
www.allitebooks.com

http://www.allitebooks.org

Mastering DynamoDB

Master the intricacies of the NoSQL database
DynamoDB to take advantage of its fast
performance and seamless scalability

Tanmay Deshpande

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering DynamoDB

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1180814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-195-8

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Tanmay Deshpande

Reviewers
Sathish Kumar Palanisamy

Mariusz Przydatek

Victor Quinn, J.D.

Commissioning Editor
Pramila Balan

Acquisition Editor
Subho Gupta

Content Development Editor
Adrian Raposo

Technical Editors
Veena Pagare

Shruti Rawool

Anand Singh

Copy Editors
Sarang Chari

Gladson Monteiro

Deepa Nambiar

Project Coordinator
Sanchita Mandal

Proofreaders
Ameesha Green

Sandra Hopper

Amy Johnson

Indexer
Mariammal Chettiyar

Graphics
Ronak Dhruv

Disha Haria

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

Foreword

The database technology world has evolved tremendously over the last decade.
In the recent few years, there has been a huge data explosion that is driven primarily
by data mining businesses and data generated by the proliferation of mobile and
social applications. While the volumes have increased beyond anyone's imagination,
the way we access the information of this data and the expected user experience has
also changed phenomenally. For instance, when you search for information, you
subconsciously use natural language text and expect to see what you were looking
for on the first page, all within the blink of an eye. Also, you want this experience on
a mobile device as well, even when not connected to your home and office network.
So, modern applications can no longer use the traditional relational database to
achieve the scale and speed that these applications demand. Welcome to the world
of NoSQL!

While there are several open source NoSQL solutions available, such as Cassandra and
MongoDB, in this book, Tanmay Deshpande introduces Amazon AWS DynamoDB,
which is currently in development. DynamoDB is an excellent implementation of
NoSQL available as a cloud service. This book should be a must have in a cloud
programmer's toolkit, especially for those seeking to scale up their existing mobile
cloud applications on the AWS cloud platform.

So what does a programmer expect out of a technical book? I'll draw an analogy
using cookbooks. You see most cookbooks with beautiful and enticing recipe
pictures; however, when you try the recipes, even if you are able to complete
the book, the outcome will be totally different. The recipes are not customized to
the reader's level of ability and local accessibility to the ingredients and kitchen
appliances. There are technical and programming books too that suffer similarly.
Not only should a programming book be easy to read and follow, the programmer
should also be able to meet his real-life product development requirements.

www.allitebooks.com

http://www.allitebooks.org

I know the author well, and most importantly, he is a programmer by trade. This
is his second book on the topic of Big Data. He has learned from readers' feedback
from his previous book. I believe this book has all the coding samples that are tried
and tested before they were included in the book. This book endeavors to guide the
programmer through practical step-by-step processes that a software programmer
would go through to speed up NoSQL integration.

I can't wait to try out DynamoDB myself, and I am sure you will find this book
useful to transition from relational to NoSQL database.

Constancio Fernandes
Sr. Director Development, Data Center Security, Symantec

www.allitebooks.com

http://www.allitebooks.org

About the Author

Tanmay Deshpande is a Hadoop and Big Data evangelist. He currently works with
Symantec Corporation as a software engineer in Pune, India. He has an interest in a
wide range of technologies, such as Hadoop, Hive, Pig, NoSQL databases, Mahout,
Sqoop, Java, cloud computing, and so on. He has vast experience in application
development in various domains, such as finance, telecom, manufacturing, security,
and retail. He enjoys solving machine-learning problems and spends his time
reading anything that he can get his hands on. He has a great interest in open source
technologies and has been promoting them through his talks. He has been invited to
various computer science colleges to conduct brainstorming sessions with students
on the latest technologies.

Before Symantec Corporation, he worked with Infosys, where he worked as the
Lead Big Data / Cloud Developer and was a core team member of the Infosys
Big Data Edge platform. Through his innovative thinking and dynamic leadership,
he has successfully completed various projects.

Before he wrote this book, he also wrote Cloud Computing, which is a
course-cum-textbook for computer graduate students in their final year
at Pune University.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

First and foremost, I would like to thank my wife Sneha for standing beside me
through thick and thin. She has been the source of inspiration and motivation to
achieve bigger and better in life. I appreciate her patience to allow me to dedicate
more time towards the book and understanding what it means to me, without any
complaints. I would like to dedicate this book to her.

I would like to thank my mom, Mrs. Manisha Deshpande, my dad, Mr. Avinash
Deshpande, and my brother, Sakalya, for encouraging me to follow my ambitions
and making me what I am today.

I would also like to thank my leaders, Shantanu Ghosh, Constancio Fernandes,
Shubhabrata Mohanty, and Nitin Bajaj, for their encouragement and support.
Also, I thank my coworkers for their support and motivation.

Above all, I would like thank the Almighty for giving me power to believe in my
passion and pursue my dreams. This would not have been possible without the
faith I have in you!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sathish Kumar Palanisamy is an experienced, enthusiastic engineer
and entrepreneur. Currently, he works at Amazon.com and solves complex
machine-learning-related problems.

He thrives on coming up with fresh ideas. He developed many websites, apps,
and gave them back to the community.

He is the founder of Flair Labs (an India-based start-up that thrives to achieve
excellence in the field of engineering). You can find more information about
him at devSathish.com or follow his tweets (@devsathish).

I would like to thank all my colleagues and friends who helped me
to gain knowledge in software engineering.

Mariusz Przydatek is an entrepreneur and technology enthusiast. For the last
year and a half, he was designing and implementing the Gamebrain.com platform,
a new cloud offering for the mobile gaming industry. Prior to that, he spent 7 years
managing software development teams at Sabre Holdings, Inc. (SABR), a travel
industry leader, owner of Travelocity and Lastminute.com brands.

www.allitebooks.com

www.amazon.com
www.devsathish.com
www.gamebrain.com
http://www.allitebooks.org

Victor Quinn, J.D. is a technology leader, programmer, and systems architect,
whose area of expertise is in leading teams to build APIs and backend systems.

Currently, he is building the API and backend system for SocialRadar, a group of
start-up building mobile apps that provide real-time information on the people
around you.

Prior to joining SocialRadar, Victor led a rewrite of the financial processing online
forms and API for NGP VAN, a company that processed billions of dollars in
campaign contributions during the 2012 election year. The system he orchestrated is
on track to process even more contributions in the coming election years. He led his
team to build this system, which included auto-filling and a sign-on system, enabling
future contributions with a single click. All of these features were rolled up in a
JavaScript single page app, embedding a fully functional payment-processing form
into even a static web page with a single tag.

He has spent many years honing his skills with command-line tools, such as tmux
in order to be maximally efficient in his work. His editor of choice is Emacs, and he
uses the Dvorak keyboard layout.

He has Bachelor of Science degrees, one in Physics and the other in Computer
Science from the University of Massachusetts, Amherst, and is a Juris Doctor
with a focus on Intellectual Property Law from Western New England University.
He is an eagle scout and a registered patent agent.

He lives in the Washington, D.C. metro area with his wife and Great Dane.
There he enjoys brewing his own beer and riding his Harley.

Thank you to my amazing wife, Susan.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read, and search across Packt's entire
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting Started 7

DynamoDB's history 8
What is DynamoDB? 9
Data model concepts 10

Operations 11
Table operations 11
Item operations 12
The Query and Scan operations 12

Provisioned throughput 12
DynamoDB features 14

Fully managed 14
Durable 14
Scalable 14
Fast 14
Simple administration 15
Fault tolerance 15
Flexible 15
Indexing 15
Secure 15
Cost effective 16

How do I get started? 16
Creating a DynamoDB table using the AWS management console 16
DynamoDB Local 24

Summary 26
Chapter 2: Data Models 27

Primary key 28
Hash primary key 29
Hash and range primary key 29

Table of Contents

[ii]

Secondary indexes 31
Local secondary index 31
Global secondary index 33

Data types 34
Scalar data types 34

String 35
Number 35
Binary 35

Multivalued data types 36
Operations on tables 37

Using the AWS SDK for Java 37
Create table 37
Update table 39
Delete table 39
List tables 40

Using the AWS SDK for .NET 40
Create table 40
Update table 41
Delete table 42
List tables 42

Using the AWS SDK for PHP 42
Create table 43
Update table 43
Delete table 44
List tables 44

Operations on items 44
Strong versus eventual consistency 45

Eventual consistency 45
Conditional writes 46
Item size calculations 48
Using the AWS SDK for Java 49

Put item 49
Get item 49
Update item 50
Delete item 51
Batch get items 52
Batch write items 53

Using the AWS SDK for .NET 54
Put item 54
Get item 54
Update item 55
Delete item 55
BatchGetItems 56
BatchWriteItems 57

Table of Contents

[iii]

Using the AWS SDK for PHP 58
The putItem method 58
The getItem method 58
The updateItem method 58
The deleteItem method 59
The batchGetItem API 59
The batchWriteItems API 60

Query and scan operations 61
Query versus scan 61
Pagination 62
Limit and counts 62
Parallel scan 62
Querying tables 64

Using the AWS SDK for Java 64
Using the AWS SDK for .NET 65
PHP API 67

Scanning tables 68
Using the AWS SDK for Java 68
Using the AWS SDK for .NET 68
Using the AWS SDK for PHP 69

Modeling relationships 70
One to one 70
One to many 71
Many to many 72

Summary 72
Chapter 3: How DynamoDB Works 73

Service-oriented architecture 74
Design features 75

Data replication 75
Conflict resolution 76
Scalability 76
Symmetry 76
Flexibility 77

Architecture 77
Load balancing 77
Data replication 79
Data versioning and reconciliation 80

Logic-based reconciliation 80
Time-based reconciliation 81

Request handling 81
Handling failures 82

Table of Contents

[iv]

Ring membership 85
Seed nodes 86

Functional components 86
Request coordinator 87
Membership failure and detection 88
Local persistence store 88

Summary 89
Chapter 4: Best Practices 91

Table level best practices 92
Choosing a primary key 92
Evenly distributed data upload 93
Managing time series data 95

Item best practices 95
Caching 95
Storing large attribute values 97

Using compressions 97
Using AWS S3 98
Using multiple chunks 99

Implementing one-to-many relationship 100
Inefficient approach 102
Better and efficient approach 102

Query and scan best practices 102
Maintaining even read activity 103
Using parallel scans 104

Local secondary indexes best practices 104
Global secondary index best practices 105
Summary 106

Chapter 5: Advanced Topics 107
Monitoring DynamoDB tables 107

AWS Management Console 108
CloudWatch API 109
A command-line interface 110

Using IAM to provide access control to DynamoDB 110
How to use IAM for DynamoDB 111
Sample IAM policies 115

Providing read-only access to items from all DynamoDB tables 115
Restrict users from deleting all the tables and items from a table 116
Allowing you to place and update an item on a single table 116
Allowing access to all indexes of a particular table 117
Allowing all DynamoDB actions to all the tables 117

Table of Contents

[v]

Fine-grained access control 118
Sample fine-grained access control policies 120

Restricting access to only specific hash value 120
Restricting access to only specific attributes of a table 120
Allowing a query on only specific projected attributes in index 122

Web identity federation 122
Limitations in DynamoDB 124
Error handling 125

Type of errors 125
Catching error information 126
Auto retries and exponential back-offs 127

Summary 128
Chapter 6: Integrating DynamoDB with Other
AWS Components 129

Integrating with AWS EMR 130
Exporting data from DynamoDB 130
Export data to AWS S3 131

Formatted data export 132
Compressed data export 132

Export data to EMR – HDFS 134
Querying DynamoDB data 134

Getting the total count of employees in Employee table 134
Getting the total count of employees department wise 135
Joining two DynamoDB tables 135
Joining tables from DynamoDB and S3 136

Importing data into DynamoDB 137
Importing data from AWS S3 137
Importing data from HDFS 138

Performance considerations while using EMR with DynamoDB 138
Integrating with AWS Redshift 140

Exporting data from DynamoDB 141
Automatic compression and sampling 143

Integrating with AWS CloudSearch 143
Configuring CloudSearch domain 144

Using AWS management console 144
Using command-line tools 146

Export data from DynamoDB to CloudSearch 147
Using AWS management console 147
Using command line tools 150

Summary 150

Table of Contents

[vi]

Chapter 7: DynamoDB – Use Cases 153
Bookstore application 153

Technology stack 154
Architecture 154
DynamoDB data model 155
Implementation 157
Integration with other AWS components 157
Deployment 157

Knowledge market website 158
Technology stack 158
Architecture 158
DynamoDB data model 159
Implementation 162
Integration with other AWS components 162
Deployment 163

Summary 163
Chapter 8: Useful Libraries and Tools 165

Libraries 165
Transaction library 165

Atomic writes 166
Isolated reads 169

Geo library 170
Query rectangle 172
Query radius 172

Language-specific libraries 173
Java 173
.NET 174
Node.js 175
Perl 175
Ruby 176
Others 176

Tools 177
Tools for testing 177

DynamoDB Local 177
Fake DynamoDB 178
Injecting failures 178

Tools for auto-scaling 179
Dynamic DynamoDB 179

Tools for backup and archival 180
DynamoDB Table Archiver 181

Summary 181

Table of Contents

[vii]

Chapter 9: Developing Mobile Apps Using DynamoDB 183
Authentication and Authorization 184

Using Web Identity Federation 185
Creating your own custom authentication 186

Performing operations using mobile SDKs 187
Writing data to DynamoDB 188

Android 189
iOS 189

Getting consumed capacity information 190
Android 190
iOS 191

Conditional writes 191
Android 191
iOS 193

Deleting an item 195
Android 195
iOS 195

Fetching data 196
Android 196
iOS 196

Querying data 197
Android 197
iOS 198

Consistent reads 199
Android 199

Using local secondary indexes 200
Android 201
iOS 201

Summary 203
Index 205

Preface
AWS DynamoDB is an excellent example of a production-ready NoSQL database.
It is hosted on Amazon public cloud, so within a few clicks, you can create your table
and get started with it. Within 2 years of its release, DynamoDB has been able to
attract many customers because of its features, such as high availability, reliability,
and Internet scalability. With the popularity of mobile applications, everyone
is dreaming of publishing his/her own mobile app, so for all such developers,
DynamoDB is a great option because of its cost effectiveness and usability.

This book is a practical, example-oriented guide that starts with an introduction
to DynamoDB, how it started, what it is, and its features. It then introduces you
to DynamoDB's data model, demonstrating CRUD operations on the data model.
Once you get a hold over the data model, it enables you to dive deep into the
DynamoDB architecture to understand its flexibility, scalability, and reliability.
This book also enlightens you on how to use DynamoDB as a backend database for
mobile applications. It also has detailed explanations on DynamoDB's security in
order to make your applications secure. It is concise, with clean topic descriptions,
plenty of screenshots, and code samples to enhance clarity and to help you try
and test things on your own.

What this book covers
Chapter 1, Getting Started, highlights why we need the cloud-hosted NoSQL database,
introduces readers to various NoSQL databases, and then starts with what DynamoDB
is all about, what its history is, and its features.

Chapter 2, Data Models, introduces readers to DynamoDB's rich data model, its data
types, and various operations one can perform using AWS SDK for DynamoDB with
various languages, such as Java, .NET, and PHP. This also provides good detail on
modeling relationships in DynamoDB.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 3, How DynamoDB Works, gives an insight into the DynamoDB architecture
and the various techniques it uses to maintain its highly distributed structure, the
ring topology, replication synchronization, fault tolerance, and so on.

Chapter 4, Best Practices, details readers on how they can save their money by
making time- and cost-efficient calls to DynamoDB. It also enables readers to deal
with DynamoDB limitations. It talks about table best practices, item and indexes
best practices, use of caching techniques, time series best practices, and so on.

Chapter 5, Advanced Topics, covers detailed understanding of CloudWatch
monitoring, use of Identity and Access Management for DynamoDB operations,
creating and applying security policies, and the use of the AWS Secure Token
Service to generate temporary credentials. It also details error handling in
DynamoDB and how to set auto retries and exponential back-offs on failures.

Chapter 6, Integrating DynamoDB with Other AWS Components, enlightens readers
about the AWS ecosystem, how they can integrate other AWS components, such
as Elastic Map Reduce (EMR), S3, RedShift, CloudSearch, and so on, in order to
have everything that they want to do with their application in one place.

Chapter 7, DynamoDB – Use Cases, provides readers with examples on creating an
end-to-end use case, what technology stack they use, how they leverage DynamoDB
SDK APIs, and so on.

Chapter 8, Useful Libraries and Tools, introduces users to some very cool, ready-to-use
libraries, such as Geo Library, Transaction Library, and libraries in various languages,
such as Perl, Python, Ruby, Go, Erlang, and so on. It also gives insights into useful
tools that enable users to test their code offline, tools that enable auto-scaling of
production applications, and tools that provide utilities, such as backup/archiving
of DynamoDB data.

Chapter 9, Mobile Apps Development using DynamoDB, gives users directions on how to
use DynamoDB SDKs for iOS and Android and helps them to build Internet-scalable
mobile applications easily. It also provides various options on building a secure
user-management technique.

What you need for this book
This book requires you to have a basic understanding of Cloud, Amazon Web
Services, and NoSQL databases. It has code snippets provided in various popular
languages, such as Java, .NET, and PHP. So, basic understanding of one of these
languages is good to have. The content is explained in simple English and has
been explained using diagrams, screenshots, and suitable examples.

Preface

[3]

Who this book is for
This book is for web/mobile application developers, managers who are considering
undertaking a project on DynamoDB, the NoSQL users who are sick of maintaining
the distributed clusters, and security analysts who want to validate the security
measures imposed by Amazon.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This configuration option allows us to set the maximum number of times
HttpClient should retry sending the request to DynamoDB."

A block of code is set as follows:

 // Create a configuration object
final ClientConfiguration cfg = new ClientConfiguration();
// Set the maximum auto-reties to 3
cfg.setMaxErrorRetry(3);
 // Set configuration object in Client
client.setConfiguration(cfg);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

// Set geo table in configuration
GeoDataManagerConfiguration geoDataManagerConfiguration = new
GeoDataManagerConfiguration(
 client, "geo-table");

// Create Geo data manager
GeoDataManager geoDataManager = new GeoDataManager(geoDataManagerConf
iguration);

Any command-line input or output is written as follows:

mvn clean install -Dgpg.skip=true

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
click on Continue to move ahead."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started
Amazon DynamoDB is a fully managed, cloud-hosted, NoSQL database. It provides
fast and predictable performance with the ability to scale seamlessly. It allows you to
store and retrieve any amount of data, serving any level of network traffic without
having any operational burden. DynamoDB gives numerous other advantages like
consistent and predictable performance, flexible data modeling, and durability.

With just few clicks on the Amazon Web Services console, you are able create your
own DynamoDB table and scale up or scale down provision throughput without
taking down your application even for a millisecond. DynamoDB uses Solid State
Disks (SSD) to store the data which confirms the durability of the work you are
doing. It also automatically replicates the data across other AWS Availability Zones,
which provides built-in high availability and reliability.

In this chapter, we are going to revise our concepts about the DynamoDB and will
try to discover more about its features and implementation.

Before we start discussing details about DynamoDB, let's try to understand what
NoSQL databases are and when to choose DynamoDB over Relational Database
Management System (RDBMS). With the rise in data volume, variety, and velocity,
RDBMSes were neither designed to cope up with the scale and flexibility challenges
developers are facing to build the modern day applications, nor were they able to
take advantage of cheap commodity hardware. Also, we need to provide a schema
before we start adding data, and this restricted developers from making their
application flexible. On the other hand, NoSQL databases are fast, provide flexible
schema operations, and make effective use of cheap storage.

Considering all these things, NoSQL is becoming popular very quickly amongst the
developer community. However, one has to be very cautious about when to go for
NoSQL and when to stick to RDBMS. Sticking to relational databases makes sense
when you know that the schema is more over static, strong consistency is must,
and the data is not going to be that big in volume.

Getting Started

[8]

However, when you want to build an application that is Internet scalable, the schema
is more likely to get evolved over time, the storage is going to be really big, and the
operations involved are okay to be eventually consistent. Then, NoSQL is the way
to go.

There are various types of NoSQL databases. The following is the list of NoSQL
database types and popular examples:

• Document Store: MongoDB, CouchDB, MarkLogic
• Column Store: Hbase, Cassandra
• Key Value Store: DynamoDB, Azure, Redis
• Graph Databases: Neo4J, DEX

Most of these NoSQL solutions are open source except for a few like DynamoDB
and Azure, which are available as a service over the Internet. DynamoDB being a
key-value store indexes data only upon primary keys, and one has to go through the
primary key to access certain attributes. Let's start learning more about DynamoDB
by having a look at its history.

DynamoDB's history
Amazon's e-commerce platform had a huge set of decoupled services developed
and managed individually, and each and every service had an API to be used and
consumed by others. Earlier, each service had direct database access, which was a
major bottleneck. In terms of scalability, Amazon's requirements were more than
any third-party vendors could provide at that time.

DynamoDB was built to address Amazon's high availability, extreme scalability,
and durability needs. Earlier, Amazon used to store its production data in relational
databases and services had been provided for all required operations. However, they
later realized that most of the services access data only through its primary key and
they need not use complex queries to fetch the required data, plus maintaining these
RDBMS systems required high-end hardware and skilled personnel. So, to overcome
all such issues, Amazon's engineering team built a NoSQL database that addresses
all the previously mentioned issues.

Chapter 1

[9]

In 2007, Amazon released one research paper on Dynamo that combined the best
of ideas from the database and key-value store worlds, which was inspiration for
many open source projects at the time. Cassandra, Voldemort, and Riak were a few
of them. You can find the this paper at http://www.allthingsdistributed.com/
files/amazon-dynamo-sosp2007.pdf.

Even though Dynamo had great features that took care of all engineering needs,
it was not widely accepted at that time in Amazon, as it was not a fully managed
service. When Amazon released S3 and SimpleDB, engineering teams were quite
excited to adopt these compared to Dynamo, as DynamoDB was a bit expensive at
that time due to SSDs. So, finally after rounds of improvement, Amazon released
Dynamo as a cloud-based service, and since then, it is one the most widely used
NoSQL databases.

Before releasing to a public cloud in 2012, DynamoDB was the core storage service
for Amazon's e-commerce platform, which started the shopping cart and session
management service. Any downtime or degradation in performance had a major
impact on Amazon's business, and any financial impact was strictly not acceptable,
and DynamoDB proved itself to be the best choice in the end. Now, let's try to
understand in more detail about DynamoDB.

What is DynamoDB?
DynamoDB is a fully managed, Internet scalable, easily administered, and cost
effective NoSQL database. It is a part of database as a service-offering pane of
Amazon Web Services.

The next diagram shows how Amazon offers its various cloud services and where
DynamoDB is exactly placed. AWS RDS is a relational database as a service over the
Internet from Amazon, while Simple DB and DynamoDB are NoSQL databases as
services. Both SimpleDB and DynamoDB are fully managed, nonrelational services.
DynamoDB is build considering fast, seamless scalability, and high performance.
It runs on SSDs to provide faster responses and has no limits on request capacity
and storage. It automatically partitions your data throughout the cluster to meet
expectations, while in SimpleDB, we have a storage limit of 10 GB and can only
take limited requests per second.

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Getting Started

[10]

Also, in SimpleDB, we have to manage our own partitions. So, depending upon your
need, you have to choose the correct solution.

To use DynamoDB, the first and foremost requirement is an AWS account. Through the
easy-to-use AWS management console, you can directly create new tables, providing
necessary information and can start loading data into the tables in few minutes.

Data model concepts
To understand DynamoDB better, we need to understand its data model first.
DynamoDB's data model includes Tables, Items, and Attributes. A table in
DynamoDB is nothing but what we have in relational databases. DynamoDB
tables need not have fixed schema (number of columns, column names, their
data types, column order, and column size). It needs only the fixed primary key,
its data type, and a secondary index if needed, and the remaining attributes can
be decided at runtime. Items in DynamoDB are individual records of the table.
We can have any number of attributes in an item.

DynamoDB stores the item attributes as key-value pairs. Item size is calculated by
adding the length of attribute names and their values.

Chapter 1

[11]

DynamoDB has an item-size limit of 64 KB; so, while designing
your data model, you have to keep this thing in mind that your
item size must not cross this limitation. There are various ways
of avoiding the over spill, and we will discuss such best practices
in Chapter 4, Best Practices.

The following diagram shows the data model hierarchy of DynamoDB:

Here, we have a table called Student, which can have multiple items in it. Each item
can have multiple attributes that are stored in key–value pairs. We will see more
details about the data models in Chapter 2, Data Models.

Operations
DynamoDB supports various operations to play with tables, items, and attributes.

Table operations
DynamoDB supports the create, update, and delete operations at the table level.
It also supports the UpdateTable operation, which can be used to increase or
decrease the provisioned throughput. We have the ListTables operation to get
the list of all available tables associated with your account for a specific endpoint.
The DescribeTable operation can be used to get detailed information about the
given table.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[12]

Item operations
Item operations allows you to add, update, or delete an item from the given table.
The UpdateItem operation allows us to add, update, or delete existing attributes
from a given item.

The Query and Scan operations
The Query and Scan operations are used to retrieve information from tables.
The Query operation allows us to query the given table with provided hash
key and range key. We can also query tables for secondary indexes. The Scan
operation reads all items from a given table. More information on operations
can be found in Chapter 2, Data Models.

Provisioned throughput
Provisioned throughput is a special feature of DynamoDB that allows us to
have consistent and predictable performance. We need to specify the read and
write capacity units. A read capacity unit is one strongly consistent read and two
eventually consistent reads per second unit for an item as large as 4 KB, whereas one
write capacity unit is one strongly consistent write unit for an item as large as 1 KB.
A consistent read reflects all successful writes prior to that read request, whereas a
consistent write updates all replications of a given data object so that a read on this
object after this write will always reflect the same value.

For items whose size is more than 4 KB, the required read capacity units are calculated
by summing it up to the next closest multiple of 4. For example, if we want to read an
item whose size is 11 KB, then the number of read capacity units required is three,
as the nearest multiple of 4 to 11 is 12. So, 12/4 = 3 is the required number of read
capacity units.

Required Capacity Units For Consistency Formula

Reads Strongly consistent No. of Item reads per second *
Item Size

Reads Eventually consistent Number of Item reads per
second * Item Size/2

Writes NA Number of Item writes per
second * Item Size

Chapter 1

[13]

If our application exceeds the maximum provisioned throughput for a given table,
then we get notified with a proper exception. We can also monitor the provisioned
and actual throughput from the AWS management console, which will give us the
exact idea of our application behavior. To understand it better, let's take an example.
Suppose, we have set the write capacity units to 100 for a certain table and if your
application starts writing to the table by 1,500 capacity units, then DynamoDB allows
the first 1,000 writes and throttles the rest. As all DynamoDB operations work as
RESTful services, it gives the error code 400 (Bad Request).

If you have items smaller than 4 KB, even then it will consider it to be a single read
capacity unit. We cannot group together multiple items smaller than 4 KB into a
single read capacity unit. For instance, if your item size is 3 KB and if you want to
read 50 items per second, then you need to provision 50 read capacity units in a table
definition for strong consistency and 25 read capacity units for eventual consistency.

If you have items larger than 4 KB, then you have to round up the size to the next
multiple of 4. For example, if your item size is 7 KB (~8KB) and you need to read
100 items per second, then the required read capacity units would be 200 for strong
consistency and 100 capacity units for eventual consistency.

In the case of write capacity units, the same logic is followed. If the item size is less
than 1 KB, then it is rounded up to 1 KB, and if item size is more than 1 KB, then it is
rounded up to next multiple of 1.

The AWS SDK provides auto-retries on ProvisionedThroughputExceededException
when configured though client configuration. This configuration option allows
us to set the maximum number of times HttpClient should retry sending the
request to DynamoDB. It also implements the default backoff strategy that decides
the retry interval.

The following is a sample code to set a maximum of three auto retries:

 // Create a configuration object
final ClientConfiguration cfg = new ClientConfiguration();
// Set the maximum auto-reties to 3
cfg.setMaxErrorRetry(3);
 // Set configuration object in Client
client.setConfiguration(cfg);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Getting Started

[14]

DynamoDB features
Like we said earlier, DynamoDB comes with enormous scalability and high availability
with predictable performance, which makes it stand out strong compared to other
NoSQL databases. It has tons of features; we will discuss some of them.

Fully managed
DynamoDB allows developers to focus on the development part rather than deciding
which hardware to provision, how to do administration, how to set up the distributed
cluster, how to take care of fault tolerance, and so on. DynamoDB handles all scaling
needs; it partitions your data in such a manner that the performance requirements get
taken care of. Any distributed system that starts scaling is an overhead to manage but
DynamoDB is a fully managed service, so you don't need to bother about hiring an
administrator to take care of this system.

Durable
Once data is loaded into DynamoDB, it automatically replicates the data into
different availability zones in a region. So, even if your data from one data center
gets lost, there is always a backup in another data center. DynamoDB does this
automatically and synchronously. By default, DynamoDB replicates your data
to three different data centers.

Scalable
DynamoDB distributes your data on multiple servers across multiple availability
zones automatically as the data size grows. The number of servers could be easily
from hundreds to thousands. Developers can easily write and read data of any size
and there are no limitations on data size. DynamoDB follows the shared-nothing
architecture.

Fast
DynamoDB serves at a very high throughput, providing single-digit millisecond
latency. It uses SSD for consistent and optimized performance at a very high scale.
DynamoDB does not index all attributes of a table, saving costs, as it only needs
to index the primary key, and this makes read and write operations superfast.
Any application running on an EC2 instance will show single-digit millisecond
latency for an item of size 1 KB. The latencies remain constant even at scale due
to the highly distributed nature and optimized routing algorithms.

Chapter 1

[15]

Simple administration
DynamoDB is very easy to manage. The Amazon web console has a user-friendly
interface to create tables and provide necessary details. You can simply start
using the table within a few minutes. Once the data load starts, you don't need
to do anything as rest is taken care by DynamoDB. You can monitor Amazon
CloudWatch for the provision throughput and can make changes to read and
write capacity units accordingly if needed.

Fault tolerance
DynamoDB automatically replicates the data to multiple availability zones which
helps in reducing any risk associated with failures.

Flexible
DynamoDB, being a NoSQL database, does not force users to define the table schema
beforehand. Being a key-value data store, it allows users to decide what attributes
need to be there in an item, on the fly. Each item of a table can have different number
of attributes.

Rich Data ModelDynamoDB has a rich data model, which allows a user to define the
attributes with various data types, for example, number, string, binary, number set,
string set, and binary set. We are going to talk about these data types in Chapter 2,
Data Models, in detail.

Indexing
DynamoDB indexes the primary key of each item, which allows us to access any
element in a faster and efficient manner. It also allows global and local secondary
indexes, which allows the user to query on any non-primary key attribute.

Secure
Each call to DynamoDB makes sure that only authenticated users can access the
data. It also uses the latest and effective cryptographic techniques to see your data.
It can be easily integrated with AWS Identity and Access Management (IAM),
which allows users to set fine-grained access control and authorization.

Getting Started

[16]

Cost effective
DynamoDB provides a very cost-effective pricing model to host an application of
any scale. The pay-per-use model gives users the flexibility to control expenditure.
It also provides free tier, which allows users 100 MB free data storage with 5 writes/
second and 10 reads/second as throughput capacity. More details about pricing can
be found at http://aws.amazon.com/dynamodb/pricing/.

How do I get started?
Now that you are aware of all the exciting features of DynamoDB, I am sure you are
itching to try out your hands on it. So let's try to create a table using the Amazon
DynamoDB management console. The pre-requisite to do this exercise is having a
valid Amazon account and a valid credit card for billing purposes. Once the account
is active and you have signed up for the DynamoDB service, you can get started
directly. If you are new to AWS, more information is available at http://docs.aws.
amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html.

Amazon's infrastructure is spread across almost 10 regions worldwide and
DynamoDB is available in almost all regions. You can check out more details
about it at https://aws.amazon.com/about-aws/globalinfrastructure/
regional-product-services/.

Creating a DynamoDB table using the AWS
management console
Perform the following steps to create a DynamoDB table using the AWS
management console:

1. Go to the Amazon DynamoDB management console at https://console.
aws.amazon.com/dynamodb, and you will get the following screenshot:

http://aws.amazon.com/dynamodb/pricing/
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-intro.html
https://aws.amazon.com/about-aws/globalinfrastructure/regional-product-services/
https://aws.amazon.com/about-aws/globalinfrastructure/regional-product-services/
https://console.aws.amazon.com/dynamodb
https://console.aws.amazon.com/dynamodb

Chapter 1

[17]

2. Click on the Create Table button and you will see a pop-up window
asking for various text inputs. Here, we are creating a table called Employee
having emp_id as the hash key and email as the range key, as shown in the
following screenshot:

Getting Started

[18]

3. Once you click on the Continue button, you will see the next window
asking to create indexes, as shown in the next screenshot. These are
optional parameters; so, if you do not wish to create any secondary
indexes, you can skip this and click on Continue. We are going to
talk about the indexes in Chapter 2, Data Models.

4. Once you click on the Continue button again, the next page will appear
asking for provision throughput capacity units. We have already talked
about the read and write capacity; so, depending upon your application
requirements, you can give the read and write capacity units in the
appropriate text box, as shown in the following screenshot:

Chapter 1

[19]

5. The next page will ask whether you want to set any throughput alarm
notifications for this particular table. You can provide an e-mail ID on
which you wish to get the alarms, as shown in the following screenshot.
If not, you can simply skip it.

Getting Started

[20]

6. Once you set the required alarms, the next page would be a summary
page confirming the details you have provided. If you see all the given
details are correct, you can click on the Create button, as shown in the
following screenshot:

7. Once the Create button is clicked, Amazon starts provisioning the hardware
and other logistics in the background and takes a couple of minutes to
create the table. In the meantime, you can see the table creations status as
CREATING on the screen, as shown in the following screenshot:

Chapter 1

[21]

8. Once the table is created, you can see the status changed to ACTIVE on the
screen, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[22]

9. Now that the table Employee is created and active, let's try to put an item
in it. Once you double-click on the Explore Table button, you will see the
following screen:

10. You can click on the New Item button to add a new record to the table, which
will open up a pop up asking for various attributes that we wish to add in
this record. Earlier, we had added emp_id and email as hash and range key,
respectively. These are mandatory attributes we have to provide with some
optional attributes if you want to, as shown in the following screenshot:

Chapter 1

[23]

Here, I have added two extra attributes, name and company, with some
relevant values. Once done, you can click on the Put Item button to
actually add the item to the table.

11. You can go to the Browse Items tab to see whether the item has been
added. You can select Scan to list down all items in the Employee table,
which is shown in the following screenshot:

Getting Started

[24]

In Chapter 2, Data Models, we will be looking for various examples in Java, .Net, and
PHP to play around with tables, items, and attributes.

DynamoDB Local
DynamoDB is a lightweight client-side database that mimics the actual DynamoDB
database. It enables users to develop and test their code in house, without consuming
actual DynamoDB resources. DynamoDB Local supports all DynamoDB APIs, with
which you can run your code like running on an actual DynamoDB.

To use DynamoDB Local, you need to run a Java service on the desired port and direct
your calls from code to this service. Once you try to test your code, you can simply
redirect it to an actual DynamoDB.

So, using this, you can code your application without having full Internet connectivity
all the time, and once you are ready to deploy your application, simply make a single
line change to point your code to an actual DynamoDB and that's it.

Installing and running DynamoDB Local is quite easy and quick; you just have to
perform the following steps and you can get started with it:

1. Download the DynamoDB Local executable JAR, which can be run
on Windows, Mac, or Linux. You can download this JAR file from
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/
dynamodb_local_latest.

2. This JAR file is compiled on version 7 of JRE, so it might not be suitable
to run on the older JRE version.

3. The given ZIP file contains two important things: a DynamoDBLocal_lib
folder that contains various third-party JAR files that are being used, and
DynamoDBLocal.jar which contains the actual entry point.

4. Once you unzip the file, simply run the following command to get started
with the local instance:
java -Djava.library.path=. -jar DynamoDBLocal.jar

5. Once you press Enter, the DynamoDB Local instance gets started, as shown
in the following screenshot:

http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest

Chapter 1

[25]

By default, the DynamoDB Local service runs on port 8000.

6. In case you are using port 8000 for some other service, you can simply
choose your own port number by running the following command:
java -Djava.library.path=. -jar DynamoDBLocal.jar --port
<YourPortNumber>

Now, let's see how to use DynamoDB Local in the Java API. The complete
implementation remains the same; the only thing that we need to do is set the
endpoint in the client configuration as http://localhost:8000.

Using DynamoDB for development in Java is quite easy; you just need to set
the previous URL as the endpoint while creating DynamoDB Client, as shown
in the following code:

// Instantiate AWS Client with proper credentials
AmazonDynamoDBClient dynamoDBClient = new AmazonDynamoDBClient(
 new ClasspathPropertiesFileCredentialsProvider());
Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 dynamoDBClient.setRegion(usWest2);
// Set DynamoDB Local Endpoint
 dynamoDBClient.setEndpoint("http://localhost:8000");

Once you are comfortable with your development and you are ready to use the
actual DynamoDB, simply remove the highlighted line from the previous code
snippet and you are done. Everything will work as expected.

Getting Started

[26]

DynamoDB Local is useful but before using it, we should make a note of
following things:

• DynamoDB Local ignores the credentials you have provided.
• The values provided in the access key and regions are used to create only

the local database file. The DB file gets created in the same folder from
where you are running your DynamoDB Local.

• DynamoDB Local ignores the settings provided for provision throughput.
So, even if you specify the same at table creation, it will simply ignore it.
It does not prepare you to handle provision throughput exceeded exceptions,
so you need to be cautious about handling it in production.

• Last but not least, DynamoDB Local is meant to be used for development
and unit testing purposes only and should not be used for production
purposes, as it does not have durability or availability SLAs.

Summary
In this chapter, we talked about DynamoDB's history, its features, the concept of
provision throughput, and why it is important from the DynamoDB usage point
of view. We also saw how you can get started with AWS DynamoDB and create
a table and load data. We also learned about installing and running a DynamoDB
Local instance utility and how to use it for development.

In the next chapter, we will discuss the DynamoDB data model in more detail and
how to use DynamoDB APIs to perform the table, item, and attribute level operations.

Data Models
The flexibility of any database depends on the architecture and design of its data
models. A data model fundamentally decides how data is stored, organized, and
can be manipulated. When it comes to typical a RDBMS, we tend to provide the
information in terms of hierarchical, relational, and network data models. SQL was
designed to interact with an end user assuming he/she will use SQL to run queries
that would aggregate data at one place, giving all information together. But it takes
a lot of effort to maintain this user-oriented approach. Later, people realized that
most of the time is being spent on creating database schemas, maintaining referential
integrity, and providing transactional guarantees even though they are not using
these things much. This thought ultimately resulted in the implementation of
schema-less, relation-free databases, that is, NoSQL databases.

Relational data modeling starts with all the data that you have and the answers
you can provide with data, whereas NoSQL data modeling is application oriented.
Here, we create tables and decide on our columns, which directly solves the
application-specific problem. NoSQL data modeling requires better understanding
of the problem that you are trying to solve with your application.

In the previous chapter, we have seen a glimpse of DynamoDB data models. There,
we discussed tables, items, and attributes. In this chapter, we are going to talk about
how to programmatically create, update, and delete tables, items, and attributes. We
are also going to discuss the primary keys used in DynamoDB, intelligently choosing
hash and range keys for better performance, and the data types that are available.

For better understanding of DynamoDB, we have divided this chapter into the
following parts:

• Primary keys
• Data types
• Operations

Data Models

[28]

Just to understand in a better manner, let's see what tables, items, and attributes
look like.

Consider an example of a bookstore where we have multiple entities, such as Books,
Authors, and Publishers, and so on. So, to understand the DynamoDB data model
in a better way, please have a look at the following diagram that shows how a Book
table would look:

Here, we have chosen a BookId field as the primary key on which the complete
item would get indexed. We have also included a couple of sample items that
have multiple attributes. Some of them have string as their data type, some have
number, whereas some others are multivalued attributes. You can also observe that
the number of attributes in given items need not be the same. The first item has the
chapters attribute, while the second item does not have it. This is because we don't
have strict schema in NoSQL databases.

Also, both the items have bookId as the primary key, which needs to be unique for
each attribute. Now let's try to understand more about primary keys in DynamoDB.

Primary key
DynamoDB, being a key-value pair database, does not index on all given attributes
for a given item; it only indexes on the primary key, which is a mandatory attribute
for each item of the table.

Chapter 2

[29]

DynamoDB supports two types of primary keys:

• Hash primary key
• Hash and range primary key

Hash primary key
Each DynamoDB table must have a hash primary key that is unique for each item.
DynamoDB builds an unordered hash index on this key that allows us to uniquely
identify any given item for a given table. So, while designing your table, you must
choose an attribute that would have a unique value for each attribute. For example,
while creating Person table, choosing Social Security Number (SSN) as a hash
key would be a better option as compared to selecting a person's name as hash key,
as there might be more than one person having the same name.

Hash and range primary key
Along with the hash key, DynamoDB also supports another primary key called
range key, which can be used in combination with the hash key. In this case,
DynamoDB created an unordered hash index on the hash key and sorted the range
key index on a range key attribute. Range key should be selected in such a manner
that it will evenly distribute the data load across partitions.

A good example to choose a hash and range type primary key for the Person table
would be choosing birth years as the hash key and SSN as the range key. Here, we
can narrow down our search with the birth year and then search in a specific birth
year range partition for a specific SSN.

In general, the hash index is a set of buckets identified by a certain hash
value. The hash value is calculated by some function that is robust and
gives the same results on multiple executions. The hashing algorithm
decides what value gets emitted for a given key. The simplest example
of hash algorithms is the Modulo 10 function: f(x) = x Modulo 10. Here, x
is a key. So, if we use this hashing algorithm for indexing and a key has
a value, say 17, it would emit the hash value as 17 Modulo 10 = 7.
Range index is a special type of index that helps align the set of data
into a certain range, which helps in faster retrieval of the given item.
When we implement the range index on a certain attribute, we create n
number of slots on that data. Consider we have five slots for a given set
of data starting from key value 1 to 100, then slots get created from 1-20,
21-40,..., and 81-100.

Data Models

[30]

Now let's redefine our bookstore schema and see when to use the hash key and when
to use the composite hash and range keys. We can consider the following primary
key specifications for the given tables:

Table name Primary
key type

Hash key Range key

Book
(yearOfPublishing,bookId,
, ..)

Hash key
and range

yearOfPublishing—
this will allow us to
save books as per the
year in which they got
published

bookId—
unique
book ID

Author (authorId,..) Hash key authorId—unique
author ID

NA

Publisher (publisherId,..) Hash key publisherId—unique
publisher ID

NA

So, here it makes sense to use the composite hash and range key for the Book
table, which will allow us to have balanced books data depending on their year of
publishing. As we don't have many ranges for the Author and Publisher table, so
here we have opted for only the hash key.

After the redesign, sample Book items would look like the following screenshot:

Chapter 2

[31]

Secondary indexes
A primary key attribute allows us to create, maintain, and access data efficiently.
To do so, DynamoDB creates indexes on those primary attributes as we have seen
in the previous section. However, sometimes there might be a need to search and
access items from attributes that are not part of the primary key. For all such needs,
DynamoDB supports secondary indexes that can be created on attributes other
than the primary key and can be accessed and searched in a manner similar to the
primary key.

A secondary index contains a subset of attributes from the given table having an
alternative key to support query operations. Secondary index allows users to search
attributes other than the primary key, which makes DynamoDB useful for a varied set
of applications. We can create multiple secondary indexes for a given table. If we don't
create secondary indexes, the only option to get the item for a certain non-primary key
attribute is to scan the complete table, which is a very expensive operation.

Internally, when you create a secondary index, you have to specify the attributes
to be projected or included as part of the secondary index. DynamoDB copies those
attributes to the index. Querying a secondary index is similar to querying a table
with the hash and range key. You have to specify the hash key and the optional
range for every new index that you create. These secondary indexes are maintained
by DynamoDB itself, so if we can add, modify, or delete indexed attributes, it gets
reflected on the index as well. One thing to note here is that you need to create
secondary indexes at the time of table creation itself, and you cannot add indexes to
already existing tables. Also, DynamoDB does not allow editing or deleting indexes
from a given table.

DynamoDB supports two types of secondary indexes:

• Local secondary index
• Global secondary index

Local secondary index
Local secondary indexes are nothing but extensions to the given hash and range key
attributes. Suppose you have a Blog table that keeps track of all posts from different
users. Here, we have a hash key, say, username, and a range key, say, date of post.
So you can create a local secondary index on the topic attribute that would allow
you to fetch all blogs on a particular topic by a given user.

www.allitebooks.com

http://www.allitebooks.org

Data Models

[32]

Basically, local secondary indexes give you more range query options other than
your table range key attribute. So to define the local secondary index, we can say
that it is an index which has the same hash key as a table but a different range key.

Some important points to note about local secondary indexes are as follows:

• A local secondary index must have both hash and range keys.
• The hash key of the local secondary index is the same as that of the table.
• The local secondary index allows you to query data from a single partition

only, which is specified by a hash key. As we know DynamoDB creates
partitions for unique hash values, the local secondary index allows us to
query non-key attributes for a specific hash key.

• The local secondary index supports both eventual and strong consistency,
so while querying data, you can choose whichever is suitable.

• Queries and writes consume read and write capacity from provisioned
throughput for the given table.

• The local secondary index has a size limit of 10 GB on all indexed items
per hash key, which means that all indexed items size together should be
less than or equal to 10 GB for a single hash key.

• Indexes should be used sparingly, as they add to the total cost of table
storage. Also, while choosing projected attributes, one needs to be very
careful with selections.

For any item in a DynamoDB table, it will only create an entry in the index if the
index range key attribute is present in that item. If the range key attribute does not
appear in each and every item of the table, then the index is called a sparse index.
For example, you have a table called Book, which has an attribute called bookId and
isOpenAccess. Now, you can create a local secondary index choosing bookId as the
hash key and isOpenAccess as the range key; you can set this attribute to true only if
the book is open access and you don't need to set any blank or false value if the Book
table is not open access. This would make this index a sparse index, and DynamoDB
would add an entry in the index only if this attribute is present. This would allow
you to easily identify all the books that are open access and can easily fetch them
and perform operations on them. So it is advised to take advantage of sparse indexes
whenever possible for better performance.

Chapter 2

[33]

Global secondary index
Global secondary indexes are an advancement over local secondary indexes, which
allow users to query data from all over the table compared to only a single partition in
the case of the local secondary index. To understand the global secondary index better,
let's consider the same example that we had discussed earlier for the local secondary
index. There, we had created a table called Blog, which contains multiple posts from
various users having username as the hash key and date of post as the range
key. We created a local secondary index topic that helped us to query all blogs for a
particular topic by a given user. But what if I want to query all blogs on a certain topic
from all users? This is the exact problem the global secondary index solves.

The global name suggests a query search on all table partitions compared to a single
partition in the case of the local secondary index. Here, we can create a new hash key
and an optional range key, which is different than the table hash and range keys to
get the index working.

Some important points to note about a global secondary index are as follows:

• The global secondary index should have a hash key and an optional range key.
• The hash and range keys of a global secondary index are different from table

hash and range keys.
• The global secondary index allows you to query data across the table. It does

not restrict its search for a single data partition; hence, the name global.
• The global secondary index eventually supports only consistent reads.
• The global secondary index maintains its separate read and write capacity

units, and it does not take read and write capacity units from the table
capacity units.

• Unlike the local secondary index, global ones do not have any size limits.

You can also take advantage of sparse indexes as explained in an earlier section. The
following table shows the difference between local and global secondary indexes:

Parameter Local secondary index Global secondary index

Hash and
range keys

Needs both hash and range
keys. The index hash key is the
same as the table hash key.

Needs hash key and optional
range key. Index hash and range
keys are different than those of
table keys.

Data Models

[34]

Parameter Local secondary index Global secondary index

Query scope Limited to single partition data
only.

Queries over complete table data,
which means you can also query
on other hash keys that are not
part of table hash keys.

Consistency Provides option to select either
eventual or strong consistency.

Supports only eventual
consistency.

Size The size of all items together
for a single index should be
less than 10 GB per hash key.

No size limit.

Provisioned
throughput

Uses the same provisioned
throughput as specified for a
table.

Has a different calculation for
provisioned throughput. We
need to specify the read and write
capacity units at the time of index
creation itself.

There is no argument whether the global secondary index is better or the local
secondary index. It totally depends upon what use case you have. So if you know
the access pattern of your application, it would not take much time to decide which
index to use and which one not to.

Data types
DynamoDB supports various data types, broadly classified into the following
two types:

• Scalar data types (string, number, and binary)
• Multivalued data types (string set, number set, and binary set)

Scalar data types
Scalar data types are simply single-value, simple data types. DynamoDB supports
the following three scalar data types:

• String
• Number
• Binary

Chapter 2

[35]

String
The string is a multipurpose, useful data type that is similar to what we use
in various programming languages. DynamoDB strings support UTF-8 binary
encoding. DynamoDB does not put restrictions on the string size limit, but it
specifies that the total attribute size should not be greater than 64 KB and we already
know that attribute value is calculated considering the attribute name (key) plus
attribute value together. When it comes to ordered query results, DynamoDB does
the comparison using ASCII character code value, which means smaller letters
(a,b,c,...) are greater than capital letters (A,B,C,…). One thing to note here is that
DynamoDB does not allow us to store empty strings, so if you don't have any
value for an attribute for a certain item, it will not add the attribute itself.

Number
The number in DynamoDB is either positive or negative, and it is either an exact-
value decimal or an integer. DynamoDB supports as long as 38-digit precision
after decimal point values to be stored as numbers, which means that DynamoDB
supports number values ranging between 10^-128 and 10^+126. When numbers are
transferred from one place to other, serialized numbers are transformed as strings,
which gives the benefit of stronger compatibility between various languages and
libraries. But when it comes to mathematical operations, DynamoDB, as expected,
treats them as numbers.

Binary
The binary data type in DynamoDB works like binary large object (BLOBs)
and character large object (CLOBs) in the relational database. Once you declare a
variable as binary, you can store binary data like zip files, images, XML files, and so
on in it. By default, DynamoDB encodes the given data using the Base64 encoder and
then stores it in the table. To read back the original binary value, you should decode
it using the Base64 decoder.

Sometimes, developers find it difficult to store and retrieve, so the following is the
Java code to store binary attributes in DynamoDB:

//Convert string representation of XML into byte buffers
ByteBuffer bb = ByteBuffer.wrap("<student><name>Tanmay</name></
student>".getBytes());
// Put bookXml attribute key and value into item.
item.put("studentXML", new AttributeValue().withB(bb));

Data Models

[36]

So, once you invoke the put item request, the values get stored, and the DynamoDB
console shows the Base64 encoded value stored in the bookXML attribute, as shown
in the following screenshot:

To get back the actual value stored in the binary attribute, you can write the
following code:

String studentDetails = new String(item.get("studentXML").getB().
array(), "UTF-8");
System.out.println(studentDetails);

This prints the original string back on the console:

<student><name>James Bond</name></student>

Multivalued data types
DynamoDB supports complex data types that are formed by using one or more
scalar data types. There are three multivalued data types supported by DynamoDB:

• String sets
• Number sets
• Binary sets

In the previous section, we had seen one example of the Book table having the
authors attribute. This authors attribute is a good example of a string set. Similarly,
number sets and binary sets can also be defined and used. An example of a number
set would be the marks attribute in a Student table, and an example of a binary set
would be images included in the Chapter table.

As these data types are sets, the values in a set must be unique. DynamoDB does not
put any order on the attribute values of a set. It also does not support empty sets.

Now, that we have seen primary keys, secondary indexes, and data types in
DynamoDB, let's start discussing operations on tables, items, and attributes.

Chapter 2

[37]

Operations on tables
A table in DynamoDB is quite easy to create and operate. With a few clicks on the
DynamoDB management console, you can have your table created in a couple
of minutes. To do so, you just need a suitable table name, primary key attributes,
their data types, and read and write throughput provisioning units, and you are
done. DynamoDB allows us to use the characters a-z, A-Z, 0-9, - (dash), .(dot),
and _(underscore) in table names.

We have already seen how to create a table using the AWS management console
in the previous chapter. Now, let's try to do table operations using the AWS SDK.

Using the AWS SDK for Java
In this section, we are going to see how to use the AWS SDK for Java to
perform operations.

Create table
Before creating a table, you should have thought about how the user is going to use
that table in his/her application. Data modeling in DynamoDB should be application
oriented in order to get the maximum benefit of the NoSQL features. You should also
have a proper idea of the reads and writes you are going to expect for a particular
table so that there won't be any ProvisionedThroughputExceededException and
all request to DynamoDB will be handled properly.

DynamoDB provides the SDK to create, update, and delete tables using a Java API.
We can also scan or query a table and get table description using a simple Java API.
The following are the steps to create a table in AWS DynamoDB. The SDK includes
two versions of APIs, Versions 1 and 2, so make sure that while you are importing
packages in Eclipse, you point to com.amazonaws.services.dynamodbv2 rather
than com.amazonaws.services.dynamodb. Perform the following steps:

1. Create an instance of AmazonDynamoDBClient and initialize it using your
AWS credentials, that is, your access key and secret key:
AmazonDynamoDBClient dynamoDBClient = new AmazonDynamoDBClient(
 new ClasspathPropertiesFileCredentialsProvider());

By default, AWS looks for the properties file name AwsCredentials.
properties in classpath, which should have two properties set:
accessKey and secretKey.

Data Models

[38]

2. Create an instance of CreateTableRequest and provide information such
as table name, key schema, and provision throughput details, as shown in
the following code:
// Key attribute definition
ArrayList<AttributeDefinition> attrDefList= new ArrayList<Attribut
eDefinition>();
attrDefList.add(new AttributeDefinition().
withAttributeName("bookId").withAttributeType("N"));
attrDefList.add(new AttributeDefinition().
withAttributeName("yop").withAttributeType("S"));

// Define primary key schema

ArrayList<KeySchemaElement> ks = new
ArrayList<KeySchemaElement>();
 ks.add(new KeySchemaElement("bookId", KeyType.HASH));
 ks.add(new KeySchemaElement("yop",KeyType.RANGE));

// Provision throughput settings
ProvisionedThroughput provisionedThroughput = new
ProvisionedThroughput()
 .withReadCapacityUnits(20L)
 .withWriteCapacityUnits(20L);

// Create table request with specifications

CreateTableRequest request = new CreateTableRequest()
 .withTableName("book")
 .withAttributeDefinitions(attrDefList)
 .withKeySchema(ks)
 .withProvisionedThroughput(provisionedThroughput);

// Submit create table request to client
CreateTableResult result = dynamoDBClient.createTable(request);

Once the request is submitted, DynamoDB takes a couple of minutes to get the table
activated; meanwhile, the SDK provides an API to wait:

Tables.waitForTableToBecomeActive(dynamoDBClient, "Book");

Once the table is activated, you can continue with further execution.

Chapter 2

[39]

Update table
To update the already created table, DynamoDB provides the UpdateTableRequest
API. Here, you just need to specify the table and the table properties you need to
update. You can update the provision throughput setting or global secondary index.
One thing to note with the API is that it can't be used to add/remove any secondary
indexes. The following is the syntax to use:

// Create a provision throughput instance with updated read and write
unit values
ProvisionedThroughput updateProvisionedThroughput = new
ProvisionedThroughput()
 .withReadCapacityUnits(30L).withWriteCapacityUnits(30L);
// Create update table request instance and provide the necessary
details
UpdateTableRequest updateTableRequest = new UpdateTableRequest()
 .withTableName("Book")
 .withProvisionedThroughput(updateProvisionedThroughput);

Once done, you can call the updateTable method from the DynamoDB client:

UpdateTableResult result = dynamoDBClient.updateTable(updateTableRequ
est);

Delete table
The AWS SDK allows us to delete a certain table from DynamoDB using the
DeleteTableRequest API. To delete a table, you just need to specify the table
name. Please use this API with care as, once the table is deleted, there is no way
to get it back.

DeleteTableRequest deleteTableRequest = new DeleteTableRequest()
 .withTableName("Book");

Once done, you can invoke the deleteTable method from the DynamoDB client,
which would execute the request:

DeleteTableResult deleteTableResult = dynamoDBClient.deleteTable(delet
eTableRequest);

Please note that the delete table API call will only change the status of the table
from Active to Deleting; it may take some time to completely remove that table.
Once it is done, you can create a DynamoDB table with the same name.

Data Models

[40]

List tables
DynamoDB gives us an API to list down all the tables currently associated with a
particular account. You can invoke the listTable method from the DynamoDB
client to get the complete list. It also allows us to provide optional parameters if we
wish to see pagination. You can also limit the results to a specific number as shown
in the following code snippet. You can also specify if you want DynamoDB to start
evaluating this request from a specific table. Have a look at the following code:

ListTablesRequest listTablesRequest = new ListTablesRequest()
 .withLimit(5).withExclusiveStartTableName("Book");
ListTablesResult listTablesResult = dynamoDBClient.
listTables(listTablesRequest);

The ListTablesResult function gives methods, such as getTableNames and
getLastEvaluatedTableName, to provide more details.

Using the AWS SDK for .NET
Like Java, AWS also provides an SDK for .NET and PHP development. The following
are some examples that show how to create, update, delete, and list tables using .NET.

Create table
To perform any operation in .NET, we need to create an instance of the DynamoDB
client first:

var configuration = new AmazonDynamoDBConfig();
configuration.ServiceURL = System.Configuration.ConfigurationManager.
AppSettings["ServiceURL"];
dynamoDBClient = new AmazonDynamoDBClient(configuration);
Once the client is ready, you can build a create table request and
invoke the same using dynamoDBClient
var createTableRequest = new CreateTableRequest
 {
 // Create Attribute definition
 AttributeDefinitions = new List<AttributeDefinition>()
 { new AttributeDefinition {
 AttributeName = "bookId",
 AttributeType = "N"
 },
 new AttributeDefinition
 {
 AttributeName = "yop",

Chapter 2

[41]

 AttributeType = "N"
 }
 },
 // Create primary key schema
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "bookId",
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "yop",
 KeyType = "RANGE"
 }
 },
 // Create provision throughput settings
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 10
 },
 TableName = "Book"
 };

// Invoke CreateTable method
var response = dynamoDBClient.CreateTable(createTableRequest);

Update table
Just like creating a table, you can also update the already created table; DynamoDB
allows us to only update the provision throughput and global secondary index
configurations:

// Create instance of updateTableRequest

 var udpateTableRequest = new UpdateTableRequest()
 {
 TableName = "Book",

// Create provision throughput instance with updated read and write
units

www.allitebooks.com

http://www.allitebooks.org

Data Models

[42]

 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 30,
 WriteCapacityUnits = 30
 }
 };
// Invoke UpdateTable method of dynamodb client
 var response = dynamoDBClient.UpdateTable(udpateTableRequest);

Delete table
The delete table request is quite invoke. DeleteTableRequest only needs the name
of the table to be deleted and you are done. Note that a table once deleted cannot be
retrieved, so handle this API with care. Have a look at the following code:

var deleteTableRequest = new DeleteTableRequest
 {
 TableName = "Book"
 };

var response = client.DeleteTable(deleteTableRequest);

List tables
This method allows us to list down all available tables for a given account. You can
optionally also mention whether you want to restrict the list to a specified number.
Also, you can mention whether you want DynamoDB to start the evaluation from
a particular table. Have a look at the following code:

var listTableRequest = new ListTablesRequest
 {
 Limit = 10,
 ExclusiveStartTableName = "Authors"
 };

var response = dynamoDBClient.ListTables(listTableRequest);

Using the AWS SDK for PHP
AWS has also given an SDK for PHP, with which you can perform table
operations such as create, update, delete, and list tables. Let's try to understand
the implementation in greater detail.

Chapter 2

[43]

Create table
You can create a DynamoDB table in PHP by providing information, such as table
name, provision throughput settings, attributes, and primary key schema.

To invoke any table operation, first you need to create an instance of the DynamoDB
client and instantiate it with your AWS credentials, as shown in the following code:

$aws = Aws\Common\Aws::factory("./config.php");
$dynamodclient = $aws->get("dynamodb");
Once done, you can form create table request by providing required
details.
$tableName = "Book";

$result = $ dynamodclient ->createTable(array(
 "TableName" => $tableName,
 "AttributeDefinitions" => array(
 array(
 "AttributeName" => "bookId",
 "AttributeType" => Type::NUMBER
)
),
 "KeySchema" => array(
 array(
 "AttributeName" => "bookId",
 "KeyType" => KeyType::HASH
)
),
 "ProvisionedThroughput" => array(
 "ReadCapacityUnits" => 10,
 "WriteCapacityUnits" => 10
)
));

This creates a table on DynamoDB and can be used to store data once active.

Update table
Updating a table in DynamoDB is quite easy; you just need to specify the table name
and the specifications that need to be updated. DynamoDB allows us to only update
provision throughput configurations and the global secondary index. The following
is an example of this:

$tableName = "Book";

$dynamodbclient->updateTable(array(

Data Models

[44]

 "TableName" => $tableName,
 "ProvisionedThroughput" => array(
 "ReadCapacityUnits" => 30,
 "WriteCapacityUnits" => 30
)
));

Here we are updating the read and write capacity units to 30 for the table Book.

Delete table
Deleting a table in DynamoDB is quite easy; you just need to mention the name of
the table to be deleted and invoke the deleteTable method. You should be careful
while using this API as a table, once deleted, cannot be retrieved back.

$tableName = "Book";

$result = $dynamodbclient->deleteTable(array(
 "TableName" => $tableName
));

List tables
The DynamoDB SDK allows us to list down all available tables for a given account
by invoking the listtable method from the DynamoDB client. You can optionally
mention whether you want to limit the result to a specific number. You can also
mention whether you want DynamoDB to start the evaluation from a particular
table. The following is the code to perform the same:

$response = $dynamodbclient ->listTables(array(
 'Limit' => 10,
 'ExclusiveStartTableName' => isset($response) ? $response['Las
tEvaluatedTableName'] : null
));

Operations on items
Items in DynamoDB are simply collections of attributes. Attributes can be in the
form of strings, numbers, binaries, or a set of scalar attributes. Each attribute consists
of a name and a value. An item must have a primary key. As we have already seen, a
primary key can have a hash key or a combination of hash and range keys. In addition
to the primary key, items can have any number of attributes except for the fact that
item size cannot exceed 64 KB.

Chapter 2

[45]

While doing various item operations, you should have be aware of following
DynamoDB features.

Strong versus eventual consistency
In Chapter 1, Getting Started, we had talked about the durability feature of DynamoDB.
To provide this durability, DynamoDB keep copies of items in various availability
zones. When a certain item gets updated, DynamoDB needs to make sure that it
updates all other copies as well. However, it takes time to make any write consistent
on all servers; that's why the operation is called eventually consistent. DynamoDB also
supports strong consistency where it provides you with the latest updated copy of
any item, but it takes more read capacity units to perform this operation. Eventually
consistent reads are lightweight and take only half the read capacity units to perform
the operation when compared with strong consistent reads.

So, in order to make the most of DynamoDB, it's very important to design your
application in such a manner that eventually consistent reads can be used whenever
possible to increase the time and cost efficiency.

Before you decide to use eventually consistent reads, you should ask yourself the
following questions:

• Can my item operation tolerate stale reads?
• Can it tolerate out-of-order values?
• Can it tolerate returning some other values updated by someone else after

my update?

Eventual consistency
Eventual consistency is a special type of weak consistency, where the system
guarantees to return the last updated values to all clients eventually. In distributed
systems, to improve the read and write performance, you have to tolerate the data
inconsistency under highly concurrent reads and writes. There are various types of
eventual consistency:

• Casual: Consider that client 1 has updated a data item and has notified
the same to client 2, then a subsequent operation by client 2 will guarantee
the return of the most updated data. Meanwhile, if client 3 performs any
operation on the same data item, and clients 1 and 3 do not have any
casual relation, then the data will be returned based on the sequence
of performance.

• Read-your-writes: In this case if client 1 has updated a certain value,
then it will always access the updated value.

Data Models

[46]

• Session: In this eventual consistency model, if a session has updated
a certain value, then as long as a session is alive, it will always get the
most updated value.

These types need not be put in all at once. One thing to note here is that eventual
consistency is not a NoSQL proprietary; most of the legacy RDBMSes also use the
eventual consistency model in order to improve performance.

Conditional writes
Conditional writes are a special feature of DynamoDB designed to avoid data
inconsistency when it updates multiple users at the same time. There might be
a case where two clients read a certain data item at the same time, and if client
1 updates it first, and then client 2 updates it again, the update by client 1 would
be lost. Let's understand this scenario in detail.

Consider that we have a book table that contains an attribute called bookPrice.
Now, if two clients are trying to increase the price by some amount, then there
might be a chance that the update that was done to the item first would be lost,
as shown in the following diagram:

Chapter 2

[47]

In this case, updates made by client 1 are lost. In order to avoid this, DynamoDB
provides the conditional write feature, which allows the updates only if certain
conditions are fulfilled. In this, we can put a condition such as update the book
price only if the current book price is $20. If that is not the case, then DynamoDB
will fail that operation and give the necessary feedback to the client, as shown in
the following diagram:

There might be multiple use cases where conditional writes can be useful. Suppose
you are working on some transaction data where data consistency is extremely
critical, then you can use conditional writes to avoid missed updates.

Data Models

[48]

AWS supports atomic counters, which can be used to increment
or decrement the value as and when needed. This is a special
feature that handles the data increment and decrement request
in the order they are received. To implement atomic counters,
you can use the ADD operation of the UpdateItem API. A good
use case to implement atomic counters is website visitor count.
So, in this case, the request will keep updating the attribute by
one regardless of its current or previous value. Atomic counters
are not idempotent, which means the counter value would get
updated even if the request fails, so it does not guarantee accuracy
of count. So it is advisable to use atomic counters only where a
slight overcalculation or undercalculation of value is acceptable
and should not be used where getting the correct count is critical.
So using atomic counters for the website visitor counter is good,
but it is not advisable to use them for any banking operation.

Item size calculations
Item size in DynamoDB is calculated by adding all attributes' names and their
respective values. In Chapter 1, Getting Started, we have seen how read and write
capacity units are calculated, where we said that each read operation of DynamoDB
is of size 4 KB and each write operation of 1 KB. So it makes sense to design the
attributes in such a manner that each read request should get the data size which is
a multiple of 4 KB, as even if you read 3 KB, DynamoDB would round it up to 4 KB;
the same is the case for write operations, which should write the data in multiples
of 1 KB.

In order to optimize the read and write capacity units,
you should try to reduce the item size. One good practice
to reduce the item size is to reduce the size of the attribute
name/length. For example, instead of having the attribute
name as yearOfPublishing, you should use the acronym yop.

Now that we have understood special features of Items in DynamoDB, let's learn
how to manipulate items using the AWS SDK using Java, .NET, and PHP APIs.

Chapter 2

[49]

Using the AWS SDK for Java
Earlier in this section, we saw how to manipulate tables using the Java API; now,
let's learn how to manipulate items from a certain table.

Put item
This method allows us to store an item in a DynamoDB table. To put the item in the
DynamoDB table, you just need to create PutItemRequest and call the putItem
method with the provided details. To call the putItem method, you should first
initialize the DynamoDB client, which we have already seen in the Table operations
section, as shown in the following code:

AmazonDynamoDBClient dynamoDBClient = new AmazonDynamoDBClient(
 new ClasspathPropertiesFileCredentialsProvider());

// Create Map of String and AttributeValue and store the data in it.
Map<String, AttributeValue> item = new HashMap<String,
AttributeValue>();
 item.put("bookId", new AttributeValue().withN("2001"));
 item.put("name", new AttributeValue().withS("Mastering DynamoDB"));
 item.put("isbn", new AttributeValue().withS("2222-222-222"));
 item.put("authors", new AttributeValue().withSS(Arrays.
asList("Tanmay Deshpande")));

// Initiate with PutItemRequest with table name and item to be added
PutItemRequest putItemRequest = new PutItemRequest().
withTableName("Book").withItem(item);

// Call put item method from dynamodb client
PutItemResult putItemresult = dynamoDBClient.putItem(putItemRequest);

Get item
This method allows you to retrieve a stored item from a specified table identified
by a specified primary key. The inputs required to be provided are table name and
primary key. The following is the syntax for this:

//Create key instance for item to be fetched
HashMap<String, AttributeValue> key = new HashMap<String,
AttributeValue>();
 key.put("bookId", new AttributeValue().withN("2001"));

// Create get item request

Data Models

[50]

GetItemRequest getItemRequest = new GetItemRequest().
withTableName("Book").withKey(key);

// Call getItem method from DynamoDB client
GetItemResult getItemResult = dynamoDBClient.getItem(getItemRequest);

You can also provide some additional attributes, such as attributes to fetch,
consistency type (strong/eventual), and so on:

// List of attributes to be fetched
List<String> attributesTobeFetched = new ArrayList<String>(
 Arrays.asList("bookId", "name", "isbn", "authors"));

// Create key instance for item to be fetched
HashMap<String, AttributeValue> key = new HashMap<String,
AttributeValue>();
key.put("bookId", new AttributeValue().withN("2001"));

// Create get item request
GetItemRequest getItemRequest = new GetItemRequest()
 .withTableName("Book").withKey(key)
 .withAttributesToGet(attributesTobeFetched)
 .withConsistentRead(true);

// Call getItem method from DynamoDB client
GetItemResult getItemResult = dynamoDBClient.getItem(getItemRequest);

Update item
The update item method from DynamoDB client is quite a useful method that allows
us to do multiple things in one go as follows:

• Modify existing value of an attribute
• Add a new attribute to an existing set
• Delete an attribute from an existing set

If you invoke the updateItem method for a non-existing item, then DynamoDB adds
the new item to the table. You can also use the AttributeAction.ADD action to add
a value to the existing set of values and do addition and subtraction for numeric
values. The following is the syntax to use the updateItem method:

// Create Hash Map of item with attributes to be updated.
Map<String, AttributeValueUpdate> updateItems = new HashMap<String,
AttributeValueUpdate>();

Chapter 2

[51]

// Add two new authors to the list.
updateItems.put("authors", new AttributeValueUpdate()
 .withAction(AttributeAction.ADD)
 .withValue(new AttributeValue().withSS("XYZ", "PQR")));

// Hash Map of key
HashMap<String, AttributeValue> primaryKey = new HashMap<String,
AttributeValue>();
primaryKey.put("bookId", new AttributeValue().withN("2001"));

// To increase the no. of chapters of the book by 2

updateItems.put("chapters", new AttributeValueUpdate()
 .withAction(AttributeAction.ADD)
 .withValue(new AttributeValue().withN("2")));

// To delete an attribute called "rating"
updateItems.put("rating", new AttributeValueUpdate()
 .withAction(AttributeAction.DELETE));

// finally create UpdateItemRequest and invoke updateItem method with
this request
UpdateItemRequest updateItemRequest = new UpdateItemRequest()
 .withKey(primaryKey)
 .withAttributeUpdates(updateItems);

UpdateItemResult updateItemResult = dynamoDBClient.
updateItem(updateItemRequest);

Delete item
Deleting an item from a table is quite easy; you can simply mention the primary key
of the item to be deleted and the table name, as shown in the following code:

// Hash map of key
HashMap<String, AttributeValue> primaryKey = new HashMap<String,
AttributeValue>();
primaryKey.put("bookId", new AttributeValue().withN("2001"));

// Create delete item request with primary key and table name
DeleteItemRequest deleteItemRequest = new DeleteItemRequest()
.withKey(primaryKey)

www.allitebooks.com

http://www.allitebooks.org

Data Models

[52]

.withTableName("Book");
// Invoke delete item method with prepared request
DeleteItemResult deleteItemResult = dynamoDBClient.
deleteItem(deleteItemRequest);

Batch get items
DynamoDB allows us to also get 100 items in one go. You can retrieve multiple
items from multiple tables at a time. But, it is also important not to allow the size
of the data retrieved to more than 1 MB, as shown in the following code:

// Create map of items to be fetched
HashMap<String, KeysAndAttributes> requestItems = new HashMap<String,
KeysAndAttributes>();

// Create list of keys to fetched
ArrayList<Map<String, AttributeValue>> keys = new
ArrayList<Map<String, AttributeValue>>();

// Key 1
HashMap<String, AttributeValue> key1 = new HashMap<String,
AttributeValue>();
 key1.put("bookId", new AttributeValue().withN("2001"));
 keys.add(key1);
// key 2
HashMap<String, AttributeValue> key2 = new HashMap<String,
AttributeValue>();
 key2.put("bookId", new AttributeValue().withN("2002"));
 keys.add(key2);

requestItems.put("Book", new KeysAndAttributes().withKeys(keys));

// Create Batch Get Item request
BatchGetItemRequest batchGetItemRequest = new BatchGetItemRequest().
withRequestItems(requestItems);

// invoke batch get items method
BatchGetItemResult batchGetItemResult = dynamoDBClient.batchGetItem(ba
tchGetItemRequest);

Chapter 2

[53]

Batch write items
This API allows us to put or delete up to 25 items from multiple tables in one go,
as shown in the following code:

// Create a map for the requests
Map<String, List<WriteRequest>> writeRequestItems = new
HashMap<String, List<WriteRequest>>();

// Create put request and add new book item in it

Map<String, AttributeValue> bookItem1 = new HashMap<String,
AttributeValue>();
 bookItem1.put("bookId", new AttributeValue().withS("2010"));
 bookItem1.put("name", new AttributeValue().withN("AWS EMR"));

Map<String, AttributeValue> bookItem2 = new HashMap<String,
AttributeValue>();
 bookItem2.put("bookId", new AttributeValue().withS("2011"));
 bookItem2.put("name", new AttributeValue().withN("AWS SWF"));

List<WriteRequest> bookList = new ArrayList<WriteRequest>();
 bookList.add(new WriteRequest().withPutRequest(new PutRequest().
withItem(bookItem1)));
 bookList.add(new WriteRequest().withPutRequest(new PutRequest().
withItem(bookItem2)));

writeRequestItems.put("Book", bookList);

// Create Put Batch Item request and invoke write batch write item
request

BatchWriteItemRequest batchWriteItemRequest = new BatchWriteItemReques
t(writeRequestItems);

BatchWriteItemResult batchWriteItemResult = dynamoDBClient.batchWriteI
tem(batchWriteItemRequest);

Data Models

[54]

Using the AWS SDK for .NET
As we saw in table operations, a similar SDK is available in .NET as well.
The following are some examples to show how to perform item operations
using the .NET API:

Put item
To invoke the putItem method from DynamoDB client, we first need to create
a put item request, as shown in the following code:

var request = new PutItemRequest
{
 TableName = "Book",
 Item = new Dictionary<string, AttributeValue>()
 {
 { "bookId", new AttributeValue { N = "2001" }},
 { "name", new AttributeValue { S = "AWS DynamoDB" }},
 { "isbn", new AttributeValue { S = "2222-222-222" }},
 {
 "authors",
 new AttributeValue
 { SS = new List<string>{"XYZ", "PQR"} }
 }
 }
};
dynamodbClient.PutItem(request);

Get item
To retrieve a particular item from a given table, you just need to simply mention its
key, as shown in the following code:

var request = new GetItemRequest
 {
 TableName = "Book",
 Key = new Dictionary<string,AttributeValue>() { { "bookId", new
AttributeValue { N = "2001" } } },
 };
 var response = dynamodbClient.GetItem(request);

Chapter 2

[55]

Update item
The update item API allows us to add a new attribute to an existing set, delete an
attribute from an existing set, or add a new attribute to an item. It can be done using
the following code:

var request = new UpdateItemRequest
{
 TableName = "Book",
 Key = new Dictionary<string,AttributeValue>() { { "bookId", new
AttributeValue { N = "2001" } } },
 AttributeUpdates = new Dictionary<string, AttributeValueUpdate>()
 {
 // Add two new author to the list.
 { "authors",
 new AttributeValueUpdate
 {
 Action="ADD",
 Value = new AttributeValue{SS = { "XYZ", "PQR" }}
 }
 },
 // Increase the number of chapters by 2
 { "chapters",
 new AttributeValueUpdate
 {
 Action="ADD",
 Value = new AttributeValue{N = "2"}
 }
 },
 // Add a new attribute.
 { "pages",
 new AttributeValueUpdate { Value = new AttributeValue{N =
"180" } } },

 // Delete the existing ISBN attribute.
 { "isbn", new AttributeValueUpdate { Action="DELETE" } }
 }
};
var response = dynamodbClient.UpdateItem(request);

Delete item
You can delete an existing item from a particular table by specifying its primary key,
as shown in the following code:

var request = new DeleteItemRequest
 {
 TableName = "Book",

Data Models

[56]

 Key = new Dictionary<string,AttributeValue>() { { "bookId", new
AttributeValue { N = "2001" } } },
 };
var response = dynamodbClient.DeleteItem(request);

BatchGetItems
This API allows fetching of up to 100 items from multiple tables at a time. One thing
to note is the request data size should not exceed the maximum limit of 1 MB. It can
be used as shown in the following code:

string tableName = "Book";
var request = new BatchGetItemRequest
{
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { tableName,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "bookId", new AttributeValue { N = "2010" } }
 }

 },
 new Dictionary<string, AttributeValue>()
 {
 { "bookId", new AttributeValue { N = "2011" } }

 }
 }
 }
 }
 }
};
var response = dynamodbClient.BatchGetItem(request);

Chapter 2

[57]

BatchWriteItems
This API allows us to put and delete multiple items at a time. You need to create a
proper batch write item request specifying what needs to be added and what needs
be deleted.

In the following code, we are adding one item in the Author table and then deleting
one item from the same table:

string tableName = "Author";
var request = new BatchWriteItemRequest
 {
 {
 tableName, new List<WriteRequest>
 {

 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string,AttributeValue>
 {
 { "authId", new AttributeValue { N = "5001" } },
 { "name", new AttributeValue { S = "James Bond" } },
 { "country", new AttributeValue { S = "USA" } },
 { "topics", new AttributeValue { SS = new
List<string> { "Hadoop", "Cloud" } } }
 }
 }
 },
 new WriteRequest
 {
 DeleteRequest = new DeleteRequest
 {
 Key = new Dictionary<string,AttributeValue>()
 {
 { "authId", new AttributeValue { N = "5002" } }
 }
 }
 }
 }
 }
 }
 };
response = client.BatchWriteItem(request);

Data Models

[58]

Using the AWS SDK for PHP
As we know AWS provides PHP APIs for table operations; we have the same for
item operations as well.

The putItem method
To add an item to a DynamoDB table, we can use the putItem method. The
following is an example of how to add a new book item to the Book table:

$response = $client->putItem(array(
 "TableName" => "Book",
 "Item" => array(
 "bookId" => array(Type::NUMBER => 2001),
 "name" => array(Type::STRING => "Dynamo DB"),
 "isbn" => array(Type::STRING => "978-233435-555"),
 "chapters" => array(Type::NUMBER => 10),
 "authors" => array(Type::STRING_SET => array("XYZ", "PQR")
)
)
));

The getItem method
We can retrieve the stored item in a DynamoDB table, as shown in the following code:

$response = $client->getItem(array(
 "TableName" => "Book",
 "Key" => array(
 "bookId" => array(Type::NUMBER => 2001)
)
));

The updateItem method
The updateItem API allows us to perform multiple operations, such as add a new
attribute to an item, add an extra value to an existing set of attribute values, and delete
an attribute from an existing item. It can be used as shown in the following code:

$response = $client->updateItem(array(
 "TableName" => "Book",
 "Key" => array(
 "bookId" => array(
 Type::NUMBER => 2001
)

Chapter 2

[59]

),
 "AttributeUpdates" => array(
 "authors" => array(
 "Action" => AttributeAction::PUT,
 "Value" => array(
 Type::STRING_SET => array("XYZ", "PQR")
)
),

 "chapters" => array(
 "Action" => AttributeAction::ADD,
 "Value" => array(
 Type::NUMBER => 2
)
),
 "pages" => array(
 "Action" => AttributeAction::DELETE
)
)
));

In the previous code snippet, we first added two extra authors in the authors
attribute, increased the number of chapters by 2, and then deleted attribute
pages from the item with bookId 2001.

The deleteItem method
Deleting an item is quite an easy job; you can simply invoke the deleteItem method
specifying the table name and item primary key, as shown in the following code:

$response = $client->deleteItem(array(
 'TableName' => 'Book',
 'Key' => array(
 'Id' => array(
 Type::NUMBER => 2001
)
)
));

The batchGetItem API
With the batchGetItem API, we can fetch multiple items from various tables in one
go. In the following code, we are fetching two items from the Authors table at a time.

$response = $client->batchGetItem(array(
 "RequestItems" => array(

Data Models

[60]

 "Authors" => array(
 "Keys" => array(
 array(// Key #1
 "authId" => array(Type::NUMBER => "5001"),

),
 array(// Key #2
 "Id" => array(Type::NUMBER => "5002"),
),
)
)
)));

The batchWriteItems API
The batchWriteItems API is a multiple purpose API that allows us to do things
such as adding multiple items to multiple tables, deleting item/s from multiple
tables, or adding an attribute to an existing item. Have a look at the following code:

$response = $client->batchWriteItem(array(
 "RequestItems" => array(
 "Book" => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "bookId" => array(Type::NUMBER => 2020),
 "name" => array(Type::STRING => "Mastering
Cassandra")
)
)
)
),
 "Author" => array(
 array(
 "PutRequest" => array(
 "Item" => array(
 "authId" => array(Type::NUMBER => 5001),
 "name" => array(Type::STRING => "Mark
Brown"),
 "country" => array(Type::STRING => "UK"),
 "topics"=>array(Type::STRING_SET =>
array("Hadoop", "Cloud"))
))
),
 array(

Chapter 2

[61]

 "DeleteRequest" => array(
 "Key" => array(
 "authId" => array(Type::NUMBER => 5002)
))
)
)
)
));

In the previous example, we added an item to the Book table, added an item to the
Author table, and deleted an item from the Author table.

Query and scan operations
The query operation is a very important operation that allows us to fetch specific
items from the given table. It needs a primary input and an optional start key to
compare with the list of items. The query fetches all matching entries to the input
from a given table. You can also use comparison operations, such as greater than,
less than, contains, between, and so on to narrow down the result set. Data returned
from a query or scan operation is limited to 1 MB. If it does not find any matching
items with respect to a given input key, it returns an empty set.

Query results are always sorted in the order of the range key value. By default, the
order of sorting is ascending. If a table has secondary index, then the query operation
can be performed on it as well.

The scan operation checks every individual item for a given table. We can specify
the filter criteria in order to manage the search results after the scan gets completed.
A scan filter normally consists of the list of attribute values to be compared with and
the comparison operator. Like the query operator, the scan also puts the maximum
result size as 1 MB.

Query versus scan
Even though the query and scan operations are meant to get bulk data depending on
the given criteria, there are lots of fundamental differences between these operations.
From a performance point of view, a query is much more efficient than the scan
operation, as a query works on a limited set of items, while the scan operation churns
the entire table data. The scan operation first returns the entire table data and then
applies filters on it to remove the unnecessary data from the result set. So, it's obvious
that as your table data grows, the scan operation would take more time to give back
the results.

Data Models

[62]

The query operation's performance is totally dependent on the amount of data
retrieved. The number of matching keys for a given search criteria decides the
query performance. If a specific hash key has more matching range keys than the
size limit of 1 MB, then you can use pagination where an ExclusiveStartKey
parameter allows you to continue your search from the last retrieved key by an
earlier request. You need to submit a new query request for this.

Query results can be either eventually consistent or optionally strongly consistent,
while scan results are eventually consistent only. The capacity unit calculation
for query and scan is similar to other operations in DynamoDB, which we have
already seen.

Pagination
As we discussed earlier, DynamoDB puts a size limit of 1 MB on the result set
of query and scan operations. So, sometimes it's quite possible that the result set
would have a dataset of more than 1 MB. In order to deal with this limitation,
DynamoDB provides us with two useful parameters, LastEvaluatedKey and
ExclusiveStartKey, which allow us to fetch results in pages. If a query or scan
result reaches the maximum size limit of 1 MB, then you can put the next query by
setting ExclusiveStartKey derived from LastEvaluatedKey. When DynamoDB
reaches the end of search results, it puts LastEvaluatedKey as null.

Limit and counts
If you want to limit the number of results returned by the query and scan
operations, then you can specify the limit parameter,which would limit the
results to the specified number. Similar to the way we use limit from a RDBMS,
this limit can also be used to do data sampling.

Like select count queries in a traditional RDBMS, we have something similar to that,
which is also called count. If you set the count parameter to true in the query or scan
request, then instead of returning the actual data set, DynamoDB returns the count
of matching items for the given criteria. The data size limit of 1 MB is also applied
for query and scan counts.

Parallel scan
DynamoDB's scan operation processes the data sequentially from the table, which
means that, for a complete table scan, DynamoDB first retrieves 1 MB of data,
returns it, and then goes and scans the next 1 MB of data, which is quite a nasty
and time-consuming way of dealing with huge table scans.

Chapter 2

[63]

Though Dynamo stores data on multiple logical partitions, a scan operation can only
work on one partition at a time. This type of restriction leads to underutilization of
the provisioned throughput.

To address all these issues, DynamoDB introduced the parallel scan, which divides
the table into multiple segments, and multiple threads work on a single segment at
a time. Here multiple threads and processes are invoked together, and each retrieve
1 MB of data every time. The process that works upon each segment is called a
worker. To issue a parallel scan, you need to provide the TotalSegments value;
TotalSegments is simply the number of workers going to access a certain table
in parallel.

Suppose you have three workers, then you need to invoke the scan command in the
following manner:

Scan (TotalSegments = 3, Segment = 0,..)
Scan (TotalSegments = 3, Segment = 1,..)
Scan (TotalSegments = 3, Segment = 2,..)

Here, we would logically divide the table into three segments, and each thread
would scan a dedicated segment only. The following is the pictorial representation
of a parallel scan:

Data Models

[64]

You can play around with Segment and TotalSegments values until you get the
best performance for your scan request. The best use of the parallel scan is when
we integrate DynamoDB with other AWS services, such as AWS EMR and AWS
RedShift, as with this feature, the import/export from DynamoDB allows maximum
utilization of provisioned resources.

Query and scan operations support a growing number of comparison operations;
you can read more about them at http://docs.aws.amazon.com/amazondynamodb/
latest/APIReference/API_Condition.html.

Querying tables
In this section, we are going to see how to programmatically query DynamoDB
tables using Java, .NET, and PHP.

Using the AWS SDK for Java
To query DynamoDB data, you need to first create the DynamoDB client and invoke
the query method from the same. The following code snippet shows how the Query
API can be used to search Book with a given book ID:

// Create condition instance with hash key to searched
Condition condition = new Condition()
 .withComparisonOperator(ComparisonOperator.EQ)
 .withAttributeValueList(new AttributeValue().withN("2001"));

//create map of key conditions and add the condition

Map<String, Condition> conditions = new HashMap<String, Condition>();
 conditions.put("bookId", condition);

// Create query request

QueryRequest queryRequest = new QueryRequest().withTableName("Book").
withKeyConditions(conditions);

// Invoke query method from dynamodb client

QueryResult queryResult = dynamoDBClient.query(queryRequest);

You can also specify some optional parameters, such as attribute, to get, consistent
read or eventual read, limit (number of records to be fetched), and so on.

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Condition.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Condition.html

Chapter 2

[65]

For pagination, you can use ExclusiveStartKey and LastEvaluatedKey as
explained earlier and shown in the following code:

Map<String, AttributeValue> lastEvaluatedKey = null;
 do {
 QueryRequest qryRequest = new QueryRequest()
 .withTableName("Book")
 .withKeyConditions(conditions)
 .withLimit(20)
 .withExclusiveStartKey(lastEvaluatedKey);
 QueryResult result = dynamoDBClient.query(qryRequest);
 for (Map<String, AttributeValue> resItem : result.getItems())
{
 System.out.println(resItem);
 }
 lastEvaluatedKey = result.getLastEvaluatedKey();
 } while (lastEvaluatedKey != null);
 }

The previous code snippet would fetch the book query results in 20 records per cycle.

Using the AWS SDK for .NET
Similar to Java, we need to create a query request in .NET and invoke a query
method from the DynamoDB client using the following code:

var request = new QueryRequest
{
 TableName = "Book",
 KeyConditions = new Dictionary<string,Condition>()
 {
 {
 "yop",
 new Condition()
 {
 ComparisonOperator = "EQ",
 AttributeValueList = new List<AttributeValue>()
 {
 new AttributeValue { N = 2014 }
 }
 }
 }
 }
};

var response = dynamoDBClient.Query(request);
var result = response.QueryResult;

Data Models

[66]

Here we are querying all books whose year of publishing (yop) is 2014 in the
Book table.

If you want to see results in pages, the following is the syntax for it:

Dictionary<string,AttributeValue> lastKeyEvaluated = null;
do
{
 var request = new QueryRequest
 {
 TableName = "Book",
 KeyConditions = new Dictionary<string,Condition>()
 {
 {
 "yop",
 new Condition()
 {
 ComparisonOperator = "EQ",
 AttributeValueList = new List<AttributeValue>()
 {
 new AttributeValue { N = 2014 }
 }
 }
 }
 },
 // Setting page limit to 20
 Limit = 20,
 ExclusiveStartKey = lastKeyEvaluated
 };

 var response = dynamoDBclient.Query(request);
 // Printing query results
 foreach (Dictionary<string, AttributeValue> item in response.
QueryResult.Items)
 {
 PrintItem(item);
 }
 lastKeyEvaluated = response.QueryResult.LastEvaluatedKey;

} while (lastKeyEvaluated != null);

Chapter 2

[67]

PHP API
The following is the syntax to query the Book table where the year of publishing
equals 2014 in PHP:

$response = $client->query(array(
 "TableName" => "Book",
 "KeyConditions" => array(
 "yop" => array(
 "ComparisonOperator" => ComparisonOperator::EQ,
 "AttributeValueList" => array(
 array(Type::NUMBER => 2014)
)
)
)
));

To use pagination, you can use the following code:

$tableName = "Book";
do {

 $request = array(
 "TableName" => $tableName,
 "KeyConditions" => array(
 "yop" => array(
 "ComparisonOperator" => ComparisonOperator::EQ,
 "AttributeValueList" => array(
 array(Type::NUMBER => 2014)
)
)
),

 "Limit" => 20
);

 # Add ExclusiveStartKey if it has got one in previous response
 if(isset($response) && isset($response['LastEvaluatedKey'])) {
 $request['ExclusiveStartKey'] = $response['LastEvaluatedKey'];
 }
 $response = $client->query($request);
} while(isset($response['LastEvaluatedKey']));

Data Models

[68]

Scanning tables
In this section, we are going to see how to programmatically scan tables in different
languages, such as Java, .NET, and PHP.

Using the AWS SDK for Java
To scan the table, you simply need to create the scan request and invoke the scan
method from the DynamoDB client, specifying the table name, as shown in the
following code:

// Create scan request
ScanRequest scanRequest = new ScanRequest().withTableName("Book");
// Invoke scan method
ScanResult scanResult = dynamoDBClient.scan(scanRequest);

You can also specify an optional parameter, such as scan filter and attributes to get.
You can read more about the scan filter and attributes to get at http://docs.aws.
amazon.com/amazondynamodb/latest/APIReference/API_Scan.html.

For pagination, you need to write the code as follows:

Map<String, AttributeValue> lastKeyEvaluated = null;
do {
 ScanRequest scanRequest = new ScanRequest()
 .withTableName("Book")
 .withLimit(20)
 .withExclusiveStartKey(lastKeyEvaluated);

 ScanResult result = dynamoDBClient.scan(scanRequest);
 for (Map<String, AttributeValue> resItem: result.getItems()){
 System.out.println(resItem);
 }
 lastKeyEvaluated = result.getLastEvaluatedKey();
} while (lastKeyEvaluated != null);

Here we are scanning the Book table, 20 rows at a time.

Using the AWS SDK for .NET
To scan a table using a .NET API, you need to create the scan request and invoke
the scan method by providing the details as shown in the following code:

var request = new ScanRequest
{
 TableName = "Book",

http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Scan.html

Chapter 2

[69]

};

var response = dynamoDBClient.Scan(request);
var result = response.ScanResult;

You can also specify additional optional attributes, such as a scan filter and attributes
to get. We can get the paginated results for the scan, as shown in the following code:

Dictionary<string, AttributeValue> lastKeyEvaluated = null;
do
{
 var request = new ScanRequest
 {
 TableName = "Book",
 Limit = 20,
 ExclusiveStartKey = lastKeyEvaluated
 };

 var response = dynamoDBClient.Scan(request);

 foreach (Dictionary<string, AttributeValue> item
 in response.Items)
 {
 PrintItem(item);
 }
 lastKeyEvaluated = response.LastEvaluatedKey;

} while (lastKeyEvaluated.Count != 0);

Using the AWS SDK for PHP
To scan a table in DynamoDB, you need to invoke the scan method from the
DynamoDB client, as shown in the following code:

$response = $client->scan(array(
 "TableName" => "Book"
));

To use pagination, you need to write code in the following manner:

$tableName = "Book";

do {

 $request = array(
 "TableName" => $tableName,

Data Models

[70]

 "Limit" => 20
);

 # Add ExclusiveStartKey if present in previous response
 if(isset($response) && isset($response['LastEvaluatedKey'])) {
 $request['ExclusiveStartKey'] = $response['LastEvaluatedKey'];
 }

 $response = $client->scan($request);

} while(isset($response['LastEvaluatedKey']));

Modeling relationships
Like any other database, modeling relationships is quite interesting even though
DynamoDB is a NoSQL database. Now that we have learned about the DynamoDB's
data model, we can start looking at how to use them in your application. Most of the
time, people get confused on how to model the relationships between various tables.
In this section, we are trying to make an effort to simplify this problem.

Let's try to understand the relationships better using our example of the bookstore,
where we have entities, such as book, author, publisher, and so on.

One to one
In this type of relationship, a one-entity record of a table is related to only a
one-entity record of the other table. In our bookstore application, we have the
BookInfo and BookDetails tables. The BookInfo table can have information in
brief about the book, which can be used to display book information on web pages,
whereas the BookDetails table would be used when someone explicitly needs to
see all the details of the book. This design helps us keep our system healthy as, even
if there are a large number of requests on one table, the other table would always be
up and running to fulfill what it is supposed to do. The following screenshot shows
how the table structure would look:

Chapter 2

[71]

One to many
In this type of relationship, one record from an entity is related to more than one
record in another entity. In our bookstore application, we can have the Publisher
Book table, which would keep information about the book and publisher relationship.
Here, we can have Publisher Id as the hash key and Book Id as the range key. The
following screenshot shows how a table structure would look:

Data Models

[72]

Many to many
A many-to-many relationship means many records from an entity are related to
many records from another entity. In the case of our bookstore application, we
can say that a book can be authored by multiple authors, and an author can write
multiple books. In this we should use two tables with both hash and range keys,
as shown in the following screenshot:

In the previous screenshot, the Book table says that one book can have multiple
authors, while the Author table says that an author can write multiple books.

Summary
In this chapter, we talked in detail about various aspects of the DynamoDB data
model. We started with understanding the hash key, the range key, and their usage:
secondary indexes, and how to use them in your application; and then we talked
about various data types used in DynamoDB. We also discussed how to perform
various operations on tables, items, and attributes using Java, .NET, and PHP APIs.

Now that we have learned how to use DynamoDB, it's time to understand how things
work in the actual background. In the next chapter, we will discuss the architectural
details of DynamoDB.

How DynamoDB Works
In the previous chapter, we saw the features DynamoDB has, and learned how to
perform various operations on DynamoDB using a variety of APIs. We also saw
various application-oriented examples, and what features of DynamoDB fit well
in what conditions. Now it's time to understand its internals. In this chapter, we
are going to talk about why DynamoDB was developed. What is the architecture
underneath that makes it so robust and scalable? How does DynamoDB handle
failures? So, let's get started.

In Chapter 1, Getting Started, we discussed DynamoDB's history; DynamoDB was built
to address the scaling needs of Amazon's worldwide e-commerce platform, and also
provide high availability, reliability, and performance. Amazon's platform is highly
decoupled, consisting of thousands of services running on storage machines. Amazon
needs reliable storage systems that can store and retrieve data even in conditions like
disk failures, network failures, or even during natural calamities, which means that
a user should be able to add/remove items in/from the cart, make payments, and
do checkouts 24*7 without any downtime, as even a few minutes of downtime may
have major financial implications. When you have many decoupled components, it is
expected to have machine and network failures, so DynamoDB was designed in such a
manner that it handles failures as a normal case and should not affect the performance
and availability of the system.

DynamoDB uses a combination of the best-known techniques, which, combined
together have formed such a brilliant system. It uses a consistent hashing algorithm
to achieve uniform data partitioning. Object versioning is done for consistency. The
quorum technique is used to maintain consistency amongst the replicas. Now, let's
try to dive deep into more such techniques and try to understand what role these
techniques play in DynamoDB's system architecture.

How DynamoDB Works

[74]

Service-oriented architecture
Amazon's platform is fully service oriented, which means various components in
Amazon's ecosystem are exposed as a service for the other services to consume. Each
service has to maintain its SLA in order to complete the response accurately and on
time. SLA is a Service Level Agreement where a service agrees to provide a response
within the said time for a said number of requests per second. In Amazon's service-
oriented architecture, it is very important for services to maintain the agreement, as
Amazon's request response engine builds the response dynamically by combining
the results from many services. Even to answer a single request on Amazon's
e-commerce website, hundreds of services come together to form the response.

In the following diagram, the request comes from the web via Amazon's e-commerce
platform, which is then forwarded to various services to get the appropriate data
from DynamoDB. Data transfer happens in DynamoDB from simple APIs like
GET/PUT/DELETE. The data from various services gets aggregated, and then
it's provided to the page rendering service, which actually builds the page.

Chapter 3

[75]

Also, as you see in the diagram, DynamoDB does not have any master node or
superior node that would control everything. Rather, it maintains a ring structure
of nodes, where each node would have equal responsibilities to perform.

Design features
While deciding DynamoDB's architecture, several design considerations have been
made that were quite new at that time, and over time these techniques have become
so popular that it has inspired many NoSQL databases we are using these days.
The following are a few such features:

• Data replication
• Conflict resolution
• Scalability
• Symmetry
• Flexibility

Data replication
While deciding upon the data replication strategy, Amazon engineers put significant
focus on achieving high availability and reliability. Traditional data replication
techniques used to have synchronous replica update, which means that if the value
for a certain attribute gets changed, it would be updated with all its replicas at that
point of time only, and unless that is done, access to that attribute would be made
unavailable. This technique was used in order to avoid wrong or stale data being
provided to the user. But this technique was not that efficient, as networks and
disks are bound to fail and waiting for all data replicas to get updates was really
time consuming.

So, to avoid this, engineers decided to stick with eventual consistency, which
means that replicas would be updated asynchronously by a background process.
This solution solved the problem of availability but gave rise to one more problem,
that is, conflicts. If a node gets updated with a new attribute value, an asynchronous
process will start updating the replicas in the background. Suppose, that one of the
nodes where a replica for the same data resides is not available for update, then that
node would have the same old value. Meanwhile, if the node becomes available
again and gets a read request, then it would present the old value, and there would
be a conflict between this node and other nodes.

How DynamoDB Works

[76]

Conflict resolution
Earlier, we saw that eventual consistency in data replication leads to conflicts,
so it's very important to handle the conflict resolution in a neat and clean manner.
For conflict resolution, we need to answer two things:

• When to resolve the conflict?
• Who would be resolving the conflict?

Conflicts can be resolved at read time or write time. Most data store systems resolve
conflicts on write operations and keep the read operation fast and lightweight. But
DynamoDB does not do that; it uses an always writable strategy, allowing writes
all the time. This is a crucial strategy from Amazon's business point of view, as they
don't want people to wait for some write to happen until the conflict is resolved. This
means they want the user to be able to add items to the cart at all times. If it does not
happen, then it would give a bad user experience and would lead to a serious impact
on Amazon's business.

It is also equally important to decide who would resolve the conflict, that is, the
application or the database. When it comes to the database resolving conflicts, it
prefers to use the last write wins strategy. In the case of Amazon, you are given
the choice to choose your own conflict resolution by providing features such as
conditional writes, which we saw in Chapter 2, Data Models.

Scalability
The most important design consideration was to have a system that can be scaled out
easily without affecting the application. DynamoDB uses the ring topology to arrange
its nodes. So, whenever there is a need to scale up the cluster, you can easily add a
node to the existing cluster without affecting system performance. Make a note that
as a DynamoDB service user, we don't have access to scale up or scale down clusters;
what we can do for this is to increase or decrease the provisioned throughput.

Symmetry
DynamoDB targets symmetry in its node cluster, which means that no node is the
master node, neither do they perform extra work or have extra responsibility than
others. This helps in maintaining the system properly balanced; plus, there is no
need to worry about failures, as even if a node or two fails, the system would
remain intact. There is no single point of failure in DynamoDB because of this.

Chapter 3

[77]

Flexibility
DynamoDB's ring architecture allows nodes of different configurations to be a part
of the same cluster, and each node gets the amount of responsibility it deserves. This
gives us the flexibility to add nodes as and when they are required and of whatever
size and configurations they are, they would be loaded with work.

Architecture
DynamoDB's architecture consists of various well-known, and a few new, techniques
that have helped engineers build such a great system. To build a robust system like
this, one has to consider various things, such as load balancing, partitioning, failure
detection/prevention/recovery, replica management and their sync, and so on. In
this section, we are going to focus on all these things, and learn about them in detail.

Load balancing
DynamoDB, being a distributed system, needs its data to be balanced across
various nodes. It uses consistent hashing for distributing data across the nodes.
Consistent hashing dynamically partitions the data over the network and keeps
the system balanced.

Consistent hashing is a classic solution to a very complex problem. The secret is
finding a node in a distributed cluster to store and retrieve a value identified by
a key, while at the same time being able to handle the node failures. You would
say this is quite easy, as you can simply number the servers and use some modulo
hash function to distribute the load. But the real problem is not only finding the
node for storage or retrieval but handling requests if a certain node goes down
or is unreachable. At this point, you would be left with only one option, that is,
to rearrange your hash numbering and rebalance the data. But doing this on each
failure is a quite an expensive operation.

How DynamoDB Works

[78]

Consistent hashing uses a unique technique to solve this problem; here, both the
nodes and the keys are hashed and the same technique is used for their lookup.
We first create a hash space or hash ring. Determining a hash value for each node
in a cluster is as good as placing that node on the circumference of the hash ring,
as shown in the following diagram:

When a value associated with a key needs to be retrieved, first we calculate the hash
of the key, which again corresponds to a place on the circle. In order to place or
retrieve a key, one simply moves around the circle in a clockwise direction unless
the next node is found. If no node is found in the given hash space, the first node is
considered the place to store in, or retrieve from, as shown in the following diagram:

Chapter 3

[79]

This way, each node becomes responsible for taking care of keys between itself
and its previous node. This implementation of consistent hashing leads to a few
issues: first, it may lead to uneven distribution of load as, if a key is not able to find a
position, it will always go to the first node; second, it will also increase the difference
in the performance of various nodes impacting the overall system. To address the
issue of uneven load, DynamoDB uses a variant of consistent hashing, where it
assigns a node to multiple points on the hash ring circle instead of on a single point
as we saw in the basic algorithm earlier. DynamoDB puts multiple virtual nodes on
the ring, which would represent a single physical machine. Doing so helps in making
distribution of data even across the cluster.

In the case of node failure, the load managed by this node gets evenly distributed
among the other nodes from the cluster, and if a new node gets introduced, then that
node takes approximately an equal part of the load from the other nodes.

Data replication
Data replication in DynamoDB is handled by a special type of node called a
coordinator node. The replication factor (N) is configured per instance, which is
nothing but the number of replications of a certain key. The coordinator node first
keeps the key on the local machine and then replicates it to N minus 1 successor
machine in the clockwise direction, as shown in the following diagram:

How DynamoDB Works

[80]

The previous diagram says that if you have a key, say, K1, which falls in the range
Node1-Node2, then replicas of the key would be stored on two successor nodes of
Node1. The list of nodes saving a particular key is called a preference list. While
creating this list, we need to make sure that we don't have any virtual nodes,
as they might be referencing the same node.

Data versioning and reconciliation
We know that DynamoDB is eventually consistent and it is write always, which
means that all data object updates need to go through all replicas asynchronously.
In order to avoid any data loss, DynamoDB keeps versions of objects. Later, these
various versions get reconciled to give a uniform response. To maintain this,
DynamoDB creates new, immutable objects for new updates, which means a
certain object can have multiple versions of it in a DynamoDB system.

DynamoDB uses vector clocks to do the object versions and their conflict resolution.
A vector clock is a mechanism that helps in maintaining various versions of an object
and in resolving the conflicts. Let's understand the vector clock with an example.
Suppose we have two nodes say, N1 and N2, then for a particular object vector clock
with [0,0], the first zero stands for the object version on node N1 while the second
0 stands for the object version on node N2. Now, node N1 writes to the object and
updates its vector clock as [1,0]. If the same thing happens with node N2, then it
updates the vector clock as [0,1]. Meanwhile, if due to some network issues, these
two nodes go out of sync, then they would not be able to understand each other's
writes. This way, the conflicts are identified.

To resolve the conflicts, every data object keeps a context. If the same context is still
present at the time of the write, there is no harm in more writes, and you can proceed
further. In case of any conflict, we need to reconcile the data versions in order to
maintain the exact value for a given key. DynamoDB uses various reconciliation
strategies to resolve the conflicts:

• Logic-based reconciliation
• Time-based reconciliation

Logic-based reconciliation
In this method of reconciliation, the client who has requested the data object itself
decides whether it has got the exact version of the data object it was looking for.
Amazon's shopping cart service is a good example of logic-based reconciliation;
here, in the event of any conflict, the business logic itself reconciles the object and
solves the conflict.

Chapter 3

[81]

Time-based reconciliation
This is the simplest algorithm used for reconciliation of different versions of data
objects in DynamoDB. Here, the object version with the latest timestamp is supposed
to be updated and used to return to the client. Here, we only need to make sure that
the systems that have the replicas have their calendars in sync.

Request handling
The get and put requests in DynamoDB are handled in two ways: first, it can route
through a load balancer, or it can directly select a node using partitioning information.
In the first case, the load balancer decides which way the request would be routed,
while in the second strategy, the client selects the node to contact. Both strategies are
beneficial in their own ways; in the first strategy, the client is unaware of DynamoDB,
which is helpful in terms of scalability and makes your architecture loosely coupled.
The second strategy helps in achieving lower latency. As a DynamoDB user, we don't
have any control over request handling, partitioning, or any other internals.

When a client sends a request to DynamoDB, it can be handled by any node in
that cluster. When a node receives the request, it first checks whether that node
has the given range of keys provided by the client. If it has got the key, it will
fulfill the request, or else it will simply forward the request to the top N nodes
in the preferred list.

Read and write operations involve only the top N healthy nodes. The nodes
which are not available, or not reachable, are completely ignored. To maintain the
consistency in replicas, DynamoDB uses a quorum-like technique to decide whether
an operation should be declared successful or not in a distributed environment.

In quorum, we have to maintain two keys R (Read) and W (Write); here R is the
minimum number of nodes that should participate in a successful read operation
and W is the minimum number of nodes that should participate in a successful write
operation. Here, we are expected to set R and W such that R plus W is greater than
N, where N is the number of nodes in the cluster. This ensures the commits are done
only in quorum, but there is one disadvantage of this technique, that this may lead to
a lower response time as the latency would be decided by the slowest node. In order
to avoid this, DynamoDB keeps the R plus W number less than N to get better latency.

When a coordinator node receives the put() request, it first generates a new version
of the object in the vector clock and writes the update locally. The coordinator node
then sends the update along with the updated vector clock to the N most reachable
nodes. If at least W minus 1 nodes respond, then the write is supposed to be a
successful one.

How DynamoDB Works

[82]

In the case of the get() operation, the coordinator node requests all available
versions of data from the N most reachable nodes. If the coordinator node receives
multiple versions of objects, then the responses are reconciled looking at the vector
clock. Once done, the reconciled version of the object is returned to the client. Also,
the same reconciled version is written to nodes that do not have the updated version
of the data item. You can read more about quorum at http://en.wikipedia.org/
wiki/Quorum.

Handling failures
There can be multiple reasons for failures in a distributed system, such as node
failures, disk failures, network issues, power failures, or even natural or unnatural
disasters. Data loss at any given cost is simply not acceptable. DynamoDB has
various techniques to handle failures of the following types:

• Temporary failures
• Permanent failures

For temporary node failures, DynamoDB does not implement quorum-like
techniques to determine the read and write consistency, as it has to consider the
network and node failures. To achieve this, DynamoDB does not enforce strict
quorum techniques; instead, it uses the sloppy quorum technique, which allows
commits on a successful vote from the first N healthiest nodes of a cluster.

If a node fails, then the replica that needs to reside on the failed node gets persisted
to some other available node. DynamoDB keeps metadata of all such data entries,
and that table gets scanned frequently. This is done to maintain the durability and
availability promise. The replica that was copied to some other node will carry a
hint that gives information about the node where it was intended to get replicated.
Once the failed node is back, the replica is restored on that node and the metadata
is updated. This strategy is called hinted handoff.

http://en.wikipedia.org/wiki/Quorum
http://en.wikipedia.org/wiki/Quorum

Chapter 3

[83]

In the previous diagram, a replica of k1 was intended to be stored on Node 3, but at
the time of storage, the node becomes unreachable. In that case, the replica gets stored
on Node 4 with a hint saying that this piece of data originally belonged to Node 3.
Once Node 3 becomes accessible again, the replica is placed back on that node.

How DynamoDB Works

[84]

The hinted handoff works well if the number of nodes in a cluster is limited. Also, it
might be the case that before the hinted replicas are replaced to the original intended
node, the temporary node fails to handle such permanent failures. DynamoDB uses a
very interesting replica synchronization technique for better results.

DynamoDB uses Merkle tree to maintain the replica synchronization.
Comparing all existing replicas and updating replicas with the latest changes
is called AntiEntropy. A Merkle tree is an algorithm used to store and compare
objects. In a Merkle tree, the root node contains the hash of all children, and if the
hash values of the root nodes of two trees are the same, then it means those two
trees are equal. In the case of DynamoDB, we create a Merkle tree of the replica on
each node and compare them. If the root hashes of trees are the same, then it means
the replicas are in sync, whereas if the root hash is not the same, then that means
that the replicas are out of sync, and then you can compare the next child nodes
and find out the actual discrepancy.

Each DynamoDB node maintains a Merkle tree for each and every key range it has.
Doing this, it allows DynamoDB to check whether certain key ranges are in sync or
not. If it finds any discrepancy, then child-wise traversal is done to find the cause of
the discrepancy, as shown in the following diagram:

Chapter 3

[85]

The preceding diagram shows how two nodes in a DynamoDB cluster form
Merkle trees and compare hashes. This technique of replica synchronization is
the same in Cassandra and Riak as well. You can read more about Merkle trees
at http://en.wikipedia.org/wiki/Merkle_tree.

Ring membership
We have been talking about the ring membership of DynamoDB since the start.
There might be a number of reasons to add or remove nodes from a DynamoDB
cluster, such as storage outage, power /network disk failure, and so on. Some node
failures might be temporary and need not require load balancing, as it can be time
consuming and unnecessary. This is because after some time the node would be
back. Similarly, someone can accidentally trigger a new node that might be taken
off in minutes. So, it would be time consuming to do load balancing for all such
accidental and temporary membership changes.

Keeping this in mind, DynamoDB relies on the administrator to initiate a
membership change request and inform any one member in the DynamoDB cluster.
The administrator is provided with a command line and browser tool to perform
node addition or deletion. The node to whom the administrator initiates the
membership change request writes the changes to other member nodes. A history
is maintained to keep track of all membership change requests. DynamoDB uses
a gossip-based protocol to propagate the changes made to its membership. Gossip
protocol is a computer-to-computer communication style, where one computer
initiates a communication with some computers, and then these computers forward
the message to other computers, and so on. You can read more about gossip protocol
at http://en.wikipedia.org/wiki/Gossip_protocol.

For the new node joining the cluster, it has to first choose the range of tokens on the
hash ring. It also needs to have virtual nodes placed at various logical points on the
hash ring. Once the node joins the ring, it has to take information from all the other
nodes and the range of tokens/keys they handle, and vice versa. Each node needs to
be aware of the token ranges handled by its peers in order to forward the requests to
appropriate nodes.

http://en.wikipedia.org/wiki/Merkle_tree
http://en.wikipedia.org/wiki/Gossip_protocol

How DynamoDB Works

[86]

The following diagram pictorially represents how membership changes are
propagated to all nodes in a DynamoDB cluster:

Seed nodes
It might be the case where the administrator adds two different nodes at a time, and
during gossip, none of them would have information about each other. Also, there
might be cases where DynamoDB would be partitioned into logical parts. To avoid
such issues, DynamoDB keeps seed nodes that would have static information about
the cluster. Some nodes from the cluster play the role of seed nodes. Seed nodes
have all the information about the membership, as the information is derived from
an external service. All nodes ultimately reconcile the membership information with
seed nodes, and this helps in solving the previously mentioned problems.

Functional components
Till now, we have seen how DynamoDB's architecture provides so many features
in terms of scalability, fault tolerance, availability, and so on. We also saw how ring
membership is maintained and how it helps DynamoDB's desired specialities.

Chapter 3

[87]

Each DynamoDB node consists of the following components:

• Request coordinator
• Membership and failure detection
• Local persistent store (storage engine)

Request coordinator
The request coordinator is an event-driven messaging component that works like
Staged-Even Drive Architecture (SEDA). Here, we break the complex event into
multiple stages. This decouples event and thread scheduling from application logic.
You can read more about SEDA at www.eecs.harvard.edu/~mdw/proj/seda/. This
component is mainly responsible for handling any client requests coming its way.

Suppose a coordinator receives a get request, then it asks for the data from the
respective nodes where the key range lies. It waits till it gets the acceptable number of
responses and does the reconciliation if required. If it receives a number of responses
that is less than desired, then it fails the request. After the request is fulfilled, this
process waits for some time if any delayed responses arrive. If any node returns stale
data versions, then the coordinator updates data with the correct version on that node.

www.eecs.harvard.edu/~mdw/proj/seda/

How DynamoDB Works

[88]

In the case of write requests, the top N nodes in the preferred list are chosen to store
the update. It might be the case that a particular node appears in many preferred
lists. Then, it would lead to uneven distribution of load. In that case, DynamoDB has
an intelligent way to choose the write coordinator. Normally, it is seen that a write
operation follows a read operation. So, the coordinator that has responded fastest
in the previous read request is chosen to be the coordinator for the write operation.
The information about the previous read operation can be obtained from context.
This strategy is also useful in another way in that it writes the same data version
that was read earlier.

Membership failure and detection
This component is responsible for maintaining the membership information of the
node for a certain cluster. It also keeps track of any new node addition or removal
and manages the key range accordingly.

All membership-related information, such as key hash ranges of peers and seed
nodes, is maintained by this service. This is a very crucial component from the
distributed system coordination point of view. We have already seen the details
of ring membership and failure handling in previous sections.

Local persistence store
DynamoDB's local persistence store is a pluggable system where you can select the
storage depending upon the application use. Generally, DynamoDB uses Berkeley
DB or MySQL as the local persistence store. Berkeley DB is a high-performance
embedded database library used for key-value pair type of storage. The storage is
selected depending upon the application object size. Berkeley DB is used where
object size has a maximum limit of 10 KB, while MySQL is used for application
object size expected to be on the higher side.

Most of Amazon's production systems use Berkeley DB as their local storage.
As an AWS customer, we don't have the choice to select our local persistence
store though.

Berkeley DB is a library that is used as embedded data storage. It is written in C
language and provides APIs to various languages, such as Java, C++, PHP, C#,
and so on. It stores data in the key value format. The initial version of Berkeley
DB was out way back in 1994; since then, it has seen many changes and upgrades.
Currently, it is in development at Oracle Corporation.

Chapter 3

[89]

Berkeley DB has three products under one umbrella, which are as follows:

• Berkeley DB, which is a traditional library written in C
• Berkeley DB Java Edition, which supports important Java features,

such as POJOs, Collections, and so on
• Berkeley DB XML edition, which supports data storage of XML documents

Berkley DB provides local storage, underlying storage and retrieval for many
databases, LDAP servers like MySQL, Oracle NoSQL, Subversion (SVN),
MemcacheDB, RPM, and many more.

Summary
In this chapter, we have seen the design specifications of DynamoDB, various
techniques like a quorum approach, gossip protocols, ring membership, and Merkle
trees, and their implementation and benefits in developing such a brilliant system.
We can see the efforts put in by the Amazon engineering team and their focus on
each and every minute detail of architecture and its execution.

As I had said earlier, DynamoDB was the real inspiration for many NoSQL
databases, such as Riak and Cassandra. Now, that you have understood the
architectural details of DynamoDB, you can check out the architecture of
previously mentioned databases and see the similarities and differences.

This chapter was an effort to simplify the information given by Amazon in
its white paper, but as time flies, there would have been many changes in its
architecture, and to know more about it, we would have to wait to hear it
from Amazon.

I am sure if you are a real technology fan, then after reading this chapter, you
would have definitely fallen in love with DynamoDB. In the next chapter, we
are going to talk about the best practices one should follow in order to get the
maximum benefit out of DynamoDB and save some money too.

Best Practices
When it comes to public cloud, most of the time each operation means money, be it
a read operation or a write. Each operation gets counted in terms of capacity units
or in terms of the number of calls made to the database. So while working on cloud,
we have to be extremely careful about the usage, and we also need to make sure that
the bills are constant and do not end up as a surprise to any organization.

Until now, we have seen various features of DynamoDB, its internals and how they
work, and how to add/delete/update data to and from DynamoDB. Now that you
have learned most of the details from DynamoDB's usage point view, it's time to learn
some best practices one should follow in order to make the most of DynamoDB. I am
sure the best practices we are going to cover in this chapter would certainly help in
saving some bucks for you and your organization.

In this chapter, we will cover the following topics:

• Table-level best practices
• Item-level best practices
• Index-level best practices
• Efficient use of query and scan operations
• How to avoid sudden bursts of data

We will also be talking about various common use cases that can be used across
multiple applications, save time and money, and help efficiency. Now let's start
discussing the best practices one by one.

Best Practices

[92]

Table level best practices
We have already seen what a table means and how it used. There are various
techniques with which we can maximize the table read/write efficiency.

Choosing a primary key
We have seen the primary key representations of DynamoDB, that is, the hash
key and composite hash and range key. The hash key value decides how the items
would get distributed across multiple nodes and the level parallelism. It's quite
possible that some of the items in a table would be used heavily compared to others.
In that case, one particular partition would be used frequently, and the rest of the
partitions would range from unused to less-used, which is a bad thing considering
the performance and throughput of the system. Now let's discuss some best practices
in choosing the right hash key and composite hash and range key.

It is recommended that you should design your tables such that hash key of the table
would be having the variety of data. It does not mean that your application must
access all hash keys all the time, it means even if your application accesses multiple
hash keys together, all such requests would get distributed across the cluster and
there would not be any load on one particular node. Consider the following table
which talks about hash keys, scenarios, and efficiency.

Table Hash key Scenario Efficiency
Book Book ID Each book has a unique

book ID, and there are a
variety of books in a table

Good

Country Country name Limited number of
countries

Bad

Songs Song ID Each song has a unique
song ID, but one particular
song is much more popular
than others

Bad

The first scenario is the ideal scenario and has got the perfect choice hash key.
This ensures that the load in the book table would be distributed across various
nodes, which would result in a high degree of parallelism. The second scenario
would be having some issues in terms of access as there are very few countries,
and all the data would get gathered in only a few nodes. This would result in
bad efficiency as the cluster would not be fully utilized, and this would result
in high load on a few nodes and less or no load on others.

Chapter 4

[93]

In the third scenario we have the songs table, which would contain multiple songs
with each song having a unique song ID. But there is a big chance that one or two
songs turn out to be more popular than any other song. This would also result in
uneven use of the DynamoDB cluster.

To avoid creating hot partitions in DynamoDB, it is recommended to append a
random number to the hash key. In our example, we saw that the songs table had
a few songs that which were accessed more than others. In order to avoid creating
a hot partition, we can append a random number to the most popular song IDs and
save it as a completely new hash key. Suppose we have a song with the song ID 123,
then it is recommended that we append random number between certain ranges and
distribute the load so that we can have multiple items, such as 123-0, 123-1, 123-2,
and so on.

This technique holds good to balance the write load. But when it comes to reading
the data, you might get confused about which item to retrieve. So, to cater to this,
you can decide upon a random number strategy based on the data available. For
example, you can calculate the random number to be appended to a song ID based
on the hash calculation of the song's name or the singer's name in such a way that
when you want to retrieve that item, you can recalculate the number to be appended
and search with that hash key.

One thing we have to make note of is that by doing this, we are creating multiple
copies of the same data, and so if you are going to use it, you should also consider
the efforts required to maintain these copies in sync.

Evenly distributed data upload
Sometimes, there is a need to upload data from different sources. At that time,
uploading data in a distributed manner is a tedious task. Sometimes, we have both
hash and range keys for certain tables. Consider an example of the tweets table
where you would need to manage usernames and their respective tweets. In that
case, you can have the username as the hash key and the tweet ID as the range key
and upload the data in the following manner:

UserName TweetID

User1 T1

User1 T2

User1 T3

User2 T1

Best Practices

[94]

UserName TweetID

User2 T2

User3 T1

User3 T2

Here, if you request to get all messages from a particular user, then that request
might not distribute the load evenly across the nodes. As you can see from the table,
the first few requests would only be writing on the User1 partition, the next few
would be writing on the User2 partition. While the writes are happening on the
User1 partition, other partitions would be at rest, and all loads would only be on
the User1 partition, which is definitely not a good sign from the distributed
environment point of view.

A better way to design the same data upload would be to have one tweet per user
and then repeat the same pattern again. This would perform a write request first
on the User1 partition; the second one would be on the User2 partition, and so on.
The following table shows the required sequence of data write requests:

UserName TweetID

User1 T1

User2 T1

User3 T1

User1 T2

User2 T2

User3 T2

User1 T3

This would keep each and every node of the DynamoDB cluster busy and active,
ultimately resulting in maximum utilization of resources and provisioned throughput.

In traditional database systems, it is beneficial to make your writes as sequential
as possible as it would optimize the performance. But in the case of DynamoDB,
we don't need to do that; rather, if we do so, we would end up underutilizing the
provisioned throughput for the given table. So it is advised to shred your load to
achieve high performance.

Chapter 4

[95]

Managing time series data
Many times we have a requirement to store time series data in our database.
We might be saving data in that table over years and the table size would keep
growing. Consider the example of an order table where you would be saving
orders made my customers. You can choose the order ID as the hash key and
the date/time as the range. This strategy would certainly segregate the data,
and you would be able to query data on order ID with date/time easily, but
there is a problem with this approach as here there is a good chance recent
data will be accessed more frequently than older data.

So, here we might end up creating some partitions as hot partitions, while others
would be cold partitions. To solve this problem, it is recommended to create tables
based on time range, which means creating a new table for each week or month
instead of saving all data in the table. This strategy helps avoid the creation of any
hot or cold partitions. You can simply query data for a particular time range table
itself. This strategy also helps when you need to purge data where you can simply
drop the tables you don't wish to see any more. Alternatively, you can simply
dump that data on AWS S3, as flat files, which is a cheap data storage service
from Amazon.

We are going to see how to integrate AWS S3 with DynamoDB in Chapter 6,
Integrating DynamoDB with Other AWS Components.

Item best practices
There can be various ways in which we can improve item access, some of which we
are going to discuss in this section.

Caching
Sometimes, we might need to use a certain item or set of items more frequently than
others. Also, there is a good chance that lesser value updates will be made for such
items. In this case, you can use caching to store items at cache level, and whenever
required, you can simply fetch that from cache. The use of cache reduces the number
of calls made to DynamoDB, hence improving the time and cost efficiency.

For example, you have a lookup table whose values are fixed and do not change
over time, and there are a few items in that table that are very popular. In that case,
you can simply use caching to store these items. For the very first time, when cache
is blank, we would be fetching the data from the actual table itself.

Best Practices

[96]

The next time onwards, the program should check if the entry is present for the item
in cache. If yes, then directly use that value; if not, then and then only get data from
DynamoDB and update cache.

The previous diagram shows how caching works when a client tries to retrieve
some information from DynamoDB. First, it checks if the required information is
present in cache. If the information is present, then it simply returns the data to
the client. But if the information is not present, then the program first fetches the
data from DynamoDB, stores it in cache, and then returns the data to the client.

There are various types of caching techniques available, such as standalone,
distributed, and so on. Depending upon the needs of your application, you can
choose the best fit. For example, if you want to store a small set of data, then you
can use in-memory cache libraries such as Ehcache, but if your caching needs are
bigger, then you can use distributed cache such as Memcache, Oracle Coherence,
and so on. Amazon also provides its own hosted caching as a service called
ElasticCache. The choice is yours.

Chapter 4

[97]

Storing large attribute values
We know that currently DynamoDB puts size constraints on each item that we put
or retrieve. Also, each and every call to DynamoDB is money for us. So, in order to
reduce the data size and ultimately the cost, we have various ways to deal with large
attributes. Here are a few such techniques.

Using compressions
In Chapter 2, Data Models, we saw the data model of DynamoDB, where we covered
various DynamoDB data types. We also saw what the binary data type is and how
it is used. When we declare the data type of a certain attribute as binary, we would
expect a huge attribute to get stored in it. So, in such cases, it is recommended that
we compress such a binary attribute using well-known compression algorithms,
such as gzip, LZO, and so on.

So, when we are going to store an item, we encode it using a certain algorithm that
would reduce its length and size, and while retrieving that value, we decode it using
a similar algorithm to get the original value back. This technique helps us to reduce
the size of the data stored and retrieved, ultimately reducing the cost.

But one thing we should keep in mind is that even though using these algorithms
would save storage space and money, it would also increase CPU time as we
might need to invest some time in encoding and decoding the data. So, if you
are comfortable with a slight delay in your data retrievals, then you must go and
implement this technique and save some bucks for you and your organization.

The following is a sample Java code that you can use to compress a long string
into gzip:

public String compress(String inputString) throws IOException {
 if (inputString == null || inputString.length() == 0) {
 return inputString;
 }
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 GZIPOutputStream gzip = new GZIPOutputStream(out);
 gzip.write(inputString.getBytes());
 gzip.close();
 String compressedStr = out.toString("ISO-8859-1");
 return compressedStr;
}

Best Practices

[98]

The previous function accepts the input string to be compressed and returns
compressed gzip. Similarly, the decompress function accepts the compressed string,
which returns the clear text original string back. Note that it is very important to use
the same encoding while compressing and decompressing.

public static String decompress(String inputString) throws
IOException {
 if (inputString == null || inputString.length() == 0) {
 return inputString;
 }
GZIPInputStream gis = new GZIPInputStream(new ByteArrayInputStream(inp
utString.getBytes("ISO-8859-1")));
BufferedReader bf = new BufferedReader(new InputStreamReader(gis,
"ISO-8859-1"));
String decompressedString = "";
String line;
 while ((line=bf.readLine())!=null) {
 decompressedString += line;
 }
 return decompressedString;

 }

Using AWS S3
As we discussed the size constraints put by Amazon on items, it is very important to
have a solid solution to solve the issue of large items. One good solution is to store
large attributes in AWS S3 buckets. Here, we can simply store the item in an AWS S3
bucket and have its object identifier stored in an item attribute. Here is an example
to illustrate this. Suppose we want to store information about one research paper in
a particular journal, which also contains some images. Now, it's obvious that images
would have larger size compared to text. So, here we can store other text information
about the paper in DynamoDB and store the images on AWS S3. To link the images
and the item in DynamoDB, we can simply store the object identifier of the image as
a metadata attribute in a DynamoDB item as shown in the following diagram:

Chapter 4

[99]

We are going to see more details on AWS S3 integration with DynamoDB in
Chapter 6, Integrating DynamoDB with Other AWS Components.

Using multiple chunks
There is another good way to store large attribute values—breaking the attribute
into multiple chunks and storing them in different DynamoDB tables. You can
simply create two tables, one to store the other attribute values and the other
to store large attribute values.

An example would be if you want to store blog details in a certain table of
DynamoDB, and the blog body might have more data than the maximum
allowed size. Then, we create one table called blog to store other blog details
and one more table to store blog body.

Best Practices

[100]

Blog table
The following is how the blog table would look:

Here blog ID could be
the hash key blog ID

Blog name Number of body chunks

1 AWS Best Practices 2
2 DynamoDB Features 2
3 S3 Backup 3

Body chunks table
For the body chunk table, the chunk ID would act as the hash key and could be
formed by appending the chunk number to the blog ID.

Chunk ID Text
1#1 "…AWS Best Practices 1…"
1#2 "…AWS Best Practices 2…"
2#1 "…DynamoDB Features 1…"

Here, we are storing the blog body in multiple chunks. So, when we get a blog item
to be stored, we first break the body into multiple chunks and then store the data
into respective tables. We can use this batch to get API at the time of retrieval to get
the complete body in one go. Here the chunk ID is formed by combining the parent
blog ID and the chunk ID.

Please make a note that this technique is feasible only when your attribute value can
be broken down into chunks. Also, you might need to spend some time on the data
splitting technique, which would also affect the overall time.

Implementing one-to-many relationship
It is recommended to have multiple tables to store items instead of only one.
For example, consider the blog table we discussed earlier. There, we might have the
comments posted by various readers. We have two choices: first, to store all comments
for a related blog in the same table, and second, we can have a separate table with all
comments stored for various blogs. Here, if we go with the first option, we might not
be able to store all attributes considering the item read and write limitations.

Chapter 4

[101]

Also, we might not know how many comments we are going to get and what its size
would be. So, here it is recommended that we have two separate tables to store the
blog and the respective comments on the blogs. Having two tables would also help in
isolating faults. Here, if comments tables are throttled, it would not harm the loading
of the blog table, hence the recommendation.

There are multiple benefits in having a one-to-many relationship instead of storing
everything in one table. The following are some of them:

• Having separate tables for different items helps in maintaining the data as
sometimes you might want to retain one but delete the other. In this case,
you don't need to delete the complete record; you can simply delete the
item you don't wish to see anymore.

• Having multiple tables help us to cater to the size limitation enforced by
Amazon. Here, you can have as many comments for a certain blog post,
and there would not be any concern about the size limit.

• If we have data stored in separate tables, at the time of querying you can
select only the desired data from the desired table instead of fetching all the
data for each and every query. This way, you can save money as well as time.

• Also, if we store all comments for a blog post in a single item only, then to
retrieve a certain comment you would need to fetch all replies all the time,
which is not efficient.

It is also recommended that we have a one-to-many relationship for varied access
patterns. This means that if you know that some attributes are required to be fetched
more frequently than others, then you should create a table of such items, and you
should create another table to store the less-frequently accessed attributes. The reason
behind doing this is to fetch data in an efficient manner. This means that if certain
attributes are not required most of the time, then if we keep all attributes in one table,
we would be unnecessarily fetching them.

Consider an example of the User table where we have various attributes, such as first
name, last name, e-mail, address, username, password, and so on. We can store all
these items together in a table. But we know that username and password are two
such important fields that would be used more frequently compared to first name,
last name, address, and so on. So, it's efficient to store first name, last name kind of
attributes in one table and username and password in another table. So if there are
any issues with one of the tables, it would not harm the other table.

Best Practices

[102]

Inefficient approach
The following table shows how a user table would look if we keep everything in that
table itself.

Table – User
{"uid":"111","firstname":"ABC", "lastname":"XYZ",
"address":"St. Paul Street, 11, Oxford", "username":"xyz123",
"password":"xyz@34211", "email":"xyz@pqr.com"}

{"uid":"112", "firstname":"DEF", "lastname":"XYZ",
"address":"St. Paul Street, 12, Oxford", "username":"def123",
"password":def@34211", "email":"def@pqr.com"}

Better and efficient approach
As said earlier, if we segregate the credentials from user table, this is how it would
look like.

Table – User
{"uid":"111", "firstname":"ABC", "lastname":"XYZ",
"address":"St. Paul Street, 11, Oxford", "email":"xyz@pqr.com"}

{"uid":"112", "firstname":"DEF", "lastname":"XYZ",
"address":"St. Paul Street, 12, Oxford", "email":"def@pqr.com"}

Table – UserCreds
{"uid":"111", "username":"def123", "password":def@34211"}

{"uid":"112", "username":"def123", "password":def@34211"}

Query and scan best practices
Query and scan, as we know, are heavy operations and mostly deal with read
capacity units provisioned for the particular table. It is very important to take care
of even distribution of load considering that the read capacity units get utilized
properly. Here are some best practices that you should follow in order to avoid
getting exceptions about exceeding provisioned throughput.

Chapter 4

[103]

Maintaining even read activity
We know that a scan operation fetches 1 MB of data for a single request per page.
We also know that an eventually consistent read operation consumes two 4 KB
read capacity units per second. This means that a single scan operation costs
(1 MB / 4 KB items / two eventually consistent reads) = 128 reads, which would
be quite high if you have set your provisioned throughput very low. This sudden
burst of data would cause throttling of the provisioned throughput for the given
table. Also, meanwhile, if you get a very important request, that request would
get throttled after default retries.

Also, it has been observed that scan operations do try to consume capacity units
from the same partition that would cause the utilization of all available capacity
units for the scan operation only due to which any other request coming to the
same partition would not get served. To avoid this, we perform the following
operations to maintain the even load distribution for large scan operations.

• We can avoid a sudden burst of large capacity units by reducing the page
size. The scan and query operation support the LIMIT attribute, where you
can specify the number of items to be retrieved per request. By doing so,
there would be some gap between any two page requests, and if there is
any other request waiting, then DynamoDB would process that request
in between.

• Keeping two tables for the same data is also a good strategy. Here, we
can have two tables with the same data, but each one is used for a different
purpose. One can be used to dedicatedly do high priority tasks and the other
can be used to do queries and scans. So, if by chance, any scan operations get
all provisioned throughput, even then you have another table, which would
always take care of high-priority or application-critical requests.

But we have to keep in mind that any write operation on a table should also change
the values in another table in order to keep in sync.

You should also consider implementing error retries and exponential back-offs so
that even if there are more requests coming than the provisioned throughput, all
failed requests get retried after an exponential time frame.

Best Practices

[104]

Using parallel scans
We have seen in Chapter 2, Data Models, about the parallel scan and its advantages.
Many times, it is observed that the parallel scan is beneficial as compared with
sequential scans. The parallel scan is a good option for all such tables having huge
data. We can easily break the data into segments and perform the scan operation.
Multiple workers can easily scan the table at low priority, giving way to high
priority, thus allowing critical application processes to run smoother.

Even though parallel scans are beneficial, we need to keep in mind that they demand
high provisioned throughput. We also need to make sure that worker threads work
in such a way that they do not block any other critical processes. In order to help
people like us to make decisions about the parallel scan, Amazon has given some
directions on when to use parallel scans, which are as follows:

• If the table data size is more than 20 GB
• Table's provisioned throughput capacity is not fully utilized
• Sequential scans are too slow to get the task done

To set a reasonable value to the TotalSegments parameter, we need to perform the
trial and error method to get the best possible and most efficient way. We can simply
start with any number, check the performance, vary the provisioned throughput
units, see how they impact the overall performance and cost, and then decide what
the perfect number of segments should be.

Local secondary indexes best practices
We have seen what local secondary indexes mean in Chapter 2, Data Models. Just
to revise, they are secondary indexes that you can define on certain attributes, and
which can be used as another range key along with your table hash key. As we
have seen, since DynamoDB needs to maintain a complete separate index for these
indexes, we have to allocate more resources to it, which makes it a costly affair.
So, it is very important to decide on the attribute on which you wish to define the
secondary index. It is recommended that the attribute you are not going to query
much should not be defined as local secondary index. Indexing should be done for
the tables that do not get heavy writes as maintaining those indexes is quite costly.

Indexes should be put on tables that contains sparse data, and which are infrequently
updated. It has been observed that the smaller the index, the better the performance.
A secondary index consists of an index plus projected attributes. So, it is very
important that while creating the index, you should project only required attributes.
If a required attribute is not projected in the index, then DynamoDB fetches that
attribute from the table, which consumes more read capacity units.

Chapter 4

[105]

We should also keep a watch every time we update or edit the items in an index.
If we don't keep track of the data being written or read, the provisioned throughput
capacity would be at risk. We should also keep in mind the maximum item collection
(collective size of all items and indexes having same hash key) size limit of 10 GB in
the case of local secondary indexes.

Normally, when the item collection size gets exceeded, you get
ItemCollectionSizeLimitExceededException. The following are some solutions
that would help you avoid getting this exception:

• Purging of unnecessary items from the table: This would also delete the
respective items from the index as well.

• Updating unnecessary items to remove the projected attributes from the
index: This will automatically reduce the size of item collection.

• Backup or moving old data to a new table: It is always a good practice
to save historical data in a different table.

Global secondary index best practices
Global secondary indexes allow us to create alternate hash and range keys on
non-primary key attributes. Querying is made quite an easy task with secondary
indexes. There are various best practices one should follow while using global
secondary indexes. We are going to discuss all such best practices in this section.

As we keep saying, it is very important for us to choose the correct hash and range
keys attributes, which would be distributing the load evenly across the partitions.
We need to choose the attributes having a variety of values as hash and range keys.
Consider an example of a student table where we have columns such as roll number,
name, grade, and marks. Here, the grade column would have values like A, B, C,
and D, while the marks column would have marks obtained by a particular student.
Here, we have seen that the grades column has a very limited number of unique
values. So, if we create an index on this column, then most of the values would get
stored on only a limited number of nodes, which is not a good way to access indexes.
Instead, if you put an index on the marks column, the variety of data from that
column would help to distribute data evenly across the cluster and hence improve
the query performance.

Best Practices

[106]

Many people these days use global secondary indexes for quick lookups. Many
times, we would have a huge table with large number of attributes attached to each
item. Querying such a table is quite an expensive transaction. Also, we might not
always need all the attributes given in a certain table. In that case we can create a
global secondary index on primary key attributes, adding only required attributes
a projected attributes. This technique helps in providing quick lookups with less
provisioned throughput, ultimately helping to reduce cost.

We can also create global secondary indexes to store duplicate table data. Here, we
can create an index similar to table schema and direct all queries on index instead of
table. So, if we are expecting heavy read/write operations on the table, then regular
queries can be directed to indexes. This would allow us to keep the provisioned
throughput constant for the table and also avoid a sudden burst, keeping all table
transactions intact.

We should make a note that Global Secondary Indexes (GSI) are eventually
consistent, which means an under-provisioned GSI can have a huge impact on table
write throughput, and it may also lead us to exceed the provisioned throughput. To
know more about this, you can go through the https://forums.aws.amazon.com/
thread.jspa?threadID=143009 thread.

Summary
In this chapter, we have gone through some best practices that one should follow in
order to get the maximum out of DynamoDB. We started with table best practices
where we talked about how to choose correct primary keys, how to create table
schemas, how to manage the time series data, and so on. In item best practices, we
talked about caching, storing large attributes, one-to- many data modeling, and so on.
In query and scan best practices, we saw how to maintain even data load to improve
query performance. We also discussed the use of parallel scans and its benefits.

In the last section, we talked about local and global secondary best practices.
A good understanding of DynamoDB architecture would help you to find more
such best practices, which in turn would help you reduce cost and improve
performance. So keep learning and keep exploring.

In the next chapter, we will cover some advanced topics, such as DynamoDB
monitoring, common useful tools, libraries, AWS authentication service, and
error handling.

https://forums.aws.amazon.com/thread.jspa?threadID=143009
https://forums.aws.amazon.com/thread.jspa?threadID=143009

Advanced Topics
In the previous chapter, we talked about the best practices one should follow
in order to get the most out of DynamoDB. In this chapter, we are going to talk
about some advanced topics:

• Monitoring DynamoDB tables
• AWS authentication service
• AWS IAM integration with DynamoDB
• Security token service
• Error handling in DynamoDB

We will also talk about limitations of DynamoDB that every developer needs
to consider while designing the schema and doing the implementation.

Monitoring DynamoDB tables
To start with, let's get familiar with AWS CloudWatch, which is a network-
monitoring service offered by Amazon Web Service. While creating a table, you
can set alarms for various events such as provisioning a throughput with exceeded
exceptions, maintaining certain threshold, and so on. A table's size in terms of bytes
or number of items is not available as a CloudWatch metric by default; however, this
can be set up using the DescribeTable operation, and it is a good practice to keep
watch on this metric. These metrics are very important from the database admin's
point of view, but as we are using a hosted service here, we need not hire a DBA
specialist. These metrics would help us keep track of whether there is any sudden
demand of resources happening or not, and if the peak and slow time frames can be
drawn for our application so that we can keep more read and write throughput for
peak time frames and lesser throughput for slow time frames. CloudWatch gives us
a detailed report of the metrics we want to monitor.

Advanced Topics

[108]

There are various ways of monitoring DynamoDB tables using CloudWatch as follows:

• AWS Management Console
• API
• Command-line interface

AWS Management Console
This is the easiest and simplest way of monitoring DynamoDB tables. By default,
you can see table-related metrics once you select the table in question in AWS
Management Console. To get table-related metrics, you can go to the AWS
CloudWatch management console URL at https://console.aws.amazon.com/
cloudwatch/.

There, on the left-hand side, you need to click on the Metrics pane to view the list
of available metrics. Once you're there, you can simply select DynamoDB metrics,
as shown in the following screenshot:

When you click on it, you will get a list of metrics for your tables and secondary
indexes, if any, as shown in the following screenshot:

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Chapter 5

[109]

Now if you click on any metrics, you will be able to see their graphs, as shown in
the following screenshot. You can also view historic data to understand the usage
pattern of the application and then decide on tuning the read and write capacity
units for that particular table.

Here, I have selected metrics for the table Book to understand the read capacity
unit usage.

CloudWatch API
CloudWatch provides us with a query API in order to get DynamoDB metrics
programmatically. For this, you need to provide valid data in a query format and
simply hit the request with proper credentials. A simple query normally looks for
information such as the table name, operation (getItem, putItem, and so on), time
frame (start time and end time), and so on. A typical query request will look as follows:

http://monitoring.amazonaws.com/
 ?SignatureVersion=2
 &Action=ReturnedItemCount
 &Version=2010-08-01
 &StartTime=2014-04-14T00:00:00
 &EndTime=2014-05-16T00:00:00
 &Period=500
 &Statistics.member.1=Sum
 &Dimensions.member.1=Operation=Scan,TableName=Book
 &Namespace=AWS/DynamoDB
 &MetricName=ReturnedItemCount
 &Timestamp=2014-04-28T14%3A48%3A11.876Z
 &AWSAccessKeyId=<Access Key>
 &Signature=<Signature>

Advanced Topics

[110]

Depending on the need, you can select the required metrics and appropriate
operations. There is a list of DynamoDB metrics and dimensions for those metrics;
go through http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/dynamo-metricscollected.html to get more details on this.

A command-line interface
CloudWatch also provides a command-line interface to retrieve metrics about
DynamoDB tables and its operations. To use it, you need to first install the
command-line tool on your machine, as described in the CloudWatch developer
guide at http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/
SetupCLI.html.

Like the CloudWatch API, we need to provide correct information to the
command-line tool to get more information. We need to provide the metrics
name and the dimension associated with it, as shown in the following command:

cmd>mon-get-stats ThrottledRequests --aws-credential-file ./<AWS_CREDS_
FILE_PATH>.template --namespace "AWS/DynamoDB"

--statistics "Sum" --start-time 2014-04-14T00:00:00Z --end-time
2014-05-16T00:00:00Z --period 500 --dimensions "Operation=Scan"

Many times it happens that the senior management of your organization
wants to have a look at the application's performance. So, the only way
to show them the reports is to give them access to the AWS management
console, which is a quite a risky thing to do, considering their non-
technical background. Therefore, in order to solve this problem, you can
create your own monitoring portal where you can use CloudWatch APIs
or CI to get the data on the fly without sharing AWS credentials with any
non-technical person and still display the results.

Using IAM to provide access control to
DynamoDB
Some of you might be aware of the concept called access control on resources.
This is a very familiar concept in relational databases where we can have multiple
users accessing the same database but different roles. This is very crucial from the
application's security point of view. A user should have privileges and access to
only the required resources in order to avoid misuse. In order to implement the
concept on Cloud, AWS supports Identity and Access Management (IAM) as a
service. This service allows us to perform the following:

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/dynamo-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/dynamo-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/SetupCLI.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/cli/SetupCLI.html

Chapter 5

[111]

• Create multiple AWS accounts that access the same resources with
different privileges

• Create group users with similar privileges for the same level of accesses
• Create separate user credentials for each user and maintain privacy
• Provide fine-grained control on shared resources
• Get a collective bill for all the users under one account

We can use IAM to control DynamoDB resources and API accesses to users. To do so,
you need to create an IAM policy that would list down details about the policy, such
as what permission does this user have on a certain table, whether a particular group
can edit/delete a record from a table, and so on. For example, you can create a table,
say Author, in your account and then create a policy document describing its access
definitions. Once done, you can apply that policy on certain IAM users that would
restrict them to their defined roles. Suppose you have provided read-only access to
the user Jack, then he would only be able to read the Author table and would not be
able to edit/delete anything from it.

How to use IAM for DynamoDB
Now let's try to understand the creation of access control in a stepwise manner.
To begin, you need to go to the IAM console page first at https://console.aws.
amazon.com/iam/.

You will see a console and a button Create New Group of Users, as shown in the
following screenshot:

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Advanced Topics

[112]

If you press this button, you will get a pop-up asking you to name the new group, as
shown in the following screenshot. Here, I am naming the group read-only-group.

Once you click on Continue, you will see a policy selection window where you can
simply select preconfigured templates or create custom policies. Here, I am selecting
the Policy Generator option, as shown in the following screenshot:

In the policy generator, I am asking AWS to provide all of the read rights to this
group, as shown in the following screenshot. Here, you also need to specify the
ARN of the resource where you need to apply these policies. Let's apply these
policies to the Employee table that we created earlier.

Chapter 5

[113]

Once you click on Add Statement, the Continue button will be enabled. When you
click on it, you will be able to see the policy document. You can also edit the policy
name, as shown in the following screenshot:

Advanced Topics

[114]

The next thing we need to do is add users to the read-only group. You can add new
or existing users. Here, I am adding an existing user:

Once done, you can review and submit the group created. Now that we have given
read-only rights to this group, you can verify the same by logging in as the new user:

In the previous screenshot, you can see that I have logged in as a newly created
user, and I am able to read the Employee table. Now if I try to add a new item by
performing a PutItem request, I would not be able to do so as it is unauthorized:

Chapter 5

[115]

Note that before we apply this policy, you should add one more policy that will
allow new users to access the DynamoDB console using the following policy
document so that you won't be surprised to see a Not Authorized message on
the DynamoDB console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:DescribeAlarms",
 "cloudwatch:ListMetrics",
 "dynamodb:DescribeTable",
 "dynamodb:ListTables"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Also, don't forget to add the given user to the newly created group.

Sample IAM policies
In this section, we will try to list some sample IAM policies that would be helpful to
you. We have already one example policy document that enables users to view the
AWS DynamoDB console. Now let's try to explore more of these policy documents.

Providing read-only access to items from all
DynamoDB tables
To read items, there are only two APIs called GetItem and BatchGetItem. So in
this document, we are allowing only those actions for all the tables, as shown in
the following code:

{
 "Version": "2012-10-17", # Version of AWS API
 "Statement": [
 {
 "Effect": "Allow", # Allow means enable the below given
operations

Advanced Topics

[116]

 "Action": [
 "dynamodb:GetItem", # DynamoDB operations to be
considered
 "dynamodb:BatchGetItem"
],
 "Resource": "*" # Any AWS resource, here it means all
DynamoDB tables
 }
]
}

Restrict users from deleting all the tables and items
from a table
In this policy, we are restricting any delete action that comes to DynamoDB from any
user. The statement for the same would look as the following code:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "Action": ["dynamodb:DeleteItem",
 "dynamodb:DeleteTable"],
 "Resource": ["*"]
 }]
}

Allowing you to place and update an item on a
single table
In the following code, we are creating a statement that will allow all the users under
this group to add a new item to the table Employee and update any existing items in
the same table:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["dynamodb:PutItem",
 "dynamodb:UpdateItem"],
 "Resource": ["arn:aws:dynamodb:us-west-2:235338895076:table/
Employee"]
 }]
}

Please make sure that you change the resource ARN as per your table details.

Chapter 5

[117]

Allowing access to all indexes of a particular table
Here, we will need to provide all the permissions to the Employee table's indexes.
To access the indexes of a table, we just need to add /index/* after the table
ARN. In order to access a specific index, you can mention the index name such
as /index/<index-name>. The following is a statement that provides all the
permissions to every index of the Employee table:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["dynamodb:*"],
 "Resource": ["arn:aws:dynamodb:us-west-2:235338895076:table/
Employee/index/*"]
 }]
}

Allowing all DynamoDB actions to all the tables
If you want to provide all of the accesses to the users of all the tables, then you need
to create a policy document, as shown in the following code:

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Effect": "Allow",
 "Action": [
 "dynamodb:*"
],
 "Resource": [
 "*"
]
 }
]
}

By this time, you will have figured out how easy it is to create policy documents
and apply the same on required groups. As shown earlier, you can simply use a
policy generator provided by AWS to play around with different policies.

Advanced Topics

[118]

Fine-grained access control
In the earlier section, we saw how to restrict users from using a certain API or not
allowing some other API. However, there might be some use cases where you need
to restrict certain users from having access to item-level data. For all such cases,
DynamoDB has provided fine-grained access control on each and every item of
DynamoDB tables. There could be lots of places in your application where you
would like to restrict users from accessing the information as follows:

• In the Employee table, the employee name, address, and telephone number
should be visible to all the users, but the salary of an employee should be
visible to only the concerned users. This is a good example of vertical access
control where each row represents a separate user.

• Also if x number of employees report to manager A and y number of
employees report to manager B, then both manager A and B should be able
to view details about their direct reports. Here again, we assume that each
row in a DynamoDB table represents a single employee. We can control or
restrict the access of managers to only their direct reports.

To do such things, we can use the same policy documents, adding appropriate
control statements. You can add horizontal and vertical access controls to those
statements and verify the same using examples.

To understand horizontal and vertical access controls, let's continue with our
Employee table example where we have an Employee table that has stored
information of all the employees. Now we will be creating a policy document that
will let employees access only their personal information and also restrict them from
accessing sensitive information such as performance rating, but allowing rest all
attributes to be accessed. The following is a policy document for the same:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],

Chapter 5

[119]

 "Resource": [
 "arn:aws:dynamodb:us-west-2:235338895076:table/
Employee"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${www.amazon.com:user_
id}"],
 "dynamodb:Attributes": [
 "user_id", "emp_id", "email", "company" ,
"salary" , "name"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_
ATTRIBUTES"}
 }
 }
]
}

We have put in the following two conditions:

• To restrict users to access only their information, we have added a condition
to show the row information of the matching user_id only. Here, user_id
is fetched from the variable www.amazon.com:user_id that checks with web
identity federation user ID, that is, Amazon, Google, or Facebook's user ID.
If it matches, only then the matching row information will be displayed.

• To restrict users from accessing sensitive information such as performance
rating, we have added another condition to show only the given list of
attributes to be shown at any get call.

Here, the first condition allows us to implement horizontal restrictions, while the
second condition allows us to implement vertical access control. Again, to build
the policy document, you can use a policy generator UI provided by AWS.

Whenever you use dynamodb:attributes or not, you must specify
all the primary key and index key attributes in the list. If you don't
provide this information, DynamoDB will not be able use those hash
and range indexes to get the expected response.

Advanced Topics

[120]

Sample fine-grained access control policies
Now let's try to list down the commonly used fine-grained access control policies
that can be used as a reference by you.

Restricting access to only specific hash value
This is a very popular use case where you want the user data in your table to
be accessed by only the respected users. The following is the policy statement
for the same:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:235338895076:table/Employee"],
 "Condition": {
 "ForAllValues:StringEquals": {"dynamodb:LeadingKeys":
["${www.amazon.com:user_id}"]}
 }
 }
]

Restricting access to only specific attributes of
a table
This is a vertical access control policy that limits users from accessing certain
attributes of a table. For example, in the case of the Employee table, we would
be restricting users from accessing information such as performance rating and
so on, using the following code:

Chapter 5

[121]

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Resource": ["arn:aws:dynamodb:us-west-
2:235338895076:table/Employee"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": ["user_id","name","email",
"address"]]
 },
 "StringEqualsIfExists": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues": [
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

This policy restricts users from accessing information only associated with their
user ID. Also, it allows users to access only the user_id, name, email and address
attributes to be retrieved and updated. It does not allow them to add a new item or
delete an existing one.

The second condition allows users to return only specific attributes if he or she uses
the Select statement. It also provides information on what needs to return in the
case of an Update statement.

Advanced Topics

[122]

Allowing a query on only specific projected
attributes in index
In this document, we will try to create a policy statement that would allow users
to see only specific attributes projected in a secondary index. Here, we would use
a secondary index called PayScaleIndex for our purpose, which is part of the
Employee table:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:Query"],
 "Resource": ["arn:aws:dynamodb:us-west-
2:235338895076:table/Employee/index/PayScaleIndex"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "salary" , "grade", "bonus"
]
 },
 "StringEquals": {"dynamodb:Select": "SPECIFIC_
ATTRIBUTES"}
 }
 }
]
}

Similarly, you can create your own policy documents to fit your needs and apply
the same on users.

Web identity federation
By now, you would have started thinking of how to apply access controls on
application that have a huge number of users. There, it is not possible to create
policies for individual users as and when they are getting created. To solve this issue,
AWS offers one unique way that would allow you to let users use their social media
credentials, for example, the ones used for Facebook, Google, or Amazon to use the
application. Here, the identity of the users would be provided by identity providers
such as Google, Facebook, or Amazon, and authentication and authorization is
performed by providing these users with a simple secure token. AWS supports
the growing number of identity providers such as the following:

Chapter 5

[123]

• Google
• Facebook
• Amazon

Web identity federation is very helpful for an application where the number of users
are expected to be more. A good example would be an online dating or gaming site.

The web identity federation is shown in the following diagram:

The web identity federation involves the following things:

1. The client application asks the user to log in with any of the identity providers
and then sends the information to the identity provider for verification.

2. In response, the identity provider sends a web identity token to the client.
3. The app then calls the AWS STS service, sending the web identity as the input.
4. AWS STS generates a temporary AWS credential token for the client and

sends it back to it with some role attached to the token/user.
5. The app then calls DynamoDB to access the desired table. Depending on the

policy details, IAM decides whether the access is granted or not. The policy
statement is the same as the one we have seen in last couple of sections.

This way, using web identity federation, you can handle authorization and
authentication of users for applications with a large number of user base.

Advanced Topics

[124]

Limitations in DynamoDB
In this section, we will try to list the limitations put by AWS on DynamoDB
operations. These limits need to be considered while using DynamoDB in order
to keep your application 100 percent available without any hiccups.

Attribute Limitation Details

Table name/index name Table/index name can contain A-Z, a-z, 0-9,
underscore (_), dash (-) and dot (.). The table name
should be a minimum of 3 and maximum of 255
characters. There is no limit on the table name
that starts with the previously mentioned special
characters.

Tables per account You can create a maximum of 256 tables per region
through one account.

Table size There is no limit on the number of items or size
of the table in terms of bytes.

Hash key There is no limit on the number of hash keys in
a table.

Range key There is no limit on the number of range keys per
unique hash key for tables without a local secondary
index. For a table with a local secondary index, the
total size of the table, including the indexes, should
not exceed 10 GB.

Number of secondary indexes
per table

There is a limit of five local and five global secondary
indexes per table.

Number of projected attributes There is a maximum limit of 20 attributes on a local
secondary index that is created by the user.

Primary key attribute name The name should be of 1 to 255 characters in length.
It should only use the character that can be encoded
by UTF-8 encoders.

Item size The item's size should be less than or equal to
64 KB. The item's size is calculated considering
both the attribute name and its value in the case
of each attribute.

Attribute values Attribute values cannot be null or empty.

Primary key attribute
value—Hash key

The maximum allowed size is 2048 bytes.

Chapter 5

[125]

Attribute Limitation Details

Primary key attribute
value—Range key

The maximum allowed size is 1024 bytes.

Query The query result set should not be of more than 1
MB.

Scan The scan data result set should not exceed size
restrictions of 1 MB.

BatchGetItem BatchGetItem can fetch 100 items at a time,
provided the total item size does not exceed 1 MB.

BatchWriteItem Up to 25 PutItem or DeleteItem requests can be
fired without exceeding the data size limit of 1 MB.

Data type—String All the strings should be according to UTF-8
encoding.

Data type—Number A number can have up to 38 digit precision.

Provisioned throughput limit For US East Region, a table can scale up to 40,000
read or write capacity units, and for the rest of
regions, DynamoDB tables can scale up to 10000
read/write capacity units per table.

These limits do not mean that DynamoDB has technical limitations in it. However,
these limits are put in order to maintain the multi-tenant infrastructure and to avoid
any misuse of the complete infrastructure by a single user or group of users.

Error handling
In this section, we are going to talk about how to handle errors in DynamoDB. We
have seen how to make client requests in earlier chapters of this book. There, we
had not put the error-handling mechanism, which we would be doing now.

Type of errors
There are two types of errors in AWS:

• Client errors: These normally come when the request we are submitting is
incorrect. The client errors are normally shown with the status code starting
with 4XX. These errors normally arrive when there is an authentication
failure, bad requests, missing required attributes, or for exceeding the
provisioned throughput. The errors normally come when users provide
invalid inputs.

Advanced Topics

[126]

• Server errors: These arrive when there is something wrong from Amazon's
side, and they appear at runtime. The only way to handle such errors is to try
again, and even then if it does not succeed, then you should log the request
ID and reach Amazon support with that ID to know more about the details.

You can get the full list of AWS DynamoDB error code and the description at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
ErrorHandling.html#APIError.

Catching error information
This is as important as handling the error. When it comes to Java, you should always
write the request in try or catch blocks. In a try block, you can invoke the request,
and in a catch block, you can catch AmazonServiceException first and then
AmazonClientException. You can perform the process of catching an error using
the following code:

 try{
 // Scan items for all values
 ScanRequest scanRequest = new ScanRequest("Employee");
 ScanResult scanResult = dynamoDBClient.scan(scanRequest);

 }
catch(AmazonServiceException ase){
 System.err.println("Failed scan table: " + "Employee");
 // Get detail error information
 System.out.println("Error Message: " + ase.getMessage());
 System.out.println("HTTP Status Code: " + ase.
getStatusCode());
 System.out.println("AWS Error Code: " + ase.
getErrorCode());
 System.out.println("Error Type: " + ase.
getErrorType());
 System.out.println("Request ID: " + ase.
getRequestId());
 }

catch (AmazonClientException e) {
 System.out.println("Amazon Client Exception :"+e.getMessage());

}

As I said earlier, it is very important to make a note of the request ID if you need to
go back to Amazon support to perform more digging into the error.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIError
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ErrorHandling.html#APIError

Chapter 5

[127]

Auto retries and exponential back-offs
In the case of client errors, we can put some code around autoerror retries.
Sometimes, it's possible that your provisioned throughput is utilized to the
maximum; in this case, it's good to perform autoerror retries. The simplest way of
performing this is using the client configuration provided by Amazon, as shown
in the following code:

 ClientConfiguration configuration = new ClientConfiguration();
 configuration.setMaxErrorRetry(3);
 // Instantiate AWS Client with proper credentials and client
configuration
 dynamoDBClient = new AmazonDynamoDBClient(
 new ClasspathPropertiesFileCredentialsProvider(), configuration);

Here, you can set the number as per your need. By default, Amazon has put some
autoerror retries policies that you can see from the Amazon SDK code, which is of
20,000 milliseconds, and the maximum error retries is three.

The Amazon SDK also allows you to create your own back-off policy, as shown in
the following code:

 ClientConfiguration configuration = new ClientConfiguration();

RetryPolicy policy = new RetryPolicy(retryCondition, backoffStrategy,
maxErrorRetry, honorMaxErrorRetryInClientConfig);

 configuration.setRetryPolicy(retryPolicy);

// Instantiate AWS Client with proper credentials and client
configuration
 dynamoDBClient = new AmazonDynamoDBClient(
 new ClasspathPropertiesFileCredentialsProvider(), configuration);

Some terms in the previous code are explained as follows:

• RetryCondition: Here, you need to specify whether on a specific request
or condition, if you need to retry. If null is specified, then SDK takes the
default condition.

• BackoffStrategy: Here, you need to specify after how long the next retry
should be done. If null is specified, then SDK takes the default strategy.

• MaxErrorRetry: Here, you need to specify the maximum number of retries
on the error.

• HonorMaxErrorRetryInClientConfig: Here, you need to specify
whether this retry policy should honor the max error retry set by
ClientConfiguration.setMaxErrorRetry(int).

Advanced Topics

[128]

If required, you can also use a custom retry strategy, or you can also use AWS SQS
to throttle the DynamoDB throughput. Use the http://tech.shazam.com/server/
using-sqs-to-throttle-dynamodb-throughput/ blog link that explains the
detailed implementation for the same.

Summary
In this chapter, we started with understanding how to monitor DynamoDB tables; we
saw various ways of the DynamoDB status and how to use it to get correct information
about DynamoDB all the time. Then, we started with the AWS security model for
DynamoDB. There, we talked about implementing security policies based on user
roles and applying the same to the application. We went through a stepwise tutorial to
create security groups, policies, and applying them on sample DynamoDB tables.

We also went through multiple example security policies, which would help to
build a secure app in the near future. We also understood how to create fine-grained
access control in real-time applications to maintain the integrity of the system. We
also learned about one very interesting topic called web identity federation where
we can use third-party websites to use the user identity and allow them to connect
to DynamoDB after a successful token verification.

Finally, we listed down the best practices of limitations and error handling in
DynamoDB, which one should keep handy in order to design a hiccup-free system.

In the next chapter, we will talk about how to integrate DynamoDB with other AWS
components in order to build the complete application ecosystem within cloud.

http://tech.shazam.com/server/using-sqs-to-throttle-dynamodb-throughput/
http://tech.shazam.com/server/using-sqs-to-throttle-dynamodb-throughput/

Integrating DynamoDB with
Other AWS Components

This is an era of ecosystems. Everyone wants all their things to be at one place, and
there is absolutely nothing wrong with it as, if we get all that we need at one place, it
becomes quite easy to manage our stuff. Consider an example of the supermarket; we
like to go to the supermarket instead of individual store keepers as we get all that we
need at one place. The same is the case with technology, we normally prefer to use
libraries from some particular companies only, because it provides great compatibility,
ease of integration, and ease of moving from one component to another as the same
conventions and styles would be used to develop it.

When Amazon understood this need, they started offering a variety of technologies
as a service on cloud. For example, they started with S3; then, they realized offering
EC2 instances would also be a good idea and since then their offering stack is
evolving every day. Right from the relational database (RDS) to the NoSQL
database (DynamoDB), from workflow (SWF) to a search engine (CloudSearch),
and from Hadoop (EMR) to Identity and Access Management (IAM), you name
it and Amazon has already provided all it takes to build the end-to-end application
system. In this chapter, we will see how to integrate DynamoDB with other AWS
offerings so that you are able to develop a complete application on AWS Cloud
itself. We will cover the integration of DynamoDB with the following tools:

• Elastic MapReduce (EMR)
• Simple Storage Service (S3)
• RedShift
• CloudSearch

Integrating DynamoDB with Other AWS Components

[130]

Integrating with AWS EMR
Hadoop and Big Data is one of the most used extract, transform, and load (ETL) tools
these days. Most of the companies are using it to fetch more and more information
from the data available with them. But sometimes it is found that creating and
maintaining the Hadoop cluster is quite a time-consuming job, especially when you
don't have much exposure to the Linux/Unix environment. Also, if you need to use
Hadoop in production, you would need to hire a specialist Hadoop admin, which
is an overhead in terms of cost. To solve this, AWS has introduced a hosted Hadoop
as a service where you just need to provide your requirement in terms of cluster
configuration (number of data nodes and the size of instances based on the size of
data you want to process), additional services such as Hive, Pig, and so on, if required,
and once done, on a single click of the button, you have your Hadoop cluster ready.

You can find more details about how to launch Elastic MapReduce EMR cluster and
how to play with it at http://docs.aws.amazon.com/ElasticMapReduce/latest/
DeveloperGuide/emr-what-is-emr.html.

In this section, we will cover the following topics:

• Exporting data from DynamoDB
• Querying and joining tables in DynamoDB using AWS EMR
• Importing data to DynamoDB

Exporting data from DynamoDB
There might be many places where your application data that is stored in
DynamoDB needs to be exported to flat files. This exercise could be a part of data
archiving, data purging, or some data movement. Even when you need to perform
data analytics on DynamoDB data using EMR you can either first export it to S3 or
to Hadoop Distributed File System (HDFS). Now let's learn how to export data to
S3/HDFS in a stepwise manner.

The pre-requisites to perform this exercise are as follows:

• An EMR Hadoop cluster with Hive installed
• A simple AWS S3 bucket
• A DynamoDB table with some data to be exported
• Knowledge of HiveQL/Hadoop

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-what-is-emr.html

Chapter 6

[131]

Export data to AWS S3
AWS S3 is a cheaper way to store or dump your data. Amazon allows us to export
data from DynamoDB quite easily. We can export data to S3 in various forms, such
as simple data (as it is), formatted data, or compressed data. We can perform them
by using simple data export.

Consider that you have a table called Employee that contains data about
employee details. A schema for the table would be something like this: Employee
(empId:String, yoj:String, dept:String, salary:Number, manager:String).

Suppose we decide to export the data from this table to a bucket called packt-pub-
employee in the folder /employee_data, then, you can write a Hive query to first
create a hive table as shown by the following commands:

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" = "empid:empId,yoj:yoj,department:dept,salary:s
alary,manager:manager");

Here, we are creating an external Hive table called packtPubEmployee with the
same schema as the DynamoDB table. By providing TBLPROPERTIES for this table,
we are indicating which table from DynamoDB is to be mapped to this table in
Hive and what columns are to be mapped from DynamoDB table to hive table.

Once you run this on Hive by connecting to the EMR cluster, the table definition
would get created; the actual data exporting would happen once you run the
following HiveQL statement, which will run the insert data statement:

INSERT OVERWRITE DIRECTORY 's3://packt-pub-employee/employee/' SELECT *

FROM packtPubEmployee;

Here, you can replace your own bucket path instead of mine, and the same is the
case with the DynamoDB table name. Once you run this statement, EMR will launch
a MapReduce job, which would take its own time depending upon the data it needs
to process. Once done, you can check the S3 bucket, and you would be able to see the
data from DynamoDB stored in flat files.

Integrating DynamoDB with Other AWS Components

[132]

Formatted data export
If you want to export specific columns from the table, then you can simply mention
them in the SELECT statement. For example, if you want to export only employee ID
and salary, then you can rewrite the insert statement as follows:

INSERT OVERWRITE DIRECTORY 's3://packt-pub-employee/employee/' SELECT
empid, salary

FROM packtPubEmployee;

But make sure you make corresponding changes in the Hive table as well.
You can also export data specifying some formatting in between the columns.
Formatting generally helps when you need to export a table with some delimiters.
The following is an example where we are exporting the same Employee table
with tab-delimited columns:

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

CREATE EXTERNAL TABLE packtPubEmployee_tab_formatted(a_col string, b_col
bigint, c_col array<string>)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

LOCATION 's3://packt-pub-employee/employee/';

INSERT OVERWRITE TABLE packtPubEmployee_tab_formatted SELECT *

FROM packtPubEmployee;

Here, the only change we need to make is create one staging table with the row
format delimiter specified.

Compressed data export
Most of the time, we do data export to archive old data on S3. This kind of data is
not frequently used but needs to be kept somewhere so that in case it is needed,
it can be taken out. Hadoop/Hive supports various data compression algorithms.
So, you can decide which algorithm to use to store data in compressed manner.
The following example demonstrates how to export DynamoDB data to AWS S3
in compressed flat files.

Chapter 6

[133]

To do so, you just need to set certain property values in the Hive console before
you run the export job. Here is a sample Hive script that exports data from the
DynamoDB table called Employee to S3 bucket in compressed files:

SET hive.exec.compress.output=true; # Sets the compression mode ON.

SET io.seqfile.compression.type=BLOCK; # Sets the type of compression

SET mapred.output.compression.codec = org.apache.hadoop.io.compress.
GzipCodec;

Sets the algorithm to be used for compression.

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

CREATE EXTERNAL TABLE packtPubEmployee_tab_formatted(a_col string, b_col
bigint, c_col array<string>)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

LOCATION 's3://packt-pub-employee/employee/';

INSERT OVERWRITE TABLE packtPubEmployee_tab_formatted SELECT *

FROM packtPubEmployee;

Here we are using gzip codec from Hadoop to compress the files. The other available
codecs are as follows:

• org.apache.hadoop.io.compress.DefaultCodec

• com.hadoop.compression.lzo.LzoCodec

• org.apache.hadoop.io.compress.BZip2Codec

• org.apache.hadoop.io.compress.SnappyCodec

Integrating DynamoDB with Other AWS Components

[134]

Export data to EMR – HDFS
We can also export the DynamoDB table data to certain folder on Hadoop Distributed
File System (HDFS). There might be a use case where you would need to process
data on Hadoop using a MapReduce job instead of directly running a Hive query. In
this case, we would first need to get the data in some HDFS folder and then run the
MapReduce job on it. The following code script represents the importing data from
DynamoDB table to HDFS:

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

SET dynamodb.throughput.read.percent=1.0;

INSERT OVERWRITE DIRECTORY 'hdfs:///data/employee/' SELECT * FROM
packtPubEmployee;

Here, by setting the dynamodb.throughput.read.percent variable, we are
controlling the read request rate from DynamoDB; you can play around with this
variable value and tune it to make it suitable for your performance expectations.
In the insert query, you need to specify the directory on HDFS where you wish
to export the data. This would also allow us to export data from production
DynamoDB table without risking a performance degrade.

Querying DynamoDB data
Querying data using SQL in DynamoDB is one the main reasons why we integrate
DynamoDB with EMR. To perform the same, we just need to map DynamoDB table
attributes with a hive table, and once done, you can simply write your own queries
in Hive in order to get the desired output. The following are some sample examples
that would help you to form your own queries.

Getting the total count of employees in
Employee table
To get the count of employees from DynamoDB table Employee, we first need to
create a table with mappings in Hive. Once the table is created, you can simply run
the count(*) query to get the exact count of employees.

Chapter 6

[135]

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

SELECT COUNT(*) FROM packtPubEmployee;

Getting the total count of employees
department wise
Here, we would need to GROUP BY employees according to their department.
The steps are simple: create a table with attribute mappings and then fire a
SELECT query to GROUP BY employees to get their count. Have a look at the
following commands:

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

SELECT department, count(*) FROM packtPubEmployee GROUP BY department;

Joining two DynamoDB tables
Sometimes we would also want to get the aggregate data from two DynamoDB
tables; in that case, you create two Hive tables, which would be mapped to the
corresponding tables in DynamoDB. Then you use the JOIN keyword and the
key on which the tables should be joined to get the joined dataset.

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

Integrating DynamoDB with Other AWS Components

[136]

CREATE EXTERNAL TABLE packtPubDepartment (department String, name String,
head String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Department",

"dynamodb.column.mapping" = "department:dept,name:name,head:head");

SELECT e.empid , d.name FROM

packtPubEmployee e JOIN packtPubDepartment d

ON (e.department = d.department);

This would result in a dataset that would have two columns: the first would
be employee ID and second would be the department it belongs to. You can add
more filtering using where conditions in case you need more specific information.

Joining tables from DynamoDB and S3
We also join tables from different sources, for example, one table from DynamoDB
and another from AWS S3 stored as flat file, or a table from DynamoDB and a table
created out of data present on HDFS. For such cases, you just need to create a table
on Hive which would map to the correct location and correct service and then you
can simply run the join table query. By the following commands, we would try to
join a table from DynamoDB to a set of flat file present on AWS S3:

-- A DynamoDB table

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

-- A table created from S3 flat files

CREATE EXTERNAL TABLE packtPubDepartment (department String, name String,
head String)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION 's3://bucket/path/';

-- Join the tables

SELECT e.empid , d.name FROM

packtPubEmployee e JOIN packtPubDepartment d

ON (e.department = d.department);

Again the output would be employee ID with its corresponding department name.

Chapter 6

[137]

Importing data into DynamoDB
Sometimes there might be a use case where you need to move your application from
some database to DynamoDB. In that case, you use the following techniques to get
your data up on DynamoDB.

Importing data from AWS S3
Here again, we need to use EMR and Hive to create external tables and import the
data from S3. First, we need to create a table in Hive that is mapped to a bucket on
Amazon S3. Then, we need to create one more table that would be mapped to a table
in DynamoDB, in which we need to dump this data. And then we can simply run
insert into query to import data to DynamoDB from S3. The following code shows
how to import data from the packt-pub-employee bucket to the Employee table
in DynamoDB:

CREATE EXTERNAL TABLE packtPubEmployee_s3 (empid String, yoj String,
department String, salary bigint, manager String)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION 's3://packt-pub-employee/employee/';

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, ,manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

INSERT OVERWRITE TABLE packtPubEmployee SELECT * FROM packtPubEmployee_
s3;

You can also import data from S3 without specifying the attribute mapping as shown:

CREATE EXTERNAL TABLE packtPubEmployee_s3 (item map<string, string>)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION 's3://packt-pub-employee/employee/';

CREATE EXTERNAL TABLE packtPubEmployee (item map<string, string>)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee");

INSERT OVERWRITE TABLE packtPubEmployee SELECT * FROM packtPubEmployee_s3;

Integrating DynamoDB with Other AWS Components

[138]

Here, instead of specifying attributes in the table, we are giving a single-map variable
that would store all the values, and which would add the data to corresponding
attributes. But as we don't have any attributes specified, we cannot query such
tables in Hive as we would not have attribute names with us.

Importing data from HDFS
We saw data export to HDFS from DynamoDB; in the same manner, you can import
data to DynamoDB from HDFS flat files. Here, first we need to create a table in hive
that is linked to a directory on HDFS. Then, we need to create another table that
links to a table in DynamoDB where you need to put the data. Now, you can simply
insert data from the first to the second table, and you would be able to see the data
imported in the DynamoDB table.

In the following example, we would try to import the data present on the HDFS path
/data/employee to the Employee table in DynamoDB:

CREATE EXTERNAL TABLE packtPubEmployee_hdfs(empid String, yoj String,
department String, salary bigint, ,manager String)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

LOCATION 'hdfs:///data/employee/';

CREATE EXTERNAL TABLE packtPubEmployee (empid String, yoj String,
department String, salary bigint, manager String)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Employee",

"dynamodb.column.mapping" =
"empid:empId,yoj:yoj,department:dept,salary:salary,manager:manager");

INSERT OVERWRITE TABLE packtPubEmployee SELECT * FROM packtPubEmployee_
hdfs;

Performance considerations while using EMR
with DynamoDB
When we use EMR for data import/export, it consumes the provisioned throughput
of the tables. It is like just another DynamoDB client. It is easy to measure the time
required to import or export a certain amount of data from/to DynamoDB if you
know the data size, and the read and write capacity units provisioned to the table.
For example, the Employee table from DynamoDB needs to be exported to S3.

Chapter 6

[139]

The size of the table is 10 GB and the read capacity provisioned in 50 units. The time
required for the export, calculated as the time taken by EMR for 10 GB data export,
will be 1073741824 bytes (10 GB) / 204800 bytes (50 Read Units) = 14.56 hours.

To reduce the time, we need to increase the read capacity units provisioned to the
table. The following are some important things one should keep in mind in order
to get the best out of DynamoDB and EMR integration.

• By default, EMR decides on its own the rate at which data should be fetched.
It decides the read rate depending upon the capacity units provisioned for the
table. But in case you are getting a high number of provisioned throughput
exceeded information, you can set the read rate by setting a parameter
dynamodb.throughput.read.percent. The range for this parameter is from
0.1 to 1.5. The default read rate is 0.5, which means that Hive will consume half
of the capacity units provisioned to the table. You can increase the value if you
need to increase the performance, but make sure that you keep watching the
table's consumed capacity units and throttled request metrics and adjust the
provisioned throughput.
The parameter can be set on Hive console before you execute the query
as follows:

SET dynamodb.throughput.read.percent = 1.0

• Similar to that, we also set the write rate if we want to control the import
to DynamoDB table. Here, we need the parameter dynamodb.throughput.
write.percent the range of which varies from 0.1 to 1.5. Also, we need
to set this before we run the query in the Hive console. Have a look at the
following commands:
SET dynamodb.throughput.write.percent = 1.2

• In the event of failures, Amazon retries the Hive queries. The default
retry timeout is 2 minutes, but you can change it using parameter dynamodb.
retry.duration. You need to mention the number of minutes after which
Amazon should retry the query in case of no response as follows:
SET dynamodb.retry.duration = 5;

This would set the retry interval to 5 minutes.

Integrating DynamoDB with Other AWS Components

[140]

• You can also improve the import/export performance by increasing the
number of mappers. The number of mappers for a certain Hadoop cluster
is dependent on the capacity of the hardware the cluster is using. Either you
can increase the hardware configuration of the nodes or you can increase
the number of nodes. Make a note that to do this, you need to stop the EMR
cluster and make changes into it. There is one parameter, which you can
also set to increase the number of mappers mapred.tasktracker.map.
tasks.maximum that you set, to increase the performance. The only issue
with increasing the value of this parameter is that it may cause out-of-
memory issues for the nodes present in the EMR cluster. As this attribute is
very specific to EMR-related operations, this cannot be simply set to Hive
console. For this, you need to set it as a bootstrap action. More information
about bootstrap actions is available at http://docs.aws.amazon.com/
ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html.

Integrating with AWS Redshift
As I keep on saying, this is a data era and every piece of data keeps on telling us
something. Acting on this need, Amazon has introduced Redshift, which is a data
warehouse as a service that allows you to dump your data on cloud with minimum
cost. Redshift has power query language that allows us to drill TBs and PBs of data
in seconds. It helps users to analyze data cheaper and faster.

Now, you must be wondering how this tool could help someone who has his
application database as DynamoDB. Well, the answer is quite simple, most of the
organization tries to keep their application database size easily controllable. This
means that they tend to purge or archive old/stale data periodically. In such cases,
it is good to have a data warehousing solution in cloud itself. So, you can keep your
application live data on DynamoDB and use Redshift to dump old data to archive
and analyze.

Unlike DynamoDB, Redshift is a SQL-based data warehousing tool. It comes with a
powerful SQL query tool, which is giving tough competition to other tools, such as
Hive, Impala, Google Big Query, and Apache Drill. We can simply copy data present
on DynamoDB to Redshift and start using it for Business intelligence applications.

Even though both DynamoDB and Redshift are from Amazon, we need to take care of
a few things as these two tools are meant to do two different things. The following are
a few important things one should consider before using Redshift with DynamoDB:

• DynamoDB is schema-less, but Redshift needs pre-defined schema to store
data in an appropriate manner.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-bootstrap.html

Chapter 6

[141]

• We don't have any null value concept in DynamoDB, so we need to specify
how Redshift should handle attributes with null or empty values.
For example, suppose in an Employee table, we have one item {empid:123,
name:XYZ} and another one {empid:111,name:PQR, post:CEO}. Here,
when we copy this data to Redshift, we have to specify schema such as
{empid, name, post} when creating a table. Also, we need to specify
how Redshift would handle the value for post attribute for the first item.

• Also, DynamoDB table names can be up to 255 characters and can contain
dot(.) and dash(-), whereas Redshift table names can be up to 127 characters
only, and it does not allow dot(.) or dash(-) in any table name.

• The most important thing to note is that the DynamoDB data type does not
directly connect to Redshift data types. So, we need to take care that the data
types and sizes of columns are appropriate.

Now, we will see how to perform actual integration with Redshift.

Exporting data from DynamoDB
When integrating with Redshift, we have to simply copy data from a DynamoDB table
to a Redshift table. Unlike in EMR, we need a connection from DynamoDB to Redshift
at the time of data copy only. There are advantages as well as disadvantages with this
approach. The good thing is that once the copying is done, Redshift processes would
not use any DynamoDB provisioned throughput, and a not-so-good thing is that we
have to keep two copies of data one on DynamoDB and another one on Redshift.

Amazon Redshift has a powerful COPY command that can fetch data from DynamoDB
tables faster using massive parallel processing (MPP). MPP allows Redshift processes
to distribute the load and fetch data in parallel and in a faster manner. One thing we
have to note over here is the COPY command leverages provisioned throughput of the
DynamoDB table, so we have to make sure enough throughput is provisioned in order
to avoid provisioned throughput exceeded exception.

It is recommended not to use production DynamoDB tables to
directly copy data to Redshift. As I had mentioned earlier, Redshift's
MPP may drain out all the read provisioned throughput, and if there
are any important requests coming to the DynamoDB table from
production, then it may cause some disturbance to the application.
To avoid this, either you can create a duplicate table in DynamoDB,
which is copy of the original table, and then use the COPY command
on this table, or you can limit the READRATIO parameter to use only
limited resources.

Integrating DynamoDB with Other AWS Components

[142]

READRATIO is a parameter in the COPY command that sets how much Redshift
should use from DynamoDB's provisioned throughput. If you want Redshift to
utilize full provisioned throughput from the DynamoDB table, then you can set
the value of this parameter to 100.

The COPY command works in the following manner:

• First, it matches the attributes in the DynamoDB table with columns in the
Redshift table.

• The Redshift table matches the DynamoDB attributes in a sensitive manner.
• The columns in Redshift that do not match to any attribute in DynamoDB

are set as NULL or empty, depending on the value specified in EMPTYASNULL
option in the COPY command.

• Currently, DynamoDB columns with only scalar data types are supported,
that is, columns with data types in string and number are only supported.
Data types SET and BINARY are not supported.

• The attributes from DynamoDB that are not present in the Redshift table are
simply ignored.

Suppose you want to export the Employee table from DynamoDB to Redshift, then
you can simply use the following syntax:

COPY Employee_RS FROM 'dynamodb://Employee'

CREDENTIALS 'aws_access_key_id=<your-access-key>;aws_secret_access_
key=<your-secret-key>'

In the case of readratio 50, the first line mentions the name of the tables in Redshift
and DynamoDB. The second line is to provide credentials, that is, access key and
secret key. In the third line, you need to mention how much provisioned throughput
Redshift should use from DynamoDB table. Here, I have mentioned 50 which means
50 percent of the table's provisioned read capacity units would be used.

Alternatively, you can also create temporary credentials and access keys and use it
for the purpose of copying data. The benefit of using temporary credentials is that
first, they are temporary, and second, they can be used only once and expire after
a certain time. But one needs to be sure that the temporary credentials are valid for
the entire time frame of the copy task.

The following is the syntax to use temporary credentials:

copy Employee_RS from 'dynamodb://Employee'

credentials 'aws_access_key_id=<temporary-access-key>;aws_secret_access_
key=<temporary-secret-key>;token=<temporary-token>'

readratio 50;

Chapter 6

[143]

Automatic compression and sampling
Sometimes you would be wondering that the COPY command has used more than
the required provisioned throughput for data load. So, the answer for that is that
the COPY command by default applies some compression on data being loaded to
Redshift. To do so, it first samples a certain number of rows and then see if it works
fine. Once done, all these rows are discarded. The number of rows to sample is
decided by the parameter COMPROWS the default value of which is 10000 rows.

If your data contains multibyte characters (Mandarin (Chinese)
characters), then you should use VARCHAR columns in Redshift
tables to load data. VARCHAR supports 4-byte UTF-8 characters.
The CHAR data type supports only single-byte characters. You
cannot load data comprising more than 4-byte characters.

You can get more details about the COPY command at http://docs.aws.amazon.
com/redshift/latest/dg/r_COPY.html and http://docs.aws.amazon.com/
redshift/latest/dg/r_COPY_command_examples.html.

With Redshift being the data warehouse, the majority of the time, there would be
a use case of only exporting data from DynamoDB to Redshift, and in a very rare
situation someone would think of importing data back from Redshift to DynamoDB,
hence there is no such best method available till date.

Integrating with AWS CloudSearch
Amazon CloudSearch is a search engine as a service from Amazon that allows
users to store their documents on CloudSearch, provides indexing on those
documents and provides a search engine kind of functionality with faceted search
options. CloudSearch scales as the number of documents increases with time.
Using CloudSearch is quite easy—you just need to create one CloudSearch domain
where you need to specify the attributes of each document you are going to store.
Appropriate data types are provided in order to improve the search functionality.

To store a document in CloudSearch, you have to generate your data in SDF format.
SDF is nothing but Search Document Format, which is a JSON document that holds
the metadata about the document with actual data. Once the document is stored
on CloudSearch, you can simply search for the document using the CloudSearch
console or search API given by Amazon.

http://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html
http://docs.aws.amazon.com/redshift/latest/dg/r_COPY_command_examples.html

Integrating DynamoDB with Other AWS Components

[144]

There might be a use case where you want to use DynamoDB as your storage tool,
and you want to implement a use case where end users need to search from a range
of items. In this case, if the search functionality is a primary requirement, then
you should use DynamoDB for storage and CloudSearch for search functionality.
You can use DynamoDB as primary data storage unit and keep a copy of this data
on CloudSearch to deal with faster-searching requirements. Consider an example
of a bookstore application where users will look to search for books online with
book name, author name, year of publishing, and so on. For such kind of use case,
CloudSearch is the best fit.

In order to use CloudSearch with DynamoDB, perform the following steps:

1. Configure CloudSearch domain
2. Export data from DynamoDB to CloudSearch

Configuring CloudSearch domain
To match with DynamoDB table attributes, there is an easy way to configure the
CloudSearch domain. The following is a stepwise tutorial to do the same.

Using AWS management console
Now we will go through instructions on how to use the AWS management console:

1. Sign in to AWS CloudSearch console at https://console.aws.amazon.
com/cloudsearch/ and you will get the following screenshot:

https://console.aws.amazon.com/cloudsearch/
https://console.aws.amazon.com/cloudsearch/

Chapter 6

[145]

2. Then click on Create a new search domain option, and you will see a
new window popping up asking for the details as shown in the following
screenshot. Upon giving the proper domain name, you can click on the
Continue button.

3. In the next screen, it will ask for index configurations. Here we want to
create a search domain for one of our tables in DynamoDB, so you can select
Analyze sample item(s) from Amazon DynamoDB. Then it will load a list
of DynamoDB tables associated with the given account. Here I am selecting
a table called Book. It will also ask for read capacity units, which is a value
CloudSearch would use when reading data from DynamoDB for sampling
purposes. You can click on Continue to proceed with data sampling.

Integrating DynamoDB with Other AWS Components

[146]

4. Depending upon the type of data present in a given table, Amazon will
recommend the index configuration as shown in the following screenshot.
You can modify the configuration if required. And click on Continue to
create the domain.

Once the domain creation is done, half of the things are done. This configuration is
just for index creation, and this does not mean there is a sync between DynamoDB
and CloudSearch domain now. We still need to populate the documents by any of
the given methods.

Using command-line tools
We can do whatever we did using the management console using command-line
tools. This includes the following two steps:

1. We have to generate the sample search document format from a DynamoDB
table and store it on the local disk or S3 bucket. The syntax is as follows:
cs-import-documents --source ddb://Book --output c:\samples\book

This will generate sample SDF documents using internal API and will dump
those on your local disk.

Chapter 6

[147]

2. The next thing that we need to do is configure an index using these newly
generated SDFs that you have stored on your local disk:
cs-configure-from-sdf --domain mydomain --source c:\ samples\book*

Once done, you will see that the index configuration is done for the
CloudSearch domain.

Export data from DynamoDB to CloudSearch
To upload data from DynamoDB to CloudSearch, you can use the CloudSearch
management console, or you can use the command-line tool.

Using AWS management console
In this section, we will see how to export data from DynamoDB to CloudSearch
using the AWS management console:

1. Sign in to the AWS CloudSearch console https://console.aws.amazon.
com/cloudsearch/ and you will see a list of CloudSearch domains you
have created already. You can select the appropriate one to move ahead,
as shown in the following screenshot:

Make a note that it takes some time to get your CloudSearch domain active;
till then, you have to wait.

https://console.aws.amazon.com/cloudsearch/
https://console.aws.amazon.com/cloudsearch/

Integrating DynamoDB with Other AWS Components

[148]

2. On clicking Upload Documents, you would see a new pop up on your
window asking for details. Here, you can select the Item(s) from Amazon
DynamoDB option and can select the table from which you need to upload
the data. You can also mention how much of the of read capacity units
it should use (in percentage terms) to fetch the data. You can click on
Continue to move ahead. Have a look at the following screenshot:

3. Internally, it will convert the data into SDF, and once done, you can
click on Upload Documents to start uploading the data, as shown in
the following screenshot.

Chapter 6

[149]

A sample batch of SDF documents would look as follows:

[{
 "type" : "add",
 "id" : "1008_1009",
 "fields" : {
 "bookid" : "1008",
 "test" : "766",
 "isbn" : "111",
 "name" : "Mastering DynamoDB",
 "yop" : "1009"
 }
}, {
 "type" : "add",
 "id" : "1008_2000",
 "fields" : {
 "bookid" : "1008",
 "yop" : "2000"
 }

Integrating DynamoDB with Other AWS Components

[150]

}, {
 "type" : "add",
 "id" : "1008_2009",
 "fields" : {
 "bookid" : "1008",
 "test" : "111",
 "isbn" : "1111",
 "yop" : "2009"
 }
}]

Using command line tools
To upload the data from DynamoDB to CloudSearch, we need to run the
cs-import-documents command in the following manner:

cs-import-documents --domain mydomain --source ddb://Book

Here, we are uploading documents to the mydomain CloudSearch domain from
the DynamoDB table called Book.

Make a note that when we keep data at two sources, it is always
challenging to maintain them in sync. When we create the
CloudSearch domain from the DynamoDB table, we just borrow
information to create the index and nothing else. So once the
document upload is done, for any update or delete, there should
be a similar operation performed on CloudSearch with each
DynamoDB data change. You can programmatically do that by
writing code for both DynamoDB and CloudSearch updates one
after another. This would help in keeping your system up-to-date.

Summary
In this chapter, we talked about using the AWS ecosystem to develop and deploy
your application on cloud. We started with AWS EMR integration with DynamoDB.
We also used AWS S3 as the staging environment for the integration. By creating the
Hive table using EMR, we also learned to query data in DynamoDB. This integration
helped us to give data analytics solution for your application. So that we don't need
to go anywhere else, simply keep your application database as DynamoDB and
integrate with EMR to get better insights from your data.

Chapter 6

[151]

In the next section, we discussed how to integrate DynamoDB with AWS Redshift,
which is a data warehousing solution from Amazon. So if you need to stage out your
data for Business Intelligence applications, you can simply store it on Redshift.

In the last section, we talked about how to make your data searchable using
the CloudSearch engine. We saw how to create the CloudSearch domain from
DynamoDB tables and also used command-line options to configure the index
for a given table. After that, we explored options on uploading data from
DynamoDB to CloudSearch.

I am sure that after reading this chapter you can see your end-to-end application
running on AWS Cloud without any overhead of maintaining so many systems.

In the next chapter, we are going to study a couple of use cases that are already
implemented, and we will try to understand what we could do if we need to
build something similar to these systems.

DynamoDB – Use Cases
Now we have seen all the core and important parts of DynamoDB. Now you must
know what DynamoDB is, what the data model for it is, how DynamoDB actually
works, what the best practices are, how to impose security, access controls on tables,
and so on. In the previous chapter, we talked about integrating DynamoDB with
various AWS components, such as S3, Redshift, EMR, and so on. Now I am sure you
must have started thinking in terms of how to build an application using DynamoDB
and what steps are involved in it. So in this chapter, we are going to see a couple of
use cases that should give you an idea of what it takes to use DynamoDB as your
application database.

In this chapter, we will consider the following two use cases:

• A bookstore application
• A knowledge market website (For example, Stack Overflow or Yahoo Answers)

Bookstore application
A bookstore application consists of a web portal where we will sell books online. This
web application would allow users to search for books by name or the author's name,
select and purchase books as per their choice, and pay for the books. This bookstore
allows users to sign in using their Facebook, Google, and Amazon accounts.

DynamoDB – Use Cases

[154]

Technology stack
Now that we have defined the problem statement, we will have to select the
technology stack in order to go ahead with it. The following is the technology stack:

• Programming language: Java
• Database: DynamoDB
• Search engine: AWS CloudSearch
• Web server: Tomcat. This can be hosted on the AWS EC2 instance
• Analytics: AWS EMR

Architecture
As we do in any software development life cycle, let's try to build the architecture
diagram as follows for better understanding:

The previous diagram shows how we can connect different AWS and non-AWS
components together. We will also use AWS Secure Token Service (STS), which
we have seen in Chapter 5, Advanced Topics, in order to authenticate the users.

Chapter 7

[155]

The flow for this application would be as follows:

1. A user logs in to the application using their Facebook, Google,
or Amazon credentials.

2. AWS sends this request to identity providers for verification; in return,
it will get the identity token. Using this token, the client sends this request
to STS to get temporary credentials.

3. Now the web server acts on behalf of the client and makes requests to
DynamoDB. If the user has the required privileges, then DynamoDB
gives back the required data. For example, here we can consider the
action of adding new books to a book table by the admin user.

4. There can be requests coming from various other users to know more about
a certain book, for example, the price of a book, reviews of a book, and so on.

5. We should also write code for adding book metadata to CloudSearch.
We can have a background process that adds this data to CloudSearch
from DynamoDB, or we can simply call the CloudSearch API from our
code whenever we make an entry into DynamoDB.

6. We can write AWS EMR import queries to fetch the data from DynamoDB
to the EMR cluster or AWS S3 for analytics, for example, trending books,
trending queries, recommendation engine based on user search history,
and so on.

As our focus for this book is DynamoDB, let's try to put down some information on
what the tables could be and what their schema would be.

DynamoDB data model
Depending upon the features that we want to support, I have listed down the
following tables with their primary keys.

Table Name Primary
key type

Hash key Range key

Book (yop,bkId,..) Hash and
range

Yop (Year of Publishing):
This will allow us to retrieve
books as per the year in
which they got published

bkId – unique book ID

Author (authId,..) Hash key authId – unique author ID NA

Publisher (pubId,..) Hash key pubId – unique publisher ID NA

DynamoDB – Use Cases

[156]

Here, you will observe that we are using short names such as bkId instead of bookId
or yop instead of YearOfPublishing, as we have learned in Chapter 4, Best Practices,
that even the attribute name size is being counted while calculating an item. So it is
very important to have all these things in mind before doing the schema design.

Here, while storing the book data, we are using a unique book ID as hash key and
year of publication as range key. It is always important to have a good choice of
hash and range keys that distributes the load to multiple nodes in the cluster.
This helps performance improvement.

Sample data for the tables would be like the content of the following screenshot:

You can also create secondary indexes on attributes such as title and authors in order
to enable use cases like getting book data by title or getting books for a given author.

It is also important to have an association between the tables in order to get linked
information. We have already seen relationship modeling in Chapter 2, Data Models.

Chapter 7

[157]

Implementation
Once the data modeling is finalized, you can start with actual implementation. For
that you can start with creating tables in DynamoDB. You can use the AWS console
to create the tables, or you can simply use the SDK and enter a create table request;
for example, you can use Java/PHP/.NET APIs to create the table, update the table,
delete the table, and so on. We have already seen the syntax to do this in various
languages in Chapter 2, Data Models.

You can simply pick up the use cases one by one and start writing APIs. You can write
code to add new books to the table, delete certain books, update the book data, and so
on. You can simultaneously keep testing your code for incremental development.

Integration with other AWS components
As we have discussed earlier, we will use AWS CloudSearch to give search
functionality to the user. We can create a domain for the same as we have learned
in Chapter 6, Integrating DynamoDB with Other AWS Components. We can use auto
index generation options provided by the AWS CloudSearch console to get seamless
integration. As seen earlier, for already existing data in DynamoDB, we can use the
CloudSearch console tool to upload the data, and for each new entry, you can write
a CloudSearch API call to upload the book data in SDF format to CloudSearch.

You can also integrate a query API from CloudSearch to help users search in the
book database. For more details, check out the CloudSearch API documentation at
http://aws.amazon.com/documentation/cloudsearch/.

In the architecture diagram, we have also shown that we can use AWS EMR to process
batch jobs to get more information about the data stored. We can go ahead and
implement a rating/review system for the books and authors and can also implement
a recommendation engine that recommends books to users as per their likes.

Deployment
Depending on the programming language selection, deployment scenarios would be
varied. Suppose we have implemented the code in Java, then we can use the Apache
Tomcat server for deployment of our application. We can use the EC2 instance to
install Tomcat and deploy the application on it. To make that application scalable,
you can use AWS Elastic Load Balancing.

http://aws.amazon.com/documentation/cloudsearch/

DynamoDB – Use Cases

[158]

Knowledge market website
A knowledge market website is a place where users can post questions to the
community and look for answers. A question can be a part of one or more topics
that can also be subscribed to by the individual users. A good example of such a
website is www.StackOverflow.com, which many of us might already be using.
Let's try to follow the same approach we did for our first use case.

Technology stack
The technology stack for this application is much the same as the previous one,
except a few. Have a look at the following list:

• Programming language: Java (you can choose your preferred language)
• Database: DynamoDB
• Web server: Tomcat (Tomcat can be hosted on the AWS EC2 instance)
• Data Archiving: AWS S3

We can add other AWS components like SNS to send notifications to users if they
see any activity on the question they had asked or answered.

Architecture
Now we will try to draw the architecture diagram for this application:

www.StackOverflow.com

Chapter 7

[159]

The previous diagram shows how the overall application functionality would look.
The working of the application is explained in the following points:

• The clients sends requests to the application deployed on Tomcat or any
other server.

• The code written for the application connects with DynamoDB to perform
the operation. Sample operations would include adding a new question,
adding a reply to an already existing question, deleting a topic/question,
and so on.

• AWS S3 can be used to archive the data from DynamoDB; we have seen
how to archive data on S3 using EMR in Chapter 6, Integrating DynamoDB
with Other AWS Components.

• Like the previous example, we would also be using the web identity
federation provided by AWS STS in order to maintain the session
management. Read Chapter 5, Advanced Topics, for more detail.

DynamoDB data model
Depending upon the features we want to support, I have listed down the following
tables with their primary keys:

Table name Primary key
type

Hash key Range key

Topic (Name, ...) Hash key Name NA

Question (TopicName,
Question,..)

Hash and
range keys

TopicName Question

Answer(Id, AnswerTs) Hash and
range key

Answer Id Answer timestamp

Votes(AnswerId, ..) Hash key Answer Id

The previous table gives the kind of data we want to store and retrieve for the users.
Here, the Topic table would contain all the topics we have in our application. Here,
we have only the hash key for this table. The Question table would have both hash
and range keys, that is, TopicName and Question, respectively. Here we can save
information for questions like the description, the identity of the one who has added
that question, and so on.

DynamoDB – Use Cases

[160]

The Answer table stores the information about the answers given by users. Here,
we have the timestamp at which the user has added the answer as the range key.
Keeping the timestamp as the range helps equal data distribution across the cluster.

Finally, we have also kept one table that lists the votes one has gathered for the
answers given. Sample data for the given tables would look like the following tables:

Topic table

{
 "name": "Cloud Computing",
 "createdAt": "23-06-2011T13: 00: 05Z",
 "description": "This topic is for all Cloud Computing related
questions."
 "subscribers" : 24455
}

{
 "name": "Big Data",
 "createdAt": "23-07-2011T13: 00: 05Z",
 "description": "This topic is for all Big Data related
questions."
 "subscribers" : 55886
}

{
 "name": "NoSQL",
 "createdAt": "26-06-2011T13: 00: 05Z",
 "description": "This topic is for all NoSQL related questions."
 "subscribers" : 2765
}

Questions Tables

{
 "topicName": "Cloud Computing",
 "question" : "What is Cloud Computing"
 "createdAt": "23-06-2011T13: 00: 05Z",
 "askedBy" : "abc"
}

Chapter 7

[161]

Questions Tables

{
 "topicName": "Big Data",
 "question" : "What is Big Data"
 "createdAt": "23-06-2012T13: 00: 05Z",
 "askedBy" : "xyz"
}

Answers
{
 "id" : "Big Data#What is Big Data"
 "ts": "23-06-2011T13: 00: 05Z",
 "postedby": "XYZ"
 "message" : "huge data"
}

{
 "id" : "Cloud Computing#What is Cloud Computing"
 "ts": "23-06-2011T13: 00: 05Z",
 "postedby": "XYZ"
 "message" : "Using network, storage etc as service"
}

Votes
{
 "answerId" : "Cloud Computing#What is Cloud Computing#23-06-
2011T13:00:05Z",
 "ups" : 2344
 "downs" : 2
}

{
 "answerId" : "Cloud Computing#Why is Cloud Computing#23-06-
2011T13:00:05Z",
 "ups" : 23
 "downs" : 288
}

Here, you would have observed that we are using the ID columns to uniquely
identify the item.

DynamoDB – Use Cases

[162]

Implementation
Once the data modeling is finalized, you can start with actual implementation. For
that, you can start with creating tables in DynamoDB. You can use the AWS console
to create the tables, or you can simply use the SDK and enter a create table request.
For example, you can use Java/PHP/.NET APIs to create tables, update tables,
delete tables, and so on. We have already seen the syntax to do the same in various
languages in Chapter 2, Data Models.

You can simply pick up the use cases one by one and start writing APIs. You can
take the reference of the code snippets we have seen in Chapter 2, Data Models,
for further detail.

Integration with other AWS components
As we have shown in the architecture diagram, we will also build a background job
that would periodically archive data, AWS S3. We can keep some buckets handy in
order to archive the data. To give an example, let's assume we want to archive data
present in the Questions and Answers tables to a bucket called QnA-backup on AWS
S3. Then, you can execute the following query on AWS EMR:

CREATE EXTERNAL TABLE Questions_2012 (topicName string, question string,
createdAt, postedBy)

STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'

TBLPROPERTIES ("dynamodb.table.name" = "Questions",

"dynamodb.column.mapping" = "topicName:topicName, question:question,creat
eAt:createdAt, postedby:postedBy");

Once the one-to-one mapping is done, we can execute INSERT into the command to
export the S3:

INSERT OVERWRITE DIRECTORY 's3:// QnA-backup /questions/' SELECT *

FROM Questions_2012;

For more details, you can refer to Chapter 6, Integrating DynamoDB with other
AWS Components.

Chapter 7

[163]

Deployment
Depending on the programming language selection, deployment scenarios would be
varied. Suppose we have implemented the code in Java, then we can use the Apache
Tomcat server for deployment of our application. We can use the EC2 instance to
install Tomcat and deploy the application on it. To make that application scalable,
you can use AWS Elastic Load Balancing.

You can read more about real-time case studies where DynamoDB is used at
http://aws.amazon.com/solutions/case-studies/.

Summary
In this chapter, we talked about two sample use cases in which DynamoDB is being
used as an application database. The purpose of this chapter was to give an idea
to the readers about what approach one should follow in order to get DynamoDB
into production. It is advised that one should try to understand the application
development process and get started with actual application building.

Here, I have also tried to show how we can integrate various AWS services in
order to have our complete application running on Cloud itself. The motive is
to just give the idea and show the complete picture to you all; it would be great
if you follow the referenced chapters thoroughly for implementation details.

In the next chapter, we are going to see various useful tools from AWS and
third-party contributors. These tools are helpful for any DynamoDB developers
and can be used/reused easily.

http://aws.amazon.com/solutions/case-studies/

Useful Libraries and Tools
In the last chapter, we discussed a couple of sample use cases where we explained
the flow of implementing an application using DynamoDB as a database. We also
discussed how we integrate other AWS services and make the best use of the AWS
ecosystem. In this chapter, our focus is going to be on some useful tools and libraries
available for our use. Some of the tools and libraries are given by AWS to help their
customers, while many others have been contributed by open source developers for
the benefit of the community.

We have plenty of interesting tools and libraries available that are related to
DynamoDB. In this chapter, we are going to explore some of them and their usage.

Libraries
There are various libraries available for general use in DynamoDB. Most of these
libraries are community contributed and are maintained by individual users. We
are going to start with a couple of interesting libraries made available by Amazon
itself. After that, we will also try to list down available community-contributed and
language-specific libraries.

Transaction library
The Transaction library has been built on top of the AWS SDK for Java and is only
available for Java-based applications. This client library has been provided in order
to reduce the development efforts one has to put in to support atomic operations. For
those who are not aware of what a transaction means, consider an example where you
need to perform two to three operations one after another and commit them only when
all the operations are successful. If any of the operations fails in between, the complete
process should be failed, reverting all the operations before the failed operation.

Useful Libraries and Tools

[166]

The Transaction library supports atomic writes and isolated reads. Let's try to
understand these one by one. It would not be an exaggeration if I were to say this
library brings DynamoDB to completion by supporting atomicity, consistency ,
isolation, and durability (ACID properties) with regards to multiple items.

Atomic writes
A good example of a transaction is online money transfer from one bank account
to another bank account. It consists of various stages that are as follows:

• Initiating money transfer from bank account A
• Deducting money from bank account A
• Getting interbank money transfer clearance
• Depositing money to bank account B
• Notifying both account holders about the transaction

Here, it is very important that the set of instructions gets completed. Suppose any
one operation fails, then all previous operations should be reverted to their original
state. The operations should fail or succeed as a unit. If this does not happen, then
the system would be in the wrong state.

In order to solve this problem, Amazon has given us the Transaction library,
which helps perform atomic operations. The library is quite easy to use. It needs
two DynamoDB tables with minimal read and writes provisioned capacity units
that keep track of the operations within a transaction. The first table stores the
transaction, while the second one stores the pretransaction image of items involved
in that transaction.

1. To begin with, you need to first create an Amazon DynamoDB client.
You also need to have two tables created in your DynamoDB console
to be used by the Transaction library.

2. The Transaction library is hosted on GitHub, so you can download
the maven project from https://github.com/awslabs/dynamodb-
transactions.

3. You can select the download zip option on the GitHub page, and it will
download the source code. Once you have the source code, please build
it using Maven by running the following command:
mvn clean install -Dgpg.skip=true

4. This will install the Transaction library in your .m2 repository, and now you
can start accessing its classes from Eclipse or any other IDE you are using.

https://github.com/awslabs/dynamodb-transactions
https://github.com/awslabs/dynamodb-transactions

Chapter 8

[167]

So let's start with creating the DynamoDB client as we do for any other operations
using the following command:

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

You can also set other details such as region, credentials, and so on. Now, it's
time to create the DynamoDB tables we are going to use to save the transaction
metadata. This can be done by calling verifyOrCreateTransactionTable and
verifyOrCreateTransactionImagesTable as follows:

 TransactionManager.verifyOrCreateTransactionTable(client,
"Transaction", 10, 5, 30);
 TransactionManager. verifyOrCreateTransactionImagesTable (client,
"TransactionImages", 10, 5, 30);

The parameters contain the DynamoDB client, the name of the DynamoDB transaction
table, read capacity units, write capacity units, and time to wait. This is a one-time
activity and need not be performed more than once.

Now let's see how to create a transaction and execute it. To begin with, initialize the
transaction manager, an implementation of which is provided by AWS, with names
of the transaction and transaction images tables, as follows:

TransactionManager txm = new TransactionManager(client, "Transaction",
"Transaction_Images");

Now create a new transaction from the transaction manager and perform the
operation you want to perform:

// Create new transaction from the transaction manager
Transaction tx = txm.newTransaction();

Suppose you need to deposit money from one account to another account, then you
need to make updateItem requests, and if both are successful, only then should
we commit the transaction. This can be done as shown in the following code. The
following code deducts 100 units from account number 2001:

// Deduct money from account
// Create Hash Map of item with attributes to be updated.
Map<String, AttributeValueUpdate> updateItemsForDebit = new
HashMap<String, AttributeValueUpdate>();

// Hash key of item to be updated
HashMap<String, AttributeValue> primaryKeyForDebit = new
HashMap<String, AttributeValue>();
primaryKeyForDebit.put("accountNumber", new AttributeValue().
withN("2001"));

Useful Libraries and Tools

[168]

// Reduce the balance by 100
updateItemsForDebit.put("balance",
new AttributeValueUpdate().withAction(AttributeAction.ADD)
 .withValue(new AttributeValue().withN("-100")));

UpdateItemRequest debitRequest = new UpdateItemRequest()
 .withTableName("Bank").withKey(primaryKey)
 .withReturnValues(ReturnValue.UPDATED_NEW)
 .withAttributeUpdates(updateItems);

// Execute the transaction
tx.updateItem(debitRequest);

Now we need to create a similar request that would add and increase the balance
by 100 to account 2002, as follows:

// Add 100 to the balance to account
// Create Hash Map of item with attributes to be updated.
Map<String, AttributeValueUpdate> updateItemsForCredit = new
HashMap<String, AttributeValueUpdate>();

// Hash key of item to be updated
HashMap<String, AttributeValue> primaryKeyForCredit = new
HashMap<String, AttributeValue>();

primaryKeyForCredit.put("accountNumber", new AttributeValue().
withN("2002"));

// Add 100 to the exiting balance
updateItemsForCredit.put("balance",
 new AttributeValueUpdate()
.withAction(AttributeAction.ADD)
 .withValue(new AttributeValue()
.withN("100")));

UpdateItemRequest creditRequest = new UpdateItemRequest()
 .withTableName("Bank").withKey(primaryKey1)
 .withReturnValues(ReturnValue.UPDATED_NEW)
 .withAttributeUpdates(updateItems1);

// Execute the transaction

tx.updateItem(creditRequest);

Chapter 8

[169]

At this time, we would have the values updated in the tables, but this is not yet
committed. So let's commit the transaction using the following code:

tx.commit();

Once this statement is executed, only then do you see that the values are committed.

Isolated reads
The Transaction library supports three different levels of isolation as follows:

• Fully isolated
• Committed
• Uncommitted

Fully isolated reads lock the items during the transaction just as we obtain locks
during writes. This means that whenever you execute a command to get an item with
the fully isolated option, the transaction manager puts a lock on that item and returns
the result to the client. Committed reads are like consistent reads. If the transaction
detects a lock on an item, then it reads the old value of the item. Uncommitted reads
are dirty reads. Executing a get-item request with the uncommitted option is the
cheapest one, but they are very dangerous to use as, if the transaction fails, the data
we read might get rolled back. So if your application use case is comfortable with
such behavior, only then should you go ahead with this type of reads.

The following is an example of reading an item using a committed read:

// Key for the item to be read
HashMap<String, AttributeValue> primaryKey = new HashMap<String,
AttributeValue>();
primaryKey.put("accountNumber", new AttributeValue().withN("2002"));

// Invoke get item request from transaction manager

Map<String, AttributeValue> item = txm.getItem(new GetItemRequest()
.withKey(primaryKey)
.withTableName("Bank"),
IsolationLevel.COMMITTED).getItem();

More details on this library are available at https://github.com/awslabs/
dynamodb-transactions/blob/master/DESIGN.md.

https://github.com/awslabs/dynamodb-transactions/blob/master/DESIGN.md
https://github.com/awslabs/dynamodb-transactions/blob/master/DESIGN.md

Useful Libraries and Tools

[170]

Geo library
Amazon has provided us with a library that can help you do geographic operations
and use it in your applications; it's called Geo library. The most common use of Geo
libraries happens for mobile applications. This library helps you build location-aware
mobile applications.

This library can help you store a Point of Interest (POI). For example, you have
decided to create an application that shows the fine-dining restaurants within a
certain range of your current location. This library would first let you store some
restaurants that are POIs for you. And then, you can query all restaurants within
a 500 metre range of your current geographical location.

Let's get into the details of this use case to understand this library better. To get
started, first you need to download the source of this library and do a maven build
on it. You can download the source from GitHub at https://github.com/awslabs/
dynamodb-geo.

You can either clone or directly download the Zip file from GitHub. Once you have
the source code, you can build the jar by running the following Maven command:

mvn clean install -Dgpg.skip=true

Now, let's see how to use this library. To begin with, as usual, you need to
create a DynamoDB client with credentials and other things. Once you have the
client ready, you need to create a table, say, geo-table that you will be using
to do all geography-related data storing. You need to give this table's name to
GeoDataManagerConfiguration to create GeoDataManager as shown in the
following code:

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

// Set geo table in configuration
GeoDataManagerConfiguration geoDataManagerConfiguration = new
GeoDataManagerConfiguration(
 client, "geo-table");

// Create Geo data manager
GeoDataManager geoDataManager = new GeoDataManager(geoDataManagerConf
iguration);

https://github.com/awslabs/dynamodb-geo
https://github.com/awslabs/dynamodb-geo

Chapter 8

[171]

Once you are ready with the geo data manager, you have to create geo points to
save in the table, which can be retrieved later. A geo point is a data model created
to store geographic points. It contains attributes such as latitude and longitude.
You need to also give one unique ID for this geo point as the range key attribute.
To store further information, you can keep on adding other attributes. Consider
the following example:

// Set geo table in configuration
GeoDataManagerConfiguration geoDataManagerConfiguration = new
GeoDataManagerConfiguration(
 client, "geo-table");
// Create Geo data manager
GeoDataManager geoDataManager = new GeoDataManager(geoDataManagerConf
iguration);

// Create geo point
GeoPoint geoPoint = new GeoPoint(18.518229,73.85705);

// Create unique range key attribute
AttributeValue rangekey = new AttributeValue().withS("POI_000001");

// Create attribute for storing restaurant name
AttributeValue resName = new AttributeValue().withS("Hotel TAJ");

// Create put point request for storing data in dynamodb table
PutPointRequest request = new PutPointRequest(geoPoint, rangekey);

// Add attribute name
request.getPutItemRequest().getItem().put("name", resName);

// Invoke put point method
geoDataManager.putPoint(request);

You can keep on adding such items to increase your database and support for
various cities. As shown in the previous example, you can also add additional
attributes (in this case name). The library encodes this geo point into the GeoJSON
format. You can read more about GeoJSON at http://geojson.org/.

Now that you have stored the restaurant data into DynamoDB, you can simply
start querying that data using methods provided by the library.

http://geojson.org/

Useful Libraries and Tools

[172]

Query rectangle
The Geo library allows us to find all geo points falling between a pair of geo points.
This searches all the items which are part of the rectangle when drawn using the
given geo points. By giving these kinds of input, you can run the query rectangle,
which would give you back all items falling in that rectangle. The following is the
syntax for this operation:

// Min geo point
GeoPoint minGeoPoint = new GeoPoint(18.514973, 73.850698);

// Max geo point
GeoPoint maxGeoPoint = new GeoPoint(18.522624, 73.864088);

// Create query rectangle request
QueryRectangleRequest rectangleRequest = new QueryRectangleRequest(
 minGeoPoint, maxGeoPoint);

// Invoke query rectangle method
QueryRectangleResult rectangleResult = geoDataManager
 .queryRectangle(rectangleRequest);

// Get items from the result
for (Map<String, AttributeValue> item : rectangleResult.getItem()) {
 System.out.println("Item :" + item);
}

This would result in listing all items inside that rectangle.

Query radius
Similar to what we saw in the Query rectangle section. Amazon gives us an API that
can list all items present in the radius of a certain circle drawn from a given geo point.
Here, the inputs to the API are the center geo point and the radius of the circle in which
you need to find items. The following is how the syntax of the query radius looks:

// center geo point
GeoPoint centerGeoPoint = new GeoPoint(18.514973, 73.850698);

// create query radius request
QueryRadiusRequest radiusRequest = new QueryRadiusRequest(
 centerGeoPoint, 200);

Chapter 8

[173]

// invoke query result method
QueryRadiusResult radiusResult = geoDataManager
 .queryRadius(radiusRequest);

// Get items from the result
for (Map<String, AttributeValue> item : radiusResult.getItem()) {
 System.out.println("Item :" + item);
}

This would print all geo points that are in the 200-metre radius of the given center
point. Internally, when we insert a geo point into DynamoDB, the geo hash gets
calculated, and this geo hash is used to uniquely and exactly identify the location
of geo points on planet Earth. This library also stores the geo hash as a separate
attribute of an item. Hash stores the proximity of a nearby point, and for efficient
retrieval it is stored as a local secondary index on items.

You can find examples of how to use this library on GitHub at
https://github.com/awslabs/dynamodb-geo/tree/master/samples.

Language-specific libraries
There are various community-contributed libraries available for general use.
In this section, I am going to list down all available libraries at present and
some information about them.

Java
There are various libraries available in Java. They are explained in the
following sections.

Jsoda
Jsoda provides simple Java object wrapping around the AWS API. You can simply
create Java objects and annotate them correctly, and they are ready to use. This
library provides similar interfaces for both SimpleDB and DynamoDB. Here POJOs
are stored as records in DynamoDB. If you declare the attributes with primitive data
types correctly, then the library automatically translates it into DynamoDB data
types. This library also makes querying simple with features such as easy pagination
options, caching, and so on.

You can get more information about the library at https://github.com/
williamw520/jsoda.

https://github.com/awslabs/dynamodb-geo/tree/master/samples
https://github.com/williamw520/jsoda
https://github.com/williamw520/jsoda

Useful Libraries and Tools

[174]

Phoebe
This is another library that is a wrapper around the AWS API. This library simplifies
the use of DynamoDB APIs. You can create a Phoebe object providing the user
credentials and get started with the implementation. It also gives various data stores
to be selected by users depending on their needs. A data store is simply a strategy
of how you want to store your records and what kind of consistency you would like
to choose.

This project is in its Alpha release, so use it with care. Currently, the project is hosted
as a Google project at https://code.google.com/p/phoebe-dynamodb/.

Jcabi
This is yet another library that sits on top of AWS SDK APIs. It gives users a simplified
interface to do CRUD operations on DynamoDB tables and items. To start using this
library, you need to add a Maven dependency in pom.xml as follows:

<dependency>
 <groupId>com.jcabi</groupId>
 <artifactId>jcabi-dynamo</artifactId>
 <version>0.16</version>
</dependency>

This library is hosted on an independent website, where you can find more
information about its usage at http://dynamo.jcabi.com/. We have already seen
DynamoDB Local in Chapter 1, Getting Started, where we saw how to use DynamoDB
Local for development purposes. Using this local version of DynamoDB, Jcabi has
developed a Maven plugin that automatically starts DynamoDB Local to run unit
tests. This is very helpful, as you can save money by not using actual DynamoDB
and also continuously monitoring the tests suite in every build.

This project is hosted on GitHub at https://github.com/jcabi/jcabi-dynamodb-
maven-plugin.

.NET
For those who are comfortable with the .NET framework, AWS has provided a
complete SDK where you can perform DynamoDB operations in C#. In Chapter
2, Data Models, we have already seen some code snippets on how to use the .NET
framework for DynamoDB operations.

You can learn more about it at http://aws.amazon.com/sdkfornet/.

https://code.google.com/p/phoebe-dynamodb/
http://dynamo.jcabi.com/
https://github.com/jcabi/jcabi-dynamodb-maven-plugin
https://github.com/jcabi/jcabi-dynamodb-maven-plugin
http://aws.amazon.com/sdkfornet/

Chapter 8

[175]

Node.js
These days, along with primitive coding languages, Node.js is becoming popular
in the coding community. So, if you are one of the Node.js users, then there are
various libraries available that you can use directly to get started. Basically, these
libraries give a DynamoDB client, which you can use to invoke various DynamoDB
operations such as CRUDs.

Library Name Description Reference Link

dynode Node.js client for
DynamoDB

https://github.com/Wantworthy/
dynode

awssum DynamoDB operation
supports

https://github.com/awssum/awssum-
amazon-dynamodb/

dyndb Relatively simple and
smaller DynamoDB module

https://github.com/serg-io/dyndb

dynamite This is a promise-based
DynamoDB module
implementation

https://github.com/Medium/
dynamite

dynasaur This is a Node.js-based
ORM for DynamoDB

http://tglines.github.io/
dynasaur/

Dynamo-client A low-level DynamoDB
client to access DynamoDB
tables and items

https://npmjs.org/package/dynamo-
client

Dynamo-table Provides simple mapping
between JS objects and
DynamoDB tables

https://www.npmjs.org/package/
dynamo-table

Dynasty Provides simple and clean
DynamoDB client.

http://dynastyjs.com/

Perl
For developers who code in Perl, there is a good number of libraries available,
and some of them are as follows.

https://github.com/Wantworthy/dynode
https://github.com/Wantworthy/dynode
https://github.com/awssum/awssum-amazon-dynamodb/
https://github.com/awssum/awssum-amazon-dynamodb/
https://github.com/serg-io/dyndb
https://github.com/Medium/dynamite
https://github.com/Medium/dynamite
http://tglines.github.io/dynasaur/
http://tglines.github.io/dynasaur/
https://npmjs.org/package/dynamo-client
https://npmjs.org/package/dynamo-client
https://www.npmjs.org/package/dynamo-table
https://www.npmjs.org/package/dynamo-table
http://dynastyjs.com/

Useful Libraries and Tools

[176]

Net::Amazon::DynamoDB
The community has provided a DynamoDB interface using Perl. This a very simple
library that provides access to DynamoDB tables/items using Perl. This does not
support ORM-like modeling for DynamoDB.

You can find more information about it at https://github.com/ukautz/Net-
Amazon-DynamoDB

Ruby
The following are some of the ready-to-use DynamoDB gems developed for
Ruby developers.

Fog
Fog is a Ruby gem provided to interact with DynamoDB using Ruby. You can
find more information about the library at http://fog.io/.

mince_dynamodb
This library provides ORM-like support and helps users map their objects
to DynamoDB records. You can download the gem for this library at
http://rubygems.org/gems/mince_dynamo_db.

dynamoid
This is again a Ruby gem that provides support for ORM-like mapping of objects
with DynamoDB tables. It also supports easy querying and association support.
The gem is available at http://rubygems.org/gems/dynamoid.

Others
There are libraries available in other languages also, which we didn't discuss earlier.
The following is a table that gives reference to most such libraries:

Library Name Language Reference link

CFDynamo Coldfusion http://www.craigkaminsky.
me/2012/01/cfdynamo-cfc-wrapper-
for-amazon.html

Django-
dynamodb-
sessions

Django https://github.com/gtaylor/django-
dynamodb-sessions

https://github.com/ukautz/Net-Amazon-DynamoDB
https://github.com/ukautz/Net-Amazon-DynamoDB
http://fog.io/
http://rubygems.org/gems/mince_dynamo_db
http://rubygems.org/gems/dynamoid
http://www.craigkaminsky.me/2012/01/cfdynamo-cfc-wrapper-for-amazon.html
http://www.craigkaminsky.me/2012/01/cfdynamo-cfc-wrapper-for-amazon.html
http://www.craigkaminsky.me/2012/01/cfdynamo-cfc-wrapper-for-amazon.html
https://github.com/gtaylor/django-dynamodb-sessions
https://github.com/gtaylor/django-dynamodb-sessions

Chapter 8

[177]

Library Name Language Reference link

Dinerl Erlang https://github.com/SemanticSugar/
dinerl

Ddb Erlang https://github.com/wagerlabs/ddb

Erlcloud Erlang https://github.com/gleber/
erlcloud/

Goamz Go https://github.com/crowdmob/goamz

Groovy/Grails DynamoDB GORM http://grails.org/plugin/dynamodb

Tools
Like libraries, there are various tools available for general use. Some of the tools help
to scale the DynamoDB database automatically, while some others help you do local
testing of your code.

The following is a list of tools and their specifications.

Tools for testing
Considering the fact that each and every call to DynamoDB costs money, sometimes
it gets difficult to use DynamoDB for the purposes of testing and development.

DynamoDB Local
We have already seen what DynamoDB local is in Chapter 1, Getting Started. Just to
revisit, DynamoDB Local is a lightweight client-side database that roughly mimics
the actual DynamoDB implementation. To enable DynamoDB Local, you need to
download the JAR and run it using the next command. You can download the JAR
at http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_
local_latest. To run DynamoDB, you need to run the following command:

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar

There are various options available that you can explore. The information is available
at http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Tools.DynamoDBLocal.html. The only prerequisite for this tool is that you should
have Java/JDK installed on your machine.

https://github.com/SemanticSugar/dinerl
https://github.com/SemanticSugar/dinerl
https://github.com/wagerlabs/ddb
https://github.com/gleber/erlcloud/
https://github.com/gleber/erlcloud/
https://github.com/crowdmob/goamz
http://grails.org/plugin/dynamodb
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://dynamodb-local.s3-website-us-west-2.amazonaws.com/dynamodb_local_latest
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.DynamoDBLocal.html

Useful Libraries and Tools

[178]

Fake DynamoDB
Similar to what we have in DynamoDB Local, this Fake DynamoDB implementation
emulates the actual DynamoDB functionality. Built in Ruby, it can be accessed and
used by following some simple steps. To start the Fake DynamoDB service, you need
to have Ruby 1.9+ installed. If you have it already, you can simply install the gem by
running the following command:

gem install fake_dynamo --version 0.2.5

Once the gem is installed, you can start the service by running the following
command:

fake_dynamo --port 4567

You can find some information about this tool at https://github.com/
ananthakumaran/fake_dynamo.

The following tools are similar to the previously mentioned tools:

Tool Reference Link

Alternator https://github.com/mboudreau/Alternator/

Ddbmock https://pypi.python.org/pypi/ddbmock

Client-side AWS https://github.com/perrystreetsoftware/
clientside_aws

Injecting failures
When working with services hosted by someone else, we have to rely on the service
provider for everything. I am sure most of the users would surely be concerned
about these things while using Amazon services. While designing any system,
we always think about the failure scenarios as well, and we always consider such
a case in our coding to avoid unexpected behavior of the system.

Today, what would happen to your application if DynamoDB starts giving delayed
response or if it starts giving provisioned throughput exceeded exceptions and
you are not prepared to handle a sudden burst? It's difficult to imagine, isn't it?
So, to answer all such uncertainties, AWS has provided us with a framework called
Request Handlers that allow you to inject latencies in response. It also allows you to
test your code in the case of a provisioned throughput burst.

https://github.com/ananthakumaran/fake_dynamo
https://github.com/ananthakumaran/fake_dynamo
https://github.com/mboudreau/Alternator/
https://pypi.python.org/pypi/ddbmock
https://github.com/perrystreetsoftware/clientside_aws
https://github.com/perrystreetsoftware/clientside_aws

Chapter 8

[179]

AWS SDK for Java contains a Request Handler, which can help you test your
application for failures. You can simply inject the latencies, or you can throw a
provisioned throughput and write code to see how your application can handle
them if it happens actually.

You can find some more information about the usage and some sample
implementation at the following links:

• http://java.awsblog.com/post/Tx3I6AQJJXRW7EO/Injecting-
Failures-and-Latency-using-the-AWS-SDK-for-Java

• https://github.com/awslabs/aws-dynamodb-examples/tree/master/
inject-errors-latencies

Tools for auto-scaling
We know that while creating a table in DynamoDB, we have to give information
about the read and write capacity units. We also know that we can increase or
decrease the value of read and write capacity units anytime depending on our need,
but what if the demand bursts suddenly? And before you log in to the DynamoDB
console and increase the provisioned throughput, we could lose some valuable
requests coming from various clients. And losing any such data may cost a lot for
any enterprise. So how do we solve this problem? Is there any tool available that
would automatically increase the demand before the burst and reduce the demand
whenever there are not many requests coming in? The answer is, yes! Now, let's
discuss one such tool.

Dynamic DynamoDB
We have a community-contributed tool that automatically scales the DynamoDB
provisioned throughput, and the name of that tool is Dynamic DynamoDB. This
tool includes the following features:

• This tool automatically scales the tables up and down.
• There is a provision to restrict auto-scaling for a certain time slot.
• It's easy to use and integrate with your application.
• There is a provision to set maximum and minimum read and write capacity.
• This tool provides the functionality of monitoring multiple DynamoDB tables

at a time.

http://java.awsblog.com/post/Tx3I6AQJJXRW7EO/Injecting-Failures-and-Latency-using-the-AWS-SDK-for-Java
http://java.awsblog.com/post/Tx3I6AQJJXRW7EO/Injecting-Failures-and-Latency-using-the-AWS-SDK-for-Java
https://github.com/awslabs/aws-dynamodb-examples/tree/master/inject-errors-latencies
https://github.com/awslabs/aws-dynamodb-examples/tree/master/inject-errors-latencies

Useful Libraries and Tools

[180]

• This tool gives you notifications on scale up or scale down of provisioned
throughput.

• This tool checks if the application is up and running before doing any scale
up/down activities. This can be helpful if your application is facing some
other issues, because of which the requests are low.

There are various ways of using Dynamic DynamoDB. One of them is to
use a CloudFormation template that launches a t1.micro EC2 instance with
preconfigured Dynamic DynamoDB. Another way is to install the tool by
cloning it from Git repo.

The CloudFormation template is available at http://raw.github.com/sebdah/
dynamic-dynamodb/master/cloudformation-templates/dynamic-dynamodb.json.

To install Dynamic DynamoDB manually you can refer to http://dynamic-
dynamodb.readthedocs.org/en/latest/installation.html.

Dynamic DynamoDB is a service that you can start, stop, and restart easily. So,
whenever you need this service, you can use it just by starting with a command.
When we configure this tool, we need to provide user credentials. This user needs
full access to the DynamoDB tables so that modifications can be done easily. You
can also create a dedicated user with the following accesses:

• cloudwatch:GetMetricStatistics
• dynamodb:DescribeTable
• dynamodb:ListTables
• dynamodb:UpdateTable
• sns:Publish (to send in notifications)

To know more about the tool, please visit the http://dynamic-dynamodb.
readthedocs.org/en/latest/index.html URL.

Tools for backup and archival
Archiving data from any database is always one of the biggest needs. We have
already seen how to archive data on AWS S3 using EMR, but there is one simple
community-contributed tool, written in Node.js that helps archive data on S3. This
tool saves DynamoDB data in JSON format. It also gives you the functionality to
restore the archived data to DynamoDB. Let's discuss this tool in detail.

http://raw.github.com/sebdah/dynamic-dynamodb/master/cloudformation-templates/dynamic-dynamodb.json
http://raw.github.com/sebdah/dynamic-dynamodb/master/cloudformation-templates/dynamic-dynamodb.json
http://dynamic-dynamodb.readthedocs.org/en/latest/installation.html
http://dynamic-dynamodb.readthedocs.org/en/latest/installation.html
http://dynamic-dynamodb.readthedocs.org/en/latest/index.html
http://dynamic-dynamodb.readthedocs.org/en/latest/index.html

Chapter 8

[181]

DynamoDB Table Archiver
DynamoDB Table Archiver consists of two simple Node.js scripts that fetch the data
from source tables and save it on S3. To use these scripts, you need to have Node.
js installed. The source code of the tool is available on GitHub at https://github.
com/yegor256/dynamo-archive.

Summary
In this chapter, we started with exploring AWS-provided Java libraries, that is, the
Transaction library and the Geo library. The Transaction library enabled multi-item
atomic operations, where we can simply use the API and perform the operations
without any doubts about inconsistent states. Geo library enabled us to easily save
geographical points and query them with simple APIs, such as Query radius and
Query rectangle.

We also listed down well-known language-specific libraries to enable developers to
manipulate DynamoDB data with a language of their own choice. Similarly, we also
explored some tools that would help us in testing DynamoDB locally, auto-scaling
the tables, and archiving data on AWS S3.

In our next chapter, we are going to see how DynamoDB can be used to back mobile
applications and how it will help your mobile applications to scale easily.

https://github.com/yegor256/dynamo-archive
https://github.com/yegor256/dynamo-archive

Developing Mobile Apps
Using DynamoDB

Today, one of the coolest things every developer wants to do is to create their own
mobile application, launch it for public access, have it go viral, and then have some
big technology firm buy it for billions of dollars, isn't it? Of course! Why not? Today
we see that mobile devices are more popular than regular desktops. It would not
be an exaggeration if I say, in a decade or so, most of the nonmobile devices would
vanish away.

Keeping this in mind, mobile applications are very important in all perspectives.
In this chapter, we will see:

• Why you should choose DynamoDB as a backend to your mobile application
• What options to implement authentication and authorization it gives
• How you should perform various operations using the AWS SDK for

Android and iOS

Many of you might have already developed an Android or iOS application, for
which you would have been using some web server where your application and
database would be accessed from. Having a scalable, easily accessible database is
one of the biggest needs. There are many problems and challenges in going ahead
with traditional web hosting services, which are mentioned as follows:

• Purchasing a host/device from the service providers
• Selecting and installing a database from a variety of databases
• Maintaining the database

Developing Mobile Apps Using DynamoDB

[184]

• If the database is not scalable, then migration of the application to some
other database

• Initial investment is required to purchase the host
• As the pay-per model is not in use, you need to pay for the complete service

duration (minimum 1 year for most of the web hosting service providers)
even if the application does not do well in the market

So what could be done in this case? Is there any better way to store mobile application
data? The answer is yes. Amazon provides SDKs for iOS and Android operating
systems where you can simply use the given APIs to manipulate the data. Here are
some advantages of using DynamoDB as your database for your mobile application:

• It is easy to use and configure.
• It provides support for Web Identity Federation (can use user identity from

websites such as Facebook, Google, and Amazon).
• It has a scalable architecture; you can set the read and write capacity units

as per the need. If the application goes viral, you can simply increase the
capacity units or reduce the capacity units when the load is low.

• It is a pay-per-use model and, hence, cost effective.
• It is easy to integrate with other AWS devices if required.
• It has a faster response time compared to other RDBMS databases, which is

very much required for a mobile application.
• There is no need to implement a separate proxy server to generate

authentication tokens.

Authentication and Authorization
I am sure that by now, you would have started thinking about developing an app
using DynamoDB as the backend database. But wait! There is one small problem
with it, that is, mobile application codes always need to be deployed on each app
user's mobile. This means that if we need to access AWS resources, we would also
need to send in the security credentials with each app, which is not a good thing
to do from the security point of view. Encrypting the credentials would help in
reducing the risk, but it would not completely make the app secure as by putting
in some effort, hackers would also get hold of the encrypted credentials.

Chapter 9

[185]

Also, considering that eventually the app would have a huge number of users,
we cannot create separate user accounts in IAM. So, even this would not help us.
So what can be done in this case? For that we have two options:

• Use web identity federation
• Create your own custom authentication

Let's try to understand the process in detail.

Using Web Identity Federation
We have already seen what Web Identity Federation is in Chapter 5, Advanced Topics.
Just to revise, WIF is a utility that allows end users to access an AWS resource using
accounts such as Amazon, Facebook, and Google. Here, we use Secure Token
Service (STS) from Amazon to generate temporary user credentials, and by using
those credentials, we access the AWS resource (for example, a table in DynamoDB).
The following steps will help you to implement WIF for your application:

1. Register your application with identity providers such as Amazon, Google,
and Facebook. These identity providers have given elaborate description on
how to register your app. You can follow the steps to validate the identity of
the user.

2. Once you have got the identity token from the providers, you can call the
AssumeRoleWithWebIdentity API, which is a part of AWS STS, to get the
temporary credentials. To call AsssumeRoleWithWebIdentity, you don't
need any credentials. Once you call this API with the required details, you
would get temporary credentials, that is, access key and secret key. You can
read more about this API at http://docs.aws.amazon.com/STS/latest/
APIReference/API_AssumeRoleWithWebIdentity.html.

3. Using these credentials, you can call AWS APIs (for example, an API to
put data in a DynamoDB table API to read something from the DynamoDB
table). These credentials would be valid for only a given time. This time
could be from 15 minutes to 1 hour. Depending on your need, you can set
the validity duration.

4. Once the credentials get timed out, you need to again pass on the identity
token to STS and get new, temporary credentials.

http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
http://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Developing Mobile Apps Using DynamoDB

[186]

This is explained in the following diagram:

Amazon DynamoDB

AWS STS

AWS Cloud

IAM Policy

1. Amazon
2. Facebook
3. Google

3. Call
AssumeRoleWithWe
bldentity API.

1. Login with
your identity
provider creds

Mobile Client

2. Get
identity
Token

AWS

5. Call
DynamoDB
API with
temporary
creds

4. Get temporary AWS Creds

Identity Providers

To understand WIF in a better way, you can check out the following link where you
can actually see how WIF works live:

https://web-identity-federation-playground.s3.amazonaws.com/index.html

Creating your own custom authentication
Some people might not want to integrate their application with other companies,
such as Facebook, Google, or Amazon, as it creates a dependency on them, and if
some day, any one of these companies stops giving identity tokens, then as an app
developer or owner, you would be in big trouble. So, is there any way other than
shipping actual AWS credentials with your app code? The answer is yes!

https://web-identity-federation-playground.s3.amazonaws.com/index.html

Chapter 9

[187]

In this case, you need to implement your own identity store, and you need to give the
identity token. You can use AWS EC2 or your own server to deploy your identity store
and direct all your requests to this store to get the secure token. And the rest remains
the same. I mean that once you have an identity token from your own provider, you
can then call STS to get temporary credentials, and once you have the credentials, you
can access the DynamoDB API to perform the operation. This is demonstrated in the
following diagram:

Amazon DynamoDB

AWS STS

AWS Cloud

IAM Policy

Custom
Identity
Provider

3. Call
AssumeRoleWithWe
bldentity API.

1. Login with
your identity
provider creds

Mobile Client

2. Get
identity
Token

AWS

5. Call
DynamoDB
API with
temporary
creds

4. Get temporary AWS Creds

Performing operations using mobile SDKs
Amazon has given an SDK to leading mobile platforms, such as iOS and Android.
We can make use of it to perform operations in a mobile application. With
these simplified SDK APIs, it is very easy to do normal database operations on
DynamoDB. You just need to create a design database schema, and invoke various
requests to add/delete and update database entries.

Developing Mobile Apps Using DynamoDB

[188]

With the ease of integration with other AWS services, using DynamoDB for your
mobile application gives you a great advantage. You can download the SDKs from
the following URLs:

• For Android: http://sdk-for-android.amazonwebservices.com/
latest/aws-android-sdk.zip

• For iOS: http://sdk-for-ios.amazonwebservices.com/latest/aws-
ios-sdk.zip

To get started, you can download sample Android applications from GitHub
from the following URL:

https://github.com/awslabs/aws-sdk-android-samples

Now, let's get started with understanding operations for the iOS and
Android platforms.

Writing data to DynamoDB
We have already seen how to create, delete, and update using various APIs in
Chapter 2, Data Models. In this section, we will go through the APIs available for
the iOS and Android SDKs. To understand this in a better way, let's assume that
you want to develop an app where a user can post adds to sell, rent, or purchase
anything. For that, we would need a table called product table, which would look
like this:

productId recordId Data
123 productName BMW Z
123 cost $20000
456 productName Hill range bicycle
456 cost $120
789 productName Baseball bat
789 Cost $50

Here, we would like to have the hash key as productId and the range key
as recordId.

http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-android.amazonwebservices.com/latest/aws-android-sdk.zip
http://sdk-for-ios.amazonwebservices.com/latest/aws-ios-sdk.zip
http://sdk-for-ios.amazonwebservices.com/latest/aws-ios-sdk.zip
https://github.com/awslabs/aws-sdk-android-samples

Chapter 9

[189]

Android
Now, let's see how to write code in Android to add items in the Product table:

// Hash Map for storing attributes
Map<String,AttributeValue> product = new HashMap<String,
AttributeValue>();

// Adding hash key and value
item.put("productId", new AttributeValue().withS("123"));

// Adding range key and value
item.put("recordId", new AttributeValue().withS("productName"));

// Adding actual data for corresponding key
item.put("data", new AttributeValue().withSS("BMW Z"));

// Invoke put item request with proper table name
PutItemRequest putItemRequest = new PutItemRequest("ProductTable",
 item);

// process the request
PutItemResult putItemResult =
 dynamoClient.putItem(putItemRequest);

We have already seen multiple times how to create a DynamoDB client and configure
it with your own AWS credentials.

iOS
To perform the same operation on an iOS platform, you need to write something
like this:

// create put item request
DynamoDBPutItemRequest *putItemRequest = [DynamoDBPutItemRequest new];

// Set table name
request.tableName = @"ProductTable";

// create DynamoDBAttributeValue for hash key

Developing Mobile Apps Using DynamoDB

[190]

DynamoDBAttributeValue *value = [[DynamoDBAttributeValue alloc]
 initWithS:@"123"];
[request.item setValue:value forKey:@"productId"];

//create and set range key
value = [[DynamoDBAttributeValue alloc] initWithS:@"ProductName"];
[request.item setValue:value forKey:@"recordId"];

// Add actual data corresponding to keys

value = [DynamoDBAttributeValue new];
[value addS:@"BMW Z"];
[request.item setValue:value forKey:@"data"];

// process the request
DynamoDBPutItemResponse *response = [self.dynamoClient
 putItem:request];

Getting consumed capacity information
There are options available to get information about the consumed capacity units
for each DynamoDB call. These options would help you monitor the throughput
you are consuming for each request. By getting this information, we can see which
operation is consuming more read and write units, and then we can tune it to use
minimal resources.

We can also use this information to measure the throughput for a certain number
of requests. This would help us manage our resources in a better way. Let's go
through the syntax to get the read and write capacity units.

Android
Here is a code snippet to get the consumed capacity units for DynamoDB calls:

// Set the type of capacity units you need to get info about. Here we
want both //read and write so setting it to be TOTAL

putItemRequest.setReturnConsumedCapacity(ReturnConsumedCapacity.
TOTAL);

// Invoke the request
PuttItemResult result = ddbClient.putItem(putItemRequest);

// Log our consumed capacity
Log.i(LOG_TAG, "Consumed write capacity for putItem: = " +
 result.getConsumedCapacity().getCapacityUnits().intValue());

Chapter 9

[191]

iOS
Here is a code snippet to get the consumed capacity units for DynamoDB calls:

// Set the type of capacity units you need to get info about. Here we
want both //read and write so setting it to be TOTAL
putItemRequest.returnConsumedCapacity = @"TOTAL";

// Invoke the request
DynamoDBPutItemResponse *putItemResponse = [self.ddb
 putItem:putItemRequest];

// Log our consumed capacity
NSLog(@"Consumed write capacity for putItem: %d",
 [putItemResponse.consumedCapacity.capacityUnits integerValue]);

Conditional writes
We know that the putItem request first searches for the records with given keys;
if it finds any matching record, then it replaces the record with a new value. If it
does not find any matching record, it simply inserts it as a new record. This can
be dangerous and may lead to unwanted record update. So to avoid this, you can
perform conditional writes on items, in which you pass on a flag that first checks
whether the value is already present; if yes, then do not add anything, and if not
present, then only add a new value.

Android
Here is how we use conditional writes using the AWS SDK for Android:

// Create map for expected attribute value
Map<String,ExpectedAttributeValue> expectedAttri = new HashMap<String,
ExpectedAttributeValue>();

//set attribute whose value you need to check
expectedAttri.put("recordId", new ExpectedAttributeValue().
withExists(false));

// set the same in request
putItemRequest.setExpected(expectedAttri);

Developing Mobile Apps Using DynamoDB

[192]

We can also use ExpectedAttributeValue to implement a counter. An atomic counter
means that you want the value to be updated correctly and to always reflect the exact
value. For example, in our Product table, if we have an attribute, say, number of items
in stock, this attribute always needs to be in the exact state, so we can create an atomic
counter using ExpectedAttributeValue as shown in the following code:

// Create a request which updates the no. of items in stock
Map<String,AttributeValue> item = new HashMap<String,
AttributeValue>();
item.put("productId", new AttributeValue().withN("777"));
item.put("recordId", new
 AttributeValue().withS("NoOfItemsInStock"));
item.put("data", new AttributeValue().withS("3"));

PutItemRequest putItemRequest = new PutItemRequest("ProductTable",
item);

// Here we want DynamoDB to update the record only when its value is 2
AttributeValue itemCounter = new AttributeValue().withS("2");

Map<String,ExpectedAttributeValue> expected = new
 HashMap<String,ExpectedAttributeValue>();
expected.put("data", new
 ExpectedAttributeValue().withValue(itemCounter));

putItemRequest.setExpected(expected);

//Invoke the request
PutItemResult putItemResult = ddbClient.putItem(putItemRequest);

If the value present in a DynamoDB table does not match with the expected value,
it throws ConditionalCheckFailedException; it is always a good practice to catch
an exception, try to fetch the current value in DynamoDB, and then retry the request
as shown in the following code:

try {

 // Invoke request

 PutItemResult putItemResult = ddbClient.putItem(putItemRequest);
}

catch (ConditionalCheckFailedException error) {

Chapter 9

[193]

 // Conditional write failed because of unexpected value in
DynamoDB
 // Fetch the current value and retry the request

}

iOS
The syntax for conditional writes in iOS is as follows:

The next piece of code checks whether any item with
given details exists; if not, then only the code commits
the put request.

DynamoDBExpectedAttributeValue *checkExists =
 [DynamoDBExpectedAttributeValue new];
checkExists.exists = NO;
[putItemRequest.expected setValue:checkExists forKey:@"recordId"];

The next piece of code checks if the value of data is two,
only then does it update it to a new value three.

// Create a request which updates the no. of items in stock
DynamoDBPutItemRequest *putItemRequest = [DynamoDBPutItemRequest
 new];
request.tableName = @"ProductTable";

DynamoDBAttributeValue *value = [[DynamoDBAttributeValue alloc]
 initWithN:@"777"]; [putItemRequest.item setValue:value
 forKey:@"productId"];
value = [[DynamoDBAttributeValue alloc]
 initWithS:@"NoOfItemsInStock"];

[putItemRequest.item setValue:value forKey:@"recordId"];
value = [[DynamoDBAttributeValue alloc] initWithS:@"3"];

[putItemRequest.item setValue:value forKey:@"data"];

// Here we want DynamoDB to update the record only when its value is 2

value = [[DynamoDBAttributeValue alloc] initWithS:@"2"];

Developing Mobile Apps Using DynamoDB

[194]

DynamoDBExpectedAttributeValue *attr =
 [[DynamoDBExpectedAttributeValue alloc] initWithValue:value];

// Set the expected value in put item request
[putItemRequest.expected setValue:checkExists forKey:@"data"];

// invoke the request
DynamoDBPutItemResponse *putItemResponse = [self.ddb
putItem:putItemRequest];

If the client finds an unexpected value for the given attribute, then it fails the request
with an error. Hence, it is recommended to check for an erroneous code so that we
can handle the failure by retrying the request as shown in the following code:

// Invoke request
DynamoDBPutItemResponse *putItemResponse = [self.ddb
 putItem:putItemRequest];

if(nil != putItemReponse.error) {
 NSString *errorCode = [response.error.userInfo
 objectForKey:@"errorCode"];

 if ([errorCode isEqualToString:@"ConditionalCheckFailedExcepti
on"]) {
 // Conditional write failed because of unexpected value in DynamoDB
 // Fetch the current value and retry the request
 ...
 }
 else {
 // some other error occurred
 ...
 }

Earlier, AWS SDKs used to throw exceptions if any issue came up
with the invoked request. This forced developers to surround any
code written for AWS with try/catch blocks, which was a nasty
thing. So, in order to avoid this, AWS started providing error codes
with NSError or NSException. So, with this approach, if any
error occurs, the AWS SDK sets it in an error property. Hence, it is
recommended to check an error property to nil before continuing
with the next code. If required, we can also enable the exception back.

You can read more about exception handling in iOS at http://mobile.awsblog.
com/post/Tx2PZV371MJJHUG/How-Not-to-Throw-Exceptions-with-the-AWS-
SDK-for-iOS

http://mobile.awsblog.com/post/Tx2PZV371MJJHUG/How-Not-to-Throw-Exceptions-with-the-AWS-SDK-for-iOS
http://mobile.awsblog.com/post/Tx2PZV371MJJHUG/How-Not-to-Throw-Exceptions-with-the-AWS-SDK-for-iOS
http://mobile.awsblog.com/post/Tx2PZV371MJJHUG/How-Not-to-Throw-Exceptions-with-the-AWS-SDK-for-iOS

Chapter 9

[195]

Deleting an item
To delete an item, we need to provide the key details for the given item in the delete
item request and invoke the same request as follows.

Android
Here is a code sample that explains how to delete an item from a DynamoDB table:

// create a map, specifying the key attributes of the item to be
deleted
Map<String,AttributeValue> key = new HashMap<String,AttributeValue>();

key.put("productId", new AttributeValue().withN("123"));

key.put("recordId", new AttributeValue().withS("productName"));

// create delete item request

DeleteItemRequest deleteItemRequest = new DeleteItemRequest("ProductT
able", key);

// invoke the request

DeleteItemResult deleteItemResponse =
 ddbClient.deleteItem(deleteItemRequest);

iOS
Here is a syntax to delete an item from a DynamoDB table using an iOS SDK:

// create delete item request

DynamoDBDeleteItemRequest *deleteItemRequest =
 [DynamoDBDeleteItemRequest new];
request.tableName = @"ProductTable";

// Specifying the key attributes of the item to be deleted

DynamoDBAttributeValue *value = [[DynamoDBAttributeValue alloc]
 initWithN:@"123"];

[deleteItemRequest.key setValue:value forKey:@"productId"];
value = [[DynamoDBAttributeValue alloc] initWithS:@"productName"];

Developing Mobile Apps Using DynamoDB

[196]

[deleteItemRequest.key setValue:value forKey:@"recordId"];

// Invoke the request
DynamoDBDeleteItemResponse *deleteItemResponse = [self.ddb
 deleteItem:deleteItemRequest];

Fetching data
Earlier, we saw how to put data into DynamoDB tables. Now, let's see how to fetch
the stored data back using mobile SDK APIs.

Android
Here is the syntax to fetch the data from a given DynamoDB table:

//specify the key attributes for the record to be fetched
Map<String, AttributeValue> key = new HashMap<String,
AttributeValue>();
key.put("productId", 123);
key.put("recordId", "productName");

// Create request
GetItemRequest getItemRequest = new GetItemRequest("ProductTable",k
ey);

// Invoke request
GetItemResult getItemResult = ddbClient.getItem(getItemRequest);

Once you have the result, you can fetch the required attribute from an item.

iOS
Here is the syntax to fetch the data from a given DynamoDB table:

// Create request and specify the table name
DynamoDBGetItemRequest *getItemRequest = [DynamoDBGetItemRequest new];
getItemRequest.tableName = @"ProductTable";

// Specify the keys for the item to be fetched.
DynamoDBAttributeValue *productId = [[DynamoDBAttributeValue alloc]
initWithN:@"123"];

DynamoDBAttributeValue *recordId = [[DynamoDBAttributeValue alloc]
initWithS:@"productName"];

Chapter 9

[197]

getItemRequest.key = [NSMutableDictionary dictionaryWithObjectsAndKeys
:productId, @"productId", recordId, @"recordId", nil];

DynamoDBGetItemResponse *getItemResponse = [self.ddb
getItem:getItemRequest];

// the value of the attribute you wish to fetch from the results
DynamoDBAttributeValue *productNameValue = [getItemResponse.item
valueForKey:@"data"];

Querying data
For the product table use case, sometimes there might be a need to get all details for
the given product ID; in that case you use query API to fetch the details. All other
limitations of query APIs, which we discussed in Chapter 2, Data Models, applies
here as well; for example, in a single client call, we can fetch data only up to 1 MB.
If the query result size is more than 1 MB, then pagination is provided. We can use
lastEvaluatedKey to fetch the next set of results.

The following code snippets show how to fetch all the data for a given product ID
using queries with the Android and iOS SDKs.

Android
Here is the syntax to fetch the data from a given DynamoDB table using query API:

// specify the query condition, here product id = 123
Condition hashKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.EQ.toString())
 .withAttributeValueList(new AttributeValue().withN("123"));

Map<String, Condition> keyConditions = new HashMap<String,
Condition>();
keyConditions.put("productId", hashKeyCondition);

Map<String, AttributeValue> lastEvaluatedKey = null;
do {

 QueryRequest queryRequest = new QueryRequest()
 .withTableName("ProductTable")
 .withKeyConditions(keyConditions)
 .withExclusiveStartKey(lastEvaluatedKey);

Developing Mobile Apps Using DynamoDB

[198]

 QueryResult queryResult = dynamoDBClient.query(queryRequest);

 // Get all items from query result
 queryResult.getItems();

// If the response lastEvaluatedKey has contents, that means there are
more // results
 lastEvaluatedKey = queryResult.getLastEvaluatedKey();
} while (lastEvaluatedKey != null);

iOS
Here is the syntax to fetch data from a given DynamoDB table using a query API:

// specify the query condition, here product id = 123

DynamoDBCondition *condition = [DynamoDBCondition new];
condition.comparisonOperator = @"EQ";

DynamoDBAttributeValue *productId = [[DynamoDBAttributeValue
 alloc] initWithN:@"123"];

[condition addAttributeValueList:productId];

NSMutableDictionary *queryStartKey = nil;
do {

 DynamoDBQueryRequest *queryRequest = [DynamoDBQueryRequest
 new];
 queryRequest.tableName = @"ProductTable";
 queryRequest.exclusiveStartKey = queryStartKey;

 queryRequest.keyConditions = [NSMutableDictionary
 dictionaryWithObject:condition forKey:@"productId"];

 DynamoDBQueryResponse *queryResponse = [[Constants ddb]
 query:queryRequest];

 // Each item in the result set is a NSDictionary of
DynamoDBAttributeValue
 for (NSDictionary *item in queryResponse.items) {
 DynamoDBAttributeValue *recordId = [item
 objectForKey:@"recordId"];
 NSLog(@"record id = '%@'", recordId.s);
 }

Chapter 9

[199]

// If the response lastEvaluatedKey has contents, that means there are
more // results
 queryStartKey = queryResponse.lastEvaluatedKey;

} while ([queryStartKey count] != 0

Consistent reads
As we know, DynamoDB is eventually consistent and gives option to users to
set the type of reads they wish to see. Sometimes, application operations cannot
tolerate an eventually consistent model. In that case, you can explicitly set
consistency to 'strongly consistent'.

Here are the code snippets which show you how to set the consistency for a
given request.

Android
Consistency in reads can be set for GetItem and query APIs as follows:

// GetItem set strong consistent reads
GetItemRequest getItemRequest = new GetItemRequest("ProductTable",key)
 .withConsistentRead(true);

// Configure and invoke the request
..

// Query set strong consistent reads
QueryRequest queryRequest = new QueryRequest()
 .withTableName("ProductTable")
 .withConsistentRead(true);

// Configure and invoke the request
..
iOS
Here is how we set the strongly consistent reads for the get item and
query APIs in iOS SDK.
// GetItem with consistent reads
DynamoDBGetItemRequest *getItemRequest = [DynamoDBGetItemRequest new];
getItemRequest.tableName = @"ProductTable";

getItemRequest.consistentRead = YES;

Developing Mobile Apps Using DynamoDB

[200]

// Configure and invoke the request
..

// Query with consistent reads
DynamoDBQueryRequest *queryRequest = [DynamoDBQueryRequest new];
queryRequest.tableName = @"ProductTable";

queryRequest.consistentRead = YES;

// Configure and invoke the request

Using local secondary indexes
We have already seen the local secondary indexes in Chapter 2, Data Models.
So, if someone wants to query a DynamoDB table data using attributes other
than the primary key attributes, then we need to use local secondary index.

Suppose we modify our product table to accommodate one more attribute
named lastModifiedBy, this attribute would be updated every time some user
makes changes to it. Our requirement is to find the change made by a certain user
for a given product ID. To do so, we need to create a local secondary index on
lastModifiedBy. Here is how the table will look now:

productId
(hash key)

recordId (range key) Data lastModifiedBy
(Local Secondary
Index)

123 productName BMW Z Alice

123 cost $20000 Bob

456 productName Hill range
bicycle

Alice

456 cost $120 Alice

789 productName Base ball bat Bob

789 cost $50 Bob

Chapter 9

[201]

Android
Here is how we have to write queries to fetch an attribute modified by a certain user:

// create map for keys
Map keyConditions = new HashMap();

// Specify the key conditions , here product id = 123
Condition hashKeyCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.EQ.toString())
 .withAttributeValueList(new AttributeValue().withN("123"));
keyConditions.put("productId", hashKeyCondition);

// Specify condition for index, here lastModifiedBy == Alice
 Condition lastModCondition = new Condition()
 .withComparisonOperator(ComparisonOperator.EQ.toString())
 .withAttributeValueList(new AttributeValue().withS("Alice"));
keyConditions.put("lastModifiedBy", lastModCondition);

Map lastEvaluatedKey = null;
do {
 QueryRequest queryRequest = new QueryRequest()
 .withTableName("ProductTable")
 .withKeyConditions(keyConditions)
 .withExclusiveStartKey(lastEvaluatedKey)
 .withIndexName("lastModifiedBy-index");

 QueryResult queryResult = client.query(queryRequest);
 // Use query results
..
 // check if there are more records for the query
 lastEvaluatedKey = queryResult.getLastEvaluatedKey();
} while (lastEvaluatedKey != null)

iOS
Here is how we have to write queries to fetch an attribute modified by a certain user.

// Create our dictionary of conditions
NSDictionary *conditions = [NSMutableDictionary new];

// Specify the key conditions , here product id = 123
DynamoDBCondition *productIdCondition = [DynamoDBCondition new];

Developing Mobile Apps Using DynamoDB

[202]

condition.comparisonOperator = @"EQ";
DynamoDBAttributeValue *productId = [[DynamoDBAttributeValue alloc]
initWithN:@"123"];

[productIdCondition addAttributeValueList:productId];
[conditions setObject: productIdCondition forKey:@"productId"];

// Specify the key conditions , here product id = 123
DynamoDBCondition *lastModifiedCondition = [DynamoDBCondition new];
lastModifiedCondition.comparisonOperator = @"EQ";
DynamoDBAttributeValue *userName = [[DynamoDBAttributeValue alloc]
initWithS:@"Alice"];
[lastModifiedCondition addAttributeValueList:userName];
[conditions setObject:lastModifiedCondition forKey:@"lastModifiedBy"];

NSMutableDictionary *queryStartKey = nil;
do {
 DynamoDBQueryRequest *queryRequest = [DynamoDBQueryRequest new];
 queryRequest.tableName = @"ProductTable";
 queryRequest.exclusiveStartKey = queryStartKey;

 // specify the local secondary index
 queryRequest.keyConditions = conditions;
 queryRequest.indexName = @"lastModifiedBy-index";

 // Invoke query
 DynamoDBQueryResponse *queryResponse = [[Constants ddb]
query:queryRequest];

 // Use query results
..

 // check if there are more records for the query
 queryStartKey = queryResponse.lastEvaluatedKey;

} while ([queryStartKey count] != 0);

Chapter 9

[203]

Summary
In this chapter, we discussed considering AWS DynamoDB as a backend database
for your mobile applications. We started with discussing the challenges in using
traditional in-house databases for mobile applications. We then discussed how
DynamoDB can be helpful if you chose it as a backend database for mobile
applications.

We talked about how WIF can help you to reduce the time to market for mobile
applications by integrating the authentication and authorization with Facebook,
Google, and Amazon accounts. We also saw how the AWS STS helps in securing
our mobile applications by generating temporary access tokens for mobile
application requests on AWS resources. For those who want to use their own
identity credentials, we saw how that can be performed as well.

Later, we discussed the best practices in DynamoDB data modeling for a mobile
considering an example use case of an e-commerce mobile application. Taking this
example as a reference, we understood how various operations can be performed
using AWS Mobile SDKs for Android and iOS.

I hope this helps you, providing proper direction for your understanding
and development.

At last, now that we have gone through most of the features, pros and cons,
usages, code samples and designs of DynamoDB, I hope this book contributes
to your knowledge. All the best for your adventures with DynamoDB!

Index
Symbols
.NET libraries

about 174
reference link 174

A
access control

creating, IAM used 111-115
providing to DynamoDB, IAM used 110

Alternator
URL 178

Amazon DynamoDB. See DynamoDB
Amazon DynamoDB management console

URL 16
Amazon's infrastructure

URL 16
AntiEntropy 84
architecture, bookstore application 154, 155
architecture, DynamoDB

data replication 79, 80
data versioning 80
failures, handling 82-84
load balancing 77-79
reconciliation 80
request handling 81
ring membership 85
seed nodes 86

architecture, knowledge market
website 158, 159

AssumeRoleWithWebIdentity API
URL 185

atomic counters 48
atomic writes, Transaction library 166-168
attributes 10

authentication
about 184
custom authentication, creating 186, 187
web identity federation,

implementing 185, 186
authorization 184
auto retries

performing 127, 128
auto-scaling tools

about 179
Dynamic DynamoDB 179, 180

AWS
URL 16

AWS CloudSearch. See CloudSearch
AWS CloudWatch management console

DynamoDB table, monitoring with 108, 109
URL 108

AWS components
bookstore application, integrating with 157
knowledge market website, integrating

with 162
AWS DynamoDB error code

URL, for description 126
AWS EMR. See Elastic MapReduce (EMR)
AWS management console

used, for configuring CloudSearch
domain 144-146

used, for creating DynamoDB table 16-24
used, for exporting data to

CloudSearch 147-149
AWS RDS 9
AWS Redshift. See Redshift
AWS S3. See S3
AWS SDK for Java

item, deleting 51
item, retrieving 49

[206]

item, storing 49
item, updating 50
multiple items, deleting 53
multiple items, retrieving 52
multiple items, storing 53
table, creating 37, 38
table, deleting 39
table, listing 40
table, updating 39
used, for performing item operations 49
used, for performing query operation 64, 65
used, for performing scan operation 68
used, for performing table operations 37

AWS SDK for .Net
item, adding 54
item, deleting 55
item, retrieving 54
item, updating 55
multiple items, deleting 57
multiple items, fetching 56
multiple items, storing 57
table, creating 40
table, deleting 42
table, listing 42
table, updating 41
used, for performing item operations 54
used, for performing query operation 65
used, for performing scan operation 68
used, for performing table operations 40

AWS SDK for PHP
item, adding 58
item, deleting 59
item, retrieving 58
item, updating 58
multiple items, adding 60, 61
multiple items, deleting 60, 61
multiple items, fetching 59
table, creating 43
table, deleting 44
table, listing 44
table, updating 43
used, for performing item operations 58
used, for performing query operation 67
used, for performing scan operation 69
used, for performing table operations 42

awssum
about 175
URL 175

B
BackoffStrategy 127
backup/archival tools

about 180
DynamoDB Table Archiver 181

batchGetItem API 59
batchWriteItems API 60
Berkeley DB

about 88, 89
using 88

Berkeley DB Java Edition 89
Berkeley DB XML edition 89
best practices, item operations

caching 95, 96
large attribute values, storing 97
one-to-many relationship,

implementing 100, 101
best practices, query operations

parallel scan, using 104
best practices, scan operations

read activity, maintaining 103
best practices, table operations

data, uploading in distributed
manner 93, 94

primary key, selecting 92, 93
time series data, managing 95

binary data type 35, 36
binary large object (BLOBs) 35
blog table 100
body chunk table 100
bookstore application

about 153
architecture 154, 155
data model 155, 156
deployment 157
implementation 157
integrating, with other AWS

components 157
technology stack 154

bootstrap actions
URL 140

[207]

C
caching 95, 96
casual, eventual consistency 45
catch block 126
CFDynamo

URL 176
character large object (CLOBs) 35
client errors 125
Client-side AWS

URL 178
CloudFormation template

URL 180
CloudSearch

about 143
data exporting, AWS management

console used 147-149
data exporting, command line

tools used 150
DynamoDB, integrating with 143

CloudSearch API
URL, for documentation 157

CloudSearch console
URL, for signing in 144, 147

CloudSearch domain
configuring 144

CloudWatch API
DynamoDB table, monitoring with 109, 110

CloudWatch command-line interface
DynamoDB table, monitoring with 110

CloudWatch developer
URL, for guide 110

Column Store 8
command line tools

used, for configuring CloudSearch
domain 146

used, for exporting data to
CloudSearch 150

committed reads 169
comparison operations

URL 64
components, DynamoDB

failure detection 87, 88
local persistent store 87-89
membership 87, 88
request coordinator 87, 88

compressed data
exporting, to S3 132, 133

compressions
using 97, 98

conditional writes 46-48
configuration, CloudSearch domain

AWS management console, using 144-146
command line tools, using 146

conflict resolution 76
consistent hashing 77
coordinator node 79
COPY command

about 141
COMPROWS parameter 143
READRATIO parameter 142
URL 143
used, for data compression 143
used, for data sampling 143
working 142

count(*) query 134
cs-import-documents command 150
custom authentication

creating 186, 187

D
data

exporting to CloudSearch, AWS
management console used 147-149

exporting to CloudSearch, command line
tools used 150

exporting, to EMR 130
exporting, to HDFS 134
exporting, to Redshift 141, 142
exporting, to S3 131
importing, from HDFS 138
importing, from S3 137, 138
uploading, in distributed manner 93, 94

data model
about 10, 11, 27
attributes 10
example 28
items 10
operations 11
provisioned throughput 12, 13
tables 10

[208]

data model, bookstore application 155, 156
data model, knowledge market

website 159-161
data replication 75-80
data types

about 34
multivalued data types 34, 36
scalar data types 34

data versioning 80
Ddb

URL 177
Ddbmock

URL 178
deleteItem method 59
deployment, bookstore application 157
deployment, knowledge market

website 163
DescribeTable operation 11
design features, DynamoDB

conflict resolution 76
data replication 75
flexibility 77
scalability 76
symmetry 76

Dinerl
URL 177

Django-dynamodb-sessions
URL 176

Document Store 8
Dynamic DynamoDB

about 179, 180
features 179
URL, for installation 180

dynamite
about 175
URL 175

Dynamo-client
about 175
URL 175

DynamoDB
about 7-10
advantages, for developing mobile

application 184
architecture 77
components 86
data model 10, 11

design features 75
features 14
history 8, 9
integrating, with CloudSearch 143
integrating, with EMR 130
integrating, with Redshift 140
libraries 165
limitations 124, 125
tools 177
URL, for pricing 16
URL, for research paper 9
use cases 153

DynamoDB data
aggregating 135
employees count, obtaining 134
employees count, obtaining

department wise 135
exporting, pre-requisites 130
querying 134

DynamoDB Local
about 24, 177
benefits 26
installing 24, 25
URL, for downloading 24, 177
using 24

DynamoDB table
creating, AWS management console

used 16-24
joining 135
joining, to S3 tables 136
monitoring 107
monitoring, with AWS CloudWatch

management console 108, 109
monitoring, with CloudWatch API 109, 110
monitoring, with CloudWatch

command-line interface 110
prerequisites, for creating 16

DynamoDB Table Archiver
about 181
URL 181

dynamoid
about 176
URL 176

Dynamo-table
about 175
URL 175

[209]

dynasaur
about 175
URL 175

Dynasty
about 175
URL 175

dyndb
about 175
URL 175

dynode
about 175
URL 175

E
Elastic MapReduce (EMR)

about 129
data, exporting from DynamoDB 130
data, exporting to HDFS 134
data, importing into DynamoDB 137
DynamoDB data, querying 134
DynamoDB, integrating with 130
performance considerations,

for using 138-140
URL 130

Erlcloud
URL 177

error handling
about 125
auto retries 127, 128
error information, catching 126
exponential back-offs, creating 127, 128

errors, types
client errors 125
server errors 126

eventual consistency
about 45
casual 45
read-your-writes 45
session 46
versus strong consistency 45

exception handling
URL 194

exponential back-offs
creating 127, 128

F
failures

handling 82-84, 87, 88
permanent failures 82
temporary failures 82

Fake DynamoDB
about 178
URL 178

features, DynamoDB
cost effective 16
durable 14
fast 14
fault tolerance 15
flexible 15
fully managed 14
indexing 15
scalable 14
secure 15
simple administration 15

fine-grained access control 118, 119
fine-grained access control policies

access, restricting to specific attributes
of table 120, 121

access, restricting to specific Hash
value 120

exploring 120
specific projected attributes, querying

in index 122
flexibility 77
Fog

about 176
URL 176

formatted data
exporting, to S3 132

fully isolated reads 169

G
GeoJSON

URL 171
Geo library

about 170, 171
query radius 172, 173
query rectangle 172
URL, for downloading 170
URL, for examples 173

[210]

get request 81, 82
global secondary index. See GSI
Goamz

URL 177
gossip protocol

URL 85
Graph Databases 8
Groovy/Grails

URL 177
GSI

about 31, 33, 34, 106
best practices 105
URL 106

H
Hadoop Distributed File System. See HDFS
hash and range primary key 29, 30
hash index 29
hash primary key 29
HDFS

about 130, 134
data, exporting to 134
data, importing from 138

hinted handoff 82
HonorMaxErrorRetryInClientConfig 127

I
IAM

about 15, 110, 129
fine-grained access control 118, 119
used, for creating access control 111-115
used, for providing access control to

DynamoDB 110
web identity federation 122, 123

IAM console page
URL 111

IAM policies
DynamoDB actions, allowing to

all tables 117
exploring 115
indexes, accessing 117
read-only access, providing 115
users, allowing to add items 116
users, allowing to update items 116
users, restricting to delete action 116

Identity and Access Management. See IAM
identity providers

Amazon 123
Facebook 122
Google 122

implementation, bookstore application 157
implementation, knowledge market

website 162
injecting failures

about 178
URL, for implementation 179

installation, DynamoDB Local 24, 25
isolated reads, Transaction library

committed 169
fully isolated 169
uncommitted 169

ItemCollectionSizeLimitExceededException
solutions, for avoiding 105

item operations
about 12
best practices 95
conditional writes 46-48
eventual consistency 45
item size, calculating 48
performing 44
performing, AWS SDK for Java used 49
performing, AWS SDK for .Net used 54
performing, AWS SDK for PHP used 58
strong consistency, versus eventual

consistency 45
items 10
item size

calculating 48

J
Java libraries

Jcabi 174
Jsoda 173
Phoebe 174

Jcabi
about 174
URL 174

JOIN keyword 135
Jsoda

about 173
URL 173

[211]

K
Key Value Store 8
knowledge market website

about 158
architecture 158, 159
data model 159-161
deployment 163
implementation 162
integrating, with other AWS

components 162
technology stack 158

L
language-specific libraries

.NET 174
Java 173
Node.js 175
other libraries 176
Perl 175
Ruby 176

large attribute values
AWS S3, using 98, 99
compressions, using 97, 98
multiple chunks, using 99

libraries
about 165
Geo library 170, 171
language-specific libraries 173
Transaction library 165, 166

ListTables operation 11
load balancing 77-79
local persistence store 87-89
local secondary index

about 31, 32
best practices 104, 105

logic-based reconciliation 80

M
many-to-many relationship 72
massive parallel processing (MPP) 141
maven project

URL, for downloading 166
MaxErrorRetry 127
membership 87, 88

Merkle tree
about 84
URL 85

mince_dynamodb
about 176
URL 176

mobile application
mobile SDKs used, for performing

operations 187, 188
mobile SDKs

conditional writes, performing 191
consistent reads, setting 199
consumed capacity information,

obtaining 190
data, fetching from DynamoDB table 196
data, querying from DynamoDB table 197
data, writing to DynamoDB table 188
item, deleting from DynamoDB table 195
local secondary indexes, using 200
URL, for Android 188
URL, for iOS 188
used, for performing operations in mobile

application 187, 188
multiple chunks, large attribute values

blog table, using 100
body chunk table, using 100

multivalued data types
about 36
binary sets 36
number sets 36
string sets 36

MySQL
using 88

N
Net::Amazon::DynamoDB

about 176
URL 176

Node.js libraries
awssum 175
dynamite 175
Dynamo-client 175
Dynamo-table 175
dynasaur 175
dyndb 175
dynode 175

[212]

NoSQL database
about 7, 8
Column Store 8
Document Store 8
Graph Databases 8
Key Value Store 8

number 35

O
one-to-many relationship

about 71
benefits 101
better approach 102
efficient approach 102
implementing 100, 101
inefficient approach 102

one-to-one relationship 70
operations, data model

item operations 12
query operation 12
scan operation 12
table operations 11

P
pagination, query operation 62
pagination, scan operation 62
parallel scan

about 62-64
using 104

Perl libraries
Net::Amazon::DynamoDB 176

permanent failures 82
Phoebe

about 174
URL 174

Point of Interest (POI) 170
preference list 80
primary key

about 28
hash and range primary key 29, 30
hash primary key 28, 29
selecting 92, 93

provisioned throughput 12, 13
putItem method 49, 58
put request 81

Q
query operation

about 12, 61
best practices 102
count 62
limit 62
pagination 62
performing, AWS SDK for Java used 64, 65
performing, AWS SDK for .Net used 65
performing, AWS SDK for PHP used 67
versus, scan operation 61

query radius 172, 173
query rectangle 172
quorum

URL 82

R
range index 29
read-your-writes, eventual consistency 45
real-time case studies

URL 163
reconciliation

about 80
logic-based reconciliation 80
time-based reconciliation 81

Redshift
about 140
considerations, for using

with DynamoDB 140
data, exporting from DynamoDB 141, 142
DynamoDB, integrating with 140

relational database (RDS) 129
relationships

many-to-many 72
modeling 70
one-to-many 71
one-to-one 70

request coordinator 87, 88
request handling 81
RetryCondition 127
ring membership 85
Ruby gem

dynamoid 176
Fog 176
mince_dynamodb 176

[213]

S
S3

about 129-131
compressed data, exporting 132, 133
data, exporting to 131
data, importing from 137, 138
formatted data, exporting 132
using 98, 99

sample Android applications
URL, for downloading 188

scalability 76
scalar data types

about 34
binary 35, 36
number 35
string 35

scan filter
URL 68

scan operation
about 12, 61
best practices 102
count 62
limit 62
pagination 62
parallel scan 62, 64
performing, AWS SDK for Java used 68
performing, AWS SDK for .Net used 68
performing, AWS SDK for PHP used 69
versus, query operation 61

SDK for Android
conditional writes, performing 191, 192
consistent reads, setting 199
consumed capacity information,

obtaining 190
data, fetching from DynamoDB table 196
data, querying from DynamoDB table 197
data, writing to DynamoDB table 189
item, deleting from DynamoDB table 195
local secondary indexes, using 201

SDK for iOS
conditional writes, performing 193, 194
consumed capacity information,

obtaining 191
data, fetching from DynamoDB table 196
data, querying from DynamoDB table 198

data, writing to DynamoDB table 189
item, deleting from DynamoDB table 195
local secondary indexes, using 201

secondary indexes
about 31
global secondary index 31-34
local secondary index 31, 32

Secure Token Service (STS) 154, 185
SEDA

about 87
URL 87

seed nodes 86
SELECT query 135
SELECT statement 132
server errors 126
service-oriented architecture 74
session, eventual consistency 46
Simple DB 9
Simple Storage Service. See S3
Social Security Number (SSN) 29
Solid State Disks (SSD) 7
Staged-Even Drive Architecture. See SEDA
string 35
strong consistency

versus, eventual consistency 45
Student table 11
symmetry 76

T
table operations

about 11
best practices 92
performing 37
performing, AWS SDK for Java used 37
performing, AWS SDK for .Net used 40
performing, AWS SDK for PHP used 42

tables 10
technology stack, bookstore application 154
technology stack, knowledge market

website 158
temporary failures 82
testing tools

DynamoDB local 177
Fake DynamoDB 178
injecting failures 178

time-based reconciliation 81

[214]

time series data
managing 95

tools
for auto-scaling 179
for backup/archival 180
for testing 177
using 177

Transaction library
about 165, 166
atomic writes 166-168
isolated reads 169
URL 169

try block 126

U
uncommitted reads 169
updateItem method 50, 58
UpdateItem operation 12
UpdateTable operation 11
use cases, DynamoDB

bookstore application 153
knowledge market website 153, 158

V
vector clocks 80

W
web hosting services

challenges 183, 184
web identity federation

about 122, 123
implementing 185, 186
URL 186

www.StackOverflow.com 158

Thank you for buying
Mastering DynamoDB

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Talend for Big Data
ISBN: 978-1-78216-949-9 Paperback: 96 pages

Access, transform, and integrate data using Talend's
open source, extensible tools

1. Write complex processing job codes easily with
the help of clear and step-by-step instructions.

2. Compare, filter, evaluate, and group vast
quantities of data using Hadoop Pig.

3. Explore and perform HDFS and RDBMS
integration with the Sqoop component.

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Please check www.PacktPub.com for information on our titles

Getting Started with NoSQL
ISBN: 978-1-84969-498-8 Paperback: 142 pages

Your guide to the world and technology of NoSQL

1. First hand, detailed information about
NoSQL technology.

2. Learn the differences between NoSQL
and RDBMS and where each is useful.

3. Understand the various data models
for NoSQL.

Microsoft SQL Server 2014
Business Intelligence
Development Beginner's Guide
ISBN: 978-1-84968-888-8 Paperback: 350 pages

Get to grips with Microsoft Business Intelligence
and data warehousing technologies using this
practical guide

1. Discover the Dimensional Modeling concept
while designing a data warehouse.

2. Learn Data Movement based on technologies
such as SSIS, MDS, and DQS.

3. Design dashboards and reports with
Microsoft BI technologies.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	DynamoDB's history
	What is DynamoDB?
	Data model concepts
	Operations
	Table operations
	Item operations
	The Query and Scan operations

	Provisioned throughput
	DynamoDB features
	Fully managed
	Durable
	Scalable
	Fast
	Simple administration
	Fault tolerance
	Flexible
	Indexing
	Secure
	Cost effective

	How do I get started?
	Creating a DynamoDB table using the AWS management console
	DynamoDB Local

	Summary

	Chapter 2: Data Models
	Primary key
	Hash primary key
	Hash and range primary key

	Secondary indexes
	Local secondary index
	Global secondary index

	Data types
	Scalar data types
	String
	Number
	Binary

	Multivalued data types

	Operations on tables
	Using the AWS SDK for Java
	Create table
	Update table
	Delete table
	List tables

	Using the AWS SDK for .NET
	Create table
	Update table
	Delete table
	List tables

	Using the AWS SDK for PHP
	Create table
	Update table
	Delete table
	List tables

	Operations on items
	Strong versus eventual consistency
	Eventual consistency

	Conditional writes
	Item size calculations
	Using the AWS SDK for Java
	Put item
	Get item
	Update item
	Delete item
	Batch get items
	Batch write items

	Using the AWS SDK for .NET
	Put item
	Get item
	Update item
	Delete item
	BatchGetItems
	BatchWriteItems

	Using the AWS SDK for PHP
	The putItem method
	The getItem method
	The updateItem method
	The deleteItem method
	The batchGetItem API
	The batchWriteItems API

	Query and scan operations
	Query versus scan
	Pagination
	Limit and counts
	Parallel scan
	Querying tables
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	PHP API

	Scanning tables
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	Using the AWS SDK for PHP

	Modeling relationships
	One to one
	One to many
	Many to many

	Summary

	Chapter 3: How DynamoDB Works
	Service-oriented architecture
	Design features
	Data replication
	Conflict resolution
	Scalability
	Symmetry
	Flexibility

	Architecture
	Load balancing
	Data replication
	Data versioning and reconciliation
	Logic-based reconciliation
	Time-based reconciliation

	Request handling
	Handling failures
	Ring membership
	Seed nodes

	Functional components
	Request coordinator
	Membership failure and detection
	Local persistence store

	Summary

	Chapter 4: Best Practices
	Table level best practices
	Choosing a primary key
	Evenly distributed data upload
	Managing time series data

	Item best practices
	Caching
	Storing large attribute values
	Using compressions
	Using AWS S3
	Using multiple chunks

	Implementing one-to-many relationship
	Inefficient approach
	Better and efficient approach

	Query and scan best practices
	Maintaining even read activity
	Using parallel scans

	Local secondary indexes best practices
	Global secondary index best practices
	Summary

	Chapter 5: Advanced Topics
	Monitoring DynamoDB tables
	AWS Management Console
	CloudWatch API
	A command-line interface

	Using IAM to provide access control to DynamoDB
	How to use IAM for DynamoDB
	Sample IAM policies
	Providing read-only access to items from all DynamoDB tables
	Restrict users from deleting all the tables and items from a table
	Allowing you to place and update an item on a single table
	Allowing access to all indexes of a particular table
	Allowing all DynamoDB actions to all the tables

	Fine-grained access control
	Sample fine-grained access control policies
	Restricting access to only specific Hash value
	Restricting access to only specific attributes of
a table
	Allowing a query on only specific projected attributes in index

	Web identity federation

	Limitations in DynamoDB
	Error handling
	Type of errors
	Catching error information
	Auto retries and exponential back-offs

	Summary

	Chapter 6: Integrating DynamoDB with Other AWS Components
	Integrating with AWS EMR
	Exporting data from DynamoDB
	Export data to AWS S3
	Formatted data export
	Compressed data export

	Export data to EMR – HDFS
	Querying DynamoDB data
	Getting the total count of employees in
Employee table
	Getting the total count of employees department wise
	Joining two DynamoDB tables
	Joining tables from DynamoDB and S3

	Importing data into DynamoDB
	Importing data from AWS S3
	Importing data from HDFS

	Performance considerations while using EMR with DynamoDB

	Integrating with AWS Redshift
	Exporting data from DynamoDB
	Automatic compression and sampling

	Integrating with AWS CloudSearch
	Configuring CloudSearch domain
	Using AWS management console
	Using command-line tools

	Export data from DynamoDB to CloudSearch
	Using AWS management console
	Using command line tools

	Summary

	Chapter 7: DynamoDB – Use Cases
	Bookstore application
	Technology stack
	Architecture
	DynamoDB data model
	Implementation
	Integration with other AWS components
	Deployment

	Knowledge market website
	Technology stack
	Architecture
	DynamoDB data model
	Implementation
	Integration with other AWS components
	Deployment

	Summary

	Chapter 8: Useful Libraries and Tools
	Libraries
	Transaction library
	Atomic writes
	Isolated reads

	Geo library
	Query rectangle
	Query radius

	Language-specific libraries
	Java
	.NET
	Node.js
	Perl
	Ruby
	Others

	Tools
	Tools for testing
	DynamoDB Local
	Fake DynamoDB
	Injecting failures

	Tools for auto-scaling
	Dynamic DynamoDB

	Tools for backup and archival
	DynamoDB Table Archiver

	Summary

	Chapter 9: Developing Mobile Apps Using DynamoDB
	Authentication and Authorization
	Using Web Identity Federation
	Creating your own custom authentication

	Performing operations using mobile SDKs
	Writing data to DynamoDB
	Android
	iOS

	Getting consumed capacity information
	Android
	iOS

	Conditional writes
	Android
	iOS

	Deleting an item
	Android
	iOS

	Fetching data
	Android
	iOS

	Querying data
	Android
	iOS

	Consistent reads
	Android

	Using local secondary indexes
	Android
	iOS

	Summary

	Index

