also want to synchronize the state from
the application to Firebase. We will add an event listener to the application model in
order to update the Firebase data:

// The model will update the object with the selected country code.
app.state.on('change:code', function(model) {
 dataref.set({code: model.get('code')});
});

The set method will update the contents of the Firebase location, triggering
an update of all the views of the local application instance and any other client
connected to the firebase page.

In this section, we learned how to add real-time interaction to the application created
in Chapter 8, Data-driven Applications. We learned how to change the state of the
client-side application by adding callbacks for the events triggered at the backend.

Creating a Twitter explorer application
In this section, we will create an application to explore the distribution of geotagged
tweets at a given time. Users can enter topics in the input box. The topics will be sent
to the server-side application, which will begin to send tweets that match the topic
to the client-side instance of the corresponding user. This application can be used
to track the geographic distribution of a set of topics. For instance, a user might be
interested to know which kind of meal is being discussed in different regions of the
world, to monitor the Twitter stream for earthquake-related words, or to track the
mentions of a particular brand. Our application will support multiple users to be
connected at the same time, allowing each user to add up to five topics.

Creating a Real-time Application

[292]

A screenshot of the client application is shown as follows:

Our application will consist of two components, the streaming server and the
client-side application. The streaming server will handle the connection with
clients, a global list of topics to track, connect to the Twitter-streaming API, and
deliver tweets that match the topics to the corresponding client. When a client
disconnects, the server will remove the client's topics from the topics list. We will
implement the streaming server in Node using Socket.IO to handle the connection
with the user and send them tweets, and the Twit module to handle the connection
to the Twitter-streaming API.

The client-side application will establish the connection with the streaming
server, send new topics as they are added, and update the bar chart and the map
components. We will use Backbone, Bootstrap, Socket.IO, and D3 to implement
the client-side application.

We will begin by learning how to use the Twitter-streaming API and Socket.IO to
implement the streaming server and then implement the client application.

Chapter 12

[293]

Creating the streaming server
In this section, we will use Node to create the streaming server. The server will
handle the client connections and the connection to the Twitter-streaming API; it
will also manage the list of topics for all the clients who deliver tweets as they arrive.

We will begin by creating Twitter authentication tokens; we will learn how to use the
Twit module to manage the connection to the Twitter API, and how to use Socket.IO
to handle real-time communication between the server and the client application.

To follow the examples in this section, open the chirp-server project directory in
the terminal and run the following command to install the project dependencies:

$ npm install

This will create the node_modules directory and download the project dependencies.
If you haven't installed Node, download the binaries for your platform from
http://nodejs.org/download/ and follow the instructions on the page.

Using the Twitter-streaming API
Twitter provides a streaming API that allows developers to access Twitter's global
stream of tweets through several endpoints. The following endpoints allow access
to different streams:

• statuses/sample: This allows access to a small random sample of public
statuses. All the applications connected to this endpoint will receive the
same tweets.

• statuses/filter: This returns public statuses that match one or more
predicates. We will use this endpoint in the project.

• statuses/firehose: This returns all the public statuses. This endpoint
requires special access.

Also, there are the statuses/user and statuses/site endpoints, which allow
you to access the public tweets of a particular user or website. When applications
establish a connection with the Twitter endpoint, they are delivered a feed of tweets.

To run the examples in this chapter, you need to go to the Twitter Application
Management page (https://apps.twitter.com/), create a new application, and
generate API keys for the application. You will need the consumer key, the consumer
secret, the access token, and the token secret.

http://nodejs.org/download/
https://apps.twitter.com/

Creating a Real-time Application

[294]

The credentials.js file in the root directory of the project contains placeholders for
the authentication tokens of the application. You can either replace the placeholder
strings in this file with your own keys or create a new file with the same structure. In
either case, make sure that the keys remain a secret. It would be a good idea to add
this file to the .gitignore file in order to avoid accidentally pushing it to GitHub:

// Authentication tokens (replace with your own)
module.exports = {
 "consumer_key": "xxx",
 "consumer_secret": "xxx",
 "access_token": "xxx",
 "access_token_secret": "xxx"
}

Using Twit to access the Twitter-streaming API
As mentioned earlier, we will use the Twit Node module (you can access the
documentation in the project's repository at https://github.com/ttezel/
twit/) to connect to the Twitter-streaming API. Twit handles both the REST and
streaming APIs, keeping the connection alive and reconnecting automatically if the
connection drops. The 01-twitter-sample.js file contains the code to connect to
the statuses/sample stream. We begin by importing the twit module and loading
the configuration module:

// Import node modules
var Twit = require('twit'), // Twitter API Client
 config = require('./credentials.js'); // Credentials

The config object will contain the authentication tokens from the credentials.
js file. We can now set the Twitter credentials and connect to the statuses/sample
stream as follows:

// Configure the Twit object with the application credentials
var T = new Twit(config);

// Subscribe to the sample stream and begin listening
var stream = T.stream('statuses/sample');

The stream object is an instance of EventEmitter, a built-in Node class that allows
you to emit custom events and add listener functions to these events. To begin
listening to tweets, we can just attach a listener to the tweet event:

// The callback will be invoked on each tweet.
stream.on('tweet', function(tweet) {
 // Do something with the tweet
});

https://github.com/ttezel/twit/
https://github.com/ttezel/twit/

Chapter 12

[295]

The tweet object will contain information about the tweet, such as the date of
creation, tweet ID in the numeric and string formats, tweet text, information about
the user who generated the tweet, and language and tweet entities that may be
present, such as hashtags and mentions. For a complete reference to the tweet
attributes, refer to the Field Guide at https://dev.twitter.com/docs/platform-
objects/tweets. A typical tweet will have the following structure, along with many
other attributes:

{
 created_at: 'Thu May 15 22:27:37 +0000 2014',
 ...
 text: 'tweet text...',
 user: {
 name: 'Pablo Navarro',
 screen_name: 'pnavarrc',
 ...
 },
 ...
 coordinates: {
 type: 'Point',
 coordinates: [-76.786264, -33.234588]
 },
 ...
 entities: {
 hashtags: [],
 ...
 },
 lang: 'en'
}

You may have noticed that the coordinates attribute is a GeoJSON object, in
particular, a GeoJSON point. This point is an approximation of where the tweet
was generated. Less than 10 percent of the tweets in the sample stream contain
this information, but the information is still useful and interesting to explore.

The stream object will emit other events that we might need to handle. The connect
event will be emitted when Twit attempts to connect to the Twitter-streaming API:

stream.on('connect', function(msg) {
 console.log('Connection attempt.');
});

https://dev.twitter.com/docs/platform-objects/tweets
https://dev.twitter.com/docs/platform-objects/tweets

Creating a Real-time Application

[296]

If the connection is successful, the connected event will be triggered. Note that when
the application is running, the connection to the Twitter stream can be interrupted
several times. Twit will automatically try to reconnect following the reconnection
guidelines from Twitter:

// The connection is successful.
stream.on('connected', function(msg) {
 console.log('Connection successful.');
});

If a reconnection is scheduled, the reconnect event will be emitted, passing
the request, response, and interval within milliseconds of the next reconnection
attempt as follows:

// Emitted when a reconnection is scheduled.
stream.on('reconnect', function(req, res, interval) {
 console.log('Reconnecting in ' + (interval / 1e3) + '
 seconds.');
});

Twitter creates a queue with the tweets to be delivered to our application. If our
program doesn't process the tweets fast enough, the queue will get longer, and
Twitter will send a warning message to the application notifying us about the issue.
If this happens, Twit will emit the warning event, passing the warning message as an
argument to the callback function:

// The application is not processing the tweets fast enough.
stream.on('warning', function(msg) {
 console.warning('warning')
});

Twitter can disconnect the stream for several reasons. Before actually dropping
the connection, Twitter will notify us about the disconnection, and Twit will emit
the corresponding event as well. The complete list of events can be consulted in the
Twit project repository at https://github.com/ttezel/twit.

In the project repository, there are examples of connections to the statuses/sample
and statuses/filter streams. In the 01-twitter-sample.js file, we configure the
Twitter credentials and use the statuses/sample endpoint to print the tweets in the
terminal screen. To run this example (remember to add your credentials), type the
following command in the root directory of the project:

$ node 01-twitter-sample.js

https://github.com/ttezel/twit

Chapter 12

[297]

This will print the tweets on the console as they are received. As mentioned earlier,
there are more streaming endpoints available. The statuses/filter stream allows
you to track specific topics. The stream object receives a list of comma-separated
strings, which should contain the words to be matched. If we pass the topics good
morning and breakfast, the stream will contain tweets that match either the word
breakfast or both good and morning. Twit allows us to specify the topics that need
to be matched as a list of strings.

In the 02-twitter-filter.js file, we have the same setup as in the first example;
however, in this case, we define the list of topics to track and configure the stream to
connect to the statuses/filter endpoint, passing along the list of topics to track:

// List of topics to track
var topics = ['good morning', 'breakfast'];

// Subscribe to a specific list of topics
var stream = T.stream('statuses/filter', {track: topics});

To determine a match, Twitter will compare the tracking topics with the tweet text, the
user name, screen name, and entities, such as hashtags and URLs. Note that the tweets
won't include information about which term was matched; as our application will need
this information, we will check which terms were matched in the tweet callback.

Using Socket.IO
Socket.IO is a JavaScript library that allows real-time communication between the
client and the server. The library has two parts, the client-side library that runs in
the browser and the server-side library for Node.

In this example, we will create an application that will allow you to send text
messages to the server, which will send a text message back to inform you that the
message was received. To follow the code in this example, open the 03-socketio-
example.js file for the server-side code and the socketio-example.html file for
the client-side code. A screenshot of the client-side application is shown as follows:

Creating a Real-time Application

[298]

We will begin by implementing the server-side code. In the server-side code,
we import the socket.io module. This will expose the Socket.IO server:

// Import the Socket.IO module
var IOServer = require('socket.io');

We can now create an instance of the Socket.IO server. We can either use the
built-in server or an instance of a different server, such as those provided by the
HTTP or express modules. We will use the built-in version, passing along the port
number for the server:

// Start the server, listening on port 7000
var io = new IOServer(7000);

The server is ready to receive connections and messages. At this point, the server
won't do anything other than listen; we need to attach a callback function for the
connection event. The callback will receive a socket object as the argument. The
socket is the client-side endpoint of the connection. Refer to the following code:

// Listen for connections from incoming sockets
io.on('connection', function(socket) {

 // Print the socket ID on connection
 console.log('Client ' + socket.id + ' connected.');

 // Attach listeners to socket events...
});

This callback will display a log when a client connects to the server, displaying the
socket ID:

$ node 03-socketio-example.js

Client ID pk0XiCmUNgDVRP6zAAAC connected.

We can now attach event listeners to the socket events. We will add a callback for the
disconnect event, which will display a log message:

// Displays a log message if the client disconnects.
socket.on('disconnect', function() {
 console.log('client disconnected.');
});

Chapter 12

[299]

We can attach listeners for custom events as well, and send JavaScript objects that
can be serialized as arguments for the callback. Socket.IO also supports the sending
of binary data. We will add a callback for the client-message custom event:

// The server will emit a response message.
socket.on('client-message', function (data) {
 socket.emit('server-message', {
 msg: 'Message "' + data.msg + '" received.'
 });
});

The callback for the client-message event will just send a message back to the
client, indicating that the message was received. If we want to send a message
to all the connected clients, we can use io.emit('event name', parameters).

Socket.IO will serve the client-side library, which can be very useful. We can use
either this version or download the client-side library separately. We can use the
served version by adding /socket.io/socket.io.js to the server's URL. To
follow the client-side code, open the socketio-example.html file from the project
directory. In this example, we will use the served version, adding the following line
in the header:

<script
 src="http://localhost:7000/socket.io/socket.io.js"></script>

Note that if you want to use the server from an external device, you should replace
localhost with the URL of the server. We will add an input element in the page,
where the user will type the messages to the server. Under the input element, a list will
display the messages both from the client and the server. The older messages will be
displaced to the bottom as new messages are received. Refer to the following code:

<div class="container">

<h1>Socket.IO Example</h1>

<!-- Input element to send messages -->
<form role="form" class="form-horizontal" id="msgForm">
 <div class="form-group">
 <label for="msgToServer" class="col-sm-1">Message</label>
 <div class="col-sm-9">
 <input type="text" class="form-control input-sm"
id="msgToServer" placeholder="Send a message to the server.">
 </div>

Creating a Real-time Application

[300]

 <button type="submit" class="btn btn-default btn-sm">Send</button>
 </div>
</form>

<!-- List with messages -->
<ul id='msg-list' class='list-unstyled'>

</div>

We will add a script with the code, which will establish the connection with the server
and update the messages list. We will include D3 to handle the user input and to
update the list of messages. We begin by opening a connection with the socket server:

// Open a connection with the Socket.IO server
var socket = io('http://localhost:7000');

Note that in this case, the socket variable refers to the server's endpoint. The client
API is almost identical to the server API; the socket object will also trigger the
connect event once the connection with the server is established:

// The callback will be invoked when the connection establishes
socket.on('connect', function() {
 console.log('Successful connection to the server.');
});

We will store each message, sender, and message timestamp in an array to display
the messages in a list. We will also create a time formatter to display the timestamp
of each message in a friendly format:

// Declare variables for the message list and the time formatter
var messages = [],
 dateFmt = d3.time.format('[%H:%M:%S]');

We will select the input element with the #message ID and attach a listener for
the submit event. The callback for the event will retrieve the content of the input
element and send the message to the server. We use d3.event.preventDefault()
to prevent the form from trying to submit the form values to the server:

d3.select('#msg-form).on('submit', function() {

 var inputElement = d3.select('#message).node(),
 message = inputElement.value.trim();

 // Check that the message is not empty
 if (message) {

Chapter 12

[301]

 // Sends the message to the server...
 }

 d3.event.preventDefault();
});

We retrieve the contents of the input element and verify that the message is not
empty before we send the client-message signal. We also reset the input element
value so that the user can write a new message without having to erase the message
already sent:

 // Check that the message is not empty
 if (message) {
 // Sends the message to the server
 socket.emit('client-message', {msg: message});

 // Append the message to the message list
 messages.push({
 from: 'client',
 date: new Date(),
 msg: message
 });

 // Update the list of messages
 updateMessages();

 // Resets the form, clearing the input element
 this.reset();
 }

In the updateMessages function, we will sort the messages by date, create a selection
for the li elements, and append them on to the enter selection. The li elements
will contain the time of the message, who sent the message, and the contents of the
message. We will also add a class indicating who sent the message in order to set
different colors for the server and the client:

// Update the message list
function updateMessages() {

 // Sort the messages, most recent first
 messages.sort(function(a, b) { return b.date - a.date; });

 // Create the selection for the list elements
 var li = d3.select('#msg-list')

Creating a Real-time Application

[302]

 .selectAll('li').data(messages);

 // Append the list elements on enter
 li.enter().append('li');

 // Update the list class and content.
 li
 .attr('class', function(d) { return d.from; })
 .html(function(d) {
 return [dateFmt(d.date), d.from, ':', d.msg].join(' ');
 });
}

The message list will be updated when the user sends a message to the server and
when the server sends a message to the client. The application allows the sending
and receiving of messages to the server, as shown in the following screenshot:

Implementing the streaming server
In the previous sections, we learned how to use the Twit module to connect and
receive tweets from the Twitter-streaming API's endpoints. We also learned how to
implement bidirectional communication between a Node server and the connected
clients using the Socket.IO module. In this section, we will use both the modules
(Twit and Socket.IO) to create a server that allows multiple clients to track their
own topics on Twitter in real time.

When the user accesses the application, a connection with the streaming server
is established. Socket.IO will manage this connection, reconnecting and sending
heartbeats if necessary. The user can then add up to five words to be tracked by
the streaming server.

Chapter 12

[303]

The streaming server will manage connections with the connected clients and one
connection with the Twitter-streaming API. When a client adds a new topic, the
streaming server will add it to the topics list. When a new tweet arrives, the server
will examine its contents to check whether it matches any of the terms in the topic
list and send a simplified version of the tweet to the corresponding client.

The code of the streaming server is in the chirp.js file in the top level of the project
directory. We will begin by importing the Node modules and the credentials.js
file, which exports the Twitter authentication tokens:

// Import the Node modules
var Twit = require('twit'),
 IOServer = require('socket.io'),
 config = require('./credentials.js');

To keep track of the correspondence between the topics and clients, we will store
the topic and a reference to the topic in the topics list. For instance, if the client
with socket adds the word 'breakfast', we will add the {word: 'breakfast',
client: socket} object to the topics list:

// List of topics to track
var topics = [];

As mentioned in the previous sections, we can use either the statuses/sample
or the statuses/filter endpoints to capture tweets. We will use the statuses/
filter endpoint in our application, but instead of filtering by topic, we will filter by
location and language (tweets in English only). We will set the locations parameter
to '-180,-90,180,90', meaning that we want results from anywhere in the world,
and set the language parameter to 'en'. Passing a list of words to the statuses/
filter endpoint will force us to reset the connection when the user adds a new
topic. This is a waste of resources, and Twitter could apply rate limits if we open
and close connections frequently. We will use the statuses/filter endpoint to
listen to anything in the stream and filter the words we want. This will allow you
to add or remove words from the topics list without having to reset the connection.
We will initialize the Twit object, which will read the Twitter credentials and store
them to create the streaming requests to Twitter. We will also create the stream to
the statuses/filter endpoint and store a reference to it in the twitterStream
variable. We will filter only using the language (English) and location (the world),
and match the items by comparing the topic word with the tweet contents:

// Configure the Twit object with the application credentials
var T = new Twit(config);

// Filter by location (the world) and tweets in English
var filterOptions = {

Creating a Real-time Application

[304]

 locations: '-180,-90,180,90',
 language: 'en'};

// Creates a new stream object, tracking the updated topic list
var twitterStream = T.stream('statuses/filter', filterOptions);

We will define functions to handle the most important Twit stream events. Most
of these callbacks will just log a message in the console, stating that the event has
occurred. We will define a callback for the connect event, which will be triggered
when a connection is attempted, and a callback for the connected event, which
will be emitted when the connection to the Twitter stream is established:

// Connection attempt ('connect' event)
function twitOnConnect(req) {
 console.log('[Twitter] Connecting...');
}

// Successful connection ('connected' event)
function twitOnConnected(res) {
 console.log('[Twitter] Connection successful.');
}

We will display a log message if a reconnection is scheduled, indicating the interval
in seconds:

// Reconnection scheduled ('reconnect' event).
function twitOnReconnect(req, res, interval) {
 var secs = Math.round(interval / 1e3);
 console.log('[Twitter] Disconnected. Reconnection scheduled in
 ' + secs + ' seconds.');
}

We will also add callbacks for the disconnect and limit events, which will occur
when Twitter sends a disconnect or limit message, respectively. Note that Twit
will close the connection if it receives the disconnect message, but not if it receives
the limit message. In the limit callback, we will display a message and stop the
stream explicitly:

// Disconnect message from Twitter ('disconnect' event)
function twitOnDisconnect(disconnectMessage) {
 // Twit will stop itself before emitting the event
 console.log('[Twitter] Disconnected.');
}

// Limit message from Twitter ('limit' event)
function twitOnLimit(limitMessage) {

Chapter 12

[305]

 // We stop the stream explicitely.
 console.log('[Twitter] Limit message received. Stopping.');
 twitterStream.stop();
}

Adding log messages for these events can help debug issues or help us know what
is happening if we don't receive messages for a while. The event that we should
certainly listen for is the tweet event, which will be emitted when a tweet is
delivered by the streaming endpoint. The callback of the event will receive
the tweet object as the argument.

As mentioned earlier, we will only send geotagged tweets to the connected clients.
We will check whether the tweet text matches any of the terms in the topics list. If a
term is found in the tweet text, we will send a simplified version of the tweet to the
client who added the term:

// A tweet is received ('tweet' event)
function twitOnTweet(tweet) {

 // Exits if the tweet doesn't have geographic coordinates
 if (!tweet.coordinates) { return; }

 // Convert the tweet text to lowercase to find the topics
 var tweetText = tweet.text.toLowerCase();

 // Check if any of the topics are contained in the tweet text
 topics.forEach(function(topic) {

 // Checks if the tweet text contains the topic
 if (tweetText.indexOf(topic.word) !== -1) {

 // Sends a simplified version of the tweet to the
 client
 topic.socket.emit('tweet', {
 id: tweet.id,
 coordinates: tweet.coordinates,
 word: topic.word
 });
 }
 });
}

Creating a Real-time Application

[306]

As we are not using the tweet text or its creation date, we will send just the tweet ID,
the coordinates, and the matched word to the client. We can now attach the listeners
to their corresponding events as follows:

// Add listeners for the stream events to the stream instance
twitterStream.on('tweet', twitOnTweet);
twitterStream.on('connect', twitOnConnect);
twitterStream.on('connected', twitOnConnected);
twitterStream.on('reconnect', twitOnReconnect);
twitterStream.on('limit', twitOnLimit);
twitterStream.on('disconnect', twitOnDisconnect);

We have initialized the connection to the Twitter-streaming API, but as we don't
have any topics in our list, nothing will happen. We need to create the Socket.IO
server to handle connections with clients, which can add topics to the list. We will
begin by defining the port where the Socket.IO server will listen and creating an
instance of the server. Note that we can create an instance of the Socket.IO server
with or without the new keyword:

// Create a new instance of the Socket.IO Server
var port = 9720,
 io = new IOServer(port);

// Displays a message at startup
console.log('Listening for incoming connections in port ' + port);

The io server will begin listening for incoming connections on port 9720. We can
use other port numbers too; remember that ports between 0 and 1023 are privileged,
as they require a higher level of permission to bind.

When a client connects, the connection event will be emitted by the io server,
passing the socket as an argument to the event callback. In this case, we will display
a log message in the console, indicating that a new connection was established, and
add listeners for the socket events:

// A client's established a connection with the server
io.on('connection', function(socket) {

 // Displays a message in the console when a client connects
 console.log('Client ', socket.id, ' connected.');

 // Add listeners for the socket events...
});

Chapter 12

[307]

The socket object is a reference to the client endpoint in the communication. If the
client adds a new topic, the add custom event will be emitted, passing the added topic
to the event callback. In the callback for this event, we will append the word and a
reference to the socket to the topic list and display a log message in the console:

 // The client adds a new topic
 socket.on('add', function(topic) {
 // Adds the new topic to the topic list
 topics.push({
 word: topic.word.toLowerCase(),
 socket: socket
 });

 console.log('Adding the topic "' + topic.word + '"');
 });

When the client disconnects, we will remove its topics from the list and display a log
message in the terminal:

 // If the client disconnects, we remove its topics from the
 list
 socket.on('disconnect', function() {
 console.log('Client ' + socket.id + ' disconnected.');
 topics = topics.filter(function(topic) {
 return topic.socket.id !== socket.id;
 });
 });

At this point, the server is capable of handling multiple clients connected at the same
time, each adding their own terms to the topic list. When we implement (and access)
the client-side application, we will have the streaming server generate logs such as
the following:

$ node chirp.js

Listening for incoming connections in port 9720

[Twitter] Connecting...

[Twitter] Connection successful.

Client 4WDFIrqsbxtf_NO_AAAA connected.

Adding the topic "day"

Adding the topic "night"

Client 4WDFIrqsbxtf_NO_AAAA disconnected.

Creating a Real-time Application

[308]

Client P8mb97GiLOhc-noLAAAB connected.

Adding the topic "coffee"

Adding the topic "tea"

Adding the topic "milk"

Adding the topic "beer"

[Twitter] Disconnected. Reconnection scheduled in 0 seconds.

[Twitter] Connecting...

[Twitter] Connection successful.

Client P8mb97GiLOhc-noLAAAB disconnected.

Client p3lFgVrxGI0bLPOFAAAC connected.

 ...

In the next section, we will use the client-side Socket.IO library, D3, and Backbone to
create a visualization that shows the geographic distribution of tweets matching the
user-defined topics.

Creating the client application
In the previous section, we implemented the streaming server. The server application
allows other applications to send words that you can listen to from the statuses/
sample endpoint from Twitter. When the server receives geotagged tweets containing
the words tracked by a client, it will deliver the client a simplified version of the tweet.
The server doesn't enforce what the client applications do with the tweets; the client
application could just count the tweets, visualize the frequency of each term in time
with a heat map, or create a network chart showing the co-occurrence of the terms.

In this section, we will implement a client application. The application will display
a map showing the location of the tweets that match each term in a world map,
and will display a bar chart that will display the count for each term. As we did in
Chapter 6, Interaction between Charts, we will use Backbone and D3 to structure our
application. A screenshot of the application is shown as follows:

Chapter 12

[309]

The code of the application is available in the chapter12/chirp-client folder.
We will begin by describing the project structure, and then implement the
project components.

The application structure
As mentioned earlier, we will use Backbone to structure the application's components.
As we want to visualize the places where different topics are mentioned in the world
at any given time, we will define a topic as the main component of our application.
A topic will contain a word (the string that we want to track in Twitter), a color to
visualize it, and a list of matching tweets. We will create a Topic model containing
these attributes.

We will create a collection for the topics. The collection will be in charge of creating
the topic instances when the user adds words in the input element and appending
the tweets to the corresponding topic instance as they arrive. We will provide our
collection with three views: the world map view, the barchart view, and the input
element, where the user can add a new topic.

Creating a Real-time Application

[310]

The code for the application components will be in the src/app directory in the
project folder. We will have separate directories for the models, collections, and
views of our application; we will have the app.js and setup.js files to define
the application namespace and to set up and launch our application:

 app/
 app.js
 models/
 collections/
 views/
 setup.js

We will encapsulate the components of our application under the App variable,
which is defined in the app/app.js file. We will add attributes for the collections,
models, and views to the App object, as follows:

// Define the application namespace
var App = {
 Collections: {},
 Models: {},
 Views: {}
};

To run the application, run the server application and go to the chirp-client
directory and start a static server. The Gruntfile of the project contains a task to
run a static server in the development mode. Install the Node modules with the
following command:

$ npm install

After installing the project dependencies, run grunt serve. This will serve the files
in the directory as static assets and open the browser in the correct port. We will
review the application models and views.

Models and collections
The main component of our application will be the Topic model. A Topic instance
will have a word, color, and an array of simplified tweets matching the topic's word.
We will define our model in the app/models/topic.js file. The Topic model will be
created by extending the Backbone.Model object:

// Topic Model
App.Models.Topic = Backbone.Model.extend({

 // The 'word' attribute will uniquely identify our topic

Chapter 12

[311]

 idAttribute: 'word',

 // Default model values
 defaults: function() {
 return {
 word: 'topic',
 color: '#555',
 tweets: []
 };
 },

 // addTweet method...
});

The word string will uniquely identify our models in a collection. The topics will
be given a color to identify them in the bar chart and the map views. Each topic
instance will contain an array of tweets that match the word of the topic. We will add
a method to add tweets to the array; in this method, we will add the topic's color.
Array attributes (such as the tweets property) are treated as pointers; mutating the
array won't trigger the change event. Note that we could also create a model and
collection for the tweets, but we will use an array for simplicity.

We will trigger this event explicitly to notify potential observers that the array
has changed:

 // Adds a tweet to the 'tweets' array.
 addTweet: function(tweet) {

 // Adds the color of the topic
 tweet.color = this.get('color');

 // Append the tweet to the tweets array
 this.get('tweets').push(tweet);

 // We trigger the event explicitly
 this.trigger('change:tweets');
 }

Note that it is not necessary to define the default values for our model, but we will add
them so that we remember the names of the attributes when describing the example.

Creating a Real-time Application

[312]

We will also create a collection for our topics. The Topics collection will manage
the creation of the Topic instances and add tweets to the corresponding collection
as they arrive from the server. We will make the socket endpoint accessible to the
Topics collection, passing it as an option when creating the Topic instance. We will
bind the on socket event to a function that will add the tweet to the corresponding
topic. We also set a callback for the add event to set the color for a topic when a new
instance is created, as shown in the following code snippet:

// Topics Collection
App.Collections.Topics = Backbone.Collection.extend({

 // The collection model
 model: App.Models.Topic,

 // Collection Initialization
 initialize: function(models, options) {

 this.socket = options.socket;

 // Store the current 'this' context
 var self = this;

 this.socket.on('tweet', function(tweet) {
 self.addTweet(tweet);
 });

 this.on('add', function(topic) {
 topic.set('color', App.Colors[this.length - 1]);
 this.socket.emit('add', {word: topic.get('word')});
 });
 },

 // Add tweet method...
});

The addTweet method of the collection will find the topic that matches the
tweet's word attribute and append the tweet using the addTweet method of the
corresponding topic instance:

 addTweet: function(tweet) {

 // Gets the corresponding model instance.

Chapter 12

[313]

 var topic = this.get(tweet.word);

 // Push the tweet object to the tweets array.
 if (topic) {
 topic.addTweet(tweet);
 }
 }

Implementing the topics views
In our application, we only need views for the Topics collection and for the
application itself. We will have a view associated with the bar chart, a view for the
map of tweets, and a view for the input element, which will be used to create new
topic instances. The code for each of these views is in the src/app/views directory in
the topics-barchart.js, topics-map.js, and topics-input.js files, respectively.

The input view
The input element will allow the user to add a new topic. The user can write a new
topic in the input box and click on the Send button to send it to the server and add it
to the list of watched topics. The input element is shown in the following screenshot:

To render this view, we will create a template with the markup of the form. We will
add the template under the body tag in the index.html document:

<!-- Input Element Template -->
<script type='text/template' id='topics-template'>
 <form role="form" class="form-horizontal form-inline" id="topic-
 form">
 <div class="form-group">
 <label for="msgToServer" class="sr-only">Message</label>
 <input type="text" class="form-control input-sm" id="new-
 topic" placeholder="Add a new topic">
 <button type="submit" class="btn btn-default btn-
 sm">Send</button>
 </div>
 </form>
</script>

Creating a Real-time Application

[314]

We will implement this view by extending the Backbone.View object. The template
attribute will contain the compiled template. In this case, the template doesn't have
placeholder text to be replaced when rendering, but we will keep _.template() to
allow the use of template variables in the future:

// Topic Input
App.Views.TopicsInput = Backbone.View.extend({

 // Compile the view template
 template: _.template($('#topics-template').html()),

 // DOM Events
 events: {
 'submit #topic-form': 'addOnSubmit',
 },

 initialize: function (options) {
 // The input element will be disabled if the collection
 has five or more items
 this.listenTo(this.collection, 'add', this.disableInput);
 },

 render: function () {
 // Renders the input element in the view element
 this.$el.html(this.template(this.collection.toJSON()));
 return this;
 },

 disableInput: function() {
 // Disable the input element if the collection has five or
 more items
 },

 addOnSubmit: function(e) {
 // adds a topic when the user press the send button
 }
});

Chapter 12

[315]

We will allow up to five topics by a user to avoid having too many similar
colors in the map. We have limited space for the bar chart as well, and having an
unlimited number of topics per user could have an impact on the performance of
the server. When a new topic instance is created in the collection, we will invoke
the disableInput method, which will disable the input element if our collection
contains five or more elements:

 disableInput: function() {
 // Disable the input element if the collection has five or
 more items
 if (this.collection.length >= 5) {
 this.$('input').attr('disabled', true);
 }
 },

To add a new topic, the user can type the terms in the input element as soon as the
Send button is pressed. When the user clicks on the Send button, the submit event
is triggered, and the event is passed as an argument to the addOnSubmit method. In
this method, the default action of the form is prevented as this would cause the page
to reload, the topic is added to the topics collection, and the input element is cleared:

 addOnSubmit: function(e) {

 // Prevents the page from reloading
 e.preventDefault();

 // Content of the input element
 var word = this.$('input').val().trim();

 // Adds the topic to the collection and cleans the input
 if (word) {
 this.collection.add({word: word});
 this.$('input').val('');
 }
 }

Creating a Real-time Application

[316]

The bar chart view
The bar chart view will encapsulate a reusable bar chart made in D3. We will
describe the view and then comment on the implementation of the chart. For now,
we will just need to know about the interface of the chart. The code for the bar chart
view is available in the src/app/views/topics-barchart.js file. A bar chart
showing the tweet count for a set of topics is shown in the following screenshot:

We begin by extending and customizing the Backbone.View object. We add the
chart attribute, which will contain a configured instance of the charts.barChart
reusable chart. The bar chart will receive an array of objects that will be used to
create the bars. The label attribute allows you to set a function to compute the label
for each bar. The value attribute will allow you to configure the value that will be
mapped to the bar's length, and the color attribute will allow you to configure the
color of each bar. We set functions for each one of these attributes, assuming that our
array will contain elements with the word, count, and color properties:

// Bar Chart View
App.Views.TopicsBarchart = Backbone.View.extend({

 // Create and configure the bar chart
 chart: charts.barChart()
 .label(function(d) { return d.word; })
 .value(function(d) { return d.count; })
 .color(function(d) { return d.color; }),

 initialize: function () {
 // Initialize the view
 },

 render: function () {
 // Updates the chart
 }
});

Chapter 12

[317]

In the initialize method, we add a callback for the change:tweets event in the
collection. Note that the change:tweets event is triggered by the topic instances; the
collection just echoes the events. We will also render the view when a new topic is
added to the collection:

 initialize: function () {
 // Render the view when a tweet arrives and when a new
 topic is added
 this.listenTo(this.collection, 'change:tweets',
 this.render);
 this.listenTo(this.collection, 'add', this.render);
 },

The render method will construct the data array in the format required by the chart,
computing the count attribute for each topic; this method will select the container
element and update the chart. Note that the toJSON collection method returns a
JavaScript object, not a string representation of an object in the JSON format:

 render: function () {

 // Transform the collection to a plain JSON object
 var data = this.collection.toJSON();

 // Compute the tweet count for each topic
 data.forEach(function(item) {
 item.count = item.tweets.length;
 });

 // Compute the container div width and height
 var div = d3.select(this.el),
 width = parseInt(div.style('width'), 10),
 height = parseInt(div.style('height'), 10);

 // Adjust the chart width and height
 this.chart.width(width).height(height);

 // Select the container element and update the chart
 div.data([data]).call(this.chart);
 return this;
 }

Creating a Real-time Application

[318]

The topics map view
In the topics map view, the tweets from all the topics will be drawn as points in a
map, with each tweet colored as per the corresponding topic. The code of this view is
in the src/app/topics-map.js file. Tweets for each topic in a world map is shown
in the following screenshot:

To create this view, we will use the charts.map reusable chart, which will render
an array of GeoJSON features and a GeoJSON object base. This chart uses the
equirectangular projection; this is important to set the width and height in a ratio
of 2:1. In the initialize method, we set the base GeoJSON object provided in the
options object. In this case, the options.geojson object is a feature collection with
countries from Natural Earth. We will render the view only when a tweet arrives:

// Topics Map View
App.Views.TopicsMap = Backbone.View.extend({

 // Create and configure the map chart
 chart: charts.map()
 .feature(function(d) { return d.coordinates; })
 .color(function(d) { return d.color; }),

 initialize: function (options) {
 // Sets the GeoJSON object with the world map
 this.chart.geojson(options.geojson);

 // Render the view when a new tweet arrives
 this.listenTo(this.collection, 'change:tweets',
 this.render);

Chapter 12

[319]

 },

 render: function () {

 // Gather the tweets for all the topics in one array
 var tweets = _.flatten(_.pluck(this.collection.toJSON(),
 'tweets'));

 // Select the container element
 var div = d3.select(this.el),
 width = parseInt(div.style('width'), 10);

 // Update the chart width, height and scale
 this.chart
 .width(width)
 .height(width / 2)
 .scale(width / (2 * Math.PI));

 // Update the chart
 div.data([tweets]).call(this.chart);
 return this;
 }
});

In the render method, we gather the tweets for all the topics in one array, select
the container element, and update the chart. The geotagged tweets will be drawn
as small points on the world map.

Creating the application view
We will create a view for the application itself. This is not really necessary, but
we will do it to keep things organized. We will need a template that contains the
markup for the application components. In this case, we will have a row for the
header, which will contain the page title, lead paragraph, input element, and bar
chart. Under the header, we will reserve a space for the map with the tweets:

<!-- Application Template -->
<script type='text/template' id='application-template'>

 <div class="row header">
 <!-- Title and about -->
 <div class="col-md-6">

Creating a Real-time Application

[320]

 <h1 class="title">chirp explorer</h1>
 <p class="lead">Exploring geotagged tweets in real-time.</p>
 </div>

 <!-- Barchart -->
 <div class="col-md-6">
 <div id="topics-form"></div>
 <div id="topics-barchart" class="barchart-block"></div>
 </div>
 </div>

 <div class="row">
 <div class="col-md-12">
 <div id="topics-map"></div>
 </div>
 </div>
</script>

The application view implementation is in the src/app/views/application.js file.
In this case, we don't need to compile a template for the view, but we will compile it
if we add template variables as the application name or lead text:

// Application View
App.Views.Application = Backbone.View.extend({

 // Compile the applicaiton template
 template: _.template($('#application-template').html()),

 // Render the application template in the container
 render: function() {
 this.$el.html(this.template());
 return this;
 }
});

In the render method, we will just insert the contents of the template in the container
element. This will put the markup of the template in the container defined when
instantiating the view.

Chapter 12

[321]

The application setup
With our models, collections, and views ready, we can proceed to create
the instances and wire things up. The initialization of the application is in the
src/app/setup.js file. We begin by creating the app variable to hold the instances
of collections and views. When the DOM is ready, we will invoke the function that
will create the instances of our views and collections:

// Container for the application instances
var app = {};

// Invoke the function when the document is ready
$(function() {
 // Create application instances...
});

We begin by creating an instance of the application view and setting the container
element to the div with the application-container ID. The application view
doesn't have an associated model or collection; we can render the view immediately
as shown in the following code:

 // Create the application view and renders it
 app.applicationView = new App.Views.Application({
 el: '#application-container'
 });
 app.applicationView.render();

We can create an instance of the Topics collection. At the beginning, the collection
will be empty, waiting for the user to create new topics. We will create a connection
to the streaming server and pass a reference to the server endpoint as well as to
the collection of topics. Remember that in the initialization method of the Topics
collection, we add a callback for the tweet event of the socket, which adds the tweet
to the corresponding collection. Remember to change localhost to an accessible
URL if you want to use the application on another device:

 // Creates the topics collection, passing the socket instance
 app.topicList = new App.Collections.Topics([], {
 socket: io.connect('http://localhost:9720')
 });

As we have an instance of the Topics collection, we can proceed to create
instances for the topic views. We create an instance of the TopicsInput view,
the TopicsBarchart view, and the TopicsMap view:

 // Input View
 app.topicsInputView = new App.Views.TopicsInput({

Creating a Real-time Application

[322]

 el: '#topics-form',
 collection: app.topicList
 });

 // Bar Chart View
 app.topicsBarchartView = new App.Views.TopicsBarchart({
 el: '#topics-barchart',
 collection: app.topicList
 });

 // Map View
 app.topicsMapView = new App.Views.TopicsMap({
 el: '#topics-map',
 collection: app.topicList
 });

In the map chart of the TopicsMap view, we need a GeoJSON object with the
feature or feature collection to show as the background. We use d3.json to load
the TopoJSON file containing the world's countries and convert it to the equivalent
GeoJSON object using the TopoJSON library. We use this GeoJSON object to update
the map chart's geojson attribute and render the view. This will display the map
that shows the world's countries:

 // Loads the TopoJSON countries file
 d3.json('dist/data/countries.json', function(error, geodata) {

 if (error) {
 // Handles errors getting or parsing the file
 console.error('Error getting or parsing the TopoJSON
 file');
 throw error;
 }

 // Transform from TopoJSON to GeoJSON
 var geojson = topojson.feature(geodata,
 geodata.objects.countries);

 // Update the map chart and render the map view
 app.topicsMapView.chart.geojson(geojson);
 app.topicsMapView.render();
 });

Chapter 12

[323]

Finally, we render the views for the topicList collection:

 // Render the Topic Views
 app.topicsInputView.render();
 app.topicsBarchartView.render();
 app.topicsMapView.render();

At this point, we will have the input element, an empty bar chart, and the world
map without tweet points. As soon as the user adds a topic, the server will begin to
deliver tweets, which will appear in the views. The application and rendered topic
views can be seen in the following screenshot:

Creating a Real-time Application

[324]

Let's recapitulate how the client application works. Once the views are rendered, the
user can add topics by typing words in the input box. When the Enter key is pressed,
the contents of the input element will be added as the word attribute of a new topic
instance. The collection will send the word to the streaming server, which will add
the topic and a reference to the client in the topics list. The server will be connected
to the Twitter-streaming API. Each time the server receives a geotagged tweet, it will
compare the tweet text with the topics in the list; if a match is found, a simplified
version of the tweet will be sent to the client. In the client, the tweet will be added
to the tweets array of the topic that matches the tweet text. This will trigger the
views to render, updating the bar chart and the map. Here, we can guess where
people are having their breakfast and where they are having dinner, as shown in
the following screenshot:

Chapter 12

[325]

The streaming server can be used with any application that can send the add
event and receive the tweets when the server emits the tweet event. We chose to
create a client to visualize the geographic distribution of tweets, but we could have
implemented a different representation of the same data. If you want to experiment,
use the streaming server as a base component to create your own client visualization.
Here are some suggestions:

• The time dimension was neglected in this application. It might be interesting
to display a heat map that shows how the tweet count varies in time or
makes the old tweets fade away.

• Adding zoom and pan to the map chart could be useful to study the
geographic distribution of tweets at a more local level.

• The user can't remove topics once they are created; adding a way to remove
topics can be useful if the user decides that a topic was not interesting.

• Use brushing to allow the user to select tweets only from a particular region
of the world. This would probably involve modifying the server such that it
sends the tweets from that location to the client who selected it.

• Use a library of sentiment analysis and add information on whether the topic
was mentioned in a positive or negative way.

• Add the ability to show and hide topics so that the overlapping doesn't
hide information.

Summary
In the last chapter of the book, we learned how to use D3 and Socket.IO to create
a real-time visualization of geotagged tweets. In this chapter, we described two
applications: the streaming server and the client application.

We implemented the streaming server in Node. The streaming server keeps a
persistent connection to the Twitter-streaming endpoints and supports several
connected users at the same time, with each user adding topics to be tracked on
the Twitter-streaming API. When the tweets match one of the user topics, they
are delivered to the corresponding client.

Creating a Real-time Application

[326]

In the client application, we used Backbone, Socket.IO, and D3 to create a visualization
of where the topics are defined by the user in the world. The user can add topics at any
given time; the server will add the topic to its list and begin to send tweets that match
the topic to the client.

Through this book, we learned how to use D3 to create several kinds of charts, but
mostly, we learned how to create visual components that can be reused across several
projects. We learned how to integrate D3 and reusable charts with other libraries to
structure applications better, how to deploy web applications, and how to add real-time
updates to the charts. As we have seen in the examples of this book, D3 is powerful and
flexible, making it especially attractive for tinkerers and creative developers.

Index
Symbols
_2012_life_expectancy_at_birth

attribute 190
_config.yml file 184

A
absolute positioning 52
accessor methods, barcode chart 28, 29
addData function

using 41
addTweet method 312
Amazon S3

console, URL 205
visualization, hosting 205

application model, stock explorer application
defining 124

application view
about 132-134
creating 319
implementing 320

arcs 228
area chart

brushing, adding 105, 106
creating 101-104
range, selecting with brushing 101, 102

Array.prototype.sort instance method 51
attributes, reusable charts

composable 22
configurable 21
repeatable 22

B
Backbone

about 110

URL 112
Backbone components

collections 110
events 110
models 110
routers 111
views 111

Backbone Fundamentals
URL 112

Backbone Views
application view 132-134
implementing 125
stock context view 129, 130
stock detail view 131, 132
stock selector view 126-128
title view 125, 126

bar chart view
about 316
implementing 316, 317

barcode chart
about 27, 28
accessor methods 28, 29
data, adding 30-32
dataset, updating 35
date accessor function, adding 32-34
entering transition, fixing 36
initialization 29, 30
using 37-39

barcodeChart function 28
Bower tool

about 141, 172
URL 172

brighter() method 95
brush

about 105
used, for selecting range 105

[328]

brushend event 106
brush listener 107, 108
brushListener function

about 106
creating 107

brushstart event 106
bucket

about 205
creating 205

C
call method 25
canvas

figures, creating with 66, 67
integrating, with D3 68-72
used, for rendering raster image 278, 279

canvg
about 62
example 63, 65
URL 62

cartographic projections
about 257
Conic Equidistant projection 260, 261
Equirectangular projection 258, 259
Mercator projection 257
Orthographic projection 257, 262, 263
URL 257

chart 21
chart.color method 83
chart elements

highlighting 91-96
charting package

creating 139, 140
development workflow 140
package contents, creating 142-144
project setup 157
testing 163
using, in other projects 174-176

chart.svgInit function 107
choropleth map

creating 232-239
choropleths 225
class section, dashboard

about 219
creating 219

client application
creating 308, 309

structure 309, 310
clipAngle method 262
collections 110
collections, data-driven application

creating 192, 193
Color Brewer

URL 237
color picker

about 81
creating 81

color picker selector 82, 83
color picker window

adding 84, 85
creating 85-89

components, data-driven application
collections, creating 192, 193
creating 187
models, creating 188
views, creating 194-199

config object 294
Conic Equidistant projection 260, 261
contents, charting package

creating 142-144
heat map chart 144-151
matrix layout 153-157

CountriesTrendView 194
CountryInformation model 188
CountryTrend model 188
courses section, dashboard

about 218
creating 218

credentials.js file 294

D
D3

canvas, integrating 68-72
integrating, with Mapbox 251-255
maps, creating with 231
used, for creating elements 22, 23
used, for projecting raster images 276-278
using 248
using, with canvas 66

d3.geo.area method 238
d3.geo.bounds method 242
d3.geo.centroid method 242
d3.geo.distance method 243

[329]

d3.geo.graticule() method 259
d3.json method 50
D3 library

about 16-19
URL 17

d3.rgb function 95
dashboard

about 14, 209
best practices 211, 212
creating 212, 213
defining 209-211

dashboard, creating
data, obtaining 214-216
information, organizing 216
purpose, defining 213, 214
sections, creating 217
sections, gathering 220

dashboard design
color 211
form 212
position 212

dashboard information, organizing
class section 216
course section 216
students section 216

dashboard sections
class section 219
courses section 218
gathering 220
students section 217

data-driven application
components, creating 187
creating 179, 180
project setup 180-182
setting up 200-203
websites, generating with Jekyll 183-187

data() method 24
data visualization

about 15
dashboards 14
defining 9
exploratory visualizations 13, 14
infographics 12
kinds 10, 11

date accessor function
adding, to barcode chart 32-34

declination, interactive star map 269
dependencies 230
development workflow, charting package

about 140
code, writing 140, 141
release, creating 141

divItems selection 24
drag behavior

URL 74
using 74, 75

dragListener function 74

E
Electoral Map example

URL 62
elements, creating with D3

about 22
creation, encapsulating 25
data binding 23, 24
svg element, creating 26

endpoints, Twitter-streaming API
statuses/filter 293
statuses/firehose 293
statuses/sample 293

Equirectangular projection
about 258, 259
changing, in interactive star map 272-274

ESRIshapefile format 226
events 110
exploratory visualizations 13, 14

F
feature detection 62
figures

creating, with canvas 66, 67
files

manipulating 230, 231
transforming 230, 231

Firebase
configuring 288, 289
real-time application,

collaborating with 287, 288
real-time application,

integrating with 289-291
force layout method 51-54

[330]

G
Gapminder project

URL 13
Gapminder World tool 13
GDAL

about 230
URL 230

geodata object 240
geographic coordinates, of pixel

computing 280
geographic data

files, manipulating 230, 231
files, transforming 230, 231
GeoJSON format 226-229
obtaining 225, 226
TopoJSON format 226-229

GeoJSON format
about 226-229
URL 226

Geospatial Data Abstraction Library. See
GDAL

Git
about 181
URL 181

GitHub
using 181

GitHub Pages
about 204
URL 205
used, for hosting visualization 204, 205

graticule 235
Gruntfile.js file 158
Grunt plugins

URL 159
Grunt tool 141

H
hdi-explorer

URL 288
heat map chart 144-150
HSL model 211
HTML canvas element 66
Human Development Data API

about 179

URL 188
Human Development Index (HDI) 179
HYG database

URL 269

I
infographics 11, 12
initDiv function 25
initialize method 128, 133
input view

about 313
implementing 314, 315
rendering 313

interactive star map
colors, adding 274-276
creating 268
Equirectangular projection,

changing 272-274
labels, adding to 274-276
projection rotation, adding 272, 273
stars, drawing 271

inverse projections 277
invert method 282

J
Jekyll

about 179, 183
configuring, for content deployment 206
installing 183
URL, for documentation 183
used, for generating websites 183

JSLint
about 162
URL 162

L
latitude 223
latLngToLayerPoint method 252
layer 251
layout algorithm

about 40
creating 40
radial layout 40, 41

linter 162

[331]

Liquid Templating language
URL 185

listener function 54
longitude 223

M
MAJOR.MINOR.PATCH form 142
MAJOR version, Semantic Versioning 142
make program 230
Mapbox

about 248
features 248
integrating, with D3 251-255
using 248

Mapbox account
creating, URL 248

Mapbox project
creating 249, 250

map files
cultural 225
physical 225
raster 225

maps
about 223
choropleth map, creating 232-239
creating, with D3 231
D3, using 248
Mapbox, integrating with D3 251-255
Mapbox project, creating 249, 250
Mapbox, using 248
positions, on Earth surface 223, 224
topology, mapping 239-247

matrix layout 153-156
Mercator projection 257
MINOR version, Semantic Versioning 142
models 110
models, data-driven application

CountryInformation model 188
CountryTrend model 188
creating 188-191

Modernizr library
using 63

moveHandler listener 77
moveTo method 68
MVC pattern 109
MV* pattern 110

N
NASA Earth Observatory site

URL 278
Natural Earth

URL 225
Next Generation Blue Marble images 278
Node.js

URL 157
Node modules

installing 157
node_modules directory

URL 293
Node Package Manager (npm) 157

O
object constancy 35
ogr2ogr program 230
onColorChange function 88
onSlide function 79
openPicker function 84
Orthographic projection

about 257, 262, 263
used, for raster image reprojection 281-284
used, for rotating globe creation 263-268

P
PATCH version, Semantic Versioning 142
polyfill

about 62
canvg example 62-65
feature detection 62
svgweb 62
using 62

Polygon object 227
preattentive attributes of visual

perception 211
projection rotation, interactive star map

adding 272, 273
projections

about 224
URL 233

project setup, charting package
about 157
building, with Grunt 158

[332]

code, checking with JSHint 162, 163
frontend dependencies, managing 172-174
library, minifying 161
Node modules, installing 157
source files, concatenating 159, 160
tasks sequences, registering 171

R
radial chart 40
radial layout, layout algorithm

about 40-43
angles, computing 43, 44
using 45, 46

rangePoints method 93
raster images

pixel geographic coordinates,
computing 280

projecting, with D3 276-278
rendering, with canvas 278, 279
reprojecting, Orthographic

projection used 281-284
URL, for adding zoom behavior 284
URL, for reprojection 284

real-time application
collaborating, with Firebase 287, 288
Firebase, configuring 288, 289
integrating, with Firebase 289-291
Twitter explorer application, creating 291

release 141
release, charting package

development workflow
creating 141
Semantic Versioning 141

rendering context 67
render method 133
reproject, raster image 281
reusable charts

attributes 21
barcode chart 27
creating 21

right ascension 269
rotating globe

creating 263-268
URL, for article 268

routers 111

S
S3 Bucket

site, uploading to 206
s3cmd

about 206
URL 206
using 206

selection.call method
about 25
using 151

selection.each method 25
selection.on method 95
Semantic Versioning

about 141
MAJOR version 142
MINOR version 142
PATCH version 142
URL 141

setState method 136
setStock method 136
shapefile

.dbf 226

.shp 226

.shx 226
about 226

shapes
creating 68

slider
about 73
creating 75-79
drag behavior, using 74, 75
using 80

snapshot 291
Socket.IO

about 287, 297
using 297-302

star catalog, interactive star map
selecting 269, 270

stars, interactive star map
creating 271, 272

statuses/filter endpoint 293
statuses/firehose endpoint 293
statuses/sample endpoint 293
stock area chart 115-120

[333]

stock charts
creating 114
stock area chart 115-120
stock title chart 114, 115

stock collection 123
stock context view 129, 130
stock detail view 131, 132
stock explorer application

about 112, 113
application model, creating 124
collections, creating 122
context chart 112
control view 112
detail chart 112
index page 121
initializing 137, 138
models, creating 122
routes, defining 135, 136
stock charts, creating 114
stock collection, creating 123
stock model, creating 122
stock title 112
structure, preparing 120

stock model 122
stock selector view 126-128
stock title chart 114, 115
streaming server

creating 293
implementing 302-308
Socket.IO, using 297-302
Twitter-streaming API, accessing with

Twit 294-297
Twitter-streaming API, using 293

stream object 294
structure, client application

about 309
application setup 321-325
application view, creating 319
collections 311, 312
models 310
topics views, implementing 313

students section, dashboard
about 217
creating 217

suite 163
svg element

creating 26

SVG support, browser market 49
svgweb

about 62
URL 62

T
testing, charting package

heat map chart, testing 166-168
matrix layout, testing 169
test, creating 163
test, executing 164, 165
tests, running with Grunt 170

this context 25
timeFormat variable 103
timeInterval accessor method

using 34
title view 125, 126
TodoMVC

URL 112
tooltip

about 91, 96
creating 96-98
using 99, 101

tooltip function
configuring 99
creating 99

Topic model 310
Topics collection 312
topics map view

about 318
creating 318
rendering 318, 319

topics views
bar chart view 316, 317
implementing 313
input view 313-315
topics map view 318, 319

topojson.feature object 240
TopoJSON format

about 226-229
URL 229

topojson.mesh method 246
topology

mapping 239-247
tweet attributes

reference link 295

[334]

tweet object 295
Twit Node module

URL 294
used, for accessing

Twitter-streaming API 294-297
Twit project repository

URL 296
Twitter Application Management page

URL 293
Twitter explorer application

creating 291, 292
Twitter-streaming API

accessing, Twit used 294-297
endpoints 293
using 293

Typeahead jQuery plugin
about 196
URL 196

U
Underscore 110
updateColor function 87
updateMessages function 301
user interface elements

chart elements, highlighting 91-96

V
views 111
views, data-driven application

CountriesTrendView 194
creating 194-199

visualization, data-driven application
hosting, GitHub Pages used 204, 205

visualization, hosting in Amazon S3
about 205
files, deploying to S3 206
site, uploading to S3 Bucket 206, 207

visualizations, without SVG
color and size, setting 54-58
creating 50
data, loading 50, 51
data, sorting 50, 51
Electoral Map example 62
force layout method 51-53
legend, creating 59-62

Vows tool 141

Y
YAML

URL 184

Thank you for buying
Mastering D3.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Data Visualization with d3.js
ISBN: 978-1-78216-000-7 Paperback: 194 pages

Mold your data into beautiful visualizations
with d3.js

1. Build blocks of web visualizations.

2. Learn visualization with detailed
walkthroughs.

3. Learn to use data more effectively.

4. Animate with d3.js.

5. Design good visualizations.

Data Visualization with D3.js
Cookbook
ISBN: 978-1-78216-216-2 Paperback: 338 pages

Over 70 recipes to create dynamic data-driven
visualization with D3.js

1. Create stunning data visualization with the
power of D3.

2. Bootstrap D3 quickly with the help of
ready-to-go code samples.

3. Solve real-world visualization problems with
the help of practical recipes.

Please check www.PacktPub.com for information on our titles

Real-time Web Application
Development using Vert.x 2.0
ISBN: 978-1-78216-795-2 Paperback: 122 pages

An intuitive guide to building applications for the
real-time web with the Vert.x platform

1. Get started with developing applications for the
real-time web.

2. From concept to deployment, learn the
full development workflow of a real-time
web application.

3. Utilize the Java skills you already have while
stepping up to the next level.

4. Learn all the major building blocks of the
Vert.x platform.

Practical Data Analysis
ISBN: 978-1-78328-099-5 Paperback: 360 pages

Transform, model, and visualize your data through
hands-on projects, developed in open source tools

1. Explore how to analyze your data in various
innovative ways and turn them into insight.

2. Learn to use the D3.js visualization tool for
exploratory data analysis.

3. Understand how to work with graphs and
social data analysis.

4. Discover how to perform advanced query
techniques and run MapReduce on MongoDB.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Visualization
	Defining data visualization
	Some kinds of data visualizations
	Infographics
	Exploratory visualizations
	Dashboards
	Learning about data visualization

	Introducing the D3 library
	Summary

	Chapter 2: Reusable Charts
	Creating reusable charts
	Creating elements with D3
	Binding data
	Encapsulating the creation of elements
	Creating the svg element

	The barcode chart
	Accessor methods
	Chart initialization
	Adding data
	Adding the date accessor function
	Updating the dataset
	Fixing the enter and exit transitions

	Using the barcode chart
	Creating a layout algorithm
	The radial layout
	Computing the angles

	Using the layout

	Summary

	Chapter 3: Creating Visualizations without SVG
	SVG support in the browser market
	Visualizations without SVG
	Loading and sorting the data
	The force layout method
	Setting the color and size
	Creating a legend

	Polyfilling
	Feature detection
	The canvg example

	Using canvas and D3
	Creating figures with canvas
	Creating shapes
	Integrating canvas and D3

	Summary

	Chapter 4: Creating a Color
Picker with D3
	Creating a slider control
	The drag behavior
	Creating the slider
	Using the slider

	Creating a color picker
	The color picker selector
	Adding the color picker window

	The color picker window

	Summary

	Chapter 5: Creating User
Interface Elements
	Highlighting chart elements
	Creating tooltips
	Using the tooltip

	Selecting a range with brushing
	Creating the area chart
	Adding brushing
	The brush listener

	Summary

	Chapter 6: Interaction between Charts
	Learning the basics of Backbone
	Events
	Models
	Collections
	Views
	Routers

	The stock explorer application
	Creating the stock charts
	The stock title chart
	The stock area chart

	Preparing the application structure
	The index page

	Creating the models and collections
	The stock model
	The stock collection
	The application model

	Implementing the views
	The title view
	The stock selector view
	The stock context view
	The stock detail view
	The application view

	Defining the routes
	Initializing the application

	Summary

	Chapter 7: Creating a Charting Package
	The development workflow
	Writing the code
	Creating a release
	Semantic Versioning

	Creating the package contents
	The heat map chart
	The matrix layout

	The project setup
	Installing the Node modules
	Building with Grunt
	Concatenating our source files
	Minifying the library
	Checking our code with JSHint
	Testing our package
	Registering the sequences of tasks

	Managing the frontend dependencies

	Using the package in other projects
	Summary

	Chapter 8: Data-driven Applications
	Creating the application
	The project setup
	Generating a static site with Jekyll
	Creating the application components
	Creating the models and collections
	Creating the views
	The application setup

	Hosting the visualization with GitHub Pages
	Hosting the visualization in Amazon S3
	Configuring Jekyll to deploy files to S3
	Uploading the site to the S3 bucket

	Summary

	Chapter 9: Creating a Dashboard
	Defining a dashboard
	Good practices in dashboard design
	Making a dashboard
	Defining the purpose of the dashboard
	Obtaining the data
	Organizing the information
	Creating the dashboard sections
	The students section
	The courses section
	The class section

	Gathering the dashboard sections

	Summary

	Chapter 10: Creating Maps
	Obtaining geographic data
	Understanding the GeoJSON and TopoJSON formats
	Transforming and manipulating the files

	Creating maps with D3
	Creating a choropleth map
	Mapping topology
	Using Mapbox and D3
	Creating a Mapbox project
	Integrating Mapbox and D3

	Summary

	Chapter 11: Creating Advanced Maps
	Using cartographic projections
	Using the Equirectangular projection
	The Conic Equidistant projection
	The Orthographic projection

	Creating a rotating globe
	Creating an interactive star map
	Choosing our star catalog
	Drawing the stars
	Changing the projection and adding rotation
	Adding colors and labels to the stars

	Projecting raster images with D3
	Rendering the raster image with canvas
	Computing the geographic coordinates of each pixel
	Reprojecting the image using the Orthographic projection

	Summary

	Chapter 12: Creating a Real-time Application
	Collaborating in real time with Firebase
	Configuring Firebase
	Integrating the application with Firebase

	Creating a Twitter explorer application
	Creating the streaming server
	Using the Twitter-streaming API
	Using Twit to access the Twitter-streaming API

	Using Socket.IO
	Implementing the streaming server

	Creating the client application
	The application structure
	Models and collections
	Implementing the topics views
	Creating the application view
	The application setup

	Summary

	Index

