
www.allitebooks.com

http://www.allitebooks.org

Mastering Data Analysis with R

Gain clear insights into your data and solve real-world
data science problems with R – from data munging to
modeling and visualization

Gergely Daróczi

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Data Analysis with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1280915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-202-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Gergely Daróczi

Reviewers
Krishna Gawade

Alexey Grigorev

Mykola Kolisnyk

Mzabalazo Z. Ngwenya

Mohammad Rafi

Commissioning Editor
Akram Hussain

Acquisition Editor
Meeta Rajani

Content Development Editor
Nikhil Potdukhe

Technical Editor
Mohita Vyas

Copy Editors
Stephen Copestake

Angad Singh

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gergely Daróczi is a former assistant professor of statistics and an enthusiastic
R user and package developer. He is the founder and CTO of an R-based reporting
web application at http://rapporter.net and a PhD candidate in sociology.
He is currently working as the lead R developer/research data scientist at
https://www.card.com/ in Los Angeles.

Besides maintaining around half a dozen R packages, mainly dealing with reporting,
Gergely has coauthored the books Introduction to R for Quantitative Finance and
Mastering R for Quantitative Finance (both by Packt Publishing) by providing and
reviewing the R source code. He has contributed to a number of scientific journal
articles, mainly in social sciences but in medical sciences as well.

I am very grateful to my family, including my wife, son, and daughter,
for their continuous support and understanding, and for missing me
while I was working on this book—a lot more than originally planned.

I am also very thankful to Renata Nemeth and Gergely Toth for taking
over the modeling chapters. Their professional and valuable help is
highly appreciated. David Gyurko also contributed some interesting
topics and preliminary suggestions to this book. And last but not least,
I received some very useful feedback from the official reviewers and
from Zoltan Varju, Michael Puhle, and Lajos Balint on a few chapters
that are highly related to their field of expertise—thank you all!

www.allitebooks.com

http://rapporter.net
https://www.card.com/
http://www.allitebooks.org

About the Reviewers

Krishna Gawade is a data analyst and senior software developer with Saint-
Gobain's S.A. IT development center. Krishna discovered his passion for computer
science and data analysis while at Mumbai University where he holds a bachelor's
degree in computer science. He has been awarded multiple times from Saint-Gobain
for his contribution on various data driven projects.

He has been a technical reviewer on R Data Analysis Cookbook (ISBN: 9781783989065).
His current interests are data analysis, statistics, machine learning, and artificial
intelligence. He can be reached at gawadesk@gmail.com, or you can follow him
on Twitter at @gawadesk.

Alexey Grigorev is an experienced software developer and data scientist with five
years of professional experience. In his day-to-day job, he actively uses R and Python
for data cleaning, data analysis, and modeling.

Mykola Kolisnyk has been involved in test automation since 2004 through
various activities, including creating test automation solutions from the scratch,
leading test automation teams, and performing consultancy regarding test
automation processes. In his career, he has had experience of different test
automation tools, such as Mercury WinRunner, MicroFocus SilkTest, SmartBear
TestComplete, Selenium-RC, WebDriver, Appium, SoapUI, BDD frameworks,
and many other engines and solutions. Mykola has experience with multiple
programming technologies based on Java, C#, Ruby, and more. He has worked
for different domain areas, such as healthcare, mobile, telecommunications, social
networking, business process modeling, performance and talent management,
multimedia, e-commerce, and investment banking.

www.allitebooks.com

http://www.allitebooks.org

He has worked as a permanent employee at ISD, GlobalLogic, Luxoft, and
Trainline.com. He also has experience in freelancing activities and was invited
as an independent consultant to introduce test automation approaches and
practices to external companies.

Currently, he works as a mobile QA developer at the Trainline.com. Mykola is
one of the authors (together with Gennadiy Alpaev) of the online SilkTest Manual
(http://silktutorial.ru/) and participated in the creation of the TestComplete
tutorial at http://tctutorial.ru/, which is one of the biggest related
documentation available at RU.net.

Besides this, he participated as a reviewer on TestComplete Cookbook (ISBN:
9781849693585) and Spring Batch Essentials, Packt Publishing (ISBN: 9781783553372).

Mzabalazo Z. Ngwenya holds a postgraduate degree in mathematical statistics
from the University of Cape Town. He has worked extensively in the field of statistical
consulting and currently works as a biometrician at a research and development
entity in South Africa. His areas of interest are primarily centered around statistical
computing, and he has over 10 years of experience with the use of R for data analysis
and statistical research. Previously, he was involved in reviewing Learning RStudio
for R Statistical Computing, Mark P.J. van der Loo and Edwin de Jonge; R Statistical
Application Development by Example Beginner's Guide, Prabhanjan Narayanachar Tattar; R
Graph Essentials, David Alexandra Lillis; R Object-oriented Programming, Kelly Black; and
Mastering Scientific Computing with R, Paul Gerrard and Radia Johnson. All of these were
published by Packt Publishing.

Mohammad Rafi is a software engineer who loves data analytics, programming,
and tinkering with anything he can get his hands on. He has worked on technologies
such as R, Python, Hadoop, and JavaScript. He is an engineer by day and a hardcore
gamer by night.

He was one of the reviewers on R for Data Science. Mohammad has more than 6 years
of highly diversified professional experience, which includes app development, data
processing, search expert, and web data analytics. He started with a web marketing
company. Since then, he has worked with companies such as Hindustan Times,
Google, and InMobi.

www.allitebooks.com

http://silktutorial.ru/
http://tctutorial.ru/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Hello, Data! 1

Loading text files of a reasonable size 2
Data files larger than the physical memory 5

Benchmarking text file parsers 6
Loading a subset of text files 8

Filtering flat files before loading to R 9
Loading data from databases 10

Setting up the test environment 11
MySQL and MariaDB 15
PostgreSQL 20
Oracle database 22
ODBC database access 29
Using a graphical user interface to connect to databases 32
Other database backends 33

Importing data from other statistical systems 35
Loading Excel spreadsheets 35
Summary 36

Chapter 2: Getting Data from the Web 37
Loading datasets from the Internet 38
Other popular online data formats 42
Reading data from HTML tables 48

Reading tabular data from static Web pages 49
Scraping data from other online sources 51
R packages to interact with data source APIs 55

Socrata Open Data API 55
Finance APIs 57
Fetching time series with Quandl 59

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Google documents and analytics 60
Online search trends 60
Historical weather data 62
Other online data sources 63

Summary 63
Chapter 3: Filtering and Summarizing Data 65

Drop needless data 65
Drop needless data in an efficient way 67
Drop needless data in another efficient way 68

Aggregation 70
Quicker aggregation with base R commands 72
Convenient helper functions 73
High-performance helper functions 75
Aggregate with data.table 76

Running benchmarks 78
Summary functions 81

Adding up the number of cases in subgroups 81
Summary 84

Chapter 4: Restructuring Data 85
Transposing matrices 85
Filtering data by string matching 86
Rearranging data 88
dplyr versus data.table 91
Computing new variables 92

Memory profiling 93
Creating multiple variables at a time 94
Computing new variables with dplyr 96

Merging datasets 96
Reshaping data in a flexible way 99

Converting wide tables to the long table format 100
Converting long tables to the wide table format 103
Tweaking performance 105

The evolution of the reshape packages 105
Summary 106

Chapter 5: Building Models
(authored by Renata Nemeth and Gergely Toth) 107

The motivation behind multivariate models 108
Linear regression with continuous predictors 109

Model interpretation 109
Multiple predictors 112

Table of Contents

[iii]

Model assumptions 115
How well does the line fit in the data? 118
Discrete predictors 121
Summary 125

Chapter 6: Beyond the Linear Trend Line
(authored by Renata Nemeth and Gergely Toth) 127

The modeling workflow 127
Logistic regression 129

Data considerations 133
Goodness of model fit 133
Model comparison 135

Models for count data 135
Poisson regression 136
Negative binomial regression 141
Multivariate non-linear models 142

Summary 151
Chapter 7: Unstructured Data 153

Importing the corpus 153
Cleaning the corpus 155
Visualizing the most frequent words in the corpus 159
Further cleanup 160

Stemming words 161
Lemmatisation 163

Analyzing the associations among terms 164
Some other metrics 165
The segmentation of documents 166
Summary 168

Chapter 8: Polishing Data 169
The types and origins of missing data 169
Identifying missing data 170
By-passing missing values 171

Overriding the default arguments of a function 173
Getting rid of missing data 176
Filtering missing data before or during the actual analysis 177
Data imputation 178

Modeling missing values 180
Comparing different imputation methods 183
Not imputing missing values 184
Multiple imputation 185

Table of Contents

[iv]

Extreme values and outliers 185
Testing extreme values 187

Using robust methods 188
Summary 191

Chapter 9: From Big to Small Data 193
Adequacy tests 194

Normality 194
Multivariate normality 196
Dependence of variables 200
KMO and Barlett's test 203

Principal Component Analysis 207
PCA algorithms 208
Determining the number of components 210
Interpreting components 214
Rotation methods 217
Outlier-detection with PCA 221

Factor analysis 225
Principal Component Analysis versus Factor Analysis 229
Multidimensional Scaling 230
Summary 234

Chapter 10: Classification and Clustering 235
Cluster analysis 236

Hierarchical clustering 236
Determining the ideal number of clusters 240
K-means clustering 243
Visualizing clusters 246

Latent class models 247
Latent Class Analysis 247
LCR models 250

Discriminant analysis 250
Logistic regression 254
Machine learning algorithms 257

The K-Nearest Neighbors algorithm 258
Classification trees 260
Random forest 264
Other algorithms 265

Summary 268

Table of Contents

[v]

Chapter 11: Social Network Analysis of the R Ecosystem 269
Loading network data 269
Centrality measures of networks 271
Visualizing network data 273

Interactive network plots 277
Custom plot layouts 278
Analyzing R package dependencies with an R package 279

Further network analysis resources 280
Summary 280

Chapter 12: Analyzing Time-series 281
Creating time-series objects 281
Visualizing time-series 283
Seasonal decomposition 285
Holt-Winters filtering 286
Autoregressive Integrated Moving Average models 289
Outlier detection 291
More complex time-series objects 293
Advanced time-series analysis 295
Summary 296

Chapter 13: Data Around Us 297
Geocoding 297
Visualizing point data in space 299
Finding polygon overlays of point data 302
Plotting thematic maps 305
Rendering polygons around points 306

Contour lines 307
Voronoi diagrams 310

Satellite maps 311
Interactive maps 312

Querying Google Maps 313
JavaScript mapping libraries 315

Alternative map designs 317
Spatial statistics 319
Summary 322

Table of Contents

[vi]

Chapter 14: Analyzing the R Community 323
R Foundation members 323

Visualizing supporting members around the world 324
R package maintainers 327

The number of packages per maintainer 328
The R-help mailing list 332

Volume of the R-help mailing list 335
Forecasting the e-mail volume in the future 338

Analyzing overlaps between our lists of R users 339
Further ideas on extending the capture-recapture models 342

The number of R users in social media 342
R-related posts in social media 344
Summary 347

Appendix: References 349
Index 363

[vii]

Preface
R has become the lingua franca of statistical analysis, and it's already actively and
heavily used in many industries besides the academic sector, where it originated
more than 20 years ago. Nowadays, more and more businesses are adopting R in
production, and it has become one of the most commonly used tools by data analysts
and scientists, providing easy access to thousands of user-contributed packages.

Mastering Data Analysis with R will help you get familiar with this open source
ecosystem and some statistical background as well, although with a minor focus
on mathematical questions. We will primarily focus on how to get things done
practically with R.

As data scientists spend most of their time fetching, cleaning, and restructuring data,
most of the first hands-on examples given here concentrate on loading data from
files, databases, and online sources. Then, the book changes its focus to restructuring
and cleansing data—still not performing actual data analysis yet. The later chapters
describe special data types, and then classical statistical models are also covered,
with some machine learning algorithms.

What this book covers
Chapter 1, Hello, Data!, starts with the first very important task in every data-related
task: loading data from text files and databases. This chapter covers some problems
of loading larger amounts of data into R using improved CSV parsers, pre-filtering
data, and comparing support for various database backends.

Chapter 2, Getting Data from the Web, extends your knowledge on importing data with
packages designed to communicate with Web services and APIs, shows how to scrape
and extract data from home pages, and gives a general overview of dealing with XML
and JSON data formats.

Preface

[viii]

Chapter 3, Filtering and Summarizing Data, continues with the basics of data processing
by introducing multiple methods and ways of filtering and aggregating data, with
a performance and syntax comparison of the deservedly popular data.table and
dplyr packages.

Chapter 4, Restructuring Data, covers more complex data transformations, such as
applying functions on subsets of a dataset, merging data, and transforming to and
from long and wide table formats, to perfectly fit your source data with your desired
data workflow.

Chapter 5, Building Models (authored by Renata Nemeth and Gergely Toth), is the first
chapter that deals with real statistical models, and it introduces the concepts of
regression and models in general. This short chapter explains how to test the
assumptions of a model and interpret the results via building a linear multivariate
regression model on a real-life dataset.

Chapter 6, Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth),
builds on the previous chapter, but covers the problems of non-linear associations
of predictor variables and provides further examples on generalized linear models,
such as logistic and Poisson regression.

Chapter 7, Unstructured Data, introduces new data types. These might not include
any information in a structured way. Here, you learn how to use statistical methods
to process such unstructured data through some hands-on examples on text mining
algorithms, and visualize the results.

Chapter 8, Polishing Data, covers another common issue with raw data sources. Most
of the time, data scientists handle dirty-data problems, such as trying to cleanse data
from errors, outliers, and other anomalies. On the other hand, it's also very important
to impute or minimize the effects of missing values.

Chapter 9, From Big to Smaller Data, assumes that your data is already loaded, clean,
and transformed into the right format. Now you can start analyzing the usually high
number of variables, to which end we cover some statistical methods on dimension
reduction and other data transformations on continuous variables, such as principal
component analysis, factor analysis, and multidimensional scaling.

Chapter 10, Classification and Clustering, discusses several ways of grouping
observations in a sample using supervised and unsupervised statistical and machine
learning methods, such as hierarchical and k-means clustering, latent class models,
discriminant analysis, logistic regression and the k-nearest neighbors algorithm, and
classification and regression trees.

Chapter 11, A Social Network Analysis of the R Ecosystem, concentrates on a special data
structure and introduces the basic concept and visualization techniques of network
analysis, with a special focus on the igraph package.

Preface

[ix]

Chapter 12, Analyzing a Time Series, shows you how to handle time-date objects
and analyze related values by smoothing, seasonal decomposition, and ARIMA,
including some forecasting and outlier detection as well.

Chapter 13, Data around Us, covers another important dimension of data, with a
primary focus on visualizing spatial data with thematic, interactive, contour, and
Voronoi maps.

Chapter 14, Analyzing the R Community, provides a more complete case study that
combines many different methods from the previous chapters to highlight what you
have learned in this book and what kind of questions and problems you might face
in future projects.

Appendix, References, gives references to the used R packages and some further
suggested readings for each aforementioned chapter.

What you need for this book
All the code examples provided in this book should be run in the R console,
which needs to be installed on your computer. You can download the software
for free and find the installation instructions for all major operating systems at
http://r-project.org.

Although we will not cover advanced topics, such as how to use R in Integrated
Development Environments (IDE), there are awesome plugins and extensions
for Emacs, Eclipse, vi, and Notepad++, besides other editors. Also, we highly
recommend that you try RStudio, which is a free and open source IDE dedicated
to R, at https://www.rstudio.com/products/RStudio.

Besides a working R installation, we will also use some user-contributed R packages.
These can easily be installed from the Comprehensive R Archive Network (CRAN)
in most cases. The sources of the required packages and the versions used to produce
the output in this book are listed in Appendix, References.

To install a package from CRAN, you will need an Internet connection. To download
the binary files or sources, use the install.packages command in the R console,
like this:

> install.packages('pander')

Some packages mentioned in this book are not (yet) available on CRAN, but may be
installed from Bitbucket or GitHub. These packages can be installed via the install_
bitbucket and the install_github functions from the devtools package. Windows
users should first install rtools from https://cran.r-project.org/bin/windows/
Rtools.

http://r-project.org
https://www.rstudio.com/products/RStudio
https://cran.r-project.org/bin/windows/Rtools
https://cran.r-project.org/bin/windows/Rtools

Preface

[x]

After installation, the package should be loaded to the current R session before
you can start using it. All the required packages are listed in the appendix, but the
code examples also include the related R command for each package at the first
occurrence in each chapter:

> library(pander)

We highly recommend downloading the code example files of this book (refer to
the Downloading the example code section) so that you can easily copy and paste the
commands in the R console without the R prompt shown in the printed version of
the examples and output in the book.

If you have no experience with R, you should start with some free introductory
articles and manuals from the R home page, and a short list of suggested materials
is also available in the appendix of this book.

Who this book is for
If you are a data scientist or an R developer who wants to explore and optimize
their use of R's advanced features and tools, then this is the book for you. Basic
knowledge of R is required, along with an understanding of database logic. If you
are a data scientist, engineer, or analyst who wants to explore and optimize your
use of R's advanced features, this is the book for you. Although a basic knowledge
of R is required, the book can get you up and running quickly by providing
references to introductory materials.

Conventions
You will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of
their meaning.

Function names, arguments, variables and other code reference in text are shown as
follows: "The header argument of the read.big.matrix function defaults to FALSE."

Any command-line input or output that is shown in the R console is written as follows:

> set.seed(42)
> data.frame(
+ A = runif(2),
+ B = sample(letters, 2))
 A B
1 0.9148060 h
2 0.9370754 u

Preface

[xi]

The > character represents the prompt, which means that the R console is waiting
for commands to be evaluated. Multiline expressions start with the same symbol on
the first line, but all other lines have a + sign at the beginning to show that the last
R expression is not complete yet (for example, a closing parenthesis or a quote is
missing). The output is returned without any extra leading character, with the
same monospaced font style.

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[xii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/1234OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

Hello, Data!
Most projects in R start with loading at least some data into the running R session. As
R supports a variety of file formats and database backend, there are several ways to
do so. In this chapter, we will not deal with basic data structures, which are already
familiar to you, but will concentrate on the performance issue of loading larger
datasets and dealing with special file formats.

For a quick overview on the standard tools and to refresh your
knowledge on importing general data, please see Chapter 7 of the official
An Introduction to R manual of CRAN at http://cran.r-project.
org/doc/manuals/R-intro.html#Reading-data-from-files or
Rob Kabacoff's Quick-R site, which offers keywords and cheat-sheets for
most general tasks in R at http://www.statmethods.net/input/
importingdata.html. For further materials, please see the References
section in the Appendix.

Although R has its own (serialized) binary RData and rds file formats, which
are extremely convenient to use for all R users as these also store R object meta-
information in an efficient way, most of the time we have to deal with other input
formats—provided by our employer or client.

One of the most popular data file formats is flat files, which are simple text files in
which the values are separated by white-space, the pipe character, commas, or more
often by semi-colon in Europe. This chapter will discuss several options R has to
offer to load these kinds of documents, and we will benchmark which of these is the
most efficient approach to import larger files.

http://cran.r-project.org/doc/manuals/R-intro.html#Reading-data-from-files
http://cran.r-project.org/doc/manuals/R-intro.html#Reading-data-from-files
http://www.statmethods.net/input/importingdata.html
http://www.statmethods.net/input/importingdata.html

Hello, Data!

[2]

Sometimes we are only interested in a subset of a dataset; thus, there is no need to
load all the data from the sources. In such cases, database backend can provide the
best performance, where the data is stored in a structured way preloaded on our
system, so we can query any subset of that with simple and efficient commands.
The second section of this chapter will focus on the three most popular databases
(MySQL, PostgreSQL, and Oracle Database), and how to interact with those in R.

Besides some other helper tools and a quick overview on other database backend,
we will also discuss how to load Excel spreadsheets into R—without the need to
previously convert those to text files in Excel or Open/LibreOffice.

Of course this chapter is not just about data file formats, database connections, and
such boring internals. But please bear in mind that data analytics always starts with
loading data. This is unavoidable, so that our computer and statistical environment
know the structure of the data before doing some real analytics.

Loading text files of a reasonable size
The title of this chapter might also be Hello, Big Data!, as now we concentrate on
loading relatively large amount of data in an R session. But what is Big Data, and
what amount of data is problematic to handle in R? What is reasonable size?

R was designed to process data that fits in the physical memory of a single computer.
So handling datasets that are smaller than the actual accessible RAM should be fine.
But please note that the memory required to process data might become larger while
doing some computations, such as principal component analysis, which should be also
taken into account. I will refer to this amount of data as reasonable sized datasets.

Loading data from text files is pretty simple with R, and loading any reasonable
sized dataset can be achieved by calling the good old read.table function. The only
issue here might be the performance: how long does it take to read, for example, a
quarter of a million rows of data? Let's see:

> library('hflights')

> write.csv(hflights, 'hflights.csv', row.names = FALSE)

As a reminder, please note that all R commands and the returned output
are formatted as earlier in this book. The commands starts with > on the
first line, and the remainder of multi-line expressions starts with +, just
as in the R console. To copy and paste these commands on your machine,
please download the code examples from the Packt homepage. For more
details, please see the What you need for this book section in the Preface.

Chapter 1

[3]

Yes, we have just written an 18.5 MB text file to your disk from the hflights package,
which includes some data on all flights departing from Houston in 2011:

> str(hflights)

'data.frame': 227496 obs. of 21 variables:

 $ Year : int 2011 2011 2011 2011 2011 2011 2011 ...

 $ Month : int 1 1 1 1 1 1 1 1 1 1 ...

 $ DayofMonth : int 1 2 3 4 5 6 7 8 9 10 ...

 $ DayOfWeek : int 6 7 1 2 3 4 5 6 7 1 ...

 $ DepTime : int 1400 1401 1352 1403 1405 1359 1359 ...

 $ ArrTime : int 1500 1501 1502 1513 1507 1503 1509 ...

 $ UniqueCarrier : chr "AA" "AA" "AA" "AA" ...

 $ FlightNum : int 428 428 428 428 428 428 428 428 428 ...

 $ TailNum : chr "N576AA" "N557AA" "N541AA" "N403AA" ...

 $ ActualElapsedTime: int 60 60 70 70 62 64 70 59 71 70 ...

 $ AirTime : int 40 45 48 39 44 45 43 40 41 45 ...

 $ ArrDelay : int -10 -9 -8 3 -3 -7 -1 -16 44 43 ...

 $ DepDelay : int 0 1 -8 3 5 -1 -1 -5 43 43 ...

 $ Origin : chr "IAH" "IAH" "IAH" "IAH" ...

 $ Dest : chr "DFW" "DFW" "DFW" "DFW" ...

 $ Distance : int 224 224 224 224 224 224 224 224 224 ...

 $ TaxiIn : int 7 6 5 9 9 6 12 7 8 6 ...

 $ TaxiOut : int 13 9 17 22 9 13 15 12 22 19 ...

 $ Cancelled : int 0 0 0 0 0 0 0 0 0 0 ...

 $ CancellationCode : chr "" "" "" "" ...

 $ Diverted : int 0 0 0 0 0 0 0 0 0 0 ...

The hflights package provides an easy way to load a subset of
the huge Airline Dataset of the Research and Innovation Technology
Administration at the Bureau of Transportation Statistics. The original
database includes the scheduled and actual departure/arrival times
of all US flights along with some other interesting information since
1987, and is often used to demonstrate machine learning and Big Data
technologies. For more details on the dataset, please see the column
description and other meta-data at http://www.transtats.bts.
gov/DatabaseInfo.asp?DB_ID=120&Link=0.

http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0
http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0

Hello, Data!

[4]

We will use this 21-column data to benchmark data import times. For example, let's
see how long it takes to import the CSV file with read.csv:

> system.time(read.csv('hflights.csv'))

 user system elapsed

 1.730 0.007 1.738

It took a bit more than one and a half seconds to load the data from an SSD here. It's
quite okay, but we can achieve far better results by identifying then specifying the
classes of the columns instead of calling the default type.convert (see the docs in
read.table for more details or search on StackOverflow, where the performance of
read.csv seems to be a rather frequent and popular question):

> colClasses <- sapply(hflights, class)

> system.time(read.csv('hflights.csv', colClasses = colClasses))

 user system elapsed

 1.093 0.000 1.092

It's much better! But should we trust this one observation? On our way to
mastering data analysis in R, we should implement some more reliable tests—by
simply replicating the task n times and providing a summary on the results of
the simulation. This approach provides us with performance data with multiple
observations, which can be used to identify statistically significant differences in the
results. The microbenchmark package provides a nice framework for such tasks:

> library(microbenchmark)

> f <- function() read.csv('hflights.csv')

> g <- function() read.csv('hflights.csv', colClasses = colClasses,

+ nrows = 227496, comment.char = '')

> res <- microbenchmark(f(), g())

> res

Unit: milliseconds

 expr min lq median uq max neval

 f() 1552.3383 1617.8611 1646.524 1708.393 2185.565 100

 g() 928.2675 957.3842 989.467 1044.571 1284.351 100

So we defined two functions: f stands for the default settings of read.csv while, in
the g function, we passed the aforementioned column classes along with two other
parameters for increased performance. The comment.char argument tells R not to
look for comments in the imported data file, while the nrows parameter defined
the exact number of rows to read from the file, which saves some time and space
on memory allocation. Setting stringsAsFactors to FALSE might also speed up
importing a bit.

Chapter 1

[5]

Identifying the number of lines in the text file could be done with some
third-party tools, such as wc on Unix, or a slightly slower alternative
would be the countLines function from the R.utils package.

But back to the results. Let's also visualize the median and related descriptive
statistics of the test cases, which was run 100 times by default:

> boxplot(res, xlab = '',

+ main = expression(paste('Benchmarking ', italic('read.table'))))

The difference seems to be significant (please feel free to do some statistical tests to
verify that), so we made a 50+ percent performance boost simply by fine-tuning the
parameters of read.table.

Data files larger than the physical memory
Loading a larger amount of data into R from CSV files that would not fit in the
memory could be done with custom packages created for such cases. For example,
both the sqldf package and the ff package have their own solutions to load data
from chunk to chunk in a custom data format. The first uses SQLite or another
SQL-like database backend, while the latter creates a custom data frame with the
ffdf class that can be stored on disk. The bigmemory package provides a similar
approach. Usage examples (to be benchmarked) later:

> library(sqldf)

> system.time(read.csv.sql('hflights.csv'))

Hello, Data!

[6]

 user system elapsed

 2.293 0.090 2.384

> library(ff)

> system.time(read.csv.ffdf(file = 'hflights.csv'))

 user system elapsed

 1.854 0.073 1.918

> library(bigmemory)

> system.time(read.big.matrix('hflights.csv', header = TRUE))

 user system elapsed

 1.547 0.010 1.559

Please note that the header defaults to FALSE with read.big.matrix from the
bigmemory package, so be sure to read the manual of the referenced functions before
doing your own benchmarks. Some of these functions also support performance
tuning like read.table. For further examples and use cases, please see the
Large memory and out-of-memory data section of the High-Performance and Parallel
Computing with R CRAN Task View at http://cran.r-project.org/web/views/
HighPerformanceComputing.html.

Benchmarking text file parsers
Another notable alternative for handling and loading reasonable sized data from flat
files to R is the data.table package. Although it has a unique syntax differing from
the traditional S-based R markup, the package comes with great documentation,
vignettes, and case studies on the indeed impressive speedup it can offer for various
database actions. Such uses cases and examples will be discussed in the Chapter 3,
Filtering and Summarizing Data and Chapter 4, Restructuring Data.

The package ships a custom R function to read text files with improved performance:

> library(data.table)

> system.time(dt <- fread('hflights.csv'))

 user system elapsed

 0.153 0.003 0.158

Loading the data was extremely quick compared to the preceding examples,
although it resulted in an R object with a custom data.table class, which can
be easily transformed to the traditional data.frame if needed:

> df <- as.data.frame(dt)

http://cran.r-project.org/Web/views/HighPerformanceComputing.html
http://cran.r-project.org/Web/views/HighPerformanceComputing.html

Chapter 1

[7]

Or by using the setDF function, which provides a very fast and in-place method
of object conversion without actually copying the data in the memory. Similarly,
please note:

> is.data.frame(dt)

[1] TRUE

This means that a data.table object can fall back to act as a data.frame for
traditional usage. Leaving the imported data as is or transforming it to data.frame
depends on the latter usage. Aggregating, merging, and restructuring data with the
first is faster compared to the standard data frame format in R. On the other hand,
the user has to learn the custom syntax of data.table—for example, DT[i, j, by]
stands for "from DT subset by i, then do j grouped by by". We will discuss it later in
the Chapter 3, Filtering and Summarizing Data.

Now, let's compare all the aforementioned data import methods: how fast are they?
The final winner seems to be fread from data.table anyway. First, we define some
methods to be benchmarked by declaring the test functions:

> .read.csv.orig <- function() read.csv('hflights.csv')

> .read.csv.opt <- function() read.csv('hflights.csv',

+ colClasses = colClasses, nrows = 227496, comment.char = '',

+ stringsAsFactors = FALSE)

> .read.csv.sql <- function() read.csv.sql('hflights.csv')

> .read.csv.ffdf <- function() read.csv.ffdf(file = 'hflights.csv')

> .read.big.matrix <- function() read.big.matrix('hflights.csv',

+ header = TRUE)

> .fread <- function() fread('hflights.csv')

Now, let's run all these functions 10 times each instead of several hundreds of
iterations like previously—simply to save some time:

> res <- microbenchmark(.read.csv.orig(), .read.csv.opt(),

+ .read.csv.sql(), .read.csv.ffdf(), .read.big.matrix(), .fread(),

+ times = 10)

And print the results of the benchmark with a predefined number of digits:

> print(res, digits = 6)

Unit: milliseconds

 expr min lq median uq max neval

 .read.csv.orig() 2109.643 2149.32 2186.433 2241.054 2421.392 10

Hello, Data!

[8]

 .read.csv.opt() 1525.997 1565.23 1618.294 1660.432 1703.049 10

 .read.csv.sql() 2234.375 2265.25 2283.736 2365.420 2599.062 10

 .read.csv.ffdf() 1878.964 1901.63 1947.959 2015.794 2078.970 10

 .read.big.matrix() 1579.845 1603.33 1647.621 1690.067 1937.661 10

 .fread() 153.289 154.84 164.994 197.034 207.279 10

Please note that now we were dealing with datasets fitting in actual physical
memory, and some of the benchmarked packages are designed and optimized for
far larger databases. So it seems that optimizing the read.table function gives a
great performance boost over the default settings, although if we are after really
fast importing of reasonable sized data, using the data.table package is the
optimal solution.

Loading a subset of text files
Sometimes we only need some parts of the dataset for an analysis, stored in a
database backend or in flat files. In such situations, loading only the relevant subset
of the data frame will result in much more speed improvement compared to any
performance tweaks and custom packages discussed earlier.

Let's imagine we are only interested in flights to Nashville, where the annual useR!
conference took place in 2012. This means we need only those rows of the CSV file
where the Dest equals BNA (this International Air Transport Association airport code
stands for Nashville International Airport).

Instead of loading the whole dataset in 160 to 2,000 milliseconds (see the previous
section) and then dropping the unrelated rows (see in Chapter 3, Filtering and
Summarizing Data), let's see the possible ways of filtering the data while loading it.

The already mentioned sqldf package can help with this task by specifying a SQL
statement to be run on the temporary SQLite database created for the importing task:

> df <- read.csv.sql('hflights.csv',

+ sql = "select * from file where Dest = '\"BNA\"'")

This sql argument defaults to "select * from file", which means loading
all fields of each row without any filters. Now we extended that with a filter
statement. Please note that in our updated SQL statements, we also added the
double quotes to the search term, as sqldf does not automatically recognize the
quotes as special; it regards them as part of the fields. One may overcome this
issue also by providing a custom filter argument, such as the following example
on Unix-like systems:

Chapter 1

[9]

> df <- read.csv.sql('hflights.csv',

+ sql = "select * from file where Dest = 'BNA'",

+ filter = 'tr -d ^\\" ')

The resulting data frame holds only 3,481 observations out of the 227,496 cases in the
original dataset, and filtering inside the temporary SQLite database of course speeds
up data importing a bit:

> system.time(read.csv.sql('hflights.csv'))

 user system elapsed

 2.117 0.070 2.191

> system.time(read.csv.sql('hflights.csv',

+ sql = "select * from file where Dest = '\"BNA\"'"))

 user system elapsed

 1.700 0.043 1.745

The slight improvement is due to the fact that both R commands first loaded the
CSV file to a temporary SQLite database; this process of course takes some time and
cannot be eliminated from this process. To speed up this part of the evaluation, you
can specify dbname as NULL for a performance boost. This way, the SQLite database
would be created in memory instead of a tempfile, which might not be an optimal
solution for larger datasets.

Filtering flat files before loading to R
Is there a faster or smarter way to load only a portion of such a text file? One might
apply some regular expression-based filtering on the flat files before passing them
to R. For example, grep or ack might be a great tool to do so in a Unix environment,
but it's not available by default on Windows machines, and parsing CSV files by
regular expressions might result in some unexpected side-effects as well. Believe me,
you never want to write a CSV, JSON, or XML parser from scratch!

Anyway, a data scientist nowadays should be a real jack-of-all-trades when it comes
to processing data, so here comes a quick and dirty example to show how one could
read the filtered data in less than 100 milliseconds:

> system.time(system('cat hflights.csv | grep BNA', intern = TRUE))

 user system elapsed

 0.040 0.050 0.082

Well, that's a really great running time compared to any of our previous results! But
what if we want to filter for flights with an arrival delay of more than 13.5 minutes?

www.allitebooks.com

http://www.allitebooks.org

Hello, Data!

[10]

Another way, and probably a more maintainable approach, would be to first load the
data into a database backend, and query that when any subset of the data is needed.
This way we could for example, simply populate a SQLite database in a file only
once, and then later we could fetch any subsets in a fragment of read.csv.sql's
default run time.

So let's create a persistent SQLite database:

> sqldf("attach 'hflights_db' as new")

This command has just created a file named to hflights_db in the current working
directory. Next, let's create a table named hflights and populate the content of the
CSV file to the database created earlier:

> read.csv.sql('hflights.csv',

+ sql = 'create table hflights as select * from file',

+ dbname = 'hflights_db')

No benchmarking was made so far, as these steps will be run only once, while the
queries for sub-parts of the dataset will probably run multiple times later:

> system.time(df <- sqldf(

+ sql = "select * from hflights where Dest = '\"BNA\"'",

+ dbname = "hflights_db"))

 user system elapsed

 0.070 0.027 0.097

And we have just loaded the required subset of the database in less than 100
milliseconds! But we can do a lot better if we plan to often query the persistent
database: why not dedicate a real database instance for our dataset instead of a
simple file-based and server-less SQLite backend?

Loading data from databases
The great advantage of using a dedicated database backend instead of loading data
from the disk on demand is that databases provide:

• Faster access to the whole or selected parts of large tables
• Powerful and quick ways to aggregate and filter data before loading it to R
• Infrastructure to store data in a relational, more structured scheme compared

to the traditional matrix model of spreadsheets and R objects
• Procedures to join and merge related data

Chapter 1

[11]

• Concurrent and network access from multiple clients at the same time
• Security policies and limits to access the data
• A scalable and configurable backend to store data

The DBI package provides a database interface, a communication channel between R
and various relational database management systems (RDBMS), such as MySQL,
PostgreSQL, MonetDB, Oracle, and for example Open Document Databases, and
so on. There is no real need to install the package on its own because, acting as an
interface, it will be installed anyway as a dependency, if needed.

Connecting to a database and fetching data is pretty similar with all these backends,
as all are based on the relational model and using SQL to manage and query
data. Please be advised that there are some important differences between the
aforementioned database engines and that several more open-source and commercial
alternatives also exist. But we will not dig into the details on how to choose a
database backend or how to build a data warehouse and extract, transform, and
load (ETL) workflows, but we will only concentrate on making connections and
managing data from R.

SQL, originally developed at IBM, with its more than 40 years of history,
is one of the most important programming languages nowadays—with
various dialects and implementations. Being one of the most popular
declarative languages all over the world, there are many online tutorials
and free courses to learn how to query and manage data with SQL, which
is definitely one of the most important tools in every data scientist's Swiss
army knife.
So, besides R, it's really worth knowing your way around RDBMS, which
are extremely common in any industry you may be working at as a data
analyst or in a similar position.

Setting up the test environment
Database backends usually run on servers remote from the users doing data analysis,
but for testing purposes, it might be a good idea to install local instances on the
machine running R. As the installation process can be extremely different on various
operating systems, we will not enter into any details of the installation steps, but we
will rather refer to where the software can be downloaded from and some further
links to great resources and documentation for installation.

Hello, Data!

[12]

Please note that installing and actually trying to load data from these databases is
totally optional and you do not have to follow each step—the rest of the book will
not depend on any database knowledge or prior experience with databases. On the
other hand, if you do not want to mess your workspace with temporary installation of
multiple database applications for testing purposes, using virtual machines might be
an optimal workaround. Oracle's VirtualBox provides a free and easy way of running
multiple virtual machines with their dedicated operating system and userspace.

For detailed instructions on how to download then import a VirtualBox
image, see the Oracle section.

This way you can quickly deploy a fully functional, but disposable, database
environment to test-drive the following examples of this chapter. In the following
image, you can see VirtualBox with four installed virtual machines, of which
three are running in the background to provide some database backends for
testing purposes:

Chapter 1

[13]

VirtualBox can be installed by your operating system's
package manager on Linux or by downloading the installation
binary/sources from https://www.virtualbox.org/wiki/
Downloads. For detailed and operating-system specific installation
information, please refer to the Chapter 2, Installation details of the
manual: http://www.virtualbox.org/manual/.

Nowadays, setting up and running a virtual machine is really intuitive and easy;
basically you only need a virtual machine image to be loaded and launched. Some
virtual machines, so called appliances, include the operating system, with a number
of further software usually already configured to work, for simple, easy and
quick distribution.

Once again, if you do not enjoy installing and testing new software
or spending time on learning about the infrastructure empowering
your data needs, the following steps are not necessary and you can
freely skip these optional tasks primarily described for full-stack
developers/data scientists.

Such pre-configured virtual machines to be run on any computer can be downloaded
from various providers on the Internet in multiple file formats, such as OVF or OVA.
General purpose VirtualBox virtual appliances can be downloaded for example
from http://virtualboximages.com/vdi/index or http://virtualboxes.org/
images/.

Virtual appliances should be imported in VirtualBox, while
non-OVF/OVA disk images should be attached to newly created
virtual machines; thus, some extra manual configuration might
also be needed.

Oracle also has a repository with a bunch of useful virtual images for data scientist
apprentices and other developers at http://www.oracle.com/technetwork/
community/developer-vm/index.html, with for example the Oracle Big Data Lite
VM developer virtual appliance featuring the following most important components:

• Oracle Database
• Apache Hadoop and various tools in Cloudera distribution
• The Oracle R Distribution
• Build on Oracle Enterprise Linux

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/manual/
http://virtualboximages.com/vdi/index
http://virtualboxes.org/images/
http://virtualboxes.org/images/
http://www.oracle.com/technetwork/community/developer-vm/index.html
http://www.oracle.com/technetwork/community/developer-vm/index.html

Hello, Data!

[14]

Disclaimer: Oracle wouldn't be my first choice personally, but they did a great job
with their platform-independent virtualization environment, just like with providing
free developer VMs based on their commercial products. In short, it's definitely
worth using the provided Oracle tools.

If you cannot reach your installed virtual machines on the network,
please update your network settings to use Host-only adapter if no Internet
connection is needed, or Bridged networking for a more robust setup. The
latter setting will reserve an extra IP on your local network for the virtual
machine; this way, it becomes accessible easily. Please find more details
and examples with screenshots in the Oracle database section.

Another good source of virtual appliances created for open-source database
engines is the Turnkey GNU/Linux repository at http://www.turnkeylinux.
org/database. These images are based on Debian Linux, are totally free to use, and
currently support the MySQL, PostgreSQL, MongoDB, and CouchDB databases.

A great advantage of the Turnkey Linux media is that it includes only open-source,
free software and non-proprietary stuff. Besides, the disk images are a lot smaller
and include only the required components for one dedicated database engine. This
also results in far faster installation with less overhead in terms of the required disk
and memory space.

Further similar virtual appliances are available at http://www.webuzo.com/
sysapps/databases with a wider range of database backends, such as Cassandra,
HBase, Neo4j, Hypertable, or Redis, although some of the Webuzo appliances might
require a paid subscription for deployment.

And as the new cool being Docker, I even more suggest you to get familiar with
its concept on deploying software containers incredibly fast. Such container can be
described as a standalone filesystem including the operating system, libraries, tools,
data and so is based on abstraction layers of Docker images. In practice this means
that you can fire up a database including some demo data with a one-liner command
on your localhost, and developing such custom images is similarly easy. Please see
some simple examples and further references at my R and Pandoc-related Docker
images described at https://github.com/cardcorp/card-rocker.

http://www.turnkeylinux.org/database
http://www.turnkeylinux.org/database
http://www.webuzo.com/sysapps/databases
http://www.webuzo.com/sysapps/databases
https://github.com/cardcorp/card-rocker

Chapter 1

[15]

MySQL and MariaDB
MySQL is the most popular open-source database engine all over the world based on
the number of mentions, job offers, Google searches, and so on, summarized by the
DB-Engines Ranking: http://db-engines.com/en/ranking. Mostly used in Web
development, the high popularity is probably due to the fact that MySQL is free,
platform-independent, and relatively easy to set up and configure—just like its
drop-in replacement fork called MariaDB.

MariaDB is a community-developed, fully open-source fork of MySQL,
started and led by the founder of MySQL, Michael Widenius. It was
later merged with SkySQL; thus further ex-MySQL executives and
investors joined the fork. MariaDB was created after Sun Microsystems
bought MySQL, currently owned by Oracle, and the development of the
database engine changed.

We will refer to both engines as MySQL in the book to keep it simple, as MariaDB
can be considered as a drop-in replacement for MySQL, so please feel free to
reproduce the following examples with either MySQL or MariaDB.

Although the installation of a MySQL server is pretty straightforward on most
operating systems (https://dev.mysql.com/downloads/mysql/), one might rather
prefer to have the database installed in a virtual machine. Turnkey Linux provides
small but fully configured, virtual appliances for free: http://www.turnkeylinux.
org/mysql.

R provides multiple ways to query data from a MySQL database. One option is to
use the RMySQL package, which might be a bit tricky for some users to install. If you
are on Linux, please be sure to install the development packages of MySQL along
with the MySQL client, so that the package can compile on your system. And, as
there are no binary packages available on CRAN for Windows installation due to
the high variability of MySQL versions, Windows users should also compile the
package from source:

> install.packages('RMySQL', type = 'source')

Windows users might find the following blog post useful about the detailed
installation steps: http://www.ahschulz.de/2013/07/23/installing-rmysql-
under-windows/.

http://db-engines.com/en/ranking
https://dev.mysql.com/downloads/mysql/
http://www.turnkeylinux.org/mysql
http://www.turnkeylinux.org/mysql
http://www.ahschulz.de/2013/07/23/installing-rmysql-under-windows/
http://www.ahschulz.de/2013/07/23/installing-rmysql-under-windows/

Hello, Data!

[16]

For the sake of simplicity, we will refer to the MySQL server as
localhost listening on the default 3306 port; user will stand as user
and password as password in all database connections. We will work
with the hflights table in the hflights_db database, just like in the
SQLite examples a few pages earlier. If you are working in a remote or
virtual server, please modify the host, username, and so on arguments
of the following code examples accordingly.

After successfully installing and starting the MySQL server, we have to set up a test
database, which we could later populate in R. To this end, let us start the MySQL
command-line tool to create the database and a test user.

Please note that the following example was run on Linux, and a Windows user might
have to also provide the path and probably the exe file extension to start the MySQL
command-line tool:

Chapter 1

[17]

This quick session can be seen in the previous screenshot, where we first connected
to the MySQL server in the command-line as the root (admin) user. Then we created
a database named hflights_db, and granted all privileges and permissions of that
database to a new user called user with the password set to password. Then we
simply verified whether we could connect to the database with the newly created
user, and we exited the command-line MySQL client.

To load data from a MySQL database into R, first we have to connect and also often
authenticate with the server. This can be done with the automatically loaded DBI
package when attaching RMySQL:

> library(RMySQL)

Loading required package: DBI

> con <- dbConnect(dbDriver('MySQL'),

+ user = 'user', password = 'password', dbname = 'hflights_db')

Now we can refer to our MySQL connection as con, where we want to deploy the
hflights dataset for later access:

> dbWriteTable(con, name = 'hflights', value = hflights)

[1] TRUE

> dbListTables(con)

[1] "hflights"

The dbWriteTable function wrote the hflights data frame with the same name to
the previously defined connection. The latter command shows all the tables in the
currently used databases, equivalent to the SHOW TABLES SQL command. Now that
we have our original CVS file imported to MySQL, let's see how long it takes to read
the whole dataset:

> system.time(dbReadTable(con, 'hflights'))

 user system elapsed

 0.993 0.000 1.058

Or we can do so with a direct SQL command passed to dbGetQuery from the same
DBI package:

> system.time(dbGetQuery(con, 'select * from hflights'))

 user system elapsed

 0.910 0.000 1.158

Hello, Data!

[18]

And, just to keep further examples simpler, let's get back to the sqldf package,
which stands for "SQL select on data frames". As a matter of fact, sqldf is a
convenient wrapper around DBI's dbSendQuery function with some useful defaults,
and returns data.frame. This wrapper can query various database engines, such as
SQLite, MySQL, H2, or PostgreSQL, and defaults to the one specified in the global
sqldf.driver option; or, if that's NULL, it will then check if any R packages have
been loaded for the aforementioned backends.

As we have already loaded RMySQL, now sqldf will default to using MySQL instead
of SQLite. But we still have to specify which connection to use; otherwise the function
will try to open a new one—without any idea about our complex username and
password combination, not to mention the mysterious database name. The connection
can be passed in each sqldf expression or defined once in a global option:

> options('sqldf.connection' = con)

> system.time(sqldf('select * from hflights'))

 user system elapsed

 0.807 0.000 1.014

The difference in the preceding three versions of the same task does not seem to be
significant. That 1-second timing seems to be a pretty okay result compared to our
previously tested methods—although loading the whole dataset with data.table
still beats this result. What about if we only need a subset of the dataset? Let's fetch
only those flights ending in Nashville, just like in our previous SQLite example:

> system.time(sqldf('SELECT * FROM hflights WHERE Dest = "BNA"'))

 user system elapsed

 0.000 0.000 0.281

This does not seem to be very convincing compared to our previous SQLite test, as
the latter could reproduce the same result in less than 100 milliseconds. But please
also note that that both the user and system elapsed times are zero, which was not
the case with SQLite.

The returned elapsed time by system.time means the number of
milliseconds passed since the start of the evaluation. The user and system
times are a bit trickier to understand; they are reported by the operating
system. More or less, user means the CPU time spent by the called
process (like R or the MySQL server), while system reports the CPU
time required by the kernel and other operating system processes (such
as opening a file for reading). See ?proc.time for further details.

Chapter 1

[19]

This means that no CPU time was used at all to return the required subset of data,
which took almost 100 milliseconds with SQLite. How is it possible? What if we
index the database on Dest?

> dbSendQuery(con, 'CREATE INDEX Dest_idx ON hflights (Dest(3));')

This SQL query stands for creating an index named Dest_idx in our table based on
the Dest column's first three letters.

SQL index can seriously boost the performance of a SELECT statement
with WHERE clauses, as MySQL this way does not have to read through
the entire database to match each row, but it can determine the position
of the relevant search results. This performance boost becomes more
and more spectacular with larger databases, although it's also worth
mentioning that indexing only makes sense if subsets of data are
queried most of the time. If most or all data is needed, sequential reads
would be faster.

Live example:

> system.time(sqldf('SELECT * FROM hflights WHERE Dest = "BNA"'))

 user system elapsed

 0.024 0.000 0.034

It seems to be a lot better! Well, of course, we could have also indexed the SQLite
database, not just the MySQL instance. To test it again, we have to revert the default
sqldf driver to SQLite, which was overridden by loading the RMySQL package:

> options(sqldf.driver = 'SQLite')

> sqldf("CREATE INDEX Dest_idx ON hflights(Dest);",

+ dbname = "hflights_db"))

NULL

> system.time(sqldf("select * from hflights where

+ Dest = '\"BNA\"'", dbname = "hflights_db"))

 user system elapsed

 0.034 0.004 0.036

So it seems that both database engines are capable of returning the required subset
of data in a fraction of a second, which is a lot better even compared to what we
achieved with the impressive data.table before.

www.allitebooks.com

http://www.allitebooks.org

Hello, Data!

[20]

Although SQLite proved to be faster than MySQL in some earlier examples, there
are many reasons to choose the latter in most situations. First, SQLite is a file-based
database, which simply means that the database should be on a filesystem attached
to the computer running R. This usually means having the SQLite database and
the running R session on the same computer. Similarly, MySQL can handle larger
amount of data; it has user management and rule-based control on what they can do,
and concurrent access to the same dataset. The smart data scientist knows how to
choose his weapon—depending on the task, another database backend might be the
optimal solution. Let's see what other options we have in R!

PostgreSQL
While MySQL is said to be the most popular open-source relational database
management system, PostgreSQL is famous for being "the world's most advanced
open source database". This means that PostgreSQL is often considered to have
more features compared to the simpler but faster MySQL, including analytic
functions, which has led to PostgreSQL often being described as the open-source
version of Oracle.

This sounds rather funny now, as Oracle owns MySQL today. So a bunch of things
have changed in the past 20-30 years of RDBMS history, and PostgreSQL is not so
slow any more. On the other hand, MySQL has also gained some nice new features—
for example MySQL also became ACID-compliant with the InnoDB engine, allowing
rollback to previous states of the database. There are some other differences between
the two popular database servers that might support choosing either of them. Now
let's see what happens if our data provider has a liking for PostgreSQL instead of
MySQL!

Installing PostgreSQL is similar to MySQL. One may install the software with
the operating system's package manager, download a graphical installer from
http://www.enterprisedb.com/products-services-training/pgdownload, or
run a virtual appliance with, for example, the free Turnkey Linux, which provides a
small but fully configured disk image for free at http://www.turnkeylinux.org/
postgresql.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.enterprisedb.com/products-services-training/pgdownload
http://www.turnkeylinux.org/postgresql
http://www.turnkeylinux.org/postgresql

Chapter 1

[21]

After successfully installing and starting the server, let's set up the test database—just
like we did after the MySQL installation:

The syntax is a bit different in some cases, and we have used some command-line
tools for the user and database creation. These helper programs are shipped with
PostgreSQL by default, and MySQL also have some similar functionality with
mysqladmin.

After setting up the initial test environment, or if we already have a working
database instance to connect, we can repeat the previously described data
management tasks with the help of the RPostgreSQL package:

> library(RPostgreSQL)

Loading required package: DBI

If your R session starts to throw strange error messages in
the following examples, it's highly possible that the loaded
R packages are conflicting. You could simply start a clean
R session, or detach the previously attached packages—for
example, detach('package:RMySQL', unload = TRUE).

Hello, Data!

[22]

Connecting to the database (listening on the default port number 5432) is
again familiar:

> con <- dbConnect(dbDriver('PostgreSQL'), user = 'user',

+ password = 'password', dbname = 'hflights_db')

Let's verify that we are connected to the right database instance, which should be
currently empty without the hflights table:

> dbListTables(con)

character(0)

> dbExistsTable(con, 'hflights')

[1] FALSE

Then let's write our demo table in PostgreSQL and see if the old rumor about it being
slower than MySQL is still true:

> dbWriteTable(con, 'hflights', hflights)

[1] TRUE

> system.time(dbReadTable(con, 'hflights'))

 user system elapsed

 0.590 0.013 0.921

Seems to be impressive! What about loading partial data?

> system.time(dbGetQuery(con,

+ statement = "SELECT * FROM hflights WHERE \"Dest\" = 'BNA';"))

 user system elapsed

 0.026 0.000 0.082

Just under 100 milliseconds without indexing! Please note the extra escaped quotes
around Dest, as the default PostgreSQL behavior folds unquoted column names to
lower case, which would result in a column dest does not exist error. Creating an
index and running the preceding query with much improved speed can be easily
reproduced based on the MySQL example.

Oracle database
Oracle Database Express Edition can be downloaded and installed from http://
www.oracle.com/technetwork/database/database-technologies/express-
edition/downloads/index.html. Although this is not a full-featured Oracle
database, and it suffers from serious limitations, the Express Edition is a free and not
too resource-hungry way to build a test environment at home.

http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html

Chapter 1

[23]

Oracle database is said to be the most popular database management
system in the world, although it is available only with a proprietary
license, unlike the previous two discussed RDBMSs, which means
that Oracle offers the product with term licensing. On the other
hand, the paid license also comes with priority support from the
developer company, which is often a strict requirement in enterprise
environments. Oracle Database has supported a variety of nice
features since its first release in 1980, such as sharding, master-
master replication, and full ACID properties.

Another way of getting a working Oracle database for testing purposes is to
download an Oracle Pre-Built Developer VM from http://www.oracle.com/
technetwork/community/developer-vm/index.html, or a much smaller image
custom created for Hands-on Database Application Development at Oracle Technology
Network Developer Day: http://www.oracle.com/technetwork/database/
enterprise-edition/databaseappdev-vm-161299.html. We will follow the
instructions from the latter source.

After accepting the License Agreement and registering for free at Oracle, we can
download the OTN_Developer_Day_VM.ova virtual appliance. Let's import it to
VirtualBox via Import appliance in the File menu, then choose the ova file, and
click Next:

http://www.oracle.com/technetwork/community/developer-vm/index.html
http://www.oracle.com/technetwork/community/developer-vm/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

Hello, Data!

[24]

After clicking Import, you will have to agree again to the Software License
Agreement. Importing the virtual disk image (15 GB) might take a few minutes:

After importing has finished, we should first update the networking configuration so
that we can access the internal database of the virtual machine from outside. So let's
switch from NAT to Bridged Adapter in the settings:

Then we can simply start the newly created virtual machine in VirtualBox. After
Oracle Linux has booted, we can log in with the default oracle password.

Chapter 1

[25]

Although we have set a bridged networking interface for our virtual machine,
which means that the VM is directly connected to our real sub-network with a real
IP address, the machine is not yet accessible over the network. To connect with
the default DHCP settings, simply navigate to the top red bar and look for the
networking icon, then select System eth0. After a few seconds the VM is accessible
from your host machine, as the guest system should be connected to your network.
You can verify that by running the ifconfig or ip addr show eth0 command in
the already running console:

Hello, Data!

[26]

Unfortunately, this already running Oracle database is not yet accessible outside
the guest machine. The developer VM comes with a rather strict firewall by default,
which should be disabled first. To see the rules in effect, run the standard iptables
-L -n command and, to flush all rules, execute iptables -F:

Now that we have a running and remotely accessible Oracle database, let's prepare
the R client side. Installing the ROracle package might get tricky on some operating
systems, as there are no prebuilt binary packages and you have to manually install
the Oracle Instant Client Lite and SDK libraries before compiling the package from
source. If the compiler complained about the path of your previously installed Oracle
libraries, please pass the --with-oci-lib and --with-oci-inc arguments with
your custom paths with the --configure-args parameter. More details can be
found in the package installation document: http://cran.r-project.org/web/
packages/ROracle/INSTALL.

http://cran.r-project.org/Web/packages/ROracle/INSTALL
http://cran.r-project.org/Web/packages/ROracle/INSTALL

Chapter 1

[27]

For example, on Arch Linux you can install the Oracle libs from AUR, then run the
following command in bash after downloading the R package from CRAN:

R CMD INSTALL --configure-args='--with-oci-lib=/usr/include/ \

> --with-oci-inc=/usr/share/licenses/oracle-instantclient-basic' \

> ROracle_1.1-11.tar.gz

After installing and loading the package, opening a connection is extremely similar to
the pervious examples with DBI::dbConnect. We only pass an extra parameter here.
First, let us specify the hostname or direct IP address of the Oracle database included
in the dbname argument. Then we can connect to the already existing PDB1 database
of the developer machine instead of the previously used hflights_db—just to save
some time and space in the book on slightly off-topic database management tasks:

> library(ROracle)

Loading required package: DBI

> con <- dbConnect(dbDriver('Oracle'), user = 'pmuser',

+ password = 'oracle', dbname = '//192.168.0.16:1521/PDB1')

And we have a working connection to Oracle RDBMS:

> summary(con)

User name: pmuser

Connect string: //192.168.0.16:1521/PDB1

Server version: 12.1.0.1.0

Server type: Oracle RDBMS

Results processed: 0

OCI prefetch: FALSE

Bulk read: 1000

Statement cache size: 0

Open results: 0

Let's see what we have in the bundled database on the development VM:

> dbListTables(con)

[1] "TICKER_G" "TICKER_O" "TICKER_A" "TICKER"

Hello, Data!

[28]

So it seems that we have a table called TICKER with three views on tick data of three
symbols. Saving the hflights table in the same database will not do any harm,
and we can also instantly test the speed of the Oracle database when reading the
whole table:

> dbWriteTable(con, 'hflights', hflights)

[1] TRUE

> system.time(dbReadTable(con, 'hflights'))

 user system elapsed

 0.980 0.057 1.256

And the extremely familiar subset with 3,481 cases:

> system.time(dbGetQuery(con,

+ "SELECT * FROM \"hflights\" WHERE \"Dest\" = 'BNA'"))

 user system elapsed

 0.046 0.003 0.131

Please note the quotes around the table name. In the previous examples with MySQL
and PostgreSQL, the SQL statements run fine without those. However, the quotes
are needed in the Oracle database, as we have saved the table with an all-lowercase
name, and the default rule in Oracle DB is to store object names in upper case. The
only other option is to use double quotes to create them, which is what we did; thus
we have to refer to the table with quotes around the lowercase name.

We started with unquoted table and column names in MySQL, then
had to add escaped quotes around the variable name in the PostgreSQL
query run from R, and now in Oracle database we have to put both
names between quotes—which demonstrates the slight differences
in the various SQL flavors (such as MySQL, PostgreSQL, PL/SQL of
Oracle or Microsoft's Transact-SQL) on top of ANSI SQL.
And more importantly: do not stick to one database engine with all
your projects, but rather choose the optimal DB for the task if company
policy doesn't stop you doing so.

These results were not so impressive compared to what we have seen by
PostgreSQL, so let's also see the results of an indexed query:

> dbSendQuery(con, 'CREATE INDEX Dest_idx ON "hflights" ("Dest")')

Statement: CREATE INDEX Dest_idx ON "hflights" ("Dest")

Rows affected: 0

Row count: 0

Chapter 1

[29]

Select statement: FALSE

Statement completed: TRUE

OCI prefetch: FALSE

Bulk read: 1000

> system.time(dbGetQuery(con, "SELECT * FROM \"hflights\"

+ WHERE \"Dest\" = 'BNA'"))

 user system elapsed

 0.023 0.000 0.069

I leave the full-scale comparative testing and benchmarking to you, so that you can
run custom queries in the tests fitting your exact needs. It is highly possible that the
different database engines perform differently in special use cases.

To make this process a bit more seamless and easier to implement, let's check
out another R way of connecting to databases, although probably with a slight
performance trade-off. For a quick scalability and performance comparison on
connecting to Oracle databases with different approaches in R, please see https://
blogs.oracle.com/R/entry/r_to_oracle_database_connectivity.

ODBC database access
As mentioned earlier, installing the native client software, libraries, and header files
for the different databases so that the custom R packages can be built from source
can be tedious and rather tricky in some cases. Fortunately, we can also try to do
the opposite of this process. An alternative solution can be installing a middleware
Application Programming Interface (API) in the databases, so that R, or as a matter
of fact any other tool, could communicate with them in a standardized and more
convenient way. However, please be advised that this more convenient way impairs
performance due to the translation layer between the application and the DBMS.

The RODBC package implements access to such a layer. The Open Database
Connectivity (ODBC) driver is available for most database management systems,
even for CSV and Excel files, so RODBC provides a standardized way to access data
in almost any databases if the ODBC driver is installed. This platform-independent
interface is available for SQLite, MySQL, MariaDB, PostgreSQL, Oracle database,
Microsoft SQL Server, Microsoft Access, and IBM DB2 on Windows and on Linux.

www.allitebooks.com

https://blogs.oracle.com/R/entry/r_to_oracle_database_connectivity
https://blogs.oracle.com/R/entry/r_to_oracle_database_connectivity
http://www.allitebooks.org

Hello, Data!

[30]

For a quick example, let's connect to MySQL running on localhost (or on a virtual
machine). First, we have to set up a Database Source Name (DSN) with the connection
details, such as:

• Database driver
• Host name or address and port number, optionally a Unix socket
• Database name
• Optionally the username and password to be used for the connection

This can be done in the command line by editing the odbc.ini and odbcinst.ini
files on Linux after installing the unixODBC program. The latter should include the
following configuration for the MySQL driver in your /etc folder:

[MySQL]

Description = ODBC Driver for MySQL

Driver = /usr/lib/libmyodbc.so

Setup = /usr/lib/libodbcmyS.so

FileUsage = 1

The odbc.ini file includes the aforementioned DSN configuration for the exact
database and server:

[hflights]

Description = MySQL hflights test

Driver = MySQL

Server = localhost

Database = hflights_db

Port = 3306

Socket = /var/run/mysqld/mysqld.sock

Chapter 1

[31]

Or use a graphical user interface on Mac OS or Windows, as shown in the
following screenshot:

After configuring a DSN, we can connect with a one-line command:

> library(RODBC)

> con <- odbcConnect("hflights", uid = "user", pwd = "password")

Let's fetch the data we saved in the database before:

> system.time(hflights <- sqlQuery(con, "select * from hflights"))

 user system elapsed

 3.180 0.000 3.398

Well, it took a few seconds to finish. That's the trade-off for using a more convenient
and high-level interface to interact with the database. Removing and uploading data to
the database can be done with similar high-level functions (such as sqlFetch) besides
the odbc* functions, providing low-level access to the database. Quick examples:

> sqlDrop(con, 'hflights')

> sqlSave(con, hflights, 'hflights')

Hello, Data!

[32]

You can use the exact same commands to query any of the other supported database
engines; just be sure to set up the DSN for each backend, and to close your connections
if not needed any more:

> close(con)

The RJDBC package can provide a similar interface to database management systems
with a Java Database Connectivity (JDBC) driver.

Using a graphical user interface to connect to
databases
Speaking of high-level interfaces, R also has a graphical user interface to connect to
MySQL in the dbConnect package:

> library(dbConnect)

Loading required package: RMySQL

Loading required package: DBI

Loading required package: gWidgets

> DatabaseConnect()

Loading required package: gWidgetsRGtk2

Loading required package: RGtk2

No parameters, no custom configuration in the console, just a simple dialog window:

Chapter 1

[33]

After providing the required connection information, we can easily view the raw
data and the column/variable types, and run custom SQL queries. A basic query
builder can also help novice users to fetch subsamples from the database:

The package ships with a handy function called sqlToR, which can turn the SQL
results into R objects with a click in the GUI. Unfortunately, dbConnect relies heavily
on RMySQL, which means it's a MySQL-only package, and there is no plan to extend
the functionality of this interface.

Other database backends
Besides the previously mentioned popular databases, there are several other
implementations that we cannot discuss here in detail.

For example, column-oriented database management systems, such as MonetDB, are
often used to store large datasets with millions of rows and thousands of columns to
provide the backend for high-performance data mining. It also has great R support
with the MonetDB.R package, which was among the most exciting talks at the useR!
2013 conference.

Hello, Data!

[34]

The ever-growing popularity of the NoSQL ecosystem also provides similar
approaches, although usually without supporting SQL and providing a schema-free
data storage. Apache Cassandra is a good example of such a similar, column-oriented,
and primarily distributed database management system with high availably and
performance, run on commodity hardware. The RCassandra package provides access
to the basic Cassandra features and the Cassandra Query Language in a convenient
way with the RC.* function family. Another Google Bigtable-inspired and similar
database engine is HBase, which is supported by the rhbase package, part of the
RHadoop project: https://github.com/RevolutionAnalytics/RHadoop/wiki.

Speaking of Massively Parallel Processing, HP's Vertica and Cloudera's open-source
Impala are also accessible from R, so you can easily access and query large amount of
data with relatively good performance.

One of the most popular NoSQL databases is MongoDB, which provides document-
oriented data storage in a JSON-like format, providing an infrastructure to dynamic
schemas. MongoDB is actively developed and has some SQL-like features, such as a
query language and indexing, also with multiple R packages providing access to this
backend. The RMongo package uses the mongo-java-driver and thus depends on Java,
but provides a rather high-level interface to the database. Another implementation,
the rmongodb package, is developed and maintained by the MongoDB Team.
The latter has more frequent updates and more detailed documentation, but the
R integration seems to be a lot more seamless with the first package as rmongodb
provides access to the raw MongoDB functions and BSON objects, instead of
concentrating on a translation layer for general R users. A more recent and really
promising package supporting MongoDB is mongolite developed by Jeroen Ooms.

CouchDB, my personal favorite for most schema-less projects, provides very
convenient document storage with JSON objects and HTTP API, which means that
integrating in applications, such as any R script, is really easy with, for example,
the RCurl package, although you may find the R4CouchDB more quick to act in
interacting with the database.

Google BigQuery also provides a similar, REST-based HTTP API to query even
terabytes of data hosted in the Google infrastructure with an SQL-like language.
Although the bigrquery package is not available on CRAN yet, you may easily install
it from GitHub with the devtools package from the same author, Hadley Wickham:

> library(devtools)
> install_github('bigrquery', 'hadley')

To test-drive the features of this package and Google BigQuery, you can sign up for
a free account to fetch and process the demo dataset provided by Google, respecting
the 10,000 requests per day limitation for free usage. Please note that the current
implementation is a read-only interface to the database.

https://github.com/RevolutionAnalytics/RHadoop/wiki

Chapter 1

[35]

For rather similar database engines and comparisons, see for example http://db-
engines.com/en/systems. Most of the popular databases already have R support
but, if not, I am pretty sure that someone is already working on it. It's worth checking
the CRAN packages at http://cran.r-project.org/web/packages/available_
packages_by_name.html or searching on GitHub or on http://R-bloggers.com to
see how other R users manage to interact with your database of choice.

Importing data from other statistical
systems
In a recent academic project, where my task was to implement some financial models
in R, I got the demo dataset to be analyzed as Stata dta files. Working as a contractor at
the university, without access to any Stata installations, it might have been problematic
to read the binary file format of another statistical software, but as the dta file format
is documented and the specification is publicly available at http://www.stata.com/
help.cgi?dta, some members of the Core R Team have already implemented an R
parser in the form of the read.dta function in the foreign package.

To this end, loading (and often writing) Stata—or for example SPSS, SAS, Weka,
Minitab, Octave, or dBase files—just cannot be easier in R. Please see the complete
list of supported file formats and examples in the package documentation or in
the R Data Import/Export manual: http://cran.r-project.org/doc/manuals/r-
release/R-data.html#Importing-from-other-statistical-systems.

Loading Excel spreadsheets
One of the most popular file formats to store and transfer relatively small amounts
of data in academic institutions and businesses (besides CSV files) is still Excel xls
(or xlsx, more recently). The first is a proprietary binary file format from Microsoft,
which is exhaustively documented (the xls specification is available in a document
of more than 1,100 pages and 50 megabytes!), but importing multiple sheets, macros,
and formulas is not straightforward even nowadays. This section will only cover the
most used platform-independent packages to interact with Excel.

One option is to use the previously discussed RODBC package with the Excel driver
to query an Excel spreadsheet. Other ways of accessing Excel data depend on third-
party tools, such as using Perl to automatically convert the Excel file to CSV then
importing it into R as the read.xls function from the gdata package. But installing
Perl on Windows sometimes seems to be tedious; thus, RODBC might be a more
convenient method on that platform.

http://db-engines.com/en/systems
http://db-engines.com/en/systems
http://cran.r-project.org/Web/packages/available_packages_by_name.html
http://cran.r-project.org/Web/packages/available_packages_by_name.html
http://R-bloggers.com
http://www.stata.com/help.cgi?dta
http://www.stata.com/help.cgi?dta
http://cran.r-project.org/doc/manuals/r-release/R-data.html#Importing-from-other-statistical-systems
http://cran.r-project.org/doc/manuals/r-release/R-data.html#Importing-from-other-statistical-systems

Hello, Data!

[36]

Some platform-independent, Java-based solutions also provide a way to not just
read, but also write Excel files, especially to the xlsx, the Office Open XML file,
format. Two separate implementations exist on CRAN to read and write Excel 2007
and the 97/2000/XP/2003 file formats: the xlConnect and the xlsx packages.
Both are actively maintained, and use the Apache POI Java API project. This latter
means that it runs on any platform that supports Java, and there is no need to have
Microsoft Excel or Office on the computer; both packages can read and write Excel
files on their own.

On the other hand, if you would rather not depend on Perl or Java, the recently
published openxlsx package provides a platform-independent (C++-powered)
way of reading and writing xlsx files. Hadley Wickham released a similar package,
but with a slightly modified scope: the readxl package can read (but not write) both
the xls and xlsx file formats.

Remember: pick the most appropriate tool for your needs! For example to read Excel
files without many external dependencies, I'd choose readxl; but, for writing Excel
2003 spreadsheets with cell formatting and more advanced features, probably we
cannot save the Java dependency and should use the xlConnect or xlsx packages
over the xlsx-only openxlsx package.

Summary
This chapter focused on some rather boring, but important tasks that we usually
do every day. Importing data is among the first steps of every data science projects,
thus mastering data analysis should start with how to load data into the R session
in an efficient way.

But efficiency is an ambiguous term in this sense: loading data should be quick in a
technical point of view so as not to waste our time, although coding for long hours
to speed up the importing process does not make much sense either.

The chapter gave a general overview on the most popular available options to
read text files, to interact with databases, and to query subsets of data in R. Now
you should be able to deal with all the most often used different data sources, and
probably you can also choose which data source would be the ideal candidate in
your projects and then do the benchmarks on your own, as we did previously.

The next chapter will extend this knowledge further by providing use cases for
fetching data from the Web and different APIs. This simply means that you will be
able to use public data in your projects, even if you do not yet have those in binary
dataset files or on database backends.

[37]

Getting Data from the Web
It happens pretty often that we want to use data in a project that is not yet available
in our databases or on our disks, but can be found on the Internet. In such situations,
one option might be to get the IT department or a data engineer at our company to
extend our data warehouse to scrape, process, and load the data into our database
as shown in the following diagram:

On the other hand, if we have no ETL system (to Extract, Transform, and Load data)
or simply just cannot wait a few weeks for the IT department to implement our
request, we are on our own. This is pretty standard for the data scientist, as most of
the time we are developing prototypes that can be later transformed into products by
software developers. To this end, a variety of skills are required in the daily round,
including the following topics that we will cover in this chapter:

• Downloading data programmatically from the Web
• Processing XML and JSON formats

Getting Data from the Web

[38]

• Scraping and parsing data from raw HTML sources
• Interacting with APIs

Although being a data scientist was referred to as the sexiest job of the 21st century
(Source: https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-
the-21st-century/), most data science tasks have nothing to do with data analysis.
Worse, sometimes the job seems to be boring, or the daily routine requires just basic
IT skills and no machine learning at all. Hence, I prefer to call this role a data hacker
instead of data scientist, which also means that we often have to get our hands dirty.

For instance, scraping and scrubbing data is the least sexy part of the analysis
process for sure, but it's one of the most important steps; it is also said, that around
80 percent of data analysis is spent cleaning data. There is no sense in running the
most advanced machine learning algorithm on junk data, so be sure to take your
time to get useful and tidy data from your sources.

This chapter will also depend on extensive usage of Internet browser
debugging tools with some R packages. These include Chrome
DevTools or FireBug in Firefox. Although the steps to use these
tools will be straightforward and also shown on screenshots, it's
definitely worth mastering these tools for future usage; therefore,
I suggest checking out a few tutorials on these tools if you are into
fetching data from online sources. Some starting points are listed in
the References section of the Appendix at the end of the book.

For a quick overview and a collection of relevant R packages for scraping data from
the Web and to interact with Web services, see the Web Technologies and Services CRAN
Task View at http://cran.r-project.org/web/views/WebTechnologies.html.

Loading datasets from the Internet
The most obvious task is to download datasets from the Web and load those into our
R session in two manual steps:

1. Save the datasets to disk.
2. Read those with standard functions, such as read.table or for example

foreign::read.spss, to import sav files.

But we can often save some time by skipping the first step and loading the flat text
data files directly from the URL. The following example fetches a comma-separated
file from the Americas Open Geocode (AOG) database at http://opengeocode.
org, which contains the government, national statistics, geological information,
and post office websites for the countries of the world:

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
http://cran.r-project.org/web/views/WebTechnologies.html
http://opengeocode.org
http://opengeocode.org

Chapter 2

[39]

> str(read.csv('http://opengeocode.org/download/CCurls.txt'))
'data.frame': 249 obs. of 5 variables:
 $ ISO.3166.1.A2 : Factor w/ 248 levels "AD" ...
 $ Government.URL : Factor w/ 232 levels "" ...
 $ National.Statistics.Census..URL: Factor w/ 213 levels "" ...
 $ Geological.Information.URL : Factor w/ 116 levels "" ...
 $ Post.Office.URL : Factor w/ 156 levels "" ...

In this example, we passed a hyperlink to the file argument of read.table,
which actually downloaded the text file before processing. The url function, used
by read.table in the background, supports HTTP and FTP protocols, and can also
handle proxies, but it has its own limitations. For example url does not support
Hypertext Transfer Protocol Secure (HTTPS) except for a few exceptions on
Windows, which is often a must to access Web services that handle sensitive data.

HTTPS is not a separate protocol alongside HTTP, but instead HTTP
over an encrypted SSL/TLS connection. While HTTP is considered
to be insecure due to the unencrypted packets travelling between the
client and server, HTTPS does not let third-parties discover sensitive
information with the help of signed and trusted certificates.

In such situations, it's wise, and used to be the only reasonable option, to install and
use the RCurl package, which is an R client interface to curl: http://curl.haxx.
se. Curl supports a wide variety of protocols and URI schemes and handles cookies,
authentication, redirects, timeouts, and even more.

For example, let's check the U.S. Government's open data catalog at http://
catalog.data.gov/dataset. Although the general site can be accessed without
SSL, most of the generated download URLs follow the HTTPS URI scheme. In the
following example, we will fetch the Comma Separated Values (CSV) file of the
Consumer Complaint Database from the Consumer Financial Protection Bureau,
which can be accessed at http://catalog.data.gov/dataset/consumer-
complaint-database.

This CSV file contains metadata on around a quarter of a million of
complaints about financial products and services since 2011. Please note
that the file is around 35-40 megabytes, so downloading it might take
some time, and you would probably not want to reproduce the following
example on mobile or limited Internet. If the getURL function fails with a
certificate error (this might happen on Windows), please provide the path
of the certificate manually by options(RCurlOptions = list(cainfo
= system.file("CurlSSL", "cacert.pem", package =
"RCurl"))) or try the more recently published curl package by Jeroen
Ooms or httr (RCurl front-end) by Hadley Wickham—see later.

www.allitebooks.com

http://curl.haxx.se
http://curl.haxx.se
http://catalog.data.gov/dataset
http://catalog.data.gov/dataset
http://catalog.data.gov/dataset/consumer-complaint-database
http://catalog.data.gov/dataset/consumer-complaint-database
http://www.allitebooks.org

Getting Data from the Web

[40]

Let's see the distribution of these complaints by product type after fetching and
loading the CSV file directly from R:

> library(RCurl)

Loading required package: bitops

> url <- 'https://data.consumerfinance.gov/api/views/x94z-ydhh/rows.
csv?accessType=DOWNLOAD'

> df <- read.csv(text = getURL(url))

> str(df)

'data.frame': 236251 obs. of 14 variables:

 $ Complaint.ID : int 851391 851793 ...

 $ Product : Factor w/ 8 levels ...

 $ Sub.product : Factor w/ 28 levels ...

 $ Issue : Factor w/ 71 levels "Account opening ...

 $ Sub.issue : Factor w/ 48 levels "Account status" ...

 $ State : Factor w/ 63 levels "","AA","AE",,..

 $ ZIP.code : int 14220 64119 ...

 $ Submitted.via : Factor w/ 6 levels "Email","Fax" ...

 $ Date.received : Factor w/ 897 levels ...

 $ Date.sent.to.company: Factor w/ 847 levels "","01/01/2013" ...

 $ Company : Factor w/ 1914 levels ...

 $ Company.response : Factor w/ 8 levels "Closed" ...

 $ Timely.response. : Factor w/ 2 levels "No","Yes" ...

 $ Consumer.disputed. : Factor w/ 3 levels "","No","Yes" ...

> sort(table(df$Product))

 Money transfers Consumer loan Student loan

 965 6564 7400

 Debt collection Credit reporting Bank account or service

 24907 26119 30744

 Credit card Mortgage

 34848 104704

Although it's nice to know that most complaints were received about mortgages,
the point here was to use curl to download the CSV file with a HTTPS URI and then
pass the content to the read.csv function (or any other parser we discussed in the
previous chapter) as text.

Chapter 2

[41]

Besides GET requests, you can easily interact with RESTful API endpoints
via POST, DELETE, or PUT requests as well by using the postForm
function from the RCurl package or the httpDELETE, httpPUT, or
httpHEAD functions— see details about the httr package later.

Curl can also help to download data from a secured site that requires authorization.
The easiest way to do so is to login to the homepage in a browser, save the cookie to
a text file, and then pass the path of that to cookiefile in getCurlHandle. You can
also specify useragent among other options. Please see http://www.omegahat.
org/RCurl/RCurlJSS.pdf for more details and an overall (and very useful)
overview on the most important RCurl features.

Although curl is extremely powerful, the syntax and the numerous options with
the technical details might be way too complex for those without a decent IT
background. The httr package is a simplified wrapper around RCurl with some
sane defaults and much simpler configuration options for common operations
and everyday actions.

For example, cookies are handled automatically by sharing the same connection
across all requests to the same website; error handling is much improved, which
means easier debugging if something goes wrong; the package comes with various
helper functions to, for instance, set headers, use proxies, and easily issue GET, POST,
PUT, DELETE, and other methods. Even more, it also handles authentication in a much
more user-friendly way—along with OAuth support.

OAuth is the open standard for authorization with the help of
intermediary service providers. This simply means that the user
does not have to share actual credentials, but can rather delegate
rights to access some of the stored information at the service
providers. For example, one can authorize Google to share the
real name, e-mail address, and so on with a third-party without
disclosing any other sensitive information or any need for
passwords. Most generally, OAuth is used for password-less login
to various Web services and APIs. For more information, please
see the Chapter 14, Analyzing the R Community, where we will use
OAuth with Twitter to authorize the R session for fetching data.

But what if the data is not available to be downloaded as CSV files?

http://www.omegahat.org/RCurl/RCurlJSS.pdf
http://www.omegahat.org/RCurl/RCurlJSS.pdf

Getting Data from the Web

[42]

Other popular online data formats
Structured data is often available in XML or JSON formats on the Web. The high
popularity of these two formats is due to the fact that both are human-readable,
easy to handle from a programmatic point of view, and can manage any type of
hierarchical data structure, not just a simple tabular design, as CSV files are.

JSON is originally derived from JavaScript Object Notation, which
recently became one of the top, most-used standards for human-
readable data exchange format. JSON is considered to be a low-
overhead alternative to XML with attribute-value pairs, although
it also supports a wide variety of object types such as number,
string, boolean, ordered lists, and associative arrays. JSON is
highly used in Web applications, services, and APIs.

Of course, R also supports loading (and saving) data in JSON. Let's demonstrate
that by fetching some data from the previous example via the Socrata API (more
on that later in the R packages to interact with data source APIs section of this chapter),
provided by the Consumer Financial Protection Bureau. The full documentation of
the API is available at http://www.consumerfinance.gov/complaintdatabase/
technical-documentation.

The endpoint of the API is a URL where we can query the background database
without authentication is http://data.consumerfinance.gov/api/views.
To get an overall picture on the structure of the data, the following is the returned
JSON list opened in a browser:

http://www.consumerfinance.gov/complaintdatabase/technical-documentation
http://www.consumerfinance.gov/complaintdatabase/technical-documentation
http://data.consumerfinance.gov/api/views

Chapter 2

[43]

As JSON is extremely easy to read, it's often very helpful to skim through the
structure manually before parsing. Now let's load that tree list into R with the
rjson package:

> library(rjson)

> u <- 'http://data.consumerfinance.gov/api/views'

> fromJSON(file = u)

[[1]]

[[1]]$id

[1] "25ei-6bcr"

[[1]]$name

[1] "Credit Card Complaints"

[[1]]$averageRating

[1] 0

…

Well, it does not seem to be the same data we have seen before in the comma-
separated values file! After a closer look at the documentation, it's clear that the
endpoint of the API returns metadata on the available views instead of the raw
tabular data that we saw in the CSV file. So let's see the view with the ID of 25ei-
6bcr now for the first five rows by opening the related URL in a browser:

Getting Data from the Web

[44]

The structure of the resulting JSON list has changed for sure. Now let's read that
hierarchical list into R:

> res <- fromJSON(file = paste0(u,'/25ei-6bcr/rows.json?max_rows=5'))

> names(res)

[1] "meta" "data"

We managed to fetch the data along with some further meta-information on the
view, columns, and so on, which is not something that we are interested in at the
moment. As fromJSON returned a list object, we can simply drop the metadata
and work with the data rows from now on:

> res <- res$data

> class(res)

[1] "list"

This is still a list, which we usually want to transform into a data.frame instead.
So we have list with five elements, each holding 19 nested children. Please note
that one of those, the 13th sub element, is list again with 5-5 vectors. This means
that transforming the tree list into tabular format is not straightforward, even less so
when we realize that one of those vectors holds multiple values in an unprocessed
JSON format. So, for the sake of simplicity and proof of a concept demo, let's simply
ditch the location-related values now and transform all other values to data.frame:

> df <- as.data.frame(t(sapply(res, function(x) unlist(x[-13]))))

> str(df)

'data.frame': 5 obs. of 18 variables:

 $ V1 : Factor w/ 5 levels "16756","16760",..: 3 5 ...

 $ V2 : Factor w/ 5 levels "F10882C0-23FC-4064-979C-07290645E64B" ...

 $ V3 : Factor w/ 5 levels "16756","16760",..: 3 5 ...

 $ V4 : Factor w/ 1 level "1364270708": 1 1 ...

 $ V5 : Factor w/ 1 level "403250": 1 1 ...

 $ V6 : Factor w/ 5 levels "1364274327","1364274358",..: 5 4 ...

 $ V7 : Factor w/ 1 level "546411": 1 1 ...

 $ V8 : Factor w/ 1 level "{\n}": 1 1 ...

 $ V9 : Factor w/ 5 levels "2083","2216",..: 1 2 ...

 $ V10: Factor w/ 1 level "Credit card": 1 1 ...

 $ V11: Factor w/ 2 levels "Referral","Web": 1 1 ...

 $ V12: Factor w/ 1 level "2011-12-01T00:00:00": 1 1 ...

 $ V13: Factor w/ 5 levels "Application processing delay",..: 5 1 ...

Chapter 2

[45]

 $ V14: Factor w/ 3 levels "2011-12-01T00:00:00",..: 1 1 ...

 $ V15: Factor w/ 5 levels "Amex","Bank of America",..: 2 5 ...

 $ V16: Factor w/ 1 level "Closed without relief": 1 1 ...

 $ V17: Factor w/ 1 level "Yes": 1 1 ...

 $ V18: Factor w/ 2 levels "No","Yes": 1 1 ...

So we applied a simple function that drops location information from each element
of the list (by removing the 13th element of each x), automatically simplified to
matrix (by using sapply instead of lapply to iterate though each element of the
list), transposed it (via t), and then coerced the resulting object to data.frame.

Well, we can also use some helper functions instead of manually tweaking all the list
elements, as earlier. The plyr package (please find more details in Chapter 3, Filtering
and Summarizing Data and Chapter 4, Restructuring Data) includes some extremely
useful functions to split and combine data:

> library(plyr)

> df <- ldply(res, function(x) unlist(x[-13]))

It looks a lot more familiar now, although we miss the variable names, and all values
were converted to character vectors or factors—even the dates that were stored as
UNIX timestamps. We can easily fix these problems with the help of the provided
metadata (res$meta): for example, let's set the variable names by extracting (via the
[operator) the name field of all columns except for the dropped (13th) location data:

> names(df) <- sapply(res$meta$view$columns, `[`, 'name')[-13]

One might also identify the object classes with the help of the provided metadata.
For example, the renderTypeName field would be a good start to check, and using
as.numeric for number and as.POSIXct for all calendar_date fields would resolve
most of the preceding issues.

Well, did you ever hear that around 80 percent of data analysis is spent on
data preparation?

Parsing and restructuring JSON and XML to data.frame can take a long time,
especially when you are dealing with hierarchical lists primarily. The jsonlite
package tries to overcome this issue by transforming R objects into a conventional
JSON data structure and vice-versa instead of raw conversion. This means from a
practical point of view that jsonlite::fromJSON will result in data.frame instead
of raw list if possible, and it makes the interchange data format even more seamless.
Unfortunately, we cannot always transform lists to a tabular format; in such cases,
the list transformations can be speeded up by for example the rlist package. Please
find more details on list manipulations in Chapter 14, Analyzing the R Community.

Getting Data from the Web

[46]

Extensible Markup Language (XML) was originally developed by
the World Wide Web Consortium in 1996 to store documents in a
both human-readable and machine-readable format. This popular
syntax is used in for example the Microsoft Office Open XML and
Open/LibreOffice OpenDocument file formats, in RSS feeds, and in
various configuration files. As the format is also highly used for the
interchange of data over the Internet, data is often available in XML
as the only option—especially with some older APIs.

Let us also see how we can handle another popular online data interchange format
besides JSON. The XML API can be used in a similar way, but we must define the
desired output format in the endpoint URL: http://data.consumerfinance.gov/
api/views.xml, as you should be able to see in the following screenshot:

http://data.consumerfinance.gov/api/views.xml
http://data.consumerfinance.gov/api/views.xml

Chapter 2

[47]

It seems that the XML output of the API differs from what we have seen in the
JSON format, and it simply includes the rows that we are interested in. This way,
we can simply parse the XML document and extract the rows from the response
then transform them to data.frame:

> library(XML)

> doc <- xmlParse(paste0(u, '/25ei-6bcr/rows.xml?max_rows=5'))

> df <- xmlToDataFrame(nodes = getNodeSet(doc,"//response/row/row"))

> str(df)

'data.frame': 5 obs. of 11 variables:

 $ complaint_id : Factor w/ 5 levels "2083","2216",..: 1 2 ...

 $ product : Factor w/ 1 level "Credit card": 1 1 ...

 $ submitted_via : Factor w/ 2 levels "Referral","Web": 1 1 ...

 $ date_recieved : Factor w/ 1 level "2011-12-01T00:00:00" ...

 $ zip_code : Factor w/ 1 level "": 1 1 ...

 $ issue : Factor w/ 5 levels ...

 $ date_sent_to_company: Factor w/ 3 levels "2011-12-01T00:00:00" ...

 $ company : Factor w/ 5 levels "Amex"

 $ company_response : Factor w/ 1 level "Closed without relief"...

 $ timely_response : Factor w/ 1 level "Yes": 1 1 ...

 $ consumer_disputed : Factor w/ 2 levels "No","Yes": 1 1 ...

Although we could manually set the desired classes of the variables in the
colClasses argument passed to xmlToDataFrame, just like in read.tables we can
also fix this issue afterwards with a quick helper function:

> is.number <- function(x)

+ all(!is.na(suppressWarnings(as.numeric(as.character(x)))))

> for (n in names(df))

+ if (is.number(df[, n]))

+ df[, n] <- as.numeric(as.character(df[, n]))

So we tried to guess if a column includes only numbers, and convert those to numeric
if our helper function returns TRUE. Please note that we first convert the factor to
character before transforming to number, as a direct conversion from factor to
numeric would return the factor order instead of the real value. One might also
try to resolve this issue with the type.convert function, which is used by default
in read.table.

Getting Data from the Web

[48]

To test similar APIs and JSON or XML resources, you may find it
interesting to check out the API of Twitter, GitHub, or probably any other
online service provider. On the other hand, there is also another open-
source service based on R that can return XML, JSON, or CSV files from
any R code. Please find more details at http://www.opencpu.org.

So now we can process structured data from various kinds of downloadable data
formats but, as there are still some other data source options to master, I promise
you it's worth it to keep reading.

Reading data from HTML tables
According to the traditional document formats on the World Wide Web, most
texts and data are served in HTML pages. We can often find interesting pieces of
information in for example HTML tables, from which it's pretty easy to copy and
paste data into an Excel spreadsheet, save that to disk, and load it to R afterwards.
But it takes time, it's boring, and can be automated anyway.

Such HTML tables can be easily generated with the help of the aforementioned API
of the Customer Compliant Database. If we do not set the required output format for
which we used XML or JSON earlier, then the browser returns a HTML table instead,
as you should be able to see in the following screenshot:

http://www.opencpu.org

Chapter 2

[49]

Well, in the R console it's a bit more complicated as the browser sends some
non-default HTTP headers while using curl, so the preceding URL would simply
return a JSON list. To get HTML, let the server know that we expect HTML output.
To do so, simply set the appropriate HTTP header of the query:

> doc <- getURL(paste0(u, '/25ei-6bcr/rows?max_rows=5'),

+ httpheader = c(Accept = "text/html"))

The XML package provides an extremely easy way to parse all the HTML tables from
a document or specific nodes with the help of the readHTMLTable function, which
returns a list of data.frames by default:

> res <- readHTMLTable(doc)

To get only the first table on the page, we can filter res afterwards or pass the which
argument to readHTMLTable. The following two R expressions have the very same
results:

> df <- res[[1]]

> df <- readHTMLTable(doc, which = 1)

Reading tabular data from static Web pages
Okay, so far we have seen a bunch of variations on the same theme, but what if
we do not find a downloadable dataset in any popular data format? For example,
one might be interested in the available R packages hosted at CRAN, whose list is
available at http://cran.r-project.org/web/packages/available_packages_
by_name.html. How do we scrape that? No need to call RCurl or to specify custom
headers, still less do we have to download the file first; it's enough to pass the URL
to readHTMLTable:

> res <- readHTMLTable('http://cran.r-project.org/Web/packages/available_
packages_by_name.html')

So readHTMLTable can directly fetch HTML pages, then it extracts all the HTML
tables to data.frame R objects, and returns a list of those. In the preceding
example, we got a list of only one data.frame with all the package names
and descriptions as columns.

www.allitebooks.com

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html
http://www.allitebooks.org

Getting Data from the Web

[50]

Well, this amount of textual information is not really informative with the str
function. For a quick example of processing and visualizing this type of raw data,
and to present the plethora of available features by means of R packages at CRAN,
now we can create a word cloud of the package descriptions with some nifty
functions from the wordcloud and the tm packages:

> library(wordcloud)

Loading required package: Rcpp

Loading required package: RColorBrewer

> wordcloud(res[[1]][, 2])

Loading required package: tm

This short command results in the following screenshot, which shows the most
frequent words found in the R package descriptions. The position of the words
has no special meaning, but the larger the font size, the higher the frequency.
Please see the technical description of the plot following the screenshot:

Chapter 2

[51]

So we simply passed all the strings from the second column of the first list element
to the wordcloud function, which automatically runs a few text-mining scripts from
the tm package on the text. You can find more details on this topic in Chapter 7,
Unstructured Data. Then, it renders the words with a relative size weighted by the
number of occurrences in the package descriptions. It seems that R packages are
indeed primarily targeted at building models and applying multivariate tests on data.

Scraping data from other online sources
Although the readHTMLTable function is very useful, sometimes the data is not
structured in tables, but rather it's available only as HTML lists. Let's demonstrate
such a data format by checking all the R packages listed in the relevant CRAN Task
View at http://cran.r-project.org/web/views/WebTechnologies.html, as you
can see in the following screenshot:

http://cran.r-project.org/web/views/WebTechnologies.html

Getting Data from the Web

[52]

So we see a HTML list of the package names along with a URL pointing to the CRAN,
or in some cases to the GitHub repositories. To proceed, first we have to get acquainted
a bit with the HTML sources to see how we can parse them. You can do that easily
either in Chrome or Firefox: just right-click on the CRAN packages heading at the top
of the list, and choose Inspect Element, as you can see in the following screenshot:

So we have the list of related R packages in an ul (unordered list) HTML tag, just
after the h3 (level 3 heading) tag holding the CRAN packages string.

In short:

• We have to parse this HTML file
• Look for the third-level heading holding the search term
• Get all the list elements from the subsequent unordered HTML list

Chapter 2

[53]

This can be done by, for example, the XML Path Language, which has a special
syntax to select nodes in XML/HTML documents via queries.

For more details and R-driven examples, see Chapter 4, XPath, XPointer,
and XInclude of the book XML and Web Technologies for Data Sciences with
R written by Deborah Nolan and Duncan Temple Lang in the Use R!
series from Springer. Please see more references in the Appendix at the
end of the book.

XPath can be rather ugly and complex at first glance. For example, the preceding list
can be described with:

//h3[text()='CRAN packages:']/following-sibling::ul[1]/li

Let me elaborate a bit on this:

1. We are looking for a h3 tag which has CRAN packages as its text, so we are
searching for a specific node in the whole document with these attributes.

2. Then the following-siblings expression stands for all the subsequent
nodes at the same hierarchy level as the chosen h3 tag.

3. Filter to find only ul HTML tags.
4. As we have several of those, we select only the first of the further siblings

with the index (1) between the brackets.
5. Then we simply select all li tags (the list elements) inside that.

Let's try it in R:

> page <- htmlParse(file =

+ 'http://cran.r-project.org/Web/views/WebTechnologies.html')

> res <- unlist(xpathApply(doc = page, path =

+ "//h3[text()='CRAN packages:']/following-sibling::ul[1]/li",

+ fun = xmlValue))

And we have the character vector of the related 118 R packages:

> str(res)

 chr [1:118] "acs" "alm" "anametrix" "AWS.tools" "bigml" ...

Getting Data from the Web

[54]

XPath is really powerful for selecting and searching for nodes in HTML documents,
so is xpathApply. The latter is the R wrapper around most of the XPath functionality
in libxml, which makes the process rather quick and efficient. One might rather
use the xpathSApply instead, which tries to simplify the returned list of elements,
just like sapply does compared to the lapply function. So we can also update our
previous code to save the unlist call:

> res <- xpathSApply(page, path =

+ "//h3[text()='CRAN packages:']/following-sibling::ul[1]/li",

+ fun = xmlValue)

The attentive reader must have noticed that the returned list was a simple character
vector, while the original HTML list also included the URLs of the aforementioned
packages. Where and why did those vanish?

We can blame xmlValue for this result, which we called instead of the default NULL
as the evaluating function to extract the nodes from the original document at the
xpathSApply call. This function simply extracts the raw text content of each leaf
node without any children, which explains this behavior. What if we are rather
interested in the package URLs?

Calling xpathSapply without a specified fun returns all the raw child nodes, which
is of no direct help, and we shouldn't try to apply some regular expressions on those.
The help page of xmlValue can point us to some similar functions that can be very
handy with such tasks. Here we definitely want to use xmlAttrs:

> xpathSApply(page,

+ "//h3[text()='CRAN packages:']/following-sibling::ul[1]/li/a",

+ xmlAttrs, 'href')

Please note that an updated path was used here, where now we selected all the a
tags instead of the li parents. And, instead of the previously introduced xmlValue,
now we called xmlAttrs with the 'href' extra argument. This simply extracts all
the href arguments of all the related a nodes.

With these primitives, you will be able to fetch any publicly available data from online
sources, although sometimes the implementation can end up being rather complex.

Chapter 2

[55]

On the other hand, please be sure to always consult the terms and
conditions and other legal documents of all potential data sources,
as fetching data is often prohibited by the copyright owner.
Beside the legal issues, it's also wise to think of fetching and crawling
data from the technical point of view of the service provider. If you start
to send a plethora of queries to a server without consulting with their
administrators beforehand, this action might be construed as a network
attack and/or might result in an unwanted load on the servers. To keep
it simple, always use a sane delay between your queries. This should be
for example, a 2-second pause between queries at a minimum, but it's
better to check the Crawl-delay directive set in the site's robot.txt, which
can be found in the root path if available. This file also contains other
directives if crawling is allowed or limited. Most of the data provider
sites also have some technical documentation on data crawling; please
be sure to search for Rate limits and throttling.

And sometimes we are just simply lucky in that someone else has already written the
tricky XPath selectors or other interfaces, so we can load data from Web services and
homepages with the help of native R packages.

R packages to interact with data
source APIs
Although it's great that we can read HTML tables, CSV files and JSON and XML
data, and even parse raw HTML documents to store some parts of those in a dataset,
there is no sense in spending too much time developing custom tools until we have
no other option. First, always start with a quick look on the Web Technologies and
Services CRAN Task View; also search R-bloggers, StackOverflow, and GitHub for
any possible solution before getting your hands dirty with custom XPath selectors
and JSON list magic.

Socrata Open Data API
Let's do this for our previous examples by searching for Socrata, the Open Data
Application Program Interface of the Consumer Financial Protection Bureau.
Yes, there is a package for that:

> library(RSocrata)

Loading required package: httr

Loading required package: RJSONIO

Getting Data from the Web

[56]

Attaching package: 'RJSONIO'

The following objects are masked from 'package:rjson':

 fromJSON, toJSON

As a matter of fact, the RSocrata package uses the same JSON sources (or CSV
files), as we did before. Please note the warning message, which says that RSocrata
depends on another JSON parser R package rather than the one we used, so some
function names are conflicting. It's probably wise to detach('package:rjson')
before automatically loading the RJSONIO package.

Loading the Customer Complaint Database by the given URL is pretty easy
with RSocrata:

> df <- read.socrata(paste0(u, '/25ei-6bcr'))

> str(df)

'data.frame': 18894 obs. of 11 variables:

 $ Complaint.ID : int 2240 2243 2260 2254 2259 2261 ...

 $ Product : chr "Credit card" "Credit card" ...

 $ Submitted.via : chr "Web" "Referral" "Referral" ...

 $ Date.received : chr "12/01/2011" "12/01/2011" ...

 $ ZIP.code : chr ...

 $ Issue : chr ...

 $ Date.sent.to.company: POSIXlt, format: "2011-12-19" ...

 $ Company : chr "Citibank" "HSBC" ...

 $ Company.response : chr "Closed without relief" ...

 $ Timely.response. : chr "Yes" "Yes" "No" "Yes" ...

 $ Consumer.disputed. : chr "No" "No" "" "No" ...

We got numeric values for numbers, and the dates are also automatically processed
to POSIXlt!

Similarly, the Web Technologies and Services CRAN Task View contains more than
a hundred R packages to interact with data sources on the Web in natural sciences
such as ecology, genetics, chemistry, weather, finance, economics, and marketing,
but we can also find R packages to fetch texts, bibliography resources, Web analytics,
news, and map and social media data besides some other topics. Due to page
limitations, here we will only focus on the most-used packages.

Chapter 2

[57]

Finance APIs
Yahoo! and Google Finance are pretty standard free data sources for all those
working in the industry. Fetching for example stock, metal, or foreign exchange
prices is extremely easy with the quantmod package and the aforementioned
service providers. For example, let us see the most recent stock prices for Agilent
Technologies with the A ticker symbol:

> library(quantmod)

Loading required package: Defaults

Loading required package: xts

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

 as.Date, as.Date.numeric

Loading required package: TTR

Version 0.4-0 included new data defaults. See ?getSymbols.

> tail(getSymbols('A', env = NULL))

 A.Open A.High A.Low A.Close A.Volume A.Adjusted

2014-05-09 55.26 55.63 54.81 55.39 1287900 55.39

2014-05-12 55.58 56.62 55.47 56.41 2042100 56.41

2014-05-13 56.63 56.98 56.40 56.83 1465500 56.83

2014-05-14 56.78 56.79 55.70 55.85 2590900 55.85

2014-05-15 54.60 56.15 53.75 54.49 5740200 54.49

2014-05-16 54.39 55.13 53.92 55.03 2405800 55.03

By default, getSymbols assigns the fetched results to the parent.frame (usually
the global) environment with the name of the symbols, while specifying NULL as the
desired environment simply returns the fetched results as an xts time-series object,
as seen earlier.

Foreign exchange rates can be fetched just as easily:

> getFX("USD/EUR")

[1] "USDEUR"

> tail(USDEUR)

Getting Data from the Web

[58]

 USD.EUR

2014-05-13 0.7267

2014-05-14 0.7281

2014-05-15 0.7293

2014-05-16 0.7299

2014-05-17 0.7295

2014-05-18 0.7303

The returned string of getSymbols refers to the R variable in which the data was
saved inside .GlobalEnv. To see all the available data sources, let's query the related
S3 methods:

> methods(getSymbols)

 [1] getSymbols.csv getSymbols.FRED getSymbols.google

 [4] getSymbols.mysql getSymbols.MySQL getSymbols.oanda

 [7] getSymbols.rda getSymbols.RData getSymbols.SQLite

[10] getSymbols.yahoo

So besides some offline data sources, we can query Google, Yahoo!, and OANDA
for recent financial information. To see the full list of available symbols, the already
loaded TTR package might help:

> str(stockSymbols())

Fetching AMEX symbols...

Fetching NASDAQ symbols...

Fetching NYSE symbols...

'data.frame': 6557 obs. of 8 variables:

 $ Symbol : chr "AAMC" "AA-P" "AAU" "ACU" ...

 $ Name : chr "Altisource Asset Management Corp" ...

 $ LastSale : num 841 88.8 1.3 16.4 15.9 ...

 $ MarketCap: num 1.88e+09 0.00 8.39e+07 5.28e+07 2.45e+07 ...

 $ IPOyear : int NA NA NA 1988 NA NA NA NA NA NA ...

 $ Sector : chr "Finance" "Capital Goods" ...

 $ Industry : chr "Real Estate" "Metal Fabrications" ...

 $ Exchange : chr "AMEX" "AMEX" "AMEX" "AMEX" ...

Find more information on how to handle and analyze similar
datasets in Chapter 12, Analyzing Time-series.

Chapter 2

[59]

Fetching time series with Quandl
Quandl provides access to millions of similar time-series data in a standard format,
via a custom API, from around 500 data sources. In R, the Quandl package provides
easy access to all these open data in various industries all around the world. Let
us see for example the dividends paid by Agilent Technologies published by the
U.S. Securities and Exchange Commission. To do so, simply search for "Agilent
Technologies" at the http://www.quandl.com homepage, and provide the code
of the desired data from the search results to the Quandl function:

> library(Quandl)

> Quandl('SEC/DIV_A')

 Date Dividend

1 2013-12-27 0.132

2 2013-09-27 0.120

3 2013-06-28 0.120

4 2013-03-28 0.120

5 2012-12-27 0.100

6 2012-09-28 0.100

7 2012-06-29 0.100

8 2012-03-30 0.100

9 2006-11-01 2.057

Warning message:

In Quandl("SEC/DIV_A") :

 It would appear you aren't using an authentication token. Please visit
http://www.quandl.com/help/r or your usage may be limited.

As you can see, the API is rather limited without a valid authentication token, which
can be redeemed at the Quandl homepage for free. To set your token, simply pass
that to the Quandl.auth function.

This package also lets you:

• Fetch filtered data by time
• Perform some transformations of the data on the server side—such as

cumulative sums and the first differential
• Sort the data
• Define the desired class of the returning object—such as ts, zoo, and xts
• Download some meta-information on the data source

http://www.quandl.com

Getting Data from the Web

[60]

The latter is saved as attributes of the returning R object. So, for example, to see
the frequency of the queried dataset, call:

> attr(Quandl('SEC/DIV_A', meta = TRUE), 'meta')$frequency

[1] "quarterly"

Google documents and analytics
You might however be more interested in loading your own or custom data
from Google Docs, to which end the RGoogleDocs package is a great help and is
available for download at the http://www.omegahat.org/ homepage. It provides
authenticated access to Google spreadsheets with both read and write access.

Unfortunately, this package is rather outdated and uses some deprecated API
functions, so you might be better trying some newer alternatives, such as the recently
released googlesheets package, which can manage Google Spreadsheets (but not
other documents) from R.

Similar packages are also available to interact with Google Analytics or Google
Adwords for all those, who would like to analyze page visits or ad performance in R.

Online search trends
On the other hand, we interact with APIs to download public data. Google also
provides access to some public data of the World Bank, IMF, US Census Bureau, and
so on at http://www.google.com/publicdata/directory and also some of their
own internal data in the form of search trends at http://google.com/trends.

The latter can be queried extremely easily with the GTrendsR package, which is not
yet available on CRAN, but we can at least practice how to install R packages from
other sources. The GTrendR code repository can be found on BitBucket, from where
it's really convenient to install it with the devtools package:

To make sure you install the same version of GTrensR as used in the
following, you can specify the branch, commit, or other reference in
the ref argument of the install_bitbucket (or install_github)
function. Please see the References section in the Appendix at the end of
the book for the commit hash.

> library(devtools)

> install_bitbucket('GTrendsR', 'persican', quiet = TRUE)

Installing bitbucket repo(s) GTrendsR/master from persican

http://www.omegahat.org/
http://www.google.com/publicdata/directory
http://google.com/trends

Chapter 2

[61]

Downloading master.zip from https://bitbucket.org/persican/gtrendsr/get/
master.zip

arguments 'minimized' and 'invisible' are for Windows only

So installing R packages from BitBucket or GitHub is as easy as providing the name
of the code repository and author's username and allowing devtools to do the rest:
downloading the sources and compiling them.

Windows users should install Rtools prior to compiling packages from the source:
http://cran.r-project.org/bin/windows/Rtools/. We also enabled the quiet
mode, to suppress compilation logs and the boring details.

After the package has been installed, we can load it in the traditional way:

> library(GTrendsR)

First, we have to authenticate with a valid Google username and password before
being able to query the Google Trends database. Our search term will be "how to
install R":

Please make sure you provide a valid username and password;
otherwise the following query will fail.

> conn <- gconnect('some Google username', 'some Google password')

> df <- gtrends(conn, query = 'how to install R')

> tail(df$trend)

 start end how.to.install.r

601 2015-07-05 2015-07-11 86

602 2015-07-12 2015-07-18 70

603 2015-07-19 2015-07-25 100

604 2015-07-26 2015-08-01 75

605 2015-08-02 2015-08-08 73

606 2015-08-09 2015-08-15 94

The returned dataset includes weekly metrics on the relative amount of search
queries on R installation. The data shows that the highest activity was recorded
in the middle of July, while only around 75 percent of those search queries were
triggered at the beginning of the next month. So Google do not publish raw search
query statistics, but rather comparative studies can be done with different search
terms and time periods.

http://cran.r-project.org/bin/windows/Rtools/

Getting Data from the Web

[62]

Historical weather data
There are also various packages providing access to data sources for all R users in
Earth Science. For example, the RNCEP package can download historical weather data
from the National Centers for Environmental Prediction for more than one hundred
years in six hourly resolutions. The weatherData package provides direct access
to http://wunderground.com. For a quick example, let us download the daily
temperature averages for the last seven days in London:

> library(weatherData)

> getWeatherForDate('London', start_date = Sys.Date()-7, end_date = Sys.
Date())

Retrieving from: http://www.wunderground.com/history/airport/
London/2014/5/12/CustomHistory.html?dayend=19&monthend=5&yearend=2014&r
eq_city=NA&req_state=NA&req_statename=NA&format=1

Checking Summarized Data Availability For London

Found 8 records for 2014-05-12 to 2014-05-19

Data is Available for the interval.

Will be fetching these Columns:

[1] "Date" "Max_TemperatureC" "Mean_TemperatureC"

[4] "Min_TemperatureC"

 Date Max_TemperatureC Mean_TemperatureC Min_TemperatureC

1 2014-05-12 18 13 9

2 2014-05-13 16 12 8

3 2014-05-14 19 13 6

4 2014-05-15 21 14 8

5 2014-05-16 23 16 9

6 2014-05-17 23 17 11

7 2014-05-18 23 18 12

8 2014-05-19 24 19 13

Please note that an unimportant part of the preceding output was suppressed, but
what happened here is quite straightforward: the package fetched the specified URL,
which is a CSV file by the way, then parsed that with some additional information.
Setting opt_detailed to TRUE would also return intraday data with a 30-minute
resolution.

http://wunderground.com

Chapter 2

[63]

Other online data sources
Of course, this short chapter cannot provide an overview of querying all the available
online data sources and R implementations, but please consult the Web Technologies
and Services CRAN Task View, R-bloggers, StackOverflow, and the resources in the
References chapter at the end of the book to look for any already existing R packages or
helper functions before creating your own crawler R scripts.

Summary
This chapter focused on how to fetch and process data directly from the Web,
including some problems with downloading files, processing XML and JSON
formats, parsing HTML tables, applying XPath selectors to extract data from
HTML pages, and interacting with RESTful APIs.

Although some examples in this chapter might appear to have been an idle struggle
with the Socrata API, it turned out that the RSocrata package provides production-
ready access to all those data. However, please bear in mind that you will face some
situations without ready-made R packages; thus, as a data hacker, you will have to
get your hands dirty with all the JSON, HTML and XML sources.

In the next chapter, we will discover how to filter and aggregate the already
acquired and loaded data with the top, most-used methods for reshaping and
restructuring data.

Chapter 3

[65]

Filtering and
Summarizing Data

After loading data from either flat files or databases (as we have seen in Chapter 1,
Hello, Data!), or directly from the web via some APIs (as covered in Chapter 2, Getting
Data from the Web), we often have to aggregate, transform, or filter the original dataset
before the actual data analysis could take place.

In this chapter, we will focus on how to:

• Filter rows and columns in data frames
• Summarize and aggregate data
• Improve the performance of such tasks with the dplyr and data.table

packages besides the base R methods

Drop needless data
Although not loading the needless data is the optimal solution (see the Loading a
subset of text files and Loading data from databases sections in Chapter 1, Hello, Data!),
we often have to filter the original dataset inside R. This can be done with the
traditional tools and functions from base R, such as subset, by using which and
the [or [[operator (see the following code), or for example with the SQL-like
approach of the sqldf package:

> library(sqldf)

> sqldf("SELECT * FROM mtcars WHERE am=1 AND vs=1")

 mpg cyl disp hp drat wt qsec vs am gear carb

1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1

2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

Filtering and Summarizing Data

[66]

3 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

4 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

5 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1

6 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

7 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

I am sure that all readers who have a decent SQL background and are just getting in
touch with R appreciate this alternative way of filtering data, but I personally prefer
the following rather similar, native, and much more concise R version:

> subset(mtcars, am == 1 & vs == 1)

 mpg cyl disp hp drat wt qsec vs am gear carb

Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1

Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1

Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Please note the slight difference in the results. This is attributed to the fact that
the row.names argument of sqldf is FALSE by default, which can of course be
overridden to get the exact same results:

> identical(

+ sqldf("SELECT * FROM mtcars WHERE am=1 AND vs=1",

+ row.names = TRUE),

+ subset(mtcars, am == 1 & vs == 1)

+)

[1] TRUE

These examples focused on how to drop rows from data.frame, but what if we also
want to remove some columns?

The SQL approach is really straightforward; just specify the required columns
instead of * in the SELECT statement. On the other hand, subset also supports
this approach by the select argument, which can take vectors or an R expression
describing, for example, a range of columns:

> subset(mtcars, am == 1 & vs == 1, select = hp:wt)

 hp drat wt

Datsun 710 93 3.85 2.320

Chapter 3

[67]

Fiat 128 66 4.08 2.200

Honda Civic 52 4.93 1.615

Toyota Corolla 65 4.22 1.835

Fiat X1-9 66 4.08 1.935

Lotus Europa 113 3.77 1.513

Volvo 142E 109 4.11 2.780

Pass the unquoted column names as a vector via the c function to
select an arbitrary list of columns in the given order, or exclude
the specified columns by using the - operator, for example,
subset(mtcars, select = -c(hp, wt)).

Let's take this to the next step, and see how we can apply the forementioned
filters on some larger datasets, when we face some performance issues with the
base functions.

Drop needless data in an efficient way
R works best with datasets that can fit in the actual physical memory, and some R
packages provide extremely fast access to this amount of data.

Some benchmarks (see the References section at the end of the book)
provide real-life examples of more efficient summarizing R functions
than what the current open source (for example, MySQL, PostgreSQL,
and Impala) and commercial databases (such as HP Vertica) provide.

Some of the related packages were already mentioned in Chapter 1, Hello, Data!,
where we benchmarked reading a relatively large amount of data from the hflights
package into R.

Let's see how the preceding examples perform on this dataset of a quarter of a
million rows:

> library(hflights)

> system.time(sqldf("SELECT * FROM hflights WHERE Dest == 'BNA'",

+ row.names = TRUE))

 user system elapsed

 1.487 0.000 1.493

> system.time(subset(hflights, Dest == 'BNA'))

 user system elapsed

 0.132 0.000 0.131

Filtering and Summarizing Data

[68]

The base::subset function seems to perform pretty well, but can we make it any
faster? Well, the second generation of the plyr package, called dplyr (the relevant
details are discussed High-performance helper functions section in this chapter and
Chapter 4, Restructuring Data), provides extremely fast C++ implementations of
the most common database manipulation methods in a rather intuitive way:

> library(dplyr)

> system.time(filter(hflights, Dest == 'BNA'))

 user system elapsed

 0.021 0.000 0.022

Further, we can extend this solution by dropping some columns from the dataset just
like we did with subset before, although now, we call the select function instead
of passing an argument with the same name:

> str(select(filter(hflights, Dest == 'BNA'), DepTime:ArrTime))

'data.frame': 3481 obs. of 2 variables:

 $ DepTime: int 1419 1232 1813 900 716 1357 2000 1142 811 1341 ...

 $ ArrTime: int 1553 1402 1948 1032 845 1529 2132 1317 945 1519 ...

Therefore, it's like calling the filter function instead of subset, and we get the
results faster than the blink of an eye! The dplyr package can work with traditional
data.frame or data.table objects, or can interact directly with the most widely
used database engines. Please note that row names are not preserved in dplyr, so if
you require them, it's worth copying the names to explicit variables before passing
them to dplyr or directly to data.table as follows:

> mtcars$rownames <- rownames(mtcars)

> select(filter(mtcars, hp > 300), c(rownames, hp))

 rownames hp

1 Maserati Bora 335

Drop needless data in another efficient way
Let's see a quick example of the data.table solution on its own, without dplyr.

The data.table package provides an extremely efficient way to
handle larger datasets in a column-based, auto-indexed in-memory
data structure, with backward compatibility for the traditional
data.frame methods.

Chapter 3

[69]

After loading the package, we have to transform the hflights traditional data.frame
to data.table. Then, we create a new column, called rownames, to which we assign
the rownames of the original dataset with the help of the := assignment operator specific
to data.table:

> library(data.table)

> hflights_dt <- data.table(hflights)

> hflights_dt[, rownames := rownames(hflights)]

> system.time(hflights_dt[Dest == 'BNA'])

 user system elapsed

 0.021 0.000 0.020

Well, it takes some time to get used to the custom data.table syntax and it might
even seem a bit strange to the traditional R user at first sight, but it's definitely worth
mastering in the long run. You get great performance, and the syntax turns out to be
natural and flexible after the relatively steep learning curve of the first few examples.

As a matter of fact, the data.table syntax is pretty similar to SQL:

DT[i, j, ... , drop = TRUE]

This could be described with SQL commands as follows:

DT[where, select | update, group by][having][order by][]...[]

Therefore, [.data.table (which stands for the [operator applied to a data.table
object) has some different arguments as compared to the traditional [.data.frame
syntax, as you have already seen in the preceding example.

Now, we are not dealing with the assignment operator in detail, as
this example might be too complex for such an introductory part
of the book, and we are probably getting out of our comfort zone.
Therefore, please find more details in Chapter 4, Restructuring Data,
or head to ?data.table for a rather technical overview.

It seems that the first argument (i) of the [.data.table operator stands for filtering,
or in other words, for the WHERE statement in SQL parlance, while [.data.frame
expects indices specifying which rows to keep from the original dataset. The real
difference between the two arguments is that the former can take any R expression,
while the latter traditional method expects mainly integers or logical values.

Filtering and Summarizing Data

[70]

Anyway, filtering is as easy as passing an R expression to the i argument of the [
operator specific to data.table. Further, let's see how we can select the columns in
the data.table syntax, which should be done in the second argument (j) of the call
on the basis of the abovementioned general data.table syntax:

> str(hflights_dt[Dest == 'BNA', list(DepTime, ArrTime)])

Classes 'data.table' and 'data.frame': 3481 obs. of 2 variables:

 $ DepTime: int 1419 1232 1813 900 716 1357 2000 1142 811 1341 ...

 $ ArrTime: int 1553 1402 1948 1032 845 1529 2132 1317 945 1519 ...

 - attr(*, ".internal.selfref")=<externalptr>

Okay, so we now have the two expected columns with the 3,481 observations. Note
that list was used to define the required columns to keep, although the use of c (a
function from base R to concatenate vector elements) is more traditionally used with
[.data.frame. The latter is also possible with [.data.table, but then, you have to
pass the variable names as a character vector and set with to FALSE:

> hflights_dt[Dest == 'BNA', c('DepTime', 'ArrTime'), with = FALSE]

Instead of list, you can use a dot as the function
name in the style of the plyr package; for example:
hflights_dt[, .(DepTime, ArrTime)].

Now that we are more or less familiar with our options for filtering data inside a live
R session, and we know the overall syntax of the dplyr and data.table packages,
let's see how these can be used to aggregate and summarize data in action.

Aggregation
The most straightforward way of summarizing data is calling the aggregate
function from the stats package, which does exactly what we are looking for:
splitting the data into subsets by a grouping variable, then computing summary
statistics for them separately. The most basic way to call the aggregate function is
to pass the numeric vector to be aggregated, and a factor variable to define the splits
for the function passed in the FUN argument to be applied. Now, let's see the average
ratio of diverted flights on each weekday:

> aggregate(hflights$Diverted, by = list(hflights$DayOfWeek),

+ FUN = mean)

 Group.1 x

1 1 0.002997672

Chapter 3

[71]

2 2 0.002559323

3 3 0.003226211

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

Well, it took some time to run the preceding script, but please bear in mind that we
have just aggregated around a quarter of a million rows to see the daily averages for
the number of diverted flights departing from the Houston airport in 2011.

In other words, which also makes sense for all those not into statistics, the percentage
of diverted flights per weekday. The results are rather interesting, as it seems that
flights are more often diverted in the middle of the week (around 0.3 percent) than
over the weekends (around 0.05 percent less), at least from Houston.

An alternative way of calling the preceding function is to supply the arguments
inside of the with function, which seems to be a more human-friendly expression
after all because it saves us from the repeated mention of the hflights database:

> with(hflights, aggregate(Diverted, by = list(DayOfWeek),

+ FUN = mean))

The results are not shown here, as they are exactly the same as those shown
earlier. The manual for the aggregate function (see ?aggregate) states that it
returns the results in a convenient form. Well, checking the column names of the
abovementioned returned data does not seem convenient, right? We can overcome
this issue by using the formula notation instead of defining the numeric and factor
variables separately:

> aggregate(Diverted ~ DayOfWeek, data = hflights, FUN = mean)

 DayOfWeek Diverted

1 1 0.002997672

2 2 0.002559323

3 3 0.003226211

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

Filtering and Summarizing Data

[72]

The gain by using the formula notation is at least two-fold:

• There are relatively few characters to type
• The headers and row names are correct in the results
• This version also runs a bit faster than the previous aggregate calls; please

see the all-out benchmark at the end of this section

The only downside of using the formula notation is that you have to learn it, which
might seem a bit awkward at first, but as formulas are highly used in a bunch of
R functions and packages, particularly for defining models, it's definitely worth
learning how to use them in the long run.

The formula notation is inherited from the S language with the following
general syntax: response_variable ~ predictor_variable_1
+ … + predictor_variable_n. The notation also includes some
other symbols, such as - for excluding variables and : or * to include the
interaction between the variables with or without themselves. See Chapter 5,
Building Models (authored by Renata Nemeth and Gergely Toth), and ?formula
in the R console for more details.

Quicker aggregation with base R commands
An alternative solution to aggregate data might be to call the tapply or by function,
which can apply an R function over a ragged array. The latter means that we can
provide one or more INDEX variables, which will be coerced to factor, and then, run
the provided R function separately on all cells in each subset. The following is a
quick example:

> tapply(hflights$Diverted, hflights$DayOfWeek, mean)

 1 2 3 4 5 6 7

0.002998 0.002559 0.003226 0.003066 0.002688 0.002823 0.002589

Please note that tapply returns an array object instead of convenient data frames;
on the other hand, it runs a lot quicker than the abovementioned aggregate calls.
Thus, it might be reasonable to use tapply for the computations and then, convert
the results to data.frame with the appropriate column names.

Chapter 3

[73]

Convenient helper functions
Such conversions can be done easily and in a very user-friendly way by, for example,
using the plyr package, a general version of the dplyr package, which stands for
plyr specialized for data frames.

The plyr package provides a variety of functions to apply data from data.frame,
list, or array objects, and can return the results in any of the mentioned formats.
The naming scheme of these functions is easy to remember: the first character of
the function name stands for the class of the input data, and the second character
represents the output format, all followed by ply in all cases. Besides the three
abovementioned R classes, there are some special options coded by the characters:

• d stands for data.frame
• s stands for array
• l stands for list
• m is a special input type, which means that we provide multiple arguments in

a tabular format for the function
• r input type expects an integer, which specifies the number of times the

function will be replicated
• _ is a special output type that does not return anything for the function

Thus, the following most frequently used combinations are available:

• ddply takes data.frame as input and returns data.frame
• ldply takes list as input but returns data.frame
• l_ply does not return anything, but it's really useful for example,

to iterate through a number of elements instead of a for loop; as with
a set .progress argument, the function can show the current state of
iterations, the remaining time

Please find more details, examples, and use cases of plyr in Chapter 4, Restructuring
Data. Here, we will only concentrate on how to summarize data. To this end, we will
use ddply (not to be confused with the dplyr package) in all the following examples:
taking data.frame as the input argument and returning data with the same class.

Filtering and Summarizing Data

[74]

So, let's load the package and apply the mean function on the Diverted column over
each subset by DayOfWeek:

> library(plyr)

> ddply(hflights, .(DayOfWeek), function(x) mean(x$Diverted))

 DayOfWeek V1

1 1 0.002997672

2 2 0.002559323

3 3 0.003226211

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

The . function of the plyr package provides us with a convenient
way of referring to a variable (name) as is; otherwise, the content of
the DayOfWeek columns would be interpreted by ddply, resulting
in an error.

An important thing to note here is that ddply is much quicker than our first attempt
with the aggregate function. On the other hand, I am not yet pleased with the
results, V1 and such creative column names have always freaked me out. Instead
of updating the names of the data.frame post processing let's call the summarise
helper function instead of the previously applied anonymous one; here, we can also
provide the desired name for our newly computed column:

> ddply(hflights, .(DayOfWeek), summarise, Diverted = mean(Diverted))

 DayOfWeek Diverted

1 1 0.002997672

2 2 0.002559323

3 3 0.003226211

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

Okay, much better. But, can we do even better?

Chapter 3

[75]

High-performance helper functions
Hadley Wickham, the author of ggplot, reshape, and several other R packages,
started working on the second generation, or rather a specialized version, of plyr
in 2008. The basic concept was that plyr is most frequently used to transform
one data.frame to another data.frame; therefore, its operation requires extra
attention. The dplyr package, plyr specialized for data frames, provides a faster
implementation of the plyr functions, written in raw C++, and dplyr can also deal
with remote databases.

However, the performance improvements also go hand-in-hand with some other
changes; for example, the syntax of dplyr has changed a lot as compared to plyr.
Although the previously mentioned summarise function does exist in dplyr, we do
not have the ddplyr function any more, as all functions in the package are dedicated
to act as some component of plyr::ddplyr.

Anyway, to keep the theoretical background short, if we want to summarize the
subgroups of a dataset, we have to define the groups before aggregation:

> hflights_DayOfWeek <- group_by(hflights, DayOfWeek)

The resulting object is the very same data.frame that we had previously with one
exception: a bunch of metadata was merged to the object by the means of attributes.
To keep the following output short, we do not list the whole structure (str) of the
object, but only the attributes are shown:

> str(attributes(hflights_DayOfWeek))

List of 9

 $ names : chr [1:21] "Year" "Month" "DayofMonth" ...

 $ class : chr [1:4] "grouped_df" "tbl_df" "tbl" ...

 $ row.names : int [1:227496] 5424 5425 5426 5427 5428 ...

 $ vars :List of 1

 ..$: symbol DayOfWeek

 $ drop : logi TRUE

 $ indices :List of 7

 ..$: int [1:34360] 2 9 16 23 30 33 40 47 54 61 ...

 ..$: int [1:31649] 3 10 17 24 34 41 48 55 64 70 ...

 ..$: int [1:31926] 4 11 18 25 35 42 49 56 65 71 ...

 ..$: int [1:34902] 5 12 19 26 36 43 50 57 66 72 ...

 ..$: int [1:34972] 6 13 20 27 37 44 51 58 67 73 ...

 ..$: int [1:27629] 0 7 14 21 28 31 38 45 52 59 ...

Filtering and Summarizing Data

[76]

 ..$: int [1:32058] 1 8 15 22 29 32 39 46 53 60 ...

 $ group_sizes : int [1:7] 34360 31649 31926 34902 34972 ...

 $ biggest_group_size: int 34972

 $ labels :'data.frame': 7 obs. of 1 variable:

 ..$ DayOfWeek: int [1:7] 1 2 3 4 5 6 7

 ..- attr(*, "vars")=List of 1

 $: symbol DayOfWeek

From this metadata, the indices attribute is important. It simply lists the IDs of each
row for one of the weekdays, so later operations can easily select the subgroups from
the whole dataset. So, let's see how the proportion of diverted flights looks like with
some performance boost due to using summarise from dplyr instead of plyr:

> dplyr::summarise(hflights_DayOfWeek, mean(Diverted))

Source: local data frame [7 x 2]

 DayOfWeek mean(Diverted)

1 1 0.002997672

2 2 0.002559323

3 3 0.003226211

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

The results are pretty familiar, which is good. However, while running this example,
did you measure the execution time? This was close to an instant, which makes
dplyr even better.

Aggregate with data.table
Do you remember the second argument of [.data.table? It's called j, which stands
for a SELECT or an UPDATE SQL statement, and the most important feature is that it
can be any R expression. Thus, we can simply pass a function there and set groups
with the help of the by argument:

> hflights_dt[, mean(Diverted), by = DayOfWeek]

 DayOfWeek V1

1: 6 0.002823121

Chapter 3

[77]

2: 7 0.002589057

3: 1 0.002997672

4: 2 0.002559323

5: 3 0.003226211

6: 4 0.003065727

7: 5 0.002687865

I am pretty sure that you are not in the least surprised by how fast the results
were returned by data.table, as people can get used to great tools very quickly.
Further, it was very concise as compared to the previous two-line dplyr call, right?
The only downside of this solution is that the weekdays are ordered by some hardly
intelligible rank. Please see Chapter 4, Restructuring Data, for more details on this; for
now, let's fix the issue quickly by setting a key, which means that we order data.table
first by DayOfWeek:

> setkey(hflights_dt, 'DayOfWeek')

> hflights_dt[, mean(Diverted), by = DayOfWeek]

 DayOfWeek V1

1: 1 0.002997672

2: 2 0.002559323

3: 3 0.003226211

4: 4 0.003065727

5: 5 0.002687865

6: 6 0.002823121

7: 7 0.002589057

To specify a name for the second column in the resulting tabular
object instead of V1, you can specify the summary object as a named
list, for example, as hflights_dt[, list('mean(Diverted)'
= mean(Diverted)), by = DayOfWeek], where you can use .
(dot) instead of list, just like in plyr.

Besides getting the results in the expected order, summarizing data by an already
existing key also runs relatively fast. Let's verify this with some empirical evidence
on your machine!

Filtering and Summarizing Data

[78]

Running benchmarks
As already discussed in the previous chapters, with the help of the microbenchmark
package, we can run any number of different functions for a specified number of
times on the same machine to get some reproducible results on the performance.

To this end, we have to define the functions that we want to benchmark first. These
were compiled from the preceding examples:

> AGGR1 <- function() aggregate(hflights$Diverted,

+ by = list(hflights$DayOfWeek), FUN = mean)

> AGGR2 <- function() with(hflights, aggregate(Diverted,

+ by = list(DayOfWeek), FUN = mean))

> AGGR3 <- function() aggregate(Diverted ~ DayOfWeek,

+ data = hflights, FUN = mean)

> TAPPLY <- function() tapply(X = hflights$Diverted,

+ INDEX = hflights$DayOfWeek, FUN = mean)

> PLYR1 <- function() ddply(hflights, .(DayOfWeek),

+ function(x) mean(x$Diverted))

> PLYR2 <- function() ddply(hflights, .(DayOfWeek), summarise,

+ Diverted = mean(Diverted))

> DPLYR <- function() dplyr::summarise(hflights_DayOfWeek,

+ mean(Diverted))

However, as mentioned before, the summarise function in dplyr needs some prior
data restructuring, which also takes time. To this end, let's define another function that
also includes the creation of the new data structure along with the real aggregation:

> DPLYR_ALL <- function() {

+ hflights_DayOfWeek <- group_by(hflights, DayOfWeek)

+ dplyr::summarise(hflights_DayOfWeek, mean(Diverted))

+ }

Similarly, benchmarking data.table also requires some additional variables for the
test environment; as hlfights_dt is already sorted by DayOfWeek, let's create a new
data.table object for benchmarking:

> hflights_dt_nokey <- data.table(hflights)

Further, it probably makes sense to verify that it has no keys:

> key(hflights_dt_nokey)

NULL

Chapter 3

[79]

Okay, now, we can define the data.table test cases along with a function that
also includes the transformation to data.table, and adding an index just to be
fair with dplyr:

> DT <- function() hflights_dt_nokey[, mean(FlightNum),

+ by = DayOfWeek]

> DT_KEY <- function() hflights_dt[, mean(FlightNum),

+ by = DayOfWeek]

> DT_ALL <- function() {

+ setkey(hflights_dt_nokey, 'DayOfWeek')

+ hflights_dt[, mean(FlightNum), by = DayOfWeek]

+ setkey(hflights_dt_nokey, NULL)

+ }

Now that we have all the described implementations ready for testing, let's load the
microbenchmark package to do its job:

> library(microbenchmark)

> res <- microbenchmark(AGGR1(), AGGR2(), AGGR3(), TAPPLY(), PLYR1(),

+ PLYR2(), DPLYR(), DPLYR_ALL(), DT(), DT_KEY(), DT_ALL())

> print(res, digits = 3)

Unit: milliseconds

 expr min lq median uq max neval

 AGGR1() 2279.82 2348.14 2462.02 2597.70 2719.88 10

 AGGR2() 2278.15 2465.09 2528.55 2796.35 2996.98 10

 AGGR3() 2358.71 2528.23 2726.66 2879.89 3177.63 10

 TAPPLY() 19.90 21.05 23.56 29.65 33.88 10

 PLYR1() 56.93 59.16 70.73 82.41 155.88 10

 PLYR2() 58.31 65.71 76.51 98.92 103.48 10

 DPLYR() 1.18 1.21 1.30 1.74 1.84 10

 DPLYR_ALL() 7.40 7.65 7.93 8.25 14.51 10

 DT() 5.45 5.73 5.99 7.75 9.00 10

 DT_KEY() 5.22 5.45 5.63 6.26 13.64 10

 DT_ALL() 31.31 33.26 35.19 38.34 42.83 10

Filtering and Summarizing Data

[80]

The results are pretty spectacular: from more than 2,000 milliseconds, we could
improve our tools to provide the very same results in only a bit more than 1
millisecond. The spread can be demonstrated easily on a violin plot with a
logarithmic scale:

> autoplot(res)

Therefore, dplyr seems to be the most efficient solution, although if we also take the
extra step (to group data.frame) into account, it makes the otherwise clear advantage
rather unconvincing. As a matter of fact, if we already have a data.table object, and
we can save the transformation of a traditional data.frame object into data.table,
then data.table performs better than dplyr. However, I am pretty sure that you will
not really notice the time difference between the two high-performance solutions; both
of these do a very good job with even larger datasets.

It's worth mentioning that dplyr can work with data.table objects as well;
therefore, to ensure that you are not locked to either package, it's definitely worth
using both if needed. The following is a POC example:

> dplyr::summarise(group_by(hflights_dt, DayOfWeek), mean(Diverted))

Source: local data table [7 x 2]

 DayOfWeek mean(Diverted)

1 1 0.002997672

2 2 0.002559323

3 3 0.003226211

Chapter 3

[81]

4 4 0.003065727

5 5 0.002687865

6 6 0.002823121

7 7 0.002589057

Okay, so now we are pretty sure to use either data.table or dplyr for computing
group averages in the future. However, what about more complex operations?

Summary functions
As we have discussed earlier, all aggregating functions can take any valid R functions
to apply on the subsets of the data. Some of the R packages make it extremely easy
for the users, while a few functions do require you to fully understand the package
concept, custom syntax, and options to get the most out of the high-performance
opportunities.

For such more advanced topics, please see Chapter 4, Restructuring Data, and the
further readings listed in the References section at the end of the book.

Now, we will concentrate on a very simple summary function, which is extremely
common in any general data analysis project: counting the number of cases per
group. This quick example will also highlight some of the differences among the
referenced alternatives mentioned in this chapter.

Adding up the number of cases in subgroups
Let's focus on plyr, dplyr and data.table now, as I am pretty sure that you can
construct the aggregate and tapply versions without any serious issues. On the
basis of the previous examples, the current task seems fairly easy: instead of the
mean function, we can simply call the length function to return the number of
elements in the Diverted column:

> ddply(hflights, .(DayOfWeek), summarise, n = length(Diverted))

 DayOfWeek n

1 1 34360

2 2 31649

3 3 31926

4 4 34902

5 5 34972

6 6 27629

7 7 32058

Filtering and Summarizing Data

[82]

Now, we also know that a relatively low number of flights leave Houston on
Saturday. However, do we really have to type so much to answer such a simple
question? Further, do we really have to name a variable in which we can count the
number of cases? You already know the answer:

> ddply(hflights, .(DayOfWeek), nrow)

 DayOfWeek V1

1 1 34360

2 2 31649

3 3 31926

4 4 34902

5 5 34972

6 6 27629

7 7 32058

In short, there is no need to choose a variable from data.frame to determine its
length, as it's a lot easier (and faster) to simply check the number of rows in the
(sub)datasets.

However, we can also return the very same results in a much easier and quicker way.
Probably, you have already thought of using the good old table function for such a
straightforward task:

> table(hflights$DayOfWeek)

 1 2 3 4 5 6 7

34360 31649 31926 34902 34972 27629 32058

The only problem with the resulting object is that we have to transform it further, for
example, to data.frame in most cases. Well, plyr already has a helper function to
do this in one step, with a very intuitive name:

> count(hflights, 'DayOfWeek')

 DayOfWeek freq

1 1 34360

2 2 31649

3 3 31926

4 4 34902

5 5 34972

6 6 27629

7 7 32058

Chapter 3

[83]

Therefore, we end up with some rather simple examples for counting data, but
let us also see how to implement summary tables with dplyr. If you simply try to
modify our previous dplyr commands, you will soon realize that passing the length
or nrow function, as we did in plyr, simply does not work. However, reading the
manuals or some related questions on StackOverflow soon points our attention to a
handy helper function called n:

> dplyr::summarise(hflights_DayOfWeek, n())

Source: local data frame [7 x 2]

 DayOfWeek n()

1 1 34360

2 2 31649

3 3 31926

4 4 34902

5 5 34972

6 6 27629

7 7 32058

However, to be honest, do we really need this relatively complex approach? If you
remember the structure of hflights_DayOfWeek, you will soon realize that there is a
lot easier and quicker way to find out the overall number of flights on each weekday:

> attr(hflights_DayOfWeek, 'group_sizes')

[1] 34360 31649 31926 34902 34972 27629 32058

Further, just to make sure that we do not forget the custom (yet pretty) syntax of
data.table, let us compute the results with another helper function:

> hflights_dt[, .N, by = list(DayOfWeek)]

 DayOfWeek N

1: 1 34360

2: 2 31649

3: 3 31926

4: 4 34902

5: 5 34972

6: 6 27629

7: 7 32058

Filtering and Summarizing Data

[84]

Summary
In this chapter, we introduced some effective and convenient ways of filtering and
summarizing data. We discussed some use cases on filtering the rows and columns of
datasets. We also learned how to summarize data for further analysis. After getting
familiar with the most popular implementations of such tasks, we compared them
with reproducible examples and a benchmarking package.

In the next chapter, we will continue this journey of restructuring datasets and
creating new variables.

Chapter 4

[85]

Restructuring Data
We already covered the most basic methods for restructuring data in the Chapter 3,
Filtering and Summarizing Data, but of course, there are several other, more complex
tasks that we will master in the forthcoming pages.

Just to give a quick example on how diversified tools are needed for getting the data in
a form that can be used for real data analysis: Hadley Wickham, one of the best known
R developers and users, spent one third of his PhD thesis on reshaping data. As he
says, "it is unavoidable before doing any exploratory data analysis or visualization."

So now, besides the previous examples of restructuring data, such as the counting of
elements in each group, we will focus on some more advanced features, as listed next:

• Transposing matrices
• Splitting, applying, and joining data
• Computing margins of tables
• Merging data frames
• Casting and melting data

Transposing matrices
One of the most used, but often not mentioned, methods for restructuring data is
transposing matrices. This simply means switching the columns with rows and
vice versa, via the t function:

> (m <- matrix(1:9, 3))

 [,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Restructuring Data

[86]

> t(m)

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

Of course, this S3 method also works with data.frame, and actually, with any
tabular object. For more advanced features, such as transposing a multi-dimensional
table, take a look at the aperm function from the base package.

Filtering data by string matching
Although some filtering algorithms were already discussed in the previous chapters,
the dplyr package contains some magic features that have not yet been covered
and are worth mentioning here. As we all know by this time, the subset function in
base, or the filter function from dplyr is used for filtering rows, and the select
function can be used to choose a subset of columns.

The function filtering rows usually takes an R expression, which returns the IDs of
the rows to drop, similar to the which function. On the other hand, providing such
R expressions to describe column names is often more problematic for the select
function; it's harder if not impossible to evaluate R expressions on column names.

The dplyr package provides some useful functions to select some columns of the
data, based on column name patterns. For example, we can keep only the variables
ending with the string, delay:

> library(dplyr)

> library(hflights)

> str(select(hflights, ends_with("delay")))

'data.frame': 227496 obs. of 2 variables:

 $ ArrDelay: int -10 -9 -8 3 -3 -7 -1 -16 44 43 ...

 $ DepDelay: int 0 1 -8 3 5 -1 -1 -5 43 43 ...

Of course, there is a similar helper function to check the first characters of the column
names with starts_with, and both functions can ignore (by default) or take into
account the upper or lower case of the characters with the ignore.case parameter.
And we have the more general, contains function, looking for substrings in the
column names:

> str(select(hflights, contains("T", ignore.case = FALSE)))

Chapter 4

[87]

'data.frame': 227496 obs. of 7 variables:

 $ DepTime : int 1400 1401 1352 1403 1405 ...

 $ ArrTime : int 1500 1501 1502 1513 1507 ...

 $ TailNum : chr "N576AA" "N557AA" "N541AA" "N403AA" ...

 $ ActualElapsedTime: int 60 60 70 70 62 64 70 59 71 70 ...

 $ AirTime : int 40 45 48 39 44 45 43 40 41 45 ...

 $ TaxiIn : int 7 6 5 9 9 6 12 7 8 6 ...

 $ TaxiOut : int 13 9 17 22 9 13 15 12 22 19 ...

The other option is that we might need a more complex approach with regular
expressions, which is another extremely important skill for data scientists. Now,
we will provide a regular expression to the matches function, which is to be fitted
against all the columns names. Let's select all the columns with a name comprising of
5 or 6 characters:

> str(select(hflights, matches("^[[:alpha:]]{5,6}$")))

'data.frame': 227496 obs. of 3 variables:

 $ Month : int 1 1 1 1 1 1 1 1 1 1 ...

 $ Origin: chr "IAH" "IAH" "IAH" "IAH" ...

 $ TaxiIn: int 7 6 5 9 9 6 12 7 8 6 ...

We can keep all column names that do not match a regular expression by using a
negative sign before the expression. For example, let's identify the most frequent
number of characters in the columns' names:

> table(nchar(names(hflights)))

 4 5 6 7 8 9 10 13 16 17

 2 1 2 5 4 3 1 1 1 1

And then, let's remove all the columns with 7 or 8 characters from the dataset. Now,
we will show the column names from the filtered dataset:

> names(select(hflights, -matches("^[[:alpha:]]{7,8}$")))

 [1] "Year" "Month" "DayofMonth"

 [4] "DayOfWeek" "UniqueCarrier" "FlightNum"

 [7] "ActualElapsedTime" "Origin" "Dest"

[10] "TaxiIn" "Cancelled" "CancellationCode"

Restructuring Data

[88]

Rearranging data
Sometimes, we do not want to filter any part of the data (neither the rows, nor the
columns), but the data is simply not in the most useful order due to convenience
or performance issues, as we have seen, for instance, in Chapter 3, Filtering and
Summarizing Data.

Besides the base sort and order functions, or providing the order of variables
passed to the [operator, we can also use some SQL-like solutions with the sqldf
package, or query the data in the right format directly from the database. And the
previously mentioned dplyr package also provides an effective method for ordering
data. Let's sort the hflights data, based on the actual elapsed time for each of the
quarter million flights:

> str(arrange(hflights, ActualElapsedTime))

'data.frame': 227496 obs. of 21 variables:

 $ Year : int 2011 2011 2011 2011 2011 2011 ...

 $ Month : int 7 7 8 9 1 4 5 6 7 8 ...

 $ DayofMonth : int 24 25 13 21 3 29 9 21 8 2 ...

 $ DayOfWeek : int 7 1 6 3 1 5 1 2 5 2 ...

 $ DepTime : int 2005 2302 1607 1546 1951 2035 ...

 $ ArrTime : int 2039 2336 1641 1620 2026 2110 ...

 $ UniqueCarrier : chr "WN" "XE" "WN" "WN" ...

 $ FlightNum : int 1493 2408 912 2363 2814 2418 ...

 $ TailNum : chr "N385SW" "N12540" "N370SW" "N524SW" ...

 $ ActualElapsedTime: int 34 34 34 34 35 35 35 35 35 35 ...

 $ AirTime : int 26 26 26 26 23 23 27 26 25 25 ...

 $ ArrDelay : int 9 -8 -4 15 -19 20 35 -15 86 -9 ...

 $ DepDelay : int 20 2 7 26 -4 35 45 -8 96 1 ...

 $ Origin : chr "HOU" "IAH" "HOU" "HOU" ...

 $ Dest : chr "AUS" "AUS" "AUS" "AUS" ...

 $ Distance : int 148 140 148 148 127 127 148 ...

 $ TaxiIn : int 3 3 4 3 4 4 5 3 5 4 ...

 $ TaxiOut : int 5 5 4 5 8 8 3 6 5 6 ...

 $ Cancelled : int 0 0 0 0 0 0 0 0 0 0 ...

 $ CancellationCode : chr "" "" "" "" ...

 $ Diverted : int 0 0 0 0 0 0 0 0 0 0 ...

Chapter 4

[89]

Well, it's pretty straightforward that flights departing to Austin are among the first
few records shown. For improved readability, the above three R expressions can be
called in a much nicer way with the pipe operator from the automatically imported
magrittr package, which provides a simple way to pass an R object as the first
argument of the subsequent R expression:

> hflights %>% arrange(ActualElapsedTime) %>% str

So, instead of nesting R functions, we can now start our R command with the core
object and pass the results of each evaluated R expression to the next one in the
chain. In most cases, this makes the code more convenient to read. Although most
hardcore R programmers have already gotten used to reading the nested function
calls from inside-out, believe me, it's pretty easy to get used to this nifty feature! Do
not let me confuse you with the inspiring painting of René Magritte, which became
the slogan, "This is not a pipe," and a symbol of the magrittr package:

There is no limit to the number of chainable R expressions and objects one can have.
For example, let's also filter a few cases and variables to see how easy it is to follow
the data restructuring steps with dplyr:

> hflights %>%

+ arrange(ActualElapsedTime) %>%

+ select(ActualElapsedTime, Dest) %>%

+ subset(Dest != 'AUS') %>%

+ head %>%

+ str

'data.frame': 6 obs. of 2 variables:

 $ ActualElapsedTime: int 35 35 36 36 37 37

 $ Dest : chr "LCH" "LCH" "LCH" "LCH" ...

Restructuring Data

[90]

So, now we have filtered the original dataset a few times to see the closest airport
after Austin, and the code is indeed easy to read and understand. This is a nice and
efficient way to filter data, although some prefer to use nifty one-liners with the
data.table package:

> str(head(data.table(hflights, key = 'ActualElapsedTime')[Dest !=

+ 'AUS', c('ActualElapsedTime', 'Dest'), with = FALSE]))

Classes 'data.table' and 'data.frame': 6 obs. of 2 variables:

 $ ActualElapsedTime: int NA NA NA NA NA NA

 $ Dest : chr "MIA" "DFW" "MIA" "SEA" ...

 - attr(*, "sorted")= chr "ActualElapsedTime"

 - attr(*, ".internal.selfref")=<externalptr>

Almost perfect! The only problem is that we got different results due to the missing
values, which were ordered at the beginning of the dataset while we defined the
data.table object to be indexed by ActualElapsedTime. To overcome this issue,
let's drop the NA values, and instead of specifying the column names as strings along
with forcing the with parameter to be FALSE, let's pass a list of column names:

> str(head(na.omit(

+ data.table(hflights, key = 'ActualElapsedTime'))[Dest != 'AUS',

+ list(ActualElapsedTime, Dest)]))

Classes 'data.table' and 'data.frame': 6 obs. of 2 variables:

 $ ActualElapsedTime: int 35 35 36 36 37 37

 $ Dest : chr "LCH" "LCH" "LCH" "LCH" ...

 - attr(*, "sorted")= chr "ActualElapsedTime"

 - attr(*, ".internal.selfref")=<externalptr>

This is exactly the same results as we have seen before. Please note that in this example,
we have omitted the NA values after transforming data.frame to data.table, indexed
by the ActualElapsedTime variable, which is a lot faster compared to calling na.omit
on hflights first and then evaluating all the other R expressions:

> system.time(str(head(data.table(na.omit(hflights),

+ key = 'ActualElapsedTime')[Dest != 'AUS',

+ c('ActualElapsedTime', 'Dest'), with = FALSE])))

 user system elapsed

 0.374 0.017 0.390

> system.time(str(head(na.omit(data.table(hflights,

+ key = 'ActualElapsedTime'))[Dest != 'AUS',

Chapter 4

[91]

+ c('ActualElapsedTime', 'Dest'), with = FALSE])))

 user system elapsed

 0.22 0.00 0.22

dplyr versus data.table
You might now be wondering, "which package should we use?"

The dplyr and data.table packages provide a spectacularly different syntax
and a slightly less determinative difference in performance. Although data.table
seems to be slightly more effective on larger datasets, there is no clear winner in this
spectrum—except for doing aggregations on a high number of groups. And to be
honest, the syntax of dplyr, provided by the magrittr package, can be also used
by the data.table objects if needed.

Also, there is another R package that provides pipes in R, called the pipeR package,
which claims to be a lot more effective on larger datasets than magrittr. This
performance gain is due to the fact that the pipeR operators do not try to be
smart like the F# language's |>-compatible operator in magrittr. Sometimes, this
performance overhead is estimated to be 5-15 times more than the ones where no
pipes are used at all.

One should take into account the community and support behind an R package before
spending a reasonable amount of time learning about its usage. In a nutshell, the data.
table package is now mature enough, without doubt, for production usage, as the
development was started around 6 years ago by Matt Dowle, who was working for a
large hedge fund at that time. The development has been continuous since then. Matt
and Arun (co-developer of the package) release new features and performance tweaks
from time to time, and they both seem to be keen on providing support on the public R
forums and channels, such as mailing lists and StackOverflow.

On the other hand, dplyr is shipped by Hadley Wickham and RStudio, one of the
most well-known persons and trending companies in the R community, which
translates to an even larger user-base, community, and kind-of-instant support on
StackOverflow and GitHub.

In short, I suggest using the packages that fit your needs best, after dedicating some
time to discover the power and features they make available. If you are coming from
an SQL background, you'll probably find data.table a lot more convenient, while
others rather opt for the Hadleyverse (take a look at the R package with this name; it
installs a bunch of useful R packages developed by Hadley). You should not mix the
two approaches in a single project, as both for readability and performance issues,
it's better to stick to only one syntax at a time.

Restructuring Data

[92]

To get a deeper understanding of the pros and cons of the different approaches, I will
continue to provide multiple implementations of the same problem in the following
few pages as well.

Computing new variables
One of the most trivial actions we usually perform while restructuring a dataset is
to create a new variable. For a traditional data.frame, it's as simple as assigning a
vector to a new variable of the R object.

Well, this method also works with data.table, but the usage is deprecated due
to the fact that there is a much more efficient way of creating one, or even multiple
columns in the dataset:

> hflights_dt <- data.table(hflights)

> hflights_dt[, DistanceKMs := Distance / 0.62137]

We have just computed the distances, in kilometers, between the origin and
destination airports with a simple division; although all the hardcore users can head
for the udunits2 package, which includes a bunch of conversion tools based on
Unidata's udunits library.

And as can be seen previously, data.table uses that special := assignment operator
inside of the square brackets, which might seem strange at first glance, but you will
love it!

The := operator can be more than 500 times faster than the traditional <-
assignment, which is based on the official data.table documentation.
This speedup is due to not copying the whole dataset into the memory
like R used to do before the 3.1 version. Since then, R has used shallow
copies, which greatly improved the performance of column updates,
but is still beaten by data.table powerful in-place updates.

Compare the speed of how the preceding computation was run with the traditional
<- operator and data.table:

> system.time(hflights_dt$DistanceKMs <-

+ hflights_dt$Distance / 0.62137)

 user system elapsed

 0.017 0.000 0.016

> system.time(hflights_dt[, DistanceKMs := Distance / 0.62137])

 user system elapsed

 0.003 0.000 0.002

Chapter 4

[93]

This is impressive, right? But it's worth double checking what we've just done. The
first traditional call, of course, create/updates the DistanceKMs variable, but what
happens in the second call? The data.table syntax did not return anything (visibly),
but in the background, the hflights_dt R object was updated in-place due to the
:= operator.

Please note that the := operator can produce unexpected results when
used inside of knitr, such as returning the data.table visible after the
creation of a new variable, or strange rendering of the command when
the return is echo = TRUE. As a workaround, Matt Dowle suggests
increasing the depthtrigger option of data.table, or one can simply
reassign the data.table object with the same name. Another solution
might be to use my pander package over knitr. :)

But once again, how was it so fast?

Memory profiling
The magic of the data.table package—besides having more than 50 percent of
C code in the sources—is copying objects in memory only if it's truly necessary.
This means that R often copies objects in memory while updating those, and
data.table tries to keep these resource-hungry actions at a minimal level. Let's
verify this by analyzing the previous example with the help of the pryr package,
which provides convenient access to some helper functions for memory profiling
and understanding R-internals.

First, let's recreate the data.table object and let's take a note of the pointer value
(location address of the object in the memory), so that we will be able to verify later if
the new variable simply updated the same R object, or if it was copied in the memory
while the operation took place:

> library(pryr)

> hflights_dt <- data.table(hflights)

> address(hflights_dt)

[1] "0x62c88c0"

Okay, so 0x62c88c0 refers to the location where hflights_dt is stored at the
moment. Now, let's check if it changes due to the traditional assignment operator:

> hflights_dt$DistanceKMs <- hflights_dt$Distance / 0.62137

> address(hflights_dt)

[1] "0x2c7b3a0"

Restructuring Data

[94]

This is definitely a different location, which means that adding a new column to
the R object also requires R to copy the whole object in the memory. Just imagine,
we now moved 21 columns in memory due to adding another one.

Now, to bring about the usage of := in data.table:

> hflights_dt <- data.table(hflights)

> address(hflights_dt)

[1] "0x8ca2340"

> hflights_dt[, DistanceKMs := Distance / 0.62137]

> address(hflights_dt)

[1] "0x8ca2340"

The location of the R object in the memory did not change! And copying objects
in the memory can cost you a lot of resources, thus a lot of time. Take a look at the
following example, which is a slightly updated version of the above traditional
variable assignment call, but with an added convenience layer of within:

> system.time(within(hflights_dt, DistanceKMs <- Distance / 0.62137))

 user system elapsed

 0.027 0.000 0.027

Here, using the within function probably copies the R object once more in the
memory, and hence brings about the relatively serious performance overhead.
Although the absolute time difference between the preceding examples might
not seem very significant (not in the statistical context), but just imagine how the
needless memory updates can affect the processing time of your data analysis with
some larger datasets!

Creating multiple variables at a time
One nice feature of data.table is the creation of multiple columns with a single
command, which can be extremely useful in some cases. For example, we might be
interested in the distance of airports in feet as well:

> hflights_dt[, c('DistanceKMs', 'DiastanceFeets') :=

+ list(Distance / 0.62137, Distance * 5280)]

Chapter 4

[95]

So, it's as simple as providing a character vector of the desired variable names on the
left-hand side and the list of appropriate values on the right-hand side of the :=
operator. This feature can easily be used for some more complex tasks. For example,
let's create the dummy variables of the airline carriers:

> carriers <- unique(hflights_dt$UniqueCarrier)

> hflights_dt[, paste('carrier', carriers, sep = '_') :=

+ lapply(carriers, function(x) as.numeric(UniqueCarrier == x))]

> str(hflights_dt[, grep('^carrier', names(hflights_dt)),

+ with = FALSE])

Classes 'data.table' and 'data.frame': 227496 obs. of 15 variables:

 $ carrier_AA: num 1 1 1 1 1 1 1 1 1 1 ...

 $ carrier_AS: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_B6: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_CO: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_DL: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_OO: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_UA: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_US: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_WN: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_EV: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_F9: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_FL: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_MQ: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_XE: num 0 0 0 0 0 0 0 0 0 0 ...

 $ carrier_YV: num 0 0 0 0 0 0 0 0 0 0 ...

 - attr(*, ".internal.selfref")=<externalptr>

Although it's not a one-liner, and it also introduces a helper variable, it's not that
complex to see what we did:

1. First, we saved the unique carrier names in a character vector.
2. Then, we defined the new variables' name with the help of that.
3. We iterated our anonymous function over this character vector as well,

to return TRUE or FALSE if the carrier name matched the given column.
4. The given column was converted to 0 or 1 through as.numeric.
5. And then, we simply checked the structure of all columns whose names

start with carrier.

Restructuring Data

[96]

This is not perfect, as we usually leave out one label from the dummy variables to
reduce redundancy. In the current situation, the last new column is simply the linear
combination of the other newly created columns, thus information is duplicated.
For this end, it's usually a good practice to leave out, for example, the last category
by passing -1 to the n argument in the head function.

Computing new variables with dplyr
The usage of mutate from the dplyr package is identical to that of the base within
function, although mutate is a lot quicker than within:

> hflights <- hflights %>%

+ mutate(DistanceKMs = Distance / 0.62137)

If the analogy of mutate and within has not been made straightforward by the
previous example, it's probably also useful to show the same example without
using pipes:

> hflights <- mutate(hflights, DistanceKMs = Distance / 0.62137)

Merging datasets
Besides the previously described elementary actions on a single dataset, joining
multiple data sources is one of the most used methods in everyday action. The most
often used solution for such a task is to simply call the merge S3 method, which can act
as a traditional SQL inner and left/right/full outer joiner of operations—represented
in a brief summary by C.L. Moffatt (2008) as follows:

Chapter 4

[97]

The dplyr package provides some easy ways for doing the previously presented join
operations right from R, in an easy way:

• inner_join: This joins the variables of all the rows, which are found in
both datasets

• left_join: This includes all the rows from the first dataset and join variables
from the other table

• semi_join: This includes only those rows from the first dataset that are
found in the other one as well

• anti_join: This is similar to semi_join, but includes only those rows from
the first dataset that are not found in the other one

For more examples, take a look at the Two-table verbs
dplyr vignette, and the Data Wrangling cheat sheet
listed in the References chapter at the end of the book.

Restructuring Data

[98]

These features are also supported by the mult argument of [operator of data.table
call, but for the time being, let's stick to the simpler use cases.

In the following example, we will merge a tiny dataset with the hflights data.
Let's create the data.frame demo by assigning names to the possible values of the
DayOfWeek variable:

> (wdays <- data.frame(

+ DayOfWeek = 1:7,

+ DayOfWeekString = c("Sunday", "Monday", "Tuesday",

+ "Wednesday", "Thursday", "Friday", "Saturday")

+))

 DayOfWeek DayOfWeekString

1 1 Sunday

2 2 Monday

3 3 Tuesday

4 4 Wednesday

5 5 Thursday

6 6 Friday

7 7 Saturday

Let's see how we can left-join the previously defined data.frame with another
data.frame and other tabular objects, as merge also supports fast operations on,
for example, data.table:

> system.time(merge(hflights, wdays))

 user system elapsed

 0.700 0.000 0.699

> system.time(merge(hflights_dt, wdays, by = 'DayOfWeek'))

 user system elapsed

 0.006 0.000 0.009

Chapter 4

[99]

The prior example automatically merged the two tables via the DayOfWeek variable,
which was part of both datasets and resulted in an extra variable in the original
hflights dataset. However, we had to pass the variable name in the second
example, as the by argument of merge.data.table defaults to the key variable
of the object, which was missing then. One thing to note is that merging with
data.table was a lot faster than the traditional tabular object type.

Any ideas on how to improve the previous didactical example?
Instead of merging, the new variable could be computed as
well. See for example, the weekdays function from base R:
weekdays(as.Date(with(hflights, paste(Year,
Month, DayofMonth, sep = '-')))).

A much simpler way of merging datasets is when you simply want to add new rows
or columns to the dataset with the same structure. For this end, rbind and cbind, or
rBind and cBind for sparse matrices, do a wonderful job.

One of the most often used functions along with these base commands is do.call,
which can execute the rbind or cbind call on all elements of a list, thus enabling
us, for example, to join a list of data frames. Such lists are usually created by lapply
or the related functions from the plyr package. Similarly, rbindlist can be called to
merge a list of data.table objects in a much faster way.

Reshaping data in a flexible way
Hadley Wickham has written several R packages to tweak data structures, for
example, a major part of his thesis concentrated on how to reshape data frames with
his reshape package. Since then, this general aggregation and restructuring package
has been renewed to be more efficient with the most commonly used tasks, and it
was released with a new version number attached to the name: reshape2 package.

This was a total rewrite of the reshape package, which improves speed at the cost
of functionality. Currently, the most important feature of reshape2 is the possibility
to convert between the so-called long (narrow) and wide tabular data format. This
basically pertains to the columns being stacked below each other, or arranged beside
each other.

Restructuring Data

[100]

These features were presented in Hadley's works with the following image on data
restructuring, with the related reshape functions and simple use cases:

As the reshape package is not under active development anymore, and its parts
were outsourced to reshape2, plyr, and most recently to dplyr, we will only
focus on the commonly used features of reshape2 in the following pages. This will
basically consist of the melt and cast functions, which provides a smart way of
melting the data into a standardized form of measured and identifier variables (long
table format), which can later be casted to a new shape for further analysis.

Converting wide tables to the long table
format
Melting a data frame means that we transform the tabular data to key-value pairs,
based on the given identifier variables. The original column names become the
categories of the newly created variable column, while all numeric values of those
(measured variables) are included in the new value column. Here's a quick example:

> library(reshape2)

Chapter 4

[101]

> head(melt(hflights))

Using UniqueCarrier, TailNum, Origin, Dest, CancellationCode as id
variables

 UniqueCarrier TailNum Origin Dest CancellationCode variable value

1 AA N576AA IAH DFW Year 2011

2 AA N557AA IAH DFW Year 2011

3 AA N541AA IAH DFW Year 2011

4 AA N403AA IAH DFW Year 2011

5 AA N492AA IAH DFW Year 2011

6 AA N262AA IAH DFW Year 2011

So, we have just restructured the original data.frame, which had 21 variables and a
quarter of a million records, into only 7 columns and more than 3.5 million records.
Six out of the seven columns are factor type identifier variables, and the last column
stores all the values. But why is it useful? Why should we transform the traditional
wide tabular format to the much longer type of data?

For example, we might be interested in comparing the distribution of flight time with
the actual elapsed time of the flight, which might not be straightforward to plot with
the original data format. Although plotting a scatter plot of the above variables with
the ggplot2 package is extremely easy, how would you create two separate boxplots
comparing the distributions?

The problem here is that we have two separate variables for the time measurements,
while ggplot requires one numeric and one factor variable, from which the latter
will be used to provide the labels on the x-axis. For this end, let's restructure our
dataset with melt by specifying the two numeric variables to treat as measurement
variables and dropping all other columns— or in other words, not having any
identifier variables:

> hflights_melted <- melt(hflights, id.vars = 0,

+ measure.vars = c('ActualElapsedTime', 'AirTime'))

> str(hflights_melted)

'data.frame': 454992 obs. of 2 variables:

 $ variable: Factor w/ 2 levels "ActualElapsedTime",..: 1 1 1 1 1 ...

 $ value : int 60 60 70 70 62 64 70 59 71 70 ...

In general, it's not a good idea to melt a dataset without identifier
variables, as casting it later becomes cumbersome, if not impossible.

Restructuring Data

[102]

Please note that now we have exactly twice as many rows than we had before, and
the variable column is a factor with only two levels, which represent the two
measurement variables. And this resulting data.frame is now easy to plot with the
two newly created columns:

> library(ggplot2)

> ggplot(hflights_melted, aes(x = variable, y = value)) +

+ geom_boxplot()

Well, the previous example might not seem mission critical, and to be honest, I first
used the reshape package when I needed some similar transformation to be able
to produce some nifty ggplot2 charts—as the previous problem simply does not
exist if someone is using base graphics. For example, you can simply pass the two
separate variables of the original dataset to the boxplot function.

So, this is kind of entering the world of Hadley Wickham's R packages, and the
journey indeed offers some great data analysis practices. Thus, I warmly suggest
reading further, for example, on how using ggplot2 is not easy, if not impossible,
without knowing how to reshape datasets efficiently.

Chapter 4

[103]

Converting long tables to the wide table
format
Casting a dataset is the opposite of melting, like turning key-value pairs into
a tabular data format. But bear in mind that the key-value pairs can always be
combined together in a variety of ways, so this process can result in extremely
diversified outputs. Thus, you need a table and a formula to cast, for example:

> hflights_melted <- melt(hflights, id.vars = 'Month',

+ measure.vars = c('ActualElapsedTime', 'AirTime'))

> (df <- dcast(hflights_melted, Month ~ variable,

+ fun.aggregate = mean, na.rm = TRUE))

 Month ActualElapsedTime AirTime

1 1 125.1054 104.1106

2 2 126.5748 105.0597

3 3 129.3440 108.2009

4 4 130.7759 109.2508

5 5 131.6785 110.3382

6 6 130.9182 110.2511

7 7 130.4126 109.2059

8 8 128.6197 108.3067

9 9 128.6702 107.8786

10 10 128.8137 107.9135

11 11 129.7714 107.5924

12 12 130.6788 108.9317

This example shows how to aggregate the measured flight times for each month in
2011 with the help of melting and casting the hflights dataset:

1. First, we melted the data.frame with the IDs being the Month, where we
only kept two numeric variables for the flight times.

2. Then, we casted the resulting data.frame with a simple formula to show the
mean of each month for all measurement variables.

I am pretty sure that now you can quickly restructure this data to be able to plot two
separate lines for this basic time-series:

> ggplot(melt(df, id.vars = 'Month')) +

+ geom_line(aes(x = Month, y = value, color = variable)) +

Restructuring Data

[104]

+ scale_x_continuous(breaks = 1:12) +

+ theme_bw() +

+ theme(legend.position = 'top')

But of course, melting and casting can be used for a variety of things besides
aggregating. For example, we can restructure our original database to have a special
Month, which includes all the records of the data. This, of course, doubles the number
of rows in the dataset, but also lets us easily generate a table on the data with
margins. Here's a quick example:

> hflights_melted <- melt(add_margins(hflights, 'Month'),

+ id.vars = 'Month',

+ measure.vars = c('ActualElapsedTime', 'AirTime'))

> (df <- dcast(hflights_melted, Month ~ variable,

+ fun.aggregate = mean, na.rm = TRUE))

 Month ActualElapsedTime AirTime

1 1 125.1054 104.1106

2 2 126.5748 105.0597

3 3 129.3440 108.2009

4 4 130.7759 109.2508

5 5 131.6785 110.3382

6 6 130.9182 110.2511

7 7 130.4126 109.2059

8 8 128.6197 108.3067

9 9 128.6702 107.8786

10 10 128.8137 107.9135

Chapter 4

[105]

11 11 129.7714 107.5924

12 12 130.6788 108.9317

13 (all) 129.3237 108.1423

This is very similar to what we have seen previously, but as an intermediate step, we
have converted the Month variable to be factor with a special level, which resulted
in the last line of this table. This row represents the overall arithmetic average of the
related measure variables.

Tweaking performance
Some further good news on reshape2 is that data.table has decent support for
melting and casting, with highly improved performance. Matt Dowle has published
some benchmarks with a 5-10 percent improvement in the processing times of using
cast and melt on data.table objects instead of the traditional data frames, which is
highly impressive.

To verify these results on your own dataset, simply transform the data.frame
objects to data.table before calling the reshape2 functions, as the data.table
package already ships the appropriate S3 methods to extend reshape2.

The evolution of the reshape packages
As mentioned before, reshape2 was a complete rewrite of the reshape package,
based on around 5 years of experience in using and developing the latter. This
update also included some trade-offs, as the original reshape tasks were split
among multiple packages. Thus, reshape2 now offers a lot less compared to the
kind of magic features that were supported by reshape. Just check, for example
reshape::cast; especially the margins and add.missing argument!

But as it turns out, even reshape2 offers a lot more than simply melting and casting
data frames. The birth of the tidyr package was inspired by this fact: to have a
package in the Hadleyverse that supports easy data cleaning and transformation
between the long and wide table formats. In tidyr parlance, these operations are
called gather and spread.

Just to give a quick example of this new syntax, let's re-implement the
previous examples:

> library(tidyr)

> str(gather(hflights[, c('Month', 'ActualElapsedTime', 'AirTime')],

+ variable, value, -Month))

Restructuring Data

[106]

'data.frame': 454992 obs. of 3 variables:

 $ Month : int 1 1 1 1 1 1 1 1 1 1 ...

 $ variable: Factor w/ 2 levels "ActualElapsedTime",..: 1 1 1 1 ...

 $ value : int 60 60 70 70 62 64 70 59 71 70 ...

Summary
In this chapter, we focused on how to transform raw data into an appropriately
structured format, before we could run statistical tests. This process is a really
important part of our everyday actions, and it takes most of a data scientist's time.
But after reading this chapter, you should be confident in how to restructure your
data in most cases— so, this is the right time to focus on building some models,
which we will do in the next chapter.

Chapter 5

[107]

Building Models
(authored by Renata Nemeth and Gergely Toth)

"All models should be as simple as possible... but no simpler."
 – Attributed to Albert Einstein

"All models are wrong... but some are useful."
 – George Box

After loading and transforming data, in this chapter, we will focus on how to build
statistical models. Models are representations of reality, and, as the preceding
citations emphasize, are always simplified representations. Although you can't
possibly take everything into account, you should be aware about what to include
and exclude in a good model that provides meaningful results.

In this chapter, regression models are discussed on the basis of linear regression
models and standard modeling. Generalized Linear Models (GLM) extend these
to allow the response variables to differ in distribution, which will be covered in
the Chapter 6, Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely
Toth). In all, we will discuss the three most well known regression models:

• Linear regression for continuous outcomes (birth weight measured in grams)
• Logistic regression for binary outcomes (low birth weight versus normal

birth weight)
• Poisson regression for count data (number of low birth weight infants per

year or per country)

Building Models

[108]

Although there are many other regression models, such as Cox-regression which we
will not discuss here, the logic in the building of the models and the interpretation
are similar. So, after reading this chapter, you will be able to understand those
without doubt.

By the end of this chapter, you will learn the most important things about regression
models: how to avoid confounding, how to fit, how to interpret, and how to choose
the best model among the many different options.

The motivation behind multivariate
models
If you would like to measure the strength of association between a response and a
predictor, you can choose a simple two-way association measure, such as correlation
or the odds ratio, depending on the nature of your data. But, if your aim is to model
a complex mechanism by taking into account other predictors as well, you will need
regression models.

As Ben Goldacre, the evidence-based columnist for The Guardian, tells in his brilliant
TED talk that the strong association between olive oil consumption and young
looking skin does not imply that olive oil is beneficial to our skin. When modeling
a complex association structure, we should also control for other predictors, such
as smoking status or physical activity, because those who consume more olive oil
are more likely to live a healthy life in general, so it may not be the olive oil itself
that prevents skin wrinkles. In short, it seems that the kind of lifestyle is likely to
confound the relationship between the variables of interest, making it appear that
there might be causality, when in fact there is none.

A confounder is a third variable that biases (increases or decreases)
the association we are interested in. The confounder is always
associated with both the response and the predictor.

If we examine the olive oil and skin wrinkles association again by fixing the smoking
status, hence building separate models for smokers and non-smokers, the association
may vanish. Holding the confounders fixed is the main idea behind controlling
confounding via regression models.

Regression models in general are intended to measure associations between a
response and a predictor by controlling for others. Potential confounders are entered
into the model as predictors, and the regression coefficient of the predictor (the
partial coefficient) measures the effect adjusted to the confounders.

Chapter 5

[109]

Linear regression with continuous
predictors
Let's start with an actual and illuminating example of confounding. Consider that
we would like to predict the amount of air pollution based on the size of the city
(measured in population size as thousand of habitants). Air pollution is measured by
the sulfur dioxide (SO2) concentration in the air, in milligrams per cubic meter. We
will use the US air pollution data set (Hand and others 1994) from the gamlss.data
package:

> library(gamlss.data)

> data(usair)

Model interpretation
Let's draw our very first linear regression model by building a formula. The lm
function from the stats package is used to fit linear models, which is an important
tool for regression modeling:

> model.0 <- lm(y ~ x3, data = usair)

> summary(model.0)

Residuals:

 Min 1Q Median 3Q Max

-32.545 -14.456 -4.019 11.019 72.549

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.868316 4.713844 3.791 0.000509 ***

x3 0.020014 0.005644 3.546 0.001035 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 20.67 on 39 degrees of freedom

Multiple R-squared: 0.2438, Adjusted R-squared: 0.2244

F-statistic: 12.57 on 1 and 39 DF, p-value: 0.001035

Building Models

[110]

Formula notation is one of the best features of R, which lets you
define flexible models in a human-friendly way. A typical model
has the form of response ~ terms, where response is the
continuous response variable, and terms provides one or a series of
numeric variables that specifies a linear predictor for the response.

In the preceding example, the variable, y, denotes air pollution, while x3 stands for
the population size. The coefficient of x3 says that a one unit (one thousand) increase
in the population size causes a 0.02 unit (0.02 milligram per cubic meter) increase
in the sulfur dioxide concentration, and the effect is statistically significant with a
p value of 0.001035.

See more details on the p-value in the How well does the line fit to the
data? section. To keep it simple for now, we will refer to models as
statistically significant when the p value is below 0.05.

The intercept in general is the value of the response variable when each predictor
equals to 0, but in this example, there are no cities without inhabitants, so the
intercept (17.87) doesn't have a direct interpretation. The two regression coefficients
define the regression line:

> plot(y ~ x3, data = usair, cex.lab = 1.5)

> abline(model.0, col = "red", lwd = 2.5)

> legend('bottomright', legend = 'y ~ x3', lty = 1, col = 'red',

+ lwd = 2.5, title = 'Regression line')

Chapter 5

[111]

As you can see, the intercept (17.87) is the value at which the regression line crosses the
y-axis. The other coefficient (0.02) is the slope of the regression line: it measures how
steep the line is. Here, the function runs uphill because the slope is positive (y increases
as x3 increases). Similarly, if the slope is negative, the function runs downhill.

You can easily understand the way the estimates were obtained if you realize how
the line was drawn. This is the line that best fits the data points. Here, we refer to the
best fit as the linear least-squares approach, which is why the model is also known as
the ordinary least squares (OLS) regression.

The least-squares method finds the best fitting line by minimizing the sum of
the squares of the residuals, where the residuals represent the error, which is the
difference between the observed value (an original dot in the scatterplot) and the
fitted or predicted value (a dot on the line with the same x-value):

> usair$prediction <- predict(model.0)

> usair$residual<- resid(model.0)

> plot(y ~ x3, data = usair, cex.lab = 1.5)

> abline(model.0, col = 'red', lwd = 2.5)

> segments(usair$x3, usair$y, usair$x3, usair$prediction,

+ col = 'blue', lty = 2)

> legend('bottomright', legend = c('y ~ x3', 'residuals'),

+ lty = c(1, 2), col = c('red', 'blue'), lwd = 2.5,

+ title = 'Regression line')

Building Models

[112]

The linear term in linear regression refers to the fact that we are interested in a
linear relation, which is more natural, easier to understand, and simpler to handle
mathematically, as compared to the more complex methods.

Multiple predictors
On the other hand, if we aim to model a more complex mechanism by separating the
effect of the population size from the effect of the presence of industries, we have to
control for the variable, x2, which describes the number of manufacturers employing
more than 20 workers. Now, we can either create a new model by lm(y ~ x3 + x2,
data = usair), or use the update function to refit the previous model:

> model.1 <- update(model.0, . ~ . + x2)

> summary(model.1)

Residuals:

 Min 1Q Median 3Q Max

-22.389 -12.831 -1.277 7.609 49.533

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.32508 3.84044 6.855 3.87e-08 ***

x3 -0.05661 0.01430 -3.959 0.000319 ***

x2 0.08243 0.01470 5.609 1.96e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.49 on 38 degrees of freedom

Multiple R-squared: 0.5863, Adjusted R-squared: 0.5645

F-statistic: 26.93 on 2 and 38 DF, p-value: 5.207e-08

Now, the coefficient of x3 is -0.06! While the crude association between air pollution
and city size was positive in the previous model, after controlling for the number of
manufacturers, the association becomes negative. This means that a one thousand
increase in the population decreases the SO2 concentration by 0.06 unit, which is a
statistically significant effect.

Chapter 5

[113]

On first sight, this change of sign from positive to negative may be surprising, but
it is rather plausible after a closer look; it's definitely not the population size, but
rather the level of industrialization that affects the air pollution directly. In the first
model, population size showed a positive effect because it implicitly measured
industrialization as well. When we hold industrialization fixed, the effect of the
population size becomes negative, and growing a city with a fixed industrialization
level spreads the air pollution in a wider range.

So, we can conclude that x2 is a confounder here, as it biases the association
between y and x3. Although it is beyond the scope of our current research question,
we can interpret the coefficient of x2 as well. It says that holding the city size at a
constant level, a one unit increase in the number of manufacturers increases the SO2
concentration by 0.08 mgs.

Based on the model, we can predict the expected value of the response for any
combination of predictors. For example, we can predict the expected level of sulfur
dioxide concentration for a city with 400,000 habitants and 150 manufacturers, each
of whom employ more than 20 workers:

> as.numeric(predict(model.1, data.frame(x2 = 150, x3 = 400)))

[1] 16.04756

You could also calculate the prediction by yourself, multiplying the values with the
slopes, and then summing them up with the constant—all these numbers are simply
copied and pasted from the previous model summary:

> -0.05661 * 400 + 0.08243 * 150 + 26.32508

[1] 16.04558

Prediction outside the range of the data is known as extrapolation.
The further the values are from the data, the riskier your prediction
becomes. The problem is that you cannot check model assumptions
(for example, linearity) outside of your sample data.

If you have two predictors, the regression line is represented by a surface in the three
dimensional space, which can be easily shown via the scatterplot3d package:

> library(scatterplot3d)

> plot3d <- scatterplot3d(usair$x3, usair$x2, usair$y, pch = 19,

+ type = 'h', highlight.3d = TRUE, main = '3-D Scatterplot')

Building Models

[114]

> plot3d$plane3d(model.1, lty = 'solid', col = 'red')

As it's rather hard to interpret this plot, let's draw the 2-dimensional projections of
this 3D graph, which might prove to be more informative after all. Here, the value
of the third, non-presented variable is held at zero:

> par(mfrow = c(1, 2))

> plot(y ~ x3, data = usair, main = '2D projection for x3')

> abline(model.1, col = 'red', lwd = 2.5)

> plot(y ~ x2, data = usair, main = '2D projection for x2')

> abline(lm(y ~ x2 + x3, data = usair), col = 'red', lwd = 2.5)

Chapter 5

[115]

According to the changed sign of the slope, it's well worth mentioning that the y-x3
regression line has also changed; from uphill, it became downhill.

Model assumptions
Linear regression models with standard estimation techniques make a number of
assumptions about the outcome variable, the predictor variables, and also about
their relationship:

1. Y is a continuous variable (not binary, nominal, or ordinal)
2. The errors (the residuals) are statistically independent
3. There is a stochastic linear relationship between Y and each X
4. Y has a normal distribution, holding each X fixed
5. Y has the same variance, regardless of the fixed value of the Xs

A violation of assumption 2 occurs in trend analysis, if we use time as the predictor.
Since the consecutive years are not independent, the errors will not be independent
from each other. For example, if we have a year with high mortality from a specific
illness, then we can expect the mortality for the next year to also be high.

A violation of assumption (3) says that the relationship is not exactly linear, but there
is a deviation from the linear trend line. Assumption 4 and 5 require the conditional
distribution of Y to be normal and having the same variance, regardless of the fixed
value of Xs. They are needed for inferences of the regression (confidence intervals,
F- and t-tests). Assumption 5 is known as the homoscedasticity assumption. If it is
violated, heteroscedasticity holds.

The following plot helps in visualizing these assumptions with a simulated dataset:

> library(Hmisc)

> library(ggplot2)

> library(gridExtra)

> set.seed(7)

> x <- sort(rnorm(1000, 10, 100))[26:975]

> y <- x * 500 + rnorm(950, 5000, 20000)

> df <- data.frame(x = x, y = y, cuts = factor(cut2(x, g = 5)),

+ resid = resid(lm(y ~ x)))

> scatterPl <- ggplot(df, aes(x = x, y = y)) +

+ geom_point(aes(colour = cuts, fill = cuts), shape = 1,

+ show_guide = FALSE) + geom_smooth(method = lm, level = 0.99)

Building Models

[116]

> plot_left <- ggplot(df, aes(x = y, fill = cuts)) +

+ geom_density(alpha = .5) + coord_flip() + scale_y_reverse()

> plot_right <- ggplot(data = df, aes(x = resid, fill = cuts)) +

+ geom_density(alpha = .5) + coord_flip()

> grid.arrange(plot_left, scatterPl, plot_right,

+ ncol=3, nrow=1, widths=c(1, 3, 1))

The code bundle, available to be downloaded from the Packt Publishing
homepage, includes a slightly longer code chunk for the preceding plot
with some tweaks on the plot margins, legends, and titles. The preceding
code block focuses on the major parts of the visualization, without
wasting too much space in the printed book on the style details.

We will discuss in more detail, how to assess the model assumptions in Chapter 9,
From Big to Smaller Data. If some of the assumptions fail, a possible solution is to
look for outliers. If you have an outlier, do the regression analysis without that
observation, and determine how the results differ. Ways of outlier detection will
be discussed in more detail in Chapter 8, Polishing Data.

The following example illustrates that dropping an outlier (observation number 31)
may make the assumptions valid. To quickly verify if a model's assumptions are
satisfied, use the gvlma package:

> library(gvlma)

> gvlma(model.1)

Chapter 5

[117]

Coefficients:

(Intercept) x3 x2

 26.32508 -0.05661 0.08243

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS

USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:

Level of Significance = 0.05

 Value p-value Decision

Global Stat 14.1392 0.006864 Assumptions NOT satisfied!

Skewness 7.8439 0.005099 Assumptions NOT satisfied!

Kurtosis 3.9168 0.047805 Assumptions NOT satisfied!

Link Function 0.1092 0.741080 Assumptions acceptable.

Heteroscedasticity 2.2692 0.131964 Assumptions acceptable.

It seems that three out of the five assumptions are not satisfied. However, if we build
the very same model on the same dataset excluding the 31st observation, we get
much better results:

> model.2 <- update(model.1, data = usair[-31,])

> gvlma(model.2)

Coefficients:

(Intercept) x3 x2

 22.45495 -0.04185 0.06847

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS

USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:

Level of Significance = 0.05

 Value p-value Decision

Global Stat 3.7099 0.4467 Assumptions acceptable.

Skewness 2.3050 0.1290 Assumptions acceptable.

Kurtosis 0.0274 0.8685 Assumptions acceptable.

Link Function 0.2561 0.6128 Assumptions acceptable.

Heteroscedasticity 1.1214 0.2896 Assumptions acceptable.

Building Models

[118]

This suggests that we must always exclude the 31st observation from the dataset
when building regression models in the future sections.

However, it's important to note that it is not acceptable to drop an observation just
because it is an outlier. Before you decide, investigate the particular case. If it turns
out that the outlier is due to incorrect data, you should drop it. Otherwise, run the
analysis, both with and without it, and state in your research report how the results
changed and why you decided on excluding the extreme values.

You can fit a line for any set of data points; the least squares method
will find the optimal solution, and the trend line will be interpretable.
The regression coefficients and the R-squared coefficient are also
meaningful, even if the model assumptions fail. The assumptions are
only needed if you want to interpret the p-values, or if you aim to
make good predictions.

How well does the line fit in the data?
Although we know that the trend line is the best fitting among the possible linear
trend lines, we don't know how well this fits the actual data. The significance
of the regression parameters is obtained by testing the null hypothesis, which
states that the given parameter equals to zero. The F-test in the output pertains
to the hypothesis that each regression parameter is zero. In a nutshell, it tests the
significance of the regression in general. A p-value below 0.05 can be interpreted as
"the regression line is significant." Otherwise, there is not much point in fitting the
regression model at all.

However, even if you have a significant F-value, you cannot say too much about the
fit of the regression line. We have seen that residuals characterize the error of the
fit. The R-squared coefficient summarizes them into a single measure. R-squared is
the proportion of the variance in the response variable explained by the regression.
Mathematically, it is defined as the variance in the predicted Y values, divided by the
variance in the observed Y values.

Chapter 5

[119]

In some cases, despite the significant F-test, the predictors, according to
the R-squared, explain only a small proportion (<10 percent) of the total
variance. You can interpret this by saying that although the predictors
have a statistically significant effect on the response, the response is
formed by a mechanism that is much more complex than your model
suggests. This phenomenon is common in the area of medicine or
biology where complex biological processes are modeled, while it is less
common in the area of econometrics, where macro-level, aggregated
variables, which usually smooth out small variations in the data.

If we use the population size as the only predictor in our air pollution example,
the R-squared equals 0.37, so we can say that 37 percent of the variation in SO2
concentration can be explained by the size of the city:

> model.0 <- update(model.0, data = usair[-31,])

> summary(model.0)[c('r.squared', 'adj.r.squared')]

$r.squared

[1] 0.3728245

$adj.r.squared

[1] 0.3563199

After adding the number of manufacturers to the model, the R-squared increases
dramatically and almost doubles its previous value:

> summary(model.2)[c('r.squared', 'adj.r.squared')]

$r.squared

[1] 0.6433317

$adj.r.squared

[1] 0.6240523

It's important to note here that every time you add an extra predictor
to your model, the R-squared increases simply because you have more
information to predict the response, even if the lastly added predictor
doesn't have an important effect. Consequently, a model with more
predictors may appear to have a better fit just because it is bigger.

The solution is to use the adjusted R-squared, which takes into account the number
of predictors as well. In the previous example, not only the R-squared but also the
adjusted R-squared showed a huge advantage in favor of the latter model.

Building Models

[120]

The two previous models are nested, which means that the extended model contains
each predictor of the first one. But unfortunately, the adjusted R-squared cannot be
used as a base for choosing the best model for non-nested models. If you have non-
nested models, you can use the Akaike Information Criterion (AIC) measure to
select the best model.

AIC is founded on the information theory. It introduces a penalty term for the
number of parameters in the model, giving a solution for the problem of bigger
models tending to show as better fitted. When using this criterion, you should
select the model with the least AIC. As a rule of thumb, two models are essentially
indistinguishable if the difference between their AICs is less than 2. In the example
that follows, we have two plausible alternative models. Taking the AIC into account,
model.4 is better than model.3, as its advantage over model.3 is about 10:

> summary(model.3 <- update(model.2, .~. -x2 + x1))$coefficients

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 77.429836 19.463954376 3.978114 3.109597e-04

x3 0.021333 0.004221122 5.053869 1.194154e-05

x1 -1.112417 0.338589453 -3.285444 2.233434e-03

> summary(model.4 <- update(model.2, .~. -x3 + x1))$coefficients

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.52477966 17.616612780 3.662723 7.761281e-04

x2 0.02537169 0.003880055 6.539004 1.174780e-07

x1 -0.85678176 0.304807053 -2.810899 7.853266e-03

> AIC(model.3, model.4)

 df AIC

model.3 4 336.6405

model.4 4 326.9136

Note that AIC can tell nothing about the quality of the model in
an absolute sense; your best model may still fit poorly. It does not
provide a test for testing model fit either. It is essentially for ranking
different models.

Chapter 5

[121]

Discrete predictors
So far, we have seen only the simple case of both the response and the predictor
variables being continuous. Now, let's generalize the model a bit, and enter a discrete
predictor into the model. Take the usair data and add x5 (precipitation: average
number of wet days per year) as a predictor with three categories (low, middle, and
high levels of precipitation), using 30 and 45 as the cut-points. The research question
is how these precipitation groups are associated with the SO2 concentration. The
association is not necessary linear, as the following plot shows:

> plot(y ~ x5, data = usair, cex.lab = 1.5)

> abline(lm(y ~ x5, data = usair), col = 'red', lwd = 2.5, lty = 1)

> abline(lm(y ~ x5, data = usair[usair$x5<=45,]),

+ col = 'red', lwd = 2.5, lty = 3)

> abline(lm(y ~ x5, data = usair[usair$x5 >=30,]),

+ col = 'red', lwd = 2.5, lty = 2)

> abline(v = c(30, 45), col = 'blue', lwd = 2.5)

> legend('topleft', lty = c(1, 3, 2, 1), lwd = rep(2.5, 4),

+ legend = c('y ~ x5', 'y ~ x5 | x5<=45','y ~ x5 | x5>=30',

+ 'Critical zone'), col = c('red', 'red', 'red', 'blue'))

Building Models

[122]

The cut-points 30 and 45 were more or less ad hoc. An advanced way to define
optimal cut-points is to use a regression tree. There are various implementations of
classification trees in R; a commonly used function is rpart from the package with
the very same name. The regression tree follows an iterative process that splits the
data into partitions, and then continues splitting each partition into smaller groups.
In each step, the algorithm selects the best split on the continuous precipitation scale,
where the best point minimizes the sum of the squared deviations from the group-
level SO2 mean:

> library(partykit)

> library(rpart)

> plot(as.party(rpart(y ~ x5, data = usair)))

The interpretation of the preceding result is rather straightforward; if we are
looking for two groups that differ highly regarding SO2, the optimal cut-point is a
precipitation level of 45.34, and if we are looking for three groups, then we will have
to split the second group by using the cut-point of 30.91, and so on. The four box-
plots describe the SO2 distribution in the four partitions. So, these results confirm
our previous assumption, and we have three precipitation groups that strongly differ
in their level of SO2 concentration.

Take a look at Chapter 10, Classification and Clustering,
for more details and examples on decisions trees.

Chapter 5

[123]

The following scatterplot also shows that the three groups differ heavily from each
other. It seems that the SO2 concentration is highest in the middle group, and the
two other groups are very similar:

> usair$x5_3 <- cut2(usair$x5, c(30, 45))

> plot(y ~ as.numeric(x5_3), data = usair, cex.lab = 1.5,

+ xlab = 'Categorized annual rainfall(x5)', xaxt = 'n')

> axis(1, at = 1:3, labels = levels(usair$x5_3))

> lines(tapply(usair$y, usair$x5_3, mean), col='red', lwd=2.5, lty=1)

> legend('topright', legend = 'Linear prediction', col = 'red')

Now, let us refit our linear regression model by adding the three-category
precipitation to the predictors. Technically, this goes by adding two dummy
variables (learn more about this type of variable in Chapter 10, Classification and
Clustering) pertaining to the second and third group, as shown in the table that
follows:

Dummy variables
Categories first second
low (0-30) 0 0
middle (30-45) 1 0
high (45+) 0 1

In R, you can run this model using the glm (Generalized Linear Models) function,
because the classic linear regression doesn't allow non-continuous predictors:

> summary(glmmodel.1 <- glm(y ~ x2 + x3 + x5_3, data = usair[-31,]))

Deviance Residuals:

Building Models

[124]

 Min 1Q Median 3Q Max

-26.926 -4.780 1.543 5.481 31.280

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.07025 5.01682 2.805 0.00817 **

x2 0.05923 0.01210 4.897 2.19e-05 ***

x3 -0.03459 0.01172 -2.952 0.00560 **

x5_3[30.00,45.00) 13.08279 5.10367 2.563 0.01482 *

x5_3[45.00,59.80] 0.09406 6.17024 0.015 0.98792

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 139.6349)

 Null deviance: 17845.9 on 39 degrees of freedom

Residual deviance: 4887.2 on 35 degrees of freedom

AIC: 317.74

Number of Fisher Scoring iterations: 2

The second group (wet days between 30 and 45) has a higher average by 15.2 units
of SO2, as compared to the first group. This is controlled by the population size and
number of manufacturers. The difference is statistically significant.

On the contrary, the third group shows only a slight difference when compared
to the first group (0.04 unit lower), which is not significant. The three group mean
shows a reversed U-shaped curve. Note that if you used precipitation in its original
continuous form, implicitly you would assume a linear relation, so you wouldn't
discover this shape. Another important thing to note is that the U-shaped curve here
describes the partial association (controlled for x2 and x3), but the crude association,
presented on the preceding scatterplot, showed a very similar picture.

Chapter 5

[125]

The regression coefficients were interpreted as the difference between the group
means, and both groups were compared to the omitted category (the first one). This
is why the omitted category is usually referred to as the reference category. This way
of entering discrete predictors is called reference-category coding. In general, if you
have a discrete predictor with n categories, you have to define (n-1) dummies. Of
course, if other contrasts are of interest, you can easily modify the model by entering
dummies referring to other (n-1) categories.

If you fit linear regression with discrete predictors, the regression
slopes are the differences in the group means. If you also have
other predictors, then the group-mean differences will be
controlled for these predictors. Remember, the key feature of
multivariate regression models is that they model partial two-way
associations, holding the other predictors fixed.

You can go further by entering any other types and any number of predictors. If you
have an ordinal predictor, it is your decision whether to enter it in its original form,
assuming a linear relation, or to form dummies and enter each of them, allowing
any type of relation. If you have no background knowledge on how to make this
decision, you can try both solutions and compare how the models fit.

Summary
This chapter introduced the concept of how to build and interpret basic models,
such as linear regression models. By now, you should be familiar with the motivation
behind linear regression models; you should know how to control for confounders,
how to enter discrete predictors, how to fit models in R, and how to interpret the
results.

In the next chapter, we will extend this knowledge with generalized models, and
analyzing the model fit.

Chapter 6

[127]

Beyond the Linear Trend Line
(authored by Renata Nemeth and Gergely Toth)

Linear regression models, which we covered in the previous chapter, can handle
continuous responses that have a linear association with the predictors. In this
chapter, we will extend these models to allow the response variable to differ in
distribution. But, before getting our hands dirty with the generalized linear models,
we need to stop for a while and discuss regression models in general.

The modeling workflow
First, some words about the terminology. Statisticians call the Y variable the
response, the outcome, or the dependent variable. The X variables are often called
the predictors, the explanatory variables, or the independent variables. Some of the
predictors are of our main interest, other predictors are added just because they are
potential confounders. Continuous predictors are sometimes called covariates.

The GLM is a generalization of linear regression. GLM (also referred to as glm
in R, from the stats package) allows the predictors to be related to the response
variable via a link function, and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value.

Whatever regression model you use, the main question is, "in what form can we
add continuous predictors to the model?" If the relationship between the response
and the predictor does not meet the model assumptions, you can transform the
variable in some way. For example, a logarithmic or quadratic transformation in a
linear regression model is a very common way to solve the problem of non-linear
relationships between the independent and dependent variables via linear formulas.

Beyond the Linear Trend Line

[128]

Or, you can transform the continuous predictor into a discrete one by subdividing its
range in a proper way. When choosing the classes, one of the best options is to follow
some convention, like choosing 18 as a cut-point in the case of age. Or you can follow
a more technical way, for example, by categorizing the predictor into quantiles.
An advanced way to go about this process would be to use some classification or
regression trees, on which you will be able to read more in Chapter 10, Classification
and Clustering.

Discrete predictors can be added to the model as dummy variables using reference
category coding, as we have seen in the previous chapter for linear regression models.

But how do we actually build a model? We have compiled a general workflow to
answer this question:

1. First, fit the model with the main predictors and all the relevant
confounders, and then reduce the number of confounders by dropping
out the non-significant ones. There are some automatic procedures
(such as backward elimination) for this.

The given sample size limits the number of predictors. A rule of
thumb for the required sample size is that you should have at
least 20 observations per predictor.

2. Decide whether to use the continuous variables in their original or
categorized form.

3. Try to achieve a better fit by testing for non-linear relationships, if they are
pragmatically relevant.

4. Finally, check the model assumptions.

And how do we find the best model? Is it as simple as the better the fit, the better the
model? Unfortunately not. Our aim is to find the best fitting model, but with as few
predictors as possible. A good model fit and a low number of independent variables
are contradictory to each other.

As we have seen earlier, entering newer predictors into a linear regression model
always increases the value of R-squared, and it may result in an over-fitted model.
Overfitting means that the model describes the sample with its random noise, instead
of the underlying data-generating process. Overfitting occurs, for example, when we
have too many predictors in the model for its sample size to accommodate.

Consequently, the best model gives the desired level of fit with as few predictors as
possible. AIC is one of those proper measures that takes into account both fit and
parsimony. We highly recommend using it when comparing different models, which
is very easy via the AIC function from the stats package.

Chapter 6

[129]

Logistic regression
So far, we have discussed linear regression models, an appropriate method to model
continuous response variables. However, non-continuous, binary responses (such as
being ill or healthy, being faithful or deciding to switch to a new job, mobile supplier
or partner) are also very common. The main difference compared to the continuous
case is that now we should rather model probability instead of the expected value of
the response variable.

The naive solution would be to use the probability as outcome in a linear model. But
the problem with this solution is that the probability should be always between 0
and 1, and this bounded range is not guaranteed at all when using a linear model.
A better solution is to fit a logistic regression model, which models not only the
probability but also the natural logarithm of the odds, called the logit. The logit can
be any (positive or negative) number, so the problem of limited range is eliminated.

Let's have a simple example of predicting the probability of the death penalty, using
some information on the race of the defendant. This model relates to the much more
complicated issue of racism in the infliction of the death penalty, a question with a
long history in the USA. We will use the deathpenalty dataset from the catdata
package about the judgment of defendants in cases of multiple murders in Florida
between 1976 and 1987. The cases are classified with respect to the death penalty
(where 0 refers to no, 1 to yes), the race of the defendant, and the race of the victim
(black is referred as 0, white is 1).

First, we expand the frequency table into case form via the expand.dtf function
from the vcdExtra package, then we fit our first generalized model in the dataset:

> library(catdata)

> data(deathpenalty)

> library(vcdExtra)

> deathpenalty.expand <- expand.dft(deathpenalty)

> binom.model.0 <- glm(DeathPenalty ~ DefendantRace,

+ data = deathpenalty.expand, family = binomial)

> summary(binom.model.0)

Deviance Residuals:

 Min 1Q Median 3Q Max

-0.4821 -0.4821 -0.4821 -0.4044 2.2558

Coefficients:

Beyond the Linear Trend Line

[130]

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.4624 0.2690 -9.155 <2e-16 ***

DefendantRace 0.3689 0.3058 1.206 0.228

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 440.84 on 673 degrees of freedom

Residual deviance: 439.31 on 672 degrees of freedom

AIC: 443.31

Number of Fisher Scoring iterations: 5

The regression coefficient is statistically not significant, so at first sight, we can't see
a racial bias in the data. Anyway, for didactic purposes, let's interpret the regression
coefficient. It's 0.37, which means that the natural logarithm of the odds of getting
a death penalty increases by 0.37 when moving from the black category to the white
one. This difference is easily interpretable if you take its exponent, which is the ratio
of the odds:

> exp(cbind(OR = coef(binom.model.0), confint(binom.model.0)))

 OR 2.5 % 97.5 %

(Intercept) 0.08522727 0.04818273 0.1393442

DefendantRace 1.44620155 0.81342472 2.7198224

The odds ratio pertaining to the race of the defendant is 1.45, which means that
white defendants have 45 percent larger odds of getting the death penalty than
black defendants.

Although R produces this, the odds ratio for the intercept
is generally not interpreted.

We can say something more general. We have seen that in linear regression models,
the regression coefficient, b, can be interpreted as a one unit increase in X increases Y
by b. But, in logistic regression models, a one unit increase in X multiplies the odds
of Y by exp(b).

Chapter 6

[131]

Please note that the preceding predictor was a discrete one, with values of 0 (black)
and 1 (white), so it's basically a dummy variable for white, and black is the reference
category. We have seen the same solution for entering discrete variables in the
case of linear regression models. If you have more than two racial categories, you
should define a second dummy for the third race and enter it into the model as well.
The exponent of each dummy variables' coefficients equal to the odds ratio, which
compares the given category to the reference. If you have a continuous predictor, the
exponent of the coefficient equals to the odds ratio pertaining to a one unit increase
in the predictor.

Now, let's enter the race of the victim into the examination, since it's a plausible
confounder. Let's control for it, and fit the logistic regression model with both the
DefendantRace and VictimRace as predictors:

> binom.model.1 <- update(binom.model.0, . ~ . + VictimRace)

> summary(binom.model.1)

Deviance Residuals:

 Min 1Q Median 3Q Max

-0.7283 -0.4899 -0.4899 -0.2326 2.6919

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.5961 0.5069 -7.094 1.30e-12 ***

DefendantRace -0.8678 0.3671 -2.364 0.0181 *

VictimRace 2.4044 0.6006 4.003 6.25e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 440.84 on 673 degrees of freedom

Residual deviance: 418.96 on 671 degrees of freedom

AIC: 424.96

Number of Fisher Scoring iterations: 6

> exp(cbind(OR = coef(binom.model.1), confint(binom.model.1)))

Beyond the Linear Trend Line

[132]

 OR 2.5 % 97.5 %

(Intercept) 0.02743038 0.008433309 0.06489753

DefendantRace 0.41987565 0.209436976 0.89221877

VictimRace 11.07226549 3.694532608 41.16558028

When controlling for VictimRace, the effect of DefendantRace becomes significant!
The odds ratio is 0.42, which means that white defendants' odds of getting the death
penalty are only 42 percent of the odds of black defendants, holding the race of the
victim fixed. Also, the odds ratio of VictimRace (11.07) shows an extremely strong
effect: killers of white victims are 11 times more likely to get a death penalty than
killers of black victims.

So, the effect of DefendantRace is exactly the opposite of what we have got in the
one-predictor model. The reversed association may seem to be paradoxical, but it can
be explained. Let's have a look at the following output:

> prop.table(table(factor(deathpenalty.expand$VictimRace,

+ labels = c("VictimRace=0", "VictimRace=1")),

+ factor(deathpenalty.expand$DefendantRace,

+ labels = c("DefendantRace=0", "DefendantRace=1"))), 1)

 DefendantRace=0 DefendantRace=1

 VictimRace=0 0.89937107 0.10062893

 VictimRace=1 0.09320388 0.90679612

The data seems to be homogeneous in some sense: black defendants are more likely
to have black victims, and vice versa. If you put these pieces of information together,
you start to see that black defendants yield a smaller proportion of death sentences
just because they are more likely to have black victims, and those who have black
victims are less likely to get a death penalty. The paradox disappears: the crude
death penalty and DefendantRace association was confounded by VictimRace.

To sum it up, it seems that taking the available information into account, you can
come to the following conclusions:

• Black defendants are more likely to get the death penalty
• Killing a white person is considered to be a more serious crime than killing a

black person

Of course, you should draw such conclusions extremely carefully, as the question
of racial bias needs a very thorough analysis using all the relevant information
regarding the circumstances of the crime, and much more.

Chapter 6

[133]

Data considerations
Logistic regression models work on the assumption that the observations are totally
independent from each other. This assumption is violated, for example, if your
observations are consecutive years. The deviance residuals and other diagnostic
statistics can help validate the model and detect problems such as the misspecification
of the link function. For further reference, see the LogisticDx package.

As a general rule of thumb, logistic regression models require at least 10 events per
predictors, where an event denotes the observations belonging to the less frequent
category in the response. In our death penalty example, death is the less frequent
category in the response, and we have 68 death sentences in the database. So, the rule
suggests that a maximum of 6-7 predictors are allowed.

The regression coefficients are estimated using the maximum likelihood method.
Since there is no closed mathematical form to get these ML estimations, R uses
an optimization algorithm instead. In some cases, you may get an error message
that the algorithm doesn't reach convergence. In such cases, it is unable to find an
appropriate solution. This may occur for a number of reasons, such as having too
many predictors, too few events, and so on.

Goodness of model fit
One measure of model fit, to evaluate the performance of the model, is the
significance of the overall model. The corresponding likelihood ratio tests whether
the given model fits significantly better than a model with just an intercept, which
we call the null model.

To obtain the test results, you have to look at the residual deviance in the output. It
measures the disagreement between the maxima of the observed and the fitted log
likelihood functions.

Since logistic regression follows the maximal likelihood principle, the
goal is to minimize the sum of the deviance residuals. Therefore, this
residual is parallel to the raw residual in linear regression, where the
goal is to minimize the sum of squared residuals.

The null deviance represents how well the response is predicted by a model with
nothing but an intercept. To judge the model, you have to compare the residual
deviance to the null deviance; the difference follows a chi-square distribution. The
corresponding test is available in the lmtest package:

> library(lmtest)

> lrtest(binom.model.1)

Beyond the Linear Trend Line

[134]

Likelihood ratio test

Model 1: DeathPenalty ~ DefendantRace + VictimRace

Model 2: DeathPenalty ~ 1

 #Df LogLik Df Chisq Pr(>Chisq)

1 3 -209.48

2 1 -220.42 -2 21.886 1.768e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p value indicates a highly significant decrease in deviance. This means that
the model is significant, and the predictors have a significant effect on the
response probability.

You can think of the likelihood ratio as the F-test in the linear regression models. It
reveals if the model is significant, but it doesn't tell anything about the goodness-of-
fit, which was described by the adjusted R-squared measure in the linear case.

An equivalent statistic for logistic regression models does not exist, but several
pseudo R-squared have been developed. These usually range from 0 to 1 with
higher values indicating a better fit. We will use the PseudoR2 function from the
BaylorEdPsych package to compute this value:

> library(BaylorEdPsych)

> PseudoR2(binom.model.1)

 McFadden Adj.McFadden Cox.Snell Nagelkerke

 0.04964600 0.03149893 0.03195036 0.06655297

McKelvey.Zavoina Effron Count Adj.Count

 0.15176608 0.02918095 NA NA

 AIC Corrected.AIC

 424.95652677 424.99234766

But be careful, the pseudo R-squared cannot be interpreted as an OLS R-squared,
and there are some documented problems with them as well, but they give us a
rough picture. In our case, they say that the explanative power of the model is rather
low, which is not surprising if we consider the fact that only two predictors were
used in the modeling of such a complex process as judging a crime.

Chapter 6

[135]

Model comparison
As we have seen in the previous chapter, the adjusted R-squared provides a good
base for model comparison when dealing with nested linear regression models. For
nested logistic regression models, you can use the likelihood ratio test (such as the
lrtest function from the lmtest library), which compares the difference between
the residual deviances.

> lrtest(binom.model.0, binom.model.1)

Likelihood ratio test

Model 1: DeathPenalty ~ DefendantRace

Model 2: DeathPenalty ~ DefendantRace + VictimRace

 #Df LogLik Df Chisq Pr(>Chisq)

1 2 -219.65

2 3 -209.48 1 20.35 6.45e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

LogLiK, in the preceding output denotes the log-likelihood of
the model; you got the residual deviance by multiplying it by 2.

For un-nested models, you can use AIC, just like we did in the case of linear regression
models, but in logistic regression models, AIC is part of the standard output, so there is
no need to call the AIC function separately. Here, the binom.model.1 has a lower AIC
than binom.model.0, and the difference is not negligible since it is greater than 2.

Models for count data
Logistic regression can handle only binary responses. If you have count data, such as
the number of deaths or failures in a given period of time, or in a given geographical
area, you can use Poisson or negative binomial regression. These data types are
particularly common when working with aggregated data, which is provided as a
number of events classified in different categories.

Beyond the Linear Trend Line

[136]

Poisson regression
Poisson regression models are generalized linear models with the logarithm as
the link function, and they assume that the response has a Poisson distribution.
The Poisson distribution takes only integer values. It is appropriate for count data,
such as events occurring over a fixed period of time, that is, if the events are rather
rare, such as a number of hard drive failures per day.

In the following example, we will use the Hard Drive Data Sets for the year of 2013.
The dataset was downloaded from https://docs.backblaze.com/public/hard-
drive-data/2013_data.zip, but we polished and simplified it a bit. Each record
in the original database corresponds to a daily snapshot of one drive. The failure
variable, our main point of interest, can be either zero (if the drive is OK), or one
(on the last day of the hard drive before failing).

Let's try to determine which factors affect the appearance of a failure. The potential
predictive factors are the following:

• model: The manufacturer-assigned model number of the drive
• capacity_bytes: The drive capacity in bytes
• age_month: The drive age in the average month
• temperature: The hard disk drive temperature
• PendingSector: A logical value indicating the occurrence of unstable sectors

(waiting for remapping on the given hard drive, on the given day)

We aggregated the original dataset by these variables, where the freq variable
denotes the number of records in the given category. It's time to load this final,
cleansed, and aggregated dataset:

> dfa <- readRDS('SMART_2013.RData')

Take a quick look at the number of failures by model:

> (ct <- xtabs(~model+failure, data=dfa))

 failure

model 0 1 2 3 4 5 8

 HGST 136 1 0 0 0 0 0

 Hitachi 2772 72 6 0 0 0 0

 SAMSUNG 125 0 0 0 0 0 0

https://docs.backblaze.com/public/hard-drive-data/2013_data.zip
https://docs.backblaze.com/public/hard-drive-data/2013_data.zip

Chapter 6

[137]

 ST1500DL001 38 0 0 0 0 0 0

 ST1500DL003 213 39 6 0 0 0 0

 ST1500DM003 84 0 0 0 0 0 0

 ST2000DL001 51 4 0 0 0 0 0

 ST2000DL003 40 7 0 0 0 0 0

 ST2000DM001 98 0 0 0 0 0 0

 ST2000VN000 40 0 0 0 0 0 0

 ST3000DM001 771 122 34 14 4 2 1

 ST31500341AS 1058 75 8 0 0 0 0

 ST31500541AS 1010 106 7 1 0 0 0

 ST32000542AS 803 12 1 0 0 0 0

 ST320005XXXX 209 1 0 0 0 0 0

 ST33000651AS 323 12 0 0 0 0 0

 ST4000DM000 242 22 10 2 0 0 0

 ST4000DX000 197 1 0 0 0 0 0

 TOSHIBA 126 2 0 0 0 0 0

 WDC 1874 27 1 2 0 0 0

Now, let's get rid of those hard-drive models that didn't have any failure, by
removing all rows from the preceding table where there are only zeros beside the
first column:

> dfa <- dfa[dfa$model %in% names(which(rowSums(ct) - ct[, 1] > 0)),]

To get a quick overview on the number of failures, let's plot a histogram on a log
scale by model numbers, with the help of the ggplot2 package:

> library(ggplot2)

> ggplot(rbind(dfa, data.frame(model='All', dfa[, -1])),

+ aes(failure)) + ylab("log(count)") +

+ geom_histogram(binwidth = 1, drop=TRUE, origin = -0.5) +

+ scale_y_log10() + scale_x_continuous(breaks=c(0:10)) +

Beyond the Linear Trend Line

[138]

+ facet_wrap(~ model, ncol = 3) +

+ ggtitle("Histograms by manufacturer") + theme_bw()

Now, it's time to fit a Poisson regression model to the data, using the model
number as the predictor. The model can be fitted using the glm function with the
option, family=poisson. By default, the expected log count is modeled, so we use
the log link.

In the database, each observation corresponds to a group with a varying number
of hard drives. As we need to handle the different group sizes, we will use the
offset function:

> poiss.base <- glm(failure ~ model, offset(log(freq)),

+ family = 'poisson', data = dfa)

> summary(poiss.base)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.7337 -0.8052 -0.5160 -0.3291 16.3495

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.0594 0.5422 -9.331 < 2e-16 ***

modelHitachi 1.7666 0.5442 3.246 0.00117 **

Chapter 6

[139]

modelST1500DL003 3.6563 0.5464 6.692 2.20e-11 ***

modelST2000DL001 2.5592 0.6371 4.017 5.90e-05 ***

modelST2000DL003 3.1390 0.6056 5.183 2.18e-07 ***

modelST3000DM001 4.1550 0.5427 7.656 1.92e-14 ***

modelST31500341AS 2.7445 0.5445 5.040 4.65e-07 ***

modelST31500541AS 3.0934 0.5436 5.690 1.27e-08 ***

modelST32000542AS 1.2749 0.5570 2.289 0.02208 *

modelST320005XXXX -0.4437 0.8988 -0.494 0.62156

modelST33000651AS 1.9533 0.5585 3.497 0.00047 ***

modelST4000DM000 3.8219 0.5448 7.016 2.29e-12 ***

modelST4000DX000 -12.2432 117.6007 -0.104 0.91708

modelTOSHIBA 0.2304 0.7633 0.302 0.76279

modelWDC 1.3096 0.5480 2.390 0.01686 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 22397 on 9858 degrees of freedom

Residual deviance: 17622 on 9844 degrees of freedom

AIC: 24717

Number of Fisher Scoring iterations: 15

First, let's interpret the coefficients. The model number is a discrete predictor, so we
entered a number of dummy variables to represent it is as a predictor. The reference
category is not present in the output by default, but we can query it at any time:

> contrasts(dfa$model, sparse = TRUE)

HGST

Hitachi 1

ST1500DL003 . 1

ST2000DL001 . . 1

ST2000DL003 . . . 1

ST3000DM001 1

ST31500341AS 1

ST31500541AS 1

Beyond the Linear Trend Line

[140]

ST32000542AS 1

ST320005XXXX 1

ST33000651AS 1

ST4000DM000 1 . . .

ST4000DX000 1 . .

TOSHIBA 1 .

WDC 1

So, it turns out that the reference category is HGST, and the dummy variables
compare each model with the HGST hard drive. For example, the coefficient of
Hitachi is 1.77, so the expected log-count for Hitachi drives is about 1.77 greater
than those for HGST drives. Or, you can compute its exponent when speaking about
ratios instead of differences:

> exp(1.7666)

[1] 5.850926

So, the expected number of failures for Hitachi drives is 5.85 times greater than for
HGST drives. In general, the interpretation goes as: a one unit increase in X multiplies
Y by exp(b).

Similar to logistic regression, let's determine the significance of the model. To do
this, we compare the present model to the null model without any predictors, so the
difference between the residual deviance and the null deviance can be identified. We
expect the difference to be large enough, and the corresponding chi-squared test to
be significant:

> lrtest(poiss.base)

Likelihood ratio test

Model 1: failure ~ model

Model 2: failure ~ 1

 #Df LogLik Df Chisq Pr(>Chisq)

1 15 -12344

2 1 -14732 -14 4775.8 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And it seems that the model is significant, but we should also try to determine
whether any of the model assumptions might fail.

Chapter 6

[141]

Just like we did with the linear and logistic regression models, we have an
independence assumption, where Poisson regression assumes the events to be
independent. This means that the occurrence of one failure will not make another
more or less likely. In the case of drive failures, this assumption holds. Another
important assumption comes from the fact that the response has a Poisson
distribution with an equal mean and variance. Our model assumes that the variance
and the mean, conditioned on the predictor variables, will be approximately equal.

To decide whether the assumption holds, we can compare the residual deviance to
its degree of freedom. For a well-fitting model, their ratio should be close to one.
Unfortunately, the reported residual deviance is 17622 on 9844 degrees of freedom,
so their ratio is much above one, which suggests that the variance is much greater
than the mean. This phenomenon is called overdispersion.

Negative binomial regression
In such a case, a negative binomial distribution can be used to model an over-
dispersed count response, which is a generalization of the Poisson regression since it
has an extra parameter to model the over-dispersion. In other words, Poisson and the
negative binomial models are nested models; the former is a subset of the latter one.

In the following output, we use the glm.nb function from the MASS package to fit a
negative binomial regression to our drive failure data:

> library(MASS)

> model.negbin.0 <- glm.nb(failure ~ model,

+ offset(log(freq)), data = dfa)

To compare this model's performance to the Poisson model, we can use the
likelihood ratio test, since the two models are nested. The negative binomial model
shows a significantly better fit:

> lrtest(poiss.base,model.negbin.0)

Likelihood ratio test

Model 1: failure ~ model

Model 2: failure ~ model

 #Df LogLik Df Chisq Pr(>Chisq)

1 15 -12344

2 16 -11950 1 787.8 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Beyond the Linear Trend Line

[142]

This result clearly suggests choosing the negative binomial model.

Multivariate non-linear models
So far, the only predictor in our model was the model name, but we have other
potentially important information about the drives as well, such as capacity, age,
and temperature. Now let's add these to the model, and determine whether the
new model is better than the original one.

Furthermore, let's check the importance of PendingSector as well. In short, we
define a two-step model building procedure with the nested models; hence we can
use likelihood ratio statistics to test whether the model fit has significantly increased
in both steps:

> model.negbin.1 <- update(model.negbin.0, . ~ . + capacity_bytes +

+ age_month + temperature)

> model.negbin.2 <- update(model.negbin.1, . ~ . + PendingSector)

> lrtest(model.negbin.0, model.negbin.1, model.negbin.2)

Likelihood ratio test

Model 1: failure ~ model

Model 2: failure ~ model + capacity_bytes + age_month + temperature

Model 3: failure ~ model + capacity_bytes + age_month + temperature +

 PendingSector

 #Df LogLik Df Chisq Pr(>Chisq)

1 16 -11950

2 19 -11510 3 878.91 < 2.2e-16 ***

3 20 -11497 1 26.84 2.211e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both of these steps are significant, so it was worth adding each predictor to the
model. Now, let's interpret the best model:

> summary(model.negbin.2)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.7147 -0.7580 -0.4519 -0.2187 9.4018

Chapter 6

[143]

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.209e+00 6.064e-01 -13.537 < 2e-16 ***

modelHitachi 2.372e+00 5.480e-01 4.328 1.50e-05 ***

modelST1500DL003 6.132e+00 5.677e-01 10.801 < 2e-16 ***

modelST2000DL001 4.783e+00 6.587e-01 7.262 3.81e-13 ***

modelST2000DL003 5.313e+00 6.296e-01 8.440 < 2e-16 ***

modelST3000DM001 4.746e+00 5.470e-01 8.677 < 2e-16 ***

modelST31500341AS 3.849e+00 5.603e-01 6.869 6.49e-12 ***

modelST31500541AS 4.135e+00 5.598e-01 7.387 1.50e-13 ***

modelST32000542AS 2.403e+00 5.676e-01 4.234 2.29e-05 ***

modelST320005XXXX 1.377e-01 9.072e-01 0.152 0.8794

modelST33000651AS 2.470e+00 5.631e-01 4.387 1.15e-05 ***

modelST4000DM000 3.792e+00 5.471e-01 6.931 4.17e-12 ***

modelST4000DX000 -2.039e+01 8.138e+03 -0.003 0.9980

modelTOSHIBA 1.368e+00 7.687e-01 1.780 0.0751 .

modelWDC 2.228e+00 5.563e-01 4.006 6.19e-05 ***

capacity_bytes 1.053e-12 5.807e-14 18.126 < 2e-16 ***

age_month 4.815e-02 2.212e-03 21.767 < 2e-16 ***

temperature -5.427e-02 3.873e-03 -14.012 < 2e-16 ***

PendingSectoryes 2.240e-01 4.253e-02 5.267 1.39e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(0.8045) family taken to be 1)

 Null deviance: 17587 on 9858 degrees of freedom

Residual deviance: 12525 on 9840 degrees of freedom

AIC: 23034

Number of Fisher Scoring iterations: 1

 Theta: 0.8045

 Std. Err.: 0.0525

 2 x log-likelihood: -22993.8850.

Beyond the Linear Trend Line

[144]

Each predictor is significant—with a few exceptions of some contrast in model type.
For example, Toshiba doesn't differ significantly from the reference category, HGST,
when controlling for age, temperature, and so on.

The interpretation of the negative binomial regression parameters is similar to the
Poisson model. For example, the coefficient of age_month is 0.048, which shows that
a one month increase in age, increases the expected log-count of failures by 0.048. Or,
you can opt for using exponentials as well:

> exp(data.frame(exp_coef = coef(model.negbin.2)))

 exp_coef

(Intercept) 2.720600e-04

modelHitachi 1.071430e+01

modelST1500DL003 4.602985e+02

modelST2000DL001 1.194937e+02

modelST2000DL003 2.030135e+02

modelST3000DM001 1.151628e+02

modelST31500341AS 4.692712e+01

modelST31500541AS 6.252061e+01

modelST32000542AS 1.106071e+01

modelST320005XXXX 1.147622e+00

modelST33000651AS 1.182098e+01

modelST4000DM000 4.436067e+01

modelST4000DX000 1.388577e-09

modelTOSHIBA 3.928209e+00

modelWDC 9.283970e+00

capacity_bytes 1.000000e+00

age_month 1.049329e+00

temperature 9.471743e-01

PendingSectoryes 1.251115e+00

So, it seems that one month in a lifetime increases the expected number of failures by
4.9 percent, and a larger capacity also increases the number of failures. On the other
hand, temperature shows a reversed effect: the exponent of the coefficient is 0.947,
which says that one degree of increased warmth decreases the expected number of
failures by 5.3 percent.

Chapter 6

[145]

The effect of the model name can be judged on the basis of comparison to the
reference category, which is HGST in our case. One may want to change this reference.
For example, for the most common drive: WDC. This can be easily done by changing
the order of the factor levels in hard drive models, or simply defining the reference
category in the factor via the extremely useful relevel function:

> dfa$model <- relevel(dfa$model, 'WDC')

Now, let's verify if HGST indeed replaced WDC in the coefficients list, but instead of the
lengthy output of summary, we will use the tidy function from the broom package,
which can extract the most important features (for the model summary, take a look
at the glance function) of different statistical models:

> model.negbin.3 <- update(model.negbin.2, data = dfa)

> library(broom)

> format(tidy(model.negbin.3), digits = 4)

 term estimate std.error statistic p.value

1 (Intercept) -5.981e+00 2.173e-01 -27.52222 9.519e-167

2 modelHGST -2.228e+00 5.563e-01 -4.00558 6.187e-05

3 modelHitachi 1.433e-01 1.009e-01 1.41945 1.558e-01

4 modelST1500DL003 3.904e+00 1.353e-01 28.84295 6.212e-183

5 modelST2000DL001 2.555e+00 3.663e-01 6.97524 3.054e-12

6 modelST2000DL003 3.085e+00 3.108e-01 9.92496 3.242e-23

7 modelST3000DM001 2.518e+00 9.351e-02 26.92818 1.028e-159

8 modelST31500341AS 1.620e+00 1.069e-01 15.16126 6.383e-52

9 modelST31500541AS 1.907e+00 1.016e-01 18.77560 1.196e-78

10 modelST32000542AS 1.751e-01 1.533e-01 1.14260 2.532e-01

11 modelST320005XXXX -2.091e+00 7.243e-01 -2.88627 3.898e-03

12 modelST33000651AS 2.416e-01 1.652e-01 1.46245 1.436e-01

13 modelST4000DM000 1.564e+00 1.320e-01 11.84645 2.245e-32

14 modelST4000DX000 -1.862e+01 1.101e+03 -0.01691 9.865e-01

15 modelTOSHIBA -8.601e-01 5.483e-01 -1.56881 1.167e-01

16 capacity_bytes 1.053e-12 5.807e-14 18.12597 1.988e-73

17 age_month 4.815e-02 2.212e-03 21.76714 4.754e-105

18 temperature -5.427e-02 3.873e-03 -14.01175 1.321e-44

19 PendingSectoryes 2.240e-01 4.253e-02 5.26709 1.386e-07

Use the broom package to extract model coefficients, compare model
fit, and other metrics to be passed to, for example, ggplot2.

Beyond the Linear Trend Line

[146]

The effect of temperature suggests that the higher the temperature, the lower the
number of hard drive failures. However, everyday experiences show a very different
picture, for example, as described at https://www.backblaze.com/blog/hard-
drive-temperature-does-it-matter. Google engineers found that temperature
was not a good predictor of failure, while Microsoft and the University of Virginia
found that it had a significant effect. Disk drive manufacturers suggest keeping disks
at cooler temperatures.

So, let's take a closer look at this interesting question, and we will have the
temperature as a predictor of drive failure. First, let's classify temperature into six
equal categories, and then we will draw a bar plot presenting the mean number of
failures per categories. Note that we have to take into account the different groups'
sizes, so we will weight by freq, and as we are doing some data aggregation, it's the
right time to convert our dataset into a data.table object:

> library(data.table)

> dfa <- data.table(dfa)

> dfa[, temp6 := cut2(temperature, g = 6)]

> temperature.weighted.mean <- dfa[, .(wfailure =

+ weighted.mean(failure, freq)), by = temp6]

> ggplot(temperature.weighted.mean, aes(x = temp6, y = wfailure)) +

+ geom_bar(stat = 'identity') + xlab('Categorized temperature') +

+ ylab('Weighted mean of disk faults') + theme_bw()

https://www.backblaze.com/blog/hard-drive-temperature-does-it-matter
https://www.backblaze.com/blog/hard-drive-temperature-does-it-matter

Chapter 6

[147]

The assumption of linear relation is clearly not supported. The bar plot suggests
using the temperature in this classified form, instead of the original continuous
variable when entering the model. To actually see which model is better, let's
compare those! Since they are not nested, we have to use the AIC, which strongly
supports the categorized version:

> model.negbin.4 <- update(model.negbin.0, .~. + capacity_bytes +

+ age_month + temp6 + PendingSector, data = dfa)

> AIC(model.negbin.3,model.negbin.4)

 df AIC

model.negbin.3 20 23033.88

model.negbin.4 24 22282.47

Well, it was really worth categorizing temperature! Now, let's check the other two
continuous predictors as well. Again, we will use freq as a weighting factor:

> weighted.means <- rbind(

+ dfa[, .(l = 'capacity', f = weighted.mean(failure, freq)),

+ by = .(v = capacity_bytes)],

+ dfa[, .(l = 'age', f = weighted.mean(failure, freq)),

+ by = .(v = age_month)])

As in the previous plots, we will use ggplot2 to plot the distribution of these
discrete variables, but instead of a bar plot, we will use a stair-line chart to overcome
the issue of the fixed width of bar charts:

> ggplot(weighted.means, aes(x = l, y = f)) + geom_step() +

+ facet_grid(. ~ v, scales = 'free_x') + theme_bw() +

+ ylab('Weighted mean of disk faults') + xlab('')

Beyond the Linear Trend Line

[148]

The relations are again, clearly not linear. The case of age is particularly interesting;
there seems to be highly risky periods in the hard drives' lifetime. Now, let's force R
to use capacity as a nominal variable (it has only five values, so there is no real need
to categorize it), and let's classify age into 8 equally sized categories:

> dfa[, capacity_bytes := as.factor(capacity_bytes)]

> dfa[, age8 := cut2(age_month, g = 8)]

> model.negbin.5 <- update(model.negbin.0, .~. + capacity_bytes +

+ age8 + temp6 + PendingSector, data = dfa)

According to the AIC, the last model with the categorized age and capacity is much
better, and is the best fitting model so far:

> AIC(model.negbin.5, model.negbin.4)

 df AIC

model.negbin.5 33 22079.47

model.negbin.4 24 22282.47

If you look at the parameter estimates, you can see that the first dummy variable on
capacity significantly differ from the reference:

> format(tidy(model.negbin.5), digits = 3)

 term estimate std.error statistic p.value

1 (Intercept) -6.1648 1.84e-01 -3.34e+01 2.69e-245

2 modelHGST -2.4747 5.63e-01 -4.40e+00 1.10e-05

3 modelHitachi -0.1119 1.21e-01 -9.25e-01 3.55e-01

4 modelST1500DL003 31.7680 7.05e+05 4.51e-05 1.00e+00

5 modelST2000DL001 1.5216 3.81e-01 3.99e+00 6.47e-05

6 modelST2000DL003 2.1055 3.28e-01 6.43e+00 1.29e-10

7 modelST3000DM001 2.4799 9.54e-02 2.60e+01 5.40e-149

8 modelST31500341AS 29.4626 7.05e+05 4.18e-05 1.00e+00

9 modelST31500541AS 29.7597 7.05e+05 4.22e-05 1.00e+00

10 modelST32000542AS -0.5419 1.93e-01 -2.81e+00 5.02e-03

11 modelST320005XXXX -2.8404 7.33e-01 -3.88e+00 1.07e-04

12 modelST33000651AS 0.0518 1.66e-01 3.11e-01 7.56e-01

13 modelST4000DM000 1.2243 1.62e-01 7.54e+00 4.72e-14

14 modelST4000DX000 -29.6729 2.55e+05 -1.16e-04 1.00e+00

15 modelTOSHIBA -1.1658 5.48e-01 -2.13e+00 3.33e-02

16 capacity_bytes1500301910016 -27.1391 7.05e+05 -3.85e-05 1.00e+00

Chapter 6

[149]

17 capacity_bytes2000398934016 1.8165 2.08e-01 8.73e+00 2.65e-18

18 capacity_bytes3000592982016 2.3515 1.88e-01 1.25e+01 8.14e-36

19 capacity_bytes4000787030016 3.6023 2.25e-01 1.60e+01 6.29e-58

20 age8[5, 9) -0.5417 7.55e-02 -7.18e+00 7.15e-13

21 age8[9,14) -0.0683 7.48e-02 -9.12e-01 3.62e-01

22 age8[14,19) 0.3499 7.24e-02 4.83e+00 1.34e-06

23 age8[19,25) 0.7383 7.33e-02 1.01e+01 7.22e-24

24 age8[25,33) 0.5896 1.14e-01 5.18e+00 2.27e-07

25 age8[33,43) 1.5698 1.05e-01 1.49e+01 1.61e-50

26 age8[43,60] 1.9105 1.06e-01 1.81e+01 3.59e-73

27 temp6[22,24) 0.7582 5.01e-02 1.51e+01 8.37e-52

28 temp6[24,27) 0.5005 4.78e-02 1.05e+01 1.28e-25

29 temp6[27,30) 0.0883 5.40e-02 1.64e+00 1.02e-01

30 temp6[30,33) -1.0627 9.20e-02 -1.15e+01 7.49e-31

31 temp6[33,50] -1.5259 1.37e-01 -1.11e+01 1.23e-28

32 PendingSectoryes 0.1301 4.12e-02 3.16e+00 1.58e-03

The next three capacities are more likely to cause failures, but the trend is not
linear. The effect of age also does not seem to be linear. In general, aging increases
the number of failures, but there are some exceptions. For example, drives are
significantly more likely to have a failure in the first (reference) age group than in
the second one. This finding is plausible since drives have a higher failure rate at
the beginning of their operation. The effect of temperature suggests that the middle
temperature (22-30 degrees Celsius) is more likely to cause failures than low or high
temperatures. Remember that each effect is controlled for every other predictor.

It would also be important to judge the effect-size of different predictors, comparing
them to each other. As a picture is worth a thousand words, let's summarize the
coefficients with the confidence intervals in one plot.

First, we have to extract the significant terms from the model:

> tmnb5 <- tidy(model.negbin.5)

> str(terms <- tmnb5$term[tmnb5$p.value < 0.05][-1])

 chr [1:22] "modelHGST" "modelST2000DL001" "modelST2000DL003" ...

Then, let's identify the confidence intervals of the coefficients using the confint
function and the good old plyr package:

> library(plyr)

> ci <- ldply(terms, function(t) confint(model.negbin.5, t))

Beyond the Linear Trend Line

[150]

Unfortunately, this resulting data frame is not yet complete. We need to add the term
names, and also, let's extract the grouping variables via a simple, regular expression:

> names(ci) <- c('min', 'max')

> ci$term <- terms

> ci$variable <- sub('[A-Z0-9\\]\\[,()]*$', '', terms, perl = TRUE)

And now we have the confidence intervals of the coefficients in a nicely formatted
dataset, which can be easily plotted by ggplot:

> ggplot(ci, aes(x = factor(term), color = variable)) +

+ geom_errorbar(ymin = min, ymax = max) + xlab('') +

+ ylab('Coefficients (95% conf.int)') + theme_bw() +

+ theme(axis.text.x = element_text(angle = 90, hjust = 1),

+ legend.position = 'top')

Chapter 6

[151]

It can be easily seen that although each predictor is significant, the size of their effects
strongly differ. For example, PendingSector has just a slight effect on the number of
failures, but age, capacity, and temperature have a much stronger effect, and the
hard drive model is the predictor that best differentiates the number of failures.

As we have mentioned in the Logistic regression section, different pseudo R-squared
measures are available for nonlinear models as well. We again warn you to use these
metrics with reservation. Anyway, in our case, they uniformly suggest the model's
explanative power to be pretty good:

> PseudoR2(model.negbin.6)

 McFadden Adj.McFadden Cox.Snell Nagelkerke

 0.3352654 0.3318286 0.4606953 0.5474952

McKelvey.Zavoina Effron Count Adj.Count

 NA 0.1497521 0.9310444 -0.1943522

 AIC Corrected.AIC

 12829.5012999 12829.7044941

Summary
This chapter introduced three well known nonlinear regression models: the logistic,
Poisson, and negative binomial models, and you became familiar with the general
logic of modeling. It was also shown how the same concepts, such as effect of
predictors, goodness of fit, explanative power, model comparison for nested and
non-nested models, and model building are applied in different contexts. Now,
having spent some time on mastering the data analysis skills, in the next chapter,
we will get back to some hardcore data science problems, such as the cleansing
and structuring of data.

Chapter 7

[153]

Unstructured Data
In the previous chapter, we looked at different ways of building and fitting models
on structured data. Unfortunately, these otherwise extremely useful methods are of
no use (yet) when dealing with, for example, a pile of PDF documents. Hence, the
following pages will focus on methods to deal with non-tabular data, such as:

• Extracting metrics from a collection of text documents
• Filtering and parsing natural language texts (NLP)
• Visualizing unstructured data in a structured way

Text mining is the process of analyzing natural language text; in most cases from
online content, such as emails and social media streams (Twitter or Facebook). In this
chapter, we are going to cover the most used methods of the tm package—although,
there is a variety of further types of unstructured data, such as text, image, audio,
video, non-digital contents, and so on, which we cannot discuss for the time being.

Importing the corpus
A corpus is basically a collection of text documents that you want to include in
the analytics. Use the getSources function to see the available options to import a
corpus with the tm package:

> library(tm)

> getSources()

[1] "DataframeSource" "DirSource" "ReutersSource" "URISource"

[2] "VectorSource"

Unstructured Data

[154]

So, we can import text documents from a data.frame, a vector, or directly from
a uniform resource identifier with the URISource function. The latter stands for a
collection of hyperlinks or file paths, although this is somewhat easier to handle
with DirSource, which imports all the textual documents found in the referenced
directory on our hard drive. By calling the getReaders function in the R console,
you can see the supported text file formats:

> getReaders()

[1] "readDOC" "readPDF"

[3] "readPlain" "readRCV1"

[5] "readRCV1asPlain" "readReut21578XML"

[7] "readReut21578XMLasPlain" "readTabular"

[9] "readXML"

So, there are some nifty functions to read and parse MS Word, PDFs, plain text, or
XML files among a few other file formats. The previous Reut reader stands for the
Reuters demo corpus that is bundled with the tm package.

But let's not stick to some factory default demo files! You can see the package
examples in the vignette or reference manual. As we have already fetched some
textual data in Chapter 2, Getting Data from the Web, let's see how we can process
and analyze that content:

> res <- XML::readHTMLTable(paste0('http://cran.r-project.org/',

+ 'web/packages/available_packages_by_name.html'),

+ which = 1)

The preceding command requires a live Internet connection and could
take 15-120 seconds to download and parse the referenced HTML
page. Please note that the content of the downloaded HTML file might
be different from what is shown in this chapter, so please be prepared
for slightly different outputs in your R session, as compared to what
we published in this book.

So, now we have a data.frame with more than 5,000 R package names and short
descriptions. Let's build a corpus from the vector source of package descriptions,
so that we can parse those further and see the most important trends in package
development:

> v <- Corpus(VectorSource(res$V2))

Chapter 7

[155]

We have just created a VCorpus (in-memory) object, which currently holds 5,880
package descriptions:

> v

<<VCorpus (documents: 5880, metadata (corpus/indexed): 0/0)>>

As the default print method (see the preceding output) shows a concise overview
on the corpus, we will need to use another function to inspect the actual content:

> inspect(head(v, 3))

<<VCorpus (documents: 3, metadata (corpus/indexed): 0/0)>>

[[1]]

<<PlainTextDocument (metadata: 7)>>

A3: Accurate, Adaptable, and Accessible Error Metrics for

Predictive Models

[[2]]

<<PlainTextDocument (metadata: 7)>>

Tools for Approximate Bayesian Computation (ABC)

[[3]]

<<PlainTextDocument (metadata: 7)>>

ABCDE_FBA: A-Biologist-Can-Do-Everything of Flux Balance

Analysis with this package

Here, we can see the first three documents in the corpus, along with some metadata.
Until now, we have not done much more than when in the Chapter 2, Getting Data
from the Web, we visualized a wordcloud of the expression used in the package
descriptions. But that's exactly where the journey begins with text mining!

Cleaning the corpus
One of the nicest features of the tm package is the variety of bundled transformations
to be applied on corpora (corpuses). The tm_map function provides a convenient
way of running the transformations on the corpus to filter out all the data that is
irrelevant in the actual research. To see the list of available transformation methods,
simply call the getTransformations function:

> getTransformations()

[1] "as.PlainTextDocument" "removeNumbers"

Unstructured Data

[156]

[3] "removePunctuation" "removeWords"

[5] "stemDocument" "stripWhitespace"

We should usually start with removing the most frequently used, so called
stopwords from the corpus. These are the most common, short function terms,
which usually carry less important meanings than the other expressions in the
corpus, especially the keywords. The package already includes such lists of words in
different languages:

> stopwords("english")

 [1] "i" "me" "my" "myself" "we"

 [6] "our" "ours" "ourselves" "you" "your"

 [11] "yours" "yourself" "yourselves" "he" "him"

 [16] "his" "himself" "she" "her" "hers"

 [21] "herself" "it" "its" "itself" "they"

 [26] "them" "their" "theirs" "themselves" "what"

 [31] "which" "who" "whom" "this" "that"

 [36] "these" "those" "am" "is" "are"

 [41] "was" "were" "be" "been" "being"

 [46] "have" "has" "had" "having" "do"

 [51] "does" "did" "doing" "would" "should"

 [56] "could" "ought" "i'm" "you're" "he's"

 [61] "she's" "it's" "we're" "they're" "i've"

 [66] "you've" "we've" "they've" "i'd" "you'd"

 [71] "he'd" "she'd" "we'd" "they'd" "i'll"

 [76] "you'll" "he'll" "she'll" "we'll" "they'll"

 [81] "isn't" "aren't" "wasn't" "weren't" "hasn't"

 [86] "haven't" "hadn't" "doesn't" "don't" "didn't"

 [91] "won't" "wouldn't" "shan't" "shouldn't" "can't"

 [96] "cannot" "couldn't" "mustn't" "let's" "that's"

[101] "who's" "what's" "here's" "there's" "when's"

[106] "where's" "why's" "how's" "a" "an"

[111] "the" "and" "but" "if" "or"

[116] "because" "as" "until" "while" "of"

[121] "at" "by" "for" "with" "about"

[126] "against" "between" "into" "through" "during"

[131] "before" "after" "above" "below" "to"

[136] "from" "up" "down" "in" "out"

[141] "on" "off" "over" "under" "again"

Chapter 7

[157]

[146] "further" "then" "once" "here" "there"

[151] "when" "where" "why" "how" "all"

[156] "any" "both" "each" "few" "more"

[161] "most" "other" "some" "such" "no"

[166] "nor" "not" "only" "own" "same"

[171] "so" "than" "too" "very"

Skimming through this list verifies that removing these rather unimportant words
will not really modify the meaning of the R package descriptions. Although there are
some rare cases in which removing the stopwords is not a good idea at all! Carefully
examine the output of the following R command:

> removeWords('to be or not to be', stopwords("english"))

[1] " "

This does not suggest that the memorable quote from Shakespeare is
meaningless, or that we can ignore any of the stopwords in all cases.
Sometimes, these words have a very important role in the context, where
replacing the words with a space is not useful, but rather deteriorative.
Although I would suggest, that in most cases, removing the stopwords is
highly practical for keeping the number of words to process at a low level.

To iteratively apply the previous call on each document in our corpus, the tm_map
function is extremely useful:

> v <- tm_map(v, removeWords, stopwords("english"))

Simply pass the corpus and the transformation function, along with its parameters,
to tm_map, which takes and returns a corpus of any number of documents:

> inspect(head(v, 3))

<<VCorpus (documents: 3, metadata (corpus/indexed): 0/0)>>

[[1]]

<<PlainTextDocument (metadata: 7)>>

A3 Accurate Adaptable Accessible Error Metrics Predictive Models

[[2]]

<<PlainTextDocument (metadata: 7)>>

Tools Approximate Bayesian Computation ABC

[[3]]

Unstructured Data

[158]

<<PlainTextDocument (metadata: 7)>>

ABCDEFBA ABiologistCanDoEverything Flux Balance Analysis package

We can see that the most common function words and a few special characters are
now gone from the package descriptions. But what happens if someone starts the
description with uppercase stopwords? This is shown in the following example:

> removeWords('To be or not to be.', stopwords("english"))

[1] "To ."

It's clear that the uppercase version of the to common word was not removed from
the sentence, and the trailing dot was also preserved. For this end, usually, we should
simply transform the uppercase letters to lowercase, and replace the punctuations with
a space to keep the clutter among the keywords at a minimal level:

> v <- tm_map(v, content_transformer(tolower))

> v <- tm_map(v, removePunctuation)

> v <- tm_map(v, stripWhitespace)

> inspect(head(v, 3))

<<VCorpus (documents: 3, metadata (corpus/indexed): 0/0)>>

[[1]]

[1] a3 accurate adaptable accessible error metrics predictive models

[[2]]

[1] tools approximate bayesian computation abc

[[3]]

[1] abcdefba abiologistcandoeverything flux balance analysis package

So, we first called the tolower function from the base package to transform all
characters from upper to lower case. Please note that we had to wrap the tolower
function in the content_transformer function, so that our transformation really
complies with the tm package's object structure. This is usually required when using
a transformation function outside of the tm package.

Then, we removed all the punctuation marks from the text with the help of the
removePunctutation function. The punctuations marks are the ones referred to as
[:punct:] in regular expressions, including the following characters: ! " # $ % & ' ()
* + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~'. Usually, it's safe to remove these separators,
especially when we analyze the words on their own and not their relations.

Chapter 7

[159]

And we also removed the multiple whitespace characters from the document, so that
we find only one space between the filtered words.

Visualizing the most frequent words in
the corpus
Now that we have cleared up our corpus a bit, we can generate a much more useful
wordcloud, as compared to the proof-of-concept demo we generated in Chapter 2,
Getting Data from the Web:

> wordcloud::wordcloud(v)

Unstructured Data

[160]

Further cleanup
There are still some small disturbing glitches in the wordlist. Maybe, we do not
really want to keep numbers in the package descriptions at all (or we might want
to replace all numbers with a placeholder text, such as NUM), and there are some
frequent technical words that can be ignored as well, for example, package. Showing
the plural version of nouns is also redundant. Let's improve our corpus with some
further tweaks, step by step!

Removing the numbers from the package descriptions is fairly straightforward, as
based on the previous examples:

> v <- tm_map(v, removeNumbers)

To remove some frequent domain-specific words with less important meanings,
let's see the most common words in the documents. For this end, first we have
to compute the TermDocumentMatrix function that can be passed later to the
findFreqTerms function to identify the most popular terms in the corpus, based on
frequency:

> tdm <- TermDocumentMatrix(v)

This object is basically a matrix which includes the words in the rows and the
documents in the columns, where the cells show the number of occurrences. For
example, let's take a look at the first 5 words' occurrences in the first 20 documents:

> inspect(tdm[1:5, 1:20])

<<TermDocumentMatrix (terms: 5, documents: 20)>>

Non-/sparse entries: 5/95

Sparsity : 95%

Maximal term length: 14

Weighting : term frequency (tf)

 Docs

Terms 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 aalenjohansson 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 abc 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 abcdefba 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 abcsmc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 aberrations 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 7

[161]

Extracting the overall number of occurrences for each word is fairly easy. In theory,
we could compute the rowSums function of this sparse matrix. But let's simply call
the findFreqTerms function, which does exactly what we were up to. Let's show all
those terms that show up in the descriptions at least a 100 times:

> findFreqTerms(tdm, lowfreq = 100)

 [1] "analysis" "based" "bayesian" "data"

 [5] "estimation" "functions" "generalized" "inference"

 [9] "interface" "linear" "methods" "model"

[13] "models" "multivariate" "package" "regression"

[17] "series" "statistical" "test" "tests"

[21] "time" "tools" "using"

Manually reviewing this list suggests ignoring the based and using words, besides
the previously suggested package term:

> myStopwords <- c('package', 'based', 'using')

> v <- tm_map(v, removeWords, myStopwords)

Stemming words
Now, let's get rid of the plural forms of the nouns, which also occur in the preceding
top 20 lists of the most common words! This is not as easy as it sounds. We might
apply some regular expressions to cut the trailing s from the words, but this method
has many drawbacks, such as not taking into account some evident English grammar
rules.

But we can, instead, use some stemming algorithms, especially Porter's stemming
algorithm, which is available in the SnowballC package. The wordStem function
supports 16 languages (take a look at the getStemLanguages for details), and can
identify the stem of a character vector as easily as calling the function:

> library(SnowballC)

> wordStem(c('cats', 'mastering', 'modelling', 'models', 'model'))

[1] "cat" "master" "model" "model" "model"

The only penalty here is the fact that Porter's algorithm does not provide real English
words in all cases:

> wordStem(c('are', 'analyst', 'analyze', 'analysis'))

[1] "ar" "analyst" "analyz" "analysi"

Unstructured Data

[162]

So later, we will have to tweak the results further; to reconstruct the words with the
help of a language lexicon database. The easiest way to construct such a database is
copying the words of the already existing corpus:

> d <- v

Then, let's stem all the words in the documents:

> v <- tm_map(v, stemDocument, language = "english")

Now, we called the stemDocument function, which is a wrapper around the
SnowballC package's wordStem function. We specified only one parameter,
which sets the language of the stemming algorithm. And now, let's call the
stemCompletion function on our previously defined directory, and let's formulate
each stem to the shortest relevant word found in the database.

Unfortunately, it's not as straightforward as the previous examples, as the
stemCompletion function takes a character vector of words instead of documents
that we have in our corpus. So thus, we have to write our own transformation
function with the previously used content_transformer helper. The basic idea is
to split each documents into words by a space, apply the stemCompletion function,
and then concatenate the words into sentences again:

> v <- tm_map(v, content_transformer(function(x, d) {

+ paste(stemCompletion(

+ strsplit(stemDocument(x), ' ')[[1]],

+ d),

+ collapse = ' ')

+ }), d)

The preceding example is rather resource hungry, so please be prepared
for high CPU usage for around 30 to 60 minutes on a standard PC. As
you can (technically) run the forthcoming code samples without actually
performing this step, you may feel free to skip to the next code chunk, if
in a hurry.

It took some time, huh? Well, we had to iterate through all the words in each
document found in the corpus , but it's well worth the trouble! Let's see the top used
terms in the cleaned corpus:

> tdm <- TermDocumentMatrix(v)

> findFreqTerms(tdm, lowfreq = 100)

 [1] "algorithm" "analysing" "bayesian" "calculate"

 [5] "cluster" "computation" "data" "distributed"

Chapter 7

[163]

 [9] "estimate" "fit" "function" "general"

[13] "interface" "linear" "method" "model"

[17] "multivariable" "network" "plot" "random"

[21] "regression" "sample" "selected" "serial"

[25] "set" "simulate" "statistic" "test"

[29] "time" "tool" "variable"

While previously the very same command returned 23 terms, out of which
we removed 3, now we see more than 30 words occurring more than 100 times
in the corpus. We got rid of the plural versions of the nouns and a few other
similar variations of the same terms, so the density of the document term matrix
also increased:

> tdm

<<TermDocumentMatrix (terms: 4776, documents: 5880)>>

Non-/sparse entries: 27946/28054934

Sparsity : 100%

Maximal term length: 35

Weighting : term frequency (tf)

We not only decreased the number of different words to be indexed in the next steps,
but we also identified a few new terms that are to be ignored in our further analysis,
for example, set does not seem to be an important word in the package descriptions.

Lemmatisation
While stemming terms, we started to remove characters from the end of words in the
hope of finding the stem, which is a heuristic process often resulting in not-existing
words, as we have seen previously. We tried to overcome this issue by completing
these stems to the shortest meaningful words by using a dictionary, which might result
in derivation in the meaning of the term, for example, removing the ness suffix.

Another way to reduce the number of inflectional forms of different terms, instead of
deconstructing and then trying to rebuild the words, is morphological analysis with
the help of a dictionary. This process is called lemmatisation, which looks for lemma
(the canonical form of a word) instead of stems.

The Stanford NLP Group created and maintains a Java-based NLP tool called Stanford
CoreNLP, which supports lemmatization besides many other NLP algorithms such as
tokenization, sentence splitting, POS tagging, and syntactic parsing.

Unstructured Data

[164]

You can use CoreNLP from R via the rJava package, or you might
install the coreNLP package, which includes some wrapper functions
around the CoreNLP Java library, which are meant for providing easy
access to, for example, lammatisation. Please note that after installing the
R package, you have to use the downloadCoreNLP function to actually
install and make accessible the features of the Java library.

Analyzing the associations among terms
The previously computed TermDocumentMatrix, can also be used to identify the
association between the cleaned terms found in the corpus. This simply suggests
the correlation coefficient computed on the joint occurrence of term-pairs in the
same document, which can be queried easily with the findAssocs function.

Let's see which words are associated with data:

> findAssocs(tdm, 'data', 0.1)

 data

set 0.17

analyzing 0.13

longitudinal 0.11

big 0.10

Only four terms seem to have a higher correlation coefficient than 0.1, and it's not
surprising at all that analyzing is among the top associated words. Probably, we
can ignore the set term, but it seems that longitudinal and big data are pretty
frequent idioms in package descriptions. So, what other big terms do we have?

> findAssocs(tdm, 'big', 0.1)

 big

mpi 0.38

pbd 0.33

program 0.32

unidata 0.19

demonstration 0.17

netcdf 0.15

forest 0.13

Chapter 7

[165]

packaged 0.13

base 0.12

data 0.10

Checking the original corpus reveals that there are several R packages starting
with pbd, which stands for Programming with Big Data. The pbd packages are
usually tied to Open MPI, which pretty well explains the high association between
these terms.

Some other metrics
And, of course, we can use the standard data analysis tools as well after quantifying
our package descriptions a bit. Let's see, for example, the length of the documents in
the corpus:

> vnchar <- sapply(v, function(x) nchar(x$content))

> summary(vnchar)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.00 27.00 37.00 39.85 50.00 168.00

So, the average package description consists of around 40 characters, while there
is a package with only two characters in the description. Well, two characters after
removing numbers, punctuations, and the common words. To see which package has
this very short description, we might simply call the which.min function:

> (vm <- which.min(vnchar))

[1] 221

And this is what's strange about it:

> v[[vm]]

<<PlainTextDocument (metadata: 7)>>

NA

> res[vm,]

 V1 V2

221 <NA>

Unstructured Data

[166]

So, this is not a real package after all, but rather an empty row in the original table.
Let's visually inspect the overall number of characters in the package descriptions:

> hist(vnchar, main = 'Length of R package descriptions',

+ xlab = 'Number of characters')

The histogram suggests that most packages have a rather short description with no
more than one sentence, based on the fact that an average English sentence includes
around 15-20 words with 75-100 characters.

The segmentation of documents
To identify the different groups of cleaned terms, based on the frequency and
association of the terms in the documents of the corpus, one might directly use our
tdm matrix to run, for example, the classic hierarchical cluster algorithm.

On the other hand, if you would rather like to cluster the R packages based on their
description, we should compute a new matrix with DocumentTermMatrix, instead of
the previously used TermDocumentMatrix. Then, calling the clustering algorithm on
this matrix would result in the segmentation of the packages.

Chapter 7

[167]

For more details on the available methods, algorithms, and guidance on choosing
the appropriate functions for clustering, please see Chapter 10, Classification and
Clustering. For now, we will fall back to the traditional hclust function, which
provides a built-in way of running hierarchical clustering on distance matrices. For a
quick demo, let's demonstrate this on the so-called Hadleyverse, which describes a
useful collection of R packages developed by Hadley Wickham:

> hadleyverse <- c('ggplot2', 'dplyr', 'reshape2', 'lubridate',

+ 'stringr', 'devtools', 'roxygen2', 'tidyr')

Now, let's identify which elements of the v corpus hold the cleaned terms of the
previously listed packages:

> (w <- which(res$V1 %in% hadleyverse))

[1] 1104 1230 1922 2772 4421 4658 5409 5596

And then, we can simply compute the (dis)similarity matrix of the used terms:

> plot(hclust(dist(DocumentTermMatrix(v[w]))),

+ xlab = 'Hadleyverse packages')

Besides the reshape2 and tidyr packages that we covered in Chapter 4, Restructuring
Data, we can see two separate clusters in the previous plot (the highlighted terms in
the following list are copied from the package descriptions):

• Packages that make things a bit easier
• Others dealing with the language, documentation and grammar

Unstructured Data

[168]

To verify this, you might be interested in the cleansed terms for each package:

> sapply(v[w], function(x) structure(content(x),

+ .Names = meta(x, 'id')))

 devtools

 "tools make developing r code easier"

 dplyr

 "a grammar data manipulation"

 ggplot2

 "an implementation grammar graphics"

 lubridate

 "make dealing dates little easier"

 reshape2

 "flexibly reshape data reboot reshape "

 roxygen2

 "insource documentation r"

 stringr

 "make easier work strings"

 tidyr

"easily tidy data spread gather functions"

An alternative and probably more appropriate, long-term approach for clustering
documents based on NLP algorithms, would be fitting topic models, for example,
via the topicmodels package. This R package comes with a detailed and very useful
vignette, which includes some theoretical background as well as some hands-on
examples. But for a quick start, you might simply try to run the LDA or CTM functions
on our previously created DocumentTermMatrix, and specify the number of topics
for the models to be built. A good start, based on our previous clustering example,
might be k=3.

Summary
The preceding examples and quick theoretical background introduced text mining
algorithms to structure plain English texts into numbers for further analysis. In
the next chapter, we will concentrate on some similarly important methods in the
process of data analysis, such as how to polish this kind of data in the means of
identifying outliers, extreme values, and how to handle missing data.

Chapter 8

[169]

Polishing Data
When working with data, you will usually find that it may not always be perfect or
clean in the means of missing values, outliers and similar anomalies. Handling and
cleaning imperfect or so-called dirty data is part of every data scientist's daily life,
and even more, it can take up to 80 percent of the time we actually deal with the
data!

Dataset errors are often due to the inadequate data acquisition methods, but instead
of repeating and tweaking the data collection process, it is usually better (in the
means of saving money, time and other resources) or unavoidable to polish the data
by a few simple functions and algorithms. In this chapter, we will cover:

• Different use cases of the na.rm argument of various functions
• The na.action and related functions to get rid of missing data
• Several packages that offer a user-friendly way of data imputation
• The outliers package with several statistical tests for extreme values
• How to implement Lund's outlier test on our own as a brain teaser
• Referring to some robust methods

The types and origins of missing data
First, we have to take a quick look at the possible different sources of missing data to
identify why and how we usually get missing values. There are quite a few different
reasons for data loss, which can be categorized into 3 different types.

For example, the main cause of missing data might be a malfunctioning device or the
human factor of incorrectly entering data. Missing Completely at Random (MCAR)
means that every value in the dataset has the same probability of being missed, so
no systematic error or distortion is to be expected due to missing data, and nor can
we explain the pattern of missing values. This is the best situation if we have NA
(meaning: no answer, not applicable or not available) values in our data set.

Polishing Data

[170]

But a much more frequent and unfortunate type of missing data is Missing at
Random (MAR) compared to MCAR. In the case of MAR, the pattern of missing
values is known or at least can be identified, although it has nothing to do with the
actual missing values. For example, one might think of a population where males
are more loners or lazier compared to females, thus they prefer not to answer all the
questions in a survey – regardless of the actual question. So it's not that the males are
not giving away their salary due to the fact that they make more or less compared to
females, but they tend to skip a few questions in the questionnaire at random.

This classification and typology of missing data was first proposed by
Donald B. Rubin in 1976 in his Inference and Missing Data, published in
Biometrika 63(3): 581—592, later reviewed and extended in a book jointly
written by Roderick J. A. Little (2002): Statistical Analysis with Missing Data,
Wiley – which is well worth of reading for further details.

And the worst scenario would be Missing Not at Random (MNAR), where data
is missing for a specific reason that is highly related to the actual question, which
classifies missing values as nonignorable non-response.

This happens pretty often in surveys with sensitive questions or due to design
flaws in the research preparation. In such cases, data is missing due to some latent
process going on in the background, which is often the thing we wanted to come
to know better with the help of the research – which can turn out to be a rather
cumbersome situation.

So how can we resolve these problems? Sometimes it's relatively easy. For example,
if we have lot of observations, MCAR is not a real problem at all due to the law of
large numbers, as the probability of having missing value(s) is the same for each
observation. We basically have two options to deal with unknown or missing data:

• Removing missing values and/or observations
• Replacing missing values with some estimates

Identifying missing data
The easiest way of dealing with missing values, especially with MCAR data, is
simply removing all the observations with any missing values. If we want to exclude
every row of a matrix or data.frame object which has at least one missing value,
we can use the complete.cases function from the stats package to identify those.

For a quick start, let's see how many rows have at least one missing value:

> library(hflights)

> table(complete.cases(hflights))

Chapter 8

[171]

 FALSE TRUE

 3622 223874

This is around 1.5 percent of the quarter million rows:

> prop.table(table(complete.cases(hflights))) * 100

 FALSE TRUE

 1.592116 98.407884

Let's see what the distribution of NA looks like within different columns:

> sort(sapply(hflights, function(x) sum(is.na(x))))

 Year Month DayofMonth

 0 0 0

 DayOfWeek UniqueCarrier FlightNum

 0 0 0

 TailNum Origin Dest

 0 0 0

 Distance Cancelled CancellationCode

 0 0 0

 Diverted DepTime DepDelay

 0 2905 2905

 TaxiOut ArrTime TaxiIn

 2947 3066 3066

ActualElapsedTime AirTime ArrDelay

 3622 3622 3622

By-passing missing values
So it seems that missing data relatively frequently occurs with the time-related
variables, but we have no missing values among the flight identifiers and dates. On
the other hand, if one value is missing for a flight, the chances are rather high that
some other variables are missing as well – out of the overall number of 3,622 cases
with at least one missing value:

> mean(cor(apply(hflights, 2, function(x)

+ as.numeric(is.na(x)))), na.rm = TRUE)

[1] 0.9589153

Polishing Data

[172]

Warning message:

In cor(apply(hflights, 2, function(x) as.numeric(is.na(x)))) :

 the standard deviation is zero

Okay, let's see what we have done here! First, we have called the apply function to
transform the values of data.frame to 0 or 1, where 0 stands for an observed, while
1 means a missing value. Then we computed the correlation coefficients of this newly
created matrix, which of course returned a lot of missing values due to fact that some
columns had only one unique value without any variability, as shown in the warning
message. For this, we had to specify the na.rm parameter to be TRUE, so that the mean
function would return a real value instead of an NA, by removing the missing values
among the correlation coefficients returned by the cor function.

So one option is the heavy use of the na.rm argument, which is supported by most
functions that are sensitive to missing data—to name a few from the base and stats
packages: mean, median, sum, max and min.

To compile the complete list of functions that have the na.rm argument in the base
package, we can follow the steps described in a very interesting SO answer located at
http://stackoverflow.com/a/17423072/564164. I found this answer motivating
because I truly believe in the power of analyzing the tools we use for analysis, or in
other words, spending some time on understanding how R works in the background.

First, let's make a list of all the functions found in baseenv (the environment of the
base package) along with the complete function arguments and body:

> Funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))

Then we can Filter all those functions from the returned list, which have na.rm
among the formal arguments via the following:

> names(Filter(function(x)

+ any(names(formals(args(x))) %in% 'na.rm'), Funs))

 [1] "all" "any"

 [3] "colMeans" "colSums"

 [5] "is.unsorted" "max"

 [7] "mean.default" "min"

 [9] "pmax" "pmax.int"

[11] "pmin" "pmin.int"

[13] "prod" "range"

[15] "range.default" "rowMeans"

[17] "rowsum.data.frame" "rowsum.default"

[19] "rowSums" "sum"

http://stackoverflow.com/a/17423072/564164

Chapter 8

[173]

[21] "Summary.data.frame" "Summary.Date"

[23] "Summary.difftime" "Summary.factor"

[25] "Summary.numeric_version" "Summary.ordered"

[27] "Summary.POSIXct" "Summary.POSIXlt"

This can be easily applied to any R package by changing the environment variable to
for example 'package:stats' in the case of the stats package:

> names(Filter(function(x)

+ any(names(formals(args(x))) %in% 'na.rm'),

+ Filter(is.function,

+ sapply(ls('package:stats'), get, 'package:stats'))))

 [1] "density.default" "fivenum" "heatmap"

 [4] "IQR" "mad" "median"

 [7] "median.default" "medpolish" "sd"

[10] "var"

So these are the functions that have the na.rm argument in the base and the stats
packages, where we have seen that the fastest and easiest way of ignoring missing
values in single function calls (without actually removing the NA values from the
dataset) is setting na.rm to TRUE. But why doesn't na.rm default to TRUE?

Overriding the default arguments of a
function
If you are annoyed by the fact that most functions return NA if your R object includes
missing values, then you can override those by using some custom wrapper
functions, such as:

> myMean <- function(...) mean(..., na.rm = TRUE)

> mean(c(1:5, NA))

[1] NA

> myMean(c(1:5, NA))

[1] 3

Another option might be to write a custom package which would override the
factory defaults of the base and stats function, like in the rapportools package,
which includes miscellaneous helper functions with sane defaults for reporting:

> library(rapportools)

Polishing Data

[174]

Loading required package: reshape

Attaching package: 'rapportools'

The following objects are masked from 'package:stats':

 IQR, median, sd, var

The following objects are masked from 'package:base':

 max, mean, min, range, sum

> mean(c(1:5, NA))

[1] 3

The problem with this approach is that you've just permanently overridden those
functions listed, so you'll need to restart your R session or detach the rapportools
package to reset to the standard arguments, like:

> detach('package:rapportools')

> mean(c(1:5, NA))

[1] NA

A more general solution to override the default arguments of a function is to rely
on some nifty features of the Defaults package, which is although not under active
maintenance, but it does the job:

> library(Defaults)

> setDefaults(mean.default, na.rm = TRUE)

> mean(c(1:5, NA))

[1] 3

Please note that here we had to update the default argument value of mean.default
instead of simply trying to tweak mean, as that latter would result in an error:

> setDefaults(mean, na.rm = TRUE)

Warning message:

In setDefaults(mean, na.rm = TRUE) :

 'na.rm' was not set, possibly not a formal arg for 'mean'

Chapter 8

[175]

This is due to the fact that mean is an S3 method without any formal arguments:

> mean

function (x, ...)

{

 if (exists(".importDefaults"))

 .importDefaults(calling.fun = "mean")

 UseMethod("mean")

}

<environment: namespace:base>

> formals(mean)

$x

$...

Either methods you prefer, you can automatically call those functions when R starts
by adding a few lines of code in your Rprofile file.

You can customize the R environment via a global or user-specific
Rprofile file. This is a normal R script which is usually placed in the
user's home directory with a leading dot in the file name, which is run
every time a new R session is started. There you can call any R functions
wrapped in the .First or .Last functions to be run at the start or at
the end of the R session. Such useful additions might be loading some R
packages, printing custom greetings or KPI metrics from a database, or
for example installing the most recent versions of all R packages.

But it's probably better not to tweak your R environment in such a non-standard
way, as you might soon experience some esoteric and unexpected errors or silent
malfunctions in your analysis.

For example, I've got used to working in a temporary directory at all times by
specifying setwd('/tmp') in my Rprofile, which is very useful if you start R
sessions frequently for some quick jobs. On the other hand, it's really frustrating to
spend 15 minutes of your life debugging why some random R function does not
seem to do its job, and why it's returning some file not found error messages instead.

So please be warned: if you update the factory default arguments of R functions,
do not ever think of ranting about some new bugs you have found in some major
functions of base R on the R mailing lists, before trying to reproduce those errors
in a vanilla R session with starting R with the --vanilla command line option.

Polishing Data

[176]

Getting rid of missing data
An alternative way of using the na.rm argument in R functions is removing NA
from the dataset before passing that to the analysis functions. This means that we
are removing the missing values from the dataset permanently, so that they won't
cause any problems at later stages in the analysis. For this, we could use either the
na.omit or the na.exclude functions:

> na.omit(c(1:5, NA))

[1] 1 2 3 4 5

attr(,"na.action")

[1] 6

attr(,"class")

[1] "omit"

> na.exclude(c(1:5, NA))

[1] 1 2 3 4 5

attr(,"na.action")

[1] 6

attr(,"class")

[1] "exclude"

The only difference between these two functions is the class of the na.action
attribute of the returned R object, which are omit and exclude respectively. This
minor difference is only important when modelling. The na.exclude function
returns NA for residuals and predictions, while na.omit suppresses those elements
of the vector:

> x <- rnorm(10); y <- rnorm(10)

> x[1] <- NA; y[2] <- NA

> exclude <- lm(y ~ x, na.action = "na.exclude")

> omit <- lm(y ~ x, na.action = "na.omit")

> residuals(exclude)

 1 2 3 4 5 6 7 8 9 10

 NA NA -0.89 -0.98 1.45 -0.23 3.11 -0.23 -1.04 -1.20

> residuals(omit)

 3 4 5 6 7 8 9 10

-0.89 -0.98 1.45 -0.23 3.11 -0.23 -1.04 -1.20

Chapter 8

[177]

Important thing to note in case of tabular data, like a matrix or data.frame, these
functions remove the whole row if it contains at least one missing value. For a quick
demo, let's create a matrix with 3 columns and 3 rows with values incrementing from
1 to 9, but replacing all values divisible by 4 with NA:

> m <- matrix(1:9, 3)

> m[which(m %% 4 == 0, arr.ind = TRUE)] <- NA

> m

 [,1] [,2] [,3]

[1,] 1 NA 7

[2,] 2 5 NA

[3,] 3 6 9

> na.omit(m)

 [,1] [,2] [,3]

[1,] 3 6 9

attr(,"na.action")

[1] 1 2

attr(,"class")

[1] "omit"

As seen here, we can find the row numbers of the removed cases in the
na.action attribute.

Filtering missing data before or during
the actual analysis
Let's suppose we want to calculate the mean of the actual length of flights:

> mean(hflights$ActualElapsedTime)

[1] NA

The result is NA of course, because as identified previously, this variable contains
missing values, and almost every R operation with NA results in NA. So let's overcome
this issue as follows:

> mean(hflights$ActualElapsedTime, na.rm = TRUE)

[1] 129.3237

> mean(na.omit(hflights$ActualElapsedTime))

[1] 129.3237

Polishing Data

[178]

Any performance issues there? Or other means of deciding which method to use?

> library(microbenchmark)

> NA.RM <- function()

+ mean(hflights$ActualElapsedTime, na.rm = TRUE)

> NA.OMIT <- function()

+ mean(na.omit(hflights$ActualElapsedTime))

> microbenchmark(NA.RM(), NA.OMIT())

Unit: milliseconds

 expr min lq median uq max neval

 NA.RM() 7.105485 7.231737 7.500382 8.002941 9.850411 100

 NA.OMIT() 12.268637 12.471294 12.905777 13.376717 16.008637 100

The first glance at the performance of these options computed with the help of the
microbenchmark package (please see the Loading text files of reasonable size section
in the Chapter 1, Hello Data for more details) suggests that using na.rm is the better
solution in case of a single function call.

On the other hand, if we want to reuse the data at some later phase in the analysis,
it is more viable and effective to omit the missing values and observations only once
from the dataset, instead of always specifying na.rm to be TRUE.

Data imputation
And sometimes omitting missing values is not reasonable or possible at all, for
example due to the low number of observations or if it seems that missing data is not
random. Data imputation is a real alternative in such situations, and this method can
replace NA with some real values based on various algorithms, such as filling empty
cells with:

• A known scalar
• The previous value appearing in the column (hot-deck)
• A random element from the same column
• The most frequent value in the column
• Different values from the same column with given probability
• Predicted values based on regression or machine learning models

Chapter 8

[179]

The hot-deck method is often used while joining multiple datasets together. In
such a situation, the roll argument of data.table can be very useful and efficient,
otherwise be sure to check out the hotdeck function in the VIM package, which
offers some really useful ways of visualizing missing data. But when dealing with an
already given column of a dataset, we have some other simple options as well.

For instance, imputing a known scalar is a pretty simple situation, where we know
that all missing values are for example due to some research design patterns. Let's
think of a database that stores the time you arrived to and left the office every
weekday, and by computing the difference between those two, we can analyze the
number of work hours spent in the office from day to day. If this variable returns NA
for a time period, actually it means that we were outside of the office all day, so thus
the computed value should be zero instead of NA.

And not just in theory, but this is pretty easy to implement in R as well (example is
continued from the previous demo code where we defined m with two missing values):

> m[which(is.na(m), arr.ind = TRUE)] <- 0

> m

 [,1] [,2] [,3]

[1,] 1 0 7

[2,] 2 5 0

[3,] 3 6 9

Similarly, replacing missing values with a random number, a sample of other values
or with the mean of a variable can be done relatively easily:

> ActualElapsedTime <- hflights$ActualElapsedTime

> mean(ActualElapsedTime, na.rm = TRUE)

[1] 129.3237

> ActualElapsedTime[which(is.na(ActualElapsedTime))] <-

+ mean(ActualElapsedTime, na.rm = TRUE)

> mean(ActualElapsedTime)

[1] 129.3237

Which can be even easier with the impute function from the Hmisc package:

> library(Hmisc)

> mean(impute(hflights$ActualElapsedTime, mean))

[1] 129.3237

Polishing Data

[180]

It seems that we have preserved the value of the arithmetic mean of course, but you
should be aware of some very serious side-effects:

> sd(hflights$ActualElapsedTime, na.rm = TRUE)

[1] 59.28584

> sd(ActualElapsedTime)

[1] 58.81199

When replacing missing values with the mean, the variance of the transformed
variable will be naturally lower compared to the original distribution. This can be
extremely problematic in some situations, where some more sophisticated methods
are needed.

Modeling missing values
Besides the previous mentioned univariate methods, you may also fit models on the
complete cases in the dataset, rather than fitting those models on the remaining rows
to estimate the missing values. Or in a nutshell, we are replacing the missing values
with multivariate predictions.

There are a plethora of related functions and packages, for example you might be
interested in checking the transcan function in the Hmisc package, or the imputeR
package, which includes a wide variety of models for imputing categorical and
continuous variables as well.

Most of the imputation methods and models are for one type of variable: either
continuous or categorical. In case of mixed-type dataset, we typically use different
algorithms to handle the different types of missing data. The problem with this
approach is that some of the possible relations between different types of data might
be ignored, resulting in some partial models.

To overcome this issue, and to save a few pages in the book on the description of the
traditional regression and other related methods for data imputation (although you can
find some related methods in the Chapter 5, Buildings Models (authored by Renata Nemeth
and Gergely Toth) and the Chapter 6, Beyond the Linear Trend Line (authored by Renata
Nemeth and Gergely Toth)), we will concentrate on a non-parametric method that can
handle categorical and continuous variables at the same time via a very user-friendly
interface in the missForest package.

This iterative procedure fits a random forest model on the available data in order
to predict the missing values. As our hflights data is relatively large for such
a process and running the sample code would takes ages, we will rather use the
standard iris dataset in the next examples.

Chapter 8

[181]

First let's see the original structure of the dataset, which does not include any
missing values:

> summary(iris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width

 Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

 Median :5.800 Median :3.000 Median :4.350 Median :1.300

 Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

 Species

 setosa :50

 versicolor:50

 virginica :50

Now let's load the package and add some missing values (completely at random)
to the dataset in the means of producing a reproducible minimal example for the
forthcoming models:

> library(missForest)

> set.seed(81)

> miris <- prodNA(iris, noNA = 0.2)

> summary(miris)

 Sepal.Length Sepal.Width Petal.Length Petal.Width

 Min. :4.300 Min. :2.000 Min. :1.100 Min. :0.100

 1st Qu.:5.200 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

 Median :5.800 Median :3.000 Median :4.450 Median :1.300

 Mean :5.878 Mean :3.062 Mean :3.905 Mean :1.222

 3rd Qu.:6.475 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.900

 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

 NA's :28 NA's :29 NA's :32 NA's :33

 Species

 setosa :40

 versicolor:38

 virginica :44

 NA's :28

Polishing Data

[182]

So now we have around 20 percent of missing values in each column, which is also
stated in the bottom row of the preceding summary. The number of completely
random missing values is between 28 and 33 cases per variable.

The next step should be building the random forest models to replace the missing
values with real numbers and factor levels. As we also have the original dataset, we
can use that complete matrix to test the performance of the method via the xtrue
argument, which computes and returns the error rate when we call the function
with verbose. This is useful in such didactical examples to show how the model
and predictions improves from iteration to iteration:

> iiris <- missForest(miris, xtrue = iris, verbose = TRUE)

 missForest iteration 1 in progress...done!

 error(s): 0.1512033 0.03571429

 estimated error(s): 0.1541084 0.04098361

 difference(s): 0.01449533 0.1533333

 time: 0.124 seconds

 missForest iteration 2 in progress...done!

 error(s): 0.1482248 0.03571429

 estimated error(s): 0.1402145 0.03278689

 difference(s): 9.387853e-05 0

 time: 0.114 seconds

 missForest iteration 3 in progress...done!

 error(s): 0.1567693 0.03571429

 estimated error(s): 0.1384038 0.04098361

 difference(s): 6.271654e-05 0

 time: 0.152 seconds

 missForest iteration 4 in progress...done!

 error(s): 0.1586195 0.03571429

 estimated error(s): 0.1419132 0.04918033

 difference(s): 3.02275e-05 0

 time: 0.116 seconds

 missForest iteration 5 in progress...done!

 error(s): 0.1574789 0.03571429

Chapter 8

[183]

 estimated error(s): 0.1397179 0.04098361

 difference(s): 4.508345e-05 0

 time: 0.114 seconds

The algorithm ran for 5 iterations before stopping, when it seemed that the error rate
was not improving any further. The returned missForest object includes a few other
values besides the imputed dataset:

> str(iiris)

List of 3

 $ ximp :'data.frame': 150 obs. of 5 variables:

 ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 ...

 ..$ Sepal.Width : num [1:150] 3.5 3.3 3.2 3.29 3.6 ...

 ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.42 1.4 ...

 ..$ Petal.Width : num [1:150] 0.2 0.218 0.2 0.2 0.2 ...

 ..$ Species : Factor w/ 3 levels "setosa","versicolor",..: ...

 $ OOBerror: Named num [1:2] 0.1419 0.0492

 ..- attr(*, "names")= chr [1:2] "NRMSE" "PFC"

 $ error : Named num [1:2] 0.1586 0.0357

 ..- attr(*, "names")= chr [1:2] "NRMSE" "PFC"

 - attr(*, "class")= chr "missForest"

The Out of Box error is an estimate on how good our model was based on the
normalized root mean squared error computed (NRMSE) for numeric values
and the proportion of falsely classified (PFC) entries for factors. And as we also
provided the complete dataset for the previously run model, we also get the true
imputation error ratio – which is pretty close to the above estimates.

Please find more details on random forests and related machine
learning topics in the Chapter 10, Classification and Clustering.

But how does this approach compare to a much simpler imputation method, like
replacing missing values with the mean?

Comparing different imputation methods
In the comparison, only the first four columns of the iris dataset will be used, thus it
is not dealing with the factor variable at the moment. Let's prepare this demo dataset:

> miris <- miris[, 1:4]

Polishing Data

[184]

In iris_mean, we replace all the missing values to the mean of the actual columns:

> iris_mean <- impute(miris, fun = mean)

And in iris_forest, we predict the missing values by fitting random forest model:

> iris_forest <- missForest(miris)

 missForest iteration 1 in progress...done!

 missForest iteration 2 in progress...done!

 missForest iteration 3 in progress...done!

 missForest iteration 4 in progress...done!

 missForest iteration 5 in progress...done!

Now let's simply check the accuracy of the two models by comparing the correlations
of iris_mean and iris_forest with the complete iris dataset. For iris_forest,
we will extract the actual imputed dataset from the ximp attribute, and we will
silently ignore the factor variable of the original iris table:

> diag(cor(iris[, -5], iris_mean))

Sepal.Length Sepal.Width Petal.Length Petal.Width

 0.6633507 0.8140169 0.8924061 0.4763395

> diag(cor(iris[, -5], iris_forest$ximp))

Sepal.Length Sepal.Width Petal.Length Petal.Width

 0.9850253 0.9320711 0.9911754 0.9868851

These results suggest that the nonparametric random forest model did a lot better
job compared to the simple univariate solution of replacing missing values with
the mean.

Not imputing missing values
Please note that these methods have their drawbacks likewise. Replacing the missing
values with a predicted one often lacks any error term and residual variance with
most models.

This also means that we are lowering the variability, and overestimating some
association in the dataset at the same time, which can seriously affect the results of
our data analysis. For this, some simulation techniques were introduced in the past
to overcome the problem of distorting the dataset and our hypothesis tests with
some arbitrary models.

Chapter 8

[185]

Multiple imputation
The basic idea behind multiple imputation is to fit models several times in a row
on the missing values. This Monte Carlo method usually creates some (like 3 to
10) parallel versions of the simulated complete dataset, each of these is analyzed
separately, and then we combine the results to produce the actual estimates and
confidence intervals. See for example the aregImpute function from the Hmisc
package for more details.

On the other hand, do we really have to remove or impute missing values in all
cases? For more details on this question, please see the last section of this chapter.
But before that, let's get to know some other requirements for polishing data.

Extreme values and outliers
An outlier or extreme value is defined as a data point that deviates so far from the
other observations, that it becomes suspicious to be generated by a totally different
mechanism or simply by error. Identifying outliers is important because those
extreme values can:

• Increase error variance
• Influence estimates
• Decrease normality

Or in other words, let's say your raw dataset is a piece of rounded stone to be used
as a perfect ball in some game, which has to be cleaned and polished before actually
using it. The stone has some small holes on its surface, like missing values in the
data, which should be filled – with data imputation.

On the other hand, the stone does not only has holes on its surface, but some
mud also covers some parts of the item, which is to be removed. But how can
we distinguish mud from the real stone? In this section, we will focus on what
the outliers package and some related methods have to offer for identifying
extreme values.

As this package has some conflicting function names with the randomForest
package (automatically loaded by the missForest package), it's wise to detach the
latter before heading to the following examples:

> detach('package:missForest')

> detach('package:randomForest')

Polishing Data

[186]

The outlier function returns the value with the largest difference from the mean,
which, contrary to its name, not necessarily have to be an outlier. Instead, the
function can be used to give the analyst an idea about which values can be outliers:

> library(outliers)

> outlier(hflights$DepDelay)

[1] 981

So there was a flight with more than 16 hours of delay before actually taking off!
This is impressive, isn't it? Let's see if it's normal to be so late:

> summary(hflights$DepDelay)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-33.000 -3.000 0.000 9.445 9.000 981.000 2905

Well, mean is around 10 minutes, but as it's even larger than the third quarter and
the median is zero, it's not that hard to guess that the relatively large mean is due
to some extreme values:

> library(lattice)

> bwplot(hflights$DepDelay)

The preceding boxplot clearly shows that most flights were delayed by only a few
minutes, and the interquartile range is around 10 minutes:

> IQR(hflights$DepDelay, na.rm = TRUE)

[1] 12

All the blue circles in the preceding image are the whiskers are possible extreme
values, as being higher than the 1.5 IQR of the upper quartile. But how can we
(statistically) test a value?

Chapter 8

[187]

Testing extreme values
The outliers package comes with several bundled extreme value detection
algorithms, like:

• Dixon's Q test (dixon.test)
• Grubb's test (grubbs.test)
• Outlying and inlying variance (cochran.test)
• Chi-squared test (chisq.out.test)

These functions are extremely easy to use. Just pass a vector to the statistical tests
and the returning p-value of the significance test will clearly indicate if the data has
any outliers. For example, let's test 10 random numbers between 0 and 1 against a
relatively large number to verify it's an extreme value in this small sample:

> set.seed(83)

> dixon.test(c(runif(10), pi))

 Dixon test for outliers

data: c(runif(10), pi)

Q = 0.7795, p-value < 2.2e-16

alternative hypothesis: highest value 3.14159265358979 is an outlier

But unfortunately, we cannot use these convenient functions in our live dataset, as
the methods assume normal distribution, which is definitely not true in our cases as
we all know from experience: flights tend to be late more often than arriving a lot
sooner to their destinations.

For this, we should use some more robust methods, such as the mvoutlier package,
or some very simple approaches like Lund suggested around 40 years ago. This test
basically computes the distance of each value from the mean with the help of a very
simple linear regression:

> model <- lm(hflights$DepDelay ~ 1)

Just to verify we are now indeed measuring the distance from the mean:

> model$coefficients

(Intercept)

 9.444951

> mean(hflights$DepDelay, na.rm = TRUE)

[1] 9.444951

Polishing Data

[188]

Now let's compute the critical value based on the F distribution and two helper
variables (where a stands for the alpha value and n represents the number of cases):

> a <- 0.1

> (n <- length(hflights$DepDelay))

[1] 227496

> (F <- qf(1 - (a/n), 1, n-2, lower.tail = TRUE))

[1] 25.5138

Which can be passed to Lund's formula:

> (L <- ((n - 1) * F / (n - 2 + F))^0.5)

[1] 5.050847

Now let's see how many values have a higher standardized residual than this
computed critical value:

> sum(abs(rstandard(model)) > L)

[1] 1684

But do we really have to remove these outliers from our data? Aren't extreme values
normal? Sometimes these artificial edits in the raw data, like imputing missing values
or removing outliers, makes more trouble than it's worth.

Using robust methods
Fortunately, there are some robust methods for analyzing datasets, which are
generally less sensitive to extreme values. These robust statistical methods have
been developed since 1960, but there are some well-known related methods from
even earlier, like using the median instead of the mean as a central tendency.
Robust methods are often used when the underlying distribution of our data is not
considered to follow the Gaussian curve, so most good old regression models do not
work (see more details in the Chapter 5, Buildings Models (authored by Renata Nemeth
and Gergely Toth) and the Chapter 6, Beyond the Linear Trend Line (authored by Renata
Nemeth and Gergely Toth)).

Let's take the traditional linear regression example of predicting the sepal length of
iris flowers based on the petal length with some missing data. For this, we will use
the previously defined miris dataset:

> summary(lm(Sepal.Length ~ Petal.Length, data = miris))

Call:

Chapter 8

[189]

lm(formula = Sepal.Length ~ Petal.Length, data = miris)

Residuals:

 Min 1Q Median 3Q Max

-1.26216 -0.36157 0.01461 0.35293 1.01933

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.27831 0.11721 36.50 <2e-16 ***

Petal.Length 0.41863 0.02683 15.61 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4597 on 92 degrees of freedom

 (56 observations deleted due to missingness)

Multiple R-squared: 0.7258, Adjusted R-squared: 0.7228

F-statistic: 243.5 on 1 and 92 DF, p-value: < 2.2e-16

So it seems that our estimate for the sepal and petal length ratio is around 0.42,
which is not too far from the real value by the way:

> lm(Sepal.Length ~ Petal.Length, data = iris)$coefficients

 (Intercept) Petal.Length

 4.3066034 0.4089223

The difference between the estimated and real coefficients is due to the artificially
introduced missing values in a previous section. Can we produce even better
estimates? We might impute the missing data with any of the previously mentioned
methods, or instead we should rather fit a robust linear regression from the MASS
package predicting Sepal.Length with the Petal.Length variable:

> library(MASS)

> summary(rlm(Sepal.Length ~ Petal.Length, data = miris))

Call: rlm(formula = Sepal.Length ~ Petal.Length, data = miris)

Residuals:

 Min 1Q Median 3Q Max

-1.26184 -0.36098 0.01574 0.35253 1.02262

Coefficients:

Polishing Data

[190]

 Value Std. Error t value

(Intercept) 4.2739 0.1205 35.4801

Petal.Length 0.4195 0.0276 15.2167

Residual standard error: 0.5393 on 92 degrees of freedom

 (56 observations deleted due to missingness)

Now let's compare the coefficients of the models run against the original (full) and
the simulated data (with missing values):

> f <- formula(Sepal.Length ~ Petal.Length)

> cbind(

+ orig = lm(f, data = iris)$coefficients,

+ lm = lm(f, data = miris)$coefficients,

+ rlm = rlm(f, data = miris)$coefficients)

 orig lm rlm

(Intercept) 4.3066034 4.2783066 4.2739350

Petal.Length 0.4089223 0.4186347 0.4195341

To be honest, there's not much difference between the standard linear regression and
the robust version. Surprised? Well, the dataset included missing values completely
at random, but what happens if the dataset includes other types of missing values
or an outlier? Let's verify this by simulating some dirtier data issues (with updating
the sepal length of the first observation from 1.4 to 14 – let's say due to a data input
error) and rebuilding the models:

> miris$Sepal.Length[1] <- 14

> cbind(

+ orig = lm(f, data = iris)$coefficients,

+ lm = lm(f, data = miris)$coefficients,

+ rlm = rlm(f, data = miris)$coefficients)

 orig lm rlm

(Intercept) 4.3066034 4.6873973 4.2989589

Petal.Length 0.4089223 0.3399485 0.4147676

It seems that the lm model's performance decreased a lot, while the coefficients of the
robust model are almost identical to the original model regardless of the outlier in
the data. We can conclude that robust methods are pretty impressive and powerful
tools when it comes to extreme values! For more information on the related methods
already implemented in R, visit the related CRAN Task View at http://cran.r-
project.org/web/views/Robust.html.

http://cran.r-project.org/web/views/Robust.html
http://cran.r-project.org/web/views/Robust.html

Chapter 8

[191]

Summary
This chapter focused on some of the hardest challenges in data analysis in the means
of cleansing data, and we covered the most important topics on missing and extreme
values. Depending on your field of interest or industry you are working for, dirty
data can be a rare or major issue (for example I've seen some projects in the past when
regular expressions were applied to a JSON file to make that valid), but I am sure you
will find the next chapter interesting and useful despite your background – where we
will learn about multivariate statistical techniques.

Chapter 9

[193]

From Big to Small Data
Now that we have some cleansed data ready for analysis, let's first see how we can
find our way around the high number of variables in our dataset. This chapter will
introduce some statistical techniques to reduce the number of variables by dimension
reduction and feature extraction, such as:

• Principal Component Analysis (PCA)
• Factor Analysis (FA)
• Multidimensional Scaling (MDS) and a few other techniques

Most dimension reduction methods require that two or more
numeric variables in the dataset are highly associated or correlated,
so the columns in our matrix are not totally independent of each
other. In such a situation, the goal of dimension reduction is to
decrease the number of columns in the dataset to the actual matrix
rank; or, in other words, the number of variables can be decreased
whilst most of the information content can be retained. In linear
algebra, the matrix rank refers to the dimensions of the vector
space generated by the matrix—or, in simpler terms, the number
of independent columns and rows in a quadratic matrix. Probably
it's easier to understand rank by a quick example: imagine a
dataset on students where we know the gender, the age, and the
date of birth of respondents. This data is redundant as the age can
be computed (via a linear transformation) from the date of birth.
Similarly, the year variable is static (without any variability) in the
hflights dataset, and the elapsed time can be also computed by
the departure and arrival times.

From Big to Small Data

[194]

These transformations basically concentrate on the common variance identified
among the variables and exclude the remaining total (unique) variance. This results
in a dataset with fewer columns, which is probably easier to maintain and process,
but at the cost of some information loss and the creation of artificial variables, which
are usually harder to comprehend compared to the original columns.

In the case of perfect dependence, all but one of the perfectly correlated variables can
be omitted, as the rest provide no additional information about the dataset. Although
it does not happen often, in most cases it's still totally acceptable to keep only one
or a few components extracted from a set of questions, for example in a survey for
further analysis.

Adequacy tests
The first thing you want to do, when thinking about reducing the number
of dimensions or looking for latent variables in the dataset with multivariate
statistical analysis, is to check whether the variables are correlated and the
data is normally distributed.

Normality
The latter is often not a strict requirement. For example, the results of a PCA can
be still valid and interpreted if we do not have multivariate normality; on the other
hand, maximum likelihood factor analysis does have this strong assumption.

You should always use the appropriate methods to achieve your
data analysis goals, based on the characteristics of your data.

Anyway, you can use (for example) qqplot to do a pair-wise comparison of
variables, and qqnorm to do univariate normality tests of your variables. First, let's
demonstrate this with a subset of hflights:

> library(hlfights)

> JFK <- hflights[which(hflights$Dest == 'JFK'),

+ c('TaxiIn', 'TaxiOut')]

So we filter our dataset to only those flights heading to the John F. Kennedy
International Airport and we are interested in only two variables describing how
long the taxiing in and out times were in minutes. The preceding command with
the traditional [indexing can be refactored with subset for much more readable
source code:

> JFK <- subset(hflights, Dest == 'JFK', select = c(TaxiIn, TaxiOut))

Chapter 9

[195]

Please note that now there's no need to quote variable names or refer to the
data.frame name inside the subset call. For more details on this, please see
Chapter 3, Filtering and Summarizing Data. And now let's see how the values of
these two columns are distributed:

> par(mfrow = c(1, 2))

> qqnorm(JFK$TaxiIn, ylab = 'TaxiIn')

> qqline(JFK$TaxiIn)

> qqnorm(JFK$TaxiOut, ylab = 'TaxiOut')

> qqline(JFK$TaxiOut)

To render the preceding plot, we created a new graphical device (with par to hold
two plots in a row), then called qqnorm, to show the quantiles of the empirical
variables against the normal distribution, and also added a line for the latter with
qqline for easier comparison. If the data was scaled previously, qqline would
render a 45-degree line.

Checking the QQ-plots suggest that the data does not fit the normal distribution
very well, which can be also verified by an analytical test such as the Shapiro-Wilk
normality test:

> shapiro.test(JFK$TaxiIn)

 Shapiro-Wilk normality test

data: JFK$TaxiIn

W = 0.8387, p-value < 2.2e-16

From Big to Small Data

[196]

The p-value is really small, so the null hypothesis (stating that the data is normally
distributed) is rejected. But how can we test normality for a bunch of variables
without and beyond separate statistical tests?

Multivariate normality
Similar statistical tests exist for multiple variables as well; these methods provide
different ways to check if the data fits the multivariate normal distribution. To this
end, we will use the MVN package, but similar methods can be also found in the
mvnormtest package. The latter includes the multivariate version of the previously
discussed Shapiro-Wilk test as well.

But Mardia's test is more often used to check multivariate normality and, even better,
it does not limit the sample size to below 5,000. After loading the MVN package,
calling the appropriate R function is pretty straightforward with a very intuitive
interpretation—after getting rid of the missing values in our dataset:

> JFK <- na.omit(JFK)

> library(MVN)

> mardiaTest(JFK)

 Mardia's Multivariate Normality Test

 data : JFK

 g1p : 20.84452

 chi.skew : 2351.957

 p.value.skew : 0

 g2p : 46.33207

 z.kurtosis : 124.6713

 p.value.kurt : 0

 chi.small.skew : 2369.368

 p.value.small : 0

 Result : Data is not multivariate normal.

Chapter 9

[197]

For more details on handling and filtering missing values,
please see Chapter 8, Polishing Data.

Out of the three p values, the third one refers to cases when the sample size is
extremely small (<20), so now we only concentrate on the first two values, both
below 0.05. This means that the data does not seem to be multivariate normal.
Unfortunately, Mardia's test fails to perform well in some cases, so more robust
methods might be more appropriate to use.

The MVN package can run the Henze-Zirkler's and Royston's Multivariate Normality
Test as well. Both return user-friendly and easy to interpret results:

> hzTest(JFK)

 Henze-Zirkler's Multivariate Normality Test

 data : JFK

 HZ : 42.26252

 p-value : 0

 Result : Data is not multivariate normal.

> roystonTest(JFK)

 Royston's Multivariate Normality Test

 data : JFK

 H : 264.1686

 p-value : 4.330916e-58

 Result : Data is not multivariate normal.

From Big to Small Data

[198]

A more visual method to test multivariate normality is to render similar QQ
plots to those we used before. But, instead of comparing only one variable with
the theoretical normal distribution, let's first compute the squared Mahalanobis
distance between our variables, which should follow a chi-square distribution with
the degrees of freedom being the number of our variables. The MVN package can
automatically compute all the required values and render those with any of the
preceding normality test R functions; just set the qqplot argument to be TRUE:

> mvt <- roystonTest(JFK, qqplot = TRUE)

If the dataset was normally distributed, the points shown in the preceding graphs
should fit the straight line. Other alternative graphical methods can produce more
visual and user-friendly plots with the previously created mvt R object. The MVN
package ships the mvnPlot function, which can render perspective and contour
plots for two variables and thus provides a nice way to test bivariate normality:

> par(mfrow = c(1, 2))

> mvnPlot(mvt, type = "contour", default = TRUE)

> mvnPlot(mvt, type = "persp", default = TRUE)

Chapter 9

[199]

On the right plot, you can see the empirical distribution of the two variables on
a perspective plot, where most cases can be found in the bottom-left corner. This
means that most flights had only relatively short TaxiIn and TaxiOut times, which
suggests a rather heavy-tailed distribution. The left plot shows a similar image, but
from a bird's eye view: the contour lines represent a cross-section of the right-hand
side 3D graph. Multivariate normal distribution looks more central, something like a
2-dimensional bell curve:

> set.seed(42)
> mvt <- roystonTest(MASS::mvrnorm(100, mu = c(0, 0),
+ Sigma = matrix(c(10, 3, 3, 2), 2)))
> mvnPlot(mvt, type = "contour", default = TRUE)
> mvnPlot(mvt, type = "persp", default = TRUE)

See Chapter 13, Data Around Us on how to create similar contour maps on spatial data.

From Big to Small Data

[200]

Dependence of variables
Besides normality, relatively high correlation coefficients are desired when applying
dimension reduction methods. The reason is that, if there is no statistical relationship
between the variables, for example, PCA will return the exact same values without
much transformation.

To this end, let's see how the numerical variables of the hflights dataset are
correlated (the output, being a large matrix, is suppressed this time):

> hflights_numeric <- hflights[, which(sapply(hflights, is.numeric))]

> cor(hflights_numeric, use = "pairwise.complete.obs")

In the preceding example, we have created a new R object to hold only the numeric
columns of the original hflights data frame, leaving out five character vectors.
Then, we run cor with pair-wise deletion of missing values, which returns a matrix
with 16 columns and 16 rows:

> str(cor(hflights_numeric, use = "pairwise.complete.obs"))

 num [1:16, 1:16] NA NA NA NA NA NA NA NA NA NA ...

 - attr(*, "dimnames")=List of 2

 ..$: chr [1:16] "Year" "Month" "DayofMonth" "DayOfWeek" ...

 ..$: chr [1:16] "Year" "Month" "DayofMonth" "DayOfWeek" ...

The number of missing values in the resulting correlation matrix seems to be very
high. This is because Year was 2011 in all cases, thus resulting in a standard variation
of zero. It's wise to exclude Year along with the non-numeric variables from the
dataset—by not only filtering for numeric values, but also checking the variance:

> hflights_numeric <- hflights[,which(

+ sapply(hflights, function(x)

+ is.numeric(x) && var(x, na.rm = TRUE) != 0))]

Now the number of missing values is a lot lower:

> table(is.na(cor(hflights_numeric, use = "pairwise.complete.obs")))

FALSE TRUE

 209 16

Can you guess why we still have some missing values here despite the pair-wise
deletion of missing values? Well, running the preceding command results in a rather
informative warning, but we will get back to this question later:

Warning message:

Chapter 9

[201]

In cor(hflights_numeric, use = "pairwise.complete.obs") :

 the standard deviation is zero

Let's now proceed with analyzing the actual numbers in the 15x15 correlation matrix,
which would be way too large to print in this book. To this end, we did not show
the result of the original cor command shown previously, but instead, let's rather
visualize those 225 numbers with the graphical capabilities of the ellipse package:

> library(ellipse)

> plotcorr(cor(hflights_numeric, use = "pairwise.complete.obs"))

Now we see the values of the correlation matrix represented by ellipses, where:

• A perfect circle stands for the correlation coefficient of zero
• Ellipses with a smaller area reflect the relatively large distance of the

correlation coefficient from zero
• The tangent represents the negative/positive sign of the coefficient

From Big to Small Data

[202]

To help you with analyzing the preceding results, let's render a similar plot with a
few artificially generated numbers that are easier to interpret:

> plotcorr(cor(data.frame(

+ 1:10,

+ 1:10 + runif(10),

+ 1:10 + runif(10) * 5,

+ runif(10),

+ 10:1,

+ check.names = FALSE)))

Similar plots on the correlation matrix can be created with the corrgram package.

But let's get back to the hflights dataset! On the previous diagram, some narrow
ellipses are rendered for the time-related variables, which show a relatively high
correlation coefficient, and even the Month variable seems to be slightly associated
with the FlightNum function:

> cor(hflights$FlightNum, hflights$Month)

[1] 0.2057641

Chapter 9

[203]

On the other hand, the plot shows perfect circles in most cases, which stand for
a correlation coefficient around zero. This suggests that most variables are not
correlated at all, so computing the principal components of the original dataset
would not be very helpful due to the low proportion of common variance.

KMO and Barlett's test
We can verify this assumption on low communalities by a number of statistical tests;
for example, the SAS and SPSS folks tend to use KMO or Bartlett's test to see if the
data is suitable for PCA. Both algorithms are available in R as well via, for example,
via the psych package:

> library(psych)

> KMO(cor(hflights_numeric, use = "pairwise.complete.obs"))

Error in solve.default(r) :

 system is computationally singular: reciprocal condition number = 0

In addition: Warning message:

In cor(hflights_numeric, use = "pairwise.complete.obs") :

 the standard deviation is zero

matrix is not invertible, image not found

Kaiser-Meyer-Olkin factor adequacy

Call: KMO(r = cor(hflights_numeric, use = "pairwise.complete.obs"))

Overall MSA = NA

MSA for each item =

 Month DayofMonth DayOfWeek

 0.5 0.5 0.5

 DepTime ArrTime FlightNum

 0.5 NA 0.5

ActualElapsedTime AirTime ArrDelay

 NA NA NA

 DepDelay Distance TaxiIn

 0.5 0.5 NA

 TaxiOut Cancelled Diverted

 0.5 NA NA

From Big to Small Data

[204]

Unfortunately, the Overall MSA (Measure of Sampling Adequacy, representing the
average correlations between the variables) is not available in the preceding output
due to the previously identified missing values of the correlation matrix. Let's pick a
pair of variables where the correlation coefficient was NA for further analysis! Such a
pair can be easily identified from the previous plot; no circle or ellipse was drawn for
missing values, for example, for Cancelled and AirTime:

> cor(hflights_numeric[, c('Cancelled', 'AirTime')])

 Cancelled AirTime

Cancelled 1 NA

AirTime NA 1

This can be explained by the fact, that if a flight is cancelled, then the time spent in
the air does not vary much; furthermore, this data is not available:

> cancelled <- which(hflights_numeric$Cancelled == 1)

> table(hflights_numeric$AirTime[cancelled], exclude = NULL)

<NA>

2973

So we get missing values when calling cor due to these NA; similarly, we also get NA
when calling cor with pair-wise deletion, as only the non-cancelled flights remain in
the dataset, resulting in zero variance for the Cancelled variable:

> table(hflights_numeric$Cancelled)

 0 1

224523 2973

This suggests removing the Cancelled variable from the dataset before we run the
previously discussed assumption tests, as the information stored in that variable is
redundantly available in other columns of the dataset as well. Or, in other words, the
Cancelled column can be computed by a linear transformation of the other columns,
which can be left out from further analysis:

> hflights_numeric <- subset(hflights_numeric, select = -Cancelled)

And let's see if we still have any missing values in the correlation matrix:

> which(is.na(cor(hflights_numeric, use = "pairwise.complete.obs")),

+ arr.ind = TRUE)

 row col

Diverted 14 7

Diverted 14 8

Diverted 14 9

Chapter 9

[205]

ActualElapsedTime 7 14

AirTime 8 14

ArrDelay 9 14

It seems that the Diverted column is responsible for a similar situation, and the
other three variables were not available when the flight was diverted. After another
subset, we are now ready to call KMO on a full correlation matrix:

> hflights_numeric <- subset(hflights_numeric, select = -Diverted)

> KMO(cor(hflights_numeric[, -c(14)], use = "pairwise.complete.obs"))

Kaiser-Meyer-Olkin factor adequacy

Call: KMO(r = cor(hflights_numeric[, -c(14)], use = "pairwise.complete.
obs"))

Overall MSA = 0.36

MSA for each item =

 Month DayofMonth DayOfWeek

 0.42 0.37 0.35

 DepTime ArrTime FlightNum

 0.51 0.49 0.74

ActualElapsedTime AirTime ArrDelay

 0.40 0.40 0.39

 DepDelay Distance TaxiIn

 0.38 0.67 0.06

 TaxiOut

 0.06

The Overall MSA, or the so called Kaiser-Meyer-Olkin (KMO) index, is a number
between 0 and 1; this value suggests whether the partial correlations of the variables
are small enough to continue with data reduction methods. A general rating system
or rule of a thumb for KMO can be found in the following table, as suggested
by Kaiser:

Value Description
KMO < 0.5 Unacceptable
0.5 < KMO < 0.6 Miserable
0.6 < KMO < 0.7 Mediocre
0.7 < KMO < 0.8 Middling
0.8 < KMO < 0.9 Meritorious
KMO > 0.9 Marvelous

From Big to Small Data

[206]

The KMO index being below 0.5 is considered unacceptable, which basically means
that the partial correlation computed from the correlation matrix suggests that the
variables are not correlated enough for a meaningful dimension reduction or latent
variable model.

Although leaving out some variables with the lowest MSA would improve the
Overall MSA, and we could build some appropriate models in the following pages,
for instructional purposes we won't spend any more time on data transformation for
the time being, and we will use the mtcars dataset, which was introduced in Chapter
3, Filtering and Summarizing Data:

> KMO(mtcars)

Kaiser-Meyer-Olkin factor adequacy

Call: KMO(r = mtcars)

Overall MSA = 0.83

MSA for each item =

 mpg cyl disp hp drat wt qsec vs am gear carb

0.93 0.90 0.76 0.84 0.95 0.74 0.74 0.91 0.88 0.85 0.62

It seems that the mtcars database is a great choice for multivariate statistical analysis.
This can be also verified by the so-called Bartlett test, which suggests whether the
correlation matrix is similar to an identity matrix. Or, in other words, if there is a
statistical relationship between the variables. On the other hand, if the correlation
matrix has only zeros except for the diagonal, then the variables are independent
from each other; thus it would not make much sense to think of multivariate methods.
The psych package provides an easy-to-use function to compute Bartlett's test as well:

> cortest.bartlett(cor(mtcars))

$chisq

[1] 1454.985

$p.value

[1] 3.884209e-268

$df

[1] 55

The very low p-value suggests that we reject the null-hypothesis of the Bartlett
test. This means that the correlation matrix differs from the identity matrix, so the
correlation coeffiecients between the variables seem to be closer to 1 than 0. This is
in sync with the high KMO value.

Chapter 9

[207]

Before focusing on the actual statistical methods, please be advised that,
although the preceding assumptions make sense in most cases and should
be followed as a rule of a thumb, KMO and Bartlett's tests are not always
required. High communality is important for factor analysis and other
latent models, while for example PCA is a mathematical transformation
that will work with even low KMO values.

Principal Component Analysis
Finding the really important fields in databases with a huge number of variables
may prove to be a challenging task for the data scientist. This is where Principal
Component Analysis (PCA) comes into the picture: to find the core components
of data. It was invented more than 100 years ago by Karl Pearson, and it has been
widely used in diverse fields since then.

The objective of PCA is to interpret the data in a more meaningful structure with
the help of orthogonal transformations. This linear transformation is intended to
reveal the internal structure of the dataset with an arbitrarily designed new basis in
the vector space, which best explains the variance of the data. In plain English, this
simply means that we compute new variables from the original data, where these
new variables include the variance of the original variables in decreasing order.

This can be either done by eigendecomposition of the covariance, correlation matrix
(the so-called R-mode PCA), or singular value decomposition (the so-called
Q-mode PCA) of the dataset. Each method has great advantages, such as
computation performance, memory requirements, or simply avoiding the prior
standardization of the data before passing it to PCA when using a correlation matrix
in eigendecomposition.

Either way, PCA can successfully ship a lower-dimensional image of the data, where
the uncorrelated principal components are the linear combinations of the original
variables. And this informative overview can be a great help to the analyst when
identifying the underlying structure of the variables; thus the technique is very often
used for exploratory data analysis.

PCA results in the exact same number of extracted components as the original
variables. The first component includes most of the common variance, so it has
the highest importance in describing the original dataset, while the last component
often only includes some unique information from only one original variable.
Based on this, we would usually only keep the first few components of PCA for
further analysis, but we will also see some use cases where we will concentrate
on the extracted unique variance.

From Big to Small Data

[208]

PCA algorithms
R provides a variety of functions to run PCA. Although it's possible to compute the
components manually by eigen or svd as R-mode or Q-mode PCA, we will focus
on the higher level functions for the sake of simplicity. Relying on my stats-teacher
background, I think that sometimes it's more efficient to concentrate on how to run
an analysis and interpreting the results rather than spending way too much time
with the linear algebra background—especially with given time/page limits.

R-mode PCA can be conducted by princomp or principal from the psych package,
while the more preferred Q-mode PCA can be called by prcomp. Now let's focus on
the latter and see what the components of mtcars look like:

> prcomp(mtcars, scale = TRUE)

Standard deviations:

 [1] 2.57068 1.62803 0.79196 0.51923 0.47271 0.46000 0.36778 0.35057

 [9] 0.27757 0.22811 0.14847

Rotation:

 PC1 PC2 PC3 PC4 PC5 PC6

mpg -0.36253 0.016124 -0.225744 -0.0225403 0.102845 -0.108797

cyl 0.37392 0.043744 -0.175311 -0.0025918 0.058484 0.168554

disp 0.36819 -0.049324 -0.061484 0.2566079 0.393995 -0.336165

hp 0.33006 0.248784 0.140015 -0.0676762 0.540047 0.071436

drat -0.29415 0.274694 0.161189 0.8548287 0.077327 0.244497

wt 0.34610 -0.143038 0.341819 0.2458993 -0.075029 -0.464940

qsec -0.20046 -0.463375 0.403169 0.0680765 -0.164666 -0.330480

vs -0.30651 -0.231647 0.428815 -0.2148486 0.599540 0.194017

am -0.23494 0.429418 -0.205767 -0.0304629 0.089781 -0.570817

gear -0.20692 0.462349 0.289780 -0.2646905 0.048330 -0.243563

carb 0.21402 0.413571 0.528545 -0.1267892 -0.361319 0.183522

 PC7 PC8 PC9 PC10 PC11

mpg 0.367724 -0.7540914 0.235702 0.139285 -0.1248956

Chapter 9

[209]

cyl 0.057278 -0.2308249 0.054035 -0.846419 -0.1406954

disp 0.214303 0.0011421 0.198428 0.049380 0.6606065

hp -0.001496 -0.2223584 -0.575830 0.247824 -0.2564921

drat 0.021120 0.0321935 -0.046901 -0.101494 -0.0395302

wt -0.020668 -0.0085719 0.359498 0.094394 -0.5674487

qsec 0.050011 -0.2318400 -0.528377 -0.270673 0.1813618

vs -0.265781 0.0259351 0.358583 -0.159039 0.0084146

am -0.587305 -0.0597470 -0.047404 -0.177785 0.0298235

gear 0.605098 0.3361502 -0.001735 -0.213825 -0.0535071

carb -0.174603 -0.3956291 0.170641 0.072260 0.3195947

Please note that we have called prcomp with scale set to TRUE, which is
FALSE by default due to being backward-compatible with the S language.
But in general, scaling is highly recommended. Using the scaling option
is equivalent to running PCA on a dataset after scaling it previously, such
as: prcomp(scale(mtcars)), which results in data with unit variance.

First, prcomp returned the standard deviations of the principal components, which
shows how much information was preserved by the 11 components. The standard
deviation of the first component is a lot larger than any other subsequent value,
which explains more than 60 percent of the variance:

> summary(prcomp(mtcars, scale = TRUE))

Importance of components:

 PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.571 1.628 0.792 0.5192 0.4727 0.4600 0.3678

Proportion of Variance 0.601 0.241 0.057 0.0245 0.0203 0.0192 0.0123

Cumulative Proportion 0.601 0.842 0.899 0.9232 0.9436 0.9628 0.9751

 PC8 PC9 PC10 PC11

Standard deviation 0.3506 0.278 0.22811 0.148

Proportion of Variance 0.0112 0.007 0.00473 0.002

Cumulative Proportion 0.9863 0.993 0.99800 1.000

From Big to Small Data

[210]

Besides the first component, only the second one has a higher standard deviation
than 1, which means that only the first two components include at least as much
information as the original variables did. Or, in other words: only the first two
variables have a higher eigenvalue than one. The eigenvalue can be computed by
the square of the standard deviation of the principal components, summing up to
the number of original variables as expected:

> sum(prcomp(scale(mtcars))$sdev^2)

[1] 11

Determining the number of components
PCA algorithms always compute the same number of principal components as
the number of variables in the original dataset. The importance of the component
decreases from the first one to the last one.

As a rule of a thumb, we can simply keep all those components with higher standard
deviation than 1. This means that we keep those components, which explains at least
as much variance as the original variables do:

> prcomp(scale(mtcars))$sdev^2

 [1] 6.608400 2.650468 0.627197 0.269597 0.223451 0.211596 0.135262

 [8] 0.122901 0.077047 0.052035 0.022044

So the preceding summary suggests keeping only two components out of the 11,
which explains almost 85 percent of the variance:

> (6.6 + 2.65) / 11

[1] 0.8409091

Chapter 9

[211]

An alternative and great visualization tool to help us determine the optimal number
of component is scree plot. Fortunately, there are at least two great functions in the
psych package we can use here: the scree and the VSS.scree functions:

> VSS.scree(cor(mtcars))

From Big to Small Data

[212]

> scree(cor(mtcars))

The only difference between the preceding two plots is that scree also shows the
eigenvalues of a factor analysis besides PCA. Read more about this in the next
section of this chapter.

As can be seen, VSS.scree provides a visual overview on the eigenvalues of the
principal components, and it also highlights the critical value at 1 by a horizontal
line. This is usually referred to as the Kaiser criterion.

Besides this rule of a thumb, as discussed previously one can also rely on the
so-called Elbow-rule, which simply suggests that the line-plot represents an arm
and the optimal number of components is the point where this arm's elbow can be
found. So we have to look for the point from where the curve becomes less steep.
This sharp break is probably at 3 in this case instead of 2, as we have found with
the Kaiser criterion.

Chapter 9

[213]

And besides Cattell's original scree test, we can also compare the previously
described scree of the components with a bit of a randomized data to identify
the optimal number of components to keep:

> fa.parallel(mtcars)

Parallel analysis suggests that the number of factors = 2

and the number of components = 2

Now we have verified the optimal number of principal components to keep for
further analysis with a variety of statistical tools, and we can work with only two
variables instead of 11 after all, which is great! But what do these artificially created
variables actually mean?

From Big to Small Data

[214]

Interpreting components
The only problem with reducing the dimension of our data is that it can be very
frustrating to find out what our newly created, highly compressed, and transformed
data actually is. Now we have PC1 and PC2 for our 32 cars:

> pc <- prcomp(mtcars, scale = TRUE)

> head(pc$x[, 1:2])

 PC1 PC2

Mazda RX4 -0.646863 1.70811

Mazda RX4 Wag -0.619483 1.52562

Datsun 710 -2.735624 -0.14415

Hornet 4 Drive -0.306861 -2.32580

Hornet Sportabout 1.943393 -0.74252

Valiant -0.055253 -2.74212

These values were computed by multiplying the original dataset with the identified
weights, so-called loadings (rotation) or the component matrix. This is a standard
linear transformation:

> head(scale(mtcars) %*% pc$rotation[, 1:2])

 PC1 PC2

Mazda RX4 -0.646863 1.70811

Mazda RX4 Wag -0.619483 1.52562

Datsun 710 -2.735624 -0.14415

Hornet 4 Drive -0.306861 -2.32580

Hornet Sportabout 1.943393 -0.74252

Valiant -0.055253 -2.74212

Both variables are scaled with the mean being zero and the standard deviation as
described previously:

> summary(pc$x[, 1:2])

 PC1 PC2

 Min. :-4.187 Min. :-2.742

 1st Qu.:-2.284 1st Qu.:-0.826

 Median :-0.181 Median :-0.305

 Mean : 0.000 Mean : 0.000

 3rd Qu.: 2.166 3rd Qu.: 0.672

 Max. : 3.892 Max. : 4.311

Chapter 9

[215]

> apply(pc$x[, 1:2], 2, sd)

 PC1 PC2

2.5707 1.6280

> pc$sdev[1:2]

[1] 2.5707 1.6280

All scores computed by PCA are scaled, because it always returns the values
transformed to a new coordinate system with an orthogonal basis, which means
that the components are not correlated and scaled:

> round(cor(pc$x))

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

PC1 1 0 0 0 0 0 0 0 0 0 0

PC2 0 1 0 0 0 0 0 0 0 0 0

PC3 0 0 1 0 0 0 0 0 0 0 0

PC4 0 0 0 1 0 0 0 0 0 0 0

PC5 0 0 0 0 1 0 0 0 0 0 0

PC6 0 0 0 0 0 1 0 0 0 0 0

PC7 0 0 0 0 0 0 1 0 0 0 0

PC8 0 0 0 0 0 0 0 1 0 0 0

PC9 0 0 0 0 0 0 0 0 1 0 0

PC10 0 0 0 0 0 0 0 0 0 1 0

PC11 0 0 0 0 0 0 0 0 0 0 1

To see what the principal components actually mean, it's really helpful to check the
loadings matrix, as we have seen before:

> pc$rotation[, 1:2]

 PC1 PC2

mpg -0.36253 0.016124

cyl 0.37392 0.043744

disp 0.36819 -0.049324

hp 0.33006 0.248784

drat -0.29415 0.274694

wt 0.34610 -0.143038

qsec -0.20046 -0.463375

vs -0.30651 -0.231647

am -0.23494 0.429418

gear -0.20692 0.462349

carb 0.21402 0.413571

From Big to Small Data

[216]

Probably this analytical table might be more meaningful in some visual way, for
example as a biplot, which shows not only the original variables but also the
observations (black labels) on the same plot with the new coordinate system based
on the principal components (red labels):

> biplot(pc, cex = c(0.8, 1.2))

> abline(h = 0, v = 0, lty = 'dashed')

We can conclude that PC1 includes information mostly from the number of cylinders
(cyl), displacement (disp), weight (wt), and gas consumption (mpg), although the
latter looks likely to decrease the value of PC1. This was found by checking the highest
and lowest values on the PC1 axis. Similarly, we find that PC2 is constructed by speed-
up (qsec), number of gears (gear), carburetors (carb), and the transmission type (am).

Chapter 9

[217]

To verify this, we can easily compute the correlation coefficient between the original
variables and the principal components:

> cor(mtcars, pc$x[, 1:2])

 PC1 PC2

mpg -0.93195 0.026251

cyl 0.96122 0.071216

disp 0.94649 -0.080301

hp 0.84847 0.405027

drat -0.75617 0.447209

wt 0.88972 -0.232870

qsec -0.51531 -0.754386

vs -0.78794 -0.377127

am -0.60396 0.699103

gear -0.53192 0.752715

carb 0.55017 0.673304

Does this make sense? How would you name PC1 and PC2? The number of cylinders
and displacement seem like engine parameters, while the weight is probably rather
influenced by the body of the car. Gas consumption should be affected by both specs.
The other component's variables deal with suspension, but we also have speed there,
not to mention the bunch of mediocre correlation coefficients in the preceding matrix.
Now what?

Rotation methods
Based on the fact that rotation methods are done in a subspace, rotation is always
suboptimal compared to the previously discussed PCA. This means that the new
axes after rotation will explain less variance than the original components.

On the other hand, rotation simplifies the structure of the components and thus
makes it a lot easier to understand and interpret the results; thus, these methods
are often used in practice.

Rotation methods can be (and are) usually applied to both PCA and
FA (more on this later). Orthogonal methods are preferred.

There are two main types of rotation:

• Orthogonal, where the new axes are orthogonal to each other. There is no
correlation between the components/factors.

From Big to Small Data

[218]

• Oblique, where the new axes are not necessarily orthogonal to each other;
thus there might be some correlation between the variables.

Varimax rotation is one of the most popular rotation methods. It was developed by
Kaiser in 1958 and has been popular ever since. It is often used because the method
maximizes the variance of the loadings matrix, resulting in more interpretable scores:

> varimax(pc$rotation[, 1:2])

$loadings

 PC1 PC2

mpg -0.286 -0.223

cyl 0.256 0.276

disp 0.312 0.201

hp 0.403

drat -0.402

wt 0.356 0.116

qsec 0.148 -0.483

vs -0.375

am -0.457 0.174

gear -0.458 0.217

carb -0.106 0.454

 PC1 PC2

SS loadings 1.000 1.000

Proportion Var 0.091 0.091

Cumulative Var 0.091 0.182

$rotmat

 [,1] [,2]

[1,] 0.76067 0.64914

[2,] -0.64914 0.76067

Now the first component seems to be mostly affected (negatively dominated) by
the transmission type, number of gears, and rear axle ratio, while the second one
is affected by speed-up, horsepower, and the number of carburetors. This suggests
naming PC2 as power, while PC1 instead refers to transmission. Let's see those 32
automobiles in this new coordinate system:

> pcv <- varimax(pc$rotation[, 1:2])$loadings

Chapter 9

[219]

> plot(scale(mtcars) %*% pcv, type = 'n',

+ xlab = 'Transmission', ylab = 'Power')

> text(scale(mtcars) %*% pcv, labels = rownames(mtcars))

Based on the preceding plot, every data scientist should pick a car from the upper
left quarter to go with the top rated models, right? Those cars have great power
based on the y axis and good transmission systems, as shown on the x axis—do not
forget about the transmission being negatively correlated with the original variables.
But let's see some other rotation methods and the advantages of those as well!

Quartimax rotation is an orthogonal method, as well, and minimizes the number of
components needed to explain each variable. This often results in a general component
and additional smaller components. When a compromise between Varimax and
Quartimax rotation methods is needed, you might opt for Equimax rotation.

From Big to Small Data

[220]

Oblique rotation methods include Oblimin and Promax, which are not available
in the base stats or even the highly used psych package. Instead, we can load the
GPArotation package, which provides a wide range of rotation methods for PCA
and FA as well. For demonstration purposes, let's see how Promax rotation works,
which is a lot faster compared to, for example, Oblimin:

> library(GPArotation)

> promax(pc$rotation[, 1:2])

$loadings

Loadings:

 PC1 PC2

mpg -0.252 -0.199

cyl 0.211 0.258

disp 0.282 0.174

hp 0.408

drat -0.416

wt 0.344

qsec 0.243 -0.517

vs -0.380

am -0.502 0.232

gear -0.510 0.276

carb -0.194 0.482

 PC1 PC2

SS loadings 1.088 1.088

Proportion Var 0.099 0.099

Cumulative Var 0.099 0.198

$rotmat

 [,1] [,2]

[1,] 0.65862 0.58828

[2,] -0.80871 0.86123

> cor(promax(pc$rotation[, 1:2])$loadings)

 PC1 PC2

PC1 1.00000 -0.23999

PC2 -0.23999 1.00000

Chapter 9

[221]

The result of the last command supports the view that oblique rotation methods
generate scores that might be correlated, unlike when running an orthogonal rotation.

Outlier-detection with PCA
PCA can be used for a variety of goals besides exploratory data analysis. For
example, we can use PCA to generate eigenfaces, compress images, classify
observations, or to detect outliers in a multidimensional space via image filtering.
Now, we will construct a simplified model discussed in a related research post
published on R-bloggers in 2012: http://www.r-bloggers.com/finding-a-pin-
in-a-haystack-pca-image-filtering.

The challenge described in the post was to detect a foreign metal object in the sand
photographed by the Curiosity Rover on the Mars. The image can be found at the
official NASA website at http://www.nasa.gov/images/content/694811main_
pia16225-43_full.jpg, for which I've created a shortened URL for future use:
http://bit.ly/nasa-img.

In the following image, you can see a strange metal object highlighted in the sand in
a black circle, just to make sure you know what we are looking for. The image found
at the preceding URL does not have this highlight:

http://www.r-bloggers.com/finding-a-pin-in-a-haystack-pca-image-filtering
http://www.r-bloggers.com/finding-a-pin-in-a-haystack-pca-image-filtering
http://www.nasa.gov/images/content/694811main_pia16225-43_full.jpg
http://www.nasa.gov/images/content/694811main_pia16225-43_full.jpg
http://bit.ly/nasa-img

From Big to Small Data

[222]

And now let's use some statistical methods to identify that object without (much)
human intervention! First, we need to download the image from the Internet and
load it into R. The jpeg package will be really helpful here:

> library(jpeg)

> t <- tempfile()

> download.file('http://bit.ly/nasa-img', t)

trying URL 'http://bit.ly/nasa-img'

Content type 'image/jpeg' length 853981 bytes (833 Kb)

opened URL

==

downloaded 833 Kb

> img <- readJPEG(t)

> str(img)

 num [1:1009, 1:1345, 1:3] 0.431 0.42 0.463 0.486 0.49 ...

The readJPEG function returns the RGB values of every pixel in the picture, resulting
in a three dimensional array where the first dimension is the row, the second is the
column, and the third dimension includes the three color values.

RGB is an additive color model that can reproduce a wide variety of
colors by mixing red, green, and blue by given intensities and optional
transparency. This color model is highly used in computer science.

As PCA requires a matrix as an input, we have to convert this 3-dimensional array to
a 2-dimensional dataset. To this end, let's not bother with the order of pixels for the
time being, as we can reconstruct that later, but let's simply list the RGB values of all
pixels, one after the other:

> h <- dim(img)[1]

> w <- dim(img)[2]

> m <- matrix(img, h*w)

> str(m)

 num [1:1357105, 1:3] 0.431 0.42 0.463 0.486 0.49 ...

In a nutshell, we saved the original height of the image (in pixels) in variable h, saved
the width in w, and then converted the 3D array to a matrix with 1,357,105 rows.
And, after four lines of data loading and three lines of data transformation, we can
call the actual, rather simplified statistical method at last:

> pca <- prcomp(m)

Chapter 9

[223]

As we've seen before, data scientists do indeed deal with data preparation most of
the time, while the actual data analysis can be done easily, right?

The extracted components seems to perform pretty well; the first component explains
more than 96 percent of the variance:

> summary(pca)

Importance of components:

 PC1 PC2 PC3

Standard deviation 0.277 0.0518 0.00765

Proportion of Variance 0.965 0.0338 0.00074

Cumulative Proportion 0.965 0.9993 1.00000

Previously, interpreting RGB values was pretty straightforward, but what do these
components mean?

> pca$rotation

 PC1 PC2 PC3

[1,] -0.62188 0.71514 0.31911

[2,] -0.57409 -0.13919 -0.80687

[3,] -0.53261 -0.68498 0.49712

It seems that the first component is rather mixed with all three colors, the second
component misses the green color, while the third component includes almost only
green. Why not visualize that instead of trying to imagine how these artificial values
look? To this end, let's extract the color intensities from the preceding component/
loading matrix by the following quick helper function:

> extractColors <- function(x)

+ rgb(x[1], x[2], x[3])

Calling this on the absolute values of the component matrix results in the hex-color
codes that describe the principal components:

> (colors <- apply(abs(pca$rotation), 2, extractColors))

 PC1 PC2 PC3

"#9F9288" "#B623AF" "#51CE7F"

From Big to Small Data

[224]

These color codes can be easily rendered—for example, on a pie chart, where the area
of the pies represents the explained variance of the principal components:

> pie(pca$sdev, col = colors, labels = colors)

Now we no longer have red, green, or blue intensities or actual colors in the
computed scores stored in pca$x; rather, the principal components describe each
pixel with the visualized colors shown previously. And, as previously discussed, the
third component stands for a greenish color, the second one misses green (resulting
in a purple color), while the first component includes a rather high value from all
RGB colors resulting in a tawny color, which is not surprising at all knowing that the
photo was taken in the desert of Mars.

Now we can render the original image with monochrome colors to show the
intensity of the principal components. The following few lines of code produce two
modified photos of the Curiosity Rover and its environment based on PC1 and PC2:

> par(mfrow = c(1, 2), mar = rep(0, 4))

> image(matrix(pca$x[, 1], h), col = gray.colors(100))

> image(matrix(pca$x[, 2], h), col = gray.colors(100), yaxt = 'n')

Chapter 9

[225]

Although the image was rotated by 90 degrees in some of the linear transformations,
it's pretty clear that the first image was not really helpful in finding the foreign metal
object in the sand. As a matter of fact, this image represents the noise in the desert
area, as PC1 included sand-like color intensities, so this component is useful for
describing the variety of tawny colors.

On the other hand, the second component highlights the metal object in the sand
very well! All surrounding pixels are dim, due to the low ratio of purple color in
normal sand, while the anomalous object is rather dark.

I really like this piece of R code and the simplified example: although they're still
basic enough to follow, they also demonstrate the power of R and how standard data
analytic methods can be used to harvest information from raw data.

Factor analysis
Although the literature on confirmatory factor analysis (FA) is really impressive
and is being highly used in, for example, social sciences, we will only focus on
exploratory FA, where our goal is to identify some unknown, not observed variables
based on other empirical data.

The latent variable model of FA was first introduced in 1904 by Spearman for one
factor, and then Thurstone generalized the model for more than one factor in 1947.
This statistical model assumes that the manifest variables available in the dataset are
the results of latent variables that were not observed but can be tracked based on the
observed data.

From Big to Small Data

[226]

FA can deal with continuous (numeric) variables, and the model states that each
observed variable is the sum of some unknown, latent factors.

Please note the that normality, KMO, and Bartlett's tests are a lot more
important to check before doing FA compared to PCA; the latter is a
rather descriptive method while, in FA, we are actually building a model.

The most used exploratory FA method is maximum-likelihood FA, which is also
available in the factanal function in the already installed stats package. Other
factoring methods are made available by the fa functions in the psych package—for
example, ordinary least squares (OLS), weighted least squares (WLS), generalized
weighted least squares (GLS), or principal factor solution. These functions take raw
data or the covariance matrix as input.

For demonstration purposes, let's see how the default factoring method performs
on a subset of mtcars. Let's extract all performance-related variables except for
displacement, which is probably accountable for all the other relevant metrics:

> m <- subset(mtcars, select = c(mpg, cyl, hp, carb))

Now simply call and save the results of fa on the preceding data.frame:

> (f <- fa(m))

Factor Analysis using method = minres

Call: fa(r = m)

Standardized loadings (pattern matrix) based upon correlation matrix

 MR1 h2 u2 com

mpg -0.87 0.77 0.23 1

cyl 0.91 0.83 0.17 1

hp 0.92 0.85 0.15 1

carb 0.69 0.48 0.52 1

 MR1

SS loadings 2.93

Proportion Var 0.73

Mean item complexity = 1

Chapter 9

[227]

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 6

and the objective function was 3.44 with Chi Square of 99.21

The degrees of freedom for the model are 2

and the objective function was 0.42

The root mean square of the residuals (RMSR) is 0.07

The df corrected root mean square of the residuals is 0.12

The harmonic number of observations is 32

with the empirical chi square 1.92 with prob < 0.38

The total number of observations was 32

with MLE Chi Square = 11.78 with prob < 0.0028

Tucker Lewis Index of factoring reliability = 0.677

RMSEA index = 0.42

and the 90 % confidence intervals are 0.196 0.619

BIC = 4.84

Fit based upon off diagonal values = 0.99

Measures of factor score adequacy

 MR1

Correlation of scores with factors 0.97

Multiple R square of scores with factors 0.94

Minimum correlation of possible factor scores 0.87

Well, this is a rather impressive amount of information with a bunch of details!
MR1 stands for the first extracted factor named after the default factoring method
(Minimal Residuals or OLS). Since there is only one factor included in the model,
rotation of factors is not an option. There is a test or hypothesis to check whether
the numbers of factors are sufficient, and some coefficients represent a really great
model fit.

From Big to Small Data

[228]

The results can be summarized on the following plot:

> fa.diagram(f)

Here we see the high correlation coefficients between the latent and the observed
variables, and the direction of the arrows suggests that the factor has an effect on the
values found in our empirical dataset. Guess the relationship between this factor and
the displacement of the car engines!

> cor(f$scores, mtcars$disp)

0.87595

Well, this seems like a good match.

Chapter 9

[229]

Principal Component Analysis versus
Factor Analysis
Unfortunately, principal components are often confused with factors, and the
two terms and related methods are sometimes used as synonyms, although the
mathematical background and goals of the two methods are really different.

PCA is used to reduce the number of variables by creating principal components
that then can be used in further projects instead of the original variables. This means
that we try to extract the essence of the dataset in the means of artificially created
variables, which best describe the variance of the data:

Principal component

Observed variable #1 Observed variable #2

Observed variable #3 Observed variable #4

FA is the other way around, as it tries to identify unknown, latent variables to
explain the original data. In plain English, we use the manifest variables from our
empirical dataset to guess the internal structure of the data:

Latent variable, factor

Observed variable #1 Observed variable #2

Observed variable #3 Observed variable #4

From Big to Small Data

[230]

Multidimensional Scaling
Multidimensional Scaling (MDS) is a multivariate technique that was first used
in geography. The main goal of MDS is to plot multivariate data points in two
dimensions, thus revealing the structure of the dataset by visualizing the relative
distance of the observations. MDA is used in diverse fields such as attitude study
in psychology, sociology, and market research.

While the MASS package provides non-metric MDS via the isoMDS function, we will
concentrate on the classical metric MDS, which is available in the cmdscale function
offered by the stats package. Both types of MDS take a distance matrix as the main
argument and can be created from any numeric tabular data by the dist function.

But before we explore more complex examples, let's see what MDS can offer us
while working with an already existing distance matrix, such as the built-in
eurodist dataset:

> as.matrix(eurodist)[1:5, 1:5]

 Athens Barcelona Brussels Calais Cherbourg

Athens 0 3313 2963 3175 3339

Barcelona 3313 0 1318 1326 1294

Brussels 2963 1318 0 204 583

Calais 3175 1326 204 0 460

Cherbourg 3339 1294 583 460 0

The preceding values represents the travel distance between 21 European cities in
kilometers, although only the first 5-5 values were shown. Running classical MDS is
fairly easy:

> (mds <- cmdscale(eurodist))

 [,1] [,2]

Athens 2290.2747 1798.803

Barcelona -825.3828 546.811

Brussels 59.1833 -367.081

Calais -82.8460 -429.915

Cherbourg -352.4994 -290.908

Cologne 293.6896 -405.312

Copenhagen 681.9315 -1108.645

Geneva -9.4234 240.406

Gibraltar -2048.4491 642.459

Hamburg 561.1090 -773.369

Hook of Holland 164.9218 -549.367

Lisbon -1935.0408 49.125

Chapter 9

[231]

Lyons -226.4232 187.088

Madrid -1423.3537 305.875

Marseilles -299.4987 388.807

Milan 260.8780 416.674

Munich 587.6757 81.182

Paris -156.8363 -211.139

Rome 709.4133 1109.367

Stockholm 839.4459 -1836.791

Vienna 911.2305 205.930

These scores are very similar to two principal components, such as running
prcomp(eurodist)$x[, 1:2]. As a matter of fact, PCA can be considered as the
most basic MDS solution.

Anyway, we have just transformed the 21-dimensional space into 2 dimensions, which
can be plotted very easily (unlike the previous matrix with 21 rows and 21 columns):

> plot(mds)

From Big to Small Data

[232]

Does this ring a bell? If not, please feel free to see the following image, where the
following two lines of code also show the city names instead of the anonymous points:

> plot(mds, type = 'n')

> text(mds[, 1], mds[, 2], labels(eurodist))

Although the y axis is flipped, which you can fix by multiplying the second argument
of text by -1, we have just rendered a European map of cities from the distance
matrix—without any further geographical data. I find this rather impressive.

Please find more data visualization tricks and methods in Chapter 13, Data Around Us.

Chapter 9

[233]

Now let's see how to apply MDS on non-geographic data that was not prepared with
a view to its being a distance matrix. Let's get back to the mtcars dataset:

> mds <- cmdscale(dist(mtcars))

> plot(mds, type = 'n')

> text(mds[, 1], mds[, 2], rownames(mds))

From Big to Small Data

[234]

The plot shows the 32 cars of the original dataset scattered in a two-dimensional
space. The distance between the elements was computed by MDS, which took
into account all the 11 original variables, and it's very easy to identify the similar
and very different car types. We will cover these topics in more details in the next
chapter, Chapter 10, Classification and Clustering.

Summary
In this chapter, we covered a number of ways to deal with multivariate data to
reduce the number of available dimensions in the means of artificially computed
continuous variables and to identify underlying, latent, and similarly numeric
variables. On the other hand, sometimes it's rather difficult to describe reality with
numbers and we should rather think in categories.

The next chapter will introduce new methods to define data types (clusters) and will
also demonstrate how to classify elements with the help of available training data.

[235]

Classification and Clustering
In the previous chapter, we concentrated on how to compress information found in
a number of continuous variables into a smaller set of numbers, but these statistical
methods are somewhat limited when we are dealing with categorized data, for
example when analyzing surveys.

Although some methods try to convert discrete variables into numeric ones, such as
by using a number of dummy or indicator variables, in most cases it's simply better
to think about our research design goals instead of trying to forcibly use previously
learned methods in the analysis.

We can replace a categorical variable with a number of dummy variables
by creating a new variable for each label of the original discrete variable,
and then assign 1 to the related column and 0 to all the others. Such
values can be used as numeric variables in statistical analysis, especially
with regression models.

When we analyze a sample and target population via categorical variables, usually
we are not interested in individual cases, but instead in similar elements and groups.
Similar elements can be defined as rows in a dataset with similar values in the columns.

In this chapter, we will discuss different supervised and unsupervised ways to identify
similar cases in a dataset, such as:

• Hierarchical clustering
• K-means clustering
• Some machine learning algorithms
• Latent class model
• Discriminant analysis
• Logistic regression

Classification and Clustering

[236]

Cluster analysis
Clustering is an unsupervised data analysis method that is used in diverse fields,
such as pattern recognition, social sciences, and pharmacy. The aim of cluster
analysis is to make homogeneous subgroups called clusters, where the objects
in the same cluster are similar, and the clusters differ from each other.

Hierarchical clustering
Cluster analysis is one of the most well known and popular pattern recognition
methods; thus, there are many clustering models and algorithms analyzing the
distribution, density, possible center points, and so on in the dataset. In this section
we are going to examine some hierarchical clustering methods.

Hierarchical clustering can be either agglomerative or divisive. In agglomerative
methods every case starts out as an individual cluster, then the closest clusters are
merged together in an iterative manner, until finally they merge into one single
cluster, which includes all elements of the original dataset. The biggest problem
with this approach is that distances between clusters have to be recalculated at each
iteration, which makes it extremely slow on large data. I'd rather not suggest trying
to run the following commands on the hflights dataset.

Divisive methods on the other hand take a top-down approach. They start from a
single cluster, which is then iteratively divided into smaller groups until they are
all singletons.

The stats package contains the hclust function for hierarchical clustering that
takes a distance matrix as an input. To see how it works, let's use the mtcars dataset
that we already analyzed in Chapter 3, Filtering and Summarizing Data and Chapter 9,
From Big to Smaller Data. The dist function is also familiar from the latter chapter:

> d <- dist(mtcars)

> h <- hclust(d)

> h

Call:

hclust(d = d)

Cluster method : complete

Distance : euclidean

Number of objects: 32

Chapter 10

[237]

Well, this is a way too brief output and only shows that our distance matrix included
32 elements and the clustering method. A visual representation of the results will be
a lot more useful for such a small dataset:

> plot(h)

By plotting this hclust object, we obtained a dendrogram, which shows how the
clusters are formed. It can be useful for determining the number of clusters, although
in datasets with numerous cases it becomes difficult to interpret. A horizontal line
can be drawn to any given height on the y axis so that the n number of intersections
with the line provides a n-cluster solution.

Classification and Clustering

[238]

R can provide very convenient ways of visualizing the clusters on the dendrogram.
In the following plot, the red boxes show the cluster membership of a three-cluster
solution on top of the previous plot:

> plot(h)

> rect.hclust(h, k=3, border = "red")

Although this graph looks nice and it is extremely useful to have similar elements
grouped together, for bigger datasets, it becomes hard to see through. Instead, we
might be rather interested in the actual cluster membership represented in a vector:

> (cn <- cutree(h, k = 3))

 Mazda RX4 Mazda RX4 Wag Datsun 710

 1 1 1

 Hornet 4 Drive Hornet Sportabout Valiant

 2 3 2

 Duster 360 Merc 240D Merc 230

 3 1 1

 Merc 280 Merc 280C Merc 450SE

 1 1 2

 Merc 450SL Merc 450SLC Cadillac Fleetwood

Chapter 10

[239]

 2 2 3

Lincoln Continental Chrysler Imperial Fiat 128

 3 3 1

 Honda Civic Toyota Corolla Toyota Corona

 1 1 1

 Dodge Challenger AMC Javelin Camaro Z28

 2 2 3

 Pontiac Firebird Fiat X1-9 Porsche 914-2

 3 1 1

 Lotus Europa Ford Pantera L Ferrari Dino

 1 3 1

 Maserati Bora Volvo 142E

 3 1

And the number of elements in the resulting clusters as a frequency table:

> table(cn)

 1 2 3

16 7 9

It seems that Cluster 1, the third cluster on the preceding plot, has the most elements.
Can you guess how this group differs from the other two clusters? Well, those readers
who are familiar with car names might be able to guess the answer, but let's see what
the numbers actually show:

Please note that we use the round function in the following
examples to suppress the number of decimal places to 1 or 4
in the code output to fit the page width.

> round(aggregate(mtcars, FUN = mean, by = list(cn)), 1)

 Group.1 mpg cyl disp hp drat wt qsec vs am gear carb

1 1 24.5 4.6 122.3 96.9 4.0 2.5 18.5 0.8 0.7 4.1 2.4

2 2 17.0 7.4 276.1 150.7 3.0 3.6 18.1 0.3 0.0 3.0 2.1

3 3 14.6 8.0 388.2 232.1 3.3 4.2 16.4 0.0 0.2 3.4 4.0

There's a really spectacular difference in the average performance and gas consumption
between the clusters! What about the standard deviation inside the groups?

> round(aggregate(mtcars, FUN = sd, by = list(cn)), 1)

 Group.1 mpg cyl disp hp drat wt qsec vs am gear carb

1 1 5.0 1 34.6 31.0 0.3 0.6 1.8 0.4 0.5 0.5 1.5

Classification and Clustering

[240]

2 2 2.2 1 30.2 32.5 0.2 0.3 1.2 0.5 0.0 0.0 0.9

3 3 3.1 0 58.1 49.4 0.4 0.9 1.3 0.0 0.4 0.9 1.7

These values are pretty low compared to the standard deviations in the
original dataset:

> round(sapply(mtcars, sd), 1)

 mpg cyl disp hp drat wt qsec vs am gear carb

 6.0 1.8 123.9 68.6 0.5 1.0 1.8 0.5 0.5 0.7 1.6

And the same applies when compared to the standard deviation between the
groups as well:

> round(apply(

+ aggregate(mtcars, FUN = mean, by = list(cn)),

+ 2, sd), 1)

Group.1 mpg cyl disp hp drat wt qsec

 1.0 5.1 1.8 133.5 68.1 0.5 0.8 1.1

 vs am gear carb

 0.4 0.4 0.6 1.0

This means that we achieved our original goal to identify similar elements of our
data and organize those in groups that differ from each other. But why did we split
the original data into exactly three artificially defined groups? Why not two, four,
or even more?

Determining the ideal number of clusters
The NbClust package offers a very convenient way to do some exploratory data
analysis on our data before running the actual cluster analysis. The main function
of the package can compute 30 different indices, all designed to determine the ideal
number of groups. These include:

• Single link
• Average
• Complete link
• McQuitty
• Centroid (cluster center)
• Median
• K-means
• Ward

Chapter 10

[241]

After loading the package, let's start with a visual method representing the
possible number of clusters in our data—on a knee plot, which might be familiar
from Chapter 9, From Big to Smaller Data, where you can also find some more
information about the following elbow-rule:

> library(NbClust)

> NbClust(mtcars, method = 'complete', index = 'dindex')

In the preceding plots, we traditionally look for the elbow, but the second differences
plot on the right might be more straightforward for most readers. There we are
interested in where the most significant peak can be found, which suggests that
choosing three groups would be ideal when clustering the mtcars dataset.

Unfortunately, running all NbClust methods fails on such a small dataset. Thus, for
demonstrational purposes, we are now running only a few standard methods and
filtering the results for the suggested number of clusters via the related list element:

> NbClust(mtcars, method = 'complete', index = 'hartigan')$Best.nc

All 32 observations were used.

Number_clusters Value_Index

 3.0000 34.1696

Classification and Clustering

[242]

> NbClust(mtcars, method = 'complete', index = 'kl')$Best.nc

All 32 observations were used.

Number_clusters Value_Index

 3.0000 6.8235

Both the Hartigan and Krzanowski-Lai indexes suggest sticking to three clusters.
Let's view the iris dataset as well, which includes a lot more cases with fewer
numeric columns, so we can run all available methods:

> NbClust(iris[, -5], method = 'complete', index = 'all')$Best.nc[1,]

All 150 observations were used.

* Among all indices:

* 2 proposed 2 as the best number of clusters

* 13 proposed 3 as the best number of clusters

* 5 proposed 4 as the best number of clusters

* 1 proposed 6 as the best number of clusters

* 2 proposed 15 as the best number of clusters

 ***** Conclusion *****

* According to the majority rule, the best number of clusters is 3

 KL CH Hartigan CCC Scott Marriot

 4 4 3 3 3 3

 TrCovW TraceW Friedman Rubin Cindex DB

 3 3 4 6 3 3

Silhouette Duda PseudoT2 Beale Ratkowsky Ball

 2 4 4 3 3 3

PtBiserial Frey McClain Dunn Hubert SDindex

 3 1 2 15 0 3

 Dindex SDbw

 0 15

Chapter 10

[243]

The output summarizes that the ideal number of clusters is three based on the 13
methods returning that number, five further methods suggest four clusters, and a few
other cluster numbers were also computed by a much smaller number of methods.

These methods are not only useful with the previously discussed hierarchical
clustering, but generally used with k-means clustering as well, where the number of
clusters is to be defined before running the analysis—unlike the hierarchical method,
where we cut the dendogram after the heavy computations have already been run.

K-means clustering
K-means clustering is a non-hierarchical method first described by MacQueen in
1967. Its big advantage over hierarchical clustering is its great performance.

Unlike hierarchical cluster analysis, k-means clustering requires you to
determine the number of clusters before running the actual analysis.

The algorithm runs the following steps in a nutshell:

1. Initialize a predefined (k) number of randomly chosen centroids in space.
2. Assign each object to the cluster with the closest centroid.
3. Recalculate centroids.
4. Repeat the second and third steps until convergence.

We are going to use the kmeans function from the stats package. As k-means
clustering requires a prior decision on the number of clusters, we can either use
the NbClust function described previously, or we can come up with an arbitrary
number that fits the goals of the analysis.

According to the previously defined optimal cluster number in the previous section,
we are going to stick to three groups, where the within-cluster sum of squares ceases
to drop significantly:

> (k <- kmeans(mtcars, 3))

K-means clustering with 3 clusters of sizes 16, 7, 9

Cluster means:

 mpg cyl disp hp drat wt qsec

1 24.50000 4.625000 122.2937 96.8750 4.002500 2.518000 18.54312

2 17.01429 7.428571 276.0571 150.7143 2.994286 3.601429 18.11857

Classification and Clustering

[244]

3 14.64444 8.000000 388.2222 232.1111 3.343333 4.161556 16.40444

 vs am gear carb

1 0.7500000 0.6875000 4.125000 2.437500

2 0.2857143 0.0000000 3.000000 2.142857

3 0.0000000 0.2222222 3.444444 4.000000

Clustering vector:

 Mazda RX4 Mazda RX4 Wag Datsun 710

 1 1 1

 Hornet 4 Drive Hornet Sportabout Valiant

 2 3 2

 Duster 360 Merc 240D Merc 230

 3 1 1

 Merc 280 Merc 280C Merc 450SE

 1 1 2

 Merc 450SL Merc 450SLC Cadillac Fleetwood

 2 2 3

Lincoln Continental Chrysler Imperial Fiat 128

 3 3 1

 Honda Civic Toyota Corolla Toyota Corona

 1 1 1

 Dodge Challenger AMC Javelin Camaro Z28

 2 2 3

 Pontiac Firebird Fiat X1-9 Porsche 914-2

 3 1 1

 Lotus Europa Ford Pantera L Ferrari Dino

 1 3 1

 Maserati Bora Volvo 142E

 3 1

Chapter 10

[245]

Within cluster sum of squares by cluster:

[1] 32838.00 11846.09 46659.32

 (between_SS / total_SS = 85.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

The cluster means show some really important characteristics for each cluster,
which we generated manually for the hierarchical clusters in the previous section.
We can see that, in the first cluster, the cars have high mpg (low gas consumption),
on average four cylinders (in contrast to six or eight), rather low performance and
so on. The output also automatically reveals the actual cluster numbers.

Let's compare these to the clusters defined by the hierarchical method:

> all(cn == k$cluster)

[1] TRUE

The results seem to be pretty stable, right?

The cluster numbers have no meaning and their order is
arbitrary. In other words, the cluster membership is a nominal
variable. Based on this, the preceding R command might return
FALSE instead of TRUE when the cluster numbers were allocated
in a different order, but comparing the actual cluster membership
will verify that we have found the very same groups. See for
example cbind(cn, k$cluster) to generate a table including
both cluster memberships.

Classification and Clustering

[246]

Visualizing clusters
Plotting these clusters is also a great way to understand groupings. To this end, we
will use the clusplot function from the cluster package. For easier understanding,
this function reduces the number of dimensions to two, in a similar way to when we
are conducting a PCA or MDS (described in Chapter 9, From Big to Smaller Data):

> library(cluster)

> clusplot(mtcars, k$cluster, color = TRUE, shade = TRUE, labels = 2)

As you can see, after the dimension reduction, the two components explain 84.17
percent of variance, so this small information loss is a great trade-off in favor of an
easier understanding of the clusters.

Chapter 10

[247]

Visualizing the relative density of the ellipses with the shade parameter can also
help us realize how similar the elements of the same groups are. And we used the
labels argument to show both the points and cluster labels as well. Be sure to stick
to the default of 0 (no labels) or 4 (only ellipse labels) when visualizing large number
of elements.

Latent class models
Latent Class Analysis (LCA) is a method for identifying latent variables among
polychromous outcome variables. It is similar to factor analysis, but can be used with
discrete/categorical data. To this end, LCA is mostly used when analyzing surveys.

In this section, we are going to use the poLCA function from the poLCA package.
It uses expectation-maximization and Newton-Raphson algorithms for finding
the maximum likelihood for the parameters.

The poLCA function requires the data to be coded as integers starting from one or
as a factor, otherwise it will produce an error message. To this end, let's transform
some of the variables in the mtcars dataset to factors:

> factors <- c('cyl', 'vs', 'am', 'carb', 'gear')

> mtcars[, factors] <- lapply(mtcars[, factors], factor)

The preceding command will overwrite the mtcars dataset in your
current R session. To revert to the original dataset for other examples,
please delete this updated dataset from the session by rm(mtcars)
if needed.

Latent Class Analysis
Now that the data is in an appropriate format, we can conduct the LCA. The related
function comes with a number of important arguments:

• First, we have to define a formula that describes the model. Depending on the
formula, we can define LCA (similar to clustering but with discrete variables)
or Latent Class Regression (LCR) model.

• The nclass argument specifies the number of latent classes assumed in the
model, which is 2 by default. Based on the previous examples in this chapter,
we will override this to 3.

• We can use the maxiter, tol, probs.start, and nrep parameters to fine-
tune the model.

• The graphs argument can display or suppress the parameter estimates.

Classification and Clustering

[248]

Let's start with basic LCA of three latent classes defined by all the available
discrete variables:

> library(poLCA)

> p <- poLCA(cbind(cyl, vs, am, carb, gear) ~ 1,

+ data = mtcars, graphs = TRUE, nclass = 3)

The first part of the output (which can be also accessed via the probs element of the
preceding saved poLCA list) summarizes the probabilities of the outcome variables
by each latent class:

> p$probs

Conditional item response (column) probabilities,

 by outcome variable, for each class (row)

$cyl

 4 6 8

class 1: 0.3333 0.6667 0

class 2: 0.6667 0.3333 0

class 3: 0.0000 0.0000 1

$vs

 0 1

class 1: 0.0000 1.0000

class 2: 0.2667 0.7333

class 3: 1.0000 0.0000

$am

 0 1

class 1: 1.0000 0.0000

class 2: 0.2667 0.7333

class 3: 0.8571 0.1429

$carb

 1 2 3 4 6 8

class 1: 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

class 2: 0.2667 0.4000 0.0000 0.2667 0.0667 0.0000

class 3: 0.0000 0.2857 0.2143 0.4286 0.0000 0.0714

Chapter 10

[249]

$gear

 3 4 5

class 1: 1.0000 0.0 0.0000

class 2: 0.0000 0.8 0.2000

class 3: 0.8571 0.0 0.1429

From these probabilities, we can see that all 8-cylinder cars belong to the third
class, the first one only includes cars with automatic transmission, one carburetor,
three gears, and so on. The exact same values can be plotted as well by setting
the graph parameter to TRUE in the function call, or by calling the plot function
directly afterwards:

The plot is also useful in highlighting that the first latent class includes only a
few elements compared to the other classes (also known as "Estimated class
population shares"):

> p$P

[1] 0.09375 0.46875 0.43750

Classification and Clustering

[250]

The poLCA object can also reveal a bunch of other important information about the
results. Just to name a few, let's see the named list parts of the object, which can be
extracted via the standard $ operator:

• The predclass returns the most likely class memberships
• On the other hand, the posterior element is a matrix containing the class

membership probabilities of each case
• The Akaike Information Criterion (aic), Bayesian Information Criterion

(bic), deviance (Gsq), and Chisq values represent different measures of
goodness of fit

LCR models
On the other hand, the LCR model is a supervised method, where we are not mainly
interested in the latent variables explaining our observations at the exploratory
data analysis scale, but instead we are using training data from which one or more
covariates predict the probability of the latent class membership.

Discriminant analysis
Discriminant Function Analysis (DA) refers to the process of determining which
continuous independent (predictor) variables discriminate between a discrete
dependent (response) variable's categories, which can be considered as a reversed
Multivariate Analysis of Variance (MANOVA).

This suggests that DA is very similar to logistic regression (see Chapter 6, Beyond
the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) and the following
section), which is more generally used because of its flexibility. While logistic
regression can handle both categorical and continuous data, DA requires numeric
independent variables and has a few further requirements that logistic regression
does not have:

• Normal distribution is assumed
• Outliers should be eliminated
• No two variables should be highly correlated (multi-collinearity)
• The sample size of the smallest category should be higher than the number

of predictor values
• The number of independent variables should not exceed the sample size

There are two different types of DA, and we will use lda from the MASS package for
the linear discriminant function, and qda for the quadratic discriminant function.

Chapter 10

[251]

Let us start with the dependent variable being the number of gears, and we will use
all the other numeric values as independent variables. To make sure that we start
with a standard mtcars dataset not overwritten in the preceding examples, let's
clear the namespace and update the gear column to include categories instead of
the actual numeric values:

> rm(mtcars)

> mtcars$gear <- factor(mtcars$gear)

Due to the low number of observations (and as we have already discussed the
related options in Chapter 9, From Big to Smaller Data), we can now set aside
conducting the normality and other tests. Let's proceed with the actual analysis.

We call the lda function, setting cross validation (CV) to TRUE, so that we can test
the accuracy of the prediction. The dot in the formula refers to all variables except
the explicitly mentioned gear:

> library(MASS)

> d <- lda(gear ~ ., data = mtcars, CV =TRUE)

So now we can check the accuracy of the predictions by comparing them to the
original values via the confusion matrix:

> (tab <- table(mtcars$gear, d$class))

 3 4 5

 3 14 1 0

 4 2 10 0

 5 1 1 3

To present relative percentages instead of the raw numbers, we can do some quick
transformations:

> tab / rowSums(tab)

 3 4 5

 3 0.93333333 0.06666667 0.00000000

 4 0.16666667 0.83333333 0.00000000

 5 0.20000000 0.20000000 0.60000000

And we can also compute the percentage of missed predictions:

> sum(diag(tab)) / sum(tab)

[1] 0.84375

Classification and Clustering

[252]

After all, around 84 percent of the cases got classified into their most likely respective
classes, which were made up from the actual probabilities that can be extracted by
the posterior element of the list:

> round(d$posterior, 4)

 3 4 5

Mazda RX4 0.0000 0.8220 0.1780

Mazda RX4 Wag 0.0000 0.9905 0.0095

Datsun 710 0.0018 0.6960 0.3022

Hornet 4 Drive 0.9999 0.0001 0.0000

Hornet Sportabout 1.0000 0.0000 0.0000

Valiant 0.9999 0.0001 0.0000

Duster 360 0.9993 0.0000 0.0007

Merc 240D 0.6954 0.2990 0.0056

Merc 230 1.0000 0.0000 0.0000

Merc 280 0.0000 1.0000 0.0000

Merc 280C 0.0000 1.0000 0.0000

Merc 450SE 1.0000 0.0000 0.0000

Merc 450SL 1.0000 0.0000 0.0000

Merc 450SLC 1.0000 0.0000 0.0000

Cadillac Fleetwood 1.0000 0.0000 0.0000

Lincoln Continental 1.0000 0.0000 0.0000

Chrysler Imperial 1.0000 0.0000 0.0000

Fiat 128 0.0000 0.9993 0.0007

Honda Civic 0.0000 1.0000 0.0000

Toyota Corolla 0.0000 0.9995 0.0005

Toyota Corona 0.0112 0.8302 0.1586

Dodge Challenger 1.0000 0.0000 0.0000

AMC Javelin 1.0000 0.0000 0.0000

Camaro Z28 0.9955 0.0000 0.0044

Pontiac Firebird 1.0000 0.0000 0.0000

Fiat X1-9 0.0000 0.9991 0.0009

Porsche 914-2 0.0000 1.0000 0.0000

Lotus Europa 0.0000 0.0234 0.9766

Ford Pantera L 0.9965 0.0035 0.0000

Ferrari Dino 0.0000 0.0670 0.9330

Maserati Bora 0.0000 0.0000 1.0000

Volvo 142E 0.0000 0.9898 0.0102

Chapter 10

[253]

Now we can run lda again without cross validation to see the actual discriminants
and how the different categories of gear are structured:

> d <- lda(gear ~ ., data = mtcars)

> plot(d)

The numbers in the preceding plot stand for the cars in the mtcars dataset presented
by the actual number of gears. It is really straightforward that the elements rendered
by the two discriminants highlight the similarity of cars with the same number of
gears and the difference between those with unequal values in the gear column.

Classification and Clustering

[254]

These discriminants can be also extracted from the d object by calling predict, or
can directly be rendered on a histogram to see the distribution of this continuous
variable by the categories of the independent variable:

> plot(d, dimen = 1, type = "both")

Logistic regression
Although logistic regression was partly covered in Chapter 6, Beyond the Linear
Trend Line (authored by Renata Nemeth and Gergely Toth), as it's often used to solve
classification problems we will revisit this topic again with some related examples
and some notes on—for example—the multinomial version of logistic regression,
which was not introduced in the previous chapters.

Our data often does not meet the requirements of the discriminant analysis. In such
cases, using logistic, logit, or probit regression can be a reasonable choice, as these
methods are not sensitive to non-normal distribution and unequal variances within
each group; on the other hand, they require much larger sample sizes. For small
sample sizes, discriminant analysis is much more reliable.

As a rule of thumb, you should have at least 50 observations for each independent
variable, which means that, if we want to build a logistic regression model for the
mtcars dataset as earlier, we will need at least 500 observations—but we have only 32.

Chapter 10

[255]

To this end, we will restrict this section to one or two quick examples on how to
conduct a logit regression—for example, to estimate whether a car has automatic or
manual transmission based on the performance and weight of the automobile:

> lr <- glm(am ~ hp + wt, data = mtcars, family = binomial)

> summary(lr)

Call:

glm(formula = am ~ hp + wt, family = binomial, data = mtcars)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.2537 -0.1568 -0.0168 0.1543 1.3449

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.86630 7.44356 2.535 0.01126 *

hp 0.03626 0.01773 2.044 0.04091 *

wt -8.08348 3.06868 -2.634 0.00843 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 43.230 on 31 degrees of freedom

Residual deviance: 10.059 on 29 degrees of freedom

AIC: 16.059

Number of Fisher Scoring iterations: 8

The most important table from the preceding output is the coefficients table, which
describes whether the model and the independent variables significantly contribute
to the value of the independent variable. We can conclude that:

• A 1-unit increase of horsepower increases the log odds of having a manual
transmission (at least back in 1974, when the data was collected)

• A 1-unit increase of weight (in pounds), on the other hand, decreases the
same log odds by 8

Classification and Clustering

[256]

It seems that, despite (or rather due to) the low sample size, the model fits the data
very well, and the horsepower and weight of the cars can explain whether a car has
an automatic transmission or manual shift:

> table(mtcars$am, round(predict(lr, type = 'response')))

 0 1

 0 18 1

 1 1 12

But running the preceding command on the number of gears instead of transmission
would fail, as logit regression by default expects a dichotomous variable. We can
overcome this by fitting multiple models on the data, such as verifying whether
a car has 3/4/5 gears or not with dummy variables, or by fitting a multinomial
logistic regression. The nnet package has a very convenient function to do so:

> library(nnet)

> (mlr <- multinom(factor(gear) ~ ., data = mtcars))

weights: 36 (22 variable)

initial value 35.155593

iter 10 value 5.461542

iter 20 value 0.035178

iter 30 value 0.000631

final value 0.000000

converged

Call:

multinom(formula = factor(gear) ~ ., data = mtcars)

Coefficients:

 (Intercept) mpg cyl disp hp drat

4 -12.282953 -1.332149 -10.29517 0.2115914 -1.7284924 15.30648

5 7.344934 4.934189 -38.21153 0.3972777 -0.3730133 45.33284

 wt qsec vs am carb

4 21.670472 0.1851711 26.46396 67.39928 45.79318

5 -4.126207 -11.3692290 -38.43033 32.15899 44.28841

Residual Deviance: 4.300374e-08

AIC: 44

Chapter 10

[257]

As expected, it returns a highly fitted model to our small dataset:

> table(mtcars$gear, predict(mlr))

 3 4 5

 3 15 0 0

 4 0 12 0

 5 0 0 5

However, due to the small sample size, this model is extremely limited. Before
proceeding to the next examples, please remove the updated mtcars dataset from
the current R session to avoid unexpected errors:

> rm(mtcars)

Machine learning algorithms
Machine learning (ML) is a collection of data-driven algorithms that work without
being explicitly programmed for a specific task. Unlike non-ML algorithms, they
require (and learn by) the training data. ML algorithms are classified into supervised
and unsupervised types.

Supervised learning means that the training data consists of input vectors and
their corresponding output value as well. This means that the task is to establish
relationships between inputs and outputs in a historical database, called the training
set, and thus make it possible to predict outputs for future input values.

For example, banks have vast databases on previous loan transaction details.
The input vector is comprised of personal information—such as age, salary, marital
status and so on—while the output (target) variable shows whether the payment
deadlines were kept or not. In this case, a supervised algorithm may detect different
groups of people who may be prone to not being able to keep the deadlines, which
may serve as a screening of applicants.

Unsupervised learning has different goals. As the output values are not available
in the historical dataset, the aim is to identify underlying correlations between the
inputs, and define arbitrary groups of cases.

Classification and Clustering

[258]

The K-Nearest Neighbors algorithm
K-Nearest Neighbors (k-NN), unlike the hierarchical or k-means clustering, is a
supervised classification algorithm. Although it is often confused with k-means
clustering, k-NN classification is a completely different method. It is mostly used
in pattern recognition and business analytics. A big advantage of k-NN is that it is
not sensitive to outliers, and the usage is extremely straightforward—just like with
most machine learning algorithms.

The main idea of k-NN is that it identifies the k number of nearest neighbors of the
observation in the historical dataset, then it defines the class of the observation to
match the majority of the neighbors mentioned earlier.

As a sample analysis, we are going to use the knn function from the class package.
The knn function takes 4 parameters, where train and test are the training and
test datasets respectively, cl is the class membership of the training data, and k is
the number of neighbors to take into account when classifying the elements of the
test dataset.

The default value of k is 1, which always works without a problem—although
usually with a rather low accuracy. When defining a higher number of neighbors
to be used in the analysis for improved accuracy, it's wise to select an integer that
is not a multiple of the number of classes.

Let's split the mtcars dataset into two parts: training and test data. For the sake of
simplicity, half of the cars will belong to the training set, and the other half to the
test set:

> set.seed(42)

> n <- nrow(mtcars)

> train <- mtcars[sample(n, n/2),]

We used set.seed to configure the random generator's state to
a (well) known number for the sake of reproducibility: so that the
exact same random numbers will be generated on all machines.

So we sampled 16 integers between 1 and 32 to select 50 percent of the rows from the
mtcars dataset. Some might consider the following dplyr (discussed in Chapter 3,
Filtering and Summarizing Data and in Chapter 4, Restructuring Data) code snippet
more appealing for the task:

> library(dplyr)

> train <- sample_n(mtcars, n / 2)

Chapter 10

[259]

Then let's select the rest of the rows with the difference of the newly created
data.frame compared to the original data:

> test <- mtcars[setdiff(row.names(mtcars), row.names(train)),]

Now we have to define the class memberships of the observations in the training
data, what we would like to predict in the test dataset in the means of classification.
To this end, we might use what we have learned in the previous section and, instead
of an already known characteristic of the cars, we could run a clustering method
to define the class membership of each element in the training data—but that's
not something we should do for instructional purposes. You could also run the
clustering algorithm on your test data as well, right? The major difference between
the supervised and unsupervised methods is that we have empirical data with the
former methods to feed the classification models.

So, instead, let's use the number of gears in the cars as the class membership and,
based on the information found in the training data, let's predict the number of
gears in the test dataset:

> library(class)
> (cm <- knn(
+ train = subset(train, select = -gear),
+ test = subset(test, select = -gear),
+ cl = train$gear,
+ k = 5))
[1] 4 4 4 4 3 4 4 3 3 3 3 3 4 4 4 3
Levels: 3 4 5

The test cases have just got classified into the preceding classes. We can check the
accuracy of the classification, for example, by calculating the correlation coefficient
between the real and predicted number of gears:

> cor(test$gear, as.numeric(as.character(cm)))

[1] 0.5459487

Well, this might have been a lot better, especially if the training data had been a lot
larger. Machine learning algorithms typically use millions of rows from historical
databases, as opposed to our meager dataset with only 16 cases. But let's see where
the model failed to provide accurate predictions by computing the confusion matrix:

> table(test$gear, as.numeric(as.character(cm)))
 3 4
 3 6 1
 4 0 6
 5 1 2

Classification and Clustering

[260]

So it seems that the k-NN classification algorithm could predict the number of gears
very accurately (one miss out of 13) for all those cars with three or four gears, but it
ultimately failed with the ones with five gears. This can be explained by the number
of related cars in the original dataset:

> table(train$gear)

3 4 5

8 6 2

Well, the training data had only two cars with 5 gears, which is indeed really tight
when it comes to building a model providing accurate predictions.

Classification trees
An alternative ML method for supervised classification is the use of recursive
partitioning via decision trees. The great advantage of this method is that visualizing
decision rules can significantly improve understanding of the underlying data, and
running the algorithm can be extremely easy in most cases.

Let's load the rpart package and build a classification tree with the response
variable being the gear function again:

> library(rpart)

> ct <- rpart(factor(gear) ~ ., data = train, minsplit = 3)

> summary(ct)

Call:

rpart(formula = factor(gear) ~ ., data = train, minsplit = 3)

 n= 16

 CP nsplit rel error xerror xstd

1 0.75 0 1.00 1.000 0.2500000

2 0.25 1 0.25 0.250 0.1653595

3 0.01 2 0.00 0.125 0.1210307

Variable importance

drat qsec cyl disp hp mpg am carb

 18 16 12 12 12 12 9 9

Node number 1: 16 observations, complexity param=0.75

 predicted class=3 expected loss=0.5 P(node) =1

Chapter 10

[261]

 class counts: 8 6 2

 probabilities: 0.500 0.375 0.125

 left son=2 (10 obs) right son=3 (6 obs)

 Primary splits:

 drat < 3.825 to the left, improve=6.300000, (0 missing)

 disp < 212.8 to the right, improve=4.500000, (0 missing)

 am < 0.5 to the left, improve=3.633333, (0 missing)

 hp < 149 to the right, improve=3.500000, (0 missing)

 qsec < 18.25 to the left, improve=3.500000, (0 missing)

 Surrogate splits:

 mpg < 22.15 to the left, agree=0.875, adj=0.667, (0 split)

 cyl < 5 to the right, agree=0.875, adj=0.667, (0 split)

 disp < 142.9 to the right, agree=0.875, adj=0.667, (0 split)

 hp < 96 to the right, agree=0.875, adj=0.667, (0 split)

 qsec < 18.25 to the left, agree=0.875, adj=0.667, (0 split)

Node number 2: 10 observations, complexity param=0.25

 predicted class=3 expected loss=0.2 P(node) =0.625

 class counts: 8 0 2

 probabilities: 0.800 0.000 0.200

 left son=4 (8 obs) right son=5 (2 obs)

 Primary splits:

 am < 0.5 to the left, improve=3.200000, (0 missing)

 carb < 5 to the left, improve=3.200000, (0 missing)

 qsec < 16.26 to the right, improve=1.866667, (0 missing)

 hp < 290 to the left, improve=1.422222, (0 missing)

 disp < 325.5 to the right, improve=1.200000, (0 missing)

 Surrogate splits:

 carb < 5 to the left, agree=1.0, adj=1.0, (0 split)

 qsec < 16.26 to the right, agree=0.9, adj=0.5, (0 split)

Node number 3: 6 observations

 predicted class=4 expected loss=0 P(node) =0.375

 class counts: 0 6 0

 probabilities: 0.000 1.000 0.000

Classification and Clustering

[262]

Node number 4: 8 observations

 predicted class=3 expected loss=0 P(node) =0.5

 class counts: 8 0 0

 probabilities: 1.000 0.000 0.000

Node number 5: 2 observations

 predicted class=5 expected loss=0 P(node) =0.125

 class counts: 0 0 2

 probabilities: 0.000 0.000 1.000

The resulting object is a rather simple decision tree—despite the fact that we have
specified an extremely low minsplit parameter, to be able to generate more than
one node. Running the preceding call without this argument would not even result
in a decision tree, as the 16 cases of our train data would fit in a single node due to
the default minimum value of 20 elements per node.

But we have built a decision tree where the most important rule to determine
the number of gears is the rear axle ratio and whether the car has automatic or
manual transmission:

> plot(ct); text(ct)

To translate this into plain and simple English:

• A car with a high rear axle ratio has four gears
• All other cars with automatic transmission have three gears
• Cars with manual shift have five gears

Well, this rule is indeed very basic due to the low number of cases and the confusion
matrix also reveals the serious limitation of the model, namely that it cannot
successfully identify cars with 5 gears:

> table(test$gear, predict(ct, newdata = test, type = 'class'))
 3 4 5
 3 7 0 0
 4 1 5 0
 5 0 2 1

Chapter 10

[263]

But 13 out of 16 cars were classified perfectly, which is quite impressive and a bit
better than the previous k-NN example!

Let's improve the preceding code, rather minimalist graph a bit by either calling the
main function from the rpart.plot package on the preceding object, or loading
the party package, which provides a very neat plotting function for party objects.
One option might be to call as.party on the previously computed ct object via
the partykit package; alternatively, we can recreate the classification tree with its
ctree function. Based on the previous experiences, let's pass only the preceding
highlighted variables to the model:

> library(party)

> ct <- ctree(factor(gear) ~ drat, data = train,

+ controls = ctree_control(minsplit = 3))

> plot(ct, main = "Conditional Inference Tree")

It seems that this model decides on the number of gears solely based on the rear axle
ratio with a lot lower accuracy:

> table(test$gear, predict(ct, newdata = test, type = 'node'))

 2 3

 3 7 0

 4 1 5

 5 0 3

Now let's see which additional ML algorithms can provide more accurate and/or
reliable models!

Classification and Clustering

[264]

Random forest
The main idea behind random forest is that, instead of building a deep decision
tree with an ever-growing number of nodes that might risk overfitting the data, we
instead generate multiple trees to minimize the variance instead of maximizing the
accuracy. This way the results are expected to be noisier compared to a well-trained
decision tree, but on average these results are more reliable.

This can be achieved in a similar way to the preceding examples in R, via for example
the randomForest package, which provides very user-friendly access to the classical
random forest algorithm:

> library(randomForest)

> (rf <- randomForest(factor(gear) ~ ., data = train, ntree = 250))

Call:

 randomForest(formula = factor(gear) ~ ., data = train, ntree = 250)

 Type of random forest: classification

 Number of trees: 250

No. of variables tried at each split: 3

 OOB estimate of error rate: 25%

Confusion matrix:

 3 4 5 class.error

3 7 1 0 0.1250000

4 1 5 0 0.1666667

5 2 0 0 1.0000000

This function is very convenient to use: it automatically returns the confusion matrix
and also computes the estimated error rate—although we can of course, generate our
own based on the other subset of mtcars:

> table(test$gear, predict(rf, test))

 3 4 5

 3 7 0 0

 4 1 5 0

 5 1 2 0

But this time, the plotting function returns something new:

> plot(rf)

> legend('topright',

Chapter 10

[265]

+ legend = colnames(rf$err.rate),

+ col = 1:4,

+ fill = 1:4,

+ bty = 'n')

We see how the mean squared error of the model changes over time as we generate
more and more decision trees on random subsamples of the training data, where
the error rate does not seem to change after a while, and there's not much sense in
generating more than a given number of random samples.

Well, this is really straightforward for such small example, as the combination of the
possible subsamples is limited. It's also worth mentioning that the error rate of cars
with five gears (blue line) did not change at all over time, which highlights again the
main limitation of our training dataset.

Other algorithms
Although it would be great to continue discussing the wide variety of related ML
algorithms (for example, the ID3 and Gradient Boosting algorithms from the gbm
or xgboost packages) and how to call, say, Weka from the R console to use C4.5, in
this chapter I can focus on only one last practical example on how to use a general
interface for all these algorithms via the caret package:

> library(caret)

This package bundles some really useful functions and methods, which can be
used as general, algorithm-independent tools for predictive models. This means
that all the previous models could be run without actually calling the rpart, ctree,
or randomForest functions, and we can simply rely on the train function of caret,
which takes the algorithm definition as an argument.

Classification and Clustering

[266]

For a quick example, let's see how the improved version and open-source
implementation of C4.5 performs with our training data:

> library(C50)

> C50 <- train(factor(gear) ~ ., data = train, method = 'C5.0')

> summary(C50)

C5.0 [Release 2.07 GPL Edition] Fri Mar 20 23:22:10 2015

Class specified by attribute `outcome'

Read 16 cases (11 attributes) from undefined.data

----- Trial 0: -----

Rules:

Rule 0/1: (8, lift 1.8)

 drat <= 3.73

 am <= 0

 -> class 3 [0.900]

Rule 0/2: (6, lift 2.3)

 drat > 3.73

 -> class 4 [0.875]

Rule 0/3: (2, lift 6.0)

 drat <= 3.73

 am > 0

 -> class 5 [0.750]

Default class: 3

*** boosting reduced to 1 trial since last classifier is very accurate

Chapter 10

[267]

*** boosting abandoned (too few classifiers)

Evaluation on training data (16 cases):

 Rules

 No Errors

 3 0(0.0%) <<

 (a) (b) (c) <-classified as

 ---- ---- ----

 8 (a): class 3

 6 (b): class 4

 2 (c): class 5

 Attribute usage:

 100.00% drat

 62.50% am

This output seems extremely compelling as the error rate is exactly zero, which
means that we have just created a model that perfectly fits out training data with
three simple rules:

• Cars with a large rear axle ratio have four gears
• The others have either three (manual shift) or five (automatic transmission)

Well, a second look at the results reveals that we have not found the Holy Grail yet:

> table(test$gear, predict(C50, test))

 3 4 5

 3 7 0 0

 4 1 5 0

 5 0 3 0

Classification and Clustering

[268]

So the overall performance of this algorithm with our test dataset resulted in 12
hits out of the 16 cars, which is a good example of how a single decision tree might
over-fit the training data.

Summary
This chapter introduced a wide variety of ways to cluster and classify data, discussed
which analysis procedures and models are very important, and generally used
elements of a data scientist's toolbox. In the next chapter, we will focus on a less
general, but still important, field— how to analyze graphs and network data.

[269]

Social Network Analysis
of the R Ecosystem

Although the concept of social networks has a pretty long history, starting at the
beginning of the last century, social network analysis (SNA) became extremely
popular only in the last decade, probably due to the success of huge social media
sites and the availability of related data. In this chapter, we are going to take a look
on how to retrieve and load such data, then analyze and visualize such networks by
heavily using the igraph package.

Igraph is an open source network analysis tool made by Gábor Csárdi. The software
ships with a wide variety of network analysis methods, and it can be used in R, C,
C++, and Python as well.

In this chapter, we will cover the following topics with some examples on the
R ecosystem:

• Loading and handling network data
• Network centrality metrics
• Visualizing network graphs

Loading network data
Probably the easiest way to retrieve network-flavored information on the R
ecosystem is to analyze how R packages depend on each other. Based on Chapter
2, Getting the Data, we could try to load this data via HTTP parsing of the CRAN
mirrors but, luckily, R has a built-in function to return all available R packages
from CRAN with some useful meta-information as well:

Social Network Analysis of the R Ecosystem

[270]

The number of packages hosted on CRAN is growing from day to
day. As we are working with live data, the actual results you see
might be slightly different.

> library(tools)

> pkgs <- available.packages()

> str(pkgs)

 chr [1:6548, 1:17] "A3" "abc" "ABCanalysis" "abcdeFBA" ...

 - attr(*, "dimnames")=List of 2

 ..$: chr [1:6548] "A3" "abc" "ABCanalysis" "abcdeFBA" ...

 ..$: chr [1:17] "Package" "Version" "Priority" "Depends" ...

So we have a matrix with more than 6,500 rows, and the fourth column includes
the dependencies in a comma-separated list. Instead of parsing those strings and
cleaning the data from the package versions and other relatively unimportant
characters, let's use another handy function from the tools package to do the
dirty work:

> head(package.dependencies(pkgs), 2)

$A3

 [,1] [,2] [,3]

[1,] "R" ">=" "2.15.0"

[2,] "xtable" NA NA

[3,] "pbapply" NA NA

$abc

 [,1] [,2] [,3]

[1,] "R" ">=" "2.10"

[2,] "nnet" NA NA

[3,] "quantreg" NA NA

[4,] "MASS" NA NA

[5,] "locfit" NA NA

So the package.dependencies function returns a long named list of matrixes: one
for each R package, which includes the required package name and version to install
and load the referred package. Besides the very same function can retrieve the list of
packages that are imported or suggested by others via the depLevel argument. We
will use this information to build a richer dataset with different types of connections
between the R packages.

Chapter 11

[271]

The following script creates the data.frame, in which each line represents a connection
between two R packages. The src column shows which R package refers to the dep
package, and the label describes the type of connection:

> library(plyr)

> edges <- ldply(

+ c('Depends', 'Imports', 'Suggests'), function(depLevel) {

+ deps <- package.dependencies(pkgs, depLevel = depLevel)

+ ldply(names(deps), function(pkg)

+ if (!identical(deps[[pkg]], NA))

+ data.frame(

+ src = pkg,

+ dep = deps[[pkg]][, 1],

+ label = depLevel,

+ stringsAsFactors = FALSE))

+ })

Although this code snippet might seem complex at first sight, we simply look up
the dependencies of each package (like in a loop), return a row of data.frame, and
nest it in another loop, which iterates through all previously mentioned R package
connection types. The resulting R object is really straightforward to understand:

> str(edges)

'data.frame': 26960 obs. of 3 variables:

 $ src : chr "A3" "A3" "A3" "abc" ...

 $ dep : chr "R" "xtable" "pbapply" "R" ...

 $ label: chr "Depends" "Depends" "Depends" "Depends" ...

Centrality measures of networks
So we have identified almost 30,000 relations between our 6,500 packages. Is it a
sparse or dense network? In other words, how many connections do we have out
of all possible package dependencies? What if all the packages depend on all other
packages? We do not really need any feature-rich package to calculate that:

> nrow(edges) / (nrow(pkgs) * (nrow(pkgs) - 1))

[1] 0.0006288816

This is a rather low percentage, which makes the life of R sysadmins rather easy
compared to maintaining a dense network of R software. But who are the central
players in this game? Which are the top-most dependent R packages?

Social Network Analysis of the R Ecosystem

[272]

We can also compute a rather trivial metric to answer this question without any
serious SNA knowledge, as this can be defined as "Which R package is mentioned
the most times in the dep column of the edges dataset"? Or, in plain English: "Which
package has the most reverse dependencies?"

> head(sort(table(edges$dep), decreasing = TRUE))

 R methods MASS stats testthat lattice

 3702 933 915 601 513 447

It seems that almost 50 percent of the packages depend on a minimal version of R.
So as not to distort our directed network, let's remove these edges:

> edges <- edges[edges$dep != 'R',]

And now it's time to transform our list of connections into a real graph object to
compute more advanced metrics, and also to visualize the data:

> library(igraph)

> g <- graph.data.frame(edges)

> summary(g)

IGRAPH DN-- 5811 23258 --

attr: name (v/c), label (e/c)

After loading the package, the graph.data.frame function transforms various data
sources into an igraph object. This is an extremely useful class with a variety of
supported methods. The summary simply prints the number of vertices and edges,
which shows that around 700 R packages have no dependencies. Let's compute the
previously discussed and manually computed metrics with igraph:

> graph.density(g)

[1] 0.0006888828

> head(sort(degree(g), decreasing = TRUE))

 methods MASS stats testthat ggplot2 lattice

 933 923 601 516 459 454

It's not that surprising to see the methods package at the top of the list, as it's often
required in packages with complex S4 methods and classes. The MASS and stats
packages include most of the often used statistical methods, but what about the
others? The lattice and ggplot2 packages are extremely smart and feature-full
graphing engines, and testthat is one of the most popular unit-testing extensions
of R; this must be mentioned in the package descriptions before submitting new
packages to the central CRAN servers.

Chapter 11

[273]

But degree is only one of the available centrality metrics for social networks.
Unfortunately, computing closeness, which shows the distance of each node from
the others, is not really meaningful when it comes to dependency, but betweenness
is a really interesting comparison to the preceding results:

> head(sort(betweenness(g), decreasing = TRUE))

 Hmisc nlme ggplot2 MASS multcomp rms

943085.3 774245.2 769692.2 613696.9 453615.3 323629.8

This metric shows the number of times each package acts as a bridge (the only
connecting node between two others) in the shortest path between the other
packages. So it's not about having a lot of depending packages; rather, it shows
the importance of the packages from a more global perspective. Just imagine if
a package with a high betweenness was deprecated and removed from CRAN;
not only the directly dependent packages, but also all other packages in the
dependency tree would be in a rather awkward situation.

Visualizing network data
To compare these two metrics, let's draw a simple scatter plot showing each R
package by degree and betweenness:

> plot(degree(g), betweenness(g), type = 'n',

+ main = 'Centrality of R package dependencies')

> text(degree(g), betweenness(g), labels = V(g)$name)

Social Network Analysis of the R Ecosystem

[274]

Relax; we will be soon able to generate much more spectacular and instructive plots
in a few minutes! But the preceding plot shows that there are some packages with a
rather low number of direct dependents that still have a great impact on the global
R ecosystem.

Before we proceed, let's filter our dataset and graph to include far fewer vertices
by building the dependency tree of the igraph package, including all packages it
depends on or imports from:

The following short list of igraph dependencies was generated
in April 2015. Since then, a major new version of igraph has been
released with a lot more dependencies due to importing from the
magrittr and NMF packages, so the following examples repeated
on your computer will return a much larger network and graphs.
For educational purposes, we are showing the smaller network in
the following outputs.

> edges <- edges[edges$label != 'Suggests',]

> deptree <- edges$dep[edges$src == 'igraph']

> while (!all(edges$dep[edges$src %in% deptree] %in% deptree))

+ deptree <- union(deptree, edges$dep[edges$src %in% deptree])

> deptree

[1] "methods" "Matrix" "graphics" "grid" "stats"

[6] "utils" "lattice" "grDevices"

So we need the previously mentioned eight packages to be able to use the
igraph package. Please note that not all of these are direct dependencies;
some are dependencies from other packages. To draw a visual representation
of this dependency tree, let's create the related graph object and plot it:

> g <- graph.data.frame(edges[edges$src %in% c('igraph', deptree),])

> plot(g)

Chapter 11

[275]

Well, the igraph package literally depends on only one package, although it
also imports some functions from the Matrix package. All the other previously
mentioned packages are dependencies of the latter.

To draw a more intuitive version of the preceding plot to suggest this statement, we
might consider removing the dependency labels and represent that aspect by colors,
and we can also emphasize the direct dependencies of igraph by vertex colors.
We can modify the attributes of vertices and edges via the V and E functions:

> V(g)$label.color <- 'orange'

> V(g)$label.color[V(g)$name == 'igraph'] <- 'darkred'

> V(g)$label.color[V(g)$name %in%

Social Network Analysis of the R Ecosystem

[276]

+ edges$dep[edges$src == 'igraph']] <- 'orangered'
> E(g)$color <- c('blue', 'green')[factor(df$label)]

> plot(g, vertex.shape = 'none', edge.label = NA)

Much better! Our central topic, the igraph package, is highlighted in dark red, the
two direct dependencies are marked in dark orange, and all the other dependencies
are colored in lighter orange. Similarly, we emphasize the Depends relations in blue
compared to the vast majority of other Imports connections.

Chapter 11

[277]

Interactive network plots
What if you do not like the order of the vertices in the preceding plot? Feel free to rerun
the last command to produce new results, or draw with tkplot for a dynamic plot,
where you can design your custom layout by dragging-and-dropping the vertices:

> tkplot(g, edge.label = NA)

Can we do any better? Although this result is extremely useful, it lacks the
immediate appeal of the currently trending, JavaScript-empowered interactive plots.
So let's recreate this interactive plot with JavaScript, right from R! htmlwidgets and
the visNetwork package, discussed in more detail in the Chapter 13, Data Around Us,
can help us with this task, even without any JavaScript knowledge. Simply pass the
extracted nodes and edge datasets to the visNetwork function:

> library(visNetwork)

> nodes <- get.data.frame(g, 'vertices')

> names(nodes) <- c('id', 'color')

Social Network Analysis of the R Ecosystem

[278]

> edges <- get.data.frame(g)

> visNetwork(nodes, edges)

Custom plot layouts
Alternatively, we can also generate such hierarchical plots in a programmatic way,
by drawing the denominator tree of this directed plot:

> g <- dominator.tree(g, root = "igraph")$domtree

> plot(g, layout = layout.reingold.tilford(g, root = "igraph"),

+ vertex.shape = 'none')

Chapter 11

[279]

Analyzing R package dependencies with an
R package
As we are using R, a statistical programming environment whose most exciting
and useful feature is its community, we might prefer to look for other, already
implemented solutions for this research. After a quick Google search, and having
looked up a few questions on StackOverflow or posts on http://www.r-bloggers.
com/, it's pretty easy to find the Revolution Analytics miniCRAN package, which has
some related and useful functions:

> library(miniCRAN)

> pkgs <- pkgAvail()

> pkgDep('igraph', availPkgs = pkgs, suggests = FALSE,

+ includeBasePkgs = TRUE)

[1] "igraph" "methods" "Matrix" "graphics" "grid"

[6] "stats" "utils" "lattice" "grDevices"

> plot(makeDepGraph('igraph', pkgs, suggests = FALSE,

+ includeBasePkgs = TRUE))

But let's get back to the original question: How do we analyze network data?

http://www.r-bloggers.com/
http://www.r-bloggers.com/

Social Network Analysis of the R Ecosystem

[280]

Further network analysis resources
Besides its really impressive and useful data visualization, the igraph package
has a lot more to offer. Unfortunately, this short chapter cannot provide a decent
introduction to network analysis theory, but I suggest that you skim through the
package documentation as it comes with useful, self-explanatory examples and
good references.

In short, network analysis provides various ways to compute centrality and density
metrics, like we did at the beginning of this chapter, and also to identify bridges and
simulate changes in the network; there are really powerful methods to segment the
nodes in the network as well.

For example, in the Financial Networks chapter of the Introduction to R for Quantitative
Finance book, which I coauthored, we developed R scripts to identify systemically
important financial institutions(SIFI) in Hungary based on the transaction-level
network data of the interbank lending market. This dataset and network theory help
us to model and potentially predict future financial crises, and also to simulate the
effect of central intervention.

A more detailed, freely available summary on this research was presented at the R/
Finance 2015 conference in Chicago http://www.rinfinance.com/agenda/2015/
talk/GergelyDaroczi.pdf, along with a Shiny application https://bit.ly/
rfin2015-hunbanks, and a related, simulation-based infection-model was described
in the Systemic Risk chapter of the Mastering R for Quantitative Finance book as well.

The main idea behind this joint research was to identify core, peripheral, and semi-
peripheral financial institutions based on the network formed by interbank lending
transactions. The nodes being banks, the edges are defined as lend events between
those, so we can interpret the bridges between periphery nodes as the intermediary
bank between smaller banks, which usually do not lend money to each other directly.

The interesting question, after resolving some technical issues with the dataset, was
to simulate what happens if an intermediary bank defaults, and if this unfortunate
event might also affect other financial institutions.

Summary
This short chapter introduced a new data structure in the form of graph datasets,
and we visualized small networks with various R packages, including static and
interactive methods as well. In the next two chapters, we will familiarize ourselves
with two other frequently used data types: first we will analyze temporal, then
spatial data.

http://www.rinfinance.com/agenda/2015/talk/GergelyDaroczi.pdf
http://www.rinfinance.com/agenda/2015/talk/GergelyDaroczi.pdf
https://bit.ly/rfin2015-hunbanks
https://bit.ly/rfin2015-hunbanks

[281]

Analyzing Time-series
A time-series is a sequence of data points ordered in time, often used in economics
or, for example, in social sciences. The great advantage of collecting data over a long
period of time compared to cross-sectional observations is that we can analyze the
collected values of the exact same object over time instead of comparing different
observations.

This special characteristic of the data requires new methods and data structures for
time-series analysis. We will cover these in this chapter:

• First, we learn how to load or transform observations into time-series objects
• Then we visualize them and try to improve the plots by smoothing and

filtering the observations
• Besides seasonal decomposition, we introduce forecasting methods based

on time-series models, and we also cover methods to identify outliers,
extreme values, and anomalies in time-series

Creating time-series objects
Most tutorials on time-series analysis start with the ts function of the stats package,
which can create time-series objects in a very straightforward way. Simply pass a
vector or matrix of numeric values (time-series analysis mostly deals with continuous
variables), specify the frequency of your data, and it's all set!

The frequency refers to the natural time-span of the data. Thus, for monthly data,
you should set it to 12, 4 for quarterly and 365 or 7 for daily data, depending on
the most characteristic seasonality of the events. For example, if your data has a
significant weekly seasonality, which is pretty usual in social sciences, it should
be 7, but if the calendar date is the main differentiator, such as with weather data,
it should be 365.

Analyzing Time-series

[282]

In the forthcoming pages, let's use daily summary statistics from the hflights
dataset. First let's load the related dataset and transform it to data.table for
easy aggregation. We also have to create a date variable from the provided
Year, Month, and DayofMonth columns:

> library(hflights)

> library(data.table)

> dt <- data.table(hflights)

> dt[, date := ISOdate(Year, Month, DayofMonth)]

Now let's compute the number of flights and the overall sum of arrival delays,
number of cancelled flights and the average distance of the related flights for
each day in 2011:

> daily <- dt[, list(

+ N = .N,

+ Delays = sum(ArrDelay, na.rm = TRUE),

+ Cancelled = sum(Cancelled),

+ Distance = mean(Distance)

+), by = date]

> str(daily)

Classes 'data.table' and 'data.frame': 365 obs. of 5 variables:

 $ date : POSIXct, format: "2011-01-01 12:00:00" ...

 $ N : int 552 678 702 583 590 660 661 500 602 659 ...

 $ Delays : int 5507 7010 4221 4631 2441 3994 2571 1532 ...

 $ Cancelled: int 4 11 2 2 3 0 2 1 21 38 ...

 $ Distance : num 827 787 772 755 760 ...

 - attr(*, ".internal.selfref")=<externalptr>

Chapter 12

[283]

Visualizing time-series
This is in a very familiar data structure: 365 rows for each day in 2011 and
five columns to store the four metrics for the dates stored in the first variable.
Let's transform that to a time-series object and plot it right away:

> plot(ts(daily))

It was easy, right? We have just plotted several independent time-series on a line
chart. But what's shown on the first plot? The x axis is indexed from 1 to 365 because
ts did not automatically identify that the first column stores our dates. On the other
hand, we find the date transformed to timestamps on the y axis. Shouldn't the points
form a linear line?

Analyzing Time-series

[284]

This is one of the beauties of data visualization: a simple plot revealed a major issue
with our data. It seems we have to sort the data by date:

> setorder(daily, date)

> plot(ts(daily))

Much better! Now that the values are in the right order, we can focus on the actual
time-series data one by one at a time. First let's see how the number of flights looked
from the first day of 2011 with a daily frequency:

> plot(ts(daily$N, start = 2011, frequency = 365),

+ main = 'Number of flights from Houston in 2011')

Chapter 12

[285]

Seasonal decomposition
Well, it looks like the number of flights fluctuates a lot on weekdays, which is indeed
a dominant characteristic of human-related activities. Let's verify that by identifying
and removing the weekly seasonality by decomposing this time-series into the
seasonal, trend, and random components with moving averages.

Although this can be done manually by utilizing the diff and lag functions, there's
a much more straightforward way to do so with the decompose function from the
stats package:

> plot(decompose(ts(daily$N, frequency = 7)))

Removing the spikes in the means of weekly seasonality reveals the overall trend of
the number of flights in 2011. As the x axis shows the number of weeks since January
1 (based on the frequency being 7), the peak interval between 25 and 35 refers to
the summertime, and the lowest number of flights happened on the 46th week –
probably due to Thanksgiving Day.

Analyzing Time-series

[286]

But the weekly seasonality is probably more interesting. Well, it's pretty hard to
spot anything on the preceding plot as the very same 7-day repetition can be seen
52 times on the seasonal plot. So, instead, let's extract that data and show it in a
table with the appropriate headers:

> setNames(decompose(ts(daily$N, frequency = 7))$figure,

+ weekdays(daily$date[1:7]))

 Saturday Sunday Monday Tuesday Wednesday

-102.171776 -8.051328 36.595731 -14.928941 -9.483886

 Thursday Friday

 48.335226 49.704974

So the seasonal effects (the preceding numbers representing the relative distance
from the average) suggest that the greatest number of flights happened on Monday
and the last two weekdays, while there is only a relatively small number of flights
on Saturdays.

Unfortunately, we cannot decompose the yearly seasonal component of this
time-series, as we have data only for one year, and we need data for at least
two time periods for the given frequency:

> decompose(ts(daily$N, frequency = 365))

Error in decompose(ts(daily$N, frequency = 365)) :

 time series has no or less than 2 periods

For more advanced seasonal decomposition, see the stl function of the stats
package, which uses polynomial regression models on the time-series data.
The next section will cover some of this background.

Holt-Winters filtering
We can similarly remove the seasonal effects of a time-series by Holt-Winters filtering.
Setting the beta parameter of the HoltWinters function to FALSE will result in a
model with exponential smoothing practically suppressing all the outliers; setting the
gamma argument to FALSE will result in a non-seasonal model. A quick example:

> nts <- ts(daily$N, frequency = 7)

> fit <- HoltWinters(nts, beta = FALSE, gamma = FALSE)

> plot(fit)

Chapter 12

[287]

The red line represents the filtered time-series. We can also fit a double or triple
exponential model on the time-series by enabling the beta and gamma parameters,
resulting in a far better fit:

> fit <- HoltWinters(nts)

> plot(fit)

As this model provides extremely similar values compared to our original data, it
can be used to predict future values as well. For this end, we will use the forecast
package. By default, the forecast function returns a prediction for the forthcoming
2*frequency values:

> library(forecast)

> forecast(fit)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

53.14286 634.0968 595.4360 672.7577 574.9702 693.2235

Analyzing Time-series

[288]

53.28571 673.6352 634.5419 712.7286 613.8471 733.4233

53.42857 628.2702 588.7000 667.8404 567.7528 688.7876

53.57143 642.5894 602.4969 682.6820 581.2732 703.9057

53.71429 678.2900 637.6288 718.9511 616.1041 740.4758

53.85714 685.8615 644.5848 727.1383 622.7342 748.9889

54.00000 541.2299 499.2901 583.1697 477.0886 605.3712

54.14286 641.8039 598.0215 685.5863 574.8445 708.7633

54.28571 681.3423 636.8206 725.8639 613.2523 749.4323

54.42857 635.9772 590.6691 681.2854 566.6844 705.2701

54.57143 650.2965 604.1547 696.4382 579.7288 720.8642

54.71429 685.9970 638.9748 733.0192 614.0827 757.9113

54.85714 693.5686 645.6194 741.5178 620.2366 766.9005

55.00000 548.9369 500.0147 597.8592 474.1169 623.7570

These are estimates for the first two weeks of 2012, where (besides the exact point
predictions) we get the confidence intervals as well. Probably it's more meaningful
at this time to visualize these predictions and confidence intervals:

> plot(forecast(HoltWinters(nts), 31))

The blue points shows the estimates for the 31 future time periods and the gray area
around that covers the confidence intervals returned by the forecast function.

Chapter 12

[289]

Autoregressive Integrated Moving
Average models
We can achieve similar results with Autoregressive Integrated Moving Average
(ARIMA) models. To predict future values of a time-series, we usually have to
stationarize it first, which means that the data has a constant mean, variance, and
autocorrelation over time. In the past two sections, we used seasonal decomposition
and the Holt-Winters filter to achieve this. Now let's see how the generalized version
of the Autoregressive Moving Average (ARMA) model can help with this data
transformation.

ARIMA(p, d, q) actually includes three models with three non-negative
integer parameters:

• p refers to the autoregressive part of the model
• d refers to the integrated part
• q refers to the moving average parts

As ARIMA also includes an integrated (differencing) part over ARMA, it can
deal with non-stationary time-series as well, as they naturally become stationary
after differencing—in other words, when the d parameter is larger than zero.

Traditionally, choosing the best ARIMA model for a time-series is required to
build multiple models with a variety of parameters and compare model fits.
On the other hand, the forecast package comes with a very useful function
that can select the best fitting ARIMA model for a time-series by running unit
root tests and minimizing the maximum-likelihood (ML) and the Akaike
Information Criterion (AIC) of the models:

> auto.arima(nts)

Series: ts

ARIMA(3,0,0)(2,0,0)[7] with non-zero mean

Coefficients:

 ar1 ar2 ar3 sar1 sar2 intercept

 0.3205 -0.1199 0.3098 0.2221 0.1637 621.8188

s.e. 0.0506 0.0538 0.0538 0.0543 0.0540 8.7260

sigma^2 estimated as 2626: log likelihood=-1955.45

AIC=3924.9 AICc=3925.21 BIC=3952.2

Analyzing Time-series

[290]

It seems that the AR(3) model has the highest AIC with AR(2) seasonal effects.
But checking the manual of auto.arima reveals that the information criteria used
for the model selection were approximated due to the large number (more than 100)
of observations. Re-running the algorithm and disabling approximation returns a
different model:

> auto.arima(nts, approximation = FALSE)

Series: ts

ARIMA(0,0,4)(2,0,0)[7] with non-zero mean

Coefficients:

 ma1 ma2 ma3 ma4 sar1 sar2 intercept

 0.3257 -0.0311 0.2211 0.2364 0.2801 0.1392 621.9295

s.e. 0.0531 0.0531 0.0496 0.0617 0.0534 0.0557 7.9371

sigma^2 estimated as 2632: log likelihood=-1955.83

AIC=3927.66 AICc=3928.07 BIC=3958.86

Although it seems that the preceding seasonal ARIMA model fits the data with
a high AIC, we might want to build a real ARIMA model by specifying the D
argument resulting in an integrated model via the following estimates:

> plot(forecast(auto.arima(nts, D = 1, approximation = FALSE), 31))

Chapter 12

[291]

Although time-series analysis can sometimes be tricky (and finding the optimal
model with the appropriate parameters requires a reasonable experience with
these statistical methods), the preceding short examples proved that even a basic
understanding of the time-series objects and related methods will usually provide
some impressive results on the patterns of data and adequate predictions.

Outlier detection
Besides forecasting, another time-series related major task is identifying suspicious or
abnormal data in a series of observations that might distort the results of our analysis.
One way to do so is to build an ARIMA model and analyze the distance between the
predicted and actual values. The tsoutliers package provides a very convenient way
to do so. Let's build a model on the number of cancelled flights in 2011:

> cts <- ts(daily$Cancelled)

> fit <- auto.arima(cts)

> auto.arima(cts)

Series: ts

ARIMA(1,1,2)

Coefficients:

 ar1 ma1 ma2

 -0.2601 -0.1787 -0.7752

s.e. 0.0969 0.0746 0.0640

sigma^2 estimated as 539.8: log likelihood=-1662.95

AIC=3333.9 AICc=3334.01 BIC=3349.49

So now we can use an ARIMA(1,1,2) model and the tso function to highlight
(and optionally remove) the outliers from our dataset:

Please note that the following tso call can run for several minutes
with a full load on a CPU core as it may be performing heavy
computations in the background.

> library(tsoutliers)

> outliers <- tso(cts, tsmethod = 'arima',

+ args.tsmethod = list(order = c(1, 1, 2)))

Analyzing Time-series

[292]

> plot(outliers)

Alternatively, we can run all the preceding steps in one go by automatically
calling auto.arima inside tso without specifying any extra arguments besides
the time-series object:

> plot(tso(ts(daily$Cancelled)))

Anyway, the results show that all observations with a high number of cancelled
flights are outliers and so should be removed from the dataset. Well, considering
any day with many cancelled flights as outlier sounds really optimistic! But this is
very useful information; it suggests that, for example, forecasting an outlier event
is not manageable with the previously discussed methods.

Traditionally, time-series analysis deals with trends and seasonality of data, and
how to stationarize the time-series. If we are interested in deviations from normal
events, some other methods need to be used.

Twitter recently published one of its R packages to detect anomalies in time-series.
Now we will use its AnomalyDetection package to identify the preceding outliers
in a much faster way. As you may have noticed, the tso function was really slow to
run, and it cannot really handle large amount of data – while the AnomalyDetection
package performs pretty well.

Chapter 12

[293]

We can provide the input data as a vector of a data.frame with the first column
storing the timestamps. Unfortunately, the AnomalyDetectionTs function does
not really work well with data.table objects, so let's revert to the traditional
data.frame class:

> dfc <- as.data.frame(daily[, c('date', 'Cancelled'), with = FALSE])

Now let's load the package and plot the anomalies identified among the observations:

> library(AnomalyDetection)

> AnomalyDetectionTs(dfc, plot = TRUE)$plot

The results are very similar to the previous plots, but there are two things to note
that you might have already noticed. The computation was extremely quick and,
on the other hand, this plot includes human-friendly dates instead of some lame
indexes on the x axis.

More complex time-series objects
The main limitation of the ts time-series R object class (besides the aforementioned x
axis issue) is that it cannot deal with irregular time-series. To overcome this problem,
we have several alternatives in R.

The zoo package and its reverse dependent xts packages are ts-compatible classes
with tons of extremely useful methods. For a quick example, let's build a zoo object
from our data, and see how it's represented by the default plot:

> library(zoo)

> zd <- zoo(daily[, -1, with = FALSE], daily[[1]])

Analyzing Time-series

[294]

> plot(zd)

As we have defined the date column to act as the timestamp of the observations,
it's not shown here. The x axis has a nice human-friendly date annotation, which
is really pleasant after having checked a bunch of integer-annotated plots in the
previous pages.

Of course, zoo supports most of the ts methods, such as diff, lag or cumulative
sums; these can be very useful for visualizing data velocity:

> plot(cumsum(zd))

Chapter 12

[295]

Here, the linear line for the N variable suggests that we do not have any missing
values and our dataset includes exactly one data point per day. On the other hand,
the steep elevation of the Cancelled line in February highlights that a single day
contributed a lot to the overall number of cancelled flights in 2011.

Advanced time-series analysis
Unfortunately, this short chapter cannot provide a more detailed introduction to
time-series analysis. To be honest, even two or three times the length of this chapter
would not be enough for a decent tutorial, as time-series analysis, forecasting, and
anomaly detection are one of the most complex topics of statistical analysis.

But the good news is that there are plenty of great books on the topics! One of the
best resources—and the ultimate free online tutorial on this subject—can be found at
https://www.otexts.org/fpp. This is a really practical and detailed online tutorial
on forecasting and general time-series analysis, and I heartily recommend it to anyone
who would like to build more complex and realizable time-series models in the future.

https://www.otexts.org/fpp

Analyzing Time-series

[296]

Summary
This chapter focused on how to load, visualize, and model time-related data.
Although we could not cover all aspects of this challenging topic, we discussed the
most widely used smoothing and filtering algorithms, seasonal decompositions, and
ARIMA models; we also computed some forecasts and estimates based on these.

The next chapter is somewhat similar to this one, as we will cover another
domain-independent area on another important dimension of datasets: instead of
when, we will focus on where the observations were captured.

[297]

Data Around Us
Spatial data, also known as geospatial data, identifies geographic locations, such
as natural or constructed features around us. Although all observations have some
spatial content, such as the location of the observation, but this is out of most data
analysis tools' range due to the complex nature of spatial information; alternatively,
the spatiality might not be that interesting (at first sight) in the given research topic.

On the other hand, analyzing spatial data can reveal some very important underlying
structures of the data, and it is well worth spending time visualizing the differences
and similarities between close or far data points.

In this chapter, we are going to help with this and will use a variety of R packages to:

• Retrieve geospatial information from the Internet
• Visualize points and polygons on a map
• Compute some spatial statistics

Geocoding
As in the previous chapters, we will use the hflights dataset to demonstrate how
one can deal with data bearing spatial information. To this end, let's aggregate our
dataset, just like we did in Chapter 12, Analyzing Time-series, but instead of generating
daily data, let's view the aggregated characteristics of the airports. For the sake of
performance, we will use the data.table package again as introduced in Chapter 3,
Filtering and Summarizing Data and Chapter 4, Restructuring Data:

> library(hflights)

> library(data.table)

> dt <- data.table(hflights)[, list(

+ N = .N,

Data Around Us

[298]

+ Cancelled = sum(Cancelled),

+ Distance = Distance[1],

+ TimeVar = sd(ActualElapsedTime, na.rm = TRUE),

+ ArrDelay = mean(ArrDelay, na.rm = TRUE)) , by = Dest]

So we have loaded and then immediately transformed the hfights dataset to
a data.table object. At the same time, we aggregated by the destination of the
flights to compute:

• The number of rows
• The number of cancelled flights
• The distance
• The standard deviation of the elapsed time of the flights
• The arithmetic mean of the delays

The resulting R object looks like this:

> str(dt)

Classes 'data.table' and 'data.frame': 116 obs. of 6 variables:

 $ Dest : chr "DFW" "MIA" "SEA" "JFK" ...

 $ N : int 6653 2463 2615 695 402 6823 4893 5022 6064 ...

 $ Cancelled: int 153 24 4 18 1 40 40 27 33 28 ...

 $ Distance : int 224 964 1874 1428 3904 305 191 140 1379 862 ...

 $ TimeVar : num 10 12.4 16.5 19.2 15.3 ...

 $ ArrDelay : num 5.961 0.649 9.652 9.859 10.927 ...

 - attr(*, ".internal.selfref")=<externalptr>

So we have 116 observations all around the world and five variables describing
those. Although this seems to be a spatial dataset, we have no geospatial identifiers
that a computer can understand per se, so let's fetch the geocodes of these airports
from the Google Maps API via the ggmap package. First, let's see how it works
when we are looking for the geo-coordinates of Houston:

> library(ggmap)

> (h <- geocode('Houston, TX'))

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?a
ddress=Houston,+TX&sensor=false

 lon lat

1 -95.3698 29.76043

Chapter 13

[299]

So the geocode function can return the matched latitude and longitude of the string
we sent to Google. Now let's do the very same thing for all flight destinations:

> dt[, c('lon', 'lat') := geocode(Dest)]

Well, this took some time as we had to make 116 separate queries to the Google
Maps API. Please note that Google limits you to 2,500 queries a day without
authentication, so do not run this on a large dataset. There is a helper function
in the package, called geocodeQueryCheck, which can be used to check the
remaining number of free queries for the day.

Some of the methods and functions that we plan to use in some later sections of this
chapter do not support data.table, so let's fall back to the traditional data.frame
format and also print the structure of the current object:

> str(setDF(dt))

'data.frame': 116 obs. of 8 variables:

 $ Dest : chr "DFW" "MIA" "SEA" "JFK" ...

 $ N : int 6653 2463 2615 695 402 6823 4893 5022 6064 ...

 $ Cancelled: int 153 24 4 18 1 40 40 27 33 28 ...

 $ Distance : int 224 964 1874 1428 3904 305 191 140 1379 862 ...

 $ TimeVar : num 10 12.4 16.5 19.2 15.3 ...

 $ ArrDelay : num 5.961 0.649 9.652 9.859 10.927 ...

 $ lon : num -97 136.5 -122.3 -73.8 -157.9 ...

 $ lat : num 32.9 34.7 47.5 40.6 21.3 ...

This was pretty quick and easy, wasn't it? Now that we have the longitude and
latitude values of all the airports, we can try to show these points on a map.

Visualizing point data in space
For the first time, let's keep it simple and load some package-bundled polygons as the
base map. To this end, we will use the maps package. After loading it, we use the map
function to render the polygons of the United States of America, add a title, and then
some points for the airports and also for Houston with a slightly modified symbol:

> library(maps)

> map('state')

> title('Flight destinations from Houston,TX')

Data Around Us

[300]

> points(hlon, hlat, col = 'blue', pch = 13)

> points(dtlon, dtlat, col = 'red', pch = 19)

And showing the airport names on the plot is pretty easy as well: we can use
the well-known functions from the base graphics package. Let's pass the three
character names as labels to the text function with a slightly increased y value to
shift the preceding text the previously rendered data points:

> text(dtlon, dtlat + 1, labels = dt$Dest, cex = 0.7)

Chapter 13

[301]

Now, we can also specify the color of the points to be rendered. This feature can be
used to plot our first meaningful map to highlight the number of flights in 2011 to
different parts of the USA:

> map('state')

> title('Frequent flight destinations from Houston,TX')

> points(hlon, hlat, col = 'blue', pch = 13)

> points(dtlon, dtlat, pch = 19,

+ col = rgb(1, 0, 0, dt$N / max(dt$N)))

> legend('bottomright', legend = round(quantile(dt$N)), pch = 19,

+ col = rgb(1, 0, 0, quantile(dt$N) / max(dt$N)), box.col = NA)

So the intensity of red shows the number of flights to the given points (airports);
the values range from 1 to almost 10,000. Probably it would be more meaningful to
compute these values on a state level as there are many airports, very close to each
other, which might be better aggregated at a higher administrative area level. To this
end, we load the polygon of the states, match the points of interest (airports) with the
overlaying polygons (states), and render the polygons as a thematic map instead of
points, like we did on the previous pages.

Data Around Us

[302]

Finding polygon overlays of point data
We already have all the data we need to identify the parent state of each airport.
The dt dataset includes the geo-coordinates of the locations, and we managed to
render the states as polygons with the map function. Actually, this latter function
can return the underlying dataset without rendering a plot:

> str(map_data <- map('state', plot = FALSE, fill = TRUE))
List of 4
 $ x : num [1:15599] -87.5 -87.5 -87.5 -87.5 -87.6 ...
 $ y : num [1:15599] 30.4 30.4 30.4 30.3 30.3 ...
 $ range: num [1:4] -124.7 -67 25.1 49.4
 $ names: chr [1:63] "alabama" "arizona" "arkansas" "california" ...
 - attr(*, "class")= chr "map"

So we have around 16,000 points describing the boundaries of the US states, but this
map data is more detailed than we actually need (see for example the name of the
polygons starting with Washington):

> grep('^washington', map_data$names, value = TRUE)

[1] "washington:san juan island" "washington:lopez island"

[3] "washington:orcas island" "washington:whidbey island"

[5] "washington:main"

In short, the non-connecting parts of a state are defined as separate polygons. To this
end, let's save a list of the state names without the string after the colon:

> states <- sapply(strsplit(map_data$names, ':'), '[[', 1)

We will use this list as the basis of aggregation from now on. Let's transform this map
dataset into another class of object, so that we can use the powerful features of the sp
package. We will use the maptools package to do this transformation:

> library(maptools)

> us <- map2SpatialPolygons(map_data, IDs = states,

+ proj4string = CRS("+proj=longlat +datum=WGS84"))

An alternative way of getting the state polygons might be to directly
load those instead of transforming from other data formats as described
earlier. To this end, you may find the raster package especially useful
to download free map shapefiles from gadm.org via the getData
function. Although these maps are way too detailed for such a simple
task, you can always simplify those—for example, with the gSimplify
function of the rgeos package.

Chapter 13

[303]

So we have just created an object called us, which includes the polygons of map_data
for each state with the given projection. This object can be shown on a map just like
we did previously, although you should use the general plot method instead of the
map function:

> plot(us)

Besides this, however, the sp package supports so many powerful features!
For example, it's very easy to identify the overlay polygons of the provided points
via the over function. As this function name conflicts with the one found in the
grDevices package, it's better to refer to the function along with the namespace
using a double colon:

> library(sp)
> dtp <- SpatialPointsDataFrame(dt[, c('lon', 'lat')], dt,
+ proj4string = CRS("+proj=longlat +datum=WGS84"))
> str(sp::over(us, dtp))
'data.frame': 49 obs. of 8 variables:
 $ Dest : chr "BHM" "PHX" "XNA" "LAX" ...
 $ N : int 2736 5096 1172 6064 164 NA NA 2699 3085 7886 ...
 $ Cancelled: int 39 29 34 33 1 NA NA 35 11 141 ...
 $ Distance : int 562 1009 438 1379 926 NA NA 1208 787 689 ...
 $ TimeVar : num 10.1 13.61 9.47 15.16 13.82 ...
 $ ArrDelay : num 8.696 2.166 6.896 8.321 -0.451 ...
 $ lon : num -86.8 -112.1 -94.3 -118.4 -107.9 ...
 $ lat : num 33.6 33.4 36.3 33.9 38.5 ...

Data Around Us

[304]

What happened here? First, we passed the coordinates and the whole dataset to the
SpatialPointsDataFrame function, which stored our data as spatial points with the
given longitude and latitude values. Next, we called the over function to left-join the
values of dtp to the US states.

An alternative way of identifying the state of a given airport is to ask for
more detailed information from the Google Maps API. By changing the
default output argument of the geocode function, we can get all address
components for the matched spatial object, which of course includes the
state as well. Look for example at the following code snippet:
geocode('LAX','all')$results[[1]]$address_components

Based on this, you might want to get a similar output for all airports and
filter the list for the short name of the state. The rlist package would
be extremely useful in this task, as it offers some very convenient ways of
manipulating lists in R.

The only problem here is that we matched only one airport to the states, which is
definitely not okay. See for example the fourth column in the earlier output: it shows
LAX as the matched airport for California (returned by states[4]), although there
are many others there as well.

To overcome this issue, we can do at least two things. First, we can use the
returnList argument of the over function to return all matched rows of dtp,
and we will then post-process that data:

> str(sapply(sp::over(us, dtp, returnList = TRUE),
+ function(x) sum(x$Cancelled)))
 Named int [1:49] 51 44 34 97 23 0 0 35 66 149 ...
 - attr(*, "names")= chr [1:49] "alabama" "arizona" "arkansas" ...

So we created and called an anonymous function that will sum up the Cancelled
values of the data.frame in each element of the list returned by over.

Another, probably cleaner, approach is to redefine dtp to only include the related
values and pass a function to over to do the summary:

> dtp <- SpatialPointsDataFrame(dt[, c('lon', 'lat')],
+ dt[, 'Cancelled', drop = FALSE],
+ proj4string = CRS("+proj=longlat +datum=WGS84"))
> str(cancels <- sp::over(us, dtp, fn = sum))
'data.frame': 49 obs. of 1 variable:
 $ Cancelled: int 51 44 34 97 23 NA NA 35 66 149 ...

Either way, we have a vector to merge back to the US state names:

> val <- cancels$Cancelled[match(states, row.names(cancels))]

Chapter 13

[305]

And to update all missing values to zero (as the number of cancelled flights in a state
without any airport is not missing data, but exactly zero for sure):

> val[is.na(val)] <- 0

Plotting thematic maps
Now we have everything to create our first thematic map. Let's pass the val vector to
the previously used map function (or plot it using the us object), specify a plot title,
add a blue point for Houston, and then create a legend, which shows the quantiles
of the overall number of cancelled flights as a reference:

> map("state", col = rgb(1, 0, 0, sqrt(val/max(val))), fill = TRUE)

> title('Number of cancelled flights from Houston to US states')

> points(hlon, hlat, col = 'blue', pch = 13)

> legend('bottomright', legend = round(quantile(val)),

+ fill = rgb(1, 0, 0, sqrt(quantile(val)/max(val))), box.col = NA)

Please note that, instead of a linear scale, we have decided to compute the square
root of the relative values to define the intensity of the fill color, so that we can
visually highlight the differences between the states. This was necessary as most
flight cancellations happened in Texas (748), and there were no more than 150
cancelled flights in any other state (with the average being around 45).

Data Around Us

[306]

You can also easily load ESRI shape files or other geospatial vector data
formats into R as points or polygons with a bunch of packages already
discussed and a few others as well, such as the maptools, rgdal,
dismo, raster, or shapefile packages.

Another, probably easier, way to generate country-level thematic maps, especially
choropleth maps, is to load the rworldmap package made by Andy South, and rely
on the convenient mapCountryData function.

Rendering polygons around points
Besides thematic maps, another really useful way of presenting spatial data is to
draw artificial polygons around the data points based on the data values. This is
especially useful if there is no available polygon shape file to be used to generate
a thematic map.

A level plot, contour plot, or isopleths, might be an already familiar design from
tourist maps, where the altitude of the mountains is represented by a line drawn
around the center of the hill at the very same levels. This is a very smart approach
having maps present the height of hills—projecting this third dimension onto a
2-dimensional image.

Now let's try to replicate this design by considering our data points as mountains
on the otherwise flat map. We already know the heights and exact geo-coordinates
of the geometric centers of these hills (airports); the only challenge here is to draw
the actual shape of these objects. In other words:

• Are these mountains connected?
• How steep are the hillsides?
• Should we consider any underlying spatial effects in the data? In other

words, can we actually render these as mountains with a 3D shape instead
of plotting independent points in space?

If the answer for the last question is positive, then we can start trying to answer the
other questions by fine-tuning the plot parameters. For now, let's simply suppose
that there is a spatial effect in the underlying data, and it makes sense to visualize
the data in such a way. Later, we will have the chance to disprove or support this
statement either by analyzing the generated plots, or by building some geo-spatial
models—some of these will be discussed later, in the Spatial Statistics section.

Chapter 13

[307]

Contour lines
First, let's expand our data points into a matrix with the fields package. The size
of the resulting R object is defined arbitrarily but, for the given number of rows and
columns, which should be a lot higher to generate higher resolution images, 256 is a
good start:

> library(fields)

> out <- as.image(dt$ArrDelay, x = dt[, c('lon', 'lat')],

+ nrow = 256, ncol = 256)

The as.image function generates a special R object, which in short includes a
3-dimensional matrix-like data structure, where the x and y axes represent the
longitude and latitude ranges of the original data respectively. To simplify this
even more, we have a matrix with 256 rows and 256 columns, where each of those
represents a discrete value evenly distributed between the lowest and highest
values of the latitude and longitude. And on the z axis, we have the ArrDelay
values—which are in most cases of course missing:

> table(is.na(out$z))

FALSE TRUE

 112 65424

What does this matrix look like? It's better to see what we have at the moment:

> image(out)

Data Around Us

[308]

Well, this does not seem to be useful at all. What is shown there? We rendered the
x and y dimensions of the matrix with z colors here, and most tiles of this map are
empty due to the high amount of missing values in z. Also, it's pretty straightforward
now that the dataset includes many airports outside the USA as well. How does it
look if we focus only on the USA?

> image(out, xlim = base::range(map_data$x, na.rm = TRUE),

+ ylim = base::range(map_data$y, na.rm = TRUE))

An alternative and more elegant approach to rendering only the US
part of the matrix would be to drop the non-US airports from the
database before actually creating the out R object. Although we will
continue with this example for didactic purposes, with real data make
sure that you concentrate on the target subset of your data instead of
trying to smooth and model unrelated data points as well.

A lot better! So we have our data points as a tile, now let's try to identify the slope of
these mountain peaks, to be able to render them on a future map. This can be done
by smoothing the matrix:

> look <- image.smooth(out, theta = .5)

> table(is.na(look$z))

FALSE TRUE

14470 51066

Chapter 13

[309]

As can be seen in the preceding table, this algorithm successfully eliminated many
missing values from the matrix. The image.smooth function basically reused our
initial data point values in the neighboring tiles, and computed some kind of average
for the conflicting overrides. This smoothing algorithm results in the following
arbitrary map, which does not respect any political or geographical boundaries:

> image(look)

It would be really nice to plot these artificial polygons along with the administrative
boundaries, so let's clear out all cells that do not belong to the territory of the USA.
We will use the point.in.polygon function from the sp package to do so:

> usa_data <- map('usa', plot = FALSE, region = 'main')

> p <- expand.grid(look$x, look$y)

> library(sp)

> n <- which(point.in.polygon(p$Var1, p$Var2,

+ usa_datax, usa_datay) == 0)

> look$z[n] <- NA

In a nutshell, we have loaded the main polygon of the USA without any
sub-administrative areas, and verified our cells in the look object, if those are
overlapping the polygon. Then we simply reset the value of the cell, if not.

Data Around Us

[310]

The next step is to render the boundaries of the USA, plot our smoothed contour
plot, then add some eye-candy in the means of the US states and, the main point
of interest, the airport:

> map("usa")

> image(look, add = TRUE)

> map("state", lwd = 3, add = TRUE)

> title('Arrival delays of flights from Houston')

> points(dtlon, dtlat, pch = 19, cex = .5)

> points(hlon, hlat, pch = 13)

Now this is pretty neat, isn't it?

Voronoi diagrams
An alternative way of visualizing point data with polygons is to generate Voronoi cells
between them. In short, the Voronoi map partitions the space into regions around
the data points by aligning all parts of the map to one of the regions to minimize the
distance from the central data points. This is extremely easy to interpret, and also to
implement in R. The deldir package provides a function with the very same name
for Delaunay triangulation:

> library(deldir)

> map("usa")

> plot(deldir(dtlon, dtlat), wlines = "tess", lwd = 2,

+ pch = 19, col = c('red', 'darkgray'), add = TRUE)

Chapter 13

[311]

Here, we represented the airports with red dots, as we did before, but also added the
Dirichlet tessellation (Voronoi cells) rendered as dark-gray dashed lines. For more
options on how to fine-tune the results, see the plot.deldir method.

In the next section, let's see how to improve this plot by adding a more detailed
background map to it.

Satellite maps
There are many R packages on CRAN that can fetch data from Google Maps, Stamen,
Bing, or OpenStreetMap—even some of the packages that we have previously used in
this chapter, such as the ggmap package, can do this. Similarly, the dismo package also
comes with both geo-coding and Google Maps API integration capabilities, and there
are some other packages focused on that latter, such as the RgoogleMaps package.

Now we will use the OpenStreetMap package, mainly because it supports not only
the awesome OpenStreetMap database back-end, but also a bunch of other formats
as well. For example, we can render really nice terrain maps via Stamen:

> library(OpenStreetMap)

> map <- openmap(c(max(map_data$y, na.rm = TRUE),

+ min(map_data$x, na.rm = TRUE)),

+ c(min(map_data$y, na.rm = TRUE),

+ max(map_data$x, na.rm = TRUE)),

+ type = 'stamen-terrain')

Data Around Us

[312]

So we defined the left upper and right lower corners of the map we need, and also
specified the map style to be a satellite map. As the data by default arrives from
the remote servers with the Mercator projections, we first have to transform that
to WGS84 (we used this previously), so that we can render the points and polygons
on the top of the fetched map:

> map <- openproj(map,

+ projection = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')

And showtime at last:

> plot(map)

> plot(deldir(dtlon, dtlat), wlines = "tess", lwd = 2,

+ col = c('red', 'black'), pch = 19, cex = 0.5, add = TRUE)

This seems to be a lot better compared to the outline map we created previously.
Now you can try some other map styles as well, such as mapquest-aerial,
or some of the really nice-looking cloudMade designs.

Interactive maps
Besides being able to use Web-services to download map tiles for the background of
the maps created in R, we can also rely on some of those to generate truly interactive
maps. One of the best known related services is the Google Visualization API, which
provides a platform for hosting visualizations made by the community; you can also
use it to share maps you've created with others.

Chapter 13

[313]

Querying Google Maps
In R, you can access this API via the googleVis package written and maintained
by Markus Gesmann and Diego de Castillo. Most functions of the package generate
HTML and JavaScript code that we can directly view in a Web browser as an SVG
object with the base plot function; alternatively, we can integrate them in a Web
page, for example via the IFRAME HTML tag.

The gvisIntensityMap function takes a data.frame with country ISO or USA state
codes and the actual data to create a simple intensity map. We will use the cancels
dataset we created in the Finding Polygon Overlays of Point Data section, but before
that, we have to do some data transformations. Let's add the state name as a new
column to the data.frame, and replace the missing values with zero:

> cancels$state <- rownames(cancels)

> cancels$Cancelled[is.na(cancels$Cancelled)] <- 0

Now it's time to load the package and pass the data along with a few extra
parameters, signifying that we want to generate a state-level US map:

> library(googleVis)

> plot(gvisGeoChart(cancels, 'state', 'Cancelled',

+ options = list(

+ region = 'US',

+ displayMode = 'regions',

+ resolution = 'provinces')))

Data Around Us

[314]

The package also offers opportunities to query the Google Map API via the gvisMap
function. We will use this feature to render the airports from the dt dataset as points
on a Google Map with an auto-generated tooltip of the variables.

But first, as usual, we have to do some data transformations again. The location
argument of the gvisMap function takes the latitude and longitude values separated
by a colon:

> dt$LatLong <- paste(dt$lat, dt$lon, sep = ':')

We also have to generate the tooltips as a new variable, which can be done easily
with an apply call. We will concatenate the variable names and actual values
separated by a HTML line break:

> dt$tip <- apply(dt, 1, function(x)

+ paste(names(dt), x, collapse = '<br/ >'))

And now we just pass these arguments to the function for an instant interactive map:

> plot(gvisMap(dt, 'LatLong', tipvar = 'tip'))

Chapter 13

[315]

Another nifty feature of the googleVis package is that you can easily merge the
different visualizations into one by using the gvisMerge function. The use of this
function is quite simple: specify any two gvis objects you want to merge, and also
whether they are to be placed horizontally or vertically.

JavaScript mapping libraries
The great success of the trending JavaScript data visualization libraries is only partly
due to their great design. I suspect other factors also contribute to the general spread
of such tools: it's very easy to create and deploy full-blown data models, especially
since the release and on-going development of Mike Bostock's D3.js.

Although there are also many really useful and smart R packages to interact
directly with D3 and topojson (see for example my R user activity compilation at
http://bit.ly/countRies). Now we will only focus on how to use Leaflet—
probably the most used JavaScript library for interactive maps.

What I truly love in R is that there are many packages wrapping other tools, so that
R users can rely on only one programming language, and we can easily use C++
programs and Hadoop MapReduce jobs or build JavaScript-powered dashboards
without actually knowing anything about the underlying technology. This is
especially true when it comes to Leaflet!

There are at least two very nice packages that can generate a Leaflet plot from the
R console, without a single line of JavaScript. The Leaflet reference class of the
rCharts package was developed by Ramnath Vaidyanathan, and includes some
methods to create a new object, set the viewport and zoom level, add some points or
polygons to the map, and then render or print the generated HTML and JavaScript
code to the console or to a file.

Unfortunately, this package is not on CRAN yet, so you will have to install it from
GitHub:

> devtools::install_github('ramnathv/rCharts')

As a quick example, let's generate a Leaflet map of the airports with some tooltips,
like we did with the Google Maps API in the previous section. As the setView
method expects numeric geo-coordinates as the center of the map, we will use
Kansas City's airport as a reference:

> library(rCharts)

> map <- Leaflet$new()

> map$setView(as.numeric(dt[which(dt$Dest == 'MCI'),

http://bit.ly/countRies

Data Around Us

[316]

+ c('lat', 'lon')]), zoom = 4)

> for (i in 1:nrow(dt))

+ map$marker(c(dt$lat[i], dt$lon[i]), bindPopup = dt$tip[i])

> map$show()

Similarly, RStudio's leaflet package and the more general htmlwidgets package
also provide some easy ways to generate JavaScript-powered data visualizations.
Let's load the library and define the steps one by one using the pipe operator from
the magrittr package, which is pretty standard for all packages created or inspired
by RStudio or Hadley Wickham:

> library(leaflet)

> leaflet(us) %>%

+ addProviderTiles("Acetate.terrain") %>%

+ addPolygons() %>%

+ addMarkers(lng = dt$lon, lat = dt$lat, popup = dt$tip)

Chapter 13

[317]

I especially like this preceding map, as we can load a third-party satellite map in
the background, then render the states as polygons; we also added the original data
points along with some useful tooltips on the very same map with literally a one-line
R command. We could even color the state polygons based on the aggregated results
we computed in the previous sections! Ever tried to do the same in Java?

Alternative map designs
Besides being able to use third-party tools, another main reason why I tend to use R
for all my data analysis tasks is that R is extremely powerful in creating custom data
exploration, visualization, and modeling designs.

As an example, let's create a flow-map based on our data, where we will highlight
the flights from Houston based on the number of actual and cancelled flights. We
will use lines and circles to render these two variables on a 2-dimensional map, and
we will also add a contour plot in the background based on the average time delay.

But, as usual, let's do some data transformations first! To keep the number of flows
at a minimal level, let's get rid of the airports outside the USA at last:

> dt <- dt[point.in.polygon(dtlon, dtlat,

+ usa_datax, usa_datay) == 1,]

Data Around Us

[318]

We will need the diagram package (to render curved arrows from Houston to the
destination airports) and the scales package to create transparent colors:

> library(diagram)

> library(scales)

Then, let's render the contour map described in the Contour Lines section:

> map("usa")

> title('Number of flights, cancellations and delays from Houston')

> image(look, add = TRUE)

> map("state", lwd = 3, add = TRUE)

And then add a curved line from Houston to each of the destination airports, where
the width of the line represents the number of cancelled flights and the diameter of
the target circles shows the number of actual flights:

> for (i in 1:nrow(dt)) {

+ curvedarrow(

+ from = rev(as.numeric(h)),

+ to = as.numeric(dt[i, c('lon', 'lat')]),

+ arr.pos = 1,

+ arr.type = 'circle',

+ curve = 0.1,

+ arr.col = alpha('black', dt$N[i] / max(dt$N)),

+ arr.length = dt$N[i] / max(dt$N),

+ lwd = dt$Cancelled[i] / max(dt$Cancelled) * 25,

+ lcol = alpha('black',

+ dt$Cancelled[i] / max(dt$Cancelled)))

+ }

Chapter 13

[319]

Well, this chapter ended up being about visualizing spatial data, and not really about
analyzing spatial data by fitting models, filtering raw data, and looking for spatial
effects. In the last section of the chapter, let's see how one can start using analytical
approaches with spatial data.

Spatial statistics
Most exploratory data analysis projects dealing with spatial data start by looking for,
and potentially filtering, spatial autocorrelation. In simple terms, this means that we
are looking for spatial effects in the data—for instance, the similarities of some data
points can be (partly) explained by the short distance between them; further points
seem to differ a lot more. There is nothing surprising in this statement; probably all
of you agree with this. But how can we test this on real data with analytical tools?

Moran's I index is a well-known and generally used measure to test whether spatial
autocorrelation is present or not in the variable of interest. This is a quite simple
statistical test with the null hypothesis that there is no spatial autocorrelation in
the dataset.

Data Around Us

[320]

With the current data structure we have, probably the easiest way to compute
Moran's I is to load the ape package, and pass the similarity matrix along with
the variable of interest to the Moran.I function. First, let's compute this similarity
matrix by the inverse of the Euclidian distance matrix:

> dm <- dist(dt[, c('lon', 'lat')])

> dm <- as.matrix(dm)

> idm <- 1 / dm

> diag(idm) <- 0

> str(idm)

 num [1:88, 1:88] 0 0.0343 0.1355 0.2733 0.0467 ...

 - attr(*, "dimnames")=List of 2

 ..$: chr [1:88] "1" "3" "6" "7" ...

 ..$: chr [1:88] "1" "3" "6" "7" ...

Then let's replace all possible missing values (because the number of flights can be
one as well, resulting in zero variance) in the TimeVar column, and let's see if there
is any spatial autocorrelation in the variance of the actual elapsed time of the flights:

> dt$TimeVar[is.na(dt$TimeVar)] <- 0

> library(ape)

> Moran.I(dt$TimeVar, idm)

$observed

[1] 0.1895178

$expected

[1] -0.01149425

$sd

[1] 0.02689139

$p.value

[1] 7.727152e-14

This was pretty easy, wasn't it? Based on the returned P value, we can reject the null
hypothesis, and the 0.19 Moran's I suggests that the variation in the elapsed flight
time is affected by the location of the destination airports, probably due to the very
different distances.

Chapter 13

[321]

A reverse dependency of the previously mentioned sp package, the spdep package
can also compute this index, although we have to first transform the similarity
matrix into a list object:

> library(spdep)

> idml <- mat2listw(idm)

> moran.test(dt$TimeVar, idml)

 Moran's I test under randomisation

data: dt$TimeVar

weights: idml

Moran I statistic standard deviate = 1.7157, p-value = 0.04311

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

 0.108750656 -0.011494253 0.004911818

Although the test results are similar to the previous run, and we can reject the null
hypothesis of zero spatial autocorrelation in the data, the Moran's I index and the
P values are not identical. This is mainly due to the fact that the ape package used
weight matrix for the computation, while the moran.test function was intended to
be used with polygon data, as it requires the neighbor lists of the data. Well, as our
example included point data, this is not a clean-cut solution. Another main difference
between the approaches is that the ape package uses normal approximation, while
spdep implements randomization. But this difference is still way too high, isn't it?

Reading the function documentation reveals that we can improve the spdep approach:
when converting the matrix into a listw object, we can specify the actual type
of the originating matrix. In our case, as we are using the inverse distance matrix,
a row-standardized style seems more appropriate:

> idml <- mat2listw(idm, style = "W")

> moran.test(dt$TimeVar, idml)

 Moran's I test under randomisation

data: dt$TimeVar

weights: idml

Data Around Us

[322]

Moran I statistic standard deviate = 7.475, p-value = 3.861e-14

alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation Variance

 0.1895177587 -0.0114942529 0.0007231471

Now the differences between this and the ape results are in an acceptable range, right?

Unfortunately, this section cannot cover related questions or other statistical methods
dealing with spatial data, but there are many really useful books out there dedicated
to the topic. Please be sure to check the Appendix at the end of the book for some
suggested titles.

Summary
Congratulations, you have just finished the last systematic chapter of the book! Here,
we focused on how to analyze spatial data mainly with data visualization tools.

Now let's see how we can combine the methods learned in the previous chapters.
In the final part of the book, we will analyze the R community with various data
science tools. If you liked this chapter, I am sure you will enjoy the final one as well.

[323]

Analyzing the R Community
In this final chapter, I will try to summarize what you have learned in the past
13 chapters. To this end, we will create an actual case study, independent from the
previously used hflights and mtcars datasets, and will now try to estimate the
size of the R community. This is a rather difficult task as there is no list of R users
around the world; thus, we will have to build some predicting models on a number
of partial datasets.

To this end, we will do the following in this chapter:

• Collect live data from different data sources on the Internet
• Cleanse the data and transform it to a standard format
• Run some quick descriptive, exploratory analysis methods
• Visualize the extracted data
• Build some log-linear models on the number of R users based on an

independent list of names

R Foundation members
One of the easiest things we can do is count the members of the R Foundation—the
organization coordinating the development of the core R program. As the ordinary
members of the Foundation include only the R Development Core Team, we had better
check the supporting members. Anyone can become a supporting member of the
Foundation by paying a nominal yearly fee— I highly suggest you do this, by the
way. The list is available on the http://r-project.org site, and we will use the
XML package (for more detail, see Chapter 2, Getting Data from the Web) to parse the
HTML page:

> library(XML)

> page <- htmlParse('http://r-project.org/foundation/donors.html')

http://r-project.org

Analyzing the R Community

[324]

Now that we have the HTML page loaded into R, we can use the XML Path
Language to extract the list of the supporting members of the Foundation,
by reading the list after the Supporting members header:

> list <- unlist(xpathApply(page,

+ "//h3[@id='supporting-members']/following-sibling::ul[1]/li",

+ xmlValue))

> str(list)

 chr [1:279] "Klaus Abberger (Germany)" "Claudio Agostinelli (Italy)"

Form this character vector of 279 names and countries, let's extract the list of
supporting members and the countries separately:

> supporterlist <- sub(' \\([a-zA-Z]*\\)$', '', list)

> countrylist <- substr(list, nchar(supporterlist) + 3,

+ nchar(list) - 1)

So we first extracted the names by removing everything starting from the
opening parenthesis in the strings, and then we matched the countries by the
character positions computed from the number of characters in the names and
the original strings.

Besides the name list of 279 supporting members of the R Foundation, we also
know the proportion of the citizenship or residence of the members:

> tail(sort(prop.table(table(countrylist)) * 100), 5)

 Canada Switzerland UK Germany USA

 4.659498 5.017921 7.168459 15.770609 37.992832

Visualizing supporting members around
the world
Probably it's not that surprising that most supporting members are from the USA,
and some European countries are also at the top of this list. Let's save this table so
that we can generate a map on this count data after some quick data transformations:

> countries <- as.data.frame(table(countrylist))

Chapter 14

[325]

As mentioned in Chapter 13, Data Around Us, the rworldmap package can render
country-level maps in a very easy way; we just have to map the values with some
polygons. Here, we will use the joinCountryData2Map function, first enabling the
verbose option to see what country names have been missed:

> library(rworldmap)

> joinCountryData2Map(countries, joinCode = 'NAME',

+ nameJoinColumn = 'countrylist', verbose = TRUE)

32 codes from your data successfully matched countries in the map

4 codes from your data failed to match with a country code in the map

 failedCodes failedCountries

[1,] NA "Brasil"

[2,] NA "CZ"

[3,] NA "Danmark"

[4,] NA "NL"

213 codes from the map weren't represented in your data

So we tried to match the country names stored in the countries data frame, but failed
for the previously listed four strings. Although we could manually fix this, in most
cases it's better to automate what we can, so let's pass all the failed strings to the
Google Maps geocoding API and see what it returns:

> library(ggmap)

> for (fix in c('Brasil', 'CZ', 'Danmark', 'NL')) {

+ countrylist[which(countrylist == fix)] <-

+ geocode(fix, output = 'more')$country

+ }

Now that we have fixed the country names with the help of the Google geocoding
service, let's regenerate the frequency table and map those values to the polygon
names with the rworldmap package:

> countries <- as.data.frame(table(countrylist))

> countries <- joinCountryData2Map(countries, joinCode = 'NAME',

+ nameJoinColumn = 'countrylist')

36 codes from your data successfully matched countries in the map

0 codes from your data failed to match with a country code in the map

211 codes from the map weren't represented in your data

Analyzing the R Community

[326]

These results are much more satisfying! Now we have the number of supporting
members of the R Foundation mapped to the countries, so we can easily plot this data:

> mapCountryData(countries, 'Freq', catMethod = 'logFixedWidth',

+ mapTitle = 'Number of R Foundation supporting members')

Well, it's clear that most supporting members of the R Foundation are based in the
USA, Europe, Australia, and New Zealand (where R was born more than 20 years ago).

But the number of supporters is unfortunately really low, so let's see what other data
sources we can find and utilize in order to estimate the number of R users around the
world.

Chapter 14

[327]

R package maintainers
Another similarly straightforward data source might be the list of R package
maintainers. We can download the names and e-mail addresses of the package
maintainers from a public page of CRAN, where this data is stored in a nicely
structured HTML table that is extremely easy to parse:

> packages <- readHTMLTable(paste0('http://cran.r-project.org',

+ '/web/checks/check_summary.html'), which = 2)

Extracting the names from the Maintainer column can be done via some quick data
cleansing and transformations, mainly using regular expressions. Please note that the
column name starts with a space—that's why we quoted the column name:

> maintainers <- sub('(.*) <(.*)>', '\\1', packages$' Maintainer')

> maintainers <- gsub(' ', ' ', maintainers)

> str(maintainers)

 chr [1:6994] "Scott Fortmann-Roe" "Gaurav Sood" "Blum Michael" ...

This list of almost 7,000 package maintainers includes some duplicated names
(they maintain multiple packages). Let's see the list of the top, most prolific
R package developers:

> tail(sort(table(maintainers)), 8)

 Paul Gilbert Simon Urbanek Scott Chamberlain Martin Maechler

 22 22 24 25

 ORPHANED Kurt Hornik Hadley Wickham Dirk Eddelbuettel

 26 29 31 36

Although there's an odd name in the preceding list (orphaned packages do not have
a maintainer—it's worth mentioning that having only 26 packages out of the 6,994
no longer actively maintained is a pretty good ratio), but the other names are indeed
well known in the R community and work on a number of useful packages.

Analyzing the R Community

[328]

The number of packages per maintainer
On the other hand, there are a lot more names in the list associated with only one
or a few R packages. Instead of visualizing the number of packages per maintainer
on a simple bar chart or histogram, let's load the fitdistrplus package, which
we will use on the forthcoming pages to fit various theoretical distributions on this
analyzed dataset:

> N <- as.numeric(table(maintainers))

> library(fitdistrplus)

> plotdist(N)

The preceding plots also show that most people in the list maintain only one, but no
more than two or three, packages. If we are interested in how long/heavy tailed this
distribution is, we might want to call the descdist function, which returns some
important descriptive statistics on the empirical distribution and also plots how
different theoretical distributions fit our data on a skewness-kurtosis plot:

> descdist(N, boot = 1e3)
summary statistics

min: 1 max: 36
median: 1
mean: 1.74327
estimated sd: 1.963108
estimated skewness: 7.191722
estimated kurtosis: 82.0168

Chapter 14

[329]

Our empirical distribution seems to be rather long-tailed with a very high kurtosis,
and it seems that the gamma distribution is the best fit for this dataset. Let's see the
estimate parameters of this gamma distribution:

> (gparams <- fitdist(N, 'gamma'))

Fitting of the distribution ' gamma ' by maximum likelihood

Parameters:

 estimate Std. Error

shape 2.394869 0.05019383

rate 1.373693 0.03202067

Analyzing the R Community

[330]

We can use these parameters to simulate a lot more R package maintainers with the
rgamma function. Let's see how many R packages would be available on CRAN with,
for example, 100,000 package maintainers:

> gshape <- gparams$estimate[['shape']]

> grate <- gparams$estimate[['rate']]

> sum(rgamma(1e5, shape = gshape, rate = grate))

[1] 173655.3

> hist(rgamma(1e5, shape = gshape, rate = grate))

It's rather clear that this distribution is not as long-tailed as our real dataset:
even with 100,000 simulations, the largest number was below 10, as we can see
in the preceding plot; in reality, though, the R package maintainers are a lot more
productive with up to 20 or 30 packages.

Let's verify this by estimating the proportion of R package maintainers with no
more than two packages based on the preceding gamma distribution:

> pgamma(2, shape = gshape, rate = grate)

[1] 0.6672011

But this percentage is a lot higher in the real dataset:

> prop.table(table(N <= 2))

 FALSE TRUE

0.1458126 0.8541874

Chapter 14

[331]

This may suggest trying to fit a longer-tailed distribution. Let's see for example
how Pareto distribution would fit our data. To this end, let's follow the analytical
approach by using the lowest value as the location of the distribution, and the
number of values divided by the sum of the logarithmic difference of all these
values from the location as the shape parameter:

> ploc <- min(N)

> pshp <- length(N) / sum(log(N) - log(ploc))

Unfortunately, there is no ppareto function in the base stats package, so we have
to first load the actuar or VGAM package to compute the distribution function:

> library(actuar)

> ppareto(2, pshp, ploc)

[1] 0.9631973

Well, now this is even higher than the real proportion! It seems that none of the
preceding theoretical distributions fit our data perfectly—which is pretty normal by
the way. But let's see how these distributions fit our original data set on a joint plot:

> fg <- fitdist(N, 'gamma')

> fw <- fitdist(N, 'weibull')

> fl <- fitdist(N, 'lnorm')

> fp <- fitdist(N, 'pareto', start = list(shape = 1, scale = 1))

> par(mfrow = c(1, 2))

> denscomp(list(fg, fw, fl, fp), addlegend = FALSE)

> qqcomp(list(fg, fw, fl, fp),

+ legendtext = c('gamma', 'Weibull', 'Lognormal', 'Pareto'))

Analyzing the R Community

[332]

After all, it seems that the Pareto distribution is the closest fit to our long-tailed
data. But more importantly, we know about more than 4,000 R users besides the
previously identified 279 R Foundation supporting members:

> length(unique(maintainers))

[1] 4012

What other data sources can we use to find information on the (number of) R users?

The R-help mailing list
R-help is the official, main mailing list providing general discussion about problems
and solutions using R, with many active users and several dozen e-mails every day.
Fortunately, this public mailing list is archived on several sites, and we can easily
download the compressed monthly files from, for example, ETH Zurich's R-help
archives:

> library(RCurl)

> url <- getURL('https://stat.ethz.ch/pipermail/r-help/')

Now let's extract the URL of the monthly compressed archives from this page via an
XPath query:

> R.help.toc <- htmlParse(url)

> R.help.archives <- unlist(xpathApply(R.help.toc,

+ "//table//td[3]/a", xmlAttrs), use.names = FALSE)

And now let's download these files to our computer for future parsing:

> dir.create('r-help')

> for (f in R.help.archives)

+ download.file(url = paste0(url, f),

+ file.path('help-r', f), method = 'curl'))

Depending on your operating system and R version, the curl option
that we used to download files via the HTTPS protocol might not be
available. In such cases, you can try other another method or update
the query to use the RCurl, curl, or httr packages.

Chapter 14

[333]

Downloading these ~200 files takes some time and you might also want to add
a Sys.sleep call in the loop so as not to overload the server. Anyway, after some
time, you will have a local copy of the R-help mailing list in the r-help folder,
ready to be parsed for some interesting data:

> lines <- system(paste0(

+ "zgrep -E '^From: .* at .*' ./help-r/*.txt.gz"),

+ intern = TRUE)

> length(lines)

[1] 387218

> length(unique(lines))

[1] 110028

Instead of loading all the text files into R and using grep there,
I pre-filtered the files via the Linux command line zgrep utility,
which can search in gzipped (compressed) text files efficiently.
If you do not have zgrep installed (it is available on both Windows
and the Mac), you can extract the files first and use the standard
grep approach with the very same regular expression.

So we filtered for all lines of the e-mails and headers, starting with the From string, that
hold information on the senders in the e-mail address and name. Out of the ~387,000
e-mails, we have found around ~110,000 unique e-mail sources. To understand the
following regular expressions, let's see how one of these lines looks:

> lines[26]

[1] "./1997-April.txt.gz:From: pcm at ptd.net (Paul C. Murray)"

Now let's process these lines by removing the static prefix and extracting the names
found between parentheses after the e-mail address:

> lines <- sub('.*From: ', '', lines)

> Rhelpers <- sub('.*\\((.*)\\)', '\\1', lines)

And we can see the list of the most active R-help posters:

> tail(sort(table(Rhelpers)), 6)

 jim holtman Duncan Murdoch Uwe Ligges

 4284 6421 6455

Gabor Grothendieck Prof Brian Ripley David Winsemius

 8461 9287 10135

Analyzing the R Community

[334]

This list seems to be legitimate, right? Although my first guess was that Professor
Brian Ripley with his brief messages will be the first one in this list. As a result
of some earlier experiences, I know that matching names can be tricky and
cumbersome, so let's verify that our data is clean enough and there's only one
version of the Professor's name:

> grep('Brian(D)? Ripley', names(table(Rhelpers)), value = TRUE)

 [1] "Brian D Ripley"

 [2] "Brian D Ripley [mailto:ripley at stats.ox.ac.uk]"

 [3] "Brian Ripley"

 [4] "Brian Ripley <ripley at stats.ox.ac.uk>"

 [5] "Prof Brian D Ripley"

 [6] "Prof Brian D Ripley [mailto:ripley at stats.ox.ac.uk]"

 [7] " Prof Brian D Ripley <ripley at stats.ox.ac.uk>"

 [8] "\"Prof Brian D Ripley\" <ripley at stats.ox.ac.uk>"

 [9] "Prof Brian D Ripley <ripley at stats.ox.ac.uk>"

[10] "Prof Brian Ripley"

[11] "Prof. Brian Ripley"

[12] "Prof Brian Ripley [mailto:ripley at stats.ox.ac.uk]"

[13] "Prof Brian Ripley [mailto:ripley at stats.ox.ac.uk] "

[14] " \tProf Brian Ripley <ripley at stats.ox.ac.uk>"

[15] " Prof Brian Ripley <ripley at stats.ox.ac.uk>"

[16] "\"Prof Brian Ripley\" <ripley at stats.ox.ac.uk>"

[17] "Prof Brian Ripley<ripley at stats.ox.ac.uk>"

[18] "Prof Brian Ripley <ripley at stats.ox.ac.uk>"

[19] "Prof Brian Ripley [ripley at stats.ox.ac.uk]"

[20] "Prof Brian Ripley <ripley at toucan.stats>"

[21] "Professor Brian Ripley"

[22] "r-help-bounces at r-project.org [mailto:r-help-bounces at
r-project.org] On Behalf Of Prof Brian Ripley"

[23] "r-help-bounces at stat.math.ethz.ch [mailto:r-help-bounces at stat.
math.ethz.ch] On Behalf Of Prof Brian Ripley"

Well, it seems that the Professor used some alternative From addresses as well, so a
more valid estimate of the number of his messages should be something like:

> sum(grepl('Brian(D)? Ripley', Rhelpers))

[1] 10816

Chapter 14

[335]

So using quick, regular expressions to extract the names from the e-mails returned
most of the information we were interested in, but it seems that we have to spend
a lot more time to get the whole information set. As usual, the Pareto rule applies:
we can spend around 80 percent of our time on preparing data, and we can get 80
percent of the data in around 20 percent of the whole project timeline.

Due to page limitations, we will not cover data cleansing on this dataset in greater
detail at this point, but I highly suggest checking Mark van der Loo's stringdist
package, which can compute string distances and similarities to, for example, merge
similar names in cases like this.

Volume of the R-help mailing list
But besides the sender, these e-mails also include some other really interesting data
as well. For example, we can extract the date and time when the e-mail was sent—to
model the frequency and temporal pattern of the mailing list.

To this end, let's filter for some other lines in the compressed text files:

> lines <- system(paste0(

+ "zgrep -E '^Date: [A-Za-z]{3}, [0-9]{1,2} [A-Za-z]{3} ",

+ "[0-9]{4} [0-9]{2}:[0-9]{2}:[0-9]{2} [-+]{1}[0-9]{4}' ",

+ "./help-r/*.txt.gz"),

+ intern = TRUE)

This returns fewer lines when compared to the previously extracted From lines:

> length(lines)

[1] 360817

This is due to the various date and time formats used in the e-mail headers, as
sometimes the day of the week was not included in the string or the order of year,
month, and day was off compared to the vast majority of other mails. Anyway, we
will only concentrate on this significant portion of mails with the standard date and
time format but, if you are interested in transforming these other time formats, you
might want to check Hadley Wickham's lubridate package to help your workflow.
But please note that there's no general algorithm to guess the order of decimal year,
month, and day—so you will end up with some manual data cleansing for sure!

Let's see how these (subset of) lines look:

> head(sub('.*Date: ', '', lines[1]))

[1] "Tue, 1 Apr 1997 20:35:48 +1200 (NZST)"

Analyzing the R Community

[336]

Then we can simply get rid of the Date prefix and parse the time stamps via strptime:

> times <- strptime(sub('.*Date: ', '', lines),

+ format = '%a, %d %b %Y %H:%M:%S %z')

Now that the data is in a parsed format (even the local time-zones were converted to
UTC), it's relatively easy to see, for example, the number of e-mails on the mailing
list per year:

> plot(table(format(times, '%Y')), type = 'l')

Although the volume on the R-help mailing list seems to have
decreased in the past few years, it's not due to the lower R activity:
R users, okay as is or no/. others on the Internet, nowadays tend
to use other information channels more often than e-mail—for
example: StackOverflow and GitHub (or even Facebook and
LinkedIn). For a related research, please see the paper of Bogdan
Vasilescu at al at http://web.cs.ucdavis.edu/~filkov/
papers/r_so.pdf.

Well, we can do a lot better than this, right? Let's massage our data a bit and
visualize the frequency of mails based on the day of week and hour of the day via a
more elegant graph—inspired by GitHub's punch card plot:

> library(data.table)

> Rhelp <- data.table(time = times)

> Rhelp[, H := hour(time)]

> Rhelp[, D := wday(time)]

http://web.cs.ucdavis.edu/~filkov/papers/r_so.pdf
http://web.cs.ucdavis.edu/~filkov/papers/r_so.pdf

Chapter 14

[337]

Visualizing this dataset is relatively straightforward with ggplot:

> library(ggplot2)

> ggplot(na.omit(Rhelp[, .N, by = .(H, D)]),

+ aes(x = factor(H), y = factor(D), size = N)) + geom_point() +

+ ylab('Day of the week') + xlab('Hour of the day') +

+ ggtitle('Number of mails posted on [R-help]') +

+ theme_bw() + theme('legend.position' = 'top')

As the times are by UTC, the early morning mails might suggest that where most
R-help posters live has a positive GMT offset—if we suppose that most e-mails
were written in business hours. Well, at least the lower number of e-mails on the
weekends seems to suggest this statement.

And it seems that the UTC, UTC+1, and UTC+2 time zones are indeed rather
frequent, but the US time zones are also pretty common for the R-help posters:

> tail(sort(table(sub('.*([+-][0-9]{4}).*', '\\1', lines))), 22)

-1000 +0700 +0400 -0200 +0900 -0000 +0300 +1300 +1200 +1100 +0530

 164 352 449 1713 1769 2585 2612 2917 2990 3156 3938

-0300 +1000 +0800 -0600 +0000 -0800 +0200 -0500 -0400 +0100 -0700

 4712 5081 5493 14351 28418 31661 42397 47552 50377 51390 55696

Analyzing the R Community

[338]

Forecasting the e-mail volume in the future
And we can also use this relatively clean dataset to forecast the future volume of the
R-help mailing list. To this end, let's aggregate the original dataset to count data
daily, as we saw in Chapter 3, Filtering and Summarizing Data:

> Rhelp[, date := as.Date(time)]

> Rdaily <- na.omit(Rhelp[, .N, by = date])

Now let's transform this data.table object into a time-series object by referencing
the actual mail counts as values and the dates as the index:

> Rdaily <- zoo(Rdaily$N, Rdaily$date)

Well, this daily dataset is a lot spikier than the previously rendered yearly graph:

> plot(Rdaily)

But instead of smoothing or trying to decompose this time-series, like we did in
Chapter 12, Analyzing Time-series, let's rather see how we can provide some quick
estimates (based on historical data) on the forthcoming number of mails on this
mailing list with some automatic models. To this end, we will use the forecast
package:

> library(forecast)

> fit <- ets(Rdaily)

Chapter 14

[339]

The ets function implements a fully automatic method that can select the optimal
trend, season, and error type for the given time-series. Then we can simply call the
predict or forecast function to see the specified number of estimates, only for the
next day in this case:

> predict(fit, 1)

 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

5823 28.48337 9.85733 47.10942 -0.002702251 56.96945

So it seems that, for the next day, our model estimated around 28 e-mails with a
confidence interval of 80 percent being somewhere between 10 and 47. Visualizing
predictions for a slightly longer period of time with some historical data can be done
via the standard plot function with some useful new parameters:

> plot(forecast(fit, 30), include = 365)

Analyzing overlaps between our lists of
R users
But our original idea was to predict the number of R users around the world and not
to focus on some minor segments, right? Now that we have multiple data sources,
we can start building some models combining those to provide estimates on the
global number of R users.

The basic idea behind this approach is the capture-recapture method, which is well
known in ecology, where we first try to identify the probability of capturing a unit
from the population, and then we use this probability to estimate the number of not
captured units.

Analyzing the R Community

[340]

In our current study, units will be R users and the samples are the previously
captured name lists on the:

• Supporters of the R Foundation
• R package maintainers who submitted at least one package to CRAN
• R-help mailing list e-mail senders

Let's merge these lists with a tag referencing the data source:

> lists <- rbindlist(list(

+ data.frame(name = unique(supporterlist), list = 'supporter'),

+ data.frame(name = unique(maintainers), list = 'maintainer'),

+ data.frame(name = unique(Rhelpers), list = 'R-help')))

Next let's see the number of names we can find in one, two or all three groups:

> t <- table(lists$name, lists$list)

> table(rowSums(t))

 1 2 3

44312 860 40

So there are (at least) 40 persons who support the R Foundation, maintain at least
one R package on CRAN, and have posted at least one mail to R-help since 1997!
I am happy and proud to be one of these guys -- especially with an accent in my
name, which often makes matching of strings more complex.

Now, if we suppose these lists refer to the same population, namely R users around
the world, then we can use these common occurrences to predict the number of R
users who somehow missed supporting the R Foundation, maintaining a package
on CRAN, and writing a mail to the R-help mailing list. Although this assumption
is obviously off, let's run this quick experiment and get back to these outstanding
questions later.

One of the best things in R is that we have a package for almost any problem.
Let's load the Rcapture package, which provides some sophisticated, yet easily
accessible, methods for capture-recapture models:

> library(Rcapture)
> descriptive(t)

Number of captured units: 45212

Frequency statistics:
 fi ui vi ni

Chapter 14

[341]

i = 1 44312 279 157 279

i = 2 860 3958 3194 4012

i = 3 40 40975 41861 41861

fi: number of units captured i times

ui: number of units captured for the first time on occasion i

vi: number of units captured for the last time on occasion i

ni: number of units captured on occasion i

These numbers from the first fi column are familiar from the previous table, and
represent the number of R users identified on one, two, or all three lists. It's a lot
more interesting to fit some models on this data with a simple call such as:

> closedp(t)

Number of captured units: 45212

Abundance estimations and model fits:

 abundance stderr deviance df AIC BIC

M0 750158.4 23800.7 73777.800 5 73835.630 73853.069

Mt 192022.2 5480.0 240.278 3 302.109 336.986

Mh Chao (LB) 806279.2 26954.8 73694.125 4 73753.956 73780.113

Mh Poisson2 2085896.4 214443.8 73694.125 4 73753.956 73780.113

Mh Darroch 5516992.8 1033404.9 73694.125 4 73753.956 73780.113

Mh Gamma3.5 14906552.8 4090049.0 73694.125 4 73753.956 73780.113

Mth Chao (LB) 205343.8 6190.1 30.598 2 94.429 138.025

Mth Poisson2 1086549.0 114592.9 30.598 2 94.429 138.025

Mth Darroch 6817027.3 1342273.7 30.598 2 94.429 138.025

Mth Gamma3.5 45168873.4 13055279.1 30.598 2 94.429 138.025

Mb -36.2 6.2 107.728 4 167.559 193.716

Mbh -144.2 25.9 84.927 3 146.758 181.635

Once again, I have to emphasize that these estimates are not actually on the
abundance of all R users around the world, because:

• Our non-independent lists refer to far more specific groups
• The model assumptions do not stand
• The R community is definitely not a closed population and some

open-population models would be more reliable
• We missed some very important data-cleansing steps, as noted

Analyzing the R Community

[342]

Further ideas on extending the
capture-recapture models
Although this playful example did not really help us to find out the number of R
users around the world, with some extensions the basic idea is definitely viable. First
of all, we might consider analyzing the source data in smaller chunks—for example,
looking for the same e-mail addresses or names in different years of the R-help
archives. This might help with estimating the number of persons who were thinking
about submitting a question to R-help, but did not actually send the e-mail after all
(for example, because another poster's question had already been answered or she/
he resolved the problem without external help).

On the other hand, we could also add a number of other data sources to the models,
so that we can do more reliable estimates on some other R users who do not
contribute to the R Foundation, CRAN, or R-help.

I have been working on a similar study over the past 2 years, collecting data on the
number of:

• R Foundation ordinary and supporting members, donators and benefactors
• Attendees at the annual R conference between 2004 and 2015
• CRAN downloads per package and country in 2013 and 2014
• R User Groups and meet-ups with the number of members
• The http://www.r-bloggers.com visitors in 2013
• GitHub users with at least one repository with R source code
• Google search trends on R-related terms

You can find the results on an interactive map and the country-level aggregated
data in a CSV file at http://rapporter.net/custom/R-activity and an offline
data visualization presented in the past two useR! conferences at http://bit.ly/
useRs2015.

The number of R users in social media
An alternative way to try to estimate the number of R users could be to analyze
the occurrence of the related terms on social media. This is relatively easy on
Facebook, where the marketing API allows us to query the size of the so-called
target audiences, which we can use to define targets for some paid ads.

http://www.r-bloggers.com
http://rapporter.net/custom/R-activity
http://bit.ly/useRs2015
http://bit.ly/useRs2015

Chapter 14

[343]

Well, we are not actually interested in creating a paid advertisement on Facebook
right now, although this can be easily done with the fbRads package, but we can use
this feature to see the estimated size of the target group of persons interested in R:

> library(fbRads)

> fbad_init(FB account ID, FB API token)

> fbad_get_search(q = 'rstats', type = 'adinterest')

 id name audience_size path description

6003212345926 R (programming language) 1308280 NULL NA

Of course, to run this quick example you will need to have a (free) Facebook
developer account, a registered application, and a generated token (please see the
package docs for more details), but it is definitely worth it: we have just found out
that there are more than 1.3M users around the world interested in R! That's really
impressive, although it seems to be rather high to me, especially when compared
with some other statistical software, such as:

> fbad_get_search(fbacc = fbacc, q = 'SPSS', type = 'adinterest')

 id name audience_size path description

1 6004181236095 SPSS 203840 NULL NA

2 6003262140109 SPSS Inc. 2300 NULL NA

Having said this, comparing R with other programming languages suggests that the
audience size might actually be correct:

> res <- fbad_get_search(fbacc = fbacc, q = 'programming language',

+ type = 'adinterest')

> res <- res[order(res$audience_size, decreasing = TRUE),]

> res[1:10, 1:3]

 id name audience_size

1 6003030200185 Programming language 295308880

71 6004131486306 C++ 27812820

72 6003017204650 PHP 23407040

73 6003572165103 Lazy evaluation 18251070

74 6003568029103 Object-oriented programming 14817330

2 6002979703120 Ruby (programming language) 10346930

75 6003486129469 Compiler 10101110

76 6003127967124 JavaScript 9629170

3 6003437022731 Java (programming language) 8774720

4 6003682002118 Python (programming language) 7932670

Analyzing the R Community

[344]

There are many programmers around the world, it seems! But what are they
talking about and what are the trending topics? We will cover these questions
in the next section.

R-related posts in social media
One option to collect posts from the past few days of social media is processing
Twitter's global stream of Tweet data. This stream data and API provides access to
around 1 percent of all tweets. If you are interested in all this data, then a commercial
Twitter Firehouse account is needed. In the following examples, we will use the free
Twitter search API, which provides access to no more than 3,200 tweets based on any
search query—but this will be more than enough to do some quick analysis on the
trending topics among R users.

So let's load the twitteR package and initialize the connection to the API by providing
our application tokens and secrets, generated at https://apps.twitter.com:

> library(twitteR)

> setup_twitter_oauth(...)

Now we can start using the searchTwitter function to search tweets for any
keywords, including hashtags and mentions. This query can be fine-tuned with
a couple of arguments. Since, until, and n set the beginning and end date, also
the number of tweets to return respectively. Language can be set with the lang
attribute by the ISO 639-1 format—for example, use en for English.

Let's search for the most recent tweet with the official R hashtag:

> str(searchTwitter("#rstats", n = 1, resultType = 'recent'))

Reference class 'status' [package "twitteR"] with 17 fields

 $ text : chr "7 #rstats talks in 2014"| __truncated__

 $ favorited : logi FALSE

 $ favoriteCount: num 2

 $ replyToSN : chr(0)

 $ created : POSIXct[1:1], format: "2015-07-21 19:31:23"

 $ truncated : logi FALSE

 $ replyToSID : chr(0)

 $ id : chr "623576019346280448"

 $ replyToUID : chr(0)

 $ statusSource : chr "Twitter Web Client"

 $ screenName : chr "daroczig"

https://apps.twitter.com

Chapter 14

[345]

 $ retweetCount : num 2

 $ isRetweet : logi FALSE

 $ retweeted : logi FALSE

 $ longitude : chr(0)

 $ latitude : chr(0)

 $ urls :'data.frame': 2 obs. of 5 variables:

 ..$ url : chr [1:2]

 "http://t.co/pStTeyBr2r" "https://t.co/5L4wyxtooQ"

 ..$ expanded_url: chr [1:2] "http://budapestbiforum.hu/2015/en/cfp"

 "https://twitter.com/BudapestBI/status/623524708085067776"

 ..$ display_url : chr [1:2] "budapestbiforum.hu/2015/en/cfp"

 "twitter.com/BudapestBI/sta…"

 ..$ start_index : num [1:2] 97 120

 ..$ stop_index : num [1:2] 119 143

This is quite an impressive amount of information for a character string with no
more than 140 characters, isn't it? Besides the text including the actual tweet, we got
some meta-information as well—for example, the author, post time, the number of
times other users favorited or retweeted the post, the Twitter client name, and the
URLs in the post along with the shortened, expanded, and displayed format. The
location of the tweet is also available in some cases, if the user enabled that feature.

Based on this piece of information, we could focus on the Twitter R community in
very different ways. Examples include:

• Counting the users mentioning R
• Analyzing social network or Twitter interactions
• Time-series analysis on the time of posts
• Spatial analysis on the location of tweets
• Text mining of the tweet contents

Probably a mixture of these (and other) methods would be the best approach, and I
highly suggest you do that as an exercise to practice what you have learned in this
book. However, in the following pages we will only concentrate on the last item.

So first, we need some recent tweets on the R programming language. To search for
#rstats posts, instead of providing the related hashtag (like we did previously),
we can use the Rtweets wrapper function as well:

> tweets <- Rtweets(n = 500)

Analyzing the R Community

[346]

This function returned 500 reference classes similar to those we saw previously.
We can count the number of original tweets excluding retweets:

> length(strip_retweets(tweets))

[1] 149

But, as we are looking for the trending topics, we are interested in the original list
of tweets, where the retweets are also important as they give a natural weight to
the trending posts. So let's transform the list of reference classes to a data.frame:

> tweets <- twListToDF(tweets)

This dataset consists of 500 rows (tweets) and 16 variables on the content, author,
and location of the posts, as described previously. Now, as we are only interested
in the actual text of the tweets, let's load the tm package and import our corpus as
seen in Chapter 7, Unstructured Data:

> library(tm)

Loading required package: NLP

> corpus <- Corpus(VectorSource(tweets$text))

As the data is in the right format, we can start to clean the data from the common
English words and transform everything into lowercase format; we might also want
to remove any extra whitespace:

> corpus <- tm_map(corpus, removeWords, stopwords("english"))

> corpus <- tm_map(corpus, content_transformer(tolower))

> corpus <- tm_map(corpus, removePunctuation)

> corpus <- tm_map(corpus, stripWhitespace)

It's also wise to remove the R hashtag, as this is part of all tweets:

> corpus <- tm_map(corpus, removeWords, 'rstats')

And then we can use the wordcloud package to plot the most important words:

> library(wordcloud)

Loading required package: RColorBrewer

> wordcloud(corpus)

Chapter 14

[347]

Summary
In the past few pages, I have tried to cover a variety of data science and R
programming topics, although many important methods and questions were not
addressed due to page limitation. To this end, I've compiled a short reading list in
the References chapter of the book. And don't forget: now it's your turn to practice
everything you learned in the previous chapters. I wish you a lot of fun and success
in this journey!

And once again, thanks for reading this book; I hope you found it useful. If you have
any questions, comments, or any kind of feedback, please feel free to get in touch,
I'm looking forward to hearing from you!

Appendix

[349]

References
Although there are quite a number of good and free resources on the Internet on R
and data science (such as StackOverflow, GitHub wikis, http://www.r-bloggers.
com/, and some free e-books), sometimes it's better to buy a book with structured
content—just like you did.

In this appendix, I've listed a few books and other references that I've found useful
in the past while learning R. I suggest that you at least skim through these materials
if you want to become a professional data scientist with a decent R background, and
are not fond of the autodidact way.

For the sake of reproducibility, all the R packages used in this book are listed with
the actual package versions and sources of installation as well.

General good readings on R
Although the forthcoming lists are related to the different chapters of the book,
the following is a list of a few general references that are very good resources on
introductory and advanced R topics:

• Quick-R by Robert I. Kabacoff at http://www.statmethods.net
• The official R manuals at https://cran.r-project.org/manuals.html
• An R "meta" book by Joseph Ricker at http://blog.revolutionanalytics.

com/2014/03/an-r-meta-book.html

• R For Dummies, Wiley, 2012 by Andrie de Vries and Joris Meys
• R in Action, Manning, 2015 by Robert I. Kabacoff
• R in a Nutshell, O'Reilly, 2010 by Joseph Adler
• Art of R Programming, 2011, by Norman Matloff

http://www.r-bloggers.com/
http://www.r-bloggers.com/
http://www.statmethods.net
https://cran.r-project.org/manuals.html
http://blog.revolutionanalytics.com/2014/03/an-r-meta-book.html
http://blog.revolutionanalytics.com/2014/03/an-r-meta-book.html

References

[350]

• The R Inferno, by Partrick Burns available at http://www.burns-stat.com/
documents/books/the-r-inferno/

• Advanced R, by Hadley Wickham, 2015 at http://adv-r.had.co.nz

Chapter 1 – Hello, Data!
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• microbenchmark 1.4-2 (CRAN)
• R.utils 2.0.2 (CRAN)
• sqldf 0.4-10 (CRAN)
• ff 2.2-13 (CRAN)
• bigmemory 4.4.6 (CRAN)
• data.table 1.9.4 (CRAN)
• RMySQL 0.10.3 (CRAN)
• RPostgreSQL 0.4 (CRAN)
• ROracle 1.1-12 (CRAN)
• dbConnect 1.0 (CRAN)
• XLConnect 0.2-11 (CRAN)
• xlsx 0.5.7 (CRAN)

The related R packages:

• mongolite 0.4 (CRAN)
• MonetDB.R 0.9.7 (CRAN)
• RcppRedis 0.1.5 (CRAN)
• RCassandra 0.1-3 (CRAN)
• RSQLite 1.0.0 (CRAN)

Related reading:

• R Data Import/Export manual available at https://cran.r-project.org/
doc/manuals/r-release/R-data.html

• High-Performance and Parallel Computing with R, CRAN Task
View available at http://cran.r-project.org/web/views/
HighPerformanceComputing.html

http://www.burns-stat.com/documents/books/the-r-inferno/
http://www.burns-stat.com/documents/books/the-r-inferno/
http://adv-r.had.co.nz
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html

Appendix

[351]

• Hadley Wickham's dplyr vignette on databases available at https://
cran.r-project.org/web/packages/dplyr/vignettes/databases.html

• RODBC vignette available at https://cran.r-project.org/web/
packages/RODBC/vignettes/RODBC.pdf

• Docker Docs available at http://docs.docker.com
• VirtualBox manual available at http://www.virtualbox.org/manual
• MySQL downloads available at https://dev.mysql.com/downloads/mysql

Chapter 2 – Getting Data from the Web
The loaded R package versions (in the order mentioned in the chapter):

• RCurl 1.95-4.1 (CRAN)
• rjson 0.2.13 (CRAN)
• plyr 1.8.1 (CRAN)
• XML 3.98-1.1 (CRAN)
• wordcloud 2.4 (CRAN)
• RSocrata 1.4 (CRAN)
• quantmod 0.4 (CRAN)
• Quandl 2.3.2 (CRAN)
• devtools 1.5 (CRAN)
• GTrendsR (BitBucket @ d507023f81b17621144a2bf2002b845ffb00ed6d)
• weatherData 0.4 (CRAN)

The related R packages:

• jsonlite 0.9.16 (CRAN)
• curl 0.6 (CRAN)
• bitops 1.0-6 (CRAN)
• xts 0.9-7 (CRAN)
• RJSONIO 1.2-0.2 (CRAN)
• RGoogleDocs 0.7 (OmegaHat.org)

https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html
https://cran.r-project.org/web/packages/dplyr/vignettes/databases.html
https://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf
https://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf
http://docs.docker.com
http://www.virtualbox.org/manual
https://dev.mysql.com/downloads/mysql

References

[352]

Related reading:

• Chrome Devtools manual at https://developer.chrome.com/devtools
• Chrome DevTools course on CodeSchool from http://discover-

devtools.codeschool.com/

• XPath on Mozilla Developer Network from https://developer.mozilla.
org/en-US/docs/Web/XPath

• Firefox Developer Tools from https://developer.mozilla.org/en-US/
docs/Tools

• Firebug for Firefox available at http://getfirebug.com/
• XML and Web Technologies for Data Sciences with R by Deborah Nolan,

Duncan Temple Lang (2014), Springer
• The jsonlite Package: A Practical and Consistent Mapping Between JSON Data

and R Objects by Jeroen Ooms (2014) available at http://arxiv.org/
abs/1403.2805

• Web Technologies and Services CRAN Task View by Scott Chamberlain,
Karthik Ram, Christopher Gandrud, and Patrick Mair (2014) available at
http://cran.r-project.org/web/views/WebTechnologies.html

Chapter 3 – Filtering and Summarizing
Data
The loaded R package versions (in the order mentioned in the chapter):

• sqldf 0.4-10 (CRAN)
• hflights 0.1 (CRAN)
• dplyr 0.4.1 (CRAN)
• data.table 1.9.4. (CRAN)
• plyr 1.8.2 (CRAN)
• microbenchmark 1.4-2 (CRAN)

Further reading:

• The data.table manuals, vignettes and other documentation at https://
github.com/Rdatatable/data.table/wiki/Getting-started

• Introduction to dplyr, vignette at https://cran.rstudio.com/web/packages/
dplyr/vignettes/introduction.html

https://developer.chrome.com/devtools
http://discover-devtools.codeschool.com/
http://discover-devtools.codeschool.com/
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Web/XPath
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
http://getfirebug.com/
http://arxiv.org/abs/1403.2805
http://arxiv.org/abs/1403.2805
http://cran.r-project.org/web/views/WebTechnologies.html
https://github.com/Rdatatable/data.table/wiki/Getting-started
https://github.com/Rdatatable/data.table/wiki/Getting-started
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Appendix

[353]

Chapter 4 – Restructuring Data
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• dplyr 0.4.1 (CRAN)
• data.table 1.9.4. (CRAN)
• pryr 0.1 (CRAN)
• reshape 1.4.2 (CRAN)
• ggplot2 1.0.1 (CRAN)
• tidyr 0.2.0 (CRAN)

Further R packages:

• jsonlite 0.9.16 (CRAN)

Further reading:

• Introduction to data.table, Tutorial slides at the useR! 2014 conference by Matt
Dowle at http://user2014.stat.ucla.edu/files/tutorial_Matt.pdf

• Reshaping data with the reshape package, Hadley Wickham, 2006 at http://had.
co.nz/reshape/introduction.pdf

• Practical tools for exploring data and models by Hadley Wickham, 2008 at
http://had.co.nz/thesis/

• Two-table verbs, Package vignette, at https://cran.r-project.org/web/
packages/dplyr/vignettes/two-table.html

• Introduction to dplyr, Package vignette, http://cran.r-project.org/web/
packages/dplyr/vignettes/introduction.html

• Data Wrangling cheat sheet, RStudio, 2015 https://www.rstudio.com/wp-
content/uploads/2015/02/data-wrangling-cheatsheet.pdf

• Data manipulation with dplyr, Tutorial slides and materials at the useR! 2014
conference by Hadley Wickham at http://bit.ly/dplyr-tutorial

• Tidy data, The Journal of Statistical Software. 59(10): 1:23 by Hadley Wickham,
2014 at http://vita.had.co.nz/papers/tidy-data.html

http://user2014.stat.ucla.edu/files/tutorial_Matt.pdf
http://had.co.nz/reshape/introduction.pdf
http://had.co.nz/reshape/introduction.pdf
http://had.co.nz/thesis/
https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
http://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html
http://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://bit.ly/dplyr-tutorial
http://vita.had.co.nz/papers/tidy-data.html

References

[354]

Chapter 5 – Building Models
(authored by Renata Nemeth and Gergely Toth)
The loaded R package versions (in the order mentioned in the chapter):

• gamlss.data 4.2-7 (CRAN)
• scatterplot3d 0.3-35 (CRAN)
• Hmisc 3.16-0 (CRAN)
• ggplot2 1.0.1 (CRAN)
• gridExtra 0.9.1 (CRAN)
• gvlma 1.0.0.2 (CRAN)
• partykit 1.0-1 (CRAN)
• rpart 4.1-9 (CRAN)

Further reading:

• Applied regression analysis and other multivariable methods. Duxbury Press in
2008 by David G. Kleinbaum, Lawrence L. Kupper, Azhar Nizam, Keith E. Muller

• An R Companion to Applied Regression, Sage, Web companion by John Fox in
2011 at http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/
appendix.html

• Practical Regression and Anova using R Julian J, Faraway in 2002 at
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

• Linear Models with R by Julian J, CRC, Faraway, 2014 at
http://www.maths.bath.ac.uk/~jjf23/LMR/

Chapter 6 – Beyond the Linear Trend Line
(authored by Renata Nemeth and Gergely Toth)
The loaded R package versions (in the order mentioned in the chapter):

• catdata 1.2.1 (CRAN)
• vcdExtra 0.6.8 (CRAN)
• lmtest 0.9-33 (CRAN)
• BaylorEdPsych 0.5 (CRAN)
• ggplot2 1.0.1 (CRAN)
• MASS 7.3-40 (CRAN)

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
http://www.maths.bath.ac.uk/~jjf23/LMR/

Appendix

[355]

• broom 0.3.7 (CRAN)
• data.table 1.9.4. (CRAN)
• plyr 1.8.2 (CRAN)

Further R packages:

• LogisticDx 0.2 (CRAN)

Further reading:

• Applied regression analysis and other multivariable methods. Duxbury Press, David
G. Kleinbaum, Lawrence L. Kupper, Azhar Nizam, and Keith E. Muller in 2008

• An R Companion to Applied Regression, Sage, Web companion by John Fox in
2011 at http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/
appendix.html

Chapter 7 – Unstructured Data
The loaded R package versions (in the order mentioned in the chapter):

• tm 0.6-1 (CRAN)
• wordcloud 2.5 (CRAN)
• SnowballC 0.5.1 (CRAN)

Further R packages:

• coreNLP 0.4-1 (CRAN)
• topicmodels 0.2-2 (CRAN)
• textcat 1.0-3 (CRAN)

Further reading:

• Christopher D. Manning, Hinrich Schütze (1999): Foundations of Statistical
Natural Language Processing. MIT.

• Daniel Jurafsky, James H. Martin (2009): Speech and Language Processing.
Prentice Hall.

• Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze (2008):
Introduction to Information Retrieval. Cambridge University Press.
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

• Ingo Feinerer: Introduction to the tm Package Text Mining in R.
https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix.html
http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

References

[356]

• Ingo Feinerer (2008): A Text Mining Framework in R and Its Applications.
http://epub.wu.ac.at/1923/1/document.pdf

• Yanchang Zhao: Text Mining with R: Twitter Data Analysis. http://www.
rdatamining.com/docs/text-mining-with-r-of-twitter-data-analysis

• Stefan Thomas Gries (2009): Quantitative Corpus Linguistics with R:
A Practical Introduction. Routledge.

Chapter 8 – Polishing Data
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• rapportools 1.0 (CRAN)
• Defaults 1.1-1 (CRAN)
• microbenchmark 1.4-2 (CRAN)
• Hmisc 3.16-0 (CRAN)
• missForest 1.4 (CRAN)
• outliers 0.14 (CRAN)
• lattice 0.20-31 (CRAN)
• MASS 7.3-40 (CRAN)

Further R packages:

• imputeR 1.0.0 (CRAN)
• VIM 4.1.0 (CRAN)
• mvoutlier 2.0.6 (CRAN)
• randomForest 4.6-10 (CRAN)
• AnomalyDetection 1.0 (GitHub @

c78f0df02a8e34e37701243faf79a6c00120e797)

Further reading:

• Inference and Missing Data, Biometrika 63(3), 581-592, Donald B. Rubin in 1976
• Statistical Analysis with Missing Data, Wiley Roderick, J. A. Little in 2002
• Flexible Imputation of Missing Data, CRC, Stef van Buuren in 2012
• Robust Statistical Methods CRAN Task View, Martin Maechler at

https://cran.r-project.org/web/views/Robust.html

http://epub.wu.ac.at/1923/1/document.pdf
http://www.rdatamining.com/docs/text-mining-with-r-of-twitter-data-analysis
http://www.rdatamining.com/docs/text-mining-with-r-of-twitter-data-analysis
https://cran.r-project.org/web/views/Robust.html

Appendix

[357]

Chapter 9 – From Big to Smaller Data
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• MVN 3.9 (CRAN)
• ellipse 0.3-8 (CRAN)
• psych 1.5.4 (CRAN)
• GPArotation 2014.11-1 (CRAN)
• jpeg 0.1-8 (CRAN)

Further R packages:

• mvnormtest 0.1-9 (CRAN)
• corrgram 1.8 (CRAN)
• MASS 7.3-40 (CRAN)
• sem 3.1-6 (CRAN)
• ca 0.58 (CRAN)

Further reading:

• FactoMineR: An R Package for Multivariate Analysis, JSS, Sebastien Le, Julie Josse,
Francois Husson in 2008 at http://factominer.free.fr/docs/article_
FactoMineR.pdf

• Exploratory Multivariate Analysis by Example using R, CRC, Francois Husson,
Sebastien Le, Jerome Pages in 2010

• An index of factor simplicity, Psychometrika 39, 31–36 Kaiser, H. F. in 1974
• Principal Component Analysis in R, Gregory B. Anderson, at http://www.ime.

usp.br/~pavan/pdf/MAE0330-PCA-R-2013

• Structural Equation Modeling With the sem Package in R, John Fox in 2006 at
http://socserv.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf

• Correspondence Analysis in R, with Two- and Three-dimensional Graphics: The
ca Package, JSS by Oleg Nenadic, Michael Greenacre in 2007 at http://www.
jstatsoft.org/v20/i03/paper

• PCA explained visually, Victor Powell at http://setosa.io/ev/principal-
component-analysis/

http://factominer.free.fr/docs/article_FactoMineR.pdf
http://factominer.free.fr/docs/article_FactoMineR.pdf
http://www.ime.usp.br/~pavan/pdf/MAE0330-PCA-R-2013
http://www.ime.usp.br/~pavan/pdf/MAE0330-PCA-R-2013
http://socserv.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf
http://www.jstatsoft.org/v20/i03/paper
http://www.jstatsoft.org/v20/i03/paper
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/

References

[358]

Chapter 10 – Classification and
Clustering
The loaded R package versions (in the order mentioned in the chapter):

• NbClust 3.0 (CRAN)
• cluster 2.0.1 (CRAN)
• poLCA 1.4.1 (CRAN)
• MASS 7.3-40 (CRAN)
• nnet 7.3-9 (CRAN)
• dplyr 0.4.1 (CRAN)
• class 7.3-12 (CRAN)
• rpart 4.1-9 (CRAN)
• rpart.plot 1.5.2 (CRAN)
• partykit 1.0-1 (CRAN)
• party 1.0-2- (CRAN)
• randomForest 4.6-10 (CRAN)
• caret 6.0-47 (CRAN)
• C50 0.1.0-24 (CRAN)

Further R packages:

• glmnet 2.0-2 (CRAN)
• gbm 2.1.1 (CRAN)
• xgboost 0.4-2 (CRAN)
• h2o 3.0.0.30 (CRAN)

Further reading:

• The Elements of Statistical Learning. Data Mining, Inference, and Prediction,
Springer by Trevor Hastie, Robert Tibshirani, Jerome Friedman in 2009 at
http://statweb.stanford.edu/~tibs/ElemStatLearn/

• An Introduction to Statistical Learning, Springer by Gareth James, Daniela
Witten, Trevor Hastie, Robert Tibshirani in 2013 at http://www-bcf.usc.
edu/~gareth/ISL/

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://www-bcf.usc.edu/~gareth/ISL/
http://www-bcf.usc.edu/~gareth/ISL/

Appendix

[359]

• R and Data Mining: Examples and Case Studies by Yanchang Zhao at
http://www.rdatamining.com/docs/r-and-data-mining-examples-and-
case-studies

• Machine learning benchmarks by Szilard Pafka in 2015 at
https://github.com/szilard/benchm-ml

Chapter 11 – Social Network Analysis of
the R Ecosystem
The loaded R package versions (in the order mentioned in the chapter):

• tools 3.2
• plyr 1.8.2 (CRAN)
• igraph 0.7.1 (CRAN)
• visNetwork 0.3 (CRAN)
• miniCRAN 0.2.4 (CRAN)

Further reading:

• Statistical Analysis of Network Data with R, Springer by Eric D. Kolaczyk, Gábor
Csárdi in 2014

• Linked, Plume Publishing, Albert-László Barabási in 2003
• Social Network Analysis Labs in R and SoNIA by Sean J. Westwood in 2010 at

http://sna.stanford.edu/rlabs.php

Chapter 12 – Analyzing Time-series
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• data.table 1.9.4 (CRAN)
• forecast 6.1 (CRAN)
• tsoutliers 0.6 (CRAN)
• AnomalyDetection 1.0 (GitHub)
• zoo 1.7-12 (CRAN)

http://www.rdatamining.com/docs/r-and-data-mining-examples-and-case-studies
http://www.rdatamining.com/docs/r-and-data-mining-examples-and-case-studies
https://github.com/szilard/benchm-ml
http://sna.stanford.edu/rlabs.php

References

[360]

Further R packages:

• xts 0.9-7 (CRAN)

Further reading:

• Forecasting: principles and practice, OTexts, Rob J Hyndman, George
Athanasopoulos in 2013 at https://www.otexts.org/fpp

• Time Series Analysis and Its Applications, Springer, Robert H. Shumway, David S.
Stoffer in 2011 at http://www.stat.pitt.edu/stoffer/tsa3/

• Little Book of R for Time Series, Avril Coghlan in 2015 at http://a-little-
book-of-r-for-time-series.readthedocs.org/en/latest/

• Time Series Analysis CRAN Task View by Rob J Hyndman at https://cran.r-
project.org/web/views/TimeSeries.html

Chapter 13 – Data Around Us
The loaded R package versions (in the order mentioned in the chapter):

• hflights 0.1 (CRAN)
• data.table 1.9.4 (CRAN)
• ggmap 2.4 (CRAN)
• maps 2.3-9 (CRAN)
• maptools 0.8-36 (CRAN)
• sp 1.1-0 (CRAN)
• fields 8.2-1 (CRAN)
• deldir 0.1-9 (CRAN)
• OpenStreetMap 0.3.1 (CRAN)
• rCharts 0.4.5 (GitHub @ 389e214c9e006fea0e93d73621b83daa8d3d0ba2)
• leaflet 0.0.16 (CRAN)
• diagram 1.6.3 (CRAN)
• scales 0.2.4 (CRAN)
• ape 3.2 (CRAN)
• spdep 0.5-88 (CRAN)

https://www.otexts.org/fpp
http://www.stat.pitt.edu/stoffer/tsa3/
http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/
http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/
https://cran.r-project.org/web/views/TimeSeries.html
https://cran.r-project.org/web/views/TimeSeries.html

Appendix

[361]

Further R packages:

• raster 2.3-40 (CRAN)
• rgeos 0.3-8 (CRAN)
• rworldmap 1.3-1 (CRAN)
• countrycode 0.18 (CRAN)

Further reading:

• Applied Spatial Data Analysis with R, Springer by Roger Bivand, Edzer Pebesma,
Virgilio Gómez-Rubio in 2013

• Spatial Data Analysis in Ecology and Agriculture Using R, CRC, Richard E. Plant
in 2012

• Numerical Ecology with R, Springer by Daniel Borcard, Francois Gillet, and
Pierre Legendre in 2012

• An Introduction to R for Spatial Analysis and Mapping, Sage, Chris Brunsdon,
Lex Comber in 2015

• Geocomputation, A Practical Primer, Sage by Chris Brunsdon, Alex David
Singleton in 2015

• Analysis of Spatial Data CRAN Task View by Roger Bivand at https://cran.r-
project.org/web/views/Spatial.html

Chapter 14 – Analysing the R Community
The loaded R package versions (in the order mentioned in the chapter):

• XML 3.98-1.1 (CRAN)
• rworldmap 1.3-1 (CRAN)
• ggmap 2.4 (CRAN)
• fitdistrplus 1.0-4 (CRAN)
• actuar 1.1-9 (CRAN)
• RCurl 1.95-4.6 (CRAN)
• data.table 1.9.4 (CRAN)
• ggplot2 1.0.1 (CRAN)
• forecast 6.1 (CRAN)
• Rcapture 1.4-2 (CRAN)
• fbRads 0.1 (GitHub @ 4adbfb8bef2dc49b80c87de604c420d4e0dd34a6)

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html

References

[362]

• twitteR 1.1.8 (CRAN)
• tm 0.6-1 (CRAN)
• wordcloud 2.5 (CRAN)

Further R packages:

• jsonlite 0.9.16 (CRAN)
• curl 0.6 (CRAN)
• countrycode 0.18 (CRAN)
• VGAM 0.9-8 (CRAN)
• stringdist 0.9.0 (CRAN)
• lubridate 1.3.3 (CRAN)
• rgithub 0.9.6 (GitHub @ 0ce19e539fd61417718a664fc1517f9f9e52439c)
• Rfacebook 0.5 (CRAN)

Further reading:

• How social Q&A sites are changing knowledge sharing in open source software
communities, ACM by Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu,
and Vladimir Filkov in 2014 at http://web.cs.ucdavis.edu/~filkov/
papers/r_so.pdf

• Where is the R Activity? by James Cheshire in 2013 at http://spatial.
ly/2013/06/r_activity/

• Seven quick facts about R, by David Smith in 2014 at http://blog.
revolutionanalytics.com/2014/04/seven-quick-facts-about-r.html

• The attendants of useR! 2013 around the world by Gergely Daroczi in 2013 at
http://blog.rapporter.net/2013/11/the-attendants-of-user-2013-
around-world.html

• R users all around the world by Gergely Daroczi in 2014 at http://blog.
rapporter.net/2014/07/user-at-los-angeles-california.html

• R activity around the world by Gergely Daroczi in 2014 at http://rapporter.
net/custom/R-activity

• R users all around the world (updated) by Gergely Daroczi in 2015 https://
www.scribd.com/doc/270254924/R-users-all-around-the-world-2015

http://web.cs.ucdavis.edu/~filkov/papers/r_so.pdf
http://web.cs.ucdavis.edu/~filkov/papers/r_so.pdf
http://spatial.ly/2013/06/r_activity/
http://spatial.ly/2013/06/r_activity/
http://blog.revolutionanalytics.com/2014/04/seven-quick-facts-about-r.html
http://blog.revolutionanalytics.com/2014/04/seven-quick-facts-about-r.html
http://blog.rapporter.net/2013/11/the-attendants-of-user-2013-around-world.html
http://blog.rapporter.net/2013/11/the-attendants-of-user-2013-around-world.html
http://blog.rapporter.net/2014/07/user-at-los-angeles-california.html
http://blog.rapporter.net/2014/07/user-at-los-angeles-california.html
http://rapporter.net/custom/R-activity
http://rapporter.net/custom/R-activity
https://www.scribd.com/doc/270254924/R-users-all-around-the-world-2015
https://www.scribd.com/doc/270254924/R-users-all-around-the-world-2015

[363]

Index
A
actuar package 331
adequacy tests

about 194
Barlett's test 203-206
KMO test 203-207
multivariate normality 196-199
normality 194, 195
variable dependence 200-202

adjusted R-squared 119
advanced time-series analysis 295
aggregate function 70
aggregation

about 70, 71
base R commands, using 72
data.table, using 76, 77
helper functions 73, 74
high-performance helper functions 75, 76

Akaike Information Criterion
(AIC) 120, 250, 289

alternative map designs 317-319
Americas Open Geocode (AOG) database

reference link 38
AnomalyDetection package 292
Apache Cassandra 34
ape package 320, 321
aperm function 86
Application Programming Interface

(API) 29
associations

about 108, 112, 121
analyzing, among terms 164, 165

Autoregressive Integrated Moving Average
(ARIMA) models 289-291

Autoregressive Moving Average (ARMA)
model 289

B
base graphics package 300
base R commands

using, with aggregation 72
Bayesian Information Criterion (bic) 250
BaylorEdPsych package 134
benchmarks

running 78-81
bigmemory package 5, 6
bigrquery package 34
broom package 145

C
C4.5 265
capture-recapture models

extending, ideas 342
caret package 265
Cassandra 14
catdata package 129
centrality measures, of networks 271-273
c function 67
Chisq values 250
choropleth maps 306
classification trees 260-263
class package 258
Cloudera 34
clusplot function 246
cluster analysis

about 236
hierarchical clustering 236-240
K-means clustering 243-245

[364]

clustering 236
cluster package 246
clusters

ideal number, determining of 240-243
visualizing 246, 247

coefficient 112
color

specifying, of points 301
column-oriented database management

systems 33
Comma Separated Values (CSV) file 39
complete.cases function 170
complex time-series objects 293-295
components 207
confounder 108
confounding 108
contour lines 307-310
contour plot 306
control 108
coreNLP package 164
corpus

about 153
cleaning 155-158
frequent words, visualizing 159
importing 153-155

correlation 108
corrgram package 202
CouchDB 14, 34
covariates 127
Cox-regression 108
CRAN

about 269
manual, URL 1
packages, URL 35

CRAN Task View
URL 6

cross validation (CV) 251
curl package 39
custom plot layouts 278

D
D3.js 315
data

filtering, by string matching 86, 87
line, fitting in 118-120
loading, from databases 10

reading, from HTML tables 48, 49
rearranging 88-90
reshaping 99, 100
scraping, from online sources 51-54

database management systems
reference link 35

databases
backends 33-35
connecting, with graphical user

interface 32, 33
data, loading from 10
importing, from statistical systems 35
MariaDB 15, 16
MySQL 15-19
ODBC database access 29-32
Oracle database 22-28
PostgreSQL 20, 21
test environment, setting up 11-13

Database Source Name (DSN) 30
data.frame methods 68
data imputation

about 178-180
different methods, comparing 183, 184
drawbacks 184
missing values, modeling 180-183
multiple imputation 185

data, reshaping
about 99, 100
long tables, converting to wide table

format 103, 104
wide tables, converting to long table

format 100-102
datasets

loading, from Internet 38-41
merging 96-99

data source APIs
R packages, used for interacting with 55

data.table package 6-8
data warehouse 11
dbConnect package 32
DB-Engines Ranking

URL 15
DBI package 11, 17
decision tree 262-265
Defaults package 174
deldir package 310
dendrogram 237

[365]

dependent variable 127
deviance (Gsq) 250
devtools package 34, 60
diagram package 318
dimension reduction 193, 200
discrete predictors 121-128
discriminant analysis 250-254
Discriminant Function Analysis (DA) 250
dismo package 311
dist function 236
Docker 14
documents

segmentation 166-168
dplyr

versus data.table 91
dplyr package 68, 75

anti_join 97
inner_join 97
left_join 97
semi_join 97

dummy variables 235, 256

E
eigenvalue 210
Elbow-rule 212
ellipse package 201
e-mail volume

forecasting 338
Equimax 219, 220
Excel spreadsheets

loading 35, 36
explanatory variables 127
exploratory data analysis 207
Extensible Markup Language (XML) 46
extract, transform, and load (ETL) 11
extrapolation 113
extreme values

about 118, 185, 186
testing 187, 188

F
Factor Analysis (FA) 193
fbRads package 343
feature extraction 193
ff package 5

fields package 307
filter function 86
Finance APIs 57, 58
fitdistrplus package 328
forecast package 287, 289, 338
foreign package 35
formula notation 110
F-test 118, 119
FTP 39

G
gamlss.data package 109
gbm package 265
gdata package 35
Generalized Linear Models (GLM) 107
geocodes 298
geocoding 297-299
geospatial data 297
ggmap package 298, 311
ggplot2 package 101, 137, 272
GLM 127
goodness-of-fit 134
Google BigQuery 34
Google documents and analytics 60
Google Maps

querying 313, 314
Google Maps API

about 298
accessing 313, 314

googlesheets package 60
googleVis package 313, 315
Google Visualization API 312
GPArotation package 220
Gradient Boosting 265
graphical user interface

used, for connecting databases 32, 33
graphics package 300
GTrendsR package 60
gvlma package 116

H
Hard Drive Data Sets

reference link, for downloading dataset 136
HBase 14, 34
hclust function 236

[366]

helper functions 73-76
heteroscedasticity 115
hflights package 3
hierarchical cluster algorithm 166
hierarchical clustering 236-240
Hmisc package 179, 180
Holt-Winters filtering 286-288
homoscedasticity 115
hot-deck method 179
HTML tables

data, reading from 48, 49
htmlwidgets package 316
HTTP headers 49
httr package 41
Hypertable 14
Hypertext Transfer Protocol Secure

(HTTPS) 39

I
ID3 265
igraph package 269, 274-276, 280
Impala 34
imputeR package 180
independent variables 127
interactive maps 312
interactive network plots 277
Internet

datasets, loading into 38-41
isopleth 306

J
Java Database Connectivity (JDBC) 32
JavaScript mapping libraries 315-317
JSON 42
jsonlite package 45

K
Kaiser criterion 212
Kaiser-Meyer-Olkin (KMO) 205
K-means clustering 243-245
kmeans function 243
K-Nearest Neighbors (k-NN) 258-260
knn function 258

L
Latent Class Analysis (LCA) 247-250
latent class models 247-250
Latent Class Regression (LCR) model 247
latitude 299
lattice package 272
law of large numbers 170
LCR model 250
leaflet package 316
least-squares approach 111
legend 305
lemma 163
lemmatisation 163
level plot 306
likelihood ratio 134
line

fitting, in data 118-120
linear discriminant 250
linear regression 107
linear regression models 127
linear regression, with continuous

predictors
about 109
model interpretation 109-112
multiple predictors 112-115

lists, of R users
overlaps, analyzing between 339-341

lmtest library 135
lmtest package 133
LogisticDx package 133
logistic regression

about 107, 129-257
data considerations 133
model comparison 135
model fit 133, 134

logistic regression model 130
logit 129
longitude 299
lubridate package 335

M
machine learning algorithms

classification trees 260-263
K-Nearest Neighbors (k-NN) 258-260
random forest 264

[367]

machine learning (ML) 257
magrittr package 89, 316
maptools package 302
Mardia's test 196, 197
MariaDB 15-18, 20, 29
MASS package 141, 189, 230 250, 272
matrices

transposing 85, 86
maximum-likelihood (ML) 133, 289
methods package 272
metrics 165, 166
microbenchmark package 4, 78, 79
miniCRAN package 279
missForest package 180, 185
Missing at Random (MAR) 170
Missing Completely at Random

(MCAR) 169
missing data

eliminating 176, 177
filtering, before actual analysis 177, 178
filtering, during actual analysis 177, 178
identifying 170
origin 169
types 169, 170

missing data, types 169, 170
Missing Not at Random (MNAR) 170
missing values

by-passing 171-173
default arguments of function,

overriding 173-175
default arguments, overriding 175

model assumptions 115-118
model interpretation 109-112
modelling workflow 127, 128
models, for count data

about 135
multivariate non-linear models 142-151
negative binomial regression 141
Poisson regression 136-141

MonetDB 11, 33
MonetDB.R package 33
MongoDB 14, 34
mongolite 34
Moran's I index 319
Multidimensional Scaling

(MDS) 193, 230-234
multiple predictors 112-115

Multivariate Analysis of Variance
(MANOVA) 250

multivariate models 108
multivariate non-linear models 142-151
multivariate normality 194-203
mvnormtest package 196
MVN package 196-198
mvoutlier package 187
MySQL

about 15-19
URLs 15

N
natural language texts (NLP) 153
NbClust package 240
needless data

dropping 65-67
dropping, ways 67-70

negative binomial distribution 141
Neo4j 14
network analysis

references 280
network data

loading 269-271
visualizing 273-276

nnet package 256
nonignorable non-response 170
normality tests 194, 195
normalized root mean squared error

computed (NRMSE) 183
null model 133
number of R users, in social media

estimating 342, 343

O
OAuth 41
odds ratio 108
online data formats 42-48
online search trends

about 60, 61
historical weather data 62
other online data sources 63

online sources
data, scraping from 51-54

OpenCPU
reference link 48

[368]

Open Database Connectivity (ODBC)
about 29
database access 29-32

OpenStreetMap package 311
openxlsx package 36
Oracle database

about 22-26
URL, for installation 22

Oracle Pre-Built Developer VM
URL 23

ordinary least squares (OLS) regression 111
orthogonal transformations 207
outcome 127-129
outlier 118
outlier detection 291-293
outliers package 185-187
overdispersion 141
overlaps

analyzing, between lists of R users 339-341

P
package installation document

URL 26
partykit package 263
party package 263
performance

tweaking 105
pipeR package 91
plyr functions 75
plyr package 45, 68, 73, 149
point data

polygon overlays, finding of 302-305
visualizing, in space 299-301

points
polygons, rendering around 306

Poisson distribution 136
Poisson or negative binomial regression 135
Poisson regression 107, 136-140
poLCA package 247
polygon overlays

finding, of point data 302-305
polygons

rendering, around points 306
PostgreSQL

about 20-22
graphical installer, URL 20

URL 20
predicted value 111
predictors 108, 127, 128
Principal Component Analysis (PCA)

about 193, 207
algorithms 208-210
components, interpreting 214-217
number of components,

determining 210-213
rotation methods 217-220

Programming with Big Data (pbd) 165
projection 303
Promax 220
proportion of falsely classified (PFC) 183
pryr package 93
psych package 203, 206, 208, 220
p-value 110

Q
Q-mode PCA 208
QQ-plots 195
quadratic 250
Quandl package

about 59
time series, fetching with 59, 60

quantmod package 57
Quartimax rotation 219
Quick-R

URL 1

R
R

references 323, 349-362
R4CouchDB package 34
random forest 264, 265
randomForest package 264
rapportools package 173
raster package 302
R-bloggers

references 35, 279, 342
Rcapture package 340
RCassandra package 34
rCharts package 315
RCurl package 34, 39
R Data Import/Export manual

URL 35

[369]

readxl package 36
Redis 14
reference category 125
regression coefficient 110, 125
regression line 110, 111
regression models 107, 118
relational database management systems

(RDBMS) 11
reshape2 package 99
reshape package 99-102
reshape packages

evolution 105
residuals 115, 118
response 108
R Foundation members

about 323, 324
supporting members, visualizing around

world 324-326
rgeos package 302
RGoogleDocs package 60
RgoogleMaps package 311
RHadoop project

URL 34
rhbase package 34
R-help mailing list

about 332-335
reference link 336
volume 335-337

rJava package 164
RJDBC package 32
RJSONIO package 56
rjson package 43
rlist package 45, 304
R-mode 208
R-mode PCA 207, 208
rmongodb package 34
RMongo package 34
RMySQL

installation, URL 15
RMySQL package 15, 19
RNCEP package 62
robust methods

using 188-190
RODBC package 29, 35
ROracle package 26
round function 239

R package dependencies
analyzing, with R package 279

R package maintainers
about 327
number of packages per

maintainer 328-332
R packages

used, for interacting with data
source APIs 55

rpart package 260
rpart.plot package 263
RPostgreSQL package 21
Rprofile 175
R-related posts, in social media 344-346
RSocrata package 56
R-squared 118
Rtools

reference link 61
R user activity compilation

URL, for example 315
R.utils package 5
rworldmap package 306, 325

S
satellite maps 311, 312
scales package 318
scatterplot3d package 113
scrape 37, 49
seasonal decomposition 285, 286
select function 86
shapefiles 302
Shapiro-Wilk test 196
singular value decomposition 207
SnowballC package 161
social network analysis (SNA) 269
Socrata Open Data API 55, 56
space

point data, visualizing in 299-301
spatial data 297
spatial statistics 319-322
spdep package 321
sp package 302-321
sqldf package 5, 8, 18
standardization 207
Stanford CoreNLP 163
Stata 35

[370]

static Web pages
tabular data, reading from 49-51

statistically independent 115
statistically significant 110-112, 119
statistical models 107
stats package 109, 128, 236, 243, 272, 286
stemming algorithms 161, 162
stems 163
stochastic 115
stopwords 156-158
stringdist package 335
string matching

used, for filtering data 86, 87
subset function 68, 86
subset of text files

flat files, filtering before loading to R 9, 10
loading 8

summary functions
about 81
subgroup cases, adding up 81-83

supervised 235
supervised learning 257
systemically important financial

institutions(SIFI) 280

T
tabular data

reading, from static Web pages 49-51
TaxiIn 199
TaxiOut 199
test environment

setting up 11-14
testthat 272
text file parsers

benchmarking 6, 7
text files

data, loading 2-6
text mining 153-155
thematic map

plotting 305, 306
tidyr package 105
time series

about 281
fetching, with Quandl 59, 60

time-series
visualizing 283, 284

time-series objects
creating 281, 282

tm package 153-158
tools package 270
topic models 168
topojson 315
trend analysis 115
tsoutliers package 291
TTR package 58
Turnkey GNU/Linux

about 14
URL 14

Twitter Apps
URL 344

twitteR package 344

U
udunits2 package 92
unixODBC 30
unsupervised 235
unsupervised learning 257

V
variables

computing 92
computing, with dplyr 96
memory profiling 93, 94
multiple variables, creating 94, 95

vcdExtra package 129
Vertica 34
VGAM package 331
VIM package 179
virtual machines 12-14
visNetwork package 277
volume, of R-help mailing list 335-337
Voronoi diagrams 310, 311

W
weatherData package 62
Web services 38-41, 55
Web Technologies and Services CRAN

Task View
reference link 38

Webuzo
URL 14

[371]

Weka 265
wordcloud

about 50, 51
generating 159

wordlist
glitches, cleaning up 160
lemmatisation 163
stemming words 161, 162

X
xgboost package 265
xlConnect package 36
xlsx packages 36
XML package 49, 323
XPath 54
xts package 293

Thank you for buying
Mastering Data Analysis with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

SignalR Real-time Application
Cookbook
ISBN: 978-1-78328-595-2 Paperback: 292 pages

Use SignalR to create real-time, bidirectional,
and asynchronous applications based on standard
web technologies

1. Build high performance real-time
web applications.

2. Broadcast messages from the server to many
clients simultaneously.

3. Implement complex and reactive architectures.

Data Manipulation with R
ISBN: 978-1-78328-109-1 Paperback: 102 pages

Perform group-wise data manipulation and deal with
large datasets using R efficiently and effectively

1. Perform factor manipulation and
string processing.

2. Learn group-wise data manipulation
using plyr.

3. Handle large datasets, interact with database
software, and manipulate data using sqldf.

Please check www.PacktPub.com for information on our titles

R Statistical Application
Development by Example
Beginner's Guide
ISBN: 978-1-84951-944-1 Paperback: 344 pages

Learn R Statistical Application Development from
scratch in a clear and pedagogical manner

1. A self-learning guide for the user who needs
statistical tools for understanding uncertainty
in computer science data.

2. Essential descriptive statistics, effective data
visualization, and efficient model building.

3. Every method explained through real
data sets enables clarity and confidence
for unforeseen scenarios.

R Object-oriented Programming
ISBN: 978-1-78398-668-2 Paperback: 190 pages

A practical guide to help you learn and understand
the programming techniques necessary to exploit the
full power of R

1. Learn and understand the programming
techniques necessary to solve specific problems
and speed up development processes for
statistical models and applications.

2. Explore the fundamentals of building objects
and how they program individual aspects of
larger data designs.

3. Step-by-step guide to understand how OOP
can be applied to application and data models
within R.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello, Data!
	Loading text files of a reasonable size
	Data files larger than the physical memory

	Benchmarking text file parsers
	Loading a subset of text files
	Filtering flat files before loading to R

	Loading data from databases
	Setting up the test environment
	MySQL and MariaDB
	PostgreSQL
	Oracle database
	ODBC database access
	Using a graphical user interface to connect to databases
	Other database backends

	Importing data from other statistical systems
	Loading Excel spreadsheets
	Summary

	Chapter 2: Getting Data from the Web
	Loading datasets from the Internet
	Other popular online data formats
	Reading data from HTML tables
	Reading tabular data from static Web pages

	Scraping data from other online sources
	R packages to interact with data
source APIs
	Socrata Open Data API
	Finance APIs
	Fetching time series with Quandl
	Google documents and analytics

	Online search trends
	Historical weather data
	Other online data sources

	Summary

	Chapter 3: Filtering and
Summarizing Data
	Drop needless data
	Drop needless data in an efficient way
	Drop needless data in another efficient way

	Aggregation
	Quicker aggregation with base R commands
	Convenient helper functions
	High-performance helper functions
	Aggregate with data.table

	Running benchmarks
	Summary functions
	Adding up the number of cases in subgroups

	Summary

	Chapter 4: Restructuring Data
	Transposing matrices
	Filtering data by string matching
	Rearranging data
	dplyr versus data.table
	Computing new variables
	Memory profiling
	Creating multiple variables at a time
	Computing new variables with dplyr

	Merging datasets
	Reshaping data in a flexible way
	Converting wide tables to the long table format
	Converting long tables to the wide table format
	Tweaking performance

	The evolution of the reshape packages
	Summary

	Chapter 5: Building Models
(authored by Renata Nemeth and Gergely Toth)
	The motivation behind multivariate models
	Linear regression with continuous predictors
	Model interpretation
	Multiple predictors

	Model assumptions
	How well does the line fit in the data?
	Discrete predictors
	Summary

	Chapter 6: Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth)
	The modeling workflow
	Logistic regression
	Data considerations
	Goodness of model fit
	Model comparison

	Models for count data
	Poisson regression
	Negative binomial regression
	Multivariate non-linear models

	Summary

	Chapter 7: Unstructured Data
	Importing the corpus
	Cleaning the corpus
	Visualizing the most frequent words in the corpus
	Further cleanup
	Stemming words
	Lemmatisation

	Analyzing the associations among terms
	Some other metrics
	The segmentation of documents
	Summary

	Chapter 8: Polishing Data
	The types and origins of missing data
	Identifying missing data
	By-passing missing values
	Overriding the default arguments of a function

	Getting rid of missing data
	Filtering missing data before or during the actual analysis
	Data imputation
	Modeling missing values
	Comparing different imputation methods
	Not imputing missing values
	Multiple imputation

	Extreme values and outliers
	Testing extreme values

	Using robust methods
	Summary

	Chapter 9: From Big to Small Data
	Adequacy tests
	Normality
	Multivariate normality
	Dependence of variables
	KMO and Barlett's test

	Principal Component Analysis
	PCA algorithms
	Determining the number of components
	Interpreting components
	Rotation methods
	Outlier-detection with PCA

	Factor analysis
	Principal Component Analysis versus Factor Analysis
	Multidimensional Scaling
	Summary

	Chapter 10: Classification and Clustering
	Cluster analysis
	Hierarchical clustering
	Determining the ideal number of clusters
	K-means clustering
	Visualizing clusters

	Latent class models
	Latent Class Analysis
	LCR models

	Discriminant analysis
	Logistic regression
	Machine learning algorithms
	The K-Nearest Neighbors algorithm
	Classification trees
	Random forest
	Other algorithms

	Summary

	Chapter 11: Social Network Analysis
of the R Ecosystem
	Loading network data
	Centrality measures of networks
	Visualizing network data
	Interactive network plots
	Custom plot layouts
	Analyzing R package dependencies with an
R package

	Further network analysis resources
	Summary

	Chapter 12: Analyzing Time-series
	Creating time-series objects
	Visualizing time-series
	Seasonal decomposition
	Holt-Winters filtering
	Autoregressive Integrated Moving Average models
	Outlier detection
	More complex time-series objects
	Advanced time-series analysis
	Summary

	Chapter 13: Data Around Us
	Geocoding
	Visualizing point data in space
	Finding polygon overlays of point data
	Plotting thematic maps
	Rendering polygons around points
	Contour lines
	Voronoi diagrams

	Satellite maps
	Interactive maps
	Querying Google Maps
	JavaScript mapping libraries

	Alternative map designs
	Spatial statistics
	Summary

	Chapter 14: Analyzing the R Community
	R Foundation members
	Visualizing supporting members around
the world
	R package maintainers
	The number of packages per maintainer

	The R-help mailing list
	Volume of the R-help mailing list
	Forecasting the e-mail volume in the future

	Analyzing overlaps between our lists of
R users
	Further ideas on extending the
capture-recapture models

	The number of R users in social media
	R-related posts in social media
	Summary

	Appendix: References
	Index

