
www.allitebooks.com

http://www.allitebooks.org

Mastering Eclipse Plug-in
Development

Build modular applications on Eclipse by defining
custom extension points and using OSGi services

Dr Alex Blewitt

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Eclipse Plug-in Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1210814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-779-6

www.packtpub.com

Cover image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Dr Alex Blewitt

Reviewers
Carla Guillen

Jeff MAURY

Peter Rice

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Sam Wood

Content Development Editor
Susmita Panda Sabat

Technical Editor
Dennis John

Copy Editors
Roshni Banerjee

Mradula Hegde

Karuna Narayanan

Adithi Shetty

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Rekha Nair

Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr Alex Blewitt has been developing Java applications since version 1.0 was
released in 1996, and has been using the Eclipse platform since its first release
as part of the IBM WebSphere Studio product suite. He even migrated some
plug-ins from VisualAge for Java to WebSphere Studio / Eclipse as part of his
PhD in Automated Verification of Design Patterns. He got involved in the open
source community as a tester when Eclipse 2.1 was being released for Mac OS X,
and then subsequently as an editor for EclipseZone, including being a finalist for
Eclipse Ambassador in 2007.

More recently, Alex has been writing for InfoQ, covering generic Java, specifically
Eclipse and OSGi subjects. He was the keynote speaker at the OSGi Community Event
2011 on the past, present, and future of OSGi. The coverage of both new releases of
the Eclipse platform as well as its projects and video interviews with some of the
Eclipse project leads can be found on the InfoQ home page; for this, he won the
Eclipse Top Contributor award in 2012.

Alex currently works for an investment bank in London. He also has a number
of apps on the App Store through Bandlem Limited.

Alex blogs at http://alblue.bandlem.com and tweets via Twitter as @alblue
regularly and is the author of Eclipse 4 Plug-in Development by Example Beginner's
Guide, Packt Publishing.

www.allitebooks.com

http://alblue.bandlem.com
http://www.allitebooks.org

Acknowledgments

I'd like to thank my wife, Amy, who has been behind me for over 15 years,
supporting me during the development of this and other books. Behind every
man is a great woman, and I wouldn't be where I am today if it were not for her.

I'd also like to thank my parents, Derek and Ann, for introducing me to technology
at an early age with a ZX81 and setting me on a path and career that would take
me across the globe, even though the name of my first company could have been
better chosen.

Special thanks are due to Ann Ford, Carla Guillen, Jeff MAURY, and Peter Rice, who
provided detailed feedback about every chapter and the exercises therein. Without
their diligence and attention, this book would contain many more errors than I would
like. Thanks are also due to the Packt Publishing editing team, especially Dennis John,
who was very patient with my rewrites. I'd also like to thank Sam Wood for keeping
the book on the straight and narrow as well as Susmita Panda and Binny Babu, who
were involved through the production process.

During the later stages of the book, I was also fortunate enough to receive some
good feedback and advice from Lars Vogel and Ian Bull, both of whom are heavily
involved in the Eclipse platform. I am especially grateful for Lars Vogel's website,
www.vogella.com, which has been an invaluable resource over the years.

To Sam, Holly, and all the Akeley Wood Code Clubbers, this is just the start of
your journey through life. Aim high, work hard, and do what you love.

Finally, I'd like to thank OD, DJ, and JC for their support in making this book possible.

www.allitebooks.com

www.vogella.com
http://www.allitebooks.org

About the Reviewers

Carla Guillen has a Master's degree in Computational Science and Engineering
and is working at the Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities. She is currently pursuing a PhD in monitoring performance
of supercomputers in the field of Computer Architecture Organization. As part of the
annual courses offered at the Leibniz Supercomputing Centre, she has been teaching
a course on the use of the Eclipse IDE with the CDT and Photran plug-in for the past
4 years.

Jeff MAURY is currently working as the technical lead for the Java team at
SYSPERTEC, a French ISV offering mainframe integration tools. He is also a
PMC member for the Apache MINA project.

Prior to SYSPERTEC, he co-founded a French ISV called SCORT in 1996, which
was the precursor of the application server concept and offered J2EE-based
integration tools.

He started his career in 1988 at MARBEN, a French integration company specializing
in telecommunication protocols. At MARBEN, he started as a software developer and
finished as an X.400 team technical lead and Internet division strategist.

I would like to dedicate my work to Jean-Pierre Ansart, my mentor,
and would also like to thank my wife, Julia, for her patience and my
three sons, Robinson, Paul, and Ugo.

www.allitebooks.com

http://www.allitebooks.org

Peter Rice is a retired professor of Mathematics and has been active in IT consulting
for the past 20 years. He is a certified trainer for IBM and Microsoft, and has worked
through independent training vendors offering courses in programming languages
(Java, C, C++, Perl, and so on), advanced systems (Eclipse, Eclipse Plug-in
Development, Rich Client Platform, and Java EE), and various other technologies.
He has also been consulted with on many projects and is currently working with
Trail Management Systems on the development of a new generation of business
management software.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Plugging in to JFace and the Common
Navigator Framework	 7

JFace wizards	 8
Creating a feeds wizard	 10

Creating the classes	 10
Adding pages to the wizard	 11
Adding content to the page	 12
Testing the wizard	 14
Adding titles and images	 14
Adding help	 17
Finishing the wizard	 18
Adding the FeedWizard to the newWizards extension point	 20
Adding a progress monitor	 21

Showing a preview	 23
Common navigator	 25

Creating a content and label provider	 27
Integrating into Common Navigator	 28
Binding content navigators to views	 30
Adding commands to the common navigator	 31
Reacting to updates	 33
Optimizing the viewer updates	 34
Linking selection changes	 35

Opening an editor	 37
Finding the line	 38
Setting the selection	 39

Summary	 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Creating Custom Extension Points	 41
Extensions and extension points	 41

Creating an extension point	 43
Creating a FeedParser interface	 43
Creating a MockFeedParser class	 45
Creating the extension point schema	 46
Using the extension point	 52
Integrating the extension with the content and label providers	 55
Showing a feed in the browser	 57
Implementing a real feed parser	 59
Adding support for Atom	 61
Making the parser namespace aware	 64
Priority and ordering	 64
Executable extensions and data	 67
Executable extension factories	 69

Using the extension registry outside of OSGi	 70
Using the extension registry cache	 72
Loading all extensions from the classpath	 74

Summary	 76
Chapter 3: Using OSGi Services to Dynamically Wire Applications	 79

Overview of services	 79
Registering a service programmatically	 81

Creating an activator	 81
Registering the service	 83
Priority of services	 84
Using the services	 86
Lazy activation of bundles	 87
Comparison of services and extension points	 88

Registering a service declaratively	 89
Declarative Services	 90

Properties and Declarative Services	 92
Service references in Declarative Services	 93
Multiple components and debugging Declarative Services	 95

Dynamic service annotations	 95
Processing annotations at Maven build time	 96

Blueprint	 98
Installing Gemini Blueprint	 99
Installing Aries Blueprint	 100
Using the Blueprint service	 100
Passing properties in Blueprint	 101
Bean references and properties	 102
Comparison of Blueprint and DS	 104

Dynamic services	 105
Resolving services each time	 105

Table of Contents

[iii]

Using a ServiceTracker	 106
Sorting services	 107
Filtering services	 107
Obtaining a BundleContext without using an activator	 109
A note on ServiceReference	 109

Dependent services	 110
Dynamic Service Configuration	 111

Installing Felix FileInstall	 111
Installing Config Admin	 111
Configuring Declarative Services	 112
Config Admin outside of DS	 113
Services and ManagedService	 114

Creating an EmptyFeedParser class	 115
Configuring the EmptyFeedParser	 117

Service factories	 119
Creating the EchoServer class	 120
Creating an EchoServiceFactory class	 121
Configuring EchoService	 123

Summary	 124
Chapter 4: Using the Gogo Shell and Commands	 125

Consoles in Equinox	 125
Host OSGi Console	 126
Running commands	 127
Variables and pipes	 129
Functions and scripts	 131
Literals and objects	 132
Calling and chaining methods	 133
Control flow	 134
Running Equinox from the command line	 135
Understanding osgi.bundles and config.ini	 138
Connecting remotely	 139
Securing the connection	 140

Creating a JAAS configuration	 140
Understanding the configuration options	 141
Launching the SSH daemon	 142

Extending the shell	 143
Adding commands from existing methods	 143

Getting a class from an existing instance	 144
Loading a class via a ClassLoader	 144

Writing commands in Java	 145
Creating the project	 145
Using Declarative Services to register the command	 146
Test the command	 147

Table of Contents

[iv]

Processing objects with console commands	 148
Adding the print bundles command	 149
Returning a list of bundles	 150
Processing a list with each	 151

Calling functions from commands	 151
Looping and iteration	 155

Summary	 156
Chapter 5: Native Code and Fragment Bundles	 157

Native code and Eclipse	 157
Creating a simple native library	 158

Mac OS X	 159
Linux	 160
Windows	 160

Loading the native library	 161
Library dependencies	 162
Native code patterns	 164

Native libraries in OSGi bundles	 166
Optional resolution of native code	 168
Multiple libraries for the same platform	 168
Multiple libraries with the same name	 169
Additional filters and constraints	 169

Reloading native libraries	 170
OSGi fragment bundles	 170

Adding native code with fragments	 171
Adding classes to a bundle	 172
Patching bundles with fragments	 173
Adding imports and exports with fragments	 174
Extension bundles	 175

Summary	 177
Chapter 6: Understanding ClassLoaders	 179

Overview of ClassLoaders	 179
ClassLoaders and inheritance	 180
ClassLoaders in web application servers	 181
ClassLoaders and garbage collection	 182
OSGi and ClassLoaders	 183
OSGi services and ClassLoaders	 184

ThreadContextClassLoaders	 185
Java ServiceLoader	 186

Problems with ServiceLoader, OSGi, and Eclipse	 187
Creating a service producer	 188
Downloading the required bundles	 189

Table of Contents

[v]

Running the producer	 192
Creating a service consumer	 193
Running the consumer	 195

OSGi upgrade strategies	 197
Embedding the library directly	 197
Wrapping the library with bnd	 197
Upgrading the library to use services	 200
Dealing with class resolution issues	 200

Summary	 201
Chapter 7: Designing Modular Applications	 203

Semantic versioning	 203
Public APIs and version ranges	 204
Baselining and automatic versioning	 205

Eclipse API baselines	 206
Bnd baseline	 209
Bndtools	 209
Maven baselining	 210

Design patterns	 212
The whiteboard pattern	 212
The extender pattern	 213

Best practices	 215
Separate API and implementation	 215
Decouple packages	 216
Decouple services	 217
Prefer Import-Package to Require-Bundle	 218
Version packages and bundles	 221
Avoid split packages	 223
Import and export packages	 225
Avoid start ordering requirements	 227
Avoid long Activator start methods	 228
Use configuration admin for configuration	 228
Share services, not implementation	 229
Loosely coupled and highly cohesive	 230
Compile with the lowest level execution environment	 232
Avoid Class.forName	 233
Avoid DynamicImport-Package	 234
Avoid BundleActivator	 235
Consider thread safety	 236
Test in different frameworks	 237

Summary	 238

Table of Contents

[vi]

Chapter 8: Event-driven Applications with EventAdmin	 239
Understanding the OSGi EventAdmin service	 239

Sending e-mails	 240
Creating an event	 241
Posting an event	 242
Receiving an event	 243
Filtering events	 245
Threading and ordering of event delivery	 246
Comparison between EventAdmin and services	 247
Framework events	 248

Events and E4	 250
Sending events with E4	 251
Receiving events with E4	 252
Subscribing E4 EventHandlers directly	 253
Comparison between EventAdmin and IEventBroker	 254

Designing an event-based application	 254
Componentizing the application	 255
Identifying the channels	 255
Identifying the properties	 255
Mapping the channels to topics	 256
Simulating events	 257
Versioning and loose typing	 257
Event object contents	 258
Comparison with JMS	 259

Summary	 260
Chapter 9: Deploying and Updating with P2	 261

Eclipse P2	 261
Provisioning with the P2 director	 262
Installing content into existing applications	 263

Running P2 applications	 266
Launching the JVM	 266
Starting Equinox	 268

P2 repositories	 271
P2 artifacts and contents files	 272
Binary and packed files	 274
Creating P2 mirrors	 275
Generating P2 metadata	 277
Categorizing update sites	 278
Composite update sites	 280
The classic update manager	 284

Table of Contents

[vii]

Touchpoints	 286
Categorizing features with P2	 286
Adding update sites automatically	 288
Registering touchpoint actions	 289
Adding JVM or program arguments	 290
Custom touchpoints	 291

Summary	 293
Chapter 10: User Assistance in Eclipse	 295

Help pages in Eclipse	 295
Adding help pages	 296
Nested table of contents	 298
Anchors and links	 299
Linking to anchors in other plug-ins	 301
Conditional enablement	 302
Context-sensitive help	 306
Active help	 308
DocBook and Eclipse help	 309
Mylyn WikiText and Eclipse help	 312

Help Server and RCP	 314
Help and Eclipse 3.x	 314
Help and Eclipse 4.x	 316
Running an InfoCenter standalone	 319

Cheat sheets	 319
Creating a cheat sheet	 320
Adding commands	 322
Optional steps	 323
Responding to choice	 324
Composite cheat sheets	 326

Summary	 329
Index	 331

Preface
The Eclipse platform provides an extensible system for building plug-ins and
applications in a modular fashion. While other books discuss the general mechanism
to create plug-ins, this book dives deeper into the underlying mechanisms, including
how to create plug-ins that have their own extension points and how to use OSGi
services within an Eclipse application. It is expected that you are familiar with
Eclipse plug-in development already and you understand the content covered in
Eclipse 4 Plug-in Development by Example Beginner's Guide, Packt Publishing. By the
end of this book, you will know how to write extensible plug-ins for both Eclipse
extensions as well as standalone OSGi frameworks and provide end-to-end
delivery of Eclipse applications with help and update sites.

What this book covers
Chapter 1, Plugging in to JFace and the Common Navigator Framework, demonstrates
how to create JFace wizards and how to integrate content into the Common
Navigator Framework, which is then used by Package Explorer to provide a
tree view of the project's contents.

Chapter 2, Creating Custom Extension Points, shows how the Eclipse extension registry
can be used to create an extensible plug-in that allows other plug-ins to contribute
functionalities and how it can be used outside of an OSGi or Eclipse runtime.

Chapter 3, Using OSGi Services to Dynamically Wire Applications, introduces OSGi
services as a means to extend an application's functionality. This chapter shows
how these services can be configured declaratively with Declarative Services or
Blueprint and how they can be configured using Config Admin along with the
new changes in OSGi R6.

Chapter 4, Using the Gogo Shell and Commands, discusses how to use the Gogo shell
embedded in Eclipse 4 and how to extend it by creating custom commands in Gogo
script and Java.

Preface

[2]

Chapter 5, Native Code and Fragment Bundles, demonstrates how to load native
code into an OSGi or Eclipse application and how fragment bundles can be used
to extend the capabilities of the framework or existing OSGi bundles.

Chapter 6, Understanding ClassLoaders, goes into detail as to how the key concepts
of a Java ClassLoader work and how they are used in an OSGi runtime. It also
explains how non-OSGi workarounds, such as the Thread Context ClassLoader
and ServiceLoader, can be used in an OSGi framework, along with presenting
upgrade strategies for non-OSGi JARs.

Chapter 7, Designing Modular Applications, discusses modular design patterns such
as the whiteboard pattern and extender pattern along with 18 best practices,
including how to use semantic versioning and tools that can automate version
number management.

Chapter 8, Event-driven Applications with EventAdmin, introduces the OSGi
EventAdmin service and how E4 uses events under the covers to provide an
interactive workspace, along with 7 steps for designing event-driven applications.

Chapter 9, Deploying and Updating with P2, shows how to create and manage P2
repositories (update sites) along with creating custom touchpoints and categories.

Chapter 10, User Assistance in Eclipse, demonstrates how to write help documentation
for an Eclipse- or RCP-based product along with cheat sheets and running a public
facing help server.

What you need for this book
To run the exercises in this book, you will need a computer with an up-to-date
operating system (running Windows, Linux, or Mac OS X). Java also needs to be
installed; the book's exercises were tested against JDK 1.7, but newer versions of
Java should also work. The exercises were written and tested against both Eclipse
Standard 4.4 (Luna) as well as 4.3 (Kepler). The principles should work for future
versions of Eclipse as well, but note that each release of Eclipse has a migration guide
in the Platform Plug-in Developer Guide help topic that will list any incompatibilities.
This help information is also available online at http://help.eclipse.org/ for
the current release.

The exercises are available on the Packt website as well as on GitHub at
https://github.com/alblue/com.packtpub.e4.advanced/. Using the
GitHub code will require a Git installation such as EGit for Eclipse (available from
the Eclipse Marketplace) or a standalone Git client from http://git-scm.com/.

http://help.eclipse.org/
https://github.com/alblue/com.packtpub.e4.advanced/
http://git-scm.com/

Preface

[3]

Who this book is for
This book is aimed at existing Eclipse plug-in developers who know the basics of
plug-in development but want to learn some of the techniques in greater detail.

Developers wishing to write extensible plug-ins will find the advice in
chapters 1 and 2 useful to integrate with some parts of the Eclipse framework
that they may not have previously used.

Those that are unfamiliar with OSGi services or don't know how to integrate into
Eclipse will find chapter 3 a good introduction, which is usually not covered in
other Eclipse plug-in development books. Those wishing to extend the Gogo shell
will find the information in chapter 4 beneficial, and chapter 5 will benefit those
who need help in including native code dependencies. Developers who need to
include non-OSGi JARs will find the techniques discussed in chapter 6 to be useful.

For those who are looking for advice on how to structure modular applications,
the practices in chapters 7 and 8 will be beneficial.

Finally, for developers responsible for providing products, chapters 9 and 10 show
how to customize and publish P2 repositories as well as provide user assistance
(help) for applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"A cursor need to be closed to free the resource the object holds by calling the
close() method."

A block of code is set as follows:

public void deleted(String pid) {
 System.out.println("Removing echo server with pid " + pid);
 EchoServer removed = echoServers.remove(pid);
 if (removed != null) {
 removed.stop();
 }
}

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 </goals>
 </execution>
 <execution>
 <id>baseline</id>
 <phase>package</phase>
 <goals>
 <goal>baseline</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Any command-line input or output is written as follows:

$ mvn install

$ mvn versions:set -DnewVersion=1.0.1

... make changes to Java files ...

$ mvn package

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on Reset (to scan the directory) followed by Finish will set up the baseline."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Alternatively, the code is available on GitHub at
the book's repository https://github.com/alblue/com.packtpub.e4.advanced/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/alblue/com.packtpub.e4.advanced/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Plugging in to JFace and
the Common Navigator

Framework
JFace is the set of widgets that comprise the Eclipse user interface, and it builds on
top of the Standard Widget Toolkit (SWT). JFace also provides a number of standard
higher-level tools that can provide interaction with users, such as wizards and
standard navigator plug-ins.

In this chapter, we will create a news feed reader using a JFace wizard, and then we
will contribute it to the common navigator so that it shows up in views such as the
Package Explorer view.

Plugging in to JFace and the Common Navigator Framework

[8]

JFace wizards
Whenever a new project or file is created in Eclipse, the standard JFace wizard is
used. For example, the following screenshots show the wizards to create a new
Plug-in Project or Java Class:

Chapter 1

[9]

Plugging in to JFace and the Common Navigator Framework

[10]

A JFace wizard has a common section at the top and bottom of the dialog, which
provides the title/icon and transition buttons along with an optional help link. Each
wizard consists of one or more linked pages that define the visible content area and
the button bar. The window title is shared across all pages; the page title and page
message allow information to be shown at the top. The page adds per-page content
into the content area by exposing a page control. The wizard can be displayed with
a wizard dialog or by integrating with the workbench functionality, such as the
newWizards extension point. The following diagram illustrates this:

Wizard

Dialog
Wizard

Wizard Page

Wizard Page

Wizard Page

Creating a feeds wizard
A wizard is created as a subclass of Wizard or another class that implements the
IWizard interface. Create a new plug-in project called com.packtpub.e4.advanced.
feeds.ui and ensure that the Generate an activator and This plug-in will make
contributions to the UI options are selected. Click on Finish to accept the defaults.

Creating the classes
Create a new class called com.packtpub.e4.advanced.feeds.ui.NewFeedWizard
that extends org.eclipse.jface.wizard.Wizard. This creates a skeleton file with
a performFinish method.

To add content, one or more pages must be created. A page is a subclass of
WizardPage or another class that implements the IWizardPage interface. Pages are
typically added within the constructor or addPages methods of the owning wizard.

Create a new class called com.packtpub.e4.advanced.feeds.ui.NewFeedPage
that extends org.eclipse.jface.wizard.WizardPage. The default implementation
will be missing a constructor; create a default constructor that passes the string
"NewFeedPage" to the superclass' constructor.

Chapter 1

[11]

The code should now look like the following code snippet:

package com.packtpub.e4.advanced.feeds.ui;
import org.eclipse.jface.wizard.Wizard;
public class NewFeedWizard extends Wizard {
 public boolean performFinish() {
 return false;
 }
}
package com.packtpub.e4.advanced.feeds.ui;
import org.eclipse.jface.wizard.WizardPage;
import org.eclipse.swt.widgets.Composite;
public class NewFeedPage extends WizardPage {
 protected NewFeedPage() {
 super("NewFeedPage");
 }
 public void createControl(Composite parent) {
 }
}

Adding pages to the wizard
The wizard has an addPages method that is called when it is about to be shown.
This allows one or more pages to be added to allow the wizard to do work. For
simple wizards, a single page is often enough; but for complex wizards, it may
make sense to break it down into two or more individual pages. A multipage
wizard typically steps through its pages in order, but more complex transitions
can be achieved if necessary.

Create a new instance of NewFeedPage and assign it to an instance variable called
newFeedPage. Create an addPages method that calls addPage with newFeedPage
as an argument, as shown in the following code:

private NewFeedPage newFeedPage = new NewFeedPage();
public void addPages() {
 addPage(newFeedPage);
}

Plugging in to JFace and the Common Navigator Framework

[12]

Adding content to the page
Each page has an associated content area, which is populated through the
createControl method on the page class. This is given a Composite object to
add widgets; a typical wizard page starts off with exactly the same stanza as other
container methods by creating a new Composite, setting it as the control on the
page and making it incomplete. The code is as follows:

public void createControl(Composite parent) {
 Composite page = new Composite(parent,SWT.NONE);
 setControl(page);
 setPageComplete(false);
}

Pages are typically set up as data gathering devices, and the logic is delegated to the
wizard to decide what action to take. In this case, a feed has a simple URL and a title,
so the page will store these as two instance variables and set up UI widgets to save
the content.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
The code can also be downloaded from the book's GitHub repository at
https://github.com/alblue/com.packtpub.e4.advanced/.

One of the easiest ways to get data out of the page is to persist references to the SWT
Text boxes that are used to input content and then provide accessors to access the
data. To guard against failure, accessor methods need to test for null and check that
the widget hasn't been disposed. The code is as follows:

private Text descriptionText;
private Text urlText;
public String getDescription() {
 return getTextFrom(descriptionText);
}
private String getTextFrom(Text text) {
 return text==null || text.isDisposed() ? null : text.getText();
}
public String getURL() {
 return getTextFrom(urlText);
}

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/alblue/com.packtpub.e4.advanced/

Chapter 1

[13]

This allows the parent wizard to access the data entered by the user once the page
is complete. The process of getting the data is typically performed within the
performFinish method, where the resulting operation can be displayed.

The page's user interface is built in the createControl method. This is typically
organized with a GridLayout, although this isn't a requirement. The user interface
for wizards tend to offer a grid of Label and Text widgets, so it could look like the
following code snippet:

 page.setLayout(new GridLayout(2, false));
 page.setLayoutData(new GridData(GridData.FILL_BOTH));
 Label urlLabel = new Label(page, SWT.NONE);
 urlLabel.setText("Feed URL:");
 urlText = new Text(page, SWT.BORDER);
 urlText.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 Label descriptionLabel = new Label(page, SWT.NONE);
 descriptionLabel.setText("Feed description:");
 descriptionText = new Text(page, SWT.BORDER);
 descriptionText.setLayoutData(
 new GridData(GridData.FILL_HORIZONTAL));

The Finish button on the wizard is enabled when the page is marked as complete.
Each wizard knows what information is required to finish; when it is finished, it
should call setPageComplete(true). This can be arranged in the NewFeedPage
class by listening to text entry changes on the feed description and URL and setting
the page to be complete when both have non-empty values:

private class CompleteListener implements KeyListener {
 public void keyPressed(KeyEvent e) {
 }
 public void keyReleased(KeyEvent e) {
 boolean hasDescription =
 !"".equals(getTextFrom(descriptionText));
 boolean hasUrl = !"".equals(getTextFrom(urlText));
 setPageComplete(hasDescription && hasUrl);
 }
}
public void createControl(Composite parent) {
 …
 CompleteListener listener = new CompleteListener();
 urlText.addKeyListener(listener);
 descriptionText.addKeyListener(listener);
}

www.allitebooks.com

http://www.allitebooks.org

Plugging in to JFace and the Common Navigator Framework

[14]

Now, whenever a key is pressed and there is text present in both the description
and URL fields, the Finish button will be enabled; if text is removed from either
field, it will be disabled.

Testing the wizard
To test whether the wizard works as expected before it is integrated into an Eclipse
application, a small standalone test script can be created. Although bad practice,
it is possible to add a main method to NewFeedWizard to allow it to display the
wizard in a standalone fashion.

Wizards are displayed with the JFace WizardDialog. This takes a Shell and the
Wizard instance; so a simple test can be run using the following snippet of code:

public static void main(String[] args) {
 Display display = new Display();
 Shell shell = new Shell(display);
 new WizardDialog(shell, new NewFeedWizard()).open();
 display.dispose();
}

Now, if the wizard is run, a standalone shell will be displayed and the fields and
checks can be tested for correct behavior. A more complex set of tests can be set
up with a UI test framework such as SWTBot.

For more information about SWTBot, see chapter 9 of the book Eclipse 4
Plug-in Development by Example Beginner's Guide, Packt Publishing, or visit
the SWTBot home page at http://eclipse.org/swtbot/.

Adding titles and images
If the wizard is shown as is, the title area will be empty. Typically, a user will need
to know what information to put in and what is required in order to complete the
dialog. Each page can contribute information specific to that step. In the case of a
multipage wizard where there are several distinct stages, each page can contribute
its own information.

http://eclipse.org/swtbot/

Chapter 1

[15]

In the case of the new feed page, the title and message can be informational.
The constructor is a good place to set the initial title and message. The code
to perform this operation is as follows:

protected NewFeedPage() {
 super("NewFeedPage");
 setTitle("Add New Feed");
 setMessage("Please enter a URL and description for a news feed");
}

When feed information is entered, the message can be replaced to indicate that a
description or URL is required. To clear the message, invoke setMessage(null).
To add an error message, invoke setMessage and pass in one of the constants
from IMessageProvider, as shown:

public void keyReleased(KeyEvent e) {
 boolean hasDescription
 = !"".equals(getTextFrom(descriptionText));
 boolean hasUrl = !"".equals(getTextFrom(urlText))
 if (!hasDescription) {
 setMessage("Please enter a description"
 IMessageProvider.ERROR);
 }
 if (!hasUrl) {
 setMessage("Please enter a URL", IMessageProvider.ERROR);
 }
 if (hasDescription && hasUrl) {
 setMessage(null);
 }
 setPageComplete(hasDescription && hasUrl);
}

To display an image on the wizard as a whole, the page can have an image of size
75 x 58 pixels. This can be set from an image descriptor in the constructor:

setImageDescriptor(
 ImageDescriptor.createFromFile(
 NewFeedPage.class, "/icons/full/wizban/newfeed_wiz.png"));

Plugging in to JFace and the Common Navigator Framework

[16]

Now, running the wizard will display an icon at the top-right corner (if it
doesn't, check that build.properties includes the icons/ directory in the
bin.includes property):

Chapter 1

[17]

Due to Eclipse bug 439695, Eclipse 4.4.0 may be unable to load the
IMessageProvider.ERROR image. If the red cross is seen as a
small red dot, this can be ignored; it will work when running as an
Eclipse plug-in. This bug is fixed in Eclipse 4.4.1 and above, and
does not occur in Eclipse 4.3.

Use this to add a feed file of http://www.packtpub.com/rss.xml with a description
of Packt Publishing special offers.

Adding help
To add help, the wizard needs to declare that help is available. During the construction
of the wizard or in the addPages method, a call to the parent's setHelpAvailable
method with a true parameter has to be invoked.

Help is delegated to each page by calling a performHelp method. This allows
context-sensitive help to be delivered for the specific page displayed, and it also
helps to get the state of the page or its previous page states. The code is as follows:

// Add to the NewFeedWizard class
public void addPages() {
 addPage(new NewFeedPage());
 setHelpAvailable(true);
}
// Add to the NewFeedPage class
public void performHelp() {
 MessageDialog.openInformation(getShell(),
 "Help for Add New Feed",
 "You can add your feeds into this as an RSS or Atom feed, "
 + "and optionally specify an additional description "
 + "which will be used as the feed title.");
}

http://www.packtpub.com/rss.xml

Plugging in to JFace and the Common Navigator Framework

[18]

Executing the preceding code will show a Help button on the bottom of the
dialog; when clicked, it will show a help dialog with some text as shown in
the following screenshot:

Finishing the wizard
When the user clicks on the Finish button on the wizard, the corresponding
performFinish method is called. This allows the wizard to acquire data from
the underlying pages and perform whatever action is required.

In this case, a Properties file called news.feeds can be created underneath a
project called bookmarks in the workspace. This will require that org.eclipse.
core.resources is added to the plug-in's dependencies.

For more information about creating resources and projects,
see chapter 6 of Eclipse 4 Plug-in Development by Example
Beginner's Guide, Packt Publishing, or visit the Eclipse help
documentation at http://help.eclipse.org.

First, acquire or create a project called bookmarks and then acquire or create a file
called news.feeds. The underlying content will be stored in the Properties file
as a list of key=value pairs, where key is the URL and value is the description.

http://help.eclipse.org

Chapter 1

[19]

To simplify access to ResourcesPlugin, create a helper method in NewFeedWizard
that will obtain an IFile from a project as follows:

private IFile getFile(String project, String name,
 IProgressMonitor monitor) throws CoreException {
 IWorkspace workspace = ResourcesPlugin.getWorkspace();
 IProject bookmarks = workspace.getRoot().getProject(project);
 if (!bookmarks.exists()) {
 bookmarks.create(monitor);
 }
 if (!bookmarks.isOpen()) {
 bookmarks.open(monitor);
 }
 return bookmarks.getFile(name);
}

To access the feeds from the resources, create two public static final variables
that define the name of the project and the name of the bookmarks file:

public static final String FEEDS_FILE = "news.feeds";
public static final String FEEDS_PROJECT = "bookmarks";

These can be used to create a helper method to add a single feed on the resource
by reading the contents of the file (creating it if it doesn't exist), adding the feed,
and then saving the new contents of the file:

private synchronized void addFeed(String url, String description)
 throws CoreException, IOException {
 Properties feeds = new Properties();
 IFile file = getFile(FEEDS_PROJECT, FEEDS_FILE, null);
 if (file.exists()) {
 feeds.load(file.getContents());
 }
 feeds.setProperty(url, description);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 feeds.store(baos, null);
 ByteArrayInputStream bais =
 new ByteArrayInputStream(baos.toByteArray());
 if (file.exists()) {
 file.setContents(bais, true, false, null);
 } else {
 file.create(bais, true, null);
 }
}

Plugging in to JFace and the Common Navigator Framework

[20]

Finally, to hook this method in with the performFinish method being called,
pull the description and url fields from NewFeedPage and then pass them to
the addFeed method. Since an exception may be raised, surround them with a
try/catch block that returns true or false (as appropriate):

public boolean performFinish() {
 String url = newFeedPage.getURL();
 String description = newFeedPage.getDescription();
 try {
 if (url != null && description != null) {
 addFeed(url, description);
 }
 return true;
 } catch (Exception e) {
 newFeedPage.setMessage(e.toString(), IMessageProvider.ERROR);
 return false;
 }
}

Running the wizard from the test harness won't have an effect, since the workspace
won't be open. It is thus necessary to contribute this to the new wizard's mechanism
in Eclipse, which is done in the next section.

Adding the FeedWizard to the newWizards
extension point
To integrate the wizard into Eclipse, it should be added to the newWizards
extension point provided by the org.eclipse.ui plug-in.

There is a minor modification required in the wizard to make it fit in with the
new wizard extension point: implementing the INewWizard interface. This adds
an additional method, init, that provides the current selection at the time of calling.
This allows the wizard to detect whether (for example) a string URL is selected
and, if so, fills the dialog with that information. The modification is shown in the
following code snippet:

public class NewFeedWizard extends Wizard implements INewWizard {
 public void init(IWorkbench workbench,
 IStructuredSelection selection) {
 }
 …
}

Chapter 1

[21]

Add the following extension, along with a 16 x 16 icon, to the plugin.xml file:

<plugin>
 <extension point="org.eclipse.ui.newWizards">
 <category name="Feeds"
 id="com.packtpub.e4.advanced.feeds.ui.category"/>
 <wizard name="New Feed"
 class="com.packtpub.e4.advanced.feeds.ui.NewFeedWizard"
 category="com.packtpub.e4.advanced.feeds.ui.category"
 icon="icons/full/etool16/newfeed_wiz.gif"
 id="com.packtpub.e4.advanced.feeds.ui.newFeedWizard"/>
 </extension>
</plugin>

Now, the Eclipse application can be run and a Feeds category will be added to the
New dialog situated under File.

Icon sizes, along with naming conventions, can be found on the
Eclipse wiki at http://wiki.eclipse.org/User_Interface_
Guidelines.

Adding a progress monitor
The wizard container can have a progress bar for long-running operations and can
be used to display the progress, including optional cancellation, if the job requires it.

To acquire a progress monitor, the wizard's container can be used to invoke
RunnableWithProgress, which is an interface that has a run method with an
IProgressMonitor argument. The addFeed method can be moved into an
anonymous inner class, which allows the wizard to display the progress of
the operation without blocking the UI. The code is as follows:

public boolean performFinish() {
 final String url = newFeedPage.getURL();
 final String description = newFeedPage.getDescription();
 try {
 boolean fork = false;
 boolean cancel = true;
 getContainer().run(fork, cancel, new IRunnableWithProgress() {
 public void run(IProgressMonitor monitor)
 throws InvocationTargetException, InterruptedException {
 try {
 if (url != null && description != null) {
 addFeed(url, description, monitor);

http://wiki.eclipse.org/User_Interface_Guidelines
http://wiki.eclipse.org/User_Interface_Guidelines

Plugging in to JFace and the Common Navigator Framework

[22]

 }
 } catch (Exception e) {
 throw new InvocationTargetException(e);
 }
 }
 });
 return true;
 } catch (InvocationTargetException e) {
 newFeedPage.setMessage(e.getTargetException().toString(),
 IMessageProvider.ERROR);
 return false;
 } catch (InterruptedException e) {
 return true;
 }
}

The fork argument passed to the run method indicates whether the job should
run in the path of the performFinish method or if it should run in a new thread.
If a new thread is chosen, the run method will return hiding any errors that may
be generated from the result of the addFeed call. The cancel argument provides
an option to cancel the job if run in the same thread.

The addFeed method can be modified (as shown in the following code snippet)
to interact with the progress monitor after converting it to a SubMonitor and
passing it to the child tasks as appropriate. Regularly checking whether the monitor
is cancelled will give the user the best experience if they decide to cancel the job.

private synchronized void addFeed(String url, String description,
 IProgressMonitor monitor) throws CoreException, IOException {
 SubMonitor subMonitor = SubMonitor.convert(monitor, 2);
 if(subMonitor.isCanceled())
 return;
 Properties feeds = new Properties();
 IFile file = getFile(FEEDS_PROJECT, FEEDS_FILE, subMonitor);
 subMonitor.worked(1);
 if (file.exists()) {
 feeds.load(file.getContents());
 }
 if(subMonitor.isCanceled())
 return;
 feeds.setProperty(url, description);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();

Chapter 1

[23]

 feeds.save(baos, null);
 ByteArrayInputStream bais =
 new ByteArrayInputStream(baos.toByteArray());
 if(subMonitor.isCanceled())
 return;
 if (file.exists()) {
 file.setContents(bais, true, false, subMonitor);
 } else {
 file.create(bais, true, subMonitor);
 }
 subMonitor.worked(1);
 if (monitor != null) {
 monitor.done();
 }
}

If the wizard is shown now, the cancellation button and progress bars are not shown.
In order to ensure that the wizard shows them, the addPages method must also
declare that the progress monitor is required, as shown in the following code snippet:

public void addPages() {
 addPage(newFeedPage);
 setHelpAvailable(true);
 setNeedsProgressMonitor(true);
}

Showing a preview
When feed information is added, the Finish button is automatically enabled. However,
the user may be interested in verifying whether they have entered the correct URL.
Adding an additional Preview page allows the user to confirm that the right details
have been entered.

To do this, create a new class called NewFeedPreviewPage that extends WizardPage.
Implement it using a constructor similar to the NewFeedPage and with a
createControl method that instantiates a Browser widget. Since loading a URL will
be an asynchronous operation, the browser can be pre-filled with a Loading... text
message that will be briefly visible before the page is loaded. The code is as follows:

public class NewFeedPreviewPage extends WizardPage {
 private Browser browser;
 protected NewFeedPreviewPage() {

www.allitebooks.com

http://www.allitebooks.org

Plugging in to JFace and the Common Navigator Framework

[24]

 super("NewFeedPreviewPage");
 setTitle("Preview of Feed");
 setMessage("A preview of the provided URL is shown below");
 setImageDescriptor(
 ImageDescriptor.createFromFile(NewFeedPreviewPage.class,
 "/icons/full/wizban/newfeed_wiz.png"));
 }
 public void createControl(Composite parent) {
 Composite page = new Composite(parent, SWT.NONE);
 setControl(page);
 page.setLayout(new FillLayout());
 browser = new Browser(page, SWT.NONE);
 browser.setText("Loading...");
 }
}

To have the browser show the correct URL when it is shown, override the setVisible
method. This only needs to be done if the page is visible and also if the browser widget
is not null and not disposed.

To find out what the value of the URL should be, the previous wizard page needs
to be acquired. Although it is possible to store these as static variables and use Java
to pass references, the parent Wizard already has a list of these pages and can return
them by name. Use this to acquire the NewFeedPage from the list of pages, from
which the URL can be acquired. The resulting setVisible method then looks like
the following code snippet:

 public void setVisible(boolean visible) {
 if (visible && browser != null && !browser.isDisposed()) {
 NewFeedPage newFeedPage = (NewFeedPage)
 (getWizard().getPage("NewFeedPage"));
 String url = newFeedPage.getURL();
 browser.setUrl(url);
 }
 super.setVisible(visible);
 }

The final step is to integrate this into the wizard itself. The only change that is
needed here is to add a field to store a reference to the preview page and pass it
in the addPages method, as shown in the following code:

private NewFeedPreviewPage newFeedPreviewPage
 = new NewFeedPreviewPage();
public void addPages() {

Chapter 1

[25]

 addPage(newFeedPage);
 addPage(newFeedPreviewPage);
 ...
}

Now, when the wizard is invoked, both the Next and Finish buttons are enabled once
the fields have been completed. Clicking on the Finish button as before will add the
feed, but the Next button will take the user to a page that has a preview of the page.

.

Common navigator
The common navigator is a JFace TreeView component that has extension points
for displaying arbitrary types of objects. Instead of having to write content and label
providers for all sorts of different objects, the common navigator provides a tree
view that allows plug-ins to contribute different renderers based on the type of
object in the tree.

Plugging in to JFace and the Common Navigator Framework

[26]

The common navigator is used by the Project Explorer view in Eclipse and is used
to show the graphics and labels for the packages, classes, and their methods and
fields, as shown in the following screenshot. It is also used in the enterprise Java
plug-in to provide Servlet and context-related information.

None of the resources shown in the screenshot of the Project Explorer view exist as
individual files on disk. Instead, the Project Explorer view presents a virtual view of
the web.xml contents. The J2EEContentProvider and J2EELabelProvider nodes
are used to expand the available content set and generate the top-level node, along
with references to the underlying source files.

Note that, as of Eclipse 4.4, the common navigator is an Eclipse 3.x
plug-in, and as such, works with the Eclipse 3.x compatibility layer.
CommonViewer provides a JFace TreeViewer subclass that may be
suitable in standalone E4 applications. However, it resides in the same
plug-in as the CommonNavigator class that has dependencies on the
Eclipse 3.x layer, and therefore may not be used in pure E4 applications.

Chapter 1

[27]

Creating a content and label provider
The common navigator allows plug-ins to register a JFace ContentProvider and
LabelProvider instance for components in the tree. These are then used to provide
the nodes in the common navigator tree.

For more information about content providers and label providers, see
chapter 3 of Eclipse 4 Plug-in Development by Example Beginner's Guide,
Packt Publishing, or other tutorials on the Internet.

To provide a content view of the feed's properties file, create the following classes:

•	 Feed (a data object that contains a name and URL)
•	 FeedLabelProvider (implements ILabelProvider)
•	 FeedContentProvider (implements ITreeContentProvider)

The FeedLabelProvider class needs to show the name of the feed as the label;
implement the getText method as follows:

public String getText(Object element) {
 if (element instanceof Feed) {
 return ((Feed) element).getName();
 } else {
 return null;
 }
}

Optionally, an image can be returned from the getImage method. One of the
default images from the Eclipse platform could be used (for example, IMG_OBJ_FILE
from the workbench's shared images). This is not required in order to implement a
label provider.

The FeedContentProvider class will be used to convert an IResource object into
an array of Feed objects. Since the IResource content can be loaded via a URI, it
can easily be converted into a Properties object, as shown in the following code:

private static final Object[] NO_CHILDREN = new Object[0];
public Object[] getChildren(Object parentElement) {
 Object[] result = NO_CHILDREN;
 if (parentElement instanceof IResource) {
 IResource resource = (IResource) parentElement;
 if (resource.getName().endsWith(".feeds")) {
 try {

Plugging in to JFace and the Common Navigator Framework

[28]

 Properties properties = new Properties();
 InputStream stream = resource.getLocationURI()
 .toURL().openStream();
 properties.load(stream);
 stream.close();
 result = new Object[properties.size()];
 int i = 0;
 Iterator it = properties.entrySet().iterator();
 while (it.hasNext()) {
 Map.Entry<String, String> entry =
 (Entry<String, String>) it.next();
 result[i++] = new Feed(entry.getValue(),
 entry.getKey());
 }
 } catch (Exception e) {
 return NO_CHILDREN;
 }
 }
 }
 return result;
}

The getElements method is not invoked when ITreeContentProvider is used;
but conventionally, it can be used to provide compatibility with other processes
if necessary.

Integrating into Common Navigator
The providers are registered with a navigatorContent element from the extension
point org.eclipse.ui.navigator.navigatorContent. This defines a unique ID, a
name, an icon, and whether it is active by default or not. This can be created using the
plug-in editor or by adding the configuration directly to the plugin.xml file, as shown:

<extension point="org.eclipse.ui.navigator.navigatorContent">
 <navigatorContent activeByDefault="true"
 contentProvider=
 "com.packtpub.e4.advanced.feeds.ui.FeedContentProvider"
 labelProvider=
 "com.packtpub.e4.advanced.feeds.ui.FeedLabelProvider"
 id="com.packtpub.e4.advanced.feeds.ui.feedNavigatorContent"

Chapter 1

[29]

 name="Feed Navigator Content">
 </navigatorContent>
</extension>

Running the preceding code will cause the following error to be displayed in the
error log:

Missing attribute: triggerPoints

The navigatorContent extension, needs to be told when this particular instance
should be activated. In this case, when an IResource is selected with an extension
of .feeds, this navigator should be enabled. The configuration is as follows:

<navigatorContent ...>
 <triggerPoints>
 <and>
 <instanceof value="org.eclipse.core.resources.IResource"/>
 <test forcePluginActivation="true"
 property="org.eclipse.core.resources.extension"
 value="feeds"/>
 </and>
 </triggerPoints>
</navigatorContent>

Adding the preceding code to the plugin.xml file fixes the error. There is an
additional element, possibleChildren, which is used to assist in invoking the
correct getParent method of an element:

<possibleChildren>
 <or>
 <instanceof value="com.packtpub.e4.advanced.feeds.ui.Feed"/>
 </or>
</possibleChildren>

The purpose of doing this is to tell the common navigator that when a Feed instance
is selected, it can defer to the FeedContentProvider to determine the parent of
a Feed. In the current implementation, this does not change, since the getParent
method of the FeedContentProvider returns null.

Running the Eclipse instance at this point will fail to display any content in the Project
Explorer view. To do that, the content navigator extensions need to be bound to the
right viewer by its ID.

Plugging in to JFace and the Common Navigator Framework

[30]

Binding content navigators to views
To prevent every content navigator extension from being applied to every view,
individual bindings allow specific providers to be bound to specific views. This is
not stored in the commonNavigator extension point, as this can be a many-to-many
relationship. Instead, a new extension point, org.eclipse.ui.navigator.viewer,
and a nested viewerContentBinding point are used:

<extension point="org.eclipse.ui.navigator.viewer">
 <viewerContentBinding
 viewerId="org.eclipse.ui.navigator.ProjectExplorer">
 <includes>
 <contentExtension pattern=
 "com.packtpub.e4.advanced.feeds.ui.feedNavigatorContent"/>
 </includes>
 </viewerContentBinding>
</extension>

The viewerId declares the view for which the binding is appropriate.

A list of viewerId values can be found from the Host OSGi
Console by executing the following command:
osgi> pt -v org.eclipse.ui.views | grep id

This provides a full list of IDs contained within the declarations of
the extension point org.eclipse.ui.views. Note that not all of
the IDs may be views, and most of them won't be subtypes of the
CommonNavigator view.

The pattern defined in the content extension can be a specific name (such as the
one used in the example previously) or it can be a regular expression, such as
com.packtpub.*, to match all extensions in a given namespace.

Running the application now will show a list of the individual feed elements
underneath news.feeds, as shown in the following screenshot:

Chapter 1

[31]

Adding commands to the common navigator
Adding a command to the common navigator is the same as other commands;
a command and handler are required, followed by a menuContribution that
targets the appropriate location URI.

To add a command to show the feed in a web browser, create a
ShowFeedInBrowserHandler class that uses the platform's ability to show a web page.
In order to show a web page, get hold of the PlatformUI browser support, which
offers the opportunity to create a browser and open a URL. The code is as follows:

public class ShowFeedInBrowserHandler extends AbstractHandler {
 public Object execute(ExecutionEvent event)
 throws ExecutionException {
 ISelection sel = HandlerUtil.getCurrentSelection(event);
 if (sel instanceof IStructuredSelection) {
 Iterator<?> it = ((IStructuredSelection)sel).iterator();
 while (it.hasNext()) {
 Object object = it.next();
 if (object instanceof Feed) {
 String url = ((Feed) object).getUrl();
 try {
 PlatformUI.getWorkbench().getBrowserSupport()
 .createBrowser(url).openURL(new URL(url));
 } catch (Exception e) {
 StatusManager.getManager().handle(
 new Status(Status.ERROR,Activator.PLUGIN_ID,
 "Could not open browser for " + url, e),
 StatusManager.LOG | StatusManager.SHOW);
 }
 }
 }
 }
 return null;
 }
}

If the selection is an IStructuredSelection, its elements will be processed; for
each selected Feed, a browser will be opened. The StatusManager class is used
to report an error to the workbench if there is a problem.

Plugging in to JFace and the Common Navigator Framework

[32]

The command will need to be registered in the plugin.xml file as follows:

<extension point="org.eclipse.ui.commands">
 <command name="Show Feed in Browser"
 description="Shows the selected feed in browser"
 id="com.packtpub.e4.advanced.feeds.ui.ShowFeedInBrowserCommand"
 defaultHandler=
 "com.packtpub.e4.advanced.feeds.ui.ShowFeedInBrowserHandler"/>
</extension>

To use this in a pop-up menu, it can be added as a menuContribution (which is also
done in the plugin.xml file). To ensure that the menu is only shown if the element
selected is a Feed instance, the standard pattern for iterating over the current selection
is used, as illustrated in the following code snippet:

<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false" locationURI=
 "popup:org.eclipse.ui.navigator.ProjectExplorer#PopupMenu">
 <command style="push" commandId=
 "com.packtpub.e4.advanced.feeds.ui.ShowFeedInBrowserCommand">
 <visibleWhen checkEnabled="false">
 <with variable="selection">
 <iterate ifEmpty="false" operator="or">
 <adapt type="com.packtpub.e4.advanced.feeds.ui.Feed"/>
 </iterate>
 </with>
 </visibleWhen>
 </command>
 </menuContribution>
</extension>

For more information about handlers and selections, see chapter 3
of Eclipse 4 Plug-in Development by Example Beginner's Guide, Packt
Publishing, or other tutorials on the Internet.

Now, when the application is run, the Show Feed in Browser menu will be
shown when the feed is selected in the common navigator, as illustrated in the
following screenshot:

Chapter 1

[33]

Reacting to updates
If the file changes, then currently the viewer does not refresh. This is problematic
because additions or removals to the news.feeds file do not result in changes in
the UI.

To solve this problem, ensure that the content provider implements
IResourceChangeListener (as shown in the following code snippet), and that
when initialized, it is registered with the workspace. Any resource changes will
then be delivered, which can be used to update the viewer.

public class FeedContentProvider implements
 ITreeContentProvider, IResourceChangeListener {
 private Viewer viewer;
 public void dispose() {
 viewer = null;
 ResourcesPlugin.getWorkspace().
 removeResourceChangeListener(this);
 }
 public void inputChanged(Viewer v, Object old, Object noo) {
 this.viewer = viewer;
 ResourcesPlugin.getWorkspace()
 .addResourceChangeListener(this,
 IResourceChangeEvent.POST_CHANGE);
 }
 public void resourceChanged(IResourceChangeEvent event) {
 if (viewer != null) {
 viewer.refresh();
 }
 }
}

Now when changes occur on the underling resource, the viewer will be
automatically updated.

www.allitebooks.com

http://www.allitebooks.org

Plugging in to JFace and the Common Navigator Framework

[34]

Optimizing the viewer updates
Updating the viewer whenever any resource changes is not very efficient. In addition,
if a resource change is invoked outside of the UI thread, then the refresh operation will
cause an Invalid Thread Access error message to be generated.

To fix this, the following two steps need to be performed:

•	 Invoke the refresh method from inside a UIJob class or via the
UISynchronizer class

•	 Pass the changed resource to the refresh method

To run the refresh method inside a UIJob class, replace the call with the
following code:

new UIJob("RefreshingFeeds") {
 public IStatus runInUIThread(IProgressMonitor monitor) {
 if(viewer != null) {
 viewer.refresh();
 }
 return Status.OK_STATUS;
 }
}.schedule();

This will ensure the operation works correctly, regardless of how the resource
change occurs.

To ensure that the viewer is only refreshed on resources that really need it,
IResourceDeltaVisitor is required. This has a visit method which includes
an IResourceDelta object that includes the changed resources.

An inner class, FeedsRefresher, that implements IResourceDeltaVisitor can
be used to walk the change for files matching a .feeds extension. This ensures
that the display is only updated/refreshed when a corresponding .feeds file is
updated, instead of every file. By returning true from the visit method, the delta
is recursively walked so that files at any level can be found. The code is as follows:

private class FeedsRefresher implements IResourceDeltaVisitor {
 public boolean visit(IResourceDelta delta) throws CoreException{
 final IResource resource = delta.getResource();
 if (resource != null &&
 "feeds".equals(resource.getFileExtension())) {
 new UIJob("RefreshingFeeds") {
 public IStatus runInUIThread(IProgressMonitor monitor) {

Chapter 1

[35]

 if(viewer != null) {
 viewer.refresh();
 }
 return Status.OK_STATUS;
 }
 }.schedule();
 }
 return true;
 }
}

This is hooked into the feed content provider by replacing the resourceChanged
method with the following code:

public void resourceChanged(IResourceChangeEvent event) {
 if (viewer != null) {
 try {
 FeedsRefresher feedsChanged = new FeedsRefresher();
 event.getDelta().accept(feedsChanged);
 } catch (CoreException e) {
 }
 }
}

Although the generic viewer only has a refresh method to refresh the entire view,
StructuredViewer has a refresh method that takes a specific object to refresh.
This allows the visit to be optimized further, as shown in the following code snippet:

new UIJob("RefreshingFeeds") {
 public IStatus runInUIThread(IProgressMonitor monitor) {
 if(viewer != null) {
 ((StructuredViewer)viewer).refresh(resource);
 }
 return Status.OK_STATUS;
 }
}.schedule();

Linking selection changes
There is an option in Eclipse-based views: Link editor with selection. This allows
a view to drive the selection in an editor, such as the Outline view's ability to select
the appropriate method in a Java source file.

Plugging in to JFace and the Common Navigator Framework

[36]

This can be added into the common navigator using a linkHelper. To add this,
open the plugin.xml file and add the following to link the editor whenever a
Feed instance is selected:

<extension point="org.eclipse.ui.navigator.linkHelper">
 <linkHelper
 class="com.packtpub.e4.advanced.feeds.ui.FeedLinkHelper"
 id="com.packtpub.e4.advanced.feeds.ui.FeedLinkHelper">
 <editorInputEnablement>
 <instanceof value="org.eclipse.ui.IFileEditorInput"/>
 </editorInputEnablement>
 <selectionEnablement>
 <instanceof value="com.packtpub.e4.advanced.feeds.ui.Feed"/>
 </selectionEnablement>
 </linkHelper>
</extension>

This will set up a call to the FeedLinkHelper class that will be notified whenever
the selected editor is a plain file or the object is of type Feed.

To ensure that linkHelper is configured for the navigator, it is necessary to add it
in to the includes element of the viewerContentBinding point created previously,
as shown in the following code:

<extension point="org.eclipse.ui.navigator.viewer">
 <viewerContentBinding
 viewerId="org.eclipse.ui.navigator.ProjectExplorer">
 <includes>
 <contentExtension pattern=
 "com.packtpub.e4.advanced.feeds.ui.feedNavigatorContent"/>
 <contentExtension pattern=
 "com.packtpub.e4.advanced.feeds.ui.FeedLinkHelper"/>
 </includes>
 </viewerContentBinding>
</extension>

FeedLinkHelper needs to implement the interface org.eclipse.ui.navigator.
ILinkHelper, which defines the two methods findSelection and activateEditor
to convert an editor to a selection and vice versa.

Chapter 1

[37]

Opening an editor
To open an editor and set the selection correctly, it will be necessary to include two
more bundles to the project: org.eclipse.jface.text (for the TextSelection class)
and org.eclipse.ui.ide (for the IDE class). This will tie the bundle into explicit
availability of the IDE, but it can be marked as optional (because if there is no IDE,
then there are no editors). It may also require org.eclipse.ui.navigator to be
added to include referenced class files.

To implement the activateEditor method, it is necessary to find where the
entry is inside the properties file and then set the selection appropriately. Since
there is no easy way to do this, the contents of the file will be read instead (with a
BufferedInputStream instance) while searching for the bytes that make up the
selected item. Because there is a hardcoded name of bookmarks and a feed of news.
feeds, this can be used to acquire the file content; though for real applications,
the Feed object should know its parent and be able to provide that dynamically.
The following code snippet shows how to set the selection appropriately:

public class FeedLinkHelper implements ILinkHelper {
 public void activateEditor(IWorkbenchPage page,
 IStructuredSelection selection) {
 Object object = selection.getFirstElement();
 if (object instanceof Feed) {
 Feed feed = ((Feed) object);
 byte[] line = (feed.getUrl().replace(":", "\\:") + "="
 + feed.getName()).getBytes();
 IProject bookmarks = ResourcesPlugin.getWorkspace()
 .getRoot().getProject(NewFeedWizard.FEEDS_PROJECT);
 if (bookmarks.exists() && bookmarks.isOpen()) {
 IFile feeds = bookmarks.getFile(NewFeedWizard.FEEDS_FILE);
 if (feeds.exists()) {
 try {
 TextSelection textSelection = findContent(line,feeds);
 if (textSelection != null) {
 setSelection(page, feeds, textSelection);
 }
 } catch (Exception e) {
 // Ignore
 }
 }
 }
 }
 }
 …
}

Plugging in to JFace and the Common Navigator Framework

[38]

Finding the line
To find the content of the line, it is necessary to get the contents of the file and then
perform a pass-through looking for the sequence of bytes. If the bytes are found, the
start point is recorded and is used to return a TextSelection. If they are not found,
then return a null, which indicates that the value shouldn't be set. This is illustrated
in the following code snippet:

private TextSelection findContent(byte[] content, IFile file)
 throws CoreException, IOException {
 int len = content.length;
 int start = -1;
 InputStream in = new BufferedInputStream(file.getContents());
 int pos = 0;
 while (start == -1) {
 int b = in.read();
 if (b == -1)
 break;
 if (b == content[0]) {
 in.mark(len);
 boolean found = true;
 for (int i = 1; i < content.length && found; i++) {
 found &= in.read() == content[i];
 }
 if (found) {
 start = pos;
 }
 in.reset();
 }
 pos++;
 }
 if (start != -1) {
 return new TextSelection(start, len);
 } else {
 return null;
 }
}

This takes advantage of the fact that BufferedInputStream will perform the mark
operation on the underlying content stream and allow backtracking to occur.
Because this is only triggered when the first character of the input is seen, it is not
too inefficient. To further optimize it, the content could be checked for the start of
a new line.

Chapter 1

[39]

Setting the selection
Once the appropriate selection has been identified, it can be opened in an editor
through the IDE class. This provides an openEditor method that can be used to
open an editor at a particular point, from which the selection service can be used
to set the text selection on the file. The code is as follows:

private void setSelection(IWorkbenchPage page, IFile feeds,
 TextSelection textSelection) throws PartInitException {
 IEditorPart editor = IDE.openEditor(page, feeds, false);
 editor.getEditorSite()
 .getSelectionProvider().setSelection(textSelection);
}

Now when the element is selected in the project navigator, the corresponding news.
feeds resource will be opened as long as Link editor with selection is enabled.

The corresponding direction, linking the editor with the selection in the viewer, is
much less practical. The problem is that the generic text editor won't fire the method
until the document is opened, and then there are limited ways in which the cursor
position can be detected from the document. More complex editors, such as the Java
editor, provide a means to model the document and understand where the cursor is
in relation to the methods and fields. This information is used to update the outline
and other views.

Summary
In this chapter, we covered how to create a dialog wizard with an optional page
and have that drive an entry in the New Wizard dialog. This was used to create
a feeds bookmark, which was then subsequently used to drive a set of fields in a
common navigator—showing how the children of a resource can be updated.

In the next chapter, we will look at how Eclipse manages its extension points, and
we will learn how to plug in to existing extension points as well as define custom
extension points.

Creating Custom
Extension Points

Eclipse is extended through the use of extension points and the extension registry.
The registry manages a list of extension points and a list of extensions. Although it is
commonly used in OSGi runtimes such as Eclipse, the extension registry can be used
outside of an OSGi runtime as well.

Extensions and extension points
The first thing to understand in the registry is the terminology. An extension is a
contributed functionality that is often found in the plugin.xml file as an <extension>
element. The extension itself provides some configuration or customization that
can be processed appropriately. An extension is like a USB device, such as a mouse
or keyboard. For example, the new feed wizard was added as an extension in the
previous chapter:

<extension point="org.eclipse.ui.newWizards">
 <category name="Feeds"
 id="com.packtpub.e4.advanced.feeds.ui.category"/>
</extension>

An extension point defines the contract of an extension, along with any required
arguments or attributes that an extension must provide. An extension point is like
a USB hub that allows extensions (USB devices) to be plugged in. For example, the
newWizards extension point is defined in the plugin.xml file of the org.eclipse.
ui plug-in as follows:

<extension-point id="newWizards" name="%ExtPoint.newWizards"
schema="schema/newWizards.exsd"/>

Creating Custom Extension Points

[42]

This refers to an XML schema document that defines the extension content, as shown
in the following snippet:

<?xml version='1.0' encoding='UTF-8'?>
<!-- Schema file written by PDE -->
<schema targetNamespace="org.eclipse.ui"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <annotation>
 <appInfo>
 <meta.schema plugin="org.eclipse.ui" id="newWizards"
 name="Creation Wizards"/>
 </appInfo>
 </annotation>
 <element name="extension">
 <complexType>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="category"/>
 ...
 </choice>
 </complexType>
 </element>
 <element name="category">
 <complexType>
 <attribute name="id" type="string" use="required"/>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 ...
</schema>

The schema defines the point for the org.eclipse.ui.newWizards extension
(the ID is the concatenation of the values of meta.schema plugin and id). It
declares that the extension has a category, which has required id and name attributes.

The schema also allows the PDE to verify whether elements are missing when
editing a plugin.xml file, or provide code completion to insert required or
optional elements.

Fortunately, PDE comes with good support to build this schema via a graphical
user interface, so the XML can remain hidden.

Chapter 2

[43]

Creating an extension point
To demonstrate the process of creating a new extension point in Eclipse, a feed
parser will be created. This takes a Feed instance (which contains a URL) and returns
an array of FeedItem instances. Extensions can be contributed to provide different
feed parsers; this allows a MockFeedParser instance to be initially created that
can then be substituted for other implementations in future.

Executable extension points tend to have a class attribute, whose class typically
implements a particular interface. An IFeedParser interface will be created to
represent the abstract API of all feed parsers; extensions that provide a feed parser
will be expected to implement this interface.

Creating an IFeedParser interface
Since the feed parser could be used outside of a UI, it makes sense to create a new
plug-in project called com.packtpub.e4.advanced.feeds and to refactor the Feed
instance from the UI package (created in Chapter 1, Plugging in to JFace and the Common
Navigator Framework) into this package as well.

When you refactor the Feed class, ensure that Update fully qualified
names in non-Java text files option is selected, or remember to refactor
the name in the fully qualified names in the plugin.xml file, since the
class name is used in several places in enablement tests.
Note that you will also need to ensure that the com.packtpub.
e4.advanced.feeds package is exported from the plug-in (from
the Runtime tab of the manifest editor) and the package is imported
by the com.packtpub.e4.advanced.feeds.ui plug-in (from the
Dependencies tab of the manifest editor).

One this is done, an interface IFeedParser will be created to parse a feed, as shown
in the following code snippet:

import java.util.List;
public interface IFeedParser {
 public List<FeedItem> parseFeed(Feed feed);
}

www.allitebooks.com

http://www.allitebooks.org

Creating Custom Extension Points

[44]

The intent is that this will return a list of items parsed from the feed. To do this,
a FeedItem class will be needed as well. Each FeedItem instance will have an
associated parent Feed, along with some other metadata.

It would be possible to create a mutable FeedItem instance with getter/
setter pairs for each attribute. However, this leads to the possibility that
a feed might be inadvertently mutated after it has been constructed.
A second approach is to use the constructor to add all arguments.
Unfortunately, this prevents evolution of the class; as new parameters
are added, more constructors need to be created with the values in place.
A better solution is to use the builder pattern, which allows a separate
object to assemble the instance. This way, the object can be created but
not mutated after it is returned. Visit http://en.wikipedia.org/
wiki/Builder_pattern for more information.

To instantiate a FeedItem class, an inner Builder class will be used. This has access
to the private fields of the FeedItem class, but permits the object to be returned
without a means of mutating it afterwards:

package com.packtpub.e4.advanced.feeds;
import java.util.Date;
public class FeedItem {
 // FeedItem fields
 private Date date;
 private Feed feed;
 private FeedItem(Feed feed) {
 this.feed = feed;
 }
 public Date getDate() {
 return date;
 }
 public Feed getFeed() {
 return feed;
 }
 // FeedItem.Builder class
 public static class Builder {
 private FeedItem item;
 public Builder(Feed feed) {
 item = new FeedItem(feed);
 }
 public FeedItem build() {
 if(item.date == null) {
 item.date = new Date();

http://en.wikipedia.org/wiki/Builder_pattern
http://en.wikipedia.org/wiki/Builder_pattern

Chapter 2

[45]

 }
 return item;
 }
 public Builder setDate(Date date) {
 item.date = date;
 return this;
 }
 }
}

The preceding example shows how the builder pattern is used, in this case, for two
fields: a parent feed and date. To extend the FeedItem class, add accessors in the
builder to set other elements such as the following:

•	 Title
•	 URL
•	 HTML

A FeedItem class can now be instantiated using the following code:

new FeedItem.Builder(feed).setDate(new Date()).build();

Note that the builder pattern is fairly common in Java, as is the literate
programming style used; by returning instances of Builder at the
end of each setter method, this allows chaining of method calls into a
single expression. The build method can also perform any necessary
validation to verify that all mandatory fields have been assigned and
any optional fields are assigned default values if necessary.

Creating a MockFeedParser class
To provide some feed data that can be used by a parser without having to make a
network connection, a MockFeedParser class can be created. This will take a Feed
instance and return a set of hardcoded FeedItems, allowing further testing to be done.

Because this class isn't intended to be directly visible to downstream users, put the
class in a different package, com.packtpub.e4.advanced.feeds.internal. This
way, the package will be hidden by the OSGi runtime and so dependent classes
won't be able to see or instantiate it. The following code illustrates the creation of the
MockFeedParser class:

By default, PDE and the Maven maven-bundle-plugin hide packages
with internal in their name. This allows the public API to be separated
from the internal implementation details to downstream clients.

Creating Custom Extension Points

[46]

public class MockFeedParser implements IFeedParser {
 public List<FeedItem> parseFeed(Feed feed) {
 List<FeedItem> items = new ArrayList<FeedItem>(3);
 items.add(new FeedItem.Builder(feed).setTitle("1st").build());
 items.add(new FeedItem.Builder(feed).setTitle("2nd").build());
 items.add(new FeedItem.Builder(feed).setTitle("3rd").build());
 return items;
 }
}

The mock can be populated with more data, such as an HTML body or different
dates, if these are desired.

Creating the extension point schema
The extension point for the feed will be called feedParser, and it will use the
IFeedParser interface.

To create an extension point, open up the plug-in's manifest by double-clicking
on the plugin.xml or MANIFEST.MF files, or by navigating to Plug-in tools | Open
Manifest from the project. Switch to the Extension Points tab, click on Add, and
enter feedParser for both the ID and the name in the dialog that shows up. This
is shown in the following screenshot:

Chapter 2

[47]

After clicking on Finish, the schema editor will be shown:

The Description, Since, Examples, API Information, Supplied Implementation,
and Copyright are all text-based fields that are used to generate the documentation
and can be left blank. However, this documentation will be shown to users in the
future and is used to generate the information as seen in the Eclipse help center and
at http://help.eclipse.org.

Switching to the Definition tab allows the contents of the extension point to be
modified. Select the extension element, click on the New Element button to its right,
and give it the name feedParser. This will be the name of the XML element that is
expected by clients. To give it an attribute value, ensure feedParser is selected, click
on New Attribute, and give it the name class. Its type will be java and it will be
required; use the Browse... button next to the Implements textbox to select the
IFeedParser created earlier.

http://help.eclipse.org

Creating Custom Extension Points

[48]

The resulting schema definition will now look something like what is shown in the
following screenshot:

Under the covers, the extension is represented in two different files. The first is the
plugin.xml file, which includes the following:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension-point id="feedParser" name="feedParser"
 schema="schema/feedParser.exsd"/>
</plugin>

The schema reference points to the schema definition, which was created by the
UI previously.

Note that the build.properties file should be updated to include
the schema directory in the binary output; otherwise, implementors of
the plug-in won't be able to verify whether the feedParser element is
correctly provided or not.

The schema is not necessary for the extension mechanism to work; it is mainly used by
PDE when allowing the element to be created in the plugin.xml file. However, it has
value in communicating documentation to other users of the extension point in both its
intent and its requirements, and so providing the schema is considered best practice.

Chapter 2

[49]

There are other values that can be defined on the extension point. For example,
each element has one of the following values:

•	 Name: This is the name that will be used for the element or attribute.
This must be a valid XML name for elements and attributes.

•	 Deprecated: This is false by default, but can be changed to true. This is
used to indicate to clients that an extension point should no longer be used;
it is often combined with the description to suggest an alternative or
replacement function.

•	 Translatable: If an attribute has a value that can be translated (such as a label
or another human-readable string), then this value should be true. If so,
the value in the plugin.xml may be a percent string such as %description,
and the value will be pulled out automatically from the localized plugin.
properties file by Eclipse when the extension point is loaded.

•	 Description: This is a human-readable description that can be shown by
PDE or converted into a help document that indicates how the point should
be used.

•	 Use: The value for this can be optional, required, or default. If an attribute
is marked as optional, then it does not need to be present. If an attribute
is marked as required, then it must be present. If it is marked as default,
then a default value box is shown that allows the default value to be defined,
which is used when the attribute is missing.

•	 Type: This is the attribute type. The attribute value can be of one of the
following types:

°° Boolean: This specifies that the attribute can have the value true
or false.

°° String: This specifies that the attribute value can be a string.
Strings may be translatable, and they can have restrictions that
are preset values that the string can take (such as North, South,
East, and West or UP and DOWN).

°° Java: This specifies that the attribute must be a type that either
extends the specified class or implements the specified interface.

°° Resource: This specifies that the attribute can have a resource type.
°° Identifier: This specifies that the attribute might reference another ID

in another schema document using an XPath-like expression of the
form org.eclipse.jdt.ui.javaDocWizard/@point, where org.
eclipse.jdt.ui is the plug-in namespace, javaDocWizard is an
extension, and @point is the attribute point within that element.

Creating Custom Extension Points

[50]

There is a DTD approximation that is used to show an
approximate Document Type Definition of the children. If an
element has no children, then it will show EMPTY; for a text
element, it will show (#PCDATA).
PCDATA, which stands for Parsed Character Data, is used in
HTML and originally came from SGML.

In addition, elements can be repeated. The schema editor permits a sequence
of elements (in other words, a list) or a choice of items (one of a set). These are
known as compositors and can be switched between using the Type drop-down.
Compositors have a minimum value and a maximum value; if the minimum is
zero, then it is effectively optional. The maximum value, if specified, allows a fixed
number to be specified (for example months=12); but if the unbounded option is
checked, then the compositor can have any number of child elements.

Typically, an extension point will permit more than one element to be added. To
enable this, it is necessary to add a Sequence element underneath the extension
element. The sequence is necessary to permit more than one element to be provided.

In the PDE schema editor, click on the extension element and choose New Sequence.
The minimum value should be 1 and the sequence should be unbounded; these are
the typical defaults, as shown in the following screenshot:

Chapter 2

[51]

To add the feedParser point to the extension, drag-and-drop the feedParser
element underneath the Sequence element, as shown in the following screenshot:

The feedParser.esxd schema should be similar to the following:

<?xml version='1.0' encoding='UTF-8'?>
<!-- Schema file written by PDE -->
<schema targetNamespace="com.packtpub.e4.advanced.feeds"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <annotation>
 <appinfo>
 <meta.schema plugin="com.packtpub.e4.advanced.feeds"
 id="feedParser" name="feedParser"/>
 </appinfo>
 <documentation>…</documentation>
 </annotation>
 <element name="extension">
 <annotation>
 <appinfo>
 <meta.element />
 </appinfo>
 </annotation>
 <complexType>
 <sequence minOccurs="1" maxOccurs="unbounded">
 <element ref="feedParser"/>

Creating Custom Extension Points

[52]

 </sequence>
 <attribute name="point" type="string" use="required"/>
 <attribute name="id" type="string" use="required"/>
 <attribute name="name" type="string"/>
 </complexType>
 </element>
 <element name="feedParser">
 <complexType>
 <attribute name="class" type="string" use="required">
 <annotation>
 <documentation>…</documentation>
 <appinfo>
 <meta.attribute kind="java"
 basedOn=":com.packtpub.e4.advanced.feeds.IFeedParser"/>
 </appinfo>
 </annotation>
 </attribute>
 </complexType>
 </element>
</schema>

Now the schema definition is complete.

Using the extension point
As with other extensions, they are added to a plug-in's plugin.xml file. It's not
uncommon for a plug-in to define both the extension point and an extension in the
same file.

Note that defining an extension point in the same file as an extension
means that there is no way of removing that extension from the platform
if that extension point is used elsewhere. Providing a plug-in that defines
the extension point and then separate plug-ins for the extensions allows
the extensions to be individually removed from the platform.

To add MockFeedParser to the plugin.xml file, add the following:

<extension point="com.packtpub.e4.advanced.feeds.feedParser">
 <feedParser class=
 "com.packtpub.e4.advanced.feeds.internal.MockFeedParser"/>
</extension>

In order to provide an easy way for clients to obtain a list of feed parsers, a class
FeedParserFactory will be created in the feeds plug-in. This class will be used to
provide a list of IFeedParser instances without having a specific API dependency
on the extension registry itself. The code is as follows:

Chapter 2

[53]

package com.packtpub.e4.advanced.feeds;
public class FeedParserFactory {
 private static FeedParserFactory DEFAULT;
 public static FeedParserFactory getDefault() {
 if (DEFAULT == null) {
 DEFAULT = new FeedParserFactory();
 }
 return DEFAULT;
 }
}

The registry is managed with an IExtensionRegistry interface, which can
be accessed via the org.eclipse.equinox.registry bundle. It is possible to
dynamically register extension elements, but the most common practice is to
read the extensions that exist in the runtime. To do this, add the org.eclipse.
equinox.registry bundle to the list of imported bundles in the manifest as follows:

Require-Bundle: org.eclipse.equinox.registry

The extension registry manages a set of extension points, which are identified
with an ID—typically consisting of the contributing bundle ID and the specific
ID of the extension point. From the preceding definition, the values will be
com.packtpub.e4.advanced.feeds and feedParser, respectively. Add the
following to the FeedParserFactory class:

public List<IFeedParser> getFeedParsers() {
 List<IFeedParser> parsers = new ArrayList<IFeedParser>();
 IExtensionRegistry registry = RegistryFactory.getRegistry();
 IExtensionPoint extensionPoint = registry.getExtensionPoint(
 "com.packtpub.e4.advanced.feeds", "feedParser");
 … // continued below
 return parsers;
}

IExtensionPoint represents the extension point definition itself.
This might return null if there is no such extension point, so it should
be checked before use. In previous versions of Eclipse, the identifiers used
to be stored as a single string, such as com.packtpub.e4.advanced.
feeds.feedParser. However, this resulted in many thousands of
strings that took up a lot of space in the PermGen area of the JVM. By
splitting them into two separate strings, many extensions in the same
plug-in share the same namespace, which results in just a single entry
in the PermGen area. Note that PermGen has been removed in the latest
JVM versions.

www.allitebooks.com

http://www.allitebooks.org

Creating Custom Extension Points

[54]

If the preceding code returns a non-null value, it can be interrogated further. The
most common call is getConfigurationElements, which allows the extensions to
be parsed. This gives a tree-like view of the content of the extension, mapping closely
to the structure of the entries in the plugin.xml file:

if (extensionPoint != null) {
 IConfigurationElement[] elements =
 extensionPoint.getConfigurationElements();
 for (int i = 0; i < elements.length; i++) {
 IConfigurationElement element = elements[i];
 … // continued below
 }
}

If the extension point contained only textual information (for example, Mylyn's
use of the registry to store URLs such as http://bugs.eclipse.org to report
Eclipse bugs), then the element could be interrogated to return the actual textual
value. In the feedParser example, the attribute containing the class name is the
one of interest.

In this case, the extension point defines a class to be instantiated. To do this, there
is a method called createExecutableExtension that takes an attribute name and
then instantiates a class using that name from the appropriate bundle. In effect, this
is similar to class.forName(extension.getAttribute("class")), but uses the
correct ClassLoader.

Although it might be tempting to think that using Class.forName()
would work on the returned class name, this doesn't work in the
case where the class comes from outside the current plug-in. Since
each bundle has its own ClassLoader and the plug-in that uses the
extension is almost always not the bundle that provides the extension,
it would not work in most cases.

Since it's possible that the extension has a semantic error, or that the plug-in might
not be loaded successfully, the instantiation of the class should try and catch
CoreException. If an error occurs, then the extension won't be useful; the runtime
might choose to log the error (for further diagnostics) if appropriate. Don't forget to
check whether the returned instance is of the correct type using instanceof; this
will also look for null.

The object is instantiated with a zero-argument constructor and returned to the
caller, shown as follows:

try {
 Object parser = element.createExecutableExtension("class");

http://bugs.eclipse.org

Chapter 2

[55]

 if (parser instanceof IFeedParser) {
 parsers.add((IFeedParser) parser);
 }
} catch (CoreException e) {
 // ignore or log as appropriate
}

Caching extension points
Should the return values of the extension be cached? It depends on what the use
case is likely to be. If they are only going to be used transiently, then there might
be no point in creating them each time. On the other hand, if they are cached, then
additional code will need to be created to register listeners to note when the plug-ins
are uninstalled.

The extension registry does a reasonable job of caching and returning values from
the calls, so these can be assumed to be fast. However, for the instantiated objects,
if identity is important, then it might be necessary to arrange some kind of cache of
the executable extensions.

If the return result is cached, then any new plug-ins that are subsequently installed
might not be seen.

The extension registry also has listener support; calling addListener on the registry
will provide a way of picking up changes to a specific extension point. This can be
used to update any caches when changes occur.

Integrating the extension with the content and
label providers
Having defined an extension point with a FeedItem provider, the next step is to
integrate it with the FeedLabelProvider and the FeedContentProvider classes
created in the previous chapter. Integrating it into the FeedLabelProvider class
is really simple because this is just an addition of a couple of lines:

public String getText(Object element) {
 if (element instanceof Feed) {
 return ((Feed) element).getName();
 } else if (element instanceof FeedItem) {
 return ((FeedItem)element).getTitle();
 } else {
 return null;
 }
}

Creating Custom Extension Points

[56]

When a FeedItem element is seen in the tree, its title will be used as the label.

Integrating with the FeedContentProvider class is the next step. To start off,
declare that all Feed elements have children and the parent of the FeedItem
element is Feed itself:

public Object getParent(Object element) {
 if(element instanceof FeedItem) {
 return ((FeedItem) element).getFeed();
 }
 return null;
}
public boolean hasChildren(Object element) {
 if(element instanceof Feed) {
 return true;
 }
 return false;
}

To parse the feed URL, perform the following steps:

1.	 Acquire the IFeedParser list (which comes from the extension registry).
2.	 Iterate through the list and attempt to acquire the FeedItem list.
3.	 If the value is non-null, return.

The code will be similar to the following:

public Object[] getChildren(Object parentElement) {
 Object[] result = NO_CHILDREN;
 if (parentElement instanceof IResource) {
 …
 } else if (parentElement instanceof Feed) {
 Feed feed = (Feed)parentElement;
 FeedParserFactory factory = FeedParserFactory.getDefault();
 List<IFeedParser> parsers = factory.getFeedParsers();
 for (IFeedParser parser : parsers) {
 List<FeedItem> items = parser.parseFeed(feed);
 if(items != null && !items.isEmpty()) {
 return items.toArray();
 }
 }
 }
}

Chapter 2

[57]

This pattern allows the FeedParserFactory class to return items in the order of
preference such that the first parser that handles the feed can return a value.

Run the Eclipse application, create a feed (the URL and title won't matter at this
point), and then drill down into the feeds and then into a single feed. The test data
that was used in the MockFeedParser class should be shown in the list, as shown in
the following screenshot:

Showing a feed in the browser
Now that feeds are showing as individual elements in the content provider, the
ShowFeedInBrowserHandler class can be copied and modified to allow individual
FeedItem entries to be added. Refer to the Adding commands to the common navigator
section in Chapter 1, Plugging in to JFace and the Common Navigator Framework.

Copy the ShowFeedInBrowserHandler class to ShowFeedItemInBrowserHandler.
The only change that's needed is the change from Feed to FeedItem in the
instanceof test and subsequent cast:

public class ShowFeedItemInBrowserHandler extends AbstractHandler{
 public Object execute(ExecutionEvent event) throws
 ExecutionException {
 ISelection selection = HandlerUtil.getCurrentSelection(event);
 if (selection instanceof IStructuredSelection) {
 Iterator<?> it = ((IStructuredSelection) selection)
 .iterator();

Creating Custom Extension Points

[58]

 while (it.hasNext()) {
 Object object = (Object) it.next();
 // if (object instanceof Feed) {
 // String url = ((Feed) object).getUrl();
 if (object instanceof FeedItem) {
 String url = ((FeedItem) object).getUrl();
 ...

It will also be necessary to duplicate both the handler and command entries in the
plugin.xml file, along with the change to the feed item. This is shown in the following:

<extension point="org.eclipse.ui.commands">
 <command description="Shows the selected feed item in browser"
 defaultHandler=
 "com.packtpub.e4.advanced.feeds.ui.ShowFeedItemInBrowserHandler"
 id=
 "com.packtpub.e4.advanced.feeds.ui.ShowFeedItemInBrowserCommand"
 name="Show Feed Item in Browser"/>
</extension>

Enabling the menu item is necessary to show the command associated with any
selected FeedItem instances as follows:

<extension point="org.eclipse.ui.menus">
 <menuContribution allPopups="false" locationURI=
 "popup:org.eclipse.ui.navigator.ProjectExplorer#PopupMenu">
 <command style="push" commandId=
 "com.packtpub.e4.advanced.feeds.ui.ShowFeedItemInBrowserCommand">
 <visibleWhen checkEnabled="false">
 <with variable="selection">
 <iterate ifEmpty="false" operator="or">
 <adapt type=
 "com.packtpub.e4.advanced.feeds.FeedItem"/>
 </iterate>
 </with>
 </visibleWhen>
 </command>
 </menuContribution>
</extension>

If the application is run, then a MalformedURLException will be generated, since the
MockFeedParser doesn't have any URLs set on it. Modify it as follows:

items.add(new FeedItem.Builder(feed).setTitle("AlBlue's Blog").
 setUrl("http://alblue.bandlem.com").build());
items.add(new FeedItem.Builder(feed).setTitle("Packt Publishing").

Chapter 2

[59]

 setUrl("http://www.packtpub.com").build());
items.add(new FeedItem.Builder(feed).setTitle("Source Code").
 setUrl("https://github.com/alblue/com.packtpub.e4.advanced").
 build());

Now running the application will show the URLs when selected, as shown in the
following screenshot:

Implementing a real feed parser
The MockFeedParser can be replaced with an implementation to parse RSS feeds.
This requires parsing some simple XML to understand the feed reference.

An RSS feed looks like:

<rss version="2.0">
 <channel>
 <title>Eclipse Example Feed</title>
 <description>Descriptive feed information</description>
 <link>http://eclipse.org/</link>
 <item>
 <title>Luna released</title>
 <description>Eclipse Luna has been released</description>
 <link>http://eclipse.org/luna/</link>
 <pubDate>Wed, 25 June 2014 09:00:00 -0500</pubDate>
 </item>
 </channel>
</rss>

Creating Custom Extension Points

[60]

Unfortunately, since this is XML, it will require parsing. There are several ways
of doing this, but using a DocumentBuilder instance will allow the elements to be
iterated through and pull out the title and link elements, along with pubDate.

Create an RSSFeedParser class (with a couple of helper methods) to parse a date
from the RFC822 format and a mechanism to parse a text value from an Element,
as shown in the following code snippet:

package com.packtpub.e4.advanced.feeds.internal;
public class RSSFeedParser implements IFeedParser {
 public List<FeedItem> parseFeed(Feed feed) {
 …
 }
 private Date parseDate(String date) {
 try {
 return new SimpleDateFormat("EEE, dd MMM yyyy HH:mm:ss zzz")
 .parse(date);
 } catch (Exception e) {
 return null;
 }
 }
 private String getTextValueOf(Node item, String element) {
 try {
 return ((Element) item).getElementsByTagName(element).
 item(0).getTextContent();
 } catch (Exception e) {
 return null;
 }
 }
}

These helper methods can be used to parse the elements out of the feed by
parsing the URL of the Feed with a DocumentBuilder instance and then using
getElementsByName to find the item elements. The parseFeed method will be
similar to the following code:

public List<FeedItem> parseFeed(Feed feed) {
 try {
 List<FeedItem> feedItems = new ArrayList<FeedItem>();
 DocumentBuilder builder = DocumentBuilderFactory.newInstance()
 .newDocumentBuilder();
 Document doc = builder.parse(
 new URL(feed.getUrl()).openStream());
 NodeList items = doc.getElementsByTagName("item");
 for (int i = 0; i < items.getLength(); i++) {

Chapter 2

[61]

 Node item = items.item(i);
 Builder feedItem = new FeedItem.Builder(feed);
 feedItem.setTitle(getTextValueOf(item,"title"));
 feedItem.setUrl(getTextValueOf(item,"link"));
 feedItem.setDate(parseDate(getTextValueOf(item,"pubDate")));
 feedItems.add(feedItem.build());
 }
 return feedItems;
 } catch (Exception e) {
 return null;
 }
}

This looks for elements called item, finds child text elements with title and link,
and sets them into the feed.

To add this to the Eclipse instance, add RSSFeedParser to the plugin.xml file
in the feedParser extension point:

<extension point="com.packtpub.e4.advanced.feeds.feedParser">
 <feedParser class=
 "com.packtpub.e4.advanced.feeds.internal.RSSFeedParser"/>
</extension>

If the MockFeedParser instance is still present, the ordering in the plugin.xml file
will be important. By default, the order returned in the array is the same as they are
in the file. FeedParserFactory returns the first parser that successfully parses the
feed; therefore, if the MockFeedParser is first, then the real content of the feed will
not be returned.

The feed parser is non-optimal; the feed will be parsed and
potentially reacquired multiple times. It would be desirable to
have the contents of the source document cached, but this is an
optimization left for you.

Run the Eclipse application and use the add feed wizard to add a feed for the
Packt Publishing RSS feed, http://www.packtpub.com/rss.xml.

Adding support for Atom
Not all feeds use RSS as a feed type, partly because RSS was incompletely specified
and had several slightly different incompatible feed formats. Atom was designed
to resolve the issues with RSS but, in practice, there are approximately an equal
number of feeds specified in RSS and Atom.

http://www.packtpub.com/rss.xml

Creating Custom Extension Points

[62]

An Atom feed looks like:

<feed xmlns="http://www.w3.org/2005/Atom">
 <title>AlBlue's Blog</title>
 <entry>
 <title>Eclipse 4 Book Published</title>
 <updated>2013-07-01T12:00:00+01:00</updated>
 <link href="
http://alblue.bandlem.com/2013/07/eclipse-book-published.html"/>
 </entry>
</feed>

Parsing it will not be significantly different from before; the structure can be used
to pull out the entry and the contained title, link, and updated references.
However, there are a couple of points that are worth noting in this example:

•	 The Java Date APIs do not understand colons in time zones, so +01:00
must be converted to +0100 to be parsed

•	 The reference for the link is stored inside an href attribute instead of as a
text node

An AtomFeedParser class can be created as follows:

public class AtomFeedParser implements IFeedParser {
 public List<FeedItem> parseFeed(Feed feed) {
 try {
 List<FeedItem> feedItems = new ArrayList<FeedItem>();
 DocumentBuilder builder = DocumentBuilderFactory
 .newInstance().newDocumentBuilder();
 Document doc = builder.parse(
 new URL(feed.getUrl()).openStream());
 NodeList items = doc.getElementsByTagName("entry");
 for (int i = 0; i < items.getLength(); i++) {
 Node item = items.item(i);
 Builder feedItem = new FeedItem.Builder(feed);
 feedItem.setTitle(getTextValueOf(item, "title"));
 feedItem.setUrl(getTextValueOfAttribute(
 item, "link", "href"));
 feedItem.setDate(parseDate(getTextValueOf(
 item,"updated")));
 feedItems.add(feedItem.build());
 }
 return feedItems;

Chapter 2

[63]

 } catch (Exception e) {
 return null;
 }
 }
 …
}

The parseDate method is similar to the following code:

private Date parseDate(String date) {
 try {
 if (date.length() > 22 && date.charAt(22) == ':') {
 date = date.substring(0, 22) + date.substring(23);
 }
 return new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ssZ")
 .parse(date);
 } catch (Exception e) {
 return null;
 }
}

To parse an attribute value out from XML, an additional helper method can be
created as follows:

private String getTextValueOfAttribute(Node item, String element,
 String attribute) {
 try {
 return ((Element) item).getElementsByTagName(element).item(0)
 .getAttributes().getNamedItem(attribute).getNodeValue();
 } catch (Exception e) {
 return null;
 }
}

Adding the class into the extension points will allow the element to be parsed if the
feed is not an RSS feed as follows:

<extension point="com.packtpub.e4.advanced.feeds.feedParser">
 <feedParser class=
 "com.packtpub.e4.advanced.feeds.internal.RSSFeedParser"/>
 <feedParser class=
 "com.packtpub.e4.advanced.feeds.internal.AtomFeedParser"/>
</extension>

Now when the feed is downloaded, it will attempt to parse it as RSS first and then
fall back to Atom afterwards.

Creating Custom Extension Points

[64]

Making the parser namespace aware
The Atom specification uses XML namespaces. To parse the feed properly,
the document builder must be specified as namespace aware and the elements
lookup needs to use the equivalent getElementsByTagNameNS.

In the AtomFeedParser class, define a static constant to hold the Atom namespace:

private static final String ATOM = "http://www.w3.org/2005/Atom";

Then, replace the calls to getElementsByTagName with the namespace aware
equivalent getElementsByTagNameNS, as shown in the following code:

// NodeList items = doc.getElementsByTagName("entry");
NodeList items = doc.getElementsByTagNameNS(ATOM, "entry");
…
// return ((Element) item)
// .getElementsByTagName(element).item(0)
return ((Element) item)
 .getElementsByTagNameNS(ATOM,element).item(0)

Finally, to ensure that the document builder is using namespace aware parsing,
the DocumentBuilderFactory instance needs to be appropriately configured before
DocumentBuilder is instantiated. The code is as follows:

// DocumentBuilder builder = DocumentBuilderFactory.newInstance()
// .newDocumentBuilder();
DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);
DocumentBuilder builder = factory.newDocumentBuilder();

When the Atom feed is parsed, it will be correctly represented if there are multiple
namespaces or a default namespace is not specified.

Priority and ordering
The order of the IConfigurationElement instances returned by the registry should
not be relied upon for consistency. Relying on a specific order will prevent others
from easily being able to contribute additional implementations from other plug-ins.
If an ordering is desired, additional metadata should be added to the extension to
allow the ordering to be calculated after retrieval.

Chapter 2

[65]

In this case, MockFeedParser should have the lowest priority and RSSFeedParser
should have a higher priority than AtomFeedParser. To implement this, an extra
attribute priority will be added to the extension point so that the results can be
processed after loading.

Although any ordering can be used (for example, high/medium/low, or top/bottom),
it is easier to deal with numerical priorities and perform an integer sort. Using both
positive and negative numbers allows a full range of priorities and also allows some
extensions to register themselves as less desirable than the default, which can remain
at zero.

Modify the extension point schema feedParser.esxd and add a new attribute under
the feedParser element called priority. Since the XML schema for extension points
does not permit numeric values, use string as the type and the value can be parsed
afterwards. This is shown in the following screenshot:

Now, in the plugin.xml file where the feeds are defined, add a priority of -1 to
MockFeedParser and a priority of 1 to RSSFeedParser:

<extension point="com.packtpub.e4.advanced.feeds.feedParser">
 <feedParser priority="1"
 class="com.packtpub.e4.advanced.feeds.internal.RSSFeedParser"/>
 <feedParser

Creating Custom Extension Points

[66]

 class="com.packtpub.e4.advanced.feeds.internal.AtomFeedParser"/>
 <feedParser priority="-1"
 class="com.packtpub.e4.advanced.feeds.internal.MockFeedParser"/>
</extension>

Since the IFeedParser interface doesn't have a priority attribute that can be set,
the IConfigurationElement instances must be sorted after retrieval, but before
iteration. To do this, the Arrays class can be used by calling sort with an
appropriate Comparator.

Create a class called FeedParserConfigurationComparator in the internal
package, and then make it implement Comparator with a target type of
IConfigurationElement. Write a helper method to parse an integer from a string,
treating a missing value (null) or integers that cannot be parsed as a zero value.

The class will be similar to the following code:

public class FeedParserConfigurationComparator implements
 Comparator<IConfigurationElement> {
 private static final String PRIORITY = "priority";
 public int compare(IConfigurationElement o1,
 IConfigurationElement o2) {
 String a1 = o1.getAttribute(PRIORITY);
 String a2 = o2.getAttribute(PRIORITY);
 return parseInt(a2) – parseInt(a1);
 }
 private int parseInt(String string) {
 try {
 return Integer.parseInt(string);
 } catch (Exception e) {
 return 0;
 }
 }
}

This will sort the extensions based on the numerical value of the priority attribute.
To invoke it, call a sort method after the configuration elements are accessed in
FeedParserFactory:

IConfigurationElement[] elements =
 extensionPoint.getConfigurationElements();
Arrays.sort(elements, new FeedParserConfigurationComparator());

Chapter 2

[67]

Now when the extensions are processed, they will be done in priority order.

Using a singleton for comparators?
It's possible to use the singleton pattern for the comparator, since it
uses no instance variables. By making the constructor private and
instantiating a public static final constant, it can be referred to
with FeedParserConfigurationComparator.INSTANCE. This is
useful if the comparator is being used in a lot of places, since the same
instance will be reused. However, if it is used infrequently, creating and
disposing the comparator will be fairly fast and will not permanently
stay in memory when not in use. The tradeoff between memory and
CPU utilization will depend on the expected use cases.

Executable extensions and data
When an extension point is created, it is called with a zero-argument constructor.
The result is that most extensions in Eclipse are pre-configured with whatever
data they need with no further customization.

It is possible to pass through additional configuration data in the plugin.xml file
and have that parsed at start-up. To do this, the IExecutableExtension interface
provides a setInitializationData method that passes in information defined
statically within the plugin.xml file.

By adding the IExecutableExtension interface to the concrete feed parser instance,
it's possible to have additional data from the plugin.xml file passed into the class
itself. This may allow the same implementation to perform in different ways based
on values contained within the plugin.xml file; for example, a limit could be placed
on the parser to indicate how many feed entries would be shown in the list.

Add the IExecutableExtension interface to the AtomFeedParser class, and then
add following code:

private int max = Integer.MAX_VALUE;
public void setInitializationData(IConfigurationElement config,
 String propertyName, Object data) throws CoreException {
 if (data instanceof String) {
 try {
 max = Integer.parseInt((String) data);
 } catch (Exception e) {
 // Ignore
 }
 }
}

Creating Custom Extension Points

[68]

The max field can be used to limit the number of elements returned from the feed:

for (int i = 0; i < items.getLength() && i < max; i++)

The data can be passed in a couple of different ways. The easiest way (if it's a single
value or can be represented as a string) is to pass it after the class name of the
attribute with a colon. Modify the plugin.xml as shown:

<feedParser class="com.packtpub.e4.advanced.feeds.internal.
AtomFeedParser:2"/>

Note the :2 at the end of the class name. Upon initialization of the feed parser,
the value will be passed in as the data object.

The value of propertyName in this case will be class, which
is taken from the createExecutableExtension method call
previously and refers to the XML attribute class in this entry.

Now when the application is run, Atom feeds such as http://alblue.bandlem.
com/atom.xml will only return a maximum of two values. The same change can
be applied to RSSFeedParser.

There are several ways of pulling configuration information out from an
extension. The simplest way is to parse the string appropriately after the
class name, and this suffices for most cases.
More complex cases can simply parse the IConfigurationElement
interface (shown in the next example).

There is also an ancient plug-in configuration process that can be
invoked if null is passed as an attribute name and where elements and
parameters use a specific hardcoded pattern. Parameters are parsed from
name/value pairs and passed into the data as a Hashtable:

<feedParser>
 <parser class="class.name">
 <parameter name="maxCount" value="1">
 </parser>
</feedParser>

This is for compatibility with older versions of Eclipse and should not
be used.

http://alblue.bandlem.com/atom.xml
http://alblue.bandlem.com/atom.xml

Chapter 2

[69]

Executable extension factories
Sometimes, it's not possible to add an interface to the class that requires instantiation.
This is either because it doesn't make sense for the component itself to implement
IExecutableExtension, or because it's a closed source component, such as a
database driver that cannot be modified.

Note that the DBFactory example is not used or needed by the
Feed example; it's used to demonstrate the need to introduce
factories where the user has no ability to change the class being
instantiated. It is provided here just as an example.

This issue can be resolved by using an executable extension factory. This permits a
factory to be used to instantiate the extension. For example, if a database connection
was defined in an extension point, it might be similar to the following:

<database user="example" pass="pass" url="jdbc:h2:/tmp/test"/>

The desired result of this would be to provide an instantiated JDBC Connection
object of the right type. Clearly, the driver itself cannot be modified to implement
the IExecutableExtension interface; but it is possible to provide it as an extension
with a factory:

public class DBFactory implements IExecutableExtension,
 IExecutableExtensionFactory {
 private String url;
 private String user;
 private String pass;
 public void setInitializationData(IConfigurationElement config,
 String propertyName, Object data) throws CoreException {
 url = config.getAttribute("url");
 user = config.getAttribute("user");
 pass = config.getAttribute("pass");
 }
 public Object create() throws CoreException {
 try {
 return DriverManager.getConnection(url, user, pass);
 } catch (SQLException e) {
 throw new CoreException(new Status(IStatus.ERROR,
 "com.packtpub.e4.advanced.feeds",
 "Failed to get driver connection for " + url, e));
 }
 }
}

Creating Custom Extension Points

[70]

The preceding example shows another way of getting the configuration data—by
direct parsing of the IConfigurationElement class. Of course, placing user IDs
and passwords hardcoded into an extension point is not good practice; the example
here is used because the Connection interface will be familiar to many readers.

Note that since the DriverManager class does a lookup based on the URL to acquire
the database connection, it will be necessary to have those driver classes available
on the bundle's classpath—either as a direct import or as a bundle dependency.

It's fairly common for an IExecutableExtensionFactory
instance to also inherit IExecutableExtension, as that is the
only way of receiving data if it is required. If the factory does
not need such data (for example, it is instantiating an in-memory
structure, or using external file configuration), it might be possible
to have an IExecutableExtensionFactory interface that does
not implement IExecutableExtension.

Using the extension registry outside of OSGi
Although the extension registry can work outside of OSGi, it's not easy to do so.
This is partly is due to the set of libraries that are required and partly because there
is additional setup required in order to provide the registry with the right state.

There are a number of dependencies that need to be provided for the extension
registry to work, including the Equinox Supplemental bundle. The supplemental
bundle provides commonly used features such as NLS and Debug, which are liberally
spread around the Equinox codebase and are required for running outside of
Equinox. In addition (in Kepler and below), the Debug class transitively depends
on the OSGi ServiceTracker, which means that even when running outside of
OSGi, this package is required.

The minimum setup for a Java application (running outside of OSGi) to use the
extension registry is as follows:

•	 org.eclipse.equinox.registry

•	 org.eclipse.equinox.common (provides CoreException)
•	 org.eclipse.equinox.supplement (provides NLS and Debug)
•	 org.osgi.core (provides ServiceTracker)

Note that if running in a non-Equinox OSGi container, org.osgi.core will not be
needed. If running in Equinox, then the supplemental bundle is not needed, as this
provides a copy of the public classes and interfaces used.

Chapter 2

[71]

In Eclipse Luna and above (org.eclipse.equinox.supplement version 3.5.100 or
higher), the dependency on org.osgi.core has been removed so this particular
dependency is no longer necessary.

The supplemental bundle can be downloaded from the Equinox
downloads page at http://download.eclipse.org/
equinox/; navigate to the latest release builds and go to the Add-
on Bundles section. For example, the download URL for Kepler
SR2 is http://download.eclipse.org/equinox/drops/R-
KeplerSR2-201402211700/download.php?dropFile=org.
eclipse.equinox.supplement_1.5.0.v20130812-2109.jar.

To configure the registry to run outside of OSGi, it is necessary to set up a registry
instance. There is an IRegistryProvider interface that can be used to define what
registry instance should be returned when RegistryFactory.getRegistry is called.
By default, this will return null until a registry has been set; in an OSGi runtime,
this is done by the registry bundle itself starting.

To create a Registry instance directly, there is a RegistryFactory.create method
that takes a RegistryStrategy instance along with a couple of tokens. The tokens
can be used in secure environments to prevent callers from modifying or adding to
the registry. All three elements can be left as null.

The net effect is that adding this to the start-up of a Java application, which needs
the registry, will work:

public class NonOsgi {
 private final main(String[] args) throws Exception {
 RegistryFactory.setDefaultRegistryProvider(
 new IRegistryProvider() {
 private final IExtensionRegistry registry =
 RegistryFactory.createRegistry(null, null, null);
 public IExtensionRegistry getRegistry() {
 return registry;
 }
 });
 … // register or look up contributions
 }
}

Once the registry has been set, it can be acquired from the RegistryFactory interface:

IExtensionRegistry reg = RegistryFactory.getRegistry();

http://download.eclipse.org/equinox/
http://download.eclipse.org/equinox/
http://download.eclipse.org/equinox/drops/R-KeplerSR2-201402211700/download.php?dropFile=org.eclipse.equinox.supplement_1.5.0.v20130812-2109.jar
http://download.eclipse.org/equinox/drops/R-KeplerSR2-201402211700/download.php?dropFile=org.eclipse.equinox.supplement_1.5.0.v20130812-2109.jar
http://download.eclipse.org/equinox/drops/R-KeplerSR2-201402211700/download.php?dropFile=org.eclipse.equinox.supplement_1.5.0.v20130812-2109.jar

Creating Custom Extension Points

[72]

However, unlike OSGi (where the registry automatically scans for bundles as they
are inserted and registers the extension elements), in a standalone Java application
this needs to be done manually.

To load a single plugin.xml file into the registry, it is necessary to first create a
contributor (which in OSGi is the bundle, but in a Java application can be a different
mechanism) and then add a contribution. The contribution itself is an InputStream
that represents the plugin.xml file, called feeds.xml here:

IContributor contributor = ContributorFactorySimple
 .createContributor("com.packtpub.e4.advanced.feeds");
reg.addContribution(Main.class.getResourceAsStream("/feeds.xml"),
 contributor, false, "/feeds.xml", null, null);

This loads the file feeds.xml from the classpath and uses that to register the feeds
plug-in mentioned previously. This XML file may be built in-memory or loaded
from other input sources, but has the same effect and content as the plugin.xml
of the original bundle.

Unfortunately, it isn't possible to use plugin.xml as the filename,
as the org.eclipse.equinox.registry bundle also has a file
called plugin.xml, and the standard Java getResourceAsStream
will load the first one that it sees. As a result, depending on whether
your class or the registry JAR is first on the path, you might see a
different result. See the Loading all extensions from the classpath section
to find out how to handle this.

The extension can then be acquired as usual or via the FeedParserFactory method
defined previously.

Using the extension registry cache
In typical Eclipse usage, the extension registry remains the same between Eclipse
restarts, and adding (or removing) plug-ins updates the registry appropriately.
To save time at start-up, the extension registry cache is used to store its contents
at shutdown, and if available, loads it at start-up.

Contributions can be persistent or non-persistent. A persistent registration is kept
such that a restart of the application will have the same value; a non-persistent
registration is for this JVM only and will be lost on restart. Eclipse uses this
mechanism at start-up to ensure a faster start-up time and to avoid having to
reparse the plugin.xml files each time.

Chapter 2

[73]

To take advantage of the cache, a RegistryStrategy instance must be provided with
one or more cache directories to store the content. If at least one directory is writable,
the registry can save new extensions; if the list of directories is empty or all of the
directories are read-only, then the registry will not persist content between restarts.

Modify the IRegistryProvider interface in the NonOsgi class to return a directory,
and then pass that into RegistryStrategy along with an array of false values:

new IRegistryProvider() {
 private final IExtensionRegistry registry = RegistryFactory
 .createRegistry(getRegistryStrategy(), null, null);
 private RegistryStrategy getRegistryStrategy() {
 File cache = new File(
 System.getProperty("java.io.tmpdir"),"cache");
 return new RegistryStrategy(
 new File[] { cache }, new boolean[] { false });
}

The second parameter to RegistryStrategy is an array of boolean values
(one per entry in the File array) that indicates whether the cache is read-only or
not. If this parameter is null, then the cache directories are all considered read-only.

Finally, note that if using the registry in caching mode, it is necessary to stop the
registry after use. This causes the data entries to be persisted to disk:

reg.stop(null);

To enable the contribution to be added persistently, the boolean persist parameter
should be specified as true:

reg.addContribution(Main.class.getResourceAsStream("/feeds.xml"),
 contributor, /* false */ true, "/feeds.xml", null, null);

Now, if the contribution is added and the line is commented out, then re-running
the application will load the entry from the cache.

If the cache needs to be rebuilt, then the clearRegistryCache method of
ExtensionRegistry will need to be called at start-up. This is equivalent to
passing the -clean parameter to Eclipse at start-up. Since this is not an interface
method, the call will need to be cast to the explicit ExtensionRegistry class.
Alternatively, the cache directory can be deleted prior to starting the registry,
and it will be rebuilt automatically.

Creating Custom Extension Points

[74]

Loading all extensions from the classpath
The getResourceAsStream method returns the first element found in the classpath.
For applications that can span many JAR files, it's desirable to be able to find all the
files with that name, not just the first one. Fortunately, ClassLoader has a means to
scan all of the individual elements with the getResources method, which returns
an enumeration of URLs from which streams can be individually obtained.

The solution is to call getResources with an argument of plugin.xml and then
iterate through each of those JARs to instantiate the required contributions. By default,
the contribution name is the name of the bundle, so it is necessary to parse out the
Bundle-SymbolicName header from the manifest. There are standard OSGi classes
to do this, but the Manifest class from the standard JDK libraries can be used.

The Bundle-SymbolicName header can have additional metadata
after the bundle name, separated by a semicolon (which delimits OSGi
directives). The most common one is ;singleton=true, but others
can also exist such as ;mandatory and ;fragment-attachment.

Instead of adding a single feeds.xml file into the registry, all JARs can have their
bundles scanned by changing the following code in NonOsgi:

// IContributor contributor = ContributorFactorySimple
// .createContributor("com.packtpub.e4.advanced.feeds");
// reg.addContribution(Main.class.getResourceAsStream(
// "/feeds.xml"), contributor, false, "/feeds.xml", null, null);
Enumeration<URL> resources = getClass().getClassLoader().
 getResources("plugin.xml");
while (resources.hasMoreElements()) {
 URL url = (URL) resources.nextElement();
 String plugin_xml = url.toString();
 String manifest_mf = plugin_xml.replace(
 "plugin.xml","META-INF/MANIFEST.MF");
 Manifest manifest = new Manifest(
 new URL(manifest_mf).openStream());
 String bsn = manifest.getMainAttributes().
 getValue("Bundle-SymbolicName");
 int semi = bsn.indexOf(';');
 if (semi != -1) {
 bsn = bsn.substring(0, semi);
 }
 IContributor contributor =

Chapter 2

[75]

 ContributorFactorySimple.createContributor(bsn);
 reg.addContribution(url.openStream(), contributor, persist,
 plugin_xml, null, null);
}

After running this code, all JARs on the classpath will have extensions from their
plugin.xml files registered.

Unfortunately, there's a minor problem with any projects that are open in the Eclipse
workbench. An open project in PDE doesn't put the plugin.xml or MANIFEST.MF files
available on the project's classpath, which means that the classpath loading mechanism
doesn't work. This is generally a problem with PDE and means that (for example)
bundle.getEntry and class.getResourceAsStream in a PDE project differ from
how they will run when exported and installed into a runtime as a JAR.

Fortunately, there is a way of fixing this: adding the plugin.xml and META-INF/**
files as explicit sources in JDT, which copies them to the output directory. As a result,
the getResource methods work in both runtime and outside of runtime.

Right-click on the project and go to the Java Build Path. In the Source tab, add a
folder by clicking on Add Folder and selecting the root of the project. Click on Edit
and then add plugin.xml and META-INF/** as entries to be included. This is shown
in the following screenshots:

Creating Custom Extension Points

[76]

Now when the application is run, plugin.xml from the org.eclipse.equinox.
registry JAR and plugin.xml from the com.packtpub.e4.advanced.feeds
JAR will both be registered and the default feed parsers will be able to return all
of the values.

Summary
In this chapter, we looked at the Eclipse extension registry and how it can be used
by programs to load extensions, as well as how to define extension points for others
to extend. We learned how to sort elements in a way that does not rely on the order
of the data in the plugin.xml files and how to perform simple definitions and
validations with the associated schema.

Chapter 2

[77]

The extension registry can also be used to customize different instances of extensions,
and we looked at both of the ways in which this is done in Eclipse—with executable
extensions and with extension factories (for classes whose inheritance hierarchy
cannot be modified).

Finally, we looked at how the registry can be used outside of an OSGi runtime,
which permits application code to be well behaved both inside and outside of OSGi.

In the next chapter, we will look at how similar extensions can be achieved with
OSGi services.

Using OSGi Services
to Dynamically Wire

Applications
This chapter will present OSGi services as a means to communicate with and
connect applications. Unlike the Eclipse extension point mechanism, OSGi services
can have multiple versions available at runtime and can work in other OSGi
environments, such as Felix or other commercial OSGi runtimes.

Overview of services
In an Eclipse or OSGi runtime, each individual bundle is its own separate module,
which has explicit dependencies on library code via Import-Package, Require
-Bundle, or Require-Capability. These express static relationships and provide
a way of configuring the bundle's classpath.

However, this presents a problem. If services are independent, how can they use
contributions provided by other bundles? In Eclipse's case, the extension registry
covered in Chapter 2, Creating Custom Extension Points, provides a means for
code to look up providers. In a standalone OSGi environment, OSGi services
provide a similar mechanism.

Using OSGi Services to Dynamically Wire Applications

[80]

A service is an instance of a class that implements a service interface. When a
service is created, it is registered with the services framework under one (or more)
interfaces, along with a set of properties. Consumers can then get the service by
asking the framework for implementers of that specific interface.

Services can also be registered under an abstract class, but this is not
recommended. Providing a service interface exposed as an abstract
class can lead to unnecessary coupling of client to implementation.

The following diagram gives an overview of services:

Service

Impl

Producer

Client

Impl

Consumer

service

Service

Interface

API

register get

This separation allows the consumer and producer to depend on a common API
bundle, but otherwise be completely decoupled from one another. This allows
both the consumer and producer to be mocked out or exchange with different
implementations in the future.

Chapter 3

[81]

Registering a service programmatically
To register a service, an instance of the implementation class needs to be created
and registered with the framework. Interactions with the framework are performed
with an instance of BundleContext—typically provided in the BundleActivator.
start method and stored for later use. The *FeedParser classes from the previous
chapter will be extended to support registration as a service instead of the Equinox
extension registry.

Creating an activator
A bundle's activator is a class that is instantiated and coupled to the lifetime of the
bundle. When a bundle is started, if a manifest entry Bundle-Activator exists, then
the corresponding class is instantiated. As long as it implements the BundleActivator
interface, the start method will be called. This method is passed as an instance of
BundleContext, which is the bundle's connection to the hosting OSGi framework.

Create a class in the com.packtpub.e4.advanced.feeds project called com.
packtpub.e4.advanced.feeds.internal.FeedsActivator, which implements
the org.osgi.framework.BundleActivator interface.

The quick fix may suggest adding org.osgi.framework as an imported package.
Accept this, and modify the META-INF/MANIFEST.MF file as follows:

Import-Package: org.osgi.framework
Bundle-Activator:
 com.packtpub.e4.advanced.feeds.internal.FeedsActivator

The framework will automatically invoke the start method of the FeedsActivator
when the bundle is started, and correspondingly, the stop method when the bundle
is stopped. Test this by inserting a pair of println calls:

public class FeedsActivator implements BundleActivator {
 public void start(BundleContext context) throws Exception {
 System.out.println("Bundle started");
 }
 public void stop(BundleContext context) throws Exception {
 System.out.println("Bundle stopped");
 }
}

Using OSGi Services to Dynamically Wire Applications

[82]

Now run the project as an OSGi framework with the feeds bundle, the Equinox
console, and the Gogo shell. The required dependencies can be added by clicking
on Add Required Bundles, although the Include optional dependencies checkbox
does not need to be selected. Ensure that the other workspace and target bundles
are deselected with the Deselect all button, as shown in the following screenshot:

The required bundles are as follows:

•	 com.packtpub.e4.advanced.feeds

•	 org.apache.felix.gogo.command

•	 org.apache.felix.gogo.runtime

•	 org.apache.felix.gogo.shell

•	 org.eclipse.equinox.console

•	 org.eclipse.osgi

On the console, when the bundle is started (which happens automatically if the
Default Auto-Start is set to true), the Bundle started message should be seen.

If the bundle does not start, ss in the console will print a list of bundles
and start 2 will start the bundle with the ID 2. Afterwards, stop
2 can be used to stop bundle 2. Bundles can be stopped/started
dynamically in an OSGi framework.

Chapter 3

[83]

Registering the service
Once the FeedsActivator instance is created, a BundleContext instance will be
available for interaction with the framework. This can be persisted for subsequent
use in an instance field and can also be used directly to register a service.

The BundleContext class provides a registerService method, which takes an
interface, an instance, and an optional Dictionary instance of key/value pairs.
This can be used to register instances of the feed parser at runtime. Modify the
start method as follows:

public void start(BundleContext context) throws Exception {
 context.registerService(IFeedParser.class,
 new RSSFeedParser(), null);
 context.registerService(IFeedParser.class,
 new AtomFeedParser(), null);
 context.registerService(IFeedParser.class,
 new MockFeedParser(), null);
}

Now start the framework again. In the console that is launched, look for the bundle
corresponding to the feeds bundle:

osgi> bundles | grep feeds

com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

 {com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=56}

 {com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=57}

 {com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=58}

This shows that bundle 4 has started three services, using the interface com.packtpub.
e4.advanced.feeds.IFeedParser, and with service IDs 56, 57, and 58.

It is also possible to query the runtime framework for services of a known interface
type directly using the services command and an LDAP style filter:

osgi> services (objectClass=com.packtpub.e4.advanced.feeds.IFeedParser)

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=56}

 "Registered by bundle:"

 com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

 "No bundles using service."

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=57}

 "Registered by bundle:"

Using OSGi Services to Dynamically Wire Applications

[84]

 com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

 "No bundles using service."

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=58}

 "Registered by bundle:"

 com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

 "No bundles using service."

The results displayed represent the three services instantiated. They can be
introspected using the service command passing the service.id:

osgi> service 56

com.packtpub.e4.advanced.feeds.internal.RSSFeedParser@52ba638e

osgi> service 57

com.packtpub.e4.advanced.feeds.internal.AtomFeedParser@3e64c3a

osgi> service 58

com.packtpub.e4.advanced.feeds.internal.MockFeedParser@49d5e6da

Priority of services
Services have an implicit order, based on the order in which they were instantiated.
Each time a service is registered, a global service.id is incremented.

It is possible to define an explicit service ranking with an integer property.
This is used to ensure relative priority between services, regardless of the order
in which they are registered. For services with equal service.ranking values,
the service.id values are compared.

OSGi R6 adds an additional property, service.bundleid, which is
used to denote the ID of the bundle that provides the service. This is not
used to order services, and is for informational purposes only. Eclipse
Luna uses OSGi R6.

To pass a priority into the service registration, create a helper method called
priority, which takes an int value and stores it in a Hashtable with the key
service.ranking. This can be used to pass a priority to the service registration
methods. The following code illustrates this:

private Dictionary<String,Object> priority(int priority) {
 Hashtable<String, Object> dict = new Hashtable<String,Object>();
 dict.put("service.ranking", new Integer(priority));
 return dict;
}

Chapter 3

[85]

public void start(BundleContext context) throws Exception {
 context.registerService(IFeedParser.class,
 new RSSFeedParser(), priority(1));
 context.registerService(IFeedParser.class,
 new MockFeedParser(), priority(-1));
 context.registerService(IFeedParser.class,
 new AtomFeedParser(), priority(2));
}

Now when the framework starts, the services are displayed in order of priority:

osgi> services | (objectClass=com.packtpub.e4.advanced.feeds.IFeedParser)

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=2, service.
id=58}

"Registered by bundle:" com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

"No bundles using service."

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=1, service.
id=56}

"Registered by bundle:"

com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

"No bundles using service."

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=-1,
service.id=57}

"Registered by bundle:" com.packtpub.e4.advanced.feeds_1.0.0.qualifier [4]

 "No bundles using service."

Dictionary was the original Java Map interface, and Hashtable the
original HashMap implementation. They fell out of favor in Java 1.2
when Map and HashMap were introduced (mainly because they weren't
synchronized by default) but OSGi was developed to run on early releases
of Java (JSR 8 proposed adding OSGi as a standard for the Java platform).
Not only that, early low-powered Java mobile devices didn't support the
full Java platform, instead exposing the original Java 1.1 data structures.
Because of this history, many APIs in OSGi refer to only Java 1.1 data
structures so that low-powered devices can still run OSGi systems.

Using OSGi Services to Dynamically Wire Applications

[86]

Using the services
The BundleContext instance can be used to acquire services as well as register them.
FeedParserFactory, which originally used the extension registry, can be upgraded
to refer to services instead.

To obtain an instance of BundleContext, store it in the FeedsActivator.start
method as a static variable. That way, classes elsewhere in the bundle will be able
to acquire the context. An accessor method provides an easy way to do this:

public class FeedsActivator implements BundleActivator {
 private static BundleContext bundleContext;
 public static BundleContext getContext() {
 return bundleContext;
 }
 public void start(BundleContext context) throws Exception {
 // register methods as before
 bundleContext = context;
 }
 public void stop(BundleContext context) throws Exception {
 bundleContext = null;
 }
}

Now the FeedParserFactory class can be updated to acquire the services. OSGi
services are represented via a ServiceReference instance (which is a sharable object
representing a handle to the service) and can be used to acquire a service instance:

public class FeedParserFactory {
 public List<IFeedParser> getFeedParsers() {
 List<IFeedParser> parsers = new ArrayList<IFeedParser>();
 BundleContext context = FeedsActivator.getContext();
 try {
 Collection<ServiceReference<IFeedParser>> references =
 context.getServiceReferences(IFeedParser.class, null);
 for (ServiceReference<IFeedParser> reference : references) {
 parsers.add(context.getService(reference));
 context.ungetService(reference);
 }
 } catch (InvalidSyntaxException e) {
 // ignore
 }
 return parsers;
 }
}

Chapter 3

[87]

In this case, the service references are obtained from the bundle context with a call
to context.getServiceReferences(IFeedParser.class,null). The service
references can be used to access the service's properties, and to acquire the service.

The service instance is acquired with the context.getService(ServiceReference)
call. The contract is that the caller "borrows" the service, and when finished, should
return it with an ungetService(ServiceReference) call. Technically, the service
is only supposed to be used between the getService and ungetService calls as its
lifetime may be invalid afterwards; instead of returning an array of service references,
the common pattern is to pass in a unit of work that accepts the service and then call
ungetService afterwards. However, to fit in with the existing API, the service is
acquired, added to the list, and then released immediately afterwards.

Lazy activation of bundles
Now run the project as an Eclipse application, with the feeds and feeds.ui bundles
installed. When a new feed is created by navigating to File | New | Other | Feeds |
Feed, and a feed such as http://alblue.bandlem.com/atom.xml is entered, the feeds
will be shown in the navigator view. When drilling down, a NullPointerException
may be seen in the logs, as shown in the following:

!MESSAGE An exception occurred invoking extension:

com.packtpub.e4.advanced.feeds.ui.feedNavigatorContent

 for object com.packtpub.e4.advanced.feeds.Feed@770def59

!STACK 0

java.lang.NullPointerException

 at com.packtpub.e4.advanced.feeds.FeedParserFactory.

 getFeedParsers(FeedParserFactory.java:31)

 at com.packtpub.e4.advanced.feeds.ui.FeedContentProvider.

 getChildren(FeedContentProvider.java:80)

 at org.eclipse.ui.internal.navigator.extensions.

 SafeDelegateTreeContentProvider.

 getChildren(SafeDelegateTreeContentProvider.java:96)

Tracing through the code indicates that the bundleContext is null, which implies
that the feeds bundle has not yet been started. This can be seen in the console of
the running Eclipse application by executing the following code:

osgi> ss | grep feeds

866 ACTIVE com.packtpub.e4.advanced.feeds.ui_1.0.0.qualifier

992 RESOLVED com.packtpub.e4.advanced.feeds_1.0.0.qualifier

Using OSGi Services to Dynamically Wire Applications

[88]

While the feeds.ui bundle is active, the feeds bundle is not. Therefore, the services
haven't been instantiated, and bundleContext has not been cached.

By default, bundles are not started when they are accessed for the first time. If the
bundle needs its activator to be called prior to using any of the classes in the package,
it needs to be marked as having an activation policy of lazy. This is done by adding
the following entry to the MANIFEST.MF file:

Bundle-ActivationPolicy: lazy

The manifest editor can be used to add this configuration line by selecting Activate
this plug-in when one of its classes is loaded, as shown in the following screenshot:

Now, when the application is run, the feeds will resolve appropriately.

Comparison of services and extension points
Both mechanisms (using the extension registry and using the services) allow for
a list of feed parsers to be contributed and used by the application. What are the
differences between them, and are there any advantages to one or the other?

Both the registry and services approaches can be used outside of an Eclipse runtime.
They work the same way when used in other OSGi implementations (such as Felix)
and can be used interchangeably. The registry approach can also be used outside of
OSGi, although that is far less common.

Chapter 3

[89]

The registry encodes its information in the plugin.xml file by default, which means
that it is typically edited as part of a bundle's install (it is possible to create registry
entries from alternative implementations if desired, but this rarely happens). The
registry has a notification system, which can listen to contributions being added
and removed.

The services approach uses the OSGi framework to store and maintain a list of services.
These services don't have an explicit configuration file and, in fact, can be contributed
by code (such as the registerService calls previously covered) or by declarative
representations (which are covered in the next section).

The separation of how the service is created versus how the service is registered is
a key difference between the service and the registry approach. Like the registry,
the OSGi services system can generate notifications when services come and go.

One key difference in an OSGi runtime is that bundles depending on the
Eclipse registry must be declared as singletons; that is, they have to use the
;singleton:=true directive on Bundle-SymbolicName. This means that there
can only be one version of a bundle that exposes registry entries in a runtime,
as opposed to multiple versions in the case of general services.

While the registry does provide mechanisms to be able to instantiate extensions
from factories, these typically involve simple configurations and/or properties
that are hard-coded in the plugin.xml files themselves. They would not be
appropriate to store sensitive details such as passwords. On the other hand, a
service can be instantiated from whatever external configuration information is
necessary and then registered, such as a JDBC connection for a database.

Finally, extensions in the registry are declarative by default and are activated on
demand. This allows Eclipse to start quickly because it does not need to build the
full set of class loader objects or run code, and then bring up services on demand.
Although the approach previously didn't use declarative services, it is possible to
do this as covered in the next section.

Registering a service declaratively
Registering services imperatively in the start method of an Activator class is one
way of installing services in an OSGi framework. However, it requires that the bundle
be started, which in turn requires that either the bundle is started automatically or
has classes (such as API classes) accessed by default. Both approaches will mean
that additional code will have to be run to bring the system into the desired state.

Using OSGi Services to Dynamically Wire Applications

[90]

An alternative is to use one of the declarative service approaches, which represents
the service definition in an external file. These are processed using an extender
pattern, which looks out for bundles with a given file or files and then instantiates
the service from this definition. It combines the declarative nature of the extension
registry with the flexibility of OSGi services.

There are two providers of declarative service support. Both achieve a similar result
but use slightly different configuration files and approaches. They are Declarative
Services and Blueprint.

Declarative Services
Declarative Services (DS) was the original declarative implementation to instantiate
services in a declarative fashion during OSGi runtime. Both Equinox and Felix have
DS modules, and it is a required part of the Eclipse 4 runtime, so it can be trivially
expected to be present. In the OSGi specification, it is referred to as the Services
Component Runtime (SCR), which is why the associated package names use org.
osgi.service.component.

The DS bundle needs to be started before it can process bundles; as a result, it is
typically started early on in the start-up process. It listens to bundles being installed
and then looks for a specific header in the META-INF/MANIFEST.MF file:

Service-Component: OSGI-INF/*.xml

If the DS bundle finds this header, it looks for files contained in the bundle itself,
matching the file pattern specified. This is a comma-separated list, and can use a
single wildcard * character (which will match filenames but not directories).

The service document is then loaded and parsed, and used to instantiate and register
services with the OSGi runtime environment. The XML document uses namespaces
to represent the component, using http://www.osgi.org/xmlns/scr/v1.2.0.
Different versions of SCR use different endings; v1.0.0 is defined as the first version,
with v1.1.0 the second. The current version (as of the writing of this book) is v1.2.0,
and the next version (which is in development at the time of writing this book) will
use the suffix v1.3.0.

Each service document defines a single service, which has an implementation class
as well as an identifier. The service can be registered under one or more interfaces
as well as optional properties.

http://www.osgi.org/xmlns/scr/v1.2.0

Chapter 3

[91]

This can be used to replace the custom code in the FeedActivator class
created previously:

public class FeedsActivator implements BundleActivator {
 public void start(BundleContext context) throws Exception {
 // context.registerService(IFeedParser.class,
 // new RSSFeedParser(), priority(1));
 // context.registerService(IFeedParser.class,
 // new MockFeedParser(), priority(-1));
 // context.registerService(IFeedParser.class,
 // new AtomFeedParser(), priority(2));
 bundleContext = context;
 }
 …
}

If the application is run now, the feeds won't be parsed. To register these as OSGi
services, create a file called OSGI-INF/atomfeedparser.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="AtomFeedParser">
 <implementation
 class="com.packtpub.e4.advanced.feeds.internal.AtomFeedParser"/>
 <service>
 <provide
 interface="com.packtpub.e4.advanced.feeds.IFeedParser"/>
 </service>
 <property name="service.ranking" type="Integer" value="2"/>
</scr:component>

Don't forget to tell Eclipse to consider this part of the build by
adding OSGI-INF/ to the build.properties file in the bin.
includes property.

As long as a Declarative Services provider is installed in the application and started,
the service will be created on demand.

In future (Eclipse Mars and above), client bundles will be able to express
a dependency on a Declarative Services provider by adding:

Require-Capability:

 osgi.extender;osgi.extender="osgi.component"

This is being planned to be added to version 1.3.0 of the Declarative
Services specification, which is scheduled to be released in March 2015;
visit http://www.osgi.org/Specifications/ for more details.

http://www.osgi.org/Specifications/

Using OSGi Services to Dynamically Wire Applications

[92]

Properties and Declarative Services
Declarative Services can also be used to register properties with a service when it is
registered. These properties can be sourced either from the services XML file, or an
external properties file.

To add the service.ranking property to the registered service, add the following
code to the services document:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="AtomFeedParser">
 …
 <property name="service.ranking" type="Integer" value="2"/>
</scr:component>

Now, when the application is restarted, the services console command will show
that the service.ranking property is associated with the feed service:

osgi> services | grep IFeed

{com.packtpub.e4.advanced.feeds.IFeedParser}=

 {service.ranking=2,

 component.name=AtomFeedParser,

 component.id=0,

 service.id=37}

If the property isn't listed, add a -clean argument to the Eclipse runtime
console; sometimes the files are cached and Plug-in Development
Environment (PDE) doesn't always notice when files are changed.

The property types can be one of the following:

•	 String (default)
•	 Long

•	 Double

•	 Float

•	 Integer

•	 Byte

•	 Character

•	 Boolean

•	 Short

Chapter 3

[93]

Additionally, arrays of elements can be specified by placing them in the body of the
element instead of as an attribute:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="AtomFeedParser">
 …
 <property name="compass.point" type="String">
 NORTH
 EAST
 SOUTH
 WEST
 </property>
</scr:component>

Service references in Declarative Services
Along with hardcoded values, it is also possible to set up references to services in
DS. A service has the bind and unbind methods, which are called when a service
becomes available or becomes inactive.

These can be mandatory or optional; if the dependency is mandatory, then
the service is not instantiated until its dependencies are available. If they are
optional, the service can come up and be assigned later. They can also be
single- or multi-valued. These are encoded in the relationship cardinality:

•	 0..1: This service is optional with either zero or one instance needed
•	 1..1: This service is mandatory with exactly one instance needed (default)
•	 0..n: This service is optional and may have zero or more instances
•	 1..n: This service is mandatory and may have one or more instances

This can be used to inject a LogService instance into the component. Modify
the AtomFeedParser class to accept an instance of LogService by adding the
setLog and unsetLog methods:

private LogService log;
public void setLog(LogService log) {
 this.log = log;
}
public void unsetLog(LogService log) {
 this.log = null;
}

Using OSGi Services to Dynamically Wire Applications

[94]

The following code can be used to report on the success of feed parsing, or to log
errors if they occur:

public List<FeedItem> parseFeed(Feed feed) {
 try {
 List<FeedItem> feedItems = new ArrayList<FeedItem>();
 // parse feed items
 if(log != null) {
 log.log(LogService.LOG_INFO, feedItems.size() +
 " atom feed items parsed from " + feed.getUrl());
 }
 return feedItems;
 } catch (Exception e) {
 if (log != null) {
 log.log(LogService.LOG_WARNING, "Problem parsing feed "+e);
 }
 return null;
 }
}

To configure DS to provide a log service, the following code must be added to the
atomfeedparser.xml file:

<scr:component name="AtomFeedParser"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
 …
 <reference interface="org.osgi.service.log.LogService"
 cardinality="0..1" name="log"
 bind="setLog" unbind="unsetLog"/>
</scr:component>

This tells DS that the log service is optional (so it will bring the feed parser service
up before a LogService is available) and setLog(log) will be called when it is
available. DS also provides an unbind method that can be used to remove the service
if it becomes inactive. The instance is provided for both the setLog and unsetLog
methods, which may look strange, but when setting multiple elements, the methods
are typically called addXxxListener and removeXxxListener, where having a value
is more appropriate.

Chapter 3

[95]

Multiple components and debugging Declarative
Services
Although the example so far has only contained a single component, it is possible
to have multiple components defined in a single XML file. An XML parent can be
defined with multiple scr namespaced children; in fact, all elements outside the
scr namespace are ignored, so it is possible to embed an XHTML document with an
scr namespaced element inside, and still have it picked up by Declarative Services:

<xhtml>
 <h1>Example HTML file with SCR elements</h1>
 <h2>Component One</h2>
 <scr:component name="One" xmlns:scr="http://...">
 …
 </scr:component>
 <h2>Component Two</h2>
 <scr:component name="Two" xmlns:scr="http://...">
 …
 </scr:component>
</xhtml>

Note that many developers will use a one-to-one mapping between service
components and the corresponding XML files; it is rare to see a single XML file
with multiple service components. It is recommended to only put one component
per XML file for ease of maintenance.

When using DS inside Equinox, using -Dequinox.ds.print=true
can give additional diagnostic information on the state of the
Declarative Services, including highlighting which services that are
waiting. For Felix, specifying -Dds.showtrace=true can increase
logging, and so can -Dds.loglevel=4.

Dynamic service annotations
Although XML allows flexibility, it has fallen out of fashion in the Java community
in favor of Java annotations. Version 1.2 of the OSGi DS specification provides
annotations that can be used to mark the code such that a build time processor
can create the service component XML files automatically.

Using OSGi Services to Dynamically Wire Applications

[96]

Note that the standard OSGi annotations are not read at runtime by the
service but only build-time tools such as maven-scr-plugin. As a
result, they should be optionally imported, since they aren't needed at
runtime or with the compile scope if using a Maven-based build.

To use the annotations, add the following as an Import-Package for the bundle in
the MANIFEST.MF file:

Import-Package:
 org.osgi.service.component.annotations;
 version="1.2.0";
 resolution:=optional

The @Component annotation can now be added to the individual classes that should
be represented as services. Add the following to RSSFeedParser:

@Component(name="RSSFeedParser",
 service={IFeedParser.class},
 property={"service.ranking:Integer=1"})
public class RSSFeedParser implements
 IFeedParser, IExecutableExtension {
 …
}

There are also Felix annotations (org.apache.felix.scr.
annotations) that predate the standard OSGi ones. Both the
Felix annotations and the OSGi core annotations are available in
Maven Central.

Processing annotations at Maven build time
If using Maven Tycho to build bundles, it is possible to add a Maven plug-in to
generate service XML files from the components. (See the book's GitHub repository
for an example if unfamiliar with Maven Tycho.)

Maven Tycho is covered in more detail in chapter 10 of Eclipse 4 Plug-in
Development by Example Beginner's Guide, Packt Publishing, as well as on
the Tycho home page at http://www.eclipse.org/tycho/.

http://www.eclipse.org/tycho/

Chapter 3

[97]

To configure the maven-scr-plugin for a build, first add the following dependency
to the pom.xml file:

<dependencies>
 <dependency>
 <groupId>org.apache.felix</groupId>
 <artifactId>org.apache.felix.scr.ds-annotations</artifactId>
 <version>1.2.0</version>
 <scope>compile</scope>
 </dependency>
</dependencies>

This dependency provides both the org.osgi.service.component.annotations
classes as well as the processing engine necessary to generate the components. Note
that even if other dependencies are given (say, osgi.enterprise or equinox.ds),
this isn't sufficient on its own to generate the service.xml files.

Next, the plug-in needs to be added to the pom.xml file:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-scr-plugin</artifactId>
 <version>1.15.0</version>
 <configuration>...</configuration>
 <executions>...</executions>
 </plugin>
 </plugins>
 <sourceDirectory>src</sourceDirectory>
</build>

The sourceDirectory needs to be specified to match the value of the source
attribute of the build.properties file (which is used by eclipse-plugin instead of
sourceDirectory); otherwise, the maven-scr-plugin cannot find the source files.

The plug-in needs to be configured specifically for eclipse-plugin projects. Firstly,
the supported projects default to jar and bundle for maven-scr-plugin, so it needs
to be given additional configuration to permit processing eclipse-plugin projects.

Using OSGi Services to Dynamically Wire Applications

[98]

Secondly, the service files are written to target/scr-plugin-generated/ by
default. Although this will work, it makes for more difficult debugging in Eclipse.
Instead, maven-scr-plugin can be configured to write it to the project root, which
will place the service files under OSGI-INF. This permits the code to be tested and
exported in Eclipse using the standard build tools:

<configuration>
 <supportedProjectTypes>
 <supportedProjectType>eclipse-plugin</supportedProjectType>
 </supportedProjectTypes>
 <outputDirectory>${basedir}</outputDirectory>
</configuration>

Finally, to hook it in with the standard build process, add the following
configuration to the build:

<executions>
 <execution>
 <id>generate-scr</id>
 <goals>
 <goal>scr</goal>
 </goals>
 </execution>
</executions>

When the package is built, the service descriptor XML file will be automatically
regenerated based on the annotations. The filename is derived from the service name.

Blueprint
Although Declarative Services has been present in OSGi since the 4.0 release, a new
specification called Blueprint was made available in the 4.2 release. This provides
the same kind of capabilities as Declarative Services, in that dependencies between
services can be defined externally to the source code. However, the format of the
corresponding XML file is slightly different and there is some difference in behavior.

The Blueprint service can be installed through a couple of implementations: Gemini
or Aries.

Chapter 3

[99]

Installing Gemini Blueprint
The Blueprint service is provided through a number of bundles as follows:

•	 gemini-blueprint-core-1.0.2.RELEASE.jar

•	 gemini-blueprint-extender-1.0.2.RELEASE.jar

•	 gemini-blueprint-io-1.0.2.RELEASE.jar

However, these bundles also need the following Spring dependencies. Since Spring
doesn't contain OSGi metadata (since version 3), the bundles must be acquired
through the now defunct SpringSource EBR at http://ebr.springsource.com:

•	 com.springsource.org.aopalliance-1.0.0.jar

•	 org.springframework.aop-3.2.5.RELEASE.jar

•	 org.springframework.beans-3.2.5.RELEASE.jar

•	 org.springframework.context-3.2.5.RELEASE.jar

•	 org.springframework.core-3.2.5.RELEASE.jar

•	 org.springframework.expression-3.2.5.RELEASE.jar

The Gemini Blueprint implementation suffers from being built on Spring
thereby dragging in the Spring dependencies as well. This is because the Gemini
implementation can handle both the native OSGi Blueprint service as well as
Spring bundle contexts.

For existing Spring-based applications that have migrated to OSGi, Gemini
Blueprint may provide an easy transition path. For greenfield or non-Spring
applications, using Aries may allow a reduced set of dependencies.

The gemini-blueprint-extender bundle must be started in
order to automatically register Blueprint services.

http://ebr.springsource.com

Using OSGi Services to Dynamically Wire Applications

[100]

Installing Aries Blueprint
The Aries Blueprint service only needs three bundles: the Blueprint bundle and the
Aries proxy, which in turn needs the Aries util bundle:

•	 org.apache.aries.blueprint-1.1.0.jar

•	 org.apache.aries.proxy-1.0.1.jar

•	 org.apache.aries.util-1.0.1.jar

In addition, the Aries code requires an implementation of SLF4J, which can be
acquired from the following:

•	 slf4j-api-1.7.5.jar

•	 slf4j-simple-1.7.5.jar

Once installed, and the org.apache.aries.blueprint and org.apache.aries.
proxy bundles are started, other bundles in the framework will have their Blueprint
services automatically registered.

Using the Blueprint service
Blueprint files are stored under OSGI-INF/blueprint/ by default, and end in a .xml
extension. These follow a Spring-inspired format to represent the services and beans.

To add a Blueprint file for the MockFeedParser, create a file mockfeedparser.xml
in the OSGI-INF/blueprint/ directory. The contents should be as follows:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <service interface="com.packtpub.e4.advanced.feeds.IFeedParser"
 activation="eager">
 <service-properties>
 <entry key="other.property">
 <value type="java.lang.Integer">314</value>
 </entry>
 </service-properties>
 <bean
 class="com.packtpub.e4.advanced.feeds.internal.MockFeedParser"/>
 </service>
</blueprint>

Now create a run configuration for an Eclipse application or an OSGi framework,
and ensure that either the Gemini bundles or Aries bundles are installed and started.

Chapter 3

[101]

By default, Eclipse will set the DS bundle to start automatically
when creating a new configuration, but it does not do this for
Blueprint bundles. If the Blueprint bundle is not started, then
Blueprint services will also not be started.

The GitHub project for this book contains a copy of the required libraries for the
bundles, which can be seen at https://github.com/alblue/com.packtpub.
e4.advanced/.

Passing properties in Blueprint
To pass properties to the service when it is registered, the Blueprint XML can have
a service-properties element added. Like the DS specification, this allows entries
to be added in key/value pairs.

Modify the mockfeedparser.xml file to add a service-properties element:

<service interface="com.packtpub.e4.advanced.feeds.IFeedParser"
 activation="eager">
 <service-properties>
 <entry key="other.property">
 <value type="java.lang.Integer">314</value>
 </entry>
 </service-properties>
 …
</service>

For single value types, the element can be specified as a single value. If an array of
elements is required, it must be wrapped in an <array> element:

 <service-properties>
 <entry key="other.property">
 <array>
 <value type="java.lang.Integer">314</value>
 <value type="java.lang.Integer">271</value>
 </array>
 </entry>
 </service-properties>

It is possible to define non-standard objects as property types by specifying a
different class name. At runtime, introspection is used to find an appropriate
single argument constructor and the value in the XML file is passed in.

https://github.com/alblue/com.packtpub.e4.advanced/
https://github.com/alblue/com.packtpub.e4.advanced/

Using OSGi Services to Dynamically Wire Applications

[102]

Note that service properties are generally meant to be portable
between different runtimes, and in some cases, exported over a
network. It is recommended that the values be serializable and,
where possible, use a String representation instead of a parsed
object representation for portability.

Although it might seem possible to use this to register service.ranking, the
following does not work:

 <service-properties>
 <entry key="service.ranking"> <!-- does not work -->
 <value type="java.lang.Integer">-1</value>
 </entry>
 </service-properties>

This happens because the Blueprint specification defines an alternate key for the
service ranking, which is used to override the value given. If Blueprint services
need to specify a ranking, then the following code must be used instead:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <service interface="com.packtpub.e4.advanced.feeds.IFeedParser"
 activation="eager" ranking="-1">
 …
 </service>
</blueprint>

Finally, although a single interface is the most common approach, it is possible to
register multiple interfaces against a single service. The implementation class must
implement these interfaces; otherwise, an error is logged by the Blueprint extender:

<service ranking="-1" activation="eager">
 <interfaces>
 <value>com.packtpub.e4.advanced.feeds.IFeedParser</value>
 <value>java.lang.Cloneable</value>
 </interfaces>
 …
</service>

Bean references and properties
Blueprint provides an easy means to name the created beans and relate them to
other beans. Each bean may have an ID associated with it, which can then be used
by a ref in another bean or by name.

Chapter 3

[103]

Properties can be set on a bean by using the <property> element inside the bean's
constructor. These are used to invoke JavaBean style setters on the instantiated object
itself. For example, if the MockFeedParser had a method setNumberOfItems(int)
to configure the number of returned values, the value could be set in the Blueprint
XML file as follows:

<bean
 class="com.packtpub.e4.advanced.feeds.internal.MockFeedParser">
 <property name="numberOfItems" value="5"/>
</bean>

The property syntax also supports dotted property names; so if the MockFeedParser
had a config property, and that config object had a value property, then the name
could be specified as config.value.

References to other properties can be specified in the beans. A reference can be defined
either through an ID defined in the same bundle, or from an OSGi service reference
elsewhere. To set a LogService on MockFeedParser, the following code can be used:

private LogService log;
public void setLog(LogService log) {
 this.log = log;
}

This can be used when setting the number of items in the previous feed:

public void setNumberOfItems(int numberOfItems) {
 this.numberOfItems = numberOfItems;
 if (log != null) {
 log.log(LogService.LOG_INFO, "Setting number of items to "
 + numberOfItems);
 }
}

Finally, to get Blueprint to provide LogService to the bean, it needs to be acquired
as a reference, as shown:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <reference id="logService"
 interface="org.osgi.service.log.LogService" />
 <service ranking="-1" activation="eager">
 …
 <bean

Using OSGi Services to Dynamically Wire Applications

[104]

 class="com.packtpub.e4.advanced.feeds.internal.MockFeedParser">
 <property name="log" ref="logService"/>
 <property name="numberOfItems" value="5"/>
 </bean>
 </service>
</blueprint>

Comparison of Blueprint and DS
Both Blueprint and Declarative Services allow one or more services to be registered
declaratively and instantiated on demand when requested. They are advantageous
because they can defer the creation of the service until it is first needed, which in
turn means that the bundle does not have to start until as late as possible.

In runtimes with large numbers of bundles, this reduced start-up time can result in
faster overall start-up of the application. This is used in many of the enterprise Java
services to provide functionality that may not all be needed at first.

There are a couple of significant differences that are worth knowing when comparing
the two services.

Firstly, DS will create services and unbind them dynamically, so throughout the
lifetime of a bundle's use, the services may come and go (in other words, they may
be null). Code must be defensive when consuming services in case they are no
longer present.

Blueprint, on the other hand, creates proxy objects that remain the same for the
lifetime of the object. If a LogService instance is requested, a dynamic LogService
proxy class is created and injected into the class. This instance will stay with the
class for its entire life, even if log services come and go over time.

For Java code that isn't adapted to using OSGi services, particularly their dynamism,
the ability to have a non-null placeholder object that can be passed to other objects
provides an easy way to migrate from a non-OSGi solution to a full OSGi-based
system. On the other hand, the proxy object is set to block until a service becomes
available, so clients attempting to log a message may inadvertently block until
either a real LogService instance is found or a timeout error is thrown.

There are many more configuration properties available for Blueprint services,
including complex expressions and the ability to wire and connect up objects
through injection. This additional flexibility can introduce additional problems
when developing and testing a Blueprint solution; since the XML file can be
complex, it's possible for the file to not be valid. Unfortunately, if a bundle's XML
file is invalid, then no services will be registered; however, proxy classes can still
be registered in client bundles that will silently hang when called.

Chapter 3

[105]

Finally, the Blueprint extender will scan every bundle installed, looking for files in
OSGI-INF/blueprint/*.xml. As a result, frameworks that use Blueprint may notice
a slightly delayed start-up time.

If migrating a Spring-based application to an OSGi runtime, then
Blueprint may provide an easy way forward. If you are creating a
dynamic OSGi application without prior Spring involvement, use
Declarative Services instead.

Dynamic services
The OSGi specification defines the following four different layers:

•	 Security Layer: All actions are checked against a security permissions model
•	 Module Layer: Modules are specified as bundles that have dependencies
•	 Life Cycle Layer: Bundles that come and go
•	 Service Layer: Dynamic services that come and go

The services layer allows bundles to communicate by defining an API that can
cross bundle layers. However, the services layer also allows the services to come
and go dynamically, instead of being fixed at runtime.

This mechanism allows services to be exported over a network, and since the
network can come and go (as can the remote endpoint), the OSGi services layer
can replicate that same functionality.

Responding to services that dynamically come and go may add a slight difficulty
to the client code, but it will be more robust in case of failure. The next sections
will present different ways to achieve dynamism in services.

Resolving services each time
The easiest way of working with dynamic services is to list the services each time
they are needed. The feed parser example so far uses this technique of allowing
different parsers to be contributed; each time a feed is parsed, a list of feed parser
services are acquired. If a feed parser goes, or one is added, the next time a feed is
parsed the new service will be part of the list.

This technique can work if the list of services is infrequently needed. However,
each time a lookup is performed, there is a cost to the acquisition which may not
be desirable.

Using OSGi Services to Dynamically Wire Applications

[106]

Using a ServiceTracker
The OSGi framework provides a ServiceTracker class that can be used to simplify
the acquisition of one or more services in a standard way. Provided in the org.osgi.
util.tracker package, the ServiceTracker class has a constructor that takes a
class and a BundleContext object, along with an optional filter specification.

The ServiceTracker class has an open method that must be
called prior to use; otherwise, it will not return any services.

Add the package to the feed plug-in's manifest as an import:

Import-Package: org.osgi.util.tracker

Modify the FeedParserFactory class so that a ServiceTracker instance is acquired
in the constructor and open is called. This simplifies the getFeedParser method to
simply delegate to the service tracker:

public class FeedParserFactory {
 private final ServiceTracker<IFeedParser, IFeedParser> st;
 private FeedParserFactory() {
 st = new ServiceTracker<IFeedParser, IFeedParser>(
 FeedsActivator.getContext(), IFeedParser.class, null);
 st.open(); // Remember to call this!
 }
 …
 public List<IFeedParser> getFeedParsers() {
 return Arrays.asList(st.getServices(new IFeedParser[]{}));
 }
}

ServiceTracker also has a close method that should be called when services
are no longer required to be tracked. For this reason, sometimes the ServiceTracker
instance is set up and managed in the appropriate Activator, since the open and
close methods can be tied to the bundle's life cycle. Alternatively, the close method
can be associated with the factory's finalize method:

protected void finalize() throws Throwable {
 st.close();
 super.finalize();
}

Chapter 3

[107]

Generally, tying the service tracker's life cycle to another life cycle is
more appropriate, as otherwise this can leak implementation.

Sorting services
Unfortunately, ServiceTracker differs from the previous implementation in that the
services returned are in an arbitrary order, not in the correct service ordering. Instead
of acquiring an array of services as in the initial implementation, it will be necessary
to get a list of the ServiceReference objects and perform the sort manually.

Switch the implementation of getFeedParsers to use st.getServiceReferences
instead. This can be sorted using Arrays, using a comparator that is built using the
standard ServiceReference comparable interface.

Note that the default sort order will end up being lowest-to-highest,
which is the reverse of what's desired. So, the order of the arguments
has to be swapped.

The resulting code thus becomes:

public List<IFeedParser> getFeedParsers() {
 ServiceReference<IFeedParser>[] srs = st.getServiceReferences();
 Arrays.sort(srs, new Comparator<ServiceReference<?>>() {
 public int compare(ServiceReference<?> o1,
 ServiceReference<?> o2) {
 return o2.compareTo(o1);
 }
 });
 List<IFeedParser> list = new ArrayList<IFeedParser>(srs.length);
 for (ServiceReference<IFeedParser> sr : srs) {
 list.add(st.getService(sr));
 }
 return list;
}

Now, when the services are acquired, they are in the correct order.

Filtering services
The service tracker, as it is currently implemented, returns all compatible services
that implement the interface (if true is passed to the open call, both compatible
and incompatible services are returned; although this should generally not be used).

Using OSGi Services to Dynamically Wire Applications

[108]

It is also possible to use a filter to restrict the list of services that are returned. Filters
in OSGi are specified using the LDAP filter syntax that uses a prefix notation and
parenthesis to group elements. The following shows how to read it:

LDAP filter Meaning
(&(A)(B)) A and B
(|(A)(B)) A or B
(!(A)) Not A
(A=B) A equals B
(A=*B*) A contains B

The services command in the Equinox console allows a filter to be specified. Each
service is published into the registry, and the filter objectClass= allows services
matching a particular interface to be found, as was done earlier in this chapter:

osgi> services (objectClass=*.IFeedParser)

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=2,

 component.name=AtomFeedParser, component.id=0, service.id=40}

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=1,

 component.name=RSSFeedParser, component.id=1, service.id=41}

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=-1,

 other.property=[314,222], service.id=43}

It's possible to filter other properties as well. For example, DS registers a
component.id property with a service, so this can be used to create a filter
for just DS registered components:

osgi> services "(&(objectClass=*.IFeedParser)(component.id=*))"

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=2,
component.name=AtomFeedParser, component.id=0, service.id=40}

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.ranking=1,
component.name=RSSFeedParser, component.id=1, service.id=41}

This looks for services ending in IFeedParser and that have a value for the
component.id property. Filters can be included in ServiceTracker to ensure
that only desired services are picked up. For example, to include only the
MockFeedParser (actually, any service that isn't registered by DS), the following
can be included in ServiceTracker:

Filter filter = context.createFilter(
 "(&(objectClass=*.IFeedParser)(!(component.id=*)))");
st = new ServiceTracker<IFeedParser, IFeedParser>(
 context, filter, null);
st.open();

Chapter 3

[109]

The value of the service filter can be overridden by a property to
enable debugging, for example. Note that the createFilter
method throws a checked syntax exception if it is invalid, which
must be handled in the code.

Obtaining a BundleContext without using an
activator
Since ServiceTracker needs the BundleContext instance to register a listener,
it is conventional to set up a BundleActivator instance for the sole purpose of
acquiring an instance of BundleContext.

Because this incurs a performance penalty, using a different mechanism to
acquire the context will speed the start-up process. Fortunately, there is a class,
FrameworkUtil, which can be used to acquire a Bundle instance for any given
class, and from there, the BundleContext instance. This allows the implementation
of the FeedsActivator to be removed:

// BundleContext context = FeedsActivator.getContext();
BundleContext context = FrameworkUtil.
 getBundle(FeedParserFactory.class).getBundleContext();

Using this mechanism adds no performance penalty and should be used in
favor of a global static instance for BundleContext. It also potentially allows
the bundle's activator to be removed from the bundle.

If the bundle is not started, it does not have a BundleContext
instance and so the returned value here may be null. Code should
defensively handle this case. The bundle can be started by calling
bundle.stat(Bundle.START_TRANSIENT), after which the
BundleContext will not be null.

A note on ServiceReference
The OSGi specification has the ability to find instances of ServiceReference. This is
a wrapper that represents a single service (a single service.id) and can be shared
between bundles. The getService call performs a resolution of the service instance
on demand.

The problem with storing a ServiceReference instance is that the service may
subsequently disappear; when it does, the getService method will return null.
In other words, it doesn't perform a lookup if that single service goes away or is
restarted/replaced.

Using OSGi Services to Dynamically Wire Applications

[110]

The only reason to use ServiceReference is to either translate directly into the
service interface (as was done in the initial implementation of FeedParserFactory
in the Using the services section), or if only specific properties of the service are
required instead. The ServiceReference instances should not be stored or used
indefinitely unless the service is known to be a singleton.

Dependent services
It is fairly common that an OSGi service depends on other OSGi services. As such, it
can help if the services are set up and made available when the bundles are available.

The Blueprint approach wires dependencies into bundles that can block until services
become available, but the Declarative Services approach can be used to register
services on demand when the requirements are satisfied. Both allow dependencies
to be encoded in relationships.

For DS, if the cardinality of the relationship is not optional (in other words, the
relationship is 1..1 or 1..n), then the service won't be started until the required
dependent services are available. For example, a menu service may not be required
until the graphical user interface service is present, and services that wish to contribute
to the menu service won't be able to work until the menu service is present.

Delaying the creation of the services until they are needed will result in shorter
start-up times of the application, as illustrated in the following diagram:

menugui “Help”
1..1 1..n

menugui “Help”
1..1 1..n

menugui “Help”
1..1 1..n

Chapter 3

[111]

Dynamic Service Configuration
OSGi provides a standard configuration mechanism called Config Admin. This allows
the location of configuration information to be decoupled from the code that requires
the configuration. Configuration is passed through to services via a Map or Hashtable,
and they can then configure themselves appropriately.

As with other parts in OSGi, this can also be dynamically updated. When the
configuration source changes, an event can flow through to the service or
component in order to allow it to reconfigure itself.

Installing Felix FileInstall
Config Admin itself is an OSGi service, and it may be supplied by different
configuration agents. A de facto standard is Apache Felix's FileInstall, which
can also be used to install bundles into an OSGi runtime.

FileInstall is available from the Apache Felix site at http://felix.apache.org as
well as Maven Central. Download org.apache.felix.fileinstall-3.2.8.jar
and import it into Eclipse as a plug-in project by navigating to File | Import |
Plug-in Development | Plug-ins and Fragments to enable it to run at test runtime.

To use FileInstall, a system property felix.fileinstall.dir must be specified.
It defaults to ./load from the current working directory, but for the purposes of
testing, this can be specified by adding a VM argument in the launch configuration
that appends -Dfelix.fileinstall.dir=/tmp/config or some other location.
This can be used to test modifications to the configuration later.

Make sure that FileInstall is configured to start when runtime begins,
so that it picks up configurations. This can be done by specifying the
start level on the OSGi framework launch configuration page.

Installing Config Admin
To configure services, Config Admin needs to be installed into the runtime as well.
The two standard implementations of these are Felix Config Admin and Equinox
Config Admin. The latter does not come with Eclipse by default, and the Felix
version is available from Maven Central and should be preferred. Download org.
apache.felix.configadmin-1.8.0.jar from Maven Central or from the book's
GitHub repository.

Import this as a plug-in project to Eclipse by navigating to File | Import | Plug-in
Development | Plug-ins and Fragments so that it can be used as a bundle in the
OSGi framework.

http://felix.apache.org

Using OSGi Services to Dynamically Wire Applications

[112]

Configuring Declarative Services
A component created by Declarative Services can have configuration passed in a Map.
A component can have an activate method, which is called after the component's
dependencies have become available (along with a corresponding deactivate
method). There is also a modified method that can be used to respond to changes
in the configuration without stopping and restarting the component.

To configure AtomFeedParser with Config Admin, add a configure method that
takes a Map of values. If it's not null, and there is a key max, then parse it as int
and use that as the max value, as shown in the following code:

private int max = Integer.MAX_VALUE;
public void configure(Map<String, Object> properties) {
 max = Integer.MAX_VALUE;
 if (properties != null) {
 String maxStr = (String) properties.get("max");
 if (maxStr != null) {
 max = Integer.parseInt(maxStr);
 }
 }
}

To ensure that the method gets called, modify the service component document to
add the activate="configure" and modified="configure" attributes:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 modified="configure" activate="configure"
 name="AtomFeedParser">

Finally, create a properties file called AtomFeedParser.cfg with the content max=1,
and place it in the location of felix.fileinstall.dir.

Now when the application is run, the configuration should be loaded and should
configure AtomFeedParser, such that when a feed is added, it shows a maximum
of one value. Modify the configuration file and refresh the feeds during the Eclipse
runtime, and it should pick up the new value.

If nothing is seen, verify that felix.fileinstall.dir is specified
correctly using props | grep felix from the OSGi console. Also,
verify that the Felix fileinstall and configadmin bundles have
started. Finally, verify that the methods in the component are public
void and are defined correctly in the component config.

Chapter 3

[113]

Config Admin outside of DS
It is possible to use Config Admin outside of the Declarative Services specification.
Services can be configured directly using the ManagedService interface of the
Config Admin specification.

When a service requires configuration, it is registered under the ManagedService
interface in the registry with an associated Persistent ID (PID). Config Admin
will notice the service being published and use that to feed updated configuration
information through the updated method. Since the specification has been with
OSGi for some time, it uses a Dictionary to specify property values instead of a Map.

This technique can be used to acquire configuration information for a singleton,
such as a BundleActivator. If the activator registers itself as a ManagedService
interface, then it will receive configuration updates through Config Admin. For
example, to aid in testing the user interface, the mock feed can be enabled through
a debug mode in the Activator class in the feeds.ui plug-in.

Modify the META-INF/MANIFEST.MF file of the com.packtpub.e4.advanced.feeds.
ui plug-in to include org.osgi.service.cm as an imported package, and add the
ManagedService interface to the Activator class. In the start method, register an
instance of itself as the managed service:

public void start(BundleContext context) throws Exception {
 super.start(context);
 plugin = this;
 Dictionary<String, String> properties =
 new Hashtable<String, String>();
 properties.put(Constants.SERVICE_PID,
 "com.packtpub.e4.advanced.feeds.ui");
 context.registerService(ManagedService.class, this, properties);
}

In the implementation of the updated method, detect whether the configuration is
passed in an element debug with the value true. If so, set a boolean debug field to
be true. Expose this via an accessor method isDebug. Having a print method can
enable debugging and verify that the configuration changes are being applied for
testing purposes:

private boolean debug;
public boolean isDebug() {
 return debug;
}
public void updated(Dictionary<String, ?> configuration)
 throws ConfigurationException {
 debug = configuration != null

Using OSGi Services to Dynamically Wire Applications

[114]

 && "true".equals(configuration.get("debug"));
 if (debug) {
 System.out.println("Debugging enabled");
 } else {
 System.out.println("Debugging disabled");
 }
}

Finally, to see the mentioned behavior in action, modify the FeedContentProvider
class to skip class implementation names when the service name implementation
does not contain the string "Mock" and is in the debug mode:

public Object[] getChildren(Object parentElement) {
 …
 if (parentElement instanceof Feed) {
 Feed feed = (Feed)parentElement;
 FeedParserFactory factory = FeedParserFactory.getDefault();
 List<IFeedParser> parsers = factory.getFeedParsers();
 for (IFeedParser parser : parsers) {
 if(Activator.getDefault().isDebug()) {
 if(!parser.getClass().getName().contains("Mock")) {
 continue;
 }
 }
 }
 }
 …
}

Now run the test application, create a new feed, and point it at a valid Atom or
RSS feed. When the bookmarks project is refreshed, the real entries will be seen. To
enable the debug mode, create a configuration properties file at /tmp/config/com.
packtpub.e4.advanced.feeds.ui.cfg with the content debug=true. Provided
that DS is working correctly, it should display Debugging enabled in the console
window, and subsequent refreshing of the feed should show the mock entries being
created instead.

Services and ManagedService
It is possible to register services that implement both a service (such as
AtomFeedParser) and the ManagedService interface (to acquire configuration).
However, the problem comes when the service is registered without any configuration
data. Should the service be valid if there is no configuration data present? Or will the
defaults work as expected? If there must be configuration data, how will the service
be prevented from being called until the configuration data is available?

Chapter 3

[115]

The best way is to rely on something like Declarative Services to do the right thing
(and with less work), but if for whatever reason it needs to be implemented then
this can be done as well.

If the service can run without explicit configuration data, then the service can
be registered both as its service interface (such as IFeedParser) as well as the
ManagedService interface. The two interfaces will be registered at the same time,
and hence, clients may call the service before the configuration is available.

If the service needs to have configuration data before being made available, then
the service can be registered under the ManagedService interface only. When the
updated method is called with configuration data, it can call the registerService
method to register itself under the service interface. When the updated method is
called with no data, it can unregister the service.

Since this is a case where the full life cycle of the service is used, it is appropriate to
use a ServiceRegistration instance to keep a handle on the configured service.

Note that the ServiceRegistration objects are not supposed
to be shared between bundles, but only used by the bundle that
registered them.

Creating an EmptyFeedParser class
Create a new feed parser, EmptyFeedParser, but place it in the UI bundle (since it
needs an Activator class or some other start-up process to register it as a service, it
needs to be hooked onto the UI package for ease of testing). The EmptyFeedParser
class should implement both IFeedService and ManagedService:

public class EmptyFeedParser implements
 IFeedParser, ManagedService {
 public void updated(Dictionary<String, ?> properties)
 throws ConfigurationException {
 }
 public List<FeedItem> parseFeed(Feed feed) {
 return new ArrayList<FeedItem>(0);
 }
}

Using OSGi Services to Dynamically Wire Applications

[116]

To register this, add a line in the start method of the Activator class that
registers this as a ManagedService interface. It should use the PID com.packtpub.
e4.advanced.feeds.ui.EmptyFeedParser, to allow for easy configuration testing:

public void start(BundleContext context) throws Exception {
 …
 Dictionary<String, String> properties
 = new Hashtable<String, String>();
 properties.put(Constants.SERVICE_PID,
 EmptyFeedParser.class.getName());
 context.registerService(ManagedService.class,
 new EmptyFeedParser(), properties);
}

The final piece is to implement the updated method so that it registers the service
when a configuration is provided, and remove it when it is no longer needed. If the
configuration is not null, then a new service can be registered and the resulting
registration object stored in an instance variable. If the configuration is null, then
the registration object should be removed, if it existed. The implementation will
look like the following:

private ServiceRegistration<IFeedParser> registration;
public void updated(Dictionary<String, ?> properties)
 throws ConfigurationException {
 BundleContext context = FrameworkUtil
 .getBundle(EmptyFeedParser.class)
 .getBundleContext();
 if (properties != null) {
 if (registration == null) {
 System.out.println(
 "Registering EmptyFeedParser for the first time");
 registration = context.registerService(
 IFeedParser.class, this, properties);
 } else {
 System.out.println("Reconfiguring EmptyFeedParser");
 registration.setProperties(properties);
 }
 } else {
 if (registration != null) {
 System.out.println("Deconfiguring EmptyFeedParser");
 registration.unregister();
 }
 registration = null;
 }
}

Chapter 3

[117]

This shows the use of a ServiceRegistration object that permits
both service reconfiguration (via the setProperties method) as
well as unregistration via the unregister method. This can be used
independently of Config Admin.

Configuring the EmptyFeedParser
Running the application followed by creating a configuration properties file
at /tmp/config/com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser.cfg
should result in the output being seen in the console that the service is being created.
Similarly, changes to the file will show the updated messages being displayed, and
when the file is removed, the service will go away.

Felix has a default timeout of two seconds to scan for changes, which
can be configured to a different value via the felix.fileinstall.
poll property, which takes a number in milliseconds between polls.

First, find out what bundle.id is being used for the feeds.ui bundle:

osgi> ss | grep feeds.ui

27 ACTIVE com.packtpub.e4.advanced.feeds.ui_1.0.0.qualifier

Now the bundle identifier is found (27 in this case), it can be used to ensure that
it is started and investigate what services are provided:

osgi> start 27

osgi> bundle 27 | grep service.pid

{org.osgi.service.cm.ManagedService}={service.id=294,

 service.pid=com.packtpub.e4.advanced.feeds.ui}

{org.osgi.service.cm.ManagedService}={service.id=295,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser}

The two managed services are the ones created earlier in this chapter; the one that
controls debugging and the one that controls the EmptyFeedParser class just created.

Now create an empty file in the configuration directory (the value specified by the
felix.fileinstall.dir property) /tmp/config/com.packtpub.e4.advanced.
feeds.ui.EmptyFeedParser.cfg. The following can be seen in the console:

Registering EmptyFeedParser for the first time

osgi> bundle 27 | grep service.pid

{org.osgi.service.cm.ManagedService}={service.id=294,

Using OSGi Services to Dynamically Wire Applications

[118]

 service.pid=com.packtpub.e4.advanced.feeds.ui}

{org.osgi.service.cm.ManagedService}={service.id=295 ,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser}

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=296,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser,

 felix.fileinstall.filename=file:/tmp/config/

 com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser.cfg}

The creation of the external configuration file has resulted in the service being
registered automatically. Now add a line, a=banana, in the EmptyFeedParser.cfg
file and see what happens:

Reconfiguring EmptyFeedParser

osgi> bundle 27 | grep service.pid

{org.osgi.service.cm.ManagedService}={service.id=294,

 service.pid=com.packtpub.e4.advanced.feeds.ui}

{org.osgi.service.cm.ManagedService}={service.id=295,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser}

{com.packtpub.e4.advanced.feeds.IFeedParser}={service.id=296,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser,

 a=banana, felix.fileinstall.filename=file:/tmp/config/

 com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser.cfg}

In addition to the service being reconfigured (with the reconfiguring debug message
shown), the additional service property a=banana has been added to the list.

Because the service method registration.setProperties
was used, the same service stays bound. An alternative strategy is
to unregister the service and register a new one. Doing so
will require clients to rebind themselves to the new service, so if
this can be avoided, it makes the clients easier to reason about.

Finally, remove the configuration file and see what happens:

Deconfiguring EmptyFeedParser

osgi> bundle 27 | grep service.pid

{org.osgi.service.cm.ManagedService}={service.id=294,

 service.pid=com.packtpub.e4.advanced.feeds.ui}

{org.osgi.service.cm.ManagedService}={service.id=295,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser}

Chapter 3

[119]

Service factories
A service factory can be used to create services on demand, rather than being
provided up front. OSGi defines a number of different service factories that have
different behaviors.

Ordinarily services published into the registry are shared between all bundles. OSGi
R6 adds a service.scope property, and uses the singleton value to indicate that the
same instance is shared between all bundles. Services that are not factories will have
this value.

Service factories allow multiple instances to be created, and these are the following
three different types:

•	 ServiceFactory: This creates a new instance per bundle (registered with
service.scope=bundle in OSGi R6)

•	 ManagedServiceFactory: This uses Config Admin to create instances per
configuration/PID (registered with service.scope=bundle in OSGi R6)

•	 PrototypeServiceFactory: This allows multiple instances per bundle
(newly added in OSGi R6 registered with service.scope=prototype)

The ServiceFactory interface was added to allow a per-client bundle instance to
be created, to avoid bundles sharing state. When a client bundle requests a service,
if the bundle has already requested the service, then the same instance is returned;
if not, a service is instantiated. When the client bundle goes away, so does the
associated service instance.

A ManagedServiceFactory interface provides a means to instantiate multiple
services instead of a single service per component. The EmptyFeedParser example
is a configured singleton. If the configuration file exists, a service is registered; if
not, no service is registered (multiple instances of a service can be created, each
with their own configuration using service.pid-somename.cfg). Each bundle
shares the instances of these services, but other client bundles will instantiate their
own. Like ServiceFactory, if the service has been requested before, the same
bundle will be returned.

The PrototypeServiceFactory interface was added in OSGi R6 (available in
Eclipse Luna and later) as a means to provide a bundle with multiple instances of
the same service. Instead of caching the previously delivered service per bundle,
a new one is instantiated each time it is looked up. The client code can use
BundleContext.getServiceObjects(ref).getService() to acquire a service
through the PrototypeServiceFactory interface. This allows stateful services to
be created.

Using OSGi Services to Dynamically Wire Applications

[120]

Creating the EchoServer class
As an example, consider an EchoServer class that listens on a specific ServerSocket
port. This can be run on zero or many ports at the same time. This code will be
used by the next section, and simply creates a server running on a port and sets up
a single thread to accept client connections and reflect what is typed. The code here
is presented without explanation (other than of its purpose), and will be used to
create multiple instances of this service in the next section.

When this is instantiated on a port (for example, when new EchoServer(1234)
is called), it will be possible to telnet to the localhost on port 1234 and have
content reflected as it is typed. To close the stream, use Ctrl +] and then type close.
The code is as follows:

public class EchoServer implements Runnable {
 private ServerSocket socket;
 private boolean running = true;
 private Thread thread;
 public EchoServer(int port) throws IOException {
 this.socket = new ServerSocket(port);
 this.thread = new Thread(this);
 this.thread.setDaemon(true);
 this.thread.start();
 }
 public void run() {
 try {
 byte[] buffer = new byte[1024];
 while (running) {
 Socket client = null;
 try {
 client = socket.accept();
 InputStream in = client.getInputStream();
 OutputStream out = client.getOutputStream();
 int read;
 while (running && (read = in.read(buffer)) > 0) {
 out.write(buffer, 0, read);
 out.flush();
 }
 } catch (InterruptedIOException e) {
 running = false;
 } catch (Exception e) {
 } finally {
 safeClose(client);
 }
 }

Chapter 3

[121]

 } finally {
 safeClose(socket);
 }
 }
 public void safeClose(Closeable closeable) {
 try {
 if (closeable != null) {
 closeable.close();
 }
 } catch (IOException e) {
 }
 }
 public void stop() {
 running = false;
 this.thread.interrupt();
 }
}

Creating an EchoServiceFactory class
Create an EchoServiceFactory class that implements ManagedServiceFactory,
and register it in the Activator class as before:

public void start(BundleContext context) throws Exception {
 …
 properties = new Hashtable<String, String>();
 properties.put(Constants.SERVICE_PID,
 EchoServiceFactory.class.getName());
 context.registerService(ManagedServiceFactory.class,
 new EchoServiceFactory(), properties);
}

The EchoServiceFactory class is responsible for managing the children that it
creates, and since they will be using threads, to appropriately stop them afterwards.
The ManagedServiceFactory interface has three methods; getName, which
returns a name of the service, and updated and deleted methods for reacting
to configurations coming and going. To track them, create an instance variable
in the EchoServiceFactory class called echoServers, which is a map of pid to
EchoServer instances:

public class EchoServiceFactory implements ManagedServiceFactory {
 private Map<String, EchoServer> echoServers =
 new TreeMap<String, EchoServer>();
 public String getName() {
 return "Echo service factory";

Using OSGi Services to Dynamically Wire Applications

[122]

 }
 public void updated(String pid, Dictionary<String, ?> props)
 throws ConfigurationException {
 }
 public void deleted(String pid) {
 }
}

The updated method will do two things; it will determine whether a port is present
in the properties, and if so, instantiate a new EchoServer on the given port. If not,
it will deconfigure the service:

public void updated(String pid, Dictionary<String, ?> properties)
 throws ConfigurationException {
 if (properties != null) {
 String portString = properties.get("port").toString();
 try {
 int port = Integer.parseInt(portString);
 System.out.println("Creating echo server on port " + port);
 echoServers.put(pid, new EchoServer(port));
 } catch (Exception e) {
 throw new ConfigurationException("port",
 "Cannot create a server on port " + portString, e);
 }
 } else if (echoServers.containsKey(pid)) {
 deleted(pid);
 }
}

If an error occurs while creating the service (because the port number isn't specified,
isn't a valid integer, or is already in use), an exception will be propagated back to
the runtime engine, which will be appropriately logged.

The deleted method removes it if present, and stops it:

public void deleted(String pid) {
 System.out.println("Removing echo server with pid " + pid);
 EchoServer removed = echoServers.remove(pid);
 if (removed != null) {
 removed.stop();
 }
}

Chapter 3

[123]

Configuring EchoService
Now that the service is implemented, how is it configured? Unlike singleton
configurations, the ManagedServiceFactory expects the value of pid to be a
prefix of the name, followed by a dash (-), and then a custom suffix.

Ensure that the feeds.ui bundle is started, and that EchoServiceFactory is
registered and waiting for configurations to appear:

osgi> ss | grep feeds.ui

27 ACTIVE com.packtpub.e4.advanced.feeds.ui_1.0.0.qualifier

osgi> start 27

osgi> bundle 27 | grep service.pid

{org.osgi.service.cm.ManagedService}={service.id=236,

 service.pid=com.packtpub.e4.advanced.feeds.ui}

{org.osgi.service.cm.ManagedService}={service.id=237,

 service.pid=com.packtpub.e4.advanced.feeds.ui.EmptyFeedParser}

{org.osgi.service.cm.ManagedServiceFactory}={service.id=238,

service.pid=com.packtpub.e4.advanced.feeds.ui.EchoServiceFactory}

Now create a configuration file in the Felix install directory /tmp/config/com.
packtpub.e4.advanced.feeds.ui.EchoServiceFactory.cfg with the content
port=1234. Nothing happens.

Now rename the file to something with a – extension at the end, such as
-1234, for example, /tmp/config/com.packtpub.e4.advanced.feeds.
ui.EchoServiceFactory-1234.cfg. The suffix can be anything, but conventionally
naming it for the type of instance being created (in this case, a service listening on
port 1234) makes it easier to keep track of the services. When this happens, a service
will be created:

Creating new echo server on port 1234

Telnetting to this port can see the output being returned:

$ telnet localhost 1234

Connected to localhost.

Escape character is '^]'.

hello

hello

Using OSGi Services to Dynamically Wire Applications

[124]

world

world

^]

telnet> close

Connection closed by foreign host.

Creating a new service PID will start a new service; create a new file called /tmp/
config/com.packtpub.e4.advanced.feeds.ui.EchoServiceFactory-4242.cfg
with the content port=4242. A new service should be created:

Creating new echo server on port 4242

Test this by running telnet localhost 4242. Does this echo back content?

Finally, remove the service configuration for port 1234. This can be done by either
deleting the configuration file, or simply renaming it with a different extension:

Removing echo server

Verify that the service has stopped:

$ telnet localhost 1234

Trying 127.0.0.1...

telnet: unable to connect to remote host

FileInstall only looks at *.cfg files, so renaming it to
*.cfg.disabled has the same effect as deleting it, while
making it easy to restore it subsequently.

Summary
This chapter looked at OSGi services as an alternative means to provide dependent
services in an Eclipse or OSGi application. By registering services either imperatively
at bundle start-up in an activator, or by using one of the declarative services
representations, an operational system can evolve by connecting services together
during a single runtime. Different approaches for configuration were shown with
either embedded values in the service component document, or derived from
external properties or configuration with Config Admin.

The next chapter will look in more detail at how the console shell works and how
commands can be contributed to an OSGi runtime.

Using the Gogo Shell
and Commands

Although not defined as an OSGi specification, all (non-embedded) OSGi
frameworks have had a console to provide a means to interact with the framework.
Some, such as Equinox, had a console built into the core JAR; others, such as Felix,
provided console services through separate bundles.

In this chapter, we'll look at the Gogo shell, which is used by Felix and Equinox,
and learn how to write commands in Gogo script as well as Java.

Consoles in Equinox
Until the end of Eclipse 3.7, Equinox supported a built-in console that was
available by running the org.eclipse.osgi JAR file with a -console argument:

$ java -jar org.eclipse.osgi_3.7*.jar -console

Framework is launched.

osgi>

With the release of Eclipse 4.2 (Juno) and onwards, this console is no longer
available by default:

$ java -jar org.eclipse.osgi_3.8*.jar -console

Using the Gogo Shell and Commands

[126]

This is because the implementation provider for the console defers to the Gogo shell,
which was developed by the Apache Felix project.

Eclipse 4.2 and 4.3 provided an osgi.console.enable.builtin flag
to enable the older console, but this was removed in Eclipse 4.4 (Luna).

With Equinox 3.8 (Eclipse Juno 4.2 and above), it is necessary to install additional
bundles at start-up to provide a console. This is covered in the Running Equinox
from the command line section later in this chapter.

Host OSGi Console
The easiest way to experiment with the console is to use Eclipse's Console View.
This is typically used for seeing the output of running Java programs, but in fact the
console view can show many other types of consoles as well. In the top-right corner
of the view, there is a dropdown that can show alternative consoles.

Choosing the Host OSGi Console action creates a new Gogo shell. It warns that
the console is connected to the running Eclipse instance; typing exit will call
System.exit and terminate Eclipse and the JVM:

Chapter 4

[127]

The console has a built-in help system that can be used to find out what commands
are available and what their individual functions are. The help command will
provide a list of all the available commands, and running help command will give
more information:

osgi> help getprop

getprop - displays the system properties with the given name, or all of
them

 scope: equinox

 parameters:

 String[] name of system property to display

osgi> getprop os.name

os.name=Mac OS X

Running commands
Each command has a scope and a name. Optionally, it may require a number of
parameters. Many commands take no arguments, but the help text should say what
is required. Some commands have limited help, but they will display additional
information when run with no arguments.

Commands may be prefixed with their scope to avoid ambiguity. These two
commands are therefore equivalent:

osgi> echo Hello World

Hello World

osgi> gogo:echo Hello World

Hello World

Using the Gogo Shell and Commands

[128]

Disambiguation is necessary for some command names that are defined in more
than one scope. For example, the ls command is provided by both the equinox
scope (to list the Declarative Services components) and by the felix scope (to list
the contents of the current directory):

osgi> felix:ls

/Applications/Eclipse.app/Contents/MacOS/eclipse

/Applications/Eclipse.app/Contents/MacOS/eclipse.ini

osgi> equinox:ls

All Components:

ID State Component Name

1 Registered org.eclipse.e4.core.services.preferences

2 Registered org.eclipse.e4.core.services.events

...

By default, the shell prints out a value after each statement. To disable this,
run .Gogo.format=false (with the correct capitalization):

osgi> 'Hello World'

Hello World

osgi> .Gogo.format=false

osgi> 'Hello World'

osgi> .Gogo.format=true

true

osgi> 'Hello World'

Hello World

With formatting disabled, the echo or format commands can be used to display
results. Along with printing the output, format will also return the value. This
may result in two values being displayed if autoformatting is turned on:

osgi> echo 'hello'

hello

osgi> format 'hello'

hello

hello

osgi>

Chapter 4

[129]

Variables and pipes
The shell has a way to set and get variables, which can be useful when interacting
with bundle identifiers or names. Variables can be assigned with the equals sign
(=) and can be evaluated with a dollar symbol ($), similar to Unix shell scripts.
Identifiers start with an extended alphabet followed by alphanumeric characters
(including underscores):

osgi> name = Alex

Alex

osgi> echo Hello $name

Hello Alex

osgi> id = 0

0

osgi> headers $id

Bundle headers:

 Built-By = e4Build

 Bundle-Description = OSGi System Bundle

 Bundle-SymbolicName = org.eclipse.osgi; singleton:=true

…

The special variable $_ is used to store the result of the last command. Other variables
are also predefined; exception is used to store the result of the last exception and e
is a function that will print out the last exception's stack trace. The set command will
print out all the currently defined variables:

osgi> 'hello'

hello

osgi> echo $_

hello

osgi> set

null 0 null

String SCOPE equinox:*

null _ null

Closure e $exception printStackTrace

HeapCharBuffer prompt osgi>

osgi> misteak

gogo: CommandNotFoundException: Command not found: misteak

Using the Gogo Shell and Commands

[130]

osgi> $exception

Command misteak

Cause null

Message Command not found: misteak

osgi> e

 org.apache.felix.gogo.runtime.CommandNotFoundException:

 Command not found: misteak

 at org.apache.felix.gogo.runtime.Closure.executeCmd

 at org.apache.felix.gogo.runtime.Closure.executeStatement

Along with being able to assign variables from literal values on the command line,
it is also possible to capture the output of a command and assign that to a variable.
While the command cat copies output from a source to the console, tac works in
the opposite direction:

osgi> contents = (felix:ls | tac)

/Applications/Eclipse.app/Contents/MacOS/eclipse /Applications/Eclipse.
app/Contents/MacOS/eclipse.ini

osgi> echo $contents

/Applications/Eclipse.app/Contents/MacOS/eclipse /Applications/Eclipse.
app/Contents/MacOS/eclipse.ini

It is possible to pipe the content through other commands; the most useful one is
grep, which can be used to search for specific patterns:

osgi> lb -s | grep osgi

 0|Active |0|org.eclipse.osgi (3.9.1.v20140110-1610)

 185|Resolved|4|org.eclipse.osgi.services (3.3.100.v20130513-1956)

 186|Resolved|4|org.eclipse.osgi.util (3.2.300.v20130513-1956)

1103|Resolved|4|osgi.enterprise (4.2.0.v201108120515)

The grep command doesn't support a full set of POSIX arguments, but it does
provide some options. The built-in help documentation does not show it, but if
run without arguments, it provides more useful output:

osgi> help grep

grep

 scope: gogo

 parameters:

 CommandSession

 String[]

osgi> grep

Chapter 4

[131]

grep: no pattern supplied.

Usage: grep [OPTIONS] PATTERN [FILES]

 -? --help show help

 -i --ignore-case ignore case distinctions

 -n --line-number prefix each line with line number

 -q --quiet, --silent suppress all normal output

 -v --invert-match select non-matching lines

gogo: IllegalArgumentException: grep: no pattern supplied.

Functions and scripts
Besides providing an interactive Read Evaluate Print Loop (REPL), the console
also permits the creation of functions and scripts. This allows common functions
to be defined in a persistent file and then be reused between sessions.

A function is defined in curly braces, and it can use the special variables $args
or $argv to refer to arguments, just like the Unix shell's $* or Windows' %*. It is
possible to refer to the first nine arguments with $1 to $9, or $it as an alias for
the first argument; $it is commonly used in each with an anonymous function,
covered in the Processing a list with each section later in this chapter.

osgi> pwd

gogo: CommandNotFoundException: Command not found: pwd

osgi> pwd = {getprop user.dir}

getprop user.dir

osgi> pwd

user.dir=/Applications/Eclipse.app/Contents/MacOS

osgi> greeting = {echo Hello $args}

echo Hello $args

osgi> greeting World

Hello World

Functions can be saved in an external file and then loaded into a Gogo shell session.
Create a file called fns in the temp directory (/tmp on Unix/OS X and c:\TEMP on
Windows) as follows:

Lines beginning with # are comments

Blank lines are also permitted
v curly braces v
pwd = {getprop user.dir}
greeting = {echo Hello $args}

Using the Gogo Shell and Commands

[132]

From the Gogo shell, run the following:

osgi> source /tmp/fns # source c:\TEMP\fns on Windows

Loaded file successfully

osgi> pwd

user.dir=/Applications/Eclipse.app/Contents/MacOS

osgi> greeting Alex

Hello Alex

Literals and objects
Strings that are passed in are interpreted as string literals. Strings surrounded
with double quotes allow replacement of variables with $, whereas those with
single quotes do not perform replacement:

osgi> name=Alex

Alex

osgi> 'Hello $name'

Hello $name

osgi> "Hello $name"

Hello Alex

Numbers are available as both floating point and integers. By default, they are
represented as Double and Long instances respectively. They can be used to pass
into methods that expect smaller types (such as float and int) and are cast down
automatically. Suffix flags of f and d are used to denote floating point values, but
both are converted to Double:

osgi> lightspeed = 299792458

299792458

osgi> ncc = 1701d

1701.0

It is possible for lists and maps to be entered in literal form in the console. They
are separated by spaces rather than commas, and the syntax for maps is almost
the same, with the addition of keys:

osgi> numbers = [1 2 3]

1

2

3

osgi> words = [one=1 two=2 three=3]

Chapter 4

[133]

one 1

two 2

three 3

osgi> echo $one

null

Note that using the syntax one=1 does not perform an assignment,
as shown in the example. It defines a key for the map. If the key
contains special characters or spaces, it must be specified in quotes.

There are explicit literals for boolean values true and false.

The console allows objects to be instantiated with the new command. The fully
qualified name of the class is passed in along with any arguments:

osgi> new java.util.ArrayList

osgi> random = new java.util.Random

java.util.Random@768c5708

Calling and chaining methods
The values displayed on the console are actually Java objects, so true is a literal
that maps to Boolean.TRUE and false maps to Boolean.FALSE. Similarly, integral
values are represented under the covers as Long instances and strings are all
instances of String.

The Gogo shell can invoke arbitrary methods on instance methods using the dot (.)
operator. It's possible to chain more than one method call by using one dot operator
after another:

osgi> "hello" . length

5

osgi> "hello" . getClass . getName

java.lang.String

Since the Gogo shell is dynamic and the methods are looked up dynamically,
the methods can be specified in a case-insensitive manner:

osgi> "hello" . getclass . getname

java.lang.String

Using the Gogo Shell and Commands

[134]

Although methods can be called in a case-insensitive manner, variable names are
case sensitive. Note that the dot (.) operator can be left out for the first method call,
as everything else will be interpreted as arguments:

osgi> $numbers . get 0

1

osgi> $words get one

1

Parentheses can be used to evaluate nested expressions, as in other languages:

osgi> ("hello" getClass) getName

java.lang.String

osgi> (("hello" getClass) getPackage) getName

java.lang

Control flow
The Gogo shell supports basic control flow, including if and each:

osgi> if {true} {echo Yes}

Yes

osgi> if {false} {echo Yes}

osgi> if {false} {echo Yes} {echo No}

No

Multiple commands can be put inside the braces, separated by semicolons:

osgi> if {true} {echo Yes; echo Still yes}

Yes

Still yes

There are also other functions such as not, which can be used to negate the result
of a boolean expression:

osgi> if {not {true}} {echo Yes} {echo No}

No

Chapter 4

[135]

Although there aren't built-in functions for logical operators such as and and or,
it's possible to create functions to do this fairly simply:

osgi> and = { if {$1} {if {$2} {true} {false}} {false}}

osgi> or = { if {$1} {true} {if {$2} {true} {false}}}

osgi> or true false

true

osgi> and true false

false

Finally, the each command allows iteration over an array of elements:

osgi> directions = ["Up" "Down"]

osgi> each $directions { echo $it }

Up

Down

osgi> each $directions { echo "->$it<-" }

->Up<-

->Down<-

The each command actually provides a map function (which takes an array
of values), invokes a function on each element, and returns an array of results.
This allows operations to be nested:

osgi> (each ["" 1 true] { ($it getClass) getName }) get 0

java.lang.String

Running Equinox from the command line
To launch Equinox as a standalone OSGi application with a Gogo shell, the minimal
dependencies are as follows:

•	 org.apache.felix.gogo.shell (provides the I/O processing and parser)
•	 org.apache.felix.gogo.runtime (provides the language runtime)
•	 org.eclipse.osgi (the Equinox kernel)

The org.apache.felix.gogo.command bundle
provides a number of the built-in functions such as ls
and start, as well as those that interact with repositories.
It is useful but not necessary to run a basic shell.

Using the Gogo Shell and Commands

[136]

To run Equinox as a launch in Eclipse, go to the Run menu and then choose Run
Configurations... after which a dialog will appear. Choose OSGi Framework and
set it up with the mentioned bundles (a quick way is to add the org.apache.felix.
gogo.shell bundle, then deselect the Include optional dependencies option
and click on Add Required Bundles). The resulting launch configuration now
looks like the following screenshot:

Click on Run and a console will be launched.

An exception may be thrown at start-up if the org.eclipse.
equinox.console bundle is not found:
org.osgi.framework.BundleException: Could not find:
 org.eclipse.equinox.console
 at org.eclipse.osgi.framework.internal.core.
ConsoleManager
 .checkForConsoleBundle(ConsoleManager.java:211)
 at org.eclipse.core.runtime.adaptor.EclipseStarter
 .startup(EclipseStarter.java:298)

To resolve the problem, add the org.eclipse.equinox.console
bundle to the runtime.

Chapter 4

[137]

To run from a command line instead of an Eclipse launch configuration, the bundles
need to be specified as either relative files or URLs. Equinox supports the osgi.
bundles system property, which provides a comma-separated list of the JARs that
the framework should attempt to bring up at boot. Note that @start is required to
bring the console up when the org.eclipse.equinox.console bundle isn't present:

$ java -Dosgi.bundles=

 org.apache.felix.gogo.runtime_0.10.0.v201209301036.jar@start,

 org.apache.felix.gogo.shell_0.10.0.v201212101605.jar@start

 -jar org.eclipse.osgi_3.9.1.v20140110-1610.jar -console

osgi> bundles

0|Active|0|org.eclipse.osgi (3.9.1.v20140110-1610)

1|Active|4|org.apache.felix.gogo.shell (0.10.0.v201212101605)

2|Active|4|org.apache.felix.gogo.runtime (0.10.0.v201209301036)

Relative paths may be used by starting with ./ or file:./ and absolute paths may
be used with / or file:///.

The -jar argument runs the org.eclipse.osgi JAR using Main-Class from
the manifest (which is org.eclipse.core.runtime.adaptor.EclipseStarter
in Equinox).

Finally, the -console argument is passed to the running Eclipse instance inside
String[] args, which indicates that Equinox should start up the console.

The version numbers may differ; these were taken from
Kepler SR2. Eclipse Luna (4.4.0) uses org.eclipse.
osgi_3.10.0.v20140606-1445.jar as the entry point.

The Equinox commands (those in scope equinox:) are provided by the org.
eclipse.osgi.console bundle. Adding this removes the exception highlighted
previously and supplies some of the commands such as ss (short status) and
b (bundle).

Using the Gogo Shell and Commands

[138]

Understanding osgi.bundles and config.ini
The Equinox runtime can be configured in a couple of different ways. One way is
to specify system properties on the command line with the -Dosgi.* parameters.
(Despite being prefixed with osgi, they aren't standardized by an OSGi specification;
they're all specific to Equinox.)

To prevent large command-line arguments, properties may instead be specified in
a file called config.ini, which is stored in the configuration area of Eclipse. The
configuration area is a directory that stores Equinox runtime information, and it is
typically referred to as the configuration directory, since that is the default value.
Running Equinox with -config can specify a different directory to be used.

One advantage of the config.ini file is that it can be updated by installers. P2 has
a means to amend the contents of this file, which is used when updating between
releases of Eclipse and in which the filenames (which have embedded version
numbers) can be modified. Equinox reads the config.ini file and sets lines as
system properties for the application.

When a stock Eclipse application runs, either the Equinox framework (if launched
via the -jar option) or the eclipse.exe executable boots the JVM with the
framework on the classpath, and then Equinox reads the osgi.bundles property
(potentially set from the config.ini file) to bring it into a started state.

In the case of Eclipse, the org.eclipse.equinox.simpleconfigurator bundle is
started, which reads a file named bundles.info, containing a list of bundles that
need to be installed. Each line represents a single bundle, which is comma-separated
and contains the following parts:

•	 The bundle name
•	 The bundle version number
•	 The location of the bundle (either as a relative path or as a fully qualified URL)
•	 The start level of the plug-in
•	 Whether the bundle should be started

For example, the Gogo shell is installed with the following (as a single line):

org.apache.felix.gogo.shell,
0.10.0.v201212101605,
plugins/org.apache.felix.gogo.shell_0.10.0.v201212101605.jar,
4,
false

Chapter 4

[139]

When bundles are installed via P2, the bundles.info file is updated to reflect
the new state of the system. Upon restart, the new set of bundles are used. The
file is written by the utilities in org.eclipse.equinox.simpleconfigurator.
manipulator, and it is sorted alphabetically by the bundle identifier and then in
reverse version order. When changes are made, the entries are updated and the
sorting ensures minimal changes to the content.

Sorting the bundles in reverse version order means that the highest
version is considered first.

Connecting remotely
The Gogo shell has a telnet daemon that can be used to listen for network connections.
This can be started interactively from the console with telnetd, or it can be run from
the command line with the -console argument and an associated port:

$ java -Dosgi.bundles=… -jar org.eclipse.osgi_*.jar -console

osgi> telnetd --port=1234 start

$ java -Dosgi.bundles=… -jar org.eclipse.osgi_*.jar -console 1234

Note that the console-with-port from the command line requires the org.eclipse.
equinox.console bundle to be installed in addition to the Gogo shell. Alternatively,
the system property -Dosgi.console=1234 can be specified at the command line
or via the config.ini file.

Once the daemon is running, the Equinox process can be connected to via telnet:

$ telnet localhost 1234

Trying ::1...

telnet: connect to address ::1: Connection refused

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

osgi> bundles

org.eclipse.osgi_3.9.1.v20140110-1610 [0] Id=0, Status=ACTIVE

…

Using the Gogo Shell and Commands

[140]

Securing the connection
While telnet is good for debugging, it is not a secure way of connecting to a
networked machine. SSH provides a way of connecting securely to remote machines.

Equinox can start an SSH daemon, but it requires more bundles to be added as well
as an appropriate means to verify users and passwords. Unlike the command-line
console or the telnet daemon, the SSH service requires that the Equinox console
implementation be available. The full set of bundles is as follows:

•	 org.apache.felix.gogo.shell (provides the I/O processing and parser)
•	 org.apache.felix.gogo.runtime (provides the language runtime)
•	 org.eclipse.osgi (the Equinox kernel)
•	 org.eclipse.equinox.console (the Equinox console service)
•	 org.eclipse.equinox.console.jaas.fragment (adds JAAS support to

the SSHD server)
•	 org.eclipse.equinox.console.ssh (the SSHD server support)
•	 org.apache.sshd.core (the SSHD server libraries)
•	 org.apache.mina.core (needed by the SSH server libraries)
•	 slf4j-api (the logging framework used by the libraries)

These bundles are available from the Equinox downloads page at http://download.
eclipse.org/equinox/ and the Orbit downloads page at http://download.
eclipse.org/tools/orbit/downloads/. The GitHub repository, https://github.
com/alblue/com.packtpub.e4.advanced, associated with this book has a set of
the required bundles along with a demonstration runtime in the com.packtpub.
e4.advanced.console.ssh directory.

To start an SSHD server in Equinox, it is easier to use a config.ini file instead of
passing in many arguments via the command line. (However, either approach will
still work, so use whichever is more convenient.)

Creating a JAAS configuration
JAAS is used to provide user ID/password authentication. To do this, a JAAS
configuration file needs to be created with an equinox_console entry. As with
other Java programs, this login module is set with the java.security.auth.login
system property.

http://download.eclipse.org/equinox/
http://download.eclipse.org/equinox/
http://download.eclipse.org/tools/orbit/downloads/
http://download.eclipse.org/tools/orbit/downloads/
http://github.com/alblue/com.packtpub.e4.advanced
http://github.com/alblue/com.packtpub.e4.advanced

Chapter 4

[141]

Create a file called jaas.config in the configuration directory with the
following content:

equinox_console {
 org.eclipse.equinox.console.jaas.SecureStorageLoginModule
 REQUIRED;
};

The java.security.auth.login property can be set in the config.ini file that lists
the bundles required:

osgi.console.ssh=1234
osgi.console.ssh.useDefaultSecureStorage=true
org.eclipse.equinox.console.jaas.file=configuration/store
ssh.server.keystore=configuration/hostkey.ser
java.security.auth.login.config=configuration/jaas.config
osgi.bundles=\
 ./org.apache.felix.gogo.runtime_0.10.0.v201209301036.jar@start,\
 ./org.apache.felix.gogo.shell_0.10.0.v201212101605.jar@start,\
 ./org.apache.mina.core_2.0.2.v201108120515.jar,\
 ./org.apache.sshd.core_0.7.0.v201303101611.jar,\
 ./org.eclipse.equinox.console.ssh_1.0.0...jar@start,\
 ./org.eclipse.equinox.console.jaas.fragment_1.0.0...jar,\
 ./org.slf4j.api_1.7.2.v20121108-1250,\
 ./org.eclipse.equinox.console_1.0.100.v20130429-0953.jar

Understanding the configuration options
The osgi.console.ssh port 1234 is used to start up the SSH server. If this
configuration line is missed out, the SSH server won't be started.

The osgi.console.ssh.useDefaultSecureStorage property is required if the
SecureStorageLoginModule is used. It is possible to use alternative LoginModules
here, but this is not covered in this book. See the tutorials on JAAS on the Java home
page for more information.

The org.eclipse.equinox.console.jaas.file property specifies where the
SecureStorageLoginModule writes the user/password values. If not specified,
it uses configuration/store as default.

The secure storage login module uses a fairly simple means
to store hashed passwords. It first generates an MD5 hash of
the password, concatenates the password with this hash, and
then stores the resulting SHA1 hash. So, password becomes
password5f4dcc3b5aa765d61d8327deb882cf99 and then
ends up as 0d85584b3529eaac630d1b7ddde2418308d56317.

Using the Gogo Shell and Commands

[142]

The ssh.server.keystore file contains a serialized Java object (java.security.
KeyPair) of the host's SSH key, which is automatically generated and persisted on
first run. It defaults to hostkey.ser.

Finally, java.security.auth.login.config is the standard JAAS property that
refers to a configuration file that defines the JAAS modules. The final property,
osgi.bundles, lists the bundles that are required and the ones that should be started.

Launching the SSH daemon
Now a console can be accessed via SSH:

$ ssh -p 1234 equinox@localhost

The authenticity of host '[localhost]:1234 ([::1]:1234)' can't be
established.

DSA key fingerprint is 0c:40:ff:ba:0a:c8:bc:3d:a9:72:9f:05:5f:c6:96:35.

Are you sure you want to continue connecting (yes/no)? Yes

Warning: Permanently added '[localhost]:1234' (DSA) to the list of known
hosts.

equinox@localhost's password:

Currently the default user is the only one; since it will be deleted
after first login, create a new user:

username: alex

password:

Confirm password:

roles:

osgi> ss

"Framework is launched."

id State Bundle

0 ACTIVE org.eclipse.osgi_3.9.1.v20140110-1610

1 ACTIVE org.apache.felix.gogo.runtime_0.10.0.v201209301036

2 ACTIVE org.apache.felix.gogo.shell_0.10.0.v201212101605

3 RESOLVED org.apache.mina.core_2.0.2.v201108120515

4 RESOLVED org.apache.sshd.core_0.7.0.v201303101611

 Fragments=6

5 ACTIVE org.eclipse.equinox.console.ssh_1.0.0...

6 RESOLVED org.eclipse.equinox.console.jaas.fragment_1.0.0...

 Master=4

7 RESOLVED org.slf4j.api_1.7.2.v20121108-1250

8 ACTIVE org.eclipse.equinox.console_1.0.100.v20130429-0953

Chapter 4

[143]

Note that the jaas.fragment bundle has been wired to the org.apache.
sshd.core bundle, which allows the sshd.core bundle to connect to the
SecureStorageLoginModule. In fact, an investigation of the jaas.fragment
bundle shows that it is almost empty; the only thing it has is a manifest file
with the following content:

DynamicImport-Package: org.eclipse.equinox.console.jaas
Fragment-Host: org.apache.sshd.core;bundle-version="0.5.0"

The preceding snippet says that the fragment's host is the sshd.core bundle, and
it should add a DynamicImport-Package of the org.eclipse.equinox.console.
jaas package. As a result, although the org.apache.sshd.core bundle doesn't
know anything about the Equinox secure storage module, when the fragment is
injected, it permits the bundle to be wired up to the Equinox bundle:

osgi> bundle 4 | grep equinox

org.eclipse.equinox.console.jaas; version="0.0.0"

 <org.eclipse.equinox.console.ssh_1.0.0.v20130515-2026 [5]>

org.eclipse.equinox.console.jaas.fragment_1.0.0.v20130327-1442 [6]

Fragments are covered in more detail in Chapter 5, Native Code and Fragment Bundles.

Extending the shell
There are two different ways of extending the shell. One of them is to use the
osgi:addcommand function that comes with Gogo. This allows one or more static
methods from a class to be defined as functions in the console. Another way is to
write custom Java classes and register them as OSGi services.

Adding commands from existing methods
In Java, the Integer class has a static method called toHexString, which converts
an integer into its hexadecimal representation. Although this can be invoked via
method calls, it is easier if it can be added as a command natively to the console.

The osgi:addcommand command takes a prefix (scope), a class object, and optionally
a method to import. Without the last parameter, all public static methods will be
added as commands.

When Gogo starts, it runs the gosh_profile script that uses
this technique to add the methods of the System class under
the system scope.

Using the Gogo Shell and Commands

[144]

Getting a class from an existing instance
There are two ways to acquire a class in Gogo. One is to use the getClass method
on an instance to acquire a class object, and the second way is to load the class
dynamically using loadClass:

osgi> loadClass = (0 getClass)

osgi> addcommand number $loadClass toHexString

osgi> number:toHexString 255

ff

osgi> toHexString 255

ff

Loading a class via a ClassLoader
For classes that aren't immediately available, it is necessary to load them via a
ClassLoader. For standard Java packages, the system ClassLoader instance should
be used; for bundle-specific classes, the bundle's own ClassLoader instance should
be used.

A bundle's ClassLoader instance can be acquired from the bundle, and should be
available from the bundle context. Bundle zero (0) is the system bundle and can
be used to load the standard Java packages:

osgi> arraysClass = (context:bundle 0) loadClass java.util.Arrays

osgi> addcommand arrays $arraysClass

This is necessary because many of the OSGi libraries return arrays, and the Gogo
commands don't deal well with array types. Having loaded the Arrays class and
registered it with the arrays prefix, it is now possible to convert an array of bundles
into a list of bundles:

osgi> context:bundles

 0|Active|0|org.eclipse.osgi (3.9.1.v20140110-1610)

 1|Active|1|org.eclipse.equinox.simpleconfigurator (1.0.400)

 2|Active|4|com.ibm.icu (50.1.1.v201304230130)

...

osgi> (context:bundles) size

gogo: NumberFormatException: For input string: "size"

osgi> (arrays:asList (context:bundles)) size

820

Chapter 4

[145]

Writing commands in Java
Although commands can be written in Gogo script or imported from static methods,
it's more common to use POJO classes to implement commands. Because the Gogo
shell works with reflection, there aren't any specific interfaces or features that need
to be added for the commands to work. Instead, there are just implementations of
commands that will be registered by the shell upon start-up.

How does the shell know what the commands are if there are no interfaces? It uses a
couple of service properties (covered in the previous chapter) to annotate services as
being usable by the shell framework. A service must be registered with the following
two properties to be recognized as commands:

•	 osgi.command.scope: This is the name of the prefix of the command
(such as equinox or gogo)

•	 osgi.command.function: This is an array of commands by name, which
correspond to methods of the same name in the implementation class

A service can be registered in any supported way into the runtime, for example,
using Declarative Services, Blueprint, bundle activation, or other ways of calling
context.registerService. This example will use Declarative Services, since it
is bundled by default in Eclipse.

Creating the project
Create a new plug-in project called com.packtpub.e4.advanced.console and
create a class com.packtpub.e4.advanced.console.MathsCommand. Inside that
class, create the methods add, subtract, divide, and multiply that operate on
Number instances, casting to a Double if either argument is a floating point value
and Long otherwise. The code is as follows:

public class MathsCommand {
 public Number add(Number n1, Number n2) {
 if (n1 instanceof Double ||
 n1 instanceof Float ||
 n2 instanceof Double ||
 n2 instanceof Float) {
 return new Double(n1.doubleValue() + n2.doubleValue());
 } else {
 return new Long(n1.longValue() + n2.longValue());
 }
 }
 …
}

Using the Gogo Shell and Commands

[146]

Having created methods that allow mathematical operations, the next step is to have
them registered with the framework at start-up. This can be done by registering an
instance of MathsCommand as an OSGi service. Typically, services are registered as
implementations of a common interface, but since the class does not implement an
explicit interface, java.lang.Object can be used instead.

Using java.lang.Object means that clients don't inadvertently
pick up or cache the bundle's implementation class, which might
prevent reloading.

Using Declarative Services to register the command
To create declarative service, create a folder called OSGI-INF and place a file called
maths.xml in it which has the following content:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true" name="MathsCommand">
 <implementation
 class="com.packtpub.e4.advanced.console.MathsCommand"/>
 <property name="osgi.command.scope" type="String"
 value="maths"/>
 <property name="osgi.command.function" type="String">
 add
 subtract
 divide
 multiply
 </property>
 <service>
 <provide interface="java.lang.Object"/>
 </service>
</scr:component>

The implementation class attribute specifies the class name that will be
instantiated by Declarative Services upon component start-up. By marking it
as immediate="true", the component will be instantiated as soon as the OSGi
runtime installs and starts the Declarative Services implementation.

Chapter 4

[147]

The properties specified allow the console to recognize the services as console
functions. In this case, the command maths:add will be defined in the shell, which
will correspond to the implementation in MathsCommand.add. Multiple commands
can be added against a single implementation; in this case, an array of four strings is
used (the type String is used to denote a string type, and the value-per-line means
that it is an array rather than a single value).

Now, add the OSGI-INF folder to the MANIFEST.MF file so that component XML files
are picked up by the framework:

Service-Component: OSGI-INF/*.xml

Verify that the folder is also added to the build.properties file so that it's correctly
exported by Eclipse when a plug-in is generated (or built by Tycho):

output.. = bin/
bin.includes = META-INF/,\
 OSGI-INF/,\
 .
source.. = src/

Test the command
Now run an Eclipse instance with the plug-in enabled and create a Host
OSGi Console from the Console view. Inside the console, run the following
maths commands:

osgi> maths:add 1 2

3

osgi> maths:subtract 3 4

-1

osgi> maths:multiply 3 4

12

osgi> maths:divide 3 4

0

osgi> maths:divide 3.0 4

0.75

Using the Gogo Shell and Commands

[148]

Note that maths:divide returns an integer if both arguments are supplied as
integral values; the implementation for the divide method can be adjusted as
necessary or a floating point literal can be used (for example, 3.0 or 3f).

If this doesn't work, run type | grep maths and it should show
maths:4. If it doesn't, find the bundle by running bundles | grep
com.packtpub.e4.advanced.console, make a note of the number at
the end (such as 123), then run start 123 to start the bundle. Repeat the
type | grep maths step to see if it shows the output.
If it still doesn't show up, check that the OSGI-INF directory, referred to in
the bundle by running headers 123 | grep Service-Component,
displays a result such as Service-Component: OSGI-INF/*.xml.
If this is shown, check the contents of the XML file by looking at it through
the console using the command ((context:bundle 123) getEntry
'OSGI-INF/maths.xml') content.

Processing objects with console commands
Although the previous example used numbers, the console commands can take any
object type and interact with them or generate output to the output stream. As an
example, look at the following output generated by context:bundles:

osgi> context:bundles

 0|Active|0|org.eclipse.osgi (3.9.1.v20140110-1610)

 1|Active|1|org.eclipse.equinox.simpleconfigurator (1.0.400)

 2|Active|4|com.ibm.icu (50.1.1.v201304230130)

...

This can be recreated by invoking the getBundles method of BundleContext,
but doing this requires a different way of using Declarative Services; in this
case, providing a component activation method.

Create a class called BundlesCommand and create an activate method that
takes a BundleContext instance as an argument. This will require importing
the org.osgi.framework package in the manifest:

import org.osgi.framework.BundleContext;
public class BundlesCommand {
 private BundleContext context;
 public void activate(BundleContext context) {
 this.context = context;
 }
}

Chapter 4

[149]

The activate method is called when the component is started and
handed a BundleContext. If an exception is thrown in this method,
the component is not started. There is a corresponding deactivate
method that is called (if it exists) when the component is stopped.

Adding the print bundles command
Now a command can be added to print out the list of bundles. It can print out
the status of the bundle and its symbolic name to System.out; invocation of the
command will ensure that the stream is routed to the correct console:

public void print() {
 Bundle[] bundles = context.getBundles();
 for (int i = 0; i < bundles.length; i++) {
 Bundle bundle = bundles[i];
 System.out.println(bundle.getBundleId() + " "
 + bundle.getSymbolicName());
 }
}

Now add a new component called bundles.xml to the OSGI-INF directory
for BundlesCommand:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true" name="BundlesCommand">
 <implementation
 class="com.packtpub.e4.advanced.console.BundlesCommand"/>
 <property name="osgi.command.scope" type="String"
 value="bundles"/>
 <property name="osgi.command.function"
 type="String">print</property>
 <service>
 <provide interface="java.lang.Object"/>
 </service>
</scr:component>

Using the Gogo Shell and Commands

[150]

Now restart Eclipse and run the bundles:print command:

osgi> bundles:print

0 org.eclipse.osgi

1 org.eclipse.equinox.simpleconfigurator

…

842 com.packtpub.e4.advanced.feeds.ui

847 com.packtpub.e4.advanced.feeds

851 com.packtpub.e4.advanced.console

Note the immediate="true" attribute in the component definition,
which ensures that the component is started automatically.

Returning a list of bundles
To work with the actual bundle instances, a new command is needed. This will
return the array of Bundle as a List (which saves converting the array to a List
as done earlier). Add a new method called list and add it to the component
bundles.xml file:

public List<Bundle> list() {
 return Arrays.asList(context.getBundles());
}

<property name="osgi.command.function" type="String">
 print
 list
</property>

Restart the Eclipse instance and verify that the bundles:list command works as
expected. If not, find the bundle's ID and uninstall it, and then restart it:

osgi> bundles:list

0|Active|0|org.eclipse.osgi (3.9.1.v20140110-1610)

1|Active|1|org.eclipse.equinox.simpleconfigurator (1.0.400)

Since the result of bundles:list is a List, it is possible to get elements from the list
with get. The elements are indexed from 0, so won't necessarily correspond with
their bundle IDs (use context:bundle to look them up by ID):

osgi> ((bundles:list) get 0) getSymbolicName

org.eclipse.osgi

Chapter 4

[151]

Processing a list with each
Lists can be processed with each, which iterates through values. The each function
takes a function (lambda) and passes its argument in via $it or $args, so it can be
used to display every bundle that starts with a specific prefix:

osgi> each (bundles:list) {

 if {($it getSymbolicName) startsWith "com.packtpub"}

 {echo ($it getSymbolicName) } }

com.packtpub.e4.advanced.feeds.ui

com.packtpub.e4.advanced.feeds

com.packtpub.e4.advanced.console

Note that the result of this operation will be to print out the bundles; however,
many bundles exist, and also a selection of null values (one per bundle). That's
because the each function returns an element for each of the entries processed.
To disable printing, refer to the Running commands section that shows how to set
.Gogo.format=false.

The ability to return a value with each provides a powerful way of doing a
map operation. For example, to convert the List<Bundle> objects to a List of
String names, use the following command:

osgi> each (bundles:list) { $it getSymbolicName }

org.eclipse.osgi

org.eclipse.equinox.simpleconfigurator

…

With Java 8, it will be possible to filter lists more efficiently, and this will result in
improvements to the Gogo shell's ability to perform list processing. The next section
will show how to implement a filter function in Java.

Calling functions from commands
To permit functions to be callable from other Java commands, it is necessary to
provide an implementation of Function, which is a Gogo-specific class. To use
this, add the following import to the console bundle's manifest:

Import-Package:
 org.apache.felix.service.command;status=provisional
 ;resolution:=optional

Because the API is marked as provisional (and the OSGi directive
mandatory:=status is used at the point of export), it is necessary
to add the status=provisional attribute to the package import.

Using the Gogo Shell and Commands

[152]

Since not all commands need to use this package, marking resolution as optional
means that the bundle will still resolve if this package is not available; the net effect
is that the methods using the Function type will not be able to run correctly.

Create a class called ListCommand in the com.packtpub.e4.advanced.console
package, and create a method called filter that allows a Function and a List of
objects to be passed in. It will also need to take in a CommandSession argument as
well. Since the nested function may throw an exception, propagate this to the caller
by defining it on the method signature:

package com.packtpub.e4.advanced.console;
import org.apache.felix.service.command.CommandSession;
import org.apache.felix.service.command.Function;
public class ListCommand {
 public List<Object> filter(CommandSession session, Function f,
 List<Object> list) throws Exception {
 …
 }
}

Inside the filter function, implement the method such that it iterates through all
elements of the list, and where the function applied to each element is true, add the
element to the returned list:

List<Object> result = new ArrayList<Object>();
for (Object object : list) {
 List<Object> args = new ArrayList<Object>(1);
 args.add(object);
 if (Boolean.TRUE.equals(f.execute(session, args))) {
 result.add(object);
 }
}
return result;

To register the service, create a Declarative Services component XML file called
list.xml:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true" name="ListCommand">
 <implementation
 class="com.packtpub.e4.advanced.console.ListCommand"/>
 <property name="osgi.command.scope" type="String" value="list"/>
 <property name="osgi.command.function" type="String">
 filter
 </property>
 <service>
 <provide interface="java.lang.Object"/>

Chapter 4

[153]

 </service>
</scr:component>

This can be tested by using a function that always returns true or false:

osgi> list:filter {true} [1 2 3]

1

2

3

osgi> list:filter {false} [1 2 3]

osgi>

To provide a more useful filter, it is necessary to have some functions capable of
performing comparisons. Since the shell script doesn't have any concept of equality (or
inequality), it is necessary to define these as a set of functions. This can be done with a
CompareCommand class and an associated component XML file called compare.xml:

public class CompareCommand {
 public boolean eq(Object a, Object b) {
 return a.equals(b);
 }
 public boolean gt(Comparable<Object> a, Comparable<Object> b) {
 return a.compareTo(b) > 0;
 }
 public boolean lt(Comparable<Object> a, Comparable<Object> b) {
 return a.compareTo(b) < 0;
 }
 public int compare(Comparable<Object> a, Comparable<Object> b) {
 return a.compareTo(b);
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 immediate="true" name="CompareCommand">
 <implementation
 class="com.packtpub.e4.advanced.console.CompareCommand"/>
 <property name="osgi.command.scope" type="String"
 value="compare"/>
 <property name="osgi.command.function" type="String">
 eq
 compare
 gt
 lt
 </property>
 <service>
 <provide interface="java.lang.Object"/>
 </service>
</scr:component>

Using the Gogo Shell and Commands

[154]

A combination of the list:filter and compare:gt commands allows lists to
be processed:

osgi> list:filter {gt $it 2} [1 2 3 4]

3

4

Finally, this allows the list of bundles to be filtered when they are in a particular
state. It is possible to implement this as follows:

osgi> ACTIVE = 32

32

osgi> filter {eq $ACTIVE ($it getState)} (bundles:list)

osgi>

Unfortunately, the preceding code does not work. The reason is subtle, but worth
understanding; the implementation of compare:eq that was implemented earlier
looks like the following:

public boolean eq(Object a, Object b) {
 return a.equals(b);
}

However, 32 in the console is always represented as a Long (for integral values).
The return value of the Bundle.getState method is an int, which is promoted to
an Integer; unfortunately, the implementation of the Long class only permits Long
values to be compared to other Long values, not to any other Number type.

osgi> ($ACTIVE getClass) getName

java.lang.Long

osgi> (new java.lang.Integer '1') equals (new java.lang.Long '1')

false

So, a change needs to be made to the compare:eq method such that if the two
argument types are Number instances, their numeric values are compared instead.
The method can be reimplemented as follows:

public boolean eq(Object a, Object b) {
 if (a instanceof Number && b instanceof Number) {
 if (a instanceof Double || a instanceof Float
 || b instanceof Double || b instanceof Float) {
 return ((Number)a).doubleValue()==((Number)b).doubleValue();

Chapter 4

[155]

 } else {
 return ((Number)a).longValue()==((Number)b).longValue();
 }
 } else {
 return a.equals(b);
 }
}

Now the filter will work as expected:

osgi> filter {eq $ACTIVE ($it getState)} (bundles:list)

 0|Active|0|org.eclipse.osgi (3.9.1.v20140110-1610)

 1|Active|1|org.eclipse.equinox.simpleconfigurator (1.0.400)

 …

858|Active|4|com.packtpub.e4.advanced.console (1.0.0.qualifier)

Technically, comparing double values requires ensuring that
the difference between two values is smaller than an epsilon
value, because doubles may not be exactly equal but round
off to approximately the same figure. Utilities such as Apache
Commons Math has Precision.equals(d1,d2,ulps) and
JUnit has assertEquals(d1,d2,epsilon) for this reason.

Looping and iteration
Although the each function provides a way of iterating over arrays, sometimes it
is desirable to perform a fixed number of loops. Although there is a while and
until command built into the shell, neither is particularly useful unless there is
some way of keeping a loop counter. Fortunately, with the maths:subtract and
the compare:gt functionality, it's possible to write a while function that loops:

osgi> n = 5

osgi> while { gt $n 0 } { echo $n; n = (subtract $n 1); }

5

4

3

2

1

Using the Gogo Shell and Commands

[156]

The until loop works in the same way, except that termination occurs when the
argument changes from false to true:

osgi> n = 5

5

osgi> until { lt $n 1 } { echo $n; n = (subtract $n 1); }

5

4

3

2

1

Summary
In this chapter, we looked at the Gogo shell and how it can be extended in Equinox.
Many of the examples here will work against a Felix implementation as well,
although the SSHD example is specific to Equinox. The first part covered basic Gogo
syntax, including variables, literals, functions, and how to run the console either
locally or via remote access.

The second part of the chapter covered how to extend the console. The simplest
kind of extension is with built-in shell functions, which can be iteratively developed
or sourced from an external file. However, for more complex commands, shell
extensions can be provided in the form of Java objects, which when integrated with
Declarative Services or Blueprint, do not need to have any OSGi dependency at all.

The next chapter will look at how native code is used in Java and how native
libraries can be loaded into bundles.

Native Code and
Fragment Bundles

OSGi has support for loading native code in an application, which may be used
to provide access to platform-specific functionality or for performance reasons.
This chapter will present an overview of the Java Native Interface, and then cover
how native code can be bundled in with plug-ins. It will also cover how fragment
bundles can provide extensions to bundles in an OSGi runtime, such as native code
libraries and Java patches.

Native code and Eclipse
The Java Native Interface (JNI) is a standard way in which any Java program
can interact with native code. The process for working with native code can be
summarized as follows:

1.	 Write a Java class with a native method.
2.	 Compile the Java class as normal.
3.	 Run javah with the class name, which generates a header stub.
4.	 Write the native C function and export it with the given function signature.
5.	 Compile the code into a dynamically linked library.
6.	 Load the library into the runtime with System.loadLibrary.
7.	 Execute the native method as normal.

The name of the library is dependent on the operating system; some call the library
name.dll, some call it libname.so, and others libname.dylib. However, Java just
uses the real portion of the library name; so, all three platforms use the same Java
code, System.loadLibrary("name"), to load the library.

Native Code and Fragment Bundles

[158]

Creating a simple native library
For the purpose of this chapter, a native library will be created to perform a
simple Maths operation class that adds two numbers. Although this could be
easily implemented in Java, it is used to demonstrate the principles of how
native code works.

Create a new plug-in project called com.packtpub.e4.advanced.c and, inside that, a
class called Maths with a package named for the project. In it, create a native method
called add, which takes two int arguments and returns an int. To ensure the native
library is loaded, add a static initializer block that calls System.loadLibrary:

package com.packtpub.e4.advanced.c;
public class Maths {
 static {
 System.loadLibrary("maths");
 }
}

Now compile this class and then run javah from the command line, specifying
the fully qualified class name:

$ javah -d native -classpath bin com.packtpub.e4.advanced.c.Maths

$ ls native/

com_packtpub_e4_advanced_c_Maths.h

Now implement a C function that has the same signature as defined in the header:

#include "com_packtpub_e4_advanced_c_Maths.h"
JNIEXPORT jint JNICALL Java_com_packtpub_e4_advanced_c_Maths_add
 (JNIEnv *env, jclass c, jint a, jint b) {
 return a + b;
}

The function signature is generated by javah, and uses macros such
as JNIEXPORT and JNICALL, which are platform-specific #define
statements in case any additional compiler or platform flags are
required to register these as exported symbols. The name of the
function is calculated from the fully qualified name of the class and
method name, using underscores instead of dots. Each JNI function
also has a pointer to JNIEnv, which is a handle to the JVM, as well as
jclass (for static methods) or jobject (for instance methods).

Chapter 5

[159]

The final step is to compile it into a platform-specific dynamic link library. The
process differs from one operating system to another. This will typically include
a path to the location of the JNI header files and output flags that say what the
resulting file should be called.

Mac OS X
The Mac OS X developer tools are located either in /Developer or under
/Applications/Xcode.app/Contents/Developer. The JNI header is located
under the JavaVM.framework/Headers directory, so an include path -I needs
to be specified to locate the files. Adjust the path as necessary when building this
code, or use xcrun --show-sdk-path to find out where the SDK folder is located:

$ xcrun --show-sdk-path --sdk macosx10.9

/Applications/Xcode.app/Contents/Developer/Platforms

/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk

The -dynamiclib option is used to generate a dynamic linked library, which will
allow it to be loaded into the Java runtime.

The output filename is declared with -o and, in order to load it into a Java runtime,
must be of the form lib<name>.dylib.

The -arch i386 -arch x86_64 compiler flags generate a universal binary, which
is a combination of both 32-bit and 64-bit code in the same library. OS X is the only
major operating system to support multi-architecture builds by default.

The following command can therefore be used to build the library:

$ clang

 com_packtpub_e4_advanced_c_Maths.c

 -dynamiclib

 -o libmaths.dylib

 -I /Applications/Xcode.app/Contents/Developer/Platforms

 /MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk

 /System/Library/Frameworks/JavaVM.framework/Headers

 -arch i386

 -arch x86_64

This results in a file named libmaths.dylib.

On OS X, the dylib extension is used for dynamic libraries,
and conventionally, they have a lib prefix.

Native Code and Fragment Bundles

[160]

Linux
Linux distributions currently use GCC, although it may not be installed by default.
Consult the operating system's package manager to determine where and how to
install it if it is missing. (On Ubuntu and Debian, this will be apt-get install gcc,
and on Red Hat and derivatives, yum install gcc.)

To build a library with gcc, the -I flag tells the compiler where to find the include
files, and -shared tells it to create a library. The -o flag tells the compiler what to
call the output:

$ gcc

 com_packtpub_e4_advanced_c_Maths.c

 -shared

 -o libmaths.so

 -I /usr/include/java

This results in a file named libmaths.so.

On Linux, the so extension is used for shared object libraries,
and conventionally, they have a lib prefix.

Note that depending on the operating system, the installation of the JDK (and
therefore its include files) may be located elsewhere. For example, on Debian,
this will be located under /usr/lib/jvm.

To find the correct location, run find /usr -name jni.h and
see which directory is reported:
$ find /usr -name jni.h

/usr/lib/jvm/java-7-openjdk-i386/include/jni.h

Windows
Windows doesn't come with a compiler by default, although there is a Visual Studio
Express version that is available at no charge.

The Windows Studio Express download ships with a C compiler and linker called cl.
Options can be specified with / or – and are interchangeable depending on preference.
The -LD option tells the compiler to generate a dynamic link library, and the -Fe
option gives the output name (in this case, maths.dll). As with other compilers, -I
indicates where the include files are placed for the JDK that has been installed:

Chapter 5

[161]

cl

 com_packtpub_e4_advanced_c_Maths.c

 -LD

 -Femaths.dll

 -IC:\Java\include

This results in a file called maths.dll. Note that the lowercase e is part of the -Fe
option, and not part of the dynamic link library itself.

On Windows, the dll extension is used for dynamic link libraries,
and there is no prefix.

Loading the native library
Once the binary has been compiled, a simple test for the Maths class can exercise
the functionality:

package com.packtpub.e4.advanced.c;
public class MathsTest {
 public static void main(String[] args) {
 System.out.println(Maths.add(1,2));
 }
}

When run, this should print out 3.

If the native library cannot be found, the following exception will be displayed:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

 no maths in java.library.path

 at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1886)

 at java.lang.Runtime.loadLibrary0(Runtime.java:849)

 at java.lang.System.loadLibrary(System.java:1088)

 at com.packtpub.e4.advanced.c.Maths.<clinit>(Maths.java:13)

 at com.packtpub.e4.advanced.c.MathsTest.main(MathsTest.java:14)

The <clinit> method (which stands for class initializer) in the stack
trace is the special name given to the static initializer—in this case,
the static block in the Maths class. This is also generated if any
static variables are assigned non-default values.
The instance constructor is called <init>, and is generated whenever
instance variables are assigned or if a constructor is provided.

Native Code and Fragment Bundles

[162]

The exception is triggered when the Maths class is first used, which is called from
MathsTest. Note that the static initializer of a class is executed prior to any
methods being invoked on that class.

If the System class is unable to find the library relative to the class, it will consult
the list of directories specified in the java.library.path system property. If the
native library is found, then it will be returned; otherwise, an error is thrown.

To fix the previous error, modify the Java runtime to add a directory (relative or
absolute) and invoke it with the system property set accordingly:

$ java -classpath . -Djava.library.path=/path/to/dir

 com.packtpub.e4.advanced.c.MathsTest

The library must be loaded as a File rather than as an embedded resource in a
JAR file; in other words, an InputStream object cannot be used to load the contents.
OSGi runtimes such as Equinox and Felix extract the native libraries on demand to
a temporary file so that they can be loaded by the operating system.

Library dependencies
One thing to be aware of is the fact that native libraries go through a slightly
different resolution process as compared to libraries loaded by Java. If the JNI library
has an external dependency, then this will be loaded automatically by the operating
system. However, the operating system won't know about java.library.path, and
hence may fail to find the required native library dependencies.

For Windows systems, the current directory is always consulted if a library can't
be found elsewhere, and this typically results in the library being loadable. It will
default to the Windows system directory (such as c:\Windows\Sytstem32 or
similar) if it can't be found in the PATH variable.

On Linux and OS X, the value of the LD_LIBRARY_PATH variable or the DYLD_
LIBRARY_PATH variable is consulted. Generally, these are set to include /usr/lib
and /lib by default, so that standard libraries (such as libc and libssl) can
always be loaded.

To see the problem in action, create a new dynamic library called other, which
defines a single function:

// other.h
int otherAdd(int a, int b);
// other.c
#include "other.h"
int otherAdd(int a, int b) { return a+b; }

Chapter 5

[163]

Compile this as a dynamic linked library called other. Then, modify the maths
library to use the other library:

#include "com_packtpub_e4_advanced_c_Maths.h"
#include "other.h"
JNIEXPORT jint JNICALL Java_com_packtpub_e4_advanced_c_Maths_add
 (JNIEnv *env, jclass c, jint a, jint b) {
 return otherAdd(a,b);
}

The maths library will need to be passed an argument to link this with the native
library as well, such as -L. -lother on Unix or by passing the name of the library
on the cl command line for Windows.

If the other library is in the current directory when the Java virtual machine is
started, then the MathsTest class will work as expected. If it is moved into a
different directory, then the test will fail:

$ java -Djava.library.path=native

 com.packtpub.e4.advanced.c.MathsTest

Exception in thread "main" java.lang.UnsatisfiedLinkError:

 com.packtpub.e4.advanced/com.packtpub.e4.advanced.c/

 native/libmaths.dylib:

 dlopen(com.packtpub.e4.advanced/com.packtpub.e4.advanced.c/

 native/libmaths.dylib, 1):

Library not loaded: libother.dylib

Referenced from:

 com.packtpub.e4.advanced/com.packtpub.e4.advanced.c/

 native/libmaths.dylib

Reason: image not found

 at java.lang.ClassLoader$NativeLibrary.load(Native Method)

The problem is that the value of java.library.path is only known by the Java
runtime. Java knows where to find the first library, but when that library needs the
dependent library and the native operating system needs to resolve it, it will use the
operating system's native resolution to find the library.

Java doesn't provide a way to modify environment variables at
runtime, and in any case, the operating system's library loader
doesn't re-read the environment variables after the start of a process
for efficiency reasons.

Native Code and Fragment Bundles

[164]

On Windows, the dependent library may be loaded and cached in memory by calling
System.loadLibrary separately. The Maths class can be changed as follows:

static {
 System.loadLibrary("other");
 System.loadLibrary("maths");
}

Now when run on Windows, the program works as expected. That's because the
Windows platform loads and resolves the symbols in the first library and then loads
and resolves the symbols in the second library.

On Unix platforms such as Mac OS X and Linux, this doesn't work, because the
library will have an embedded reference to the dependent library. The native loader
will complain that the dynamic link library is not satisfied, even if the library has
been loaded already. That's because on Unix, the native libraries are loaded lazily
(and so not resolved), with the result that when the function is first called, it is
resolved on demand.

The solution to this problem is to perform one of the following steps instead:

•	 In the native code, only rely on system libraries (those in /usr/lib
or equivalent)

•	 Statically link any dependent code
•	 Set the appropriate environment variable to a location containing all

the dependencies before launching
•	 Avoid using JNI libraries to provide operating system hooks
•	 Use an alternative library such as jnr (https://github.com/jnr),

which includes a POSIX compatibility layer

Native code patterns
When writing native code methods in Java, any time the method signature changes,
the method has to be recompiled and relinked. This may be inconvenient for Java
developers, especially if multiple platforms need to be rebuilt.

Best practice is to internalize native dependencies by ensuring that all native
methods are marked as private.

https://github.com/jnr

Chapter 5

[165]

Instead of exporting the native function to callers directly, mark it as private
and provide Java public methods that wrap the native call:

private native static int nativeAdd(int a, int b);
public static int add(int a, int b) {
 return nativeAdd(a,b);
}

This permits the native library to be isolated from any Java changes that may occur in
future, such as changing the signature type or adding exceptions. In addition, any fixes
that are required may be implemented in a Java layer instead of the native layer. For
example, in the previous case, if the method needed to be changed to add long values
instead, the native layer could still be used in the common case but fall back to a pure
Java path in the case the values are larger than the native layer can handle:

public static long add(long a, long b) {
 if (a < Integer.MAX_VALUE / 2 && a > Integer.MIN_VALUE / 2
 && b < Integer.MAX_VALUE / 2 && b > Integer.MIN_VALUE / 2) {
 return nativeAdd((int)a, (int)b);
 } else {
 return a+b;
 }
}

Note that the arguments are range tested to ensure that the resulting value will be
within the int range and that an overflow does not occur. Similar argument testing
can be done for other types of arguments before they are passed into the native
method. If certain values are known to cause problems, they can be handled in the
Java layer appropriately.

Another reason to use a Java frontend is that exceptions are often easier to generate
(and messages easier to update) when compiled in Java than in the native layer. JNI
provides a means to throw an exception with the (*env)->ThrowNew method, but if
there is a requirement to update the information passed into the exception object, it is
easier to change this in the Java code once instead of changing it once per platform.

An alternative approach is to provide thin Java bindings over every native method
in as close to one-to-one correspondence as possible. SWT provides a means to
manipulate the underlying operating system's resources using Java classes; for
example, on Mac OS X, the org.eclipse.swt.internal.cocoa package provides
objects such as NSView and id that have one-to-one correspondence with their
underlying native counterparts. The SWT library is then constructed by manipulating
the Java wrappers, in much the same way that AWT abstracts the native libraries in
the original GUI toolkit for Java.

Native Code and Fragment Bundles

[166]

Unlike AWT, SWT can be upgraded without requiring a JVM update.
The other key reason why AWT is no longer used is that the AWT
implementation aimed to provide a least-common-denominator
approach, which meant that it always lagged behind OS upgrades.
SWT keeps up-to-date with the operating system's new features, adding
support for touches, gestures, and new UIs such as GTK3. Wherever
possible, the native objects are returned so that the look, feel, and
behavior are appropriate for the application; but for operating systems
that don't support particular elements, a fallback implementation in
Java can often be used.

Native libraries in OSGi bundles
To support loading native code in OSGi bundles, the framework defines a specific
header, Bundle-NativeCode, which defines the libraries that are available to the
bundle via the System.loadLibrary call.

The Bundle-NativeCode header defines one or more native libraries and a clause
which states what operating systems and processor architectures are valid for each
library. Calls to System.loadLibrary will then look for libraries mentioned in this
list and use only those found for the appropriate architecture. In effect, the Bundle
-NativeCode header replaces the java.library.path property.

In the prior example, the maths library was used for performing calculations. In an
OSGi bundle, this could be packaged with the bundle itself and referred to via a
manifest header:

Bundle-NativeCode: native/maths.dll

When calling System.loadLibrary("maths") on Windows, the native/maths.dll
library will be automatically extracted to a suitable location on the filesystem and
passed to the operating system for loading.

Note that the directory of the library in the bundle is neither relevant
nor consulted in the loading of the library itself.

If a bundle is being designed to support more than one operating system, then the
library needs to be qualified accordingly. To do this, clauses can be appended to
each native library to determine which osname or operating system they can run on:

Chapter 5

[167]

Bundle-NativeCode:
 native/maths.dll;osname=win32,
 native/libmaths.dylib;osname=macosx,
 native/libmaths.so;osname=linux

Now when run on a Windows platform, System.loadLibrary("maths") will load
the native/maths.dll library; for Linux platforms, native/libmaths.so will be
loaded instead; and for Mac OS X, native/libmaths.dylib will be used.

The OSGi R6 specification translates requirements in the Bundle-
NativeCode header to a set of generic requirements on the osgi.
native namespace. An osname=win32 clause is automatically
translated to a Require-Capability: osgi.native.
osname~=win32 clause. This allows resolvers to choose the right
dependency automatically. Eclipse Luna has an OSGi R6 compatible
version of Equinox.

Although each operating system has its own naming convention (and thus the
libraries can all be in the same directory in this instance), this approach doesn't work
when providing multiple libraries for the same operating system. Although Mac OS
X can create multi-architecture bundles, other operating systems are restricted to a
single-processor architecture per library.

If the bundle needs to support both 32-bit and 64-bit operating systems, two versions
of the library are required and the processor attribute disambiguates between them:

Bundle-NativeCode:
 native/x86/maths.dll;osname=win32;processor=x86,
 native/x86_64/maths.dll;osname=win32;processor=x86_64,
 native/libmaths.dylib;osname=macosx,
 native/x86/libmaths.so;osname=linux;processor=x86,
 native/x86_64/libmaths.so;osname=linux;processor=x86_64

The correct version of the maths library is loaded depending upon whether it is a
32-bit (x86) or 64-bit (x86_64) processor.

This is the reason why directories are neither consulted nor necessary in
the lookup of the native libraries; this permits the directories themselves
to be used to partition the native libraries into different directories
without affecting the logical runtime.

Native Code and Fragment Bundles

[168]

Optional resolution of native code
A side effect of the Bundle-NativeCode header is that if it is present, then it must
have an associated entry that matches the operating system. If it is not, then the
bundle will fail to resolve.

As a result, specifying the following will mean that the bundle cannot resolve on
platforms other than Mac OS X:

Bundle-NativeCode: native/libmaths.dylib;osname=macosx

This is desirable in cases where there is a dependency on a framework specific to an
operating system (such as a dependency on Cocoa.framework), but in other cases,
a native library can be useful to accelerate certain actions but will work fine without
the native library.

To declare that the native library is optional, place an asterisk (*) as another option
in the Bundle-NativeCode header:

Bundle-NativeCode: native/libmaths.dylib;osname=macosx,*

This special syntax indicates that the bundle should still resolve normally even if the
operating system isn't Mac OS X, but with the expectation that System.loadLibrary
will only be called when running on a Mac OS X platform; or alternatively, that the
code can handle an UnsatisifedLinkError when calling the method.

Multiple libraries for the same platform
When providing multiple libraries on a single platform, they all need to be referenced
on the same clause. The OSGi resolution iterates through the clauses in order, and
stops at the first one matching the current environment. As a result, this will never
load the maths library:

Bundle-NativeCode:
 native/libother.dylib;osname=macosx,
 native/libmaths.dylib;osname=macosx

Even though this looks like it should work, calls to System.loadLibrary("other")
will work as expected, while calls to System.loadLibrary("maths") will fail.

To define multiple libraries, concatenate them into the same clause:

Bundle-NativeCode:
 native/libother.dylib;native/libmaths.dylib;osname=macosx

Now, the resolution of other and maths will work on the macosx platform.

Chapter 5

[169]

Multiple libraries with the same name
If there are multiple libraries with the same name in the same clause, then only the
first one is loaded. For example, if a separate debug version of the maths library was
used and placed in a separate directory, then there would be no way to load it:

Bundle-NativeCode:
 native/libmaths.dylib;debug/libmaths.dylib;osname=macosx

Since folders are ignored and cannot be supplied as part of the System.loadLibrary
call, any reference to maths will always result in the first native/libmaths.dylib
library.

The right way to resolve this is to either rename the library, for example, libmaths
-debug.dylib, or use an alternative mechanism, such as the filter or fragment
solutions discussed later in this chapter.

Additional filters and constraints
It is possible to attach additional filters and constraints on loading the native libraries
in an OSGi bundle. There are a number of standard attributes that can be specified
along with a generic filter:

•	 osname: This is the name of the operating system (win32, macosx, or linux)
•	 osversion: This is the version number of the operating system

(8.1, 10.9, or 3.2)
•	 processor: This is the processor type (x86, x86_64)
•	 language: This is the ISO language code, in case the DLL has textual content
•	 selection-filter: This is an OSGi LDAP filter, which can be applied for

other system properties

For a full list of supported values, see the OSGi specification or on the OSGi website
at http://www.osgi.org/Specifications/Reference.

The selection-filter can be used to provide a specific debug variant of an
available library by specifying a system property for the Java VM. For example,
if two versions of a library were required, one with debugging symbols, then the
filter can be set as follows:

Bundle-NativeCode:
 native/libmaths.dylib;selection-filter=(!(debug=true))
 debug/libmaths.dylib;selection-filter=(debug=true)

http://www.osgi.org/Specifications/Reference

Native Code and Fragment Bundles

[170]

Running the VM with a -Ddebug=true flag would result in the debug libraries
being loaded by System.loadLibrary, whereas with any other value (or unset),
the normal one would be used.

selection-filter can also be used to test for other conditions, for example:

Bundle-NativeCode:
 native/libmaths.dylib;selection-filter=(file.encoding=UTF-8)

This can be used to selectively load different libraries based on the windowing
system installed:

Bundle-NativeCode:
 native/libgtk.so;selection-filter=(osgi.ws=gtk),
 native/libcocoa.dylib;selection-filter=(osgi.ws=cocoa),
 native/mfc.dll;selection-filter=(osgi.ws=win32)

Reloading native libraries
When a native library is loaded into the JVM, it can only be loaded from a single
bundle at a time. If the bundle is restarted or updated, the existing native library
is reused for the new version of the bundle. The reason for this is that the JVM
ensures that the fully qualified path of the native library is associated with a single
ClassLoader instance. Subsequent loads of the native library will fail.

If the bundle is uninstalled completely, the native library may be subject to
unloading. Note that this only occurs when the ClassLoader instance associated
with the bundle is garbage collected, which may be some time after the bundle has
been stopped.

Note that as discussed earlier in this chapter, the OSGi specification only supports
native libraries that have no transitive native dependencies. This restriction is
primarily limited to the support in Java for loading such transitive dependencies.

OSGi fragment bundles
An OSGi runtime consists of a set of bundles running in a managed environment.
These bundles provide classes and resources, a (sub)set of which can be exported to
other bundles. Each bundle has its own class space (provided by its own ClassLoader
instance) that permits the dependencies and exports to be wired up appropriately.

Chapter 5

[171]

OSGi also has the ability to manage fragment bundles or simply fragments. These
are like bundles that don't have their own life cycle, but can still contribute classes
and package dependencies to a host bundle at runtime.

The difference between a fragment bundle and a host bundle is the existence of the
Fragment-Host header, which specifies the Bundle-SymbolicName and, optionally,
the bundle-version attribute of the bundle to attach to. All other OSGi headers are
valid for fragments, except for Bundle-Activator. The reason why the activator is
not valid is that fragments do not have their own life cycle; they share the life cycle
of their parent bundle, and as such cannot be activated.

The Fragment-Host header can specify version ranges of bundles to attach to; the
syntax is the same for other bundles, for example, bundle-version="[1.0,2.0)"
to specify a range between 1.0 (inclusive) and 2.0 (exclusive).

Note that on Equinox, the value of Bundle-ManifestVersion must
be at least 2 to enable fragments to resolve correctly.

Adding native code with fragments
Fragments can be used to contribute native libraries and other resources to a bundle.
By embedding the native libraries to the fragment and having it attach to the
Fragment-Host, the host bundle will be able to look up native resources as usual.

The Bundle-NativeCode header is used as before, and filter options can be specified
to ensure that only a particular fragment resolves correctly:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.c.win32.x86
Bundle-Version: 1.0.0
Bundle-NativeCode: win32/x86/maths.dll;processor=x86;osname=win32
Fragment-Host: com.packtpub.e4.advanced.c

There are a few points worth noting with the native code and fragment option:

•	 As with any fragments, they need to be installed prior to the host bundle
being resolved, or it will not be bound as expected. This may cause confusion
if the native library is required.

Native Code and Fragment Bundles

[172]

•	 As the platform-specific fragment and the bundle will share the same
class space (that is, the same ClassLoader), it is necessary to put the
native libraries in unique folder names to ensure that they get consulted
appropriately. One way of doing this is to use the processor and osname
values as folder names, which help to maintain uniqueness. Otherwise,
one fragment may bind tighter to a package name than the desired one,
resulting in the desired package not loading. This is especially true when
the optional platform binding is used.

•	 The bundle itself will still be able to resolve, even if the fragment is missing
or cannot be resolved at all. This may lead to confusion if the native library
is strictly required for the bundle to operate correctly.

In general, if native libraries are required for correct operation, it is recommended
that they are stored in the same bundle as the corresponding Java code for all
platforms that are supported. The downside of the additional size of the bundle
will be outweighed by the convenience of it working as expected when it is installed.

Eclipse provides its native libraries as fragments that are attached to
a host bundle. Both the SWT and Equinox launcher have native code
that gets loaded from a Java bundle. This allows the specific platform
bundle fragment to be loaded, but from an OSGi perspective, the SWT
(or Equinox) bundle will resolve without the native code being present.
Generally, it is better if an OSGi bundle does not resolve until all the
required dependencies are present.

Adding classes to a bundle
A fragment can contribute classes and resources to the classpath for the bundle. If
the host bundle does not specify a Bundle-ClassPath, then the default is a dot (.)
which is the content of the bundle itself. A fragment that has one or more classes in
the root of the fragment bundle will therefore be available to classes running in the
host bundle, and vice versa. As a result, loading classes with class.forName allows
a class to be loaded from a contributed fragment bundle.

Fragments have their own Bundle-ClassPath as well and can be appended to
the end of the search path. By itself, this doesn't allow for fragments to replace the
bundle content, but it does provide a way to add code to the bundle's search path
such as a database driver:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.db.client
Bundle-Version: 1.0.0

Chapter 5

[173]

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.db.client.h2
Bundle-Version: 1.0.0
Bundle-ClassPath: h2.jar
Fragment-Host: com.packtpub.e4.advanced.db.client

When the com.packtpub.e4.advanced.db.client.h2 fragment is installed and
attached to com.packtpub.e4.advanced.db.client, it will allow the client bundle
to load the h2 drivers.

Patching bundles with fragments
Another common use case for a fragment bundle is to provide a patch to an existing
OSGi bundle, but without having to modify or replace the source bundle. The way this
is performed is by injecting fragment classes to the front of the host bundle's classpath.

Since the Bundle-ClassPath of the fragment is concatenated at the end of the
Bundle-ClassPath of the host, this in itself is not sufficient to be able to patch
a runtime bundle. The search order for a class or resource is to step through the
entries in the Bundle-ClassPath in order, and stop at the first one found.

The solution is to implement the host bundle in a way that permits later patching, by
providing a patch JAR file that is missing in the host bundle but can be contributed
by a fragment bundle. Class lookups will ignore the patch JAR if it cannot be found,
and consult any fragments that contribute the patch JAR.

To implement this, define the Bundle-ClassPath on the host bundle such that a
patch.jar is placed before the root of the bundle (.):

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.host
Bundle-Version: 1.0.0
Bundle-ClassPath: patch.jar,.

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.host.fragment
Bundle-Version: 1.0.0
Fragment-Host: com.packtpub.e4.advanced.host
Comment: Provides the patch.jar file in the fragment

Now when the fragment is installed and bound to the host bundle, classes in the
fragment will take priority and can replace those in the host bundle.

Native Code and Fragment Bundles

[174]

Adding imports and exports with fragments
Fragments can also be used to add additional imports and exports to a bundle.
By supplying a combination of Import-Package and Export-Package statements,
the original host bundle can be extended or exposed appropriately.

Sometimes a bundle will inadvertently have runtime requirements that are not
expressed or exposed in an Import-Package statement. Providing a fragment
allows a bundle to be corrected without needing to change the source of the original
bundle. Another reason to do this is to allow a bundle to see the implementation of
a particular driver class (such as a custom log4j appender) that it would otherwise
not be able to see:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.log4j
Bundle-Version: 1.0.0
Fragment-Host: org.apache.log4j
Import-Package: com.packtpub.e4.advanced.log4j.custom

A similar thing can be done with Export-Package as well:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.log4j.export
Bundle-Version: 1.0.0
Fragment-Host: org.apache.log4j
Export-Package: org.apache.log4j;version="1.2.0"

This will attach to an existing bundle and re-export the package, but with a
lower version number than present. This may be useful when a package export
contains a higher micro version than expected or a tighter constraint is defined in
a required bundle.

Note that for both Import-Package and Export-Package, the required
dependencies are ignored if the host bundle already supplies an exact match (since
adding them would change nothing). If the packages conflict, then the fragment
may fail to resolve. Diagnosing and resolving these errors is a tricky process, and
will often involve updating the uses directive of the imported/exported packages
to ensure a consistent class space. Felix often provides better diagnostic information
than Equinox when the uses constraint fails.

Chapter 5

[175]

The uses directive specifies what packages are used by classes of
the exported package. This allows a resolver to figure out the correct
transitive dependencies without the client needing to provide them.
For example, in the Gogo runtime bundle, the org.apache.felix.
gogo.api package declares that it uses the org.apache.felix.
service.command package, which means that users of the API package
need to be compatible with the Command package as well:
Export-Package: org.apache.felix.gogo.api;
 uses:="org.apache.felix.service.command"

Bnd calculates uses constraints automatically, and is used by maven-bundle-plugin
as well as the Gradle osgi plug-in when projects are built with those plug-ins enabled.
Maintaining the uses constraint manually is not recommended.

Extension bundles
Fragments that bind to the system bundle are known as extension bundles. The
system bundle has an ID of 0 and uses the symbolic name system.bundle, or the
specific framework implementation such as org.apache.felix.framework or
org.eclipse.osgi if the fragment is specific to a single framework.

One way of using extension bundles is to provide access to a package that is
contained in the JVM but not exported. By default, the OSGi framework will export
packages only in the java.* package, although both Felix and Equinox default to
exporting the javax.* packages where available.

Consider a bundle that depends on the internal class sun.misc.BASE64Decoder.
A bundle that has an Import-Package: sun.misc will not resolve in a standard
OSGi framework, because no framework will export that package.

Note that depending on the sun.misc packages is not recommended as
these may be removed in future versions of Java. For Base 64 encoding/
decoding, the Apache Commons Codec class can be used, or for Java 6
and above, the javax.xml.bind.DatatypeConverter class can be
used instead. Java 8 has introduced the java.util.Base64 class to
allow developers to migrate away from sun.misc. OpenJDK 8 ships
with the jdeps tool, which can show when internal class dependencies
are present. Running jdeps -jdkinternals will show all internal
classes that are used on the classpath.

Native Code and Fragment Bundles

[176]

Although the default packages exposed by the OSGi framework can be modified
by setting a system property org.osgi.framework.system.packages.extra,
another way is to create a system bundle extension that exports the package and
attaches it to the framework:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.export.sun.misc
Bundle-Version: 1.0.0
Fragment-Host: system.bundle
Export-Package: sun.misc

If this is created as an empty fragment bundle and installed into the framework,
it will result in the system bundle exporting the sun.misc package, which will
allow bundles that need it to bind as normal.

Another use for fragments is to provide standard OSGi services in a bundle outside
of the system bundle. Felix uses this to conditionally provide the implementation
of the PermissionAdmin framework. Such implementations need to use the
extension:=framework attribute:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.apache.felix.framework.security
Fragment-Host: system.bundle; extension:=framework

OSGi R6 adds the Extension-BundleActivator header
specifically for framework extensions, so that they may
participate in the start-up and shut-down of the framework.

Finally, fragments may be used to add classes to the JVM's bootclasspath with
extension bundles. This may be necessary if starting a Java agent is required. Note
that not all OSGi frameworks support modification of the bootclasspath; if they
do, the property org.osgi.supports.bootclasspath.extension will be true.
A fragment defined as a bootclasspath extension looks like the following:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.packtpub.e4.advanced.bootclasspath
Fragment-Host: system.bundle;extension:=bootclasspath

On Equinox and Felix, this is currently null, which means it is not supported:

osgi> getProperty org.osgi.supports.bootclasspath.extension

osgi>

Chapter 5

[177]

As a result, attempting to install a bundle with a bootclasspath extension results
in an error in Felix:

org.osgi.framework.BundleException:

 Unsupported Extension Bundle type: bootclasspath java.lang.
UnsupportedOperationException:

 Unsupported Extension Bundle type!

The case is similar for Equinox:

org.osgi.framework.BundleException:

 Boot classpath extensions are not supported.

Modification of the bootclasspath extension is not directly supported in OpenJDK
for a standalone program (though instrumented JVMs with an agent can obtain an
Instrumentation class that does have permissions), and as such, modifications of the
bootclasspath in Equinox and Felix are not directly supported on OpenJDK VMs.

It is however possible to programmatically add classes to the bootclasspath by
using reflection to invoke the addURL method of the URLClassLoader, which is
used by the system class loader.

Summary
This chapter presented the way in which Java code can call native code. Examples
for various operating systems and how they can be loaded from a Java application
were shown. This technique was then demonstrated with fragment bundles, along
with other kinds of extension mechanisms to export packages and perform additions
to the framework itself.

The next chapter will look at the details of service loaders and Thread Context
ClassLoaders in an OSGi context.

Understanding ClassLoaders
In this chapter, we will look at how OSGi's use of ClassLoaders permits bundle
separation, and what effect this has on libraries that mistakenly assume there is
only one ClassLoader per JVM. We will cover the Java ServiceLoader and describe
the problems and solutions it has in an OSGi framework. Finally, we will look at
how to upgrade such libraries so that they are OSGi compatible.

Overview of ClassLoaders
One of JVM's biggest contributions to runtime loading has been the ClassLoader
design and infrastructure. This allows a JVM to load the bytecode from arbitrary
locations or even generate them on demand. It was this infrastructure that enabled
Applets and Remote Method Invocation (RMI)—two key technologies that
propelled Java toward enterprise use in the late 1990s.

The purpose of a ClassLoader is to take a class name (such as com.example.Test)
and return an instantiated Class object. This typically involves translating the
name to some kind of file reference (such as com/example/Test.class), loading
the content of that file, and passing it to the JVM to define a Class. ClassLoaders
can also be used to synthesize classes on demand or even weave additional data
to the classes at load time.

The most common ClassLoader used in Java is the URLClassLoader. This takes
an array of URLs that either point to JARs or directory roots, and when a class is
requested, it iterates through them in turn attempting to resolve the required class.
If a URL looks like an archive file (such as a JAR or ZIP), then the manifest is loaded
and the content is inspected; otherwise, it concatenates the base URL with the file
reference. This allows a JVM to load classes both from a local filing system (such as
the one started from the command line) or from a remote network source (such as
http used by both Applets and Java WebStart).

Understanding ClassLoaders

[180]

Finally, ClassLoaders are also used to load resources. When using methods such as
class.getResource or class.getResourceAsStream, the same set of ClassLoader
steps occur, allowing code and resources to be loaded from the same place.

ClassLoaders and inheritance
The JVM actually uses multiple ClassLoaders while running Java programs.
The system ClassLoader is used for most operations, which can be obtained
from the ClassLoader.getSystemClassLoader method. This is an instance of
URLClassLoader, with a set of URLs that correspond to the class path specified
at launch time from the command line or the CLASSPATH environment variable.

A ClassLoader typically has a non-null parent ClassLoader. This is used to
delegate requests that cannot be satisfied internally and for packages in the java.*
namespace (which must come only from the boot classpath). The standard launcher
also has an extension ClassLoader that is responsible for loading libraries from the
$JAVA_HOME/jre/lib/ext directory.

As a result, when looking up a file or resource, the following locations are searched:

•	 If the class is in the java.* namespace, only the boot ClassLoader
is searched

•	 The locations or JARs specified in the -classpath command-line argument
or the CLASSPATH environment variable (loaded by the AppClassLoader)

•	 Libraries in $JAVA_HOME/jre/lib/ext (loaded by the ExtClassLoader)
•	 Fallback to the boot ClassLoader

The combination of these is known as the system ClassLoader, as illustrated in the
following diagram:

App

ClassLoader

Ext

ClassLoader

Boot

ClassLoader

log4j.jar
junit.jar
...

dnsns.jar
zipfs.jar
...

jre/lib/ext/ jre/lib/

rt.jar
jsse.jar
...

-cp

java.*

Class.forName (X)

Chapter 6

[181]

ClassLoaders in web application servers
ClassLoaders are heavily used in web application servers such as Tomcat, GlassFish,
and Jetty (as well as their commercial counterparts). Each Web ARchive (WAR)
installed onto a server has its own WebappClassLoader, which loads the webapp's
classes and resources as well as delegating to the application servers and ultimately
the system ClassLoader. As a result, two web applications can have independent
resources and classes, and one cannot affect the other. This permits two web
applications to use a different version of a common library, such as log4j,
without any problems, as illustrated in the following diagram:

Webapp

ClassLoader

AppServer

ClassLoader

Webapp

ClassLoader

log4j-1.jar
app.jar
...

servlet.jar
tomcat.jar
...

tomcat/lib/ WEB-INF/lib/

log4j-2.jar
other.jar
...

WEB-INF/lib/

App Ext Boot

The standard Java platform performs a parent-first search for classes,
but in web and enterprise application servers, the child-first search for
classes allows independent web applications to load different versions
of libraries.

In the context of the web application, both classes and resources are served from
the web application's own ClassLoader, and they are distinct from classes loaded
by other ClassLoaders.

Although some people incorrectly think that a class name is global
within a JVM, the JVM specification (section 5.3) defines uniqueness
as the class name and the instance of its ClassLoader. Without this
ability, Java web application servers would not exist, and Java may
never have made big inroads to the server side in the late 1990s.

Understanding ClassLoaders

[182]

ClassLoaders and garbage collection
One important feature of a ClassLoader is that it has a bi-directional relationship
with the Class instances it has defined. In turn, the Class is referenced by every
instance of that class, forming a tree of relationships between a set of instances
and the ClassLoader that loaded them, as shown:

Web

App

App

Server

My

App
Servlet

MyApp@

79f173

App Ext Boot

String

Instance

“Hello” “World”

ClassLoader

Class

In this case, MyApp is a subclass of Servlet, whose toString method returns
MyApp@79f173. It refers to two strings, "Hello" and "World". Although this diagram
may look complicated, it is a common occurrence in every web application server for
these kinds of relationships to occur.

The WebappClassLoader is owned by the webapp server runtime, which ensures
that it and the all classes it defines are pinned in memory so that they are not garbage
collected. The MyApp servlet is referred to by the runtime as well so it is also not
garbage collected.

However, when the webapp server decides that the application must be stopped
(either through an administrative command or the WAR being deleted from
the filesystem), the corresponding WebappClassLoader is released, and this
can subsequently be garbage collected. Similarly, the classes it loaded are now
no longer referenced and can be garbage collected in their own time.

If the webapp server decides to restart the webapp (for example, a new version
has been installed), then a new WebappClassLoader instance is created and used
to load content. Since the webapp server will route through URLs to the new
MyApp servlet instance, it effectively means the webapp has been reloaded.

Chapter 6

[183]

All Java applications that have a reloading ability do so using a per-
context ClassLoader, then dropping it and instantiating a new
one. Hudson/Jenkins, Gerrit, Webapps, OSGi, and other plug-in
systems all use this technique.
There are also class redefinition tools, such as JRebel, but these use
low-level JVM APIs that permit class redefinition.

OSGi and ClassLoaders
OSGi is a dynamic module system that uses multiple ClassLoader instances to
provide module-level separation. Just like a webapp server will enforce separation
between webapps, an OSGi runtime will enforce separation between bundles.

When a bundle is loaded and activated in an OSGi runtime, a new bundle ClassLoader
is created. This is used for all class and resource lookups for classes in that bundle.

Unlike webapps, OSGi bundles are allowed to communicate with each other. As a
result, the ClassLoaders form a directed graph to perform lookups between bundles.
Bundle wiring is handled by the framework to arrange the graph of ClassLoaders,
as shown in the following diagram:

org.apche.felix.service.command.*

System

Bundle

Gogo

Runtime

Gogo

Cmds

Gogo

Shell

App Ext Boot

org.osgi.framework.*

org.osgi.util.tracker.*

org.osgi.service.event.*

org.osgi.framework.*

org.osgi.util.tracker.*

org.osgi.service.event.*

Bundle reloading occurs in the same way as it occurs for other Java applications
—the ClassLoader is released and the associated instances are garbage collected.
The bundle can be reloaded and a new ClassLoader is created.

OSGi ClassLoader lookups are more powerful than the standard Java lookups.
Whereas standard Java lookups only have a single-parent hierarchy, the
ClassLoader relationships in OSGi form a directed graph. When a request to
load a class occurs, that is passed to potentially multiple parent bundles instead
of a single parent. Typically, the package name (specified in an Import-Package)
is used to filter requests, though for a generic Require-Bundle dependency all
requests may be forwarded.

Understanding ClassLoaders

[184]

In the previous diagram, the Gogo Shell consumes classes from the org.osgi.
framework package of the System Bundle, but org.apache.felix.service.
command classes come from the Gogo Runtime bundle.

OSGi services and ClassLoaders
Once a Class has been loaded by a ClassLoader, it is cached for subsequent
references. As a result, when looking up classes with class.forName, the
implementation class is pinned to the requesting bundle's ClassLoader,
and hence the lifetime of the bundle.

class.forName caches the resulting Class in the
caller's ClassLoader. Callers using this tie the resulting
Class' lifetime to that of the caller's context.

In an OSGi service reference, the API/interface class is pinned to the lifetime of
the bundle using that service. However, the implementation class is supplied by
the service API and is bound to the lifetime of the supplied service. As a result,
the bundle that provides the service can be stopped and reloaded (with a new
ClassLoader and therefore Class) and when the bundle next requests the
service, the new implementation will be returned.

This is similar to the webapp servers that use javax.servlet.http.HttpServlet
as the API/interface, and have the implementation class supplied by the webapp
itself. By delegating the implementation class lookup to the webapp's individual
ClassLoader, the server can cycle through different implementations of the same
interface without leaking references.

Note that the instance returned by the OSGi service lookup is tightly coupled to its
Class, and therefore ClassLoader of a bundle. Storing that instance will result in the
bundle being pinned in memory, even if the bundle or service is stopped (or otherwise
removed from the system). This is why OSGi provides the ServiceReference class,
which can be stored persistently and then used to return a correct service instance via
the getService factory method.

Bundles should only cache ServiceReference instances to refer
to services, and not the actual service instance. The service can be
resolved on demand with getService, or other techniques can
be used instead such as Declarative Services, covered in Chapter 3,
Using OSGi Services to Dynamically Wire Applications.

Chapter 6

[185]

ThreadContextClassLoaders
When a class is requested (either implicitly through a class reference or explicitly
with class.forName), the ClassLoader of the calling Class is used. This allows
an Applet or an RMI-based application to refer to other classes that have been
acquired from a remote site and ensure that they are downloaded from the same
location as well.

However, libraries loaded from one ClassLoader cannot necessarily see classes
loaded from another ClassLoader.

This often occurs with Object Relational Mapping (ORM) tools such as Hibernate
that use configuration files that contain class names. To load the classes, it needs to
resolve class names from the application's associated ClassLoader.

If the Hibernate library is installed in the same WAR as the webapp, this will be
automatic. However, if Hibernate is stored in the webapp server's global classpath
or an extension location, then it won't have visibility to the webapp's ClassLoader.

To solve this (specifically for the benefit of RMIClassLoader), Java 1.2 added a
method to the Thread class to provide an additional ClassLoader that could be used
as an extra source of classes called the ThreadContextClassLoader (TCCL). Each
thread has its own unique instance, is accessed with getContextClassLoader and
set with setContextClassLoader. Libraries such as Hibernate use this to resolve
additional classes on demand, which they wouldn't otherwise be able to resolve
through their own ClassLoader.

The context ClassLoader is inherited by newly created threads, which allows the
context ClassLoader to be implicitly available in any executing class. However,
it suffers while using Executors or other multi-threaded environments because it
may not be the case that the initiating Thread is the same as the one that needs to
subsequently load the class.

Setting the Thread Context ClassLoader usually takes the following form:

public void runWith(Runnable runnable, ClassLoader other) {
 final Thread current = Thread.currentThread();
 final ClassLoader tccl = current.getContextClassLoader();
 try {
 current.setContextClassLoader(other);
 runnable.run();
 } finally {
 current.setContextClassLoader(tccl);
 }
}

Understanding ClassLoaders

[186]

Note that this pattern explicitly expects the runnable to either be single-threaded, or
that any multi-threaded pools will be instantiated during the call (and therefore will
inherit the context ClassLoader). The Thread Context ClassLoader typically works
in constrained environments such as webapp and enterprise Java servers since they
own the threading and have full control of the life cycle of the applications. They
do not work as well in more dynamic environments like OSGi.

Some open source libraries require the use of the Thread Context ClassLoader
to operate correctly; however, many have been upgraded to take an explicit
ClassLoader instead of attempting to load everything via the context loader.

Alternatively, mapping tools can be passed explicit Class instances, which avoids
problems with resolving the Class in the first place. For example, Gson is used
to deserialize a class from a JSON representation and to do so is passed a Class
instance rather than the name of a class.

Note that Hibernate has been upgraded to support OSGi since version
4.2, and provides an EntityManagerFactory as an OSGi service.

Java ServiceLoader
The ServiceLoader class in the java.util package (added in Java 1.6) provides a
means of acquiring an instance of an interface or abstract class. It is used by a variety
of different parts in the JDK, where a single implementation is required that cannot
be known in advance, such as JDBC drivers.

The ServiceLoader class provides a static load method that can be used to return a
ServiceLoader, which in turn provides an Iterator over all services available:

ServiceLoader<Driver> sl = ServiceLoader.load(Driver.class);
Iterator<Driver> it = sl.iterator();
while (it.hasNext()) {
 Driver driver = (Driver) it.next();
 // do something with driver
}

The implementation class for the driver is found by consulting a text file, located
under the META-INF/services/ directory. When looking for implementations
for the java.sql.Driver class, the service loader will attempt to find files called
META-INF/services/java.sql.Driver. The contents of these files are fully
qualified class names of services that implement the specified interface.

Chapter 6

[187]

The file may also contain comments, and any whitespace or content after # is ignored;
for example:

File is META-INF/services/java.sql.Driver
org.h2.Driver # H2 database driver
org.mariadb.jdbc.Driver # Maria DB driver
org.apache.derby.jdbc.ClientDriver # Apache Derby driver

When the ServiceLoader.load method is called with a Driver.class argument,
the three classes will be instantiated and returned in the iterator, in the order that
they appear in the file. Any duplicates from this file or from other matching files
are filtered from the list.

Problems with ServiceLoader, OSGi,
and Eclipse
Although the ServiceLoader provides a general mechanism to return instances
of classes based on their interface type, there are the three specific problems that
prevent its general use with OSGi:

•	 The implementation class is loaded with class.forName, which caches the
class in the caller's ClassLoader. This prevents the service implementation
from being reloaded.

•	 The META-INF/services/ folder is not a package, so it cannot be referred to
with the normal Import-Package OSGi semantics. In addition, the package
name (directory) can only be exported by a single bundle, so even if this
could be used, it would not be possible to bind to more than one provider.

•	 The loader for the service is typically taken from the current Thread Context
ClassLoader, and in OSGi, the calling class is unlikely to have visibility
to the implementation package (and in any case, explicitly importing the
implementation class defeats the point of having the class unknown until
load time).

To solve these problems, the OSGi Enterprise Specification Release 5 provides the
Service Loader Mediator, implemented by the Apache Aries SPI-Fly bundle. This
provides the following two key features:

•	 For consumers, it uses bytecode weaving that can dynamically rewrite
ServiceLoader.load calls to a more OSGi-appropriate implementation

•	 For providers, it automatically registers implementations defined in any
META-INF/services files as OSGi services

Understanding ClassLoaders

[188]

In both cases, the consumer and producer need to opt-in explicitly through the use
of entries in the MANIFEST.MF to ensure that bundles are weaved (or not) on demand.
The weaving bundle org.apache.aries.spifly.dynamic.bundle also needs to be
installed and started prior to any consumers starting.

The org.apache.aries.spifly.dynamic.bundle needs org.
apache.aries.util to resolve, and org.objectweb.asm-
all to perform the bytecode weaving. It is possible to pre-weave a
bundle using org.apache.aries.spifly.static.bundle as
documented on the home page at http://aries.apache.org/
modules/spi-fly.html.

Creating a service producer
Create a plug-in project called com.packtpub.e4.advanced.loader.producer.
This does not need an Activator and will be a standard OSGi bundle that targets
Standard OSGi.

Create a class in the com.packtpub.e4.advanced.loader.producer package
called HelloWorldRunnable that implements Runnable:

package com.packtpub.e4.advanced.loader.producer;
public class HelloWorldRunnable implements Runnable {
 public void run() {
 System.out.println("Hello World");
 }
}

Create a META-INF/services/java.lang.Runnable file with the following content
in order to register it as a service for the ServiceLoader:

com.packtpub.e4.advanced.loader.producer.HelloWorldRunnable

This is enough for the ServiceLoader to find it with ServiceLoader.load, but in
order for it to work in an OSGi runtime, the bundle needs to have additional OSGi
metadata. Add the following to the META-INF/MANIFEST.MF file:

Require-Capability:
 osgi.extender;
 filter:="(osgi.extender=osgi.serviceloader.registrar)"

http://aries.apache.org/modules/spi-fly.html
http://aries.apache.org/modules/spi-fly.html

Chapter 6

[189]

This expresses a dependency on the OSGi Service Loader Mediator (provided by
SPI-Fly). If this dependency is missing, the bundle will fail to resolve.

By default, all services under the META-INF/services/ directory will be made
available. If a single service type should be exported, it can be expressed with
Provide-Capability on the osgi.serviceloader:

Provide-Capability:
 osgi.serviceloader;osgi.serviceloader=java.lang.Runnable

Multiple instances of the same interface need no extra configuration lines; all of
the instances in the java.lang.Runnable file will be exported. If there are multiple
service types (in other words, multiple files under the META-INF/services/
directory), they can be represented as follows:

Provide-Capability:
 osgi.serviceloader;osgi.serviceloader=java.lang.Runnable,
 osgi.serviceloader;osgi.serviceloader=java.util.Comparator

Downloading the required bundles
To run the producer, some prerequisite bundles must be acquired. These can
be downloaded from Maven Central or from the book's GitHub repository at
https://github.com/alblue/com.packtpub.e4.advanced/.

The necessary bundles are as follows:

•	 asm (for byte-code weaving), which can be downloaded from https://
repo1.maven.org/maven2/org/ow2/asm/asm-all/4.0/asm-all-4.0.jar

•	 aries.util (dependency for the spifly bundle), which can be downloaded
from https://repo1.maven.org/maven2/org/apache/aries/org.
apache.aries.util/1.0.0/org.apache.aries.util-1.0.0.jar

•	 aries.spifly.dynamic (provides the Service Loader Mediator), which can
be downloaded from https://repo1.maven.org/maven2/org/apache/
aries/spifly/org.apache.aries.spifly.dynamic.bundle/1.0.0/org.
apache.aries.spifly.dynamic.bundle-1.0.0.jar

http://github.com/alblue/com.packtpub.e4.advanced/
http://central.maven.org/maven2/org/ow2/asm/asm-all/4.0/asm-all-4.0.jar
http://central.maven.org/maven2/org/apache/aries/org.apache.aries.util/1.0.0/org.apache.aries.util-1.0.0.jar
http://central.maven.org/maven2/org/apache/aries/org.apache.aries.util/1.0.0/org.apache.aries.util-1.0.0.jar
http://central.maven.org/maven2/org/apache/aries/spifly/org.apache.aries.spifly.dynamic.bundle/1.0.0/org.apache.aries.spifly.dynamic.bundle-1.0.0.jar
http://central.maven.org/maven2/org/apache/aries/spifly/org.apache.aries.spifly.dynamic.bundle/1.0.0/org.apache.aries.spifly.dynamic.bundle-1.0.0.jar
http://central.maven.org/maven2/org/apache/aries/spifly/org.apache.aries.spifly.dynamic.bundle/1.0.0/org.apache.aries.spifly.dynamic.bundle-1.0.0.jar

Understanding ClassLoaders

[190]

Import these into the Eclipse workspace by navigating to File | Import |
Plug-in Development | Plug-ins and Fragments, and then choose the directory
that the prerequisite bundles have been downloaded into, as illustrated in the
following screenshots:

Chapter 6

[191]

Click on Next and select all of the available bundles by choosing Add All, followed
by Finish:

Understanding ClassLoaders

[192]

Running the producer
To run the producer, create a new Launch Configuration by navigating to
Run | Run Configurations … menu. Click on OSGi Framework and hit the New
button to create a new configuration called ServiceLoader Producer Only:

Add the following bundles from the Workspace:

•	 com.packtpub.e4.advanced.loader.producer

•	 org.apache.aries.spifly.dynamic.bundle

•	 org.apache.aries.util

•	 org.objectweb.asm

Add the following bundles from the Target Platform:

•	 org.apache.felix.gogo.command

•	 org.apache.felix.gogo.runtime

•	 org.apache.felix.gogo.shell

•	 org.eclipse.equinox.console

•	 org.eclipse.osgi

Chapter 6

[193]

Run the framework by clicking on Run.

Using the console, look at the producer bundle. It should declare that it has
registered the Runnable instance as an OSGi service:

osgi> ss | grep producer

4 ACTIVE com.packtpub.e4.advanced.loader.producer_1.0.0.qualifier

osgi> bundle 4

com.packtpub.e4.advanced.loader.producer_1.0.0.qualifier [4]

 Id=4, Status=ACTIVE

 "Registered Services"

 {java.lang.Runnable}={

 .org.apache.aries.spifly.provider.implclass=

 com.packtpub.e4.advanced.loader.producer.HelloWorldRunnable,

 serviceloader.mediator=7, service.id=46}

In this case, the serviceloader.mediator service property is 7, and bundle 7 is
the SPI-Fly implementation:

osgi> bundle 7

org.apache.aries.spifly.dynamic.bundle_1.0.0 [7]

Creating a service consumer
Create another plug-in project called com.packtpub.e4.advanced.consumer,
this time with an Activator that looks like the following code:

package com.packtpub.e4.advanced.loader.consumer;
import java.util.ServiceLoader;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
public class Activator implements BundleActivator {
 public void start(BundleContext context) throws Exception {
 ServiceLoader<Runnable> sl=ServiceLoader.load(Runnable.class);
 Runnable runnable = sl.iterator().next();
 runnable.run();
 }
 public void stop(BundleContext context) throws Exception {
 }
}

Understanding ClassLoaders

[194]

When the bundle starts, the Activator will look for implementations of the
Runnable interface, and then run them. The iterator.next method will fail if
there are no implementations available, which will prevent the consumer bundle
from starting if a Runnable instance cannot be found.

When run, the bundle fails because the client has not been processed to hook the
ServiceLoader.load call to look for OSGi specific services.

To fix this, the consumer bundle needs to register the following as a generic
capability in the META-INF/MANIFEST.MF file:

Require-Capability:
 osgi.extender;
 filter:="(osgi.extender=osgi.serviceloader.processor)"

This ensures there is a processor present, and calls to ServiceLoader.load will
be replaced with a call to an appropriate OSGi handler routine. Now, when the
client bundle is started, Hello World should be printed out when the framework
starts up.

As with the producer, it is possible to constrain the consumer such that it only
allows lookup for implementations of a specific interface:

Require-Capability:
 osgi.extender;
 filter:="(osgi.extender=osgi.serviceloader.processor)",
 osgi.serviceloader;
 filter:="(osgi.serviceloader=java.lang.Runnable)";
 cardinality:=multiple

Also, as with the producer, if multiple services are required, then these can be
added by adding additional osgi.serviceloader capability requirements.

The filter should not be used to represent a disjunction or a conjunction of filters,
which would either say "An instance that satisfies either X or Y" or "An instance
that satisfies both X and Y."

Instead, there needs to be two separate requirement constraints, the bundle needs
X and the bundle needs Y. For example, to require both a Runnable and a List:

Require-Capability:
 osgi.extender;
 filter:="(osgi.extender=osgi.serviceloader.processor)",
 osgi.serviceloader;
 filter:="(osgi.serviceloader=java.lang.Runnable)";

Chapter 6

[195]

 cardinality:=multiple
 osgi.serviceloader;
 filter:="(osgi.serviceloader=java.util.List)";
 cardinality:=multiple

Should the bundle import and export individual constraints for each
service? An argument against this is that it makes the bundle manifest
more complex, and when adding additional services, the manifest
needs to be updated as well.
On the other hand, if entries are added, then it is possible for a
resolution tool to determine whether this code requires a Runnable
instance, and this requires finding a bundle that explicitly provides a
Runnable instance.
If there is only one service that is exposed or used by a bundle, having
additional requirement constraints can be a good way of documenting
the available services.

Running the consumer
To run the consumer, create a new Launch Configuration by navigating to Run |
Run Configurations … menu. Click on OSGi Framework and hit the New button to
create a new configuration called ServiceLoader Producer And Consumer:

Understanding ClassLoaders

[196]

Add the following bundles from the Workspace:

•	 com.packtpub.e4.advanced.loader.consumer (start level 3)
•	 com.packtpub.e4.advanced.loader.producer (start level 2)
•	 org.apache.aries.spifly.dynamic.bundle (start level 1)
•	 org.apache.aries.util

•	 org.objectweb.asm

In this case, the producer is started first so that when the consumer
starts, there is a Runnable instance to acquire. The spifly
bundle needs to be started before the consumer so that it has the
chance to rewrite the consumer's loading by replacing calls to
ServiceLoader with the appropriate OSGi calls.

Add the following bundles from the Target Platform:

•	 org.apache.felix.gogo.command

•	 org.apache.felix.gogo.runtime

•	 org.apache.felix.gogo.shell

•	 org.eclipse.equinox.console

•	 org.eclipse.osgi

Run the framework by clicking on Run. It should display Hello World in the console
as the client bundle is activated and acquires the registered producer service:

Hello World

osgi>

Unlike the standalone producer service, start levels are needed in
this case because the consumer runs its service loader code at bundle
start-up in the Activator class.
Depending on explicit start-ordering is not good practice in an OSGi
runtime, and generally this represents a code smell.

Chapter 6

[197]

OSGi upgrade strategies
While many open source libraries already natively support OSGi, there are still
some that do not have the required metadata added by default. Fortunately, there
are a number of strategies that can be used to enable the libraries to be used in OSGi
runtimes such as Eclipse, or repositories such as Eclipse Orbit (http://eclipse.
org/orbit/) that contain corrected bundles.

Embedding the library directly
If the library is only needed in one bundle, then the most expedient mechanism is
to embed the JAR(s) into that bundle. Since all libraries in a bundle share the same
classpath, this allows the library to run without being aware of the fact that it is
running in an OSGi environment. This can be done by embedding the JAR into
the bundle and using a Bundle-ClassPath header that refers to the library:

Bundle-ClassPath: .,lib/example.jar

Note that the dot (.) must be present if the bundle itself contains classes, or to enable
other resources to be loaded. This approach works well for Hibernate (before version
4.2) or other ORM tools that do not work well with multiple ClassLoaders.

With an embedded library, it is also possible to export a subset of packages made
visible by the library itself. This allows only the public API to be exposed while
hiding the internal API from users.

Embedding a library is an expedient way of testing the bundle without
having to rebuild the JAR. Sometimes, it is useful if the library is signed
or cannot be changed, as mutating a signed JAR leads to problems in the
Eclipse runtime.
Note that embedded JARs are slightly less performant, as the JAR needs
to be extracted from the library at runtime and made available on the
filesystem in order to load resources from it. As a result, this is not
the preferred way to solve the problem.

Wrapping the library with bnd
An extension to merely embedding, wrapping the library also adds additional
Export-Package and Import-Package headers to allow the library to resolve.
This permits other bundles to import packages exported by the library bundle
and use it as a standard library.

http://eclipse.org/orbit/
http://eclipse.org/orbit/

Understanding ClassLoaders

[198]

If the library is minimal, the bundle's manifest can be calculated manually. However,
it is more efficient to use an automated tool such as bnd, which can be downloaded
from Maven Central at https://repo1.maven.org/maven2/biz/aQute/bnd/
bnd/2.2.0/bnd-2.2.0.jar.

The bnd tool allows a JAR to be processed and entries for the used Import-Package
and Export-Package calculated based on the contents of the classes. It is used
indirectly by most of the build tools to generate valid OSGi metadata.

As an example, consider upgrading commons-logging-1.0.4, available from
https://repo1.maven.org/maven2/commons-logging/commons-logging/1.0.4/
commons-logging-1.0.4.jar.

Note that commons-logging Version 1.1 and above already
have support for OSGi, and they should be used instead for Java
applications. The older version is being used to demonstrate how
to add OSGi metadata to a publicly available library that doesn't
already have it.

The bnd tool provides a means to print an existing JAR's manifest:

$ java -jar bnd-2.2.0.jar commons-logging-1.0.4.jar

[MANIFEST commons-logging-1.0.4]

Ant-Version Apache Ant 1.5.3

Created-By Blackdown-1.3.1_02b-FCS

Extension-Name org.apache.commons.logging

Implementation-Vendor Apache Software Foundation

Implementation-Version 1.0.4

Manifest-Version 1.0

Specification-Vendor Apache Software Foundation

Specification-Version 1.0

In this case, it can be seen that it does not have any OSGi data associated with it.
There is no Bundle-SymbolicName or Bundle-ManifestVersion.
The bnd tool can calculate the set of required dependencies with the wrap command:
$ java -jar bnd-2.2.0.jar wrap

 --output commons-logging-1.0.4.osgi.jar

 --bsn commons-logging

 commons-logging-1.0.4.jar

Warnings

000: Using defaults for wrap, which means no export versions

$ java -jar bnd-2.2.0.jar print commons-logging-1.0.4.osgi.jar

http://central.maven.org/maven2/biz/aQute/bnd/bnd/2.2.0/bnd-2.2.0.jar
http://central.maven.org/maven2/biz/aQute/bnd/bnd/2.2.0/bnd-2.2.0.jar
http://central.maven.org/maven2/commons-logging/commons-logging/1.0.4/commons-logging-1.0.4.jar
http://central.maven.org/maven2/commons-logging/commons-logging/1.0.4/commons-logging-1.0.4.jar

Chapter 6

[199]

[MANIFEST commons-logging-1.0.4.osgi]

Ant-Version Apache Ant 1.5.3

Bnd-LastModified 1390176259029

Bundle-ManifestVersion 2

Bundle-Name commons-logging

Bundle-SymbolicName commons-logging

Bundle-Version 0

Created-By 1.7.0_45

Export-Package

 org.apache.commons.logging,

 org.apache.commons.logging.impl;

 uses:="org.apache.avalon.framework.logger,

 org.apache.commons.logging,org.apache.log,org.apache.log4j"

Extension-Name org.apache.commons.logging

Implementation-Vendor Apache Software Foundation

Implementation-Version 1.0.4

Import-Package

 org.apache.avalon.framework.logger;resolution:=optional,

 org.apache.log;resolution:=optional,

 org.apache.log4j;resolution:=optional

Manifest-Version 1.0

Originally-Created-By Blackdown-1.3.1_02b-FCS

Specification-Vendor Apache Software Foundation

Specification-Version 1.0

Tool Bnd-2.2.0.20130927-173453

The generated bundle can now be installed in an OSGi environment.
Although this provides a starting point for wrapping a non-OSGi
bundle, typically the manifest will require additional adjustments.
In this case, the org.apache.log4j package may be a non-optional
dependency of the commons-logging interface and so should be
updated; in addition, the Bundle-Version should really be 1.0.4
to correspond to the original version of the upstream JAR. Additional
operations can be supplied on the bnd command line or by providing
an additional .bnd configuration file. Documentation is available at
the Bnd homepage at http://www.aqute.biz/Bnd/Bnd.

http://www.aqute.biz/Bnd/Bnd

Understanding ClassLoaders

[200]

Bnd can also be used to add additional metadata to the bundle, such as headers to
enable Declarative Services (covered in Chapter 3, Using OSGi Services to Dynamically
Wire Applications) or service mediator requirements (see the Java ServiceLoader section
earlier in this chapter).

Upgrading the library to use services
Many libraries are pure library code; they provide no implementation or services
for consumers. These can often be wrapped/exported to provide packages for other
bundles to depend upon.

However, if the library is expected to provide a service, there may be an advantage
in exposing this as an OSGi service. That way, other OSGi bundles can depend on
the service itself rather than a particular provider of that service.

The easiest way to publish services is to use either Declarative Services or Blueprint
(see Chapter 3, Using OSGi Services to Dynamically Wire Applications, for more details).
By adding the appropriate service XML files and adding the right manifest headers,
no code needs to be written and the library can publish services automatically. When
used in combination with Config Admin, the library can have new services published
or updated as configuration data changes without needing to write any code.

Dealing with class resolution issues
Most libraries do not need to refer to class names directly. However, a subset of
them will need to look up classes, typically if they are doing deserialization or
parsing from a database or stream. There are four ways to handle this:

•	 Pass in Class instances instead of class names into the library. This is the
most portable way of resolving the problem, and this works for many APIs,
especially those using annotations to expose information.

•	 Pass in a ClassLoader along with the class names, which can be acquired
from the calling bundle's context. This will allow the library to acquire
classes from the correct ClassLoader.

•	 Wrap calls to the library with an appropriate threadContextClassLoader
set. This is likely to be the least efficient way of solving the problem but may
at least allow a library to work in some situations.

•	 Add DynamicImport-Package:* to the library. This will allow the library
to wire up dependencies as it attempts to look them up. This will also
prevent bundle re-loading in the same VM as it will pin the version of
the client to the library. This is not recommended as a general practice;
use this only as a last resort.

Chapter 6

[201]

If none of the mentioned ways are appropriate, consider using a different library.
Some libraries are sufficiently broken that they cannot be used in a dynamic
environment such as Eclipse or OSGi. It is quite likely that the same problems
will exist for these kinds of libraries in other multiple ClassLoader environments
such as web application servers.

Summary
In this chapter, we looked at how OSGi's use of ClassLoaders permits bundle
separation, and what effect that has on libraries that mistakenly assume there is
only one ClassLoader per JVM. We also looked at how to upgrade such libraries
so that they can run in an OSGi environment, and how to avoid such problems in
the first place.

In the next chapter, we'll look at how to design applications in a modular way,
building upon the material covered up to this point.

Designing Modular
Applications

This chapter will present some common techniques and design patterns that are used
to implement modular applications with OSGi. It starts by introducing the concept of
semantic versioning, which is a key part of how bundles and packages are versioned,
followed by how baselining can be used to enable automatic version incrementing.
This is then followed by an overview of some of the design patterns common in OSGi
applications, including the benefits they present, and finally finishes with a list of best
practices in OSGi.

Semantic versioning
A key aspect of OSGi bundles and packages is that they are versioned using semantic
versioning. This encodes compatibility into the version number so that clients can
select an appropriately versioned component to build against or bind to.

Semantic versioning breaks down a number such as 1.2.3.RELEASE into the
following four parts:

•	 Major version: This is a number that indicates the major release (1)
•	 Minor version: This is a number that indicates the minor release (2)
•	 Micro (or patch) version: This is a number that indicates the micro (patch)

release (3)
•	 Qualifier: This is a textual string that indicates the patch (RELEASE)

This version numbering scheme is used by every Java JAR in Maven Central and
can be used to determine whether or not upgrading to a later version will be
compatible. Numbers default to 0 if they are not specified, and the qualifier
defaults to an empty string. In OSGi, numbers are sorted numerically and the
qualifier is sorted alphabetically.

Designing Modular Applications

[204]

Changes in major version numbers are deemed to be incompatible changes.
Thus, a client that depends on commons-collections-1.0 might not be able
to upgrade directly to 2.0. In a major change, it is expected that there will be
backward compatibility problems, such as renaming entire packages or removing
methods or classes that used to exist.

Changes in the minor version are expected to be backward compatible, but with
new functionality. For example, clients that are built and tested against commons-
collections-2.0 might expect to be able to upgrade to commons-collections-2.1
without recompilation. Changes that are backward compatible include adding
new classes or new packages, or for interfaces or classes that are not designed to be
implemented or subclassed, adding new methods. In Java 8, adding new default
methods is considered a backward compatible change.

Changes in the micro version are deemed to be backward compatible without any
change in the API. These are incremented when bug fixes are performed. Note that
a bug fix by definition includes user visible behavior (the bug existed before, but not
afterwards), but this does not usually mean a change in the API or the contract. If the
contract or API is changed to accommodate a bug fix, then the appropriate version
numbers should be incremented.

Finally, the qualifier is used to encode optional metadata, such as the state or
quality of the release (for example, M1, RC2, or RELEASE) or a date or timestamp
(such as 201408171400).

Semantic versioning also suggests that initial development starts with a major version
of 0 and that until the major version reaches 1, the content is in flux. Although not
strictly recognized by OSGi, it is a common convention that others tend to use.

M1 stands for Milestone 1 and RC2 stands for Release Candidate 2.
These can be compared lexicographically along with Release, since
Mx < RCx < RELEASE.

Public APIs and version ranges
When making changes to a bundle, the appropriate segment of the version
number should be incremented. If the API doesn't change, then clearly just the micro
version should be updated. However, if there's new functionality, then the minor
version should be updated, and the major version should be updated for backward
incompatible changes.

Chapter 7

[205]

But what is a backward incompatible change? It depends on what the change is. For
example, a new method on an interface called by clients is a minor change since it's
new functionality, the interface will be a subset of the previous version. However, if
the client is expected to implement the interface, then adding a new method would
cause a break in clients, because classes that implemented the interface would no
longer compile.

This happens in Java periodically; for example, the JDBC Connection interface
had a createBlob method added in Java 1.6 and a getSchema method added in
Java 1.7. For clients that call the Connection class, the behavior remains the same,
but for providers who must implement the class, the change requires more work.

When a client is a consumer of an interface, it should import up to the next
major version number such as [1.2,2). When a client is a provider of an
interface, it should import up to the next minor version [1.2,1.3). This
allows consumers to accept new functionality but requires implementors to
verify and rebuild when the minor version changes.

Baselining and automatic versioning
There are several different implementations that allow version numbers to be
automatically incremented. At its simplest, maven-release-plugin allows the micro
version to be incremented on each release, with the expectation that the developer
team will take care of incrementing minor and major version numbers as appropriate.

For automated semantic versioning, there has to be a way of performing a
comparison against the prior release in order to know whether the public API
has changed in any significant way. This generally takes one of two forms: either
the version being built has to be compared against a "last known built" JAR or the
latest version needs to be acquired from a repository automatically.

These versions are known as baselines, and the mechanism to acquire or refer to
them is tool-specific. However, the general principle involves setting a baseline
(if it can't be acquired automatically) and then, after each build, comparing the
build with the baseline for any changes in the API.

Note that processes that force you to decide/plan on the version number
at the start of the cycle are flawed; you generally don't know until you
near the end of the life cycle whether you should be releasing packages
with a micro, minor, or major increment. You might plan to have just
a micro release, but if it involves extending the API, then it should be
promoted to a minor release instead. Such rigid processes are inherently
flawed by design and violate semantic versioning by diktat.

Designing Modular Applications

[206]

Eclipse API baselines
Tools exist to help automate the management of versions based on the publicly
exposed APIs of a project. Eclipse has the concept of an API Baseline, which can
be created from a directory of a set of bundles.

Export the bundles in the com.packtpub.e4.advanced.feeds and ui projects
by navigating to File | Export |Plug-in Development |Deployable plug-ins and
fragments to a location on the filesystem. This will be used to record a baseline.

An API baseline can be created by navigating to Preferences | Plug-in Development
| API Baselines and clicking on the Add Baseline button. This asks for the directory
the bundles were exported to earlier, as shown in the following screenshot:

Chapter 7

[207]

Clicking on Reset (to scan the directory) followed by Finish will set up the baseline:

Once a baseline has been created, it can be associated with projects. Right-click on
the feeds and feeds.ui projects, and navigate to Plug-in Tools | API Tools Setup.
The org.eclipse.pde.api.tools.apiAnalysisNature/Builder will be added
to the .project file, although the baseline itself will only be stored in the
developer's workspace.

Now when methods are added to the existing classes or interfaces, the API
tooling will suggest the addition of @since documentation tags and update
the bundle version accordingly.

Designing Modular Applications

[208]

If methods are added to a class (such as the newMethod added to the
FeedParserFactory class), then the API baselining will suggest a bump
of the minor version number, as shown in the following screenshot:

If a method is added to the IFeedParser interface, then it will suggest that
the major version number be implemented in case there are clients that have
implemented the interface:

Chapter 7

[209]

If the interface was intended as an API and not as a class that clients can
implement, adding the Eclipse-specific @noimplement JavaDoc tag will
suggest a minor version instead of a major version change.

Bnd baseline
The Bnd tool is a bundle processing tool written by Peter Kriens and is available
both as a runtime class and an embeddable library. It has a means to perform
baselining by comparing two JARs with each other and determining whether
the publicly visible API has changed. It compares the version of the JAR with
the previous version given:

$ java -jar bnd-2.2.0.jar baseline <newjar> <oldjar>

 Package Delta New Old Suggest

* com.packtpub.e4.advanced.feeds MINOR 0.0.0 0.0.0 0.1.0

* com.packtpub.e4.advanced.feeds.ui MAJOR 0.0.0 0.0.0 1.0.0

Note that Bnd will provide package-level versioning advice as opposed to
bundle-level versioning. Generally, the bundle version should be incremented
so that if a package's major version is changed, then the bundle's major version
is incremented, and if a package's minor version is changed, then the bundle's
minor version is incremented. The micro version should be incremented each
time a change is made.

More information about Bnd can be found at the project's home
page, which is at http://www.aqute.biz/Bnd/, as well as at
the source repository at https://github.com/bnd/. The bnd
baselining operation is also used by baseline-maven-plugin
and maven-bundle-plugin.

Bndtools
Bndtools (hosted at http://bndtools.org) is an IDE plug-in for Eclipse that builds
around the Bnd format. It creates projects and maps dependencies in a way that will
be familiar to Eclipse users, but it does so using the .bnd file for dependencies and
wiring instead of using the .classpath or MANIFEST.MF files.

In addition to compiling bundles, Bndtools automatically baselines bundles based
on its internal repository. Bndtools creates a project called cnf (an abbreviation
for configuration) which it uses to store the configuration and repository for the
local workspace.

http://www.aqute.biz/Bnd/
https://github.com/bnd/
http://bndtools.org

Designing Modular Applications

[210]

When a Bndtools release is performed, it will recommend any updates for the
bundles, based on either the specified version in the .bnd file or the latest released
version in the repository. Suggestions, if any, are given in the dialog when the release
is performed:

Maven baselining
A number of Maven plug-ins have been created to assist with incrementing the version
number of a project based on the most recently released version. These usually take
the form of a plug-in that is added to the pom.xml Maven build to automatically check
whether the version number should be increased, similar to the way in which a JUnit
test is used that runs and cause failures if the code is faulty.

The maven-bundle-plugin, a standard to build bundles with Maven, has been
able to generate baselining reports since version 2.5.0. The baseline goal can be
added to trigger a build failure if the version number needs to be incremented in
comparison to the last published build. A baseline-report goal is also provided
to show information about what needs to be updated.

To enable this for a Maven project, add the following to the pom.xml file:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.5.0</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>bundle</id>
 <phase>package</phase>
 <goals>
 <goal>bundle</goal>
 </goals>
 </execution>

Chapter 7

[211]

 <execution>
 <id>baseline</id>
 <phase>package</phase>
 <goals>
 <goal>baseline</goal>
 </goals>
 </execution>
 </executions>
</plugin>

When the Maven project is built, it will report any errors in comparison to the prior
version available in the repository:

$ mvn install

$ mvn versions:set -DnewVersion=1.0.1

... make changes to Java files ...

$ mvn package

By default, any errors introduced by modifications to the baseline without a
corresponding version number change will cause the build to fail, with output
that looks like the following:

[INFO] --- maven-bundle-plugin:2.5.0:baseline (baseline) @ example

[INFO] Baseline Report - Generated by Apache Felix Maven Bundle Plugin
on 2014-07-06T20:43Z based on Bnd - see http://www.aqute.biz/Bnd/Bnd

[INFO] Comparing bundle example version 1.0.1 to version (,1.0.1)

[INFO]

[INFO] * com.packtpub.e4.advanced.baseline

 Delta Current Base Recommended Warnings

 ===== ======= ==== =========== ========

 minor 1.0.0 1.0.0 1.1.0 Version increase required

[INFO] < class com.packtpub.e4.advanced.baseline.Example

[INFO] + method newMethod()

[ERROR] com.packtpub.e4.advanced.baseline:

 Version increase required; detected 1.0.0, suggested 1.1.0

[INFO] Baseline analysis complete, 1 error(s), 0 warning(s)

Changes to the class will cause a failure of the build, with a recommended
version number change. The failure can be disabled with a failOnError plug-in
configuration element or with the baselining.failOnError Java system property.

Designing Modular Applications

[212]

Design patterns
A design pattern is a reusable element of software architecture that can be applied
to different situations. This section presents the two most common OSGi-specific
patterns: whiteboard and extender.

The whiteboard pattern
The OSGi whiteboard pattern is one in which updates are communicated by bundles
to a central location. This approach can be compared to that of a shared whiteboard
where someone updates an entry on the whiteboard and others can come and have
a look at it, without needing any direct connection or coupling between them, as
illustrated in the following diagram:

Hello

World

Provided that the individual has a reference to the shared whiteboard, they can
add notes to it. This allows others to pick up the message without having any
direct relationship with the individual who created it:

Hello

World

The OSGi Service Registry and OSGi Event Admin (covered in Chapter 8, Event-driven
Applications with EventAdmin) are both examples of the whiteboard pattern. Here,
bundles talk to the shared service (whiteboard) and post or receive events. Other
bundles may then receive or post replies but are otherwise decoupled from each other.

Chapter 7

[213]

One property of the whiteboard pattern is that the pattern can be event-driven; that
is, when an event occurs, it can trigger a number of other behaviors. It also allows
a many-to-many relationship to be defined; any number of producers can deliver
content, and many consumers can receive it.

Hallo

Hej

Bonjour

Hello

Aloha

Ola

Guten tag

Although this pattern is seen in most message-driven systems where the shared
whiteboard is known as the broker, this can apply to other kinds of patterns as well.
In plain Java, the JDBC Driver class is an example of a whiteboard pattern, where
driver classes are registered, and then subsequently the code looks up drivers based
on an opaque string.

Note that whiteboards do not necessarily need to be singletons.
Although the Driver example is a global singleton, the
BundleContext is something that can be instance-specific
and delivers a filtered view of the available services.

The extender pattern
The OSGi extender pattern is one that allows a bundle to add additional data,
functionality, or processing to another bundle at runtime. This is typically triggered
by the presence of a header in a bundle's manifest to indicate that some kind of
action should be taken.

Declarative Services, covered in Chapter 3, Using OSGi Services to Dynamically Wire
Applications, is an example of the extender pattern. When a bundle is installed into
the runtime, the Declarative Services bundle notes the presence of a specific header:

Service-Component: OSGI-INF/example.xml

If the Declarative Services bundle finds such a header, it takes additional action.
If the header is not present, it takes no further action. The Declarative Services
bundle extends the functionality of the client bundle, without the client bundle
having any direct relationship with the Declarative Services bundle itself.

Designing Modular Applications

[214]

This pattern is used by a number of other bundles. The Remote Services
specification allows a subset of services to be exported as remote APIs using
web services or another means. Instead of the bundle having to provide its own
mechanisms, the extender will generate remote proxies for the services and make
them available on remote hosts.

The extender pattern is also used for entity persistence. JPA providers such as
EclipseLink or Apache Aries can look out for bundles being installed with a Meta
-Persistence header. If so, the persistence files are loaded and then automatically
wired up to the proxy objects that provide the persistence services. In this case, the
extender bundle will dynamically generate classes and inject them into the target
bundle through the use of fragments or other delegated ClassLoaders.

The advantage of the extender pattern is that the bundle does not need to declare
an explicit dependency on a specific provider. However, the disadvantage is that
if the bundle is installed into a framework without an extender, then it may not
function as expected.

The OSGi R6 Enterprise specification, due to be released in 2015, provides a
means to use Require-Capability constraints to ensure that an extender is
present before the bundle is activated. A bundle requiring Declarative Services
could express a requirement:

Require-Capability: osgi.extender;
 filter:="(osgi.extender=osgi.service.component)"

Note that the syntax of the osgi.extender namespace is subject to change; see the
OSGi R6 Enterprise specification and associated Declarative Services section for the
correct requirement.

If designing an application that implements the extender pattern, look
for a header in the manifest that can be used to trigger processing.
Don't have it default to a value such as **/*.xml, as this will cause
a performance problem in searching all bundles whether they have
the feature or not. Blueprint makes this mistake: when Blueprint is
installed into an OSGi runtime, every bundle installed is scanned
for Blueprint configuration files, thus causing slowdown at boot.
Detecting the existence of a header in a manifest file is much faster
(since the manifest has already been loaded and parsed), and this can
then trigger more expensive computation on bundles that need it.

Chapter 7

[215]

Best practices
This section covers some of the best practices that can be applied when designing
modular systems, and in particular, modular applications that are built on either
OSGi or using the standard Eclipse extension mechanisms.

Separate API and implementation
It is very common for OSGi applications to have a separate API and implementation.
This allows the API to be versioned independently from any implementations that
may follow.

To implement this effectively, most APIs are specified in terms of pure Java interfaces.
However, it is possible that classes are present as well; exceptions must be represented
as classes, as are common POJO data structures.

Eclipse documents the interfaces that are not suitable to implement and the POJOs
that are not suitable to subclass with the @noimplement and @noextend JavaDoc
tags. These indicate to clients that the interface is not intended to be used outside of
the API and that the classes are not designed to be subclassed. The annotations are
not binding, but along with being good documentation, they give an idea of whether
doing this is supported or not.

One way of separating an interface from implementation is to put all the publicly
visible types in one package and have all the implementation details inside
another package. Then, using the OSGi Export-Package manifest header, only the
implementation package can be exposed. This technique is used by the Java libraries
(particularly by AWT) where internal implementation classes are put in a com.sun
package and end user APIs are put into java.* or javax.* packages. However, the
disadvantage with this approach is that any client can become tightly bound to the
implementation bundle and so, it cannot be replaced without refreshing/restarting
the client bundle.

The reason this occurs is because a client becomes tightly bound to the APIs when
they are resolved. The client bundle has a package dependency to the API classes,
and this is not released until the bundle is refreshed (which implies a stop/start
cycle). This prevents the API bundle from being replaced on the fly.

The solution to this problem is to put the API classes and interfaces in separate
bundles. This way, clients only need to depend on the API bundle and acquire the
implementation through another means (for example, looking up an OSGi service).
This permits the client to only be tightly bound to the API but permit dynamic
replacement of the implementation at runtime.

Designing Modular Applications

[216]

This technique is used by JDBC drivers, where the client depends on the java.sql
package, but the implementation comes from elsewhere. It is also used to access
the OSGi framework, where the client depends on the org.osgi.framework.*
packages, not on the specific implementation provided by the framework itself.

For convenience, it may be tempting to provide a factory instance in
the API bundle, such as the FeedParserFactory from Chapter 2,
Creating Custom Extension Points, and Chapter 3, Using OSGi Services
to Dynamically Wire Applications. Care must be taken not to leak
implementation details out to the client, as otherwise, the API bundle
will end up being wired to the implementation bundle. The typical
way to prevent this is to ensure that the implementation bundle
depends on the API bundle, then a cyclic reference cannot occur.

The popular logging framework, Simple Logging Facade for Java (SLF4J), provides
a separate versioned API to the implementations. This allows clients to depend at
compile time only on the API and not on any implementation details, so at runtime,
the appropriate implementation can be used and changed where necessary.

Decouple packages
An application that depends only on package dependencies might be seen as modular
but might still run into modularity problems. For a start, multiple packages in the same
bundle are visible to one another, so it may seem that the packages are loosely coupled
but still have dependencies leak between them.

Building a system using multiple separate modules is the only way to enforce
separation of implementation. Using OSGi to provide additional filtering/hiding
of implementation packages can do this further.

At the extreme end, having one public package per bundle will allow an OSGi
runtime to validate the set of dependencies completely. It is likely that this is not
appropriate in many cases, but having a smaller number of public packages will
allow better granularity than having all packages in one bundle.

One advantage of using an OSGi-aware build system is that
it can detect when private implementation classes are leaked,
thereby preventing compilation from occurring when it
happens. The ability to hide internal implementation packages
and prevent their use outside of a bundle is one of OSGi's key
strengths, and it aids in maintainability.

Chapter 7

[217]

Decouple services
A better approach to having a pure package-level separation is to have a service-level
separation. This allows an implementation to be substituted at runtime instead of
having a fixed lifetime for the bundle itself.

An example of this is the Tomcat engine. When a web application is dropped
into the webapps folder, the application is automatically deployed, and when it
is removed, the web application is stopped. This allows a web application to be
updated by simply dropping in a new version without having to restart the server.

Such decoupling comes from having a separation of API to implementation; in this
case, the javax.servlet.Servlet API and the web applications as providers
of the javax.servlet.Servlet service.

The OSGi HTTP service uses this technique along with the extender
pattern to notice when Servlets are published, which are then
wired up for incoming requests.

Using Dynamic Services requires a dynamic framework such as OSGi, and it also
requires the clients to be aware of the services coming and going. This is typically
achieved through the use of helper classes such as ServiceTracker or by extender
patterns such as Declarative Services.

The concept of decoupled services has been around in Java for some time; JDBC has
the concept of a Driver, which registers an implementation, and a lookup based
on a string representation of the driver type. More generally, the ServiceLoader
(added to Java in 1.6) provides a generic way of locating one or more implementations
based on the name of an interface. This is used to provide a form of decoupling from
the consumer to the provider; the consumer needs an implementation of a specific
interface, and the provider offers an implementation of that specific interface.

As covered in Chapter 6, Understanding ClassLoaders, the
ServiceLoader class is not well suited from a dynamic
perspective though load-time weaving of classes can rewrite
references to the ServiceLoader if necessary.

This pattern is often combined with the Factory pattern in which an interface of the
desired type is used and in which a third party (such as a Factory, ServiceLoader
or the Service registry) is used to obtain and return an instance of this interface.
Typically, Factory implementations are configured to instantiate new services,
but in OSGi's case, they can be used to return or select an existing instance.

Designing Modular Applications

[218]

Prefer Import-Package to Require-Bundle
A bundle can declare its dependencies using either Require-Bundle or Import-
Package. The former allows the import of all exported packages while the latter allows
packages to be imported individually (a more general form, Require-Capability,
was added in OSGi R4.3; this allowed non-package dependencies to be expressed).

Historically, the Eclipse platform used plug-in dependencies
that required access to the entire content of the plug-in. When it
migrated to OSGi in 3.0, the Require-Bundle was added to the
OSGi R4 specification. Today, Eclipse PDE still prefers to generate
dependencies with Require-Bundle as a result.

Typically, OSGi applications should prefer using Import-Package for the
following reasons:

•	 It is possible to version packages independent of the version of the bundle
•	 It represents the bundle's requirements more accurately (the code

depends on classes in the specified packages and not necessarily on
any one named bundle)

•	 It permits the package to be moved to a different bundle should it be
refactored in the future

•	 It allows a bundle to be replaced with a different or mock implementation
without changing any consuming bundles or code

On the other hand, it's quite common for Eclipse bundles to use Require-Bundle.
For example, the JDT UI bundle expresses a hard dependency on the JDT core bundle:

Bundle-SymbolicName: org.eclipse.jdt.ui; singleton:=true
Require-Bundle: …
 org.eclipse.jdt.core;bundle-version="[3.9.0,4.0.0)",
 …

Partly this is because the PDE tooling in Eclipse is set up with the expectation of
writing the bundle's manifest by hand, and creating automated lists of imports/
exports is best left to tooling. It's also historical as most dependencies in Eclipse
are set up to use bundle versions instead of package versions, and so the tooling
is optimized for the common case of Eclipse development.

Chapter 7

[219]

It is possible to switch from using Require-Bundle to Import-Package in PDE;
there is a somewhat hidden Automated Management of Dependencies section
that allows candidate bundles to be specified. Clicking on the add dependencies
hyperlink populates the list of dependencies as either a list of Require-Bundle or
Import-Package, depending on which setting is used below the list.

To migrate the dependencies for the feeds.ui project, open up the MANIFEST.MF file
and switch to the Dependencies tab. Expand the collapsible Automated Management
of Dependencies section, and it will show an empty table:

Designing Modular Applications

[220]

Now move the dependencies down from the Required Plug-ins section to the
Automated Management of Dependencies section. To allow the existing packages
to be automatically imported, add the com.packtpub.e4.advanced.feeds and
org.eclipse.osgi.services bundles to the candidate list and remove them
from the Imported Packages section:

Now change the Require-Bundle at the bottom to Import-Package, and then click
on the underlined add dependencies link. This will populate the Imported Packages
list on the right-hand side with a full list of packages. Packages that have a versioned
export are also imported with the version installed in the workspace:

Chapter 7

[221]

In this example, the org.osgi.framework package is imported with version 1.7.0,
which corresponds to the version in Eclipse 4.3. To support running on older versions
of Eclipse, changing this to a lower value would be required. Of course, testing the
bundle on older versions would still be required to make sure that the package does
not take advantage of any newer features.

Version packages and bundles
In the previous section, the Require-Bundle was replaced with an Import-Package.
This increased the number of dependencies added to the bundle; however, since these
were automatically added, managing them becomes easier.

Designing Modular Applications

[222]

Another change was that the package was versioned instead of the bundle.
A versioned package is declared by appending a version attribute to the
package export:

Export-Package: org.osgi.framework;version="1.7"

In order to use this package, it must be imported by specifying the version as well:

Import-Package: org.osgi.framework;version="1.7.0"

This ensures that the bundle will bind to a minimum of version 1.7. Note that the
strings 1.7 and 1.7.0 are equivalent, as a version number component defaults to 0
if not specified.

The advantage of versioning specific packages is that they provide a finer level of
granularity than the version level of a bundle. If a bundle exports many packages
(such as the Eclipse Equinox kernel, org.eclipse.osgi), then it can only have a
single version number at the aggregate level. In the case of Eclipse 4.3.2, the
bundle version is 3.9.2. In the case of Eclipse 4.4.0, the bundle version is 3.10.0.

However, both versions of Eclipse export org.osgi.framework.hooks.bundle with
version 1.1.0. Clients that need to use this package only need to import it and don't
have to worry that in Equinox, it comes from the org.eclipse.osgi bundle. In the
case of Apache Felix, this package comes from the felix bundle and exports the
same version.

If new functionality is required, such as depending on CollisionHook that was
added in version 1.1.0, then it would be an error to install it in an environment
that did not provide a minimum of version 1.1.0. If this functionality is installed
in Eclipse in the org.eclipse.osgi bundle but in Felix as the felix bundle, then
there is no consistent name or version of the bundle that could be used. If the bundle
developer used Require-Bundle: org.eclipse.osgi;bundle-version="3.9.0",
then the bundle would not resolve in other OSGi frameworks such as Felix.

Using a versioned Import-Package allows the bundle to depend on the appropriate
level of service, regardless of which bundles are installed in the system. In general,
all OSGi framework packages are versioned, as are many of the Apache Felix bundles.

Note that most Eclipse-based OSGi bundles do not export
package versions.

Chapter 7

[223]

Avoid split packages
In OSGi terminology, a split package is one that is exported by several bundles.
This leads to a more complex view of the environment as a whole and might lead to
incorrect behavior if only part of the bundle is imported. When an Import-Package
dependency is wired for a bundle, it is only wired to a single provider of that package.
If there is more than one version of a package, the framework can choose to wire it to
one or the other but not both.

Logger

Export-Package:

log

Client

Import-Package:

log

Logger

Export-Package:

log

?

As a result, if a package is split between two or more bundles, then it cannot be
imported by a single client with Import-Package.

Note that JARs have the same concept of a single package coming
from a single bundle, using sealed packages. This is achieved for
plain Java with entries in the manifest such as the following:

Name: com/example/pack/age/Sealed: true

Typically, split packages evolve by accident or through refactoring or evolution of a
package where some functionality has been exported and made available elsewhere.

To allow packages with content to be imported from two or more split packages,
an intermediary aggregator bundle needs to be used. This uses Require-Bundle to
wire together the packages by a symbolic name while using Export-Package with
the common package.

Designing Modular Applications

[224]

Using Require-Bundle to merge the dependencies together is easy, but it is also
necessary to prevent bundles from depending on the original exported packages.
To do this, add a mandatory directive to the split packages, which prevents the
package from being imported unless it has a Require-Bundle or Import-Package
with the appropriate attribute:

Bundle-SymbolicName: foo.logger
Export-Package: log;mandatory:=foo;foo=bar

This will prevent bundles from importing the log package unless they also add
a foo attribute with a bar value:

Import-Package: log;foo=bar

Another way to get the log package is to use Require-Bundle:

Require-Bundle: foo.logger

The solution will look like the following MANIFEST.MF entries:

logger.jar
Bundle-SymbolicName: com.packtpub.e4.advanced.log.logger
Export-Package: log;mandatory:=by;by=logger

other.jar
Bundle-SymbolicName: com.packtpub.e4.advanced.log.other
Export-Package: log;mandatory:=by;by=other

merge.jar
Bundle-SymbolicName: com.packtpub.e4.advanced.log.merge
Export-Package: log
Require-Bundle:
 com.packtpub.e4.advanced.log.logger,
 com.packtpub.e4.advanced.log.other

client.jar
Bundle-SymbolicName: com.packtpub.e4.advanced.log.client
Import-Package: log

Chapter 7

[225]

The relationships between the bundles are shown graphically in the
following diagram:

Client

Import-Package:

log

Merge

Export-Package:

log

Other

Export-Package:

log;by=other

mandatory

:=by

Logger

Export-Package:

log;by=logger

mandatory

:=by R
e
q
u
ir
e

-
B

u
n
d
le

R
e
q
u
ire

-
B

u
n
d
le

The mandatory directive is used to state that the package can only be imported using
the by attribute, which allows a selection of a specific variant of the package. These
can be merged with multiple Require-Bundle bindings. This is then transparent to
the clients that can use the Import-Package to be wired to the merged bundle.

Using split packages can cause problems at implementation and should
generally be avoided. The only reason split packages should be used is
when refactoring existing packages has meant that there is no alternative
to having classes in more than one place. If split bundles are required,
then it will be necessary to provide a combination bundle that knows of
the components and has imported them; this is optional in the case of a
component that is no longer required.

Import and export packages
In OSGi Release 3, an Export-Package implied an Import-Package of the package.
In OSGi Release 4 (which is the version Eclipse started using), an Export-Package
no longer implies an Import-Package.

Designing Modular Applications

[226]

Tools that use bnd to build bundles typically automatically add an Import-Package
to every Export-Package that is generated. This includes tools such as Bndtools,
Maven Felix, and the Gradle OSGi plug-in. As a result, a foo package that is
exported will have the following in the MANIFEST.MF file:

Export-Package: foo
Import-Package: foo

However, bundles that are written by hand (such as used by PDE) tend to not do
this and instead just export the package:

Export-Package: foo

What's the difference between both approaches and which is preferred? The OSGi
specification (section 3.6.6) suggests that it is best practice to import packages that
are exported, as long as the package does not use private packages and a private
package uses an exported package. For example, it should also import it in a bundle
that exports an API, as shown in the following diagram:

The reason to import a package that is exported is to allow the bundle to substitute
the local package with one from a different bundle. For example, if two versions
of org.slf4j API packages are installed and the package is imported from two
bundles, the framework can upgrade the API package by importing the package
from the more recent bundle. This allows a package to be substituted for a newer
version if it becomes available. The following diagram illustrates this:

Chapter 7

[227]

Substitutability only works if the exported package does not expose dependencies on
internal packages. If the exported package has a dependency on an internal package
(for example, a return type, argument type, annotation, or exception), then it cannot
be substituted. Similarly, the bundle must internally depend on the package in order
for it to be replaceable; if it doesn't depend on the package, then there is no need
to import it.

Avoid start ordering requirements
The OSGi framework has a concept of a start level, which mirrors start levels in
Unix. This is a positive integer that can be increased or decreased at runtime. The
framework begins and ends at start level 0 and then progressively increments the
start level until it reaches the initial start level (which is generally 4 for Eclipse and
1 for Felix).

Each time the start level increases, bundles that are defined to start at that level are
started automatically. Similarly, each time the start level decreases, bundles that no
longer meet the start level are stopped. Upon framework shutdown, the start level is
progressively decreased until all bundles are stopped, and the start level goes to 0.

Relying on a particular start ordering generally indicates a fragile relationship between
bundles. However, sometimes start ordering is necessary. It is used by Eclipse and
Equinox to ensure that Declarative Services are started early so that any bundles
subsequently started are able to take advantage of Declarative Services. Similarly,
some weaving hooks, which are used to process class files, can only be used if the
hook is installed prior to subsequent class files being loaded.

There are several ways to avoid start level-ordering problems:

•	 The first is to use a component model such as Declarative Services (see
Chapter 3, Using OSGi Services to Dynamically Wire Applications, for more
information). This will ensure that the services are registered and available
for use but only instantiated once the services' dependencies are available.
This will ensure that the system will wait until it is needed, and the services
will be instantiated on demand.

•	 The second is to listen to bundle events (see Chapter 8, Event-driven
Applications with EventAdmin). It is possible to listen to bundles coming and
going and taking appropriate action when bundles are installed. This is used
by bundles that implement the extender pattern (see the The extender pattern
section earlier in this chapter) to process bundles as they are installed and
started. Generally, the processing involves iterating through all the currently
installed bundles followed by switching to a listener-based mechanism to
pick up newer bundles. The ServiceTracker performs something similar
to listen to services that are coming and going.

Designing Modular Applications

[228]

•	 The final option is to design the bundle or service in such a way that if
dependent services are not available, the correct operation still occurs. For
example, if a bundle depends on a logging service and it is not present, then
the bundle could decide not to log information or substitute a default null
logging system instead. Generally, in a dynamic framework such as OSGi,
services may come and go at any time, and the client should be prepared to
handle such cases.

Avoid long Activator start methods
At the start of the framework, the start level is increased (see the Avoid start ordering
requirements section for more information). All the bundles in a given start level are
started before moving to the next start level.

As a result, it's possible for a bundle to delay further bundles by taking a long time
to return from a start method in a BundleActivator. Generally, the start method
should return as quickly as possible and move processing to a different thread if
computation will take a long time.

This is especially true if the bundle is started not through the framework start-up
but through an automated start caused by a lazy bundle activation. If a bundle has a
Bundle-ActivationPolicy: lazy manifest entry, then as soon as a class is requested
from this bundle, it will be started automatically. If the bundle start-up takes some
time (for example, interacting with an external resource or dealing with I/O), then it
will delay the class being handed back to the caller.

Sometimes, it may be desirable to have a bundle start-up delayed until a particular
resource is available. For example, if a bundle requires database connectivity, it
might be the case that the activator verifies that the database is available before being
started. An alternative is to let the bundle come up but only present the service after
the database connection has been verified. Instead of treating the bundle as the atomic
unit of start-up, using services is more flexible, and it means that the service can be
implemented by a fallback or another bundle subsequently.

Use configuration admin for configuration
Configuration Admin, also known as Config Admin, is a standard OSGi service that
can be used to supply configuration data to a bundle at start-up. Management agents
can supply the configuration from a number of sources such as a property file in the
case of Felix FileInstall or custom configuration bundles if desired.

By separating how the configuration information is passed (by defining a generic
API) and how it is sourced, a bundle can be configured without needing to change
anything about the system or code.

Chapter 7

[229]

Reading configuration information directly from a properties file (a technique
used by many Java libraries) can be problematic as it will require a filesystem and
a hard-coded list of properties. If any configuration information needs to be changed
(such as increasing the logging level for a particular component), typically, the file
needs to be edited and the process restarted. Similarly, hard-coding system
properties at start-up of the JVM suffers from the same problem; any changes
made are not visible to the bundle at runtime.

Using Config Admin solves both of these problems. Config Admin uses a push
mechanism—when either initial or new configuration is found, it is pushed to
the component for configuration. As the component can already handle having
configuration data set in this way, it will be able to dynamically react
to configuration changes in addition to an initial static set of data.

Additionally, OSGi permits bundles and services to be instantiated multiple times
within a JVM. Config Admin can configure each of these individually, whereas a
system property or single file would not be able to distinguish between the two.

The only requirement to be usable by Config Admin is to either implement the
ManagedService interface, which provides an updated method that takes a
Dictionary of key/value pairs, or to use a component model such as Declarative
Services, which is already integrated with Config Admin. As such, it is very easy
to implement generic services that consume this configuration information.

Why does ManagedService use an updated method and not use
JavaBeans properties? Essentially, if many configuration values change
at one time, it is desirable to commit this set of changes atomically and
then restart whatever is required once all the changes are in place. If
a set of changes were drip-fed into a service, one JavaBean setter at
a time, it would not be possible to hook in the completion of all the
changes in a standardized way.

Share services, not implementation
As OSGi is a dynamic environment, services can come and go after the system is
started. Bundles that depend solely on implementation classes will not be dynamic;
bundles that depend on services can be.

The corollary is that it makes sense to share behavior by exporting/registering
services rather than exporting code. It is possible to provide helper methods in the
API that perform the service lookup (similar to SLF4J's Logger.getLogger method),
as the returned instance can be part of a well-known interface. It also allows the
acquisition of that data object to be encapsulated inside a small but standard
implementation that does not need to concern the caller.

Designing Modular Applications

[230]

To take full advantage of the dynamism that OSGi provides, these services should
be registered and deregistered dynamically. The easiest way to achieve this is to use
a component model such as Declarative Services or Blueprint, as both of these allow
components to be defined externally to the code and then instantiated on demand.
In this way, when the component is created (through access, configuration admin,
or some other mechanism), it will be automatically registered as a service for other
bundles to consume. If there are any required services that are not available, the
creation of the component will be delayed until a time where the services are available.

Services also make it much easier to provide mock implementations. The bundle
under test can be installed into a test runtime, along with a test bundle that provides
a mock service for use by the main bundle. In this way, the service can be tested in
isolation without requiring any additional data.

Loosely coupled and highly cohesive
Bundles should be designed so that they are loosely coupled and highly cohesive.
Loosely coupled means that the bundle has limited dependencies on API classes
(never implementation) and will dynamically acquire services when needed. Highly
cohesive means that the bundle forms a united whole, and the contents cannot be
split into logical subgroups. (If a bundle can be split into logical subgroups, then
it indicates that a better approach would be to split the bundle into two or more
bundles; one per subgroup and optionally, one overarching group).

Loose coupling is desirable as a function of modules in a complex system, because it
means that it is unlikely that this module will depend on any specific set or emergent
behaviors in the rest of the system. Instead, if the dependencies are cleanly exposed,
then any refactoring required will be limited to the dependencies present.

Loose coupling is harder than it sounds in a large system. If a project in an IDE is
loosely structured (such as having many logical packages) but is compiled with a
project-wide classpath, then it's easy for unintended dependencies to creep in.

Chapter 7

[231]

For example, in the Jetty project in version 6, the client implementation
had an unintended dependency on the server implementation; this meant
that all client code had to be shipped with a copy of the server code
at the same time. This unintentional dependency crept in because the
individual units were not separated on the filesystem, and the compiler
transparently compiled the server classes at compile time.
Similarly, the JDK has unintended dependencies by virtue of the Java
packages being compiled as a monolithic unit; the java.beans package
depends on the java.applet package, which depends on the java.
awt package. So, despite the fact that the beans package has no direct
need for a GUI, any project that uses java.beans is implicitly drawing
in GUI dependencies. Modularizing is hard; modularizing the JDK
doubly so, although JEP 200 plans to split the JDK into separate modules
and JEP 201 plans to enforce modularity at compile-time for the JDK..

One way of achieving loose coupling is to break down modules into smaller and smaller
units, until they become indivisible units both logically and from an implementation
perspective. By doing this, loose coupling will be an emergent property of the modules
after the translation is complete. It will also highlight where there may be some
dependencies that are not appropriate, and attention can be given to how to rectify the
situation (such as deprecating the java.beans.Beans.instantiate method that takes
an AppletInitializer). Often, the act of doing the modularization will be enough
to highlight where these APIs require remediation. Separating the modules into their
own classpaths (for example, separate Maven modules or Eclipse projects) will often
immediately highlight where assumptions about a global classpath have been made.

Highly cohesive bundles have packages tightly grouped together. In other words,
the packages form a tight knit group and don't expect to be split from each other.
Typical anti-cohesive bundles are ones with a util in the name; they contain all
manner of unrelated classes. The problem with such bundles is that they tend to
accrete contents and make refactoring subsequently more difficult. Secondly, the
accretion of contents often implies an accretion of dependencies; this makes the
bundle a join in a many-to-many dependency wiring between bundles.

In most cases, the solution is to minimize dependencies and maximize
cohesion. This is often a journey instead of a destination, as a bundle
can keep being split until all the units meet the cohesion requirements.

Designing Modular Applications

[232]

Compile with the lowest level execution
environment
OSGi bundles can specify a Bundle-RequiredExecutionEnvironment, which is
the set of Java platforms that the bundle will work on. These include CDC-1.0/
Foundation-1.0, JavaSE-1.7 and JavaSE-1.8.

When installing, building, or running a bundle, the OSGi framework will ensure
that the required execution environment is met. The bundle will not resolve unless
the running environment is at least the minimum requirement. However, it is
possible for a bundle to run on a higher version than it is expecting both at runtime
and at compile time.

There is a risk when compiling on JavaSE-1.8 but declaring a required execution
environment of JavaSE-1.7 that methods available in 1.8 but not in 1.7 are used.
The compiler might not be able to tell whether new methods (such as List.sort)
are present in older versions of Java and let the bytecode be compiled and work on
an OSGi platform with a JavaSE-1.8 runtime. If the bundle is subsequently run on
a JavaSE-1.7 platform, then silent runtime failures might occur.

The way to avoid this is to ensure that the bundles are built only using the specified
version of Java declared in the Bundle-RequiredExecutionEnvironment. This is
often done by server-side builds so that even if a single IDE does not have the correct
JDK, then the server-side builds will pick up the error.

OSGi supports low-powered devices such as embedded routers and
home automation systems. The APIs in OSGi therefore limit themselves
to OSGi/Minimum-1.2, which might not include generics or the newer
collections APIs added since Java 1.2.
As embedded systems become more powerful, the use of generics has
started to creep in to OSGi runtimes. With Java 8 bringing lambdas and
default methods, it is likely that bundles will transition to supporting a
minimum of Java 8 in the near future, even if the traditional APIs do not.

Chapter 7

[233]

Avoid Class.forName
Traditionally, Java applications have used Class.forName to dynamically load a class
from a given name. This is often used in conjunction with externalized configuration
such as a JDBC database driver or the name of a codec or charset encoding.

There are two problems with Class.forName, which means that it should be avoided
wherever possible in an OSGi application.

First, it assumes a global visibility of classes such that any class will be available
from any other class or ClassLoader. This works for monolithic Java applications
(which only have a single application ClassLoader) or ones where class loaders and
therefore classes are not shared (such as individual applications in a Tomcat container).
As this may not always be the case, a lookup of a class becomes dependent upon
where it was looked up from instead of being globally available.

Second, the result of the class is pinned both in the ClassLoader of the providing
bundle and in the bundle of the requesting class. This would be fine if it were the
interface or API class (as this will be pinned in the lifetime of the bundle anyway),
but the implementation class is specifically supposed to be replaceable dynamically.
Instead, once a Class.forName has been invoked, then the implementation class
is permanently wired to the client bundle until the client bundle is refreshed
(when it gets a new ClassLoader object).

The solution to both of these problems is not to call Class.forName. How then
can bundles work with APIs where the classes are not known in advance?
The obvious solution is to use services instead and have the bundle locate the
service using the standard OSGi mechanisms. For situations where this is not
possible, the BundleContext can be used to get the Bundle, which provides a
getResourceAsStream method (for loading resources), and a loadClass, which
does the right resolution for a specific implementation class.

If the Bundle isn't known, it is possible to use ClassLoader.loadClass instead
by using the ClassLoader of the current class. This will then delegate to the right
ClassLoader to find the implementation.

The best approach is not to use string names at all but pass Class instances instead,
or if a string must be used, then pass it with the appropriate ClassLoader as well.
Many database mapping tools will take a Class instance to perform mapping
instead of a class name.

Designing Modular Applications

[234]

Avoid DynamicImport-Package
Along with using the Require-Bundle and Import-Package to wire dependencies,
OSGi also provides a more general dynamic one called DynamicImport-Package.
This can be used to provide a last attempt to find a class that is being requested from
the bundle if it has not been found any other way.

The format of DynamicImport-Package is to specify a package name, optionally
with a wildcard, that can be used to create an Import-Package wire on demand if a
class is requested. Using a generic * for everything will result in dependencies being
found automatically when they are looked up and not found in any other way:

DynamicImport-Package: com.example.*

When a class in the bundle attempts to find com.example.One or com.example.
two.Three, then the framework will attempt to create a wiring for the com.example
and com.example.two packages. If there are bundles in the system that export these
packages, then wires will be added to the bundle, and the resolution will work as
expected. If not, then the load attempt fails, as with other failed lookups, and an
exception will be thrown.

When debugging failed lookups, the following two types of failures
might occur:

•	 ClassNotFoundException: This is raised when the direct type
cannot be found, for example, you have a typo in the class name
(such as omc.example.One).

•	 NoClassDefFoundError: This is raised when an indirect
type cannot be found; in other words, the JVM has found the
class requested (com.example.One), but this class depends on
another that cannot be loaded or found (com.example.Two).
Exceptions thrown in a static initializer might also result in a
NoClassDefFoundError being reported.

The problem with the use of DynamicImport-Package is that it will pin the
dependency permanently for the lifetime of the requesting bundle. As such, even
if this dependent bundle were to be stopped, the ClassLoader would be pinned
to the wired dependency bundle. The only way the wire will be removed is if the
requesting bundle is refreshed or stopped.

Chapter 7

[235]

Generally, the use of DynamicImport-Package is a code smell in OSGi, and the
underlying problem should be resolved (such as replacing lookups with services
or with the explicit dependencies as required). It can be a useful diagnostic tool in
the right use cases, but it should not be generally relied upon.

Avoid BundleActivator
BundleActivator is used in many cases where it is not necessary. Typically, the
BundleActivator will store a static reference to the BundleContext and/or
provide helper methods that look up platform services. However, this ends up
being stored as an effective singleton with a static accessor to return the instance:

public class Activator implements BundleActivator {
 private static Activator instance;
 public static Activator getInstance() {
 return instance;
 }
 private BundleContext context;
 public BundleContext getContext() {
 return context;
 }
 public void start(BundleContext context) throws Exception {
 this.context = context;
 instance = this;
 }
 public void stop(BundleContext context) throws Exception {
 }
}

This is not necessary because the Bundle (and therefore, the BundleContext) can be
acquired from any class in an OSGi runtime using FrameworkUtil and from that,
any service of a given type.

The BundleContext only exists for bundles that are ACTIVE
(have been started). If a bundle has not been started, then its bundle
context will be null. Code should handle this and fail gracefully.
Alternatively, the Bundle-ActivationPolicy: lazy manifest
header can be added to the manifest, which will automatically start
the bundle on access.

Designing Modular Applications

[236]

If a service is required, this method can be used to return an instance of a service:

public static <S> S getService(Class<S> type, Class<?> caller) {
 Bundle b = FrameworkUtil.getBundle(caller);
 if (b.getState() != Bundle.ACTIVE) {
 try {
 b.start(Bundle.START_TRANSIENT);
 } catch (BundleException e) {
 }
 }
 BundleContext bc = b.getBundleContext();
 if(bc != null) {
 ServiceReference<S> sr = bc.getServiceReference(type);
 S s = null;
 if(sr != null) {
 s = bc.getService(sr);
 bc.ungetService(sr);
 }
 }
 return s;
}

As it is possible to obtain an instance of a service given a caller class and a desired
type, the majority of the use cases in a BundleActivator are no longer required.
The only remaining use case is to start or register a service dynamically at bundle
start-up, but this can be achieved through the use of Declarative Services or another
component model instead.

Consider thread safety
Other than the BundleActivator and the start and stop methods, it cannot be
guaranteed that any particular thread will be calling the bundle's code or, indeed,
might be calling it at the same time. In particular, when processing events from
Event Admin (covered in Chapter 8, Event-driven Applications with EventAdmin),
the events might be delivered from different threads from the one they first posted.

If there are UI operations that are required and they need to obtain a lock or run
on a particular thread, then care must be taken that when the UI is invoked, it is
done from the correct thread. Generally, OSGi frameworks will use multiple threads,
and so an incoming event or service call might not be on an appropriate thread for
the service to process.

Chapter 7

[237]

Thread safety should also be considered with regard to mutable data structures.
For data structures that are highly volatile or might be mutated and read at the same
time, suitable synchronization guards should be implemented to prevent unknown
problems from occurring at runtime.

Test in different frameworks
Although an OSGi bundle might work correctly in the framework environment that
the developer tested in, it might have problems if run in a different framework or a
different environment.

One common cause for failure is not having the right dependent bundles in the
target environment, such as having Declarative Services installed and running. In
general, any extender pattern is only going to work if the extender is configured and
running in the system.

Another problem is the different frameworks and their use of the boot delegation
options. When a class is looked up from a bundle, if the package begins with java.
or is listed as an entry in the org.osgi.framework.bootdelegation system
property, it is delegated to the parent (JVM) ClassLoader. Otherwise, the package
is selected from the Import-Package wiring (if present) or Require-Bundle (if
present), followed by the embedded Bundle-ClassPath contents.

This presents a problem with testing bundles, particularly ones that look up classes
in the sun.* or javax.* spaces. Code that appears to work correctly in Equinox will
fail to work in Felix because the former is looser by default. To ensure that Equinox
behaves in the same way as Felix, set osgi.compatibility.bootdelegation=false
as a system property on the Equinox JVM. Although it talks about OSGi compatibility,
in fact this is an Eclipse-specific behavior, and the default action of Eclipse is to use
non-standard boot delegation. As this has not changed in over a decade, it is likely that
it will not happen any time soon, and there might be misconfigured bundles that never
show up in test failures because of this issue.

Generally, if a bundle works correctly in Felix, then it will work in
other runtime engines. The reverse is not always true.

Designing Modular Applications

[238]

Summary
The key concept of bundle compatibility is managed with version numbers and
version number ranges. Whether the major, minor, or micro version is changed,
it indicates to the end consumer whether or not the change is backward compatible.
Version ranges can be used to ensure that the appropriate version is selected
at runtime.

Being able to design an Eclipse plug-in or OSGi application involves a repeated
process of breaking down the components into smaller indivisible modules until
they are loosely coupled to their neighbors and highly cohesive. Standard patterns
help this, and following best practice allows for maximal flexibility.

The next chapter will present reactive applications based on the OSGi event bus.

Event-driven Applications
with EventAdmin

The OSGi EventAdmin service provides a means to publish and receive events between
bundles. This can be used to build applications that dynamically react to changes from
external or internal sources.

This chapter will present the OSGi EventAdmin service and how it can be used to build
decoupled applications. The EventAdmin service is an example of the whiteboard
pattern, and therefore provides a means to loosely couple the components together.

Understanding the OSGi EventAdmin
service
The OSGi EventAdmin service is described in the OSGi Compendium and OSGi
Enterprise specifications in Chapter 113, Event Admin Service Specification. It provides
a means to use a publish and subscribe mechanism to send events that may be
targeted at a particular topic and may contain an arbitrary number of event properties.

Event topics are text names that are used to identify where the event will be delivered.
They are represented with a slash (/) separating parts of the name, for example, org/
osgi/framework/ServiceEvent or org/osgi/service/log/LogEntry.

Event-driven Applications with EventAdmin

[240]

An Event is an immutable object, initialized from a Dictionary or Map, which
has a number of properties. These properties can store user-specific data, along
with a number of other (potentially null) standard properties from the
EventConstants class:

•	 BUNDLE_ID – bundle.id, the bundle's ID number
•	 BUNDLE_SIGNER – bundle.signer, the name of the signer of the bundle
•	 BUNDLE_SYMBOLICNAME – bundle.symbolicName, the symbolic name of

the bundle
•	 BUNDLE_VERSION – bundle.version, the bundle's Version number
•	 EXCEPTION – exception, a Throwable object if the event was raised as

an error
•	 EXCEPTION_CLASS – exception.class, the class name of the

exception object (useful for filtering out types of exceptions such
as NullPointerException)

•	 EXCEPTION_MESSAGE – exception.message, the message returned from
the exception object if present

•	 MESSAGE – message, a human-readable message that is usually not localized
•	 SERVICE_ID – service.id, the ID of the service that generated the event
•	 SERVICE_OBJECTCLASS – service.objectClass, the class name of the

service that generated the event (suitable for matching/filtering)
•	 SERVICE_PID – service.pid, the persistent identifier of the service that

raised the event
•	 TIMESTAMP – timestamp, the time that the event was posted

Sending e-mails
The example in the next few sections will cover the case of components needing
to send e-mails. A component may desire to send an e-mail when a particular
condition occurs, such as if an error is received when processing an event, or if a
user has feedback to submit.

Clearly, the component can be directly linked to an SMTP library such as
commons-email. This requires some configuration in the component such as
what the SMTP hostname is, what ports should be used, and whether there are
any additional authentication details required.

Chapter 8

[241]

Cleanly separating the e-mail generator (the component wishing to report an error)
from the component that sends the e-mail is desirable, as this provides a loosely
coupled system, as described in the Loosely coupled and highly cohesive section in
Chapter 7, Designing Modular Applications. The configuration data of the generator
component itself does not need to worry about how the e-mail is transmitted,
while the component that sends the mail can be configured appropriately
(or updated when the e-mail requirements are updated).

Although this can be implemented as an OSGi service, using the EventAdmin service
allows the event to be handed off into the background, thereby not blocking the call
site. The mail can also be created using properties in the Event object so that the
clients can add whatever information is required in order to generate the e-mails.

Creating an event
The org.osgi.service.event.Event object is a standard class in the OSGi
framework. It can be constructed from either a Map or Dictionary of standard
key/value pairs, along with a topic (the intended destination of the event).

As e-mails have an Importance field, the topic name can be used to distinguish
between low, normal, and high priority items with smtp/low, smtp/normal, and
smtp/high. The e-mail's content can be stored as event properties using standard
RFC 822 header names (To, From, and Subject):

import org.osgi.service.event.Event;
…
Map<String,String> email = new HashMap<String, String>();
email.put("Subject","Hello World");
email.put("From","alex.blewitt@gmail.com");
email.put("To","alex.blewitt@gmail.com");
email.put("Body","Sample email sent via event");
Event event = new Event("smtp/high",email);

When this event is created, a copy of the email map is made so that subsequent
changes to the email map are not reflected in the event object.

If the map is complex, and it needs to be used for multiple events,
consider converting it to an EventProperties object. This
will still perform a one-off copy (at construction time) but the
EventProperties object can be reused as is for multiple events.

Event-driven Applications with EventAdmin

[242]

Posting an event
The EventAdmin service is used to deliver events synchronously or asynchronously.

Synchronous delivery can be performed with the sendEvent method. The event may
be posted on the same thread that the client code is running on, but will be blocked
until the event has been delivered to all the registered listeners. This is useful when
events require processing before they are committed, but using this pattern can lead
to deadlock in the system. For example, if the posting thread has a lock on a critical
section, and the event listener also requires that critical lock, then the listener may
never receive that notification. Once a system is deadlocked, then it cannot make
further progress.

Avoid using synchronous delivery, as it can lead to deadlock in a system.

Asynchronous delivery can be performed with the postEvent method. The
EventAdmin service enqueues the event and then calls it back with a different thread
than the caller. The asynchronous delivery is more performant than the synchronous
one, because it needs to use less locking and internal bookkeeping to determine which
listeners have seen which events.

Sending an event requires acquiring an EventAdmin instance followed by the
sendEvent or postEvent methods. The EventAdmin instance can be injected via
Declarative Services or acquired through the BundleContext via FrameworkUtil
if necessary (see Chapter 3, Using OSGi Services to Dynamically Wire Applications,
for more details on how to acquire services in this way):

EventAdmin eventAdmin = getService(EventAdmin.class);
eventAdmin.postEvent(event);

The event will be queued and delivered to the listeners at some point later. Listeners
that subscribe after the event is posted/sent will not see that event, though they will
see future events.

Note that there are no guarantees that the message will be sent; unlike
an enterprise message queuing system, the message is not persisted to
disk or replayed upon restart. It is stored in-memory only, and will be
discarded when the JVM shuts down.
Additionally, there is no guarantee that a listener is present at the time
an event is sent; it may just be silently discarded. EventAdmin does not
guarantee consistency like a two-phase commit message store.

Chapter 8

[243]

Receiving an event
EventAdmin is used to manage a set of listeners for particular events. Each event
listener implements the EventHandler interface. However, instead of having an
addListener such as the Observable class, EventAdmin looks for services published
under the EventHandler interface. This allows listeners to come and go or be
replaced with alternative (or mock) ones. These can be registered with all the usual
service properties (such as service.ranking) or with Declarative Services:

package com.packtpub.e4.advanced.event.mailman;
import org.apache.commons.mail.*;
import org.osgi.service.event.*;
import org.osgi.service.log.*;
public class MailSender implements EventHandler {
 public void handleEvent(Event event) {
 String topic = event.getTopic();
 if (topic.startsWith("smtp/")) {
 String importance = topic.substring("smtp/".length());
 String to = (String) event.getProperty("To");
 String from = (String) event.getProperty("From");
 String subject = (String) event.getProperty("Subject");
 String body = (String) event.getProperty("DATA");
 try {
 Email email = new SimpleEmail();
 email.setHostName(hostname);
 email.setSmtpPort(port);
 email.setFrom(from);
 email.addTo(to);
 email.setSubject(subject);
 email.addHeader("Importance",importance);
 email.setMsg(body);
 email.send();
 log(LogService.LOG_INFO, "Message sent to " + to);
 } catch (EmailException e) {
 log(LogService.LOG_ERROR, "Error occurred" + e);
 }
 }
 }
 private void log(int level, String message) {
 LogService log = this.log;
 if (log != null) {
 log.log(level, message);
 }
 }
}

Event-driven Applications with EventAdmin

[244]

The code sample uses commons-email from the Apache project and
javax.mail:mail, both of which are available at Maven Central.
Copies of the JARs are also available in the book's GitHub repository
at https://github.com/alblue/com.packtpub.
e4.advanced/.

When an event is received, if the topic begins with smtp/, then the event is
converted into an Email object and sent.

The rest of the topic is used as a field for the Importance value, described in
RFC 4021, and can take the values low, normal, and high (this is a hint and is
not displayed by all e-mail clients).

The log method is a simple wrapper around a LogService, which logs if the
service is available and not otherwise.

The log is captured in a local variable to avoid threading issues;
if the log were unset during the call, then it would result in
a NullPointerException between the if test and the call.
Instead, by capturing it in a local variable once, the log can never
be null in the if block.

To allow the handler to receive events, it needs to be registered as a service with
the event.topics service property. The topics can be specified with an exact name
(so that different handlers can be used to send smtp/low and smtp/high), but it's
also possible to use a wildcard at the end of the topic name to pick up all the events
(such as smtp/*).

If registering the handler manually (such as in an Activator), it would look like
the following:

Dictionary<String, String> properties
 = new Hashtable<String, String>();
 properties.put("event.topics","smtp/*");
 context.registerService(EventHandler.class, new MailSender(),
 properties);

However, it would be much cleaner to create a Declarative Services component to
register the EventHandler; this will stay on standby and be created when first
used, along with providing an easy way to acquire the LogService:

<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
 name="com.packtpub.e4.advanced.event.mailman.mailman">

https://github.com/alblue/com.packtpub.e4.advanced/
https://github.com/alblue/com.packtpub.e4.advanced/

Chapter 8

[245]

 <implementation
 class="com.packtpub.e4.advanced.event.mailman.MailSender"/>
 <service>
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>
 <reference bind="setLogService" cardinality="0..1"
 interface="org.osgi.service.log.LogService" name="LogService"
 policy="dynamic"/>
 <property name="event.topics" value="smtp/*"/>
</scr:component>

Another benefit of using Declarative Services is the ability to pick up the configuration
information from Config Admin to set the various properties on the object, such as the
hostname to send mails to and the from address of the sender.

Filtering events
The EventAdmin service provides a coarse way to filter events through the use of
topics. The topic name is a path with segments separated by a slash /, which can
either be exact, or with the last segment as a wildcard, such as smtp/*, as shown in
the previous example.

However, this does not provide a means to filter specific events. If additional filtering
is desired (for example, ensuring that only select mails are processed), then this
would traditionally be done in the code:

if(to.equals("alex.blewitt@gmail.com")) {
 …
}

Such hard-coded tests are difficult to debug or modify in the future.

The EventAdmin service provides a standardized way to filter events before they
are delivered to the EventHandler. This allows more specific filters to be set as a
way of reducing the volume of events that are handled for processing.

The filter is set by adding a service property event.filter, which contains an LDAP
style expression. The expression can refer to any of the properties set in the event.

To add a filter equivalent to the previous e-mail filter, set the following to the
Declarative Services component when registering the filter:

<property name="event.topics" value="smtp/*"/>
<property name="event.filter" value="(Subject=Hello World)"/>

Event-driven Applications with EventAdmin

[246]

If the value contains special characters including parentheses
() or asterisk *, then they must be prefixed with an escape
character, which is the backslash \ character. The LDAP filter
semantics are defined in RFC 1960.

Now only e-mails with a specific subject will be matched. Other LDAP filters can
be used including wildcards to match substrings. For example, to match the local
domain, (To=*@localhost) could be used.

Using the event.filter is usually more efficient than hardcoding
the logic in the handleEvent method, because the LDAP filter is
optimized in OSGi and is translated to a highly performant match
when the handler is installed.
Secondly, when using Declarative Services, the component is only
enabled when a matching event is seen; if events that don't match
the filter are received, then the component isn't enabled. This allows
the system to start up quickly without needing to enable components
until they are first needed.

Threading and ordering of event delivery
The EventAdmin specification ensures that events posted asynchronously will
be delivered on a different thread than the one that posts it. It does not guarantee
that a particular thread will be used for all the events; nor does it guarantee that for
synchronous event delivery, the same thread will be used. Implementations are free
to either reuse the delivery thread for synchronous events, or use a different thread,
provided that the blocking/waiting synchronization primitives are obeyed.

What the EventAdmin specification does guarantee is that events delivered to a
particular topic are delivered in-order to individual subscribers. This implies that
for each topic there is a queue for delivery to subscribers. Some implementations
use a single thread to enforce ordered event delivery.

If asynchronous event delivery does not need to be strictly in-order, there is an
event.delivery property that can take the value async.unordered (or referenced
via the constant DELIVERY_ASYNC_UNORDERED in the EventConstants type). If the
strict ordered requirement is relaxed, the EventAdmin implementation may be able
to take advantage of multiple threads for event delivery.

Apache Felix provides a configuration option that can control the number of threads
that are used for the EventAdmin delivery process. The default size for the Felix
EventAdmin is 10, specified in org.apache.felix.eventadmin.ThreadPoolSize.
The Equinox implementation (as of Eclipse 4.4) does not support this property,
nor does it support multiple threads for delivery to event clients.

Chapter 8

[247]

The limitation of threading in the EventAdmin means that it may not be
suitable for high-performance applications or one where rapid or timely
event delivery is required. For high-performing message delivery, using
Reactive Java (also known as RxJava) may be more appropriate.

Comparison between EventAdmin and
services
Another approach to sending e-mails would be to use an e-mail Service, with a
sendEmail method taking a Dictionary or Map object. This would do the same
thing as the handleEvent method in the MailSender class.

There are a few differences that are worth covering when deciding whether to use
events or services:

•	 Synchronicity: The OSGi services approach will always be synchronous;
the call will block until the recipient has processed the request and returned.
On the other hand, event-based processing can either be synchronous or
asynchronous depending on the client's calling convention.

•	 Cardinality: The OSGi services approach will (typically) return a single
service to interact with, whereas the event-based mechanism is a broadcast
to all listeners. It requires no extra code effort for the event-based processing
to add an additional listener to process messages, whereas with the OSGi
services, the client has to be explicitly coded to deal with multiple services.

•	 Typed: The OSGi services model allows a custom service for each type of
action, using a number of different arguments with specified types. Clients
are obviously compiled with those services in place and are therefore strictly
typed. The event model uses the same interface for everything (Event) and
essentially stores arbitrary untyped payloads.

•	 Interface/Topic: The OSGi services model is based entirely on an interface
type, which means that clients need to know the interface in advance. The
interface can also be (semantically) versioned to enable future growth. The
event-based mechanism is topic based and so the topic name needs to be
known in advance. The topic allows for wildcarding, so an event published
to com/example/event/bus will be picked up by listeners for com/example/
event/* as well as com/example/* or even com/*. These events could be
mapped into other communication technologies such as JSON messages
over WebSocket to a browser, or even hooked up to a traditional JMS-based
messaging system.

Event-driven Applications with EventAdmin

[248]

There isn't a hard rule as to when it's appropriate to use services or topics. Because
topics can be created on the fly, it can be useful to represent events being fired for
individual data objects to notify listeners that a change has happened; in fact, this
technique is used in E4 to notify view components when the underlying model has
changed as well as when the selection has changed.

In general, for broadcast mechanisms and topics that need to be created on the fly, the
event mechanisms may be more suitable. For library and functional services, especially
where a return value or state is needed, OSGi services may be more appropriate.

Framework events
The OSGi framework also has a number of events that get fired to notify subscribers
when state changes occur in the framework itself. For example, when a bundle
transitions through its life cycle states (uninstalled, installed, resolved, starting,
active, and stopping), an event will be sent to notify clients of the new value.
The events are sent after the transition has occurred.

The framework also has events that represent the system as a whole (to indicate
the system has started, packages are refreshed, and for startlevel modifications)
as well as certain log message types (info, warning, and error).

Framework events are sent under the org/osgi/framework/FrameworkEvent/
topic prefix and include:

•	 STARTED

•	 PACKAGES_REFRESHED

•	 STARTLEVEL_CHANGED

•	 INFO

•	 WARNING

•	 ERROR

Bundle events are sent under the org/osgi/framework/BundleEvent/ topic prefix
and include:

•	 UNINSTALLED

•	 INSTALLED

•	 UNRESOLVED

•	 RESOLVED

•	 STARTED

•	 UPDATED

•	 STOPPED

Chapter 8

[249]

Service events are sent under the org/osgi/framework/ServiceEvent/ topic prefix
and include:

•	 REGISTERED

•	 MODIFIED

•	 UNREGISTERING

For framework events, the following information will be provided:

•	 event: The FrameworkEvent object sent to the framework listeners

For bundle events, the following information will be provided:

•	 event: The BundleEvent object sent to bundle listeners
•	 bundle: The Bundle object
•	 bundle.id: The source's bundle ID as a Long
•	 bundle.signer: The string or collection of strings containing the

distinguished name of the bundle's signers, if signed
•	 bundle.symbolicName: The bundle's symbolic name if set
•	 bundle.version: The bundle version as a Version

For service events, the following information will be provided:

•	 event: The ServiceEvent object sent to the service listeners
•	 service: The ServiceReference of the service
•	 service.id: The service's ID as a Long
•	 service.objectClass: The array of strings of the object classes this service

is registered against
•	 service.pid: The service's persistent identifier as a string or collection

of strings

Along with delivery via EventAdmin, the framework supports several custom
listeners that can be added via the BundleContext add listener methods:

•	 FrameworkListener: This is an interface to receive FrameworkEvent objects
•	 BundleListener: This is an interface to receive BundleEvent objects
•	 ServiceListener: This is an interface to receive ServiceEvent objects

Event-driven Applications with EventAdmin

[250]

Note that classes such as ServiceTracker (covered in Chapter 3, Using OSGi Services
to Dynamically Wire Applications) subscribe to service events in order to determine
when services come and go, and extender patterns such as Declarative Services
listen to bundle events in order to process them when they are installed or removed.
Implementing an extender pattern generally looks like the following:

context.addBundleListener(new BundleListener() {
 public void bundleChanged(BundleEvent event) {
 int type = event.getType();
 Bundle bundle = event.getBundle();
 String myHeader = bundle.getHeaders().get("X-MyHeader");
 if (type == BundleEvent.STARTED && myHeader != null) {
 addBundle(bundle);
 } else if (type == BundleEvent.STOPPED && myHeader != null) {
 removeBundle(bundle);
 }
 }
});
for (Bundle bundle : context.getBundles()) {
 if (bundle.getState() == Bundle.ACTIVE
 && bundle.getHeaders().get("X-MyHeader") != null) {
 addBundle(bundle);
 }
}

Note that the pattern is generally to add the bundle listener first, and then iterate
through all the existing bundles. This way, there may be some duplicate calls to the
addBundle method, but the bundles should not be missed. Generally, the extender
pattern will maintain a list of bundles under management so that when the extender
provider is stopped, the bundles can be appropriately released.

Also note that most patterns use the existence of a header in the manifest to
determine whether or not the bundle should be extended. This allows for a cheap
test to determine if the bundle has any contents, and also why headers such as
Service-Component exist in the Declarative Services specification.

Events and E4
The E4 Eclipse application uses events internally to manage the state of the user
interface. The decoupling allows the user interface mechanisms to be separated
from the user interface renderer, which allows different user interfaces to be
presented (such as JavaFX).

Chapter 8

[251]

There is an E4-specific wrapper for the EventAdmin service called the IEventBroker.
This provides a simple mechanism to post or send objects to a particular topic, as
well as frontends to register event listeners. It has specific ties to E4 and is present
in the UI package. Create a plug-in named com.packtpub.e4.advanced.event.e4.

To write portable code that processes events headlessly, consider
using EventAdmin directly.

Sending events with E4
The IEventBroker can be injected into an E4 component using standard injection
techniques, and from that, events can be posted synchronously or asynchronously.
Create a class named E4Sender in the com.packtpub.e4.advanced.event.e4 plugin.

Obtaining the service in E4 is done through injection. Since the sender requires this,
it will be a non-optional component:

@Inject
IEventBroker broker;

Having obtained the broker service, it can be used to send the e-mail event, in the
same way as the previous EventAdmin example:

public void send() {
 String topic = "smtp/high";
 String body = "Sample email sent via event at "
 + System.currentTimeMillis();
 Map<String, String> email = new HashMap<String, String>();
 email.put("Subject", "Hello World");
 email.put("From", address);
 email.put("To", address);
 email.put("DATA", body);
 broker.send(topic, email);
}

The IEventBroker has the same kind of event delivery as with the EventAdmin
service; it can either be used to send events asynchronously with post, or
synchronously with send.

There is a subtle difference between EventAdmin and IEventBroker.
The former only accepts a Map or Dictionary, while the latter takes
any object. If a Map or Dictionary is passed to IEventBroker, it will
be passed straight through to the EventAdmin without modification.
If the object passed is of another type, it will be wrapped in a Map with
the key IEventBroker.DATA (org.eclipse.e4.data).

Event-driven Applications with EventAdmin

[252]

Receiving events with E4
Since the IEventBroker uses EventAdmin under the covers, it is possible to process
an Event with the same mechanism as used earlier in the chapter. However, there is
an easier way to receive events with E4 using the @EventTopic and @UIEventTopic
annotations. Create a class named E4Receiver in the com.packtpub.e4.advanced.
event.e4 plugin.

A method in an E4 component can be annotated with the @Inject and @Optional
annotations, and the argument can be annotated with the @EventTopic annotation.

If the argument is an OSGi Event, then it will be passed through as it is. This allows
the complete set of properties to be pulled from the Event object and processed in
one call:

@Inject
LogService log;
@Inject
@Optional
void receive(@EventTopic("smtp/*") Event event) {
 log.log(LogService.LOG_INFO,
 "Received e-mail to " + event.getProperty("To"));
}

If the argument type is not an OSGi Event and the type matches
the value of the IEventBroker.DATA, then that is used
directly. If not, the handler will be ignored. This allows broker.
send("topic","value") to be received with an annotation
receive(@EventTopic("topic") String value).

The event will be delivered on a background thread. If the processing of the event
requires UI interactions, then these will need to be remapped to run on the UI thread
instead. E4 provides a UISynchronizer that allows code to run on the UI thread.

There is an alternative annotation that can be used to indicate that the event needs
to run on the UI thread. Modifying the annotation to @UIEventTopic instead of
@EventTopic will result in the code being automatically run on the UI thread:

void receive(@UIEventTopic("smtp/*") Event event) {
 …
}

Chapter 8

[253]

When setting up an event handler in E4 (whether @UIEventTopic
or @EventTopic), the documentation suggests using a non-public
method. The injector can call non-public methods, and by making the
methods non-public, it is ensured that they are not called directly.
However, marking them as private may result in the compiler or
IDE eliminating the code. Therefore, a minimum of package-level or
protected access should be used for such handler methods.

Subscribing E4 EventHandlers directly
It's possible to subscribe event handlers using the EventAdmin directly, but it's
also possible to use the IEventBroker to subscribe (and unsubscribe) event
handlers. As with EventAdmin, the subscription takes a topic and the handler.
By default, calls will be run on the UI thread.

@Inject
IEventBroker broker;
public void subscribeUI(EventHandler handler) {
 // will be called on the UI thread
 broker.subscribe("smtp/*", handler);
}

This allows a custom-built handler to receive events and guarantee that they will
be run on the UI thread. E4 uses an (internal) implementation of EventHandler,
which delegates to the passed handler, optionally wrapping it in a UISynchronizer.

Create a class named E4Subscriber in the com.packtpub.e4.advanced.event.
e4 plugin. To use the IEventBroker class without taking the UI thread, or to pass in
a filter, there is an alternative method that provides more options:

public void subscribe(EventHandler handler) {
 broker.subscribe("smtp/*", "(Subject=Hello World)",
 handler, true);
}

The final parameter is whether to run the method headlessly or not (in other words,
do not run in the UI). In this case, the true value says that this event should not
be run in the UI.

This API is mainly useful if a handler always needs to be run in the UI. Alternatively,
the body of the handler can trivially wrap itself in a UI block, such as a UIJob or via
the UISynchronize class.

For events that do not need the UI, it is generally more efficient to register them
with EventAdmin directly.

Event-driven Applications with EventAdmin

[254]

Comparison between EventAdmin and
IEventBroker
When writing code to handle events, either the EventAdmin or the IEventBroker
can be used. Although it may appear that the IEventBroker isolates the caller from
having to deal with OSGi classes, if there are several properties that need to be
acquired, then casting to an OSGi Event is often necessary.

The other problem is that the IEventBroker has direct references to the EventHandler
class in the unsubscribe and subscribe methods. So, any dependency on the
IEventBroker will automatically have a dependency on the OSGi EventAdmin classes.

The IEventBroker adds two things that are useful in an E4 application:

•	 Wrapping in an appropriate E4 context. This allows the event handler to
receive injectable content when an event is received, including being able
to receive other E4 contextual information

•	 Wrapping in the UI thread, which allows the event handler to process or
interact with UI components.

When writing a handler that needs UI or E4 injection, use the IEventBroker to
register or use the @EventTopic or @UIEventTopic annotations.

Designing an event-based application
Firstly, decide if using an event-based paradigm for the application makes sense.
Event-driven systems are very useful if they meet the following characteristics:

•	 Components are loosely coupled
•	 Operations can be processed asynchronously
•	 The state of an operation may be part of a transient (in-memory) workflow
•	 Events can be broadcast and received by multiple listeners
•	 There is a standard agreement for what details an event should have
•	 The event topics are (or become) known at development time

On the other hand, the following are not suitable for (OSGi) event-driven systems:

•	 Where the state of the workflow is not only UI-based but part of the domain
•	 Where the consumption of an event is handled transactionally
•	 Where large volumes of events can throttle single-threaded delivery
•	 Where there is a lack of event payload structure
•	 Where there is a requirement for a synchronous response to occur

Chapter 8

[255]

Componentizing the application
The first step in designing an event-driven system is to create components out of
the parts of the application that need to talk to each other. This might correspond
with the natural boundary of OSGi bundles, or it may be more fine-grained. There
may be other boundaries—such as package boundaries or Declarative Services
components—that more naturally represent the components in the application.

Once the components are known, it becomes easier to track the relationships
between them, including what the messages are that the various components
will need to send to one another to work.

For each of the components, there should be one or more input events, and one or
more output events (or other side-effect changes). These should be represented as
entry and exit points of the components, with a separate input for each type of
event that might flow in.

Identifying the channels
For each of the input and output channels of the components, the main purpose needs
to be identified. In the first iteration, this can be as simple as a noun (such as "mouse
event" or "mail message"). Subsequent iterations will fill out details on the channels
that get passed.

The result of this should be a high-level event diagram of the system. It may not be
as detailed or object specific as an object interaction diagram, but it should show the
graph of input events, followed by the directed triggers that could flow from them.
For example, an incoming mail message might trigger a mail processing script, which
in turn fires more events to send auto-response mails or log the message to a database.

Identify whether the channels are firing an event for the purpose of
causing a downstream event to occur, or whether they may be firing
events for informational purposes (such as logging). Having events
fired at different points in a life cycle means that it is easier to add
additional functionality afterwards.

Identifying the properties
For each of the events that are sent, there may be zero or more properties containing
additional information regarding the event. In the case of an incoming mail message,
this could include the sender of the e-mail, the subject, the time the mail was sent,
the importance, and of course the e-mail body as well.

Event-driven Applications with EventAdmin

[256]

The first iteration of the properties is likely to be a rough cut, and will evolve over time.
As the event system is fleshed out, it may be necessary to record additional details
that weren't captured in the first place. This may include things such as the time zone
of the sender, or what hosts it hopped through to be delivered. The flexibility of the
event pattern is that it's easy to evolve by adding additional information in subsequent
releases and clients who do not need to know this information can simply ignore it.

A similar mechanism for evolution exists in JSON messages. Provided
that a client knows how to parse a JSON object and knows which fields
to specifically look for, it is possible to add additional fields to the
object without breaking backwards compatibility.

Mapping the channels to topics
Once the channels and event properties have been decided, the next step is to
map these to topics so they can be used in EventAdmin. Topics are represented
in slash-separated format, and this is important because the wildcard character *
can be used to subsume additional levels in the topic hierarchy.

Typically, the event hierarchy is based on a reverse domain name style prefix.
This allows events produced by one organization to not conflict with other events
when installed into the same runtime. In the case of OSGi bundles, it is very often
the case that the event topic prefix will be a variation on the bundle name itself.

The topic may then be further segregated by the sub-channel, depending on what
level of granularity is needed. In the E4 model, the topics for items changing in the
workspace model begin with org/eclipse/e4/ui/model/ and then continue with
a type such as commands or application.

Since topics can be matched with wildcards, it may make sense to add another name
segment for an event channel (such as application/ApplicationElement/* instead
of just application/ApplicationElement) as this will permit future partitioning of
the event space. A terminal leaf node cannot be split down into more children, whereas
a segment can have more segments added afterwards. This was a pattern identified
by the E4 platform, which initially just used the terminal node but then subsequently
switched to a more partitioned space so that changes in individual attributes could
be nominated using a common prefix.

Chapter 8

[257]

Simulating events
One advantage of an event-driven system is that it is very easy to test in isolation.
Besides having events driven by the EventAdmin specification directly, it is also
possible to simulate the arrival of an event by calling the method directly. It is thus
possible to test individual components by setting up listeners looking for output
events and simulating the incoming events.

This also helps to test the component in a black box manner. Provided that the
events delivered are well formed, and the events generated have the correct data,
it is possible to show that the component is operating as expected.

It may be necessary to set up other mock services, event sources, or event sinks in
order to test the functionality of that component, but the principle of segregated
components making it easy to test are still important.

Versioning and loose typing
Because event-based systems are inherently loosely typed, it is necessary to define
both the values of event topics and the schema of those events in an external location.
This may be part of the project's documentation, or there may be other systems that
record this information externally to the project or with schemas such as RelaxNG
(though that is more suited for XML documents).

Changing the event's properties or modifying the event's topics will not be picked
up by a static compiler. This results in a higher testing requirement being placed on
the system itself, but also gives it additional flexibility for being able to respond to
changes in the future.

When the version of the API changes, it may be necessary to implement version
numbering information in the payload of the event itself. This can be used to
communicate the state of the API to clients at any time, and if backward compatible
changes are required, then these can be brought into play. It may also be possible
for the client and server to agree on the version number to use, even if it means
degrading to a lower version.

Always design a version number in your message formats, be they OSGi
Events, JSON messages, or even XML documents. The version number
should be stored at the top level and revisions to this number may
indicate different content elsewhere or in a child element of the message.

Event-driven Applications with EventAdmin

[258]

It may be desirable to store the version number as a single integer, or it may be a
pair or triplet of numbers. Whatever value is chosen, it should be treated as a semantic
version, with major digits indicating a backwardly incompatible change, and minor
versions being backwardly compatible but with potentially new features being added.

Servers (or event sources) hardly ever get rolled back, so typically these numbers will
be monotonically increasing. It is thus usually sufficient to represent just the major
number, or possibly the major and minor number as part of the API definition. It is
usually an error to include the micro/patch numbers in the public part of the API as
this binds the client too tightly to the version of the API in use. The main reason for
exposing the minor version is in case a client is implemented to selectively enable
additions for newer functions; this comes in handy if the same client is exposed to
both old and new versions for an extended period of time.

With a known version and a known set of event properties and types, it is possible
to document changes and upgrade the API when necessary to add new features or
to document backward compatibility issues.

Event object contents
Since the Event objects are an in-memory representation, and the map that is
passed can store objects of any type, it is possible to put any kind of object into the
event object itself. For example, the Bundle can be embedded in the Event object
or UI-specific components such as Color or even open InputStream objects.

The OSGi specification suggests limiting the use of the Event properties to the set
of primitive values such as int (or their object counterparts such as Integer) along
with String and single-dimensional arrays of the same. In other words, although it
is possible to store URL instances in the map directly, it is recommended that it be
stored as a String and then converted on the client into a URL object.

The reason for this recommendation is that while EventAdmin is a system designed
for use within a single VM, it is not limited to being used in a single VM. In fact,
in conjunction with OSGi Remote Services, it is possible to set up a distributed
EventAdmin fabric, where events generated on one node get transported over the
network and then handled on a remote node. To make this possible, all the values
in the Event object need to be Serializable, and because it may be the case that
the events are processed in a different language (such as JavaScript or C), having a
standard set of known datatypes facilitates that translation.

Similarly, objects placed into an OSGi Event should be immutable. If an object
placed into an Event is not immutable (such as the old Date class), then it would
be possible to dispatch an event, and later modify its contents before a consumer
has time to process the original value. No runtime checks are made by EventAdmin,
but violating this rule can lead to surprises.

Chapter 8

[259]

Comparison with JMS
Designing an event-driven system looks very similar to designing a message-driven
system using an API such as Java Messaging Service (JMS). Both follow a similar
paradigm for being able to build an application; the system is modeled as a set of
state changes triggered by incoming events (messages), resulting in either
system updates or subsequent events (messages) being fired.

The following differences are worth observing between the event-driven and
message-driven systems:

•	 No broker: In a JMS system, there is an intermediary (broker) that runs in
a separate process with memory separation between the clients. The lifetime
of this process is orthogonal to the lifetime of the client, and in particular,
there may not be a broker running at any point. On the other hand, with
EventAdmin, there is no separate standalone broker process, although the
EventAdmin service acts like a centralized in-process broker.

•	 Transactional: Probably the biggest single difference is that JMS systems
are designed to be transactional in nature. If the message is not processed
successfully on a node, then the intermediary broker can attempt to pass that
message on to another subscriber for redelivery. The transactional support
can also extend to other transactional resources (such as databases) for a
clean separation. No such transactional support is available in EventAdmin.

•	 Broadcast versus point-to-point: JMS provides different types of message
deliveries. In a broadcast mechanism, all subscribers are notified of a
message (these are typically called topics), and this is the mechanism that
EventAdmin uses for Event delivery. JMS also provides a point-to-point
mechanism (called queues), which ensures that only one subscriber gets
each message. Queues are often used to allow scaling by adding additional
workers. The EventAdmin service does not have a concept of queues or
single event delivery.

•	 Persistent versus transient: JMS can be configured to operate in a persistent
mode (where all messages are written to disk) or in a transient mode (where
messages are held in memory and lost upon system restart). EventAdmin
only has transient support; if the OSGi runtime crashes, then all in-flight
events are lost. For unimportant states (such as which button in a GUI was
being clicked at the time), this may not be an issue, but for data-specific
processing, this may be a problem.

Event-driven Applications with EventAdmin

[260]

•	 Language bindings: Typically, JMS systems support more languages since
the intermediary broker provides a means to be able to convert the message
types to different languages, provided that a standardized set of properties
are used. The OSGi EventAdmin doesn't officially support other languages,
but leaves it open to implementors of the frameworks to support them if
desired. In practice, it is fairly easy to hook up a set of events to something
like JSON messages, which are becoming the de facto interchange format
between systems as well as between clients and browsers.

The advice is to use an in-memory system such as EventAdmin where the state of
the workflow is transient or does not need transactional persistence, and use a more
heavy-weight solution such as JMS when queues or transactional storage is required.

Summary
The OSGi EventAdmin service provides a simple means to implement an event-
driven application model in an OSGi runtime, and uses topics made of string
identifiers separated by slashes to partition the namespace for events. An Event
contains a number of key/value pairs, using String keys and primitive or String
values, which can then be received by EventHandler implementations.

Handlers are registered as standard OSGi services, and can take advantage of
filtering based on event contents as well as topic names or prefixes. Events are
used heavily within the Eclipse E4 platform, and there are E4-specific annotations
@EventTopic and @UIEventTopic that can be used to invoke methods upon receipt
of particular events.

Finally, the chapter presented how event-driven applications can be designed
along with a comparison of event-driven and message-driven services. Although
superficially similar, message-driven systems often deal with persistence,
transactions, and queues as well as topics.

The next chapter will look at how Eclipse P2 is used to generate update sites and
what additional information can be encoded into P2 installers.

Deploying and
Updating with P2

As a modular end user application, Eclipse has always been able to update itself and
install new content. Under the covers, Eclipse has always consisted of a number of
plug-ins as well as a number of features (a way of aggregating plug-ins). The original
update mechanism, the classic update manager, provided a simple way to install and
update features and plug-ins (bundles). In Eclipse 3.4, a mechanism called P2 was
created that allowed more powerful update mechanisms and included the ability
to update native code and configuration files. P2 provides a means to provision,
run, update, and configure Eclipse-based applications.

Eclipse P2
The "P2" of Eclipse P2 was derived from "provisioning platform", but it is generally
referred to by its acronym. It was created to improve the provisioning story not only
for features and bundles, but also for non-Java content such as native executables
and configuration files.

An overview of P2 and its history is available from the online
Eclipse help, also visible at http://help.eclipse.org/
luna/topic/org.eclipse.platform.doc.isv/guide/
p2_overview.htm.

There are a few key concepts to understand in P2:

•	 Artifact: This is a collection of bytes, such as a plug-in, feature, or product
•	 Metadata: This is the information about artifacts, including versioning

information and dependency information, which is referred to as
Installable Units (IUs)

http://help.eclipse.org/luna/topic/org.eclipse.platform.doc.isv/guide/p2_overview.htm
http://help.eclipse.org/luna/topic/org.eclipse.platform.doc.isv/guide/p2_overview.htm
http://help.eclipse.org/luna/topic/org.eclipse.platform.doc.isv/guide/p2_overview.htm

Deploying and Updating with P2

[262]

•	 Repository: This is a collection of artifacts (an artifact repository) or
metadata (a metadata repository) that may be hosted on a remote site

•	 Composite Repository: This is a composition of one or more
repository references

•	 Agent: This a provisioning agent that can perform P2 updates, such as
the headless director application or the new update mechanism

•	 Touchpoint: This is a post-processing action, such as modification to the
Eclipse properties file (eclipse.ini), other branding, or the installation
or removal of native files

•	 Profile: This represents the currently installed software as a set of IUs

Provisioning with the P2 director
An Eclipse application can be provisioned with all of the installable units using
an existing P2 install, or by using an Eclipse application called the director.

Applications are launched headlessly with Eclipse using the -application
command-line argument. In addition, it is common for applications to supply the
-consoleLog argument (which ensures that any error messages are printed to the
console) and the -noSplash argument (to disable the splash screen from showing).

Eclipse applications are covered in more detail in chapter 7 of Eclipse 4
Plug-in Development by Example Beginner's Guide, Packt Publishing.

The director is launched with the org.eclipse.equinox.p2.director application.
Arguments specific to the director application include the following:

•	 -repository: The URL of the repository to install the content from
•	 -destination: The location to write out the installed contents
•	 -installIU: The installable unit to install
•	 -uninstallIU: The installable unit to uninstall
•	 -profile: The name of the P2 profile
•	 -profileProperties: The properties of the profile; generally, it includes

org.eclipse.update.install.features=true to enable feature support

Chapter 9

[263]

To provision a new copy of Eclipse, the following command can be run:

$ /path/to/eclipse -consoleLog -noSplash

 -application org.eclipse.equinox.p2.director

 -repository http://download.eclipse.org/eclipse/updates/4.4/

 -profileProperties org.eclipse.update.install.features=true

 -installIU org.eclipse.sdk.ide

 -destination /path/to/newfolder

…

Installing org.eclipse.sdk.ide 4.4.0.I20140606-1215.

Operation completed in 135634 ms.

The new version of Eclipse will be installed into /path/to/newfolder.

If running on Windows, eclipsec.exe can be used to allow the
program to be run without opening a new GUI window (the c suffix
stands for console).

Installing content into existing applications
The director can be used to install content into an existing application. The same
process is used (as described earlier) with an additional IU; for example, to provision
EGit support into an Eclipse application, the following command can be run:

$ /path/to/eclipse -consoleLog -noSplash

 -application org.eclipse.equinox.p2.director

 -repository http://download.eclipse.org/egit/updates/

 -installIU org.eclipse.egit.feature.group

 -destination /path/to/newfolder

…

Installing org.eclipse.egit.feature.group 3.4.1.201406201815-r

Operation completed in 11295 ms.

Deploying and Updating with P2

[264]

To install a feature into Eclipse, the installable unit name must be known. Generally,
this is of the form org.eclipse.<project>.feature.group . It's possible to find out
what the installable unit name is from an existing Eclipse installation by navigating
to Window | Preferences (Eclipse | Preferences on Mac OS X) and clicking on
Installation Details:

Navigate to the Features list, and the Feature Id will be shown. The name of the
installable unit is the feature ID with a .feature.group suffix:

Chapter 9

[265]

If the feature is not already installed in an Eclipse application, the feature ID can
be discovered through the update manager. Navigate to Help | Install New
Software... and then search for the feature to install:

Select the feature and click on the More... link at the bottom-right corner of the
details section, and a window will be shown with more information. The General
page will have an Identifier label that contains the Installable Unit identifier,
which for EGit is org.eclipse.egit.feature.group:

Deploying and Updating with P2

[266]

Running P2 applications
When a P2-managed application starts, a set of configuration files are read to
determine which plug-ins and features to enable. Even though files may be present
in features/ and plugins/, they won't be installed into an Eclipse application
unless the P2 configuration details refer to them. To understand how this works,
it is informative to see how a modern Eclipse application launches and what
configuration files are used.

Launching the JVM
The launcher is the eclipse executable (or Eclipse.app on Mac OS X). When run,
the corresponding eclipse.ini configuration file is read. If Eclipse has been rebranded/
renamed, then the executable will be called something else (notEclipse), and it will
read the corresponding file (notEclipse.ini).

The launcher performs a few tasks; it shows a splash screen, creates a JVM with the
arguments specified in the configuration file, and then hands over the execution to
the Equinox launcher. It is also used to define an open action so that if the Eclipse
application is set as the default handler for certain file types, double-clicking on it will
re-invoke the launcher, which then transfers the URL to the running Eclipse instance.

The splash screen is shown with -showSplash (or hidden with -noSplash), and it is
defined by reference to a plug-in ID that hosts the splash.bmp file (it must be called
by that name, and it must be a bmp file). This is handled by the Eclipse launcher
initially, and once Equinox is started, the splash screen is handed over to the SWT
runtime library, which can then annotate it with text and progress bars.

The launcher creates an instance of the JVM based on the arguments specified.
If a JVM is not given, it tries to find one using various heuristics (it checks whether
java is on the path, whether JAVA_HOME has been set, and so on). However, it is
possible to specify a JVM on the command line with the -vm /path/to/bin/java
or -vm /path/to/bin/ argument.

The -vmargs option is used to pass through options to the JVM itself. This
can be used to set the max heap size (-Xmx) or configure the PermGen space
(-XX:MaxPermSize).

Note that OpenJDK 8 removes the need to configure the PermGen space
directly, and not all JVMs have the option.

Chapter 9

[267]

The launcher provides an additional option, --launcher.XXMaxPermSize, which
performs some heuristics to see whether the -XX:MaxPermSize is understood by
the JVM being used, and adding the argument if it is understood.

Generally, the --launcher.XXMaxPermSize argument should
be preferred in order to avoid problems with JVMs that do not
support this option.

Any arguments specified after the -vmargs option are passed through to the JVM,
and not to the Equinox runtime. So, given eclipse a b c -vmargs d e f, the a b
c options will be handled by the launcher and passed through to Equinox, while the
d e f options are passed to the JVM. When adding command-line options to the end
of either the configuration file or the command line, ensure that they are added in the
right place.

When specifying options on the command line with -vmargs,
it will override any elements in the eclipse.ini file, unless
the --launcher.appendVmargs argument is given. Using
--launcher.appendVmargs is recommended for all Eclipse
applications, and it is added by default to standard Eclipse packages.

Any system properties can also be specified on the command line, after -vmargs,
using the standard -D options. There is a list of such options described in the
online Eclipse help under Eclipse runtime options, but particular ones of note
are as follows:

•	 -Dosgi.requiredJavaVersion=1.6: This is the minimum Java version
required in order to launch the platform

•	 -Dorg.eclipse.swt.internal.carbon.smallFonts: Use smaller fonts
when running on Mac OS X

•	 -Xdock:icon=/path/to/Eclipse.icns: Use the given icon as the dock
icon on Mac OS X

•	 -XstartOnFirstThread: This allows SWT applications to run on Mac OS X

Many other arguments, such as -clean and -data, can also be specified as system
properties such as osgi.clean and osgi.instance.area.

Deploying and Updating with P2

[268]

Starting Equinox
Once the launcher hands control over to Equinox (specified with the -startup
and --launcher.library arguments), the process moves into Java code. It is
also possible to run Equinox with java -jar plugins/org.eclipse.equinox.
launcher_*.jar. Arguments are still passed through to the underlying application.

Equinox reads the configuration/config.ini file, which defines a set of system
properties for the application. In particular, the default workspace is defined in a
property osgi.instance.area, and allows substitution of property values such
as the user's home directory with @user.home.

The config.ini file contains the initial bundle set to bring up the framework,
which includes the simpleconfigurator bundle. This reads the contents of the org.
eclipse.equinox.simpleconfigurator/bundles.info file, which is the set of
bundles to be loaded into the framework. This list represents the last known state
of the framework, but its history is managed through P2 profiles.

The config.ini file looks like the following:

eclipse.p2.profile=epp.package.standard
eclipse.p2.data.area=@config.dir/../p2
eclipse.product=org.eclipse.platform.ide
osgi.bundles=reference\:file\:org.eclipse.equinox.simple...

From a P2 perspective, there are two things of interest here. The first is the P2 profile
name (epp.package.standard) and the second is the P2 data area (usually p2 at the
top level of the Eclipse install). The p2 data area is used to store all P2 data, which
includes the following:

•	 org.eclipse.equinox.p2.core/cache/: This is used to store cached
copies of the root feature installs

•	 org.eclipse.equinox.p2.engine/profileRegistry/: This is the
location of the P2 profiles

•	 org.eclipse.equinox.p2.repository/cache/: This is used to store a
copy of the artifacts.xml and content.xml downloads from remote
update sites

P2 profiles are sets of enabled features and plug-ins that are available in a running
Eclipse framework. P2 allows for different profiles to be concurrently installed in
an Eclipse install, and switch between them at launch time using a command-line
argument. It is possible to have, for example, an Eclipse application configured
for C development and an Eclipse application configured for Java development in
the same install, and then at launch time switch between them using -Declipse.
p2.profile=epp.package.cpp or -Declipse.p2.profile=epp.package.standard

Chapter 9

[269]

Each profile is given a separate directory underneath profileRegistry; for
example, …/profileRegistry/epp.package.standard.profile/ is used for
the EPP standard profile. Underneath the profile directory is a set of compressed
timestamped files that use the time in milliseconds, which represent the state of
the Eclipse platform's installed features and plug-ins at that point in time. When a
new installation occurs (such as adding new features), a new timestamped profile
is generated. When Eclipse starts, it looks for the largest numerical value that ends
in .profile.gz (or .profile) and uses that as the boot profile.

The profile itself contains an XML file that contains properties, units,
and iuProperties. It looks like the following:

<profile id="epp.package.standard" timestamp="1395612330274">
 <properties size="7">
 <property name="org.eclipse.update.install.features"
 value="true"/>
 …
 </properties>
 <units size="1564">
 <unit id="org.eclipse.jdt.feature.group"
 version="3.9.2.v20140221-1700" singleton="false">
 <properties size="12">
 <property name="org.eclipse.equinox.p2.name"
 value="%featureName"/>
 …
 </properties>
 <provides size="3">
 <provided namespace="org.eclipse.equinox.p2.iu"
 name="org.eclipse.jdt.feature.jar"
 version="3.9.2.v20140221-1700"/>
 </provides>
 <filter>(org.eclipse.update.install.features=true)</filter>
 <artifacts size="1">
 <artifact classifier="org.eclipse.update.feature"
 id="org.eclipse.jdt"
 version="3.9.2.v20140221-1700"/>
 </artifacts>
 </unit>
 …
 </units>
 <iuProperties size="1564">
 …
 </iuProperties>
</profile>

Deploying and Updating with P2

[270]

There are some top-level properties associated with the profile as a whole
(whether features are enabled, where the cache locations are, and so on) as well
as a set of installable units and installable unit properties. The installable units
include plug-ins, features, configuration settings, and sets of dependencies that
are required for the platform.

Each installable unit has a name and a version, which almost always correspond
to a binary on disk. There is also a namespace, which is used to partition the
installable units into different groups:

•	 java.package: This is the name of a Java package, to enable
Import-Package resolution

•	 osgi.bundle: This is a dependency on a specific bundle name, to enable
Require-Bundle resolution

•	 osgi.ee: This is the execution environment (such as JavaSE-1.8)
•	 osgi.fragment: This defines additional requirements for fragment

bundles on their fragment host
•	 org.eclipse.update.feature: This gives information about features

to enable feature dependencies
•	 tooling*: These are custom-created properties to enable specific entries

to be added packages, such as toolingorg.eclipse.platform.sdk and
toolingepp.package.standard

When items are installed into an application, the profile records what the additions
or removals were and then regenerates the bundles.info file. This ensures that
when the framework restarts, the profile is brought up in the correct state. Similarly,
feature uninstallation will remove the entries from bundles.info and write out a
new profile state.

Note that P2 manages more than just bundles.info; it can append entries to
the eclipse.ini file, replace the application launcher itself, unpack and extract
certain files from the runtime, and create directories. It is also used to calculate
which additional features are required when installing new content. For this, the
boolean satisfiability library SAT4j is used to determine whether there are any
conflicts or whether there are any missing dependencies.

Chapter 9

[271]

Once the P2 profile is activated, the bundles are installed and started if necessary,
and then control is handed over to the Eclipse product or application, such as
org.eclipse.platform.ide or org.eclipse.ui.ide.workbench.

P2 repositories
Repositories consist of a set of installable units, which are built from a set of features
and plug-ins, optionally organized into categories. In Eclipse, a special Update Site
project can be used to represent the set of features in a development environment,
or it can be used as the source for a Tycho eclipse-repository build. An Update
Site project can be created by navigating to File | New | Other | Plug-in
Development | Update Site Project:

A feature can be built by clicking on the Build All or by highlighting the feature and
clicking on Build:

Deploying and Updating with P2

[272]

The feature will be named features/name_version.timestamp.jar, along with
two files, artifacts.jar and content.jar. These two files are generated by the export
mechanism and contain the set of P2 data that is required for the content to be visible
to P2 installers. A similar option is presented if the feature is exported on its own via
the Generate P2 repository checkbox; for this, navigate to File | Export | Plug-in
Development | Deployable features to view the option:

The contents of these files describe the individual downloadable files
(artifacts.jar) and the metadata of each file (content.jar). The files
themselves just consist of a single XML file, artifacts.xml, and content.xml.

P2 artifacts and contents files
The P2 artifacts file provides a way to bind an installable unit to a downloadable
file. Given a triplet of classifier, id, and version, the artifacts file allows an
installable unit's URL to be calculated. It also provides some additional information
such as what the expected download type of the file is, its size, and optionally an
MD5 checksum.

A repository has a human-readable name, a type, and a version. Underneath it are
three sections; a list of properties, a list of mappings, and finally a list of artifacts.
The following XML shows an example of a repository called Update Site:

<?xml version='1.0' encoding='UTF-8'?>
<?artifactRepository version='1.1.0'?>

Chapter 9

[273]

<repository name='Update Site' type='org.eclipse.equinox.p2.artifact.
repository.simpleRepository' version='1'>
 <properties size='2'>
 <property name='p2.timestamp' value='1396184010474'/>
 <property name='p2.compressed' value='true'/>
 </properties>
 <mappings size='3'>
 <rule filter='(& (classifier=osgi.bundle))'
 output='${repoUrl}/plugins/${id}_${version}.jar'/>
 <rule filter='(& (classifier=binary))'
 output='${repoUrl}/binary/${id}_${version}'/>
 <rule filter='(& (classifier=org.eclipse.update.feature))'
 output='${repoUrl}/features/${id}_${version}.jar'/>
 </mappings>
 <artifacts size='1'>
 <artifact classifier='org.eclipse.update.feature'
 id='Feature' version='1.0.0.201403301353'>
 <properties size='2'>
 <property name='download.contentType'
 value='application/zip'/>
 <property name='download.size' value='338'/>
 </properties>
 </artifact>
 </artifacts>
</repository>

The properties are used to provide additional information about the artifacts; in this
case, the timestamp at which the content was last generated and whether the content
of the repository should be compressed into an artifacts.jar file.

The properties can also contain a mirror reference with the p2.mirrorsURL. This
allows a set of mirrors to be queried for an artifact instead of just the originating
server; the Eclipse infrastructure uses this to share the load between mirror sites
when new versions of Eclipse are released. When an artifact needs to be
downloaded, the mirrors URL will be hit, and an XML file will be returned.

For Eclipse Luna, the mirror URL is http://www.eclipse.org/downloads/
download.php?format=xml&file=/eclipse/updates/4.4/R-4.4-201406061215.

This is encoded in the artifacts.xml file as follows:

<property name='p2.mirrorsURL'
 value='http://www.eclipse.org/downloads/download.
php?format=xml&file=/eclipse/updates/4.4/R-4.4-201406061215'/>

http://www.eclipse.org/downloads/download.php?format=xml&file=/eclipse/updates/4.4/R-4.4-201406061215
http://www.eclipse.org/downloads/download.php?format=xml&file=/eclipse/updates/4.4/R-4.4-201406061215

Deploying and Updating with P2

[274]

Because XML files cannot contain ampersands (&) without escaping, the XML file
has & to separate parameters. The returned XML file looks like the following:

<mirrors>
 <mirror
 url="http://www.mirrorservice.org/sites/download.eclipse.org/"
 label="[United Kingdom] UK Mirror Service (http)"/>
 <mirror url="http://ftp.snt.utwente.nl/pub/software/eclipse/"
 label="[Netherlands] SNT, University of Twente (http)"/>
 <mirror url="http://eclipse.mirror.triple-it.nl/"
 label="[Netherlands] Triple IT (http)"/>
 ...
</mirrors>

Although the Eclipse servers generate the request dynamically with a PHP
script, this could be provided with a static XML file or another automatically
generated mechanism.

The Eclipse servers send out both HTTP and FTP mirrors; for sites that have
firewalls that don't support FTP, it's possible to add &protocol=http to get just
a list of HTTP mirrors.

If the p2.mirrorsURL is not present on the remote server, or
it returns an empty list, the P2 mechanism will fall back to the
originally requested URL.

The contents file contains much more information and records properties extracted
from the bundle, such as the license, the copyright, and vendor, and for OSGi
bundles, what packages are imported and exported along with other generic
require-capability elements. There is a one-to-one mapping between entries in
the artifacts file with entries in the content file.

Binary and packed files
Along with JARs hosted on an update site, other binary content can be stored and
served. There are two categories for non-JAR content:

•	 Binary assets such as the Eclipse executable or configuration files
•	 Packed JARs using the pack200 compression mechanism

Both of these can be stored either as top-level files in the binary directory or in
a special .blobstore folder.

Chapter 9

[275]

The blobstore is a means of allowing arbitrary content to be stored without the
file extension causing problems for the update site server, by creating randomized
filenames to distinguish between assets. Because the names of the files in the
blobstore do not correspond to any well-known algorithm (such as md5 or sha1), the
names of the files give no information about its content. This can be used for storing
binary executables as well as packed JAR files.

The blobstore causes problems for some webservers that don't know or expect a
particular type of data. As a result, it is often desirable for a P2 repository to store
pack200 files next to the JARs instead of the blobstore. This is achieved by storing a
property packFilesAsSiblings with the value true in the artifacts.xml file of
the destination repository:

<property name='publishPackFilesAsSiblings'
 value='true'/>

This will ensure that the blobstore is not used for writing out the content of pack
files, but they will be put next to the JAR files instead.

Note that an empty artifacts.xml file with the property
needs to be created first, followed by running the mirror
operation in order to take advantage of the update.

Creating P2 mirrors
Although a direct file or rsync copy will allow a set of artifacts to be mirrored,
it is possible to use built-in functionality in Eclipse to allow P2 repositories to be
mirrored. This will ensure that the contents listed in the remote update site are
transferred as expected, and the metadata files are updated correctly.

Mirroring is done separately for artifacts and metadata, but they both follow the
same structure. One mirrors the artifacts.jar files, and the other mirrors the
content.jar files.

To mirror Luna's artifacts, use the following command:

$ /path/to/eclipse -consoleLog -noSplash -application

 org.eclipse.equinox.p2.artifact.repository.mirrorApplication

 -source http://download.eclipse.org/releases/luna/

 -destination file:///path/to/luna-mirror

 -verbose

 -raw

 -ignoreErrors

Deploying and Updating with P2

[276]

The -verbose flag tells the mirroring process to print out what is being copied at
each point and is an optional argument.

The -raw flag tells the mirroring process to copy as is without translating or rebuilding
the metadata from the original bundle. This is faster, but it can sometimes cause
problems when mirroring from old-style update sites. This only has an effect on
artifact mirroring and is an optional argument.

When the -ignoreErrors flag is given, any errors seen during the mirroring
operation are ignored, causing the mirroring to continue. If not specified, then
any error will terminate the mirroring process. This only has an effect on artifact
mirroring and is an optional argument.

To mirror Luna's metadata, use the following command:

$ /path/to/eclipse -consoleLog -noSplash -application

 org.eclipse.equinox.p2.metadata.repository.mirrorApplication

 -source http://download.eclipse.org/releases/luna/

 -destination file:///path/to/luna-mirror

 -verbose

The previous two commands are almost identical; the only difference is the
application name.

Note that the destination must begin with file:/ and thus be an
absolute path, even though only file:/ URLs are allowed to be
used in the destination argument.

While mirroring, P2 will take advantage of any mirrors found. If the remote site lists
a set of mirrors, then P2 will consult the mirror lookup and download assets from
mirrors in order to spread the load.

This can sometimes cause problems because mirrors are randomly
switched between HTTP and FTP sites; if using a proxy that doesn't
support FTP or are behind a misconfigured NAT router, then
these connections will silently fail. To disable this, pass -vmargs
-Declipse.p2.mirrors=false as the last entry on the command line.

The mirroring process can also verify the MD5 signatures of the files when they
are being mirrored. This can be disabled by passing the command-line arguments
-vmargs -Declipse.p2.MD5Check=false.

Chapter 9

[277]

Generating P2 metadata
Some old update sites do not have P2 metadata generated; instead, they just have
a site.xml file as a classic update site. While this works in older versions of Eclipse,
it may cause errors with a new Eclipse install (or a Tycho build) with a cryptic error
message that reads Update site contains Partial IUs and cannot be used.

To generate P2 metadata from a folder that contains features/ and plugins/
directories, the following Eclipse command can be run. Given a directory DIR,
the following command will generate the content.jar and artifacts.jar files:

$ /path/to/eclipse -consoleLog -noSplash -application

 org.eclipse.equinox.p2.publisher.FeaturesAndBundlesPublisher

 -source DIR

 -metadataRepository file:/DIR

 -artifactRepository file:/DIR

 -compress

Note that DIR must be a filesystem, but the -metadataRepository and
-artifactRepository arguments require URLs with a file:/ prefix.

The -compress argument tells the P2 publisher to generate an artifacts.jar that
contains the artifacts.xml file; similarly, the content.jar contains content.xml.
While the standalone XML files are more human-readable, they are often between
two and ten times smaller when compressed.

Unless using the P2 applications for learning exercises,
the -compress argument should always be used.

The previous command will generate the artifacts.jar and content.jar files
in the same location as the features/ and bundles/ directories, which is often
what is required. However, if the output directory is in a different location, then
only the artifacts.jar and content.jar files will be generated. To copy
the features and plug-ins from the old location to the new location, use the
-publishArtifacts argument as well:

$ /path/to/eclipse -consoleLog -noSplash -application

 org.eclipse.equinox.p2.publisher.FeaturesAndBundlesPublisher

 -source INDIR

 -metadataRepository file:/OUTDIR

 -artifactRepository file:/OUTDIR

 -compress

 -publishArtifacts

Deploying and Updating with P2

[278]

This will copy the features and bundles from INDIR to OUTDIR as well as
generating the P2 metadata.

Note that these commands will overwrite the existing metadata,
and in the case of the -publishArtifacts option, will overwrite
existing features and plugins.
To add data to the existing repository instead of overwriting, use the
-append argument. This will allow multiple updates to be mirrored
into a single location.

Categorizing update sites
Updates and installations in Eclipse are usually feature based. Features are logical
groupings of plug-ins and other features; for example, the Java Development Tools
core feature consists of 24 individual plug-ins. Instead of showing the 24 plug-ins
separately in the update site, only the JDT feature is shown.

There are also some other grouping features that do not necessarily need to be
shown to the user. For example, JDT depends on Platform; Platform depends on P2,
Help, and RCP; and RCP depends on E4.

All of these features can be shown to the user when the Group items by category
checkbox is unselected, which can be found under Help | Install New Software...:

Chapter 9

[279]

Showing the user all of these options may be confusing. Instead, they can be
categorized to provide one level of grouping if the Group items by category
checkbox is selected:

These categories are published as P2 metadata and presented to the user.
Typically, these are published in conjunction with the artifacts, but the Eclipse
update mechanisms allow for composite update sites, including the ability to
publish the category information to a separate site.

To generate category information for an update site, a category.xml or
site.xml file can be used. These files have identical contents and tags, but the
category.xml file is intended to be used solely as an input for generating P2
data and not consumed at installation time, whereas the site.xml file was used
to publish and consume updates in pre-Eclipse 3.4 days.

Deploying and Updating with P2

[280]

PDE provides both a site.xml Update Site Map editor and a category.xml Category
Definition editor. While both can define categories and referenced features, the latter
can also refer to plug-ins directly. An example category file looks like the following:

<site>
 <category-def name="cat.id" label="Text name">
 <description>Description of the category</description>
 </category-def>
 <feature id="example.feature" version="1.2.3"
 url="features/example.feature_1.2.3.jar">
 <category name="cat.id"/>
 </feature>
</site>

With an appropriate category.xml (or site.xml) file, the CategoryPublisher
application can be used to generate P2 metadata to display the groups in the Install
New Software dialog. This allows additional or helper features (or those that just
contain sources) to be hidden from the main list, but they can be exposed if the user
wishes to install them directly. The following command will append the category
data to the repository:

$ /path/to/eclipse -consoleLog -noSplash -application

 org.eclipse.equinox.p2.publisher.CategoryPublisher

 -metadataRepository file:/DIR

 -categoryDefinition file:/path/to/category.xml

 -compress

When the category publisher runs, it will attempt to resolve the features it finds via the
URL; if it cannot find the referenced feature or plug-in, it will silently ignore the entry.

The entries are written into the metadata with the ID defined in the
category (in the example previously, it was cat.id). To disambiguate
different categories, an additional argument can be specified to prefix
the category IDs with a value. By adding -categoryQualifier
example.prefix to the command, the category ID will become
example.prefix.cat.id in the P2 metadata.

Composite update sites
So far, the examples have all used a single repository for hosting data. This may
be useful for building small or medium-sized sites, but the ability to aggregate
many update sites is useful in a number of circumstances.

Chapter 9

[281]

P2 provides a mechanism called composite update sites, which allows a set of update
sites to be aggregated by the client when installing. This provides a means to aggregate
the content together without having to duplicate the binary data between them.

Composite update sites can also be used to provide a consistent top-level site
while aggregating the results of multiple release, milestone, nightly, or continuous
integration builds. This technique is used in the Eclipse release process, where the
point releases are represented as separate child locations. For example, the Kepler
update site is http://download.eclipse.org/eclipse/updates/4.3/ and is a
composite site.

Composite sites contain compositeArtifacts.jar and compositeContent.jar
files, which contain compositeArtifacts.xml and compositeContent.xml files.
These are almost identical, with the repository type being the only difference. Here
are the Kepler SR2 compositeArtifacts.xml and compositeContent.xml files:

<?xml version='1.0' encoding='UTF-8'?>
<?compositeArtifactRepository version='1.0.0'?>
<repository name='The Eclipse Project repository'
 type='org.eclipse.equinox.internal.
 p2.artifact.repository.CompositeArtifactRepository'
 version='1.0.0'>
 <properties size='3'>
 <property name='p2.timestamp' value='1393595881853'/>
 <property name='p2.compressed' value='true'/>
 <property name='p2.atomic.composite.loading' value='true'/>
 </properties>
 <children size='3'>
 <child location='R-4.3-201306052000'/>
 <child location='R-4.3.1-201309111000'/>
 <child location='R-4.3.2-201402211700'/>
 </children>
</repository>

<?xml version='1.0' encoding='UTF-8'?>
<?compositeMetadataRepository version='1.0.0'?>
<repository name='The Eclipse Project repository'
 type='org.eclipse.equinox.internal.
 p2.metadata.repository.CompositeMetadataRepository'
 version='1.0.0'>
 <properties size='3'>
 <property name='p2.timestamp' value='1393595881941'/>
 <property name='p2.compressed' value='true'/>
 <property name='p2.atomic.composite.loading' value='true'/>
 </properties>

http://download.eclipse.org/eclipse/updates/4.3/

Deploying and Updating with P2

[282]

 <children size='4'>
 <child location='categoriesKepler'/>
 <child location='R-4.3-201306052000'/>
 <child location='R-4.3.1-201309111000'/>
 <child location='R-4.3.2-201402211700'/>
 </children>
</repository>

The location can be a relative URL (which is taken to be relative to the current
location) or an absolute URL (such as to another site).

It is possible to refer to a ZIP file as a child site using the standard Java
jar: protocol. For example, to install Drools from Maven Central, an
absolute URL jar:https://repo1.maven.org/maven2/org/
drools/org.drools.updatesite/6.0.0.Final/org.drools.
updatesite-6.0.0.Final.zip!/ can be used as a child site.
Note the jar: prefix as well as the !/ suffix of the URL. Using this
is not generally recommended as it can be slow, but for small sites or
places where an expanded file cannot be hosted, this approach may
be useful.

In Kepler's case, the composite repository consists of four child repositories:

•	 R-4.3-201306052000

•	 R-4.3.1-201309111000

•	 R-4.3.2-201402211700

•	 categoriesKepler (content metadata only)

When Eclipse looks at http://download.eclipse.org/eclipse/updates/4.3/
as an update URL, it will discover the child repositories and then subsequently hit:

•	 http://download.eclipse.org/eclipse/
updates/4.3/R-4.3-201306052000/

•	 http://download.eclipse.org/eclipse/updates/4.3
/R-4.3.1-201309111000/

•	 http://download.eclipse.org/eclipse/updates/4.3
/R-4.3.2-201402211700/

•	 http://download.eclipse.org/eclipse/updates/4.3/
categoriesKepler/

http://download.eclipse.org/eclipse/updates/4.3/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3-201306052000/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3-201306052000/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3.1-201309111000/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3.1-201309111000/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3.2-201402211700/
http://download.eclipse.org/eclipse/updates/4.3/R-4.3.2-201402211700/
http://download.eclipse.org/eclipse/updates/4.3/categoriesKepler/
http://download.eclipse.org/eclipse/updates/4.3/categoriesKepler/

Chapter 9

[283]

It is possible to have composite sites pointing to composite sites, allowing for any
number of update sites to be chained together.

Given that there are multiple different types of P2 repository available, as well as
the fallback site.xml, what is the order of the network requests? The following
steps are taken by P2 when downloading a site for the first time:

•	 Download <url>/p2.index (if available)
•	 If p2.index is available, look for the files directed such as

compositeArtifacts.jar or artifacts.jar
•	 Otherwise, look for artifacts.jar, then artifacts.xml, then

compositeArtifacts.jar, then compositeArtifacts.xml, and finally
site.xml

A similar thing happens for consulting the content files. Note that the p2.index
file is repeatedly asked for, even if it hasn't changed, and so it should be as small
as possible.

The content of a p2.index file for a composite update site should look like
the following:

version=1
metadata.repository.factory.order=compositeContent.xml,\!
artifact.repository.factory.order=compositeArtifacts.xml,\!

The content of a p2.index file for a standalone update site should look like
the following:

version=1
metadata.repository.factory.order=content.xml,\!
artifact.repository.factory.order=artifacts.xml,\!

Although the files specify content.xml, it will actually always look
for content.jar first, followed by content.xml. Always compress
P2 repositories and include one of the two p2.index files mentioned
to avoid many spurious HTTP 404 errors in web server logs.

Deploying and Updating with P2

[284]

The classic update manager
When Eclipse was first created, the update manager was relatively simplistic. An
update site would have a simple site.xml file that listed the available features, and
the update manager would use that to determine if a newer feature was available.

The classic update manager (org.eclipse.update.*) was deprecated
in Eclipse 3.4 and removed in Eclipse 4.2, as described in the release
notes at http://www.eclipse.org/eclipse/development/
porting/4.2/incompatibilities.html#update-manager.

The following is a snippet of the update site.xml file that was used for Eclipse 3.0:

<site>
 <description url="index.html">
 The Eclipse Update Site contains feature and
 plug-in versions for Eclipse project releases.
 </description>
 <feature url="features/org.eclipse.jdt_3.0.0.jar"
 patch="false" id="org.eclipse.jdt" version="3.0.0">
 <category name="3.0"/>
 </feature>
 …
</site>

When a newer version of a feature was available, the update manager would
download the feature.jar file and display information, including copyright
notices, and determine which dependencies were required. The feature.jar file
contains the feature.xml file, along with a small amount of other information such
as the list of included plug-ins:

<feature id="org.eclipse.jdt" version="3.0.0"
 label="%featureName" provider-name="%providerName">
 <description>%description</description>
 <license url="%licenseURL">%license</license>
 <url>
 <update label="%updateSiteName"
 url="http://update.eclipse.org/updates/3.0"/>
 <discovery label="%updateSiteName"
 url="http://update.eclipse.org/updates/3.0"/>
 </url>

http://www.eclipse.org/eclipse/development/porting/4.2/incompatibilities.html#update-manager
http://www.eclipse.org/eclipse/development/porting/4.2/incompatibilities.html#update-manager

Chapter 9

[285]

 <requires>
 <import plugin="org.eclipse.platform" version="3.0.0"
 match="compatible"/>
 </requires>
 <plugin id="org.eclipse.jdt" version="3.0.0"/>
 …
</feature>

The feature.properties is used to substitute the percent values (such as
%description) in the feature.xml file:

featureName=Eclipse Java Development Tools
providerName=Eclipse.org
description=Eclipse Java development tools.
updateSiteName=Eclipse.org update site

The feature.xml file thus forms a directed graph to a set of feature requirements
and plug-in requirements. In the previous example, the JDT feature depended on
the org.eclipse.platform plug-in, but import suggests that this plug-in is found
in a different feature. On the other hand, plugin id=org.eclipse.jdt indicates
the plug-in is part of this feature, and so it will be found on the same site as the
JDT feature.

Although site.xml points to the feature by URL, there is no such URL referenced
from the feature to the plug-in. Instead, the location of the plug-in is calculated as
relative to the feature../plugins/id_version.jar.

When the old update manager ran, it would traverse the site.xml file of all the
registered update sites. If changes were seen, it would download all the features,
followed by all the necessary plug-ins.

There were several problems with the update manager, including having to
download a lot of extra content in order to determine if there were any updates
or incompatibilities. This led to a reduced user experience as failures would not
occur until runtime. In addition, the update mechanism was only capable of
updating the plug-ins, and not the other content (such as an embedded JRE or
the eclipse.exe launcher).

For compatibility reasons, old update sites are still understood by P2,
but this functionality may be removed in the future.

Deploying and Updating with P2

[286]

Touchpoints
A touchpoint is a P2 configuration option that specifies an action to be performed
when a feature is installed/configured or unconfigured/uninstalled. This can be
used to add additional flags to the Eclipse configuration file, making directories,
updating permissions on files, as well as installing bundles and features.

There are two default categories of touchpoint actions:

•	 org.eclipse.equinox.p2.touchpoint.natives, which mainly operates
on files, permissions, and copying or creating directories and ZIP files

•	 org.eclipse.equinox.p2.touchpoint.eclipse, installing bundles,
features, source references, repositories, and modifying the JVM
start-up or system properties

Touchpoints are stored in touchpoint advice files called p2.inf that can be stored
in one of the following three locations:

•	 Inside the META-INF directory of a bundle
•	 Next to the feature.xml file in a feature
•	 Next to the .product file in a product

The touchpoint advice is added to the bundle, feature, or product when it is installed.
The format of the touchpoint file looks like a properties file with dot-separated
property values.

Categorizing features with P2
Although the category.xml (or site.xml) file(s) can be used to create categories
for a feature, it is possible to add a category with a p2.inf file in the feature. This is
processed by the category generator and allows the categories to be described by the
features themselves.

To associate a feature with a category using P2, add a p2.inf file next to feature.
xml. This will contain a set of installable units that are represented as a series of
property keys beginning with unit.1, unit.2, unit.3, and so on.

Since the properties file doesn't provide a way of implementing an array,
using an incrementing numeric suffix is common in p2.inf files.

Chapter 9

[287]

Each installable unit has an id and a version. The version can be derived from
the enclosing feature by using the value $version$:

units.1.id=com.packtpub.e4.advanced.p2.touchpoints.category
units.1.version=$version$

Each unit has a number of properties, requirements, and provisions. The properties
allow arbitrary key/value pairs to be stored, which in this case say that it's a
category, and has the name Touchpoints Examples:

units.1.properties.1.name=org.eclipse.equinox.p2.type.category
units.1.properties.1.value=true
units.1.properties.2.name=org.eclipse.equinox.p2.name
units.1.properties.2.value=Touchpoints Examples

As with the units, the properties are grouped with an incrementing number to
provide a way of associating the otherwise separate name and value pairs.

The units also provide an identifier, which can be used as a reference elsewhere:

units.1.provides.1.namespace=org.eclipse.equinox.p2.iu
units.1.provides.1.name=\
 com.packtpub.e4.advanced.p2.touchpoints.category
units.1.provides.1.version=$version$

Finally, the category's content is defined in terms of needing one or more features;
in this case, by declaring a requires dependency:

units.1.requires.1.namespace=org.eclipse.equinox.p2.iu
units.1.requires.1.name=\
 com.packtpub.e4.advanced.p2.touchpoints.feature.feature.group
units.1.requires.1.range=[$version$,$version$]
units.1.requires.1.greedy=true

Note that features in P2 are always suffixed with .feature.
group, so if the feature already ends in .feature, then it will be
.feature.feature.group in the P2 installable unit identifier.

When exported as a deployable feature, the category will be shown. If
multiple features are desired, then additional features can be added using
units.1.requires.2, units.1.requires.3, and so on. If a second category
is required, then they would be specified as units.2.requires.1 and so on.

Deploying and Updating with P2

[288]

The format of the p2.inf file can be thought of as a logical JSON file, but
flattened to a property list format. An equivalent JSON file would look
like the following:

{units:[
 { id:com.packtpub...,
 version:1.2.3,
 properties:[
 {name:category,value:true},
 {name:p2.name,Examples}
],
 requires:[
 {namespace:iu,name:feature,range:
 [1.2.3,4.5.6],greedy:true}
],
 provides:[
 {namespace:iu,name:category,version:1.2.3}
],

 }]}

Note that JSON is not a supported format for p2.inf, but this structure
may help to visually demonstrate the data encoded in the properties file.

Adding update sites automatically
To add an update site when a bundle is installed, create a p2.inf file with the
following content:

instructions.install=\
 addRepository(\
 type:0, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);\
 addRepository(\
 type:1, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);
instructions.uninstall=\
 removeRepository(\
 type:0, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);\
 removeRepository(\
 type:1, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);

Chapter 9

[289]

Certain characters are not allowed in p2.inf files, including
$,:;{} characters. These need to be replaced with a decimal
character value of the form ${#nnn}; so in this case ${#58}
is the escape character for : in the http URL. The \ is used to
continue the property value across multiple lines, although the
instructions.configure can be on one line if desired.

The type values are 0 (metadata) and 1 (artifacts). For a repository to be added
successfully, it has to be added as both a metadata and artifact repository.
A name is optional, though special characters must be encoded.

When the bundle is configured, it will add the repository to the update site list
in the host Eclipse runtime. If the bundle is unconfigured later, the repository
will be removed.

Registering touchpoint actions
The addRepository touchpoint action corresponds to an entry defined in plugin.
xml of the org.eclipse.equinox.p2.touchpoint.eclipse plug-in. It has a fully
qualified ID of org.eclipse.equinox.p2.touchpoint.eclipse.addRepository,
which is associated with the class in the extension point.

It is possible to add additional touchpoint actions, but they need to either be imported
or use a fully qualified name instead. For example, to add a repository, the following
are equivalent:

instructions.install=\
 addRepository(\
 type:0, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);
instructions.install.import=\
 org.eclipse.equinox.p2.touchpoint.eclipse.addRepository

or with fully qualified name
instructions.install=\
 org.eclipse.equinox.p2.touchpoint.eclipse.addRepository(\
 type:0, name:EGit Update Site,\
 location:http${#58}//download.eclipse.org/egit/updates/);

Actions in org.eclipse.equinox.p2.touchpoint.eclipse
and org.eclipse.equinox.p2.touchpoint.native are
imported by default and do not need to be explicitly imported.
However, custom actions need to be imported explicitly or use the
fully qualified name instead.

Deploying and Updating with P2

[290]

Adding JVM or program arguments
To add JVM or program arguments to the eclipse.ini file at installation time,
addJVMArg or addProgramArg can be used. These are typically added to a feature or
a product rather than individual bundles. The modifications affect the eclipse.ini
file and take effect at the next reboot.

To add additional memory, or to increase PermGen, the following can be used:

instructions.install=\
 addJVMArg(jvmArg:-Xmx2048m);\
 addJVMArg(jvmArg:-XX:MaxPermSize=512m);
instructions.uninstall=\
 removeJVMArg(jvmArg:-Xmx2048m);\
 removeJVMArg(jvmArg:-XX:MaxPermSize=512m);

OpenJDK 8 no longer requires the PermGen to be explicitly managed
and will be a no-op on OpenJDK 8. It may be an error to pass the
-XX:MaxPermSize argument in future.

It's worth noting that there is a better way to handle JVM arguments. Firstly, the
launcher has specific knowledge of whether XX is needed for any given JVM (it's
non-standard and so some JVMs do not support it).

Add the program argument --launcher.XXMaxPermSize 512m, and the launcher
will determine whether or not the property setting is required. So, instead of adding
it as a JVM argument, add it as a program argument:

instructions.install=\
 addJVMArg(jvmArg:-Xmx2048m);\
 addProgramArg(\
 programArg:--launcher.XXMaxPermSize,programArgValue:512m);
instructions.uninstall=\
 removeJVMArg(jvmArg:-Xmx2048m);\
 removeProgramArg(\
 programArg:--launcher.XXMaxPermSize,programArgValue:512m);

This is now more stable; if the JVM understands the XX flag, it will be added
automatically, and if not, it will work the same. This allows for future proofing
for current and future JVMs that may no longer understand the -XX flags.

Chapter 9

[291]

Custom touchpoints
It is possible to add custom touchpoints to process additional data when a plug-in is
installed. For example, it's possible to execute a custom license check when a feature
is added.

To create a custom touchpoint, create a plug-in and add the following dependencies:

•	 org.eclipse.equinox.p2.engine

•	 org.eclipse.core.runtime

Now add an extension point, org.eclipse.equinox.p2.engine.actions:

<plugin>
 <extension point="org.eclipse.equinox.p2.engine.actions">
 <action name="licenseCheck" version="1.0.0"
 class="com.packtpub.e4.advanced.p2.touchpoints.LicenseCheck"/>
 </extension>
</plugin>

The class extends org.eclipse.equinox.p2.engine.spi.ProvisioningAction
and implements the execute and undo methods, which return an IStatus object
indicating success or failure:

public class LicenseCheck extends ProvisioningAction {
 public IStatus execute(Map<String, Object> parameters) {
 if (isLicensed((String) parameters.get("licenseFile"))) {
 return Status.OK_STATUS;
 }
 return new Status(Status.ERROR,
 "com.packtpub.e4.advanced.p2.touchpoints",
 "The plug-in is not licensed");
 }
 private boolean isLicensed(String file) {
 return file != null && new File(file).exists();
 }
 public IStatus undo(Map<String, Object> parameters) {
 // NOP
 return Status.OK_STATUS;
 }
}

Deploying and Updating with P2

[292]

The LicenseCheck class looks for a file that can be supplied as an argument, and
if not found, throws an error. A real system might use a URL instead of a file and
would check for more than just the existence of the file.

To use this in a plug-in, create a p2.inf file and an instructions.install that
refers to the licenseCheck along with a licenseFile argument. Either the fully
qualified name can be used or the fully qualified extension point can be imported:

instructions.install=\
 licenseCheck(licenseFile:/tmp/license);
instructions.install.import=\
 com.packtpub.e4.advanced.p2.touchpoints.licenseCheck

To ensure that the licenseCheck plug-in is enabled, a metaRequirement can be
added. This tells P2 that in order to install the bundle with the p2.inf file, the
com.packtpub.e4.advanced.p2.touchpoints installable unit (bundle) has to
be installed. If additional metaRequirements are needed, creating properties with
metaRequirements.1 and metaRequirements.2 is possible:

metaRequirements.0.name=com.packtpub.e4.advanced.p2.touchpoints
metaRequirements.0.namespace=org.eclipse.equinox.p2.iu
metaRequirements.0.range=[1,2)

The metaRequirements don't add any runtime requirements to the
bundle itself; they are only used during the P2 processing phases.

Finally, install the licensed bundle into a runtime. If the license file exists
(specified as /tmp/license in the example bundle), then the plug-in will be
installed as expected. If the bundle does not exist, then an error will be displayed:

Chapter 9

[293]

This is not the best user experience for displaying licensed features. It is
better to allow the feature to be installed and then provide information
(including an ability to acquire a license) or to have some kind of live
demo feature if it is not present. This example is used to demonstrate
the ability of P2 to run custom code when installing the code.

Summary
P2 is used as the provisioning and updating engine for Eclipse and is used to install
features, plug-ins (bundles), and native components such as the launcher and
associated libraries.

The configuration is extensible, both by embedding references into plug-ins, features,
and products, and also to define additional metadata and handlers to install content.
Command-line utilities can be used to generate and mirror update sites, as well as
provision instances of applications and manage the content headlessly.

The final chapter presents how to write help documentation for Eclipse to provide a
comprehensive product.

User Assistance in Eclipse
This chapter presents the options for providing user assistance in Eclipse, including
how to write help pages, how to run an external help server, how to embed help
in an RCP application or run it as standalone, and how to write cheat sheets to allow
the user to step through standard operations. By the end of this chapter, you will
know about the different aspects to the user assistance options in Eclipse and be
able to contribute plug-ins that add an interactive documentation to a standalone
Eclipse environment, an RCP application, or via a website.

Help pages in Eclipse
Eclipse help pages are XHTML documents that are indexed with Apache Lucene
and served over a web server either externally or as part of an Eclipse-based runtime.
The pages are written in XHTML and have a table of contents that aggregates them
together in a view known as a table of contents (toc). The table of contents may be
primary, in which case it shows up as a closed book icon in the help pages; otherwise,
it is shown as an open book icon and plugged in elsewhere.

User Assistance in Eclipse

[296]

This chapter will use the plug-in com.packtpub.e4.advanced.doc to act as the
placeholder for documentation. This can be created from the extension point wizard
by clicking on Add... in the Extensions tab of the plugin.xml file and choosing the
org.eclipse.help.toc extension point, along with sample help contents:

Adding help pages
Help pages are contributed through an extension point, which registers a table of
contents that refers to individual help pages. The help pages are typically provided
in a separate plug-in to the one they are documenting; this keeps the binary small
for environments that don't need documentation, and permits the help pages to be
translated into different languages.

The help pages are written in (X)HTML. Conventionally, they are stored under a
directory html/ in the plug-in, but this is not a requirement. Whatever folder name is
used, build.properties needs to be updated to ensure that the documents are part
of the generated documentation JAR file. Typically, a help or documentation plug-in
will include a dot (.) as the bin.includes property to include everything.

Chapter 10

[297]

Create an index file, html/index.html, with the following content:

<!DOCTYPE html>
<html>
<head>
<title>Help Contents</title>
</head>
<body>
 <h1>This is the help contents file</h1>
</body>
</html>

A table of contents (toc.xml) file must be created, which references the HTML file:

<?xml version="1.0" encoding="UTF-8"?>
<toc label="Book">
 <topic href="html/index.html" label="Topic"/>
</toc>

Finally, the table of contents needs to be registered as an extension point within the
plugin.xml file of the enclosing plug-in:

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension point="org.eclipse.help.toc">
 <toc file="toc.xml" primary="true"/>
 </extension>
</plugin>

Note the primary=true attribute; without this, the book will not be
shown in the top-level of the Eclipse help page.

Now, run an Eclipse application and navigate to Help | Help Contents. A browser
will open up with the help documentation. The previous XML content will be shown
as a standalone book called Book.

Make sure that the toc.xml file is marked as primary, and that the
toc.xml file points to at least one topic with a page. If a toc.xml file
is non-primary, it will not show up in the top-level list and, if it has no
topics, then it will be hidden.
Check that build.properties is updated to include all the help and
toc.xml files as applicable.

User Assistance in Eclipse

[298]

Nested table of contents
It is possible to build up a nested table of contents, which appears in the help
browser as a series of nested books. If a table of contents is marked as primary,
it will show up as a top-level book; otherwise, the table of contents must be
referenced from another file. Most table of contents files are not primary.

The Eclipse JDT documentation is split into two plug-ins: one that provides end
user documentation on how to use the Java tools (org.eclipse.jdt.doc.user)
and one that provides programming APIs for developers wanting to extend or
integrate with JDT (org.eclipse.jdt.doc.isv).

The ISV stands for Independent Software Vendor, and was
designed to allow Eclipse to be used as the base of commercial
IDEs such as IBM's WebSphere.

Inside each of the Eclipse books, there is a standard series of tables of contents,
including Getting started, Concepts, Tasks, Reference, Tips and Tricks, and
What's New. In addition, there are Overview and Legal standalone help pages:

These pages and groups are not mandatory, but these have been
conventionally provided across all of the traditional Eclipse features.
It is recommended that developers creating language-specific
extensions to Eclipse follow the same format.

This is achieved with several different table of contents files (as shown in the
following list), each corresponding to the previous book icons:

•	 topics_GettingStarted.xml

•	 topics_Concepts.xml

•	 topics_Tasks.xml

Chapter 10

[299]

•	 topics_Reference.xml

•	 topics_Tips.xml

Each topic XML file contains content similar to the toc.xml file shown earlier.
They are referenced in the plugin.xml file as before, except that the
primary="true" attribute is not present (and therefore defaults to false).

The top-level (primary) toc is an aggregation of all of these topics; for example,
the JDT plug-in development guide help documentation contains a toc.xml that
looks like the following:

<toc label="JDT Plug-in Developer Guide">
 <topic label="Programmer's Guide" href="guide/jdt_int.htm">
 <link toc="topics_Guide.xml" />
 </topic>
 <topic label="Reference">
 <link toc="topics_Reference.xml" />
 </topic>
 …
</toc>

Since this is an XML file, the apostrophe is represented with '
instead of ' in the label of the topic.

This provides the top-level book and creates an aggregated list of the topic entries.

Note that the topic (book icon) can have an optional HTML page, which
contains the help documentation for the topic as a whole. In this case,
clicking on Programmer's Guide in the JDT Plug-in Developer Guide
link will show a custom overview along with some background. If a
page is not given, such as the Reference page, then an automatically
generated table of contents will be listed instead.

Anchors and links
It is possible to generate a fixed list of contents using the help contents described
previously. This works when the list of topics is known in advance and can be
packaged into a single plug-in. However, if the documentation is more complex,
it may need to be split across multiple plug-ins.

The references in the href attribute must be local files in the same plug-in as the
table of contents file. This can be limiting, especially if a plug-in contains extension
points that may be provided by other plug-ins.

User Assistance in Eclipse

[300]

Instead, the table of contents file can define an anchor, which is an extension location
for help pages. For example, a help page may have a Contributions anchor, which
is the place any contributed documentation will go to, or an Examples page, which
can be appended by others.

Such an anchor is represented in the toc.xml file as follows:

<toc label="Anchor Examples">
 <topic label="Overview" href="html/overview.html">
 <link toc="topics_Overview.xml" />
 </topic>
 <anchor id="contributions" />
</toc>

This provides a placeholder which allows others to contribute items to. This is
achieved by specifying a link_to attribute in another toc file:

<toc label="Contribution1" link_to="toc.xml#contributions">
 <topic label="Contribution 1" href="html/contribution1.html"/>
</toc>

Now when the help page is rendered, the contribution will show up as if it had
been in place of the anchor. This can be used to add other contributions from other
toc files:

<toc label="Contribution2" link_to="toc.xml#contributions">
 <topic label="Contribution 2" href="html/contribution2.html"/>
</toc>

Note that the contribution topics will all be rendered at the top level in a list:

Although this works for some kinds of content, it may make sense to wrap an
element in a topic so that when they are presented in the list, they are clearly
distinguished. This also allows the automated table of contents to be generated
based on the child topics. It is possible to contribute to a set of examples using
the following:

Chapter 10

[301]

<toc label="Grouped Examples">
 …
 <anchor id="contributions" />
 <topic label="Examples">
 <anchor id="examples" />
 </topic>
</toc>

Now examples can be contributed with the following:

<toc label="Examples" link_to="toc.xml#examples">
 <topic href="html/example1.html" label="Example 1"/>
</toc>

<toc label="Examples" link_to="toc.xml#examples">
 <topic href="html/example2.html" label="Example 2"/>
</toc>

When rendered, the content will show up with a group and an automatically
generated index:

Linking to anchors in other plug-ins
Along with contributing to anchors in the current plug-in, it is also possible to
contribute to anchors defined in other plug-ins. The link_to in this case points
to the file with a prefix of ../ and the plug-in name.

To contribute an example page to the Java Development Toolkit documentation,
consult the table of contents provided by the JDT. In the org.eclipse.jdt.doc.
user plug-in, the toc.xml topic contains a jdt_getstart anchor:

<toc label="Java development user guide">
 <topic label="Java development overview"
 href="gettingStarted/intro/overview.htm"

User Assistance in Eclipse

[302]

 <topic label="Getting Started">
 <link toc="topics_GettingStarted.xml" />
 </topic>
 <anchor id="jdt_getstart" />
 …
 </topic>

</toc>

This allows other plug-ins to contribute to the anchor, using an href of the form
../org.eclipse.jdt.doc.user/toc.xml#jdt_getstart. To see how this works,
create a new contribution with a topic, as follows:

<toc label="JDT extension"
 link_to="../org.eclipse.jdt.doc.user/toc.xml#jdt_getstart">
 <topic href="html/jdt.html" label="JDT Help Extension"/>
</toc>

Running the Eclipse instance and opening the help documentation shows the page
merged into the JDT documentation:

Conditional enablement
Help documentation is often directly associated with the plug-in that it is describing.
It may not make sense, therefore, to show the help documentation if the corresponding
plug-in is not installed.

Although one way of doing this would be to place a dependency from the help
bundle to the bundle it describes, this does not necessarily make sense. Instead, the
help extension point has an enablement condition, which can be used to selectively
show parts of the documentation or even exclude it completely. This uses the Eclipse
core expression syntax.

Chapter 10

[303]

To add an enablement condition to determine whether JDT is installed or not,
add the following code to a node in the toc:

<toc label="Book">
 …
 <topic label="Examples">
 <anchor id="examples"/>
 <enablement>
 <with variable="platform">
 <test args="org.eclipse.jdt.ui"
 property="org.eclipse.core.runtime.isBundleInstalled" />
 </with>
 </enablement>
 </topic>
</toc>

This condition is evaluated and the book is shown (and included in the search) if
the condition is true. In this case, it is true if the org.eclispe.jdt.ui is installed.

If multiple conditions are required, they can be listed as siblings. An <or> or <and>
element can be used to explicitly group conditions together.

The help documentation can also be conditionally included depending on the
operating system:

<toc label="Book">
 …
 <topic label="OSX specific help" href="html/osx.html">
 <enablement>
 <systemTest property="osgi.os" value="macosx"/>
 </enablement>
 </topic>
 <topic label="Linux specific help" href="html/linux.html">
 <enablement>
 <systemTest property="osgi.os" value="linux"/>
 </enablement>
 </topic>
 <topic label="Windows specific help" href="html/win.html">
 <enablement>
 <systemTest property="osgi.os" value="win32"/>
 </enablement>
 </topic>
</toc>

User Assistance in Eclipse

[304]

Valid values of the osgi.os system property are described in the
Eclipse help pages.

Note that the HTML help pages can also be selectively filtered based on the
enablement conditions. This requires that the help documentation be written in
XHTML; the processor is only enabled if the source document is valid XML. For
example, to tell the user to run an application, there is a difference in the prompt
depending on the operating system, which can be shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example 1</title>
 </head>
 <body>
 <h1>Example 1</h1>
 <p>To run the program, execute:</p>
 <p>
 <code>c:\>java -cp lib\a.jar;lib\b.jar example</code>
 <enablement>
 <systemTest property="osgi.os" value="win32" />
 </enablement>
 </p>
 <p>
 <code>$ java -cp lib/a.jar:lib/b.jar example</code>
 <enablement>
 <not>
 <systemTest property="osgi.os" value="win32" />
 </not>
 </enablement>
 </p>
 </body>
</html>

Chapter 10

[305]

When the help page is shown to the user, it will show the correct form based on the
platform's content:

This can also be used to customize the names of key presses, for example, on
Windows and Linux, the primary modifier is Control, whereas on Mac OS X, it is
Command:

<p>
 To copy the information, press
 Command + C
 <enablement>
 <systemTest property="osgi.os" value="macosx" />
 </enablement>

 Control + C
 <enablement>
 <not>
 <systemTest property="osgi.os" value="macosx" />
 </not>
 </enablement>

</p>

On Windows or Linux, this will show To copy the information, press Control + C,
whereas on Mac OS X, it will show To copy the information, press Command + C.

User Assistance in Eclipse

[306]

Context-sensitive help
In order to provide context-sensitive help for the Eclipse platform, a help
context can be associated with a view, part, command, or any other widget. The
IWorkbenchHelpSystem provides a means to associate help context IDs with
widgets, which is a concatenation of the enclosing plug-in ID and a text identifier.

The Dynamic Help view updates its content based on the help context of the
currently selected widget or view. The help view can be accessed by navigating
to Help | Dynamic Help, or Window | Show View | Other | Help | Help.

For example, if the Project Explorer view has focus, then the Help view will look
like the following screenshot:

The title and description of the Project Explorer help is specified in the
help context. This uses the fully qualified context ID org.eclipse.ui.project
_explorer_context in this case. The contexts_Platform.xml file contains:

<contexts>
 <context id="project_explorer_context"
 title="Project Explorer Additional">
 <description>The project explorer allows projects to be
 explored.</description>
 </context>
</contexts>

Chapter 10

[307]

This file is referenced from the plugin.xml file, which allows the contexts to be
associated with a specific plug-in (or the current plug-in if not specified):

<extension point="org.eclipse.help.contexts">
 <contexts
 file="contexts_Platform.xml"
 plugin="org.eclipse.ui"/>
</extension>

Now, when Project Explorer is selected, the alternative description will be
shown instead:

The help context can also refer to other help topics; in this case, the See also section
contains the Project Explorer and Views help pages. Other pages can be contributed
here by adding topic references to the context:

<contexts>
 <context id="project_explorer_context"
 title="Project Explorer Additional">
 <description>The project explorer allows projects to be
 explored.</description>
 <topic href="html/contribution1.html" label="Contribution 1"/>
 <topic href="html/contribution2.html" label="Contribution 2"/>
 </context>
</contexts>

User Assistance in Eclipse

[308]

Now the help page will look like the following screenshot:

The title and description are optional if contributing to an
existing context in another plug-in. The label is also optional; if
not specified, it will inherit the title from the topic.

Active help
A JavaScript library (org.eclipse.help/livehelp.js) facilitates communication
with the host Eclipse workbench to execute commands on the user's behalf. This is
added by default to all Eclipse help pages served from an Eclipse workbench, and
is known as active help.

To execute a command, the same serialization framework is used as with the
cheat sheets, which is described later in this chapter in the Adding commands
section. The format is commandId(key=value,key1=value); for example,
org.eclipse.ui.newWizard(newWizardId=org.eclipse.jdt.ui.wizards.
JavaProjectWizard) will launch the New Java Project wizard.

Chapter 10

[309]

The JavaScript function executeCommand takes a string containing the serialized
command. This can be called via a javascript: URL, or by using an href attribute
with a value # and an onClick handler to invoke the code:

<p>You can run the
<code>org.eclipse.ui.newWizard(
 newWizardId=org.eclipse.jdt.ui.wizards.JavaProjectWizard)</code>
command by clicking on <a class="command-link" href='#'
 onClick='executeCommand("
 org.eclipse.ui.newWizard(
 newWizardId=org.eclipse.jdt.ui.wizards.JavaProjectWizard)
 ")'>show the new Java Wizard
</p>

Along with the references to commands, the help server can also be used to access
content inside other plug-ins. The plug-ins are referenced by the plug-in ID, followed
by the path of the resource inside the plug-in itself. As a result, hyperlinks to sample
files, other references to different topic files, or images for icons can be used to
improve the quality of the documentation.

To add an icon to the help documentation for the new Java wizard, add the following:

<img width="16" height="16" alt="New Java wizard"
 src="../org.eclipse.jdt.ui/icons/full/etool16/newjprj_wiz.gif"/>

Note that the relative path will be relative to the location of the HTML
file itself. If all of the HTML files are in the html directory, then
additional ../ prefixes may be needed.

DocBook and Eclipse help
DocBook is a means to write technical documentation, and is described at
http://www.docbook.org. DocBook documents are written in XML and can be
transformed into a number of output formats, including Eclipse help. The XML
files are typically translated with an XSL file, and the same source document can
be processed with many XSL stylesheets to give different output types, such as
PDF, HTML, or EPUB.

The standard DocBook stylesheet release, which is available on the project home
page at http://docbook.sourceforge.net/release/xsl/current/eclipse/,
contains stylesheets that can be used to generate Eclipse help documentation.

http://www.docbook.org
http://docbook.sourceforge.net/release/xsl/current/eclipse/

User Assistance in Eclipse

[310]

This approach is used by the WebTools project, which stores the help documentation
as a DocBook source with the org.eclipse.wst.xsl.doc bundle.

The source for the WebTools help documentation can be seen at
the project's Git repository: https://git.eclipse.org/c/
sourceediting/webtools.sourceediting.xsl.git/tree/
docs/org.eclipse.wst.xsl.doc.
This sample can also be seen at the GitHub repository for this book at
https://github.com/alblue/com.packtpub.e4.advanced/
tree/master/com.packtpub.e4.advanced.docbook/.

A simple DocBook book.xml document looks like the following:

<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
 "docbook-xml-4/docbookx.dtd">
<book>
 <title>Sample DocBook</title>
 <bookinfo>
 <title>DocBook Intro</title>
 </bookinfo>
 <chapter>
 <title>Generating Help plug-ins</title>
 <section>
 <title>Generating Eclipse Help from DocBook</title>
 <para>
 The first step in generating Eclipse Help is to download
 DocBook templates from http://docbook.org, and styles from
 http://sourceforge.net/projects/docbook/files/docbook-xsl/
 </para>
 </section>
 </chapter>
</book>

The book.xml file can be translated with the docbook-xsl/eclipse/eclipse3.xsl
stylesheet. A standalone program, xsltproc, can be used to do this:

$ xsltproc docbook-xsl/eclipse/eclipse3.xsl book.xml

This will generate a separate file for each chapter, and a table of contents file. It can
also generate MANIFEST.MF and plugin.xml files.

Alternatively, an ant build file can be created to perform the translation with xslt:

<project name="DocBook to Eclipse Help" default="docbook-help">
 <target name="docbook-help">

https://git.eclipse.org/c/sourceediting/webtools.sourceediting.xsl.git/tree/docs/org.eclipse.wst.xsl.doc
https://git.eclipse.org/c/sourceediting/webtools.sourceediting.xsl.git/tree/docs/org.eclipse.wst.xsl.doc
https://git.eclipse.org/c/sourceediting/webtools.sourceediting.xsl.git/tree/docs/org.eclipse.wst.xsl.doc
https://github.com/alblue/com.packtpub.e4.advanced/tree/master/com.packtpub.e4.advanced.docbook
https://github.com/alblue/com.packtpub.e4.advanced/tree/master/com.packtpub.e4.advanced.docbook

Chapter 10

[311]

 <xslt style="docbook-xsl/eclipse/eclipse3.xsl" destdir=".">
 <include name="book.xml" />
 </xslt>
 </target>
</project>

If using the ant and xslt task, a NullPointerException may occur in the
referenceToNodeSet method. This can be fixed by adding Xalan to the ant
classpath, as the version built into Java contains bugs. The easiest way is to add all
of the plugins/org.apache.x* JARs to the External Tools Configuration dialog,
as follows:

There are a number of optional parameters that can be used to configure the way
that the help pages are generated. These can be passed with --param to xsltproc,
or with a <param> element to the xslt task. The optional parameters are described
in the following list:

•	 eclipse.plugin.provider: This sets the name of the Bundle-Vendor
•	 eclipse.plugin.id: This sets the Bundle-SymbolicName
•	 eclipse.plugin.name: This sets the Bundle-Name
•	 suppress.navigation: This turns the Prev/Up/Next links off (0) or on (1)
•	 html.stylesheet: This is the location of the CSS file to be used
•	 create.plugin.xml: This either creates the plugin.xml file (1) or doesn't (0)
•	 eclipse.manifest: This either creates the MANIFEST.MF file (1) or doesn't (0)
•	 generate.index: This either creates the index (1) or doesn't (0)

User Assistance in Eclipse

[312]

Note that the standard Eclipse help style can be enabled using a link for the html.
stylesheet with ../PRODUCT_PLUGIN/book.css. Additionally, since the Eclipse
help system provides navigation, it is not needed in the individual HTML files:

<xslt style="docbook-xsl/eclipse/eclipse3.xsl" destdir=".">
 <include name="book.xml" />
 <param name="html.stylesheet"
 expression="../PRODUCT_PLUGIN/book.css"/>	
 <param name="suppress.navigation"
 expression="1"/>
</xslt>

More information about authoring Eclipse Help using DocBook
is described at http://wiki.eclipse.org/Authoring_
Eclipse_Help_Using_DocBook.

Mylyn WikiText and Eclipse help
Mylyn WikiText can also be used to author help documentation. There are several
different types of WikiText supported by Eclipse: textile, mediawiki, confluence,
and trac are just some of them.

When a file is created with a known extension, the Mylyn WikiText provides
a context menu WikiText with options such as Generate Docbook, Generate
HTML, and Generate Eclipse Help. This allows the documentation to be written
in an easy-to-manage format while still generating standard back-ends. In addition,
the Mylyn WikiText can also be extended in future to support other wiki dialects,
such as Markdown or AsciiDoc.

When generating Eclipse Help with Mylyn, the file is converted into HTML and a
corresponding toc.xml file is created as well.

In addition to the user interface, Mylyn also provides ant tasks (defined in the org/
eclipse/mylyn/wikitext/core/util/anttask/tasks.properties file) that can
be used to convert documentation into the right format. The tasks are as follows:

•	 wikitext-to-eclipse-help: Used to generate Eclipse help documents
•	 wikitext-to-html: Used to generate standalone HTML documents
•	 wikitext-to-docbook: Used to generate DocBook documents
•	 wikitext-to-dita: Used to generate DITA documents
•	 wikitext-to-xslfo: Used to generate xsl:fo objects to create PDFs
•	 html-to-wikitext: Used for conversion of HTML to WikiText

http://wiki.eclipse.org/Authoring_Eclipse_Help_Using_DocBook
http://wiki.eclipse.org/Authoring_Eclipse_Help_Using_DocBook

Chapter 10

[313]

There are two additional tasks (defined in the org/eclipse/mylyn/internal/
wikitext/mediawiki/core/tasks/tasks.properties file) that can be used to
acquire the contents of a MediaWiki server and generate help pages automatically:

•	 mediawiki-to-eclipse-help: Used to download MediaWiki pages and
create Eclipse help pages

•	 mediawiki-fetch-images: Used to download MediaWiki images

These tasks are used by the EGit project to create documents automatically from
the EGit wiki page at http://wiki.eclipse.org/EGit. The ant build file looks
like the following:

<project name="org.eclipse.egit.doc" default="all">
 <path id="wikitext.tasks.classpath">
 <pathelement path="${compile_classpath}"/>
 </path>
 <taskdef classpathref="wikitext.tasks.classpath"
 resource="org/eclipse/mylyn/internal/wikitext/
 mediawiki/core/tasks/tasks.properties"/>
 <taskdef classpathref="wikitext.tasks.classpath"
 resource="org/eclipse/mylyn/wikitext/core/util/
 anttask/tasks.properties"/>
 <target name="all">
 <mediawiki-to-eclipse-help
 validate="true"
 wikiBaseUrl="http://wiki.eclipse.org"
 failonvalidationerror="true"
 prependImagePrefix="images"
 formatoutput="true"
 defaultAbsoluteLinkTarget="egit_external"
 dest="help"
 navigationimages="true"
 title="EGit Documentation"
 helpPrefix="help"
 generateUnifiedToc="true">
 <path name="EGit/User_Guide" title="EGit User Guide" />
 <path name="JGit/User_Guide" title="JGit User Guide" />
 <path name="EGit/Git_For_Eclipse_Users"
 title="Git for Eclipse Users" />
 <stylesheet url="book.css" />
 <pageAppendum>
= Updating This Document =
This document is maintained in a collaborative wiki.
If you wish to update or modify this document please visit

http://wiki.eclipse.org/EGit

User Assistance in Eclipse

[314]

{url} </pageAppendum>
 </mediawiki-to-eclipse-help>
 </target>
</project>

To run this ant file, the org.eclipse.mylyn.wikitext plug-ins need to be on
the classpath. This is launched from a Maven/Tycho build in the EGit distribution,
which takes care of assembling the classpath from the bundle dependencies specified
in the pom.xml file. Alternatively, the conversion can be performed by running the
ant build file manually, provided that the classpath is correctly set up to resolve
Mylyn dependencies.

Help Server and RCP
It is possible to include the help server and system in an RCP application, or to host
the help server as a standalone application. The help system is made up of a number
of separate plug-ins:

•	 org.eclipse.help.webapp: This serves the HTML pages and provides
the web API to search and navigate (needs org.eclipse.equinox.http.
jetty to run)

•	 org.eclipse.help.ui: This provides actions/commands for the help
pages and the help browser view, along with preference pages

•	 org.eclipse.help: This provides the extension points for indexes and
table of contents

•	 org.eclipse.help.base: This provides the InfoCenter application and
index searching ability

There are of course a number of dependencies such as the core expressions that are
used to provide content filtering, and the Jetty server which is used to provide the
web application. When adding help to an RCP, ensure that the optional dependencies
of the aforementioned plug-ins are included in order for it to work as expected.

Help and Eclipse 3.x
The org.eclipse.help.ui bundle is needed to integrate into the Eclipse 3
workbench. For Eclipse 3.x RCP applications, it should be added.

The ApplicationActionBarAdvisor is used to add workspace-wide menu
additions, and this is the best place to add the Eclipse 3.x RCP help. When running
in a hosted IDE mode, this function is performed by the workbench, which adds
the actions programmatically.

Chapter 10

[315]

Actions have been deprecated for some time and new applications
should use commands and handlers. The help system predates
commands and handlers and has not been migrated to the new
system. For more information about commands and handlers, see
chapter 4 of Eclipse 4 Plug-in Development by Example Beginner's
Guide, Packt Publishing.

The org.eclipse.ui.actions.ActionFactory is used to create instances of
standard platform actions, such as copy/paste, undo, and so on. It can also be
used to create the help menu actions. There are three of them, which are used for
different purposes:

•	 HELP_CONTENTS: Used to create the Help Contents menu
•	 HELP_SEARCH: Used to create the Search menu
•	 DYNAMIC_HELP: Used to create the Dynamic Help menu

These actions are created in the makeActions method and then added to the menu
items with fillMenuBar. The code to add the Help menu to an Eclipse 3.x RCP
application is as follows:

public class ApplicationActionBarAdvisor extends ActionBarAdvisor{
 private IWorkbenchAction helpContents;
 private IWorkbenchAction helpSearch;
 private IWorkbenchAction helpDynamic;
 public ApplicationActionBarAdvisor(IActionBarConfigurer abc) {
 super(abc);
 }
 protected void makeActions(IWorkbenchWindow window) {
 helpContents = ActionFactory.HELP_CONTENTS.create(window);
 helpSearch = ActionFactory.HELP_SEARCH.create(window);
 helpDynamic = ActionFactory.DYNAMIC_HELP.create(window);
 }
 protected void fillMenuBar(IMenuManager menuBar) {
 MenuManager help = new MenuManager("Help", "help");
 help.add(helpContents);
 help.add(helpSearch);
 help.add(helpDynamic);
 menuBar.add(help);
 }
}

User Assistance in Eclipse

[316]

The ApplicationBarAdvisor class is typically hooked into the application at
start-up time:

public class Application implements IApplication {
 public Object start(IApplicationContext ctx) throws Exception {
 Display display = PlatformUI.createDisplay();
 PlatformUI.createAndRunWorkbench(display,
 new ApplicationWorkbenchAdvisor());
 display.dispose();
 }
}

When the application starts up, the Help menu will be added, along with the Display
Help, Search, and Dynamic Help menus.

Help and Eclipse 4.x
For Eclipse 4.x RCP applications, only the org.eclipse.help.base and org.
eclipse.help.webapp dependencies are required (although there may be
restrictions and warnings shown for the base plug-in). The reason for this is
the Eclipse 3.x help system—particularly the dynamic help—is tightly integrated
with the Eclipse 3.x UI components.

Since there is limited Eclipse 4.x support for dynamic help and the integrated search
view, it is necessary to create a menu and handler in E4 explicitly for the Help menu,
as follows:

Chapter 10

[317]

The handler class can use BaseHelpSystem to display the help page in an external
browser. There are three modes that the help system can be launched in:

•	 MODE_WORKBENCH: This is integrated with the Eclipse 3.x workbench
•	 MODE_STANDALONE: This acts as a standalone SWT window
•	 MODE_INFOCENTER: This acts as an InfoCenter web application

The only one that works with Eclipse 4.x RCP is MODE_INFOCENTER; so this
needs to be set on the base mode before launching the help option.

The E4 command will look like the following:

@SuppressWarnings("restriction")
public class HelpCommand {
 @Execute
 public void execute() {
 BaseHelpSystem.setMode(BaseHelpSystem.MODE_INFOCENTER);
 BaseHelpSystem.getHelpDisplay().displayHelp(true);
 }
}

Ensure that the Eclipse 4.x RCP product has the dependencies listed previously,
as well as the org.eclipse.equinox.http.jetty bundle, along with optional
dependencies. Now when the Help menu is chosen, the help page will be shown
in an external browser.

To add search support, the displaySearch method can be used, possibly triggered
by the selection that the user has made, or through an interactive dialog. One
possible implementation would be as follows:

@SuppressWarnings("restriction")
public class SearchCommand {
 @Execute
 public void execute() throws UnsupportedEncodingException {
 BaseHelpSystem.setMode(BaseHelpSystem.MODE_INFOCENTER);
 InputDialog dialog = new InputDialog(null, "Search",
 "What do you want to search for?", null, null);
 if (Window.OK == dialog.open()) {
 String searchString = URLEncoder.encode(
 dialog.getValue(), "UTF-8");
 BaseHelpSystem.getHelpDisplay().displaySearch(
 "searchWord=" + searchString, "", true);
 }
 }
}

User Assistance in Eclipse

[318]

The displaySearch method allows arguments to be added to the search URL.
This includes searchWord and maxHits. Since this is passed through to the browser
directly, the searchWord should be validated and URI encoded; in other words,
replacing non-ASCII characters with % values, as well as for control characters and
characters requiring special treatment such as & and +.

Context-sensitive help is more difficult to implement in an E4 application. There
are defined contextId names associated with views in Eclipse (such as org.eclipse.
jdt.ui.members_view_context) that have a specific page associated with them.
In a 3.x application, these contexts are associated with the view implementation
themselves, and the help system wires up the content automatically.

To programmatically display help associated with a context from a given key,
the following needs to be done:

@SuppressWarnings("restriction")
public class ShowContextHelpCommand {
 @Execute
 public void execute() {
 BaseHelpSystem.setMode(BaseHelpSystem.MODE_INFOCENTER);
 // obtain from UI in an appropriate means
 String helpContext="org.eclipse.jdt.ui.members_view_context";
 IContext context = HelpSystem.getContext(helpContext);
 if (context == null) {
 String message = "Cannot find help for context " + context;
 ErrorDialog.openError(null, "Cannot find help", message,
 new Status(Status.ERROR, "", message));
 } else {
 IHelpResource[] topics = context.getRelatedTopics();
 if (topics.length == 0) {
 String message = "No help topics for context " + context;
 ErrorDialog.openError(null, "Cannot find help", message,
 new Status(Status.ERROR, "", message));
 } else {
 // Display first topic; add UI if multiple are returned
 BaseHelpSystem.getHelpDisplay().displayHelp(context,
 context.getRelatedTopics()[0], true);
 }
 }
 }
}

Chapter 10

[319]

The means that acquiring the help context from the given UI will be specific to
how the Eclipse 4.x RCP is implemented. It could be stored as a context variable
for example.

Running an InfoCenter standalone
The InfoCenter application can be launched from a standalone Eclipse installation.
The org.eclipse.help.base plug-in provides an application that can be launched
via the eclipse executable.

To launch a headless Eclipse instance with the InfoCenter, run the following from a
command line:

$ eclipse -nosplash

 -application org.eclipse.help.base.infocenterApplication

 -vmargs -Dserver_port=5555

The help center will start and run on the port specified in the -vmargs -Dserver
_port command-line option. If the port is not specified, it will start on a random
port, which makes it more difficult to determine where the server is running.

Navigating to the root page will result in a "file not found" error:

http://localhost:5555/

Instead, navigate to /help/index.jsp:

http://localhost:5555/help/index.jsp

Cheat sheets
A cheat sheet is a guided set of steps that a user can perform. As well as being
documentation, it can interactively launch specific operations in the Eclipse
environment, so that the user not only achieves the task, but learns how to do it
again in the future. Because of the tight integration with the UI, this is only possible
in Eclipse 3.x applications and Eclipse 4.x with the 3.x workbench (in other words,
not for Eclipse 4.x RCP applications as of Eclipse 4.4).

User Assistance in Eclipse

[320]

Creating a cheat sheet
A cheat sheet is an XML file that has a top-level description and a number of item
elements that have a title and description. The idea is to provide a series of steps,
like a bulleted list, to perform and in turn achieve a particular goal.

For example, a cheat sheet to create a Java project might start off by giving an
introduction of what the cheat sheet is about with an initial step. The following
can be saved in cheatsheets/javaApplication.xml:

<?xml version="1.0" encoding="UTF-8"?>
<cheatsheet title="Creating a Java application">
 <intro>
 <description>This cheat sheet shows how to create
 and run a simple Java application</description>
 </intro>
 <item title="Creating a new Java project">
 <description>Firstly, create a new Java project
 called “HelloWorld”</description>
 </item>
</cheatsheet>

The XML file can only contain text; special characters such as &, <,
and > need to be encoded as & < and >, respectively.
HTML entities such as “ are not understood, but Unicode
characters can be inserted with &#nnnn; or &#xnnn; for decimal or
hex values, respectively. Note that the cheat sheet also understands
two specific elements:
 to create a new line break and
... for bold text.

The cheat sheet is then referenced from the plugin.xml file:

<extension point="org.eclipse.ui.cheatsheets.cheatSheetContent">
 <cheatsheet composite="false"
 contentFile="cheatsheets/javaApplication.xml"
 id="com.packtpub.e4.advanced.doc.cheatsheet.javaApplication"
 name="Creating a Java application">
 </cheatsheet>
</extension>

Chapter 10

[321]

Provided that the cheatsheets folder is included in the plug-in (via the build.
properties), it should now be possible to open up an Eclipse instance, and navigate
to Help | Cheat Sheets... to get the following dialog:

The cheat sheet will be in the Other category by default, unless
<category id="..." name="..."/> is specified in the
plugin.xml extension point.

User Assistance in Eclipse

[322]

When the cheat sheet is selected, it will open on the right-hand side of the Eclipse
application with a window rendered from the content, as follows:

Clicking on the Click to Begin link will open the next item in the sequence. Each item
will have a Click when complete link that will allow moving on to the next step.

Adding commands
As well as the steps being manually listed in each of the elements, it is also possible
to provide hyperlinks to execute commands in the Eclipse workbench. The
commands are represented in the command serialization format, which is defined in
the ParameterizedCommand class of the org.eclipse.core.commands package.

The format represents the command as a pseudo function with hard-coded
arguments. The function name is the command's ID, and the parameters are specified
as comma-separated key=value pairs.

For example, to open the New Java Project wizard, the command is org.
eclipse.ui.newWizard. This takes a parameter of newWizardId, which provides
the wizard identifier to be used—in this case, org.eclipse.jdt.ui.wizards.
JavaProjectWizard. Add the following to the cheat sheet:

<item title="Creating a new Java project">
 <description>Firstly, create a new Java project called

Chapter 10

[323]

 “HelloWorld”, followed by pressing
 Finish
 </description>
 <command serialization="org.eclipse.ui.newWizard(
 newWizardId=org.eclipse.jdt.ui.wizards.JavaProjectWizard)"/>
</item>

If opening a modal dialog which may obscure the cheat sheet, ensure
that the instructions indicate what to do to dismiss the dialog so that
the user can return subsequently.

Optional steps
Not all commands or steps need to be performed. It is possible to mark an item as
skippable, so that the user can elect to perform or skip the step. Without this, the user
will be forced to follow each step in the sequence before they can make progress.

To recommend opening the Java Browsing perspective, the command is org.
eclipse.ui.perspectives.showPerspective, and the argument is org.eclipse.
ui.perspectives.showPerspective.perspectiveId with a value of org.
eclipse.jdt.ui.JavaBrowsingPerspective. To make it optional, since not
everyone likes the Java Browsing perspective, add the following to the cheat sheet:

<item title="Switch to the Java Browsing perspective" skip="true">
 <description>The Java Browsing perspective can be more efficient
 for navigating large projects, as it presents a logical view
 rather than a file-oriented view of the contents</description>
 <command
 serialization="org.eclipse.ui.perspectives.showPerspective(
 org.eclipse.ui.perspectives.showPerspective.perspectiveId
 =org.eclipse.jdt.ui.JavaBrowsingPerspective)"/>
</item>

Note that line breaks are not permitted in XML attributes, and the
value has been split for typographical reasons. The whitespace
inside the serialization attribute should not be added.

User Assistance in Eclipse

[324]

To find out what the command's arguments are, go to the Plug-in Registry
view (which can be opened by navigating to Window | Show View | Other … |
Plug-in Development | Plug-in Registry) and search for the command ID.
The commandParameter elements will be shown. These are the identifiers required
to be added to the command itself:

Responding to choice
Cheat sheets can be responsive to user input by prompting for choices during
an operation. The result of the choice can be stored in a cheat sheet variable, and
subsequent steps can be conditionally displayed based on the result of that choice.

The cheat sheet variable can be used during conditional command execution,
allowing differing commands to be executed based on user choice. For example,
to permit the user to choose either the Java Perspective or the Java Browsing
Perspective, a dialog can be presented with these choices.

The org.eclipse.ui.dialogs.openMessageDialog command allows up to three
buttons to be displayed to the user to perform an interactive choice. The text of the
chosen button can be stored in a variable, and then subsequently used in later steps.
Adding a when condition to the command and wrapping it in a perform-when block
allows the value to be compared with a set of known values and the appropriate
action to be taken:

Chapter 10

[325]

<item title="Choose a perspective">
 <description>Choose your favourite perspective</description>
 <command returns="perspective"
 serialization="org.eclipse.ui.dialogs.openMessageDialog(
 title=Choose Perspective,
 message=Choose your favourite perspective,
 buttonLabel0=Java Perspective,
 buttonLabel1=Java Browsing Perspective)"/>
 <onCompletion>Your favourite perspective is the
 ${perspective}.
 </onCompletion>
</item>
<item title="Switch to the perspective" skip="true">
 <description>Switching to the appropriate perspective will
 facilitate working with Java projects.</description>
 <perform-when condition="${perspective}">
 <command when="Java Browsing Perspective"
 serialization="org.eclipse.ui.perspectives.showPerspective(
 org.eclipse.ui.perspectives.showPerspective.perspectiveId
 =org.eclipse.jdt.ui.JavaBrowsingPerspective)"/>
 <command when="Java Perspective"
 serialization="org.eclipse.ui.perspectives.showPerspective(
 org.eclipse.ui.perspectives.showPerspective.perspectiveId
 =org.eclipse.jdt.ui.JavaPerspective)"/>
 </perform-when>
</item>

Now when the cheat sheet is run, the user is asked for their preferred perspective,
which is then opened. The perspective can be reused in later steps of the cheat sheet
if necessary.

Note that the variable can only be used as the result of the
onCompletion block, and also in the perform-when
calculations. It cannot be used in the title or description of
subsequent steps, because these are visible before the choice has
been made.
The values shown must not include certain characters, such as
percent (%), comma (,), or equals (=). Any such character must
be escaped with a leading percent character, that is, %%, %, or %=.

User Assistance in Eclipse

[326]

Note that there is an editor for help context files. As long as the XML file starts
with <cheatsheet>, the file can be double-clicked and opened in a cheat sheet
editor, or via the context menu by navigating to Open With | Simple Cheat Sheet
Editor. This is especially useful for commands, since the commands are shown in
an easy-to-select drop-down list, along with the command parameters:

Composite cheat sheets
A composite cheat sheet allows several cheat sheets to be collected together and
presented in a single sheet. This is useful if several smaller cheat sheets have been
created previously but can be presented as a unified set.

A composite cheat sheet is specified in an XML file, with a <compositeCheatsheet>
root element. This contains a <taskGroup>, which has an optional <intro>
description, and then one or more <task> or <taskGroup> elements.

Each task has a name and refers to a cheat sheet, either by path to a reference in
the current plug-in, or by its id. The cheat sheet can have its own intro and an
onCompletion message, which is shown when the cheat sheet is complete.

Chapter 10

[327]

A simple cheat sheet collection can be represented as follows:

<compositeCheatsheet name="A collection of cheat sheets">
 <taskGroup kind="choice" skip="false"
 name="Example Cheat Sheets Collection">
 <intro>Overview of cheat sheets</intro>
 <onCompletion>
 Congratulations of completing the cheat sheets
 </onCompletion>
 <task kind="cheatsheet" skip="false"
 name="Example Cheat Sheet">
 <intro>The cheat sheet provided in this plug-in</intro>
 <onCompletion>
 Congratulations, you have completed the tasks
 </onCompletion>
 <param name="path" value="javaApplication.xml"/>
 </task>
 </taskGroup>
</compositeCheatsheet>

The composite cheat sheet is referenced in the plugin.xml file, with the
composite="true" attribute, along with an appropriate category:

<extension point="org.eclipse.ui.cheatsheets.cheatSheetContent">
 <category name="Example cheat sheets"
 id="com.packtpub.e4.advanced.doc.category"/>
 <cheatsheet name="Composite cheatsheets"
 contentFile="cheatsheets/composite.xml"
 id="com.packtpub.e4.advanced.doc.cheatsheet.composite"
 composite="true"/>
</extension>

When loaded in the runtime Eclipse, it will look like the following:

User Assistance in Eclipse

[328]

To refer to other cheat sheets, use the id that is defined in the extension point. For
example, the standard JDT cheat sheets uses org.eclipse.jdt.helloworld and
org.eclipse.jdt.helloworld.swt (that are visible from the extension point
browser as well as the JDT plugin.xml file). These can be added as a task group
in composite.xml:

<taskGroup kind="choice" name="JDT Cheat Sheets" skip="false">
 <intro>
 Introduction
 These are the cheat sheets provided by the JDT
 </intro>
 <onCompletion>
 Congratulations, you have completed the tasks
 </onCompletion>
 <task kind="cheatsheet" name="JDT Hello World" skip="false">
 <intro>Provides a simple Hello World project</intro>
 <onCompletion>Congratulations,
 you have completed the task</onCompletion>
 <param name="id" value="org.eclipse.jdt.helloworld"/>
 </task>
 <task kind="cheatsheet" name="SWT Hello World" skip="false">
 <intro>Provides a SWT hello world project</intro>
 <onCompletion>Congratulations,
 you have completed the task</onCompletion>
 <param name="id" value="org.eclipse.jdt.helloworld.swt"/>
 </task>
</taskGroup>

Now, when the composite sheet is shown, the JDT cheat sheets are shown as well:

Chapter 10

[329]

Summary
The user assistance support in Eclipse provides a way to inform and teach users about
the user interface. Whether this is from standalone help documentation, if dynamic
help is provided depending on the user's context, or the help documentation itself is
interactive and allows the Eclipse user interface to be driven, it is possible to allow
users to learn about the functionality of the product and allow it to be extended in a
customizable way. Cheat sheets provide a set of recipes that can interact with the user
allowing the experience to be self-driven, and a consistent set of help pages that offer
one of the best documented open source projects.

Index
Symbols
-application

argument 262, 263, 275-277, 280, 319
<clinit> method 161
-consoleLog argument 262, 263, 275-277, 280
$_ variable 129
-dynamiclib option 159
-ignoreErrors flag 276
<init> 161
@NoExtend JavaDoc tag 215
@NoImplement JavaDoc tag 215
-profile argument 262
-profileProperties argument 262, 263
-raw flag 276
-repository argument 262, 263
-verbose flag 276
-vmargs option 266

A
activate method 149
activator

about 81
creating 81, 82

active help 309
addFeed method 21
addPages method 11
addRepository touchpoint action 289
agent 262
anchors 299-301
annotations

about 96, 252, 253
processing, at Maven build time 96-98
using 95, 96

ant tasks 312

Apache Commons Math 155
applets 179
Aries Blueprint

installing 100
aries.spifly.dynamic

URL, for downloading 189
aries.util

URL, for downloading 189
artifact 261
artifacts file 272-274
artifacts.jar 272
asm

URL, for downloading 189
Atom 61
AtomFeedParser class 62
Atom feeds

URL 68
automatic versioning 205
AWT

disadvantages 166

B
backward compatible 204
baseline-maven-plugin 209
baselines 205
baselining

about 203-205
BND baseline 209
Bndtools 209
Eclipse API baselines 206-208
Maven baselining 210, 211

best practices, OSGi
API and implementation,

separating 215, 216
BundleActivator, avoiding 235, 236

[332]

bundles, versioning 221, 222
Class.forName, avoiding 233
config admin, using 228, 229
decouple packages 216
decouple services 217
DynamicImport-Package, avoiding 234, 235
highly cohesive 230, 231
Import-Package, using 218-221
long Activator start methods, avoiding 228
loosely coupled 230, 231
lowest level execution environment,

compiling 232
packages, exporting 226, 227
packages, importing 225-227
packages, versioning 221, 222
Require-Bundle, using 218-221
services, sharing 229
split package, avoiding 223-225
start level-ordering requirements,

avoiding 227
test, performing different frameworks 237
thread safety, considering 236

binary file 274, 275
blobstore 275
Blueprint

about 90, 98
Aries Blueprint, installing 100
bean properties, setting 102
bean references, creating 102
comparing, with DS 104, 105
Gemini Blueprint, installing 99
properties, passing 101
services, instantiating with 98
using 100

bnd
about 198
URL, for documentation 199
URL, for downloading 198
used, for wrapping library 197, 198

BND baseline 209
Bndtools

about 209
URL 209

bootclasspath, JVM 176, 177
broadcast mechanism

versus point-to-point mechanism 259
broker 213

browser
feed, displaying in 57, 58

builder pattern
URL 44

BundleActivator
avoiding 235, 236

BundleContext instance
obtaining 109

bundle events
bundle.id object 249
bundle object 249
bundle.signer object 249
bundle.symbolicName object 249
bundle.version object 249
event object 249

BundleListener 249
Bundle-NativeCode 166
bundles

versioning 221, 222
bundles, Equinox

URL, for downloading 140
bundles.info file 139, 270
bundles, Orbit

URL, for downloading 140
bundle wiring 183
button bar, JFace wizard 10
bytecode 179

C
calling method 133
cardinality 93
chaining method 133
cheat sheets

about 295, 319
commands, adding 322
composite cheat sheets 326-328
creating 320-322
optional steps 323, 324
responding, to choice 324-326

cl 160, 161
classes

adding, to OSGi fragment bundles 172
Class.forName

avoiding 233
classic update manager

about 284, 285

[333]

URL 284
ClassLoader

about 179
and services 184
garbage collection 182, 183
inheritance 180
overview 179, 180
ThreadContextClassLoader

(TCCL) 185, 186
ClassNotFoundException 234
classpath

extension, loading from 74-76
command line

Equinox, running from 135-137
commands

adding, to cheat sheets 322
functions, calling from 151-154

commands, adding from existing methods
about 143
class, loading via class loader 144
class, obtaining from existing instance 144

command serialization 322
commands, writing in Java

about 145
declarative services, used for registering

command 146, 147
project, creating 145
testing 147

common navigator
about 26
command, adding 31, 32
content navigators, binding to views 30
content provider, creating 27, 28
label provider, creating 27
providers, integrating into 28, 29
selection, linking 35, 36
updating 33
viewer updates, optimizing 34, 35

commons-logging-1.0.4
URL 198

comparators
singleton pattern, using for 67

component activation method 148
composite cheat sheets 326-328
composite repository 262
composite update sites 281-283
compositors 50

concepts, P2
agent 262
artifact 261
composite repository 262
metadata 261
profile 262
repository 262
touchpoint 262

conditional enablement 302
Config Admin

about 111
installing 111
using 228, 229
using, with non-DS 113, 114

config.ini file
about 138, 268
advantage 138

configuration admin. See Config Admin
configuration area 138
configuration, dynamic services

Config Admin, installing 111
DS, configuring 112
DS, using with non-DS 113, 114
Felix FileInstall, installing 111
ManagedService interface,

implementing 114, 115
service factory, using 119

Consoles, in Equinox
about 125
calling method 133
chaining method 133
commands, running 127, 128
config.ini 138
connection, securing 140
control flow 134, 135
functions 131
Host OSGi Console option 126
literals 132, 133
objects 132, 133
osgi.bundles 138
pipes 130
remote connection 139
scripts 131, 132
variables 129, 130

Console View 126
consumer 205

[334]

content
extension, integrating with 55-57
installing, into Eclipse application 263-265

content area, JFace wizard 10
content navigators

binding, to views 30
content provider

creating 27, 28
contents file 272-274
content.jar 272
contextId 318
context-sensitive help 306-308
control flow 134
core expression 302
custom touchpoints

adding 291, 292

D
deadlock 242
Declarative Services. See DS
decouple packages 216
decouple services 217
dependent services 110
design pattern

about 203, 212
extender pattern 213, 214
whiteboard pattern 212, 213

Dictionary 85
director 262
disambiguation 128
dll extension 161
DocBook

about 309
URL 309
used, for generating help pages 309-312

DS
about 90
annotations, using 95, 96
comparing, with Blueprint 104
configuring 112
service references, setting in 93, 94
services, instantiating with 90, 91
used, for registering commands 146, 147
used, for registering property 92, 93

dylib extension 159

DynamicImport-Package
avoiding 234, 235

dynamic services
about 105
configuration 111
dependent services 110
filtering, ServiceTracker class used 107, 108
ServiceTracker class, using 106, 107
sorting, ServiceTracker class used 107
working with 105

E
E4

about 250
EventHandlers, subscribing 253
events, receiving with 252
events, sending with 251

each command 135
EchoServer class

creating 120
EchoServiceFactory class

creating 121, 122
Eclipse

help pages 295
native code 157
URL, for help center 47
user assistance 295

Eclipse 3.x RCP applications
help server, integrating into 314-316

Eclipse 4.x RCP applications
help server, integrating into 316-318

Eclipse API baselines 206-208
Eclipse bugs

URL 54
eclipse.ini configuration file 266
Eclipse Luna

URL 273
Eclipse Orbit

URL 197
Eclipse P2

about 261, 262
content, installing 263-265
provisioning, with P2 director 262, 263

editor
opening 37

[335]

EGit
wiki URL 313

e-mails
sending, EventAdmin service used 240

embed help 295
EmptyFeedParser class

creating 115, 116
enablement condition 302-305
entity persistence 214
Equinox

running, from command line 135-137
starting 268-270
URL, for download page 71

Equinox Supplemental bundle 70
EventAdmin service

about 239, 240
comparing, to IEventBroker 254
comparing, with services 248
e-mails, sending 240
event delivery, ordering 246
event delivery, threading 246
events, creating 241
events, filtering 245, 246
events, posting 242
events, receiving 243-245
framework events 248-250

event-based application
channels, identifying 255
channels, mapping to topics 256
characteristics 254
comparing, with JMS 259
componentize 255
designing 254
Event object 258
events, simulating 257
loose typing 257
properties, identifying 255
versioning 257

EventConstants class, properties
BUNDLE_ID – bundle.id 240
BUNDLE_SIGNER – bundle.signer 240
BUNDLE_SYMBOLICNAME – bundle.

symbolicName 240
BUNDLE_VERSION – bundle.version 240
EXCEPTION – exception 240
EXCEPTION_CLASS – exception.class 240

EXCEPTION_MESSAGE –
exception.message 240

MESSAGE – message 240
SERVICE_ID – service.id 240
SERVICE_OBJECTCLASS –

service.objectClass 240
SERVICE_PID – service.pid 240
TIMESTAMP – timestamp 240

event delivery
ordering, with EventAdmin service 246
threading, with EventAdmin service 246

event driven 213
EventHandlers

subscribing, with E4 253
Event object 258
event properties 239
events

about 239
creating, with EventAdmin service 241
filtering, with EventAdmin service 245, 246
posting, with EventAdmin service 242
receiving, with E4 252
receiving, with EventAdmin

service 243-245
sending, with E4 251

executable extension factories 69, 70
extender pattern 90, 213, 214
extension

about 41
integrating, with content 55-57
integrating, with label providers 55-57
loading, from classpath 74-76
return values, caching 55

extension bundles 175-177
extension point

about 41, 42
comparing, to services 88, 89
creating 43
element values 49
executable data 67, 68
executable extensions 67, 68
feed, displaying in browser 57, 58
feed parser, implementing 59-61
FeedParser interface, creating 43-45
MockFeedParser class, creating 45, 46
ordering attribute 64-67
parser namespace-aware, making 64

[336]

priority attribute 64-67
support, adding for Atom 61-63
using 52-54

extension point schema
creating 46-52

extension registry
about 41
using, outside of OSGi 70-72

extension registry cache
using 72, 73

F
Factory pattern 217
features 261
feed

displaying, in browser 57, 58
FeedContentProvider class 27
FeedLabelProvider class 27
Feed object 27
feed parser

implementing 60, 61
feedParser extension point 61
FeedParserFactory method 72
feeds wizard

adding, to newWizard extension
point 20, 21

classes, creating 10
content, adding to page 12-14
creating 10
Finish button, adding 18-20
help, adding 17
images, adding 14-16
pages, adding 11
preview, adding 23, 24
progress monitor, adding 21, 22
testing 14
titles, adding 14-16

Felix FileInstall
installing 111
URL 111

fragment bundles 157, 171
Fragment-Host header 171
fragments

about 171
OSGi fragment bundles, patching with 173
used, for adding exports 174

used, for adding imports 174
framework events

about 248-250
event object 249

FrameworkListener 249
functions

about 131
calling, from commands 151-154

G
Gemini Blueprint

installing 99
getBundle method 148
getResourceAsStream method 74
getService method 109
Gogo commands

compare:gt 154, 155
ls function 135
list:filter 154
new 133
set 129
telnetd 139
until 155
while 155

Gogo shell 125
Gogo variables 129-135
grep command 130

H
help context 306
help pages

about 295
active help 308, 309
adding 296, 297
anchors 299-301
context-sensitive help 306-308
enablement condition 302-305
generating, DocBook used 309-312
generating, Mylyn WikiText used 312-314
linking, to anchors in other

plug-ins 301, 302
links 299-301
nested table of contents, building 298, 299

help server
about 295
including, into RCP application 314

[337]

InfoCenter application, executing 319
integrating, into Eclipse 3.x RCP

applications 314-316
integrating, into Eclipse 4.x RCP

applications 316-318
help system, plug-ins

org.eclipse.help 314
org.eclipse.help.base 314
org.eclipse.help.ui 314
org.eclipse.help.webapp 314

highly cohesive 230, 231
host bundle 171
Host OSGi Console option 126
href attribute 299
html-to-wikitext task 312

I
IEventBroker

about 251
comparing, to EventAdmin service 254

IExecutableExtensionFactory interface 70
IExtensionPoint 53
IFeedParser interface

creating 43-45
Import-Package

using 218-221
incompatible changes 204
Independent Software Vendor (ISV) 298
INewWizard interface 20
InfoCenter application

executing 319
Installable Units (IUs) 261
installation, Aries Blueprint 100
installation, Config Admin 111
installation, content

into Eclipse application 263-265
installation, Felix FileInstall 111
installation, Gemini Blueprint 99
interfaces 204, 205
Invalid Thread Access 34
iteration 155

J
J2EELabelProvider class 26
JAAS configuration

creating 140

options 141
JAAS configuration file 140
javah 157
Java Messaging Service. See JMS
Java Native Interface (JNI) 157
java.package 270
Java ServiceLoader

about 179
problems, for using with Eclipse 187, 188
problems, for using with OSGi 187, 188
required bundles, downloading 189-191
service consumer, creating 193-195
service consumer, executing 195, 196
service producer, creating 188, 189
service producer, executing 192, 193

JFace 7
JFace wizard

about 8-10
feeds wizard, creating 10

JMS
about 259
broadcast, versus point-to-point

mechanisms 259
broker 259
comparing, with event-based

application 259
language bindings 260
persistent versus transient modes 259
transactional 259

jnr
URL 164

JUnit 155
JVM

adding 290
launching 266, 267

K
Kepler SR2

URL, for download page 71

L
label provider

creating 27, 28
extension, integrating with 55-57

launcher 266
lib prefix 159, 160

[338]

Life Cycle Layer 105
Link editor with selection 35
linkHelper 36
links 299-301
Linux, native library 160
literals 132, 133
log message types, bundle events

INSTALLED 248
RESOLVED 248
STARTED 248
STOPPED 248
UNINSTALLED 248
UNRESOLVED 248
UPDATED 248

log message types, framework events
ERROR 248
INFO 248
PACKAGES_REFRESHED 248
STARTED 248
STARTLEVEL_CHANGED 248
WARNING 248

log message types, service events
MODIFIED 249
REGISTERED 249
UNREGISTERING 249

log method 244
long Activator start methods

avoiding 228
looping 155
loosely coupled 230, 231
lowest level execution environment

compiling 232

M
Mac OS X, native library 159
major version, semantic versioning 203, 204
ManagedServiceFactory instance 119
ManagedService interface

EmptyFeedParser class,
configuring 117, 118

EmptyFeedParser class, creating 115, 116
implementing 114, 115

mandatory directive 224
Manifest entries

Bundle-ActivationPolicy 88, 228, 235
Bundle-NativeCode 166

Bundle-RequiredExecutionEnvironment 232
Bundle-SymbolicName 74
bundle-version 143, 171, 218, 222
Export-Package 174-176, 197-199, 222-226
Fragment-Host 171
Meta-Persistence 214
Require-Bundle 79, 218
Require-Capability 79, 188
selection-filter 169
Service-Component 147, 148

MANIFEST.MF file 46, 88, 209
Maven baselining 210, 211
maven-bundle-plugin 210
maximize cohesion 231
mediawiki-fetch-images task 313
mediawiki-to-eclipse-help task 313
metadata 261
micro version, semantic versioning 203, 204
minimize dependencies 231
minor version, semantic versioning 203, 204
MockFeedParser class

adding, to plugin.xml file 52
creating 45, 46

Module Layer 105
Mylyn WikiText

about 312
used, for generating help pages 312-314
WikiText menu 312

N
name keyword 127
native code

Eclipse 157
native library, creating 158
native library dependencies 162-164
patterns 164, 165
working with 157

native code patterns 164, 165
native library

about 158
dependencies 162
in OSGi bundles 166
Linux 160
loading 161, 162
Mac OS X 159
reloading 170

[339]

Windows 160
native library, OSGi bundles

about 166, 167
additional filters, attaching 169
constraints, attaching 169
multiple libraries, for same platform 168
multiple libraries, with same name 169
native code, optional resolution 168

native method 157
nested table of contents

building 298, 299
newWizards extension point, JFace wizard

about 10
feeds wizard, adding to 20, 21

NoClassDefFoundError 234
non-persistent registration 72

O
Object Relational Mapping (ORM) 185
objects 132, 133
objects, processing with console commands

about 148
list of bundles, returning 150
list, processing with each function 151
print bundles command, adding 149, 150

open action 266
org.apache.felix.gogo.command bundle 135
org.eclipse.equinox.console bundle 136
org.eclipse.equinox.p2.director application

-destination 262
-installIU 262
-profile 262
-profileProperties 262
-repository 262
-uninstallIU 262

org.eclipse.update.feature 270
OSGi

best practices 215
ClassLoaders 183, 184
EventAdmin service 239, 240
fragment bundles 170
services 79
upgrade strategies 197
URL 169

osgi.bundle 138, 270

OSGi bundles
extension bundles 176, 177
native library 166

osgi.command.function 145
osgi.command.scope 145
osgi.console.enable.builtin flag 126
osgi.console.ssh bundle 141
osgi.ee 270
osgi.fragment 270
OSGi fragment bundles

about 170
classes, adding 172
exports, adding with fragments 174, 175
extension bundles 175
imports, adding with fragments 174, 175
native code, adding with fragments 171
patching, with fragments 173

OSGi specification
Life Cycle Layer 105
Module Layer 105
Security Layer 105
Service Layer 105

osname 166

P
P2

about 261
concepts 261
touchpoint, feature categorizing

with 286, 287
URL 261

P2 applications
Equinox, starting 268-270
executing 266
JVM, launching 266, 267

P2 director
used, for provisioning Eclipse P2 263

p2.inf file 286
P2 metadata

generating 277, 278
P2 mirrors

creating 275, 276
packages

exporting 226, 227
importing 226, 227
versioning 221, 222

[340]

packed file 274, 275
page control, JFace wizard 10
page message, JFace wizard 10
pages, JFace wizard 10
page title, JFace wizard 10
parent ClassLoader 180
parseDate method 63
Parsed Character Data. See PCDATA
parser namespace-aware

making 64
PATH variable 162
PCDATA 50
PDE 48, 92
performFinish method 18
PermGen space 266
Persistent ID (PID) 113
persistent mode

versus transient mode 259
persistent registration 72
pipes 130
Plug-in Development

Environment. See PDE
plug-ins 261
plugin.xml file

MockFeedParser class, adding to 52
point-to-point mechanism

versus broadcast mechanism 259
primary 295
print bundles command

adding 149, 150
processor attribute 167
profile 262
program arguments

adding 290
property

registering, DS used 92, 93
property, types

Boolean 93
Byte 92
Character 92
Double 92
Float 92
Integer 92
Long 92
Short 93
String (default) 92

provider
about 205
integrating, into common navigator 28, 29

provisioning platform. See P2
public APIs 204, 205
publish mechanism 239

Q
qualifier, semantic versioning 203, 204

R
RCP application

help server, including into 314
Read Evaluate Print Loop (REPL) 131
Remote Method Invocation (RMI) 179
Remote Services 214
repository

about 262-272
artifacts file 272-274
binary file 274, 275
classic update manager 284, 285
composite update sites 281-283
contents file 272-274
P2 metadata, generating 277, 278
P2 mirrors, creating 275, 276
packed file 274, 275
update sites, categorizing 278-280

Require-Bundle
using 218-221

RFC822 format 60

S
scope keyword 127
scripts 131, 132
sealed packages

using 223
secure storage login module 141
Security Layer 105
selection

editor, opening 37
line, searching 38
linking, to common navigator 35, 36
setting 39

semantic versioning
about 203, 204

[341]

major version 203
micro version 203
minor version 203
qualifier 203

service document 90
service events

event object 249
service.id object 249
service object 249
service.objectClass object 249
service.pid object 249

service factory
about 119
EchoServer class, creating 120
EchoServiceFactory class, creating 121, 122
EchoServices, configuring 123, 124
ManagedServiceFactory 119
PrototypeServiceFactory 119
ServiceFactory 119

service interface 80
Service Layer 105
ServiceListener 249
ServiceLoader class 186
Service Loader Mediator 187
service properties 145
service ranking 84
ServiceReference instance 109
service references

setting, in DS 93, 94
ServiceRegistration object 115, 117
services

about 79, 80
activator, creating 81, 82
and ClassLoaders 184
bundles, lazy activation 87, 88
cardinality 247
comparing, to extension points 88, 89
comparing, with EventAdmin service 248
instantiating, with Blueprint 98
instantiating, with DS 90, 91
interface type 247
overview 79, 80
priority, defining 84, 85
registering 83
registering, declaratively 89, 90
registering, programmatically 81
sharing 229

synchronicity 247
type of action 247
using 86, 87

Services Component Runtime (SCR) 90
service.scope property 119
ServiceTracker class

BundleContext instance, obtaining 109
ServiceReference instance 109
used, for filtering dynamic services 107, 108
used, for sorting dynamic services 107
using 106, 107

setInitializationData method 67
shell, extending

about 143
commands, adding from existing

methods 143
commands, writing in Java 145
functions, calling from commands 151-155
iteration 155
looping 155
objects, processing with console

commands 148
Simple Log Factory for Java (SLF4J) 216
singleton

about 89
using, for comparators 67

site.xml file 284
so extension 160
SPI Fly

about 187
URL 188

split package
avoiding 223-225

SpringSource EBR
URL 99

SSH daemon
about 140
launching 142, 143

ssh.server.keystore file 142
Standard Widget Toolkit (SWT)

about 7
advantages 166

start level ordering requirements
avoiding 227

string literals 132
subscribe mechanism 239

[342]

SWTBot
about 14
URL 14

system ClassLoader 180

T
table of contents (toc) 295
ThreadContextClassLoader (TCCL) 185, 186
thread safety

considering 236
tightly bound 215
tooling* 270
top-level, help pages 297
touchpoint

about 286
custom touchpoints, adding 291-293
feature, categorizing with P2 286, 287
JVM, adding 290
program arguments, adding 290
update sites, adding 288

touchpoint actions
org.eclipse.equinox.p2.touchpoint.

eclipse 286
org.eclipse.equinox.p2.touchpoint.

natives 286
registering 289

transient mode
versus persistent mode 259

U
unregister method 117
until loop 156
update sites

adding 288, 289
categorizing 279, 280

upgrade strategies, OSGi
class resolution issues, dealing with 200
library, embedding 197
library, upgrading to use services 200
library, wrapping with bnd 197-199

URLClassLoader 179
user assistance 295
uses directive 175

V
variables 129, 130
version ranges 204, 205
views

content navigators, binding to 30

W
weaving hooks 227
Web ARchive (WAR) 181
while loop 155
whiteboard pattern 212, 213
wikitext-to-dita task 312
wikitext-to-docbook task 312
wikitext-to-eclipse-help task 312
wikitext-to-html task 312
wikitext-to-xslfo task 312
WikiText menu, Mylyn WikiText

Generate Docbook 312
Generate HTML 312
Generate Eclipse Help 312

Windows, native library 160, 161
window title, JFace wizard 10
wizard dialog 10
WizardDialog class 14

X
xcrun --show-sdk-path 159
XML namespaces 64

Thank you for buying
Mastering Eclipse Plug-in Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Eclipse 4 Plug-in Development by
Example Beginner's Guide
ISBN: 978-1-78216-032-8 Paperback: 348 pages

How to develop, build, test, package, and release
Eclipse plug-ins with features for Eclipse 3.x
and Eclipse 4.x

1.	 Create plug-ins to extend the Eclipse runtime
covering Eclipse 3.x and the changes required
for Eclipse 4.x.

2.	 Plug-ins from design to distribution—wide
coverage of the entire process.

3.	 No prior OSGi or Eclipse plug-in development
experience necessary.

Instant Eclipse Application Testing
How-to
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Learn how to install Eclipse and Java for
any platform.

3.	 Get to grips with how to efficiently navigate
in the Eclipse environment using shortcuts.

Please check www.PacktPub.com for information on our titles

Android Development Tools
for Eclipse
ISBN: 978-1-78216-110-3 Paperback: 144 pages

Set up, build, and publish Android projects quickly
using Android Development Tools for Eclipse

1.	 Build Android applications using ADT
for Eclipse.

2.	 Generate Android application skeleton code
using wizards.

3.	 Advertise and monetize your applications.

Java EE Development with
Eclipse
ISBN: 978-1-78216-096-0 Paperback: 426 pages

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

1.	 Each chapter includes an end-to-end
sample application.

2.	 Develop applications with some of the
commonly used technologies using the
project facets in Eclipse 3.7.

3.	 Clear explanations enriched with the
necessary screenshots.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Plugging in to JFace and the Common Navigator Framework
	JFace wizards
	Creating a feeds wizard
	Creating the classes
	Adding pages to the wizard
	Adding content to the page
	Testing the wizard
	Adding titles and images
	Adding help
	Finishing the wizard
	Adding the FeedWizard to the newWizards extension point
	Adding a progress monitor

	Showing a preview

	Common navigator
	Creating a content and label provider
	Integrating into Common Navigator
	Binding content navigators to views
	Adding commands to the common navigator
	Reacting to updates
	Optimizing the viewer updates
	Linking selection changes
	Opening an editor
	Finding the line
	Setting the selection

	Summary

	Chapter 2: Creating Custom
Extension Points
	Extensions and extension points
	Creating an extension point
	Creating a FeedParser interface
	Creating a MockFeedParser class
	Creating the extension point schema
	Using the extension point
	Integrating the extension with the content and label providers
	Showing a feed in the browser
	Implementing a real feed parser
	Adding support for Atom
	Making the parser namespace aware
	Priority and ordering
	Executable extensions and data
	Executable extension factories

	Using the extension registry outside of OSGi
	Using the extension registry cache
	Loading all extensions from the classpath

	Summary

	Chapter 3: Using OSGi Services to Dynamically Wire Applications
	Overview of services
	Registering a service programmatically
	Creating an activator
	Registering the service
	Priority of services
	Using the services
	Lazy activation of bundles
	Comparison of services and extension points

	Registering a service declaratively
	Declarative Services
	Properties and Declarative Services
	Service references in Declarative Services
	Multiple components and debugging Declarative Services

	Dynamic service annotations
	Processing annotations at Maven build time

	Blueprint
	Installing Gemini Blueprint
	Installing Aries Blueprint
	Using the Blueprint service
	Passing properties in Blueprint
	Bean references and properties
	Comparison of Blueprint and DS

	Dynamic services
	Resolving services each time
	Using a ServiceTracker
	Sorting services
	Filtering services
	Obtaining a BundleContext without using an activator
	A note on ServiceReference

	Dependent services

	Dynamic Service Configuration
	Installing Felix FileInstall
	Installing Config Admin
	Configuring Declarative Services
	Config Admin outside of DS
	Services and ManagedService
	Creating an EmptyFeedParser class
	Configuring the EmptyFeedParser

	Service factories
	Creating the EchoServer class
	Creating an EchoServiceFactory class
	Configuring EchoService

	Summary

	Chapter 4: Using the Gogo Shell and Commands
	Consoles in Equinox
	Host OSGi Console
	Running commands
	Variables and pipes
	Functions and scripts
	Literals and objects
	Calling and chaining methods
	Control flow
	Running Equinox from the command line
	Understanding osgi.bundles and config.ini
	Connecting remotely
	Securing the connection
	Creating a JAAS configuration
	Understanding the configuration options
	Launching the SSH daemon

	Extending the shell
	Adding commands from existing methods
	Getting a class from an existing instance
	Loading a class via a ClassLoader

	Writing commands in Java
	Creating the project
	Using Declarative Services to register the command
	Test the command

	Processing objects with console commands
	Adding the print bundles command
	Returning a list of bundles
	Processing a list with each

	Calling functions from commands
	Looping and iteration

	Summary

	Chapter 5: Native Code and Fragment Bundles
	Native code and Eclipse
	Creating a simple native library
	Mac OS X
	Linux
	Windows

	Loading the native library
	Library dependencies
	Native code patterns

	Native libraries in OSGi bundles
	Optional resolution of native code
	Multiple libraries for the same platform
	Multiple libraries with the same name
	Additional filters and constraints

	Reloading native libraries
	OSGi fragment bundles
	Adding native code with fragments
	Adding classes to a bundle
	Patching bundles with fragments
	Adding imports and exports with fragments
	Extension bundles

	Summary

	Chapter 6: Understanding ClassLoaders
	Overview of ClassLoaders
	ClassLoaders and inheritance
	ClassLoaders in web application servers
	ClassLoaders and garbage collection
	OSGi and ClassLoaders
	OSGi services and ClassLoaders

	ThreadContextClassLoaders
	Java ServiceLoader
	Problems with ServiceLoader, OSGi, and Eclipse
	Creating a service producer
	Downloading the required bundles
	Running the producer
	Creating a service consumer
	Running the consumer

	OSGi upgrade strategies
	Embedding the library directly
	Wrapping the library with bnd
	Upgrading the library to use services
	Dealing with class resolution issues

	Summary

	Chapter 7: Designing Modular Applications
	Semantic versioning
	Public APIs and version ranges
	Baselining and automatic versioning
	Eclipse API baselines
	Bnd baseline
	Bndtools
	Maven baselining

	Design patterns
	The whiteboard pattern
	The extender pattern

	Best practices
	Separate API and implementation
	Decouple packages
	Decouple services
	Prefer Import-Package to Require-Bundle
	Version packages and bundles
	Avoid split packages
	Import and export packages
	Avoid start ordering requirements
	Avoid long Activator start methods
	Use configuration admin for configuration
	Share services, not implementation
	Loosely coupled and highly cohesive
	Compile with the lowest level execution environment
	Avoid Class.forName
	Avoid DynamicImport-Package
	Avoid BundleActivator
	Consider thread safety
	Test in different frameworks

	Summary

	Chapter 8: Event-driven Applications with EventAdmin
	Understanding the OSGi EventAdmin service
	Sending e-mails
	Creating an event
	Posting an event
	Receiving an event
	Filtering events
	Threading and ordering of event delivery
	Comparison between EventAdmin and services
	Framework events

	Events and E4
	Sending events with E4
	Receiving events with E4
	Subscribing E4 EventHandlers directly
	EventAdmin and IEventBroker compared

	Designing an event-based application
	Componentize the application
	Identify the channels
	Identify the properties
	Map the channels to topics
	Simulating events
	Versioning and loose typing
	Event object contents
	Comparison with JMS

	Summary

	Chapter 9: Deploying and Updating with P2
	Eclipse P2
	Provisioning with the P2 director
	Installing content into existing applications

	Running P2 applications
	Launching the JVM
	Starting Equinox

	P2 repositories
	P2 artifacts and contents files
	Binary and packed files
	Creating P2 mirrors
	Generating P2 metadata
	Categorizing update sites
	Composite update sites
	The classic update manager

	Touchpoints
	Categorizing features with P2
	Adding update sites automatically
	Registering touchpoint actions
	Adding JVM or program arguments
	Custom touchpoints

	Summary

	Chapter 10: User Assistance in Eclipse
	Help pages in Eclipse
	Adding help pages
	Nested table of contents
	Anchors and links
	Linking to anchors in other plug-ins
	Conditional enablement
	Context-sensitive help
	Active help
	DocBook and Eclipse help
	Mylyn WikiText and Eclipse help

	Help Server and RCP
	Help and Eclipse 3.x
	Help and Eclipse 4.x
	Running an InfoCenter standalone

	Cheat sheets
	Creating a cheat sheet
	Adding commands
	Optional steps
	Responding to choice
	Composite cheat sheets

	Summary

	Index

