
www.allitebooks.com

http://www.allitebooks.org

Mastering GeoServer

A holistic guide to implementing a robust, scalable,
and secure Enterprise Geospatial Data Hosting
System by leveraging the power of GeoServer

Colin Henderson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering GeoServer

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1181114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-769-7

www.packtpub.com

Cover image by Adam Plezer (bitangkajla@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Colin Henderson

Reviewers
Luca De Felice

Stefano Iacovella

Roy A. Justo

Antonio Santiago Pérez

Richard Zijlstra

Acquisition Editor
Vinay Argekar

Content Development Editor
Poonam Jain

Technical Editor
Tanvi Bhatt

Copy Editors
Sayanee Mukherjee

Karuna Narayanan

Project Coordinator
Mary Alex

Proofreaders
Ameesha Green

Samantha Lyon

Jonathan Todd

Indexers
Hemangini Bari

Monica Ajmera Mehta

Tejal Soni

Graphics
Ronak Dhruv

Valentina D'silva

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Author

Colin Henderson is a spatial solutions architect with 14 years of experience
working on solutions to complex spatial problems. He is currently the Geospatial
Systems Capability Lead for Atkins, one of the world's leading design, engineering,
and project management consultancies. Although experienced in a wide range of
proprietary GIS software, his current focus is on specializing in the integration of
open source software in complex enterprise environments. His most recent projects
involve the integration of GeoServer with FME Server from Safe Software and the
delivery of spatial web-mapping applications through Esri's ArcGIS for the Server
platform and Latitude Geographics' Geocortex framework. Colin is the Technical
Architect and Lead Developer of Atkins' open source-based spatial integration
platform, CIRRUSmaps™, a solution built on the best breed of open source spatial
software, including PostGIS and OpenLayers, with GeoServer at its heart, and
designed from the ground-up for deployment in cloud environments.

A self-confessed techie, Colin enjoys digging deeper to understand technology and
software, and then applying this learning to create innovative solutions to problems.
When possible, he likes to "pay it forward" by helping others with their problems,
through contributions on GIS Stack Exchange, in particular.

I would like to dedicate this book to the memory of my grandfather,
John Denis Stevens, who sadly passed away while I was writing and
never got to see the finished product. He often liked to say "these
computer things will never catch on!"

I would like to thank my parents for buying me my first computer,
I really enjoyed breaking it and then trying to get it working again.
Without the introduction, my curiosity of all things computers
would never have happened.

Finally, I would like to thank my wife, Amy, and children,
Evie and Max, for their patience during the writing process;
I love you all very much.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Luca De Felice is a keen and passionate GIS software engineer. His educational
background and working experience are in environmental sciences, with particular
emphasis in the field of GIS techniques applied to risk and hazard management and
monitoring. During his university studies, he started developing models for the
evaluation of flood hazards. This activity continued after his graduation, with his
design of GIS to build hydrologic models being applied to sample basins within a
European project. For several years, he worked for a public office to contribute to
the development of a hydro-geological GIS-based early warning system at the
regional/national level. In this context, he learned GIS, IT environment development,
database, and web mapping, applied to any kind of environmental data. Moreover,
he contributed to several articles and workshops intended to disseminate novel
approaches towards the development of GIS-based early warning systems.

He has been working for more than 10 years as a GIS scientific consultant in
different technical contexts, where he applies his deep knowledge of GIS and IT
computation in practical cases concerning the design and development of GIS-based
environmental monitoring systems.

www.allitebooks.com

http://www.allitebooks.org

Stefano Iacovella is a longtime GIS developer and consultant living in Rome,
Italy. He also routinely works as a GIS course instructor. He has a PhD in Geology.
Being very curious, he developed a deep knowledge of IT technologies, mainly
focusing on GIS software and related standards. Starting his career as an ESRI
employee, he was exposed to, and became confident with proprietary GIS software,
mainly the ESRI suite of products.

Over the last 14 years, he became more and more involved with open source
software, also integrating it with proprietary software. He loves the open source
approach, and really trusts in collaboration and sharing of knowledge. He strongly
believes in the open source idea and constantly manages to spread it out, not
only in the GIS sector. He has been using GeoServer since release 1.5, configuring,
deploying, and hacking it in several projects. Other GFOSS projects he uses and likes
are GDAL/OGR, PostGIS, QGIS, and OpenLayers.

He authored two books on GeoServer with Packt Publishing, GeoServer Cookbook,
a practical set of recipes to get the most out of the software, and GeoServer Beginner's
Guide, a first approach to GeoServer features.

When not playing with maps and geometric shapes, he loves reading about Science,
mainly Physics and Maths, riding his bike, and having fun with his wife and his two
daughters, Alice and Luisa.

You can contact him at stefano.iacovella@gmail.com or follow him on his Twitter
handle @iacovellas.

Roy A. Justo is a geospatial application developer. He was born and raised in
Havana, Cuba, and obtained a Bachelor of Science degree in Geography with Honors
from the University of Havana. He also earned a Master's degree in Geographic
Information Technologies from the Autonomous University of Barcelona. Roy has
worked in this field as a teacher and researcher. He also worked in the private sector,
creating geospatial solutions for diverse markets. His work has taken him to Munich,
Barcelona, Boston, and most recently, New York City. He is currently working at one
of the world's largest privately held software firms, where he integrates geospatial
functionalities into BI development environments.

Roy is the coauthor and coeditor on Environmental system research and
sustainability in urbanized watersheds, José Mateo Rodriguez, Editorial Felix
Varela, the original title of which is Estructura geográfico-ambiental y sostenibilidad
de cuencas hidrográficas urbanizadas.

www.allitebooks.com

http://www.allitebooks.org

Antonio Santiago Pérez is a Computer Science graduate with more than 10 years
of experience in designing and implementing systems. Since the beginning of his
professional life, his experience has always been related to the world of meteorology,
working for different companies as an employee and freelancer. He's experienced
in the development of systems to collect, store, transform, analyze, and visualize
data, and is actively interested in any GIS-related technology, with preference for
data visualization.

As a restless mind, which is mainly experienced in the Java ecosystem, Antonio has
worked actively with many related web technologies, always looking to improve the
client side of web applications.

A firm believer of software engineering practices, he is an enthusiast of Agile
methodologies, involving customers as the main key for a project's success.

First, I would like to dedicate this book to my wife for understanding
my passion for programming and the world of computers.

Second, I would like to dedicate this book to all the restless people
that make possible great open source projects, such as OpenLayers,
for the simple pleasure to create something one step better.

Richard Zijlstra is educated as a civil engineer. He has used his engineering
degree in the Netherlands on water management, infrastructure planning, and
geographical information management, in combination with earthquakes in
Greece (Patras), on all environmental and social human aspects. He collaborates on
system architecture, requirement management, and development of geographical
information technology. Richard has worked on a lot of projects on geo architecture
in the Netherlands. He has collaborated on www.pdok.nl across several
organizations and companies.

At the moment (2014), Richard is developing Enterprise Geo Data Architecture to
store data about earthquakes in the Groningen province in the northern part of the
Netherlands. Gas extraction in this area produces earthquakes that damage buildings
and infrastructure. The application will be a geo data storage to collaborate with all
kinds of data about the problems in this area. Also, interactivity in social media will
be possible. His future vision is based on Geographical Intelligence in all contexts of
life and earth.

www.allitebooks.com

www.pdok.nl
http://www.allitebooks.org

Richard is the founder and owner of the company Geoneer, which
is a pioneer in geography and information technology. From this vision and
point of view, Geoneer helps and collaborates on all aspects of geographical
information technology worldwide. You can find Geoneer on Twitter and
http://www.linkedin.com/in/geoneer/ on LinkedIn.

He has written a lot of documents on the system architecture and usage
of geographical information technology. The book OpenLayers Cookbook,
Packt Publishing, was reviewed by him for text and JavaScript code accuracy.

My vision and mission:

Everybody uses and shares their own geographical information to share and update
each other's knowledge about the physical and social environment.

What, where, when, and why... that's the question!

I want to thank my parents for my healthy brain and childhood
environment in the Frisian countryside. Also, I thank the people
from the town of Groningen who inspired me to do my thing. I'm
also very thankful to the people who know how I think, what I do,
and what I wish to do in future. My greatest thanks go out to my
son, Alessio Mori Zijlstra, my greatest inspiration in life!

www.allitebooks.com

http://www.linkedin.com/in/geoneer/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Installing GeoServer for Production 7

Java requirements 8
Installing Java on CentOS 6.3 8
Installing Java on Windows Server 2008 R2 SP1 11

Installing Apache Tomcat 14
Installing Apache Tomcat 7 on CentOS 6.3 15

Running Apache Tomcat as a service 16
Securing Apache Tomcat 20

Installing Apache Tomcat 7 on Windows Server 2008 R2 SP1 21
Controlling the Tomcat service 24
Configuring the Tomcat service 25

Deploying GeoServer to Apache Tomcat 27
Deploying on CentOS 6.3 28
Deploying on Windows Server 2008 R2 SP1 29
Checking GeoServer deployment 30

Configuring GeoServer for maximum performance and availability 30
Scaling vertically 31
Scaling horizontally 32
Getting the best of both 33

Configuring multiple GeoServer instances on a single server 34
Configuring on CentOS 6.3 34
Configuring on Windows Server 2008 R2 SP1 37

Summary 40
Chapter 2: Working with Raster Data 41

Increasing the raster formats supported by GeoServer 42
Installing the GDAL binary libraries 43

Installing on CentOS Linux 6.3 44
Installing on Windows Server 2008 R2 SP1 45

Installing the GeoServer GDAL plugin 49

Table of Contents

[ii]

How to optimize raster data for better performance 51
Understanding your source data 51
Single file versus multifile 53
GeoTIFF overviews and tiling 55

GeoTIFF overviews 55
GeoTIFF tiles 56
Converting raster formats to GeoTIFF 57

How to serve very large raster datasets 58
Using the ImageMosaic format 59

Creating ImageMosaic automatically 60
Creating ImageMosaic manually 62

How to use the ImageMosaic JDBC extension 67
Installing the extension 67
Configuring the extension 68

Summary 76
Chapter 3: Working with Vector Data in Spatial Databases 77

Database connection pooling 78
Understanding database connection pools 78
Configuring a database connection pool 79

JNDI connection or JDBC 82
Configuring JNDI at the servlet container 83

General database connection parameters 87
The primary key metadata table 87
The database session startup SQL 88
The database session close-up SQL 89
The geometry metadata table 89

Serving data from PostGIS 90
Publishing a PostGIS table as a layer 90

Serving data from Oracle 93
Installing the Oracle extension 94

Validating the installation 95
Publishing an Oracle table as a layer 96

Serving data from Microsoft SQL Server and SQL Azure 97
Installing the Microsoft SQL Server extension 97

Installing Microsoft JDBC drivers on Linux 98
Installing Microsoft JDBC drivers on Windows Server 2008 R2 100
Validating the installation 102

Publishing a Microsoft SQL Server table as a layer 103
Creating SQL View layers 105

GeoServer SQL Views versus database views 105
Creating a SQL View layer 106

Summary 116

Table of Contents

[iii]

Chapter 4: Using GeoServer to Serve Complex Features 117
The difference between simple and complex features 117

Simple features – GeoServer's default 118
Complex features 119

Using GeoServer application schemas 121
Installing and configuring the extension 121

Configuring the WFS service 123
Application schema mapping file 125

Publishing data with an application schema 128
Source data preparation 129
The application schema mapping file 132
Data store and feature type configuration 139

Summary 141
Chapter 5: Using GeoServer as a Proxy 143

Defining cascaded services 143
Using cascaded services 144

Extending the capabilities of another WMS server 144
WMS enabling a WFS-only server 145
Using GeoServer as a reverse proxy 146

Creating a cascaded WMS connection 147
Creating the data store 148
Publishing a cascaded WMS layer 151

Connecting to a cascaded WFS 155
Creating the data store 155
Connecting through a proxy 162

Extending server capabilities 162
Summary 165

Chapter 6: Controlling the Output of GeoServer 167
Styling data with Styled Layer Descriptor 168

Creating SLDs visually 168
Taking SLD further – render transformations 170

Styling data using Cascaded Style Sheets 176
Installing the extension 176
The basics of CSS styles 180
Putting it all together 182

Per-request styling of map features 188
Per-request filtering of data 193
Using Freemarker templates to change WMS responses 195
Summary 201

Table of Contents

[iv]

Chapter 7: Using GeoServer to Print Maps 203
The GeoServer print extension 204
Installing the print extension 204

Verifying the print extension installed 205
Configuring the print extension 207

The dpis section 208
The formats section 209
The scales section 209
The fonts section 210
The hosts whitelist section 211
The layouts section 212

Defining print layouts 212
Defining the layout metaData element 215
Defining layout pages 216

Making print requests 222
The REST API 223

Getting the print server capabilities 224
Specifying print requests 226

An example OpenLayers application 230
Initializing the application 232
Generating the print SPEC to POST 234
Sending the print request 236

Summary 237
Chapter 8: Integrating GeoServer in a Spatial
Data Infrastructure 239

Definition of a spatial data infrastructure 240
The technology platform of a spatial data infrastructure 241

User perspective – editing data through WFS-T 244
Using a Desktop GIS 244

Connecting QGIS to GeoServer's WFS-T service 245
Using the QGIS Topology Checker tool 249
Using the WFS-T service to save results 255

User perspective – consuming data 256
Launching Google Earth from GeoServer 256
Using the KML reflector to load data 258
Using Google Earth network links 259

Summary 261
Chapter 9: GeoServer as a Spatial Analysis Platform 263

Understanding Web Processing Services 264
A WPS process 264
WPS process chaining 265

Table of Contents

[v]

Installing the WPS extension 265
Checking whether the extension is installed correctly 267
Configuring the extension 269

The workspace configuration section 269
The Service Metadata configuration section 270
The Execution Settings configuration section 272
The Process groups configuration section 273

Using WPS to perform spatial analysis 274
Executing a WPS process 275
Executing chained WPS processes 280

Selecting the crime type 282
Selecting the Police Force territory 284
Executing the WPS process chain 286

Understanding GeoScript 287
GeoScript integration with GeoServer 288

Installing the GeoScript extension 290
Checking whether the extension has been installed correctly 291

Scripting GeoServer 291
Creating a WPS process 292

Defining the WPS process 292
Creating the WPS process run method 295
Testing the Python WPS process 297

Creating a RESTful service 297
Summary 303

Chapter 10: Enterprise Security and GeoServer 305
Authentication and authorization 306

User authentication methods 307
User authorization methods 309

Using Active Directory for user authentication and authorization 309
Configuring Active Directory for authentication 310
Configuring Active Directory for authorization 312

Using Digest for user authentication 316
Setting up an HTTP Digest authentication 317
Testing an HTTP Digest authentication 319

Using HTTP Header for user authentication 321
Setting up an HTTP Header authentication 322
Testing the HTTP Header authentication 325

Summary 328

Table of Contents

[vi]

Chapter 11: Monitoring the Performance and Health
of GeoServer 329

The importance of monitoring GeoServer 329
The GeoServer monitor extension 330

Installing the monitor extension 331
Configuring the monitor extension 332

The db.properties file 333
The filter.properties file 333
The hibernate.properties file 334
The monitor.properties file 334

Checking whether the monitor extension is installed correctly 335
Viewing the monitor extension activity and reports 336
Going further with the request data 337

Stress testing GeoServer 339
Generating test WMS bounding boxes 340
Creating an Apache JMeter™ test workbench 342
Choosing where to execute tests 349
Executing the test profile 350

Analyzing the results of the stress test 351
Summary 353

Chapter 12: Optimizing GeoServer for Production 355
Deploying GeoServer in a cluster 355

Sharing a data directory in Windows 2008 R2 359
Optimizing GeoServer 366

Native JAI and JAI image I/O extensions 366
Optimizing Java Virtual Machine 367
Disabling unused GeoServer services 369
Managing request handling with the control-flow extension 370

Installing the control flow module 371
The control-flow module rules configuration 372

Automatic recovery from service failures 374
Creating a Windows Watchdog script 375

Scheduling the Watchdog script 378
Creating a Linux Watchdog script 384

Scheduling the Watchdog script using cron 387
Summary 388

Index 389

Preface
Since its release in March 2002, GeoServer continued to mature and develop into
a sophisticated open source web mapping server. It has a feature set that puts it
on par with (some will argue that it even beats) the most popular commercial
off-the-shelf web mapping servers. The key to a successful open source software
project is to have a strong and talented group of developers and a vibrant
community of active and engaged users. GeoServer has both of these key
ingredients, which is why it is one of the most popular open source web mapping
solutions available today. From large organizations such as Great Britain's national
mapping agency (Ordnance Survey) handling large volumes of data to simple
small-scale community websites, GeoServer can handle it all.

This book is intended as a natural follow-on from GeoServer Beginner's Guide by
Stefano Lacovella and Brian Youngblood, also published by Packt Publishing. It is
meant as an advanced guide to GeoServer, and is ideal for when you want to take
GeoServer beyond the simple delivery of web maps into advanced uses such as
spatial analysis. The book covers a variety of concepts such as installing production-
ready and optimized servers, loading and managing spatial data, running complex
spatial analysis, and manipulating the output.

What this book covers
Chapter 1, Installing GeoServer for Production, examines how GeoServer can be
deployed in a production environment. Installation of GeoServer in Apache Tomcat
on both Windows and Linux platforms is covered. The chapter ends by looking at
different production-deployment architectures for failover and high availability.

Preface

[2]

Chapter 2, Working with Raster Data, addresses the different types of raster data
that can be served by GeoServer and how to optimize them to serve at performance.
Increasing the number of raster formats that can be served by implementing the
GDAL extension is covered along with an approach to storing and serving very
large coverage.

Chapter 3, Working with Vector Data in Spatial Databases, concentrates on storage and
serving of vector data from spatial databases. PostGIS, Oracle, and Microsoft SQL
Server databases are covered along with the use of SQL Views as layers.

Chapter 4, Using GeoServer to Serve Complex Features, describes how GeoServer can
be used to deliver complex-featured schemas as a WFS service. In this chapter, we
take a look at the concepts involved in complex schemas, discussing the difference
between simple and complex features. To illustrate the concepts, we will take
the Open Street Map data and publish it as an INSPIRE Annex I Road Transport
Network schema.

Chapter 5, Using GeoServer as a Proxy, takes a look at using GeoServer's cascaded
services to act as a proxy to another WMS and/or WFS server. This capability is a
little gem and often underutilized in production. We take a closer look and explore
the different reasons why we might like to do it.

Chapter 6, Controlling the Output of GeoServer, takes a closer look at the technologies
available to allow us to set styling for our layers. The chapter introduces us to the
CSS styling extension that allows people familiar with this standard web technology
to create gorgeous-looking maps. In addition to looking at how layers can be styled,
we will also explore other areas where we can control GeoServer's output, such as
responses to WMS GetFeatureInformation requests.

Chapter 7, Using GeoServer to Print Maps, tells us that no web mapping server will
be complete without the capability to generate printed output. In this chapter, we
take a look at the community print extension that adds the capability to generate
output to print through a flexible and powerful template capability. We learn how
to install and configure the extension as well as create a print template and exploit
the capability with an example using OpenLayers.

Chapter 8, Integrating GeoServer in a Spatial Data Infrastructure, explores the concepts
behind SDI. This chapter shows us how GeoServer can be integrated within a
complete production system to provide more than just a means of delivering
styled maps for a web application.

Preface

[3]

Chapter 9, GeoServer as a Spatial Analysis Platform, explores the technologies available
in GeoServer that allow us to perform server-side spatial analysis. GeoServer, in
production, does not have to simply deliver maps for use in web applications. It is
a powerful spatial analysis platform in its own right. First, the chapter explores the
use of Web Processing Services (WPS), and it then moves on to show us how we can
create our own services using GeoScript.

Chapter 10, Enterprise Security and GeoServer, demonstrates how GeoServer can
be secured within a corporate environment utilizing standard corporate security
technologies such as LDAP and Active Directory. Other options to secure GeoServer
are also covered to show us how easy it is to lock down our web mapping servers.

Chapter 11, Monitoring the Performance and Health of GeoServer, is an important chapter
because it shows us the tools available to monitor the health of our GeoServer
instances. Maintaining a healthy GeoServer instance is crucial for a good user
experience of applications using maps and the data served. This chapter will help us
to understand when our servers perform sub optimally.

Chapter 12, Optimizing GeoServer for Production, is the final chapter of the book,
and this is where we take a last look at the configuration of our server. The chapter
goes about providing strategies and options to optimize the configuration of our
servers. It also introduces us to some special considerations when running a cluster
of GeoServers.

What you need for this book
In order to implement what you will be learning in this book, you just need
the following:

• Java 1.7
• GeoServer

Who this book is for
This book is for a GIS professional who intends to explore advanced techniques and
get more out of GeoServer deployment other than simply delivering good-looking
maps. This book will teach you advanced topics to enable you to provide a platform
for server-side spatial analysis and deploy GeoServer in enterprise deployments.
Familiarity with GIS and concepts of web mapping servers will be helpful, but is
not essential.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Our crime_type parameter has been recognized and added to the table."

A block of code is set as follows:

SELECT
 ID,
 REPORTED_BY,
 CRIME_TYPE,
 LAST_OUTCOME_CATEGORY,
 GEOM
FROM
 STREET_LEVEL_CRIME
WHERE
 CRIME_TYPE = '%crime_type%'
 AND
 LAST_OUTCOME_CATEGORY = 'Under investigation'

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

- !columns
 widths: [709, 113]
 width: 822
 absoluteX: 10
 absoluteY: 585
 items:
 - !text
 text: '${mapTitle}'
 font: Arial Bold
 fontSize: 28
 vertAlign: middle
 - !image

Any command-line input or output is written as follows:

$ sudo service tomcat-1 restart

$ sudo service tomcat-2 restart

Preface

[5]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"To the right of the map, there is a Print Settings box that contains controls
that can be used to set the content for print."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Installing GeoServer for
Production

So, you decided to use GeoServer to deliver your business' critical spatial
information across the enterprise and out on the web? This is a wise choice
that many other like-minded GeoServer users will agree with.

Now, it's time for us to roll up our sleeves and get into the nitty-gritty of
getting GeoServer up and running so that we can unlock the potential of
our spatial information.

By the end of this chapter, we will have a better understanding of the
following topics:

• Choosing the right version of Java to run GeoServer
• Installing and configuring Java for Linux and Windows
• Installing and configuring Apache Tomcat for the Linux and

Windows platforms
• Configuring the Java VM's memory for GeoServer
• Deploying GeoServer into the Apache Tomcat servlet container
• Understanding the concepts of scalability and high availability and

how to configure GeoServer for both

Installing GeoServer for Production

[8]

Java requirements
GeoServer is a software server written in Java, and as such it requires Java to be
present in our environment. The process to install Java will differ according to our
target server's architecture. However, in all cases, the first decision we must make
is what version of Java to install and with which package. This is because Java is
available in two main packages: Java Development Kit (JDK) and Java Runtime
Environment (JRE). JDK, as the name suggests, is used to develop Java applications,
while JRE is generally used to run Java applications (though JDK also contains JRE).

There are a number of different versions of Java available. However, the GeoServer
project only supports the use of Java 6 (also known as Java™ 1.6) or newer. The most
recent version is Java 7 (also known as Java 1.7), and GeoServer can be run against
this version of Java. The choice of whether to use Java 6 or 7 will largely be down to
either personal preference or specific system limitations such as other software that
have dependency on a version. For example, Tomcat 8.0 now requires the use of
Java 7 as a minimum. The GeoServer documentation states that Java 7 offers the best
performance, and so this is the version we will use.

The upcoming GeoServer 2.6 release will require JRE7 (1.7)
as a minimum. At the time of writing, GeoServer 2.6 is at
Release Candidate 1.

Prior to Version 2, GeoServer required JDK to be installed in order to work; however,
since Version 2, this is no longer a requirement, and GeoServer can run perfectly well
using just JRE. The key to manage a successful production environment is to make
sure there are no unnecessary software or components installed that might introduce
vulnerabilities or increase the management overhead. For these reasons, JRE should
be used to run GeoServer. The following sections will describe how to install Java to
the Linux and Windows environments.

Installing Java on CentOS 6.3
A well-designed production environment will be as lean as possible in terms of the
resources consumed and the overall system footprint; one way to achieve this is to
ensure that servers do not contain any more software than is absolutely necessary
to deliver its intended function. So, in the case of a server being deployed to deliver
mapping services, it should only contain the software necessary to deliver maps.

Chapter 1

[9]

There are many different flavors of Linux available and all of them are capable of
running GeoServer without any issues, after all, Java is cross-platform! The choice
of Linux distribution is often either a personal one or a company policy-enforced
one. There is a great deal of information available to install GeoServer on a Ubuntu
distribution, but very little on installing on a CentOS distribution. CentOS is an
enterprise-class distribution that closely follows the development of Red Hat
Enterprise Linux, and it is a common installation in organizations. We will use
CentOS 6.3, and in keeping with the philosophy of making sure that the server is
lean, we will only use the minimal server installation.

By default, CentOS 6.3 comes preinstalled with OpenJDK 1.6 as a result of potential
licensing conflicts with the distributing Oracle Java that's preinstalled. The GeoServer
documentation states that OpenJDK will work with GeoServer, but there might be
issues, particularly with respect to 2D rendering performances. While OpenJDK can
be used to run GeoServer, it is worth noting that the project does not run tests of
GeoServer against OpenJDK, which means that there is a potential risk of failure if it
is used in production.

As mentioned previously, Oracle Java is not packaged for the CentOS platform, and
thus we will need to install it ourselves using a generic package direct from Oracle.
To download Java, visit the Oracle Technology Network website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Perform the following steps:

1. Download the current version of JRE 7 for the Linux platform, choosing
the *.rpm file from the download list. At the time of writing, this file is
jre-7u51-linux-x64.rpm.

The eagle-eyed amongst you might spot that this file is for a
64-bit flavor of Linux. GeoServer can be installed on both 32-bit
and 64-bit architectures; however, installing to a 32-bit Linux
architecture will require downloading the 32-bit version of the file,
which at the time of writing is jre-7u51-linux-i586.rpm.

2. Once we download the package to our server, we need to install it.
3. Change to the directory where the package is downloaded and execute

the following command:
$ sudo rpm -Uvh jre-7u51-linux-x64.rpm

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing GeoServer for Production

[10]

This will result in JRE being unpacked and installed to the /usr/java
directory. Within this directory, there is a symbolic link called latest,
which links to the actual JRE install folder. This symbolic link can be
used in place of the lengthier JRE directory name. It is best practice to
use the latest link so that the future upgrades of JRE does not cause
Java-based software to stop working due to broken references.

4. Next, we need to tell CentOS that we want it to use Oracle JRE instead of
the preinstalled OpenJDK. To do this, we make use of the alternatives
command to specify the flavor of Java to use:

$ alternatives –install /usr/bin/java java /usr/java/latest/bin/
java 20000

This tells CentOS that any time the java command is used, it actually refers to
the binary contained within the Oracle JRE directory and not the OpenJDK binary.
The flavor of Java used by the system can be changed any time running the
following command:

$ alternatives –-config java

The alternatives command should present you with the following prompt:

There are 2 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.6.0-openjdk.x86_64/bin/java

*+ 2 /usr/java/latest/bin/java

Enter to keep the current selection[+], or type selection number:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Depending on the number of programs configured to provide the java command,
you will be presented with a list. The program that is currently responding to java is
indicated by an asterisk.

Chapter 1

[11]

In this case, Oracle JRE, which we just installed, is shown to be the active one.
If Oracle JRE is not currently selected, then simply enter the number matching
the /usr/java/latest/bin/java entry in your list.

An important thing to note here is the command entry for Oracle JRE.
Notice how it matches the path that we used for the alternatives
--install command. This is important as it means that we can now
install future versions or updates of Oracle JRE without having to run
the alternatives command again. Where possible, you should
use the /usr/java/latest/bin/java path to reference Java,
for example, the JAVA_HOME environment variable.

We can now test whether our system is using Oracle JRE issuing the
following command:

$ java –version

If all goes well, we should see the following response:

java version "1.7.0_51"

Java(TM) SE Runtime Environment (build 1.7.0_51-b13)

Java HotSpot(TM) 64-Bit Server VM (build 24.51-b03, mixed mode)

Your version numbers might differ, but the rest should be the same; most
importantly, we do not want to see the word OpenJDK anywhere.

Installing Java on Windows Server 2008
R2 SP1
If you target Windows Server in your production environment, life is a little simpler
than it is for the users of Linux. For the purposes of this book, we will use Windows
Server 2008 R2 SP1 Standard Edition, however other versions of Windows Server
that can have Java installed should also work fine.

Once again, we will adopt the best practice to use Oracle JRE, and again we will use
Version 1.7. Go ahead and download the Windows package for JRE from Oracle's
Technology Network website:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

At this point, we have a decision to make about which JRE installer to download,
32-bit or 64-bit. Making the right decision now is important as the choice of 32-bit
versus 64-bit will have consequences later when configuring GeoServer. In the next
section, we will discuss the installation of Apache Tomcat, which has a dependency
on Java, in order to run GeoServer.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing GeoServer for Production

[12]

In the Windows environment, the Apache Tomcat installer will automatically install
a 32-bit or 64-bit Windows Service based on the installed Java. So, a 64-bit installation
of Java will mean that the Apache Tomcat service will also be installed as 64-bit.

The three factors influencing the choice of a 32-bit or 64-bit Java are:

• The architecture on which you run Windows
• Java VM memory configuration considerations
• The use of native JAI and JAI Image I/O extensions

Hopefully, the first reason is self-explanatory. If you have a 32-bit version of
Windows installed, you can only install a 32-bit version of Java. If you have a
64-bit Windows installation, then you can choose between the two versions.
We install to Windows Server 2008 R2 SP1, which is only available in 64-bit; this
means that the processor architecture or Windows is not a limitation. In this case,
the decision now comes down to the memory configuration and use of native JAI
and JAI Image I/O extensions.

The memory consideration is an important decision since a 32-bit process,
irrespective of whether it runs on a 32-bit or 64-bit processor architecture, can
only address a maximum of 2 GB memory. Therefore, if we want to maximize the
available server memory, we will need to consider using the 64-bit version of Java.
However, the JAI and JAI Image I/O extensions are only available on the Windows
platform as 32-bit binaries. If we choose the 64-bit Java, then we will not be able to
use the extensions, which can be an issue if we plan on using our server to provide
predominantly raster datasets. The native JAI and JAI Image I/O extensions can
provide a significant performance increase when performing raster operations,
in other words, responding to WMS requests.

Getting the most out of a production environment is as much about maximizing
resource utilization as anything else. If we have a server with lots of memory, we
can use the 64-bit Java and allocate it a large chunk of memory, but then the only
real advantage this provides is that it will allow us to do more concurrent raster
operations. The maximum number of concurrent requests will still be limited by
other factors, which might not be the most efficient use of server resources. An
alternative approach is to scale-up by running multiple instances of GeoServer on the
server. This is discussed in more detail later in this chapter. Scaling-up means that
we can maximize the usage of server resources (memory) without compromising on
our ability to utilize the native JAI and JAI Image I/O extensions.

Chapter 1

[13]

To install the 32-bit version of Java, perform the following steps:

1. From the Oracle download page, choose the 32-bit Java installer, which at the
time of writing is jre-7u51-windows-i586.exe, and save it to a local disk.

2. Open the folder where you saved the file, right-click on the file, and choose
the Run as administrator menu item:

3. Accept all Windows UAC prompts that appear and wait for the Java
installation wizard to open.

4. The installer will want to install Java to a default location, usually
C:\Program Files (x86)\Java\jre7, but if you want to install it
to a different folder, make sure to tick the Change destination folder
checkbox placed at the bottom of the dialog:

www.allitebooks.com

http://www.allitebooks.org

Installing GeoServer for Production

[14]

5. Click on the Install button. If you did not tick the box to change the
destination folder, then the installation will start.

6. If the changed destination checkbox was ticked, clicking on the Install button
will prompt for the location to install to.

7. Specify the location you want to install to, and then click on the Next button;
the installation starts.

8. If the installation is successful, you will be greeted with the following screen:

Closing the installation wizard will launch a web browser where the installation of
Java can be verified by the steps given on the page loaded after Java installation.

Installing Apache Tomcat
At the time of writing this book, the most recent version of Apache Tomcat is 8. At
the moment, there is limited testing of GeoServer running inside Apache Tomcat 8,
which means that we should avoid using it, at least for now. Instead, we will use the
latest version of Apache Tomcat 7, which is currently 7.0.50. The download page for
this version is http://tomcat.apache.org/download-70.cgi#7.0.50.

http://tomcat.apache.org/download-70.cgi#7.0.50

Chapter 1

[15]

Installing Apache Tomcat 7 on CentOS 6.3
As with all the Linux variants, CentOS has a package management system that
can be used to install software, including Apache Tomcat. However, quite often,
the packaged software is several versions behind the current version. Unlike other
software running on Linux, Tomcat does not actually require compiling, and so
installing it directly from Apache is not much of a challenge. Perform the following
steps to install Apache Tomcat on CentOS:

1. First, we need to download the Tomcat package to our system. Go to the
download page (http://tomcat.apache.org/download-70.cgi#7.0.50)
and find the download link for the tar.gz package under the Core
entry. With the location of the link, we can download the file with the
following command:
$ wget http://www.mirrorservice.org/sites/ftp.apache.org/tomcat/
tomcat-7/v7.0.50/bin/apache-tomcat-7.0.50.tar.gz

2. Once the download is complete, we need to think about where we want to
place the installation on the system. The most common location seems to be
/opt, which seems as good a place as any. Extract the Tomcat files using the
following command:
$ sudo tar –xvzf apache-tomcat-7.0.50.tar.gz –C /opt

3. The contents of the tarball will be extracted to /opt/apache-
tomcat-7.0.50/, which will now become our Tomcat home directory.
These are the bare minimum steps required to get Tomcat installed, so you
can now issue the following command and Tomcat will happily start:
$ sudo ./opt/apache-tomcat-7.0.50/bin/startup.sh

4. Replace startup.sh with shutdown.sh on the last command to shut Tomcat
down if you just started it.

This is interesting, but actually not particularly useful in the context of a production
environment. In a production environment, we need to be able to set memory
parameters for JVM, have Tomcat run as a service on startup, and run the Tomcat
service using a user with limited privileges.

http://tomcat.apache.org/download-70.cgi#7.0.50

Installing GeoServer for Production

[16]

Running Apache Tomcat as a service
Security is a key consideration for any production environment, and wherever
possible, the applications and services should run using user accounts with just the
right level of privileges for them to perform their functions. To adopt this best practice,
we will now create a user account under which we can run the Tomcat service:

1. At your command line, enter the following:
$ sudo groupadd tomcat

$ sudo useradd –s /bin/bash –g tomcat tomcat

The first command creates a new user group called tomcat. The second
command creates a new user called tomcat, adds this user to the tomcat
group, and sets its shell to bash.

2. Now that we have a tomcat user, we need to set the ownership of the
Tomcat installation folder to this user:
$ sudo chown –Rf tomcat:tomcat /opt/apache-tomcat-7.0.50/

3. Now we are ready to create a service control script that will allow us to start,
stop, and reload the Tomcat application. To do this, we need to create a
service controller script and then register this script with an appropriate run
level so that CentOS will start the service on boot:
$ cd /etc/init.d

$ sudo vi tomcat-1

The preceding commands will enter the services directory on CentOS and
create a blank script called tomcat-1. The name of the script is not important.
However, as we will see later when scaling Tomcat in production, we might
want to instantiate multiple services, and so should come up with a suitable
naming convention to keep track of them. In this case, we use the convention,
tomcat-n, where n will be an incremented number. The vi command will
start the vim text editor with an empty file; replace this with whatever your
favorite Linux text editor is.

4. In the text editor, enter the following script:

#!/bin/bash

description: Tomcat 1 Start Stop Restart

processname: tomcat-1

chkconfig: 234 20 80

JAVA_HOME=/usr/java/latest

Chapter 1

[17]

export JAVA_HOME

PATH=$JAVA_HOME/bin:$PATH

export PATH

CATALINA_HOME=/opt/apache-tomcat-7.0.50

JAVA_OPTS="-server –Xmx1024m –Xms512m –XX:MaxPermSize=128m"

export JAVA_OPTS

case $1 in

start)

/bin/su tomcat $CATALINA_HOME/bin/startup.sh

;;

stop)

/bin/su tomcat $CATALINA_HOME/bin/shutdown.sh

;;

restart)

/bin/su tomcat $CATALINA_HOME/bin/shutdown.sh

/bin/su tomcat $CATALINA_HOME/bin/startup.sh

;;

esac

exit 0

There is quite a lot going on in this script, so let's break it down a little. The first four
lines beginning with a hash (#) are settings for how the script is run. The last line in
this group indicates the run levels that this service will operate under (234) and the
stop and start priorities (20 and 80). This information tells the chkconfig command
how to run the service.

Next, the script will set environment variables to tell the system where to find Java
(JAVA_HOME), making the java command accessible on the command line (PATH) and
setting the Tomcat directory (CATALINA_HOME). Next, we set an environment variable
called JAVA_OPTS, which provides parameters to run JVM. This is where we can
specify the memory configuration for our GeoServer instance. There is a discussion
on how to determine the most appropriate memory settings for your server later
in this book; for now, we will use settings that are good for an all-rounder instance
of GeoServer.

Installing GeoServer for Production

[18]

The following table describes what each of these parameters are and why
they are set:

Parameter Description
-server This parameter tells JVM to run in the server mode,

which enables it to compile the optimized byte code
early. Initial calls will be slow because of longer Just-In-
Time (JIT) compiling, but subsequent calls will be faster.

-Xmx1024m This parameter tells JVM the maximum amount of heap
memory it can allocate. In this case, JVM will allocate a
maximum of 1 GB of memory.

-Xms512m This parameter tells JVM how much heap memory
to allocate on startup. This will ensure that memory
management is more stable. In this case, we tell JVM to
allocate 512 MB heap on startup.

-XX:MaxPermSize=128m This parameter sets the maximum size of the permanent
generation (also known as permgen) allocated for
GeoServer. Permgen is where the class byte code is
stored. In applications that use a lot of classes, such as
GeoServer, it will exhaust the default JVM allocation
quickly, leading to permgen memory errors.

The final section of the script is a case statement that will perform different actions
according to the first parameter (case $1) passed to the script. This can be one of
start, stop, or restart. In each case, the Tomcat startup.sh and/or shutdown.sh
scripts are executed.

Now we have our service script created, we need to set appropriate permissions
on it, using the following command:

$ sudo chmod 755 tomcat-1

Once the script is executed, we can register it in CentOS as a service. The chkconfig
utility is used to register the script as a service:

$ sudo chkconfig --add tomcat-1

$ sudo chkconfig --level 234 tomcat-1 on

The first line adds our script, and the second line sets the runtime levels for it.
We can check the configuration to make sure it is registered correctly:

$ sudo chkconfig --list tomcat-1

tomcat-1 0:off 1:off 2:on 3:on 4:on 5:off 6:off

Chapter 1

[19]

If all goes well, levels 2, 3, and 4 will be marked as on, with all other levels marked
off. From this point onward, every time our server restarts, it will automatically run
the tomcat-1 service, thereby giving us Tomcat on each boot.

We should now check that the script works as expected, trying each of the following
commands in turn:

$ sudo service tomcat-1 start

Using CATALINA_BASE: /opt/apache-tomcat-7.0.50

Using CATALINA_HOME: /opt/apache-tomcat-7.0.50

Using CATALINA_TMPDIR: /opt/apache-tomcat-7.0.50/temp

Using JRE_HOME: /usr/java/latest

Using CLASSPATH: /opt/apache-tomcat-7.0.50/bin/bootstrap.jar:/opt/
apache-tomcat-7.0.50/bin/tomcat-juli.jar

$ sudo service tomcat-1 restart

Using CATALINA_BASE: /opt/apache-tomcat-7.0.50

Using CATALINA_HOME: /opt/apache-tomcat-7.0.50

Using CATALINA_TMPDIR: /opt/apache-tomcat-7.0.50/temp

Using JRE_HOME: /usr/java/latest

Using CLASSPATH: /opt/apache-tomcat-7.0.50/bin/bootstrap.jar:/opt/
apache-tomcat-7.0.50/bin/tomcat-juli.jar

Using CATALINA_BASE: /opt/apache-tomcat-7.0.50

Using CATALINA_HOME: /opt/apache-tomcat-7.0.50

Using CATALINA_TMPDIR: /opt/apache-tomcat-7.0.50/temp

Using JRE_HOME: /usr/java/latest

Using CLASSPATH: /opt/apache-tomcat-7.0.50/bin/bootstrap.jar:/opt/
apache-tomcat-7.0.50/bin/tomcat-juli.jar

$ sudo service tomcat-1 stop

Using CATALINA_BASE: /opt/apache-tomcat-7.0.50

Using CATALINA_HOME: /opt/apache-tomcat-7.0.50

Using CATALINA_TMPDIR: /opt/apache-tomcat-7.0.50/temp

Using JRE_HOME: /usr/java/latest

Using CLASSPATH: /opt/apache-tomcat-7.0.50/bin/bootstrap.jar:/opt/
apache-tomcat-7.0.50/bin/tomcat-juli.jar

Installing GeoServer for Production

[20]

If everything works as expected, we will see a similar output. Start the Tomcat
service again if it is not already running, and then navigate to the server's IP
address or the URL. We should get the Tomcat web page like the one shown
in the following screenshot:

Congratulations! We now have CentOS 6.3 running Java and Apache Tomcat with
the Tomcat service automatically, starting each time the server boots. Go ahead and
restart the server to check that the Tomcat service starts automatically.

Securing Apache Tomcat
The default configuration of Apache Tomcat does not have any user configured for
access to the web management portal. If you want to have the ability to manage your
instance of Tomcat using the web management application, then you will need to
configure access.

Chapter 1

[21]

Tomcat maintains a simple user access database in the form of an XML configuration
file in the conf directory. To enable access to the manager web application, you
must edit the user database or create one if it does not already exist. The file is called
tomcat-users.xml and has a very simple structure. Here is a very basic example of
a tomcat-users.xml file:

<?xml version="1.0" encoding="utf-8">
<tomcat-users>
 <role rolename="manager-gui" />
 <user username="r2d2" password="5t4rW4r5" roles="manager-gui" />
</tomcat-users>

The structure of this file is very simple. First, you define the name of a role; in this
case, the role name is specific to the web manager application as it expects one called
manager-gui. Next, you create a <user> element and specify a username, password,
and comma-separated list of roles that the user belongs to. Once you create the
necessary entries for all the users, you want to grant access to the web manager
application, and then you will need to restart the Tomcat service:

$ sudo service tomcat-1 restart

Once the Tomcat service has restarted, you should be able to access the manager
web application at the http://[your server address]/manager/html URL.
Enter your username and password when prompted.

Bear in mind that we run GeoServer in a production environment, and
as such, security must be upmost in our considerations. Think carefully
about the username and password you use. Make sure the password
is strong and try to avoid using common usernames such as tomcat,
admin, or manager.

Installing Apache Tomcat 7 on Windows
Server 2008 R2 SP1
Once again, Windows users get the convenience of an installation wizard to take care
of installing Tomcat. For the Windows installation package, choose the 32bit/64bit
Windows Service Installer option. Download the installation file to a directory on
your local hard drive.

http://[your server address]/manager/html

Installing GeoServer for Production

[22]

To install Tomcat, perform the following steps:

1. For Tomcat 7.0.50, the downloaded installation file should be
apache-tomcat-7.0.50.exe.

2. Open the folder where you saved the file, right-click on the file,
and choose the Run as administrator menu item:

3. Use the Next button to move through the installation wizard until you reach
the Choose Components page. For a production system, we want to avoid any
unnecessary installation, so make sure that the Documentation and Examples
boxes are not ticked. Under the Tomcat branch in the components list, we
want to make sure the Service Startup box is ticked. This will ensure that the
Tomcat service starts when Windows starts, which is very useful in cases when
the server has to be rebooted. Finally, we need to tick the box for Native, which
will make use of the native APR for better performance and scalability.

The APR is the Apache Portable Runtime, which is a library
that provides Tomcat with better scalability, performance,
and integration with other native web technologies.

Chapter 1

[23]

4. Click on the Next button to move on to the configuration page. This page
is where we will set the configuration for Tomcat and Windows Service.
For the first installation, we can leave the default settings for ports as they
are. Enter a username and password for the web administration pages:

www.allitebooks.com

http://www.allitebooks.org

Installing GeoServer for Production

[24]

5. Before moving on to the next step, an important change to the default
configuration is the name of the Windows service. If we want to maximize
server resources, then we will want to scale-up on the server by running
more than one Tomcat service. In this case, we need to have a naming
convention to distinguish between them, so we will use Tomcat7-1 and adopt
a naming convention of Tomcat7-n, where n is an incremented number to
identify the instance.

6. Clicking on Next will move to the Java environment page that should have
automatically selected the installation of Java we performed earlier. If it did
not, you can manually browse to your JRE installation folder.

7. Clicking on Next will move to the page where we can specify the installation
folder. A default will be provided, which will be the combination of a default
installation folder, with the Windows Service name set in step 5 appended.
You can either accept the default or specify your own. For simplicity, we will
set the installation folder to C:\Tomcat7-1.

8. Once the installation is complete, the final wizard page will allow us the
choice to start Tomcat. Uncheck the box marked Start Tomcat Service so
that Tomcat does not start when we exit the installer.

Tomcat is now installed as Windows Service, which we can control like any
other service.

Controlling the Tomcat service
The Windows version of Tomcat comes with an application called Monitor Tomcat,
which starts automatically each time you log on to Windows. It is a System
Tray application that allows quick access to monitor and manage the running
Tomcat service.

Notice the icon in the top-left corner of System Tray; this is the Monitor Tomcat
application and its icon tells us that Tomcat is not currently running (indicated by
the red square in the middle).

Chapter 1

[25]

If the Tomcat service runs, it displays a green triangle on its side, like a "play"
symbol. If we right-click on the Monitor Tomcat application icon, we get a context
menu as shown in the following screenshot:

The context menu provides us with the ability to access the Tomcat service
configuration and allows us to stop and start the service without the need to go
through the normal Windows service applet. Of course, Tomcat still runs as a normal
Windows service, so there is nothing stopping us to manage it in the normal way;
the Monitor Tomcat application is just a convenience tool.

Configuring the Tomcat service
Before we start the Tomcat service to check our installation is alright, we must
configure the memory settings that Tomcat will use for Java VM. Right-click on the
Monitor Tomcat application icon and select the Configure… menu item to open the
Tomcat service configuration dialog. Once it is open, click on the Java tab at the top:

Installing GeoServer for Production

[26]

The Java tab allows us to set options that control the way Tomcat starts Java VM;
the most important of these, from our perspective, is the memory configuration.
Memory settings can be specified in one of the following two ways:

• Parameters in the Java Options textbox
• Entering values in Initial memory pool, Maximum memory pool, and

Thread stack size

The choice is merely one of the preferences as both will achieve the same effect.
My personal preference is to put everything into the Java Options textbox as it is
good to remind oneself of the correct Java option parameter names, especially if
you have a mixed Linux/Windows server environment.

The actual values to use for memory settings are subjects that we will cover later in
this book, and we will very much depend on how you intend to use your GeoServer
in production. For example, if you only intend serving vector data (through WFS),
then GeoServer requires very little by way of memory allocation. For now, we will
set the memory to some good defaults for an all-rounder GeoServer. Click on the
Java Options textbox and scroll to the last parameter, press Enter to start a new line,
and then enter the following parameters:

-Dserver
-Xmx1024m
-Xms512m
-XX:MaxPermSize=128m

These parameters and what their values mean are described in the table
given in the Running Apache Tomcat as a service section of this chapter.

With the Java options set, we are now ready to fire up the Tomcat service and check
everything as is expected. Click on the General tab, then on the big Start button,
and cross your fingers as the service starts up. If everything works, then the Start
button will be disabled and the Stop button will be enabled. If the Start button is
enabled again, and the Stop button remains disabled, then unfortunately something
is wrong. Check that all the option parameters are correct and then try again. If you
still don't get the service starting, check the Tomcat logs to try and figure out why.

Chapter 1

[27]

If all goes well, we should be able to open a browser window, navigate to
http://localhost:8080/, and get the Tomcat 7 web page, as shown in the
following screenshot:

Tomcat 7 web page

That's it! Java and Tomcat are now both configured on your Windows Server,
and it is now ready to take the GeoServer application.

Deploying GeoServer to Apache Tomcat
We are getting there for a basic configuration of GeoServer, which we can use as a
basis to architect our production environment for high-availability, failover, and
scalability. Now we need to deploy GeoServer into Apache Tomcat, which is happily
a straightforward process.

We will utilize Apache Tomcat's auto-deploy feature that allows us to copy the
GeoServer WAR (Web Archive) file directly to appBase of a running Tomcat
instance. Tomcat will detect the presence of the WAR file, and then deploy it
ready for use.

Installing GeoServer for Production

[28]

First, we need to download the WAR file from the GeoServer download page at
http://geoserver.org/release/Stable. At the time of writing, the current
stable version of GeoServer is 2.5.2:

Click on the Web Archive link and save the downloaded ZIP file somewhere it
is accessible.

Deploying on CentOS 6.3
Deployment of GeoServer on CentOS is a very straightforward process, thanks
to the way Tomcat is architected. WAR files can automatically be deployed by
copying them to a specific location in the Tomcat home directory.

Download the WAR file to a location on your system, for example, your
home directory:

$ cd ~

$ wget http://sourceforge.net/projects/geoserver/files/GeoServer/2.5.2/
geoserver-2.5.2-war.zip

The WAR file that we want to deploy to GeoServer is contained within the
downloaded ZIP file, so we need to extract this from the Tomcat appBase directory:

$ sudo unzip geoserver-2.5.2-war.zip *.war –d $CATALINA_HOME/webapps/

http://geoserver.org/release/Stable

Chapter 1

[29]

This command will only extract the geoserver.war file from the ZIP file and place
it in the Tomcat appBase directory. Tomcat will then autodeploy the WAR file, and
you should see a geoserver directory appear.

Deploying on Windows Server 2008 R2 SP1
Deploying the GeoServer WAR file on Windows follows the same process as that of
Linux. The WAR file is copied in the Tomcat home directory, where it is unpacked
and the GeoServer context started.

The following steps are required to deploy the GeoServer WAR file in Tomcat:

1. Download the WAR file to a location on your system, for example,
the Downloads folder within your home directory.

2. Double-click on the geoserver-2.5.2-war.zip file to open it in Windows
Explorer (assuming you do not have another ZIP application installed).

3. Drag and drop the geoserver.war file from the ZIP folder to the
webapps folder in your Tomcat service home directory. If you followed
the steps to install Tomcat on Windows, then this directory will be
C:\Tomcat7-1\webapps:

4. After dropping the file into the folder, Tomcat will autodeploy it and a
directory called geoserver will appear.

Installing GeoServer for Production

[30]

Checking GeoServer deployment
We should now have a basic configuration of GeoServer deployed inside an
Apache Tomcat instance. Test that GeoServer was successfully deployed by
opening a web browser and navigating to the GeoServer administration interface:

http://[your server address]:8080/geoserver

If everything worked as expected, then we should be presented with the
GeoServer administration interface's front page:

Configuring GeoServer for maximum
performance and availability
One of the best things about GeoServer, apart from the quality of the software and
community, is the fact that because it is free, you will not be hampered by cost
considerations when increasing the capacity of your production environment. Unlike
the Commercial-Off-The-Shelf (COTS) software that commonly utilizes a licensing
model based on the number of physical or virtual cores, the software runs on.

Chapter 1

[31]

Since there is no financial implication (in terms of software licensing) on running
multiple instances of GeoServer, the only limitation will be the amount of
infrastructure you can afford to implement. With the growth in cloud computing
and Infrastructure as a Service (IaaS) providers such as Microsoft (Windows Azure)
and Amazon (EC3), the costs of implementing large infrastructures is becoming
more reasonable.

Performance can be gained by maximizing the usage of resources within your
production environment and/or by increasing the capacity through additional nodes.
Load balancing traffic across the environment to spread the load will also aid in
ensuring that the environment performs well. Increasing the number of nodes within
the environment will present an opportunity to set up for high availability. This is
when one or more nodes in the environment are reserved to take over if the primary
nodes fail. Usually, this can be handled by the load balancer by intelligently switching
traffic to a reserved node when it detects that one or more primary nodes failed.

Scaling vertically
Scaling vertically, also known as scaling up, is when additional resources are added
to a single (physical or virtual) node. In other words, this is when you create more
than one instance of GeoServer to run on the same physical or virtual server. The
following diagram depicts scaling vertically:

Application Server

Load Balancer

GeoServer Instance 3

GeoServer Instance 2

GeoServer Instance 1 Shared Data Directory

The available resources on the server are maximized by running multiple instances
of GeoServer. Consistency of data is maintained across each of the instances by all of
them sharing a common data directory, either located on the node itself or elsewhere
on the network.

Traffic is managed across the GeoServer instances by a load balancer that can be a
physical one in the network or even a software-based one.

Installing GeoServer for Production

[32]

Scaling horizontally
Scaling horizontally, also known as scaling out, is when you add additional nodes
(physical or virtual) to your environment. Each additional node can have an instance
of GeoServer running on it. The following diagram depicts scaling horizontally:

GeoServer 1 GeoServer 2 GeoServer 3

Shared Data

Load Balancer

Increased capacity is provided by the additional nodes running GeoServer, and the
traffic across them is managed through a physical load balancer in the network.

In a scaled-out architecture, the data directory for GeoServer is shared across the
additional nodes to ensure consistency of the configurations. With this approach, you
can choose to place the shared data directory on one of the nodes and allow access to
the additional nodes, or you can choose to have a separate server to hold shared data
such as a Network Attached Storage (NAS) device.

Chapter 1

[33]

If you configure multiple instances of GeoServer to provide
resilience to your infrastructure, high availability, or failover, then
best practice is not to place your shared data directory on one of the
nodes running GeoServer. If this node fails, then all other nodes will
lose their data connections. For proper resilience, the shared data
server should also be replicated.

Getting the best of both
To really get the best performance from your production environment, it is worth
considering scaling GeoServer both vertically and horizontally. Increase the capacity
of your environment through additional nodes, and then maximize the resources
on each node by running multiple instances of GeoServer. The following diagram
depicts scaling vertically as well as horizontally:

Shared Data

Load Balancer

GeoServer instance 2

GeoServer instance 1

GeoServer instance 2

GeoServer instance 1

GeoServer instance 2

GeoServer instance 1

Application Server 1 Application Server 2 Application Server 3

www.allitebooks.com

http://www.allitebooks.org

Installing GeoServer for Production

[34]

In this architecture, traffic to each of the GeoServer instances running on each node
is managed through a physical load balancer on the network. The load balancer can
be configured to register one of the GeoServer nodes as the failover node, ensuring
continuity of service should one or more of the primary nodes fail.

Once again, a shared data directory is used across the nodes to ensure consistency,
but in this case, it will definitely make sense to keep the directory on a separate
server instance.

Configuring multiple GeoServer
instances on a single server
You might have spotted a common thread running through each of the scenarios
outlined. In all cases, multiple instances of GeoServer are implemented, and in the
case of scaling up, these instances are running on the same node.

Setting up multiple GeoServer instances on a single node is actually quite
straightforward and will involve you creating several instances of the Tomcat
installation. In the following examples, we will configure an additional instance of
GeoServer for CentOS and Windows Server 2008. However, you can apply the same
principle to create as many instances as you want, but bear in mind the memory
configuration of your server, making sure that you do not add more instances
than your resources will allow. Also, bear in mind the number of processing cores
available; too many instances will overburden the processor, and any gain in adding
the instance will be lost through decreased performance. Typically, you should not
consider adding more than four instances per server.

Configuring on CentOS 6.3
First, we need to create a copy of our Tomcat installation directory:

$ sudo cp –R /opt/apache-tomcat-7.0.50/ /opt/apache-tomcat-7.0.50-2

This command will copy our installation directory to the same location and append
2 to the end. The name and location of the directory does not matter; just ensure that
it has a different name so that you can distinguish it from others. Next, we need to
make the tomcat user the owner of the new directory:

$ sudo chown –Rf tomcat:tomcat /opt/apache-tomcat-7.0.50-2/

Chapter 1

[35]

Then we need to configure the Tomcat instance so that it can co-exist with other
instances. This involves altering the server.xml file stored in the conf folder of the
copied installation. Edit the file with your favorite text editor, and look for the line
containing the following:

<Server port="8005" shutdown="SHUTDOWN">

Change the value of the port attribute to 8006 by incrementing it by 1. Further down
the file, look for the line containing:

<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000"
redirectPort="8443" />

Change the value of the port attribute to 8081 by incrementing it by 1, save the file,
and exit the text editor. We also need to change the value of redirectPort, again
incrementing it by 1 to make it 8444. What we just did has changed the ports on
which the Tomcat service will listen for connections. Failing to do this will generate
an error when we try to start the Tomcat service. If we want to add more Tomcat
instances, we just need to follow the same process; increment each value by 1 again.

Next, we need to copy our data directory out to a location where each instance can
share it. For this, we will make a new directory:

$ sudo mkdir /mnt/share

$ sudo cp –R /opt/apache-tomcat-7.0.50/webapps/geoserver/data/ /mnt/
share/geoserver-data

$ sudo chown –Rf tomcat:tomcat /mnt/share/geoserver-data/

Now, we created a directory to share amongst our instances, copied our original
GeoServer data directory into it, and then made the tomcat user the owner of
the directory.

You might be wondering why we just copied the data directory out to a different
location. This is an important step for two reasons:

• It is necessary to ensure that both instances of GeoServer deliver the
same data and services

• It makes upgrading GeoServer much simpler

The last point is an important one. Even if we only run a single instance of
GeoServer, it is a good practice to place the data directory outside of the GeoServer
installation. When we decide to upgrade, we can do so by simply deploying a new
WAR file without having to back up and restore the original data directory.

Installing GeoServer for Production

[36]

Now we can make a new service for our newly configured instance:

$ sudo cp /etc/init.d/tomcat-1 /etc/init.d/tomcat-2

Next, we need to make some changes to the service script to tell each GeoServer
instance where the data directory is located, and we will also control the name and
location of the default logfile for GeoServer. Edit the tomcat-1 and tomcat-2 script
files in your favorite text editor, and add the following lines near the start:

GEOSERVER_DATA_DIR=/mnt/share/geoserver-data
export GEOSERVER_DATA_DIR

This line sets an environment variable for our external data directory. Next, add the
following lines:

GEOSERVER_LOG_LOCATION=$GEOSERVER_DATA_DIR/logs/geoserver-1.log
export GEOSERVER_LOG_LOCATION

This sets another environment variable, but this time it tells GeoServer what to
call the logfile that will be generated. This is another important aspect of running
multiple instances of GeoServer, and it is essential to avoid clashes on the logging.

Do the same for both the service scripts, but change the name of the logfile to suit
each instance. Now we just need to register the second service script so that it can
be controlled:

$ sudo chkconfig --add tomcat-2

$ sudo chkconfig --level 234 tomcat-2 on

$ sudo service tomcat-1 restart

$ sudo service tomcat-2 start

That's it! Now, we have two instances of GeoServer running on our server and
sharing a common data directory. You can test it by opening a web browser and
visiting the following:

• GeoServer instance 1: http://[your server address]:8080/geoserver
• GeoServer instance 2: http://[your server address]:8081/geoserver

Chapter 1

[37]

Configuring on Windows Server 2008 R2 SP1
Once again, life is a little simpler in the world of Windows. All we need to do is
configure some environment variables to set the location of the shared data directory
and the name and location of the logfile, and then create a new service instance. First,
copy the current GeoServer data directory (C:\Tomcat7-1\webapps\geoserver\
data) to a location outside of the container, for example, D:\Data\geoserver-data.
Then, click on the Windows Start button, right-click on Computer, and choose the
Properties menu option:

Installing GeoServer for Production

[38]

In the System Properties dialog that opens, click on the link at the left-hand side
labelled Advanced system settings, and in the dialog box that opens, click on the
Advanced tab. Click on the button labelled Environment Variables… to open a
new properties dialog:

Click on the New button in the System variables group, and then enter the details
shown in the preceding screenshot. Click on Ok to dismiss all of the dialogs. We now
have an environment variable to tell GeoServer where to find its data directory.

Next, we need to create a new instance of the Tomcat service. To do this, we just
need to rerun the installation file that we downloaded originally. Work through
all of the pages until you reach the Configuration Options page:

Chapter 1

[39]

On this page, we need to change the settings for the ports by incrementing the
default values by 1, for example, HTTP/1.1 Connector Port will be 8081 instead
of 8080. We also need to change the default value of Windows Service Name, in
this case, we continue with our naming convention of incrementing each instance
by 1. Click on Next to check whether the Java installation directory is correct, and
then click on Next again to specify where we want to install the files. Change the
installation location so that it points to C:\Tomcat7-2.

Now we need to use the Tomcat Monitor application to control the new service.
Copy the same values for the Java options, but also include an additional parameter
to tell GeoServer where to create its logfile this time:

-DGEOSERVER_LOG_LOCATION=D:\Data\geoserver-data\logs\geoserver-2.log

Installing GeoServer for Production

[40]

We created a second instance of Tomcat, so we just need to deploy the geoserver.
war file to it by copying it into the C:\Tomcat7-2\webapps folder and letting Tomcat
perform autodeploy when it starts up.

Remember to include –DGEOSERVER_LOG_LOCATION in the original Tomcat instance
Java options, and specify the name of a logfile so that it can be distinguished.
Then, restart both the new services. If everything works as expected, you can
open a browser and navigate to:

• GeoServer instance 1: http://localhost:8080/geoserver
• GeoServer instance 2: http://localhost:8081/geoserver

Summary
We now have a basic configuration of GeoServer that we can take forward into
a production environment. This basic configuration will be the basis for exercises
in the remainder of this book, and over the course of the book, we will build a
well-configured and high-performing instance(s) of GeoServer.

In this chapter, we also had an introduction to the concepts of scalability and
configuring GeoServer so that it can be highly available and/or high performing.
These basic concepts will give you a good understanding of the concepts and enable
you to start to consider and design the implementation of a GeoServer cluster within
an enterprise environment. With the barrier of software licensing costs removed
through the use of GeoServer, the only limitation on the power of your production
environment will be how much you can afford to spend on infrastructure.

Creating a high-performing installation of GeoServer is as much about data
optimization as it is about Java VM configuration and clever architecture.
In the next chapter, we will look at how we can optimize raster data for
high-performance rendering.

Working with Raster Data
In the first chapter, we looked at setting up one or more instances of GeoServer
in a way that will make them perform well in a production environment. However,
configuring instances so that they run well is only a part of the performance
equation. Loading well-structured and optimized data for GeoServer to serve is
another part.

In this chapter, we will focus on how raster data can be prepared and stored
so that GeoServer can serve it efficiently, and in doing so, we will maximize the
benefit of the effort that we put in setting up GeoServer. This chapter assumes a
basic knowledge of how raster datasets are served by GeoServer and how to use
the web administration interface, configure stores, and publish layers.

We will address a range of topics, from looking at how we can increase the types
of raster data we can serve to how we can serve vast coverage of raster data
efficiently. By the end of this chapter, you will have a better understanding of
the following topics:

• Increasing the range of raster formats supported using GDAL
• Optimizing raster datasets for better performance
• Converting raster formats to GeoTIFF
• Processing GeoTIFF to get maximum performance
• Understanding the concept of image mosaicking
• Serving very large coverages using the ImageMosaic format

Working with Raster Data

[42]

Increasing the raster formats supported
by GeoServer
Out of the box, GeoServer supports a good range of raster formats, and for the
majority of use cases, the standard supported formats are, most likely, all you will
need. The standard formats supported by GeoServer Version 2.5.2 are:

• ArcGrid: The ArcGrid coverage format
(http://en.wikipedia.org/wiki/Esri_grid)

• GeoTIFF: A tagged image file format with geographic information
(http://en.wikipedia.org/wiki/GeoTIFF)

• Gtopo30: The gtopo30 coverage format
(http://en.wikipedia.org/wiki/GTOPO30)

• ImageMosaic: An image-mosaicking plugin
• WorldImage: A raster file accompanied by a file that contains

geo-reference information

It is likely that the vast majority of raster data that you will use with GeoServer will
be in GeoTIFF and/or WorldImage (for example, TIFF files with an accompanying
TIFF world file). However, there might come a time when you need to serve a
nonstandard raster format through GeoServer, for example, MrSID. Luckily for us,
these fringe cases are considered by the GeoServer developers and they implement a
plugin that utilizes the Geospatial Data Abstraction Library (GDAL).

GDAL is an open source library designed to process and transform raster data.
The clever thing about GDAL is that it provides an abstract data model as a single
reference point for a calling application. The calling application only needs to
concern itself with understanding one data model. GDAL performs the magic to
turn the supplied features into their respective underlying format. In addition to the
abstract data model, GDAL also supplies a number of command-line utilities that
can be used to process and translate raster data.

http://en.wikipedia.org/wiki/Esri_grid
http://en.wikipedia.org/wiki/GeoTIFF
http://en.wikipedia.org/wiki/GTOPO30

Chapter 2

[43]

OGR Spatial Referencing

Raster Drivers

[libtiff] [libgeotiff] [libpng]

[libcfitsio] [ligjpeg] [...]

Vector Drivers

[Shape] [NTF] [SDTS] [GML]

[MapInfo] [...]

GDAL Utilities

Python Java

GDAL Bindings

GDAL Library

GeoServer

GDAL Plugin

The GDAL library is written in C++, and binaries are available for a range of
operating systems and architectures, including Windows and Linux. There are also
a number of bindings available so that the GDAL library can be called from different
programming languages such as Python and Java.

Adding GDAL support to GeoServer is a two-stage process:

1. Installing the GDAL binary libraries for your platform.
2. Installing the GeoServer GDAL plugin.

Installing the GDAL binary libraries
Before we can install and use the GeoServer GDAL plugin, we must make sure
that our system includes the GDAL binary libraries. The GDAL plugin requires the
binary libraries to be installed as it utilizes Java bindings to perform raster processing
and transformation. In the following sections, we will look at how to prepare our
system with the GDAL binary libraries.

www.allitebooks.com

http://www.allitebooks.org

Working with Raster Data

[44]

Installing on CentOS Linux 6.3
There are a couple of options to install GDAL libraries on CentOS, or for that matter,
on any other Linux distribution:

• Compiling from the source
• Using a package management system such as YUM or APT

For those of you that are well-versed in the world of compiling Linux applications
and libraries from source, or for the adventurous among you, there is nothing better
than the satisfaction arising from a Linux compilation without any dependency
issues. If, on the other hand, you do not know how to compile the source code
on Linux, or are looking to save time, then nothing can beat using a package
management system.

There are a range of options for packaged distributions of the GDAL library;
some of the more popular ones are listed in the following table:

Repository GDAL
version

Web address

PostgreSQL PGDG 9.3 1.9.2 http://yum.postgresql.org/
repopackages.php

Enterprise Linux GIS 1.9.2 http://elgis.argeo.org/

Boundless Geo 1.9.2 http://www.boundlessgeo.com

Ultimately, it doesn't matter which repository you choose, the process will be
the same; so if you have a favorite, use it. For this example, we will use the
repository at Boundless Geo to install GDAL. Perform the following steps to
install GDAL on Linux:

1. Create a repository (.repo) file in the /etc/yum.repos.d/ directory by
issuing the following command:
$ sudo vi /etc/yum.repos.d/OpenGeo.repo

2. This will create a blank repository file that we need to fill with the following
information to make yum aware of the presence of the repository as a source:
[opengeo]
name=opengeo
baseurl=http://yum.opengeo.org/suite/v4/
centos/$releasever/$basearch
enabled=1
gpgcheck=0

http://yum.postgresql.org/repopackages.php
http://yum.postgresql.org/repopackages.php
http://elgis.argeo.org/
http://www.boundlessgeo.com

Chapter 2

[45]

3. This tells yum that there is a repository called opengeo that is available to
search at the given baseurl address. The enabled=1 flag tells yum that the
repository is available for use. Save the file and exit the vi text editor. From
this point forward, all the yum commands will look inside the opengeo
repository for packages.

If at some point in the future you want to prevent yum from using
the opengeo repository, then simply edit the /etc/yum.repos.d/
OpenGeo.repo file and change the value of the enabled flag from
1 to 0. The repository will no longer be used by yum, until you set the
flag back to 1 again.

4. Now we can perform an installation of the GDAL library and all its
dependencies issuing the following command:
$ sudo yum install gdal gdal-mrsid

5. This command instructs yum to install the core GDAL package
(including the Java binding) along with the MrSID format plugin so
that we can use the MrSID raster files. If all goes well, you should see
an installation success message. To verify that GDAL was correctly
installed, issue the following command:
$ gdalinfo –-formats

6. If GDAL was correctly installed, you should see a long list of all the different
formats GDAL can use.

That's it! GDAL is installed and working, ready for you to install the GeoServer
GDAL plugin.

Installing on Windows Server 2008 R2 SP1
In this section, we will take a look at how to install the GDAL binary libraries on
Windows Server 2008. As with Linux, Windows users also have a couple of options
to install the GDAL libraries:

• Compiling from the source code
• Downloading precompiled binaries as an installation package

Compiling the source code on Windows can be a real pain, and the vast majority of
users will be unaware of how to go about doing it, let alone actually have access to
the necessary software. In the world of Windows, it is best to always install compiled
binaries rather than attempt the compilation yourself.

Working with Raster Data

[46]

Tamas Szekeres has been doing a great job of maintaining a continuous build of
the GDAL libraries for the Windows platform. These binaries can be downloaded
as MSI installers, making this installation the same as any other Windows software
installation. We will use his build of Version 1.9.2 of GDAL for consistency,
though more recent versions are available. First, we need to download the GDAL
core installer along with the GDAL MrSID plugin installer. These two files can be
downloaded at the following locations:

• GDAL core: http://www.gisinternals.com/sdk/Download.
aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0\gdal-19-1400-
core.msi

• GDAL MrSID plugin: http://www.gisinternals.com/sdk/Download.
aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0\gdal-19-1400-
mrsid.msi

First, we need to start by running gdal-19-1400-core.msi to install the core GDAL
library components. Double-click on the downloaded file and work through the
installation wizard:

http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi
http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi
http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi
http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi
http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi
http://www.gisinternals.com/sdk/Download.aspx?file=release-1400-gdal-1-9-2-mapserver-6-2-0gdal-19-1400-core.msi

Chapter 2

[47]

When you reach the Choose Setup Type page, you have three choices available.
Typical will install the most commonly used components of GDAL and will
be sufficient for the majority of users. Custom allows you to specify the exact
components of GDAL to install; clicking on the button will open the selection
page shown in the following screenshot:

Finally, the Complete button will perform an installation of all GDAL components.
Unless you have a specific reason not to, you should go ahead and click on the
Complete button to install everything. On the next page that appears, click on
the Install button to begin the installation. Follow the remaining steps to complete
the installation.

After installing the core package, we can install the MrSID plugin. Double-click
on the downloaded file, gdal-19-1400-mrsid.msi, to begin the installation
wizard. There are no options to set for this installation, so simply click on Next
until you reach the Choose Setup Type page; click on the Complete button to
begin the installation.

Working with Raster Data

[48]

Setting environment variables
Using the installers provided by Tamas Szekeres enables us to use GDAL on
Windows by running the GDAL 19 (MSVC 2005) Command Prompt shortcut from
the start menu. This opens a command prompt with all the appropriate environment
variables set so that the GDAL tools can be used.

In order for GeoServer—and potentially other applications—to be aware of the
installed GDAL library, we must create some environment variables to point to the
binary files. To do this, we need to open the Environment Variables dialog from
Advanced System Settings , which can be accessed from the System applet in
Control Panel. First, we need to add the GDAL installation directory to the PATH
variable, as shown in the following screenshot:

Adding the C:\Program Files (x86)\GDAL location to the PATH environment
will allow other applications to use the GDAL library and tools; make sure to
have ; preceding the entry. Next, we need to add the following system variables
to support GDAL's functions:

Variable name Variable value
GDAL_DATA C:\Program Files (x86)\GDAL\gdal-data

GDAL_DRIVER_PATH C:\Program Files (x86)\GDAL\gdalplugins

PROJ_LIB C:\Program Files (x86)\GDAL\projlib

Chapter 2

[49]

GDAL is now installed and configured on our Windows environment. To test that
the environment variables have been set correctly, we can open a command prompt
and enter the following command:

C:\> gdalinfo –-formats

If the PATH environment is correct, we should receive a response to this command
in the form of a long list of available formats. Within this list, we need to look for an
entry for MrSID; if we find it, then GDAL_DRIVER_PATH has also been correctly set.
Now we are ready to install the GeoServer GDAL plugin.

Installing the GeoServer GDAL plugin
Once we have GDAL installed and configured on our system, getting the GeoServer
plugin is as easy as copying the contents of a ZIP file into our GeoServer deployment.
First, we need to head over to the GeoServer download page at http://www.
geoserver.org/release/stable:

Make sure that you go to the download page that corresponds to the
version of GeoServer that you installed. If you take the most recent
version, then the downloads you need are on the Stable page. If you have
a previous version, then you need to look on the All Releases page. If you
do not download the matching version of the extension, errors will occur.

On the download page, there is a section titled Extensions, and within this, there's
a grouping of downloads called Coverage Formats. We need to click on the GDAL
link and save it somewhere on our system.

http://www.geoserver.org/release/stable
http://www.geoserver.org/release/stable

Working with Raster Data

[50]

To perform the installation, we just need to extract the .jar files contained within
the archive into the WEB-INF/lib folder of our GeoServer installation. For example,
on a Linux installation, the command will look something like:

$ unzip geoserver-2.4.4-gdal-plugin.zip *.jar –d /opt/apache-
tomcat-7.0.50/webapps/geoserver/WEB-INF/lib/

This command will tell unzip to extract only files with a .jar extension from the
location specified by the –d switch. The command will work the same on both
Windows and Linux variants of unzip.

If you run your environment from GUI, then you can just use
standard drag-and-drop copy methods to move the files from
the zip package to the GeoServer directory.

In order for GeoServer to be aware of the new extension, we need to restart it.

If you run a cluster of GeoServers, remember to repeat the
process of installing GDAL and the GeoServer extension across
all the instances in your cluster.

If GDAL and the GeoServer extension are correctly installed, we should
see an expanded list of options to create a new raster data store. To see this,
we need to click on the Add stores link from the front page of GeoServer's
web administration console:

Chapter 2

[51]

How to optimize raster data for better
performance
As talented as the GeoServer developers are, there is only so much they can do from
a software perspective to help us run high-performing web mapping servers. As
users of the software, we also have a part to play to get the best performance out of
it. In the first instance, this is achieved through optimizing our deployment strategy
and ensuring that our production environment is configured optimally, as we saw in
Chapter 1, Installing GeoServer for Production. Secondly, and arguably more importantly,
it's the way we prepare the data that we will deliver through GeoServer.

Unfortunately, it is the second element that most people overlook when setting up
their web mapping servers—irrespective of the software they use. Well-structured
and organized data can make a huge difference on the response times of a mapping
server. While GeoServer is very flexible in the number of formats it can handle,
and the many flavors of each format it can manipulate, there will always be an
overhead in processing time if we expect it to do too much for each map request.
For example, it will take GeoServer longer to respond to a request if the source image
is a multiband (RGBA—4 bands) TIFF image with LZW compression rather than
an uncompressed 8-bit (indexed color palette) TIFF image. There is a processing
overhead in decompressing the image data, and the more bands an image has, the
more memory is required to manipulate it. Higher memory requirements per request
will reduce the number of concurrent requests that the server can handle.

There are a number of things to consider when looking at optimizing the raster data
we plan on serving. However, before considering the different options, it must be
stressed that the most fundamental thing to understand is the source material that
we work with and what our intended end use case is. Understanding our source data
is critical to make the right decisions about how to prepare and serve it. There is no
hard-and-fast rule about how to optimize the raster data ready for efficient serving, but
there are some key concepts to consider that can make a difference to response times.

Understanding your source data
We configured GDAL on our system to increase the range of raster formats
supported; we also have a very useful toolkit that we can use to understand and
process our source data. The best way to understand our data is to use the gdalinfo
command. It inspects raster files and exposes their internal structure:

$ gdalinfo <raster_file>

Working with Raster Data

[52]

Here, <raster_file> is the location of the image that you want to inspect.
For example, we can apply the gdalinfo command to a raster file from an
Ordnance Survey (Great Britain's national mapping agency) product OS
VectorMap District, which will generate the following output:

Throughout this chapter, you will see references being made to
some source raster datasets. These are used merely for illustration
of the commands and concepts; however, if you want to follow
along using the same data, then you can go online and order
the free dataset from Ordnance Survey (Great Britain), which is
called OS StreetView™. In these examples, I will use data from
the National Grid tile named TQ. The data can be ordered from
http://www.ordnancesurvey.co.uk/opendata.

http://www.ordnancesurvey.co.uk/opendata

Chapter 2

[53]

This output tells us that we are dealing with a TIFF world format image that is 5,000
pixels wide and 5,000 pixels high. We can also see that the image is compressed
using the LZW compression (COMPRESSION=LZW), and it is a single stripped file
(Block=5000x1) with an indexed color palette of 256 colors (ColorInterp=Palette).
Now that we understand a little bit more about the dataset we are dealing with,
we can start to consider how we might process it ready for GeoServer.

Single file versus multifile
The image that we just inspected is part of a much larger dataset from Ordnance
Survey that consists of a total of 10,592 images to cover Great Britain. Later, we will
see how we can use the ImageMosaic format to treat the dataset as a single coverage.
However, before we do so, there are some things we must consider in advance.
The number of files that constitute a complete dataset will have a bearing on the
performance of GeoServer when accessing it. Many small files are less efficient than
fewer larger files. This statement might seem counter-intuitive at first; after all, surely
a larger image takes more effort and time to read than several smaller files. However,
it is important to consider what the system has to do in order to read each image.
There will be a system overhead for each read operation on the disk and the system
must seek the location on the disk of the file and then open a stream so that the data
can be read; multiply this by the number of images required to construct a view and
there will be a lot of wasted time as a result of costly disk I/O.

In contrast, a single larger file will only have the disk I/O overhead once. From
this point forward, it will be up to the memory and CPU to process the data. In our
example of Ordnance Survey's StreetView product, we can see that each file is named
according to where they are situated in the National Grid. If you know the British
National Grid, then you will know that TQ93NE can be converted into a 12-figure
grid reference of 595000 easting and 135000 northing.

Ordnance Survey provides a guide to the British National Grid, and it
can be downloaded from http://www.ordnancesurvey.co.uk/
docs/support/guide-to-nationalgrid.pdf.

www.allitebooks.com

http://www.ordnancesurvey.co.uk/docs/support/guide-to-nationalgrid.pdf
http://www.ordnancesurvey.co.uk/docs/support/guide-to-nationalgrid.pdf
http://www.allitebooks.org

Working with Raster Data

[54]

We know that a single image in this dataset is 5,000 pixels by 5,000 pixels, and we
also know that the letters NE, SE, SW, and NW represent a quadrant of a larger grid
square; in this case, TQ93:

TQ93NW TQ93NE

TQ93SW TQ93SE

TQ93

Therefore, we can merge all the files representing quadrants into a larger (10,000
pixel by 10,000 pixel) image and give it the name of the parent tile. This means that
we can reduce the number of total files for the dataset by a factor of four, giving us
2,648 files in total. GDAL provides a Python script that can be used to perform the
merging operation, gdal_merge.py. Although each image will be larger, there are
fewer of them, so we gain some time in disk I/O operations.

Details on the different utilities provided by GDAL can be found at
http://www.gdal.org/gdal_utilities.html, with specific
information on gdal_merge.py available at http://www.gdal.
org/gdal_merge.html. GeoSolutions provide a tutorial on
using GDAL for raster processing at http://geoserver.geo-
solutions.it/edu/en/raster_data/processing.html.

This is an extreme case, and the number of files is large because of the spatial
coverage of the dataset (Great Britain). However, the principle can be scaled down
and still deliver benefit. For example, if you consider using the GeoTIFF format,
then it is feasible to have a single image, that is, <= 2 GB, and still serve it with
great performance.

http://www.gdal.org/gdal_utilities.html
http://www.gdal.org/gdal_merge.html
http://www.gdal.org/gdal_merge.html
http://geoserver.geo-solutions.it/edu/en/raster_data/processing.html
http://geoserver.geo-solutions.it/edu/en/raster_data/processing.html

Chapter 2

[55]

GeoTIFF overviews and tiling
The GeoTIFF format is very versatile, and in the vast majority of cases, it will be a
good fit for your needs. GeoTIFF is an extension of the TIFF format, but includes
additional elements to enable it to store spatial information, for example, the header
can store the Coordinate Reference System information rather than storing it in a
separate world file. A GeoTIFF file can have what are known as overviews, and the
data can be organized either in strips or tiles.

GeoTIFF overviews
An overview is a reduced scale version of the complete image held in GeoTIFF. This
can be useful as it opens the prospect to create image pyramids within the GeoTIFF
file. GeoTIFF has the ability to store overviews internally as well as externally
(through an .ovr file, or the Erdas Imagine format, .aux). The ability to store
overviews internally is extremely useful as it makes managing the dataset much
easier by not having to handle multiple files for the dataset.

This example depicts an image with two overview levels applied, one at level 2 and
another at level 4:

Original Image

Level 2

Level 4

Working with Raster Data

[56]

The number of the level determines the down-sampled size of the overview.
So, a level of 2 will result in an overview that is half the size (width and height)
of the original image.

GeoServer is capable of reading overviews if they are present in the GeoTIFF file,
and this means that it can quickly fetch a suitable image to return without the need
to process the complete GeoTIFF image data.

Overviews can be added to a GeoTIFF file using the GDAL tool, gdaladdo. An
example command for gdaladdo will be:

$ gdaladdo –r nearest –b 1 tq93ne.tif 2 4 8 16

This command will create overviews using the nearest neighbor resampling method
(-r nearest), with the first band (-b 1) being used to generate the overviews. The
numbers at the end are the levels to create overviews at. It is difficult to define what
options you should set to get the best performance as it very much depends upon your
source data. The preceding command is a sensible start point, but I will encourage you
to experiment with different settings for your own datasets and use cases.

GeoTIFF tiles
The image data within GeoTIFF can be stored as either strips or tiles. This refers
to the internal structure of the bytes that constitute the image data of GeoTIFF. A
stripped structure means that the byte array for the image is stored in one or more
sequential strips of data, and there are index pointers to indicate where each strip
resides in the file. Tiles, on the other hand, arrange the image data in blocks. Storing
the image data in this way means that portions of the image can be extracted very
easily by referencing the location within the image to extract. Image data arranged
in strips must be worked through sequentially in order to extract the portion of
the image required, which, in essence, means reading the entire image stream into
memory so that a specific portion can be extracted.

With a tiled structure, only the required portion of the image needs to be read and
held in memory. For very large raster files, you should always consider arranging
the data in tiles, which can be done by specifying a format creation option for any
GDAL tool that creates the GeoTIFF output. Simply add the –co "TILED=YES"
command switch, and GDAL will write the image data in a tiled structure. The size
of the tiles can also be controlled using the command switches –co BLOCKXSIZE=n
and BLOCKYSIZE=n, where n is the size in pixels for the tiles.

Chapter 2

[57]

Converting raster formats to GeoTIFF
GDAL provides us with a nifty utility to convert raster data from one format to
another. The gdal_translate utility can be used to convert our OS StreetView TIFF
world image to GeoTIFF, considering the fact that the image is in the British National
Grid coordinate system. We can also control other aspects of the output, such as
whether the image data should be compressed and whether there should be tiling.
For example, from a command line, we can execute the following command:

$ gdal_translate –of GTiff –a_srs EPSG:27700 –co "COMPRESS=NONE" –co
"TILED=YES" tq93nw.tif tq93nw_gtiff.tif

This will create a new file, tq93nw_gtiff.tif, from the source file, tq93nw.tif.
As a part of the translation, we ask for the output file to have no compression
(-co "COMPRESS=NONE") and for the data to be tiled using default values instead of
stripped values (-co "TILED=YES"). If we run gdalinfo on the newly created file,
we will see a confirmation of these changes:

Working with Raster Data

[58]

From the output of gdalinfo, we can see that we now have the Coordinate
Reference System information stored inside the file rather than externally in a world
file. We can also see that there is no compression on the image data and that it is
arranged in tiles of 256 pixels by 256 pixels (Block=256x256), which is the default
value when nothing else is specified in the creation options.

Have a look at http://www.gdal.org/gdal_translate.html
for an in-depth discussion of gdal_translate and the different
options available.

How to serve very large raster datasets
So far in this chapter, we looked at how we can increase the number of raster formats
that GeoServer can serve, and considered how we can prepare our raster data for
efficient serving. However, in these discussions, we only looked at relatively small
numbers of raster images. We have not yet given any consideration to how we might
approach the not-so-insignificant issue of serving large volumes of high resolution
imagery. For example, how might we approach the challenge of serving raster data
at a national scale such as large-scale aerial surveys or a national map product such
as Ordnance Survey's OS StreetView?

We can stitch all the individual raster images together to create a single file
containing the complete coverage. However, this will result in a considerably large
file for processing (and, in fact, one that it might not be possible to store). The OS
StreetView product, for example, requires approximately 10,592 files to cover Great
Britain and roughly 12.1 GB of storage. Merging to a single file is not a practical
solution to this particular challenge as aside from the time it will take to process the
single image, the format won't support the creation of an image that's large enough.

What we need is a solution that will enable us to keep the individual files in our
filesystem, but allow GeoServer to consider them as a complete spatial coverage.
Select the most appropriate files from the filesystem, stitch them together, and then
chop out the part of the combined image that has been requested. Luckily for us,
this is actually a common problem in the world of spatial data management, and
solutions exist to handle it. The answer is to create a virtual mosaic of all the images
that combine to create the complete spatial coverage. Systems will use different
terminologies to express the same function, and in the majority of cases, you will
either come across the term image mosaic or image catalog.

http://www.gdal.org/gdal_translate.html

Chapter 2

[59]

Irrespective of the term used to describe the capability, they will have one thing in
common—the use of an index file that describes the name and location of each of the
constituent components of the mosaic or catalogue.

Since we are looking at the ImageMosaic format in GeoServer, we will
adopt the terminology used by GeoServer to describe the function.
Mosaic is the term used to describe the complete coverage as a single
entity. Granule is the term used to describe a single component of the
mosaic. One or more granules combine to construct the complete mosaic.
It is worth noting that granules within the mosaic can be spatially
contiguous, overlap, have no spatial connectivity whatsoever, or be a
mixture of all the three types.

GeoServer comes with a built-in format that will allow us to create a mosaic to serve
large coverages of raster data, which is called the ImageMosaic format. It supports
the creation of mosaics whose granules are in a standard supported image format
such as GeoTIFF or WorldImage (standard image formats such as PNG, JPEG,
or TIFF with supporting world files). If you followed the steps to add support for
GDAL within GeoServer, then granules can also be in any of the supported GDAL
image formats.

When creating and using ImageMosaics in GeoServer, you should be aware of the
following limitations and ensure that your granules adhere to them:

• Each granule in the mosaic must be in the same Coordinate Reference System
• The same ColorModel and SampleModel should be used for all granules
• The same spatial resolution and overviews should be used in all granules;

if not, then any overview present will be ignored

Using the ImageMosaic format
The ImageMosaic format is a standard out-of-the-box format for GeoServer.
To function correctly, it requires the following four components to be present:

• An index file: The features of this file are the polygons representing the
spatial extents of each granule in the mosaic. Each feature must contain an
attribute that provides the location of the granule's file on the host filesystem;
the location can be expressed either relative to the index file or as an absolute
reference. As of Version 2.4.4 of GeoServer, the ImageMosaic format only
supports an index file in the Esri Shapefile format (.shp).

Working with Raster Data

[60]

• A projection file (.prj): The name of this file is the same as that of the index
(.shp) file that provides the Coordinate Reference System information for
the mosaic. Although a standard component of Esri Shapefiles, it is not
always generated by software that support the format. If the projection file is
present, then GeoServer will utilize it to determine the Coordinate Reference
System for the mosaic. If it is not present, then we will need to provide this
information at the point we publish a layer based on the mosaic.

• A properties file (.properties): This is the configuration file that provides
information about the mosaic, such as the x and y cell size, and whether the
file location attribute is absolute or relative.

• Granules: These combine to construct the mosaic.

Creating ImageMosaic automatically
By far, the easiest way to create ImageMosaic is to use the format's built-in
capability to automatically create the spatial index and configuration files.
This approach assumes that we already prepared a directory structure with
all the granules for the mosaic.

ImageMosaic is a data store format. So, to create a new one using our directory
of granules, we need to use the GeoServer web administration console. Perform
the following steps to create a new ImageMosaic:

1. Select the Stores link from the Data section of the left-hand side menu on
the web administration console.

2. Click on the Add New Store link to open the New data source page.
3. Look for the entry, ImageMosaic, under the Raster Data Sources section,

and click on the link to open the configuration page for ImageMosaic:

Chapter 2

[61]

On this page, we need to set some properties so that the configuration and
index files can be properly generated.

4. Select the workspace to create the data store from the Workspace
drop-down list.

5. Give the data store a name in the Data Source Name textbox.
6. Provide a brief description for the data store in the Description textbox.
7. Finally, specify the location where GeoServer can find the granules for our

mosaic by typing it into the URL textbox.

Working with Raster Data

[62]

The value for the URL connection parameter should point to the root of the directory
structure containing our granules (or if we already configured an index shapefile, we
can provide its location directly). GeoServer will check for a pre-existing shapefile
with the same name as the value for Data Source Name. If it finds one, then it is
used, if it does not, then it will begin to recursively scan our directory of granules.
Any file found within the directory structure that is a supported format is inspected
to determine its spatial extents and ColorModel. The location of the image file along
with its envelope is added as a feature in a new shapefile. Once the scan process is
complete, a new set of files will be created at the root of the data store.

The ImageMosaic data store is so configured that we can go ahead and publish a
new coverage layer specifying the details of how we want our users to see and
access the data.

Be patient! While the automatic index file creation process is useful,
it can also be time consuming. Relax and let GeoServer do its thing,
especially if you are creating ImageMosaic with thousands of files.

Creating ImageMosaic manually
If we want to have fine control over the ImageMosaic creation process, for example,
we want to select certain images from a directory of many others, then we will need
to create the index shapefile and properties file manually.

The index shapefile has minimal requirements. In essence, all that is required is for
there to be a polygon representing the spatial extents of each granule in the index,
with an attribute whose value is the location on the disk of the raster image. The
value can either be relative or absolute to the index. The name of the attribute is not
important. However, by convention, it is normally called location. There are many
different approaches that we can take to create the index file, but for this example,
we will use the excellent Open Source GIS package, QGIS (http://www.qgis.org).
QGIS has a Tile Index tool that is a wrapper around a GDAL utility. If you don't
already have it, head over to the link and download the latest version. At the time of
writing this book, this is version 2.4.0; install it and then launch it.

http://www.qgis.org

Chapter 2

[63]

From the QGIS main menu, navigate to Raster | Miscellaneous | Tile index to
open the tool:

The Tile Index tool allows us to select a source directory to scan for compatible
image formats, and optionally, recursively scan subdirectories. As we select options
on the dialog, notice how the text in the large textbox changes:

Working with Raster Data

[64]

This is the GDAL command that QGIS will execute in order to create the tile index
shapefile. If you are comfortable with GDAL, then it is possible to edit and fine tune
the generated command string by clicking on the edit button (the one with a pencil
icon). For now, we will accept the GDAL command as generated; we need to specify
a name and location for the output shapefile, and we can also specify the name to
give to the tile index field. The tile index field will hold the path to the image file,
so we'll check the box and then enter the value, location, into the text box that
becomes active. Finally, we will tick the box that loads the result into the canvas so
that we can check the output is what we expect.

Click on the OK button and wait for the tool to complete its work. Once completed,
we will be prompted for the spatial reference information for the index file, and then,
if all's well, it will be loaded into the map window:

Chapter 2

[65]

Now that we have our granules index shapefile, we need to create the accompanying
properties file. The properties file is a simple text file whose name should be the
same as the index shapefile, but with a .properties extension. The contents of the
properties file is a <key>=<value> pair on each line to describe the configuration of
the mosaic. Valid properties for this file are shown in the following table:

Key Purpose
Levels These are the resolutions for each of the levels of granules

contained within the mosaic.
Heterogenous This determines whether the granules in the mosaic are

diverse or broadly the same. If set to true, resolutions are
not checked when creating the granules index.

AbsolutePath This determines whether the location attribute stores the
reference to granules as an absolute or relative reference.

Name This is the name of the mosaic that will be used.
Caching This decides whether GeoServer caches the details of the

mosaic. Setting this to false allows control of the mosaic
content, without GeoServer losing synchronization.

ExpandToRGB This determines whether to expand the color model from
indexed to RGBA. There is a performance penalty using
RGBA, so if all your granules are indexed colors, set this
to false for a performance increase.

LocationAttribute This is the name of the attribute that holds the location of
the granule.

LevelsNum This is the number of reduced resolution layers available
for each granule overview in GeoTIFF.

Create a new text file and give it the name <your mosaic>.properties, where
<your mosaic> is the name of the mosaic you create. For this example, we will call
the StreetView mosaic, so we need to create a file called StreetView.properties.
This file needs to be saved to the same location as the tile index shapefile. For this
example, the content of the file should be:

Levels=1.0,1.0
Heterogeneous=false
AbsolutePath=false
Name=StreetView
TypeName=StreetView
Caching=false
ExpandToRGB=false
LocationAttribute=location
LevelsNum=1

Working with Raster Data

[66]

When creating the .properties file manually, it is important to understand the source
mosaic granules. In particular, it is important to know the levels that will be used. With
the .properties file saved, we are ready to create the ImageMosaic data store much
the same way we did automatically. This time, however, instead of specifying the
parent directory of our mosaic granules, we will specify the index shapefile.

Follow the same procedure as automatically generating the mosaic to open the
configuration page for an ImageMosaic data store:

Notice the key difference here from when we created ImageMosaic automatically
in the value for the URL property. When creating ImageMosaic automatically,
we simply specified the location of the parent directory containing the granules.
This time, we told GeoServer whereto find the granules index shapefile directly.
GeoServer will now create the ImageMosaic data store, and we are now free to
create any layer we like from this data store.

Chapter 2

[67]

How to use the ImageMosaic JDBC extension
In the previous section, we looked at using GeoServer's built-in ImageMosaic format
to serve large coverages of raster data. Now, we will take a look at installing and
using an optional extension that will enable us to store the granules for a mosaic in
a JDBC database. There is potentially a performance penalty with storing rasters
inside a database, this is particularly true if the database is not tuned and optimized.
Due to the potential performance penalty, it is worth considering some of the reasons
why we might decide to store rasters inside a database:

• Portability: When migrating servers, instead of having to move hundreds,
or even thousands, of files around the network, we can use database backup,
restore, and replication functions.

• Shared Database: Organizations might choose to store rasters in databases
for cataloguing purposes. This is particularly true if they have a large library
of raster files, for example, terabytes of aerial survey files. It is often easier to
store and catalogue this volume of raster files in a database.

• Faster Searching: One of the biggest features of a database is their ability to
rapidly search indexes. If the coverage contains a large number of files, then
the index searching performance of a database will be of benefit.

The ImageMosaic JDBC plugin can also be used in place of the shapefile index file,
where the database is used to store the granules index, but the granules themselves
are still kept on the filesystem. This approach provides the dual benefit of faster
granule lookup (by the database) and fast raster serving (by the filesystem).

Installing the extension
In order to serve raster data from a JDBC database, we must install the JDBC
ImageMosaic extension. As with all other extensions for GeoServer, it is very
important to download the version of the extension matching your installed
version of GeoServer. We have been using Version 2.5.2, so we must go to the
corresponding download page at http://geoserver.org/release/stable
to get the correct version.

http://geoserver.org/release/stable

Working with Raster Data

[68]

Navigate to Extensions | Coverage store section and select the JDBC Image
Mosaic option to download a ZIP file containing the following extension:

To perform the installation, we just need to extract the .jar files contained within
the archive into the WEB-INF/lib folder of our GeoServer installation. For example,
on a Linux installation, the command will look something like:

$ unzip geoserver-2.5.2-gdal-plugin.zip *.jar –d /opt/apache-
tomcat-7.0.50/webapps/geoserver/WEB-INF/lib/

This command will tell unzip to extract only files with a .jar extension into the
location specified by the –d switch. This command will work in the same way on
both Windows and Linux variants of unzip. In order for GeoServer to be aware of
the new extension, we need to restart it, go ahead, and restart the service using the
method most appropriate to our system.

Configuring the extension
The JDBC ImageMosaic extension has been designed to support a range of different
databases, irrespective of whether they have a spatial extension. The extension reads
the raster data from a column in the database where the data has been stored in its
binary form, usually as a BLOB (http://en.wikipedia.org/wiki/Binary_large_
object). To make use of the extension, we must perform these five main steps:

1. Prepare and load the raster data into our database.
2. Create a metadata table for the extension.
3. Create extension configuration files.
4. Create a data store in GeoServer linked to the configuration files.
5. Publish the contents of the data store as a layer.

http://en.wikipedia.org/wiki/Binary_large_object
http://en.wikipedia.org/wiki/Binary_large_object

Chapter 2

[69]

Preparing and loading raster data
The method of loading raster data into the database will very much depend on the
database platform that you're using. The objective is to create a single table to contain
all of the granules that will make the mosaic, with each granule being a separate
record in the table. You can also choose to create additional tables to hold overviews
of the mosaic, which will aid in faster rendering of data when the users zoom out.
The overview versions of each granule should be stored in their own separate tables;
the configuration files will tell GeoServer where to find the data.

For this example, we will use PostGIS since it has a raster data type called
PGRASTER (http://postgis.net/docs/manual-2.0/using_raster.xml.html),
and the JDBC ImageMosaic plugin has support for the built-in data type. Another
reason to choose this plugin is that it is very straightforward to set up, and being
open source, it is accessible to all. To load raster data into PostGIS, there is a tool
that comes as part of the package called, which is called raster2pgsql. Providing a
detailed description of how to use raster2pgsql is outside the scope of this book,
but there is a good description of the tool and how to use it at http://postgis.
refractions.net/docs/using_raster.xml.html. We will use the tool to load
some free Ordnance Survey raster data called OS VectorMap District. Go to the
Ordnance Survey's website at http://www.ordnancesurvey.co.uk/opendata
and order yourself some raster data. For this example, I simply ordered data for the
British National Grid square TQ, but you can order anything you like, after all, it
is free! Once you receive your raster data and download it, unzip the contents to a
folder on your system. Open a command line and enter the following command:

$ raster2pgsql –c –I –C –s 27700 –l 2 –M –Y <path_to_data>/*.tif osvmd >
insert_osvmd_tiles.sql

Before running this command, make sure that the raster2pgsql command is in
your environment path. This command will generate an SQL script that you can
then use to load the raster data into PostGIS. The –c switch will create a new table
(in this case, we call it osvmd) and –I will create a spatial index for the table. The –C
switch will ensure that all constraints are set properly, and –s 27700 will create the
output tables in the British National Grid spatial reference system. The –M switch
will trigger a vacuum analyze that will update the table statistics and help with
performance, and the –Y switch will use the COPY commands rather than table inserts
as they are faster. The –I 2 switch will create overviews for the raster at two levels.
Overviews will help in performance of display as the lower resolution images
re-return at certain scale ranges.

http://postgis.net/docs/manual-2.0/using_raster.xml.html
http://postgis.refractions.net/docs/using_raster.xml.html
http://postgis.refractions.net/docs/using_raster.xml.html
http://www.ordnancesurvey.co.uk/opendata

Working with Raster Data

[70]

Once the process is complete, we will be left with an SQL script called
insert_osvmd_tiles.sql, which contains all of the raster data and the
commands necessary to load them into the database. All that remains is to
execute the script against our database and wait for the data to load in. You can
execute the script from a command prompt by issuing the following command:

$ psql –d [database name] –f insert_osvmd_tiles.sql

Change [database name] to the name of your PostGIS database and hit Enter.
Depending on the size of your source raster file(s), this script might take some
time to execute.

Creating the metadata table
In order to function correctly, the JDBC mosaic plugin requires a metadata table to
be present in the database. The name of the metadata table is irrelevant since we will
tell the plugin what it is called in an XML configuration file; for this example, we will
call the table MOSAIC, but in a production environment, you might want to consider a
different name. The table can be created inside PostgreSQL using the following SQL:

CREATE TABLE mosaic (
 name varchar(254) not null,
 tiletable varchar(254) not null,
 minx FLOAT8,
 miny FLOAT8,
 maxx FLOAT8,
 maxy FLOAT8,
 resx FLOAT8,
 resy FLOAT8,
 primary key (name, tiletable)
);

With the table created, we now need to populate it with some values. The values
need to describe the tables where the raster data can be found. The first insert
statement describes the raster table containing the full resolution images:

INSERT INTO public.mosaic(
 name, tiletable, maxx, maxy, minx, miny, resx, resy)
 VALUES ('vmap', 'osvmd', 600000, 200000, 500000, 100000, 2.5,
-2.5);

Chapter 2

[71]

The next insert statement will add an entry for the first overview level:

INSERT INTO public.mosaic(
 name, tiletable, maxx, maxy, minx, miny, resx, resy)
 VALUES ('vmap', 'o_2_osvmd', 600000, 200000, 500000, 100000, 5,
-5);

The final insert statement will add an entry for the second overview level:

INSERT INTO public.mosaic(
 name, tiletable, maxx, maxy, minx, miny, resx, resy)
 VALUES ('vmap', 'o_4_osvmd', 600000, 200000, 500000, 100000, 10,
-10);

The metadata table is now populated so that when we add the datastore to GeoServer
the ImageMosaicJDBC extension will know where to find the data in our database.

Creating the extension configuration files
For the plugin to function correctly, it needs to have an XML file that describes the
mapping necessary to allow it to get all the tiles for the mosaic from the database.
The configuration file has three sections to it describing the database connection
details, table mappings, and coverage properties.

Since the connection and mapping details will likely be the same for multiple
mosaics, it is best practice to divide the configuration into three separate files,
and then use XML inclusion to bring them all together into a mosaic configuration.
The following steps will take us through the process of creating the three files
required to create the XML mapping file:

1. First, let's create the XML fragment file to hold the database connection
details for our PostGIS database where we loaded the tiles. Let's create a
folder inside the GeoServer data directory to hold our coverage:
$ mkdir <geoserver_data_dir>/coverages/osvmd

2. Remember to change <geoserver_data_dir> to the location of your
GeoServer data directory. Within this folder, create a new text file called
pgraster.connect.xml.inc, and then enter the following XML fragment:
<connect>
 <dstype value="DBCP" />
 <username value="[username]" />
 <password value="[password]" />
 <jdbcUrl value="jdbc:postgresql://[server]:[port]/[database] />
 <driverClassName value="org.postgresql.Driver" />
 <maxActive value="10" />
 <maxIdle value="0" />
</connect>

Working with Raster Data

[72]

3. Replace the values inside square brackets with those relevant to your
environment. The main purpose of this fragment is to provide the
connection details to the database; in this case, PostgreSQL/PostGIS.

4. Next, we need to create the table mappings fragment. Create another
text file called pgraster.mapping.xml.inc and enter the following
XML fragment:
<spatialExtension name="pgraster" />
<mapping>
 <masterTable name="MOSAIC">
 <coverageNameAttribute name="name" />
 <maxXAttribute name="maxx" />
 <maxYAttribute name="maxy" />
 <minXAttribute name="minx" />
 <minYAttribute name="miny" />
 <resXAttribute name="resx" />
 <resYAttribute name="resy" />
 <tileTableNameAttribute name="tiletable" />
 </masterTable>
 <tileTable>
 <blobAttributeName name="rast" />
 </tileTable>
</mapping>

The first element of this fragment is <spatialExtension>, whose name
attribute should be a value indicating the type of spatial database connection
the plugin should use. In this case, we specify the pgraster value that tells
the plugin to use the native PostGIS PGRASTER spatial data type. The rest of
the fragment tells the plugin about the metadata table. This is an important
element of the configuration since it will allow us to specify our own
metadata table if we decide to deviate from convention. For example, if we
want to call our coverage name column in the metadata table, coverage_
name, then we will simply need to make sure that the correct value is
present for the name attribute of the <coverageNameAttribute> element.
The other thing to note about this XML fragment is the name attribute of the
<blobAttributeName> element. In this case, the value is rast; the important
thing to note is that this value should be the name for the column that
contains the raster data.

Chapter 2

[73]

5. The final file to create is an XML file that will import the separate components
to create a complete configuration. This file will be the one that we point
GeoServer at when creating the data store. The name of the file can be anything
you like, but it is a good practice to use the following naming convention:
[coverage_name]_[spatial_type].xml

Here, [coverage_name] is the name of the coverage you want to serve
through GeoServer, and [spatial_type] is the JDBC spatial database type
being used. In our case, we create a coverage called VectorMap, and we use
the PGRASTER spatial type, so our file will be called vectormap.pgraster.xml.
Create the file and then edit it in a text editor so that it looks like the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE ImageMosaicJDBCConfig [
 <!ENTITY mapping PUBLIC "mapping" "mapping.pgraster.xml.
inc">
 <!ENTITY connect PUBLIC "connect" "connect.pgraster.xml.
inc">
]>

<config version="1.0">
 <coverageName name="vmap"/>
 <coordsys name="EPSG:27700"/>
 <!-- interpolation 1 = nearest neighbour, 2 = bipolar, 3 =
bicubic -->
 <scaleop interpolation="1"/>
 <axisOrder ignore="false"/>
 &mapping;
 &connect;
</config>

What you should notice is that the last file imports the previous two fragments that
we created. The reason for doing this is to allow us to quickly create new coverage
configurations without having to repetitively write the connection and mapping
elements. This is particularly useful if we have all our coverages in the same
database. The two !ENTITY elements in the header link to the files to import and are
relative to this file. The relevant sections from these files are then imported by the
&mapping and &connect entries.

Make sure that all the three files are in the same directory as they will be required to
build the configuration that GeoServer will use to create the data store.

Working with Raster Data

[74]

Creating the GeoServer data store
With the data loaded, the metadata table created, and the configuration files written,
we are now ready to create the data store in GeoServer. Perform the following steps
to create the data store:

1. Start by selecting the Stores option from the left-hand side menu on the
GeoServer web administration console:

2. On the Stores page, click on the Add new store link to open the New data
source page.

3. From the Raster Data Sources section, find the ImageMosaicJDBC entry
and select it:

Chapter 2

[75]

4. This will open the data store configuration page, where we can specify the
details for the coverage that we want to serve:

You will notice that there is not much difference between this and any other data
store configuration. As usual, we specify a name and description for the data store to
be referred to and make sure it is enabled. The main thing we need to do is specify
the location of our XML configuration file as this is what the plugin will use to know
how to connect to the database and read the image mosaic granules. The value for
this field should be:

file:coverages/JDBCMosaic/vmap.pgraster.xml

The location of the file that we specify is relative to the GeoServer data directory,
so if our data directory is C:\Data on Windows, then the preceding location will be
interpreted by GeoServer as C:\Data\coverages\JDBCMosaic\vmap.pgraster.
xml. Once the data store configuration details are entered, click on the Save button.

GeoServer will now connect to our PostGIS database and read the metadata table,
looking for entries related to the coverage we specified in the configuration file.
You can now select the coverage and publish it as a layer in the same way that
any other layer is published in GeoServer.

Working with Raster Data

[76]

Summary
In this chapter, we looked at how we can increase the formats supported by
GeoServer by implementing the GDAL plugin. To do this, we have to install the
GDAL binaries and ensure that our environment is appropriately configured so
that GeoServer is aware of it.

We looked at how important it is to consider the raster data that we want to serve
through GeoServer, and learned how we can use gdalinfo to inspect our raster files
to learn more about their structure. Having understood the structure of our raster
images, we looked at strategies to manipulate them so that they are optimized;
this included considering whether they should be merged to create larger single
files. Other strategies to optimize our raster data included adding overviews and
ensuring that the image data is organized internally as tiles. We saw how gdaladdo
can be used to manage overviews and learned about the format creation options to
control tiled-image data structures. We looked at how the ImageMosaic format can
be used to enable us to deliver large spatial coverages of raster data consisting of
multiple files. We considered how ImageMosaic can be created manually as well as
automatically, and we looked at how tools can be used to prepare the granule index
files. Finally, we took this concept of ImageMosaic and looked at how the granules
can be stored to, and read from, a spatial database. To illustrate this, we looked
at loading Ordnance Survey VectorMap District into a PostGIS database in the
PGRASTER format, and then publishing it through GeoServer using the ImageMosaic
JDBC extension.

The key lesson we learned is how important it is to understand the raster dataset
you are trying to deliver and the importance of taking the time and effort to
preprocess your raster data to decrease the processing burden on GeoServer.
Ultimately, this means that your implementation of GeoServer will be able
to server more concurrent requests efficiently.

In the next chapter, we will take a look at methods for the efficient serving of
vector datasets from spatial databases.

Working with Vector Data in
Spatial Databases

In the previous chapter, we looked at how we can optimize our raster datasets in to
be able to serve them more efficiently. In this chapter, we will take a look at how we
can work with vector datasets in a production environment, with our focus being
on serving the data through spatial database platforms. Although GeoServer is very
good at serving data from flat file formats such as Esri shapefiles, you can't beat
the performance benefits from utilizing a spatial database platform in a production
environment with large datasets. Out of the box, GeoServer will support connecting
to a PostGIS database; however, GeoServer's pluggable architecture can be used to
support other platforms. At the time of writing this book, there are official extensions
for the following database platforms:

• Esri ArcSDE (database extensions for use with the Esri technology)
• DB2
• MySQL
• Oracle
• Microsoft SQL Server and SQL Azure
• Teradata

Additional database platforms, such as SpatiaLite, can be supported through
the use of community extensions. Providing support for an additional dataset is
as simple as installing the appropriate extension into the GeoServer installation
directory. Sometimes, there will be the need to install and configure additional
database platform support files such as JDBC drivers. Once the appropriate database
extensions and support files are installed, the database can be used within GeoServer
as if it were any other source format.

Working with Vector Data in Spatial Databases

[78]

By the end of this chapter, we will have a much better understanding of the use of
spatial database platforms in GeoServer, and in particular, we will understand the
following concepts better:

• The benefits of database connection pooling and the settings to use
• Choosing a JNDI connection over a standard JDBC
• Understanding the parameters that are common to all the database formats
• Connecting to and serving data from a PostGIS database
• Connecting to and serving data from an Oracle database
• Connecting to and serving data from Microsoft SQL Server or a SQL

Azure database
• Utilizing SQL Views to create layers from multiple database tables

Database connection pooling
Before we get into the details of setting up specific database platforms, it is worth
having a conversation about database connection pooling, what it is, and why we
should care about it.

Understanding database connection pools
If database connection pooling was not utilized, every time GeoServer receives
a request for the data stored in a spatial database, the following sequence of
events occurs:

• A connection to the database is made
• SQL commands are executed to select data
• The results from the query are read and processed
• The database connection is closed

A lot of things happen to fetch some data to be rendered (WMS) or processed and
streamed (WFS). Consider this happening for a lot of requests, and you can imagine
things getting very busy with connections being opened and closed all the time. A lot
of the connections from GeoServer to spatial databases are short-lived; in most cases,
they might only need to gather a few hundred features. This means that the opening
and closing of the connection for these short-lived requests are a significant overhead
and will impact the performance.

Chapter 3

[79]

A database connection pool is designed to overcome this issue. Each time a
connection to the database is created, and then closed, instead of the connection
being destroyed, it is added to the pool, providing an open connection to the
database. The next time a connection to the database is requested, Java will first look
to the pool to see if any existing connections are idle. If there is an idle connection,
it is used, thus removing the overhead of creating a new database connection. If
an idle connection is not available, Java will look to see if the maximum number of
connections for the pool has been reached; if not, then it will create a new database
connection that will then be added to the pool once it is finished with.

If the maximum number of connections has been reached for the pool, the request
will be queued until an existing connection becomes available. There are occasions
when a database connection can become stale, that is to say, JVM believes that the
connection still exists, but in fact, the database itself has closed the connection.
This will result in an error condition when JVM attempts to use the stale connection
to service a request. Often, software can implement strategies to prevent this
condition from occurring, and so a combination of database-managed connections
and Java-managed database connection pools will result in a stable connection
infrastructure that can self-manage.

A database connection pool is a set of persistent database connections that allows
GeoServer to access database content without the overhead of having to open and
close connections. Given that the vast majority of database activity from GeoServer
is short-lived, it is not typical for GeoServer to have a long-running transaction.
A database connection pool is essential to ensure responsiveness and performance
of our GeoServer instance.

Configuring a database connection pool
When creating a data store that uses a spatial database backend, GeoServer provides
a number of configuration options to control connection pooling for the data source.
The following table describes the database connection pool options that can be set:

Option Description
Max connections This determines the total number of database connections

the pool should hold. Once this number of connections is
reached, no more connections will be created.

Min connections This determines the minimum number of connections to
the database that the pool should hold, irrespective of its
current database activity.

Validate connections This determines whether database connections should be
validated before they are used.

Working with Vector Data in Spatial Databases

[80]

Option Description
Fetch size This determines the number of records to read from the

database in each network exchange.
Connection timeout This determines the time, in seconds, to wait before the

connection pool should abort its attempt at getting a new
connection to the database.

Right now, we know what the options are; the next question is what we should
set for them. Unfortunately, the answer to this is, it depends. You need to have an
understanding of the data you serve, and the likely volume of requests that you will
get for this data. For example, very complex detailed polygons with a high-request
concurrency will benefit from a large database connection pool. This is because the
volume of data to be transferred in each network exchange is likely to be high, which
in turn suggests that each connection to the database will be longer than, say, a simpler
sparse point dataset. Therefore, to handle the high-request concurrency, we need a
larger database connection pool. Setting the max connections option to a suitable
value will be the key to ensuring that the right level of concurrency can be attained.

The max connections option defaults to 10, but this can be set higher to allow
greater database connection concurrency, which translates to a better concurrency
on GeoServer. When the maximum number of connections is reached, any further
database connection requests are halted until a connection in the pool becomes
available. You need to strike a balance between setting the number too high so
that you consume too many resources, and too low so that you end up causing a
bottleneck waiting for database connections.

The min connections option determines how many connections the pool will
hold, irrespective of any database activity. If there are no active connections to the
database servicing data requests, the connection pool will always ensure that the
minimum number of connections is open. When this minimum number is exceeded,
the pool will create new database connections until max connections is reached.

The validate connections flag determines whether the connections in the pool
should be validated before they are used. As discussed previously, it is possible
for database connections in the pool to become invalid because the database server
closes the connection due to an inactive period timeout being reached. If a stale or
broken connection is used, then this can often lead to a client error; setting this flag
will check the connection before it is utilized.

Chapter 3

[81]

The benefit is that no invalid connection will be used, but the trade-off is that it
will come at a slight performance penalty, since validating the connection will take
time. However, the overall benefits of the connection pool will outweigh the slight
performance penalty. If you have requirements for availability, then it is usually best
to have this flag on.

The fetch size option determines how many records should be retrieved from the
database in each network exchange. This is a form of paging; if a request requires
2,000 records to be fulfilled, and the fetch size is set to 500, then there will need to
be 4 round-trips to the database to retrieve all the required records. This is where the
network latency will start to play its part; if, for example, you set the value too low,
say 25, then the overall time to fetch all the required data will be much longer than if
you set the value to 1,000. Although the database will take longer to retrieve 1,000
records than it will take to retrieve 25, the network latency overhead from many
network exchanges will far outweigh slightly longer, but fewer, network exchanges.
The default value is 1,000, which for the vast majority of cases will be adequate.
Bear in mind that the larger the fetch size you set, the greater memory requirements
you are placing on GeoServer.

Too many very large fetches can result in an out of memory
condition. Again, understanding the data that you are serving
and the likely mix of traffic is the key to tuning this option.

The connection timeout option defaults to 20 seconds and determines how long
the connection pool should wait for a database connection. Setting this value too
high will result in a lot of delays that ultimately results in failed responses. It is better
to fail faster since a lot of database connection failures can often be flagged up in
monitoring. Conversely, setting the value too low will result in the database server
not being given enough time to respond, and will lead to a lot of incorrect database
connection error messages. Understanding your database platform and network
environment is the key to setting this property to an appropriate value. If you find
that you need to set the property higher than the default, then you should probably
think about optimizing your database and/or your network environment.

Working with Vector Data in Spatial Databases

[82]

JNDI connection or JDBC
When creating spatial database connections in GeoServer, you might notice that you
are frequently provided with two options for the data store as highlighted in the
following screenshot:

Vector data sources

In the preceding example, we can see that for Microsoft SQL Server and PostGIS,
there is a standard data source option as well as one with (JNDI) after the name.
If you noticed this, then you might have thought to yourself, "What's the
difference?", and if you are aware of the difference, you might be wondering
why you would want to use it over the standard JDBC version.

JNDI appended to the name of the data source stands for Java Naming and
Directory Interface, which is a Java technology that enables software to look up
objects and data using a common name. It is a fairly broad technology that can be
used for a multitude of things such as connecting to an LDAP server or allowing a
servlet to look up configuration information from a container. It is this ability to look
up configuration information from a servlet container that GeoServer utilizes in the
JNDI flavors of a data source.

Database connections are expensive in terms of resource utilization, and as we
discussed, they are often pooled. However, if you have several components running
in your servlet container, and each requires access to database connections, then each
component will be responsible for setting up its own database connection pool. With
more components creating their own connection pools resources on your server,
it will become constrained very quickly. Furthermore, you will be responsible for
ensuring the configuration of a connection pool in one application will not cause
problems to others by requesting too many connections.

Chapter 3

[83]

To overcome this challenge, it is possible to create a global database connection pool
at the container level, and then reference this connection pool by its name in each of
the applications that need access to database connections. Having a single connection
pool at the container level means that resource utilization can be optimized and
management will be simpler. It also becomes possible to change the configuration
of the database connections. For example, a change to the database server location
will instantly be reflected across all the applications utilizing the global pool. This
is achieved without having to make any changes to the individual applications.
An implementing application only needs to be aware of the name and no other
specific details.

Configuring JNDI at the servlet container
Now that we understand the distinction between a standard JDBC connection
and a JNDI connection pool, let's take a look at how to configure a JNDI connection
pool in Tomcat.

Setting up a JNDI connection pool in Tomcat involves three stages:

1. Installing a JDBC driver for the database in Tomcat.
2. Configuring Tomcat connection pool properties.
3. Making GeoServer aware of the presence of the JNDI connection pool.

For Tomcat to be able to create a connection pool to your database platform, it
must first have a copy of the relevant JDBC drivers installed to its shared libs
directory,—<tomcat_home>/lib, where <tomcat_home> is the installation directory
for your instance of Tomcat. The database platform you create a connection pool for
will determine the most appropriate JDBC driver to use. The following table lists the
most common platforms and their associated JDBC driver download locations:

Database
platform

JDBC driver download

PostgreSQL
(PostGIS)

GeoServer currently uses Version 8.3 of the PostgreSQL driver;
therefore, it is recommended to use the same in our JNDI pool. Copy
the postgresql-8.4-701.jdbc3.jar file from <tomcat_home>/
webapps/geoserver/WEB-INF/lib to ensure compatibility.

Microsoft SQL
Server

Check out http://www.microsoft.com/en-us/download/
details.aspx?id=19847.

Oracle 11g R2 Check out http://www.oracle.com/technetwork/database/
enterprise-edition/jdbc-112010-090769.html.

MySQL Check out http://dev.mysql.com/downloads/connector/j/.

Working with Vector Data in Spatial Databases

[84]

Download the appropriate JDBC driver for your database platform and copy the
relevant .jar files into the <tomcat_home>/lib directory. How you choose which
drivers to download will depend on what your database platform is. The following
table lists how to find the version for the most common database platforms:

Database platform Procedure
PostgreSQL Run the query SELECT version() in psql
Microsoft SQL Server Follow the procedure outlined at http://support2.

microsoft.com/kb/321185

Oracle Run the SELECT * FROM V$VERSION query

With the driver installed in the Tomcat-shared lib folder, we now need to configure
the JNDI resource name and connection pool properties. This is done by adding an
entry to the <tomcat_home>/conf/context.xml file. For example, a PostgreSQL
entry in the file will be:

<context>
 <Resource name="jdbc/postgres" auth="container" type="javax.
sql.DataSource" driverClassName="org.postgresql.Driver" url="jd
bc:postgresql://<server>:<port>/<dbname>" username="<username>"
password="<password>" maxActive="20" maxIdle="5" maxWait="-1" />
</context>

Replace the <server>, <port>, <dbname>, <username>, and <password> values with
the ones appropriate to your environment. This particular fragment will create a
connection pool with the following characteristics:

• A maximum of 20 concurrent connections to the database
• A minimum of five connections open in the pool
• The pool will wait indefinitely for a connection to free up and will,

therefore, not throw a connection exception as a result of timeout waiting

There are many other parameters that can be specified to control the connection
pool; the full documentation of them is available from the DBCP pages at
http://commons.apache.org/proper/commons-dbcp/configuration.html.

Chapter 3

[85]

Of all the potential parameters, the following are worth considering for inclusion:

Parameter Description
poolPreparedStatements This is a Boolean flag indicating whether

prepared statements should be pooled. This
is an important setting from a performance
perspective. It is disabled by default.

maxOpenPreparedStatements This is the maximum number of prepared
statements that can be kept open in the
connection pool. Be careful with this setting
as allowing too many can cause stability
problems. It is unlimited by default.

validationQuery This is a statement to execute to that a
connection is active before it is used. This is
not necessary if you can guarantee stability of
connections in your database environment.

If we want to use any additional parameters, then we just need to include them in
the <context><resource> element of the <tomcat_home>/conf/context.xml file.

Out of these parameters, the poolPreparedStatements parameter is the most
interesting. A prepared statement, sometimes referred to as a parameterized
statement, is a feature that allows databases to run repeated statements more
efficiently. Each time a database executes a statement, it goes through a cycle of
parsing, compiling, and optimizing before executing. This cycle adds overhead to
each SQL statement executed. In systems that repeatedly run the same queries, with
only some parameters being different on each run, this inefficiency will become
very apparent in performance. By preparing the statement through parameter
substitution, the database platform can parse, compile, and optimize the statement
once and hold it in memory. Each time a query comes to match the statement,
the ready-compiled statement can be executed straightaway. This will provide
tremendous performance increases in systems that repeatedly execute similar
statements, and GeoServer can execute many statements in this way.

Now that the Tomcat container has been configured, we need to make GeoServer
aware of the JNDI resource name so that we can use it when creating data store
connections. An entry needs to be added to GeoServer's web.xml file in <tomcat_
home>/webapps/geoserver/WEB_INF/web.xml.

Working with Vector Data in Spatial Databases

[86]

At the end of this file, we need to add an entry so that GeoServer is aware of the
resource that was created at the container level:

<web-app>
 <!—- Existing file content -->
 <resource-ref>
 <description>PostgreSQL Data Source</description>
 <res-ref-name>jdbc/postgres</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

This statement in the web.xml file will make GeoServer aware of the naming
resource and utilize it in data connections. To ensure that the configuration
changes are emitted to the Tomcat container, you should restart your services.

Once the services restart, we can connect to our Tomcat database connection pool
by selecting the PostGIS (JNDI) option when creating a new data source. To use
the example JNDI resource name we created previously, we need to enter it into
the jndiReferenceName textbox:

So, for the example resource name we created for PostgreSQL, the value will be
java:comp/env/jdbc/postgres. The java:comp/env element of the value is the
part of the JNDI namespace where the configured entries and resources are placed.
The jdbc/postgres portion is the name that we give to our connection pool in
the name attribute of the <Resource> element in Tomcat's context.xml file. So,
if we call our connection pool jdbc/postgis, the jndiReferenceName name
will be java:comp/env/jdbc/postgis. With the data source configured, layers
can be published just like when using the standard JDBC version of the database
connection. The difference is that our database connection pool is now being
managed at the servlet container level, rather than at the GeoServer application level.

Chapter 3

[87]

General database connection parameters
Irrespective of the database platform you use to serve your vector data, there is a set
of parameters that is common to all. In this section, we will take a look at:

• How primary keys can be managed
• Database startup session scripts
• Database shutdown session scripts

The primary key metadata table
While not necessary, it is usually best practice to have your database tables configured
with a primary key. A primary key should be a unique value for each record in the
table, and most often, it's not a simple integer incremented by some value, often 1, for
each newly inserted record. GeoServer usually derives its feature ID values from the
table's primary key column, and it will make assumptions about how to generate new
IDs when inserting features, for example, as a result of a WFS-Transaction (WFS-T)
insert transaction. These will usually be based on common conventions for a database
platform, for example, looking for an auto-incrementing column in PostGIS. If
GeoServer can't find a source for its new value, it will generate a random value and use
it instead. If no primary key is set for a layer, then GeoServer treats it as a read-only
layer, and therefore, does not make it available to WFS-T.

This automatic discovery behavior can be switched off by specifying a primary
key metadata table. This table, when present, is used by GeoServer to make decisions
about how to determine the correct value to use for a feature ID, in other words,
a primary key. For example, setting the pk_policy value to sequence tells
GeoServer to use the next available value from the sequence identified in the
pk_sequence column.

The table can be named anything you like; just make sure you specify the correct
name of the table when adding it to a data source in the primary key metadata
table textbox.

GeoServer defaults to looking for a table named gt_pk_metadata_
table in our database, if we do not set a value for the primary key
metadata table textbox. If we use this name for our metadata table,
then we do not need to specify a value for the textbox.

Working with Vector Data in Spatial Databases

[88]

Although the table can be named anything, the structure must adhere to the
following columns:

Column Type Description
table_
schema

VARCHAR This determines the name of the database schema
the table belongs to.

table_name VARCHAR This determines the name of the table.
pk_column VARCHAR This determines the name of the column to be

used to create feature IDs.
pk_column_
idx

INTEGER This determines the index of the column in a
multicolumn key.

pk_policy VARCHAR This determines the policy to use when creating
new IDs. It can be either assigned, sequence,
or autogenerated.

pk_sequence VARCHAR This determines the name of the database
sequence to get the next value from when
pk_policy is set to sequence.

You will need to create this table according to the SQL conventions for the database
platform that you run. The GeoServer documentation contains an example of
creating the primary key metadata table in a PostGIS database at http://docs.
geoserver.org/stable/en/user/data/database/primarykey.html.

The database session startup SQL
GeoServer has the ability to execute a SQL script each time it grabs a connection
from the database connection pool. You can use the script to perform a wide range of
tasks, but the most common use for the script will probably be to perform some form
of database-level authorization of user access. This will enable a much finer-grained
control over data security than is possible at the GeoServer security subsystem level.

The startup script can be parameterized by expanding the environment variables,
and environment variables can even be passed along with the OGC request
parameters. In this case, the env parameter is appended to the OGC service
request and contains a key:value pair for each parameter to be passed:

&env=name1:value1;name2:value2

Chapter 3

[89]

The database session close-up SQL
A database session close-up script is similar in nature to a startup script in that it
is executed on each request; the difference is that the script is executed when the
session is closed. The close-up script should be used to clean up anything opened,
created, or started in the startup script. For example, if some database-access-level
security is applied on a session at startup, it should be removed at close-up to ensure
that no security issues occur.

The geometry metadata table
Depending on the database platform you are connecting to, GeoServer will adopt
a different strategy for the autodiscovery of geometry types and spatial reference
information. In some cases, it will use data inspection to examine the first record
of the table, and read the geometry to determine its type and spatial reference, for
example, with Microsoft SQL Server. In other cases, it will use the built-in database
metadata tables or views to get the information, as with Oracle databases.

For situations where GeoServer's default strategy to discover the geometry type and
spatial reference information is unreliable or error-prone, a geometry metadata table
can be used to manually specify the details for each table. The following table lists
the columns that should be present in the geometry metadata table:

Column name Type Description
F_TABLE_SCHEMA VARCHAR(30) This determines the name of the schema

that the table belongs to
F_TABLE_NAME VARCHAR(30) This determines the name of the table
F_GEOMETRY_COLUMN VARCHAR(30) This determines the name of the column

that holds the geometry of the features
COORD_DIMENSION INTEGER This determines the dimension of the

coordinates, which is either 2 or 3
SRID INTEGER This determines the spatial reference

identifier
TYPE VARCHAR(30) This determines the type of the

geometry held in the table, which
can be POINT, LINE, POLYGON,
COLLECTION, MULTIPOINT, MULTILINE,
MULTIPOLYGON, or GEOMETRY

Working with Vector Data in Spatial Databases

[90]

You can create this table in your database using a SQL script appropriate to the
platform that you use; for example, for Microsoft SQL Server, it will be:

CREATE TABLE GEOMETRY_COLUMNS(
 F_TABLE_SCHEMA VARCHAR(30) NOT NULL,
 F_TABLE_NAME VARCHAR(30) NOT NULL,
 F_GEOMETRY_COLUMN VARCHAR(30) NOT NULL,
 COORD_DIMENSION INTEGER,
 SRID INTEGER NOT NULL,
 TYPE VARCHAR(30) NOT NULL,
 UNIQUE(F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN),
 CHECK(TYPE IN ('POINT','LINE', 'POLYGON', 'COLLECTION',
'MULTIPOINT', 'MULTILINE', 'MULTIPOLYGON', 'GEOMETRY')));

Once you create this table in your database, you need to populate it with all the
tables that you will publish as layers in GeoServer. In the preceding example, we set
the name of the table to GEOMETRY_COLUMNS. However, the table you create can be
given any name. Make sure to use the name you give the table when entering the
value into the Geometry metadata table textbox when creating the data store.

Serving data from PostGIS
PostGIS (http://www.postgis.net) is, without question, the most popular open
source spatial database platform available today. PostGIS is not actually a database
in itself; it is in fact an open source library that spatially enables the open source
PostgreSQL database. However, the name is so frequently used when referring to
a PostgreSQL database with the extension installed, that it is the term we will adopt
when discussing it in this book. In the open source geospatial world, GeoServer
and PostGIS are perhaps the most common combination of spatial database and
web mapping server. It is the database that GeoServer supports out of the box,
without the need for any further configuration.

Publishing a PostGIS table as a layer
To publish a PostGIS table as a layer in GeoServer, we must first create a data store
that connects to a PostGIS database. From the main page of the web administration
console, choose the Add stores option to open the New data source page:

Chapter 3

[91]

The New data source page lists all available formats that GeoServer can use as a data
source. PostGIS is available as standard on all installations. To publish a table from
PostGIS, select either the PostGIS or PostGIS (JNDI) option:

On the New Vector Data Source page, select the Workspace option from the
drop-down list that you want this data source to belong to, and then give it a
meaningful name and description.

Next, we need to specify the connection parameters so that GeoServer knows
how to communicate with our database. The following table describes the main
connection parameters:

Parameter Description
host This determines the host IP address or URL for your database server.
port This determines the port your PostGIS server is listening for

connections on. Normally, this is port 5432, but you should consider
implementing a different public port such as 5432, which is often
probed by malicious software looking for exploits.

Working with Vector Data in Spatial Databases

[92]

Parameter Description
database This determines the name of the database on your server to connect to.
schema This determines the name of the database schema containing your data.

Typical PostGIS installations will have this in Public, but you should
consider partitioning your database using schemas.

user This determines the name of the user to connect to the database as.
passwd This determines the password for the specified user.

Once we have the basic connection parameters set, we need to examine the database
connection pooling parameters (max connections, min connections, fetch size,
connection timeout, and validate connections). For most cases, the default
values will be good enough, but do bear in mind the discussion we had at the start of
this chapter on optimizing the settings.

Consider creating a primary key metadata table and entering its name in the textbox,
especially if you plan on publishing your data so that it is updatable through WFS-T
insert operations. Having a reliable and stable primary key column is fundamental
to WFS-T working effortlessly. If you only plan on publishing your data through
WMS, then primary keys are less of an issue, and GeoServer's default strategy will be
sufficient for your needs.

Although not essential, it is always a good practice to have
primary keys on your database tables. This will be important if
you want your table to be available through WFS-T.

It is worth considering what the Loose BBOX checkbox will do for you if you enable
it. This is a potential performance-enhancing setting, but it does come with a caveat.
It can increase performance because rather than considering the full geometry of a
feature when doing a spatial selection, it uses the minimum bounding rectangle of
the geometry. Consider the following example:

2

A
1

Chapter 3

[93]

Let's say we want to do a point-in-polygon selection query using feature (A) as
the selection polygon. If Loose BBOX is enabled, then the spatial query will use
the minimum bounding rectangle of feature (A), which is shown as the dashed
line. This will result in point features (1) and (2) being returned, even though point
(2) is clearly outside of feature (A). However, the time to return the result will be
significantly faster than if we use the full geometry of feature (A) to return the
accurate result of only point (1). So, the increased performance will come at the cost
of some degree of accuracy. If you plan on only serving up your data as a WMS
service, or if you think that users will not try and perform complex filtering with
WFS, then it is worth turning on the Loose BBOX option as the drawback of reduced
accuracy is far outweighed by the performance gains. If, however, you require
accuracy in your system, then keep the option switched off.

Another performance-enhancing parameter to consider turning on is
preparedStatements and its associated Max open prepared statements.
Prepared statements, sometimes called parameterized SQL, is a database feature
that allows it to run repeated statements more efficiently. Each time a statement is
executed on a database, it must first be parsed, compiled, and then optimized—this
takes time. Multiply this time by potentially thousands of the same type of statement,
and you will see that a significant amount of time can be wasted due to overhead.
A prepared statement overcomes this by taking the parsed, compiled, and optimized
statement, and storing it for future use. When another statement arrives at the
database with the same signature as the prepared statement, but with only variable
values differing like a column in a WHERE clause, then the database can omit the
parse, compile, and optimize steps and go straight to execution, thus saving time that
will manifest in your environment as better performance. The Max open prepared
statements value is an integer indicating how many prepared statements should
be kept open in the connection pool. Each prepared statement will have a resource
requirement associated with it, so setting this value too high can lead to instability as
resources can potentially run out. It is, however, worth setting preparedStatements
on as it will provide better performance.

Once all the settings have been set, hit the big green Save button and wait for
GeoServer to set itself up. If everything works, GeoServer will present you with
a page containing a table listing all the tables that you can publish as a layer.
Layer publishing follows the same pattern as any other type of data store.

Serving data from Oracle
Out of the box, GeoServer does not support Oracle databases as a data source.
However, there is an extension available that enables support for it as a data source.
We just need to add the extension into our GeoServer instance and configure a
connection to our database.

Working with Vector Data in Spatial Databases

[94]

Installing the Oracle extension
To add support for Oracle databases, we need to download the extension.
We must ensure we choose the download matching the version of GeoServer that
we installed. We have been using the stable version (which at the time of writing
is 2.5.2), so this is the version of the extension that we need to download. In your
favorite browser, go to http://geoserver.org/release/stable and choose
the Oracle option under the Extensions | Data store section, as shown in the
following screenshot:

Download the file to a location on your system and issue the following command
from a command line; this command will work whether you are running a Linux
or Windows environment:

$ unzip geoserver-2.5.2-oracle-plugin.zip *.jar –d <tomcat_home>/webapps/
geoserver/WEB-INF/lib/

Change <tomcat_home> to the location where you have Tomcat installed.
This command will extract the Java files from the ZIP archive and copy them
straight into our GeoServer directory. Repeat this process for all instances of
Tomcat that you are running.

Chapter 3

[95]

The GeoServer extension comes with the Oracle 10g JDBC driver that should work
with Oracle 11g as well as previous versions. However, there have been some
reported issues when using the driver to connect to 11g and 12c databases. If you
experience problems creating connections to an 11g or 12c database, then you should
first update the JDBC driver by downloading the latest version from Oracle's website
(http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-
112010-090769.html). Download the ojdbc6.jar file and copy it into <tomcat_
home>/webapps/geoserver/WEB-INF/lib. Delete the ojdbc4.jar file in the same
directory to prevent any driver clashes.

Validating the installation
Now that we installed the GeoServer extension, we need to confirm that everything
has worked. If you haven't done so already, restart your GeoServer instances and
log in to the web administration console. From the left-hand-side menu, navigate
to Data | Stores, and then click on the Add new store link on the Stores page. The
New data source page will be displayed and should be similar to the following one:

If you can see the three options for Oracle NG highlighted in the preceding
screenshot, then the extension has been installed and configured correctly. You will
notice an entry called Oracle NG (OCI) in the list of options. This type of data store
will use the OCI driver rather than the JDBC driver, and will only work if your
server has an Oracle client, such as Oracle Instant Client, installed on it. However,
in most cases, the standard JDBC or JNDI drivers will be sufficient.

Working with Vector Data in Spatial Databases

[96]

Publishing an Oracle table as a layer
Now that we configured the GeoServer extension and verified that it is working
correctly, we can publish our data tables as layers in GeoServer. First, we need to
create a data store, which is the connection to our Oracle database containing the
tables we want to publish as layers. From the main page of the web administration
console, choose the Add stores option to open the New data source page.

From the list of available Vector Data Sources, choose the Oracle NG option. Select
the workspace from the drop-down list that you want this data source to belong to,
and then give it a meaningful name and description.

Next, we need to specify the connection parameters so that GeoServer will know
how to communicate with our database. The following table describes the main
connection parameters:

Parameter Description
host This determines the host IP address or URL for your database server.
port This determines the port your Oracle server is listening for connections

on. Normally, this is port 1521, but you should consider implementing a
different public port as 1521 is often probed by malicious software.

database This determines the name of the database on your server to connect to.
This is actually interpreted by Oracle as a SID name, but if you need to
connect as a Service, then prefix the name with a /.

schema This determines the name of the database schema containing your data.
It is highly recommended that you set this value as it will drastically
increase the performance of data discovery.

user This determines the name of the user to connect to the database as.
passwd This determines the password for the specified user.

Once we have the basic connection parameters set, we need to examine the database
connection pooling parameters (max connections, min connections, fetch size,
connection timeout, and validate connections). For most cases, the default
values will be good enough, but do bear in mind the discussion we had at the start of
this chapter on optimizing the settings.

The final parameter to consider is the textbox named Geometry metadata table.
This is an optional parameter and can be safely left empty; however, it is worth
pausing for a moment to consider what benefit it can have. For Oracle data sources,
GeoServer utilizes the built-in metadata views from the MDSYS schema, in particular,
USER_SDO* and ALL_SDO*. These views are usually populated when you use
software to load spatial data into Oracle.

Chapter 3

[97]

However, if you add spatial information yourself for scripts or some other means,
then you will need to ensure the views are updated to reflect the data you have
added. Although use of the metadata views is generally robust, there might be
situations where GeoServer is unable to read them; for example, if the connection
pool uses impersonation to connect to the database. In these circumstances, the
manual geometry metadata table, discussed earlier in this chapter, can be used. Just
specify the name of the table you create in the database in the Geometry metadata
table textbox. It is worth considering creating this table and populating it with
information. GeoServer will first use the table if it is present, and then use the
metadata views if it cannot find an entry in the table. Therefore, you can be assured
of always having your geometry type and spatial reference information properly
identified. If the metadata views don't discover the information, you can add an
entry to the geometry metadata table instead.

Once you have set all the parameters for the data source, go ahead and click on
the Save button. If there are any problems with your configuration, a red box will
appear, giving you details of the error. If all is well, then GeoServer will connect to
your database and discover what tables are available to it for publishing as a layer.
The New Layer page is then opened and the tables available for publishing are listed.

Serving data from Microsoft SQL Server
and SQL Azure
GeoServer does not come with support for Microsoft SQL Server or SQL Azure out
of the box. To enable support for Microsoft SQL Server databases as a source format,
we need to install the GeoServer extension and supporting Microsoft JDBC drivers.

Installing the Microsoft SQL Server extension
To get support for Microsoft SQL Server as a data store, we need to install two
components. First, we must install the GeoServer extension to enable the format, and
then we need to install some supporting Microsoft files. Due to licensing restrictions,
the GeoServer extension does not come with the necessary Microsoft JDBC driver
files, and so, these will need to be installed separately.

We need to download the GeoServer extension for SQL Server, ensuring we choose
the download matching the version of GeoServer that we installed. We have been
using the current stable version (which at the time of writing is 2.5.2), so this is the
version of the extension we need to download.

Working with Vector Data in Spatial Databases

[98]

In your favorite browser, go to http://geoserver.org/release/stable and
choose the SQL Server option under the Extensions | Vector Formats section,
as shown in the following screenshot:

Download the file to a location on your system and issue the following command
from a command line; this command will work whether you are running a Linux or
Windows environment:

$ unzip geoserver-2.5.2-sqlserver-plugin.zip *.jar –d <tomcat_home>/
webapps/geoserver/WEB-INF/lib/

Change <tomcat_home> to the location where you have Tomcat installed. This
command will extract the Java files from the ZIP archive and copy them straight into
our GeoServer directory. Repeat this process for all instances of Tomcat that you are
running. Next, we need to download the Microsoft JDBC driver files.

Installing Microsoft JDBC drivers on Linux
Irrespective of the distribution of Linux you are running, the installation process for
the JDBC driver is the same. To download the file, go to http://www.microsoft.
com/en-us/download/details.aspx?id=19847 and click on the big red Download
button. A pop-up window will appear, allowing you to choose the file to download,
which is either a *.exe file or a *.tar.gz file. We can't run a .exe file on Linux, so
we need to choose the .tar.gz file instead. At the time of writing, the current name
of the file is sqljdbc_3.0.1301.202_en.tar.gz.

Chapter 3

[99]

Check the box for the file, as shown in the preceding screenshot, and then click on
the big blue Next button:

Save the downloaded file somewhere on your system so that you can access, for
example, your home directory. If you followed the advice in Chapter 1, Installing
GeoServer for Production, and installed a base server installation of Linux, you will not
be able to go through the Microsoft web page to perform the download, in which
case you can download the necessary file directly by issuing the following command
on the command line:

$ cd ~

$ wget http://download.microsoft.com/download/E/A/9/EA9CAD06-1716-4CFE-
8339-0BBB9C5E588E/sqljdbc_3.0.1301.202_enu.tar.gz

These commands will change into your home directory; then, download the tarball
file containing the JDBC driver file that we want. Now, we just need to copy the
necessary file into GeoServer:

$ tar –xvzf sqljdbc_3.0.1301.202_enu.tar.gz

$ sudo cp sqljdbc_3.0/enu/sqljdbc4.jar <tomcat_home>/webapps/geoserver/
WEB-INF/lib/

Working with Vector Data in Spatial Databases

[100]

These commands will unpack the tarball, and then copy the sqljdbc4.jar file into
the lib directory of GeoServer. Replace <tomcat_home> with the location of your
Tomcat instance. Remember to perform the copy command for each instance of
GeoServer that you are running. Once you copy the file to all instances of GeoServer,
you can clean up your system by removing the directory:

$ rm –rf sqljdbc_3.0/

To have GeoServer recognize the presence of the format, you must restart all the
instances of GeoServer. If you followed the instructions in Chapter 1, Installing
GeoServer for Production, then we will issue the following commands:

$ sudo service tomcat-1 restart

$ sudo service tomcat-2 restart

Installing Microsoft JDBC drivers on Windows
Server 2008 R2
The process to install the JDBC drivers on Windows is similar to Linux, except
that we also need to copy some additional files into the System32 directory. To
download the file, go to http://www.microsoft.com/en-us/download/details.
aspx?id=19847 and click on the big red Download button. Choose the option for
the .exe file, and then click on the big blue Next button. When prompted with the
file download, save it to a location on your system.

Chapter 3

[101]

Open the file explorer and navigate to the location you saved the file to. Double-click
on the downloaded file, sqljdbc_3.0.1301.202_enu.exe, to open it:

In the WinZip Self-Extractor dialog, specify a location for the Unzip to folder:
textbox, which is where the contents will be extracted to. To keep things simple,
specify C:\Temp for the location, and then click on the Unzip button. If all goes
well, you will get a message box telling you that it successfully extracted 1,232 files.
These files will now be in the C:\Temp\sqljdbc_3.0 directory.

There are three files that need to be copied from this directory; use the following
table to see which files should be copied where:

Source file Destination directory
C:\Temp\sqljdbc_3.0\enu\sqljdbc4.jar <tomcat_home>/webapps/

geoserver/WEB-INF/lib

C:\Temp\sqljdbc_3.0\enu\xa\x86\
sqljdbc_xa.dll

C:\Windows\System32

C:\Temp\sqljdbc_3.0\enu\auth\x86\
sqljdbc_auth.dll

C:\Windows\System32

Working with Vector Data in Spatial Databases

[102]

The preceding examples assume we are running a 32-bit JVM. If
we use a 64-bit JVM, then we will use the x64 directory instead.

Change <tomcat_home> for the location of your Tomcat instance, and remember
to copy this file to each instance of Tomcat that you created. Once you copy these
files into their respective directories, you can remove the C:\Temp\sqljdbc_3.0
directory to keep your system clean.

To have GeoServer recognize the presence of the format, you must restart all the
instances of GeoServer.

Validating the installation
Now that we installed the GeoServer extension and supporting Microsoft JDBC
driver, we need to confirm that everything worked. If you haven't done so already,
restart your GeoServer instances and log in to the web administration console. From
the left-hand-side menu, navigate to Data | Stores, and then click on the Add new
store link on the Stores page. The New data source page will be displayed and
should be similar to the one shown in the following screenshot:

If you can see the two options for Microsoft SQL Server highlighted, then the
extension and driver have been installed and configured correctly.

Chapter 3

[103]

Publishing a Microsoft SQL Server table
as a layer
Now that we configured the GeoServer extension and verified that it is working
correctly, we can publish our data tables as layers in GeoServer. First, we need
to create a data store that is the connection to our Microsoft SQL Server database
containing the tables that we want to publish as layers. From the main page of the
web administration console, choose the Add stores option to open the New data
source page.

From the list of available Vector Data Sources, choose the Microsoft SQL Server
option. From the drop-down list, select the workspace that you want this data source
to belong to, and then give it a meaningful name and description.

Next, we need to specify the connection parameters so that GeoServer will know
how to communicate with our database. The following table describes the main
connection parameters:

Parameter Description
host This determines the host IP address or URL for your database server.
port This determines the port that your database server is listening for

connections on. Microsoft SQL Server usually defaults to port 1432 or
1433, but you might need to check your configuration or consult your
database administrator.

database This determines the name of the database on your server to connect to.
If you leave this blank, then the default database associated with the
user you connect with will be used.

schema This determines the name of the database schema containing your data.
If you leave this blank, then the connection will use the default schema
assigned to the user you connect as.

user This determines the name of the user to connect to the database as. If
you connect to a SQL Azure database, then you will need to append
@azure_server_name to the end of the username, where azure_
server_name is the name of the Azure server hosting your database.

Password This determines the password for the user you are connecting to the
database as.

Once we have the basic connection parameters set, we need to examine the database
connection pooling parameters (max connections, min connections, fetch size,
connection timeout, and validate connections). For most cases, the default
values will be good enough, but do bear in mind the discussion we had at the start of
this chapter on optimizing the settings.

Working with Vector Data in Spatial Databases

[104]

If your Microsoft SQL Server installation supports Integrated Security, and you are
running GeoServer under a Windows domain account that has access rights granted
to the database, you can check the box on the page to enable this. If, on the other
hand, you are not, or are not sure, then leave this box unchecked.

The final parameter to consider is the textbox named Geometry metadata table. This
is an optional parameter and can be safely left empty. However, it is worth pausing
for a moment to discuss what this is and the benefit it can have. As we discussed
previously in the General database connection settings section, when GeoServer
connects to a database, it uses strategies to discover metadata about the table being
published, which consists of important information, such as the geometry type and
spatial reference information. For Microsoft SQL Server, it does this by inspecting
the table's first row of data. The data inspection can be error-prone, perhaps because
the geometry contained in the first row is not valid and causes an error state to arise.
To make it possible for GeoServer to reliably understand what data is available
to publish, the geometry metadata table can be created and specified. It is highly
recommended to create the geometry metadata table for Microsoft SQL Server.

Once you have set all the parameters for the data source, go ahead and click on the
Save button. If there are any problems with your configuration, a red box will appear
giving you details of the error. If all is well, then GeoServer will connect to your
database and discover what tables are available to it to publish as a layer. The New
Layer page is then opened, and the tables available to publish are listed:

Next to each table that you can publish as a layer, there is a Publish link; click on this
for the layer that you want to publish. At this point, the process to publish the layer
is the same as for any other data source type.

Chapter 3

[105]

Creating SQL View layers
So far in this chapter, we have looked at publishing layers based on traditional
database tables; so now, we will look at GeoServer's ability to create SQL View
layers. A SQL View layer is a kind of dynamic layer within GeoServer that allows
for a custom SQL script to be executed on each request for data. A SQL View layer
can be used to perform complex database queries to derive content for a layer, for
example, selecting all the points of a certain type within a polygon and adding a
count value to that polygon. The generated polygon layer can then be rendered with
a color ramp to show the range of values.

GeoServer SQL Views versus database views
You might be looking at this and thinking to yourself, "Why will I use a GeoServer
SQL View over a database view?" There are a couple of reasons why GeoServer SQL
Views might be preferable to database views:

• You do not require access to the underlying database to create SQL View.
However, you will require SQL-level access to the database to create a
database view.

• Changing a database view requires SQL-level access to the database,
whereas changing SQL View only requires access to the GeoServer web
administration console.

• GeoServer SQL View can be dynamically altered at runtime, based on a set of
request parameters.

SQL View is read-only, and therefore, cannot be updated through a WFS-T
transaction without some additional configuration, whereas some database platforms
do allow views to be updated as if they were a regular database table. If WFS-T is
important to your use case and you want to use views, then SQL Views will not be
appropriate, and you should instead look to the database level to manage views.

That being said, it is the last reason in the list that is the real benefit to SQL Views
in GeoServer. SQL View can be passed as parameters that are part of a WMS or
WFS request to control its output; the default values can be set to handle situations
where the parameter might be missing from the request, and regular expressions
(http://en.wikipedia.org/wiki/Regular_expression) can be used to validate
the parameter values. The use of regular-expression validation on parameters is very
useful as it will allow you to safeguard against potential SQL Injection attacks that a
parameterized SQL View can open you up to.

Working with Vector Data in Spatial Databases

[106]

Creating a SQL View layer
So SQL Views, and in particular parameterized ones, are a very useful feature.
So, how do we go about creating them in GeoServer? The process is actually
quite straightforward. With a database data store already defined, for example,
Microsoft SQL Server, we simply create a SQL View layer the same way we will
create any other.

For the following examples, we downloaded a dataset of street-level crime reporting
for August, 2014 from the UK Police Data Portal at http://data.police.uk/data.
I selected the data for all Police Forces and imported the CSV files into my Microsoft
SQL Server database using ogr2ogr (http://www.gdal.org/ogr2ogr.html) and
spatially indexing it.

The following steps will take our downloaded dataset, in this case, 2014-08-avon-
and-somerset-street.csv, and show how we can load it into Microsoft
SQL Server:

1. Before we can load the CSV file, we need to create a VRT (http://www.
gdal.org/drv_vrt.html) that will tell ogr2ogr how to interpret the CSV file
as a point dataset. Use a text editor to create a file called 2014-08-avon-and-
somerset-street.vrt, and save it to the same location as the .csv file. The
content of the file should look like the following:
<OGRVRTDataSource>
 <OGRVRTLayer name="AvonSomersetStreetCrime">
 <SrcLayer>2014-08-avon-and-somerset-street</SrcLayer>
 <SrcDataSource>2014-08-avon-and-somerset-street.csv</
SrcDataSource>
 <GeometryType>wkbPoint</GeometryType>
 <LayerSRS>WGS84</LayerSRS>
 <GeometryField encoding="PointFromColumns" x="Longitude"
y="Latitude"/>
 </OGRVRTLayer>
</OGRVRTDataSource>

Chapter 3

[107]

2. Next, we need to run a test to ensure that OGR will interpret the CSV
file through the VRT definition correctly. Enter the ogrinfo -ro -al
2014-08-avon-and-somerset-street.vrt command that should
generate an output similar to the following:

3. Having confirmed that OGR can read the data through VRT, we can now
issue the command to load it into SQL Server, changing the values inside the
curly braces to match your database connection:
ogr2ogr -f MSSQLSpatial "MSSQL:Server={server_
name},{port};Database={database_name};Uid={user_name};Pwd={passwo
rd};Encrypt=yes;Connection Timeout=30;" 2014-08-avon-and-somerset-
street.vrt

Working with Vector Data in Spatial Databases

[108]

4. Next, we need to create a spatial index on the newly created table with the
following command. Again, replace the values in curly braces to match your
database connection:

ogrinfo -sql "create spatial index on AvonSomersetStreetCrime"
"MSSQL:Server={server_name},{port};Database={database_
name};Uid={user_name};Pwd={password};Encrypt=yes;Connection
Timeout=30;"

With the crime data loaded into our database, we will first create a SQL View layer
that will filter the crime data to show only records with CRIME_TYPE of Drugs, then
alter the view so that we further filter based on a LAST_OUTCOME_CATEGORY value
of Under investigation, and finally change SQL View so that CRIME_TYPE is
parameterized, thus allowing us to dynamically change the view for different types
of crimes on request.

Creating a SQL View layer follows much the same pattern as any other layer. In the
web administration console, you click on the Layers option from the left-hand side
menu to open the page showing a list of published layers. From this page, clicking
on the Add a new resource link opens the New Layer page where we select our data
store to add a layer from:

Chapter 3

[109]

Notice how when we select a data source that has a database backend, we get some
additional options, one of which is the Configure new SQL view… link. Clicking on
this link will take us to a page where we can define our SQL View properties:

Working with Vector Data in Spatial Databases

[110]

The first thing we must do is provide a name for our SQL View layer. This will be the
name of the layer in GeoServer, the same as any other type of layer you might create.
In this case, we shall call the layer DrugsCrime to make it descriptive of what the
layer content is.

Next, we need to define the SQL statement that will form the selection of data from
the database. This can be any SQL that is valid for your database platform as part of
a FROM clause. So, in this case, the SQL statement that we enter into the textbox will
be translated into a SQL Server SELECT statement similar to the following:

SELECT
 *
FROM (
 SELECT
 ID,
 REPORTED_BY,
 CRIME_TYPE,
 LAST_OUTCOME_CATEGORY,
 GEOM
 FROM
 STREET_LEVEL_CRIME
 WHERE
 CRIME_TYPE = 'Drugs'
) AS vtable;

With the SQL statement defined, we can tick the box to let GeoServer determine
the geometry type and SRID of our selected features, and then click on the Refresh
link above the Attributes table. GeoServer will now run a small sample query using
our SQL statement, and if there are no errors, it will populate the Attributes table
with the columns that we provided in our SELECT statement. Notice how there is
a drop-down box and a textbox in the table row for our GEOM column? This should
have been automatically populated by GeoServer, discovering the geometry type
and SRID for our features. If GeoServer guessed incorrectly, we can simply override
the values using these controls. Finally, we just need to tick the box for each column
we want to have in a composite unique key for features, or a single box for a column
containing a key; we can also leave them all unchecked and have no key. Clicking on
the Save button will then create the SQL View layer, which we can then provide the
usual publishing settings for.

Chapter 3

[111]

Here is a map view showing all the CRIME_TYPE records, without any filtering
applied to the layer; in effect, this SQL View will be the SELECT * query without
a WHERE clause. In this case, it is the normal layer read straight from SQL Server
and rendered:

Here is the same map, but with our SQL View layer showing only records with a
CRIME_TYPE value of Drugs:

Working with Vector Data in Spatial Databases

[112]

Now, we will adapt SQL View so that we further filter the data it returns by adding
an additional WHERE condition to select crimes of the Drugs type, with a last outcome
type of Under investigation. To do this, we need to edit the DrugCrime layer that
we created previously by selecting it from the list of published layers in the web
administration console. On the Edit Layer page, we can scroll down to the Feature
Type Details section, and then click on the Edit sql view link below the table:

The only change we need to make is to alter the SQL statement that is being used to
drive our SQL View. Click in the box and change the statement to the following:

SELECT
 ID,
 REPORTED_BY,
 CRIME_TYPE,
 LAST_OUTCOME_CATEGORY,
 GEOM
FROM
 STREET_LEVEL_CRIME
WHERE
 CRIME_TYPE = 'Drugs'
 AND
 LAST_OUTCOME_CATEGORY = 'Under investigation'

Chapter 3

[113]

Now, we can save the SQL View definition and accept the same publishing
parameters, or change them if we wish. Our map changes to reflect the different views
on the data; notice how the bottom feature is no longer visible; there are only two drug
crimes (represented by purple dots) in this area, when there were three previously:

This is great! So far, we have been able to change the content of a layer by filtering
data out of a much larger table by simply editing a view definition within GeoServer.
We did not go anywhere near the database backend, which means that our
administrative or trusted users can define and edit SQL Views without any risk of
data loss in our database. What will be really good though is to allow our end users
to dynamically change the data they see on a per-request basis. This is where the
real power of GeoServer's SQL Views comes into effect. Now, we will make some
minor changes to our SQL View definition to make it dynamic. As before, edit the
DrugCrime layer and click on the Edit sql view link.

Working with Vector Data in Spatial Databases

[114]

There are two changes that we need to make to turn this SQL View layer into
a dynamic one. First, we need to change the SQL statement to specify where
we want to include our parameters:

SELECT
 ID,
 REPORTED_BY,
 CRIME_TYPE,
 LAST_OUTCOME_CATEGORY,
 GEOM
FROM
 STREET_LEVEL_CRIME
WHERE
 CRIME_TYPE = '%crime_type%'
 AND
 LAST_OUTCOME_CATEGORY = 'Under investigation'

Notice that we removed Drugs from our where clause and replaced it with %crime_
type%. Adding parameters to the SQL statement is simply a matter of specifying a
value and adding a leading and trailing % character. When GeoServer parses the SQL
statement, it will recognize these as parameters. Click on the Guess parameters from
SQL link to have GeoServer automatically populate the parameter table:

Our crime_type parameter has been recognized and added to the table. We can
specify a default value for the parameter, so if a request comes in without the
parameter attached, we can return some default data; in this case, our original Drugs
filter. The Validation regular expression box allows us to enter a regular expression
to use to validate the parameter before it is used. This is a useful protection against
SQL injection attacks (http://en.wikipedia.org/wiki/SQL_injection), but
it also allows us to ensure properly structured input, such as e-mail addresses, is
received. In this case, we added the ^[\w\s]+$ value, which means that we will
accept any alphanumeric or white-space characters as input.

Chapter 3

[115]

To control the SQL Views response, we just need to add an additional query
parameter to the OGC service request. The parameter is viewparams, and it is in
the form of key:value pairs; multiple pairs are separated using a semicolon. For
example, in our case, we will add the following to a WMS request to show only
crimes of the Burglary type, which are currently Under investigation:

&viewparams=crime_type:Burglary

The ability to add viewparams to an OGC service request is a
vendor parameter of GeoServer and not part of the formal OGC
specification for web services.

Adding this to the end of an OGC WMS GetMap request for the area previously
mentioned will yield the following result:

Working with Vector Data in Spatial Databases

[116]

Summary
Now, we are really starting to make progress! Over the last three chapters,
we discussed how to install GeoServer in a production environment, preparing
raster data for high-performance serving; now, we looked at how we can serve
vector data from an enterprise database platform.

We now have a much better understanding of what a database connection pool
is and how we can optimize it for our environment. We also discussed how a
servlet-container-level connection pool can be created using JNDI. We now have a
better understanding of what common parameters we can set on database-backed
stores such as the primary key metadata and geometry columns metadata tables.

We looked at how to create database connections, as data stores for the most
common enterprise-database environments are likely to come across in production
environments. We now understand how to set up GeoServer so that it can connect
to Microsoft SQL Server and Oracle databases through the extension infrastructure.

Finally, we looked at how we can use the SQL View layer type to create layers that
are dynamically populated from our database by using it to filter contents of a much
larger table based on a per-request parameter.

We now have a production-ready instance of GeoServer with a bunch of raster and
vector data connections. Now, it is time to start digging into the more advanced
capabilities of GeoServer and really start to explore its capabilities.

Using GeoServer to Serve
Complex Features

In the previous chapter, we looked at setting up vector data stores from spatial
databases and then publishing tables as layers. This type of data is known as
simple features, and is the type of data that will most commonly be served through
GeoServer. However, it is possible that you will need to deliver a more complex
dataset that is relational in nature and built from multiple data sources.

With a little bit of effort, it is possible to set up GeoServer so that you can deliver
complex feature datasets to your users. In this chapter, we will discuss how this
can be achieved using GeoServer's app-schema extension. By the end of this chapter,
you will have a better understanding of:

• What a complex feature is and how it differs from a simple feature
• What an application schema is and how it can be used
• How to install and configure the app-schema extension
• How to configure the app-schema extension to serve a complex feature

The difference between simple and
complex features
In the previous chapter, we looked at how to efficiently store and serve vector
data. One of the things we did not discuss is how GeoServer considers the vector
data that you store in your database and, therefore, how it is served in a vector
format through WFS.

Using GeoServer to Serve Complex Features

[118]

Simple features – GeoServer's default
GeoServer considers all vector data, irrespective of the storage format, to be simple
features. There are three simple feature profiles defined by the Open Geospatial
Consortium, and GeoServer delivers features similar to the simplest profile, SF-0.

For more details on the OGC simple features specification,
take a look at the information on OGC's website at
http://www.opengeospatial.org/standards/sfs.

A simple feature, delivered through WFS, is the one where there is a straight
one-to-one mapping between the underlying data storage format and the output
XML file. For example, data stored in a database table is delivered by WFS in an
XML output where each feature attribute is a straight one-to-one mapping with
a column in the database table. The XML will contain one feature for every row
returned by the database in response to the WFS request. Consider the following
database record selected from the Police data we loaded in the previous chapter:

ID Force Neighborhood
8715 Sussex EE1NH11

A WFS request for this particular feature will yield the following XML output:

<wfs:FeatureCollection numberOfFeatures="1" timeStamp="..."
xsi:schemaLocation="...">
 <gml:featureMember>
 <Police:ForceNeighbourhoods gml:id="ForceNeighbourhoods.8715">
 <Police:FORCE>Sussex</Police:FORCE>
 <Police:NEIGHBOURHOOD>EE1NH11</Police:NEIGHBOURHOOD>
 <Police:GEOM>
 <gml:Polygon srsDimension="2" srsName="urn:x-
ogc:def:crs:EPSG:27700">
 <gml:exterior>
 <gml:LinearRing srsDimension="2">
 <gml:posList>560137.1812000136 98379.21078293558
560329.9312763263 98406.08010795392 560740.4317393883
98792.07872016821 560769.1816489289 98684.70860240335
561500.8014195256 98219.95597274863 561121.9309060494 97770.0772481022
560430.4309366472 98005.5797026777 560367.0511290649 98234.5799618616
560137.1812000136 98379.21078293558
 </gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </Police:GEOM>

http://www.opengeospatial.org/standards/sfs

Chapter 4

[119]

 </Police:ForceNeighbourhoods>
 </gml:featureMember>
</wfs:FeatureCollection>

The highlighted sections of the output demonstrate the one-to-one mapping of the
database table column to the XML output element. The actual mapping is shown in
the following table:

Database table column name XML element
ID gml:id

FORCE <Police:FORCE />

NEIGHBOURHOOD <Police:NEIGHBOURHOOD />

The content of the XML output from the WFS request can be directly mapped back to
the underlying database table columns that GeoServer is querying. The XML output
in this case is often referred to as a flat representation.

Complex features
In contrast to simple features, a complex feature does not result in a flat output
representation from a WFS request. The XML representation of a complex feature
can have properties that can themselves contain additional nested properties, either
complex or simple. A complex feature can also make reference to another feature
within one of its own elements; this makes the XML output a collection of related
objects that can be identified. In this case, the XML output is often referred to as
being a relational representation.

The best way to consider what a complex feature is will be to look at a real-world
example. Let's suppose that we have a routable road network that we would like
to share with other users. The base model for our road network will consist of road
links and road nodes, where each road link has an identified start and end node, and
there are no duplications of road nodes.

Using GeoServer to Serve Complex Features

[120]

In this simplified example, we have four road node features and three road link
features. Within our database model, we will have these two different feature types
stored as separate tables with, perhaps, a foreign key relationship between the road
nodes and road links. This will allow us to identify that the start road node of the
road link A is 1, and its end road node is 2. The following diagram shows what this
relational table structure might look like:

When sharing this data with other users, we will need to provide not only the
road links that comprise the road network but also the road nodes. This is where a
relational representation in the XML output comes into play. We can elect to output
the start and end road node for each road link as a nested property of the road link,
or we can supply the road nodes as separate features within the XML output and
then reference these separate features through their identifier. Being able to make
these types of associations and provide all the features that belong to the association
in the output is one of the main strengths of a complex feature output. This is also
commonly known as Feature Chaining and allows the delivery of a complex feature
that is constructed from smaller, potentially simpler features. It is a very useful
pattern as it allows for the construction of a complex feature using constituent
features that are useful within their own right. For example, a single road node
feature can also be used to denote a roundabout on the network as well as indicate
the start or end node of a road link to provide the network with direction.

Chapter 4

[121]

Using GeoServer application schemas
Understanding the difference between complex and simple features is the beginning;
knowing what to do about it is the next step. Given that GeoServer will only serve
simple features by default, there needs to be a mechanism to enable us to deliver
complex features when the need arises. Such a need might be to deliver vector data
to our users through some community-derived schema. For example, the European
Union INSPIRE Directive (http://inspire.jrc.ec.europa.eu) mandates the
use of GML in delivering harmonized data models for the delivery of key datasets
across EU member states in an effort to drive interoperability and standards. If you
are responsible for INSPIRE compliance or would like to deliver your data in an
INSPIRE-compliant way, then the ability to deliver complex features from GeoServer
will be important.

Perhaps you want to be able to deliver multiple data tables from a database as a
single package of related features for use in an application. Once again, making
GeoServer deliver complex features will enable this.

Fortunately for us, this is something that others have required, and in the true spirit
of open source collaboration, a GeoServer extension has been created to meet it.
The application schema extension, or the app-schema, adds a data store format to
GeoServer. This enables it to take data from any supported format and combine
it into a complex feature collection for output as a WFS response. The GeoServer
documentation at http://docs.geoserver.org/stable/en/user/data/app-
schema/index.html contains a very detailed description of the app-schema
extension and how to use it, and it is well worth reading for a detailed background.

Installing and configuring the extension
As with other extensions for GeoServer, to use the app-schema extension, it must
first be installed on all of your instances of GeoServer. The extension itself can be
downloaded from the GeoServer project pages, but make sure that you download
the version of the extension that matches the version of GeoServer you are using.
Until now, we have been using the current stable version (which, at the time of
writing this book, is 2.5.2), so we can download the corresponding extension from
http://geoserver.org/download.

http://inspire.jrc.ec.europa.eu
http://docs.geoserver.org/stable/en/user/data/app-schema/index.html
http://docs.geoserver.org/stable/en/user/data/app-schema/index.html
http://geoserver.org/download

Using GeoServer to Serve Complex Features

[122]

The app-schema extension provides GeoServer with a new type of data store, so it
can be found by navigating to Extensions | Vector Formats on the download page.

Download the file to a location on your system, and then issue the following
command from a command line. This command will work whether you are
running a Linux or Windows environment:

$ unzip geoserver-2.5.2-app-schema-plugin.zip *.jar –d <tomcat_home>/
webapps/geoserver/WEB-INF/lib/

Change <tomcat_home> to the location where you have Tomcat installed. This
command will extract the Java files from the ZIP archive and copy them straight into
your GeoServer directory. Repeat this process for all the instances of Tomcat that you
have running. Before restarting GeoServer to enable the extension, we must make a
small change to the WFS service configuration.

Chapter 4

[123]

Configuring the WFS service
When using GeoServer to serve complex features, it is best practice to change two
WFS service settings. These changes can be made using the WFS configuration page,
which can be accessed by navigating to Services | WFS on the left-hand side panel
of the web administration console, or by editing the wfs.xml configuration file. As
we still have GeoServer running, it is simpler to use the web administration console
rather than editing the XML file. Click on the WFS link from the Services section on
the left-hand side menu of the web administration console. Scroll to the bottom of the
page and locate the Conformance and Encode response with sections, as shown in
the following screenshot:

It is important to set the Conformance setting if we want our GeoServer to play
nicely with other systems and clients. By default, GeoServer will use its own internal
WFS schema file when encoding WFS responses by creating a schemaLocation
attribute that references its internal schema file. The following is an example of the
GML output generated by default:

<wfs:FeatureCollection xmlns="http://www.opengis.net/wfs"
xmlns:wfs="http://www.opengis.net/wfs" xmlns:police="http://www.
police.uk" xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
police.uk http://<server>:<port>/geoserver/police/wfs?service=WFS&v
ersion=1.0.0&request=DescribeFeatureType&typeName=police%3Aboundary
http://www.opengis.net/wfs http://<server>:<port>/geoserver/schemas/
wfs/1.0.0/WFS-basic.xsd">

Using GeoServer to Serve Complex Features

[124]

The xsi:schemaLocation attribute has links directly back to the GeoServer instance
that serves the dataset, linking to WFS-basic.xsd. This means that clients will
have to connect to and download the GeoServer schema file, without knowing
whether it is consistent with the WFS schema published at http://schemas.
opengis.net. Ticking the box next to Encode canonical WFS schema location will
change the default behavior of GeoServer. It will encode the WFS response with
schemaLocation for WFS by pointing to http://schemas.opengis.net, as seen in
the following extract:

<wfs:FeatureCollection xmlns="http://www.opengis.net/wfs"
xmlns:wfs="http://www.opengis.net/wfs" xmlns:police="http://www.
police.uk" xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.
police.uk http://<server>:<port>/geoserver/police/wfs?service=WFS&v
ersion=1.0.0&request=DescribeFeatureType&typeName=police%3Aboundary
http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.0.0/WFS-
basic.xsd">

With the setting changes, the xsi:schemaLocation attribute now contains a link
to the official WFS schema document. Connecting clients will now know that the
official schema for WFS is being used for the dataset.

The second change to make is to set the Encode response with setting to Multiple
"featureMember" elements. This option controls how GeoServer will encode
features in a WFS 1.1 response. By default, it encodes all the features inside a single
gml:featureMembers element. When dealing with application schemas, this can
lead to invalid output being generated in certain circumstances. Changing this
setting will make GeoServer encode each individual feature in the response inside a
gml:featureMember element.

We used the web administration console to make these changes; however, if
you would prefer to do this by manually editing the XML file (perhaps because
your GeoServer instance has been shut down), then you can do it by opening the
<geoserver_data_dir>/wfs.xml file (where <geoserver_data_dir> is the location
of your GeoServer data directory) inside a text editor and then adding the following
elements before the closing tag at the end of the file.

<canonicalSchemaLocation>true</canonicalSchemaLocation>
<encodeFeatureMember>true</encodeFeatureMember>

With the WFS settings configured, we can now restart all of our GeoServer instances
to activate the app-schema extension and the changes to the WFS configuration.
To check whether the app-schema extension is working, attempt to create a new
data store.

http://schemas.opengis.net
http://schemas.opengis.net
http://schemas.opengis.net

Chapter 4

[125]

Application Schema DataAccess should be a choice under Vector Data Sources, as
shown in the following screenshot:

Application schema mapping file
An application schema is defined much like any other data store in
GeoServer, the difference being that the data store points to an XML file
called the app-schema mapping file. The mapping file has an associated schema
document called AppSchemaDataAccess.xsd; this document is not required by
GeoServer for the extension to function but is provided for use in XML editors
that utilize an .xsd file for context-sensitive help and schema validation.

The mapping file contains six sections that describe how the extension should read
source data and translate it into a target application schema. The following table
describes each section and its purpose:

Section Required Purpose
namespaces Yes This section provides the definition of all the

namespaces that will be used in the mapping file.
includedTypes No This section enables additional elements to be

included in the mapping file without themselves
being mapped. In other words, the items are not
accessed individually, and they are included for
reusability.

sourceDataStores Yes This section gives details of where the data for
the features will come from. There must be at least
one source data store defined in a mapping file,
but more than one can also be used.

catalog No This section gives the reference to an OASIS XML
catalog configuration file that allows GeoServer to
process entity references.

Using GeoServer to Serve Complex Features

[126]

Section Required Purpose
targetTypes Yes This section provides a list of all the application

schemas (.xsd files) required to create the
mapping. In most cases, only one will be required,
but sometimes, more than one will need to be
specified.

typeMappings Yes This is where the actual work is done. This section
is used to describe the mappings needed to
transform simple features from source data stores
into complex features for output.

The GeoServer documentation goes into a lot of detail about how the mapping
file is constructed and how to use it. We will take a look at the key parts of the file,
but it will be worth spending some time reading the GeoServer documentation for
a fuller explanation (http://docs.geoserver.org/stable/en/user/data/app-
schema/index.html).

The namespaces section is where you can define the namespaces that will be used
in the mapping file. The following fragment is an example of what the namespace
element can look like, in this case, for using a single namespace:

<namespaces>
 <Namespace>
 <prefix>xlink</prefix>
 <uri>http://www.w3.org/1999/xlink</uri>
 </Namespace>
</namespaces>

For each namespace, you need to reference in your mapping file; there must be a
corresponding <Namespace> element in the namespaces section. Each <Namespace>
element consists of two child elements that describe the namespace prefix (for
example, xlink) and the URI (for example, http://www.w3.org/1999/xlink).

The sourceDatastores section allows you to specify the sources of data for the
app-schema extension to use. All references to values within the <OCQL> elements
will be translated into data elements from the source, for example, tables or views
in the case of a database store. Any valid GeoServer data store can be used, and
more than one source data store can be specified, but each one must have a unique
name. Definitions of the properties for the data store are provided using a list of
parameters. The following is the definition for a PostGIS data store connection. A
complete example is provided in the downloadable code that accompanies this book:

<sourceDataStores>
 <DataStore>

http://docs.geoserver.org/stable/en/user/data/app-schema/index.html
http://docs.geoserver.org/stable/en/user/data/app-schema/index.html
http://www.w3.org/1999/xlink

Chapter 4

[127]

 <id>pg_datastore</id>
 <parameters>
 database connection parameters
 </parameters>
 </DataStore>
</sourceDataStores>

The <parameters> element contains the child <parameter> elements, each
consisting of the <name> and <value> elements. Each <parameter> element equates
to standard data store settings that you would expect to find when defining a data
store for PostGIS through the GeoServer web administration console. To define
multiple sources of data, simply add additional <DataStore> elements, ensuring
each one has a unique value for the <id> element.

The targetTypes section provides details of all the application schema (.xsd) files
that will be needed to correctly create the feature type from the mapping file. In the
majority of cases, you will only need to specify the location of one schema file that
holds the definition of the complex feature being created from the mapping file.
However, in some cases, it might be necessary for you to specify multiple xsd files
for the mapping file to function correctly. For example, the following is an example
of targetTypes for the INSPIRE Road Transport Network application schema:

<targetTypes>
 <FeatureType>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/tn-
ro/3.0/RoadTransportNetwork.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/tn/3.0/
CommonTransportElements.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/
net/3.2/Network.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/gn/3.0/
GeographicalNames.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/
base/3.2/BaseTypes.xsd</schemaUri>
 </FeatureType>
 </targetTypes>

There is a single <FeatureType> element that contains multiple <schemaUri>
elements, the contents of each being the web address for that particular xsd file.
When GeoServer first parses the mapping file, it will attempt to go out to the web to
fetch the specified schema files, and it will then store them in the data directory in
a folder called app-schema-cache. Subsequent parsing of the mapping file will not
trigger an external web call; instead, GeoServer will go to the cache of files.

Using GeoServer to Serve Complex Features

[128]

It is important to note that GeoServer will never go back to the
Web to refresh the cache once it is created. If you need to have the
cache refreshed, then you must delete the app-schema-cache
folder contents so that the fetch method is triggered on the next
reading of the mapping file.

If your instance of GeoServer sits behind a firewall and is unable to make outbound
web calls, then you will need to find an alternative method of supplying the schema
files. The GeoServer documentation at http://docs.geoserver.org/stable/en/
user/data/app-schema/app-schema-resolution.html provides some strategies
for how this can be achieved.

The typeMappings section is where the actual substance of the mapping file is.
All the previous elements are more concerned with the setup and configuration
of the mapping file rather than the business of generating content. Within the
typeMappings section, there should be one or more <FeatureTypeMapping>
elements, which is the main instruction to create a new feature. Each
<FeatureTypeMapping> element identifies the source data to feed the type through
the <sourceDataStore> element, the value of which should match one of your
<DataStore> elements in the sourceDataStores section. For example, if we want to
use the PostGIS definition from our previous example, we will specify pg_datastore
as the value for the element. The <targetAttribute> element allows you to specify
the target output feature type, and the <attributeMappings> section allows you to
specify how attributes should be created.

Publishing data with an application
schema
Now, we have an understanding of what an application schema is, and we have our
instance of GeoServer ready to serve data based on one. It is time to get our hands
dirty with a simple example. For this example, we are going to continue with the
idea (presented earlier) of delivering a road network dataset using the INSPIRE
Annex I Road Transport Network schema. Specific details on what this schema
is can be found in the INSPIRE data-specification document, D2.8.1.7, available
at http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/
INSPIRE_DataSpecification_TN_v3.1.pdf.

http://docs.geoserver.org/stable/en/user/data/app-schema/app-schema-resolution.html
http://docs.geoserver.org/stable/en/user/data/app-schema/app-schema-resolution.html
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_TN_v3.1.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_TN_v3.1.pdf

Chapter 4

[129]

We will use the following steps to create a simple implementation of the Road
Transport Network schema using some free OpenStreetMap data:

1. We will first prepare our source dataset in a PostGIS database.
2. Then, we will configure the data store to hold our application schema dataset.
3. After that, we will create the application schema mapping file.
4. Finally, we will bring it all together to publish the data through WFS.

Source data preparation
For this simple example, we are going to use some free OpenStreetMap data.
There are a number of ways in which you can obtain the OpenStreetMap data,
either by manually specifying an area of interest from the OpenStreetMap website
(http://www.openstreetmap.org) or by downloading pre-prepared extracts
of the data.

To download a custom area of data from the OpenStreetMap website, go to
http://www.openstreetmap.org and use the map controls to center the map
on the area you are interested in. Then, click on the Export button to open the
data export window.

http://www.openstreetmap.org
http://www.openstreetmap.org

Using GeoServer to Serve Complex Features

[130]

As you pan and zoom the map, the data extents will change and update.
When you are happy that the map window is displaying the area of data you
are interested in, click on the blue Export button. After a few moments, you will
get a download response from the server; save the file somewhere on your system.
The downloaded file will be an OSM .pbf binary file.

A simpler way to get hold of the OpenStreetMap data is to download a
predefined data extent. Probably the best online resource is offered by Geofabrik
at http://download.geofabrik.de. The page provides a table that allows you to
drill down to a specific area and then download it.

Clicking on the name of a subregion will drill down into further pages of locations.
In most cases, it is possible to drill down into the county level. For my example,
I am going to use the predefined area for West Sussex in the United Kingdom.
We are going to use the osm2po toolset to process and load the downloaded data,
and this tool works best with the .osm.pbf format of OpenStreetMap data.

We are using the osm2po software to translate and clean up
the OpenStreetMap dataset; however, it is useful to know
that in addition to being a translated software, it is also a
very capable routing engine.

Download the latest version of osm2po from http://osm2po.de, and then unzip the
contents to a location on your system. At the time of writing this book, the current
version of osm2po is 4.8.8. With the contents extracted, open a command prompt in
the directory you extracted to and issue the following command:

$ E:\Utilities\osm2po>java -Xmx512m -jar osm2po-core-4.8.8-signed.jar
prefix=ws tileSize=x postp.1.class = de.cm.osm2po.plugins.PgVertexWriter
http://download.geofabrik.de/europe/great-britain/england/west-sussex-l

atest.osm.pbf

http://download.geofabrik.de
http://osm2po.de

Chapter 4

[131]

As you can see, osm2po is a Java application, so you need to make sure that Java is
configured on your system and is on the path. The –Xmx512m switch tells the JVM
how much memory to reserve; adjust this according to your system specification and
the size of the area that you will process. The prefix=ws argument will create the
processed data in a folder that matches the value that you specify; in this case, the
data will be placed in a folder called ws. The postp.1.class switch tells osm2po to
output the nodes as well as the links. The last item should be either the location of a
downloaded OpenStreetMap dataset or the URL where the data can be downloaded.
In this case, we went for the latter and specified the download location. There are
a number of different commands, so check out the help and documentation at
http://osm2po.de/ to learn more. If everything goes well, then we will see the
following as the last line in the console:

Services started. Waiting for requests at http://localhost:8888/
Osm2poService

If you open a web browser and navigate to that location, you will be presented with
the osm2po routing service test bed. Play around a little with it; it's a very capable
routing engine and might prove useful in some of your applications.

Using GeoServer to Serve Complex Features

[132]

Now, you might be asking yourself why are we going through all this trouble to
get hold of some OpenStreetMap data that we can then spit out from GeoServer
in an INSPIRE schema. Well, apart from the fact that it is great fun to play with all
these tools and it is interesting to see how powerful an open source and open data
toolset can be for routing, it creates a SQL script for us that we can use to load the
data into our PostGIS database. More important, though, is that the OpenStreetMap
data would have been cleaned and topologically structured, giving us a nice clean
dataset to work with. If you take a look inside the folder created when the data was
processed, in our case ws, then you will see two SQL scripts that we can run to load
the data into our PostGIS database. From a command line in the directory of the
scripts, run the following commands:

$ psql -U [username] -d [dbname] -q -f "E:\Utilities\osm2po\ws\
ws_2po_4pgr.sql"

$ psql -U [username] -d [dbname] -q -f "E:\Utilities\osm2po\ws\ws_2po_v.
sql"

Remember to change the paths to the SQL files in your system and also specify your
database name and username to connect with. Once the scripts have executed, the
OpenStreetMap data will be held in our PostGIS database, ready for use. There will
be a table that contains the road link features and another table that contains the
start and end nodes for each road link. The two tables are linked through the use of
unique identifiers on the road nodes.

The application schema mapping file
With the data prepared, we are now ready to create a mapping file to take the data
stored in our PostGIS database and publish it in an INSPIRE-compliant schema.
Before we can create the mapping file, we need to set up a workspace within
GeoServer to hold it. There is an important requirement here; the name of the
workspace and its namespace should match the target schema for which we are
generating the mapping file. In our case, this is going to be the same as the INSPIRE
Road Transport Network namespace of tn-ro.

Chapter 4

[133]

Create a new workspace and enter the details shown in the following screenshot:

Note that the value for Namespace URI is the reference to the INSPIRE schema for
Road Transport Network, Version 3.0. This will create a new folder called tn-ro in
our GeoServer directory inside the workspaces folder. Remember how the mapping
file is going to be the definition for the data store? Well, this means that we should
create a folder inside the workspace folder to hold the data store that we will define.
The name does not particularly matter, but try and make it something relevant.
As this is a Road Network dataset, we will create a folder called RoadNetwork,
which will be our data store. Go ahead and create the folder; you should have
<geoserver_data_dir>/workspaces/tn-ro/RoadNetwork if you followed the
naming convention that we used. We are going to create a mapping file inside the
RoadNetwork folder, and we will call it TN-RO_RoadLink.xml to contain the details
of the schema mapping we want to perform. I will simply take you through the key
sections and highlight the areas of most interest rather than including the full script
here. The complete XML file can be downloaded from this book's website.

Using GeoServer to Serve Complex Features

[134]

The XML file must be valid, so the usual opening elements are required. The root of
the document is the as:AppSchemaDataAccess element:

<?xml version="1.0" encoding="UTF-8"?>
<as:AppSchemaDataAccess xmlns:as="http://www.geotools.org/app-schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geotools.org/app-schema
AppSchemaDataAccess.xsd">

Notice the xsi:schemaLocation attribute on this element. Strictly speaking, this is not
necessary as GeoServer is aware of the schema for this XML. However, it is useful to
include this attribute, especially if you want to edit this file in an XML editor that can
use schema documents for highlighting, validation, and code completion.

The next section of the file contains the namespace definitions for all the namespaces
that we will be using:

 <namespaces>
 <Namespace>
 <prefix>gml</prefix>
 <uri>http://www.opengis.net/gml</uri>
 </Namespace>
 <Namespace>
 <prefix>tn-ro</prefix>
 <uri>urn:x-inspire:specification:gmlas:RoadTransportNetwo
rk:3.0</uri>
 </Namespace>
 <Namespace>
 <prefix>tn</prefix>
 <uri>urn:x-inspire:specification:gmlas:CommonTransportElem
ents:3.0</uri>
 </Namespace>
 <Namespace>
 <prefix>net</prefix>
 <uri>urn:x-inspire:specification:gmlas:Network:3.2</uri>
 </Namespace>
 <Namespace>
 <prefix>gn</prefix>
 <uri>urn:x-inspire:specification:gmlas:GeographicalNam
es:3.0</uri>
 </Namespace>
 <Namespace>
 <prefix>base</prefix>
 <uri>urn:x-inspire:specification:gmlas:BaseTypes:3.2</uri>
 </Namespace>

Chapter 4

[135]

 <Namespace>
 <prefix>gmd</prefix>
 <uri>http://www.isotc211.org/2005/gmd</uri>
 </Namespace>
 <Namespace>
 <prefix>xlink</prefix>
 <uri>http://www.w3.org/1999/xlink</uri>
 </Namespace>
 <Namespace>
 <prefix>xsi</prefix>
 <uri>http://www.w3.org/2001/XMLSchema-instance</uri>
 </Namespace>
 </namespaces>

Each <Namespace> element consists of the prefix that will be used and then
the URI that the prefix resolves to. These are the ones required for the INSPIRE
transportation schema; add any additional ones that you want to use.
Next, we come to the <sourceDataStores> section:

 <sourceDataStores>
 <DataStore>
 <id>pg_datastore</id>
 <parameters>
 <!-- Add connection parameters in here -->
 </parameters>
 </DataStore>
 </sourceDataStores>

Recall how we talked about a complex schema being supplied data from multiple
sources? This section is where you define these data connections. Each data source
element must have a unique name in the context of the XML file; in this case, we have
called the source pg_datastore, as it is a PostGIS data source we are describing. The
name of the data source does not matter, but it is a good practice to make the name
descriptive of the source itself, to make it easier to follow in the XML code.

The next section of the XML file is where we specify the locations of all the XSDs that
will be required to service our complex feature. There must be at least one reference
in this section, and most of the time, one will be sufficient. However, there will be
complex cases where more than one reference is necessary:

 <targetTypes>
 <FeatureType>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/tn-
ro/3.0/RoadTransportNetwork.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/tn/3.0/
CommonTransportElements.xsd</schemaUri>

Using GeoServer to Serve Complex Features

[136]

 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/
net/3.2/Network.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/gn/3.0/
GeographicalNames.xsd</schemaUri>
 <schemaUri>http://inspire.jrc.ec.europa.eu/schemas/
base/3.2/BaseTypes.xsd</schemaUri>
 </FeatureType>
 </targetTypes>

If your target feature type requires multiple schemas for it to be validated, then you
would simply create a <schemaUri> element for each one. GeoServer will download
these schemas and place them into a local cache to make it quicker to work with
them when processing data.

The final section is where all the magic happens. This is where you describe the
different type mappings that your application schema publishes. Each type is
expressed through a <FeatureTypeMapping> element and has the instructions of
how a simple feature is mapped into a complex feature:

 <typeMappings>
 <FeatureTypeMapping>
 <sourceDataStore>pg_datastore</sourceDataStore>
 <sourceType>ws_2po_4pgr</sourceType>
 <targetElement>tn-ro:RoadLink</targetElement>

The start of a <FeatureTypeMapping> element contains a child element that points
to one of the data sources defined at the start of the XML file. In this case, it is the
PostGIS (pg_datastore) data source that we defined. The <sourceType> element is
the name of the PostGIS table that GeoServer should use to read the data from.
The <targetElement> element is the name of the output's complex feature that
the app-schema extension should create, and the attribute mappings for which are
described in the following <AttributeMappings> element:

<AttributeMapping>
 <targetAttribute>tn-ro:RoadLink</targetAttribute>
 <idExpression><OCQL>osm_id</OCQL></idExpression>
</AttributeMapping>

This particular <AttributeMapping> element is a special case, as it instructs
GeoServer to create a gml:id attribute on our output complex feature element.
The <OCQL> element tells GeoServer which column in our database table contains
the value to use for the gml:id attribute's value:

<AttributeMapping>
<targetAttribute>net:inspireId/base:Identifier/base:localId</
targetAttribute>

Chapter 4

[137]

 <sourceExpression>
 <OCQL>osm_id</OCQL>
 </sourceExpression>
</AttributeMapping>
<AttributeMapping>
<targetAttribute>net:inspireId/base:Identifier/base:namespace</
targetAttribute>
 <sourceExpression>
 <OCQL>'tn-ro.rn.temp'</OCQL>
 </sourceExpression>
</AttributeMapping>

These two <AttributeMapping> elements are interesting for two reasons. First, they
both demonstrate the reason for the app-schema extension by allowing us to express
a complex attribute mapping from a simple table column. In this case, the complex
attributes are ultimately base:localId and base:namespace, but the reason they
are complex is because they are nested. In the output feature, the base:localId will
be written as follows:

<net:inspireId>
 <base:Identifier>
 <base:localId>
 <!-- the value would be here -->
 </base:localId>
 </base:Identifier>
</net:inspireId>

The second reason that these elements are of interest is because they
also demonstrate how a constant can be supplied as the value for the
<sourceExpression> element. Look at the second example of the two. Notice how
the source expression is written such that the value inside the <OCQL> element is the
constant value tn-ro.rn.temp. Any value contained inside single quotes will be
printed verbatim by the app-schema extension when it writes the output.

This is a relatively simple script, and there is a lot more that can be done with the
mapping file. I highly recommend that you spend some time reading the GeoServer
documentation for mapping files at http://docs.geoserver.org/stable/en/
user/data/app-schema/mapping-file.html to get more details. For now, we will
just look at some of the key implementation points.

The meat of the mapping file is the content within the <attributeMappings>
element, as these are the instructions to the app-schema extension for how to
generate the output complex feature. The first interesting point to look at is the first
attribute mapping that provides the feature with its unique identifier:

<AttributeMapping>
 <targetAttribute>tn-ro:RoadLink</targetAttribute>

http://docs.geoserver.org/stable/en/user/data/app-schema/mapping-file.html
http://docs.geoserver.org/stable/en/user/data/app-schema/mapping-file.html

Using GeoServer to Serve Complex Features

[138]

 <idExpression>
 <OCQL>osm_id</OCQL>
 </idExpression>
</AttributeMapping>

The key part here is the use of an <idExpression> element. This is a Common
Query Language (CQL) expression that the extension will use to create a gml:id
attribute on the feature itself. The value inside the <OCQL> element should be the
name of the table column that holds the value to use it as the id. In this case,
we are using the osm_id column.

CQL is an OGC query language created for use with the Catalogue
Web Services specification. Unlike other filter languages, it is
designed to be written in plain text rather than XML; this makes
it far more accessible to most users.

Most attributes are mapped using the <sourceExpression> element that holds a CQL
expression, either the name of a table column or a string literal, to set for the attribute.
The power of complex features is the ability to create nested, multivalued attributes
in the output, instead of straight one-to-one database column to attribute mappings.
A good example of this is highlighted in the following mapping file content:

<AttributeMapping>
 <targetAttribute>
 net:inspireId/base:Identifier/base:localId
 </targetAttribute>
 <sourceExpression>
 <OCQL>osm_id</OCQL>
 </sourceExpression>
</AttributeMapping>
<AttributeMapping>
 <targetAttribute>
 net:inspireId/base:Identifier/base:namespace
 </targetAttribute>
 <sourceExpression>
 <OCQL>'tn-ro.rn.temp'</OCQL>
 </sourceExpression>
</AttributeMapping>

Chapter 4

[139]

This example will create a complex attribute with nested elements on the output
feature. Notice how a standard XPath query (http://www.w3schools.com/xpath/)
is used to define the <targetAttribute> value. This will be used to generate the
correct nesting of the opening and closing elements; the second attribute mapping
contains a string literal and will manifest as a second nested element at the same
level as the first one. For example, this mapping will yield the following on our
output feature:

<net:inspireId>
 <base:Identifier>
 <base:localId>
 225
 </base:localId>
 <base:namespace>
 tn-ro.rn.temp
 </base:namespace>
 </base:Identifier>
</net:inspireId>

This is only a simple example, but it should give you a good idea of what can be
possible within a mapping file.

Data store and feature type configuration
With the mapping file created, all we need to do now is set it up as a data store and
then configure a feature type from it. Open up the GeoServer web administration
console and click on the Stores link from the left-hand side menu. Click on the Add
new store button, and then select the Application Schema DataAccess option in the
vector data sources section.

http://www.w3schools.com/xpath/

Using GeoServer to Serve Complex Features

[140]

This will open the standard data store creation page that you should be familiar with
by now. Enter some details for the name and description of the data store.

Notice how the URL connection parameter is a location of our mapping file, relative
to the route of the GeoServer data directory. In this case, it is <geoserver_data_
dir>/workspaces/tn-ro/RoadNetwork/TN-RO_RoadLink.xml. Once the details
have been filled, click on the Save button to get a list of the available feature types
to publish. Wait a minute! A list of feature types to publish? How can that be? We
only defined one feature type in our mapping file. This is easily explained if you
remember that we created a data store definition, and data stores contain feature
types to publish. In the case of a database, these are tables, and in the case of a
directory of shapefiles, these will be the individual shapefiles. In the case of an
application schema, these are the available <FeatureTypeMapping> elements in the
mapping file. The mapping file can contain more than one <FeatureTypeMapping>
element, and the extension will read each one and present it as an option in the list
of feature types to publish. So, if your application schema defines multiple types of
complex features, then you can define them all in one mapping file and then publish
them out separately.

Chapter 4

[141]

Once you choose the feature type to publish and click on the Publish link,
then the standard GeoServer functionality applies. To test whether everything
worked as expected, go to the Layer Preview page and then select a WFS output
type such as GML 3.2. If all is well, GeoServer will return a WFS XML response
that contains 50 features.

The application schema extension is built with the purpose of
providing a data source to publish as a WFS service; however, it
is also possible to make GeoServer render the complex feature as
a WMS response. For more details, take a look at the GeoServer
documentation at http://docs.geoserver.org/stable/en/
user/data/app-schema/wms-support.html.

Summary
After finishing this chapter, we now have a good understanding of the difference
between a simple feature and a complex feature. Knowing the difference and, more
importantly, knowing that GeoServer defaults to delivering simple features will
enable us to make informed decisions about how we deliver our data through WFS.

Complex features will allow us to really maximize the way in which we utilize
GeoServer as a vector feature delivery platform. The use of standard simple feature
delivery combined with the ability to deliver simple features as members of a complex
feature will really open the door to a world of content delivery. This flexibility means
that we can optimize storage by not having to repeat copies of data to participate in
different output strategies. We saw how complex features can be used to provide
output from our WFS service that conforms to a community-generated schema, such as
EU INSPIRE Directive schemas. Using application schemas means that we are able to
provide output for multiple schemas from a single source dataset or datasets.

In the next chapter, we are going to look at how we can extend the capabilities of
other servers using GeoServer as a proxy.

http://docs.geoserver.org/stable/en/user/data/app-schema/wms-support.html
http://docs.geoserver.org/stable/en/user/data/app-schema/wms-support.html

Using GeoServer as a Proxy
What's that you say? GeoServer can be used as a proxy? What does this actually
mean, and why will you want to consider doing something with it? Well, this chapter
aims to enlighten you on the subject and to provide you with the understanding
of cascaded WMS and WFS services, which are at the heart of being able to turn
GeoServer into a proxying web mapping server.

There are a number of good reasons why one will choose to implement GeoServer
in a proxying role—from providing external servers with additional or expanded
capabilities to implementing it as the basis for security. Setting GeoServer up as a
proxy will open the doors to a number of new and inventive scenarios in which you
can use the software.

By the end of this chapter, you will have a much better understanding of:

• A cascaded service
• How to make use of cascaded services in the enterprise
• How to cascade an external WMS service
• How to cascade an external WFS service
• How to extend the capabilities of another server

Defining cascaded services
A cascaded service is one where an external server provides the WMS
and/or WFS service that your local instance of GeoServer connects to and
then passes through to your end clients. The service cascades through your
implementation of GeoServer, and then moves on to the end users.

Using GeoServer as a Proxy

[144]

End users of a cascaded service do not know that they are actually in receipt of
cascaded data unless something within the data or metadata indicates that they are.
To all intents and purposes, they will consider it to be data that is controlled and
hosted by you.

Using cascaded services
Now that we know what a cascaded service is, the big question on our mind is how
we might go about using this in the enterprise environment. Well, the short answer
is that it can be used in many ways. The more specific answer, on the other hand,
is that there are three core scenarios where GeoServer can be used as a proxy using
cascaded services:

• Extending the capabilities of another WMS server
• WMS enabling a WFS-only server
• As a reverse proxy

Extending the capabilities of another
WMS server
The capabilities of a WMS server are very much dependent on the way they have
been configured to run. For example, a configuration might have been configured
to only support one spatial reference system, EPSG:27700, for British National Grid.
Let's suppose that you have a web application that will benefit from using the data
provided by this server, but your application has been configured to work only with
Web Spherical Mercator (EPSG:3857). How can you get hold of this WMS data in your
application? GeoServer's cascaded WMS service can be used in the following ways:

• Create a cascaded WMS data store to connect to the external WMS server
• GeoServer requests maps from the external WMS using the native SRS of

EPSG:27700
• GeoServer performs an internal reprojection of the requested map image

to EPSG:3857
• The reprojected map image is returned to the requested web-mapping

application

The capabilities of the external WMS server have been extended by increasing the
number of SRSes it can publish data in.

Chapter 5

[145]

WMS enabling a WFS-only server
Enterprise systems are often a combination of different components, each with
their own special data formats and interfaces. As the world of IT advances, this
is thankfully becoming a thing of the past, with a much wider adoption of data
standards and open APIs providing access to this data. However, there will always
be exceptions where the software/hardware is simply too old or niche to consider
replacing, at least for the time being. In this scenario, how does one go about
utilizing the data that is trapped inside the legacy system? Well, a reasonably
low-cost solution will be to adopt the principles of Service Oriented Architecture
(SOA) and develop or deploy a WFS server that can talk to the legacy system and
publish its data through the WFS protocol.

The following diagram shows how this approach can be implemented. The legacy
data store has a single-purpose WFS server connected to it. The purpose of this
server is to read the data in the legacy data store, and then make it available to
connecting clients through WFS. GeoServer is then used to connect to the WFS
service in order to be able to publish the legacy data out through WMS, or even WFS.

WMSWFS Public

GeoServer

Specialized WFS Server

Legacy Data Store Firewall

Using GeoServer as a Proxy

[146]

This is great! We now have a means of pushing the data out of the legacy system
into a more accessible form so that applications can now work without caring about
the underlying system from which the data came. However, this is only a part of the
story since it is quite likely that after unlocking the data, you will need to be able to
publish it as a web map. This is where GeoServer's ability to cascade a WFS service
and then publish the output through WMS comes into play. GeoServer can
be configured to act as a WMS publisher for the data supplied by the specialized
WFS server, providing a means of delivering the legacy data through modern
web standards.

Using GeoServer as a reverse proxy
This scenario is a slightly more complex implementation of cascaded services,
but arguably the most powerful within an enterprise context. GeoServer can be
deployed within a demilitarized zone (DMZ) of the corporate network in order
to mask the true presence of the internal GeoServer's responsibility for map
production and data serving.

The following diagram shows how GeoServer might be deployed in this context:

D
M

Z

D
M

Z

Corporate GeoServer

Database Server

WMS

Proxy GeoServer

WMS/WFS

Internal Users

Public

Cascaded
WMS

Chapter 5

[147]

A typical information flow in this configuration will be:

1. DMZ is a zone between the outside world (protected by a public-facing
firewall) and the internal network (protected by another firewall).
External WMS requests are made to GeoServer that is installed and
running inside DMZ.

2. GeoServer inside DMZ then forwards the WMS requests on to the internal
GeoServer to process.

3. The internal GeoServer processes the WMS request and generates a response
map, sending it back to GeoServer in DMZ.

4. GeoServer in DMZ receives the WMS map and then passes it on to the
originator of the external WMS request.

There are a number of uses to run GeoServer inside DMZ. For example,
it can be used to publish a subset of your corporate data to the general public
that has undergone modification and filtering to remove sensitive or commercial
information. In this scenario, GeoServer inside DMZ can be configured to use
cascaded WMS services to publish data layers. These data layers can come from
another GeoServer, or a cluster of GeoServers, inside the corporate network. Not
only does this approach allow the separation of internal business data and publicly
accessible data, but it also provides a level of security, as there is no indication or
hint as to what your internal network configuration might look externally.
In effect, this reduces the surface area available for attack and usually provides
a better security for the underlying data sources.

DMZ is a useful concept in network security and one that is worth
investing some time and effort in understanding. It provides a useful
way of exposing web services to a larger, untrusted network (the
Internet), while reducing the threat to your internal network. More
information on DMZ can be found at http://en.wikipedia.org/
wiki/DMZ_(computing).

Creating a cascaded WMS connection
Now that we understand what service cascading is and some reasons why
it might be useful to us, it is time to actually have a go at creating a cascaded
service. For this example, we will set up a cascaded service to serve OpenStreetMap
buildings to our clients.

http://en.wikipedia.org/wiki/DMZ_(computing)
http://en.wikipedia.org/wiki/DMZ_(computing)

Using GeoServer as a Proxy

[148]

Creating the data store
A cascaded WMS service is not really any different from other data sources that
we might use with GeoServer. It still follows the same principle of having a data
store connection and then publishing layers from the data store source. In this case,
however, the data store is a connection to the external WMS server, and the layers
we can publish are those advertised by WMS. Therefore, we must connect to the
external WMS service in a way that will allow GeoServer to discover what layers
can be published. To do this, we will utilize the external WMS server's published
Capabilities document that will tell our GeoServer what layers are available. The link
to the external WMS server's Capabilities document will be the connection details for
the data store.

To create a connection to the external WMS server's Capabilities document, select the
Stores link under the Data section of the left-hand-side menu on GeoServer's web
administration console. On the Stores page, click on the Add new store link to open
the New data source page:

Chapter 5

[149]

At the bottom of the page, there is a section called Other Data Sources, and within
this section, you should have an item simply called WMS – Cascade a remote Web
Map Service. Click on the name to open the New WMS Connection page. It is here
where we will enter the connection details to the external WMS server and create the
new data store:

As usual, we have to provide some basic store information, such as the workspace
that we want the connection to belong to and a name and description to identify
it by. The main information that we must provide is the URL for the Capabilities
document. For this example, we need to provide the URL to the OSM-GB project's
WMS server, but in reality, this URL will point to the external WMS server that you
cascade in your particular scenario.

Using GeoServer as a Proxy

[150]

To cascade the service, execute the following steps:

1. Enter the http://www.osmgb.org.uk/ogc/wms?Version=1.1.1&Service=W
MS&Request=GetCapabilities path in the Capabilities URL textbox.

2. If we connect to a protected WMS server, we should also enter values for the
User Name and Password fields. OSM-GB is not secured, so we leave these
fields blank.

3. We can specify some rudimentary connection pooling details, such as the
maximum number of concurrent connections and whether we actually want
connection pooling. Tick the box for the Use HTTP connection pooling.

4. The last piece of information to provide, or accept the defaults for, is the
request timeout. These are values that we can set to determine how long we
want our GeoServer instance to sit and wait for connect or read responses
before it abandons the request. Leave the default values.

5. Click on the Save button to begin the process of creating the data store.
GeoServer will then attempt to request and read the Capabilities document.
If everything works correctly, we will be presented with a list of layers that
GeoServer can publish.

It is worth noting that the values to enter for connection timeouts will very much
depend on our deployment scenario. For example, if we connect to an external
third-party WMS server over the Internet, and we have no control over it, then it is
reasonable to expect to have to wait for responses. In this case, the values should be
set longer to accommodate general web congestion. However, if we proxy a server
within our own environment, and we know that it should respond quickly, then it is
preferable to reduce these values. Without network contention issues, we will want
the response to fail quickly for our users, rather than them having to wait up to a
minute to receive a failed response.

http://www.osmgb.org.uk/ogc/wms?Version=1.1.1&Service=WMS&Request=GetCapabilities
http://www.osmgb.org.uk/ogc/wms?Version=1.1.1&Service=WMS&Request=GetCapabilities

Chapter 5

[151]

Publishing a cascaded WMS layer
Once GeoServer successfully reads the Capabilities document from the external WMS
server, it will present us with a list of all the layers that can be published:

Using GeoServer as a Proxy

[152]

To publish a layer, we simply click on the Publish link next to the name of the layer.
However, as we can see from this example, there are 109 layers that we can publish,
so it will get very laborious to do this individually. Fortunately for us, the developers
considered this scenario and provided us with a handy batch import tool. Clicking
on the batch import link at the top-right of the page will provide the same list of
layers, but this time with checkboxes next to each one:

At the bottom of the page, we have the Import all and Import selected buttons.
We can publish all the layers by simply clicking on the Import all button, or publish
some of the layers by clicking in the checkbox next to each layer we want to publish
and then clicking on Import selected.

Chapter 5

[153]

Once we publish one or more layers, we will be taken back to GeoServer's Layers
list page:

Notice how the Type icon for OSGB-OSM differs from the others? This indicates
that the layer is provided by an external WMS server. It is also worth noting that
the native Spatial Reference System of the external WMS server is adopted for the
layer. However, one of the reasons why you might want to proxy a WMS service
is to increase its capabilities, for example, the number of spatial reference systems
the data can be requested in. The OSM-GB service that we consume publishes the
data layers using either EPSG:4326 (WGS84 latitude and longitude) or EPSG:27700
(British National Grid), with EPSG:4326 being the default. However, because we
are now publishing the data through our own GeoServer, our clients will be able to
request maps in the spatial reference systems that we enabled for our GeoServer.

We can control the spatial reference systems that our GeoServer
advertises as being available by changing the global settings for
WMS and WFS services.

Using GeoServer as a Proxy

[154]

Again, since an external WMS service is like any other data store connection
(in most cases), it is possible to go back to it and publish additional layers,
or republish layers; for example, if the operators of the external WMS server
add additional layers to their service. To do this, select the Add new resource
option from the Layers page:

This will open the New Layer page where we will be provided with a list of layers
that can be published or republished:

Chapter 5

[155]

From the drop-down list, select the data store connection that you created previously.
The Capabilities document will be read, and all the available layers to publish will be
listed. Any layer currently published will have an action called Publish again, and any
layer not previously published will have an action called Publish.

Apart from being able to republish a layer from the New Layer page,
it is also possible to select a layer in the normal layer's list, and then
change one or more of its properties.

Connecting to an external WMS service handles the ability to consume external
raster data. Next, we will look at how to do the same for vector data by cascading
a WFS service.

Connecting to a cascaded WFS
Much like a cascade WMS service, a cascaded WFS requires some configuration to
occur before it can be used. In this example, we will proxy a WFS service provided
by the OSM-GB project (http://www.osmgb.org.uk) that delivers the Ordnance
Survey VectorMap District data.

Creating the data store
As with a cascaded WMS service, a cascaded WFS service must first be configured as
a data store before its layers can be published. Again, we must create a connection to
the external WFS server's Capabilities document in order for our GeoServer instance
to discover what data can be published as layers.

To create a connection to the external WFS server's Capabilities document, select the
Stores link from the Data section of the left hand side menu on GeoServer's web
administration console.

http://www.osmgb.org.uk

Using GeoServer as a Proxy

[156]

On the Stores page that loads, click on the Add new store link to open the
New data source page:

Chapter 5

[157]

At the bottom of the Vector Data Sources section, there is an entry called Web
Feature Server; click on this link to open the Edit Vector Data Source page. From
this page, we can specify all of the connection parameters that we need in order to
successfully connect to the external WFS server:

Using GeoServer as a Proxy

[158]

As with all data stores, we need to provide the basic information of name and
description so that the store can be identified. We also need to ensure that the
Enabled box is checked so that we can use the store once it is created. Being a
vector data source, there are quite a few more configuration options for us to
specify; the following table describes what each option is:

Parameter Description
WFS GetCapabilities URL This is where we specify the location of the

external WFS server's Capabilities document.
For our example, this is http://www.
osmgb.org.uk/ogc/wfs-vmd?request=
GetCapabilities&version=1.0.0.

Favor HTTP POST method over
GET

When checked, GeoServer will attempt to
connect using POST, before falling back to
GET if POST fails.

HTTP Authentication user name If the external WFS server requires
authentication, enter the username here.

HTTP Authentication user
password

If the external WFS server requires
authentication, enter the password to connect
with here.

Character encoding for XML
messages

This is the character encoding to use for all
XML messages.

Connection and read timeout
(ms)

This is the time in milliseconds GeoServer
should wait for the connect and read
operations to complete.

Feature buffer size This specifies the size of buffer to use and is
expressed as the number of features to hold
in the buffer. A larger buffer size will result
in greater memory requirements.

Use gzip encoding if server
supports it

Check this box if you want GeoServer to
fetch data encoded as .gzip (compressed)
if the external WFS server supports it.
Using compressed data will reduce transfer
volumes, but will place a small processing
overhead on the server.

http://www.osmgb.org.uk/ogc/wfs-vmd?request=GetCapabilities&version=1.0.0
http://www.osmgb.org.uk/ogc/wfs-vmd?request=GetCapabilities&version=1.0.0
http://www.osmgb.org.uk/ogc/wfs-vmd?request=GetCapabilities&version=1.0.0

Chapter 5

[159]

Parameter Description
Lenient parsing When checked, this will tell GeoServer to

be more relaxed about rendering features
that don't match a schema. Any errors in the
rendering process are logged.

Maximum number of Features to
retrieve

This specifies the maximum number of
features that you will allow GeoServer to
fetch from the external WFS server.

Filter compliance level This determines how GeoServer will
encode filters:

• 0 is equal to low compliance and full
range of filters available

• 1 is equal to medium compliance, and
ID and BBOX filters only

• 2 is equal to strict compliance, and ID
filters cannot be combined

WFS protocol strategy This option allows you to specify whether
GeoServer should implement a known
workaround for specific WFS server
implementations.

usedefaultsrs Check this box if you want GeoServer to
always query the external WFS server using
its default SRS as advertised in Capabilities,
and then reproject to query SRS locally on the
results.

WFSDataStoreFactory:AXIS_ORDER This sets the order for axes in coordinate
pair values.

WFSDataStoreFactory:AXIS_
ORDER_FILTER

This sets the order for axes in coordinate
pair values in filters.

WFSDataStoreFactory:OUTPUTFOR
MAT

This specifies the format you want the
external WFS server to output features in,
providing it is supported.

Using GeoServer as a Proxy

[160]

Once all the parameters have been set for the store, click on the Save button.
GeoServer will attempt to connect to the external WFS server and read its capabilities
document. If everything works as expected, the New Layer page will open:

The New Layer page provides you with a list of all the feature types that the external
WFS server advertises. Click on the Publish link next to the name of the layer you
want to publish. Data from a cascaded WFS service is treated by GeoServer like any
other vector data source, and therefore, the publishing process is the same.

Chapter 5

[161]

The difference is that a number of fields in the publishing page will be prepopulated
with values read from the Capabilities document. If all goes according to plan, then
you will be taken back to the list of available layers, where you will see the layer you
just published; in this case, it is the OS-VMD_roads layer:

Using GeoServer as a Proxy

[162]

Connecting through a proxy
Not to be mistaken with what we have been talking about, using GeoServer as the
proxy, your enterprise environment has its own proxy server to connect to the web.
In this situation, you might find it difficult to connect to an external WFS server to
successfully cascade its data as layers in your environment. In this situation, you
will need to perform some additional configuration on how your GeoServer instance
starts. This configuration will provide the connection details that GeoServer requires
in order to connect to the proxy server through which it will communicate with
external services.

There are some Java properties that can be set when the servlet container is started,
either from a shell script in the case of Linux, or through Tomcat Service in Windows
environments. In both cases, you need to include the following configuration lines to
the Java start command:

-Dhttp.proxySet=true
-Dhttp.proxyHost=<your proxy server address>
-Dhttp.proxyPort=<your proxy server port>
-Dhttps.proxyHost=<your secure proxy server address>
-Dhttps.proxyPort=<your secure proxy server port>
-Dhttp.nonProxyHosts="<pipe delimited list of exclusions>"

These –D switches should be added to the java command within your service start
script in Linux or through the Java settings of the Tomcat Windows service properties.

Extending server capabilities
When we introduced the concept of a cascaded service and the use of GeoServer as
a proxy, we discussed a number of scenarios. One of these scenarios was the use of
cascaded services to provide a server with increased capabilities. For example, within
your environment, you might have a highly specialized or configured WFS server
whose sole purpose is to deliver vector data using transactional WFS and WFS-T.
An implementation of TinyOWS (http://mapserver.org/tinyows) will be a good
example of this. For example, your specialized WFS server might be in place in order
to make a legacy data store available to your enterprise in an open standard.

While there is nothing wrong with having a specialized WFS server within your
environment (in many cases it actually makes a lot of sense, particularly if you
consider it in the context of SOA), it can be limiting. What if you want to publish the
legacy data as a map or make it available to other sites and services as a rendered
map, especially if they are not able to support the WFS standard? This is one
scenario where using GeoServer's ability to cascade services can provide additional
capabilities that is not available from the source server.

http://mapserver.org/tinyows

Chapter 5

[163]

In this case, GeoServer provides the capability to deliver the contents of the
specialized WFS server as rendered map tiles using WMS, or any other output
format supported by GeoServer such as TMS, WMS-C, or WMTS. The best thing is
that this is really straightforward to set up, and in fact, it is automatic, provided you
have the WMS service enabled in your GeoServer instance. This is because when
you create a connection to an external WFS server, in this case, the specialized server
for legacy data, the layer you publish behaves like any other layer published within
GeoServer. This is to say that it immediately becomes available through both the
WFS and WMS services. This means that you can control how the data is displayed
in the rendered tiles by specifying the style that is applied, or even provide a list of
styles that can be used.

When publishing a layer, there is a tab called Publishing, amongst others, which
allows you to specify properties for the way the layer is published; for example,
through WMS:

Using GeoServer as a Proxy

[164]

Within this tab, there are a whole host of configuration options, but perhaps the
most useful is the one that enables you to set the style or styles that can be applied
to this layer:

This setting allows you to set the default style that will be used to render the layer to
map tiles in the absence of any other guidance about the style that should be used.
In other words, this style will be applied when no specific style is requested through
WMS. In addition to setting the default style, it is also possible to choose a number
of other styles that can be requested. A user can request the style used to render the
data through the STYLES parameter of a WMS request.

Chapter 5

[165]

Summary
In this chapter, we took a look at what cascaded services are, some scenarios in
which cascaded services might be used, and finally, we had a go at cascading some
external WMS and WFS services through our own instance of GeoServer. The key
point to take away from this chapter is that cascaded services will open the door to
more creative deployment scenarios within the enterprise environment.

Irrespective of how you choose to implement cascaded WMS and WFS services, you
are now much better placed to understand the concept, and therefore, make smarter
decisions about your deployment scenarios.

In the last few chapters, we looked at the different ways in which we can consume
and publish data using GeoServer. In the next chapter, we will take a look at the
different ways in which we control how GeoServer outputs the data.

Controlling the Output of
GeoServer

Until now, we have been focused on getting GeoServer installed and setting up data
sources. Now, it is time for us to get to grips with controlling how GeoServer outputs
this data. There are a number of different aspects of GeoServer's output that we can
control and manipulate, whether it is simple map styling, dynamic data styling, or
feature information manipulation, GeoServer gives us the control that we need to
make it fit our needs.

In this chapter, we are going to take an in-depth look at the different ways in
which we can control the output of GeoServer; in particular, we will focus on
the following topics:

• Advanced use of Styled Layer Descriptor files to dynamically generate
heat maps

• Using Cascaded Style Sheets (CSS) as an alternative styling language
to SLDs

• Performing per-request styling of map features
• Performing per-request filtering of map data
• Using Freemarker templates to transform responses to WMS

GetFeatureInfo requests

By the end of the chapter, you will have enough information to go and experiment
with the different ways in which you can control the output from your own
GeoServer instances.

Controlling the Output of GeoServer

[168]

Styling data with Styled Layer Descriptor
The standard method to style data in GeoServer is by using Styled Layer Descriptor
files, more commonly referred to as SLD files. SLD is a mark-up language based
on XML and offers a lot of flexibility and power when it comes to styling geospatial
data. However, with this power and flexibility comes complexity. Tackling SLD files
in a standard text or XML editor is not for the faint of heart and is prone to errors.
Invariably, this leads to a trial and error approach to style the data, as you continually
go back and forth, tweaking your SLD file to get the styling just right. Therefore,
it is best to use a visual tool to design your styles and have this tool generate an
SLD file for you.

Going into the specifics of creating an SLD file is outside the scope of this book.
There are, however, several places that contain very good information about SLD
files. The best source of information (this should be your first stop) is the GeoServer
documentation on styling data with SLD at http://docs.geoserver.org/2.4.x/
en/user/styling/index.html.

Check out the GeoServer SLD cookbook at http://docs.geoserver.
org/2.4.x/en/user/styling/sld-cookbook/index.html for
some worked-through examples of SLD styles.

The second useful source of information is chapter 6 of GeoServer Beginner's
Guide, Stefano Lacovella and Brian Youngblood, Packt Publishing. Finally, it is well
worth reading the SLD specification documents from the OGC at http://www.
opengeospatial.org/standards/sld. It is a complex document to work through
but is undoubtedly the most authoritative reference for the standard.

Creating SLDs visually
As we discussed earlier, the SLD style language is extremely flexible and provides a
lot of power to style data. However, this also means that it is complex and difficult
to get into for beginners. The best way to learn about SLD is to use a visual tool to
create your style and then automatically generate an SLD. This generated SLD file
can then be imported to GeoServer. This becomes a great tool to learn all about SLD,
as you can directly relate your actions for styling a layer to the output generated
in the SLD.

http://docs.geoserver.org/2.4.x/en/user/styling/index.html
http://docs.geoserver.org/2.4.x/en/user/styling/index.html
http://docs.geoserver.org/2.4.x/en/user/styling/sld-cookbook/index.html
http://docs.geoserver.org/2.4.x/en/user/styling/sld-cookbook/index.html
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/sld

Chapter 6

[169]

There are a number of ways in which you can visually create SLD files. The simplest
way is probably using QGIS (http://www.qgis.org) to work with your data, setting
the styles for the layers that you will publish through GeoServer. At the time of
writing this book, the current version of QGIS is 2.4.0. If you already have the dataset
loaded in GeoServer, then you can use QGIS to connect to your WFS end-point and
download the data. You can use the QGIS styling dialog to create the style that you
want visually, alter and manipulate it, and get previews of the results inside the
map. When you are satisfied with the results, you can ask QGIS to export the style
for you as an SLD:

Right-click on your layer in QGIS and select the Properties menu option. In the
Style tab, click on the Save Style dropdown and choose the SLD File option.
This will allow you to save the generated SLD file locally, where you can then
view and edit it further, or upload it to GeoServer.

For tighter integration with GeoServer from QGIS, take a look at
Boundless Geo's OpenGeo Explorer plugin. It allows you to connect
directly to GeoServer from within QGIS and manage a number
of aspects of the catalog, including the SLD styles. For more
details on how to install and use the plugin, take a look at
http://qgis.boundlessgeo.com/static/docs/index.html.

http://www.qgis.org
http://qgis.boundlessgeo.com/static/docs/index.html

Controlling the Output of GeoServer

[170]

Taking SLD further – render transformations
The power of SLD and the enhancements provided by GeoServer through
vendor-specific extensions to the SLD 1.0.0 standard suggest that some interesting
things can be accomplished. In this example, we are going to take a look at how we
can utilize render transformations to create a dynamic heatmap of the UK Street
Level Crime data that we loaded in Chapter 3, Working with Vector Data in Spatial
Databases. The data is interesting, but it is a mass of points styled according to a
type property, and visually, it is difficult to derive any meaning. This can be
seen in the following screenshot:

Chapter 6

[171]

We are going to take this mass of points, filter them to a specific type of crime, and
then display the results as a weighted heatmap, which will give us a quick visual
impression of the level of a particular type of crime in any given area. What we aim
to achieve can be seen in the following screenshot:

The ability to generate heatmaps is enabled through GeoServer's vector-to-raster
rendering transformations. To take advantage of rendering transformations, we must
first have the Web Processing Service (WPS) extension installed; its installation
process is covered in Chapter 9, GeoServer as a Spatial Analysis Platform, of this book.
With the WPS extension installed, it becomes possible to call functions from within
the SLD, as we will see. For this example, we are going to work with the SQL Views
of the UK Street Level Crime data that we created in Chapter 3, Working with Vector
Data in Spatial Databases, to filter it based on the type of crime.

Controlling the Output of GeoServer

[172]

The SLD that we are going to create will be in a generic heatmap style that can
actually be used on any point-based dataset where you would like to generate a
weighted surface. The complete SLD is available on the Packt Publishing website
and is called Heatmap_SLD_Style.sld; download the file and take a look at it.

A complete discussion of how to structure calls to functions from
an SLD is outside the scope of this book. Once again, the GeoServer
community has created an excellent documentation that I encourage
you to read. The documentation pertinent to render transformations
is available at http://docs.geoserver.org/stable/en/user/
styling/sld-extensions/rendering-transform.html.

The first part of the file that we will look at is actually the most important;
it is the instruction that tells GeoServer that this SLD will use a rendering
transformation function:

<FeatureTypeStyle>
 <Transformation>
 <ogc:Function name="gs:Heatmap">
 <!-- Function Parameters Here -->
 </ogc:Function>
 </Transformation>
 <!-- Rules Go Here -->
</FeatureTypeStyle>

This is the basic structure of the SLD style. After the usual SLD header information,
there is the <FeatureTypeStyle> element, the first child element of which is
<Transformation>. This <Transformation> element lets GeoServer know that
we are going to use a render transformation, so it is important that this is the first
element that follows the <FeatureTypeStyle> parent. GeoServer utilizes the
<ogc:Function> elements for both the definitions of the render transformation
that will be used, as well as for specifying the parameters that the function expects
to receive. In this case, we are telling GeoServer to use the heatmap rendering
transformation through the <ogc:Function name="gs:Heatmap"> element. The
gs:Heatmap function name is actually the name of the WPS function that GeoServer
will use. The child elements of this parent are the parameters that the given function
requires, for example:

<ogc:Function name="parameter">
 <ogc:Literal>data</ogc:Literal>
</ogc:Function>

http://docs.geoserver.org/stable/en/user/styling/sld-extensions/rendering-transform.html
http://docs.geoserver.org/stable/en/user/styling/sld-extensions/rendering-transform.html

Chapter 6

[173]

Parameters are also described using the <ogc:Function> element, with the
name attribute being parameter. The first child element to this function is the
<ogc:Literal> element, whose content is the name of the parameter. The following
child elements provide the value for the parameter. Some parameters can have no
value, some can have a single value, and others can have multiple values. Parameter
values can be specified in a number of different ways, from literal values through
to predefined SLD environment variables and SLD environment variables extracted
from the WMS request, also known as variable substitution.

Variable substitution is a useful capability of GeoServer and can
be used in other areas as well as within SLD files. The GeoServer
documentation has a good description of variable substitution at
http://docs.geoserver.org/stable/en/user/styling/
sld-extensions/substitution.html.

The previous example was a parameter with no associated value. In this case,
it is a key value that tells the render transformation to use data from the
GeoServer rendering pipeline.

The following is an example of a parameter whose value is retrieved from the
WMS request that invokes the map rendering:

<ogc:Function name="parameter">
 <ogc:Literal>outputBBOX</ogc:Literal>
 <ogc:Function name="env">
 <ogc:Literal>wms_bbox</ogc:Literal>
 </ogc:Function>
</ogc:Function>

This <ogc:Function> element tells the heatmap function about the extents of the data
to generate the weighted surface across. The name of the parameter is outputBBOX,
indicated by the <ogc:Literal>outputBBOX</ogc:Literal> element. The value
for this parameter is another <ogc:Function> element with the name env, which
indicates that its value is derived from the WMS request. In this case, it is reading the
wms_bbox environment variable to get the extents of the map being requested.

Once all of the functions parameters have been specified, the remainder of the SLD
can contain the <sld:Rule> elements to describe how you want the output to be
rendered. If the function is the one that receives a vector dataset as its input and then
outputs raster, it must contain the name of the geometry attribute from the source
vector data.

http://docs.geoserver.org/stable/en/user/styling/sld-extensions/substitution.html
http://docs.geoserver.org/stable/en/user/styling/sld-extensions/substitution.html

Controlling the Output of GeoServer

[174]

Including the geometry attribute is required, despite the output not
being vector, in order for the SLD to pass validation. Without it, the
SLD will fail validation and not work correctly.

If you get validation errors when validating the SLD, make sure that you have a
<Geometry> element in the SLD. For the heatmap example, we are going to create a
simple color ramp from red (high) to yellow (low). High-intensity areas will be red,
drifting out to yellow as the density becomes less intense:

<RasterSymbolizer>
 <Geometry>
 <ogc:PropertyName>geom</ogc:PropertyName>
 </Geometry>
 <Opacity>0.6</Opacity>
 <ColorMap>
 <ColorMapEntry color="#FFFFFF" quantity="0" label="nodata"
opacity="0" />
 <ColorMapEntry color="#FFFF00" quantity="0.1" label="0.1" />
 <ColorMapEntry color="#FF8000" quantity="0.5" label="0.5" />
 <ColorMapEntry color="#FF0000" quantity="1.0" label="1.0" />
 </ColorMap>
</RasterSymbolizer>

The output of the heatmap rendering transformation is a raster, so we need to use a
<RasterSymbolizer> element to describe how we want the raster to be styled. The
raster is a surface, with each cell having a value from 0 to 1 so that we use this to
construct a color map for the range. In this case, we are creating a color map for each
0.1 value change; this will give us a very fine transition from yellow to red on the
output, but if we wanted to, we could cut out some of the intermediate values and let
GeoServer interpolate them itself. For example:

<RasterSymbolizer>
 <Geometry>
 <ogc:PropertyName>geom</ogc:PropertyName>
 </Geometry>
 <Opacity>0.6</Opacity>
 <ColorMap>
 <ColorMapEntry color="#FFFFFF" quantity="0" label="nodata"
opacity="0" />
 <ColorMapEntry color="#FAFF00" quantity="0.1" label="0.1" />
 <ColorMapEntry color="#FAE200" quantity="0.2" label="0.2" />
 <ColorMapEntry color="#FBC600" quantity="0.3" label="0.3" />
 <ColorMapEntry color="#FBAA00" quantity="0.4" label="0.4" />
 <ColorMapEntry color="#FC8D00" quantity="0.5" label="0.5" />
 <ColorMapEntry color="#FC7100" quantity="0.6" label="0.6" />
 <ColorMapEntry color="#FD5500" quantity="0.7" label="0.7" />
 <ColorMapEntry color="#FD3800" quantity="0.8" label="0.8" />

Chapter 6

[175]

 <ColorMapEntry color="#FE1C00" quantity="0.9" label="0.9" />
 <ColorMapEntry color="#FF0000" quantity="1.0" label="1.0" />
 </ColorMap>
</RasterSymbolizer>

The two are equivalent in terms of output, so go with the former to keep your SLD
from becoming too bloated.

Did you notice that in both cases, we had a <ColorMapEntry> element
to match to the value of 0? This is a special rule that we use to set the
nodata values to white and then make them transparent; otherwise, the
nodata cells will obscure any underlying base mapping that we use for
context. It is also worth noting that we included an <opacity> element
with a value of 0.6 (60 percent). Again, this is so that our heatmap
surface will overlay nicely with any base mapping layers that we have.

Once you have saved the style to your GeoServer, go to the Layers page and set the
style to the parameterized SQL View of the UK Street Level Crime data. Later in this
chapter, we will look at how we can use prerequest filtering of data to show only the
points that we are interested in. The result of this heatmap SLD will be a nice surface
that shows the density of crime within a given area:

Controlling the Output of GeoServer

[176]

Styling data using Cascaded Style Sheets
Although SLDs are the default method to apply styles to the data served by
GeoServer, it is not the only way. There is an extension available that adds the
ability to provide styling information using Cascaded Style Sheets (CSS). There are
a couple of reasons why you might choose to use CSS styles over traditional SLDs:

• If you have built any kind of web page, then you are likely already familiar
with the syntax of CSS

• The CSS syntax is much leaner than SLD, making styles more readable
• You don't need to understand XML, making CSS styles less prone to

syntax errors

Getting started with CSS styles is as easy as installing the extension and
restarting GeoServer.

Installing the extension
Like with all other GeoServer extensions, installation of the CSS extension is as
straightforward as copying some JAR files to the <geoserver_home>/WEB-INF/
lib folder and restarting GeoServer. First, we must download the version of the
extension that matches the version of GeoServer that we are running. In our case,
we are working with the current stable version, which, at the time of writing this
book, is Version 2.5.2. Therefore, we need to download the extension from
http://geoserver.org/release/stable:

http://geoserver.org/release/stable

Chapter 6

[177]

Select the CSS Styling link from the Miscellaneous section on the download
page and save it on your system. Open a command-line tool and execute the
following command:

$ unzip geoserver-2.5.2-css-plugin.zip *.jar <tomcat_home>/webapps/
geoserver/WEB-INF/lib

This command will extract the contents of the extension's ZIP file into the lib
directory of GeoServer. Make sure that you change <tomcat_home> to the location
where you have installed Tomcat, and if you have more than one instance, then
remember to run the command for all. Once the extension is installed, restart all of
your GeoServer instances. If the CSS Styling extension is installed correctly, then
you will see an entry for CSS Styles in the left-hand side menu of GeoServer's web
administration console:

Controlling the Output of GeoServer

[178]

Clicking on the link will open the CSS Styles page and allow us to create and edit
CSS styles for layers. The page has two main sections to it:

The top section of the page provides the controls that allow us to edit existing styles.
Choose the layer to preview the style against, create a new style, and change the
associations of layers to styles. There is a textbox area where we can create or edit the
CSS style and a Submit button when we are ready to save the CSS style to GeoServer.

Chapter 6

[179]

The bottom section of the page provides a tabbed view of preview panels to help us
when we try to craft our masterpiece. The Generated SLD tab provides a preview of
what the SLD equivalent of our CSS style is. This is useful if we are familiar with SLD
constructs, as we can see how our CSS rules are interpreted as SLD. This is a useful
feature when debugging why our CSS rules are not giving us the output we expect.

It's useful to be able to access the generated SLD to load it into other
tools such as QGIS. QGIS can be used to check the SLD for errors,
edit it further visually, or simply apply it to a dataset in QGIS.

Clicking on the Submit button will update the generated SLD. The Map tab acts
in the same way as the Generated SLD tab; the difference is that we get a visual
preview of the CSS rules applied to actual map data. The Data tab acts as a quick
reference to the layer currently being used to apply the CSS rules. The following
is an example using the UK Street Level Crime data that we loaded in Chapter 3,
Working with Vector Data in Spatial Databases.

The table that is generated allows us to see the dataset's schema and also provides a
sample value. This is very useful to act as a quick reference to the data when creating
CSS rules that filter or manipulate features based on the value of one or more
properties. The final tab is the CSS Reference tab, and it is effectively an IFRAME
into which the CSS reference documentation is loaded. This allows us to check on
CSS styling rules and syntax without having to leave the editor.

Controlling the Output of GeoServer

[180]

The basics of CSS styles
CSS-based styles work in the same way as SLD-based styles, using rules to match
features and then applying a style to the matched set. A CSS-based style rule follows
this pattern:

Selector {
 Property_name : property_value
}

Those of you familiar with CSS will immediately recognize this structure.
The selector element is what GeoServer will use to select features to apply the
styling to. To select all the features, use an asterisk (*) as the selector; to select
features based on properties, use a valid ECQL filter as the selector.

For more information on how to use filters to select features
by properties, take a look at the GeoServer documentation at
http://docs.geoserver.org/stable/en/user/extensions/
css/filters.html. Further information on ECQL can be found at
http://docs.geoserver.org/stable/en/user/tutorials/
cql/cql_tutorial.html.

It is important to know that by default, a CSS style will not render anything. When
using CSS styles, you must have a minimum of one rule; otherwise, nothing will be
styled, and blank maps will be rendered. You can use the * filter to apply a basic
style to all features.

Within the curly braces, there are the styling properties that can be applied to the
selected feature(s). These are expressed as name/value pairs separated by a colon
(:); they are almost the same as in standard CSS.

The GeoServer documentation provides a list of valid properties to use
in styling at http://docs.geoserver.org/stable/en/user/
extensions/css/properties.html.

As we can see, the basic structure of a CSS style rule is pretty simple and easy to
understand. Consider the following example rule:

* {
 fill: #FF0000;
 stroke-width: 0.5;
}

http://docs.geoserver.org/stable/en/user/extensions/css/filters.html
http://docs.geoserver.org/stable/en/user/extensions/css/filters.html
http://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
http://docs.geoserver.org/stable/en/user/tutorials/cql/cql_tutorial.html
http://docs.geoserver.org/stable/en/user/extensions/css/properties.html
http://docs.geoserver.org/stable/en/user/extensions/css/properties.html

Chapter 6

[181]

Looking at this rule, we will expect to see all the features given a fill color of red
(fill: #FF0000) with a border width of 0.5 (stroke-width: 0.5). However, if we
actually apply this rule to a layer, then what we will see are polygons filled with
red but without any border. This happened because the CSS styling extension has
the concept of a key property for each symbolizer. If a key property is not present in
the rule, then all the child properties will be ignored. In the previous example, the
key property for the border is stroke, and as this is not present, the stroke-width
property is ignored. Let's rewrite the previous rule to:

* {
 fill: #FF0000;
 stroke: #000000;
 stroke-width: 0.5;
}

We will now see polygon features with a red fill and black border
(stroke: #000000) that is 0.5 thick. The following table lists the key
properties for each of the symbolizers:

Property name Symbolizer Description
fill Polygon This property specifies whether a polygon fill is

applied; the value is either the color or a graphic
stroke Polygon and line This property specifies whether line or polygon

outlines are applied; the value is either the color
or a graphic

mark Point This property specifies whether point marks are
applied; the value is a well-known mark or URL
to an image

label Text This property specifies whether the text is drawn
on the map as labels; the value is an ECQL
expression for the property that contains the
value to be used as the label

Halo-radius Text This property specifies whether to draw a
halo around labels or not; the value is the
size of the halo

Now that we understand the basics of CSS styling, let's take a look at an example
using one of the datasets we loaded in Chapter 3, Working with Vector Data in
Spatial Databases.

Controlling the Output of GeoServer

[182]

Putting it all together
Now let's take a look at bringing all of this together to create a style for one of the
datasets that we loaded into GeoServer. For this example, we are going to use the
UK Level Street Crime data that we loaded in Chapter 3, Working with Vector Data in
Spatial Databases. The objective of this style will be to create a symbol for each point
based on the value of its CRIME_TYPE property. The following is the legend for what
we are trying to achieve:

First, we need to make sure that we are on the CSS Styles page by selecting the
option from the left-hand side panel of GeoServer's web administration console.
Before we create the new style, we need to specify the layer that we want to work
with; this will be the layer that appears in the Map tab and allows us to preview
our style as we create it.

Chapter 6

[183]

Click on the link called Choose a different layer and select the crime data layer that
we loaded in Chapter 3, Working with Vector Data in Spatial Databases.

When we click on the layer name, the layer selection dialog will close. The text
on the page will change to indicate that we are now previewing data from the
Police:StreetCrime layer.

Now, we need to click on the link called Create a new style to open a new dialog
where we can specify the name and workspace for the new style we that create.
The workspace is not a required value, and leaving it blank will not impact the
way the style functions.

Controlling the Output of GeoServer

[184]

Click on the Create button to dismiss the dialog. The CSS Styles page is now set
up and ready for us to work on with our CSS style. We can make edits inside the
textbox and then click on the Submit button to have them committed. The Map
and Generated SLD tab contents will be updated to reflect the changes made to
the CSS style.

The syntax of our style will be checked without the need to press
the Submit button; however, the Map and the Generated SLD
tab contents are only updated after clicking on Submit.

To create the output for this style, we are going to create a CSS style that uses
selectors to filter the data based on the CRIME_TYPE property. The complete CSS
style file can be downloaded from the website of this book; look for the file called
CrimeByType_CSS_Style.css.

Let's take a look at the most important elements of this file, starting with the
first rule:

* {
 mark: symbol('x');
}

The asterisk (*) is a wildcard, which means that it will select all the features;
essentially, this rule means that all the features will be given a symbol of an X.
The next rule following on from this one is:

:mark {
 stroke: #000000;
 stroke-width: 1;
 fill: #C0C0C0;
}

This rule uses a pseudo-class selector to select all the symbol elements (points) in
the output. This rule is used to provide a common set of styling properties to be
applied to all the points, irrespective of their CRIME_TYPE property. In this case, we
will apply a black outline (stroke: #000000) with a width of 1 (stroke-width: 1)
and a light-gray fill (fill: #C0C0C0). It is beneficial to have this catch-all rule, as it
means that any points that do not match our following rules will be displayed with a
default style.

Chapter 6

[185]

There are a number of different pseudo-class selectors that can
be used to select symbols. Take a look at the Symbol Selectors
section of the CSS documentation at http://docs.geoserver.
org/2.4.x/en/user/extensions/css/styled-marks.
html for a complete list.

The next set of rules all follow the same structure and provide different colors for the
points based on their CRIME_TYPE property. For example:

/*@title Anti-social behaviour */
[CRIME_TYPE = 'Anti-social behaviour'] :mark {
 fill: #1932ff;
}

There are a couple of elements to this rule for us to examine. The first and most
important element is the selector itself. This is any valid ECQL filter and is used to
select the data to style based on the value of a property, in this case, CRIME_TYPE.
This particular selector will select all the points whose CRIME_TYPE is equal to "
anti-social behavior." The rule will then provide a color for the point using the fill
property. The same rule is then repeated for each of the categories that we need to
create, with the selector property as well as the value for the fill color changing.

Did you notice that there is a comment at the start of the rule? This provides an
element of metadata that GeoServer can use when generating the SLD equivalent
of this style. It can also be used within the legend that is output in response to
WMS GetLegendGraphic requests. There are two elements of metadata that can be
included at the start of a rule.

Metadata tag Description
@title This tag provides the title value to be used when this rule is

selected for inclusion in a legend
@abstract This tag provides a description of what the rule is depicting

The two metadata elements can be combined and must always be before the rule to
which they apply. An example of combining the two will be:

/*
 * @title This is the legend label
 * @abstract This is a description of the rule
 */

http://docs.geoserver.org/2.4.x/en/user/extensions/css/styled-marks.html
http://docs.geoserver.org/2.4.x/en/user/extensions/css/styled-marks.html
http://docs.geoserver.org/2.4.x/en/user/extensions/css/styled-marks.html

Controlling the Output of GeoServer

[186]

The final set of rules for this style allows us to specify different-sized symbols based
on the zoom level of the map:

[@scale < 20000] {
 mark-size: 12;
}

[@scale > 20000] [@scale < 100000] {
 mark-size: 8;
}

[@scale > 100000] {
 mark-size: 4;
}

These three rules define a range of scales at which different-sized point symbols
should be drawn. Anything below a scale of 1:20,000 will be drawn with a size of 12,
and anything above 1:100,000 will be drawn with a size of 4. Anything in between
will be drawn with a size of 8. The mark-size property specifies the size for the
mark, and the @scale selector is a pseudo-attribute that provides the rendering
context, in this case based on the scale denominator.

That is all there is to it. Submitting this CSS style will save it to GeoServer, and we
can then use it like any other style. Assign it to the UK Street Level Crime data and
then have a look at the Layer Preview:

Chapter 6

[187]

As discussed earlier, one of the reasons we might wish to utilize CSS styles over
standard SLDs is because CSS styles can be less verbose than SLD. We already saw
this by the way in which we set up the base style properties common to all the points
and then simply varied the fill color on each rule. In an SLD, we will have to repeat
all the basic style properties on each rule, and then we will have to repeat each rule
three times for the different scale denominations. The result is that the SLD file is
significantly more verbose. Consider the following fragment:

<sld:Rule>
 <sld:Title>Robbery </sld:Title>
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>CRIME_TYPE</ogc:PropertyName>
 <ogc:Literal>Robbery</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MaxScaleDenominator>20000.0</sld:MaxScaleDenominator>
 <sld:PointSymbolizer>
 <sld:Graphic>
 <sld:Mark>
 <sld:WellKnownName>x</sld:WellKnownName>
 <sld:Fill>
 <sld:CssParameter name="fill">#27a800</sld:CssParameter>
 </sld:Fill>
 <sld:Stroke/>
 </sld:Mark>
 <sld:Size>12</sld:Size>
 </sld:Graphic>
 </sld:PointSymbolizer>
 </sld:Rule>

This is 26 lines for one rule to style points based on the CRIME_TYPE property
being equal to "Robbery", and this is only for the lowest zoom level. This rule
will need to be repeated twice with only the <sld:MinScaleDenominator>,
<sld:MaxScaleDenominator>, and <sld:Size> elements varying. Take a look for
yourself; I have placed the equivalent SLD style in the same location as the CSS style
for download. Look for the file named CrimeByType_SLD_Style.sld and open it up
in an editor. If your editor has line numbers, then you will see that this file is 999 lines
long, whereas the equivalent CSS file (CrimeByType_CSS_Style.css) is only 65 lines.

Controlling the Output of GeoServer

[188]

One final thing to touch on for CSS styling is the ability to combine styles into a single
rule to create a compound style. This is achieved using the multivalued properties
capability in CSS styles. This approach is useful for situations where you want to paint
a feature multiple times to create an effect; the most common use case for this will be to
create cased lines to indicate roads. Consider the following example:

[ROAD_TYPE = 'Motorway'] {
 stroke: #0000FF, #000000;
 stroke-width: 5px, 3px;
 stroke-linecap: round;
 z-index: 0, 1;
 }

This example assumes that the dataset it is being applied to contains a property
called ROAD_TYPE, and the dataset uses it to select all the roads that are of type
Motorway. It then draws the line feature twice as indicated by the two comma-
separated values for the stroke property. In this case, it will draw the line first
in blue and then a second time in white, the order being indicated by the comma-
separated integers for the z-index property. The effect of casing the line, to create a
blue line with a white fill, is done by varying the width of the line using the stroke-
width property. The blue line is drawn with a width of 5, and the white line is drawn
with a width of 3. This is because the z-index indicates that the blue line is drawn
first (because it has the lowest value) and the white line is drawn on top. As it is
thinner, the blue line will effectively appear to be the border.

Multivalued properties can be used in this way to create a wide range of
styling effects.

Per-request styling of map features
It is possible to ask GeoServer to render features in a style that does not exist
within its own catalog. This ability to do per-request styling is also referred to
as external styles.

Per-request styling of map features is part of the OGC WMS standard.
Any web mapping software that conforms to the standard will contain
a similar capability. As this is a book on GeoServer, we will explore
GeoServer's implementation of the WMS standard.

Chapter 6

[189]

There are three different ways in which an external style can be provided
to GeoServer:

• The SLD= parameter can be set on the GetMap GET request to point at an
Internet-accessible SLD file

• The SLD_BODY= parameter can be set on the GetMap GET request to provide
the SLD document as a URL-encoded XML

• The SLD can be provided in the XML GetMap POST request body

The mode in which GeoServer works to apply the styling depends on whether
or not the LAYERS parameter is included in the GetMap request. When the LAYERS
parameter is not present, the supplied SLD file defines all of the layers and styles
for the map's content. When the LAYERS parameter is present, GeoServer operates
in Library Mode.

An external style can also include new layers of data using the SLD
<InlineFeature> element. This element can provide feature data
within the SLD itself, along with information on how to style these
features. This can be very useful, for example, to perform dynamic
feature highlighting or provide additional elements of information
on the map. The GeoServer documentation at http://docs.
geoserver.org/2.4.x/en/user/styling/sld-reference/
layers.html#sld-reference-inlinefeature has more
details on this topic.

In Library Mode, any styles supplied externally are treated as a style library in their
own right, and they extend the built-in GeoServer style catalog. This means that
while rendering, the external styles will override the default server styles, based on
a selection criteria. The details of the selection criteria that GeoServer uses can be
found at http://docs.geoserver.org/2.4.x/en/user/styling/sld-working.
html#library-mode.

Let's take a look at an implementation of external styling. In this example, we will
take our UK Street Level Crime data and overlay it on an OpenStreetMap base layer.
We will then add two versions of the same layer to the map. The first version will be
requested without any specific styles so that GeoServer will render using the default
style. The second layer will be added with a simple SLD_BODY style that will style
all the points as a circle with a black outline and a red fill. The code for this example
can be downloaded from the Packt Publishing website of this book. To demonstrate
this capability, we are going to create a simple OpenLayers application; the code
is contained within the Index.html file and links to the OpenLayers.js file in the
lib directory.

http://docs.geoserver.org/2.4.x/en/user/styling/sld-reference/layers.html#sld-reference-inlinefeature
http://docs.geoserver.org/2.4.x/en/user/styling/sld-reference/layers.html#sld-reference-inlinefeature
http://docs.geoserver.org/2.4.x/en/user/styling/sld-reference/layers.html#sld-reference-inlinefeature
http://docs.geoserver.org/2.4.x/en/user/styling/sld-working.html#library-mode
http://docs.geoserver.org/2.4.x/en/user/styling/sld-working.html#library-mode

Controlling the Output of GeoServer

[190]

The first layer is added to the map without any styling information:

defaultCrimeLyr = new OpenLayers.Layer.WMS(
 "UK Street Level Crime",
 baseWMSUrl,
 {
 "layers": "Police:StreetCrime",
 "format": "image/png",
 "transparent": "TRUE",
 "version": "1.1.1"
 ,
 {
 isBaseLayer: false
 }
);

This code fragment creates an OpenLayers.Layer.WMS layer that points to our
GeoServer WMS end-point (specified by the baseWMSUrl variable) and requests the
Police:StreetCrime layer. Notice that there is no style requested, which means
that GeoServer will render the layer using whatever style we specified as the default.
In this case, it is using the CSS style we defined earlier in this chapter. When we use
the OpenLayers layer control to switch this layer on, we should see the default style:

Chapter 6

[191]

The second layer is added to the map with styling information:

sldCrimeLyr = new OpenLayers.Layer.WMS(
 "UK Street Level Crime",
 baseWMSUrl,
 {
 "layers": "Police:StreetCrime",
 "format": "image/png",
 "transparent": "TRUE",
 "version": "1.1.1",
 "SLD_BODY": sldBody
 },
 {
 isBaseLayer: false
 }
);

The only difference between this OpenLayers.Layer.WMS definition and the
previous one is the addition of the SLD_BODY request parameter, whose value is the
sldBody variable. When we use the OpenLayers layer control to switch this layer on,
we should see the layer styled using our external style.

The sldBody variable itself is defined as follows:

sldBody = '<?xml version="1.0" encoding="utf-
8"?><StyledLayerDescriptor version="1.0.0" xmlns="http://
www.opengis.net/sld" xmlns:gml="http://www.opengis.net/gml"
xmlns:ogc="http://www.opengis.net/ogc" xmlns:xlink="http://www.
w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.opengis.net/sld http://
schemas.opengeospatial.net/sld/1.0.0/StyledLayerDescriptor.xsd"
><NamedLayer><Name>Police:StreetCrime</Name><UserStyle><Feature
TypeStyle><Rule><PointSymbolizer><Graphic><Mark><WellKnownName>
circle</WellKnownName><Fill><CssParameter name="fill">#B0B0FF</
CssParameter></Fill><Stroke><CssParameter name="stroke">#0000FF</
CssParameter><CssParameter name="stroke-width">1</CssParameter></
Stroke></Mark><Size>10</Size></Graphic></PointSymbolizer></Rule></
FeatureTypeStyle></UserStyle></NamedLayer></StyledLayerDescriptor>';

Simply, it is a valid SLD in XML as a string variable. Notice how the <Name> child
element of the <NamedLayer> parent exactly matches the name of the layer that we
are applying SLD_BODY to, including its workspace. If we did not make the value a
fully qualified name, then the style will not be applied to the layer.

Controlling the Output of GeoServer

[192]

Turning this layer on in the OpenLayers layer switcher and turning the original layer
off will show the style to be overridden:

When using SLD_BODY to send external styles, be careful about the size of the SLD
itself. There is a limit on the total length of a URL, and adding a complex SLD will
likely cause you to reach this limit.

Remember to always ensure that you provide the content for the
SLD_BODY URL encoded to ensure that it is properly handled by
web browsers.

If the length of your SLD is an issue, then consider storing it as a web-accessible
file. Then, use the SLD request parameter or make your GetMap requests using
HTTP POST, with the SLD being defined in the request body.

Chapter 6

[193]

Per-request filtering of data
The WMS specification allows the use of vendor parameters in requests. Vendor
parameters are non-standard (that is; the parameter is not part of the OGC
specification) request parameters that have been implemented by a vendor to
provide enhanced capabilities. While vendor parameters are useful to provide
enhanced capabilities, care must be taken when using them in your own client-side
implementations. If you are making a generic client application that can target multiple
WMS servers, then it is quite likely that they will be from a range of vendors. If you
use a vendor-specific request parameter to a server that is not aware of it, you might
see errors occurring. However, if you know for sure that you are targeting a GeoServer
WMS, then there are a number of vendor-specific request parameters available.

A complete list of the vendor-specific WMS parameters that
GeoServer supports is available at http://docs.geoserver.
org/2.4.x/en/user/services/wms/vendor.html#wms-
vendor-parameters.

We are going to take a look at one vendor-specific parameter in particular, the
CQL_FILTER parameter. This parameter is of interest because it will allow us to send
a filter parameter as part of our request to GeoServer. In response, GeoServer will
return the data resulting from the filter. A CQL filter can range in complexity from a
simple filter in a dataset attribute through to a compound filter query that contains a
mix of attribute and spatial filter queries.

The CQL_FILTER syntax is expressed using ECQL, which is a compact
and readable query language. Details of the language can be found at
http://docs.geoserver.org/2.4.x/en/user/filter/ecql_
reference.html#filter-ecql-reference. A tutorial on using the
language can be found at http://docs.geoserver.org/2.4.x/
en/user/tutorials/cql/cql_tutorial.html#cql-tutorial.

To demonstrate how useful the CQL_FILTER parameter can be, we are going to create
a simple OpenLayers application to apply filters to the UK Street Level Crime data
that we loaded in Chapter 3, Working with Vector Data in Spatial Databases. The basic
application is available in the code bundle of this book.

http://docs.geoserver.org/2.4.x/en/user/services/wms/vendor.html#wms-vendor-parameters
http://docs.geoserver.org/2.4.x/en/user/services/wms/vendor.html#wms-vendor-parameters
http://docs.geoserver.org/2.4.x/en/user/services/wms/vendor.html#wms-vendor-parameters
http://docs.geoserver.org/2.4.x/en/user/filter/ecql_reference.html#filter-ecql-reference
http://docs.geoserver.org/2.4.x/en/user/filter/ecql_reference.html#filter-ecql-reference
http://docs.geoserver.org/2.4.x/en/user/tutorials/cql/cql_tutorial.html#cql-tutorial
http://docs.geoserver.org/2.4.x/en/user/tutorials/cql/cql_tutorial.html#cql-tutorial

Controlling the Output of GeoServer

[194]

Have a look at the folder named PerRequestFiltering and load the contents into a
web server. Most of the code contained within the Index.html file is fairly standard
HTML and OpenLayers code. The most interesting function for us to discuss is:

function changeMapFilter(){
 // Get the selected option from the user
 var crimeTypeSelect = document.getElementById("crimeFilter");
 var crimeOption = crimeTypeSelect.options[crimeTypeSelect.
selectedIndex].value;

 // Apply the filter
 if (crimeOption == 'None') {
 // Clear the filter to get back all data
 crimeLyr.mergeNewParams({ "CQL_FILTER" : null});
 } else {
 // A type has been selected to filter on, apply the filter
 crimeLyr.mergeNewParams({ "CQL_FILTER": "CRIME_TYPE = '" +
crimeOption + "'" });
 }
}

This changeMapFilter function is triggered when a user changes the value from the
drop-down list that contains the different crime type options. When the selection is
made, we will first get a reference to the option that was selected, as shown in lines
3 and 4. Once we have the chosen value, we can then react to it. First, we will check
to see if the value is None; if it is, then the code removes any CQL_FILTER parameter
values that are set on the layer. Effectively, this means that the filter is no longer
applied, so GeoServer will return all of our data. If the value is something other
than None, then we need to set a value for the CQL_FILTER parameter on our layer.
OpenLayers has a method on layers called mergeNewParams, which allows us to set
new parameters (or change the value of the existing ones) on requests for the layer it
is called from. In our case, we will change the value for the filter to:

CRIME_TYPE = '<value>'

Where <value> is the value of the option selected from the drop-down list.
When we call the mergeNewParams method, OpenLayers will apply it and make a
new request for the layer. Once a user selects an option from the drop-down list, the
layer is immediately refreshed and will show only the crime locations matching the
chosen value.

Chapter 6

[195]

For example, if the user selected Robbery as the value, then they would see the
following output:

All of the data has been filtered, and only the crimes of type Robbery remain, shown
by the light-green colored points.

Using Freemarker templates to change
WMS responses
Until now, the methods of controlling GeoServer output we have focused on have
been concerned with the rendered output. We are going to change the track slightly
now and take a look at how we can manipulate the response that GeoServer provides
to WMS GetFeatureInfo requests.

Controlling the Output of GeoServer

[196]

A GetFeatureInfo request is a standard WMS request that returns the feature
information for a given location on a map for one or more layers. In essence, it is the
equivalent of a standard feature's information interrogation that one might do in a
Desktop GIS. GeoServer receives the request and then calculates if any features of the
given layer, or layers, intersect the location specified.

If any features are hit, then they are included in the response to the request. The
format of this response is dependent on the value specified for the INFO_FORMAT
request parameter. GeoServer has a number of formats that can be output, but in
each case, the generated output is fixed. For the majority of cases, this will probably
be fine; however, there might be circumstances where it will be good to control the
output generated, for example, to create custom JSON output or, perhaps, even XML.

Luckily for us, GeoServer makes use of something called Freemarker templates that
allow us to create custom outputs when the INFO_FORMAT is specified as text/html.
The default output is to provide a list of features hit at the given location in a simple
HTML table, with one table for each layer, where one or more features are hit. Using
Freemarker templates, it is possible to alter the way in which the content is rendered;
for example, images can be rendered in place of the attributes where there is a library
of images that match feature identifiers.

We learned that output is controlled by Freemarker templates.
To learn more about Freemarker templates and how to use
them, take a look at Designer Guide at http://freemarker.
org/docs/dgui.html and the GeoServer introduction
at http://docs.geoserver.org/2.4.x/en/user/
tutorials/freemarker.html.

In the context of the GetFeatureInfo templates, GeoServer looks in three locations
to determine how to respond to a request:

• Inside the FeatureType directory for content.ftl
• Inside the DataStore directory for content.ftl
• Inside the Workspace directory for content.ftl

http://freemarker.org/docs/dgui.html
http://freemarker.org/docs/dgui.html
http://docs.geoserver.org/2.4.x/en/user/tutorials/freemarker.html
http://docs.geoserver.org/2.4.x/en/user/tutorials/freemarker.html

Chapter 6

[197]

From this list, we can see that the templates can be used at the feature, data store,
and workspace levels. If, for example, we have a template inside the data store
directory, then this template will be used for all the feature types that come from
this data store. There are also two global overrides in the form of the root of the
workspaces folder and also the templates folder in the root of the data directory.
What is particularly interesting here though is the ability to create templates inside
the FeatureType directory; this means that it is possible for us to be able to define
feature-specific templates. This can be very useful for cases where you need to show
responses to information requests on specific layers in a certain way.

For example, the default template will display all the attributes from a layer that
might not be desirable. Instead, you might need to control the output for specific
layers so that not all attributes are output, perhaps, to conceal some data not relevant
to general usage of the dataset. A template itself consists of three files:

• The Header.ftl file provides the header or introductory information for the
output format and is usually fixed. In the case of an HTML output, this file
contains the standard <html>, <head>, and opening <body> tags. Generally
speaking, you will not do any feature processing on this file. This file is only
ever called once.

• The Content.ftl file is the core of the template, and it is in this file that you
will write the logic to process the content of features and feature collections.
In the case of the HTML output, this file contains the logic to generate all of
the HTML tables that display the attribute name and values of the features.
This file is called multiple times, and each time it is supplied with a collection
of features, all of which are the same type.

• The Footer.ftl file is the final template file and is used to close off
anything to make the output valid. For HTML output, this file will contain
the closing </body> and </html> tags. Like the header file, this one is
typically static and will not contain any feature-processing logic. This file is
only ever called once.

Controlling the Output of GeoServer

[198]

We are now going to take what we have just learned and develop a new output for
the GetFeatureInfo requests that will be applied globally. This new output will be
an XML response that provides a collection of layers and the features found within
them. This response format will be useful in situations where we might want to
create an application that queries all the layers and shows the response consolidated
in a single dialog, such as this example from the Marine Scotland National Marine
Plan Interactive available at http://www.scotland.gov.uk/Topics/marine/
seamanagement/nmpihome:

To be able to get a multiple layer response from a GetFeatureInfo request, we need
to override the templates at a global level. To do this, we need to create a directory
called templates within our GeoServer data directory; the templates directory will
contain the three .ftl files that we just discussed.

The header.ftl file is very simple:

<?xml version='1.0' encoding='utf-8'?>
<Features>

Here, we are simply defining the fact that the output is XML, and the root element
for the document is called <Features>. The footer.ftl file is even simpler:

</Features>

http://www.scotland.gov.uk/Topics/marine/seamanagement/nmpihome
http://www.scotland.gov.uk/Topics/marine/seamanagement/nmpihome

Chapter 6

[199]

It contains a single line that closes off the root element. The meat of the template is
contained within the content.ftl file:

<#list features as feature>
<Feature layerName='${type.name}' fid='${feature.fid}'>
<Attributes>
<#list feature.attributes as attribute>
<#if !attribute.isGeometry>
<Attribute name='${attribute.name}'>${attribute.value}</Attribute>
</#if>
</#list>
</Attributes>
</Feature>
</#list>

Once again, this is a fairly simple template file. To start with, we will define that we
want to loop through all of the features returned from the query. Remember that the
content.ftl file is called multiple times, and each call passes a feature collection.
We will use the Freemarker template <#list> construct to perform a loop over
each feature in the collection, and we will create a variable for each feature instance
called feature. Inside this loop, we will construct our individual feature element by
defining its opening element:

<Feature layerName='${type.name}' fid='${feature.fid}'>

This uses variable substitution to give us the name of the layer the feature belongs
to and its unique identifier. Next, we will create an <Attributes> element that will
contain the details of the attributes for the feature. Once again, this is a loop using
the <#list> instruction; this time we are looping over the collection of attributes
by specifying feature.attributes in the loop definition. For each attribute in
the collection, we need to check that it is not the geometry of the feature. The if
statement !attribute.isGeometry will return true if the attribute is not the
geometry of the feature. If the attribute is a normal feature attribute, then we will
create an <Attribute> element:

<Attribute name='${attribute.name}'>${attribute.value}</Attribute>

Again, we will use variable substitution to get the name and value of the attribute
and then create an appropriate element to represent it. The end result is that we will
get a response back from the server similar to the following:

<?xml version='1.0' encoding='utf-8'?>
<Features>
<Feature layerName='StreetCrime' fid='StreetCrime.155221'>
<Attributes>
<Attribute name='CRIME_ID'></Attribute>
<Attribute name='MONTH'>2013-12</Attribute>

Controlling the Output of GeoServer

[200]

<Attribute name='REPORTED_BY'>Lancashire Constabulary</Attribute>
<Attribute name='FALLS_WITHIN'>Lancashire Constabulary</Attribute>
<Attribute name='LONGITUDE'>-3.042373</Attribute>
<Attribute name='LATITUDE'>53.819259</Attribute>
<Attribute name='LOCATION'>On or near Shopping Area</Attribute>
<Attribute name='LSOA_CODE'>E01012675</Attribute>
<Attribute name='LSOA_NAME'>Blackpool 010B</Attribute>
<Attribute name='CRIME_TYPE'>Anti-social behaviour</Attribute>
<Attribute name='LAST_OUTCOME_CATEGORY'></Attribute>
<Attribute name='CONTEXT'></Attribute>
</Attributes>
</Feature>
</Features>

This is only a simple example with one feature returned, but in reality, this will be
a list of features from multiple layers. Recall how we created this template so that
it was global? This means that all the responses for text/html will now actually
receive results in our new format, which will show all the attributes. But what if for
some layers, we want to override this behavior by only including certain attributes?
Well, in this case, we can place a new content.ftl file inside the feature type folder
to override the global one inside the templates folder. For example:

<#list features as feature>
<Feature layerName='${type.name}' fid='${feature.fid}'>
<Attributes>
<Attribute name='Crime Type'>${feature.CRIME_TYPE.value}</Attribute>
<Attribute name='Month'>${feature.MONTH.value}</Attribute>
<Attribute name='Reported By'>${feature.REPORTED_BY.value}</Attribute>
</Attributes>
</Feature>
</#list>

The preceding snippet will generate a response, still using our core structure, but
with only three of the attributes actually exposed:

<?xml version='1.0' encoding='utf-8'?>
<Features>
<Feature layerName='StreetCrime' fid='StreetCrime.155221'>
<Attributes>
<Attribute name='Crime Type'>Anti-social behaviour</Attribute>
<Attribute name='Month'>2013-12</Attribute>
<Attribute name='Reported By'>Lancashire Constabulary</Attribute>
</Attributes>
</Feature>

This will allow us to hide certain attributes that we might not want to make public,
through the WMS GetFeatureInfo requests.

Chapter 6

[201]

Summary
In this chapter, we took a look at some of the different ways in which we can
take control of GeoServer. From advanced uses of SLD styles to manipulating the
response from a WMS GetFeatureInfo request, we saw how powerful and flexible
GeoServer can be.

We saw how we can benefit from the presence of the WPS extension when it comes
to creating SLD styles to render maps. By making use of the render transformations
that the WPS extension provides, we saw how easy it is to create a style that can
dynamically generate a response based on our source data. To illustrate this, we saw
how we can create a style that can generate heatmaps from any point dataset.

After looking at an advanced SLD, we learned about an alternative means of creating
styles for our maps. We learned that the CSS style extension allows us to take a
common web standard, Cascading Style Sheets, and use it to describe styling rules
for our maps. The benefit of using the CSS style extension is that it opens up the
potential for others in our organization to create map styles without having to learn
the complexities of SLD.

As it adheres to all the OGC standards for WMS, we saw how it is possible to request
a map from GeoServer and tell it how it should be styled. Instead of being stuck with
the built-in styles for GeoServer or having to log in to GeoServer to create them, we
can actually send the SLD we want GeoServer to use when rendering the map. Along
with sending SLD content in requests, we also saw how easy it is to send requests
with a filtering query attached. Per-request filtering using the CQL filtering language
allows us to thin out the data that we get back from GeoServer, based on some form
of filtering query.

Finally, we looked at how we can manipulate the output from a WMS
GetFeatureInfo request through the use of custom Freemarker templates. This is
very useful in situations where you might want to create your own custom feature
information report control or where you need specific control over the output.

Now we know how to create great-looking maps. In the next chapter, we will learn
how to turn them into output that can be printed to hard copies.

Using GeoServer to
Print Maps

In this chapter, we will take a look at how we can publish our maps in such
a way that we will be able to print them. We will explore the capabilities of the
community-printing module in GeoServer to output maps using specific templates.
Users will expect you to provide print capabilities within your web application.
Traditionally, creating print output from a web application has been difficult.

If you have added print capabilities to a web mapping application in the past,
you likely implemented this through a specific web page created to fit an A4-size
page using various HTML and CSS techniques. Thankfully, things have moved
on substantially, and now it is easier than ever to generate an output for printing.
To understand how easy it is to add a print capability to your applications, we will
explore the following topics:

• What the GeoServer print extension is and how it can be used
• How to install and configure the print extension
• Understand how the configuration is used to define templates
• How to make print requests to generate PDF output

By the end of this chapter, you will have GeoServer set up and ready to accept print
requests from your web applications.

Using GeoServer to Print Maps

[204]

The GeoServer print extension
The GeoServer print extension is a community module that gives GeoServer
the ability to generate output in a number of formats using a template system.
The primary output for the extension is PDF; this can then be sent to a printer
or other users.

There are two types of extensions available for GeoServer: official
extensions and community extensions. Official extensions form a
part of the official release, are maintained, and should be considered
stable. Community extensions are not part of the official release
and should be considered experimental or pending. Some community
extensions, such as the print extension, have been available for a long
time and are reasonably stable.

The print extension itself is a container for the MapFish printing service, which
provides an HTTP API interface for printing. The interface can be called from any
mapping application that can make web calls, for example, JavaScript mapping
applications. More details on MapFish printing can be found on its website at
http://www.mapfish.org/doc/print/.

MapFish (http://www.mapfish.org) is a web mapping application
framework built on the Pylons Python web framework. It provides a
number of tools and services for the rapid creation of web mapping
applications, including a print service, and is OGC compliant.

Installing the print extension
The method to install the print extension is the same as any other extension in
GeoServer. However, since it is a community extension, it won't be found in
the usual download location. Community extensions are found in the nightly
builds folder of the GeoServer project at http://ares.boundlessgeo.com/
geoserver/2.5.x/community-latest/. Within this folder, look for the file named
geoserver-2.5-SNAPSHOT-printing-plugin.zip and click on it to download. At
the time of writing this book, the current stable version of GeoServer, and the one we
are using, is Version 2.5.2. If you are using a more recent version, then replace the
2.5.x element of the URL with the version number you are on.

Open a command line in the directory where you downloaded the file and enter the
following command:

$ unzip geoserver-2.5-SNAPSHOT-printing-plugin.zip *.jar –d <tomcat_
home>/webapps/geoserver/WEB-INF/lib

http://www.mapfish.org/doc/print/
http://www.mapfish.org
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/

Chapter 7

[205]

This command will extract the files with a .jar extension into the lib folder of your
GeoServer instance. The following screenshot shows the files that are contained in
Version 2.5.x of the plugin:

Remember to change <tomcat_home> to the folder where your Tomcat instance is
installed. Repeat the process for all of your Tomcat instances and then restart them.

Verifying the print extension installed
We have installed the extension into all of our GeoServer instances; we now need
to verify whether everything worked. Unlike other extensions, the print extension
does not provide any obvious indication that it is installed on the web administration
console; for example, it does not place a menu item on the left-hand side panel.
Instead, to verify that it is installed, we must check our data directory and look for
a folder named printing. Within this folder, there should be a file named config.
yaml. If the file exists, then the extension is installed correctly, and GeoServer has
detected its presence.

Although there is no obvious indication from the web administration console
that the extension has been installed, there is an area that we can check. The print
extension includes a demonstration application that we can use to check whether
it installed correctly:

1. On the left-hand side panel of the web administration console, there is a
menu option called Demos:

Using GeoServer to Print Maps

[206]

2. Click on the link to open the page that lists the demo applications:

3. Click on the Mapfish Printing option to open a page that contains a
GeoExt-based application where the test print requests can be made:

Chapter 7

[207]

4. If the printing folder is present in the data directory, as shown in the
following screenshot, and the demonstration the GeoExt application is
present, then we have successfully installed the print extension:

Configuring the print extension
Once installed, the extension provides a default configuration YAML Ain't Markup
Language (YAML) file that can be used immediately. However, to get the most
out of the extension, we need to understand how the configuration file controls
the printing capabilities.

The print extension is configured using a configuration script called config.yaml;
this is stored in the printing folder of the data directory. The configuration is
written using the YAML language, which is a data-serialization standard that can
be used in most programming languages.

Using GeoServer to Print Maps

[208]

For more details on the YAML language, visit the project website
at http://www.yaml.org.

The configuration is broken up into sections, with each section relating to a specific
element of the configuration. When the print extension is installed, it automatically
creates a basic configuration that will be useful for most cases; however, we will learn
about the structure of the configuration by creating our own custom implementation.
The complete file that we will use can be obtained from the code-download website of
this book, so it won't be completely replicated here. Instead, we will take a look at the
more pertinent elements of the configuration.

The YAML language uses whitespace to denote its structure, much
like Python does. Indentation denotes the structure in YAML, with
indentation being defined as one or more space characters at the start of
a line. A YAML block is terminated when a new line with indentation
less than the previous one is reached. Keep this in mind when editing
the config.yaml file. It is a best practice to use space characters for
whitespaces instead of tabs, as different systems will interpret the tab
character differently. Most text editors can be configured so that tabs
are inserted as a number of spaces; if your text editor of choice has this
feature, then we recommend that you enable it.

The dpis section
The dpis section provides a list of DPI values that can be used when requesting a
print from the service. The configuration that we will use is:

dpis: [75, 150, 300]

The value selected from this list is sent to GeoServer, using the format_options
parameter of a WMS request, so a value of 300 will result in the format_
options=dpi:300 parameter being added to the WMS request. The DPI option is a
vendor parameter that GeoServer adds to standard WMS requests. It allows for the
creation of higher resolution output over the OGC standard. The advice to create
higher resolution output is to request an image size that is a factor larger than the
intended image size, as well as to set the DPI value. The formula used to calculate
the correct image size to request for a higher resolution output is:

request_image_size = (target_dpi / 90) * intended_image_size

So, if you want to have intended_image_size of 200 x 200 with a resolution of
300 DPI, then request_image_size should be 666 x 666. This is because the OGC
standard output resolution is specified as 90 DPI.

http://www.yaml.org

Chapter 7

[209]

The formats section
The formats section is an optional section of the configuration and allows you to
specify the output formats that a print can be requested in. If the section is omitted,
then only PDF will be allowed as the output format. In our case, we will also allow
PNG. The default configuration does not contain the formats section as it is optional;
therefore, we need to add it ourselves. Add the following content into the config.
yaml file:

formats:
 - pdf
 - png

You will notice that, like with the DPI section, this is a list of values. However, if you
look closely, you will see that we have specified it in two different ways. In the case
of the dpis section, we specified it like an array, with values separated by commas
inside square brackets. In the formats section, we specified them as individual
values, one per line. Either type of list structure is valid, and it is really down to
personal preference when choosing which one to use.

The formats that you can specify for the output are dependent on your server
configuration; PDF is always available, but image formats rely on having JAI and
ImageIO configured on the server. If they are configured, then you can specify any
image format supported by these libraries.

GeoServer makes extensive use of the Java Advanced Imaging (JAI)
and ImageIO libraries to perform its raster operations. More details on
the API can be found at http://www.oracle.com/technetwork/
java/javase/tech/jai-142803.html.

The scales section
The scales section of the configuration allows us to specify the map scales at which
the output can be requested. You can specify as many scales as you like; simply add
an integer value to the list. For our example, we will just allow a small selection of
scales to represent large-scale, mid-scale, and small-scale mapping:

scales:
 - 1250
 - 2500
 - 10000
 - 100000
 - 500000

http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html
http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html

Using GeoServer to Print Maps

[210]

When creating your own print configuration, you should consider the type of maps
you want your users to be able to generate and set the scales list accordingly.

The fonts section
The fonts section is an optional section of the configuration. By default, the entire
PDF output will have access to the following fonts:

• Courier (Bold, Oblique, and BoldOblique)
• Helvetica (Bold, Oblique, and BoldOblique
• Times (Roman, Bold, Oblique, and BoldOblique)
• Symbol
• ZapfDingbats

However, this is a rather limiting list of fonts, and your system will likely contain a
much wider variety of fonts. You might even have your own custom font that you
would like to use in the print outputs. That is exactly what the fonts section of the
configuration is; therefore, it allows us to specify a location (directory or file) for the
font(s) we want to have access to in our layouts. For example, on a Windows system,
you might have something like the following section:

fonts:
 # Arial
 - 'c:\windows\fonts\arial.ttf'
 # Arial Black
 - 'c:\windows\fonts\ariblk.ttf'
 # Arial Bold
 - 'c:\windows\fonts\arialbd.ttf'
 # Arial Bold Italic
 - 'c:\windows\fonts\arialbi.ttf'
 # Arial Italic
 - 'c:\windows\fonts\ariali.ttf'
 # Verdana
 - 'C:\Windows\Fonts\verdana.ttf'

In this particular section, we added the different flavors of the Arial font held in the
Windows fonts directory. When specifying a file for the font, we can use any of the
following supported formats:

Font format File extension
TrueType TTF
OpenType OTF

Chapter 7

[211]

Font format File extension
TrueType Collection TTC
Adobe Font Metrics AFM
Printer Font Metric PFM

Of course, we can also just specify a single directory and then have access to all the
fonts available within it, for example:

fonts:
 - 'C:\Windows\Fonts'

It is worth considering setting the fonts section in your configuration so that you
can make better templates for the output. On Linux, we can simply add the system-
shared font directory and then have access to all the fonts installed for our layouts.
For example, a Linux config.yaml might include:

fonts:
 - '/usr/share/fonts'

The hosts whitelist section
The hosts section is mandatory and is there to help protect our servers from being
used as a proxy to access internal documents or documents on other servers. The point
of this section is to list the hosts that our print templates will contact to get mapping
data. As a minimum, we will make sure that we can access localhost, since this
extension runs within our own GeoServer, and we will need to access it. Each entry
in the list can be defined either by specifying a DNS name or an IP address:

hosts:
 - !localMatch
 dummy: true
 - !dnsMatch
 host: demo.opengeo.org
 - !ipMatch
 ip: tile.openstreetmap.org
 - !ipMatch
 ip: www.osmgb.org.uk
 port: 80
 - !dnsMatch
 host: www.packtpub.com
 - !ipMatch
 ip: static.geoserver.org

Using GeoServer to Print Maps

[212]

In the preceding example, we specified three hosts that we will allow the print
server to connect to. The first entry is localMatch; this means that we can allow
anything on localhost. The dummy element is required to overcome a shortcoming
in the YAML specification, but it does not actually do anything. The second entry
is dnsMatch, which will allow us to connect to the Open Street Map tile servers.
For dnsMatch, you specified the address using the host element. The third entry
is ipMatch, which will connect to the Open Street Map GB project server. The IP to
connect to is specified using the ip element; the eagle-eyed among you might have
noticed that we have not actually specified an IP address. The value for ipMatch can
be either a DNS name that will resolve to an IP address or the actual IP address itself.
If necessary, you can also add an element called port for localMatch, dnsMatch,
and ipMatch to allow you to connect to services exposed on alternative ports; for
example, GeoServer instances often run on port 8080.

The layouts section
The layouts section is the part that allows us to define the layouts (or print
templates) that we want to make available to our users. We can specify as many
layouts as we like; the only condition is that each layout has a unique name. The
name will be presented to end users in any client application that reads the print
capabilities document. Each layout can be either a single page or multiple pages with
a title and end page. All layouts must have a main page defined, but print requests
can be made by setting multiple main pages. For example, it will be possible to create
an atlas-style output by sending multiple page requests to the print server, with
different map configurations on each page.

We will explore the finer points of creating interesting print layouts in the next
section of this chapter.

Defining print layouts
The layouts section of the config.yaml file is where we define the layouts we want
to make available to our users. Each layout can consist of a title page, main page,
and a back page, making it possible to create booklet-style outputs. The main page
is where we place our mapping and attribute content that will form the structure for
the page. When making a request for output, it is possible to create multiple pages,
with the content of each page differing but the layout remaining the same. The server
generates each page by repeatedly using the main page definition of the layout but
changing the content on each use.

Chapter 7

[213]

Importantly, we do not have to specify all the three types of pages; it is perfectly
valid for a layout to simply define a main page. If the layout does not contain
definitions for title and back pages, then these will not be generated. It is important
to note that the main page is the only one that can contain a map, so the title and
back pages are best used for informational content.

There are a lot of options available when it comes to creating page
layouts, and we will not be able to cover all of them in this chapter.
The MapFish project has documented the configuration of the print
server, and you can access it at http://www.mapfish.org/doc/
print/configuration.html.

For our example, we will create two layouts: A4 landscape and A4 portrait. For
simplicity, we will only include main page definitions for these layouts, but once you
understand the principles of the layout engine, you should consider having a go at
adding a title and back page definition too. The A4 landscape portrait will look like
the following example:

http://www.mapfish.org/doc/print/configuration.html
http://www.mapfish.org/doc/print/configuration.html

Using GeoServer to Print Maps

[214]

The A4 portrait layout will look like this:

The layouts themselves are straightforward. There is a title element that runs
across the top of the page that contains a layout title on the left-hand side and the
Packt Publishing logo on the right-hand side. The map element consumes the bulk
of the layout space with a legend component in the top-right corner and the Powered
by GeoServer logo, map copyright notice, and scale bar components at the bottom
of the map.

Chapter 7

[215]

The general structure for the layouts section is shown here:

layouts:
 {LAYOUT_NAME}:
 metaData:
 {METADATA_DEFINITION}
 titlePage:
 {PAGE_DEFINITION}
 mainPage:
 {PAGE_DEFINITION}
 lastPage:
 {PAGE_DEFINITION}

The metaData, titlePage, and lastPage elements are all optional, and
the mainPage element is mandatory. The layouts section can have multiple
{LAYOUT_NAME} elements, and each one denotes the start of a new layout.
All the {LAYOUT_NAME} values are compiled into a list in a print capabilities
request and form the list of available layouts that can be requested.

Defining the layout metaData element
Although the metaData element of a layout is optional, it is worth including it in our
layout. This section defines the properties that will be set on the PDF file when it is
generated, and they can be very useful in enabling us to tag the output so that others
know that it has come from our system. The section is defined in the following way:

metaData:
 title: ''
 author: ''
 subject: ''
 keywords: ''
 creator: ''
 supportLegacyReader: false or true

Each of the properties are optional; the following table describes the purpose
of each one:

Property Purpose
title This property is used to specify a title for the

PDF document
author This property is used to identify the author of the

layout; this can be passed as a parameter to the service
and set as the username

Using GeoServer to Print Maps

[216]

Property Purpose
subject This property is used to categorize the layout; this can also

be set to a parameter passed to the service
keywords This property has the keywords to help find this document

in systems that support searching PDF document tags
creator This property is usually used to identify the software used

to generate the PDF
supportLegacyReader This is a property to tell MapFish Print to create a PDF that

is compatible with legacy versions of the PDF reader

As mentioned, it is possible to set some of these values to the value of a parameter
passed into the service when a print request is made. We will discuss how to pass
parameters to the layout when we take a look at making print requests. To set a
property to the value of a service parameter, we need to use the ${} notation.
For example, to set the author property to the name of the person who makes
the print request, we will set the property to:

metaData:
 author: ${userName}

Here, userName is the parameter passed to the service through the
request specification.

Being able to set the content of the layout using service parameters is
very useful in making your layouts user customizable. It is important
to note that the name and case of the parameter must be the same in
the print request specification and in the configuration.

Defining layout pages
Whether we choose to include the titlePage and lastPage pages along with
the mandatory mainPage page definition or not, they are all defined using the
same {PAGE_DEFINITION} structure. A {PAGE_DEFINITION} structure has the
following elements:

pageSize: A4
landscape: false
marginLeft: 40
marginRight: 40
marginTop: 20
marginBottom: 20
backgroundPdf: template.pdf
condition: null
header:

Chapter 7

[217]

 height: 50
 items:
 - {BLOCK_DEFINITION}
 {...}
items:
 - {BLOCK_DEFINITION}
 {...}
footer:
 height: 50
 items:
 - {BLOCK_DEFINITION}
 {...}

All the elements in the definition are optional, except for the ones that have been
highlighted; a minimal page definition must contain the pageSize and items
elements. The pageSize element can be of any standard-defined page size such as
Legal, A4, and A3, or it can be a custom size that specifies the width and height (in
points) separated by a space.

All the widths, heights, and positions in a layout are specified in
points, with 72 points being equivalent to 96 pixels or 1 inch. There is
a very useful online conversion tool at http://www.endmemo.com/
sconvert/pixelpoint.php that can help convert to and from points.

Let's take a closer look at the mainPage definition for our A4 landscape layout:

A4 Landscape:
 metaData:
 author: 'Mastering GeoServer'
 subject: 'Example A4 Landscape Layout'
 keywords: 'map,print,geoserver'
 creator: 'MapFish Print'

First of all, we gave the section a name (A4 Landscape) that serves a dual purpose:
it tells the configuration that this is the start of a new layout section, and it is also the
name that will be presented to clients that read the print capabilities response.

The print module is actually a RESTful service with a complete
API. The GeoServer print module effectively wraps this service and
provides the runtime environment for the service. As with most
other services, the capabilities of the service are published using a
capabilities document. This is covered in more detail in the Making
print requests section later in this chapter.

http://www.endmemo.com/sconvert/pixelpoint.php
http://www.endmemo.com/sconvert/pixelpoint.php

Using GeoServer to Print Maps

[218]

Next, we will define the metadata element that will populate the generated PDF
document properties. We will only define mainPage for this particular layout so that
it becomes the next element. If we were going to include titlePage, then this will be
the next section instead:

mainPage:
 pageSize: A4
 rotation: false
 landscape: true
 marginLeft: 10
 marginRight: 10
 marginTop: 10
 marginBottom: 10

The important properties in this section are pageSize and landscape, which tell
the service that this is an A4 landscape page. To create an A4 portrait page, we will
simply set the value of landscape to false. The various margin* properties allow
us to create some spacing on our page so that the content does not butt against
page edges. In this case, we specified 10 points that will give us a page margin of
approximately 13 pixels. The rotation property determines whether the map on the
page can be rotated. If it is set to true, then the print requests can include a rotation
value in degrees, and the map on the page will be rotated.

As noted earlier, an items element is required for the page element to be valid.
The items block is where the different components that can be added to a page are
defined. For our layout, we have a number of different items, so we will take a look
at each one in turn, starting with the map element:

- !columns
 config:
 borderWidth: 1
 borderColor: black
 cells:
 - row: 0
 paddingTop: 1
 paddingBottom: 1
 paddingLeft: 1
 paddingRight: 1
 absoluteX: 10
 absoluteY: 535
 width: 822
 items:
 - !map
 width: 820
 height: 525

Chapter 7

[219]

To have finer control over the layout, we used table definitions (!columns elements).
If we specify the absoluteX and absoluteY values, then the table becomes floating
and is affected by layering. To ensure the map does not mask our other page content,
we specify it first so that it is the bottom-most layer on the page. We used the config
property of the !columns element to specify how we want the table to be created. In
our case, we specified a single cell table to hold the map and set a black border for
it. The map itself is then defined using the !map element, and we specified the width
and height for it as the properties. A !map element can only be added to mainPage;
both titlePage and lastPage cannot have map elements added to them.

Following the definition of the map, we will define the top section of the layout,
the area of the layout that shows the title and the Packt Publishing logo.

Once again, we will use a !columns element to have greater control over the location
of elements:

- !columns
 widths: [709, 113]
 width: 822
 absoluteX: 10
 absoluteY: 585
 items:
 - !text
 text: '${mapTitle}'
 font: Arial Bold
 fontSize: 28
 vertAlign: middle
 - !image
 maxWidth: 113
 maxHeight: 49
 align: right
 vertAlign: middle
 url: http://www.packtpub.com/sites/default/files/packt_logo_
small.png

Using GeoServer to Print Maps

[220]

The most interesting aspects of this particular code block have been highlighted.
The first thing to take a look at is the widths: [709, 113] property. This is how
we define the number of columns for the table element and also specify their widths
In this case, we will have a column that is 709 points wide for the title and another
column that is 113 points wide for the logo. The content for the columns is defined
inside the items block, with the order of the items determining the column in which
they are placed. For the layout title, we specified a !text element that has the usual
properties you would expect, to define the appearance of the text. Note the use of
the Arial Bold font that we can specify because we defined a fonts section in our
configuration. Ordinarily, we will not have access to the Arial Bold font as standard.
To set the title of the layout dynamically from our client, we make use of the print
server's ability to substitute values that it looks for in the print request. In this case,
we defined a variable called mapTitle, which we can specify inside the print request
JSON specification.

The use of ${mapTitle} in the layout introduces the concept of
variable substitution. These are placeholders within our layout; they
can be substituted for dynamic text when a print request is made to
the service. We will learn more about the print service itself in the
Making print requests section.

Finally, for this part of the layout, we will specify the logo using an !image element.
The important part here is the url property that should be a link to the location of
the image to be inserted; the interesting thing here is that our absolute value can be
substituted for a variable. For example, if we specified the url property like this, then
we can pass the location of the image to insert as part of the print request; this will
allow us to have a different logo image for each page request made for the layout:

url: ${logoUrl}

The layout that we are creating has some elements set at the bottom of the map: a
powered by GeoServer logo, a map copyright statement, and a scale bar.

Chapter 7

[221]

Again, we will define these using a !column block and set the absolute position of it
such that it will sit neatly at the bottom of the map. The POWERED BY GeoServer
logo and the map copyright text are defined in much the same way as we defined
the top elements of the layout. For the map copyright text, we created a variable
called mapCopyright, for which we can send a value dynamically when we request
prints. We will take a closer look at the scalebar element, a common and important
component for any mapping output. The scalebar element is defined in the
following way:

- !scalebar
 maxSize: 200
 type: bar_sub
 intervals: 5
 subIntervals: false
 units: m
 barSize: 5
 lineWidth: 1
 labelDistance: 5
 font: Arial
 fontSize: 8
 fontColor: black
 color: #000000
 align: right
 vertAlign: bottom
 barBgColor: white

There are a lot of properties that we can define to create scale bars of different types.
The type property is where we set the style of the scale bar we want to create; a simple
line with graduation marks (line), a thick bar with alternating colors (bar), and a thick
bar with alternating colors and little marks for the labels (bar_sub). Examples of these
are shown in the following image taken from the MapFish Print documentation:

6km420

6km420

6km420

line:

bar:

bar_sub:

Using GeoServer to Print Maps

[222]

In our layout, we are using the bar_sub type of scale bar and have set properties to
create the bar with black and white sections. The properties that control the color
of the scale bar are color for the blocks (in our case, black—color: #000000) and
barBgColor for the background (in our case, white—barBgColor: white).

In a layout, some elements can be provided with color information
to affect how they are rendered. All the colors can be specified using
the hex code, just like in CSS, or by their known name. For example,
the color white can be specified using either the hex code #FFFFFF
or the known name white.

Black and white bars are a very traditional style for a scale bar. We can use these
two color properties to change the appearance so that it matches the overall style of
our layout or, perhaps, to conform to corporate-branding guidelines. We have also
set some properties to control the size of the scale bar and the number of distance
elements it displays. The intervals property controls how many segments the scale
bar will have (five in our case), and the maxSize property will make sure the scale
bar generated does not exceed the maximum size. The units for the scale bar are
specified by the units property, and the possible values for this are:

• m: This refers to metric units such as mm, cm, m, and km
• ft: This refers to imperial units such as in, ft, yd, and mi
• degrees: This refers to geographic units such as min, sec, and degree

The engine that generates the scale bar will take the units and select the one that is
most appropriate for the size of the bars being generated. For example, if m is set as
the value for units, then km will be used for large distances, and the scale bar will
intelligently select lesser units when the distances decrease.

Making print requests
The whole point of going through the process of editing the configuration and
creating the layouts is so that we can make requests to the print server to get an
output. A REST (http://en.wikipedia.org/wiki/Representational_state_
transfer) end-point is exposed by the print server so that we can make requests and
receive responses. We can utilize this REST service within our own applications and
dynamically configure them to know how to communicate with the print server.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 7

[223]

The REST API
Before we get into setting up an application to communicate with the print server,
it is worth taking some time out to examine the printing REST API. Understanding
the REST API is the key to successfully building applications that can make print
requests. The following sequence diagram shows the typical flow when dealing
with the print server:

The starting point for any application is to make a call to the info.json REST
end-point. This will request the print capabilities information, which is routed
through GeoServer as it is acting as the host for the print service. The print service
component then responds with a configuration JSON object that GeoServer passes
on to the calling application.

Using GeoServer to Print Maps

[224]

The configuration JSON object provides the information that the calling application
requires to know what can be printed. We will take a closer look at the print
capabilities in the next section. When the calling application needs to request a print
from the service, it makes a call either to the print or create method. Once again, the
request is routed through GeoServer as the container for the print service. The print
service expects the request to contain a spec.json object, which contains the details of
what needs to be printed. We will take a closer look at how to generate a spec.json
object in the Specifying print requests section.

The print service reads the spec.json object and then creates the requested
output. If the print method was called, then the print service returns the PDF
file directly, routed through GeoServer. The calling application then streams the
PDF from GeoServer. If the create method is called, the PDF is created and stored
in a temporary file location. The print service then responds with a JSON object
that contains a getURL key. The getURL key provides the URL for the generated
PDF document.

Getting the print server capabilities
Before we can make print requests, we must first understand the capabilities of the
print server. To build an interface to the print server, we need to understand:

• What print layouts are available
• What scales can prints be requested at
• If resolutions can be specified
• What size is the map component for a given layout

Fortunately for us, there is a REST method that will return a structured JSON object
that describes the capabilities of the print server. The capabilities are requested by
issuing a HTTP GET request on the following URL:

http://[server name]:[port]/geoserver/pdf/info.json

Remember to substitute [server name] and [port] with values for the GeoServer
(or standalone print server) that you want capabilities for. The response from this
call will be a structured JSON object that describes the capabilities of the print server.
The JSON object has the following structure:

{
 "scales" : [
 { name : value }
],

Chapter 7

[225]

 "dpis" : [
 { name : value }
],
 "outputFormats": [
 { name : value }
],
 "layouts" : [
 {
 "name" : value,
 "rotation" : true | false,
 "map" : {
 "width" : value,
 "height" : value
 }
 }
]
 "printUrl" : value,
 "createUrl" : value
}

The following table lists each of the JSON keys, along with a description of the print
capability being exposed:

Key Description
scales This is an array of objects with the name and value keys. The name

key is a print-friendly name for the scale. The value key is the
numeric scale value.

dpis This is an array of objects with the name and value keys. The
name key is a print-friendly name for the DPI. The value key is the
numeric value of the DPI. The dpis key will only be present if the
config.yaml file has a dpis section.

outputFormats This is an array of objects with the name and value keys. The name
key is a print-friendly name for the format. The value key is the
value of the format. The outputFormats key will only be present if
the config.yaml file has an outputFormats section.

layouts This is an array of layout objects. It lists the layouts that are available
for printing.

printUrl This holds the URL to send print requests to. The response will be the
output streamed as binary.

createUrl This holds the URL to send print requests to. The response will be
JSON that contains a link to the download URL.

Using GeoServer to Print Maps

[226]

Each item in the layouts array is an object that describes the layout. The following
table lists the keys along with a description of their purpose:

Key Description
name This is the name of the layout. This value needs to be used

when making a print request.
rotation This determines whether the map can be rotated in the

generated output or not.
map : width The map object has a width property to specify what size

the map is.
map : height The map object has a height property to specify what size

the map is.

Specifying print requests
Now that we know how to get the print capabilities, we are ready to understand
how to make requests for output. In the previous section, we learned that there are
two different end-points to request the print output: one streams the output and the
other stores it on the server and returns the location as a JSON response. However,
irrespective of which method we decide to call, in both cases spec.json must be
sent either inline as a request parameter for GET or as the body content for POST.

The print specification is a JSON object that tells the print server how and what we
want it to print. The basic structure is as follows:

{
 "layout" : name,
 <CUSTOM_PARAMETERS>
 "srs" : value,
 "units" : value,
 "geodetic" : true | false,
 "outputFilename" : value,
 "outputFormat" : value,

This is the starting section of the specification, and this is where we specify the name
of the layout that we want the output to be based on. The <CUSTOM_PARAMETERS>
section is where we can enter any of our own custom properties, the values of which
will be placed in the sections of our layout where we use variable substitution.
Properties defined here are called root properties and are available to all parts of the
layout.

Chapter 7

[227]

The remaining properties allow us to specify the spatial reference system for the
maps in the layout, and the geodetic property is very useful when we are dealing
with geodetic layers that need to consider the curvature of the Earth in calculations:

 "layers" : [
 {
 <LAYER_DEFINITION>
 }
],

The layers property is an array of layer-definition objects that the print server
will use to compose the maps. The order of layers is important as it determines
the layering on the output map. The first item in the array will be the bottom-most
layer with all subsequent layers being drawn on top in order.

Layer ordering is an important factor to consider when
creating applications that will call the print services. You
should always ensure the first layer definition in the array
is your base-mapping layer.

The composition of the layer definition itself depends on the type of layer that is
being sent to the server. The current version of the extension supports the following
map layer types:

• Vector (as GeoJSON)
• WMS
• WMTS
• TMS
• XYZ
• Open Street Map (OSM)
• TileCache
• Image
• MapServer
• KaMap
• KaMapCache
• Google

Using GeoServer to Print Maps

[228]

The MapFish documentation at http://www.mapfish.org/doc/print/protocol.
html#layers-params describes each of the layer types and the properties that can
be set on them. Different types of layers can be specified in the same spec request so
that you are not constrained to only supplying one particular type of layer. A typical
application will loop through the collection of visible layers on the map, encode each
layer into a definition object, and then add them to the layers array in the spec.

The format of the definition object will vary according to the type of layer. For
example, the following definition is for a WMS layer:

{
 "baseUrl": "http://<server>:<port>/geoserver/wms",
 "opacity": 1,
 "singleTile": false,
 "type": "WMS",
 "layers": [<layer names>],
 "format": "image/png",
 "styles": [<style names>],
 "customParams": { <custom parameters> }
}

We can see that the definition object describes the parameters required to construct a
valid WMS GetMap request. The print service will combine these parameters along
with details of the map bounds to construct a valid WMS request.

The following will be the definition required for an OpenStreetMap layer:

{
 "baseUrl": "http://a.tile.openstreetmap.org",
 "extension": "png",
 "opacity": 1,
 "singleTile": false,
 "type": "OSM",
 "maxExtent": [-20037508.34, -20037508.34, 20037508.34, 20037508.34],
 "tileSize": [256, 256],
 "resolutions": [156543.03390625,78271.516953125,39135.7584765625,195
67.87923828125,9783.939619140625,4891.9698095703125,2445.9849047851562
,1222.9924523925781,611.4962261962891,305.74811309814453,152.87405654
907226,76.43702827453613,38.218514137268066,19.109257068634033,9.55462
8534317017,4.777314267158508,2.388657133579254,1.194328566789627,0.597
1642833948135]
}

http://www.mapfish.org/doc/print/protocol.html#layers-params
http://www.mapfish.org/doc/print/protocol.html#layers-params

Chapter 7

[229]

This is very similar in nature to the WMS request, except that it has
some specific elements for OpenStreetMap servers. In the An example
OpenLayers application section, we will take a look at some code that
converts a WMS layer into a spec.json representation. For a more
complete example of encoding the different layer types supported by
MapFish Print, take a look at the source code of the GeoExt project for
its print provider at http://trac.geoext.org/browser/core/
trunk/geoext/lib/GeoExt/data/PrintProvider.js.

With layer encoding handled, we can take a look at the pages element that is used
to define the content for the pages that we want to have output for:

 "pages" : [
 {
 <PAGE_DEFINITION>
 }
],

The pages property is an array of <PAGE_DEFINITION> objects that describe the
pages to be added to the output. A page-definition object has the following structure:

{
 "center" : [x, y] | "bbox" : [x1, y1, x2, y2],
 "scale" : value,
 "dpi" : value,
 "geodetic" : true | false,
 <CUSTOM_PARAMETERS>
}

The location of the map to show on the page can be specified either by setting the
center and scale properties or by just setting the bbox property. The dpi property
is used to set the output resolution for the map, and the print server will take it
into account when generating requests to the layers specified in the request. The
geodetic property is false by default and can be set to true when the data you
are dealing with is based on a spherical system, for example, Google layers. The
<CUSTOM_PARAMETERS> element is where we can specify the values for substitution
on the output; for our example, that is, for the layouts element/layer, we defined
two values: mapTitle and mapCopyright. Parameters set at the page level are only
available within the context of a page. Multiple page definitions in the array will
result in the output having the same number of pages. This feature allows us to
create a multipage PDF, with each page showing a different part of the map.

http://trac.geoext.org/browser/core/trunk/geoext/lib/GeoExt/data/PrintProvider.js
http://trac.geoext.org/browser/core/trunk/geoext/lib/GeoExt/data/PrintProvider.js

Using GeoServer to Print Maps

[230]

It is important to note that all the pages will have a map with the
same layer composition; the only variability across pages can be the
location of the map. The layers array is global to the specification,
so it applies to all the maps.

The final section of the spec is an array of legend definitions:

 "legends" : [
 {
 <LEGEND_DEFINITION>
 }
]
}

Each <LEGEND_DEFINITION> provides the composition for a legend to appear on the
layout, if a !legend element has been defined in the layout. If a !legend element has
been defined in the layout and the legends array is not empty, then the legend will
be drawn according to its configuration. If a !legend element has been defined in the
layout but the legends array of the spec is empty, then the legend will not be drawn.

The code of this book includes some example print request specs that you can use to
call the configuration we created earlier in this chapter.

An example OpenLayers application
So, we installed and configured the print extension inside our GeoServer instance.
We created a nice A4 landscape and portrait layout and learned how to communicate
with the print server. All that remains is to bring it all together into an application
that we can use to test our layouts and actually get some example output.

Chapter 7

[231]

A sample OpenLayers application has been provided in the code of this book; this
sample application applies all the concepts that we have learned.

In this section, we will not cover the complete code for the sample application; the
code accompanies this book and is well commented. We will discuss some of the
key points of the code in this section to aid our understanding of what is happening.

The application itself presents an OpenLayers map that has a WMS layer and
OpenStreetMap layer loaded into it. The base layer is the built-in OpenLayers
OpenStreetMap layer, and it has an opacity level applied to it to tone down the
map. The second layer is our WMS layer of the UK Street Level Crime data, styled
by the type of crime. There is also an OpenLayers.Vector layer on the map; it is
used to hold the red print-extent boundary.

Using GeoServer to Print Maps

[232]

The red print-extent box is actually the core component of the printing application.
It provides a preview of the area of the map that will be printed, and it can be moved
around and positioned using a click-and-drag action. To the right of the map, there
is a Print Settings box that contains controls that can be used to set the content for
print. The red print-extent is dynamically updated according to the selection of items
in the drop-down lists.

Initializing the application
The first thing that the application needs to do is set itself up when the page is
loaded. To do this, we will use jQuery (http://www.jquery.org) and place some
code inside the $(document).ready() event handler. The first thing we want to do
is read the available layouts from the print server:

$.each(printCapabilities.layouts, function () {
 $("#selectLayout").append($("<option></option>").val(this.name).
html(this.name));
});

We looped over the printCapabilities.layouts array, and for each item, we
added an option to the HTML select control with the #selectLayout ID.

The print capabilities for this application are requested in a slightly
different way than you might initially expect. Instead of making a GET
request to the print server in JavaScript, it has a <script></script>
tag in the <head> element of the main page. The src attribute for the
<script> tag points to the print server's info.json method and
appends the var=printCapabilities parameter. By requesting the
information in this way, we will get back a small JavaScript fragment
that now sets a global variable called printCapabilities. This
global variable is then used in the rest of the application.

Next, we want to do the same thing for the available scales:

$.each(printCapabilities.scales, function() {
 $("#selectScale").append($("<option></option").val(this.value).
html(this.name));
});

This time, we looped over the printCapabilities.scales array and added each
item to the HTML select control with a #selectScale ID. Once we have the list of
scales, we want to order them and then select the scale that is most appropriate for
the current zoom level of the map:

$("#selectScale > option").sort(function (a, b) { return b.value -
a.value; }).each(function () {

http://www.jquery.org

Chapter 7

[233]

 var scaleValue = this.value;
 if (scaleValue < mapCtrl.getScale()) {
 $("#selectScale").val(scaleValue);
 return false;
 }
 });

Here, we first sorted the array of scale options into descending order and then
looped over each item in the array. On each item, we checked against the scaleValue
< mapCtrl.getScale()condition, which compares the current item value against the
map's scale. If the current value is less than the map's scale, then we can be satisfied
that it is appropriate to set the print extent to this value.

With the base scale selected for the print extent, the application then needs to create
it and add it to the map. The function to handle that is:

function createPrintExtent(){
 // Create a feature to represent the print extent and initially
set its geometry to nothing relevant
 printExtent = new OpenLayers.Feature.Vector(OpenLayers.Geometry.
fromWKT("POLYGON((-1 -1,1 -1,1 1,-1 1,-1 -1))"));

 // Add the feature to the map
 printExtentLayer.addFeatures([printExtent]);

 // Get the current selected scale from the drop-down
 var scale = $("#selectScale").val();

 // Calculate the bounds for the feature based on the selected
scale
 var bounds = calculatePrintBounds(scale);

 // Convert the bounds object to a geometry
 var geometry = bounds.toGeometry();

 // Update the geometry of the print extent
 updatePrintExtentGeometry(geometry);

 // Set the centre for the bounds to be the current map centre
 setExtentCentre(mapCtrl.getCenter());

 // Activate the drag print extent control
 dragPrintExtentCtrl.activate();
}

Using GeoServer to Print Maps

[234]

The first thing that we did here is set printExtent to be a new OpenLayers.Vector.
Feature feature and initialize it to be a simple polygon. The feature is added to the
map, and then its bounds are recalculated using the selected scale and layout values
from the drop-down lists. We also attached a handler for the change event on both
the scale and layout drop-down lists. When the user changes a value in these
drop-downs, the print extent feature is updated.

Generating the print SPEC to POST
To be able to request the PDF output, we need to generate the SPEC JSON object that
will be sent to the print server. The function to handle the print creates a printJSON
object that is then sent using jQuery's $.ajax() function. The printJSON object is
constructed as shown here:

var printJson = {
 "layout": printCapabilities.layouts[$("#selectLayout").
attr("selectedIndex")].name,
 "title": "Mastering GeoServer - Chapter 7 - Generated PDF",
 "srs": mapCtrl.baseLayer.projection.getCode(),
 "dpi": 300,
 "units": mapCtrl.getUnits(),
 "geodetic": true,
 "outputFilename": "Chapter7Print.pdf",
 "layers": encodedLayers,
 "pages": [{
 center: [printExtentFeature.geometry.getCentroid().x,
printExtentFeature.geometry.getCentroid().y],
 scale: printCapabilities.scales[$("#selectScale").
attr("selectedIndex")].value,
 dpi: 300,
 geodesic: true,
 mapTitle: $("#layoutTitle").val(),
 comment: "",
 mapCopyright: copyrightText
 }],
 "legends": encodedLegends,
 "createURL": printCapabilities.createURL
};

Notice that the layers key is assigned a variable named encodedLayers.
The encodedLayers variable is an array of encoded layer objects. The following
JavaScript code is an example of how a WMS layer can be encoded:

function encodeWMSLayer(lyr) {
 var encLyr = {};

Chapter 7

[235]

The function is defined to accept a single parameter that is expected to be an
OpenLayers.Layer class. First of all, we will define an object that we will populate
with properties. This object will be the encoded layer definition that will be returned
and added to an array.

The next section considers whether the layer being encoded has a minimum
or maximum scale for display. If this is set in the OpenLayers object, then we
should pass it through to the print server so that unnecessary requesting of
data is not performed:

 if (lyr.options && lyr.options.maxScale) {
 encLyr.minScaleDenominator = lyr.options.maxScale;
 }
 if (lyr.options && lyr.options.minScale) {
 encLyr.maxScaleDenominator = lyr.options.minScale;
 }

Next, we will define the base properties of the WMS layer. The type property is
used by the print server to determine how it should interpret the encoded layer
information and, ultimately, how to make requests for data against the layer.
The layers, format, and styles properties are standard WMS request parameters
that we need to pass to the print server. We will get the values for these properties
by interrogating the params property of the OpenLayers layer object:

 encLyr.type = "WMS";
 encLyr.baseUrl = "http://www.osmgb.org.uk/ogc/wms";
 encLyr.layers = [lyr.params.LAYERS].join(",").split(",");
 encLyr.format = lyr.params.FORMAT;
 encLyr.styles = [lyr.params.STYLES].join(",").split(",");

Next, we will enter into a for loop to read any custom parameters that we should
be encoding. Custom parameters are added to the encoded layer so that they can be
passed through to the backend server and applied for the printed output:

 for (var p in lyr.params) {
 param = p.toLowerCase();
 if (!lyr.DEFAULT_PARAMS[param] && "layers,styles,width,height,
srs".indexOf(param) == -1) {
 if (!encLayer.customParams) {
 encLayer.customParams = {};
 }
 encLayer.customParams[p] = lyr.params[p];
 }
 }

Using GeoServer to Print Maps

[236]

Finally, we will return the constructed encoded layer by returning the encLyr
variable. This encoded layer object can now be added to the layers array of the
print specification so that it can be sent to the print server:

 return encLyr;
}

Sending the print request
With the printJSON object created, all that remains is to post it to the print service.
The following snippet of code is an implementation of jQuery's $.ajax() function to
send the printJSON object to the print service:

$.ajax({
 type: "POST",
 url: printCapabilities.createURL,
 dataType: "json",
 data: printJSON,
 async: true,
 success: function (response) {
 // Open the PDF from the browser from the generated print URL;
this should be handled differently if the browser is Opera
 if ($.browser.opera) {
 // Make sure Opera does not replace the content tab with the PDF
 window.open(response.getURL);
 } else {
 // Avoids popup blockers for all other browsers
 window.location = response.getURL;
 }
 },
 error: function (request, status, error) {
 alert(request.responseText);
 }
});

The method sends the printJSON object using the POST method to the URL
specified by the createURL key of the printCapabilities object. We can handle a
successful response by reading the returned JSON and issuing a command to open
the browser on the getURL value of the response. Our browser will then download
the generated PDF file from the server.

Chapter 7

[237]

Summary
By now, you should be able to understand what the GeoServer print community
module is and how it can be used within your own applications and projects. It is
a very capable print server that can generate exceptional output that really does
your maps justice.

The layout configuration is straightforward enough to make it easy to create
interesting output that is still powerful enough to enable the creation of interesting
and compelling layouts. We saw how the simple REST API of the print server can be
used to understand the capabilities of the print server and make requests for prints.

Finally, we saw how all the concepts can be brought together into an application
using the OpenLayers map library that can make dynamic print requests through
an interactive print-extent feature on the map.

In the next chapter, we will take a look at how we can use our GeoServer instance
in a real-world scenario and integrate it into an enterprise platform.

Integrating GeoServer in a
Spatial Data Infrastructure

Up to now, we have spent a lot of time looking at how we can configure
GeoServer and control the way it outputs data. Now, it is time for a change in
pace. In this chapter, we will examine the role that GeoServer can play in an
enterprise environment, specifically within a Spatial Data Infrastructure.

We are going to consider what a Spatial Data Infrastructure is and the role
that GeoServer can play in it. Through this chapter, we will examine the
following concepts:

• What a Spatial Data Infrastructure is
• The technology platform and the role GeoServer plays in it
• A desktop user's perspective of a Spatial Data Infrastructure
• A data consumer's perspective of a Spatial Data Infrastructure

Spatial Data Infrastructures are complex enterprise systems, and we can't possibly
begin to discuss the best approach to implement them in this chapter, as this is a
subject worthy of its own book. The purpose of this chapter is to attempt to give you
some context in which you can consider how GeoServer can fit within an enterprise
environment, based on an internationally accepted concept of a spatial data platform.

Integrating GeoServer in a Spatial Data Infrastructure

[240]

Definition of a spatial data infrastructure
A Spatial Data Infrastructure, commonly referred to as SDI, is in essence a data
infrastructure that enables the efficient use and management of spatial information.
Although the manifestation of an SDI is ultimately a technology platform of loosely
coupled servers and services, at its heart there is a core set of four guiding principles:
people, standards, policy, and data.

People are an integral part of any SDI, as they will use it to deliver services and
analysis to stakeholders. Within a corporate environment, one can categorize people
into three broad types:

• Data creators / originators: These are the people who use powerful desktop
GIS tools to create, manipulate, and maintain spatial information.

• Data users: These are the people concerned with the analysis and
interrogation of spatial information to provide answers. They use a
combination of web-based and desktop-based tools.

• Data consumers: These are the people concerned with the consumption
of data (usually from data users) to inform decision making and/or
business planning.

A guiding principle for an SDI should be interoperability, that is to say that a policy
around the use of spatial tools should not necessarily dictate or advocate the use
of any one specific tool. In other words, standardization should not be achieved
at the software or tool level but rather at the service level, through the adoption of
industry-recognized standards, such as those of the OGC.

Of course, this is not to say that any random tool can be used; there must be a policy
to govern the selection and use of tools within the environment. Policies should also
be utilized to govern many other aspects of how the SDI should be used, operated,
and maintained.

But of course, ultimately, an SDI is all about making centrally stored spatial data
available to as wide an audience as possible, with as few barriers as possible.
Data should be easy to discover (metadata), easy to access (services), and easy
to use (software).

Chapter 8

[241]

DistributeCapture Process Use Maintain

People

Standards Policy

Data

SDI

Technology

The ultimate aim of any SDI is to support the typical spatial business process of
capturing, processing, distributing, using, and maintaining spatial information.
The technology platform is the vehicle to provide the tools and services to enable
the process, and the four core tenets provide the governance framework to operate
under. Collectively, these things can be considered to be the SDI.

The technology platform of a spatial data
infrastructure
Given the core tenets of an SDI, the thing to then consider is the technology platform
that can deliver them. The core principle for any SDI has to be interoperability
through the implementation of open standards and not through the use of
proprietary formats or services.

With this in mind, a very simple technology platform for an SDI will at least
consist of a database server, a web mapping server, and a metadata server.
The web mapping server and the metadata server should publish their data
through the WxS range of OGC services with outputs in OGC formats.

Integrating GeoServer in a Spatial Data Infrastructure

[242]

The following diagram shows what a typical configuration of servers might look like:

Services (WMS, WFS, CSW, WMS-C, WxS)

S
p
a
ti
a
l
D

a
ta

In
fr
a
s
tr

u
c
tu

re
T
e
c
h
n
o
lo

g
y

P
la

tf
o
rm

Public

Organization

Metadata

Server

Database

Server

File

Server

Web Mapping Server

(Internal)

Web Mapping Server

(Public)D
M

Z

D
M

Z

In this very simple configuration, there is a Web Mapping Server (Internal)
at the core of the platform. This publishes data through OGC standard formats
(WMS and WFS). There is a public-facing web mapping server that is used to
publish datasets for public consumption. The Public Web Mapping Server is
isolated from the core system by being placed inside the DMZ network. A Database
Server and a File Server are used to store the spatial information that is being served
to the Organization and Public. A Metadata Server exists and allows data to be
discovered through the use of the Catalog Service for the Web (CSW) web service
(http://en.wikipedia.org/wiki/Catalog_Service_for_the_Web). In this simple
configuration, users can connect to the system with their Desktop GIS packages,
using the WxS range of services, and general users will connect to the data through
some form of web-based GIS tool that runs on its own web server.

http://en.wikipedia.org/wiki/Catalog_Service_for_the_Web

Chapter 8

[243]

The big question is where does GeoServer fit in this environment. If we reconsider
the previous architecture diagram, we could redraw it to show where GeoServer fits.
The following diagram is the revised architecture to show GeoServer's role:

Services (WMS, WFS, CSW, WMS-C, WxS)

S
p
a
ti
a
l
D

a
ta

In
fr
a
s
tr

u
c
tu

re
T
e
c
h
n
o
lo

g
y

P
la

tf
o
rm

Public

Organization

Metadata

Server

Database

Server

File

Server

Web Mapping Server

(Internal)

Web Mapping Server

(Public)D
M

Z

D
M

Z

Hopefully, it won't come as much of a surprise to see that GeoServer fits squarely
in the web mapping server component of the technology platform. The real power
of using GeoServer in this way is that it fully supports the OGC standards for web
services. In the context of public-facing services, we can hook the public GeoServer
to the internal GeoServer using cascaded services. In other words, we can utilize
GeoServer as a reverse proxy server. This will ensure our internal server is protected,
and only the datasets we want to be made public are published.

What we have looked at here is a logical view of the technology platform of an SDI.
This is to demonstrate the core components required. The reality is that a physical
architecture will have a number of servers that perform roles in clusters to handle
things such as the required amount of concurrency on service requests, server
failover, and disaster recovery as well.

Integrating GeoServer in a Spatial Data Infrastructure

[244]

User perspective – editing data through
WFS-T
One of the principles of an SDI is that the data contained within it is not managed
centrally; it is managed by data owners or originators instead. Data owners or
originators can be external third parties, but more likely they will be employees of
your organization. These users will require the ability to connect to the SDI with a
GIS tool to perform editing operations. Due to the nature of the editing that they will
be doing, in most cases these users will use a Desktop GIS. Often, these types of users
are known as power users.

There are many different Desktop GIS platforms available in the market, ranging
from open source tools such as QGIS (http://www.qgis.org) through to
proprietary tools such as Esri's ArcGIS for a desktop (http://www.esri.com).
Each of these applications will have their own internal data types and will support
a different range of formats to read and write spatial data. Where it is possible for
you to standardize on a single platform across your organization, these differences
in formats will not be an issue. However, in reality, different departments will
have different applications. Often, there are valid reasons for this, and ultimately,
this should not be discouraged; instead, the central platform should be designed to
support multiple tools. The key to supporting different platforms is to ensure the SDI
utilizes open standards and that the applications and tools support these standards.
This is where utilizing GeoServer as the core of your SDI will really help out. This is
because it has built-in support for all the common OGC standards.

Using a Desktop GIS
Now, it is time to look at how a power user can connect to GeoServer's WFS-T
(WFS Transactions) using a Desktop GIS application, in this case, QGIS. GeoServer's
WFS-T service enables editing of data from any tool that supports the standard. This
means that departments can manage their own datasets held in the SDI, irrespective
of what desktop application they are using.

To demonstrate this, we will consider a scenario in which a data owner has been
tasked with identifying invalid geometries in a dataset that they are responsible
for. If they identify any invalid geometry, their task is to delete the record so that
the dataset only contains clean and valid geometry. For this example, we will use
QGIS, as it has excellent support for OGC standards and is free to use. An in-depth
discussion of how to install and use QGIS is beyond the scope of this book, so if you
are interested in using QGIS in your environment, I highly recommend that you read
the book, Learning QGIS 2.0, Anita Graser, Packt Publishing.

http://www.qgis.org
http://www.esri.com

Chapter 8

[245]

Connecting QGIS to GeoServer's WFS-T service
The first thing to do is create a connection to our central GeoServer that is being used
to share spatial information across the organization. Since this task will require us
to edit spatial data, we will need to create a WFS-T connection to GeoServer so that
we get the vector data that we can manipulate in QGIS. Look for the toolbar that
contains the new layer options:

Alternatively, you can navigate to Layer | Add WFS Layer… if you do not have the
toolbar active. This will open the Add WFS Layer from a Server dialog box where
we can choose which layer we would like to add to the map to work with:

QGIS has a built-in connection manager that allows us to create and store
connections to different services such as WMS, WFS, and databases. If we already
created a connection to GeoServer, then we can simply select it from the drop-down
list and then click on the Connect button.

Integrating GeoServer in a Spatial Data Infrastructure

[246]

If we do not have a connection, then we can create one using the New button.

The Create a new WFS connection dialog allows us to specify the connection
details to the central GeoServer. We will give the connection a name, which is
what will appear in the drop-down list in future, and then we will specify the URL
to the WFS end-point of the server. If the connection is secured, then we can specify
the username and password. When we are happy with the connection details,
we can click on the OK button, and the connection entry will now appear in the
drop-down list.

When creating a connection to the WFS, we have an option to
enter a username and password. So far, we have not discussed
how to secure GeoServer in an enterprise environment; however,
it is important to note that your production GeoServer should
be secured, with users given access based on their roles and
requirements. For example, power users who belong to a highways
department will likely need read and write access on the highway
network data, but they will need only read access to information
about the authority's land ownership. We will take an in-depth
look at security in Chapter 10, Enterprise Security and GeoServer.

Chapter 8

[247]

With the connection created and stored, we can select it from the drop-down list and
then click on the Connect button:

QGIS provides the ability to load and save a list of connections using
an XML file. In an enterprise environment, where you potentially
need to set up and configure lots of QGIS installations, it is a good
practice to create and distribute an XML file to all of your users so
that everyone has the same connection properties.

Once we click on the Connect button, QGIS will connect to the WFS end point and
get the capabilities document; this is processed, and the results are shown in the
layer list. The process of fetching and parsing the capabilities document will be
transparent. To add a layer to the map, simply select it from the list and then click
on the Add button.

Integrating GeoServer in a Spatial Data Infrastructure

[248]

It is also possible to build a query on the layer to filter results according to an
expression; this can be done by clicking on the Build query button.

The Expression string builder dialog allows you to interactively create an expression
to filter the layer. The Function list tab will contain a listing of Fields and Values
read from the selected layer; you can use them in the filter expression. For now,
we will just load our layer straight into QGIS:

Chapter 8

[249]

Clicking on the Add button will trigger the load process and cause QGIS to start
processing the response stream. Ultimately, we will end up with the data layer
loaded into the QGIS map window as a vector dataset that is locally stored and that
we can manipulate. Depending on the size of the dataset and other settings, this
initial download might take a little time. A progress dialog is shown while QGIS is
processing the data. Once loaded, the layer will behave like any other layer in QGIS,
and all the tools that can be used on the vector data will be available.

Using the QGIS Topology Checker tool
For our use case, we need to check the validity of the feature geometry in the dataset.
To do this, we will make use of the Topology Checker tool. The QGIS Topology
Checker tool allows us to specify some topology rules that we would like to analyze
our data against. Any errors found are listed, and we are able to click on an error
to zoom to that feature. Launch the TopologyChecker option by navigating to
Vector | Topology Checker.

Integrating GeoServer in a Spatial Data Infrastructure

[250]

If the menu option is not present in your installation of QGIS, then you need to check
whether the plugin is enabled. To do this, navigate to Plugins | Manage and Install
Plugins… to open the plugin manager.

Look for the Topology Checker entry in the Installed category, and make sure that
the checkbox next to it is checked.

The Topology Checker tool opens a dialog from which we can run checks, inspect
the errors found, and configure the tool to set the rules that we would like to have
checked. In our case, we are only looking to see if there is any invalid feature
geometry in our layer, so the rules will be quite simple. However, the Topology
Checker tool is a very capable tool, and I recommend that you spend some time
getting to know it better.

Chapter 8

[251]

When the Topology Checker tool initially loads, it will not have any configuration,
nor will it list any errors:

To define some rules, we need to click on the Configure button to open the
rules editor:

Integrating GeoServer in a Spatial Data Infrastructure

[252]

Defining the rules to use is as simple as selecting options from drop-down lists and
then adding them. To create our simple geometry-validation rule, we need to make
some selections. From the first drop-down, we will select the layer we want to check;
in this example, this is UK Police Force Boundaries. The list will contain the layer
names currently loaded in your map, so if you follow along using a different dataset,
then select that one instead. The second drop-down contains the rule that we want
to apply to the layer we selected in the first drop-down. There are a number of rules
available, and the list will change based on the geometry type of the layer selected.
As we are looking at a polygon dataset, the rule that we are interested in is called
must not have invalid geometries.

The third drop-down is another list of layers and is only relevant when the selected
rule compares one layer against another. In our case, the rule only applies to
the target layer, so the third drop-down disappears when we select it. Once we
are happy with the rule, we can click on the Add Rule button, and a summary
description of the rule appears in the main table view. You can continue to add rules
for as many things as you would like to check, but for this example, we will just stick
to the one. Click on the OK button to close the configuration and return to the main
Topology Checker dialog.

The Topology Checker tool is executed using the buttons along the bottom
of the dialog.

There are two options available: Validate All and Validate Extent. The first option
will check all the rules against all the features in the layers referenced by the rules.
The second one will check all the rules against the features that intersect the current
view extents in the layers referenced by the rules. For our scenario, we want to
check all the features in the dataset, so we need to click on the Validate All button.
Depending on the number of rules, the complexity of the rules, and the amount of
data in each layer, the Topology Checker tool might take a while to complete.

Chapter 8

[253]

Once it has completed processing, it populates the main table view on the dialog
with a summary of any errors found:

At the bottom of the dialog, there is a checkbox called Show errors. If this is checked,
then the layer on the map will have all the features that break a rule highlighted in
red; clicking on an error in the table will zoom the map to the feature responsible
for breaking the rule. This provides a convenient way for us to navigate around the
issues and perform any corrective operations.

Integrating GeoServer in a Spatial Data Infrastructure

[254]

For our example, the task is to simply delete the feature that contains the invalid
geometry. To do this, we first need to place our layer into the edit mode by ensuring
the layer is selected in the Layers tree view and then clicking on the edit button on
the toolbar:

Toggle editing

Once we have the layer in the edit mode, we can then select the highlighted feature
on the map with the selection tool:

Chapter 8

[255]

With the feature selected, we just need to click on the Delete Selected edit tool
button to have the feature removed:

With the feature deleted, we can continue working through our list of errors until we
are satisfied that we have corrected everything we need to.

Using the WFS-T service to save results
All that remains is to post our changes to the layer back to GeoServer using the
WFS-T service. The WFS-T service allows us to edit data in our client and then
inform the layer of the changes made so that they can be stored in the central
repository. If the user who connects to WFS has write access to the layer, QGIS will
automatically save the changes to our layer using WFS-T. To save the changes to the
layer, we can use the editing toolbar menu:

QGIS has a clever way of remembering the state of your layer prior to editing,
so if you make a mistake during edits, you can simply click on the Rollback for
Selected Layer(s) or Rollback for All Layers option. For now though, we are happy
with the edits, so we just want to save them by clicking on the Save for Selected
Layer(s) option. QGIS will post the changes back to GeoServer as a WFS transaction
seamlessly in the background. Depending on security, we might get asked for a
password, but other than that, there will be no further interaction with us from
QGIS—it just works!

This was a very simple example of using QGIS with GeoServer to do some editing
using the WFS-T service; however, it demonstrates a very important concept within
the context of an SDI. The ability to read, analyze, and manipulate data should not
be dictated by the client tool or application. Instead, the SDI services should be
standards-based, providing a common service interface that the client tools and
applications can support.

Integrating GeoServer in a Spatial Data Infrastructure

[256]

User perspective – consuming data
By far the most common type of user who will access data from an SDI will be
data consumers. This is a broad term that can be used to describe anyone within
an organization who will take and use data that has been captured, created,
or generated for the purpose of decision making or informing other business
processes. These users will not typically create spatial information, though the
spatial information they consume might contribute to some other form of output.
For example, a data consumer within a department might take the results of spatial
analysis (in the form of a map) and then include it in a report to be delivered to the
senior management. The data consumer has not done anything to manipulate the data;
they have simply consumed it and placed it inside their report.

Within an SDI, you will most likely provide data consumers with access to data
through a visualization platform; this can be a custom web application, an off-the-
shelf web application such as GeoNode (http://www.geonode.org), or something
like Google Earth. We will now take a look at a simple example of how you might
deliver content to data consumers using Google Earth.

Launching Google Earth from GeoServer
The simplest way for data consumers to view data in Google Earth from GeoServer
is to utilize the Layer Preview capability. Depending on the security level of
GeoServer, this might or might not be a feasible approach. Each layer in GeoServer
has a setting that enables you to define whether it is advertised in the GetCapabilities
response document. In addition to this, there is a global WMS setting that lets you
control whether the protected layers are publicly advertised or only advertised to
authenticated users.

If the layers are advertised, then the welcome page for GeoServer will have an option
on the left-hand side panel called Layer Preview:

http://www.geonode.org

Chapter 8

[257]

Clicking on the link will open the Layer Preview page and present a list of all the
layers that can be advertised. This page allows users to select a layer and then
preview it using one of the different service-output formats that GeoServer supports.
All the layers have a link called OpenLayers that will create a simple OpenLayers
application and display the selected layer in it. There is also a drop-down list of
formats, and the format selected determines the service that is used. For example,
selecting GML 3.2 from the list will trigger a WFS request for this layer.

GeoServer supports the export of information through KML using something called
the KML Reflector (http://docs.geoserver.org/stable/en/user/googleearth/
features/kmlreflector.html).

KML is the common format for data in Google Earth and
Google Maps.

KML is generated as a network link, which means it embeds the WMS link to the
reflector inside the KML file. Google Earth then uses this network link to request
data for the layer as the user pans and zooms inside the application.

http://docs.geoserver.org/stable/en/user/googleearth/features/kmlreflector.html
http://docs.geoserver.org/stable/en/user/googleearth/features/kmlreflector.html

Integrating GeoServer in a Spatial Data Infrastructure

[258]

To trigger the creation of KML, simply click on the KML link and then choose to
open the file returned rather than downloading it. If Google Earth is installed on your
system, it will open the KML file and then begin to request data from GeoServer:

Using the KML reflector to load data
GeoServer has the ability to generate KML in response to WMS requests using the
KML reflector. The KML reflector simply takes a URL and then returns KML in
response. An example URL is http://[server address]:[port]/geoserver/
wms/kml?layers=[lyername].

Here, [server address] and [port] is the DNS and port number of your server
that runs GeoServer, respectively. The layers to be generated are specified by
setting the value of [layername] to a comma-separated list of layer names
present in GeoServer.

Chapter 8

[259]

The capability of specifying links to data using the KML reflector can be utilized
by providing links on a central website or providing links contained in metadata.
Users can also share links to data through e-mails.

Using Google Earth network links
A better way of integrating data into Google Earth is using the network link capability
to create a direct connection to GeoServer. A Network Link in Google Earth will
connect to GeoServer using the KML reflector. This will allow the users to refresh data
from within Google Earth without having to go back to layer preview.

A Network Link is created by navigating to Add | Network Link in Google Earth.

This will open a dialog that will enable us to enter the details for the Network Link
to add. Specify the KML reflector URL for the layer or layers you want to add, and
specify a name for it. Optionally, set a description, and you can also change the
refresh defaults using the Refresh tab.

Integrating GeoServer in a Spatial Data Infrastructure

[260]

For example, you can have Google Earth refresh the data on a specified interval;
this will be useful if you are publishing a layer that links through real-time or
near real-time data.

If the My Places tree-view item is selected when adding a Network Link, it will be
added as a child.

Now, whenever the view in Google Earth is refreshed, the layer will be requested
from GeoServer.

Chapter 8

[261]

Summary
In this chapter, we have taken a high-level look at what an SDI is and the role that
GeoServer plays in implementing one. We discussed how an SDI is built on four
core tenets of people, policy, standards, and data. An SDI is much more than just an
implementation of technology, but the realization of an SDI is through a physical
technology platform. By discussing a logical architecture for an SDI, we discovered
that its core can be fairly simple, typically consisting of data storage, a metadata
server to enable the discovery of data, and an implementation of a web mapping
server that supports open standards. We learned that an SDI should be an open
platform that a multitude of tools can connect to and consume data from.

To see how a user might interact with an SDI, we considered two different user
perspectives: the first was power user editing data that is stored centrally, and the
second was a data consumer who connects to and consumes data from the SDI.

In this chapter, we saw the important role that GeoServer plays in an SDI. In the next
chapter, we will look at how GeoServer can be used as a spatial-analysis platform,
further demonstrating the core role that it plays in an SDI.

GeoServer as a Spatial
Analysis Platform

Until now, we have concentrated on GeoServer's ability to serve raster and vector
data from file stores and spatial databases. For a large number of use cases, rendering
a map for a web application is sufficient. However, there are use cases where one
might like to perform server-side spatial analysis and then render the results to
the client. As soon as you mention server-side spatial analysis, most people will
assume that you need to spend a small fortune to implement a cluster of ArcGIS for
server instances to perform Geoprocessing operations. However, GeoServer has a
number of tricks up its sleeves that can be used to perform almost any form of spatial
analysis you can imagine. With a little bit of effort, GeoServer can challenge any
commercial server-side spatial analysis toolkit.

In this chapter, we will look at different approaches to server-side spatial analysis
that GeoServer can perform. We will cover the following topics:

• Understanding what a Web Processing Service (WPS) is
• How to install and configure WPS
• Using a WPS to perform spatial analysis
• Chaining WPS processes to perform more complex analysis
• Understand what GeoScript is and how it can be used
• How to install and configure GeoScript
• Using GeoScript to create a WPS process
• Using GeoScript to extend GeoServer

GeoServer as a Spatial Analysis Platform

[264]

Understanding Web Processing Services
A WPS is an OGC standard to invoke geospatial processing services across the
Web. The standard (http://www.opengeospatial.org/standards/wps) defines a
structure that allows for a common interpretation of input and output parameters to
processing services. The standard provides an abstract layer to individual vendors'
internal processing engines and ensures that clients can call any WPS, irrespective of
its backend technology. The standard stipulates three operations that must be exposed:

Operation Purpose
GetCapabilities This operation returns an XML document that describes the

capabilities of the WPS, the processes on offer, and how they
can be called.

DescribeProcess This operation returns an XML document that provides a
detailed description of the process and includes the details
required to provide the right inputs and to be able to
understand the responses.

Execute This operation is what a client will call when they want to
invoke a specific process.

A WPS process
A WPS process is the atomic unit of a WPS service. This process is the actual
geoprocessing code that will be executed on the server when invoked by an
Execute WPS request. A WPS process can have multiple inputs of different types;
these can be passed into the process by value or reference. When passed in by value,
the caller is responsible for encoding the input data appropriately, based on the
requirements of the process listed in the DescribeProcess XML document. Passing
values by reference is a more interesting capability of a WPS. In this case, the value
for the input parameter will be a reference to another location, typically another web
mapping server or possibly even some other web service. For example, the input to
a WPS process can be the result of calling another web service or even another WFS
server with a Query operation to return a set of features to work on.

A WPS process can return multiple outputs, so a process is not limited to a single
output parameter. It is also possible to use the output of one process as the input for
another; this is known as WPS process chaining.

http://www.opengeospatial.org/standards/wps

Chapter 9

[265]

WPS process chaining
Running a single WPS process to perform some analysis is only going to allow us
to achieve a small degree of spatial analysis. If we want to perform a more complex
analysis, then we would need to run lots of different WPS processes, each time
saving the output in order to use it in the next WPS process. This would be very
time-consuming and is not a user-friendly approach to server-side spatial analysis.

WPS process chaining to the rescue!

WPS

Process 2

WPS

Process 1

WPS

Process 3
Start End

WPS process chaining allows us to take the output of one process and use it as the
input to another. The whole set of instructions for all of the WPS processes to be
executed is wrapped up into one single WPS process execute operation. We will take
a more detailed look at process chaining later in this chapter to see how useful it is
when calling multiple, related geoprocessing operations.

Installing the WPS extension
Like all other GeoServer extensions, the WPS extension is straightforward to
install. As usual, it is simply a matter of obtaining the correct ZIP file for the
extension and then decompressing it to your GeoServer directory. Ensure that
you download the correct version of the extension for the GeoServer that you are
running. In our case, we are running the current stable version (Version 2.5.2 at
the time of writing this book) of GeoServer, so we need to download the extension
from http://www.geoserver.org/release/stable.

http://www.geoserver.org/release/stable

GeoServer as a Spatial Analysis Platform

[266]

The download page has a section called Extensions, as shown in the
following screenshot:

In the Extensions section, there is a subgroup named Services. Click on the WPS
link to download a version of the plugin that works with the current stable version
of GeoServer. When prompted, save the file to a location on your system, and then
open a command line and change the directory to the location. The contents of the
ZIP file need to be uncompressed to the WEB-INF/lib folder of your GeoServer
installation. This can be achieved by entering the following command in your shell:

$ unzip geoserver-2.5.2-wps-plugin.zip *.jar –d <tomcat_home>/WEB-INF/lib

This command will extract the files with a .jar extension into the lib folder of your
GeoServer instance. Remember to change <tomcat_home> to the folder where your
Tomcat instance is installed. Repeat the process for all of your Tomcat instances. For
the extension to be recognised by GeoServer, you will need to restart it; do this for all
the instances of GeoServer.

Chapter 9

[267]

Checking whether the extension is installed
correctly
There are three ways in which you can check to make sure that the extension is
installed correctly. The WPS extension creates a new OGC service end-point in
GeoServer. We can use the standard GetCapabilities call to request an XML
document that describes what our server is capable of doing. From a command line,
we can use a tool such as cURL to issue the request:

$ curl http://[hostname]:[port]/geoserver/ows?service=wps&version=1.0.0&r
equere=GetCapabilities –o WPSCapabilities.xml

If you are running cURL from a Windows command prompt,
the ampersands (&) in the service URL will cause errors, as
they have a special meaning in MS-DOS. To prevent this, either
replace each single ampersand with double ampersands (&&) or
enclose the URL in quotes (" ").

Replace [hostname] and [port] with the values for your instance of GeoServer.
If the WPS extension is properly installed, this command will result in a file called
WPSCapabilities.xml) being saved to your computer. Opening this file in a text
editor will allow you to see a complete description of the capabilities of your
WPS service.

If you don't have cURL installed on your computer, then you can check for the
service capabilities from the front page of the GeoServer web administration console:

GeoServer as a Spatial Analysis Platform

[268]

If the extension is installed correctly, there will be a WPS entry in the list of Service
Capabilities on the right-hand side of the main page. Clicking on the 1.0.0 link will
issue the GetCapabilities request and return the service capabilities XML file.

The third way to check whether the extension is installed correctly is to check
whether the demo app is present in the web administration console. Navigating to
http://[hostname]:[port]/geoserver/ web/?wicket:bookmarkablePage=:o
rg.geoserver.web.DemoPage (change [hostname] and [port] to your instance)
will open the GeoServer Demos page:

In the list of available demos, there should be one called WPS request builder Step
by step WPS request builder. Clicking on this link will open the demo app that will
guide you through the process of building a WPS service request:

Feel free to play around with building some requests now. We will use the demo app
later in this chapter to understand how WPS requests work.

Chapter 9

[269]

Configuring the extension
The WPS extension creates an OGC-compliant service that GeoServer exposes in the
same way as other OGC-compliant services such as WMS and WFS. This means that
it is possible to configure how certain elements of the service operate. For example,
it is possible to set the service metadata that is published as part of the capabilities
XML document. To manage the configuration of the service, you can access its
configuration page in the same way you do for other OGC services:

To access the service configuration page, click on the WPS link from the Services
section on the left-hand side menu in the web administration console. The
configuration page will be familiar to you if you already accessed one of the other
service configuration pages. The service configuration page is divided into sections,
with each section affecting a specific part of the service configuration.

The workspace configuration section
As with all other services exposed by GeoServer, it is possible to create local
configurations that differ from the global ones. Whether a service has local
configurations is determined by the settings for each workspace. Workspaces
can be set to have their own local configurations on a per-service basis through
the Edit Workspace page, accessed by selecting a workspace:

GeoServer as a Spatial Analysis Platform

[270]

In the preceding example, the OSGB workspace has been configured to have local
configurations for the WMS and WPS services. With the WPS service ticked on the Edit
Workspace page, the OSGB workspace will be populated in the drop-down list,
enabling us to define the WPS service options specific to the OSGB workspace.

This setting demonstrates a capability within GeoServer called
virtual services. By default, the contents of all workspaces are
published through the various web services (WMS, WFS, WCS,
and so on). However, virtual services makes it possible to publish
only the content assigned to the workspace that the virtual service
is called from. For more information on using virtual services, look
at the GeoServer documentation at http://docs.geoserver.
org/2.4.x/en/user/services/virtual-services.html.

The Service Metadata configuration section
All of the OGC-compliant services must expose their capabilities by publishing a
capabilities XML document in response to a GetCapabilities request. GeoServer
builds the response XML document by combining information from a number of
places, depending on the service. There are common contact elements across all
of the services, and these are set using the Contact Information page of the web
administration console:

Contact information

The details set on this page can be used to populate default values for all the
capabilities documents that are output.

http://docs.geoserver.org/2.4.x/en/user/services/virtual-services.html
http://docs.geoserver.org/2.4.x/en/user/services/virtual-services.html

Chapter 9

[271]

Possibly, the most important setting in the Service Metadata section is the one
titled Enable WPS. It can be found as the first item in the section, as shown in the
following screenshot:

If this checkbox is not checked, the WPS service will be disabled, and therefore
unavailable for use.

The service metadata elements that can be set are explained in the following table:

Setting Description
Maintainer This is the name of an individual or division that is responsible

for maintaining the service to enable users of the service to have
a point of contact

Online resource This is the location of the service online
Title This is a title to describe the intent of the service
Abstract This is a brief description of what the service is and what it offers
Fees This is a description of any fees incurred through use of the

service
Access constraints These are any constraints there are on access to the service
Current keywords This is a list of keywords to aid in service discovery

GeoServer as a Spatial Analysis Platform

[272]

The Execution Settings configuration section
The Execution Settings section enables us to control how WPS processes will be
executed within our environment. There are three settings available to us, as shown
in the following screenshot:

The settings available are explained in the following table:

Setting name Description
Connection timeout This is the amount of time the service

should wait before it considers a
connection attempt to have failed

Maximum asynchronous executions
run parallel

This is the total number of process
executions that are allowed to run
in parallel when the service is called
asynchronously

Maximum synchronous executions
run parallel

This is the total number of process
executions that are allowed to run
in parallel when the service is called
synchronously

Setting the maximum synchronous and asynchronous process
executions is important in order to ensure that your server is not
over burdened with running WPS processes.

Chapter 9

[273]

The Process groups configuration section
When the capabilities document is published, it must list all the processes that can
be called by a client. A WPS client can present this list of available processes to the
end user in some form of selection user interface. GeoServer comes with a number of
out-of-the-box WPS processes, and these are collected into process groups. There are a
large number of processes available, and depending on our needs, we might not want
all of them to be published through the service. The Process groups configuration
section provides us with a mechanism to control which processes are published:

A list of process groups is provided, along with summary information about each one.
Any processes without a checked box will be disabled. All the processes belonging to
the disabled group will not be published through the capabilities document.

In addition to being able to toggle the enabled state of an entire process group,
we can also toggle the state for individual processes within a group. Click on
the Enable/disable processes link for the Raster processes row, as shown in the
following screenshot:

GeoServer as a Spatial Analysis Platform

[274]

The Process selection page allows us to select the processes that we want to
enable or disable. By default, all the processes are enabled. Let's disable all the
processes, except for ras:Contour, and then click on the Apply button. The service
configuration page will be loaded, and the Process groups table will have changed,
as shown in the following screenshot:

We can now see that the Raster processes process group displays a Summary
value of 1 active processes out of 11. If we were to perform a capabilities request,
only the ras:Contour process will be reported from the Raster processes group.

Once we are happy with the configuration of our WPS service, we can
click on the Submit button to commit the changes to the configuration.
Now our GetCapabilities document will reflect the changes that we
made to the configuration.

Using WPS to perform spatial analysis
Now that we have configured our GeoServer instances to work as a spatial analysis
platform, we can start putting it to work. There are a number of different ways in
which we can approach this, all made possible by the OGC standards implemented.
Since we are just dealing with a web service, almost any application can be used to
send WPS requests and receive responses. Some of the approaches we can take are:

• Build a web mapping client using OpenLayers
• Connect to the WPS service using Desktop GIS such as QGIS
• Execute from the command line using cURL

Chapter 9

[275]

Regardless of the approach that you want to take, they all have one thing in
common: they communicate with the WPS service over HTTP POST using XML.
To really learn and understand what is happening, we should interact with the XML
directly. Fortunately, GeoServer provides us with a WPS request builder application
that we can use to interactively build up WPS requests in XML. The request builder
was installed as part of the WPS extension and can be accessed by selecting the
Demos option from the left-hand side menu of the web administration console:

The request builder demo is run by selecting the WPS request builder option
from the GeoServer Demos page. We will use the request builder to try out some
different WPS processes.

Executing a WPS process
At its most basic, a WPS service will be used to execute a single process. For example,
we might call a buffer process to generate a buffer around a given location that we
want to show on a map, an exclusion zone, for example. Alternately, we might want
to buffer a certain location in order to select other features that are within this zone.

GeoServer as a Spatial Analysis Platform

[276]

We are now going to execute a simple WPS process to generate a buffer polygon;
if we mapped the output from the process, we would get a polygon similar to the
one shown in the following screenshot:

To create this buffer polygon, we will generate a WPS process request and then
execute it. We will use the WPS request builder described earlier to build and
then execute the request. The first thing we need to do is select the process that
we want to execute:

Chapter 9

[277]

The drop-down list is generated by GeoServer issuing the GetCapabilities request
on the WPS service. It has parsed the capabilities document and generated a list
of processes by extracting the /wps:Capabilities/wps:ProcessOfferings/
wps:Process/ows:Identifier elements. We are interested in the geo:buffer
process, so let's select it from the list.

After selecting the geo:buffer option from the drop-down, a form is dynamically
generated with all the fields that we need to complete. The form itself is divided into
sections for process input parameters and process output parameters. GeoServer can
dynamically generate this form by reading the contents of an XML response document
that describes the process selected. We can look at the contents of such a file by
requesting this URL: http://[server address]:[port]/geoserver/ows?service=
WPS&version=1.0.0&request=DescribeProcess&identifier=geo:buffer.

The response XML document contains all the information that we would need if we
were building our own interface to execute WPS processes. GeoServer has made a
DescribeProcess request and then interpreted the response to generate the correct
input and output options.

For process inputs, it has read the collection of elements that match
wps:ProcessDescriptions/ProcessDescription/DataInputs/Input/*, which
results in GeoServer generating the following input form:

GeoServer as a Spatial Analysis Platform

[278]

For our purposes, we will specify the location we want to buffer by entering the
point as Well-Known Text (WKT). Select the TEXT entry from the first drop-down
list for input geometry, and then, in the second drop-down, select the application/
wkt entry. In the text box, enter POINT(457168 339765), which will create a point as
the geometry to be buffered. This can just as easily be a polygon or line; we can select
this by entering syntactically correct WKT.

The next input that we need to provide is a value for the distance for which we want
to buffer our point geometry. This will be in the units of the geometry (in our case,
this is meters, as we are dealing with data in the British National Grid coordinate
system). Helpfully, there is a little prompt to guide us; this has been read from the
ows:Abstract child element of the Input parent. Also, notice how the expected data
type is written in the title to the input element on the form.

We will complete the input parameters by specifying the value 50 for
quadrantSegments and choosing the Round option from the drop-down
list for capStyle.

Wih the process inputs completed, we can now specify the process outputs. For this
particular example, the process output will be a geometry object. The generated form
provides us with the process output details, including the data type for the output:

Notice that there is a drop-down that enables us to select the output format that
the result geometry will be encoded in. This drop-down list has been generated
by reading the collection of elements that match wps:ProcessDescriptions/
ProcessDescription/ProcessOutputs/ComplexOutput/Supported/*. In our case,
we will simply request the output as application/wkt, as it will make it easier to
interpret the output generated. In an actual application, however, we will select the
format most appropriate to those supported by the application.

Chapter 9

[279]

Have you noticed the Authentication section? By default, the request
builder will attempt to execute the process as an anonymous user.
If we enabled security on our GeoServer instance, then we would
need to check the Authenticate box and provide the username and
password details into the fields that appear.

With the form completed, we can now either execute the process and get back a
response, or we can ask GeoServer to show us what the generated XML content to
post to the WPS service will look like. If we click on the Generate XML from process
inputs/outputs button, a dialog will be displayed:

The dialog contains the generated XML that will be sent to the WPS service as the
body of a POST request.

Being able to view the generated XML request is a very useful
feature of the WPS request builder. It provides us with a visual
tool to build WPS requests that we can then copy and use in
our own applications.

GeoServer as a Spatial Analysis Platform

[280]

We can go ahead and ask GeoServer to execute the process that we defined by
clicking on the Execute process button. This will send the process execution request
to the WPS service and wait for a response. Depending on the format type selected
for the output, our browser will either present us with a Save As… dialog to save the
generated file to disk or simply display the result inside a pop-up window. Whether
the result is displayed or downloaded will depend on the Multipurpose Internet
Mail Extensions (MIME) type for the format requested as the output. We selected
application/wkt; the browser will interpret this as a downloadable file type and
act accordingly. The XML request and WKT result of this particular request can be
found inside the code bundle of this book.

Executing chained WPS processes
In the previous section, we saw how easy it was to build a single WPS request to
return a result. However, there will often be times when a single WPS process will
not be sufficient to provide us with the answer that we require. For example, we
might need to perform several processing steps on our data before we can make the
final analysis and obtain a result.

The traditional way to achieve this will be to break the analysis down into smaller
steps, saving the output of each step for use in the next, finally arriving at our
desired answer and a final dataset. In a desktop environment, this is relatively
straightforward, albeit time consuming, to achieve. However, in a server
environment, this will be more difficult as we will need to store the intermediate data
outputs of each stage and then clean up afterwards. This process can be made easy if
we utilize the ability of WPS to perform process chaining, where the outputs of one
process can be the inputs to another, with the server cleaning itself as it moves along
the process chain.

To demonstrate this, let's consider a simple piece of analysis that we might perform
in order to determine the amount of crime, of a particular type, that occurs within a
specific Police Force territory. To perform this analysis, we need to determine three
different things:

• We need to select the type of crime (user defined) from the police
crimes dataset.

• We need to select the polygon that represents the boundary of a specific
Police Force (user defined).

• We need to select only the crimes of the specified type that are within
the selected Police Force boundary polygon. This will give us the subset
of data we want.

Chapter 9

[281]

To accomplish this, we will use GeoServer's vec:InclusionFeatureCollection
WPS process and feed it with the data that will be the result of two vec:Query
WPS processes:

The preceding diagram is a visual representation of what we will attempt;
a data-flow diagram. The WPS process that we will call at the start is
vec:InclusionFeatureCollection. This process has two inputs: the first input (2)
is the result from a vec:Query WPS process, and the second one (3) is the result from
another vec:Query WPS process. The final result of these chained processes will be a
feature collection of all the Police:StreetCrime features that fall within the selected
Police:ForceBoundaries feature.

It is important to remember that the sequence in which you use WPS
processes is important. Think carefully about what you want the
chained process to achieve. I find it useful to draw out the execution
plan first in a data-flow diagram. I find that it helps clarify my
thoughts and then build the necessary instructions.

GeoServer as a Spatial Analysis Platform

[282]

Once again, we will use GeoServer's built-in request builder to assist us in
creating the chained process execution XML. From the request builder, select
the vec:InclusionFeatureCollection process, as this is our starting process:

The vec:InclusionFeatureCollection will return a feature collection that contains
the features from the first input feature collection; these features are spatially
contained in at least one feature from the second input feature collection. In our case,
we want to select features from Police:StreetCrime that are within a particular
Police:ForceBoundary feature. However, we only want to select the street crime
features that have the type of Robbery. To do this, we will use another WPS process
called vec:Query.

Selecting the crime type
From the Process Inputs section, look for the first input. From the drop-down list,
select the SUBPROCESS option and then click on the Define/Edit link:

Chapter 9

[283]

This will open another dialog window where we can now specify the vec:Query
process to execute. This process requires two mandatory inputs that inform it about
the feature collection to query and the type of query to perform:

We want the query to be performed on the Police:StreetCrime layer, so we
chose the VECTOR_LAYER option from the drop-down and then selected the
Police:StreetCrime option from the second drop-down. The list of available vector
layers is discovered when GeoServer queries the vector data layers we configured.

Next, we need to specify the query to perform on the features. In this case, a query
is created using a WFS filter, so the drop-down contains three types of filter that
we can use:

• OGC filter specification 1.0
• OGC filter specification 1.1
• CQL

GeoServer as a Spatial Analysis Platform

[284]

It doesn't matter which one we choose, as long as the value we enter in the textbox
below is valid for the filter type chosen. In this case, we will use CQL. We need to
write a valid CQL statement in the box, which, in this case, is very simple:

CRIME_TYPE = 'Robbery'

When we click on the Apply button, GeoServer will inject the correct XML
WPS ExecuteProcess command into the textbox for the first input to
vec:InclusionFeatureCollection.

Selecting the Police Force territory
Now we need to do the same for the second input of the process. In this
case, we want to perform another vec:Query process, but this time, on the
Police:ForceBoundaries vector layer:

We need to select the SUBPROCESS option from the drop-down list for the second
input and then click on the Define/Edit link to open another dialog where we can
define the next vec:Query process to run:

Chapter 9

[285]

This time we will select Police:ForceBoundaries as VECTOR_LAYER and set
another CQL filter expression to:

NAME = 'Sussex'

Again, we need to click on the Apply button to have the generated XML
ExecuteProcess injected into the textbox for the second input of the original
vec:InclusionFeatureCollection process. We will now have a completed
form similar to the one shown in the following screenshot:

We will now have both inputs for the vec:InclusionFeatureCollection process
set as XML ExecuteProcess commands.

GeoServer as a Spatial Analysis Platform

[286]

Executing the WPS process chain
All that remains now is for us to choose the output format for the results and then
execute the process:

The result output feature collection can be a range of formats that include GML, JSON,
and WKT. The most common use case to execute WPS processes will be from the Web,
so the best output format to choose will likely be application/json. Ultimately, it
does not matter what output format we choose as long as the application that will
receive the results is capable of reading the output format that we choose.

We can now click on the Generate XML from process inputs/outputs button to get
a generated XML ExecuteProcess request, or we can click on Execute process and
wait for our results:

Chapter 9

[287]

The generated XML ExecuteProcess request for this example is available in the
code bundle of this book, along with the application/json response.

Understanding GeoScript
The stated goal of the GeoScript project is to provide a geoprocessing library that
is easy to use and available in a variety of scripting environments. It uses the same
GeoTools library that GeoServer is built on, which means there is a wide range of
things that can be accomplished with GeoScript:

• Support for a range of spatial formats
• The ability to render spatial data, including control over styling
• Support for different projections and coordinate systems and the

ability to reproject data
• A wide range of geometry manipulation functions

GeoScript itself is a wrapper over the core GeoTools API, providing a layer of
abstraction and making the power of the GeoTools library accessible to non-Java
developers. GeoScript has its own API to access the core set of functionality from
GeoTools; however, due to the way that it is built, it is possible to call any method
from the GeoTools API directly. So, if you are a GeoTools developer or can work
your way around the documentation, then you can utilize the full power of
GeoTools in your own projects through the simplicity of scripting.

At the time of writing this book, GeoScript in GeoServer is available in the
following languages:

• Python
• JavaScript
• Groovy
• Beanshell
• Ruby

If you are using a scripting language other than those listed, then it might be possible
for you to make use of it by building support into GeoScript. The conditions to build
your own scripting language support are:

• The language should have an implementation available on the JVM
• The language runtime should have a JSR-223-compliant script engine

GeoServer as a Spatial Analysis Platform

[288]

If your scripting language meets these two requirements, then it will be possible to
build support for it into GeoScript.

GeoScript is a comprehensive library, and it is not possible to do
justice to it in a small section of a chapter. The GeoScript website has a
range of examples and documentation to help get you started, and it is
recommended that you take a look to really see the power of GeoScript.
Visit http://www.geoscript.org for more information.

GeoScript integration with GeoServer
GeoScript has been integrated with GeoServer through some community plugins.
These plugins work by creating extension points within the GeoServer subsystem;
these extension points are called script hooks. Each script hook has a corresponding
directory within the GeoServer data directory into which we can place scripts.
As scripting is dynamic, there is no need to restart GeoServer when we add new
scripts or modify the existing scripts within a hook directory. The scripting plugin
has a filesystem watcher that triggers a dynamic load of a script when it sees
something changing.

The available script hooks in GeoServer are:

Hook Purpose
App This enables scripts to be run over HTTP, for example, providing a

new web service
Function This provides scripts as functions that can be used in OGC filters for

use in WFS queries and SLD styling rules
WPS This allows the creation of a WPS process
WFSTX This allows the creation of output formats for WFS transactions

Creating and deploying scripts for these hooks is as simple as writing the script
in your favorite text editor or IDE and then saving it into the correct directory.
As discussed earlier, scripts are stored in a specific location within the GeoServer
data directory, and a file watcher looks for changes in these locations.

http://www.geoscript.org

Chapter 9

[289]

The directory structure is shown here:

The <geoserver_data_directory> directory is the location of the root GeoServer
data directory. Inside the root is a directory named scripts, which is the root
directory for the scripting extension.

The apps directory is where we can store scripts that will be treated as if they were
web pages that can be run over HTTP. Each app that we deploy should have its own
folder within the apps folder, and the structure will determine the URL needed to
call the service. For example, if we stored an app in a folder called app-name-1, then
we can access that service over HTTP using the http://<server_name>:<port>/
web/scripts/app-name-1 URL, where <server_name> is the name or IP address of
our server, and <port> is the port on which GeoServer is listening.

The function directory is where we can store scripts that will be treated as functions
by GeoServer. We can then use these functions within WFS queries and SLD styling
rules. The heatmap render transformation example shown in Chapter 6, Controlling
the Output of GeoServer, is an example of a function being used in an SLD rule.

The lib folder is a special folder that does not relate to any script extension hooks.
It is a common folder location where we can place additional modules/functions that
our scripts might need to use. For example, we might want to use the Python Flask
micro-web framework module in one of our apps; in this case, we would place the
modules in the py subdirectory of the lib folder. Similarly, for JavaScript, we would
place the module/function files in the js subdirectory of lib.

GeoServer as a Spatial Analysis Platform

[290]

The process folder is where we save scripts that we want to be exposed through the
WPS web service.

The wfs folder is where we save scripts that we want to be treated as available
output formats for WFS requests. These can then be called by specifying the
appropriate value for the OUTPUT_FORMAT parameter of a WFS request.

With the exception of the lib/py and lib/js folders, we do not need to worry about
having different script files in the same folder. The GeoServer script manager takes
care of identifying the type of script from its extension, so files with an extension of
.js will be interpreted using the JavaScript scripting environment.

Installing the GeoScript extension
This should be very familiar to us now! The scripting extension can be installed in
the same way as all other extensions. Download the relevant ZIP file and then unzip
its contents to the geoserver/WEB-INF/lib folder in the servlet container. However,
the scripting extension is a little different in that there is a different extension for each
of the supported languages. The following table lists the language and the location
to download the corresponding extension; once again it is important to match the
version of GeoServer. We are using the current stable version, which, at the time of
writing this book, is 2.5.2.

Language Extension download URL
Python http://ares.boundlessgeo.com/geoserver/2.5.x/community-

latest/geoserver-2.5-SNAPSHOT-python-plugin.zip

Groovy http://ares.boundlessgeo.com/geoserver/2.5.x/community-
latest/geoserver-2.5-SNAPSHOT-groovy-plugin.zip

JavaScript http://ares.boundlessgeo.com/geoserver/2.5.x/community-
latest/geoserver-2.5-SNAPSHOT-javascript-plugin.zip

Select the link that corresponds to the language you would like to use and then
download the ZIP file to your system. For the following examples, we will use the
Python version of the scripting extension. We will refer to the Python version of the
scripting extension simply as the scripting extension.

Open a command line on the directory where you downloaded the file to, and enter
the following command:

$ unzip geoserver-2.5-SNAPSHOT-python-plugin.zip *.jar –d <tomcat_home>/
webapps/geoserver/WEB-INF/lib

http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-python-plugin.zip
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-python-plugin.zip
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-groovy-plugin.zip
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-groovy-plugin.zip
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-javascript-plugin.zip
http://ares.boundlessgeo.com/geoserver/2.5.x/community-latest/geoserver-2.5-SNAPSHOT-javascript-plugin.zip

Chapter 9

[291]

This command will extract the files with a .jar extension into the lib folder of your
GeoServer instance. Remember to change <tomcat_home> to the folder where your
Tomcat instance is installed. Repeat the process for all of your Tomcat instances and
then restart them.

The scripting extensions, by their nature, include a lot of additional
.jar files and classes that will need to be loaded when GeoServer
runs. It is important to bear this in mind, as classes are loaded into
the PermGen space. Make sure that this memory setting is set to at
least 256 Mb to ensure that you do not receive any PermGen space
errors. Take a look at http://docs.geoserver.org/stable/
en/user/community/scripting/installation.html for
more details.

If you decide that you would like to script in multiple languages, then by all means,
go ahead and install the relevant plugins. In order for each extension to work in its
own right, it is necessary to include common .jar files across all of them; this means
that when you come to unzip the extensions, you may get warning messages about
files already existing. You will be asked if you would like to ignore these files or
overwrite them; it doesn't matter which option you choose, as all the files are the same.

Checking whether the extension has been
installed correctly
In the current version of the scripting extension, there is no web GUI for us to
interact with and, therefore, nothing for us to go to in order to check whether the
extension has been installed correctly and has been picked up by GeoServer when
it restarted. However, the extension does create the scripting hook extension points
within the GeoServer data directory when it first runs. Therefore, the best way to
check whether the extension has been installed correctly is to change directory into
the root of our GeoServer data directory. If the extension has been installed correctly,
then we will see a folder named scripts.

Scripting GeoServer
Now it is time to make GeoServer do something for us through the magic of
Python scripts. First, we will see how simple it can be to extend the spatial-analysis
capabilities of GeoServer by scripting a WPS process. Then we will follow this up by
seeing how simple it is to extend GeoServer's capabilities by creating a new RESTful
service to get feature information.

http://docs.geoserver.org/stable/en/user/community/scripting/installation.html
http://docs.geoserver.org/stable/en/user/community/scripting/installation.html

GeoServer as a Spatial Analysis Platform

[292]

Creating a WPS process
While GeoServer comes with an extensive list of built-in WPS processes, over time
it is likely that we will demand more from it. The WPS extension will allow us to
add more processes, but to do so will require us to write some Java code to create
some JAR files that we will then need to deploy. Once deployed, we will then need
to restart our GeoServer instance to ensure that the new process is picked up and
loaded. If we do not know how to write Java, then this will be a difficult task to
accomplish. However, if we have the scripting extension installed, then we can create
a WPS process as a script. The best thing about scripting a WPS process is that it can
be deployed simply by copying it into the scripts folder.

To demonstrate how easy it is to create a WPS process from a Python script, we will
create one to analyze our UK Street Level crime data we loaded in Chapter 3, Working
with Vector Data in Spatial Databases. The process that we will create will allow us to
get a count of all the crimes of a specific type that are within a specified distance of a
user-defined location. The logic that we will implement to make this work is:

• Receive the origin location for the search as a point
• Buffer the origin location by the search_radius value to constrain the search
• Perform a WITHIN spatial filter and attribute-based filter on the UK Street

Level Crime dataset to find all the crime locations inside our search radius
• Count the total number found and return the result

The complete Python script for this is available in the code bundle of this chapter.
To create the script. We first need to open a text editor or an IDE and create a new
Python file; let's call it CrimeWithinCountByType.py.

Think carefully about how you name the Python script file for a
WPS process. The name of the file will become the name of the
WPS process in the system, with the script type prefixed as the
namespace. In our example, this will result in the process being
called py:CrimeWithinCountByType.

Defining the WPS process
The start of the script includes some essential imports that we need in order for the
script to be parsed and run correctly:

from geoserver.wps import process
from geoscript.workspace import PostGIS
from geoscript.geom import geom
from geoscript.filter import Filter

Chapter 9

[293]

The first line imports GeoServer's process module, which is used to provide the
capabilities for GeoServer to be able to publish the script as a WPS process. The
remaining imports are GeoScript-specific imports to allow us to work with PostGIS
database, geometry objects, and filters.

The next section of the script is the key to make GeoServer recognize that this script
is meant to be a WPS process and to tell it how to register and interpret the script.
This is a Python decorator, and it is used by GeoServer to register the script with the
WPS service:

@process(
 title = 'Crime Within Count by Type',
 description = 'This process will return the number of crimes of a
specified type within distance of the given location',
 inputs = {
 'origin': (Point, 'The location to search within'),
 'crime_type': (str, 'The type of crime to count'),
 'search_radius': (float, 'The maximum radius to search')
 },
 outputs = {
 'count': (int, 'The number of crimes found within the search
distance')
 }
)

The keys in this decorator are used by GeoServer when the DescribeProcess WPS
request is performed. The name of the decorator that the script extension will look
for when it processes a script found in the /scripts/wps directory is @process;
without it, an error will be thrown.

The title key is effectively ignored by GeoServer, as the Python scripting extension
uses the name of the script file for the WPS process title. The description key, on the
other hand, is used; it is the text that will be provided in the DescribeProcess and
Capabilities responses. The WPS request builder tool uses the value to provide a
description for the selected process:

GeoServer as a Spatial Analysis Platform

[294]

The next keys are inputs and outputs, and they tell GeoServer what information is
required to be able to execute the process and what the user can expect in response.
They are specified in the following format:

'<parameter_name>' : (type, '<description>')

First is the name of the parameter; this is what will be presented to the user on
the request builder form, and this is how the parameter will be referred to in the
request and response to the service. Following the colon, two pieces of information
are required in parenthesis: the type of the parameter and a description for it. The
type should be a valid Python type that GeoServer will then convert internally to a
format that GeoServer and the underlying GeoTools require. For example, our input
parameters are manifested in the request builder interface like this:

We have set the script to expect three inputs: crime_type as String, the origin
location as Point, and search_radius as Double. Notice how the double on
GeoServer is actually a Python float type in our script. This is GeoServer doing its
thing to automatically turn the Python types into valid types that the WPS can use.

Chapter 9

[295]

Creating the WPS process run method
GeoServer expects our script to have a main method called run. This is the entry
point to the script that the WPS service will call when it executes. The method will
take the same number of parameters that we specify in the decorator. Define the
method like this:

def run(origin, crime_type, search_radius):

The three parameters are the same as we defined in the decorator, and GeoServer
will pass the relevant values to our script when it executes. Now we need to start
writing the code that will actually execute when the process runs. According to
our logic, the first thing we need to do is take the location point and then buffer it.
Enter the following into the script:

buffer_geom = geom.buffer(origin, search_radius)

That's it! One line of code to take the point and then buffer it by the amount specified
to form our search radius. There are two reasons why we can achieve so much in
such a small amount of code. First, GeoServer has received the input for the location
either in WKT or one of the several versions of GML and automatically turned it
into a GeoScript Point type that we can use straightaway. The second reason is that
GeoScript provides us with a lot of convenience methods by abstracting the more
complex underpinnings of GeoTools. For example, to create the buffer object that we
will use in our spatial query, we just need to call the geom.buffer method and pass
it the origin point object and the value for search_radius. We will assign the result
of the buffer to a variable called buffer_geom.

The next thing we need to do is create a connection to our layer that we want to run
the spatial query on. In this case, we will use the UK Street Level Crime data that
we loaded into our PostGIS database. First, we need to create a connection to the
database, and then we need to get the layer with the data. Now enter the following
two lines to the script:

pgis_workspace = PostGIS('<db_name>', '<server>', '<port>',
'<schema>', '<username>', '<password>')
crime_lyr = pgis_workspace.get('uk_street_crime')

The first line creates a connection to the PostGIS database that holds the data; enter
the correct details for your database server, port, schema, and so on. The second line
is where we get the UK Street Level Crime as geoscript.workspace.Layer. The first
line created a connection to what GeoScript calls a Workspace.

GeoServer as a Spatial Analysis Platform

[296]

A workspace is an abstraction for a data connection and contains a list of the tables
available in that data source. A table in a database is expressed in Workspace as
Layer. The second line of this code used the Layer.get() method to return a layer
representation of the table in PostGIS that we are requesting. In this case, the name of
our table is uk_street_crime.

Now we need to create a Filter() object that we can apply to the layer to retrieve
only the features that meet the conditions:

crime_filter = Filter("crime_type = '%s' AND WITHIN(geom, %s)" %
(crime_type, buffer_geom))

One line is all we need to construct the Filter() object. A filter in GeoScript is
constructed using the CQL language and allows us to use spatial predicates as well
as attributes. In our case, we want the filter to do two things for us:

• Only match crime locations where the crime_type attribute is equal to the
value of the crime_type parameter passed in

• Only match crime locations that are inside our search buffer geometry

We build this filtering criteria using the spatial predicate, WITHIN, which will return
all the geometry objects that are within the second geometry, from the layer the filter
is applied to. In this case, the second geometry is dynamically passed in using our
buffer_geom object.

We now have all the elements of our script in place; all we need to do now is
get a count of the crime locations that match the criteria that has been specified.
Traditionally, this would have probably take a few lines of code; we would have
needed to perform the selection on our layer and then potentially loop through the
results to get a count or perform some other tasks. Once again, with GeoScript,
this is simplified to one line. In our script, let's enter the following line:

return crime_lyr.count(crime_filter)

Since we are now at the end of our script, we will return the result. We will return
the result from the count() method of the Layer() object. The count() method can
take an optional input parameter of type Filter()—Layer.count(filter=None).
The default value for the filter is None, which means that if we simply called crime_
lyr.count(), then we would return the total number of crime locations in the layer.
In other words, it will count all the features on the layer. By specifying a value for
filter, we are constraining the results to only those matching the filter, which is
exactly what we are after.

Chapter 9

[297]

Testing the Python WPS process
Save the script to <geoserver_data_directory>/scripts/wps, and then go to the
WPS request builder tool that we used earlier in this chapter. We can use this tool to
test our WPS process script. From the process drop-down list, notice that there is
now a script with a py prefix; all processes written in Python will have this prefix.
Other scripting languages will have their own prefix, for example, js for JavaScript.
From the drop-down, select the py:CrimeWithinCountByType process. Enter the
following values for the input parameters and then click on the Execute button:

Parameter name Value
crime_type Other theft
origin POINT(531088 104498)
search_radius 1000

Make sure that the drop-down for the origin parameter is set to application/wkt
so that GeoServer interprets our point correctly; otherwise, an error will occur on
execution. The result from this particular execution will be 165.

To make this function slightly more useful in a general context,
we can make it more generic. If we removed the hard coding
of the layer that we apply the filter to, and provide a means of
allowing the user to specify the filter, then it would be generic
enough to be used on any vector layer. Why not have a go at
doing this? If you get stuck, there is an example script in the
code bundle called FeatureCountWithinRadius.py.

Creating a RESTful service
Earlier in this chapter, we discussed how the scripting extension creates hooks into
different parts of the GeoServer architecture. Exploiting these different hooks means
we are able to do different things with our scripts. We just created a WPS process to
do some analysis on finding the crimes of a certain type within a given distance of a
given location. However, to execute that script, our application(s) will need to know
how to talk WPS. In some cases, this will be fine; for example, if QGIS is using the
WPS plugin or if we were creating our own web application using OpenLayers, we
could use its WPS capabilities. However, how do we integrate this analysis into other
business systems that we might have in our enterprise which don't understand how
to talk WPS? One answer can be to expose our analysis logic as a RESTful service
that nearly any application with a web connection can understand; after all it simply
uses the standard HTTP protocol.

GeoServer as a Spatial Analysis Platform

[298]

A complete discussion of what a RESTful service is, often referred
to as REST APIs, is beyond the scope of this book. However, it is
a pretty straightforward concept to grasp, and there are plenty of
online sources of information. As always, the first place to start is
Wikipedia: http://en.wikipedia.org/wiki/Restful

We will utilize the app scripting hook to create a REST end-point for our analysis.
The idea here is that we can actually use GeoScript to build a full-blown analysis
REST API, using the power of GeoServer. For this example, we will only create a
single end-point, but it will give us a solid foundation on which we can build a
more complete API.

In order to make all of this work nicely in a web service context, we will utilize the
Flask micro-web development framework for Python. Flask will provide us with all
the necessary plumbing to create URL routes to execute code. Before we get started
on the script itself, there is a little configuration that we need to get out of the way
first. We need to get all of the Python modules to make Flask work and then copy
them into our scripts directory. The packages that we need to get are:

• Flask
• Jinja 2
• Werkzeug

These are required for dependencies. You can either download them from the
Python Package Index (PyPI) at http://pypi.python.org/pypi, or you can use
the Python ez_install command. Irrespective of the approach you decide to take,
you will need to place the folders that contain the packages into the scripts/lib/py
directory so that GeoServer's implementation of Jython can pick them up.

Jython is an implementation of Python built for the Java platform.
It can be used to embed scripting inside Java applications and is
what gives GeoScript the ability to run Python code. More details
about Jython are available at http://www.jython.org.

If you have trouble getting hold of, or compiling, these packages, then I have
included the ones I used in the code bundle of this chapter, along with the
complete script we are about to create.

http://en.wikipedia.org/wiki/Restful
http://pypi.python.org/pypi
http://www.jython.org

Chapter 9

[299]

Now, with the dependencies resolved, we are ready to create the script to
REST-enable our analysis script. Create a new file in your favorite text editor or
IDE and call it main.py. GeoServer expects to find a file named main.py within
the directory for an application, which means that we also need to create a folder
within the scripts/apps folder of the data directory. Let's create a folder called
CrimeAnalysis within the scripts/apps folder and make sure that the main.py file
is inside it. First of all, we need to add the necessary imports at the start of the script:

from geoscript.feature.io import json
from geoscript.geom import geom, Point
from geoscript.workspace import PostGIS
from geoscript.filter import Filter
from StringIO import StringIO
import urllib
from flask import Flask, Response

Most of these imports will be familiar from the WPS process script that we created.
The last three, however, will be new to us. StringIO is a string-creation module that
we will use to build up our response to be sent in response to requests. The urllib
module is necessary so that we can handle URL-encoded strings. Finally, we have
the import declaration for Flask itself; notice that we are importing the main Flask
module as well as the Response module.

Next, we need to create an instance of the Flask class:

app = Flask(__name__)

The parameter to the Flask class is the name of the application's module or package.
As we will be using a single module, we simply need to provide the __name__ value.
Next, we need to create and launch the application:

if __name__ == "__main__":
 app.run()

We will use the run() method of the application to start it. The if statement inside
which the run() call is ensures that the server only runs if the module is called
directly from the Python interpreter and not used as a module import.

The next part of the script will define the analysis method itself. At this point, we
need to have an idea of how we want people to call our RESTful service, what
the structure of the URL will be, and whether we will include any parameters.
For the analysis to work, there are four pieces of information that we need to
receive: the type of crime, the x coordinate of a location, the y coordinate of
a location, and finally, the search radius. For this example, we will use this
URL template: http://<server-name>:<port>/geoserver/script/apps/
CrimeAnalysis/<crime_type>/<api-method>/<parameters>.

GeoServer as a Spatial Analysis Platform

[300]

There are a number of elements in this URL template, so let's break it down
a little bit:

Element Purpose Example
<server-
name>

This is the server name or IP address of our
GeoServer instance

127.0.0.1

<port> This is the port number that GeoServer is
listening on

8080

<crime_type> This is the type of crime we want to analyze Drugs

<api-method> This is an API method to call for analysis Within

<parameters> This is any additional parameters required for the
API call to work

On this structure of a RESTful service, we will create this end-
point: http://<server-name>:<port>/geoserver/script/apps/
CrimeAnalysis/<crime_type>/within/<x>/<y>/<radius>.

This will give us a flexible framework on which we can call the within analysis
on any type of crime and have flexibility with the location coordinates and search
radius. To make this work in our script, we need to add a method and then provide
a decorator for it. Enter the following into the script:

@app.route("/<crime_type>/within/<x>/<y>/<radius>")
def CrimesByTypeRadius(crime_type, x, y, radius):

The @app.route decorator is used by the Flask application server to interpret
incoming web requests and then route them to the correct method to be handled.
You will see that the content is a string for the URL. Notice that some of the elements
are enclosed in the opening (<) and closing (>) brackets. These are the tokens that
will be replaced by Flask, with the values provided in the URL itself; more important
for us though is that these become the parameters for our method. In this case, we
can see the four pieces of information that we need to run the analysis.

The first part of the script is very much the same as our WPS process from earlier,
so let's copy that:

pgis_workspace = PostGIS('<db_name>', '<db_server>', '<port>',
'<schema>', '<username>', '<password>')
crime_lyr = pgis_workspace.get('uk_street_crime')
search_buffer = geom.buffer(Point(num(x), num(y)), num(radius))
crime_filter = Filter("crime_type = '%s' AND WITHIN(geom, %s)" %
(urllib.unquote(crime_type), search_buffer))

Chapter 9

[301]

Though the code is the same as the earlier one, to get a connection to the database,
get a reference to the crimes layer and then build the search buffer object; there are
some subtle differences. The first and most important one is the use of a method to
handle numbers, num(). Values are passed to us by Flask as strings unless Flask is
instructed otherwise. One way to do this is to provide a type within the opening and
closing brackets for a parameter. However, in this scenario, we are constrained to a
single type, but our numbers can be whole integers or float values. We don't want to
constrain our API to any one type for coordinates and distances, so let's add a new
method into the script:

def num(s):
 try:
 return int(s)
 except ValueError:
 return float(s)

This simple method will first try and parse the supplied string as an integer, and if
this fails, then it will try and parse it to a float. Using this method will mean that we
can handle values of any type safely.

The other difference is the use of the urllib.unquote() method on the crime_type
parameter. Flask will pass values as URL-encoded strings, so, for example, spaces
will be encoded as %20; this means that a crime type such as Other theft will be
passed to us by Flask as Other%20theft. The %20 bit will cause problems on our
filter, as the string won't get matched. Using urllib.unquote(), we can get back the
crime type with spaces (and any other characters) decoded.

Previously, we were simply counting the number of crimes that occurred within the
given search radius, but for our API, we will actually return the crimes' locations
themselves as GeoJSON.

GeoJSON is a format to encode geographic data such as features, feature
collections, or geometry. Features in GeoJSON contain a geometry object and
additional properties (attributes). For more details on the specification, look at
http://geojson.rog/geojson-sec.html.

Back in the body of our method, we need to perform the spatial query:

fcursor = crime_lyr.cursor(crime_filter)

http://geojson.rog/geojson-sec.html

GeoServer as a Spatial Analysis Platform

[302]

This line will execute the filter on the crime data layer and then return a feature
cursor that contains all the features that were found. We will now construct
a response string and then loop over the cursor to build out a GeoJSON
FeatureCollection. Enter the following lines of code into the script:

buff = StringIO()
buff.write('{\n')
buff.write(' "type": "FeatureCollection",\n')
buff.write(' "features": [\n')

num_features = crime_lyr.count(crime_filter)
i = 1

for f in fcursor:
 if i < num_features:
 buff.write('%s,\n' % json.writeJSON(f))
 else:
 buff.write('%s\n' % json.writeJSON(f))
 i = i + 1

buff.write(']\n')
buff.write('}')

First, we created a StringIO object, and then we called its write() method to
sequentially build up the response string. Then we got a count of the features that
match the filter so that we can control the output as we loop over the features in
the cursor. This check is done so that we do not have a trailing comma after the
last feature is written out, since this will make our JSON array of features invalid.
Instead, if we are on the last feature being written, then we do not bother with the ,.

That is all there is to it. All that remains now is for us to write the response so that it
can be sent back to the caller:

return Response(buff.getvalue(), mimetype='application/json')

We used the Response object to create the response, write out the contents of the
buffer object, and then set the MIME type of the response to application/json.

To test whether all this works, we can call this URL from a web browser or cURL:
http://<server-name>:<port>/ geoserver/script/apps/CrimeAnalysis/
Robbery/within/531088/104498/1000.

We will get back a stream of GeoJSON that contains six encoded features. This
response can then be parsed, and the data supplied can be analyzed further or
displayed on a map.

Chapter 9

[303]

Summary
In this chapter, we learned that it is possible to use GeoServer as a spatial analysis
platform through the use of WPS. We also saw that it is possible to extend the
capabilities of GeoServer as a spatial analysis platform by building and adding new
WPS processes. Even better, we saw that this can be accomplished using accessible
scripting languages such as Python and JavaScript.

We saw how WPS processes can be used to perform a wide variety of analysis, and
GeoServer comes with a large selection of processes out of the box. We saw how it
is possible to chain processes together so that the result of one process is used as the
input to another, thus enabling us to create complex chains of processes that can be
executed from a single request. This capability makes GeoServer a great platform for
complex server-side spatial analysis.

Extensibility of a platform is the key to its survival. With the inclusion of GeoScript,
the ability to extend GeoServer is opened up to a much larger community of users.
As we saw, by building a simple RESTful API, users no longer need to know all
about Java in order to make meaningful contributions to GeoServer's functionality.

In the next chapter, we will look at how we can secure GeoServer using
enterprise-security mechanisms such as LDAP and Active Directory.

Enterprise Security
and GeoServer

As with any other production system, we must consider how to secure our instances
of GeoServer against malicious attacks. Depending on how we anticipate our
servers being used, we might also need to implement a security model to prevent
unauthorized access to certain datasets or layers. GeoServer has a comprehensive
security model enabling us to secure at both the layer and service levels.

In this chapter, we will take a look at how we can implement different strategies to
secure GeoServer. The following topics will be covered:

• Authorization and authentication
• Configuring GeoServer to make use of an LDAP server, such as Active

Directory, for user authentication
• Configuring GeoServer to make use of the Digest user authentication
• Configuring GeoServer to make use of the HTTP Header proxy

authentication
• Understanding user authorization through roles

GeoServer offers a range of approaches for user authentication, including standard
HTTP Basic authentication. However, this chapter focuses on integrating with
existing enterprise-based authentication servers and schemes. A full discussion of the
security subsystem used by GeoServer is out of the scope of this chapter. However,
the GeoServer documentation provides a comprehensive run-down of how security
is implemented. GeoServer's security documentation can be found at http://docs.
geoserver.org/stable/en/user/security/index.html.

Enterprise Security and GeoServer

[306]

Authentication and authorization
Any security model that is implemented must gather two pieces of information
before granting anybody access to the system. First, it must determine who is
attempting to access the resource, and once known, what this person is allowed to do.
The act of determining who requests access to the resource is user authentication,
and knowing what they are allowed to do is user authorization.

To explain the interaction between these two elements, let's consider a standard
communication between a client requesting a service from GeoServer and GeoServer
sending a response to this service. The following sequence diagram shows the flow
across this common transaction:

Chapter 10

[307]

A user makes a request for a service from GeoServer; for example, this might be
issuing a WMS GetMap request, or perhaps a WFS-T insert transaction. GeoServer
determines whether the service is secured, and then acts accordingly.

If the service is not secured (1.), then GeoServer allows the service request to
proceed, and it is handled normally. If the service is secured (2.) and no credentials
are present in the headers, then GeoServer responds with an HTTP 401 challenge.
The client software will then gather the username and password to be used against
the service and repeat the request. GeoServer validates the credentials supplied
against its configured authentication providers; if there is a match, the user is
authenticated (3.) and passed on to validate their roles. If the user is authorized
(4.) to access the service request, then GeoServer will respond to the request in the
normal way. However, if the user fails authorization (5.) against the service request,
then GeoServer will return an HTTP 403 response. Likewise, if the user is not
authenticated (6.), an HTTP 403 response will be returned.

This is a slight simplification of what is actually going on under the hood. However,
it serves as a useful outline of the authentication and authorization processes that
happen inside GeoServer.

User authentication methods
GeoServer handles authentication using an authentication chain that actually consists
of two chains. The first chain is the authentication filter chain, and the second chain
is the authentication provider chain. The filter chain is responsible for determining
whether authentication of the request is required, and the provider chain provides
the mechanisms to perform the authentication.

Enterprise Security and GeoServer

[308]

The following flowchart represents the sequence of events that occur during
request processing:

Authenticated?

Start

Filter Chain

Can

Authenticate?

Provider Chain

Process Request

Response

More Filters?

HTTP 401

YES

NO

NO

YES

YES

NO

When a request is received by GeoServer, it is passed through the filter chain,
where each element of the chain is given a chance to authenticate the request.
For example, if the filter chain contains an HTTP Basic authentication filter, it will
examine the request headers, looking for an Authorization header when it is
invoked. If the header is present, the filter will send the request to the username/
password authentication provider for authentication. If the request is successfully
authenticated, it is sent on for normal processing; otherwise, an HTTP 401 response
will be sent. If the filter does not detect an Authorization header, the request is
passed to the next filter in the chain. The process continues until all the filters have
been applied. Often, the last filter in a chain will be the anonymous filter that passes
the request on for processing as an anonymous user. Depending on the security
settings for the service being requested, it might not be allowed anonymously.

Chapter 10

[309]

User authorization methods
If user authorization determines what a user is allowed to do, then there must be
a mechanism to allow rights to be assigned to users. GeoServer implements a role-
based access system to assign roles to users, or groups of users, and determine what
they are allowed to do or access.

The role information can be stored in either an XML file, the default service, or
in a JDBC database. It is also possible to use the group information contained
within a Lightweight Directory Access Protocol (LDAP) server. When a user is
authenticated, the role service is responsible for calculating the roles that should
be assigned to this user. The security subsystem of GeoServer then uses these
roles to determine whether a user is allowed to perform a particular operation.
In an enterprise environment, the most common form of user authentication and
authorization is LDAP.

It is outside the scope of this book to go into detail of what LDAP is
and how it can be implemented. There is a lot of information about
this on the Internet, and a good reference point to start at is http://
en.wikipedia.org/wiki/Lightweight_Directory_Access_
Protocol.

Using Active Directory for user
authentication and authorization
There is no escaping the fact that a large proportion of enterprise systems are built
on top of a Microsoft technology stack. For the management of a domain, and the
control of users and access rights, this will more often than not mean the use of Active
Directory. Love it or hate it, Active Directory is a fact of life in most organizations.
If we integrate GeoServer into our enterprise, then we must consider how we can
utilize Active Directory to manage access to the mapping data. We can, of course, just
utilize the default username/password authentication provider, but that will mean users
having yet another username and password to remember, or more likely, forget. This
can also represent a security risk as the provider uses an HTTP Basic authentication,
where the username and password are sent in the clear. Our users will already have a
centrally managed username and password, so it will be much better for us to tap into
this existing store for authentication and authorization. An additional benefit is that
it is likely that Active Directory, and the creation and management of users, will be
a centrally managed function, which means that we can focus on managing the map
server and let others worry about managing the users.

Enterprise Security and GeoServer

[310]

Configuring Active Directory for
authentication
To configure the LDAP authentication provider to connect to Active Directory, we
need to select the Authentication link from the Security group on the left-hand side
menu of the web administration console:

We need to scroll down the page until we reach the section named
Authentication Providers.

This lists all the authentication providers that we configured for GeoServer. By
default, there is always a username/password authentication provider. To create
an LDAP authentication provider, we need to click on the Add new link:

On the New Authentication Provider page, we need to select the LDAP –
Authentication via Lightweight Directory Access Protocol server option:

Chapter 10

[311]

We can now see the settings form, where we can configure the details for our Active
Directory server. First, we must provide a name that this authentication provider will
be listed as; it doesn't matter what it is called, but it should be something descriptive.
We will call ours ad-ldap:

The Server URL option will tell the provider where our Active Directory is located.
It uses the ldap protocol to connect to Active Directory, and the URL should contain
the server name or IP address followed by the root of the directory. For our example
server, this will be ldap://ad-server/dc=mastering,dc=geoserver,dc=com;
notice the use of dc to describe the root of the directory. The root that we specified
will be translated to our domain of mastering.geoserver.com.

The Filter used to lookup user setting provides the authentication provider with
the correct syntax to use when searching the directory for users, for example,
when authenticating a login request. Each LDAP implementation will have its own
format, but for Active Directory, we need to use (|(userPrincipalName={0})
(sAMAccountName={1})). Notice the use of the 0 and 1 tokens, which will be
replaced with the value of the username attempting login by GeoServer.

Enterprise Security and GeoServer

[312]

The Format used for user login name setting provides the authentication
provider with the correct syntax to send user login names. For Active Directory,
this should be of the login-name@domain-name form. Again, we use a token that
will be replaced with the username supplied; for our example, this setting is set to
{0}@mastering.geoserver.com.

We need to check the box for Use LDAP groups for authorization and Bind user
before searching for groups. The Bind user before searching for groups checkbox
is very important as Active Directory does not allow anonymous searching of the
directory. By checking the box, we tell GeoServer that it must first successfully bind
to the directory before searching for groups.

The Group search base option tells the authentication provider where to find groups
within the directory. Active Directory holds the groups within the users store, so we
need to specify the cn=Users value. The Group search filter option tells the provider
how to look for users within groups; for Active Directory, this is set to member={0},
where the 0 is replaced with the login name being looked up. Finally, we need to
specify Group to use as ADMIN so that our administrative users configured in
Active Directory can log in as administrators of GeoServer. In our case, this will be
set to GEOSERVER_ADMIN.

We can test whether the settings are valid using the login controls on the right-hand
side of the page. After successfully connecting to Active Directory, we just need to
click on the Save button. Now, we will be able to log in to the web administration
console using our gis_admin user from Active Directory.

Configuring Active Directory for authorization
If we use Active Directory to manage our users, then it makes sense that we should
use it to manage the groups these users belong to. In this context, we can consider an
Active Directory group to be equivalent to a role in GeoServer. Within GeoServer,
we have the option of using LDAP as the role service provider. When a user is
successfully authenticated, the LDAP role service determines what groups the user is
a member of in the directory. Each group is then converted to a role in GeoServer by
prefixing the ROLE_ string to it. So, if we have a group called GIS_EDITORS in Active
Directory, then this will be translated to a GeoServer role named ROLE_GIS_EDITORS.
When the LDAP role service is configured, we will be able to select the roles from
Active Directory anywhere in GeoServer where roles can be assigned; for example,
from the service and layer security.

Chapter 10

[313]

To enable the LDAP role service, we need to configure it by selecting the Users,
Groups, Roles option from the Security group on the left-hand side menu of
the web administration console:

On the Users, Groups, and Roles page, we need to scroll down to the
Role Services section.

Out of the box, GeoServer is configured with the XML role service called default.
GeoServer allows us to have more than one role service available, so we will keep
default and configure a new service for LDAP:

We need to click on the Add new button to open the New Role Service page. To
configure an LDAP role service, we need to select the LDAP – Role service stored
in LDAP repository option from the list:

Enterprise Security and GeoServer

[314]

This will load a form underneath the list, where we can configure the role
service properties:

Similar to configuring the LDAP authentication provider, we need to tell GeoServer
where to find our Active Directory server and how to query it for user groups.
Perform the following steps to do this:

1. Give the role service a name that's something descriptive and meaningful;
we shall set it to ad-roles.

2. Next, tell the role service where our Active Directory server is located.
It uses the ldap protocol to connect to Active Directory, just like when
we configured the authentication provider. For our example server,
this will be ldap://ad-server/dc=mastering,dc=geoserver,dc=com.

Chapter 10

[315]

3. Now, we need to provide details of where the role service should look to find
groups within our repository. We need to specify cn=Users for the Group
search base setting, which tells the role service that groups can be found in
the Users folder of the directory.

4. The Group user membership search filter setting tells the role service how
to query whether a user belongs to a group. We need to set this to member{1}
,dc=mastering,dc=geoserver,dc=com, where the token 1 will be replaced
with the name of the user being looked up.

5. The Filter used to lookup user setting tells the role service how to look for
users within the directory; this needs to be set to sAMAccountName{0}, where
the token 0 will be replaced by the name of the user being looked up.

6. Finally, we need to tick the Authenticate to extract roles box since Active
Directory only allows querying of the directory by authenticated users. In
the username and password boxes, we need to specify an account to use.
In our case, we will use our gis_admin user account by specifying the
gis_admin@mastering.geoserver.com value. Notice that the username
is in the expected form of username@domain-name, just like for the LDAP
authentication provider.

7. When we complete the configuration, we need to click on the Save button,
which will validate our configuration. If there are no errors, the new role
service will be created.

8. There is one final change that we need to make before everything is
configured. We need to go back into the role service and set up the
Administrator and Group administrator roles:

Enterprise Security and GeoServer

[316]

Click on the newly created role service from the list; it should be called ad-roles. This
will open the same page as before, where we can change the configuration of the role
service. As we now have an active role service working against our Active Directory,
the two dropdowns at the top of the form will have content listed in them:

Notice how each of the items is an Active Directory group with the ROLE_ prefix
added. We need to specify the Active Directory groups that will hold administrators
for GeoServer; in this case, we choose the ROLE_DOMAIN ADMINS group.

Now, whenever we configure security for GeoServer, we can choose roles based on
groups held in Active Directory.

Using Digest for user authentication
The default security implementation in GeoServer for REST and OGC services is HTTP
Basic. The HTTP Basic authentication has the widest adoption, and any client that
is OGC compliant will support it. However, there is a downside to the HTTP Basic
authentication; it is not very secure. The credentials for an HTTP Basic authentication
are sent to the server as a header key in plain text, without any encryption. The
username and password strings are encoded using Base64, which means they are
difficult to be interpreted by users, but they are not secure as Base64-encoded strings
can be decoded. An HTTP Basic header looks like the following:

Authorization: Basic dXNlcjpwYXNzd29yZA==

The header key is Authorization, and its value consists of the word Basic followed
by the username and password as Base64-encoded strings. The string itself is a
concatenation of the username and password with a colon separator; in the previous
example, this will decode to user:password.

So, the HTTP Basic authentication is simple to implement, but not secure. HTTP
Digest, on the other hand, is more secure because a cryptographic hash is applied
to the password before it is sent with the request.

Chapter 10

[317]

Setting up an HTTP Digest authentication
To use an HTTP Digest authentication, we need to add a filter into GeoServer's
authentication filter chain.

To access the authentication settings, we need to click on the Authentication link
under the Security group on the left-hand side menu of the web administration
console. This will take us to the authentication settings page where we can add
and configure authentication filters and providers:

We need to add an authentication filter to the authentication chain. The details
required to be entered on this page will change according to the authentication filter
option that we choose. In our case, we need Digest; clicking on this will show the
properties that we need to set to configure the filter:

Enterprise Security and GeoServer

[318]

The Name property can be anything we like, but it should be descriptive of what the
filter is being used for; in this case, we will use digest. The next item, User group
service, should be set to default, and Nonce validity duration (seconds) can also be
left at the default value. Click on Save to add the new filter into GeoServer.

A nonce is a random or pseudo-random number that is generated
and used once in cryptographic communications. The validity
duration specifies how long the generated nonce value is in
effect; in other words, the time span within which the encryption
and decryption processes need to occur before the one-time key
becomes invalid and can't be used.

Next, we need to add the HTTP Digest authentication filter into the filter chain.
The filter chain allows us to control where authentication filters are applied based
on URL patterns. We would like the new filter to be applied in all cases, so we need
to set it on the default filter chain:

Clicking on the default filter chain will open a page where we can specify
its properties:

Chapter 10

[319]

We need to remove basic from the Selected list and move digest into it. We also
need to make sure that anonymous is the last item in the Selected list. Clicking on
the Close button will store the changes to the filter.

Testing an HTTP Digest authentication
To test whether the HTTP Digest authentication filter is working, we need to make
a request to GeoServer, using HTTP Basic followed by HTTP Digest. In the case
of the former, we should expect to get an HTTP 403 error, and in the case of the
latter, we should see a service response. Before proceeding, make sure that the
basic authentication has been removed from the filter chain:

1. We need to secure the services, and for this test, we will apply a default rule
to secure all the services. Click on the Services link in the Security group on
the left-hand side menu of the web administration console.

2. Click on Add new rule on the Service access rules list page to create a
new rule:

3. Leave the default values for Service and Method, and then select the
ADMIN role from the Available Roles list and click on the right arrow
button to add it to the Selected Roles list. This secures all OGC services such
that only the users belonging to the ADMIN role will be able to access them.

Enterprise Security and GeoServer

[320]

4. To test whether this is the case, we can use cURL to issue a WMS
GetCapabilities request on our server using basic authentication
(the default for cURL):
$ curl –v –u admin:password –G "http://localhost:8080/geoserver/wm
s?REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS"

This will make a request for the WMS capabilities basic authentication. The result
will be an HTTP 401 unauthorized response similar to this:

* timeout on name lookup is not supported

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user 'admin'

> GET /geoserver/wms?Request=GetCapabilities&Version=1.1.1&Service=WMS
HTTP/1.1

> Authorization: Basic YWRtaW46QXRrMW5zRGV2

> User-Agent: curl/7.21.2 (Windows) libcurl/7.21.2 OpenSSL/1.0.0a
zlib/1.2.3

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 401 Unauthorized

< Server: Apache-Coyote/1.1

< WWW-Authenticate: Digest realm="GeoServer Realm", qop="auth",
nonce="MTQxMTAwM

TQ4MTQyNDpiNzM0M2JkODM4Njk3M2ZiYWFiZmNhMjAwOGRiYWI0OA=="

< Content-Type: text/html;charset=utf-8

< Content-Language: en

< Content-Length: 1061

< Date: Thu, 18 Sep 2014 00:46:21 GMT

Now, we will issue the same request. However, this time, we will use Digest
authentication:

$ curl --digest –v –u admin:password –G "http://localhost:8080/geoserver/
wms?REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=WMS"

This will make the request for WMS capabilities again, but this time, cURL will
encode the username and password using the digest cryptography. The response
from GeoServer will be the capabilities document for WMS.

Chapter 10

[321]

Using HTTP Header for user
authentication
The previous authentication providers that we discussed are widely used in an
enterprise environment, and we have seen how we can utilize them in GeoServer.
In using these providers, we have been responsible for configuring GeoServer to
connect to the providers as well as setting up the security rules against authenticated
users. In n-tier architectures, it is common that authentication of users occurs in a
different tier to that in which GeoServer sits. In other words, the act of authentication
and authorization can occur in another system, such as a proxy. This approach
makes it possible to integrate with another security system, for example, a system
that implements the OGC Geospatial Digital Rights Management Reference
Model (GeoDRM RM).

GeoDRM RM provides a mechanism to allow organizations to secure their
web mapping servers based on the rights of the user. For example, it is possible to
lock down access to specific resources that are constrained to a certain geographic
region. Using GeoDRM RM, we can restrict access to a national dataset to a
subregion based on what access customers purchased:

Policy Enforcement

?

Policy Decision

User

GeoServer Policy Repository

Enterprise Security and GeoServer

[322]

At a high level, there are three components to a GeoDRM RM solution. The Policy
Enforcement service is used as the gateway to access mapping services. It receives
the service request and authenticates the user requesting access. Once the user is
authenticated, the Policy Decision service is called with the user details along with
details of the request being made. The Policy Decision service then checks the
policy(s) held against the user details and determines whether the request they make
is valid, for example, if the area of data they request is within their licensed coverage.
Once the Policy Decision service validates the request, the decision is sent back
to the Policy Enforcement service. If the decision is to allow the request, then the
Policy Enforcement service will pass the request on to GeoServer, and if it is to deny,
then a declined response is sent back to the user.

GeoDRM RM is a topic that can fill a book in its own right, and it's
certainly beyond the scope of this book. If you are interested in learning
more about GeoDRM RM, then you can take a look at the OGC
specification at http://www.opengeospatial.org/standards/
as/geodrmrm. An implementation of GeoDRM RM is provided by 52
North (http://52north.org/communities/security/).

In this scenario, we will only need to implement a simple level of security on
GeoServer. The Policy Enforcement service is the gateway so that GeoServer can
simply trust any request received from it—much like a proxy server. However, we
want to at least put some security on it to try to prevent unauthorized access through
back doors. In this case, the HTTP Header authentication provider is perfect.

The HTTP Header authentication provider works by examining the headers of
requests coming in and looking for a secret header key. The value of the header key
should be the name of a valid GeoServer user. When the authentication provider
detects the header key, it grants access to the specified user.

Setting up an HTTP Header authentication
To use an HTTP Header authentication, we need to add the filter into GeoServer's
authentication filter chain.

To access the authentication settings, we need to click on the Authentication link
under the Security group on the left-hand side menu of the web administration
console. This will take us to the authentication settings page where we can add and
configure authentication filters and providers. We need to add an authentication
filter to the authentication chain:

Chapter 10

[323]

Under the Authentication Filters section, we need to click on the Add new button
to open the New Authentication Filter page:

The details required to be entered on this page will change according to the
authentication filter option we choose. In our case, we need HTTP Header; clicking
on this will show the properties we need to set to configure the filter. The Name
property can be anything we like, but it should be descriptive of what this filter
is being used for; in this case, we will use "GeoDRM RM". The next item, Request
header attribute, is the important setting as this is the HTTP Header attribute that
the filter will look for.

Enterprise Security and GeoServer

[324]

The value for the request header attribute should be obscure so that it
is not easy to guess; for example, setting the name to the user, and the
value being admin, will not be secure. It is best to generate a random
sequence of letters and numbers for the name, and potentially, also the
username. A string of 20 random characters containing three numbers
will offer a strong attribute name. We should also consider securing
communication to GeoServer with SSL or place GeoServer behind a
firewall for added security.

Specify User group service and default for the Role source settings, and then click
on the Save button. The filter will be created and added into the authentication filter
chain at the top of the list. If you wish, you can change the order in which the filters
are applied.

There is no need to set up an authentication provider as the GeoDRM RM system
will handle it for us. We can simply accept the value of the header attribute as being
a valid user and allow GeoServer to fulfill its service request.

Next, we need to add the HTTP Header authentication filter into the filter chain.
The filter chain allows us to control where authentication filters are applied based
on URL patterns. We would like the new filter to be applied in all cases, so we need
to set it on the default filter chain:

Chapter 10

[325]

Clicking on the default filter chain will open a page where we can specify
its properties:

At the bottom of the page, there is a section called Chain filters. This is where we
specify which filters apply to this particular filter chain. We want to remove basic and
add GeoDRM RM in its place, making sure that anonymous is the last filter in the list
(anonymous is always required). Click on the Close button to store the changes.

Testing the HTTP Header authentication
To test whether the HTTP Header authentication filter works, we will need to make
a request to GeoServer without the header attribute present, and then again with it.
In the case of the former, we should expect to get an HTTP 403 error, and in the case
of the latter, we should see a service response.

Enterprise Security and GeoServer

[326]

First, we need to secure the services; for this test, we will apply a catch-all rule
to secure all the services. Click on the Services link in the Security group on the
left-hand side menu of the web administration console. Click on Add new rule
on the Service access rules list page to create a new rule:

Leave the default values for Service and Method, and then select the ADMIN role
from the Available Roles list and click on the right arrow button to add it to the
Selected Roles list. This secures all OGC services such that only the users belonging
to the ADMIN role will be able to access them.

To test whether this is the case, we can use cURL to issue a WMS GetCapabilities
request on our server:

$ curl –v –G "http://localhost:8080/geoserver/wms?REQUEST=GetCapabilities
&VERSION=1.1.1&SERVICE=WMS"

Chapter 10

[327]

This will make a request for WMS capabilities without supplying a valid user in the
header. The result will be an HTTP 403 response similar to this:

* timeout on name lookup is not supported

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /geoserver/wms?Request=GetCapabilities&Version=1.1.1&Service=WMS
HTTP/1.1

> User-Agent: curl/7.21.2 (Windows) libcurl/7.21.2 OpenSSL/1.0.0a
zlib/1.2.3

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 403 Forbidden

< Server: Apache-Coyote/1.1

< Content-Type: text/html;charset=utf-8

< Content-Language: en

< Content-Length: 987

< Date: Wed, 17 Sep 2014 23:18:00 GMT

Now, we will issue the same request, except this time, we will specify the secret
header key that we configured:

$ curl –v --header "sjGBxXbYISKwHVCVQm34AvGhQZMOKK: admin" –G "http://
localhost:8080/geoserver/wms?REQUEST=GetCapabilities&VERSION=1.1.1&SERVIC
E=WMS"

This will make the request for WMS capabilities again, but this time, we provide the
admin username through the secret header key. The response from GeoServer will be
the capabilities document for WMS.

Enterprise Security and GeoServer

[328]

Summary
In this chapter, we covered some of the key concepts behind enterprise security, the
concepts of authentication (who) and authorization (what) in particular. Armed with
these two distinctions and their relationships, we then explored how each is applied
in the context of GeoServer's security subsystem. In particular, we looked at how
data and services can be secured.

With Active Directory being the most prevalent enterprise system to manage users
and user groups, it seemed like the logical next step to see how easy it is to configure
GeoServer to connect to, and utilize, the information stored in the directory. With a
connection to Active Directory configured, we have everything in place to integrate
GeoServer into our enterprise. This approach now leaves us in a good position to be
able to implement single sign-on security.

Finally, we looked at an alternative approach to enterprise security, one in which
the authentication and authorization of users is handled through a proxy server.
In our example, we considered the concept of utilizing an implementation of the
OGC GeoDRM RM model for security. Using the HTTP Header authentication filter,
we can trust a secret key passed through in the request headers.

We have almost reached the end of our journey. With a well-configured, and
secured, GeoServer instance running in production, we now need to see how well it
performs. In the next chapter, we will look at how we can monitor the performance
of GeoServer.

Monitoring the Performance
and Health of GeoServer

With our GeoServer instances up, running, and secured, it is now time to consider
whether they are performing well, and think about how we can keep an eye on them
as they start to get utilized.

In this chapter, we will look at what tools exist within GeoServer to enable us to
keep an eye on how things are going. We will understand how to configure them,
and then look at how we can interpret the information generated to help us make
decisions. We will also look at an approach to stress test our GeoServer instances
to understand whether they are performing well.

By the end of this chapter, we will have covered the following topics:

• Understanding the importance of monitoring the health and performance of
GeoServer

• Installing and configuring the Monitor extension
• Using JMeter to stress test GeoServer
• Understanding information to help make decisions

The importance of monitoring GeoServer
As with all business systems, it is important to monitor the health and performance
of GeoServer. There are many reasons why we should do this, but for the key ones,
we need to:

• Understand the amount of sustained load our server can handle
• Benchmark performance to monitor our server

Monitoring the Performance and Health of GeoServer

[330]

• Understand what factors cause our server(s) to crash
• Know when our server is in danger of being overloaded
• Know when our server has been overloaded

There are numerous tools available that allow us to examine various web logfiles
and gather statistics on how our server performs generally, but in a spatial context,
we also need to gain some understanding of how well our server delivers map
data. There are a number of online services that we can register our GeoServer with
to perform this kind of monitoring. Services such as MapMeter from Boundless
(http://boundlessgeo.com/solutions/mapmeter/http://boundlessgeo.com/
solutions/mapmeter/) provide commercial monitoring solutions.

However, there are some open source tools that we can use to test and monitor the
health of our GeoServer instances. The monitor extension for GeoServer allows us
to track requests against GeoServer and store the results in a database where we
can analyze them further. We can also use a test tool such as Apache JMeter™ to
simulate different loads on our servers.

The GeoServer monitor extension
Installing the monitor extension is as straightforward as all the other GeoServer
extensions. However, we have a choice to make about how we want to utilize the
extension in production. The choice is in relation to how the data collected by the
monitor extension is stored. There are two options:

Option Description
Memory
(default choice)

Monitor data is persisted in memory, only for the last 100 requests

Hibernate All the request data is persisted to a database store using Hibernate

The monitor extension configuration controls the storage mechanism; however, we
need to consider the options now as it will determine how we install and configure
the extension. The choice is a trade-off between having a complete history of the
requests made against our GeoServer, but at the expense of storage requirements,
versus having a limited history of requests, but without any storage requirement.
If we expect our server to get very high volumes of traffic, then we might not want
to persist the request information to storage as it will likely fill up very quickly. In a
high-transaction environment, we might not be too concerned about historic requests
as we will be more interested in how the server performs in real time.

Chapter 11

[331]

If we want to track the usage of our server over time, then there is no escaping the
need to persist the request data to a database. For the purposes of this chapter, we
will store the request data in a database and use the hibernate option.

Installing the monitor extension
As we will use the hibernate option for storage, there are two files that we need
to grab to install the monitor extension. The first is the core extension modules for
monitor, which provides all the capabilities to log request data. The second is the
Hibernate extension, which provides the storage mechanisms using the Hibernate
ORM library for Java. To this end, we must download the two files and save them
to a location on our server.

As with all other extensions, it is important to download the version of the extension
matching the version of GeoServer that you installed. We have been using the stable
version of GeoServer, which at the time of writing is Version 2.5.2. To download the
monitor extension, go to the GeoServer download page for stable at http://www.
geoserver.org/release/stable.

Monitoring the Performance and Health of GeoServer

[332]

Under the Extensions section, there is a subgroup named Miscellaneous. Within
this group, look for the Monitor (Core, Hibernate) entry. Click on the Core link to
download the Monitor extension, and click on the Hibernate link to download the
Hibernate libraries.

With both the modules downloaded, the method of installation is the same for both.
We need to open a command line and enter the following two commands:

$ unzip geoserver-2.5.2-monitor-plugin.zip *.jar –d <tomcat-home>/
webapps/geoserver/WEB-INF/lib

$ unzip geoserver-2.5.2-monitor-hibernate-plugin.zip *.jar –d <tomcat-
home>/webapps/geoserver/WEB-INF/lib

These commands will copy all the extension files into our deployed GeoServer
directory. We need to repeat the unzip commands for all of our instances of
GeoServer, and then restart them all to activate the extension. If the extension installs
correctly, then we will see a directory called monitoring inside our GeoServer data
directory. This directory contains the configuration files for the monitor extension.

Configuring the monitor extension
Inside the monitoring directory, there will be a number of configuration files that
we can edit to set the behavior of the monitor extension to our liking. The following
table shows the files and their purposes:

Configuration file Purpose
db.properties This provides the database connection settings,

if using Hibernate
filter.properties This provides the filter patterns the extension will

use to select requests, but not to monitor
hibernate.properties This provides the settings to control the behavior

of Hibernate
monitor.properties This provides the settings to control the behavior

of the extension itself

The GeoServer documentation provides very good coverage of the configuration
options, so we won't cover them all here. We'll head on over to http://docs.
geoserver.org/stable/en/user/extensions/monitoring/index.html for more
details. The default configuration files provide a configuration that is good for the
vast majority of uses. Therefore, we shall only discuss some of the configuration
settings to change how the extension behaves.

Chapter 11

[333]

The db.properties file
The db.properties file contains the settings to use for database connections.
Since we use the hibernate method of storage, we will need to make sure that the
configuration settings inside this file are right for our needs. The first choice we need
to make is the database that we will use to store the request data. By default, the
monitor extension will use a Java H2 database. Hence, it will create some *.db files
inside the monitoring directory. For our purposes, we will use a PostgreSQL database
to store the request data. We need to change the settings in the file accordingly:

Driver=org.postgresql.Driver
url=jdbc:postgresql://<server-name>:<port>/<db-name>
username=<username>
password=<password>
defaultAutoCommit=<true|false>

Most of these settings are self-explanatory as they are standard database connection
settings. The key thing to notice is that the database connection is constructed using
a JDBC connection string; we just need to replace the <server-name>, <port>, and
<db-name> elements with our own values.

The filter.properties file
The filter.properties file instructs the monitor extension, which requests not to
track. By default, it is configured to filter out all the requests to the web administration
interface and monitor request API. The settings that control this are:

/web/**
/rest/monitor/**

Each line of the file should contain a pattern for a URL to be excluded from
monitoring. The pattern should be everything in a standard request URL after /
geoserver, and up to the ? separator for the start of query parameters. As it is a
pattern, it is not necessary to write the entire request URL; for example, the /web/**
pattern will filter out any requests with web. In other words, it will filter out all the
web administration interface requests. So, if we do not want the monitor extension
to log any requests to our WFS service, then we should add a new line to the file and
put the value /wfs.

Monitoring the Performance and Health of GeoServer

[334]

The hibernate.properties file
The hibernate.properties file contains the settings for the Hibernate module, and
generally speaking, these settings should not really be changed. The default settings
are good enough for all users and should only be changed if we have sufficient
knowledge of the Hibernate library. However, we do need to change one setting in
this file to make sure that the request data is persisted to our PostgreSQL database.
The following two lines are required in the file:

databasePlatform=org.hibernate.dialect.PostgreSQLDialect
database=POSTGRESQL

These two settings instruct the Hibernate library to use the PostgreSQL dialect in its
database storage calls.

The monitor.properties file
The monitor.properties file contains the properties necessary for the core monitor
extension to function. Most of the settings in this file can be left alone, but some
should be tweaked. First up, we need to make sure that the storage mode is set
to Hibernate:

storage=hibernate

If we use the memory approach, then we set the value to memory. The next setting of
interest is the one that controls the mode in which the monitor extension operates.
The default configuration is:

mode=history

The monitor extension can operate in two modes, with the choice determining when
the extension persists data to the configured storage. One option is live, and the
other is history. In the history mode (the default), the monitor extension persists
the information about requests once the processing is complete and the request is
fully satisfied. This mode is ideal when real-time information about requests is not
necessary. It is worth noting that in this mode, the database is not stressed as much
as in the live mode as fewer operations are performed. The live mode persists
information about requests as they happen, which means that it is possible to get
a real-time view on what the server does. The trade-off is that this mode will place
additional strain on the database as it will perform more operations than in the
history mode.

Chapter 11

[335]

Another setting that we might need to consider changing is maxBodySize. This
determines how much of the request body (in cases of POST requests) is stored.
Setting this value too high will cause the storage to fill up quickly, so it is a trade-off
between wanting to know details of the request made against how much space is
available to store it. It can be useful to unbound this setting (use the value -1) when
debugging issues with specific requests, but it is highly recommended to set this back
to a limit afterwards. It is possible to disable logging of the request body entirely by
setting the value to 0. The value should be the number of characters to capture from
the request body; for example, a value of 1024 will capture 1,024 characters.

It is important to make sure that the database body field has the same size
as bodySize to ensure the data is stored correctly. This is only necessary
when using database persistence.

Checking whether the monitor extension is
installed correctly
Once we have the configuration for monitor to our liking, we can go ahead and
restart our instances of GeoServer. Once GeoServer restarts, we can check whether
everything has been installed and configured correctly by logging in to the web
administration console. If everything works as expected, then the left-hand side
panel will contain a new section called Monitor:

Within the Monitor section, we should see two options: Activity and Reports.

Monitoring the Performance and Health of GeoServer

[336]

Viewing the monitor extension activity
and reports
The monitor extension provides two different views on the request data that it
gathers. The first is the Activity view that provides a chart of the requests that have
been made over a user-defined period. Clicking on the Activity link will open the
Activity page, as shown here:

The tabs across the top of the page allow us to look at different aggregates of data.
For example, we can use the Monthly view to see requests over a period of several
months. In the preceding example, we can see that between May 1, 2014 and October
23, 2014, there were three spikes of activity. The biggest spike was in June with peak
requests of 9,500.

Chapter 11

[337]

The second view that is available is Reports. Clicking on the Reports link will open
the Reports page where a number of generated charts can be viewed:

The OWS Request Summary report provides a summary of all the requests made
against one of the standard OGC services, such as WFS, WMS, and WCS. The
Overview tab shows the breakdown of requests across the different services. This
information is static, but it provides a good overview of the spread of requests across
the different OGC services.

Going further with the request data
As useful as the Activity and Reports views are, they do not tell us the whole story
of what goes on with our server. The monitor extension captures a lot of information
about each request made to GeoServer. If we use the Hibernate component to store
the request data in a database (in our case, we use PostgreSQL), then we can also use
standard database and analytics tools to gather more information.

Monitoring the Performance and Health of GeoServer

[338]

For example, we can use the information captured about requests to find the 10 most
popular layers. The following SQL for PostgreSQL will give us the answer:

SELECT
a.name,

 COUNT(*) AS requests
FROM
 request_resources a,
 request b
WHERE

a.request_id = b.id
 AND

b.service = 'WMS'
 AND

b.operation = 'GetMap'
GROUP BY a.name
ORDER BY requests DESC
LIMIT 10;

This SELECT statement joins the request table with the request_resources table
using the id key, and then groups on name and provides count. The ORDER BY
a.name DESC statement puts them into descending order and LIMIT 10 returns
us the 10 highest counts.

Another possibility, and arguably more interesting, is the ability to put the extents
of each map request onto a map! To do this, we can make use of the SQL View
functionality that we discovered in Chapter 3, Working with Vector Data in Spatial
Databases. We can use PostGIS' geometry constructors to turn the bounding box
information captured with each request into a geometry that we can show on the
map. The following SQL will generate the geometry for each request:

SELECT
 *,
 ST_SetSRID(ST_MakeBox2D(ST_MakePoint(minx, miny), ST_MakePoint(maxx,
maxy))::geometry, trim(leading 'EPSG:' from crs)::integer)
FROM
 request
WHERE
 service = 'WMS' AND operation = 'GetMap'

Chapter 11

[339]

This SELECT statement uses the ST_SetSRID, ST_MakeBox2D, and ST_MakePoint
functions to generate polygons representing the bounds of each GetMap request on
the WMS service. We can use this SELECT statement in Edit SQL View, as shown in
the following screenshot:

This will create a layer showing us where the requests for our data are being made;
we might be able to discern spatial patterns about map requests. When we start to
get at the raw monitoring data, we can really learn a lot about the performance of
our server as well as the usage pattern over time.

Stress testing GeoServer
With the monitoring extension installed, we now need to consider how we can go
about testing the performance of our GeoServer, and then use the logs to analyze the
results. To test the performance of our GeoServer instances, we will need a tool that
will allow us to send multiple requests to map images and data in different locations
and resolutions. We also need to be able to change the flow of requests and simulate
multiple concurrent requests.

The web is full of tools that will allow us to simulate different mixes of requests to
our servers to test their performance. When it comes to testing the performance of
our GeoServer instance, the tool we choose to use is less important than the mix of
requests that we decide to send to it. For the purposes of this chapter, we will use
the Apache JMeter™ desktop application to simulate a heavy load on our servers.

Monitoring the Performance and Health of GeoServer

[340]

The Apache JMeter™ software is very capable and has a much
broader scope for use than the example that we will use in this book.
To learn more about Apache JMeter™, it is highly recommended
that you read the documentation at http://jmeter.apache.
org/usermanual/index.html.

To successfully stress test our GeoServer instances, we will have to complete a few
configuration tasks first:

1. Generate test WMS bounding box requests.
2. Prepare an Apache JMeter™ workbench.
3. Execute the test.

Generating test WMS bounding boxes
Before we can begin to stress test our GeoServer instances, we need to come up
with some WMS request parameters that we can use. If we can make the requests
random within a given set of bounds, then so much the better. Fortunately for us,
such a script exists in the world of Python. Frank Warmerdam created a Python
script that will randomly generate WMS request parameters for random locations
within a specified bounding box and at a range of zoom levels. The script itself can
be downloaded from http://svn.osgeo.org/osgeo/foss4g/benchmarking/
wms/2010/scripts/wms_request.py. The script accepts a number of parameters
to generate the random bounding boxes:

$ python wms_request.py [–count n] [-region minx miny maxx maxy] [-minres
minres] [-maxres maxres] [-maxsize width height] [-minsize width height]
[-srs <epsg_code>] [-srs2 <epsg_code>]

The command-line options that can be specified are:

Option Purpose
count This option specifies the number of requests to randomly generate
region This option specifies the bounding box of the region to randomly

generate requests in
minres This option specifies the minimum resolution to use for requests
maxres This option specifies the maximum resolution to use for requests
maxsize This option specifies the maximum size for a request, expressed as

width and height in pixels

http://jmeter.apache.org/usermanual/index.html
http://jmeter.apache.org/usermanual/index.html

Chapter 11

[341]

Option Purpose
minsize This option specifies the minimum size for a request, expressed as

width and height in pixels
srs This option specifies the source coordinate reference system EPSG

code (optional)
srs2 This option specifies the output coordinate reference system EPSG

code to transform requests to (optional)
filter_within This option specifies the name of the file containing geometries to

filter out randomly generated requests

We will generate 100 random WMS requests to give ourselves a good spread of
requests. Perform the following steps:

1. Make sure that Python is installed before running this command.
2. Execute the following from a command-line shell:

$ python wms_request.py -count 100 -region 0 0 700000 1300000
-minsize 400 400 -maxsize 800 800 -minres 1 -maxres 15 –srs 27700

3. This command will generate 100 WMS requests in CSV format inside the
bounds of the British National Grid. Here are five examples generated from
the command:
493;595;126140.02,1241506.4,130761.48,1247084.1
678;495;400974.82,1089828.8,403242.09,1091484.1
582;543;633121.29,750590.72,638605.35,755707.28
652;400;17348.862,386404.58,23686.324,390292.59
416;481;471897.49,430970.91,472413.77,431567.85

4. The command will generate the CSV file using the value of srs as the
filename, so in our case, this will be 27700.csv. The file is stored in
the same location as the command was run.

5. Before we can use this inside Apache JMeter™, we will have to tweak it a
little bit. Notice how the first component of CSV contains a string similar to:
493;595;126140.02

6. The first two components are the width and height for the WMS image
request. We need to turn these into CSV components by replacing ; with ,.

7. Load the CSV file into your favorite text editor and do a find and replace.
8. Save the file.

Monitoring the Performance and Health of GeoServer

[342]

Creating an Apache JMeter™ test workbench
Before we can get into the nitty-gritty of creating a test workbench for Apache
JMeter™, we must download and install it. Apache JMeter™ is a 100 percent Java
application, which means that it will run on any platform provided there is a Java
6 or higher runtime environment present. The binaries can be downloaded from
http://jmeter.apache.org/download_jmeter.cgi, and at the time of writing,
the latest version is 2.11. No installation is required; just download the ZIP file
and decompress it to a location you can access from a command-line prompt or
shell environment.

To launch JMeter on Linux, simply open shell and enter the following command:

$ cd <path_to_jmeter>/bin

$./jmeter

To launch JMeter on Windows, simply open a command prompt and enter the
following command:

C:> cd <path_to_jmeter>\bin

C:> jmeter

After a short time, JMeter GUI should appear, where we can construct our test plan.

For ease and convenience, consider setting your system's PATH
environment variable to the location of the JMeter bin directory.
In future, you will be able to launch JMeter from the command
line without having to CD first.

The JMeter workbench will open with an empty configuration ready for us to
construct our test strategy:

Chapter 11

[343]

The first thing we need to do is give our test plan a name; for now, let's call it
GeoServer Stress Test. We can also provide some comments, which is good
practice as it will help us remember for what reason we devised the test plan in future.

Monitoring the Performance and Health of GeoServer

[344]

To demonstrate the use of JMeter, we will create a very simple test plan. In this test
plan, we will simulate a certain number of users hitting our GeoServer concurrently
and requesting maps. To set this up, we first need to add Thread Group to our test
plan. In a JMeter test, a thread is equivalent to a user:

In the left-hand side menu, we need to right-click on the GeoServer Stress Test
node and choose the Add | Threads (Users) | Thread Group menu option. This
will add a child node to the test plan that we right-clicked on. The right-hand side
panel provides options that we can set for the thread group to control how the user
requests are executed. For example, we can name it something meaningful, such as
Web Map Requests.

Chapter 11

[345]

In this test, we will simulate 30 users, making map requests over a total duration
of 10 minutes, with a 10-second delay between each user starting. The number of
users is set by entering a value for Number of Threads; in this case, 30. The Ramp-
Up Period option controls the delay in starting each user by specifying the duration
in which all the threads must start. So, in our case, we enter a duration of 300
seconds, which means all 30 users will be started by the end of 300 seconds. This
equates to a 10-second delay between starting threads (300 / 30 = 10). Finally, we
will set a duration for the test to run over by ticking the box for Scheduler, and then
specifying a value of 600 seconds for Duration. By specifying a duration value, we
override the End Time setting.

Monitoring the Performance and Health of GeoServer

[346]

Next, we need to provide some basic configuration elements for our test. First, we
need to set the default parameters for all web requests.

Right-click on the Web Map Requests thread group node that we just created, and
then navigate to Add | Config Element | User Defined Variables. This will add a
new node in which we can specify the default HTTP request parameters for our test:

Chapter 11

[347]

In the right-hand side panel, we can specify any number of variables. We can use
these as replacement tokens later when we configure the web requests that will
be sent during our test run. In this panel, we specify all the standard WMS query
parameters that we don't anticipate changing across requests. Taking this approach
is a good practice as it means that we can create a mix of tests using the same values,
so if we change one, we don't have to change all the different test elements.

To execute requests, we need to add Logic Controller. JMeter contains a lot of
different logic controllers, but in this instance, we will use Simple Controller to
execute a request. To add the controller, right-click on the Web Map Requests node
and navigate to Add | Logic Controller | Simple Controller. A simple controller
does not require any configuration; it is merely a container for activities we want
to execute. In our case, we want the controller to read some data from our CSV
file, and then execute an HTTP request to WMS. To do this, we need to add a CSV
dataset configuration. Right-click on the Simple Controller node and navigate to
Add | Config Element | CSV Data Set Config.

The settings for the CSV data are pretty straightforward. The filename is set to the
file that we generated previously, containing the random WMS request properties.
The path can be specified as relative or absolute. The Variable Names property
is where we specify the structure of the CSV file. The Recycle on EOF option is
important as it means that the CSV file will be re-read when the end of the file is
reached. Finally, we need to set Sharing mode to All threads to ensure the data
can be used across threads.

Monitoring the Performance and Health of GeoServer

[348]

Next, we need to add a delay to our requests to simulate user activity; in this case,
we will introduce a small delay of five seconds to simulate a user performing a map-
pan operation. Right-click on the Simple Controller node, and then navigate
to Add | Timer | Constant Timer:

Simply specify the value we want the thread to be paused for in milliseconds.
Finally, we need to add a JMeter sampler, which is the unit that will actually perform
the HTTP request. Right-click on the Simple Controller node and navigate to Add |
Sampler | HTTP Request. This will add an HTTP Request sampler to the test plan:

Chapter 11

[349]

There is a lot of information that goes into this panel; however, all it does is construct
an HTTP request that the thread will execute. We specify the server name or IP address
along with the HTTP method to use. The important part of this panel is the Parameters
tab, which is where we need to specify all the WMS request parameters. Notice that
we used the tokens that we specified in the CSV Data Set Config and WMS Request
Defaults configuration components. We use the ${token_name} token, and JMeter
replaces the token with the appropriate value of the referenced variable.

We configured our test plan, but before we execute it, we need to add some listeners to
the plan. A JMeter listener is the component that will gather the information from all
the test runs that occur. We add listeners by right-clicking on the thread group node
and then navigating to the Add | Listeners menu option. A list of available listeners
is displayed, and we can select the one we want to add. For our purposes, we will add
the Graph Results, Generate Summary Results, Summary Report, and Response
Time Graph listeners. Each listener can have its output saved to a datafile for later
review. When completed, our test plan structure should look like the following:

Before executing the plan, we should save it for use later.

Choosing where to execute tests
Before we go ahead and execute our test plan, we must consider from where we will
run JMeter. Choosing where to run JMeter is important as it will impact how we
interpret the results from the test. Broadly speaking, there are three locations we can
choose to run JMeter:

• On the same server as GeoServer
• On a server on the same network as GeoServer
• On a web-connected desktop/laptop/server outside of the

GeoServer network

Monitoring the Performance and Health of GeoServer

[350]

The first option is useful for when we want to simply test our GeoServer's
performance at rendering map images; in other words, the pure response time from
GeoServer. Without the variability of network contention getting in the way (because
we will call the local host), we will get a good appreciation of the rendering time of
our GeoServer instance.

However, this option is no good if we have GeoServer on a "headless" server that
can't display GUI. It is also worth noting that JMeter will itself consume resources,
memory and CPU in particular, which can affect the validity of results. In this case,
the second option will be the next best thing. By testing on the same network as the
GeoServer instance, we will get a realistic reflection of the map image-rendering time
of GeoServer, with only a minimal amount of overhead from the network contention.

The third option is the one that we will choose if we want to see how well our
GeoServer instance performs in a real-world scenario. By running JMeter from
a web-connected client, we will introduce real-world performance issues such
as Internet congestion. The results should give us a realistic view of the sort of
performance our users can expect to see.

Executing the test profile
Executing the test plan is very straightforward. We just need to hit the big green
arrow button on the toolbar. Once we do this, the test will begin its execution,
and we can examine the listeners as the test is in progress to see what happens
in real time:

Chapter 11

[351]

In this case, we can see the Graph Results listener plotting the results of the test as
it runs. Notice that we didn't yet reach our maximum number of users running on
the server. The number on the far right of the toolbar shows us how many threads of
the total are running; in this case, there are only 21 out of the maximum 30 threads
running. As the test progresses, this number will gradually increase at a rate of one
every 10 seconds, as we specified in our Ramp Up property.

We included the Graph Results listener in our test plan to demonstrate
the visualization of requests. However, in practice, when doing a
load test such as this, we will not actually include the Graph Results
listener, as it is resource intensive.

Analyzing the results of the stress test
Once the test run is complete, we will be left with a range of results to examine.
The listeners we add to our test plan will determine the kind of information we
can analyze. The key information for us to analyze from our test run are Summary
Report and Response Time Graph.

As its name suggests, Summary Report provides us with a summary of the
responses received during the test. From it, we can ascertain details such as the
average, minimum, and maximum response times for requests as well as an
indication of the throughput of our server. Throughput is a good indicator of how
well our server will handle the load as it tells us how many requests per second
it can handle:

The summary report gives us a very good baseline measure that we can use to
compare results against. For example, the results from this test were performed
on a newly configured server without any users accessing it. They show that this
particular server can handle a throughput of 8.7 requests per second. We can take
this as a baseline indicator of what we can expect our server to do, and we can then
do regular monitoring and tests to see if the server starts to deviate from this baseline
significantly. If it does, then that will be an indication that there is a potential problem
with the server or its configuration.

Monitoring the Performance and Health of GeoServer

[352]

The Response Time Graph output is also a useful indicator of how well our server
is processing data, and if we deploy JMeter in a web-connected client, then it will be
a good indicator of the real-world response times that we can reasonably expect our
server to deliver.

The graph can be structured over specific intervals to see how response times
vary. If we make the graph match our ramp-up values, we can expect to see spikes
in the response times every 10 seconds as a new user connects to the server. Over
time, we can expect to see the server settle down and start to become a little more
consistent in its response times. In an ideal world, we would like to see a graph
that is relatively flat as that will indicate a server that is optimized well and not
susceptible to spikes in load.

Of course, just as JMeter provided us all the information during the stress test, we
also logged all the requests through the monitor extension. We can now go back
to GeoServer and take a look at the activity and reports, or go direct to the database
and run some queries to see how well GeoServer responded to the requests.

Chapter 11

[353]

Summary
In this chapter, we discussed the reasons why we should monitor the health of our
GeoServer instances. We explored how to install and configure GeoServer's monitor
extension so that GeoServer logs the map requests made to it. We also looked at how
Apache JMeter™ can be used to construct and execute test plans to place loads on
our servers so that we can analyze the results and gain an understanding of how
well our servers perform.

Performance testing is the key to having an optimized, responsive, and healthy
GeoServer implementation. The real art of testing is devising tests in such a way
that they are representative of the real-world scenario in which we think our
server will be used. For example, it is not much use to simply set the test to create
100 concurrent users immediately and start hammering the server. By gradually
introducing the load, and introducing small delays between each request to simulate
user habits, we will get a much better reflection of how our server will perform in
a real-world setting.

The formula is very simple: well-performing GeoServer = happy users!

Now we know how we can run performance tests and monitor the condition of our
GeoServer instance, it is time to look at how we can further optimize it. In the next
chapter, we will look at some different ways to further optimize our instances.

Optimizing GeoServer for
Production

Our journey to getting GeoServer deployed and operating in a production
environment is almost nearing its end. We now know how to do a wide range
of things with our GeoServer instances, so it is time to take a final look at some
strategies for how we can ensure our servers operate efficiently and reliably.

There is no point putting in all the effort to create a GeoServer instance packed with
capabilities and suited to our needs if we do not consider how well it runs, and more
importantly, how robust it is in production. There are numerous things we can do
to ensure our instances are performing well, but in this chapter, we will focus on a
couple of key elements. By the end of this chapter, we will discover how to:

• Deploy GeoServer as part of a cluster
• Optimize GeoServer by tuning the configuration
• Controlling the throughput of requests using the control-flow module
• Recovering from service failures automatically

Deploying GeoServer in a cluster
To get the most benefit from running GeoServer in a production environment,
we should consider running a cluster of GeoServer instances. There are many
reasons why we should do this, but the two key reasons are:

• Performance: We can spend a lot of time and effort optimizing a single
instance of GeoServer to make it perform well, or we can implement several
well-configured instances as a cluster. By increasing the number of instances
available to service requests, we can clearly increase the number of concurrent
requests that we can handle. The important thing, though, is that we spread
the increased load across multiple instances rather than a single instance.

Optimizing GeoServer for Production

[356]

• High availability: The last thing we want happening, when running in
a production environment, is for our server to fail and stop servicing
requests. If we have a single instance of GeoServer, then we have a single
point of failure within our environment. However, if we have a cluster of
instances running, then we can lose a server without impacting our ability to
respond to services. This is an important consideration when we design our
architecture; we must ask ourselves: "What is the impact on our customers if
a server fails?"

So, implementing a cluster of GeoServer appears to make sense, especially if we
consider that it costs us nothing in software licensing. There are a number of
different strategies for how we can implement a cluster, and we covered a number
of these at the end of Chapter 1, Installing GeoServer for Production. However, they are
all variations of essentially the same architectural design. Let's consider the logical
architecture for a moment:

GeoServer

(Instance 2)

GeoServer

(Instance 1)

GeoServer

(Instance n)

Load Balancer

Shared Data Directory

There are, in essence, three core components to any cluster configuration of
GeoServer: a load balancer to distribute requests across the instances of GeoServer
in the cluster, the GeoServer instances, and a shared data directory. The last
component is the most important; without it, managing the cluster will have a
significant manual overhead. However, even with a shared data directory, careful
management is required to ensure there are no conflicts across the instances in
the cluster. The main concern with running GeoServer in a cluster is keeping the
individual instances synchronized with changes. To understand why this is a
concern, we must first consider the role that the data directory plays.

Chapter 12

[357]

In normal configurations, GeoServer reads and writes configuration information to
and from the data directory. However, the directory is primarily there for persistence
of the configuration across server restarts. In a normal operation, most of the
configuration is held in memory, where it can be accessed quickly. This means that
every time we make a configuration change, such as adding a new datastore or layer,
GeoServer persists the configuration to storage and updates the in-memory catalog.
If we have a second instance of GeoServer running, it will not be aware that there
has been a configuration change triggered on the first. The second instance has its
catalog loaded in memory, and it will never go back to the data directory to refresh
the catalog unless it is instructed to do so.

Due to this concern, when we run a cluster, we must also consider our strategy
to keep all instances in sync. Fortunately, GeoServer provides the ability to
trigger a reload of the catalog either through the REST service or through the
web administration console.

Optimizing GeoServer for Production

[358]

To access the reload function, we need to click on the Reload button that is accessible
by clicking on the Server Status link from the left-hand side menu of the web
administration console.

REST API provides a reload method that we can call from other
applications or through management scripts. More details can be
found at http://docs.geoserver.org/stable/en/user/
rest/api/reload.html.

The key is to nominate one of our instances as the master, leaving the others as slaves.
To minimize the chances of configuration changes being made on any of the slaves,
we can disable the web administration portal. There are two methods to do this:

• Add a Java system property and set it to true: DGEOSERVER_CONSOLE_
DISABLED=true to the JVM options

• Remove all the JAR files with the prefix web from the WEB-INF/lib directory

So, every time we make a change to the configuration of the master, we must
remember to issue the REST command to all the slaves so that they can reload
their catalog. For environments where we do not expect much change, or where
the change is predictable, such as in monthly data refresh operations, this might
not be a big issue. However, if our environment is much more dynamic where
the configuration is prone to frequent and sporadic changes, a different approach
is required. Luckily for us, this issue has already been tackled, and GeoSolutions
provides us with an answer in the form of its GeoServer Active Cluster extension.
This extension will actively monitor a cluster of GeoServer instances looking for
changes; when there is a change to one instance's configuration, the same change
is broadcast to all other instances in the cluster. The clever thing here is that the
master persisted the change to the data directory and refreshed its in-memory
catalog as normal, but the slaves did not reload the whole catalog; instead, they
simply updated the in-memory element. Now, we only need to worry about making
changes to one instance of GeoServer, safe in the knowledge that the extension will
take care of the rest. Full details on the extension and how to set it up are available
on the GeoSolutions blog at http://www.geo-solutions.it/blog/advanced-
clustering-geoserver/http://www.geo-solutions.it/blog/advanced-
clustering-geoserver/.

At the time of writing, the GeoServer Active Cluster extension has
only just been announced, and as such, it has not been fully tested in
production environments. We can support the effort by downloading
the extension, using it, and then reporting back any issues. Better yet,
if we have Java skills, we can even contribute fixes.

http://docs.geoserver.org/stable/en/user/rest/api/reload.html
http://docs.geoserver.org/stable/en/user/rest/api/reload.html
http://www.geo-solutions.it/blog/advanced-clustering-geoserver/http://www.geo-solutions.it/blog/advanced-clustering-geoserver/
http://www.geo-solutions.it/blog/advanced-clustering-geoserver/http://www.geo-solutions.it/blog/advanced-clustering-geoserver/
http://www.geo-solutions.it/blog/advanced-clustering-geoserver/http://www.geo-solutions.it/blog/advanced-clustering-geoserver/

Chapter 12

[359]

Sharing a data directory in Windows 2008 R2
The key to running a cluster of GeoServer instances is to have the data directory
in a location that can be shared with the other servers in the cluster. Typically,
on Windows, this means creating a shared directory on a server accessible by
all others, and then using a UNC path (http://en.wikipedia.org/wiki/
Path_%28computing%29#UNC_in_Windows) to access the share from other servers.

The process is straightforward and might be familiar to most Windows users.
However, there is a catch that we must be aware of before we can successfully share
the directory across the servers, and this is security. By default, the installer for
Apache Tomcat will install the service using the Local System account. In most cases,
this is fine; however, Local System Account is not able to access network shares due
to its restrictions. Therefore, to access a shared data directory residing on another
server, we must change the account that the Tomcat service runs under.

To accomplish this task, we can simply create a domain account in Active Directory,
perhaps called SVC_Tomcat, and then use it across all the servers. However, some
domain administrators might not allow domain accounts to be created and used as
service accounts. In this case, we will need to implement the same approach using
local accounts on the servers; provided we use the same name and password across
all the servers, we can accomplish the same objective. Perform the following steps to
create a local user account:

1. Launch the Computer Management tool:

http://en.wikipedia.org/wiki/Path_%28computing%29#UNC_in_Windows
http://en.wikipedia.org/wiki/Path_%28computing%29#UNC_in_Windows

Optimizing GeoServer for Production

[360]

2. Go to Start | Administrative Tools | Computer Management to open the
Computer Management dialog.

3. Expand the Local Users and Groups leaf under the System Tools parent:

4. Right-click on the Users folder, and then select the New User… option from
the context menu.

5. This will open the New User dialog from where we can create a new local
user that will be used to run the Tomcat service:

Chapter 12

[361]

6. We need to give our local user a name, specify the full name, and provide
 a description so we know what we created the user for. In this example,
we will use the name tomcat7, but we might consider giving it a prefix
of svc_ so that we can distinguish it as an account to be used for services.
For now, though, we will just go with the name tomcat7.

7. We need to specify a password for the user, and the important thing is to
tick the Password never expires box. If we don't tick this box, then we'll find
that our local user password will expire, and consequently, the service will
stop responding. Click on the Create button to create the user, and then close
the dialog.

It is important to remember the username and password we create
as we need to repeat these steps on all of our GeoServer instances.

8. With our user created, we can now assign it as the service account for the
Tomcat Windows service. To do this, we need to open the Services dialog
from Start | Administrative Tools | Services:

Optimizing GeoServer for Production

[362]

9. Notice that we have two Tomcat services running after the work we did in
Chapter 1, Installing GeoServer for Production. We need to remember to conduct
the same process for both the services.

10. Right-click on the first service, and then select Properties from the context
menu. This will open the service properties dialog box:

11. Click on the tab named Log On.
12. From here, we can specify what account we want to use to run the service

under. By default, this will be Local System account, following a standard
Apache Tomcat installation. To specify the account we want to run the
service as, we can either find one using the Browse button, or if we know
the name, we can simply type it into the box.

13. We know the name of the account because we just created it, so let's click
on the This account radio button to enable the textboxes.

14. Type .\tomcat7 into the first box to identify the account that we just
created. The .\ in front of the username indicates that it is a local account.
If we use a domain account, then we will enter a value such as domain-name\
user-name.

Chapter 12

[363]

15. Click on the OK button to accept the changes. It is likely that the following
message will appear. This is fine, it is just information, so click on OK to
close the message:

With the service changed so that it will now run under the local account, tomcat7,
all we need to do is restart the service. We also need to perform the same operation
on any other service we have running.

Finally, we need to set sharing on the data directory being used across all the
instances in the cluster. To do this, we need to make sure that we also have a local
tomcat7 user created on the server where the data directory resides. Perform the
following steps:

1. Right-click on the GeoServer data directory inside Windows Explorer,
and select the Properties context-menu option:

Optimizing GeoServer for Production

[364]

2. Select the Sharing tab, and then click on the Share button.
3. In the dialog that appears, accept the default properties and click on OK.

Our data directory is now shared and will be available for us to connect with any
other server. However, when our Tomcat services attempt to write to the directory,
an exception will be raised. This is because the directory will have the default
security settings applied to it, preventing nonowner users from writing to it. In the
same dialog, we need to click on the Security tab. Perform the following steps:

1. In the Security tab, add the local users group to the directory and ensure
they have full control over the directory. We need to click on the Edit button:

2. Click on the Add button, and then enter the value as Users into the textbox.
3. Click on Check Names, and then click on OK when the name is resolved.
4. The local Users group will be added into the Group or user names box;

select the newly added Users item.
5. In the Permissions for Users list, we need to make sure that the box under

Allow is ticked for the Full control option.

Chapter 12

[365]

6. Click on OK to accept the changes and dismiss the dialog:

We have now set security on the data directory so that any user belonging to the
local Users group will have full control (read and write) on the directory. We use
a local account called tomcat7 belonging to the Users group to run our Tomcat
services. This means that any operation requiring the write access to the directory
will be allowed, even though the action will be performed on another server. In other
words, configuration changes made through the GeoServer web administration
console will be written to the shared data directory without any issues.

Once again, this is a very important action to perform in production
when you are running Tomcat as a Windows Service and using a
shared data directory on another server. Without performing these
steps, the Tomcat service will not be able to write configuration
changes to the shared data directory.

Optimizing GeoServer for Production

[366]

Optimizing GeoServer
Ensuring your GeoServer instances operate at optimal performance is an important
task. There are a number of different strategies used to optimize GeoServer and
many different ways of doing it. There is a lot of information available online to
optimize GeoServer, both in the documentation and through
the community.

The GeoServer documentation contains some very useful information about running
GeoServer in a production environment. There is also a white paper available online
from Boundless that contains a wealth of information and advice. Rather than
replicating all of this information, we will consider the key aspects; after all, the
documents can be studied later for the finer details.

The Boundless white paper, GeoServer in Production, is available
online at http://boundlessgeo.com/whitepaper/
geoserver-production-2/ and is a very good document to
learn about how to optimize GeoServer in production.

Native JAI and JAI image I/O extensions
GeoServer's rendering capabilities for coverages and WMS is provided by the Java
Advanced Imaging (JAI) API. There is a pure Java version of the API, which is what
GeoServer comes with as standard; utilizing pure Java implementations is how
GeoServer is able to retain cross-platform compatibility. However, there are native
versions of JAI available for Windows and Linux, which have been compiled and
optimized specifically for these platforms.

We should give serious consideration for the installation of the native JAI libraries
for the platform we run GeoServer on. Tests have shown that a significant increase
in rendering performance can be achieved. To install the native libraries for our
platform, we just need to follow the instructions at http://docs.geoserver.org/
stable/en/user/production/java.html#install-native-jai-and-jai-image-
i-o-extensions.

If we deploy to a Windows environment, then the native JAI libraries
are only available for 32-bit platforms. If you run a 64-bit Windows OS,
then make sure you install 32-bit Java; otherwise, you will not be able to
use the native JAI.

http://boundlessgeo.com/whitepaper/geoserver-production-2/
http://boundlessgeo.com/whitepaper/geoserver-production-2/
http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-jai-image-i-o-extensions
http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-jai-image-i-o-extensions
http://docs.geoserver.org/stable/en/user/production/java.html#install-native-jai-and-jai-image-i-o-extensions

Chapter 12

[367]

Optimizing Java Virtual Machine
Java Virtual Machine (JVM) is where the GeoServer code is run. JVM is
the technology that enables Java software to be cross-platform compatible.
Each platform that Java has been released for has its own implementation of
JVM that converts the compiled Java bytecode into platform-specific instructions.
There are numerous settings that control the way in which JVM is executed;
we have already seen how we can configure the memory settings for JVM in
Chapter 1, Installing GeoServer for Production.

Now, we will take a look at some additional settings that we can apply to JVM to
optimize it:

Setting Description
-server This setting enables the server version of JVM that compiles

the bytecode faster and with more optimizations.
-XX:SoftRefLRUPolicy
MSPerMB=3600

This setting controls the lifetime of references in GeoServer,
such as references to datastores. Making them live longer
improves performance.

-XX:+UseParallelGC This setting enables multithreaded garbage collection when
more than one core is present.

-XX:NewRatio=2 This setting allows JVM to handle a larger number of short-
lived objects.

Setting these options for JVM is platform-specific. On Linux, we can set them
with the JAVA_OPTS environment variable, which we created in our service script.
To edit these scripts, use the following command:

$ vi /etc/init.d/tomcat-1

Look for the line beginning with JAVA_OPTS=, and then add the preceding settings
to the line.

Optimizing GeoServer for Production

[368]

On Windows, we can set the parameters inside the properties dialog for the
Windows service for Tomcat:

1. Right-click on the service name inside the Services dialog, and then click
on Properties.

2. Click on the Java tab, and then enter the settings into the Java Options box,
one setting per line:

3. Once the settings have been entered, click on Apply, go back to the General
tab, and use the service control buttons to restart the service. Once the service
restarts, the new values will take effect.

4. Click on OK to accept and close all the changes.

Chapter 12

[369]

Disabling unused GeoServer services
Each service that GeoServer exposes (WMS, WFS, WCS, and others) consumes
resources on the server, primarily memory. Disabling services that we don't intend to
use in our implementation is a quick way to reduce the resource requirements, and
therefore make them more available for the services that we want to make use of.
The services that we want disabled will be dictated by the intended use of our server.
For example, if we simply want to serve raster maps for a web-mapping application,
we only need to have WMS and read-only WFS services enabled (we need WFS
because it can be used to provide vectors for map rendering). Similarly, if we only
use the server for feature serving, then we might only enable WFS and WFS-T, and
disable everything else.

To disable a service, for example the WCS service, we need to do it from the Service
Metadata settings. Click on the name of the service from the left-hand side panel of
the web administration console:

On the service settings page, we need to find the section called Service Metadata:

Notice that there are two options available; the one that we are interested in is called
Enable WCS and will be ticked by default. We just need to uncheck the box, and
then click on the Save button.

The WCS service will now be disabled.

Optimizing GeoServer for Production

[370]

Managing request handling with the
control-flow extension
By using GeoServer as our web mapping server, we benefit from the many years of
experience the community has gained. A lot of this experience has been translated
into very useful modules and extensions that are designed to make GeoServer run
faster, better, and more reliably. The control-flow module is one such extension.
It has been written with the sole purpose of allowing an administrator to control
how many requests can run concurrently inside the server.

Controlling the number of concurrent requests executing inside the server
is important for a number of reasons, but primarily it is about ensuring the
server's memory does not become saturated leading to OutOfMemory errors.
There are three main benefits to controlling the number of concurrent requests
executing on the server:

• Performance: The performance of GeoServer can be optimal when the number
of concurrent requests running is no more than double the number of CPU
cores. So, if the server contains eight cores, then we should not allow more
than 16 GetMap requests to run concurrently.

• Memory management: Some requests for data can be very memory intensive,
particularly WMS GetMap requests. Servicing WMS requests places much
higher demands on memory than servicing WFS requests. Typically, in the
case of WFS, the server streams data to respond to requests, but in the case
of WMS, the server has to create the response (the image) in memory before
sending it in the response. Several large or complex WMS GetMap requests
can quickly saturate the server and cause an OutOfMemory exception to occur.

• Resource contention: This is reduced when the number of concurrent requests
a user is allowed to execute can be controlled. Preventing individual users
from flooding the server will allow a fairer distribution of resources across
all users.

It is important to note that the control-flow module does not stop requests from
being executed. When the configured maximums are reached, additional requests
are queued, and then released, by the control-flow module gradually as resources
free up. This is an additional benefit to using the module: it allows for a more
uniform spread of requests executing inside the server.

Chapter 12

[371]

Installing the control flow module
The method to install the print extension is the same as any other extension
in GeoServer.

1. First, we must download the extension from the GeoServer website.
Go to the stable release download page at http://www.geoserver.org/
release/stable and scroll to the bottom.

2. Under the Miscellaneous section, look for the Control Flow link and click to
download the module:

http://www.geoserver.org/release/stable
http://www.geoserver.org/release/stable

Optimizing GeoServer for Production

[372]

3. Open a command line on the directory where you downloaded the file to and
enter the command:
$ unzip geoserver-2.5.2-control-flow-plugin.zip *.jar –d <tomcat_
home>/webapps/geoserver/WEB-INF/lib

4. This command will extract the files with a .jar extension into the lib folder
of your GeoServer instance.

5. Remember to change <tomcat_home> to the folder where your Tomcat
instance is installed.

6. Repeat the process for all of your Tomcat instances, but do not restart them
yet. First, we must configure rules.

The control-flow module rules configuration
The control-flow module works by processing rules in a configuration file called
controlflow.properties. This file should be in the GeoServer data directory; it is
not created by default. Therefore, we will have to create the file in a text editor, and
then save it to our GeoServer data directory.

The rules file is simply a text file, so open your favorite text editor and create a new
file. Before being able to create a set of rules, we need to consider how we want to
manage requests on our server. The way in which we manage requests will vary
across deployments, and will typically depend on the available resources in our
server. For the purposes of this book, we will consider the following as our profile
for request management:

• The server has eight CPU cores
• We do not want an individual user to have more than four concurrent

requests
• We want to blacklist IP addresses to prevent requests
• We want to throttle tile service requests

With this rules configuration, we will ensure we have fair usage for our users as well
as manage the throughput in GeoServer.

In the text editor, enter the following lines:

Set a timeout for requests
timeout=60

Chapter 12

[373]

This line will tell the control-flow module to only allow requests to be queued for
60 seconds. If a request sits in the queue longer than this timeout value, then it will
not be executed. This is a useful setting to set a value for as it will prevent wasted
resources processing a request for which, in all likelihood, the end user has given
up waiting for.

Use # at the start of a line to add a comment. It is important to
comment your rules configuration so that you know why you
configured it the way you have at a later date.

Next, we will add a global service limit. Enter the following into the editor:

Set a global service limit of 100 requests
ows.global=100

This rule means that no more than 100 service requests can run concurrently across
all the service types GeoServer exposes. Next, we will configure some specific service
controls. Enter the following lines:

Don't allow more than 16 WMS GetMap requests (2 x 8 cores)
ows.wms.getmap=16

This will constrain the GetMap WMS requests to only 16 concurrent requests.
Now, we will manage the per-user requests with the next lines:

Limit individual users to 4 concurrent requests
user=4

The combination of these last two rules means that we should allow four different
users to make four concurrent WMS GetMap requests. The GetMap request is throttled
to a maximum of 16 requests, and individual users are restricted to only making four
concurrent requests; therefore, 16 / 4 = 4 individual users make GetMap requests.

We also want to prevent specific IP addresses from making requests to the server.
This can be useful to block servers that create excessive load on our servers, or abuse
our service:

Prevent a list of IP addresses from making requests
Ip.blacklist=192.168.1.50,192.168.1.51

The blacklist is simply a comma-separated list of IP addresses to block. Any request
made from these servers will not be passed through to GeoServer, and instead, the
control-flow module will just reject the requests.

Optimizing GeoServer for Production

[374]

Finally, we will throttle the number of WMS-C, WMTS, and TMS requests that can
be made. These requests are handled by the built-in GeoWebCache service, and so
they can be controlled using the following rule:

Control the number of WMS-C, WMTS, and TMS requests from GWC
ows.gwc=32

Testing by the community suggests that GeoWebCache reaches its peak performance
when handling four times the number of CPU cores in the server. In this case, a
server with eight CPU cores will reach GeoWebCache's peak performance at 32
concurrent requests.

To activate the rules, we just need to save the file with the name controlflow.
properties to the root of the GeoServer data directory. Once the file is saved, we
can restart all of our Tomcat instances to activate the module and enforce the rules.

If at some point we want to disable the rules, then all we need to do is delete the
controlflow.properties file, or comment out all the lines in the file. When the
control-flow module runs, it looks for the rules to enforce; if they don't exist, it will
simply do nothing and allow all requests to execute.

Automatic recovery from service failures
When running GeoServer in a production environment, the last thing we want
to happen is for an instance to fail, and the first time we hear about it is when a
customer complains. In this scenario, what we need is a script that can be executed
on a schedule to check that GeoServer is still up and responding to requests.

These types of scripts are commonly referred to as Watchdog scripts. The principle
behind the script is very simple: it makes a request to the server, and if it receives a
failed response, then it attempts to restart the service.

When running GeoServer in a production environment, we need to create a Watchdog
script that executes on a regular schedule and performs the following checks:

• Checks that the Tomcat service is up:
 ° If not up, it attempts to restart the service
 ° If the service cannot be restarted, an administrator is e-mailed

• If Tomcat is running, then a test request is made to GeoServer:

 ° If a 200 response is not received, the service is restarted
 ° If the service cannot be restarted, an administrator is e-mailed

Chapter 12

[375]

Creating a Windows Watchdog script
Following the logic outlined for the Watchdog script is straightforward in Windows.
To make the Watchdog script work, we will need to ensure we have Wget installed
on our server. Wget for Windows can be downloaded from http://gnuwin32.
sourceforge.net/packages/wget.htm.

The Watchdog script we will use is included with the code files accompanying this
book. The code files are available from the Packt Publishing website.

The first lines of the script are used to set some environment variables for when the
script runs; these make the script more configurable as we simply need to change the
values once if we want to use the script on other servers:

SET WGET={path_to_wget}
SET HTTP_URL=http://localhost:808/geoserver/openlayers/img/west-mini.
png
SET WGET_LOG="WgetLog.txt"
SET TOMCAT_SERVICE={service_name}
SET EMAIL_TO="{email_address}"
SET EMAIL_CC="{email_address}"
SET EMAIL_FROM="{email_address}"
SET EMAIL_NAME="{server_name}"
SET SMTP_SERVER={ip_address}
SET SMTP_PORT=25
SET LOG_FILE=GeoServerWatchdog.log

Each SET command specifies an environment variable for the script's execution.
When we implement the script in our server, we need to change the {path_to_
wget} values at the location where we installed the wget binaries. The value of
{service_name} should be the name of the Tomcat Windows service. The {email_
address} values should be replaced with relevant e-mail addresses appropriate to
our organization, as will the {ip_address} and {server_name} values.

Next, we create an entry into the logfile for the Watchdog script:

REM Log running of the script
ECHO %DATE% %TIME% - Checking status of Tomcat service >> %LOG_FILE%

Then, we get into the core of the script. The script needs to identify whether the
Tomcat Windows service is running and act accordingly. This is done by checking
the status of the Windows Service using the sc query command:

FOR /F "tokens=3 delims=: " %%H IN ('sc query "%TOMCAT_SERVICE%" ^|
findstr " STATE"') DO (

http://gnuwin32.sourceforge.net/packages/wget.htm
http://gnuwin32.sourceforge.net/packages/wget.htm

Optimizing GeoServer for Production

[376]

This FOR statement executes the sc query command on the Tomcat service, and then
examines the response looking for a token with the STATE value in it:

IF /I "%%H" NEQ "RUNNING" (

If the response is not equal to RUNNING, the script assumes that the Tomcat service
has failed:

ECHO %DATE% %TIME% - The Tomcat service is not currently running,
attempting to start it... >> %LOG_FILE%

ECHO. >> %LOG_FILE%

net start %TOMCAT_SERVICE% >> %LOG_FILE%

ECHO. >> %LOG_FILE%

This block will attempt to start the Tomcat Windows service using the NET
START command. The output from the command is written to the logfile to aid in
debugging in the case of a failed restart. To determine whether the services have
restarted, we perform a similar check as before:

FOR /F "tokens=3 delims=: " %%H IN ('sc query "%TOMCAT_SERVICE%" ^|
findstr " STATE"') DO (
 IF /I "%%H" NEQ "RUNNING" (
 ECHO %DATE% %TIME% - The Tomcat service could not be started,
email alert sent >> %LOG_FILE%
 cscript SendEmail.vbs %SMTP_SERVER% %SMTP_PORT% %EMAIL_NAME%
%EMAIL_FROM% %EMAIL_TO% %EMAIL_CC% "GeoServer Instance Failed"
InstanceFailedMessageBody.txt HTML
) ELSE (
 ECHO %DATE% %TIME% - The Tomcat service restarted successfully
>> %LOG_FILE%
 cscript SendEmail.vbs %SMTP_SERVER% %SMTP_PORT% %EMAIL_NAME%
%EMAIL_FROM% %EMAIL_TO% %EMAIL_CC% "GeoServer Instance Restarted"
InstanceRestartedMessageBody.txt HTML
)
)

If the Tomcat service is successfully restarted, a warning e-mail is sent to
the administrator. If the service did not restart, an alert e-mail is sent to the
administrator asking them to attempt a manual restart of the service. The
method to e-mail is a VBScript file included in the code bundle, and the text of
the message bodies are stored in the InstanceRestartedMessageBody.txt and
InstanceFailedMessageBody.txt files.

Chapter 12

[377]

If the initial check of the Tomcat service shows it to be running, then the script needs
to check if GeoServer is servicing requests. Though Tomcat is running fine, it does
not mean that GeoServer is alive and responding:

) ELSE (
 ECHO %DATE% %TIME% - The Tomcat service is running, checking
GeoServer is responding to requests >> %LOG_FILE%

 %WGET% -t 1 --timeout=20 -o %WGET_LOG% -O NUL %HTTP_URL%

 findstr "200 OK" %WGET_LOG%

A wget request is made to a specified URL, and the response is logged to a logfile;
the result of the request is actually discarded and not stored. The findstr command
is used to inspect the wget logfile, and it specifically looks for a 200 OK response:

IF %ERRORLEVEL%==0 (
 ECHO %DATE% %TIME% - GeoServer responded to a download request
>> %LOG_FILE%
 ECHO %DATE% %TIME% - GeoServer is up and running >> %LOG_FILE%

The result of the findstr command is stored in an environment variable called
ERRORLEVEL. If ERRORLEVEL is equal to 0, then the wget logfile contained a 200 OK
response. In this case, we can just log the fact and do nothing further. However, if
the response does not contain 200 OK, then we need to attempt to restart the Tomcat
service and check its response:

) ELSE (
ECHO %DATE% %TIME% - GeoServer did not respond to a download request,
attempting to restart Tomcat service... >> %LOG_FILE%
 ECHO. >> %LOG_FILE%

 net stop %TOMCAT_SERVICE% >> %LOG_FILE%
 net start %TOMCAT_SERVICE% >> %LOG_FILE%

 ECHO. >> %LOG_FILE%

 FOR /F "tokens=3 delims=: " %%H IN ('sc query "%TOMCAT_SERVICE%" ^|
findstr " STATE"') DO (
IF /I "%%H" NEQ "RUNNING" (
ECHO %DATE% %TIME% - The Tomcat service could not be started, email
alert sent >> %LOG_FILE%
cscript SendEmail.vbs %SMTP_SERVER% %SMTP_PORT% %EMAIL_NAME%
%EMAIL_FROM% %EMAIL_TO% %EMAIL_CC% "GeoServer Instance Failed"
InstanceFailedMessageBody.txt HTML

Optimizing GeoServer for Production

[378]

) ELSE (
 ECHO %DATE% %TIME% - The Tomcat service restarted
successfully >> %LOG_FILE%
 cscript SendEmail.vbs %SMTP_SERVER% %SMTP_PORT% %EMAIL_NAME%
%EMAIL_FROM% %EMAIL_TO% %EMAIL_CC% "GeoServer Instance Restarted"
InstanceRestartedMessageBody.txt HTML
)
)
)

Finally, we just need to clean up the wget logfile to make it ready for the script to
execute again:

DEL %WGET_LOG%

Scheduling the Watchdog script
Now that we have a script that we can execute periodically, we need a means
of executing it on a schedule. This is an ideal use case for the built-in Windows
Task Scheduler.

1. To create a schedule, we need to first launch the Task Scheduler from
Administration Tools in Control Panel. The easiest way to do this is to
launch it from Windows | Administrative Tools | Task Scheduler:

Chapter 12

[379]

2. To create a new task, we need to click on the Create Task… option from the
right-hand side panel in Task Scheduler:

3. This will open the Create Task wizard that will guide us through the process
of creating the scheduled task.

4. It is a tabbed interface, where we can specify the settings for the task. On the
General tab, we need to enter a name for our task along with a description of
what the task does.

Optimizing GeoServer for Production

[380]

5. The only other setting we need to change on the General tab is to make sure
the option Run whether user is logged on or not is selected:

6. Next, we need to specify what causes the task to be executed by clicking on
the Triggers tab.

7. On the Triggers tab, we can specify multiple triggers for the task; however,
in our case we will set a very simple time-based trigger. To do this, we need
to click on the New… button:

Chapter 12

[381]

8. Clicking on New… should give you the following screen:

9. We want to make sure that our scheduled task will run every time the server
starts up. To do this, we choose the At startup option from the drop-down at
the top of the dialog.

10. In the Advanced settings group box, we want to set the task to repeat every
five minutes, and stop the task if it runs for longer than 10 minutes. We also
want to make sure that the task is set to run indefinitely.

11. Once we are done with the settings, we need to click on the OK button to
have the trigger added to the list for the task.

12. Next, we need to specify what we want the task to do when it runs. Click on
the Actions tab to configure what is executed.

Optimizing GeoServer for Production

[382]

13. Again, this tab allows us to specify multiple actions to take when the task
runs. However, in this case, we only want it to execute our Watchdog script,
so we click on the New… button to create the action:

14. In the New Action dialog, we specify that the action to take is Start a
program from the drop-down menu at the top of the dialog. The settings
for the action are straightforward:

Chapter 12

[383]

15. We need to specify the location of our GeoServerWatchdog.bat script as the
program to run.

16. Next, we specify the directory containing the script as the value for the
Start in (optional) setting to ensure the script executes in the context of its
containing directory.

17. When all settings have been defined, we simply click on the OK button to
add the action to the task.

18. We can leave the default settings for the Conditions and Settings tabs.
We just need to click on the OK button to save the task we created.

If you recall, we set our task to run when the server started, but we don't really want
to restart the server now just to start the running task.

If we highlight the new task we created, and then click on the Run item on the
right-hand side panel, our task will start running:

It will continue to execute every five minutes indefinitely, and if the server is ever
rebooted, then the task will simply start again on startup.

Optimizing GeoServer for Production

[384]

Creating a Linux Watchdog script
For Linux, we will create a shell script that can be executed as a cron job. There is a
complete version of the script in the code bundle accompanying this chapter.

When you take a look at the script, you will notice that it does
not contain any logic to send e-mails. There are several different
ways to send e-mails from a shell script, and all require different
setups. For the purposes of this book, e-mail sending has not
been included. However, it will be a useful learning exercise to
research and implement an e-mail-sending capability.

1. First, we need to create a location for the script to go into; from the terminal,
enter the following:
$ mkdir /opt/watchdog

2. This will create a directory for the script to be stored in; feel free to change
this to another location in your system.

3. Next, we need to create the script itself and edit it; we can do this in one
action using the vi text editor:

$ vi /opt/watchdog/geoserver-watchdog.sh

The first thing we want to do is make the script generic so that we can use it on
multiple instances of GeoServer that we might have running on our server. To do
this, we need to be able to receive a value for the instance number to control, and
also the HTTP port the instance is listening on. This is achieved in the first section
of the script:

Declare instance related variables
INSTANCE=1
HTTP_PORT=8080

Check the command-line arguments
if [! $# -eq 4]; then
 # Insufficient arguments passed to the script
 echo >&2 "usage: $0 -i [instance_number] -p [http_port]"
 exit 1
else
 # Correct number of arguments
 while [$# -gt 0]; do
 case "$1" in
 -i) INSTANCE=$2; shift;;

Chapter 12

[385]

 -p) HTTP_PORT=$2; shift;;
 -*) echo >&2 \
 "usage: $0 -i [instance_number] -p [http_port]"
 exit 1;;
 *) break;;
 esac
 shift
 done
fi

We declare some variables to hold the instance number and the HTTP port. Then, we
perform a check on the number of arguments passed in to the script. We expect the
script to be executed like this:

$ geoserver-watchdog.sh –i 1 –p 8080

Here, –i is the instance number to watch and –p is the HTTP port to query. If the
number of arguments is not equal to four, then we break out of the script and print
a usage message. If the number of arguments is correct, then we loop through them
and populate the variables for the script.

Next, we define some variables that will help us along the way:

Declare other variables
PID_FILE=/var/run/catalina-${INSTANCE}.pid
HTTP_URL=http://localhost:${HTTP_PORT}/geoserver/openlayers/img/west-
mini.png
TOMCAT_SERVICE=tomcat-${INSTANCE}
PID='cat $PID_FILE'

The important variables here are HTTP_URL, which we will use when trying to query
if GeoServer is responding to web requests. We check the PID_FILE that contains
the process ID for the Tomcat service. Finally, we can call the TOMCAT_SERVICE that
identifies the Tomcat service control script.

Next, we need to set some logging so that we can record the results of
our monitoring:

Set the logfile to stdout if the file does not exist
LOG_FILE=/var/log/geoserver/watchdog-${INSTANCE}.log
if [! -e "${LOG_FILE}"]; then
 LOG_FILE="/dev/stdout"
Fi

Optimizing GeoServer for Production

[386]

We create a variable to store the location of our logfile by appending the instance
number to a constant string; this means that depending on how we run the script,
we will get different logfiles that are generated. In this case, our logfile will be a
directory on the host server, but if we save the log to a shared location, we might
want to further qualify the name of the logfile using the server hostname. We can
change the line to read as the following:

SERVER_NAME='hostname'
LOG_FILE=/mnt/share/logs/watchdog-${SERVER_NAME}-geoserver-
${INSTANCE}.log

Assuming we have a shared directory (such as an NAS device) mounted
on /mnt/share, we will store a file into the logs directory that will include the
server hostname as well as the instance running on this host. The if code block
will then check that the logfile exists; if it does not, the code block will set the log
location to the standard output, which in most cases is the console.

Following the script setup sections, we are ready to get into the core of the script.
We first start by checking the status of the process:

If [-d /proc/$PID]; then

This takes PID (process ID) for the Tomcat service, and then performs a check to see
if a directory exists with the same ID inside /proc. If a process is running, then there
will be a directory matching its ID, and if not, then there won't be. We use this fact
to determine if the Tomcat instance process is running. If it is, then we need to check
that GeoServer responds to the HTTP requests because although the Tomcat service
is running, it doesn't mean that GeoServer is responding:

Tomcat is running so we need to check it is responding to requests
 echo "'date' WatchDog Status: Tomcat service ${TOMCAT_SERVICE} is
running" >> "${LOG_FILE}"
 wget $HTTP_URL -T 1 --timeout 20 -O /dev/null &> /dev/null
 if [$? -ne "0"]; then
 # HTTP not responding, restart service
 echo "'date' WatchDog Status: Tomcat service ${TOMCAT_SERVICE} is
not responding to HTTP requests" >> "${LOG_FILE}"
 echo "'date' WatchDog Action: Restarting Tomcat service ${TOMCAT_
SERVICE}" >> "${LOG_FILE}"
 service $TOMCAT_SERVICE restart >> "${LOG_FILE}"
 else
 # HTTP is responding
 echo "'date' WatchDog Status: Response OK - Tomcat service
${TOMCAT_SERVICE} is responding to HTTP requests" >> "${LOG_FILE}"
 fi

Chapter 12

[387]

First, we do some logging to keep a record of the actions taken, and their results.
Then, we use wget to issue a request to GeoServer running on localhost to fetch a
single image from the OpenLayers directory. The output is piped to the null device,
so we don't store it, but do check the return value of the command with [$? –ne
"0"]. If the response code is not equal to 0, then GeoServer failed to respond, so
we attempt to restart the service using service $TOMCAT_SERVICE restart >>
"${TOMCAT_SERVICE}. If we do get a return code of 0, then we log that the response
was OK.

If the result of [-d /proc/$PID] is false, then the Tomcat service dies. In this
case, we have an else block to handle the restart:

else
 # Tomcat is not running, restart the service
 echo "'date' WatchDog Status: Tomcat service ${TOMCAT_SERVICE}
process appears to be dead" >> "${LOG_FILE}"
 echo "'date' WatchDog Action: Restarting Tomcat service ${TOMCAT_
SERVICE}" >> "${LOG_FILE}"
 service $TOMCAT_SERVICE restart >> "${LOG_FILE}"
fi

In this case, we need to issue the restart command to the Tomcat service using the
service $TOMCAT_SERVICE restart >> "${LOG_FILE}" command. The result of
the command is sent to the logfile.

Before we can use this script in the shell, we need to make it executable:

$ chmod +x /opt/watchdog/geoserver-watchdog.sh

Scheduling the Watchdog script using cron
Much like Windows, Linux has the ability to run tasks in the background at specific
times. Tasks are defined in crontab files, and the system cron daemon then executes
them; this means that we can utilize it to execute our Linux Watchdog script.

To launch crontab, we need to open a terminal and enter this command:

$ sudo crontab –e

This will open the root user's crontab file to edit. If an editor environment variable
is not set, then you might be asked to select an editor to use; choose the one you are
most comfortable with. This command will open the crontab file in a text editor so
that we can add commands to it. The structure of a command is as follows:

minute(0-59) hour(0-23) day(1-31) month(1-12) weekday(0-6) command

Optimizing GeoServer for Production

[388]

Notice that the minute, hour, and weekday components are zero-based values, so
we need to bear this in mind when we construct our command. Our command will
be similar to the one we created for Windows. We will have the Watchdog script
execute every 5 minutes. In the text editor, scroll down until the first blank line and
then type this line:

0,4,9,14,19,24,29,34,39,44,49,54 * * * * {path}/geoserver-watchdog

Make sure you replace {path} with the actual path to the location where you saved
the Watchdog script. This command lists the minutes at which we want the task to
execute, and then sets a wildcard for all other elements. In effect, this is telling cron
to run the job every 5 minutes every day of the week, every month of the year, every
year; in effect, indefinitely. Save the file, and then exit the editor. On exiting the
editor, you will see a crontab: installing new crontab message in the terminal.
This means that the crontab file was installed successfully.

Summary
Our long journey through advanced GeoServer configuration has now come to
an end. In this chapter, we considered the benefits of implementing a cluster of
GeoServer instances and looked at a new extension available to manage it. We also
looked at a special case where we have to configure Windows servers in a specific
way so that they are able to share a data directory from the network.

Following on from clustering, we examined different approaches to optimize the
configuration; we looked at using native JAI libraries, specifying options for JVM,
disabling unnecessary services, and managing the flow of requests handled by the
server, in particular.

Finally, we looked at how we can implement scripts that can watch and monitor our
instances of GeoServer, automatically restarting when failures are detected, checking
to ensure the Tomcat service is up and running, but also ensuring it is responding to
HTTP web requests. We then saw how to set the Watchdog scripts to run at specific
intervals, ensuring our services have minimal disruption.

Index
Symbols
@abstract tag 185
@app.route decorator 300
<geoserver_data_directory> directory

about 289
apps directory 289
function directory 289
lib folder 289
process folder 290
scripts directory 289
wfs folder 290

@title tag 185
-Xmx512m switch 131

A
Active Directory

about 309
configuring, for authentication 310-312
configuring, for authorization 312-316
using, for user authentication 309
using, for user authorization 309

alternatives command 10
Apache JMeter™

about 340
reference link 340
test workbench, creating 342-349

Apache Portable Runtime (APR) 22
Apache Tomcat

download link 14
installing 14

Apache Tomcat 7 installation,
on CentOS 6.3

Apache Tomcat, running as service 16-20
Apache Tomcat, securing 20, 21
performing 15

Apache Tomcat 7 installation, on Windows
Server 2008 R2 SP1

performing 21-24
Tomcat service, configuring 25-27
Tomcat service, controlling 24, 25

app-schema extension
configuring 122
download link 121
installing 121
mapping file 125-127
WFS service, configuring 123, 124

app-schema mapping file
about 125
catalog section 125
includedTypes section 125
namespaces section 125
sourceDataStores section 125
targetTypes section 126
typeMappings section 126

ArcGrid
URL 42

automatic recovery, from service failures
about 374
Linux Watchdog script, creating 384-387
Windows Watchdog script,

creating 375-378

B
Base64 316
BLOB

URL 68
Boundless Geo

URL 44
British National Grid

reference link 53

[390]

C
cascaded services

defining 143
using 144
using, as reverse proxy 146, 147
WFS-only server, enabling through

WMS 145, 146
WMS server capabilities, extending 144

Cascaded Style Sheets. See CSS styles
cascaded WFS connection

configuration options 158
creating 155
creating, through proxy 162
data store, creating 155-160

cascaded WMS connection
cascaded WMS layer, publishing 151-155
creating 147
data store, creating 148-150

catalog section, app-schema
mapping file 125

Catalogue Service for the Web (CSW)
URL 242

CentOS 6.3
Apache Tomcat 7 installation 15
GeoServer deployment 28, 29
Java installation 8-10
multiple GeoServer instances,

configuring on 34-36
CentOS Linux 6.3

GDAL binary libraries, installing on 44, 45
chained WPS processes

crime type, selecting 282-284
executing 280-282
Police Force territory, selecting 284, 285

changeMapFilter function 194
command-line options

count 340
filter_within 341
maxres 340
maxsize 340
minres 340
minsize 341
region 340
srs 341
srs2 341

Commercial-Off-The-Shelf (COTS) 30
Common Query Language (CQL)

expression 138
community extensions

URL 204
complex features

about 119, 120
versus simple features 117

configuration, database connection
pool 79-81

configuration options, cascaded
WFS connection

Character encoding for XML messages 158
Connection and read timeout (ms) 158
Favor HTTP POST method over GET 158
Feature buffer size 158
Filter compliance level 159
HTTP Authentication user name 158
HTTP Authentication user password 158
Lenient parsing 159
Maximum number of Features to

retrieve 159
usedefaultsrs 159
Use gzip encoding if server supports it 158
WFSDataStoreFactory:AXIS_ORDER 159
WFSDataStoreFactory:

AXIS_ORDER_FILTER 159
WFSDataStoreFactory:

OUTPUTFORMAT 159
WFS GetCapabilities URL 158
WFS protocol strategy 159

configuration, print extension
about 207
dpis section 208
fonts section 210, 211
formats section 209
hosts whitelist section 211, 212
layouts section 212
scales section 209, 210

Content.ftl file 197
control-flow module

about 370
download link 371
installing 371, 372
rules configuration 372-374
used, for managing request handling 370

[391]

CQL_FILTER parameter
about 193
using 193-195

crontab
about 387
launching 387

CSS extension
download link 176

CSS styles
about 167, 176
basics 180, 181
creating 182-188
extension, installing 176-179

CSS Styling extension 177

D
data

consuming 256
editing, WFS-T used 244
loading, KML reflector used 258
serving, from Microsoft SQL Server 97
serving, from Oracle 93
serving, from PostGIS 90
serving, from SQL Azure 97
styling, CSS used 176
styling, SLD files used 168

database connection pools
about 78, 79
configuring 79
connection timeout option 80, 81
fetch size option 80, 81
max connections option 79, 80
min connections option 80
validate connections flag 80

database platform, connection pool
Microsoft SQL Server 83
MySQL 83
Oracle 11g R2 83
PostgreSQL (PostGIS) 83

Database Server 242
database session close-up SQL 89
database session startup SQL 88
database views

versus GeoServer SQL Views 105

data consumers 240
data creators / originators 240
data directory

sharing, in Windows 2008 R2 359-365
data publishing, with application schema

about 128
application schema mapping file 132-139
data store, setting up 139-141
feature type, configuring 139-141
source data preparation 129-132

data styling, with SLD
reference link 168

data users 240
db.properties file 333
demilitarized zone. See DMZ
Desktop GIS

using 244
Digest

using, for user authentication 316
DMZ 146, 147
dpis section 208
dynamic heatmap example

creating, render transformations
used 170-175

E
ECQL

reference link 193
Enterprise Linux GIS

URL 44
Erdas Imagine format 55
European Union INSPIRE Directive

URL 121
Execute WPS request 264
Execution Settings configuration section,

WPS extension
about 272
connection timeout 272
maximum asynchronous executions

run parallel 272
maximum synchronous executions

run parallel 272
extensions, GeoServer

community 204
official 204

[392]

F
Feature Chaining 120
File Server 242
fill property 181
filter.properties file 333
filters, using

reference link 180
Flask 298
flat representation 119
fonts section 210, 211
Footer.ftl file 197
formats section 209
Freemarker templates

about 196
Content.ftl file 197
Footer.ftl file 197
Header.ftl file 197
reference link 196
used, for changing WMS responses 195-200

G
GDAL 42, 43
GDAL binary libraries

environment variables, setting 48, 49
installing 43
installing, on CentOS Linux 6.3 44, 45
installing, on Windows Server 2008

R2 SP1 45-47
system variables 48, 49

GDAL core
URL 46

gdalinfo command 51
gdal_merge.py

reference link 54
GDAL MrSID plugin

URL 46
GDAL support, adding

about 43
GDAL binary libraries, installing 43
GeoServer GDAL plugin, installing 49

gdal_translate utility 57
general database connection parameters

about 87
database session close-up SQL 89

database session startup SQL 88
geometry metadata table 89, 90
primary key metadata table 87

GeoDRM RM 321, 322
Geofabrik

URL 130
GeoJSON

about 301
URL 301

geometry metadata table 89, 90
GeoNode

URL 256
GeoScript

about 287
integrating, with GeoServer 288-290
URL 288

GeoScript extension
installation, checking 291
installing 290, 291

GeoServer
about 8
configuring 30
deploying, in cluster 355-358
deploying, to Apache Tomcat 27, 28
GeoScript, integrating with 288-290
Google Earth, launching from 256-258
Java requisites 8
multiple instances, configuring on

single server 34
optimizing 366
Python WPS process, testing 297
raster formats 42
RESTful service, creating 297-302
script hooks 288
scripting 291
stress testing 339
WPS process, creating 292
WPS process, defining 292-294
WPS process run method, creating 295, 296

GeoServer application schemas
using 121

GeoServer configuration
about 30
scaling horizontally 32
scaling vertically 31
scaling vertically and horizontally 33

[393]

GeoServer deployment
about 27, 28
checking 30
on CentOS 28, 29
on Windows Server 2008 R2 SP1 29

GeoServer deployment, in cluster
about 355
data directory, sharing in Windows

2008 R2 359-365
GeoServer GDAL plugin

installing 49, 50
GeoServer in production

reference link 366
GeoServer monitor extension

about 330
activity, viewing 336
configuring 332
db.properties file 332, 333
download link 331
filter.properties file 332, 333
hibernate.properties file 332, 334
installation, checking 335
installing 331, 332
monitor.properties file 332, 334
OWS Request Summary report 337
reports, viewing 337
request data 337-339

GeoServer monitoring
importance 329, 330

GeoServer, optimizing
control-flow module, installing 371, 372
control-flow module rules

configuration 372-374
JVM, optimizing 367, 368
native JAI and JAI image I/O

extensions 366
request handling, managing with

control-flow extension 370
unused GeoServer services, disabling 369

GeoServer print extension. See print
extension

GeoServer SLD cookbook
reference link 168

GeoServer SQL Views
versus database views 105

GeoServer's security documentation
reference link 305

GeoServer's WFS-T service
QGIS, connecting to 245-249

GeoServer, using as Proxy
about 143
cascaded services, defining 143
cascaded WFS connection, creating 155
cascaded WMS connection, creating 147
server capabilities, extending 162-164

GeoServer WAR (Web Archive) file
about 27
reference link 28

GeoSolutions blog
reference link 358

Geospatial Data Abstraction Library.
See GDAL

Geospatial Digital Rights Management
Reference Model. See GeoDRM RM

GeoTIFF
about 55
overviews 55, 56
raster formats, converting to 57, 58
tiles 56
URL 42

GetFeatureInfo request 196
GetFeatureInfo templates 196
Google Earth

launching, from GeoServer 256-258
network links, using 259, 260

granule 59
Groovy 290
Gtopo30

URL 42

H
Halo-radius property 181
Header.ftl file 197
hibernate.properties file 334
hosts whitelist section 211, 212
HTTP Digest authentication

setting up 317-319
testing 319, 320

HTTP Header
using, for user authentication 321, 322

HTTP Header authentication
setting up 322-325
testing 325-327

[394]

I
ImageMosaic format

about 59
creating, automatically 60-62
creating, manually 62-66
index file 59
projection file 60
properties file 60
URL 42
using 59

ImageMosaic JDBC extension
configuring 68
download link 67
faster searching 67
features 67
installing 67, 68
portability 67
shared database 67
using 67

ImageMosaic JDBC extension, using
extension configuration files, creating 71-73
GeoServer data store, creating 74, 75
metadata table, creating 70
raster data, loading 69
raster data, preparing 69

includedTypes section, app-schema
mapping file 125

index file, ImageMosaic format 59
Infrastructure as a Service (IaaS) 31
INSPIRE Road Transport Network

application schema 127
installation

Apache Tomcat 14
Apache Tomcat 7, on CentOS 6.3 15
Apache Tomcat 7, on Windows Server 2008

R2 SP1 21-24
Java, on CentOS 6.3 8-10
Java, on Windows Server 2008 R2 SP1 11-14
Microsoft JDBC drivers, on Linux 98, 99
Microsoft JDBC drivers, on Windows

Server 2008 R2 100-102
Microsoft SQL Server extension 97
Oracle extension 94
print extension 204

J
Java

download link 9
installing, on CentOS 6.3 8-10
installing, on Windows Server 2008

R2 SP1 11-14
Java Advanced Imaging (JAI)

about 209
URL 209

Java Development Kit (JDK) 8
Java Naming and Directory Interface.

See JNDI
JAVA_OPTS environment variable

-server parameter 18
-Xms512m parameter 18
-Xmx1024m parameter 18
-XX:MaxPermSize=128m parameter 18

Java Runtime Environment (JRE) 8
JavaScript 290
Java Virtual Machine. See JVM
JDBC 82
JDBC ImageMosaic extension. See

ImageMosaic JDBC extension
JMeter

launching, on Linux 342
launching, on Windows 342

JNDI
about 82
configuring, at servlet container 83-86

JNDI connection 82
JPEG 59
jQuery

URL 232
JSON keys

createUrl 225
dpis 225
layouts 225
outputFormats 225
printUrl 225
scales 225

JVM
about 367
optimizing 367, 368
settings 367

Jython
URL 298

[395]

K
keys

map : height 226
map : width 226
name 226
rotation 226

KML reflector
URL 257
used, for loading data 258

L
label property 181
layout metaData element

defining 215, 216
layout pages

defining 216-222
layouts section 212
Library Mode 189
Lightweight Directory Access

Protocol (LDAP)
about 309
reference link 309

Linux
Microsoft JDBC drivers, installing on 98, 99

Linux Watchdog script
creating 384-387
scheduling, cron used 387

load balancer 356

M
main connection parameters

database 92, 96, 103
host 91, 96, 103
passwd 92, 96
Password 103
port 91, 96, 103
schema 92, 96, 103
user 92, 96, 103

manager web application
reference link 21

MapFish
about 204
URL 204
URL, for documentation 228

Marine Scotland National Marine Plan
Interactive example

reference link 198
mark property 181
maxOpenPreparedStatements parameter 85
Metadata Server 242
Microsoft JDBC drivers

installation, verifying 102
installing, on Linux 98, 99
installing, on Windows Server

2008 R2 100-102
Microsoft SQL Server

data, serving from 97
extension, installing 97

Microsoft SQL Server table
publishing, as layer 103, 104

monitor.properties file 334
mosaic 59
multiple GeoServer instances

configuring, on CentOS 6.3 34-36
configuring, on single server 34
configuring, on Windows Server 2008

R2 SP1 37-40
Multipurpose Internet Mail Extensions

(MIME) 280

N
namespaces section, app-schema mapping

file 125, 126
Network Attached Storage (NAS) device 32
nonce 318
number of concurrent requests, controlling

benefits 370

O
OGC simple features specification

reference link 118
OGC standard

DescribeProcess operation 264
Execute operation 264
GetCapabilities operation 264
URL 264

ogr2ogr
reference 106

one-to-one mapping 119

[396]

OpenLayers application
example 230, 231
initializing 232-234
print request, sending 236
print SPEC to POST, generating 234-236

OpenStreetMap data
downloading, from website 129
using 129

Oracle
data, serving from 93

Oracle extension
installation, validating 95
installing 94

Oracle table
publishing, as layer 96

osm2po
URL 130

OSM-GB project
URL 155

OS StreetView™ 52
OS VectorMap District 69
overviews, GeoTIFF 55, 56

P
parameterized statement 85
per-request filtering of data 193
per-request styling of map features

about 188
implementing 189-192
Library Mode 189
ways 189

PGRASTER
reference link 69

PNG 59
poolPreparedStatements parameter 85
PostGIS

about 90
data, serving from 90
URL 90

PostGIS table
publishing, as layer 90-93

PostgreSQL PGDG 9.3
URL 44

postp.1.class switch 131
prefix=ws argument 131
prepared statement 85

primary key metadata table 87
print extension

about 204
configuring 207
installation, verifying 205-207
installing 204, 205

print layouts
defining 212-215
layout metaData element, defining 215, 216
layout pages, defining 216-222

print requests
making 222

Process groups configuration section, WPS
extension 273, 274

projection file, ImageMosaic format 60
properties file, ImageMosaic format

about 60, 65
AbsolutePath property 65
Caching property 65
ExpandToRGB property 65
Heterogenous property 65
LevelsNum property 65
Levels property 65
LocationAttribute property 65
Name property 65

Public Web Mapping Server 242
Python 290
Python Package Index (PyPI)

URL 298

Q
QGIS

about 62
connecting, to GeoServer's WFS-T

service 245-249
reference link 169
Topology Checker tool, using 249-255
URL 62, 169, 244

R
raster2pgsql

reference link 69
raster data optimization

performing 51
single-file, versus multi-file 53, 54
source data 51-53

[397]

raster datasets
serving 58, 59
serving, ImageMosaic format used 59
serving, ImageMosaic JDBC extension

used 67
raster formats

about 42
converting, to GeoTIFF 57, 58

raster processing
reference link 54

regular expressions
reference link 105

relational representation 119
reload method

reference link 358
render transformations

reference link 172
utilizing 170-175

repository, GDAL library
Boundless Geo 44
Enterprise Linux GIS 44
PostgreSQL PGDG 9.3 44

Response Time Graph output 352
REST API

about 223, 224
print requests, specifying 226-230
print server capabilities, obtaining 224, 225

RESTful service
reference link 298

results
saving, WFS-T service used 255

S
scales section 209, 210
scaling out 32
scaling up 31
script hooks, GeoServer

App 288
function 288
WFSTX 288
WPS 288

SDI
about 240, 241
technology platform 241-243

security subsystem
user authentication 306, 307
user authorization 306, 307

server capabilities
extending 162-164

Service Metadata configuration section,
WPS extension 270, 271

service metadata elements
abstract 271
access constraints 271
current keywords 271
fees 271
maintainer 271
online resource 271
title 271

Service Oriented Architecture (SOA) 145
servlet container

JNDI, configuring at 83-86
shared data directory 356
simple features

about 117-119
versus complex features 117

slaves 358
SLD_BODY= parameter 189
sldBody variable 191
SLD files

about 167, 168
creating 168, 169
render transformations, using 170-175
used, for styling data 168

SLD= parameter 189
sourceDatastores section, app-schema

mapping file 125, 126
spatial analysis

performing, WPS used 274, 275
Spatial Data Infrastructure. See SDI
SQL Azure

data, serving from 97
SQL injection

URL 114
SQL View layers

about 105
creating 106-115

stress testing, GeoServer
Apache JMeter™ test workbench,

creating 342-349

[398]

locations, selecting 349, 350
performing 339
results, testing 351, 352
test profile, executing 350, 351
test WMS bounding boxes,

generating 340, 341
strips, GeoTIFF 55
stroke property 181
Styled Layer Descriptor files. See SLD files
Summary Report 351
Symbol Selectors section

reference link 185

T
targetTypes section, app-schema mapping

file 126, 127
TIFF 59
Tile Index tool 63
tiles, GeoTIFF 55, 56
TinyOWS

URL 162
Topology Checker tool, QGIS

using 249-255
typeMappings section, app-schema

mapping file 126, 128

U
UK Police Data Portal

URL 106
UNC path

reference link 359
URL template

<api-method> element 300
<crime_type> element 300
<parameters> element 300
<port> element 300
<server-name> element 300

user authentication
about 306, 307
Active Directory, configuring for 310-312
Active Directory, using for 309
Digest, using for 316
HTTP Header, using for 321, 322

user authentication methods
about 307, 308
authentication filter chain 307
authentication provider chain 307

user authorization
about 306, 307
Active Directory, configuring for 312-316
Active Directory, using for 309

user authorization methods 309
utilities, by GDAL

reference link 54

V
validationQuery parameter 85
valid properties

reference link 180
variable substitution

reference link 173
vendor-specific WMS parameters

reference link 193
vi command 16
virtual services, using

reference link 270

W
web administration console 50
Web Mapping Server (Internal) 242
Web Processing Service. See WPS
Well-Known Text (WKT) 278
WFS schema

reference link 124
WFS-Transaction (WFS-T)

about 87
service, using to save results 255
used, for editing data 244

Wget
download link 375

Windows package for JRE
download link 11

Windows Server 2008 R2
data directory, sharing 359-365
Microsoft JDBC drivers,

installing on 100-102

[399]

Windows Server 2008 R2 SP1
Apache Tomcat 7 installation 21-24
GDAL binary libraries, installing on 45-47
GeoServer deployment 29
Java installation 11-14
multiple GeoServer instances,

configuring on 37-40
Windows Watchdog script

creating 375-378
scheduling 378-383

WMS request parameters
reference link 340

WMS responses
changing, Freemarker templates

used 195-200
workspace configuration section,

WPS extension 269, 270
WorldImage

about 59
URL 42

WPS
about 171, 263, 264
processes 264
processes, chaining 265
used, for performing spatial

analysis 274, 275
WPS extension

configuring 269
download link 265
installation, checking 267, 268
installing 265, 266

WPS extension configuration
about 269
Execution Settings configuration

section 272
Process groups configuration

section 273, 274
Service Metadata configuration

section 270, 271
workspace configuration section 269, 270

WPS process
about 264
chaining 265
executing 275-280

WPS process chain
executing 286, 287

WPS request builder application 275

X
XPath

reference link 139
xsi:schemaLocation attribute 124

Y
YAML Ain't Markup Language (YAML)

about 207, 208
URL 208

Thank you for buying
Mastering GeoServer

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building Websites with
ExpressionEngine 2
ISBN: 978-1-84969-050-8 Paperback: 328 pages

A step-by-step guide to ExpressionEngine:
the web-publishing system used by top designers
and web professionals

1. Learn all the key concepts and terminology
of ExpressionEngine: channels, templates,
snippets, and more.

2. Use RSS to make your content available in news
readers including Google Reader, Outlook,
and Thunderbird.

3. Manage your ExpressionEngine website,
including backups, restores, and
version updates.

GeoServer Beginner's Guide
ISBN: 978-1-84951-668-6 Paperback: 350 pages

Share and edit geospatial data with this open source
software server

1. Learn free and open source geospatial mapping
without prior GIS experience.

2. Share real-time maps quickly.

3. Learn step-by-step with ample amounts of
illustrations and usable code/list.

Please check www.PacktPub.com for information on our titles

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in a
PostGIS database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WFS using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data,
and routing data into usable forms.

3. Visualize data from the PostGIS database
using a desktop GIS program such as QGIS
and OpenJUMP.

Google Maps JavaScript API
Cookbook
ISBN: 978-1-84969-882-5 Paperback: 316 pages

Over 50 recipes to help you create web maps and
GIS web applications using the Google Maps
JavaScript API

1. Add to your website's functionality by utilizing
Google Maps' power.

2. Full of code examples and screenshots for
practical and efficient learning.

3. Empowers you to build your own mapping
application from the ground up.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing GeoServer for Production
	Java requirements
	Installing Java on CentOS 6.3
	Installing Java on Windows Server 2008 R2 SP1

	Installing Apache Tomcat
	Installing Apache Tomcat 7 on CentOS 6.3
	Running Apache Tomcat as a service
	Securing Apache Tomcat

	Installing Apache Tomcat 7 on Windows Server 2008 R2 SP1
	Controlling the Tomcat service
	Configuring the Tomcat service

	Deploying GeoServer to Apache Tomcat
	Deploying on CentOS 6.3
	Deploying on Windows Server 2008 R2 SP1
	Checking GeoServer deployment

	Configuring GeoServer for maximum performance and availability
	Scaling vertically
	Scaling horizontally
	Getting the best of both

	Configuring multiple GeoServer instances on a single server
	Configuring on CentOS 6.3
	Configuring on Windows Server 2008 R2 SP1

	Summary

	Chapter 2: Working with Raster Data
	Increasing the raster formats supported by GeoServer
	Installing the GDAL binary libraries
	Installing on CentOS Linux 6.3
	Installing on Windows Server 2008 R2 SP1

	Installing the GeoServer GDAL plugin

	How to optimize raster data for better performance
	Understanding your source data
	Single file versus multifile
	GeoTIFF overviews and tiling
	GeoTIFF overviews
	GeoTIFF tiles
	Converting raster formats to GeoTIFF

	How to serve very large raster datasets
	Using the ImageMosaic format
	Creating ImageMosaic automatically
	Creating ImageMosaic manually

	How to use the ImageMosaic JDBC extension
	Installing the extension
	Configuring the extension

	Summary

	Chapter 3: Working with Vector Data in Spatial Databases
	Database connection pooling
	Understanding database connection pools
	Configuring a database connection pool

	JNDI connection or JDBC
	Configuring JNDI at the servlet container

	General database connection parameters
	The primary key metadata table
	The database session startup SQL
	The database session close-up SQL
	The geometry metadata table

	Serving data from PostGIS
	Publishing a PostGIS table as a layer

	Serving data from Oracle
	Installing the Oracle extension
	Validating the installation

	Publishing an Oracle table as a layer

	Serving data from Microsoft SQL Server and SQL Azure
	Installing the Microsoft SQL Server extension
	Installing Microsoft JDBC drivers on Linux
	Installing Microsoft JDBC drivers on Windows Server 2008 R2
	Validating the installation

	Publishing a Microsoft SQL Server table
as a layer

	Creating SQL View layers
	GeoServer SQL Views versus database views
	Creating a SQL View layer

	Summary

	Chapter 4: Using GeoServer to Serve Complex Features
	The difference between simple and complex features
	Simple features – GeoServer's default
	Complex features

	Using GeoServer application schemas
	Installing and configuring the extension
	Configuring the WFS service

	Application schema mapping file

	Publishing data with an application schema
	Source data preparation
	The application schema mapping file
	Data store and feature type configuration

	Summary

	Chapter 5: Using GeoServer as a Proxy
	Defining cascaded services
	Using cascaded services
	Extending the capabilities of another WMS server
	WMS enabling a WFS-only server
	Using GeoServer as a reverse proxy

	Creating a cascaded WMS connection
	Creating the data store
	Publishing a cascaded WMS layer

	Connecting to a cascaded WFS
	Creating the data store
	Connecting through a proxy

	Extending server capabilities
	Summary

	Chapter 6: Controlling the Output of GeoServer
	Styling data with Styled Layer Descriptor
	Creating SLDs visually
	Taking SLD further – render transformations

	Styling data using Cascaded Style Sheets
	Installing the extension
	The basics of CSS styles
	Putting it all together

	Per-request styling of map features
	Per-request filtering of data
	Using Freemarker templates to change WMS responses
	Summary

	Chapter 7: Using GeoServer to Print Maps
	The GeoServer print extension
	Installing the print extension
	Verifying the print extension installed

	Configuring the print extension
	The dpis section
	The formats section
	The scales section
	The fonts section
	The hosts whitelist section
	The layouts section

	Defining print layouts
	Defining the layout metaData element
	Defining layout pages

	Making print requests
	The REST API
	Getting the print server capabilities
	Specifying print requests

	An example OpenLayers application
	Initializing the application
	Generating the print SPEC to POST
	Sending the print request

	Summary

	Chapter 8: Integrating GeoServer in a Spatial Data Infrastructure
	Defnition of a spatial data infrastructure
	The technology platform of a spatial data infrastructure

	User perspective – editing data through WFS-T
	Using a Desktop GIS
	Connecting QGIS to GeoServer's WFS-T service
	Using the QGIS Topology Checker tool
	Using the WFS-T service to save results

	User perspective – consuming data
	Launching Google Earth from GeoServer
	Using the KML reflector to load data
	Using Google Earth network links

	Summary

	Chapter 9: GeoServer as a Spatial Analysis Platform
	Understanding Web Processing Services
	A WPS process
	WPS process chaining

	Installing the WPS extension
	Checking whether the extension is installed correctly
	Configuring the extension
	The workspace configuration section
	The Service Metadata configuration section
	The Execution Settings configuration section
	The Process groups configuration section

	Using WPS to perform spatial analysis
	Executing a WPS process
	Executing chained WPS processes
	Selecting the crime type
	Selecting the Police Force territory
	Executing the WPS process chain

	Understanding GeoScript
	GeoScript integration with GeoServer

	Installing the GeoScript extension
	Checking whether the extension has been installed correctly

	Scripting GeoServer
	Creating a WPS process
	Defining the WPS process
	Creating the WPS process run method
	Testing the Python WPS process

	Creating a RESTful service

	Summary

	Chapter 10: Enterprise Security and GeoServer
	Authentication and authorization
	User authentication methods
	User authorization methods

	Using Active Directory for user authentication and authorization
	Configuring Active Directory for authentication
	Configuring Active Directory for authorization

	Using Digest for user authentication
	Setting up an HTTP Digest authentication
	Testing an HTTP Digest authentication

	Using HTTP Header for user authentication
	Setting up an HTTP Header authentication
	Testing the HTTP Header authentication

	Summary

	Chapter 11: Monitoring the Performance and Health of GeoServer
	The importance of monitoring GeoServer
	The GeoServer monitor extension
	Installing the monitor extension
	Configuring the monitor extension
	The db.properties file
	The filter.properties file
	The hibernate.properties file
	The monitor.properties file

	Checking whether the monitor extension is installed correctly
	Viewing the monitor extension activity
and reports
	Going further with the request data

	Stress testing GeoServer
	Generating test WMS bounding boxes
	Creating an Apache JMeter™ test workbench
	Choosing where to execute tests
	Executing the test profile

	Analyzing the results of the stress test
	Summary

	Chapter 12: Optimizing GeoServer for Production
	Deploying GeoServer in a cluster
	Sharing a data directory in Windows 2008 R2

	Optimizing GeoServer
	Native JAI and JAI image I/O extensions
	Optimizing Java Virtual Machine
	Disabling unused GeoServer services
	Managing request handling with the
control-flow extension
	Installing the control flow module
	The control-flow module rules configuration

	Automatic recovery from service failures
	Creating a Windows Watchdog script
	Scheduling the Watchdog script

	Creating a Linux Watchdog script
	Scheduling the Watchdog script using cron

	Summary

	Index

