
www.allitebooks.com

http://www.allitebooks.org

Mastering JavaServer
Faces 2.2

Master the art of implementing user interfaces
with JSF 2.2

Anghel Leonard

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering JavaServer Faces 2.2

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either expressed or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1190614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-646-6

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Anghel Leonard

Reviewers
Mert Çalışkan

Michael Kurz

Thierry Leriche-Dessirier

Michael Müller

Luca Preziati

Commissioning Editor
Owen Roberts

Acquisition Editor
Owen Roberts

Content Development Editor
Sriram Neelakantan

Technical Editors
Krishnaveni Haridas

Taabish Khan

Pramod Kumavat

Mukul Pawar

Siddhi Rane

Copy Editors
Laxmi Subramanian

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Samantha Lyon

Lucy Rowland

Indexers
Hemangini Bari

Mehreen Deshmukh

Tejal Soni

Graphics
Valentina Dsilva

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Anghel Leonard is a senior Java developer with more than 13 years of
experience in Java SE, Java EE, and related frameworks. He has written and
published more than 50 articles about Java technologies and more than 500 tips
and tricks for many websites that are dedicated to programming. In addition,
he has written the following books:

•	 Tehnologii XML XML în Java, Albastra
•	 Jboss Tools 3 Developer's Guide, Packt Publishing
•	 JSF 2.0 Cookbook, Packt Publishing
•	 JSF 2.0 Cookbook: LITE, Packt Publishing
•	 Pro Java 7 NIO.2, Apress
•	 Pro Hibernate and MongoDB, Apress

Currently, Anghel is developing web applications using the latest Java technologies
on the market (EJB 3.0, CDI, Spring, JSF, Struts, Hibernate, and so on). Over the
past two years, he's focused on developing rich Internet applications for geographic
information systems.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mert Çalışkan is a principal software architect living in Ankara, Turkey. He has
over 10 years of expertise in software development with the architectural design of
Enterprise Java web applications. He is an open source advocate for software projects
such as PrimeFaces, and has also been a committer and founder to various others.
He is the co-author of PrimeFaces Cookbook, Packt Publishing, which is the first book to
be written on PrimeFaces. He is the co-author of Beginning Spring, Wiley Publications.
He is also working as an author for RebelLabs. He shares his knowledge and ideas
at local and international conferences such as JavaOne2014, JavaOne2013, JDC2010,
and JSFDays2008. He is also a member of the OpenLogic Expert Community and the
Apache Software Foundation.

I would like to thank my family, my beloved angel Funda, our
advisers at Packt Publishing, and Anghel Leonard, the author
of this great book.

www.allitebooks.com

http://www.allitebooks.org

Michael Kurz studied computer science at the Technical University of Vienna.
Since then, his main professional focus has been on web development, especially
in the Java EE domain. In 2007, he started working as a senior software developer
for Irian Solutions in Vienna, Austria. His main focus there is to develop JSF and
Java EE applications for various customers in Austria, Germany, and Switzerland.
Additionally, he also does JSF trainings, talks at international conferences, and is
an Apache MyFaces committer.

Besides his work as a software developer, he also likes to write about JSF-related
techniques. In November 2009, his first book JavaServer Faces 2.0, dpunkt.verlag was
published, followed by the updated edition JavaServer Faces 2.2 in November 2013
by the same publisher.

Furthermore, he is responsible for the contents of the German online JSF tutorial
at http://jsfatwork.irian.at provided by Irian, and he also writes about
JSF-related techniques in his blog at http://jsflive.wordpress.com.

Thierry Leriche-Dessirier works as a freelance JEE consultant in Paris. He
has 20 years of experience in web and Agile development domains. He teaches
software engineering at ESIEA, and in between two baby bottles, he also writes
for blogs and magazines.

www.allitebooks.com

http://jsfatwork.irian.at
http://jsflive.wordpress.com
http://www.allitebooks.org

Michael Müller is an IT professional with more than 30 years of experience
including about 25 years in the healthcare sector. During this time, he has worked in
different areas, especially project and product management, consulting, and software
development. He gained international knowledge not only by targeting international
markets, but also by leading external teams (from Eastern Europe and India).

Currently, he is the head of software development at the German DRG institute
(http://inek.org). In this role, he is responsible for web, Java, and .NET projects.
Web projects are preferably built with Java technologies such as JSF and JavaScript.
He is a JSF professional user and a member of the JSR 344 (JSF) expert group.

He frequently reads books and writes reviews as well as technical papers,
which are mostly published in German-printed magazines and on his website
at http://it-rezension.de. Besides that, he regularly blogs about software
development at http://blog.mueller-bruehl.de.

Michael has done technical reviewing for Java 8 in Action, Manning Publications Co.

To my wife Claudia and my children: thank you for your patience
during night reading and other long sessions. I love you!

Luca Preziati lives in Milan and has worked for six years as a Java consultant,
focusing the past five years on document management systems handling massive
volumes of data. In 2014, he joined GFT Italia full time. He has considerable
experience with both Alfresco and Documentum, as well as Liferay and Kettle.
In his free time, he enjoys swimming, biking, playing the guitar, and wine tasting
with his girlfriend.

I would like to thank all of my mentors: my parents, Ernesto and
Clelia, who taught me much about work while running their own
business (www.mintel.it); my brothers, Alessio and Stefano; and
my girlfriend, Arianna.

www.allitebooks.com

http://inek.org
http://it-rezension.de
http://blog.mueller-bruehl.de
www.mintel.it
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Dynamic Access to JSF Application Data through
Expression Language (EL 3.0)	 7

EL syntax	 8
EL operators	 8
EL precedence of operators	 9
EL reserved words	 9

EL immediate and deferred evaluation	 10
EL value expressions	 10

Referencing a managed bean	 10
Referencing a managed bean's properties	 12
Referencing a managed bean's nested properties	 13
Referencing Java SE enumerated types	 15
Referencing collections	 16
EL implicit objects	 17

EL method expressions	 19
The conditional text in JSF	 21
Writing a custom EL resolver	 26
EL 3.0 overview	 35

Working with the assignment operator	 36
Working with the string concatenation operator	 36
Working with the semicolon operator	 36
Exploring lambda expressions	 36

Working with collection objects	 38
Summary	 40

Chapter 2: Communication in JSF	 41
Passing and getting parameters	 42

Using context parameters	 42

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Passing request parameters with the <f:param> tag	 42
Working with view parameters	 46
Calling actions on GET requests	 53
Passing attributes with the <f:attribute> tag	 58
Setting property values via action listeners	 61
Passing parameters using the Flash scope	 64
Replacing the <f:param> tag with the JSTL <c:set> tag	 69
Sending data through cookies	 70
Working with hidden fields	 72
Sending passwords	 72
Accessing UI component attributes programmatically	 73
Passing parameters via method expressions	 74
Communicating via the binding attribute	 75

Managed bean communication	 76
Injecting a managed bean into another bean	 77
Communication between managed beans using the
application/session map	 78
Accessing other managed beans programmatically	 80

Summary	 82
Chapter 3: JSF Scopes – Lifespan and Use in Managed
Beans Communication	 83

JSF scopes versus CDI scopes	 83
The request scope	 86
The session scope	 90
The view scope	 92
The application scope	 94
The conversation scope	 96
The flow scope	 100

The simple flow	 104
Flows with beans	 107
Nested flows	 110
Configuring flows programmatically	 114
Flows and navigation cases	 116
Inspecting flow navigation cases	 119
Using the initializer and finalizer	 120
Using the flow switch	 123
Packaging flows	 125
Programmatic flow scope	 126

Dependent pseudo-scope	 130
The none scope	 131

Table of Contents

[iii]

The custom scope	 131
Writing the custom scope class	 132
Resolving a custom scope EL expression	 133
Controlling the custom scope lifespan with action listeners	 137
Controlling the custom scope lifespan with the navigation handler	 139

Managed bean instantiation	 142
Beans injection	 142
Summary	 145

Chapter 4: JSF Configurations Using XML
Files and Annotations – Part 1	 147

JSF 2.2 new namespaces	 148
JSF 2.2 programmatic configuration	 149
Configuring managed beans in XML	 150
Working with multiple configuration files	 156
Configuring locales and resource bundles	 158
Configuring validators and converters	 160
Configuring navigation	 168

Implicit navigation	 169
Conditional navigation	 172
Preemptive navigation	 174
Programmatic Navigation	 176

Configuring action listeners	 178
Application action listeners	 180

Configuring system event listeners	 183
Using <f:event>	 183
Implementing SystemEventListener	 185

Configuring phase listeners	 191
Working with @ListenerFor and @ListenersFor	 196
Summary	 197

Chapter 5: JSF Configurations Using XML
Files and Annotations – Part 2	 199

Configuring resource handlers	 200
Adding CSS and JS resources programmatically	 207

Configuring the view handler	 208
Overriding JSF renders	 212
Working with client behavior functionality	 218
JSF factories	 223

Configuring the global exception handler	 224
Configuring RenderKit factory	 227
Configuring PartialViewContext	 229

Table of Contents

[iv]

Configuring visitContext	 232
Configuring ExternalContext	 235
Configuring Flash	 239
JSF 2.2 Window ID API	 240
Configuring lifecycle	 246
Configuring the application	 250
Configuring VDL	 252

Combined power of multiple factories	 254
Summary	 255

Chapter 6: Working with Tabular Data	 257
Creating a simple JSF table	 258
The CollectionDataModel class of JSF 2.2	 261
Sorting tables	 266

Sorting and DataModel – CollectionDataModel	 272
Deleting a table row	 275
Editing/updating a table row	 277
Adding a new row	 280
Displaying row numbers	 282
Selecting a single row	 283
Selecting multiple rows	 285
Nesting tables	 287
Paginating tables	 288
Generating tables with the JSF API	 295
Filtering tables	 300
Styling tables	 306

Alternate row colors with the rowclasses attribute	 306
Highlighting rows on mouse hover	 307
Highlighting rows on mouse click	 308

Summary	 309
Chapter 7: JSF and AJAX	 311

A brief overview of the JSF-AJAX lifecycle	 312
A simple JSF-AJAX example to get started	 312
The JSF-AJAX attributes	 313

The execute and render attributes	 314
The listener attribute	 316
The event attribute	 317
The onevent attribute – monitoring AJAX state on client	 318
The onerror attribute – monitoring AJAX errors on client	 320

Grouping components under <f:ajax> tag	 322
Updating input fields with AJAX after validation error	 323

Table of Contents

[v]

The Cancel and Clear buttons	 325
Value submitted to a view scoped managed bean	 326
Value submitted to a request scoped managed bean	 327

Mixing AJAX and flow scope	 329
Postback and AJAX	 333

Postback request's conditional rendering/executing	 335
Is it a non-AJAX request?	 338
AJAX and <f:param>	 340
Queue control for AJAX requests	 340
Explicit loading of jsf.js	 342

Depicting the params value	 343
Non-UICommand components and jsf.ajax.request	 344
Customizing jsf.js	 347

AJAX and the progress bar/indicator	 350
Summary	 352

Chapter 8: JSF 2.2 – HTML5 and Upload	 353
Working with HTML5 and JSF 2.2	 353

Pass-through attributes	 354
Pass-through elements	 356
JSF 2.2 – HTML5 and Bean Validation 1.1 (Java EE 7)	 358

JSF 2.2 upload feature	 359
A simple JSF 2.2 upload example	 361
Using multiple <h:inputFile> elements	 363
Extracting info about a file to be uploaded	 364
Writing uploaded data to a disk	 366
Upload validator	 368
Ajaxify the upload	 369
Uploading images with preview	 370
Uploading multiple files	 378
Upload and the indeterminate progress bar	 381
Upload and the determinate progress bar	 383

Summary	 387
Chapter 9: JSF State Management	 389

JSF saving the view state	 389
JSF partial saving view state	 390
Partial state saving and tree visiting	 390
JSF saving view state on the server or client	 391
JSF logical and physical views	 394
Saving the state in a database – an experimental application	 395

Writing the custom ResponseStateManager class	 398
Adding MongoDB in equation	 400

Table of Contents

[vi]

Handling ViewExpiredException	 403
Server-state serialization in a session	 406

JSF 2.2 is stateless	 407
The view scoped beans and the stateless feature	 409
Detecting stateless views programmatically	 411

JSF security notes	 411
Cross-site request forgery (CSRF)	 412
Cross-site scripting (XSS)	 412
SQL injection	 412

Summary	 413
Chapter 10: JSF Custom Components	 415

Building noncomposite custom components	 416
Writing a custom tag handler	 419
Dissecting a custom component	 420

Custom component implementation	 423
Building composite components	 433

Developing the Temperature composite component	 436
Transforming a jQuery component into composite component	 440
Writing the HTML5 date picker as a composite component	 446
Decorating an image with actions	 450
Working with composite facets	 452
Validating/converting inputs inside composite components	 454
Checking the presence of an attribute	 456
Composite components' pitfalls	 456

Null values within a composite component's attributes	 456
Hiding pass-through attributes in composite components	 457

Counting the children of a composite component	 459
Top-level component's pitfall	 460

Distributing composite components as JARs in JSF 2.2	 461
Adding composite components programmatically	 463

Summary	 465
Chapter 11: JSF 2.2 Resource Library Contracts – Themes	 467

Working with contracts	 468
Styling tables with contracts	 471
Styling UI components with contracts	 474
Styling contracts across different devices	 476
Writing contracts for composite components	 481
Writing a theme switcher	 483
Configuring contracts in XML	 491
Packaging contracts in JARs	 492
Summary	 493

Table of Contents

[vii]

Chapter 12: Facelets Templating	 495
A brief overview of the Facelets tags	 495
Creating a simple template – PageLayout	 498
Passing parameters via <ui:param>	 501
Passing bean properties and action methods via <ui:param>	 503
Exploiting the <ui:decorate> and <ui:fragment> tags	 505
Iterating with <ui:repeat>	 508
Working with <ui:include> and <f:viewParam>	 511
Working with <ui:include> and <ui:param>	 513
Debugging with <ui:debug>	 516
Removing the content with <ui:remove>	 516
Using the jsfc attribute	 518
Extending the PageLayout template	 519
Facelets' programmatic aspects	 524

FaceletFactory considerations	 524
Working with FaceletCache	 524
ResourceResolver swallowed by ResourceHandler	 527
Include Facelets programmatically	 531
Creating a TagHandler class	 532
Writing custom Facelets taglib functions	 534

Facelets pitfalls	 536
AJAX and <ui:repeat>	 536
Exemplifying <c:if> versus <ui:fragment>	 537
Exemplifying <c:forEach> versus <ui:repeat>	 538

Summary	 539
Appendix: The JSF Life Cycle	 541
Index	 543

Preface
This book will cover all the important aspects (Big Ticket features) involved in
developing JSF 2.2 applications. It provides clear instructions for getting the most
out of JSF 2.2 and offers many exercises (more than 300 complete applications) to
build impressive JSF-based web applications.

We start off with a chapter about Expression Language (EL) and cover the
most important aspects of EL 2.2 and EL 3.0. We continue with a comprehensive
dissertation about communication in JSF, followed by an exciting chapter about
JSF 2.2 scopes. At this point, we bring into discussion most of the JSF artifacts and
configurations. Further, we start a suite of very interesting topics, such as HTML5
and AJAX. After that we dissect the JSF view state concept and learn how to deal
with this delicate JSF topic. Furthermore, we will discuss in detail about custom
components and composite components. After this, we will talk about library
contracts (themes) of JSF 2.2 resources. Finally, the last chapter will fortify your
knowledge about JSF 2.2 Facelets.

What this book covers
Chapter 1, Dynamic Access to JSF Application Data through Expression Language (EL 3.0),
covers the main aspects of Expression Language (EL). We will cover EL 2.2 and EL
3.0, including new operators, lambda expressions, and collection object support.

Chapter 2, Communication in JSF, represents a dissection of JSF mechanisms used
for ensuring communication between JSF artifacts. Therefore, we will cover context
parameters, request parameters, JSF 2.2 actions on GET requests (view actions),
and more.

Preface

[2]

Chapter 3, JSF Scopes – Lifespan and Use in Managed Beans Communication, teaches you
to distinguish between the bad and good practices of using JSF and CDI scopes. We
will discuss JSF scopes versus CDI scopes, request, session, view scope (including the
new JSF 2.2 view scope), application, conversation scope, JSF 2.2 flow scope in detail
(Big Ticket feature), and more.

Chapter 4, JSF Configurations Using XML Files and Annotations – Part 1, depicts the
JSF artifact's configuration aspects in a learning-by-example fashion. Configuring
JSF artifacts in the faces-config.xml file is pretty straightforward and boring,
but if we take each artifact and exploit its potential in several use cases, then things
become much more interesting.

Chapter 5, JSF Configurations Using XML Files and Annotations – Part 2, acts as a
continuation of the previous chapter. Here, we will discuss configuring resource
handlers (JSF 2.2's new javax.faces.WEBAPP_RESOURCES_DIRECTORY context
parameter), configuring flash (JSF 2.2 FlashFactory, FlashWrapper, and flash
system events), JSF 2.2 Window ID API, the injection mechanism (which, starting
with JSF 2.2, is possible in most JSF artifacts), and more.

Chapter 6, Working with Tabular Data, pays tribute to the <h:dataTable> tag.
Here, we will focus on the JSF 2.2 CollectionDataModel API (which supports the
Collection interface in UIData). Moreover, we will learn about table pagination,
deleting/editing/updating table rows, filtering, and styling JSF tables.

Chapter 7, JSF and AJAX, exploits the JSF 2.2 delay attribute for queue control of
AJAX requests. It discusses how to reset value attributes using JSF 2.2 (input fields
can be updated with AJAX after a validation error), AJAX and JSF 2.2 flow scope,
how to customize AJAX script, and more. This is a classic chapter in almost any
JSF book.

Chapter 8, JSF 2.2 – HTML5 and Upload, divides the topic into two parts. The first part
is entirely dedicated to the Big Ticket feature, HTML5, and JSF 2.2 (pass-through
attributes and elements). The second part is dedicated to JSF 2.2's new upload
component, <h:inputFile>.

Chapter 9, JSF State Management, provides a detailed dissertation about the JSF view
state. The headings of this chapter will refer to JSF's saving view state (including
JSF 2.2 case insensitivity for state saving method and standardized server state
serialization) and JSF 2.2 stateless view (Big Ticket feature).

Chapter 10, JSF Custom Components, is another example of a classic chapter in
any JSF book. Obviously, the main topics are meant to shape the custom and
composite components creation. We will focus on developing several kinds of
components based on the new JSF 2.2 approach (Facelet's component tag can be
declared via annotation).

Preface

[3]

Chapter 11, JSF 2.2 Resource Library Contracts – Themes, dedicates itself to the new
JSF 2.2 Resource Library Contracts feature (Big Ticket feature). You will learn how
to work with contracts, style JSF tables and UI components using contracts, style
contracts across different kind of devices, and more.

Chapter 12, Facelets Templating, depicts the viral aspects of Facelets templating.
We will focus on the declarative and programmatical aspects of Facelets.

Appendix, The JSF Life Cycle, covers a diagram of the different JSF phases.

What you need for this book
In order to run the applications in this book, you will need the following
software applications:

•	 NetBeans IDE (preferred version is 8.0, or later)
•	 GlassFish 4.0
•	 JSF Mojarra 2.2.6 (preferred) / MyFaces 2.2.2

Who this book is for
This book is a perfect symbiosis between JSF 2.0 and 2.2. It is dedicated to JSF
developers who have previous experience and want to upgrade their knowledge
to the new JSF 2.2. By fortifying your knowledge on JSF 2.0 and adding the power
of JSF 2.2, you will soon become a JSF expert.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "For example, in the following example, you call a method named
firstLambdaAction—the lambda expression is invoked from this method."

A block of code is set as follows:

<ui:repeat value="#{get_sublist(myList, from, to)}" var="t">
 #{t}
</ui:repeat>

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<h:dataTable value="#{playersBean.dataArrayList}"
 binding="#{table}" var="t">

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When
the Login button is clicked, JSF will call the playerLogin method."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Dynamic Access to
JSF Application Data

through Expression
Language (EL 3.0)

Java Expression Language (EL) is a compact and powerful mechanism that enables
dynamic communication in JSP and JSF-based applications (including development
frameworks based on JSF such as PrimeFaces, ICEfaces, and RichFaces); we embed
expressions in the presentation layer to communicate with the application logic
layer. EL provides bidirectional communication, which means that we can expose
application logic data to the user, but we also can submit user data to be processes.
Generically speaking, EL can be used to populate HTTP requests with user data,
to extract and expose data from HTTP responses, to update HTML DOM, to
conditionally process data, and much more.

Commonly, EL expressions will be present in JSP and JSF pages, but
they can also appear outside, in faces-config.xml, for example.

In this chapter, you will see how to use EL in web pages to communicate with
managed beans, which is the most common case in JSF applications. We will
cover the following topics:

•	 EL syntax, operators, and reserved words
•	 EL immediate and deferred evaluation

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[8]

•	 EL value and method expressions
•	 The conditional text in JSF
•	 Write a custom EL resolver

EL syntax
In this section, you can see an overview of the main aspects of EL 2.2 and 3.0 syntax.
EL supports a handful of operators and reserved words. Each of these are quickly
described in the following section (more details are in the EL specification document
(http://download.oracle.com/otndocs/jcp/el-3_0-fr-eval-spec/index.html)).

EL operators
EL supports the following categories of operators—arithmetic, relational, logical,
conditional, empty and added starting with EL 3.0, string concatenation, assignment
and semicolon operators:

Textuals Description Symbols
A + B Addition +

A - B Subtraction -

A * B Multiplication *

A {div, /} B Arithmetic operator division /, div

A {mod, %} B Arithmetic operator modulo %, mod

A {and, &&} B Logical AND &&, and

A {or, ||} B Logical OR ||, or
{not, !} A Logical opposite !, not

A {lt, <} B Relational less than <, lt
A {gt, >} B Relational greater than >, gt
A {le, <=} B Relational less than or equal to <=, le
A {ge, >=} B Relational greater than or equal to >=, ge
A {eq, ==} B Equal to ==, eq
A {ne, !=} B Not equal to !=, ne

A = B Assignment (EL 3.0) =

A ; B Semicolon (EL 3.0) ;

A += B String concatenation (EL 3.0) +=

A -> B Lambda expression (EL 3.0) ->

Chapter 1

[9]

Textuals Description Symbols
empty A Determine whether a value is null or empty
A ? B : C Evaluates B or C, depending on the result of the evaluation

of A. Known as the ternary operator.
?:

Used when writing EL expressions .

Used when writing EL expressions []

EL precedence of operators
Conforming to EL specification, the precedence of operators from the highest to
lowest, left to right is as follows:

•	 [].

•	 () (used to change the precedence of operators)
•	 - (unary) not ! empty
•	 * / div % mod

•	 + - (binary)
•	 +=

•	 < > <= >= lt gt le ge

•	 == != eq ne

•	 && and

•	 || or

•	 ? :
•	 -> (lambda expression)
•	 =

•	 ;

EL reserved words
EL defines the following reserved words:

•	 and, or, not, eq, ne, lt, gt, le, ge, true (Boolean literal), false
(Boolean literal), null, instanceof (a Java keyword to do a class
comparison between objects), empty, div, and mod

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[10]

EL immediate and deferred evaluation
EL evaluates expressions as immediate or deferred.

Immediate evaluation returns the result as soon as the page is first rendered. These
kinds of expressions are read-only value expressions and they can be present only in
tags that accept runtime expressions. They are easy to recognize after the ${} notation.
Usually, they are used for arithmetic and logical operations in JSP pages.

Deferred evaluation can return the result at different phases of a page's life cycle
depending on the technology that is using the expression. JSF can evaluate the
expression at different phases of the life cycle (for example, during the rendering
and postback phase), depending on how the expression is being used in the page.
These kind of expressions can be value and method expressions, and they are
marked by the #{} notation.

In Facelets, ${} and #{} act the same.

EL value expressions
Value expressions are probably used the most, and they refer to objects and their
properties and attributes. Such expressions are dynamically used to evaluate results
or set bean properties at runtime. Through value expressions, you can easily access
JavaBeans components, collections, and Java SE enumerated types. Moreover, EL
provides a set of implicit objects that can be used to get attributes from different
scopes and parameter values. Furthermore, you will see how EL deals with each of
these objects.

Value expressions that can read data, but cannot write it are known
as rvalue (${} expressions are always rvalue), while those that can
read and write data are known as lvalue (#{} expressions can be
rvalue and/or lvalue).

Referencing a managed bean
Referencing a managed bean is not exactly a useful example, but it is a good point to
start. Most commonly, your managed bean will look like the following code (in this
case, the bean's class name is PlayersBean):

@ManagedBean
//some scope

Chapter 1

[11]

public class PlayersBean{
...
}

Or, in the CDI version, your managed bean will be as follows:

@Named
//some scope
public class PlayersBean{
...
}

Or, with an explicit name, your managed bean will be as follows:

@ManagedBean(name = "myPlayersBean")
//some scope
public class PlayersBean{
...
}

@Named(value = "myPlayersBean")
//some scope
public class PlayersBean{
...
}

Now, for the first two examples, EL refers to the PlayersBean managed bean, like
this—the name is obtained from taking the unqualified class name portion of the
fully qualified class name and converting the first character to lowercase as follows:

#{playersBean}

In addition, for the next two examples, EL uses the explicit name as follows:

#{myPlayersBean}

You should use CDI beans whenever possible since they are
more flexible than JSF managed beans, and because annotations
from javax.faces.bean will be deprecated in a future JSF
version. Therefore, the CDI ones are recommended.

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[12]

When the referenced managed bean cannot be found in any scope, a null value will
be returned.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Referencing a managed bean's properties
As is commonly known, managed beans usually contain private fields, which are
accessible through getter and setter methods as bean properties, and some public
methods that exploits these properties to serve different logic tasks.

EL expressions that can access these properties contain the dot or square brackets
notation, []. For example, let's suppose that the PlayersBean managed bean
contains two fields defined like the following lines:

private String playerName = "Rafael";
private String playerSurname = "Nadal";

EL can access these fields through their getter methods; therefore, you need to define
them as shown in the following code:

public String getPlayerName() {
 return playerName;
}
public String getPlayerSurname() {
 return playerSurname;
}

Now, an expression that accesses the playerName property can use the dot
notation (.) to refer it, as shown in the following line of code:

#{playersBean.playerName}

Alternatively, this expression can use the square brackets notation, [], as shown in
the following line of code:

#{playersBean['playerName']}

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[13]

JSF evaluates this expression from left to right. First, it searches for
playersBean in all available scopes (such as request, session, and
application). Then, the bean is instantiated and the getPlayerName/
getPlayerSurname getter methods are called (in the case of Boolean
properties, the getter method will be named as isXXX).When you are
using the [] notation, you can use simple or double quotes. Just remember
to alternate them correctly in cases like the following quotations.

An incorrect quotation (you cannot use double quotes inside double quotes) is:

<h:outputText value="#{playersBean["playerName"]}"/>

An incorrect quotation (you cannot use simple quotes inside simple quotes) is:

<h:outputText value='#{playersBean['playerName']}'/>

A correct quotation (you can use simple quotes in double quotes) is:

<h:outputText value="#{playersBean['playerName']}"/>

A correct quotation (you can use double quotes in simple quotes) is:

<h:outputText value='#{playersBean["playerName"]}'/>

Referencing a managed bean's nested
properties
Usually, managed beans use nested properties. Such properties can be accessed by
EL using the . and [] notations multiple times in the same expression.

For example, the PlayersBean managed bean may represent general data about
tennis players, such as name, surname, titles, and finals. More detailed information,
such as birthday, birthplace, height, and weight can be represented through a
different class named PlayersDetails. Now, the PlayersBean managed bean
contains a field of type PlayersDetails, which means that birthday, birthplace, and
so on become nested properties of PlayersBean. Speaking in code lines, the relevant
part of the PlayersDetails class is as follows:

public class PlayerDetails {

 private Date birthday;
 private String birthplace;
 ...

 public Date getBirthday() {
 return birthday;

www.allitebooks.com

http://www.allitebooks.org

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[14]

 }

 public String getBirthplace() {
 return birthplace;
 }
 ...
}

The managed bean of the PlayersBean class is as follows:

@Named
public class PlayersBean{

 private String playerName = "Rafael";
 private String playerSurname = "Nadal";
 private PlayerDetails playerDetails;

 public String getPlayerName() {
 return playerName;
 }

 public String getPlayerSurname() {
 return playerSurname;
 }

 public PlayerDetails getPlayerDetails() {
 return playerDetails;
 }
 ...
}

You already know how to call the playerName and playerSurname properties using
the . and [] notations. Next, you can use the same notations to access the birthday
and birthplace nested properties, as shown in the following code:

#{playersBean.playerDetails.birthday}
#{playersBean.playerDetails.birthplace}

#{playersBean['playerDetails']['birthday']}
#{playersBean['playerDetails']['birthplace']}

Chapter 1

[15]

Or, you can use both notations in the same expressions, as shown in the following code:

#{playersBean.playerDetails['birthday']}
#{playersBean.playerDetails['birthplace']}

#{playersBean['playerDetails'].birthday}
#{playersBean['playerDetails'].birthplace}

Of course, the PlayerDetails class can contain its own nested properties and so.
In this case, just use the . and [] notations to get deeper in the hierarchy of objects
until you reach the desired property.

In the preceding expressions, JSF search for playersBean in all the available scopes
(request, session, application, and so on) and obtain an instance of it. Afterwards, it
calls the getPlayerDetails method and the getBirthday method on result of the
getPlayerDetails method (and the same for the birthplace property).

Referencing Java SE enumerated types
EL can access Java SE enumerated types using a String literal. For example, let's
have an enumerated type defined in PlayersBean, as shown in the following code:

public enum Plays {
 Left, Right
};

private Plays play;
...
play = Plays.Left;//initialization can be done in constructor
...
public Plays getPlay() {
 return play;
}
...

You can easily output the play value as shown in the following line of code:

#{playersBean.play}

To refer to the Plays constant, Plays.Left, with an expression, use the String
literal Left (or Right for Plays.Right), for example, you can test whether play
is Left or Right, as shown in the following code:

#{playersBean.play == 'Left'} //return true
#{playersBean.play == 'Right'}//return false

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[16]

Referencing collections
Collection items (arrays, lists, maps, sets, and so on) can be accessed from EL
expressions by specifying a literal value that can be converted to an integer
or the [] notation with an integer and without quotes.

For example, let's suppose that the PlayersBean managed bean contains an array
named titles_2013 that keeps the titles won by a player in 2013. The array is
defined as shown in the following code:

private String[] titles_2013 = {"Sao Paulo", "Acapulco", "ATP
 World Tour Masters 1000 Indian Wells", "Barcelona", ...};
...
public String[] getTitles_2013() {
 return titles_2013;
}

Now, you can access the first title from the array by specifying its position in array,
which is 0:

#{playersBean.titles_2013[0]}

This is equivalent in Java to getting or setting the value for titles_2013[0].

However, sometimes you need to iterate over the array instead of accessing a specific
item. This can be easily accomplished with the c:forEach JSTL tag (http://www.
oracle.com/technetwork/java/index-jsp-135995.html). The following code
snippet iterates over the titles_2013 array and outputs each item (this is a pretty
uncommon usage, so do not try it in production):

<c:forEach begin="0"
 end="${fn:length(playersBean.titles_2013)-1}"
 var="i">
 #{playersBean.titles_2013[i]},
</c:forEach>

You can simplify it as shown in the following code:

<c:forEach var="title" items="#{playersBean.titles_2013}">
 <i>#{title}</i>,
</c:forEach>

You can also use the <ui:repeat> tag as shown in the following code:

<ui:repeat var="title" value="#{playersBean.titles_2013}">
 <i>#{title}</i>,
</ui:repeat>

http://www.oracle.com/technetwork/java/index-jsp-135995.html
http://www.oracle.com/technetwork/java/index-jsp-135995.html

Chapter 1

[17]

This tag is detailed in Chapter 12, Facelets Templating, in the Iterating with
<ui:repeat> section.

You can use the same approach for every List. For example, in the case of List, the
expression #{playersBean.titles_2013[0]} is equivalent in Java to titles_2013.
get(0) and titles_2013.set(0, some_value).

In the case of collections of type key-value (for example, Map), the EL expressions
obtain items by key. For example, let's add a Map in PlayersBean that stores some
match facts of a player. It can be defined as shown in the following code:

private Map<String, String> matchfacts = new HashMap<>();
...
matchfacts.put("Aces", "12");
matchfacts.put("Double Faults", "2");
matchfacts.put("1st Serve", "70%");
...

public Map<String, String> getMatchfacts() {
 return matchfacts;
}

Now, an EL expression that accesses the item with the key Aces can be written like
the following line of code:

#{playersBean.matchfacts.Aces}

Notice that this approach is not supported on arrays or lists. For example,
#{playersBean.titles_2013.0} is not correct.

When the key is not an acceptable variable name (for example, Double Faults), you
need to use brackets and quotes, as shown in the following code:

#{playersBean.matchfacts["Double Faults"]}

EL implicit objects
JSF provides several objects related to the current request and environment. EL
exposes these objects (known as implicit objects) that can be accessed at runtime
in a Facelet, servlets, or backing bean—these objects are accessible through value
expressions and are managed by the container. For each expression, EL first checks
if the value of the base is one of these implicit objects, and, if it is not, then it will
check beans in progressively wider scopes (from request to view, and finally to
application scope).

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[18]

In EL, the part of the expression before the dot or the square bracket
is named base and it usually indicates where the bean instances
should be located. The part after the first dot, or the square bracket,
is called a property and is recursively cracked in smaller parts,
which represents the bean's properties to get from the base.

You can see a short overview of these objects in the following table:

Implicit object EL Type Description
#{application} ServletContext

or
PortletContext

This is an instance of ServletContext
or PortletContext.

#{facesContext} FacesContext This is an instance of FacesContext.
#{initParam} Map This is the context initialization

parameter map returned by
getInitParameterMap.

#{session} HttpSession or
PortletSession

This is an instance of HttpSession or
PortletSession.

#{view} UIViewRoot This is the current UIViewRoot (the
root of the UIComponent tree).

#{component} UIComponent This is the current UIComponent.
#{cc} UIComponent This is the composite component

currently being processed.
#{request} ServletRequest

or
PortletRequest

This is an instance of ServletRequest
or PortletRequest.

#{applicationScope} Map This is a map to store application-scoped
data returned by getApplicationMap.

#{sessionScope} Map This is a map to store session-scoped
data returned by getSessionMap.

#{viewScope} Map This is a map to store current view
scoped data returned by getViewMap.

#{requestScope} Map This is a map to store request-scoped
data returned by getRequestMap.

#{flowScope} Map This is a map to store flow-scoped
data returned by facesContext.
getApplication().
getFlowHandler().
getCurrentFlowScope().

Chapter 1

[19]

Implicit object EL Type Description
#{flash} Map This is a map that contains values

present only on the "next" request.
#{param} Map This is a map view of all the

query parameters for this
request. It is returned by
getRequestParameterMap.

#{paramValues} Map This is the request parameter
value map returned by
getRequestParameterValuesMap.

#{header} Map This is a map view of all the HTTP
headers for this request returned by
getRequestHeaderMap.

#{headerValue} Map This is the request header
values map returned by
getRequestHeaderValuesMap. Each
value in the map is an array of strings
that contains all the values for that key.

#{cookie} Map This is a map view of values in the
HTTP Set-Cookie header returned by
getRequestCookieMap.

#{resource} Resource This is a JSF resource identifier to a
concrete resource URL.

EL method expressions
With EL expressions, we can call arbitrary static and public methods that live on the
server side in managed beans. Such expressions are usually present in tag's attributes
(that is, inside an action or actionListener attribute) and must use the deferred
evaluation syntax since a method can be called during different phases of the life
cycle. Commonly, methods are called to respond with actions to different kinds of
events and for autopages navigation.

Let's see some examples of calling bean methods using EL (all methods were defined
in the PlayersBean managed bean):

•	 Calling the vamosRafa_1 void bean method with no arguments, as shown in
the following code:
public void vamosRafa_1(){
 System.out.println("Vamos Rafa!");
}

#{playersBean.vamosRafa_1()}

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[20]

•	 Calling the vamosRafa_2 bean method with no arguments. It returns a string,
as shown in the following code:
public String vamosRafa_2() {
 return "Vamos Rafa!";
}

#{playersBean.vamosRafa_2()}

The returned string, Vamos Rafa!, can be displayed on the web page or
used for other purposes. In other words, the expression will be evaluated
to this string.

•	 Calling the vamosRafa_3 bean method with one argument. It returns void,
as shown in the following code:
public void vamosRafa_3(String text) {
 System.out.println(text);
}

#{playersBean.vamosRafa_3('Vamos Rafa!')}

Notice that the String arguments are passed by using quotes.

The String constants are passed between simple or
double quotes!

•	 Calling the vamosRafa_4 bean method with two arguments. It returns a
string, as shown in the following code:
public String vamosRafa_4(String name, String surname) {
 return "Vamos " + name + " " + surname + "!";
}

#{playersBean.vamosRafa_4(playersBean.playerName,
 playersBean.playerSurname)}

The expression will be evaluated to the string, Vamos Rafael Nadal!.

•	 Calling the vamosRafa_5 bean method for autonavigation. First, define the
method in the managed bean to return a view (outcome) name (vamos is the
view name for the vamos.xhtml file), as shown in the following code:
public String vamosRafa_5(){
 return "vamos";
}

Chapter 1

[21]

Furthermore, extract the view name in the action attribute of any JSF UI component
as shown in the following code:

<h:form>
 <h:commandButton action="#{playersBean.vamosRafa_5()}"
 value="Vamos ..." />
</h:form>

Now, when the button labeled Vamos... is clicked, JSF will resolve the view name,
vamos, to the vamos.xhtml file. Moreover, JSF will look for the vamos.xhtml file in
the current directory and will navigate to it. Commonly, these navigation methods
are used for conditional navigation between JSF pages.

We have used parentheses to call a method, even when the
method doesn't contain arguments. A special case is represented
by the methods that contain an ActionEvent argument. These
methods should be called without parentheses, except in the case
when you override the ActionEvent argument altogether by
passing and specifying custom argument(s).

EL expressions can also be used inside JavaScript function calls. For example, when
you want to pass bean properties to a JavaScript function, you need to place them
between quotes, as shown in the following code:

<h:form>
 <h:commandButton type="button" value="Click Me!"
 onclick="infoJS('#{playersBean.playerName}',
 '#{playersBean.playerSurname}')"/>
</h:form>

The JavaScript function for this is shown in the following code:

<script type="text/javascript">
 function infoJS(name, surname) {
 alert("Name: " + name + " Surname: " + surname);
 }
</script>

The conditional text in JSF
When you need to output the conditional text (without the HTML content), you can
use the EL ternary operator, which has the following syntax:

boolean_test ? result_for_true : result_for_false

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[22]

For example, you can use this operator to select between two CSS classes, as shown
in the following code:

.red { color:#cc0000; }

.blue { color: #0000cc; }

Now, you want to conditionally output a red or a blue text, as shown in the
following code:

<h:outputText styleClass="#{playersBean.play == 'Left' ? 'red':
 'blue'}" value="#{playersBean.play}"/>

So, if the value of play is Left, the text will be displayed using the red CSS class,
and if it is not Left, then the blue class will be used.

Keep in mind that the HTML content is not recommended
(for security reasons do not use escape="false"), and the
else part of the condition cannot be omitted.

For better understanding, let's look at another example. Remember that you
have iterated over the titles_2013 array and output each item as shown in
the following code:

<c:forEach var="title" items="#{playersBean.titles_2013}">
 <i>#{title}</i>,
</c:forEach>

Well, the output of this code will be something like the following screenshot:

Everything looks fine except the last comma, which should not appear since the US
Open term is the last item to display. You can easily fix this issue with the EL ternary
operator, as shown in the following code:

<c:forEach var="title" items="#{playersBean.titles_2013}"
 varStatus="v">
 <i>#{title}</i>
 #{v.last ? '':','}
</c:forEach>

Chapter 1

[23]

Sometimes you just need to show or hide text based on a condition. For this, you
can place a Boolean expression as the value of the rendered attribute (all JSF UI
components have this attribute). For example, the following line of code will output
a player's Facebook address only if such an address exists:

<h:outputText value="Facebook address: #{playersBean.facebook}"
 rendered="#{!empty playersBean.facebook}" />

Another common situation is to display or hide non-HTML text using two buttons
of type "Show something..." and "Hide something...". For example, you can have
a button labeled Show Career Prize Money and one labeled Hide Career Prize
Money. Obviously, you want to display the career prize money when the first button
is clicked and to hide the career prize money when the second button is clicked. For
this, you can use the rendered attribute, as shown in the following code:

<h:form id="prizeFormId">
 <h:commandButton value="Show Career Prize Money">
 <f:ajax render="rnprizeid"
 listener="#{playersBean.showPrizeMoney()}"/>
 </h:commandButton>
 <h:panelGrid id="rnprizeid">
 <h:outputText value="#{playersBean.prize}"
 rendered="#{playersBean.show_prize}">
 <f:convertNumber type="currency" currencySymbol="$" />
 </h:outputText>
 </h:panelGrid>
 <h:commandButton value="Hide Career Prize Money">
 <f:ajax render="rnprizeid"
 listener="#{playersBean.hidePrizeMoney()}"/>
 </h:commandButton>
</h:form>

Both the buttons use AJAX mechanism and an EL method expression to call the
showPrizeMoney and hidePrizeMoney methods. These methods just modify the
value of a boolean property, named show_prize, as shown in the following code:

private boolean show_prize = false;
...
public boolean isShow_prize() {
 return show_prize;
}
...
public void showPrizeMoney(){

www.allitebooks.com

http://www.allitebooks.org

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[24]

 this.show_prize = true;
}

public void hidePrizeMoney(){
 this.show_prize = false;
}

When the request is complete, JSF will re-render the panel grid component with the
ID rnprizeid; this was indicated in the render attribute of the f:ajax tag. As you
can see, the re-rendered component is a panel that contains a simple h:outputText
tag that outputs the prize property depending on the Boolean value of the EL
expression present in the rendered attribute, as shown in the following code:

private int prize = 60941937;
...
public int getPrize() {
 return prize;
}

Showing and hiding text can be useful, but not enough. Usually, we need to show or
hide the HTML content. For example, you may need to show or hide a picture:

This task can be easily accomplished by nesting the HTML code inside the
Facelets ui:fragment tag, which supports the rendered attribute, as shown
in the following code:

<ui:fragment rendered="#{playersBean.show_racquet}">
 <img src="#{resource['images:babolat.jpg']}" width="290"
 height="174"/>
</ui:fragment>

As you can see, the EL expression of the rendered attribute indicates a boolean
property of the PlayersBean managed bean, as shown in the following code:

private boolean show_racquet = false;
...
public boolean isShow_racquet() {
 return show_racquet;
}

Chapter 1

[25]

Now, you can let the user decide when to show or hide the image. You can easily
adapt the preceding example, with two buttons labeled Show Image and Hide
Image, or more elegant, you can use a checkbox, as shown in the following code:

...
<h:form>
 <h:selectBooleanCheckbox label="Show Image"
 valueChangeListener="#{playersBean.showHideRacquetPicture}">
 <f:ajax render="racquetId"/>
 </h:selectBooleanCheckbox>
 <h:panelGroup id="racquetId">
 <ui:fragment rendered="#{playersBean.show_racquet}">
 <img src="resources/images/babolat.jpg" width="290"
 height="174"/>
 </ui:fragment>
 </h:panelGroup>
</h:form>
...

The showHideRacquetPicture method sets the value of the show_racquet property
to true or false, depending on the checkbox status. After this method is executed,
JSF will re-render the content of the ui:fragment tag—this is accomplished via the
HTML content rendered by the <h:panelGroup> tag, because the <ui:fragment>
tag doesn't render the HTML content; therefore, it cannot be referenced by the ID.
The following is the code for the showHideRacquetPicture method:

public void showHideRacquetPicture(ValueChangeEvent e){
 if(e.getNewValue() == Boolean.TRUE){
 this.show_racquet=true;
 } else {
 this.show_racquet=false;
 }
}

So, we can conclude that the rendered attribute can be used to conditionally output
the HTML/non-HTML content. The user interaction and internal conditions can be
used to play with this attribute value.

The complete application is named ch1_1.

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[26]

Writing a custom EL resolver
EL flexibility can be tested by extending it with custom implicit variables,
properties, and method calls. This is possible if we extend the VariableResolver or
PropertyResolver class, or even better, the ELResolver class that give us flexibility
to reuse the same implementation for different tasks. The following are three simple
steps to add custom implicit variables:

1.	 Create your own class that extends the ELResolver class.
2.	 Implement the inherited abstract methods.
3.	 Add the ELResolver class in faces-config.xml.

Next, you will see how to add a custom implicit variable by extending EL based on
these steps. In this example, you want to retrieve a collection that contains the ATP
singles rankings using EL directly in your JSF page. The variable name used to access
the collection will be atp.

First, you need to create a class that extends the javax.el.ELResolver class. This is
very simple. The code for the ATPVarResolver class is as follows:

public class ATPVarResolver extends ELResolver {

 private static final Logger logger =
 Logger.getLogger(ATPVarResolver.class.getName());
 private static final String PLAYERS = "atp";
 private final Class<?> CONTENT = List.class;
...
}

Second, you need to implement six abstract methods:

•	 getValue: This method is defined in the following manner:
public abstract Object getValue(ELContext context,
 Object base, Object property)

This is the most important method of an ELResolver class. In the
implementation of the getValue method, you will return the ATP items if
the property requested is named atp. Therefore, the implementation will be
as follows:
@Override
public Object getValue(ELContext ctx, Object base,
 Object property) {

logger.log(Level.INFO, "Get Value property : {0}",
 property);

 if ((base == null) && property.equals(PLAYERS)) {

Chapter 1

[27]

 logger.log(Level.INFO, "Found request {0}", base);
 ctx.setPropertyResolved(true);
 List<String> values =
 ATPSinglesRankings.getSinglesRankings();
 return values;
 }
 return null;
}

•	 getType: This method is defined in the following manner:
public abstract Class<?> getType(ELContext context,
 Object base,Object property)

This method identifies the most general acceptable type for our property.
The scope of this method is to determine if a call of the setValue method
is safe without causing a ClassCastException to be thrown. Since we
return a collection, we can say that the general acceptable type is List.
The implementation of the getType method is as follows:
@Override
public Class<?> getType(ELContext ctx, Object base, Object
 property) {

 if (base != null) {
 return null;
 }

 if (property == null) {
 String message = MessageUtils.getExceptionMessageString
 (MessageUtils.NULL_PARAMETERS_ERROR_MESSAGE_ID,
 "property");
 throw new PropertyNotFoundException(message);
 }

 if ((base == null) && property.equals(PLAYERS)) {
 ctx.setPropertyResolved(true);
 return CONTENT;
 }
 return null;
}

•	 setValue: This method is defined in the following manner:
public abstract void setValue(ELContext context,
 Object base, Object property, Object value)

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[28]

This method tries to set the value for a given property and base. For
read-only variables, such as atp, you need to throw an exception of type
PropertyNotWritableException. The implementation of the setValue
method is as follows:
@Override
public void setValue(ELContext ctx, Object base,
 Object property, Object value) {

 if (base != null) {
 return;
 }

 ctx.setPropertyResolved(false);
 if (property == null) {
 String message =
 MessageUtils.getExceptionMessageString(MessageUtils.
 NULL_PARAMETERS_ERROR_MESSAGE_ID, "property");
 throw new PropertyNotFoundException(message);
 }

 if (PLAYERS.equals(property)) {
 throw new PropertyNotWritableException((String)
 property);
 }
}

•	 isReadOnly: This method is defined in the following manner:
public abstract boolean isReadOnly(ELContext context,
 Object base, Object property)

This method returns true if the variable is read-only and false
otherwise. Since the atp variable is read-only, the implementation
is obvious. This method is directly related to the setValue method,
meaning that it signals whether it is safe or not to call the setValue
method without getting PropertyNotWritableException as a response.
The implementation of the isReadOnly method is as follows:
@Override
public boolean isReadOnly(ELContext ctx, Object base,
 Object property) {
 return true;
}

Chapter 1

[29]

•	 getFeatureDescriptors: This method is defined in the following manner:
public abstract Iterator<FeatureDescriptor>
 getFeatureDescriptors(ELContext context, Object base

This method returns a set of information about the variables or
properties that can be resolved (commonly it is used by a design time
tool (for example, JDeveloper has such a tool) to allow code completion
of expressions). In this case, you can return null. The implementation
of the getFeatureDescriptors method is as follows:
@Override
public Iterator<FeatureDescriptor>
 getFeatureDescriptors(ELContext ctx, Object base) {
 return null;
}

•	 getCommonPropertyType: This method is defined in the following manner:
public abstract Class<?> getCommonPropertyType(ELContext
 context, Object base)

This method returns the most general type that this resolver accepts. The
implementation of the getCommonPropertyType method is as follows:
@Override
public Class<?> getCommonPropertyType(ELContext ctx,
 Object base) {
 if (base != null) {
 return null;
 }
 return String.class;
}

How do you know if the ELResolver class acts as a
VariableResolver class (these two classes are deprecated in JSF
2.2) or as a PropertyResolver class? The answer lies in the first
part of the expression (known as the base argument), which in our
case is null (the base is before the first dot or the square bracket,
while property is after this dot or the square bracket). When the
base is null, the ELresolver class acts as a VariableResolver
class; otherwise, it acts as a PropertyResolver class.

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[30]

The getSinglesRankings method (that populates the collection) is called from the
getValue method, and is defined in the following ATPSinglesRankings class:

public class ATPSinglesRankings {

 public static List<String> getSinglesRankings(){

 List<String> atp_ranking= new ArrayList<>();

 atp_ranking.add("1 Nadal, Rafael (ESP)");
 ...

 return atp_ranking;
 }
}

Third, you register the custom ELResolver class in faces-config.xml using the
<el-resolver> tag and specifying the fully qualified name of the corresponding
class. In other words, you add the ELResolver class in the chain of responsibility,
which represents the pattern used by JSF to deal with ELResolvers:

<application>
 <el-resolver>book.beans.ATPVarResolver</el-resolver>
</application>

Each time an expression needs to be resolved, JSF will call the
default expression language resolver implementation. Each value
expression is evaluated behind the scenes by the getValue method.
When the <el-resolver> tag is present, the custom resolver
is added in the chain of responsibility. The EL implementation
manages a chain of resolver instances for different types of
expression elements. For each part of an expression, EL will traverse
the chain until it finds a resolver capable to resolve that part. The
resolver capable of dealing with that part will pass true to the
setPropertyResolved method; this method acts as a flag at the
ELContext level.
Furthermore, EL implementation checks, after each resolver call, the
value of this flag via the getPropertyResolved method. When
the flag is true, EL implementation will repeat the process for the
next part of the expression.

Chapter 1

[31]

Done! Next, you can simply output the collection items in a data table, as shown in
the following code:

<h:dataTable id="atpTableId" value="#{atp}" var="t">
 <h:column>
 #{t}
 </h:column>
</h:dataTable>

Well, so far so good! Now, our custom EL resolver returns the plain list of ATP
rankings. But, what can we do if we need the list items in the reverse order, or to
have the items in uppercase, or to obtain a random list? The answer could consist
in adapting the preceding EL resolver to this situation.

First, you need to modify the getValue method. At this moment, it returns List, but
you need to obtain an instance of the ATPSinglesRankings class. Therefore, modify
it as shown in the following code:

public Object getValue(ELContext ctx, Object base,
 Object property) {

 if ((base == null) && property.equals(PLAYERS)) {
 ctx.setPropertyResolved(true);
 return new ATPSinglesRankings();
 }
 return null;
}

Moreover, you need to redefine the CONTENT constant accordingly as shown in the
following line of code:

private final Class<?> CONTENT = ATPSinglesRankings.class;

Next, the ATPSinglesRankings class can contain a method for each case, as shown
in the following code:

public class ATPSinglesRankings {

 public List<String> getSinglesRankings(){

 List<String> atp_ranking= new ArrayList<>();

 atp_ranking.add("1 Nadal, Rafael (ESP)");
 ...

 return atp_ranking;

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[32]

 }

 public List<String> getSinglesRankingsReversed(){

 List<String> atp_ranking= new ArrayList<>();

 atp_ranking.add("5 Del Potro, Juan Martin (ARG)");
 atp_ranking.add("4 Murray, Andy (GBR)");
 ...

 return atp_ranking;
 }

 public List<String> getSinglesRankingsUpperCase(){

 List<String> atp_ranking= new ArrayList<>();

 atp_ranking.add("5 Del Potro, Juan Martin
 (ARG)".toUpperCase());
 atp_ranking.add("4 Murray, Andy (GBR)".toUpperCase());
 ...

 return atp_ranking;
 }
...
}

Since the EL resolver returns an instance of the ATPSinglesRankings class
in the getValue method, you can easily call the getSinglesRankings,
getSinglesRankingsReversed, and getSinglesRankingsUpperCase
methods directly from your EL expressions, as shown in the following code:

Ordered:

<h:dataTable id="atpTableId1"
 value="#{atp.singlesRankings}"
 var="t">
 <h:column>#{t}</h:column>
</h:dataTable>

Reversed:

<h:dataTable id="atpTableId2"
 value="#{atp.singlesRankingsReversed}"
 var="t">
 <h:column>#{t}</h:column>
</h:dataTable>

UpperCase:

Chapter 1

[33]

<h:dataTable id="atpTableId3"
 value="#{atp.singlesRankingsUpperCase}" var="t">
 <h:column>#{t}</h:column>
</h:dataTable>

The complete applications to demonstrate custom ELResolvers are available in the
code bundle of this chapter and are named ch1_2 and ch1_3.

In order to develop the last example of writing a custom resolver, let's imagine the
following scenario: we want to access the ELContext object as an implicit object, by
writing #{elContext} instead of #{facesContext.ELContext}. For this, we can use
the knowledge accumulated from the previous two examples to write the following
custom resolver:

public class ELContextResolver extends ELResolver {

 private static final String EL_CONTEXT_NAME = "elContext";

 @Override
 public Class<?> getCommonPropertyType(ELContext ctx,
 Object base){
 if (base != null) {
 return null;
 }
 return String.class;
 }

 @Override
 public Iterator<FeatureDescriptor>
 getFeatureDescriptors(ELContext ctx, Object base) {
 if (base != null) {
 return null;
 }
 ArrayList<FeatureDescriptor> list = new ArrayList<>(1);
 list.add(Util.getFeatureDescriptor("elContext", "elContext",
 "elContext", false, false, true,
 ELContext.class, Boolean.TRUE));
 return list.iterator();
 }

 @Override
 public Class<?> getType(ELContext ctx, Object base,
 Object property) {
 if (base != null) {
 return null;

www.allitebooks.com

http://www.allitebooks.org

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[34]

 }
 if (property == null) {
 String message =
 MessageUtils.getExceptionMessageString(MessageUtils.
 NULL_PARAMETERS_ERROR_MESSAGE_ID, "property");
 throw new PropertyNotFoundException(message);
 }
 if ((base == null) && property.equals(EL_CONTEXT_NAME)) {
 ctx.setPropertyResolved(true);
 }
 return null;
 }

 @Override
 public Object getValue(ELContext ctx, Object base,
 Object property) {

 if ((base == null) && property.equals(EL_CONTEXT_NAME)) {
 ctx.setPropertyResolved(true);
 FacesContext facesContext =
 FacesContext.getCurrentInstance();
 return facesContext.getELContext();
 }
 return null;
 }

 @Override
 public boolean isReadOnly(ELContext ctx, Object base,
 Object property) {
 if (base != null) {
 return false;
 }
 if (property == null) {
 String message =
 MessageUtils.getExceptionMessageString(MessageUtils.
 NULL_PARAMETERS_ERROR_MESSAGE_ID, "property");
 throw new PropertyNotFoundException(message);
 }
 if (EL_CONTEXT_NAME.equals(property)) {
 ctx.setPropertyResolved(true);
 return true;
 }
 return false;

Chapter 1

[35]

 }

 @Override
 public void setValue(ELContext ctx, Object base,
 Object property, Object value) {
 if (base != null) {
 return;
 }
 ctx.setPropertyResolved(false);
 if (property == null) {
 String message =
 MessageUtils.getExceptionMessageString(MessageUtils.
 NULL_PARAMETERS_ERROR_MESSAGE_ID, "property");
 throw new PropertyNotFoundException(message);
 }
 if (EL_CONTEXT_NAME.equals(property)) {
 throw new PropertyNotWritableException((String) property);
 }
 }
}

The complete application is named, ch1_6. The goal of these three examples was to
get you familiar with the main steps of writing a custom resolver. In Chapter 3, JSF
Scopes – Lifespan and Use in Managed Beans Communication, you will see how to write
a custom resolver for a custom scope.

EL 3.0 overview
EL 3.0 (JSR 341, part of Java EE 7) represents a major boost of EL 2.2. The main
features of EL 3.0 are as follows:

•	 New operators +, =, and ;
•	 Lambda expressions
•	 Collection objects support
•	 An API for standalone environments

In the upcoming sections, you will see how to use EL 3.0 features in JSF pages.

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[36]

Working with the assignment operator
In an expression of type, x = y, the assignment operator (=), assign the value of y
to x. In order to avoid an error of the kind PropertyNotWritableException, the x
value must be an lvalue. The following examples show you how to use this operator
in two simple expressions:

•	 #{x = 3} evaluates to 3
•	 #{y = x + 5} evaluates to 8

The assignment operator is right-associative (z = y = x is equivalent with
z = (y = x)). For example, #{z = y = x + 4} evaluates to 7.

Working with the string concatenation
operator
In an expression of type, x += y, the string concatenation operator (+=) returns the
concatenated string of x and y. For example:

•	 #{x += y} evaluates to 37
•	 #{0 += 0 +=0 += 1 += 1 += 0 += 0 += 0} evaluates to 00011000

In EL 2.2, you can do this using the following code:

#{'0'.concat(0).concat(0).concat(1).concat(1).
 concat(0).concat(0).concat(0)}

Working with the semicolon operator
In an expression of type, x; y, x is first evaluated, and its value is discarded. Next, y
is evaluated and its value is returned. For example, #‌{x = 5; y = 3; z = x + y}
evaluates to 8.

Exploring lambda expressions
A lambda expression can be disassembled in three main parts: parameters,
the lambda operator (->), and the function body.

Basically, in Java language, a lambda expression represents a method in an
anonymous implementation of a functional interface. In EL, a lambda expression is
reduced to an anonymous function that can be passed as an argument to a method.

Chapter 1

[37]

It is important to not confuse Java 8 lambda expressions with EL lambda expressions,
but in order to understand the next examples, it is important to know the fundamentals
of Java 8 lambda expressions (http://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html). They don't have the same syntax, but they are
similar enough to not cause notable discomfort when we need to switch between them.

An EL lambda expression is a parameterized ValueExpression object. The body of
an EL lambda expression is an EL expression. EL supports several kinds of lambda
expressions. The simplest type of EL lambda expressions are immediately invoked,
for example:

•	 #{(x->x+1)(3)} evaluates to 4
•	 #{((x,y,z)->x-y*z)(1,7,3)} evaluates to -20

Further, we have assigned lambda expressions. These are invoked indirectly.
For example, #‌{q = x->x+1; q(3)} evaluates to 4.

Indirectly, invocation can be used to write functions. For example, we can write a
function to calculate n mod m (without using the % operator). The following example
is evaluated to 3:

#‌{modulus = (n,m) -> m eq 0 ? 0 : (n lt m ? n: (modulus(n-m, m)));
 modulus(13,5)}

We can call this function from other expressions. For example, if we want to calculate
the greatest common divisor of two numbers, we can exploit the preceding function;
the following example is evaluated to 5:

#‌{gcd = (n,m) -> modulus(n,m) == 0 ? m: (gcd(m, modulus(n,m)));
 gcd(10, 15)}

Lambda expressions can be passed as arguments to methods. For example, in the
following example, you call a method named firstLambdaAction—the lambda
expression is invoked from this method:

#‌{lambdaBean.firstLambdaAction(modulus = (n,m) -> m eq 0 ? 0 :
 (n lt m ? n: (modulus(n-m, m))))}

Now, the firstLambdaAction method is as follows:

public Object firstLambdaAction(LambdaExpression lambdaExpression) {

 //useful in case of a custom ELContext
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[38]

 return lambdaExpression.invoke(elContext, 8, 3);

 //or simply, default ELContext:
 //return lambdaExpression.invoke(8, 3);
}

Another powerful feature of lambda expressions consists of nested lambda
expressions. For example (first, is evaluated the inner expression to 7, afterwards the
outer expression to as, 10 - 7): #‌{(x->x-((x,y)->(x+y))(4,3))(10)} evaluates to 3.

Do you think EL lambda expressions rocks? Well, get ready for more. The real power
is unleashed only when we bring collection objects into equations.

Working with collection objects
EL 3.0 provides powerful support to manipulate collection objects by applying
operations in a pipeline. The methods supporting the collection operations are
implemented as ELResolvers, and lambda expressions are indicated as arguments
for these methods.

The main idea behind manipulating collection objects is based on streams. More
precisely, the specific operations are accomplished as method calls to the stream of
elements obtained from the collection. Many operations return streams, which can
be used in other operations that return streams, and so on. In such a case, we can say
that we have a chain of streams or a pipeline. The entry in the pipeline is known as
the source, and the exit from the pipeline is known as the terminal operation (this
operation doesn't return a stream). Between the source and terminal operation, we
may have zero or more intermediate operations (all of them return streams).

The pipeline execution begins when the terminal operation starts. Because
intermediate operations are lazy evaluated, they don't preserve intermediate
results of the operations (an exception is the sorted operation, which needs
all the elements to sort tasks).

Now, let's see some examples. We begin by declaring a set, a list, and a map—EL
contains syntaxes to construct sets, lists, and maps dynamically as follows:

#‌{nr_set = {1,2,3,4,5,6,7,8,9,10}}
#‌{nr_list = [1,2,3,4,5,6,7,8,9,10]}
#‌{nr_map = {"one":1,"two":2,"three":3,"four":4,"five":5,"six":6,
 "seven":7,"eight":8,"nine":9,"ten":10}}

Chapter 1

[39]

Now, let's go a step further and sort the list in ascending/descending order. For this,
we use the stream, sorted (this is like the ORDER BY statement of SQL), and toList
methods (the latter returns a List that contains the elements of the source stream),
as shown in the following code:

#‌{nr_list.stream().sorted((i,j)->i-j).toList()}
#‌{ nr_list.stream().sorted((i,j)->j-i).toList()}

Further, let's say that we have the following list in a managed bean named LambdaBean:

List<Integer> costBeforeVAT = Arrays.asList(34, 2200, 1350, 430,
 57, 10000, 23, 15222, 1);

Next, we can apply 24 percent of VAT and compute the total for costs higher than
1,000 using the filter (this is like SQL's WHERE and GROUP BY statements), map (this
is like SQL's SELECT statement), and reduce (this is like the aggregate functions)
methods. These methods are used as follows:

#‌{(lambdaBean.costBeforeVAT.stream().filter((cost)-> cost gt
 1000).map((cost) -> cost + .24*cost)).reduce((sum, cost) ->
 sum + cost).get()}

These were just a few examples of using collection objects in EL 3.0. A complete
application named ch1_4 is available for download in the code bundle of this
chapter. Since, in this application you can see more than 70 examples, I recommend
you to take a look at it. Moreover, a nice example can be found on Michael Müller's
blog at http://blog.mueller-bruehl.de/web-development/using-lambda-
expressions-with-jsf-2-2/.

But, what if we want to take advantage of lambda expressions, but we don't like
to write such expressions? Well, a solution can be to write parameterized functions
based on lambda expressions, and call them in the JSTL style. For example, the
following function is capable of extracting a sublist of a List:

#{get_sublist = (list, left, right)->list.stream().substream(left,
 right).toList()}

Now, we can call it as shown in the following code:

<ui:repeat value="#{get_sublist(myList, from, to)}" var="t">
 #{t}
</ui:repeat>

In the complete application, named ch1_5, you can see a bunch of 21 parameterized
functions that can be used with Lists.

http://blog.mueller-bruehl.de/web-development/using-lambda-expressions-with-jsf-2-2/
http://blog.mueller-bruehl.de/web-development/using-lambda-expressions-with-jsf-2-2/

Dynamic Access to JSF Application Data through Expression Language (EL 3.0)

[40]

Summary
In this chapter, we saw that EL 2.2 expressions can be used to dynamically access
data (read and write) stored in JavaBeans components, to call arbitrary static and
public methods, and to perform arithmetic and logic operations. Finally, we saw that
EL allows us to extend its capabilities with custom resolvers. Starting with EL 3.0,
we can take advantage of new operators, lambda expressions, and support when
working with collection objects.

While reading this book, you will see many examples of EL expressions in real
cases. For example, in the next chapter, you will use EL expressions to explore
JSF communication capabilities.

See you in the next chapter, where we will discuss JSF communications.

Communication in JSF
Communication is the core of a JSF application, and is one of the main aspects that
dictate the architecture of such an application. Thinking of the big picture, you need
to identify—right from the start—the main parts and how they will communicate
with one another and with the end user. After selecting design patterns, drawing
the UML diagrams, and sketching the architecture and the application flow, it's
time to get to work and start implementing the communication pipes using forms,
parameters, arguments, values, pages, beans, and so on.

Fortunately, JSF provides many solutions for ensuring a powerful and flexible
communication layer between JSF components and also between JSF and XHTML
pages, the JavaScript code, and other third-party components. In this chapter, we
will cover the following topics:

•	 Using context parameters
•	 Passing request parameters with the <f:param> tag
•	 Working with view parameters
•	 Calling actions on GET requests
•	 Passing attributes with the <f:attribute> tag
•	 Setting property values via action listeners
•	 Passing parameters using the Flash scope
•	 Replacing the <f:param> tag with the JSTL <c:set> tag
•	 Sending data through cookies
•	 Working with hidden fields
•	 Sending passwords
•	 Accessing UI component attributes programmatically
•	 Passing parameters via method expressions
•	 Communicating via the binding attribute

Communication in JSF

[42]

Passing and getting parameters
As you will see in the next sections, JSF provides several approaches to pass/get
parameters to/from Facelets, managed beans, UI components, and so on.

Using context parameters
Context parameters are defined in the web.xml file using the <context-param>
tag. This tag allows two important children: <param-name>, which indicates the
parameter name, and <param-value>, which indicates the parameter value. For
example, a user-defined context parameter looks like the following code:

<context-param>
 <param-name>number.one.in.ATP</param-name>
 <param-value>Rafael Nadal</param-value>
</context-param>

Now, in a JSF page, you can access this parameter as shown in the following code:

<h:outputText value="#{initParam['number.one.in.ATP']}"/>
<h:outputText value="#{facesContext.externalContext.
 initParameterMap['number.one.in.ATP']}"/>

In a managed bean, the same context parameter can be accessed via the
getInitParameter method:

facesContext.getExternalContext().getInitParameter
 ("number.one.in.ATP");

The complete application is named ch2_27.

Passing request parameters with the
<f:param> tag
Sometimes, you need to pass parameters from a Facelet to a managed bean or to
another Facelet. In this case, you may need the <f:param> tag, which can be used
to add query string name-value pairs to a request, or put simply, to send request
parameters. Commonly, the <f:param> tag is used inside the <h:commandButton>
and <h:commandLink> tags for sending request parameters to a managed bean.
For example, the following snippet of code adds two parameters to the request
when the form is submitted. These parameters are accessed in the PlayersBean
bean; the first parameter is named playerNameParam and the second one is named
playerSurnameParam.

<h:form>
 Click to send name, 'Rafael' surname, 'Nadal', with f:param:

Chapter 2

[43]

 <h:commandButton value="Send Rafael Nadal"
 action="#{playersBean.parametersAction()}">
 <f:param id="playerName" name="playerNameParam" value="Rafael"/>
 <f:param id="playerSurname" name="playerSurnameParam"
 value="Nadal"/>
 </h:commandButton>
</h:form>

As you can see, when the button is clicked, the request parameters are sent
and the parametersAction method is called (via action or actionListener).
When the application flow reaches this method, the two request parameters
are already available for use. You can easily extract them inside this method
by accessing the request parameters map through the current FacesContext
instance as shown in the following code:

private String playerName;
private String playerSurname;
...
//getter and setter
...

public String parametersAction() {

 FacesContext fc = FacesContext.getCurrentInstance();
 Map<String, String> params =
 fc.getExternalContext().getRequestParameterMap();
 playerName = params.get("playerNameParam");
 playerSurname = params.get("playerSurnameParam");

 return "some_page";
}

The values of both the parameters are stored in the playerName and playerSurname
managed beans' properties (these can be modified further without affecting the original
parameters), but you can easily display the parameters' values using the param EL
reserved word in some_page (remember the EL implicit objects section of Chapter 1,
Dynamic Access to JSF Application Data through Expression Language (EL 3.0), which
explains that param is a predefined variable referring to the request parameter map):

Name: #{param.playerNameParam}
Surname: #{param.playerSurnameParam}

www.allitebooks.com

http://www.allitebooks.org

Communication in JSF

[44]

The <f:param> tag can also be used inside the <h:outputFormat> tag to substitute
message parameters; <f:param> is used to pass parameters to a UI component as
shown in the following code:

<h:outputFormat value="Name: {0} Surname: {1}">
 <f:param value="#{playersBean.playerName}" />
 <f:param value="#{playersBean.playerSurname}" />
</h:outputFormat>

The preceding code's output is as follows:

Name: Rafael Surname: Nadal

If you want to execute some initialization tasks (or something else)
after setting the managed bean properties but before an action method
is called (if it exists), then you can define a public void method
annotated with @PostConstruct. In this example, the init method
will be called before the parametersAction method, and the passed
request parameters are available through the request map.

The init method is shown in the following code:

@PostConstruct
public void init(){
 //do something with playerNameParam and playerSurnameParam
}

This example is wrapped into the application named ch2_1.

If you think that it is not a very convenient approach to access the request map in the
managed bean, then you can use @ManagedProperty, which sets the parameter as a
managed bean property and links its value to the request parameter:

@ManagedProperty(value = "#{param.playerNameParam}")
private String playerName;
@ManagedProperty(value = "#{param.playerSurnameParam}")
private String playerSurname;

The values are set immediately after the bean's construction and are available during
@PostConstruct, but keep in mind that @ManagedProperty is usable only with
beans managed by JSF (@ManagedBean), not with beans managed by CDI (@Named).

Chapter 2

[45]

This example is wrapped into the application named ch2_2 which is available in
the code bundle of this chapter. You may also be interested in the application
ch2_3, which is another example of using <f:param>, @ManagedProperty, and
@PostConstruct. In this example, the <h:commandButton> action indicates another
JSF page instead of a managed bean method.

The <f:param> tag can be used to pass request parameters directly between Facelets,
without involving a managed bean. Usually, this happens in the <h:link> tag, as
shown in the following code:

<h:link value="Send Rafael Nadal" outcome="result">
 <f:param id="playerName" name="playerNameParam" value="Rafael"/>
 <f:param id="playerSurname" name="playerSurnameParam"
 value="Nadal"/>
</h:link>

When the Send Rafael Nadal link is clicked, JSF will use the prepared URL
containing the result.xhtml file's resource name and the request parameters,
playerNameParam and playerSurnameParam. Both the parameters are displayed
in the result.xhtml file as follows:

Name: #{param.playerNameParam}
Surname: #{param.playerSurnameParam}

If you check the URL generated by the <h:link> tag in the browser address bar,
then you will see something like the following URL:

http://hostname/ch2_4/faces/result.xhtml?playerNameParam=Rafael&playerS
urnameParam=Nadal

This example is wrapped into the application named ch2_4. In that application,
you can also see an example using the <h:commandButton> tag. Notice that, in
this case, we need to wrap the <h:commandButton> tag in a <h:form> tag, which
is submitted using the POST request; therefore, the request parameters are not
visible in the URL anymore.

The <f:param> tag cannot be fortified with declarative/imperative
validations and/or conversions. You need to accomplish this task
by yourself.
Do not try to place the <f:param> tag inside the <h:inputText>
tag or any other input component. That will simply not work.

Communication in JSF

[46]

Working with view parameters
Starting with JSF 2.0, we can use a new category of parameters, known as view
parameters. These kinds of parameters are implemented by the UIViewParameter
class (that extends the UIInput class) and are defined in Facelets using the
<f:viewParam> tag. Through this tag, we can declaratively register the
UIViewParameter class as metadata for the parent view; this is why the
<f:viewParam> tag is nested in the <f:metadata> tag.

Starting with JSF 2.0, the metadata concept was materialized in a section of a view,
which provides the following two main advantages (the section is demarcated by
the <f:metadata> tag):

•	 The content of this section is readable without having the entire view available
•	 At the initial request, components from this section can accomplish different

things before the view is rendered

Starting with JSF 2.2, the metadata section (and subsequent components)
is detected via a public static method, named the hasMetadata
(UIViewRoot) method. This method was added in javax.faces.
view.ViewMetadata and returns true if there is a metadata section
and false otherwise. Among other benefits, the main advantage of using
the <f:viewParam> tag is the URL bookmarking support.

For better understanding, let's look at a simple example of using the <f:viewParam>
tag. The following pieces of code are from the same page, index.xhtml:

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
</f:metadata>
...
<h:body>
 You requested name: <h:outputText
 value="#{playersBean.playerName}"/>

 You requested surname: <h:outputText
 value="#{playersBean.playerSurname}"/>
</h:body>

Chapter 2

[47]

Now, let's see what is happening at the initial request. First, let's focus on the
first block of code: here, JSF gets the request parameter's values by their names
(playernameparam and playersurnameparam) from the page URL and applies
the specified converter/validators (these are optional). After conversion/
validation succeeds, before the view is rendered, JSF binds the values of the
playernameparam and playersurnameparam request parameters to the managed
bean properties, playerName and playerSurname, by calling the setPlayerName
and setPlayerSurname methods (called only if we provide request parameters
in the URL). If the value attribute is missing, then JSF sets request parameters as
request attributes on names, playernameparam and playersurnameparam, available
via #{playernameparam} and #{playersurnameparam}.

The page's initial URL should be something like the following one:

http://hostname/ch2_5/?playernameparam=Rafael&playersurnameparam=Nadal

In the second block of code, the values of the managed bean properties, playerName
and playerSurname, are displayed (the getPlayerName and getPlayerSurname
methods are called); they should reflect the values of the request parameters.

Since the UIViewParameter class extends the UIInput
class, the managed bean properties are set during the
Update Model phase only.

This example is wrapped into the application named ch2_5.

View parameters can be included in links (the GET query string) by using
the includeViewParams="true" attribute in the <h:link> tag, or the
includeViewParams=true request parameter in any URL. Both these
cases can be seen in the upcoming examples.

In the index.xhtml file, you can have something like the following code, in which
view parameters are included through the request parameter:

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
</f:metadata>
...
<h:body>
 <h:form>
 Enter name:<h:inputText value="#{playersBean.playerName}"/>
 Enter name:<h:inputText value="#{playersBean.playerSurname}"/>

Communication in JSF

[48]

 <h:commandButton value="Submit"
 action="results?faces-
 redirect=true&includeViewParams=true"/>
 </h:form>
</h:body>

The initial URL can be:

http://hostname/ch2_6/?playernameparam=Rafael&playersurnameparam=Nadal

The view parameters, playernameparam and playersurnameparam, will be
extracted from this URL and bound to the managed bean properties, playerName
and playerSurname. Optionally, both properties can be further altered by the user
through two <h:inputText> tags, or other UI components. (If the initial URL does not
contain the view parameters, then the <h:inputText> generated fields will be empty.)
The button rendered through the <h:commandButton> tag will redirect the flow to
the results.xhtml page and will include the view parameters in the new URL. The
values of the view parameters will reflect the values of the corresponding managed
bean properties, since the form is submitted before the following URL is composed:

http://hostname/ch2_6/faces/results.xhtml?playernameparam=Rafael&player
surnameparam=Nadal

The results.xhtml file (or any other page that the index.xhtml file directs) will
use the <f:viewParam> tag to take parameters from the GET request into bound
properties, as shown in the following code:

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
</f:metadata>
...
<h:body>
 You requested name: <h:outputText
 value="#{playersBean.playerName}"/>

 You requested surname: <h:outputText
 value="#{playersBean.playerSurname}"/>
</h:body>

Chapter 2

[49]

If you prefer to use a <h:link> tag in conjunction with the includeViewParams
attribute set to true, then the index.xhtml file will be as follows (in this case,
there is no form submission and no POST request):

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
</f:metadata>
...
<h:body>
 <h:link value="Send"
 outcome="results?faces-redirect=true"
 includeViewParams="true"/>
</h:body>

These examples are wrapped into the application named ch2_6.

You can use the includeViewParams request parameter in any URL, which means
that you can use it in managed beans to include view parameters in the navigation
links as follows:

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
</f:metadata>
...
<h:body>
 <h:form>
 Enter name:<h:inputText value="#{playersBean.playerName}"/>
 Enter name:<h:inputText value="#{playersBean.playerSurname}"/>
 <h:commandButton value="Submit"
 action="#{playersBean.toUpperCase()}"/>
 </h:form>
</h:body>

Communication in JSF

[50]

And the action method is as follows:

public String toUpperCase(){
 playerName=playerName.toUpperCase();
 playerSurname=playerSurname.toUpperCase();

 return "results?faces-redirect=true&includeViewParams=true";
}

The complete application is named ch2_7 and is available in the code bundle of this
chapter on the Packt Publishing website.

As you know from the previous code, the UIViewParameter class extends the
UIInput class, which means that it inherits all attributes, such as required and
requiredMessage. When the URL must contain view parameters, you can use
these two attributes to ensure that the application flow is controlled and the user
is correctly informed. The following is the example code:

<f:metadata>
 <f:viewParam name="playernameparam" required="true"
 requiredMessage="Player name required!"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam" required="true"
 requiredMessage="Player surname required!"
 value="#{playersBean.playerSurname}"/>
</f:metadata>

If the initial URL does not contain the view parameters (one or both), then you will
receive a message that report this fact. This example is wrapped into the application
named ch2_9.

Moreover, view parameters support fine-grained conversion and validation. You
can use <f:validator> and <f:converter>, or the validator and converter
attributes inherited from the UIInput class. Supposing that you have a custom
validator, named PlayerValidator (its implementation is not really relevant),
the following is its code:

@FacesValidator("playerValidator")
public class PlayerValidator implements Validator {

 @Override
 public void validate(FacesContext context,
 UIComponent component,
 Object value) throws ValidatorException {
 //validation conditions
 ...

Chapter 2

[51]

Then, you can attach it to a view parameter as shown in the following code:

<f:metadata>
 <f:viewParam id="nameId" name="playernameparam"
 validator="playerValidator"
 value="#{playersBean.playerName}"/>
 <f:viewParam id="surnameId" name="playersurnameparam"
 validator="playerValidator"
 value="#{playersBean.playerSurname}"/>
</f:metadata>

The preceding snippet of code accomplishes the following tasks:

•	 Gets the request parameters' values by their names, playernameparam and
playersurnameparam

•	 Converts and validates (in this case, validates) parameters
•	 If conversions and validations end successfully, then the parameters are set

in managed bean properties
•	 Any validation failure will result in a message being displayed

For the customize messages style, you can attach a <h:message>
tag to the <f:viewParam> tag.

This example is wrapped into the application named ch2_10.

If you want to preserve the view parameters over validation failures,
then you need to use a broader scope than @RequestScoped, such
as @ViewScoped, or to manually preserve the request parameters for
the subsequent requests through the <f:param> tag in the command
components.

Sometimes, you may need a converter for a view parameter. For example, if you try
to pass a java.util.Date parameter as a view parameter from a managed bean, you
will probably will code it as follows:

private Date date = new Date();
...
public String sendDate() {
 String dateAsString = new SimpleDateFormat
 ("dd-MM-yyyy").format(date);
 return "date.xhtml?faces-redirect=true&date=" + dateAsString;
}

Communication in JSF

[52]

Now, in the date.xhtml file, you need to convert the view parameter from string to
date, and for this, you may use the <f:convertDateTime> converter, as shown in
the following code:

<f:viewParam name="date" value="#{dateBean.date}">
 <f:convertDateTime pattern="dd-MM-yyyy" />
</f:viewParam>

Of course, a custom converter can also be used. The complete application is
named ch2_29.

Among so many advantages of using the <f:viewParam> tag, we have a gap.
When view parameters are set in managed bean properties, the set values are
not available in @PostConstruct; therefore, you cannot perform initialization or
preload tasks directly. You can quickly fix this by attaching the preRenderView
event listener, as shown in the following code:

<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
 <f:event type="preRenderView"
 listener="#{playersBean.init()}"/>
</f:metadata>

The init method is shown as follows:

public void init() {
 // do something with playerName and playerSurname
}

The set values are not available in @PostConstruct when using the
<f:viewParam> tag. You can fix this by attaching the preRenderView
event listener, or, as you will see next, the <f:viewAction> tag.

This example is wrapped into the application named ch2_8.

Chapter 2

[53]

Well, there is one more aspect that I'd like to discuss here. The UIViewParameter
class (<f:viewParam>) is a stateful component that stores its value in state. This
is very nice as the value is available over postbacks, even if it doesn't come from
the page URL anymore or the managed bean is request scoped. So, you need to
indicate view parameters only once, and not for every request. But, there are a few
drawbacks of this behavior—the most significant being calling the setter method at
each postback (you don't want this in view beans). Another one is calling, for each
postback, the method indicated through the preRenderView event handler; this can
be fixed using a test as shown in the following code. The complete application is
named ch2_28.

public void init() {
 if (!FacesContext.getCurrentInstance().isPostback()) {
 // do something with playerName and playerSurname
 }
}

Maybe the most painful drawback is converting and validating view parameters
at each postback. Obviously, this is not the behavior you are expecting to see. In
order to call a converter/validator only when the page URL contains the request
parameters, you need to alter the UIViewParameter class implementation by writing
a custom implementation. You can try to write a stateless UIViewParameter class
or to control the conversion/validation calls. Of course, you have to keep in mind
that altering the default implementation may lead to more or less unpredictable
drawbacks. As an alternative, you can use the <o:viewParam> tag from OmniFaces,
which fixes these issues. A relevant example can be seen at http://showcase.
omnifaces.org/components/viewParam.

So, as a final conclusion of this section, the <f:viewParam> tag is used to capture
the request parameters. Moreover, it can be used with the <h:link> and <h:button>
tags to send outgoing request parameters, or in non-JSF forms, to send data to JSF
pages that use the <f:viewParam> tag, or to make JSF results pages bookmarkable
in a POST-redirect-GET flow. On the other hand, the <f:viewParam> tag doesn't
sustain the <h:form> tag to use GET or provide access to random JSF pages via
the GET request.

Calling actions on GET requests
Starting with JSF 2.2, we can deal with calling actions on GET requests by using the
new generic view action feature (well-known in Seam 2 and 3). This new feature is
materialized in the <f:viewAction> tag, which is declared as a child of the metadata
facet, <f:metadata>. This allows the view action to be part of the JSF life cycle for
faces/non-faces requests.

www.allitebooks.com

http://showcase.omnifaces.org/components/viewParam
http://showcase.omnifaces.org/components/viewParam
http://www.allitebooks.org

Communication in JSF

[54]

In the preceding section, we saw how to attach a custom validator to a
<f:viewParam> tag for validating view parameters. The same thing can be
accomplished using the <f:viewAction> tag, when the validation method is
declared in the managed bean instead of being a separate implementation of the
Validator interface. For example, in the index.xhtml file, you may have the
following code:

<f:metadata>
 <f:viewParam id="nameId" name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam id="surnameId" name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
 <f:viewAction action="#{playersBean.validateData()}"/>
</f:metadata>

As you can see, the following validateData method is just a common method
declared in PlayersBean:

public String validateData() {
 //validation conditions
 return "index"; //or other page
}

This example is wrapped into the application named ch2_11.

The <f:viewAction> tag and the preRenderView event
listener are not the same!

The preceding note underlines our next discussion. You may think that they are
the same because in the preceding example, you can replace <f:viewAction> with
preRenderView and obtain the same effect (result). Well, it is true that they are
partially the same, but a few existing differences are important, as you can see in the
following four bullets:

•	 By default, the preRenderView event listener is executed on postback
requests, while the view action is not. In the case of the preRenderView event
listener, you need to overcome this by testing the request type as follows:
if (!FacesContext.getCurrentInstance().isPostback()) {
 // code that should not be executed in postback phase
}

Chapter 2

[55]

For example, the following code will try to apply some modifications over
the set values using the preRenderView event listener:
<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
 <f:event type="preRenderView"
 listener="#{playersBean.init()}"/>
</f:metadata>

The init method is declared in PlayersBean and it just turns the set values
to uppercase, as shown in the following code:
public void init() {
 if (playerName != null) {
 playerName = playerName.toUpperCase();
 }
 if (playerSurname != null) {
 playerSurname = playerSurname.toUpperCase();
 }
}

Next, when the JSF page is rendered, the set values are used in uppercase,
and further requests can be accomplished (for example, you may want to
call the method #{playersBean.userAction()} when a certain button is
clicked). But, each further request will call the init method again (after the
userAction method), because the preRenderView event listener is executed
at postback time. Except for the case when this is the desired functionality,
you need to programmatically test the postbacks to prevent the following
init method code from being executed:
public void init() {
 if (!FacesContext.getCurrentInstance().isPostback()) {
 if (playerName != null) {
 playerName = playerName.toUpperCase();
 }
 if (playerSurname != null) {
 playerSurname = playerSurname.toUpperCase();
 }
 }
}

Communication in JSF

[56]

Well, this is not the same in the case of the <f:viewAction> tag. Replace the
preRenderView event listener with the <f:viewAction> tag, as shown in the
following code:
<f:metadata>
 <f:viewParam name="playernameparam"
 value="#{playersBean.playerName}"/>
 <f:viewParam name="playersurnameparam"
 value="#{playersBean.playerSurname}"/>
 <f:viewAction action="#{playersBean.init()}"/>
</f:metadata>

The <f:viewAction> tag supports an attribute named onPostback which
is set to false by default, meaning that the init method will not be called
on postback requests. Of course, if you set it to true, then it will function
contrary; but, notice that in the case of the preRenderView event listener,
the init method is called after the userAction method, while in the case of
the <f:viewAction> tag, the init method is called before the userAction
method, as shown in the following line of code:
<f:viewAction action="#{playersBean.init()}"
 onPostback="true"/>

The example based on the preRenderView event listener is wrapped in
the application named ch_12_1, while for the <f:viewAction> tag it is
named ch_12_2.

•	 The view action has navigation capabilities, while the preRenderView event
listener doesn't. While the view action can naturally accomplish navigation
tasks, the preRenderView event listener requires explicit navigation based on
the JSF API.
For example, if you modify the preceding init method to return the start.
xhtml view, then you will probably change it as shown in the following code:
public String init() {
 if (playerName != null) {
 playerName = playerName.toUpperCase();
 }
 if (playerSurname != null) {
 playerSurname = playerSurname.toUpperCase();
 }
 return "start";
}

Chapter 2

[57]

But, this will not work with the preRenderView event listener! You will
need to add explicit navigation by returning void and replacing the return
"start" code line with the following code:
ConfigurableNavigationHandler handler =
 (ConfigurableNavigationHandler)
 FacesContext.getCurrentInstance().
 getApplication().getNavigationHandler();
handler.performNavigation("start");

If you drop the preRenderView event listener and use the <f:viewAction>
tag instead, then the preceding init method will correctly navigate to
start.xhtml without involving an explicit call of the navigation handler.
The example based on the preRenderView event listener is wrapped
in the application named ch_13_1, while for the <f:viewAction>
tag it is named ch_13_2.
Moreover, the <f:viewAction> tag supports declarative navigation.
So, you can write a navigation rule in the faces-config.xml file that
is consulted before the page is rendered. For example:
<navigation-rule>
 <from-view-id>index.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{playersBean.init()}</from-action>
 <from-outcome>start</from-outcome>
 <to-view-id>rafa.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

Now, the rafa.xhtml page will be rendered instead of the start.xhtml
page. This example is wrapped into the application named ch2_13_3.

•	 By default, the view action is executed in the Invoke Application phase.
But, it can be executed in the Apply Request Values phase by setting the
immediate attribute to true, as shown in the following code:
<f:viewAction action="#{playersBean.init()}"
 immediate="true"/>

Communication in JSF

[58]

•	 Moreover, you can specify in which phase to execute the action using the
phase attribute whose value represents the phase name as a predefined
constant. For example:
<f:viewAction action="#{playersBean.init()}"
 phase="UPDATE_MODEL_VALUES"/>

The supported values are APPLY_REQUEST_VALUES, INVOKE_APPLICATION,
PROCESS_VALIDATIONS, and UPDATE_MODEL_VALUES.

The view action can be placed into a view metadata facet
that doesn't contain other view parameters.

Passing attributes with the <f:attribute> tag
When the <f:param> tag does not satisfy your needs, maybe the <f:attribute> tag
will. This tag allows you to pass the value of an attribute of a component or to pass a
parameter to a component.

For example, you can assign the value of the attribute named value of a
<h:commandButton> tag as shown in the following code:

<h:commandButton actionListener="#{playersBean.parametersAction}">
 <f:attribute name="value" value="Send Rafael Nadal" />
</h:commandButton>

This will render a button labeled Send Rafael Nadal. Its code is given as follows:

<h:commandButton value="Send Rafael Nadal"
 actionListener="#{playersBean.parametersAction}">

Moreover, the <f:attribute> tag can be used to pass a parameter to a component,
as shown in the following code:

<h:commandButton actionListener="#{playersBean.parametersAction}">
 <f:attribute id="playerName" name="playerNameAttr"
 value="Rafael"/>
 <f:attribute id="playerSurname" name="playerSurnameAttr"
 value="Nadal"/>
</h:commandButton>

Chapter 2

[59]

In the action listener method, you can extract the attributes' values as shown in the
following code:

private final static Logger logger =
 Logger.getLogger(PlayersBean.class.getName());
private String playerName;
private String playerSurname;
...
//getters and setters
...
public void parametersAction(ActionEvent evt) {

 playerName = (String) evt.getComponent().
 getAttributes().get("playerNameAttr");
 playerSurname = (String) evt.getComponent().
 getAttributes().get("playerSurnameAttr");

 logger.log(Level.INFO, "Name: {0} Surname: {1}",
 new Object[]{playerName, playerSurname});
}

This example is wrapped into the application named ch2_14.

If you are a fan of PrimeFaces (http://primefaces.org/), then you will probably
find the next example useful. One of the greatest built-in components of PrimeFaces
is the <p:fileUpload> tag, which can be used, obviously, to upload files. Sometimes,
besides the files that will be uploaded, you need to pass some extra parameters,
for example, the files' owner name and surname. Well, the <p:fileUpload> tag
doesn't come with a solution for this, but the <f:attribute> tag can be helpful. The
following is the code of a classic <p:fileUpload> tag with the <f:attribute> tag:

<h:form>
 <p:fileUpload
 fileUploadListener="#{fileUploadController.handleFileUpload}"
 mode="advanced" dragDropSupport="false"
 update="messages" sizeLimit="100000" fileLimit="3"
 allowTypes="/(\.|\/)(gif|jpe?g|png)$/">
 <f:attribute id="playerName" name="playerNameAttr"
 value="Rafael"/>
 <f:attribute id="playerSurname" name="playerSurnameAttr"
 value="Nadal"/>
 </p:fileUpload>
 <p:growl id="messages" showDetail="true"/>
</h:form>

http://primefaces.org/

Communication in JSF

[60]

The handleFileUpload method is responsible for the upload-specific steps
(skipped in the following code), but it can also access the values passed by
the <f:attribute> tag:

public void handleFileUpload(FileUploadEvent evt) {

 //upload specific tasks, see PrimeFaces documentation

 String playerName = (String) evt.getComponent().
 getAttributes().get("playerNameAttr");
 String playerSurname = (String) evt.getComponent().
 getAttributes().get("playerSurnameAttr");

 FacesMessage msg = new FacesMessage("Successful",
 evt.getFile().getFileName() + " is uploaded for "
 + playerName + " " + playerSurname);

 FacesContext.getCurrentInstance().addMessage(null, msg);
}

If you are not a fan of PrimeFaces, then you might probably think that this example is
useless, but maybe you are a fan of some other third-party library, such as RichFaces,
ICEFaces, and MyFaces. You can apply this technique for other component libraries
as well.

This example is wrapped into the application named ch2_15.

Another case when the <f:attribute> tag can be useful is when dynamically
passing parameters in conjunction with UI components bound to the managed
bean using the binding attribute. This is very useful, especially because there is no
solution provided by JSF for passing parameters to the getters/setters methods of the
bound UI components, as shown in the following code:

<h:form>
 <h:inputText binding="#{playersBean.htmlInputText}"
 value="#{playersBean.playerNameSurname}">
 <f:attribute name="playerNameAttr" value="Rafael Nadal"/>
 </h:inputText>
</h:form>

Now, the value of the <h:inputText> tag should contain the value
set via the <f:attribute> tag. Be careful to use only unique names
for the attributes and to not interfere (try to overwrite) with the
default attributes of the UI component.

Chapter 2

[61]

Also, the PlayersBean managed bean's code is as follows:

@Named
@RequestScoped
public class PlayersBean {

 private UIInput htmlInputText= null;

 public PlayersBean() {
 }

 public UIInput getHtmlInputText() {
 return htmlInputText;
 }

 public void setHtmlInputText(UIInput htmlInputText) {
 this.htmlInputText = htmlInputText;
 }

 public String getPlayerNameSurname() {
 return (String)
 htmlInputText.getAttributes().get("playerNameAttr");
 }
}

As you can see, all the parameters passed this way are accessible via the
getAttributes method of the parent UI component.

This example is wrapped into the application named ch2_23.

Setting property values via action listeners
The <f:setPropertyActionListener> tag uses an action listener (created by the
framework) to directly set a value into a managed bean property; it is placed within
a component derived from the ActionSource class. The target attribute indicates
the managed bean property, while the value attribute indicates the value of the
property, as shown in the following code:

<h:commandButton value="Send Rafael Nadal 1">
 <f:setPropertyActionListener id="playerName"
 target="#{playersBean.playerName}" value="Rafael"/>
 <f:setPropertyActionListener id="playerSurname"
 target="#{playersBean.playerSurname}" value="Nadal"/>
</h:commandButton>

Communication in JSF

[62]

Now, in the PlayersBean managed bean, the setter methods are called and the
values are set; logger is useful to see the application flow and to understand how
listeners are fired, as shown in the following code:

private final static Logger logger =
 Logger.getLogger(PlayersBean.class.getName());
private String playerName;
private String playerSurname;

public void setPlayerName(String playerName) {
 this.playerName = playerName;
 logger.log(Level.INFO, "Player name
 (from setPlayerName() method: {0}", playerName);
}

public void setPlayerSurname(String playerSurname) {
 this.playerSurname = playerSurname;
 logger.log(Level.INFO, "Player surname
 (from setPlayerSurname() method: {0}", playerSurname);
}

When the button labeled Send Rafael Nadal 1 is clicked, the application output will
be as follows:

INFO: Player name (from setPlayerName() method: Rafael
INFO: Player surname (from setPlayerSurname() method: Nadal

Keep in mind that action listeners are executed in the order
they are defined, which means that the presence of the
<f:setPropertyActionListener> tag can affect the
order in which the listeners are fired.

This note is important! For a clear understanding, take a look at the following
snippet of code:

<h:commandButton value="Send Rafael Nadal 2"
 actionListener="#{playersBean.parametersAction}">
 <f:setPropertyActionListener id="playerName"
 target="#{playersBean.playerName}" value="Rafael"/>
 <f:setPropertyActionListener id="playerSurname"
 target="#{playersBean.playerSurname}" value="Nadal"/>
</h:commandButton>

Chapter 2

[63]

The following code is of the parametersAction method:

public void parametersAction(ActionEvent e) {
 logger.log(Level.INFO, "Player name
 (from parametersAction(ActionEvent) method: {0}", playerName);
 logger.log(Level.INFO, "Player surname
 (from parametersAction(ActionEvent) method: {0}",
 playerSurname);
}

Well, this code does not work as expected! Probably, you think that the setters
method is called first and the parametersAction method later; therefore, the
set values are available in the action method. But, the following output will
prove the opposite:

INFO: Player name (from parametersAction() method: null
INFO: Player surname (from parametersAction() method: null
INFO: Player name (from setPlayerName() method: Rafael
INFO: Player surname (from setPlayerSurname() method: Nadal

So, the properties are set after the command action listener is fired! To fix this issue,
you can use the action attribute instead of actionListener:

<h:commandButton value="Send Rafael Nadal 3"
 action="#{playersBean.parametersAction()}">
 <f:setPropertyActionListener id="playerName"
 target="#{playersBean.playerName}" value="Rafael"/>
 <f:setPropertyActionListener id="playerSurname"
 target="#{playersBean.playerSurname}" value="Nadal"/>
</h:commandButton>

Of course, you need to adjust the parametersAction method accordingly, as shown
in the following code:

public void parametersAction() {
 logger.log(Level.INFO, "Player name
 (from parametersAction() method: {0}", playerName);
 logger.log(Level.INFO, "Player surname
 (from parametersAction() method: {0}", playerSurname);
}

Communication in JSF

[64]

Now, the output will reflect the following desired result:

INFO: Player name (from setPlayerName() method: Rafael
INFO: Player surname (from setPlayerSurname() method: Nadal
INFO: Player name (from parametersAction() method: Rafael
INFO: Player surname (from parametersAction() method: Nadal

This example is wrapped into the application named ch2_16.

Passing parameters using the Flash scope
The new JSF Flash scope is a very handy tool when you need to pass parameters
between user views without the need to store them in the session. The Flash scope is
simple to understand if you keep in mind that variables stored in the Flash scope will
be available over a redirection and they will be eliminated afterwards. This is really
useful when implementing a POST-redirect-GET pattern.

For a better understanding, let's suppose the following scenario:

•	 A player (user) needs to register on the ATP website. Among other
information, he will provide his name and surname and click on the
Register button. This is accomplished in the index.xhtml page.

•	 The application flow redirects the player to the page terms.xhtml. On this
page, the user can see a welcome message containing his name and surname
and some terms and conditions that must be accepted (using the Accept
button) or rejected (using the Reject button).

•	 If the Reject button is clicked, then the user is redirected to the index.xhtml
home page, and the form registration fields will reveal the information
provided by him earlier. Moreover, he will see a generated message
stating Terms rejected! Player not registered!. This is outputted by
the <h:message> tag.

•	 If the Accept button is clicked, then the user is redirected to a page named
done.xhtml. On this page, the user will see a generated message stating
Terms accepted and player registered! and another message stating Name
Surname successfully registered!. The first message is outputted by the
<h:message> tag, while the second one by the <h:outputText> tag.

Chapter 2

[65]

The following is a screenshot of both the scenarios:

Obviously, you can implement this flow only if you store the submitted values
somewhere, because they will not survive during the redirect process. This means
that using a managed bean in the request scope cannot be a valid option. But, if we
add in discussion the new Flash scope, then things become more favorable for the
request scoped bean.

It will be much easier to follow this idea if you take a quick look at the following
code of the request scoped bean, named PlayersBean:

@Named
@RequestScoped
public class PlayersBean {

 private final static Logger logger =
 Logger.getLogger(PlayersBean.class.getName());
 private String playerName;
 private String playerSurname;

...

 public String addValuesToFlashAction() {

 Flash flash = FacesContext.getCurrentInstance().
 getExternalContext().getFlash();
 flash.put("playerName", playerName);

Communication in JSF

[66]

 flash.put("playerSurname", playerSurname);

 return "terms?faces-redirect=true";
 }

 public void pullValuesFromFlashAction(ComponentSystemEvent e) {

 Flash flash = FacesContext.getCurrentInstance().
 getExternalContext().getFlash();
 playerName = (String) flash.get("playerName");
 playerSurname = (String) flash.get("playerSurname");
 }

 public String termsAcceptedAction() {

 Flash flash = FacesContext.getCurrentInstance().
 getExternalContext().getFlash();

 flash.setKeepMessages(true);
 pullValuesFromFlashAction(null);

 //do something with firstName, lastName
 logger.log(Level.INFO, "First name: {0}", playerName);
 logger.log(Level.INFO, "Last name: {0}", playerSurname);

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Terms accepted and player registered!"));
 return "done?faces-redirect=true";
 }

 public String termsRejectedAction() {

 Flash flash = FacesContext.getCurrentInstance().
 getExternalContext().getFlash();

 flash.setKeepMessages(true);
 pullValuesFromFlashAction(null);

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Terms rejected! Player not registered!"));
 return "index?faces-redirect=true";
 }
}

Chapter 2

[67]

Also, take a look at the start page, index.xhtml. Its code is as follows:

 <h:body>
 <f:metadata>
 <f:event type="preRenderView"
 listener="#{playersBean.pullValuesFromFlashAction}"/>
 </f:metadata>
 <h:messages />
 <h:form>
 Name: <h:inputText value="#{playersBean.playerName}"/>
 Surname: <h:inputText value="#{playersBean.playerSurname}"/>
 <h:commandButton value="Register"
 action="#{playersBean.addValuesToFlashAction()}"/>
 </h:form>
 </h:body>

So, the submission process begins when the user clicks on the button labeled
Register. JSF will call the addValuesToFlashAction method, which is responsible
for putting the submitted values to the Flash scope; this will ensure that the values
will survive during redirect to the terms.xhtml page.

If the user rejects the terms and conditions, then he is redirected to the
index.xhtml page. Here, you need to repopulate the registration form fields
with the user-inserted values. For this, you can use the preRenderView event,
which will load the values from the Flash scope during the render response
phase by calling the pullValuesFromFlashAction method.

Next, let's focus on the terms.xhtml page; its code is as follows:

 <h:body>
 <h:messages />
 Hello, <h:outputText value="#{flash.keep.playerName}
 #{flash.keep.playerSurname}"/>

Terms & Conditions
 <h:form>
 <h:commandButton value="Reject"
 action="#{playersBean.termsRejectedAction()}" />
 <h:commandButton value="Accept"
 action="#{playersBean.termsAcceptedAction()}" />
 </h:form>
 </h:body>

Communication in JSF

[68]

First, this page displays the entered values wrapped into a welcome message.
The values are obtained from the Flash scope using the following code:

#{flash.keep.playerName}
#{flash.keep.playerSurname}

Notice that this approach has two functions, which are listed as follows:

•	 It obtains the values from the Flash scope, which could also be accomplished
with the following lines:
#{flash.playerName}
#{flash.playerSurname}

•	 It tells JSF to keep the values in the Flash scope for the next request. This is
needed because values put to the Flash scope survive only one redirect and
then are deleted. We have already fired a redirect when we have navigated
from the index.xhtml page to the terms.xhtml page. But, another redirect
will appear when the Accept or Reject button is clicked.

Values stored in the Flash scope survive only one redirect
and then are deleted.

Furthermore, the page displays both the buttons for navigating back to the index.
xhtml page and forward to the done.xhtml page. The Accept button will call the
termsAcceptedAction method, which will basically preserve messages across redirects
(it calls the setKeepMessages method) and redirects the flow to the done.xhtml
page. In the same manner, the Reject button calls the termsRejectedAction method,
preserves messages in the Flash scope, and redirects the flow to the index.xhtml page.

The done.xhtml page is presented using the following code:

 <h:body>
 <f:metadata>
 <f:event type="preRenderView"
 listener="#{playersBean.pullValuesFromFlashAction}"/>
 </f:metadata>
 <h:messages />
 <h:outputText value="#{playersBean.playerName}
 #{playersBean.playerSurname}"/> successfully registered!
 </h:body>

Chapter 2

[69]

The preRenderView event listener is used again for obtaining the values from the
Flash scope.

This example is wrapped into the application named ch2_21.

Replacing the <f:param> tag with the JSTL
<c:set> tag
Sometimes, the JSTL <c:set> tag can solve issues that the JSF <f:param> tag can't.
Probably, you know that we can pass parameters to the <ui:include> tag using the
<f:param> tag, as shown in the following code:

<ui:include src="rafa.xhtml">
 <f:param name="rafa" value="Rafael Nadal Page"/>,
</ui:include>

Well, this approach triggers an issue! Now, the Rafael Nadal Page value will be
available in the included page through EL, #{rafa}, but will not be available in the
constructor of the managed bean of the included page!

It is time for the <c:set> tag to save the situation; therefore, the code will be
changed to the following:

<ui:include src="rafa.xhtml">
 <c:set var="rafa" value="Rafael Nadal Page" scope="request"/>,
</ui:include>

Done! Now, in the constructor of the managed bean, the value can be extracted as
shown in the following code:

public ConstructorMethod(){
 FacesContext facesContext = FacesContext.getCurrentInstance();
 HttpServletRequest httpServletRequest = (HttpServletRequest)
 facesContext.getExternalContext().getRequest();
 String rafa = (String) request.getAttribute("rafa");
}

In the Configuring system event listeners section in Chapter 4, JSF Configurations Using
XML Files and Annotations – Part 1, you will see how to work with system events
dedicated to the Flash scope.

Communication in JSF

[70]

Sending data through cookies
JSF provides a request cookie map that can be used to work with HTTP cookies.
Setting cookies can be easily accomplished through JavaScript; the following are
just some helper methods:

•	 The JavaScript method for setting a cookie is as follows:
function setCookie(cookie_name, value, expiration_days)
{
 var expiration_date = new Date();
 expiration_date.setDate(expiration_date.getDate() +
 expiration_days);
 var c_value = escape(value) + ((expiration_days == null)
 ? "" : ";
 expires=" + expiration_date.toUTCString());
 document.cookie = cookie_name + "=" + c_value;
}

The JavaScript method for deleting a cookie by the name is as follows:
function deleteCookie(cookie_name) {
 document.cookie = encodeURIComponent(cookie_name) +
 "=deleted; expires=" + new Date(0).toUTCString();
}

•	 The JavaScript method for extracting a cookie by the name is as follows:
function getCookie(cookie_name) {
 var i, part_1, part_2;
 var cookieslist = document.cookie.split(";");
 //<![CDATA[
 for (i = 0; i < cookieslist.length; i++)
 {
 part_1 = cookieslist[i].substr(0,
 cookieslist[i].indexOf("="));
 part_2 = cookieslist[i].substr
 (cookieslist[i].indexOf("=") + 1);
 part_1 = part_1.replace(/^\s+|\s+$/g, "");
 if (part_1 == cookie_name)
 {
 return unescape(part_2);
 }
 }
 //]]>
 return "nocookie";
}

Chapter 2

[71]

Let's suppose that you have two cookies named name and surname, as shown in the
following code:

setCookie('name', 'Rafael', 1);
setCookie('surname', 'Nadal', 1);

JSF can access these cookies through the following request cookie map:

Object name_cookie = FacesContext.getCurrentInstance().
 getExternalContext().getRequestCookieMap().get("name");
Object surname_cookie = FacesContext.getCurrentInstance().
 getExternalContext().getRequestCookieMap().get("surname");

//set playerName property
if (name_cookie != null) {
 playerName = (((Cookie) name_cookie).getValue());
}

//set playerSurname property
if (surname_cookie != null) {
 playerSurname = (((Cookie) surname_cookie).getValue());
}

JSF also provides several getters and setters methods for working with cookies.
These methods are given in the following table:

Getter methods Setter methods
String getComment() setComment(String arg)

String getDomain() setDomain(String arg)

String getName() setHttpOnly(boolean arg)

String getPath() setPath(String arg)

String getValue() setValue(String arg)

int getMaxAge() setMaxAge(int arg)

boolean getSecure() setSecure(boolean arg)

int getVersion() setVersion(int arg)

boolean isHttpOnly()

This example is wrapped into the application named ch2_18 and can be found in the
code bundle of this chapter.

Communication in JSF

[72]

Working with hidden fields
Hidden fields can sometimes be very useful! Passing data in a subtle manner can
be the perfect choice for dealing with temporary data or information provided by
the user that should be used again and again. JSF offers the <h:inputHidden> tag
to pass hidden parameters. The following code passes two hidden parameters to a
managed bean:

<h:form id="hiddenFormId">
 <h:commandButton value="Send Rafael Nadal"
 onclick="setHiddenValues();"
 action="#{playersBean.parametersAction()}"/>
 <h:inputHidden id="playerName"
 value="#{playersBean.playerName}"/>
 <h:inputHidden id="playerSurname"
 value="#{playersBean.playerSurname}"/>
</h:form>

Usually, setting hidden field values from JavaScript is a common practice.
When the button Send Rafael Nadal is clicked, the JavaScript function named
setHiddenValues is called; this happens before the form submission. The
setHiddenValues function is given in the following code:

<script type="text/javascript">
 function setHiddenValues() {
 document.getElementById('hiddenFormId:playerName').
 value = "Rafael";
 document.getElementById('hiddenFormId:playerSurname').
 value = "Nadal";
 }
</script>

Next, the hidden parameters are set in the indicated managed bean properties and
the parametersAction method is called—the set values are ready to use!

This example is wrapped into the application named ch2_17 and can be found in the
code bundle of this chapter.

Sending passwords
JSF provides a dedicated tag named <h:inputSecret> for rendering the following
well-known HTML code:

<input type="password">

Chapter 2

[73]

For example, you can use it as shown in the following code:

<h:form>
 <h:inputSecret value="#{playersBean.playerPassword}"/>
 <h:commandButton value="Send Password"
 action="#{playersBean.passwordAction()}"/>
</h:form>

This example is wrapped into the application named ch2_19.

Accessing UI component attributes
programmatically
Accessing UI component attributes from managed beans using the JSF API is not a
common approach, but sometimes you may find it useful. For example, let's suppose
that we have the following form:

<h:form id="playerFormId">
 <h:inputText id="playerNameId"
 value="#{playersBean.playerName}"/>
 <h:inputText id="playerSurnameId"
 value="#{playersBean.playerSurname}"/>
 <h:commandButton value="Process"
 action="#{playersBean.processAction()}"/>
</h:form>

Now, you want to obtain the values of the components with IDs, playerNameId and
playerSurnameId, in the processAction method. Moreover, you want to set the
value of the component with the ID, playerNameId, as RAFAEL. Programmatically
(using the JSF API), you can achieve this as follows:

public void processAction() {

 UIViewRoot view =
 FacesContext.getCurrentInstance().getViewRoot();
 UIComponent uinc =
 view.findComponent("playerFormId:playerNameId");
 Object prev = ((UIInput) uinc).getAttributes().put("value",
 "RAFAEL");

 UIComponent uisc =
 view.findComponent("playerFormId:playerSurnameId");
 Object current = ((UIInput) uisc).getAttributes().get("value");
}

Communication in JSF

[74]

First, you need to obtain access to UIViewRoot, which is the top level UI
component—the root of the UIComponent tree. Then, you can search by the
ID for the desired UI component through the UI components tree using the
findComponent method. Each UI component provides the getAttributes
method, which can be used to gain access to the UI component attributes by
their names. At this point, you can extract an attribute value using the get
method, or set a new attribute value using the put method.

This example is wrapped into the application named ch2_20.

Passing parameters via method expressions
Passing parameters using method expressions is an elegant solution to send
parameters as arguments to an action method of a managed bean. For example,
let's focus on the following snippet of code:

<h:form>
 <h:commandButton value="Send Rafael Nadal"
 action="#{playersBean.parametersAction('Rafael','Nadal')}"/>
</h:form>

As you can see in the following code, the action attribute indicates a method that
gets two arguments:

private String playerName;
private String playerSurname;

//getters and setters

public String parametersAction(String playerNameArg,
 String playerSurnameArg) {

 playerName = playerNameArg;
 playerSurname = playerSurnameArg;

 return "result";
}

In the same manner, you can pass numeric values or objects.

This example is wrapped into the application named ch2_26.

Chapter 2

[75]

Communicating via the binding attribute
JSF UI components support an attribute named binding, which is rarely used and,
sometimes, poorly understood. The story behind its meaning can be stretched over
several pages or summed up in some golden rules. We will start with the binding
lifespan and a brief overview and will end with the important rules that should be
taken into account when you decide to used it in production.

If we want to localize the moment in time when the binding attribute enters the
fray, we can refer to the moment when the JSF view is built or restored; the result of
building/restoring the view is present in the component tree. So, before the component
tree is deliverable, JSF needs to inspect all binding attributes. For each of them, JSF
will check the presence of a pre-existing (precreated) component. If a pre-existing
component is found, then it is used; otherwise, JSF will automatically create a brand
new one, and will pass it as an argument to the setter method that corresponds to that
binding attribute. In addition, JSF adds a reference of the component in the view state.
Furthermore, a postback request (a form submit) will tell JSF to restore the view, which
will restore the components and bindings based on view state.

Now that you know what happens with the binding attribute, let's enumerate some
important aspects of using it:

•	 After each request (initial or postback), JSF creates an instance of the
component indicated by the binding attribute.

•	 At the restore view (at the postback), after the component instance is created,
JSF populates it from the view state, based on the stored reference.

•	 When you bind a component to a bean property (of type UIComponent),
you actually bind the whole component. This kind of binding is a very
rare use case, and it may be useful when you want to work/expose a
component's methods that are not available in the view or you need to
alter the component's children in a programmatic fashion. Moreover,
you can alter the component's attributes and instantiate the component
rather than letting the page author do so.

•	 Since JSF instantiates the component at each request, the bean must be in the
request scope; otherwise, the component may be shared between different
views. The view scope may also be a solution.

•	 The binding attribute is also used to bind the component to the current
view, without the need of a bean. This is useful to gain access to the state
of a component from another component.

•	 Binding a component without a bean property will put the component in
the EL scope. This happens when the component tree is built; therefore, EL
is perfectly capable to reveal the bound component at the rendering stage,
which takes place after the component tree was built.

Communication in JSF

[76]

For example, a <h:dataTable> tag has three useful properties: first, rows, and
rowCount. If you bind a <h:dataTable> tag to the current view, then outside of this
component, you can access these properties as shown in the following line of code:

<h:dataTable value="#{playersBean.dataArrayList}"
 binding="#{table}" var="t">

For example, you can set the rows property as follows:

#{table.rows = 3;''}

Also, display the rowCount and first properties as follows:

<h:outputText value="#{table.rowCount}"/>
<h:outputText value="#{table.first}"/>

The complete application is named ch2_32.

We can accomplish the same thing from a bean. First, we bind the <h:dataTable>
tag to a bean property of type HtmlDataTable as follows:

<h:dataTable value="#{playersBean.dataArrayList}"
 binding="#{playersBean.table}" var="t">

Now, in PlayersBean, we add the following code:

private HtmlDataTable table;
...
//getter and setter
...
public void tableAction() {
 logger.log(Level.INFO, "First:{0}", table.getFirst());
 logger.log(Level.INFO, "Row count: {0}", table.getRowCount());
 table.setRows(3);
}

The complete application is named ch2_31.

Managed bean communication
Until now, we have focused especially on the communication between Facelets
and managed beans. In this section, we will cover another important aspect
regarding JSF communication—managed beans communication. We will
discuss the following topics:

•	 Injecting a managed bean into another bean
•	 Communication between managed beans using the application/session map
•	 Accessing other managed beans programmatically

Chapter 2

[77]

Injecting a managed bean into another bean
A managed bean can be injected into another managed bean using @ManagedProperty.
For example, let's suppose that you have a managed bean in the session scope that
stores a player name and surname, as shown in the following code:

@Named
@SessionScoped
public class PlayersBean implements Serializable{

 private String playerName;
 private String playerSurname;

 public PlayersBean() {
 playerName = "Rafael";
 playerSurname = "Nadal";
 }

//getters and setters
}

Now, let's suppose that you want to have access to this bean's properties
from another view scoped bean, named ProfileBean. For this, you can
use @ManagedProperty as shown in the following code:

@ManagedBean //cannot be @Named
@ViewScoped
public class ProfileBean implements Serializable{

 private final static Logger logger =
 Logger.getLogger(PlayersBean.class.getName());
 @ManagedProperty("#{playersBean}")
 private PlayersBean playersBean;
 private String greetings;

 public ProfileBean() {
 }

 public void setPlayersBean(PlayersBean playersBean) {
 this.playersBean = playersBean;
 }

 @PostConstruct
 public void init(){

Communication in JSF

[78]

 greetings = "Hello, " + playersBean.getPlayerName()
 + " " +playersBean.getPlayerSurname() + " !";
 }

 public void greetingsAction(){
 logger.info(greetings);
 }

}

A Facelet that calls the greetingsAction method will draw something like the
following line in the log:

INFO: Hello, Rafael Nadal !

The presence of the @PostConstruct method is optional,
but it is good to know that this is the earliest place where an
injected dependency is available.

This example is wrapped into the application named ch2_22.

If you want to use CDI beans, then you can accomplish the same thing as shown in
the following code:

@Named
@ViewScoped
public class ProfileBean implements Serializable{

 @Inject
 private PlayersBean playersBean;
 private String greetings;
 ...

This example is wrapped into the application named ch2_30.

Communication between managed beans
using the application/session map
Communication between managed beans can be ensured through an application
map or a session map, depending on what kind of communication is needed,
during multiple browser sessions or during one browser session.

Chapter 2

[79]

The advantage of using the application/session map is in the fact that multiple
beans can communicate with each other independent of their scopes. First, you
need to define a helper class that provides two static methods, one for adding a
value into the application map and one for deleting a value from the application
map, as shown in the following code:

public class ApplicationMapHelper {

 public static Object getValueFromApplicationMap(String key) {
 return FacesContext.getCurrentInstance().getExternalContext().
 getApplicationMap().get(key);
 }

 public static void setValueInApplicationMap(String key,
 Object value) {
 FacesContext.getCurrentInstance().getExternalContext().
 getApplicationMap().put(key, value);
 }
}

Now, you can improvise a simple scenario: in one managed bean (request scoped),
put some values into the application map, and in another managed bean (session
scoped), get those values. So, the first bean code is as follows:

@Named
@RequestScoped
public class PlayersBeanSet {

 public void playerSetAction() {
 ApplicationMapHelper.setValueInApplicationMap
 ("PlayersBeanSet.name", "Rafael");
 ApplicationMapHelper.setValueInApplicationMap
 ("PlayersBeanSet.surname", "Nadal");
 }
}

The managed beans that extract these values from the application map are given out
as follows:

@Named
@SessionScoped
public class PlayersBeanGet implements Serializable{

 private final static Logger logger =
 Logger.getLogger(PlayersBeanGet.class.getName());

 public void playerGetAction() {

Communication in JSF

[80]

 String name = String.valueOf(ApplicationMapHelper.
 getValueFromApplicationMap("PlayersBeanSet.name"));
 String surname = String.valueOf(ApplicationMapHelper.
 getValueFromApplicationMap("PlayersBeanSet.surname"));

 logger.log(Level.INFO, "Name: {0} Surname: {1}",
 new Object[]{name, surname});
 }
}

This example is wrapped into the application named ch2_24.

Accessing other managed beans
programmatically
Sometimes, you may need to access one managed bean from an event listener class
or another managed bean. Suppose that we have a managed bean on session scope,
named PlayersBean, and one on request scope, named ProfileBean, and you
want to programmatically access PlayersBean inside ProfileBean. Supposing that
PlayersBean has been created, you can accomplish this task in the following ways:

•	 Use the evaluateExpressionGet method inside ProfileBean as follows:
FacesContext context = FacesContext.getCurrentInstance();
PlayersBean playersBean = (PlayersBean)
 context.getApplication().evaluateExpressionGet(context,
 "#{playersBean}", PlayersBean.class);

if (playersBean != null) {
 //call the PlayersBean method
} else {
 logger.info("SESSION BEAN NOT FOUND!");
}

•	 Use the createValueExpression method inside ProfileBean as follows:
FacesContext context = FacesContext.getCurrentInstance();
ELContext elcontext = context.getELContext();

PlayersBean playersBean = (PlayersBean)
 context.getApplication().getExpressionFactory().
 createValueExpression(elcontext, "#{playersBean}",
 PlayersBean.class).getValue(elcontext);

if (playersBean != null) {
 //call the PlayersBean method

Chapter 2

[81]

} else {
 logger.info("SESSION BEAN NOT FOUND!");
}

In order to make things simpler, when you need to programmatically create
a value expression, you can use a simple helper method and pass only the
expression and class, as follows:
private ValueExpression createValueExpression(String exp,
 Class<?> cls) {
 FacesContext facesContext =
 FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();
 return facesContext.getApplication().
 getExpressionFactory().createValueExpression(elContext,
 exp, cls);
}

•	 Use ELResolver inside ProfileBean as follows:
FacesContext context = FacesContext.getCurrentInstance();
ELContext elcontext = context.getELContext();

PlayersBean playersBean = (PlayersBean)
 elcontext.getELResolver().getValue(elcontext, null,
 "playersBean");

if (playersBean != null) {
 //call the PlayersBean method
} else {
 logger.info("SESSION BEAN NOT FOUND!");
}

The evaluateExpressionGet method is the most
common one.

This example is wrapped into the application named ch2_25.

Communication in JSF

[82]

Summary
Communication in JSF is one of the most important aspects, since the entire
application's flow spins around the capability of processing and sharing data between
JSF components. As you have seen, there are many ways to pass/get parameters and
to access managed beans from other managed beans, but choosing the right ones for
obtaining a robust, harmonious, balanced application depends on experience. This
chapter covers a wide range of solutions for building communication pipes between
JSF components, but, as any developer knows, there is always a case that requires a
new approach!

See you in the next chapter, where we will talk about JSF scopes.

JSF Scopes – Lifespan and
Use in Managed Beans

Communication
If programming is an art, then working correctly with scopes is a part of it!

This affirmation is generally true, not just in JSF. Should I use the session scope now,
or the request scope? Do I have too many session beans? Can I inject this scope into
that scope? Is this session object too big? How many times have you asked yourself
these kinds of questions? I know ... many times! Maybe in this chapter you will
find answers to some of these questions and you will fortify your knowledge about
working with JSF scopes.

We have a lot to accomplish; therefore, let's have a short overview of what you will
see in this chapter:

•	 JSF scopes versus CDI scopes
•	 Request scope, session scope, view scope, application scope, conversation

scope, flow scope, none scope, dependent scope, and custom scope
•	 Beans injection

JSF scopes versus CDI scopes
Even a JSF beginner might have heard about JSF managed beans (regular JavaBeans
classes managed by JSF) and CDI beans (regular JavaBeans classes managed by CDI),
and knows that JSF supports JSF scopes and CDI scopes. Starting with Java EE 6, CDI
is recognized as the managed bean framework, besides EJBs. This causes confusion
among programmers, because EJBs, CDIs, and JSF managed beans raise a critical
question: which one to use and when?

JSF Scopes – Lifespan and Use in Managed Beans Communication

[84]

Focusing on JSF, the unanimous answer is that CDI beans are more powerful than
JSF beans. But, when you know right from the start that CDI will not be a part of
your application or you are running the application inside a servlet container (which
does not have CDI support by default, like Apache Tomcat), then JSF beans is the
right choice. In other words, when you need a simple way to define beans and a neat
mechanism for a dependency injection, then JSF bean will do the job, but when you
need heavy artillery, such as events, type safe injection, automatic injection, producer
methods, and interceptors, then CDI will represent the complete solution.

Moreover, NetBeans IDE 8.0 warns us that the JSF bean's annotations will be
deprecated in the next JSF version, while the CDI beans are recommended instead
(as shown in the following screenshot). This warning and the new JSF 2.2 flow scope,
introduced as a dependency on CDI, are powerful signals that JSF and CDI become
closer and closer:

CDI beans are much powerful than JSF beans; therefore, use CDI
beans whenever possible.

So, strong arguments indicate CDI is often the right choice, but there are still
instances where it is effective to use JSF beans, as you will soon discover.

JSF bean's main annotations (such as @ManagedBean and scopes annotations)
are defined in the package javax.faces.bean, while CDI's main annotations are
defined in the javax.inject (such as, @Named) and javax.enterprise.context
(such as, scopes) packages.

A JSF managed bean is annotated with @ManagedBean, which allows us to inject it
in to another bean (not CDI beans!) and to access the bean properties and methods
from JSF pages using EL expressions. A CDI bean is annotated with @Named, which
provides an EL name to be used in view technologies, such as JSP or Facelets.

Typically, a JSF bean is declared as shown in the following code:

package package_name;

import javax.faces.bean.ManagedBean;

Chapter 3

[85]

import javax.faces.bean.jsfScoped;

@ManagedBean
@jsfScoped
public class JSFBeanName {
...
}

The JSF bean, @ManagedBean, supports an optional parameter, name. The provided
name can be used to reference the bean from JSF pages in the following manner:

@ManagedBean(name="custom name")

A CDI bean has the same shape, with different annotations, as shown in the
following code:

package package_name;

import javax.inject.Named;
import javax.enterprise.context.cdiScoped;

@Named
@cdiScoped
public class CDIBeanName {
...
}

The CDI bean, @Named, supports an optional parameter, value. The provided name
can be used to reference the bean from JSF pages in the following manner:

@Named(value="custom name")

Notice that CDI annotations cannot be mixed with JSF annotations
in the same bean, only in the same application. For example, you
cannot define a bean using @ManagedBean and a CDI scope (or any
other combination between them), but you can have, in the same
application, a managed bean (or more) and a CDI bean (or more).

JSF Scopes – Lifespan and Use in Managed Beans Communication

[86]

In the following figure, you can see a short overview of JSF 2.2 scopes:

In the next section, you will see how each JSF/CDI scope works.

The request scope
The request scope is bound to the HTTP request-response life cycle.

The request scope is very useful in any web application, and an object defined
in the request scope usually has a short lifespan; beans live as long as the HTTP
request-response lives. When the container accepts an HTTP request from the client,
the specified object is attached to the request scope and it is released when the
container has finished transmitting the response to that request. A new HTTP request
always comes in a new request scope object. In short, a request scope represents a
user's interaction with a web application in a single HTTP request. Commonly, a
request scope is useful for simple GET requests that expose some data to the user
without requiring to store the data.

The request scope is present in JSF and CDI and functions in the
same way. It can be used for nonrich AJAX and non-AJAX requests.
For JSF managed beans (@ManagedBean), this is the default scope,
when none is specified.

Chapter 3

[87]

For example, let's suppose that we have a predefined list of tennis players, and
we randomly extract them one-by-one from this list and store them in another list.
The current generated player and the list of extracted players are managed bean's
properties and their values are rendered in a JSF page.

The request scope annotation is @RequestScoped and is defined
in the javax.enterprise.context package for CDI, and in
the javax.faces.bean package for JSF.

The code for the CDI bean can be written as follows:

@Named
@RequestScoped
public class PlayersBean {

 final String[] players_list = {"Nadal, Rafael (ESP)","Djokovic,
 Novak (SRB)", "Ferrer, David (ESP)", "Murray, Andy (GBR)",
 "Del Potro, Juan Martin (ARG)"};

 private ArrayList players = new ArrayList();
 private String player;

 //getters and setters

 public void newPlayer() {
 int nr = new Random().nextInt(4);
 player = players_list[nr];
 players.add(player);
 }
}

The relevant part of the JSF page is as follows:

<h:body>
 Just generated:
 <h:outputText value="#{playersBean.player}"/>

 List of generated players:
 <h:dataTable var="t" value="#{playersBean.players}">
 <h:column>
 <h:outputText value="#{t}"/>
 </h:column>
 </h:dataTable>
 <h:form>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[88]

 <h:commandButton value="Get Players In Same View"
 actionListener="#{playersBean.newPlayer()}"/>
 <h:commandButton value="Get Players With Page Forward"
 actionListener="#{playersBean.newPlayer()}"
 action="index.xhtml"/>
 <h:commandButton value="Get Players With Page Redirect"
 actionListener="#{playersBean.newPlayer()}"
 action="index.xhtml?faces-redirect=true;"/>
 </h:form>
</h:body>

When you click on the button labeled Get Players With Page Forward or Get Players
In Same View, you will see something as shown in the following screenshot:

Since a request scope lives as long as the HTTP request-response lives and page
forward implies a single HTTP request-response, you will see the player extracted at
the current request and the list of extracted players, which will always only contain
this player. The list is created for each request and filled with the current player,
which makes the list useless.

The request scope doesn't lose the object's state while forwarding,
because the source page and the destination page (the forwarded page)
are part of the same request-response cycle. This is not true in the case
of redirect actions.

When you click on the button labeled Get Players With Page Redirect, you will see
something as shown in the following screenshot:

Chapter 3

[89]

The current extracted player and the list content is not available in this case, because
a JSF redirect implies two requests, instead of one as in the forward case.

Programmatically, you can access the request map using the following code:

FacesContext context = FacesContext.getCurrentInstance();
Map<String, Object> requestMap =
 context.getExternalContext().getRequestMap();

Submitting a form defined in page 1 to page 2 via a bean, and then you have the
following cases:

•	 If the same view or forward is used, then the data is available for display
on page 2

•	 If redirect is used, then data will be lost and not available for display
on page 2

The JSF version of the CDI beans is as follows:

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class PlayersBean {
 ...
}

And it works the same as the CDI bean!

A method annotated with @PostConstruct will be called for
each request, since each request requires a separate instance of
the request scoped bean.

The case of the CDI bean is wrapped into the application named ch3_1_1, while the
case of the JSF bean is wrapped into application named ch3_1_2.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[90]

The session scope
The session scope lives across multiple HTTP request-response cycles
(theoretical unlimited).

The request scope is very useful in any web application when you need a single
interaction per HTTP request-response cycle. However, when you need objects
visible for any HTTP request-response cycle that belongs to a user session, then you
need a session scope; in this case, the bean lives as long as the HTTP session lives.
The session scope allows you to create and bind objects to a session. It gets created
upon the first HTTP request involving this bean in the session and gets destroyed
when the HTTP session is invalidated.

The session scope is present in JSF and CDI and it functions the
same way in both. Commonly, it is used for AJAX and non-AJAX
requests that process user-specific data (such as credentials,
shopping carts, and so on).

Therefore, the first HTTP request initializes the session and stores the objects,
while the subsequent requests have access to these objects for further tasks.
A session invalidation occurs when the browser is closed, a timeout is fired,
the logout is clicked, or a programmatic subroutine forces it. Normally, each time
you need to preserve data across the whole session (multiple requests and pages),
the session scope is the right choice.

For example, you can add the session scope to the previous applications of this
chapter for storing the list of randomly extracted players across multiple requests.

The session scope annotation is @SessionScoped and is defined
in the javax.enterprise.context package for CDI, and in
the javax.faces.bean package for JSF.

The CDI bean is modified as follows:

import java.io.Serializable;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named
@SessionScoped
public class PlayersBean implements Serializable{
 ...
}

Chapter 3

[91]

Alternatively, the JSF version is as follows:

import java.io.Serializable;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class PlayersBean implements Serializable{
 ...
}

Notice that the session scope bean might get passivated by the
container and should be capable of passivity, which means
that the session beans should be serializable (implement the
java.io.Serializable interface); refer to the capability to
persist/restore session data to/from the hard disk.

The session objects lives across forward and redirect mechanisms. In the following
screenshot, you can see the current extracted player and the list of extracted players
after several requests belonging to the same session:

Now the list is not useless anymore! You can add methods for manipulating its
content, such as order or delete.

Programmatically, you can access the session map as follows:

FacesContext context = FacesContext.getCurrentInstance();
Map<String, Object> sessionMap =
 context.getExternalContext().getSessionMap();

JSF Scopes – Lifespan and Use in Managed Beans Communication

[92]

Also, you can invalidate a session as follows:

FacesContext.getCurrentInstance().
 getExternalContext().invalidateSession();

Obviously, data submitted through forms across the session scope will be available
in subsequent requests.

A method annotated with @PostConstruct will be called only once
during a session, when the session bean is instantiated. Subsequent
requests will use this instance, so it can be a good place to add
initialization stuff.

The case of the CDI bean is wrapped into the application named ch3_2_1, while the
case of the JSF bean is wrapped into the application named ch3_2_2.

The view scope
The view scope lives as long as you are navigating in the same JSF view in the
browser window/tab.

The view scope is useful when you need to preserve data over multiple requests
without leaving the current JSF view by clicking on a link, returning a different
action outcome, or any other interaction that dumps the current view. It gets created
upon an HTTP request and gets destroyed when you postback to a different view; as
long as you postback to the same view, the view scope is alive.

Notice that the view scope bean might get passivated
by the container and should be capable of passivity by
implementing the java.io.Serializable interface.

Since the view scope is particularly useful when you are editing some objects
while staying in the same view, it can be the perfect choice for rich AJAX requests.
Moreover, since the view scope is bounded to the current view, it does not reflect the
stored information in another window or tab of a browser; this is an issue specific to
the session scope!

In order to keep the view active, the bean methods (actions/listeners)
must return null or void.

Chapter 3

[93]

The view scope is not available in CDI, but JSF 2.2 has introduced it through the new
annotation, @ViewScoped. This is defined in the javax.faces.view.ViewScoped
package and it is compatible with CDI. Do not confuse this @ViewScoped with the
one defined in the javax.faces.bean package, which is JSF compatible!

The view scope annotation is @ViewScoped and is
defined in the javax.faces.view package for CDI,
and in the javax.faces.bean package for JSF.

You can see the view scope in action by modifying the PlayersBean scope as follows:

import java.io.Serializable;
import javax.faces.view.ViewScoped;
import javax.inject.Named;

@Named
@ViewScoped
public class PlayersBean implements Serializable{
 ...
}

Firing multiple HTTP requests by clicking on the button labeled Get Players In Same
View will reveal something like the following screenshot. Notice the action method
(newPlayer) returns void and the button doesn't contain the action attribute, which
means that you are in the same JSF view during the execution of these requests.

The other two buttons contain the action attribute and indicate an explicit
navigation, which means that the current view is changed at every request
and the data is lost.

You can easily adapt PlayersBean (and any other bean) to use the JSF version of
@ViewScoped as follows:

import java.io.Serializable;
import javax.faces.bean.ManagedBean;

JSF Scopes – Lifespan and Use in Managed Beans Communication

[94]

import javax.faces.bean.ViewScoped;

@ManagedBean
@ViewScoped
public class PlayersBean implements Serializable{
 ...
}

Data submitted through forms across the view scope will be available in subsequent
requests as long as you are in the same view.

A method annotated with @PostConstruct will be called only when
the view scoped bean is instantiated. Subsequent requests, from this
view, will use this instance. As long as you are in the same view, this
method will not be called again; therefore, it can be a good place to
add initialization stuff specific to the current view.

The case of the CDI bean is wrapped into the application named ch3_6_1, while the
case of the JSF bean is wrapped into the application named ch3_6_2.

Starting with JSF 2.2, we can use the UIViewRoot.restoreViewSc
opeState(FacesContext context, Object state) method
for restoring the view scope when it is not available. This will be
exemplified in Chapter 12, Facelets Templating.

The application scope
The application scope lives as long as the web application lives.

An application scope extends the session scope with the shared state across all users'
interactions with a web application; this scope lives as long as the web application
lives. Since the beans in the application scope lives until the application shuts down
(or they are programmatically removed), we can say that this scope lives most. More
precisely, objects settled on the application scope can be accessed from any page that
is part of the application (for example, JSF, JSP, and XHTML).

The application scope should be used only for data that is safe to be
shared. Since an application scoped bean is shared by all users, you
need to be sure that the bean has an immutable state or you need to
synchronize access.

Chapter 3

[95]

Usually, application scope objects are used as counters, but they can be used
for many other tasks, such as initializations and navigations. For example, the
application scope can be used to count how many users are online or to share
that information with all users. Practically, it can be used to share data among
all sessions, such as constants, common settings, and tracking variables.

The application scope annotation is @ApplicationScoped and
is defined in the javax.enterprise.context package for CDI,
and in the javax.faces.bean package for JSF.

If you put the PlayersBean managed bean in the application scope, then the list
of randomly extracted players will be available across all sessions. You can do it
as shown in the following code:

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Named;

@Named
@ApplicationScoped
public class PlayersBean {
 ...
}

The JSF version is shown in the following code:

import javax.faces.bean.ApplicationScoped;
import javax.faces.bean.ManagedBean;

@ManagedBean
@ApplicationScoped
public class PlayersBean {
 ...
}

For testing the application scope, you need to open multiple browsers or use
multiple machines.

Be careful when you provide data from an application scoped bean to multiple
sessions beans (for example, using injection), since the data shared by all sessions
can be modified by each session separately. This can lead to inconsistent data across
multiple users; therefore, be sure that the exposed application data isn't modified
in sessions.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[96]

A method annotated with @PostConstruct will be called only when
the application scoped bean is instantiated. Subsequent requests will
use this instance. Usually, this happens when the application starts;
therefore, place inside this method the initialization tasks specific to
the application in the context of this bean.

Programmatically, you can access the application map using the following code:

FacesContext context = FacesContext.getCurrentInstance();
Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();

The case of the CDI bean is wrapped into the application named ch3_3_1, while the
case of the JSF bean is wrapped into the application named ch3_3_2.

The conversation scope
The conversation scope allows developers to demarcate the lifespan of the
session scope.

The conversation scope is committed to the user's interaction with JSF applications
and represents a unit of work from the point of view of the user; a bean in this scope
is able to follow a conversation with a user. We may charge the conversation scope as
a developer-controlled session scope across multiple invocations of the JSF life cycle;
while session scoped lives across unlimited requests, the conversation scopes lives
only across a limited number of requests.

The conversation scope bean might get passivated by the
container and should be capable of passivity by implementing
the java.io.Serializable interface.

The developer can explicitly set the conversation scope boundaries and can start,
stop, or propagate the conversation scope based on the business logic flow. All
long-running conversations are scoped to a particular HTTP servlet session and
may not cross session boundaries. In addition, conversation scope keeps the state
associated with a particular Web browser window/tab in a JSF application.

Chapter 3

[97]

The conversation scope annotation is @ConversationScoped and is
defined in the javax.enterprise.context package for CDI. This
scope is not available in JSF!

Dealing with the conversation scope is slightly different from the rest of the scopes.
First, you mark the bean with @ConversationScope, represented by the javax.
enterprise.context.ConversationScoped class. Second, CDI provides a
built-in bean (javax.enterprise.context.Conversation) for controlling the
life cycle of conversations in a JSF application—its main responsibility is to manage
the conversation context. This bean may be obtained by injection, as shown in the
following code:

private @Inject Conversation conversation;

By default, the Conversation object is in transient state and it should be transformed
into a long-running conversation by calling the begin method. You also need to
prepare for the destruction of the conversation by calling the end method.

If we try to call the begin method when the conversation is
active, or the end method when the conversation is inactive,
IllegalStateException will be thrown. We can avoid this by
testing the transitivity state of the Conversation objects using the
method named isTransient, which returns a Boolean value.

Now, add the begin, end, and isTransient methods together to the
following conversations:

•	 For start conversation, the code is as follows:
if (conversation.isTransient()) {
 conversation.begin();
}

•	 For stop conversation, the code is as follows:
if (!conversation.isTransient()) {
 conversation.end();
}

JSF Scopes – Lifespan and Use in Managed Beans Communication

[98]

For example, you can add the conversation scope in PlayersBean as follows:

@Named
@ConversationScoped
public class PlayersBean implements Serializable {

 private @Inject
 Conversation conversation;

 final String[] players_list = {"Nadal, Rafael (ESP)","Djokovic,
 Novak (SRB)", "Ferrer, David (ESP)", "Murray, Andy (GBR)",
 "Del Potro, Juan Martin (ARG)"};
 private ArrayList players = new ArrayList();
 private String player;

 public PlayersBean() {
 }

 //getters and setters

 public void newPlayer() {
 int nr = new Random().nextInt(4);
 player = players_list[nr];
 players.add(player);
 }

 public void startPlayerRnd() {
 if (conversation.isTransient()) {
 conversation.begin();
 }
 }

 public void stopPlayerRnd() {
 if (!conversation.isTransient()) {
 conversation.end();
 }
 }
}

Besides injecting the built-in CDI bean, notice that you have defined a method
(startPlayerRnd) for demarcating the conversation start point and another method
(stopPlayerRnd) for demarcating the conversation stop point. In this example, both
the methods are exposed to the user through two buttons, but you can control the
conversation programmatically by calling them conditionally.

Chapter 3

[99]

Running the example inside a conversation will reveal something as shown in the
following screenshot:

The list of randomly extracted players will be empty or will contain only the
current extracted player until the button labeled Start Conversation is clicked.
At that moment the list will be stored in session, until the button labeled Stop
Conversation is clicked.

During the conversation, the user may execute AJAX/non-AJAX
requests against the bean or perform navigations to other pages that
still reference this same managed bean. The bean will keep its state
across user interactions using a conversation identifier generated by
the container, and this is why the conversation scope can be the right
choice when you need to implement wizards. But it might be a good
idea to take into account the new JSF 2.2 flow scope as well, which solves
several gaps of the conversation scope. See the upcoming section!

In this example, the conversation context automatically propagates with any JSF
faces request or redirection (this facilitates the implementation of the common
POST-then-redirect pattern), but it does not automatically propagate with non-faces
requests, such as links. In this case, you need to include the unique identifier of the
conversation as a request parameter. The CDI specification reserves the request
parameter cid for this use. The following code will propagate the conversation
context over a link:

<h:link outcome="/link.xhtml" value="Conversation Propagation">
 <f:param name="cid" value="#{conversation.id}"/>
</h:link>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[100]

A method annotated with @PostConstruct will be called for each
request as long as the bean is not involved in a conversation. When
the conversation begins, the method is called for that instance and
subsequent requests will use this instance until the conversation ends.
Therefore, be careful how you manage this method content.

This example is wrapped into the application named ch3_4 and is available in the
code bundle of this chapter.

The flow scope
The flow scope allows developers to group pages/views and demarcate the group
with entry/exit points.

Between the request scope and the session scope, we have the CDI flow scope.
This scope exists for a while in Spring Web Flow or ADF flow, and now is available
in JSF 2.2 as well. Basically, the flow scope allows us to demarcate a set of related
pages/views (usually, logic related) with an entry point (known as start node) and
an exit point (known as return node).

The flow scope is a good choice for applications that contain
wizards, such as multiscreen subscriptions/registrations,
bookings, and shopping carts. Generally speaking, any chunk
of an application that has a logical start point and an end point
can be encapsulated into the flow scope.

In the same application, we can define multiple flows, which can be seen as modules
that are reusable and capable to communicate. They can be called sequentially, can
be encapsulated as Matrioska dolls or can create any custom design. Moreover, it is
very easy to move, delete, or add a flow into such an application just by plugging
in/out the entry and exit point.

Chapter 3

[101]

To understand the benefits of using the flow scope, you have to identify some
disadvantages of the applications that don't use it. They are listed as follows:

•	 Each application is a big flow, but usually pages do not follow any intuitive
logical design. Apparently, a disordered order governs even when pages are
logically related, such as pages of a wizard or of a shopping cart.

The flow scope allows us to define logical units of work.

•	 Reusing pages can be a difficult task to accomplish, since pages are so tied up
to UI components and user interaction.

The flow scope provides reusability.

•	 CDI provides conversation scope capable of stretching over several pages,
but the flow scope fits better for JSF.

•	 As the conversation scope, the flow scope covers a set of pages/views,
but it has several main advantages, such as it is much more flexible,
doesn't need that clumsy begin/end operation, flow scoped beans
are created and destroyed automatically when the user enters or exists
into/from a flow, provides easy-to-use support for inbound/outbound
parameters, and prehandlers and posthandlers. A normal flow cannot be
opened in multiple windows/tabs because information travels between
pages with the session scope.

Data in a flow is scoped to that flow alone; therefore, flows can
be opened in multiple windows/tabs.

•	 The nodes define the entry and exit points of a flow and there are five types
of nodes, which are listed as follows:

°° View: This represents any JSF page in the application that
participates in the flow. It is known as a view node of the flow.

°° The method call: This indicates an invocation of a method using EL.
The called method may return an outcome that indicates which node
should be navigated next.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[102]

°° Switch: The switch case statements are a substitute for long if
statements. The cases are represented by EL expressions and are
evaluated to Boolean values. Each case is accompanied by an
outcome that will be used when the condition is evaluated to true.
There is also a default outcome that will be used when all cases are
evaluated to false.

°° The flow call: This is used to call another flow in the current flow—
these are transition points between flows. The called flow (known
as inner or nested flow) is nested in the flow that calls it (known as
calling flow or outer flow). When the nested flow finishes its tasks,
it will return a view node from the calling flow, which means that
the calling flow will have control only after the nested flow's lifespan
comes to an end.

°° The flow return: This can be used for returning an outcome to the
calling flow.

Flows can pass parameters from one to the other. Parameters sent by a flow to
another flow are known as outbound parameters, while parameters received
by a flow from another flow are known as inbound parameters.

Well, at this point, you should have enough information about the flow scope to
develop some examples. But, before doing this, you need to be aware of some tags,
annotations, and conventions.

The flow definition is based on a set of conventions over configuration. A flow has a
name, a folder in the web root of the application reflecting the flow name, and a view
representing the start node that also reflects the flow name. This folder groups the
pages/views that belong to the same flow.

In order to use a flow, you need to accomplish some configuration tasks. These can
be done through a configuration file or programmatically. If you choose the first
approach, then the configuration file can be limited to one flow, which means that it
is stored in the flow folder and is named in the format flowname-flow.xml, or you
can use the faces-config.xml file for having all flows in a single place.

Since our first example uses the configuration file, we need to use tags. The main tags
used for configuring a flow are as follows:

•	 < flow-definition>: This tag contains an id attribute that uniquely
identifies the flow. The value of this ID is the flow name used to reference
the flow from JSF pages or beans.

Chapter 3

[103]

•	 <view>: It is nested in the <flow-definition> tag and indicates the JSF
pages that represent the flow nodes; it associates an explicit ID to each page
(Facelet) path (further, you can refer to each page by its ID). The page path
is mapped in a <vdl-document> tag, nested in the <view> tag. The presence
of this tag is optional, but as a convention, at least the <view> tag indicating
the start node (start page) is present, especially if you want to set another
start node besides the default one, which is represented by the page in the
flow with the same name (ID) as the flow. Further, you can use the optional
<start-node>ID</start-node> tag and indicate the ID of the <view> tag
that maps the custom starting page. As an alternative, the start node of the
flow can be indicated by setting the value of the id attribute of a <view> tag
as the flow ID, and the content of the encapsulated <vdl-document> tag as
the path of the custom starting page. When you refer to the flow ID, JSF will
go to that page and automatically put you in the flow.

•	 <flow-return>: It is nested in the <flow-definition> tag and returns an
outcome to the calling flow. You can refer to it through the value of the id
attribute. There are at least three ways of getting out of a flow: using <flow-
return>, using <flow-call> (presented later), or by abandoning the flow.

We just said that a flow is identified by an ID (by a name). But, when
the same flow name is defined in multiple documents (like in big
projects that use multiple packaged flows from different vendors),
there is one more ID needed. This ID is known as the document
ID. Thus, when you need to identify a flow whose name appears in
different documents, we need the flow ID and the defining document
ID. Most of the time the document ID is omitted; therefore, it is not
demonstrated in this section. In this section, you will see just a few
hints about it.

In order to define the simplest flow, you need to be aware of the following diagram:

JSF Scopes – Lifespan and Use in Managed Beans Communication

[104]

The simple flow
With these three tags, <start-node> and/or <view>, <flow-return>, and
<from-outcome>, you can configure a simple flow, like a peddling registration form.
Let's suppose that a tennis player registers online to a tournament through a flow
made up of two JSF pages (the flow name will be registration): a page containing
a form used for collecting data and a confirmation page. Moreover, there will be
two pages outside the flow, one for entering into the flow (like the first page of the
website), and one that is called after confirmation.

In the following diagram, you can see an image of our flow:

Let's have a look at the code for the first page that is outside the flow and outside the
registration folder (index.xhtml) as follows:

<h:body>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 Flow Id: #{facesContext.application.flowHandler.currentFlow.id}
 REGISTER NEW PLAYER
 <h:form>
 <h:commandButton value="Start Registration"
 action="registration" immediate="true"/>
 </h:form>
</h:body>

Two important things can be observed here. First, the following lines:

 #{null != facesContext.application.flowHandler.currentFlow}
 #{facesContext.application.flowHandler.currentFlow.id}

The first line returns a Boolean value indicating whether the current page is or is not
in a flow. Obviously, the index.xhtml page is not in a flow; therefore, false will be
returned. You can use it for tests. The second line displays the ID of the current flow.

Chapter 3

[105]

Further, you need to take a look at the value of the attribute action of the
<h:commandButton> tag. This value is the name (ID) of our flow; after the
window context is enabled, JSF will search the indicated flow and navigate
to the start node of the flow. By default, the window context is disabled.

Therefore, when the button labeled Start Registration is clicked, the application
steps in the registration flow and loads the start node page represented by the
registration.xhtml page. The code for this page is as follows:

<h:body>
 <h1>First page in the 'registration' flow</h1>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 You are registered as:#{flowScope.value}
 <h:form prependId="false">
 Name & Surname:
 <h:inputText id="nameSurnameId" value="#{flowScope.value}" />
 <h:commandButton value="Register To Tournament"
 action="confirm"/>
 <h:commandButton value="Back(exit flow)"
 action="taskFlowReturnIndex"/>
 </h:form>
</h:body>

Since we are in the flow, currentFlow will return true.

It is more important to focus on the implicit object, flowScope; however, as you
know from Chapter 1, Dynamic Access to JSF Application Data through Expression
Language (EL 3.0), the flowScope implicit object (which indicates the current flow)
is used for sharing data through the entire flow and maps to facesContext.
getApplication().getFlowHandler().getCurrentFlowScope(). For example,
the value of the <h:inputText> tag can be put into the flowScope object and can
be read from the flow scope in the next page, as follows:

#{flowScope.value}

The button labeled Register To Tournament navigates to the second page in the flow,
confirm.xhtml; this is a usual navigation case, there is nothing to say here. But the
other button navigates outside the flow (to index.xhtml) by indicating the ID of a
flow return. In the configuration file, this flow return is as shown in the following code:

<flow-return id="taskFlowReturnIndex">
 <from-outcome>/index</from-outcome>
</flow-return>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[106]

The code of the confirm.xhtml page is as follows:

<h:body>
 <h1>Second page in the 'registration' flow</h1>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 You are registered as:#{flowScope.value}
 <h:form prependId="false">
 <h:commandButton value="Back (still in flow)"
 action="registration"/>
 <h:commandButton value="Next (exit flow)"
 action="taskFlowReturnDone"/>
 </h:form>
</h:body>

This page displays the data that was entered and stored on the flow scope along with
both the buttons. The first button navigates back to the registration.xhtml page,
while the other one navigates to the done.xhtml page, which is outside the flow.
The flow return is identified by the ID, as shown in the following code:

<flow-return id="taskFlowReturnDone">
 <from-outcome>/done</from-outcome>
</flow-return>

The done.xhtml page just checks to see if the page is in flow and displays a simple
message, as shown in the following code:

<h:body>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 REGISTER NEW PLAYER ENDED
</h:body>

The final step is to define the flow in a configuration file. Since you have a single
flow, you can create a file registration-flow.xml in the registration folder.
The following is the code of the registration-flow.xml file:

<faces-config version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 3

[107]

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

 <flow-definition id="registration">
 <view id="registration">
 <vdl-document>/registration/registration.xhtml</vdl-
 document>
 </view>
 <flow-return id="taskFlowReturnIndex">
 <from-outcome>/index</from-outcome>
 </flow-return>
 <flow-return id="taskFlowReturnDone">
 <from-outcome>/done</from-outcome>
 </flow-return>
 </flow-definition>
</faces-config>

You can also place the following code inside the faces-config.xml file in the
<faces-flow-definition> tag:

<faces-flow-definition>
 <flow-definition id="registration">
 ...
</faces-flow-definition>

This example is wrapped into the application named ch3_7_1 that is available in the
code bundle of this chapter.

Flows with beans
Beside pages, a flow can contain beans. A bean defined in a flow is annotated with
@FlowScoped; this is a CDI annotation that enables automatic activation (when the
scope is entered) and passivation (when the scope is exited). The @FlowScoped bean
requires an attribute named value that contains the flow ID. The data stored in such
a bean is available in all pages that belong to that flow.

The flow scope bean might get passivated by the container and should
be capable of passivity by implementing the java.io.Serializable
interface.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[108]

Adding a bean in the registration flow can modify the initial diagram, as shown in
the following diagram:

As you can see, the bean will store the data collected from the registration form
in the flow scope (in the previous example, this data was passed using the
flowScope implicit object). The button labeled Register To Tournament will call the
registrationAction bean method, which will decide if the data is valid and return
the flow back to the registration.xhtml page or next to the confirm.xhtml page.

The registration.xhtml page's code is modified as follows:

<h:body>
 <h1>First page in the 'registration' flow</h1>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 Your registration last credentials:
 #{registrationBean.playerName} #{registrationBean.playerSurname}
 <h:form prependId="false">
 Name: <h:inputText value="#{registrationBean.playerName}"/>
 Surname: <h:inputText
 value="#{registrationBean.playerSurname}"/>
 <h:commandButton value="Register To Tournament"
 action="#{registrationBean.registrationAction()}"/>
 <h:commandButton value="Back (exit flow)"
 action="taskFlowReturnIndex"/>
 </h:form>
</h:body>

The code of RegistrationBean is as follows:

@Named
@FlowScoped(value="registration")
public class RegistrationBean implements Serializable {

 private String playerName;

Chapter 3

[109]

 private String playerSurname;

 ...
 //getters and setters
 ...

 public String getReturnValue() {
 return "/done";
 }

 public String registrationAction(){

 //simulate some registration conditions
 Random r= new Random();
 int nr = r.nextInt(10);

 if(nr < 5){
 playerName="";
 playerSurname="";
 FacesContext.getCurrentInstance().addMessage("password",
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 "Registration failed!",""));
 return "registration";
 } else {
 return "confirm";
 }
 }
}

The code is self explanatory, but what about the getReturnValue method? Well,
this is just an example of how a flow scoped bean can indicate the outcome of a
flow return. Instead of using the following code:

<flow-return id="taskFlowReturnDone">
 <from-outcome>/done</from-outcome>
</flow-return>

You can use the following code:

<flow-return id="taskFlowReturnDone">
 <from-outcome>#{registrationBean.returnValue}</from-outcome>
</flow-return>

This example is wrapped into the application named ch3_7_2 that is available in the
code bundle of this chapter.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[110]

Nested flows
Well, now let's complicate things by adding another flow under the existing one. Let's
suppose that after the registration, the player has to indicate the day and the hour
when he is available to play the first match. This can be accomplished in a new flow
named schedule. The registration flow will call the schedule flow and will pass
some parameters to it. The schedule flow will return in the registration flow,
which will provide a simple button for navigation outside the registration flow.

The nested flow returns only in the calling flow. You have to refer to a
page of the calling flow in the <flow-return> tag of the nested flow,
including the pages returned by the calling flow.

Passing parameters is a thing that requires more tags in the configuration tag.
Therefore, you need to know the following tags:

•	 <flow-call>: This calls another flow in the current flow. This tag requires the
id attribute. The value of this attribute will be used to refer to this flow call.

•	 <flow-reference>: This is nested in the <flow-call> tag and contains the
ID of the flow that must be called.

•	 <outbound-parameter>: This is nested in the <flow-call> tag and defines
parameters that must be passed to the called flow.

•	 <inbound-parameter>: This defines the parameters passed from another flow.

In order to see these tags at work, you need to take a look at the application flow.
The diagram of the application will change as follows:

Chapter 3

[111]

We resume our discussion from the confirm.xhtml page (defined in the
registration flow). From this page, we want to navigate to the schedule.xhtml
page, which is available in the schedule flow (the schedule folder). For this, we can
add a new button, labeled Schedule, as shown in the following code:

<h:form prependId="false">
 <h:commandButton value="Back (still in flow)"
 action="registration"/>
 <h:commandButton id="Next" value="Schedule"
 action="callSchedule" />
 <h:commandButton value="Next (exit flow)"
 action="taskFlowReturnDone"/>
</h:form>

The button's action attribute value is the ID of the <flow-call> tag. When the
button is clicked, JSF locates the corresponding <flow-call> tag and follows the
flow with the ID indicated by the <flow-id> tag, as shown in the following code:

<flow-call id="callSchedule">
 <flow-reference>
 <flow-id>schedule</flow-id>
 </flow-reference>
...
</flow-call>

Moreover, we want to pass several parameters from the registration flow to
the schedule flow: the player name and surname (stored in the flow scoped
RegistrationBean bean) and a constant representing some registration code
(it can also be generated based on certain rules). This can be accomplished by the
<outbound-parameter> tag, as shown in the following code:

<flow-call id="callSchedule">
 <flow-reference>
 <flow-id>schedule</flow-id>
 </flow-reference>
 <outbound-parameter>
 <name>playernameparam</name>
 <value>#{registrationBean.playerName}</value>
 </outbound-parameter>
 <outbound-parameter>
 <name>playersurnameparam</name>
 <value>#{registrationBean.playerSurname}</value>
 </outbound-parameter>
 <outbound-parameter>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[112]

 <name>playerregistrationcode</name>
 <value>349CF0YO122</value>
 </outbound-parameter>
</flow-call>

The schedule.xhtml page displays a hello message based on the received
parameters and a form that allows to the player to enter the day and hour
when he is available for playing the first match, as shown in the following code:

<h:body>
 <h1>First page in the 'schedule' flow</h1>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 Hello, #{flowScope.name} #{flowScope.surname}
 (#{scheduleBean.regcode})
 <h:form prependId="false">
 Day: <h:inputText value="#{scheduleBean.day}"/>
 Starting At Hour: <h:inputText
 value="#{scheduleBean.hourstart}"/>
 <h:commandButton value="Save" action="success"/>
 </h:form>
</h:body>

Notice that the name and surname are obtained from the flow scope using
the flowScope object, while the registration code is obtained from the flow
scoped ScheduleBean; this bean stores the day, hour (received from the player),
and registration code (received from the registration flow). Each piece of
information received from the registration bean was guided to the place of storage
using the <inbound-parameter> tag in the schedule-flow.xml file, as shown in
the following code:

<flow-definition id="schedule">
 <view id="schedule">
 <vdl-document>/schedule/schedule.xhtml</vdl-document>
 </view>

 <inbound-parameter>
 <name>playernameparam</name>
 <value>#{flowScope.name}</value>
 </inbound-parameter>
 <inbound-parameter>
 <name>playersurnameparam</name>
 <value>#{flowScope.surname}</value>
 </inbound-parameter>

Chapter 3

[113]

 <inbound-parameter>
 <name>playerregistrationcode</name>
 <value>#{scheduleBean.regcode}</value>
 </inbound-parameter>
</flow-definition>

After the day and hour are inserted, the button labeled Save should save the data
and navigate to the success.xhtml page, which is a simple page that displays
all data provided by the player. From this page, we can return to the calling flow,
registration, via a simple button labeled Exit Registration, as shown in the
following code:

<h:body>
 <h1>Second page in the 'schedule' flow</h1>
 <h1>In flow ?
 #{null != facesContext.application.flowHandler.currentFlow}
 </h1>

 You are registered as
 #{flowScope.name} #{flowScope.surname} (#{scheduleBean.regcode})
 You will play first match
 #{scheduleBean.day} after #{scheduleBean.hourstart}
 <h:button value="Exit Registration"
 outcome="taskFlowReturnThanks"/>
</h:body>

The outcome, taskFlowReturnThanks, is defined in the schedule-flow.xml file
as follows:

<flow-return id="taskFlowReturnThanks">
 <from-outcome>/registration/thanks.xhtml</from-outcome>
</flow-return>

The thanks.xhtml page is just a final step before the user exists from the
registration flow, as shown in the following code:

<h:body>
 <h1>Third page in the 'registration' flow</h1>
 <h1>In flow ? #{null !=
 facesContext.application.flowHandler.currentFlow}</h1>

 Thanks for your patience, Mr :#{registrationBean.playerName}
 #{registrationBean.playerSurname}

 We wish you beautiful games!

 <h:button value="Bye Bye, #{registrationBean.playerSurname}"
 outcome="taskFlowReturnDone"/>
</h:body>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[114]

If you want to jump over the thanks.xhtml page, directly outside of both flows,
then you can define the flow return, taskFlowReturnThanks, to point out the done.
xhtml page, which is returned by the calling flow via the taskFlowReturnDone flow
return. Therefore, we can use the following code:

<flow-return id="taskFlowReturnThanks">
 <from-outcome>taskFlowReturnDone</from-outcome>
</flow-return>

This example is wrapped into the application named ch3_7_3 that is available in the
code bundle of this chapter.

Flows can be configured declaratively or programmatically
using the JSF 2.2 FlowBuilder API.

Configuring flows programmatically
In all the previous examples, you saw how to configure a flow using the declarative
approach. But, flows can be configured programmatically also. The steps for
configuring a flow programmatically are as follows:

1.	 Create a class and name it as the flow. This is more like a convention,
not a requirement!

2.	 In this class, write a method as shown in the following code; the
@FlowDefinition annotation is a class-level annotation that allows the
flow definition to be defined using the FlowBuilder API. The name of this
method can be any valid name, but defineFlow is like a convention. So, the
name defineFlow is not mandatory, and you can even define more flows in
the same class as long as you have annotated them correctly.
@Produces
@FlowDefinition
public Flow defineFlow(@FlowBuilderParameter FlowBuilder
 flowBuilder) {
 ...
}

3.	 Use the FlowBuilder API to configure the flow.

Using the FlowBuilder API is pretty straightforward and intuitive. For example,
you can write the registration-flow.xml file programmatically, as follows:

public class Registration implements Serializable {

 @Produces

Chapter 3

[115]

 @FlowDefinition
 public Flow defineFlow(@FlowBuilderParameter FlowBuilder
 flowBuilder) {

 String flowId = "registration";
 flowBuilder.id("", flowId);
 flowBuilder.viewNode(flowId, "/" + flowId + "/"
 + flowId + ".xhtml").markAsStartNode();
 flowBuilder.viewNode("confirm-id", "/" + flowId +
 "/confirm.xhtml");
 flowBuilder.viewNode("thanks-id", "/" + flowId +
 "/thanks.xhtml");
 flowBuilder.returnNode("taskFlowReturnIndex").
 fromOutcome("/index");
 flowBuilder.returnNode("taskFlowReturnDone").
 fromOutcome("#{registrationBean.returnValue}");

 flowBuilder.flowCallNode("callSchedule").
 flowReference("", "schedule").
 outboundParameter("playernameparam",
 "#{registrationBean.playerName}").
 outboundParameter("playersurnameparam",
 "#{registrationBean.playerSurname}").
 outboundParameter("playerregistrationcode", "349CF0YO122");

 return flowBuilder.getFlow();
 }
}

As you can see, for each tag used in the declarative approach, there is a
corresponding method in the FlowBuilder API. For example, the flowBuilder.id
method accepts two arguments: the first one represents the document ID (usually, an
empty space), and the second one represents the flow ID.

The schedule-flow.xml file can be programmatically translated as shown in the
following code:

public class Schedule implements Serializable {

 @Produces
 @FlowDefinition
 public Flow defineFlow(@FlowBuilderParameter FlowBuilder
 flowBuilder) {

 String flowId = "schedule";
 flowBuilder.id("", flowId);

JSF Scopes – Lifespan and Use in Managed Beans Communication

[116]

 flowBuilder.viewNode(flowId, "/" + flowId + "/"
 + flowId + ".xhtml").markAsStartNode();
 flowBuilder.viewNode("success-id", "/" + flowId +
 "/success.xhtml");
 flowBuilder.returnNode("taskFlowReturnThanks").
 fromOutcome("/registration/thanks.xhtml");

 flowBuilder.inboundParameter("playernameparam",
 "#{flowScope.name}");
 flowBuilder.inboundParameter("playersurnameparam",
 "#{flowScope.surname}");
 flowBuilder.inboundParameter("playerregistrationcode",
 "#{scheduleBean.regcode}");

 return flowBuilder.getFlow();
 }
}

A method annotated with @PostConstruct will be called when the
application enters into the current flow and the flow scoped bean is
instantiated, while subsequent requests will use this instance until the
flow is dumped. This is repeated if the application enters in this flow
again. So, initializations specific to the current flow can be placed here.

This example is wrapped into the application named ch3_7_5 that is available in the
code bundle of this chapter.

Declarative and programmatic configurations can be mixed in the same application.
For example, check the application named ch3_7_4, which uses programmatic
configuration for the registration flow and declarative configuration for the
schedule flow.

Flows and navigation cases
Navigation cases can be used for navigating inside flows. At this moment, when you
click on the button labeled Register To Tournament, the flow goes in the confirm.
xhtml page based on implicit navigation. But we can easily exemplify an explicit
navigation in the flow by replacing the value of the action attribute as follows:

<h:commandButton value="Register To Tournament"
 action="confirm_outcome"/>

Chapter 3

[117]

Now, confirm_outcome cannot be automatically fetched to the confirm.xhtml
page; therefore, in the registration-flow.xml file, we can add an explicit
navigation case, as shown in the following code:

<navigation-rule>
 <from-view-id>/registration/registration.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>confirm_outcome</from-outcome>
 <to-view-id>/registration/confirm.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

When you need to use a navigation case to enter in a flow, you will
have to specify the <to-flow-document-id>document_ID</to-
flow-document-id> statement nested in the <navigation-case>
tag. If there is no document ID, that uses <to-flow-document-id/>.
Moreover a <h:button> (or <h:link>) can be used to enter in such a
flow, as follows:

<h:button id="..." value="enter flow" outcome="flow">
 <f:attribute name="to-flow-document-id"
 value="unique"/>
</h:button>

If you choose to write a programmatic navigation case, then JSF 2.2
comes with a method named, getToFlowDocumentId, which should
be overridden for indicating the document ID.

At this point, everything comes to normal. Therefore, we can use explicit
navigation cases for navigation between the flow's pages. The complete
application is named ch3_11_1.

In order to accomplish the same thing in a programmatic fashion, you need to use
the NavigationCaseBuilder API, as shown in the following code; this is the same
navigation case, so we have used only the needed methods:

flowBuilder.navigationCase().
 fromViewId("/registration/registration.xhtml").
 fromOutcome("confirm_outcome").
 toViewId("/registration/confirm.xhtml").
 redirect();

This example is wrapped in the complete application named ch3_11_2.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[118]

Moreover, you can even use a custom navigation handler. The new
NavigationHandlerWrapper class (added in JSF 2.2) provides a simple
implementation of the NavigationHandler class. Therefore, we can easily
extend it to prove a navigation case using a custom navigation handler,
as shown in the following code:

public class CustomNavigationHandler extends
 NavigationHandlerWrapper {

 private NavigationHandler configurableNavigationHandler;

 public CustomNavigationHandler() {}

 public CustomNavigationHandler(NavigationHandler
 configurableNavigationHandler){
 this.configurableNavigationHandler =
 configurableNavigationHandler;
 }

 @Override
 public void handleNavigation(FacesContext context,
 String fromAction, String outcome) {

 if (outcome.equals("confirm_outcome")) {
 outcome = "confirm";
 }

 getWrapped().handleNavigation(context, fromAction, outcome);
 }

 @Override
 public NavigationHandler getWrapped() {
 return configurableNavigationHandler;
 }
}

Finally, a quick configuration in the faces-config.xml file is as follows:

<application>
 <navigation-handler>
 book.beans.CustomNavigationHandler
 </navigation-handler>
</application>

Chapter 3

[119]

When the flow has a document ID, you need to override
the handleNavigation(FacesContext context,
String fromAction, String outcome, String
toFlowDocumentId) method.

The complete application is named ch3_11_3.

Inspecting flow navigation cases
Whatever approach you choose for using navigation cases inside flows, you can
always inspect them via the ConfigurableNavigationHandler.inspectFlow
method. This method is invoked by the flow system to cause the flow to be inspected
for navigation rules. You can easily override it to obtain information about navigation
cases, by writing a custom configurable navigation handler. The easiest way to
accomplish this is to extend the new ConfigurableNavigationHandlerWrapper
class (introduced in JSF 2.2), which represents a simple implementation of
ConfigurableNavigationHandler. For example, the following snippet of
code sends in log information about each found navigation case:

public class CustomConfigurableNavigationHandler extends
 ConfigurableNavigationHandlerWrapper {

 private final static Logger logger =
 Logger.getLogger(CustomConfigurableNavigationHandler.
 class.getName());
 private ConfigurableNavigationHandler
 configurableNavigationHandler;

 public CustomConfigurableNavigationHandler() {}

 public CustomConfigurableNavigationHandler
 (ConfigurableNavigationHandler configurableNavigationHandler){
 this.configurableNavigationHandler =
 configurableNavigationHandler;
 }

 @Override
 public void inspectFlow(FacesContext context, Flow flow) {
 getWrapped().inspectFlow(context, flow);
 if (flow.getNavigationCases().size() > 0) {
 Map<String, Set<NavigationCase>> navigationCases =
 flow.getNavigationCases();

JSF Scopes – Lifespan and Use in Managed Beans Communication

[120]

 for (Map.Entry<String, Set<NavigationCase>> entry :
 navigationCases.entrySet()) {
 logger.log(Level.INFO, "Navigation case: {0}",
 entry.getKey());
 for (NavigationCase nc : entry.getValue()) {
 logger.log(Level.INFO, "From view id: {0}",
 nc.getFromViewId());
 logger.log(Level.INFO, "From outcome: {0}",
 nc.getFromOutcome());
 logger.log(Level.INFO, "To view id: {0}",
 nc.getToViewId(context));
 logger.log(Level.INFO, "Redirect: {0}",
 nc.isRedirect());
 }
 }
 }
 }

 @Override
 public ConfigurableNavigationHandler getWrapped() {
 return configurableNavigationHandler;
 }
}

If you attach this custom configurable navigation handler to one of the preceding
three examples, then you will get information about the presented navigation case.
The complete example is named ch3_15.

Using the initializer and finalizer
By using the FlowBuilder API, we can attach callback methods that will be
automatically called when a flow is created and right before it is destroyed. The
FlowBuilder.initializer method has the following signatures, which are called
when the flow is created:

public abstract FlowBuilder initializer(String methodExpression)
public abstract FlowBuilder initializer(javax.el.MethodExpression
 methodExpression)

The FlowBuilder.finalizer signature is called before the flow is destroyed,
as follows:

public abstract FlowBuilder finalizer(String methodExpression)
public abstract FlowBuilder finalizer(javax.el.MethodExpression
 methodExpression)

Chapter 3

[121]

For example, the initializer method can be used to pass external parameters into
a flow. Let's suppose that in the index.xhtml page (outside the flow), when we click
on the button labeled Start Registration, we want to pass the tournament name and
place into the flow, as follows:

<h:form prependId="false">
 <h:inputHidden id="tournamentNameId" value="Roland Garros"/>
 <h:inputHidden id="tournamentPlaceId" value="France"/>
 <h:commandButton value="Start Registration"
 action="registration"/>
</h:form>

These two parameters must be available when the flow starts, because the wrapped
information is displayed in the registration.xhml page (the start node of the
flow) via two properties from RegistrationBean, namely tournamentName and
tournamentPlace. For this, we need to call a method from RegistrationBean
capable of extracting this information and store it in these two properties, as shown
in the following code:

//initializer method
public void tournamentInitialize() {
 tournamentName = FacesContext.getCurrentInstance().
 getExternalContext().getRequestParameterMap().
 get("tournamentNameId");
 tournamentPlace = FacesContext.getCurrentInstance().
 getExternalContext().getRequestParameterMap().
 get("tournamentPlaceId");
}

Now is the interesting part, because we can use the initializer method to
indicate the tournamentInitialize method as the callback method that should be
invoked when the flow is created. This can be done in the registration-flow.xml
file as follows:

<initializer>
 #{registrationBean.tournamentInitialize()}
</initializer>

So, at this moment, we can use the tournament name and place right from the
beginning of the flow and during the flow's lifespan.

Going further, another simple scenario can be the justification for using a finalizer
method. Let's suppose that we count the registered players via an application scoped
bean named PlayersCounterBean, as shown in the following code:

@Named
@ApplicationScoped

JSF Scopes – Lifespan and Use in Managed Beans Communication

[122]

public class PlayersCounterBean {

 private int count = 0;

 public int getCount() {
 return count;
 }

 public void addPlayer() {
 count++;
 }
}

The count variable should be increased when the player exits the flow, and the
registration is successfully done; therefore, we can place a finalizer method
in the registration-flow.xml file as follows:

<finalizer>
 #{registrationBean.tournamentFinalize()}
</finalizer>

The tournamentFinalize method is implemented in RegistrationBean, as shown
in the following code:

@Named
@FlowScoped(value = "registration")
public class RegistrationBean {

 @Inject
 private PlayersCounterBean playersCounterBean;
 ...
 //finalizer method
 public void tournamentFinalize() {
 playersCounterBean.addPlayer();
 }
}

Since the PlayersCounterBean is an application bean, we can use its goodies outside
the flow. The complete application is named ch3_12_1.

The same output can be programmatically achieved using the following code:

flowBuilder.initializer("#{registrationBean.
 tournamentInitialize(param['tournamentNameId'],
 param['tournamentPlaceId'])}");
flowBuilder.finalizer("#{registrationBean.tournamentFinalize()}");

Chapter 3

[123]

For the sake of variation, in this case we didn't extract the parameter values using the
request parameter Map. We preferred to use the implicit object param and to pass the
values as arguments of the tournamentInitialize method as follows:

//initializer method
public void tournamentInitialize(String tn, String tp) {
 tournamentName = tn;
 tournamentPlace = tp;
}

The complete application is named ch3_12_2.

Using the flow switch
The switch case statements are a substitute for long if statements and are useful to
do conditional outcome mapping. In order to see it at work, we can suppose that for
each tournament we have a separate confirm.xhtml page. Let's have the four grand
slams in tennis and the associated XHTML confirmation pages, as follows:

•	 Roland Garros and confirm_rg.xhtml
•	 Wimbledon and confirm_wb.xhtml
•	 US Open and confirm_us.xhtml
•	 Australian Open and confirm_ao.xhtml

The name and place of the tournament are passed in the flow via a simple form (one
form per tournament), as follows (you already know from the preceding section how
this information may be obtained inside the flow):

<h:form prependId="false">
 <h:inputHidden id="tournamentNameId" value="Australian Open"/>
 <h:inputHidden id="tournamentPlaceId" value="Australia"/>
 <h:commandButton value="Start Registration (Australian Open)"
 action="registration"/>
</h:form>

Now, after clicking on the button labeled Register To..., we need to choose the
right confirmation page. For this, we can use a programmatic switch, as shown
in the following code:

public class Registration implements Serializable {

 @Produces
 @FlowDefinition

JSF Scopes – Lifespan and Use in Managed Beans Communication

[124]

 public Flow defineFlow(@FlowBuilderParameter FlowBuilder
 flowBuilder) {

 String flowId = "registration";
 flowBuilder.id("", flowId);
 flowBuilder.viewNode(flowId, "/" + flowId + "/" + flowId +
 ".xhtml").markAsStartNode();
 flowBuilder.viewNode("no-tournament-id", "/" + flowId +
 "/notournament.xhtml");
 flowBuilder.viewNode("confirm-rg-id", "/" + flowId +
 "/confirm_rg.xhtml");
 flowBuilder.viewNode("confirm-wb-id", "/" + flowId +
 "/confirm_wb.xhtml");
 flowBuilder.viewNode("confirm-us-id", "/" + flowId +
 "/confirm_us.xhtml");
 flowBuilder.viewNode("confirm-ao-id", "/" + flowId +
 "/confirm_ao.xhtml");
 flowBuilder.returnNode("taskFlowReturnDone").
 fromOutcome("#{registrationBean.returnValue}");

 flowBuilder.switchNode("confirm-switch-id").
 defaultOutcome("no-tournament-id").
 switchCase().condition("#{registrationBean.tournamentName eq
 'Roland Garros'}").fromOutcome("confirm-rg-id").
 condition("#{registrationBean.tournamentName eq
 'Wimbledon'}").fromOutcome("confirm-wb-id").
 condition("#{registrationBean.tournamentName eq 'US
 Open'}").fromOutcome("confirm-us-id").
 condition("#{registrationBean.tournamentName eq 'Australian
 Open'}").fromOutcome("confirm-ao-id");
 flowBuilder.initializer("#{registrationBean.
 tournamentInitialize(param['tournamentNameId'],
 param['tournamentPlaceId'])}");
 flowBuilder.finalizer("#{registrationBean.
 tournamentFinalize()}");

 return flowBuilder.getFlow();
 }
}

Notice that when no condition is evaluated to true, the selected node will be the
notournament.xhtml page, which represents the default outcome. This is just a
simple XHMTL page containing some specific text.

Chapter 3

[125]

The complete application is named ch3_13. Declaratively, this can be achieved in the
registration-flow.xml file as shown in the following code. You can use <view>
tags to hide the outcome's path behind some IDs (map outcomes to pages), as we
saw in the programmatic example:

<switch id="confirm-switch-id">
 <default-outcome>
 /registration/notournament.xhtml
 </default-outcome>
 <case>
 <if>#{registrationBean.tournamentName eq 'Roland Garros'}</if>
 <from-outcome>/registration/confirm_rg.xhtml</from-outcome>
 </case>
 <case>
 <if>#{registrationBean.tournamentName eq 'Wimbledon'}</if>
 <from-outcome>/registration/confirm_wb.xhtml</from-outcome>
 </case>
 <case>
 <if>#{registrationBean.tournamentName eq 'US Open'}</if>
 <from-outcome>/registration/confirm_us.xhtml</from-outcome>
 </case>
 <case>
 <if>#{registrationBean.tournamentName eq 'Australian
 Open'}</if>
 <from-outcome>/registration/confirm_ao.xhtml</from-outcome>
 </case>
</switch>

So, switch can be useful when you don't want to map each outcome to a single page.

This example wasn't wrapped in a complete application.

Packaging flows
Flows act as logical units of work; therefore, they are portable across multiple
applications. The portability is obtained by packaging the flow artifacts in a JAR
file. Further, the JAR file can be added in any application CLASSPATH and the flow is
ready to be used. To package a flow, you need to follow some conventions, which are
listed as follows:

1.	 Explicitly define the flows in the faces-config.xml file.
2.	 In the JAR root, create a META-INF folder.
3.	 Add the faces-config.xml file in this folder.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[126]

4.	 Add the beans.xml file in this folder.
5.	 In the same folder, META-INF, create a subfolder named flows.
6.	 In the flows folder, add all nodes (pages) of the flow.
7.	 In the JAR root, outside the META-INF folder, add all the Java code (classes)

needed by the flow.

Based on the preceding steps, the flow described in the Flows with beans section
can be packaged in a JAR file named registration.jar, as shown in the
following screenshot:

The complete application that uses this JAR file is named ch3_14.

Programmatic flow scope
Programmatically speaking, the flow scope can be accessed via the javax.faces.
flow.FlowHandler class. After obtaining a FlowHandler class's object, you can
easily access the current flow, add a new flow, and manipulate the flow map
represented by #{flowScope}, as follows:

FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
FlowHandler flowHandler = application.getFlowHandler();

//get current flow
Flow flow = flowHandler.getCurrentFlow();
Flow flowContext = flowHandler.getCurrentFlow(context);

//add flow

Chapter 3

[127]

flowHandler.addFlow(context, flow);

//get access to the Map that backs #{flowScope}
Map<Object,Object> flowMap = flowHandler.getCurrentFlowScope();

Obviously, the FlowHandler class is the most important class involved in the
interaction between runtime and the faces flow feature. This is an abstract class that
can be extended to provide a custom flow handler implementation. In order to do
that, you can start by creating a new FlowHandlerFactory class, which is used by
the Application class to create the singleton instance of the FlowHandler class. This
class has a simple implementation named FlowHandlerFactoryWrapper, which can
be easily extended to return a custom flow handler, as shown in the following code:

public class CustomFlowHandlerFactory extends
 FlowHandlerFactoryWrapper {

 private FlowHandlerFactory flowHandlerFactory;

 public CustomFlowHandlerFactory(){}

 public CustomFlowHandlerFactory(FlowHandlerFactory
 flowHandlerFactory){
 this.flowHandlerFactory = flowHandlerFactory;
 }

 @Override
 public FlowHandler createFlowHandler(FacesContext context){
 FlowHandler customFlowHandler = new
 CustomFlowHandler(getWrapped().createFlowHandler(context));
 return customFlowHandler;
 }

 @Override
 public FlowHandlerFactory getWrapped() {
 return this.flowHandlerFactory;
 }
}

This factory should be configured in the faces-config.xml file, as shown in the
following code:

<factory>
 <flow-handler-factory>
 book.beans.CustomFlowHandlerFactory
 </flow-handler-factory>
</factory>

JSF Scopes – Lifespan and Use in Managed Beans Communication

[128]

Further, the CustomFlowHandler class represents an extension of the FlowHandler
class. Since the FlowHandler class is an abstract class, you need to provide an
implementation for each of its methods, as shown in the following code:

public class CustomFlowHandler extends FlowHandler {

 private FlowHandler flowHandler;

 public CustomFlowHandler() {}

 public CustomFlowHandler(FlowHandler flowHandler) {
 this.flowHandler = flowHandler;
 }

 ...
 //Overrided methods
 ...

}

For example, you know from the previous sections that the registration flow
passed several outbound parameters to the nested schedule flow. You saw
how to accomplish that declaratively, in the registration-flow.xml file, and
programmatically, via the FlowBuilder API, in the Registration class. You can
do the same thing from a custom flow handler in the method named, transition,
which is capable to perform a transition between a source flow (for example,
registration) and a target flow (for example, schedule). When the registration
flow calls the schedule flow, you can write the following code:

@Override
public void transition(FacesContext context, Flow sourceFlow,
 Flow targetFlow, FlowCallNode outboundCallNode, String toViewId)
{
 if ((sourceFlow != null) && (targetFlow != null)) {
 if ((sourceFlow.getStartNodeId().equals("registration")) &&
 (targetFlow.getStartNodeId().equals("schedule"))) {

 FlowCallNode flowCallNode =
 sourceFlow.getFlowCalls().get("callSchedule");
 Map<String, Parameter> outboundParameters =
 flowCallNode.getOutboundParameters();

 CustomParameter playernameparamO = new
 CustomParameter("playernameparam",
 "#{registrationBean.playerName}");

Chapter 3

[129]

 CustomParameter playersurnameparamO = new
 CustomParameter("playersurnameparam",
 "#{registrationBean.playerSurname}");
 CustomParameter playerregistrationcodeO = new
 CustomParameter("playerregistrationcode",
 "349CF0YO122");

 outboundParameters.put("playernameparam",
 playernameparamO);
 outboundParameters.put("playersurnameparam",
 playersurnameparamO);
 outboundParameters.put("playerregistrationcode",
 playerregistrationcodeO);
 }
 }
 flowHandler.transition(context, sourceFlow, targetFlow,
 outboundCallNode, toViewId);
}

The target inbound parameters can be accessed as follows (the Map parameter cannot
be altered):

Map<String, Parameter> inboundParameters =
 targetFlow.getInboundParameters();

Flow parameters are represented by the javax.faces.flow.Parameter abstract
class. The CustomParameter class provides an implementation as follows:

public class CustomParameter extends Parameter {

 private String name;
 private String value;

 public CustomParameter(String name, String value) {
 this.name = name;
 this.value = value;
 }

 @Override
 public String getName() {
 return name;
 }

 @Override
 public ValueExpression getValue() {
 return createValueExpression(value, String.class);

JSF Scopes – Lifespan and Use in Managed Beans Communication

[130]

 }

 private ValueExpression createValueExpression(String exp,
 Class<?> cls) {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();
 return facesContext.getApplication().getExpressionFactory().
 createValueExpression(elContext, exp, cls);
 }
}

Dependent pseudo-scope
This is the default scope of a CDI bean (@Named) when nothing is specified. In this
case, an object exists to serve exactly one bean and has the same life cycle as that
bean; an instance of a dependent scoped bean is not shared between different users
or different points of injection. It can also be explicitly specified by annotating the
bean with the @Dependent annotation and importing javax.enterprise.context.
Dependent. This scope is available only in CDI and is the only non-contextual scope.

All CDI scopes, except this one, are known as normal scopes. More
details about normal scopes versus pseudo-scopes can be found in
the Normal scopes and pseudo-scopes section at http://docs.jboss.
org/cdi/spec/1.0/html/contexts.html.

If you put the PlayersBean in the dependent scope, then the current extracted player
and the list of randomly extracted players (which will be empty or will contain this
player) is available only inside the bean, as shown in the following code:

import javax.enterprise.context.Dependent;
import javax.inject.Named;

@Named
@Dependent
public class PlayersBean {
 ...
}

http://docs.jboss.org/cdi/spec/1.0/html/contexts.html
http://docs.jboss.org/cdi/spec/1.0/html/contexts.html

Chapter 3

[131]

A method annotated with @PostConstruct will be called for each
request. Actually, it might be called multiple times during the same
request, if the bean is used in several EL expressions. Initially, there
is one instance of the bean, and this instance is reused if the bean EL
name appears multiple times in the EL expression, but is not reused
in the case of another EL expression or in the case of a re-evaluation
of the same EL expression.

This example is wrapped into the application named ch3_5 that is available in the
code bundle of this chapter.

The none scope
The none scoped beans lives to serve other beans.

The none scope seems to be the black sheep of JSF scopes. Even its name doesn't
inspire something useful. Practically, a managed bean in this scope lives as long as a
single EL expression evaluation and is not visible in any JSF page. If the application
scope lives the longest, this scope lives the shortest. But, if you inject the none scoped
managed beans in other managed beans, then they will live as long as their hosts.
Actually, this is their job, to serve other beans.

The none scoped objects used in the configuration file
indicate managed beans that are used by other managed
beans in the application.

So, whenever you need a humble managed bean that is ready to be a part of a
cool scope, such as a request or a session, you can annotate it with @NoneScoped,
available in the javax.faces.bean package. Moreover, objects with the none scope
can use other objects with the none scope.

The custom scope
When none of the previous scopes meet your application needs, you have to
pay attention to the JSF 2 custom scope. Most likely, you will never want to
write a custom scope, but if it is necessary, then, in this section, you can see
how to accomplish this task.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[132]

The custom scope annotation is @CustomScoped and is defined in
the javax.faces.bean package. It is not available in CDI!

In order to implement a custom scope, let's suppose that you want to control the
life cycle of several beans that live in the application scope. Normally they live as
long as the application lives, but you want to be able to add/remove them from the
application scope at certain moments of the application flow. Of course, there are
many approaches to do that, but remember that we look for a reason to implement a
custom scope; therefore, we will try to write a custom scope nested in the application
scope that will allow us to add/remove a batch of beans. Creating and destroying the
scope itself will be reflected in creating and destroying the beans, which means that
you don't need to refer to each bean.

Actually, since this is just a demo, we will use only two beans: one will stay in the
classical application scope (it can be useful for comparison of the application and
custom scope lifespan), while the other one will be added/destroyed through the
custom scope. The application purpose is not relevant; you should focus on the
technique used to write a custom scope and paper over the assumptions and gaps.
Think more on the lines that you can use this knowledge when you really need to
implement a custom scope.

Writing the custom scope class
The custom scope is represented by a class that extends the
ConcurrentHashMap<String, Object> class. We need to allow concurrent access to
an usual map because the exposed data may be accessed concurrently from multiple
browsers. The code of the CustomScope class is as follows:

public class CustomScope extends ConcurrentHashMap<String, Object> {

 public static final String SCOPE = "CUSTOM_SCOPE";

 public CustomScope(){
 super();
 }

 public void scopeCreated(final FacesContext ctx) {

 ScopeContext context = new ScopeContext(SCOPE, this);
 ctx.getApplication().publishEvent(ctx,
 PostConstructCustomScopeEvent.class, context);

Chapter 3

[133]

 }

 public void scopeDestroyed(final FacesContext ctx) {

 ScopeContext context = new ScopeContext(SCOPE,this);
 ctx.getApplication().publishEvent(ctx,
 PreDestroyCustomScopeEvent.class, context);
 }
}

When our scope is created/destroyed, other components will be informed through
events. In the scopeCreated method, you register PostConstructCustomScopeEvent,
while in the scopeDestroyed method, you register PreDestroyCustomScopeEvent.

Now we have a custom scope, it is time to see how to declare a bean in this scope.
Well, this is not hard and can be done with the @CustomScoped annotations and an
EL expression, as follows:

import javax.faces.bean.CustomScoped;
import javax.faces.bean.ManagedBean;

@ManagedBean
@CustomScoped("#{CUSTOM_SCOPE}")
public class SponsoredLinksBean {
 ...
}

Resolving a custom scope EL expression
At this point, JSF will iterate over the chain of existing resolvers in order to resolve
the custom scope EL expression. Obviously, this attempt will end with an error, since
no existing resolver will be able to satisfy this EL expression. So, you need to write
a custom resolver as you saw in Chapter 1, Dynamic Access to JSF Application Data
through Expression Language (EL 3.0). Based on that, you should obtain something as
shown in the following code:

public class CustomScopeResolver extends ELResolver {

 private static final Logger logger =
 Logger.getLogger(CustomScopeResolver.class.getName());

 @Override

JSF Scopes – Lifespan and Use in Managed Beans Communication

[134]

 public Object getValue(ELContext context,
 Object base, Object property) {

 logger.log(Level.INFO, "Get Value property : {0}", property);

 if (property == null) {
 String message = MessageUtils.getExceptionMessageString
 (MessageUtils.NULL_PARAMETERS_ERROR_MESSAGE_ID,
 "property");
 throw new PropertyNotFoundException(message);
 }

 FacesContext facesContext = (FacesContext)
 context.getContext(FacesContext.class);

 if (base == null) {
 Map<String, Object> applicationMap =
 facesContext.getExternalContext().getApplicationMap();
 CustomScope scope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (CustomScope.SCOPE.equals(property)) {
 logger.log(Level.INFO, "Found request | base={0}
 property={1}", new Object[]{base, property});
 context.setPropertyResolved(true);
 return scope;
 } else {
 logger.log(Level.INFO, "Search request | base={0}
 property={1}", new Object[]{base, property});
 if (scope != null) {
 Object value = scope.get(property.toString());
 if (value != null) {
 logger.log(Level.INFO, "Found request | base={0}
 property={1}", new Object[]{base, property});
 context.setPropertyResolved(true);
 }else {
 logger.log(Level.INFO, "Not found request | base={0}
 property={1}", new Object[]{base, property});
 context.setPropertyResolved(false);
 }
 return value;
 } else {
 return null;
 }
 }

Chapter 3

[135]

 }

 if (base instanceof CustomScope) {

 CustomScope baseCustomScope = (CustomScope) base;
 Object value = baseCustomScope.get(property.toString());
 logger.log(Level.INFO, "Search request | base={0}
 property={1}", new Object[]{base, property});

 if (value != null) {
 logger.log(Level.INFO, "Found request | base={0}
 property={1}", new Object[]{base, property});
 context.setPropertyResolved(true);
 } else {
 logger.log(Level.INFO, "Not found request | base={0}
 property={1}", new Object[]{base, property});
 context.setPropertyResolved(false);
 }

 return value;
 }

 return null;
 }

 @Override
 public Class<?> getType(ELContext context, Object base,
 Object property) {
 return Object.class;
 }

 @Override
 public void setValue(ELContext context, Object base,
 Object property, Object value) {

 if (base != null) {
 return;
 }

 context.setPropertyResolved(false);

 if (property == null) {
 String message = MessageUtils.getExceptionMessageString
 (MessageUtils.NULL_PARAMETERS_ERROR_MESSAGE_ID,
 "property");

JSF Scopes – Lifespan and Use in Managed Beans Communication

[136]

 throw new PropertyNotFoundException(message);
 }

 if (CustomScope.SCOPE.equals(property)) {
 throw new PropertyNotWritableException((String) property);
 }
 }

 @Override
 public boolean isReadOnly(ELContext context,
 Object base, Object property) {
 return true;
 }

 @Override
 public Iterator<FeatureDescriptor> getFeatureDescriptors
 (ELContext context, Object base) {
 return null;
 }

 @Override
 public Class<?> getCommonPropertyType(ELContext context,
 Object base) {
 if (base != null) {
 return null;
 }
 return String.class;
 }
}

Do not forget to put the following resolver into the chain by adding it in the
faces-config.xml file:

<el-resolver>book.beans.CustomScopeResolver</el-resolver>

Done! So far, you have created a custom scope, you put a bean into this scope,
and learned that the brand new resolver provides access to this bean.

The custom scope must be stored somewhere, so nested in the application scope can
be a choice (of course, other scopes can also be a choice, depending on your needs).
When the scope is created, it has to be placed in the application map, and when it is
destroyed, it has to be removed from the application map. The question is when to
create it and when to destroy it? And the answer is, it depends. Most likely, this is a
decision strongly tied to the application flow.

Chapter 3

[137]

Controlling the custom scope lifespan with
action listeners
Using action listeners can be a good practice even if it involves control from view
declaration. Let's suppose that the button labeled START will add the custom scope
in the application map, as shown in the following code:

<h:commandButton value="START">
 <f:actionListener type="book.beans.CreateCustomScope" />
</h:commandButton>

The following CreateCustomScope class is a straightforward action listener as it
implements the ActionListener interface:

public class CreateCustomScope implements ActionListener {

 private static final Logger logger =
 Logger.getLogger(CreateCustomScope.class.getName());

 @Override
 public void processAction(ActionEvent event)
 throws AbortProcessingException {

 logger.log(Level.INFO, "Creating custom scope ...");

 FacesContext context = FacesContext.getCurrentInstance();
 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope == null) {
 customScope = new CustomScope();
 applicationMap.put(CustomScope.SCOPE, customScope);

 customScope.scopeCreated(context);
 } else {
 logger.log(Level.INFO, "Custom scope exists ...");
 }
 }
}

JSF Scopes – Lifespan and Use in Managed Beans Communication

[138]

Following the same approach, the button labeled STOP will remove the custom
scope from the application map as follows:

<h:commandButton value="STOP">
 <f:actionListener type="book.beans.DestroyCustomScope" />
</h:commandButton>

The following DestroyCustomScope class is the action listener as it implements the
ActionListener interface:

public class DestroyCustomScope implements ActionListener {

 private static final Logger logger =
 Logger.getLogger(DestroyCustomScope.class.getName());

 @Override
 public void processAction(ActionEvent event) throws
 AbortProcessingException {

 logger.log(Level.INFO, "Destroying custom scope ...");

 FacesContext context = FacesContext.getCurrentInstance();
 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope != null) {
 customScope.scopeDestroyed(context);
 applicationMap.remove(CustomScope.SCOPE);
 } else {
 logger.log(Level.INFO, "Custom scope does not exists ...");
 }
 }
}

This example is wrapped into the application named ch3_8 that is available in the
code bundle of this chapter. Just a run and a quick look over the code will clarify
that the spaghetti-code is missing here.

Chapter 3

[139]

Controlling the custom scope lifespan with
the navigation handler
Another approach is to control the custom scope lifespan based on the page's
navigation. This solution is more flexible and is hidden from the user. You can
write a custom navigation handler by extending NavigationHandler. The next
implementation puts the custom scope in the application map when the navigation
reaches the page named sponsored.xhtml, and will remove it from the application
map in any other navigation case. The code of the CustomScopeNavigationHandler
class is as follows:

public class CustomScopeNavigationHandler extends
 NavigationHandler {

 private static final Logger logger =
 Logger.getLogger(CustomScopeNavigationHandler.
 class.getName());
 private final NavigationHandler navigationHandler;

 public CustomScopeNavigationHandler(NavigationHandler
 navigationHandler) {
 this.navigationHandler = navigationHandler;
 }

 @Override
 public void handleNavigation(FacesContext context,
 String fromAction, String outcome) {

 if (outcome != null) {
 if (outcome.equals("sponsored")) {
 logger.log(Level.INFO, "Creating custom scope ...");

 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope == null) {
 customScope = new CustomScope();
 applicationMap.put(CustomScope.SCOPE, customScope);

 customScope.scopeCreated(context);
 } else {
 logger.log(Level.INFO, "Custom scope exists ...");
 }

JSF Scopes – Lifespan and Use in Managed Beans Communication

[140]

 } else {
 logger.log(Level.INFO, "Destroying custom scope ...");

 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope != null) {
 customScope.scopeDestroyed(context);
 applicationMap.remove(CustomScope.SCOPE);
 } else {
 logger.log(Level.INFO,
 "Custom scope does not exist");
 }
 }
 }

 navigationHandler.handleNavigation(context, fromAction,
 outcome);
 }
}

Do not forget to register the following navigation handler in the faces-config.xml
file:

<navigation-handler>
 book.beans.CustomScopeNavigationHandler
</navigation-handler>

This example is wrapped into the application named ch3_9 that is available in
the code bundle of this chapter. A quick look over the code will clarify that the
spaghetti-code is missing here.

As I said earlier, JSF 2.2 comes with a wrapper class for NavigationHandler. This is
a simple implementation that can be easily extended by developers. An instance of
the class being wrapped is returned in the getWrapped method. For example, you can
rewrite the CustomScopeNavigationHandler class, as shown in the following code:

public class CustomScopeNavigationHandler
 extends NavigationHandlerWrapper {

 private static final Logger logger =
 Logger.getLogger(CustomScopeNavigationHandler.
 class.getName());

Chapter 3

[141]

 private final NavigationHandler navigationHandler;

 public CustomScopeNavigationHandler(NavigationHandler
 navigationHandler){
 this.navigationHandler = navigationHandler;
 }

 @Override
 public void handleNavigation(FacesContext context,
 String fromAction, String outcome) {

 if (outcome != null) {
 if (outcome.equals("sponsored")) {
 logger.log(Level.INFO, "Creating custom scope ...");

 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope == null) {
 customScope = new CustomScope();
 applicationMap.put(CustomScope.SCOPE, customScope);

 customScope.scopeCreated(context);
 } else {
 logger.log(Level.INFO, "Custom scope exists ...");
 }
 } else {
 logger.log(Level.INFO, "Destroying custom scope ...");

 Map<String, Object> applicationMap =
 context.getExternalContext().getApplicationMap();
 CustomScope customScope = (CustomScope)
 applicationMap.get(CustomScope.SCOPE);

 if (customScope != null) {
 customScope.scopeDestroyed(context);
 applicationMap.remove(CustomScope.SCOPE);
 } else {
 logger.log(Level.INFO, "Custom scope does not exist");
 }
 }

JSF Scopes – Lifespan and Use in Managed Beans Communication

[142]

 }

 getWrapped().handleNavigation(context, fromAction, outcome);
 }

 @Override
 public NavigationHandler getWrapped() {
 return navigationHandler;
 }
}

This example is wrapped into the application named ch3_10 that is available in the
code bundle of this chapter.

Managed bean instantiation
By default, a managed bean is instantiated at first reference to it (a request, for
example)—this is known as lazy instantiation. You can alter the default behavior
by adding the eager attribute and set its value to true. This will instantiate the
managed bean when the application starts, before any request is made. But, it is
important to know that this works only for application scoped beans and the eager
instantiated bean is placed in the application scope, as shown in the following lines
of code:

@ManagedBean(eager=true)
@ApplicationScoped

Beans injection
Normally, solutions depend on the concrete functional requirements, but finding
the right solutions is what makes the difference between developers. Sometimes,
developers get stuck or make mistakes when they work with objects in a scope
that uses objects from another scope. From the following figure, you can seek some
guidance for dealing with some of the most popular cases:

Chapter 3

[143]

As you can see, there are some restrictions. As a general rule in JSF,
don't use objects that have shorter lifespan than the objects you are
calling it from. In other words, use objects whose lifespan is the same
as, or longer than, the object being injected into. Breaking this rule
will end up in a JSF exception.

The logic behind this rule can be explained through the two most common mistakes,
which are as follows:

•	 Use request objects in session objects: This is a bad thing, because we will
have lots of requests (lots of instances) and only one session (one instance).
Usually, requests belong to all users, while a session is one per user; therefore,
it is unclear request object is injected? To be more clear, lots of requests means
lots of associated beans, while a session means one bean. Now, it is illogical
to inject one particular instance and skip all others. Moreover, how and when
will you fetch the correct instance, since the request objects are transient, and
usually, have a short lifespan! Even if you find a plausible use case, JSF will
not allow you to do this via JSF managed beans.

•	 Use session objects in application objects: The same logic can be applied
further when we want to use session objects in application objects. Sessions
are many as users, but the application is only one; therefore, you cannot
inject all sessions in the application ... it is useless! Of course, you may want
to fetch a certain session to the application, but you have to be sure that
the pointed session exists; this is not a problem if you are interested in the
session of the current user, but it may be an issue if you are interested in
sessions of other users. Moreover, if there are many sessions, you have to
correctly identify the desired session. Even if you find a plausible use case,
JSF will not allow you to do this via JSF managed beans.

Nevertheless, for CDI, these cases are not such a big issue. When you are using an
object that has a shorter lifespan than the object you are calling it from (for example,
injecting a request scoped bean into a session scoped bean), CDI classifies the use case
as a mismatched injection and fixes the issue via CDI proxies. For each request, the
CDI proxy re-establishes the connection to a live instance of the request scoped bean.

JSF Scopes – Lifespan and Use in Managed Beans Communication

[144]

Even when we follow the written rules, we are still vulnerable to the unwritten rules.
One of the unwritten rules that can cause undesirable results is named overuse or
abuse. The following are some cases to avoid:

•	 Overusing a view scoped bean for request scoped data may affect memory.
•	 Overusing a request scoped bean for view scoped data may cause forms with

unexpected behavior.
•	 Overusing an application scoped bean for request/view/session scoped

data may cause an undesirably wide visibility of data across users and
will affect memory.

•	 Overusing a session scoped bean for request/view data may cause an
undesirably wide visibility of data across multiple browser windows/tabs
in that session. As you know, view data are specific to a single browser
window/tab, which allows us to open multiple tabs and keeps the data
integrity while switching between tabs. On the other hand, if this data was
exposed via the session scope, then the modifications in one window/tab
will be reflected in the browser session; therefore, switching between tabs
will lead to an apparently strange behavior, known as inconsistency of data.
In case of using the session scope for request/view data, will also affect
memory, since request/view scopes are meant to have a shorter lifespan than
session scope.

Starting with JSF 2.0, managed beans can be injected (dependency injection) into the
property of another managed bean using the @ManagedProperty annotation. You
already know that from the previous chapter, where an example is provided.

Another way to inject beans is to use the @Inject annotation, which is part of the
CDI powerful injection mechanism.

So when do we use @ManagedProperty and when do we use @Inject ? Well,
we know that both of them do the same thing in different ways and different
containers, so maybe it is a good idea to use @ManagedProperty when you are
working in a servlet container or just don't need CDI. Another good argument
for @ManagedProperty is that you can use EL with it. But, if you are in a proper
CDI environment where you can exploit CDI benefits, such as proxy scope leak
prevention or better deploy-time dependency, then use CDI.

Chapter 3

[145]

The pacifist approach will combine these two in the same application. In this case,
you have two options: to avoid any interaction between the managed beans and
CDI beans or, obviously, to encourage the interaction between them for better
performance. If you choose the second option, then it is important to keep in
mind some simple rules of injection as shown in the following figure:

Summary
In this chapter, we have browsed through an overview of JSF/CDI scopes. It begins
with an open discussion about JSF scopes versus CDI scopes, meant to provide a few
advantages/disadvantages of choosing either one (or both). After a short overview
of JSF/CDI scopes, each scope was detailed by covering fundamental knowledge,
such as definition, usability, functionality, restrictions, and examples.

The chapter ends with a bunch of thoughts regarding beans injections. You can find
several rules, tips, and bad practices commonly used in JSF applications mentioned
out here.

See you in the next two chapters, where we will cover many kinds of JSF artifacts
and configuration stuff.

JSF Configurations
Using XML Files and
Annotations – Part 1

Starting with JSF 2.0, there is no need to create the configuration file, faces-config.
xml. Well, this affirmation is partially true, because JSF annotations still don't cover
several configurations, such as resource bundles, factories, phase listeners, and so on.
Usually, JSF annotations provide sufficient support for our applications; however,
as you will see in this chapter, there are still many cases when faces-config.xml is
mandatory, or additional configurations must be added in the web.xml file.

Nevertheless, JSF 2.2 provides a programmatic approach that can be used to
reproduce faces-config.xml, without writing it in the classical approach.
Later in this chapter, you will see how to take advantage of this new feature. For
now, you will see a mix of creating and configuring different kinds of JSF artifacts.
They will be arbitrarily presented—some of them are well known, from JSF 1.x
and 2.0, while others are new, starting with JSF 2.2. Since these configurations
are straightforward, they can be listed as barren documentation, but gluing each
configuration into an example is more useful and provides a good point to start
when you need to use them.

Therefore, in this chapter you will learn about JSF artifacts' configurations, but you
will also see some examples of working with these artifacts. The following is a short
overview of what we will cover:

•	 JSF 2.2 new namespaces
•	 JSF 2.2 programmatic configuration
•	 Configuring managed beans in XML

JSF Configurations Using XML Files and Annotations – Part 1

[148]

•	 Working with multiple configuration files
•	 Configuring locales and resource bundles
•	 Configuring validators and converters
•	 Configuring navigation
•	 Configuring action listeners
•	 Configuring system event listeners
•	 Configuring phase listeners
•	 Working with @ListenerFor and @ListenersFor

Obviously, we have a lot of work to do and a lot of JSF 2.2 features to cover (for
example, JSF 2.2 injection in more artifacts then before), so let's begin!

JSF 2.2 new namespaces
JSF 2.2 modified the existing JSF namespaces, as you can see in the following table:

Namespace Before JSF 2.2 JSF 2.2
Faces Core http://java.sun.com/jsf/

core
http://xmlns.jcp.
org/jsf/core

HTML_BASIC http://java.sun.com/jsf/
html

http://xmlns.jcp.
org/jsf/html

Facelets Templating http://java.sun.com/jsf/
facelets

http://xmlns.jcp.
org/jsf/facelets

Composite Components http://java.sun.com/jsf/
composite

http://xmlns.jcp.
org/jsf/composite

JSTL Core http://java.sun.com/jsp/
jstl/core

http://xmlns.jcp.
org/jsp/jstl/core

JSTL Functions http://java.sun.com/jsp/
jstl/functions

http://xmlns.jcp.
org/jsp/jstl/
functions

Pass Through Attributes http://java.sun.com/jsf/
passthrough

http://xmlns.jcp.
org/jsf/passthrough

Pass Through Elements http://java.sun.com/jsf http://xmlns.jcp.
org/jsf

@FacesComponent
default namespace

http://xmlns.jcp.
org/jsf/component

Chapter 4

[149]

JSF 2.2 programmatic configuration
Starting with JSF 2.2, we can programmatically reproduce the content and
tasks of faces-config.xml. The starting point consists of a callback method,
named populateApplicationConfiguration, which gets a single argument
of type org.w3c.dom.Document—this class belongs to DOM API. Basically, a
Document (tree node) is a representation in memory of an XML document, and
we can manipulate it by adding, removing, importing, or adopting nodes, elements,
and text. For each of these operations, there are dedicated methods. For some JSF
developers, this API can be something new that should be learned; therefore, this
can be a drawback of programmatic configuration.

For now, let's resume the dissertation from the callback method. The
populateApplicationConfiguration method is provided by a class that extends and
implements the abstract class ApplicationConfigurationPopulator found in the
javax.faces.application package. In order to tell JSF about this class, you need to:

1.	 Create a JAR package (for example, faces-config.jar or by using any
other name).

2.	 In this JAR package, create a folder named META-INF.
3.	 In the META-INF folder, create a folder named services.
4.	 In the services folder, create an empty file named javax.faces.

application.ApplicationConfigurationPopulator.
5.	 In this file, write the fully qualified name of the class that extends and

implements the abstract class ApplicationConfigurationPopulator.
6.	 In the JAR root, place the class that extends and implements the abstract class

ApplicationConfigurationPopulator.

Done! Now when you add this JAR package in your project CLASSPATH, JSF will
process it and apply the found configurations.

Supposing that the class that extends and implements the abstract class
ApplicationConfigurationPopulator is named faces.config.Initializer
(you can use any other name), then the JAR content will look like in the following
screenshot:

JSF Configurations Using XML Files and Annotations – Part 1

[150]

In this chapter, you will see some programmatic examples as an alternative to
classical faces-config.xml. When we are working directly on a DOM tree node,
we tend to make stupid mistakes, like forgetting to add the text of an element, or
placing an element in an improper place, and so on. In order to eliminate these
errors without headaches, you can write a simple method to serialize the DOM in
an XML file, which can be easily debugged visually or using a specialized tool. The
following method accomplishes this task, and you will find it in all the examples in
this chapter:

private void serializeFacesConfig(Document document,String path) {

 FileOutputStream fileOutputStream = null;
 OutputFormat outputFormat = new OutputFormat();
 outputFormat.setIndent(5);
 outputFormat.setLineWidth(150);

 ...
 fileOutputStream = new FileOutputStream(path);

 XMLSerializer xmlSerializer = new XMLSerializer();
 xmlSerializer.setOutputFormat(outputFormat);
 xmlSerializer.setOutputByteStream((OutputStream)
 fileOutputStream);

 xmlSerializer.serialize(document);
...
}

Configuring managed beans in XML
JSF managed bean configuration was essentially improved starting with JSF 2.0.
Most commonly, a managed bean is annotated with @ManagedBean and another
annotation indicating a JSF scope (for example, @RequestScoped). But managed
beans can be configured in faces-config.xml as well, and this approach is not
deprecated or obsolete. The simplest configuration contains the managed bean's
name, class, and scope:

<managed-bean>
 <managed-bean-name>playersBean</managed-bean-name>
 <managed-bean-class>book.beans.PlayersBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
...
</managed-bean>

Chapter 4

[151]

In case that you need a managed bean that should be eagerly initialized,
you can use the eager attribute of the <managed-bean> tag:

<managed-bean eager="true">

Managed beans' properties can be initialized from faces-config.xml using the
<managed-property> tag as follows:

<managed-property>
 <property-name>name</property-name>
 <value>Nadal</value>
</managed-property>
<managed-property>
 <property-name>surname</property-name>
 <value>Rafael</value>
</managed-property>

Inside the <value> tag, we can use EL expressions as well. For example,
we can initialize a property of managed bean A with the value of a
property belonging to managed bean B. But, it is important to know that
JSF doesn't support cyclic dependency for managed bean reference—you
cannot refer managed bean A from managed bean B, and vice versa.

An interesting case involves setting a property with the value of a context
initialization parameter. Such parameters are configured in the deployment
descriptor (web.xml):

<context-param>
 <param-name>rafakey</param-name>
 <param-value>Vamos Rafa!</param-value>
</context-param>

Programmatically, these kinds of parameters can be extracted through the
initialization map or by their name, as follows:

FacesContext.getCurrentInstance().getExternalContext().
 getInitParameterMap();
FacesContext.getCurrentInstance().getExternalContext().
 getInitParameter(param_name);

JSF Configurations Using XML Files and Annotations – Part 1

[152]

These parameters can be accessed from faces-config.xml using the EL implicit
object, initParam. JSF provides the ability to reference EL implicit objects from a
managed bean property, as follows:

<managed-property>
 <property-name>rafakey</property-name>
 <value>#{initParam.rafakey}</value>
</managed-property>

From faces-config.xml, we can initialize more complex properties such as
enumerations and collections. Consider the following enumeration:

public enum Plays {
 Left, Right
 };

private Plays play;

//getters and setters
...

The preceding property can be initialized as follows:

<managed-property>
 <property-name>play</property-name>
 <value>Left</value>
</managed-property>

In case of collections, we can easily initialize maps and lists. A map (java.util.Map)
can be initialized as follows:

<managed-property>
 <property-name>matchfacts</property-name>
 <map-entries>
 <map-entry>
 <key>Aces</key>
 <value>12</value>
 </map-entry>
 <map-entry>
 <key>Double Faults</key>
 <value>2</value>
 </map-entry>
 <map-entry>
 <key>1st Serve</key>
 <value>70%</value>

Chapter 4

[153]

 </map-entry>
 </map-entries>
</managed-property>

While a list java.util.List (or array) can be initialized as follows:

<managed-property>
 <property-name>titles_2013</property-name>
 <list-entries>
 <value-class>java.lang.String</value-class>
 <value>Sao Paulo</value>
 <value>Acapulco</value>
 <value>Barcelona</value>
 <value>...</value>
 </list-entries>
</managed-property>

A property can be initialized with a null value by using
the <null-value/> tag.

If you prefer to configure managed beans in the XML descriptor (instead of using
annotations), then it is a good practice is to place them into another descriptor and
not in faces-config.xml. Keep this descriptor for application-level configurations.
For example, you can name it faces-beans.xml. JSF will know how to use this file
when it inspects the application descriptor, web.xml, for the following predefined
context parameter:

<context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-beans.xml</param-value>
</context-param>

Now you can keep faces-config.xml for other configurations.

Obviously, it is much easier to use annotations instead of tags, but sometimes
this approach can be really useful. For example, you can have some annotated
managed beans whose behavior you want to change, but for different reasons
you cannot edit the source code. In such a scenario, you can write the modifications
in an XML file, because at runtime, configurations from the XML file will take
precedence against annotations.

A complete example, named ch4_12, is available in the code bundle of this chapter.

JSF Configurations Using XML Files and Annotations – Part 1

[154]

The JSF 2.2 programmatic approach can reproduce the configuration file of the
ch4_12 application as follows:

public class Initializer extends
 ApplicationConfigurationPopulator {

 @Override
 public void populateApplicationConfiguration
 (Document toPopulate) {

 String ns = toPopulate.getDocumentElement().getNamespaceURI();

 Element managedbeanEl = toPopulate.
 createElementNS(ns, "managed-bean");

 Element managedbeannameEl =
 toPopulate.createElementNS(ns, "managed-bean-name");
 managedbeannameEl.appendChild(toPopulate.createTextNode
 ("playersBean"));
 managedbeanEl.appendChild(managedbeannameEl);

 Element managedbeanclassEl = toPopulate.createElementNS
 (ns, "managed-bean-class");
 managedbeanclassEl.appendChild(toPopulate.
 createTextNode("book.beans.PlayersBean"));
 managedbeanEl.appendChild(managedbeanclassEl);

 Element managedbeanscopeEl = toPopulate.
 createElementNS(ns, "managed-bean-scope");
 managedbeanscopeEl.appendChild(toPopulate.
 createTextNode("request"));
 managedbeanEl.appendChild(managedbeanscopeEl);

 Element managedproperty0El = toPopulate.
 createElementNS(ns, "managed-property");
 Element propertyNameEl = toPopulate.
 createElementNS(ns, "property-name");
 propertyNameEl.appendChild(toPopulate.createTextNode("name"));
 Element valueNameEl = toPopulate.createElementNS(ns, "value");
 valueNameEl.appendChild(toPopulate.createTextNode("Nadal"));
 managedproperty0El.appendChild(propertyNameEl);
 managedproperty0El.appendChild(valueNameEl);
 managedbeanEl.appendChild(managedproperty0El);
 ...
 Element managedproperty5El = toPopulate.

Chapter 4

[155]

 createElementNS(ns, "managed-property");
 Element propertyMatchfactsEl = toPopulate.
 createElementNS(ns, "property-name");
 propertyMatchfactsEl.appendChild(toPopulate.
 createTextNode("matchfacts"));
 Element mapEntriesEl = toPopulate.
 createElementNS(ns, "map-entries");
 Element mapEntry0El = toPopulate.
 createElementNS(ns, "map-entry");
 Element key0El = toPopulate.createElementNS(ns, "key");
 key0El.appendChild(toPopulate.createTextNode("Aces"));
 Element value0El = toPopulate.createElementNS(ns, "value");
 value0El.appendChild(toPopulate.createTextNode("12"));
 mapEntry0El.appendChild(key0El);
 mapEntry0El.appendChild(value0El);
 ...
 mapEntriesEl.appendChild(mapEntry0El);
 mapEntriesEl.appendChild(mapEntry1El);
 mapEntriesEl.appendChild(mapEntry2El);
 managedproperty5El.appendChild(propertyMatchfactsEl);
 managedproperty5El.appendChild(mapEntriesEl);
 managedbeanEl.appendChild(managedproperty5El);

 Element managedproperty6El = toPopulate.
 createElementNS(ns, "managed-property");
 Element propertyTitles_2013El = toPopulate.
 createElementNS(ns, "property-name");
 propertyTitles_2013El.appendChild(toPopulate.
 createTextNode("titles_2013"));
 Element listEntriesEl = toPopulate.
 createElementNS(ns, "list-entries");
 Element valueClassEl = toPopulate.
 createElementNS(ns, "value-class");
 valueClassEl.appendChild(toPopulate.
 createTextNode("java.lang.String"));
 Element value0lEl = toPopulate.createElementNS(ns, "value");
 value0lEl.appendChild(toPopulate.createTextNode("Sao Paulo"));
 ...
 listEntriesEl.appendChild(valueClassEl);
 listEntriesEl.appendChild(value0lEl);
 listEntriesEl.appendChild(value1lEl);
 listEntriesEl.appendChild(value2lEl);
 listEntriesEl.appendChild(value3lEl);
 listEntriesEl.appendChild(nullValuelEl);

JSF Configurations Using XML Files and Annotations – Part 1

[156]

 managedproperty6El.appendChild(propertyTitles_2013El);
 managedproperty6El.appendChild(listEntriesEl);
 managedbeanEl.appendChild(managedproperty6El);

 toPopulate.getDocumentElement().appendChild(managedbeanEl);

 //serializeFacesConfig(toPopulate, "D://faces-config.xml");
 }
 ...
}

The complete application is named ch4_14_1.

Working with multiple configuration files
JSF 2.0 provides support for ordering the configuration resources. We can use partial
ordering (represented by the <ordering> tag) and absolute ordering (represented
by the<absolute-ordering> tag).

Each document that is involved in the ordering plan is identified
by the top-level tag, <name>.

Partial ordering is specific to a single configuration document. We can use the
<before> and <after> tags to indicate that a certain document should be processed
before or after another document. Nested inside the <before> and <after> tags,
we may have the <others/> tag, which indicates that a certain document should be
processed before (respectively after) all the other documents that are sorted.

Listed here is an example where we have documents A, B, C, and faces-config.xml
alias D:

1.	 Document C needs to be executed before others; hence, it will be
executed first:
<name>C</name>
<ordering>
 <before>
 <others/>
 </before>
</ordering>

2.	 Document B has no specified order; hence, it will be executed second:
<name>B</name>

Chapter 4

[157]

3.	 Document A needs to be executed after document B; hence, it will be
executed third:
<name>A</name>
<ordering>
 <after>
 <name>B</name>
 </after>
</ordering>

4.	 Document D (faces-config.xml) is executed last and doesn't need any
ordering specifications.

The order will be implementation-specific configuration resource, that is, C, B, A, and
faces-config.xml (D).

The ordering process (partial or absolute) has no effect over two
documents: the respective implementation's (Mojarra or MyFaces)
default configuration resource is always processed first, and
faces-config.xml (if exists) is always processed last.

A simple test can be performed using several phase listeners and firing some
customized messages. Each phase listener is configured in a separate document and
some partial ordering schema is applied. A complete example can be found in the
code bundle of this chapter and is named ch4_13_1. The console output will reveal
the effect of partial ordering.

If a document has ordering requirements, but no name, then the
ordering requirements will be ignored.

The absolute ordering is accomplished by the <absolute-ordering> tag. This
tag can appear only in faces-config.xml and provides us control over the order
that configuration documents will be processed. For example, we have added the
absolute ordering in the faces-config.xml document (alias document D) as follows:

<absolute-ordering>
 <others/>
 <name>C</name>
 <name>B</name>
 <name>A</name>
</absolute-ordering>

JSF Configurations Using XML Files and Annotations – Part 1

[158]

And, the processing order is: implementation specific configuration resource , C, B, A,
and faces-config.xml (D).

The complete example for absolute ordering is named, ch4_13_2.

Configuring locales and resource
bundles
A properties file that contains messages can be named PlayerMessages.
properties. When we have messages in several languages, we can create a
properties file for each language and name it accordingly. For example, for
English it will be PlayerMessages_en.properties, and for French it will be
PlayerMessages_fr.properties. A convenient place to store them is in the
application source folder directly or in subfolders (or, in NetBeans, under Other
Sources folder in a Maven web application project). A resource bundle is capable
of loading and displaying messages from these files.

A resource bundle can be configured locally or globally. A local resource bundle
loads the properties file for the specified page only. For this, use the <f:loadBundle>
tag as follows:

<f:loadBundle basename="players.msgs.PlayerMessages" var="msg"/>

A global resource bundle loads the properties file for all the JSF pages. In this case,
we need a declarative loading in faces-config.xml:

<application>
 <resource-bundle>
 <base-name>players.msgs.PlayerMessages</base-name>
 <var>msg</var>
 </resource-bundle>
</application>

When we have files for multiple languages, we also have to indicate the locale.
Locally, this is accomplished in the <f:view> tag by adding the locale attribute,
as follows (here we indicate the French language):

<f:view locale="fr">

Globally, in faces-config.xml, we indicate the default locale via <default-locale>
and the list of supported locales using the <supported-locale> tag:

<application>
 <locale-config>
 <default-locale>en</default-locale>

Chapter 4

[159]

 <supported-locale>fr</supported-locale>
 <supported-locale>en</supported-locale>
 </locale-config>
 <resource-bundle>
 <base-name>players.msgs.PlayerMessages</base-name>
 <var>msg</var>
 </resource-bundle>
</application>

Programmatically, we may depict the locale as follows:

UIViewRoot viewRoot =
 FacesContext.getCurrentInstance().getViewRoot();
viewRoot.setLocale(new Locale("fr"));

A simple entry in the properties file will be as follows:

HELLO = Hello from Rafael Nadal!

The messages will be displayed using the msg variable (declared by the var attribute
or the <var> tag):

#{msg['HELLO']}

But, messages can be more complex than static text. For example, they can be
parameterized, as follows:

HELLOPARAM = Hello from {0} {1}!

And parameters can be replaced using the <h:outputFormat> tag:

<h:outputFormat value="#{msg['HELLOPARAM']}">
 <f:param value="Roger" />
 <f:param value="Federer" />
</h:outputFormat>

But, how about a message of the following type:

REGISTERED = You have {0} players registered!

When you have one player, the message will be as follows:

You have 1 players registered!

This is grammatically incorrect; therefore, you need to use a pattern similar to
the following:

REGISTERED = You have {0} {0, choice, 0#players|1#player|2#players}
registered!

JSF Configurations Using XML Files and Annotations – Part 1

[160]

This will fix the problem. The arguments used here are explained as follows:

•	 0, choice: Take the first parameter and base the output on a choice of
available formats

•	 0#players: If the first parameter contains 0 (or below), then it should
print "players"

•	 1#player: If the first parameter contains 1, then it should print "player"
•	 2#players: If the first parameter contains 2 (or above), then it should

print "players"

You can find the complete example under the name ch4_4, in the code bundle of
this chapter.

Do not confuse the <resource-bundle> tag with <message-bundle>.
The former is used for registering custom localized static text, while the
latter is used for registering custom error/info/warn messages, which are
displayed by <h:message> and <h:messages>.

The <message-bundle> option is ideally used as follows:

<message-bundle>
 players.msgs.ErrorsMessages
</message-bundle>

The message file can be loaded with the <f:loadBundle> tag.

Configuring validators and converters
Data validation is an important part of a JSF application (which has existed since
JSF 1.2), because it allows us to separate the business logic from the tedious checks
that help us to obtain only valid information from the user. Data is validated in the
Process Validations phase (if the immediate attribute is set to true, this processing
will occur at the end of the Apply Request Values phase instead) and should be valid
and ready to be used before the Update Model Values phase.

Besides the built-in validators, we can write our own customized validators.
A public class that implements the Validator interface and overrides the
validate method is recognized by JSF as a validator. There are two ways to
configure a validator in JSF: using the @FacesValidator annotation or the
<validator> tag in faces-config.xml.

Chapter 4

[161]

Suppose that we have the following e-mail validator configured using
@FacesValidator:

 @FacesValidator(value = "emailValidator")
 public class EmailValidator implements Validator {

 @Override
 public void validate(FacesContext context, UIComponent
 component, Object value) throws ValidatorException {

 ...
 }
 }
}

In JSF 2.2, the name can now be omitted from components, converters,
and validators, so the preceding code will become @FacesValidator.
Here, we need to note that when the name is omitted, JSF will use the
class name, without the package name, with the first letter de-capitalized.

If you prefer to use faces-config.xml, then EmailValidator can be configured
as follows:

<validator>
 <validator-id>emailValidator</validator-id>
 <validator-class>book.beans.EmailValidator</validator-class>
</validator>

Now, you can easily link validator to an input component:

<h:inputText value="#{bean property}">
 <f:validator validatorId="emailValidator"/>
</h:inputText>

An alternate way to do this is as follows:

<h:inputText value="#{bean property}" validator="emailValidator"/>

The complete example of EmailValidator is available in the code bundle of this
chapter and is named ch4_3_1. Besides this application, consider, as a bonus, two
applications that are useful when validators are involved. The first one is named
ch4_2, and requires passing extra parameters to a validator using <f:attribute>,
and the other one is named ch4_11, which is an example of validating multiple
fields using a custom validator and the <f:attribute> tag. The latter one is also
developed using the PostValidateEvent system event—check the Configuring
system event listeners section later in this chapter.

JSF Configurations Using XML Files and Annotations – Part 1

[162]

Well, there are many articles about JSF validators, but just a few discuss injection
in JSF validators. By default, JSF 2.0 does not support injection in validators, since
only managed beans are injection targets, but there are several tricks that can bring
dependency injection in discussion.

In order to obtain a validator eligible for injection, you need to apply the following
modifications, which basically transform the validator into a bean:

1.	 Replace the @FacesValidator annotation with @Named or @ManagedBean
(or even with a Spring annotation, @Component).

2.	 Put the bean in a request scope (use the proper @RequestScoped annotation)
@Named(value="emailValidator")
@RequestScoped
public class EmailValidator implements Validator {

 @Override
 public void validate(FacesContext context,
 UIComponent component, Object value)
 throws ValidatorException {
 ...
 }
}

3.	 Refer to it using the proper EL expression:
<h:inputText value="#{bean property}"
 validator="#{emailValidator.validate}" />

Done! Now, you can use @Inject in this validator.

The complete example is available in the code bundle of this chapter and is
named ch4_3_2.

A more complicated task is to use @EJB for injecting Enterprise JavaBeans (EJB)
session beans. In this case, we need to manually lookup the EJB session bean from
Java Naming and Directory Interface (JNDI). When the EJBs are deployed in Web
application ARchive (WAR) the lookup generally is of the following type:

java:app/app-name/bean-name[! fully-qualified-interface-name]

When the EJBs are in an Enterprise ARchive (EAR), the common lookup type
is as follows:

java:global/app-name/module-name/bean-name[! fully-qualified-interface-name]

Chapter 4

[163]

When EJBs are deployed in WAR, use the following approach:

@FacesValidator
public class EmailValidator implements Validator {

 private LoginEJBBean loginEJBBean;

 @Override
 public void validate(FacesContext context, UIComponent
 component, Object value) throws ValidatorException {

 try {
 loginEJBBean = (LoginEJBBean) new InitialContext().
 lookup("java:app/ch4_3_5/LoginEJBBean");
 } catch (NamingException e) {
 throw new ExceptionInInitializerError(e);
 }
...

When EJBs are deployed in the EAR, use the following approach:

@FacesValidator public class EmailValidator implements Validator {

 private LoginEJBBean loginEJBBean;

 @Override
 public void validate(FacesContext context,
 UIComponent component, Object value) throws ValidatorException
{

 try {
 loginEJBBean = (LoginEJBBean) new InitialContext().
 lookup("java:global/ch4_3_6/ch4_3_6-ejb/LoginEJBBean");
 } catch (NamingException e) {
 throw new ExceptionInInitializerError(e);
 }
...

You can find the complete examples in the code bundle of this chapter. The example
for EJBs deployed in the WAR is named ch4_3_5, and the EJBs deployed in EAR case
is named ch4_3_6.

JSF Configurations Using XML Files and Annotations – Part 1

[164]

These approaches are just some engrafts for bringing dependency injection in
validators and this seems to be the only workaround in JSF 2.0. Starting with JSF 2.2,
injection is possible in many more artifacts, but as the specification says, converters
and validators are still not injection targets. It seems that this will be available from
JSF 2.3.

Contrary to this affirmation, I tried to write a validator and use the injection as
it should natively work. I used @Inject as follows where LoginBean is a CDI
application scoped bean:

@FacesValidator
public class EmailValidator implements Validator {

 @Inject
 LoginBean loginBean;

 @Override
 public void validate(FacesContext context,
 UIComponent component, Object value) throws ValidatorException
{
...

Moreover, I also tried to inject an EJB using @EJB and @Inject where LoginEJBBean
is a stateless session bean, as shown in the following code:

@FacesValidator
public class EmailValidator implements Validator {

 @EJB
 LoginEJBBean loginEJBBean;
 //@Inject
 //LoginEJBBean loginEJBBean;

 @Override
 public void validate(FacesContext context,
 UIComponent component, Object value) throws ValidatorException
{
...

I have to admit that I was expecting to see a null value for the injected resource,
but surprisingly, everything worked as expected in all cases. There are rumors that,
initially, the injection mechanism for validators and convertors was added in JSF 2.2,
but it was removed at the last moment because some tests failed. Even if the preceding
examples worked fine, it doesn't mean that is a good practice to use this approach in
production. You'd better wait until it is guaranteed by the JSF team.

Chapter 4

[165]

If you are a fan of OmniFaces, then you can use @Inject and @EJB with
@FacesValidator. This great facility was added starting with Version
1.6 (http://showcase.omnifaces.org/cdi/FacesValidator).
Moreover, MyFaces CODI (http://myfaces.apache.org/
extensions/cdi/) can also be a workaround, but it requires an
additional @Advanced annotation.

The complete examples are available in the code bundle of this chapter and they are
named ch4_3_3 (web application) and ch4_3_4 (enterprise application), respectively.

When discussing converters, let's remember that the conversion between two
UIInput instances happens in the Process Validations phase (default), which can
be moved to Apply Request Values phase using the immediate attribute set to true.
For UIOutput, the conversion happens in the Render Response phase.

Beside the built-in converters, we can write our custom converters. A public class
that implements the Converter interface and overrides the getAsObject and
getAsString methods is recognized by JSF as a converter. There are two ways
to configure a converter in JSF: using the @FacesConverter annotation or the
<converter> tag in faces-config.xml.

Concerning we have the following converter configured using @FacesConverter
(remember that JSF 2.2 doesn't need the value attribute):

@FacesConverter(value="playerConverter")
public class PlayerConverter implements Converter{

 @Override
 public Object getAsObject(FacesContext context,
 UIComponent component, String value) {
 PlayerName playerName = new
 PlayerName(value.toLowerCase(), value.toUpperCase());

 return playerName;
 }

 @Override
 public String getAsString(FacesContext context,
 UIComponent component, Object value) {

 PlayerName playerName = (PlayerName)value;

 return "Mr. " + playerName.getUppercase();
 }
}

http://showcase.omnifaces.org/cdi/FacesValidator
http://myfaces.apache.org/extensions/cdi/
http://myfaces.apache.org/extensions/cdi/

JSF Configurations Using XML Files and Annotations – Part 1

[166]

If you prefer to use faces-config.xml, then PlayerConverter can be configured
as follows:

<converter>
 <converter-id>playerConverter</converter-id>
 <converter-class>book.beans.PlayerConverter</converter-class>
</converter>

Now, you can easily link the converter to an input component as follows:

<h:inputText value="#{bean property}">
 <f:converter converterId="playerConverter"/>
</h:inputText>

An alternate way to do this is as follows:

<h:inputText value="#{bean property}" converter="playerConverter"/>

Moreover, you can write this as follows:

<h:inputText value="#{bean property}"/>

If you configure the converter using the forClass attribute, skip the value attribute
as follows:

@FacesConverter(forClass=PlayerName.class)

The complete example of PlayerConverter is available in the code bundle of this
chapter and it is named ch4_6_1.

Speaking about dependency injection, having converters as targets is pretty similar
with the situation of validators:

1.	 Replace the @FacesConverter annotation with @Named and @ManagedBean
(for Spring, you can use @Component also)

2.	 Put the bean in the request scope (use the proper @RequestScoped
annotation) as follows:
@Named(value="playerConverter")
@RequestScoped
public class PlayerConverter implements Converter{

 @Override
 public Object getAsObject(FacesContext context,
 UIComponent component, String value) {

Chapter 4

[167]

 ...
 }

 @Override
 public String getAsString(FacesContext context,
 UIComponent component, Object value) {
 ...
 }
}

3.	 Refer to it using the proper EL expression as follows:
<h:inputText value="#{bean property}" converter="#{playerConverter}"/>

The complete example can be found in the code bundle of this chapter and it is
named ch4_6_2. EJBs can be injected in converters by looking up the EJB session
bean from JNDI. Refer to the examples ch4_6_5 (EJBs in EAR) and ch4_6_6
(EJBs in WAR).

•	 The following block of code in the ch4_6_5 application; RandomEJBBean is a
stateless session bean:
@FacesConverter(value = "playerConverter")
public class PlayerConverter implements Converter {

 private static RandomEJBBean randomEJBBean;

 static {
 try {
 randomEJBBean = (RandomEJBBean) new InitialContext().
 lookup("java:global/ch4_6_5/ch4_6_5-ejb/RandomEJBBean");
 } catch (NamingException e) {
 throw new ExceptionInInitializerError(e);
 }
}
...

•	 The following block of code in the ch4_6_6 application; RandomEJBBean is a
stateless session bean:
@FacesConverter(value = "playerConverter")
public class PlayerConverter implements Converter {

 private static RandomEJBBean randomEJBBean;

 static {

JSF Configurations Using XML Files and Annotations – Part 1

[168]

 try {
 randomEJBBean = (RandomEJBBean) new InitialContext().
 lookup("java:app/ch4_6_6/RandomEJBBean");
 } catch (NamingException e) {
 throw new ExceptionInInitializerError(e);
 }
 }
...

Moreover, under GlassFish 4.0 and Mojarra 2.2.x, I was able to successfully run two
applications that use injection in converters without any fancy workaround. See
examples ch4_6_3 and ch4_6_4. Do remember that this approach is not officially
adopted, however.

Configuring navigation
Starting with JSF 2, navigation became much easier. Navigation can be
accomplished using:

•	 Implicit navigation
•	 Conditional navigation
•	 Preemptive navigation
•	 Programmatic navigation

We can talk for hours and hours about JSF navigation, but there are a few golden
rules that save us from falling for the most common mistakes when we need to
choose between GET and POST. It might be useful to know that:

•	 It is recommended to use the GET request for page-to-page navigation,
search forms, URLs that you want to be visible and bookmarkable, and, in
general, for any idempotent request. By specification, GET, HEAD, PUT, DELETE,
OPTIONS, and TRACE are idempotent.

•	 For requests that shouldn't be bookmarkable, use the same view repeatedly
(use forward, not redirect).

•	 For requests that shouldn't be bookmarkable, but have bookmarkable targets,
use POST and redirect.

Chapter 4

[169]

Implicit navigation
Implicit navigation interprets navigation outcomes as target view IDs. The simplest
implicit navigation case is accomplished by JSF itself whenever you perform an
action and no navigation is indicated. In this case, JSF will post a form (via HTTP
POST) back to the current view (render the current view again).

Without declarative navigation in faces-config.xml, we can easily write
navigation cases, such as the following where JSF 2 knows how to treat
outcome (or the action value) as the targeted page name:

<h:outputLink value="success.xhtml">Success</h:outputLink>
<h:link value="Success" outcome="success"/>
<h:button value="Success" outcome="success"/>
<h:commandButton value="Success" action="success"/>
<h:commandLink value="Success" action="success"/>

If the success.xhtml page exists, then all the given examples will
navigate to this page. The <h:outputLink> element will navigate
independently of JSF (that means it doesn't interact with JSF). The
<h:link> and <h:button> elements will navigate via a bookmarkable
GET request and aren't capable of form submissions (as you will see,
this is actually preemptive navigation). The <h:commandButton> and
<h:commandLink> elements are the main components for navigating
within a JSF application. They fire POST requests and are capable of form
submissions. Whenever you want to add the application context path in
a URL (for example, the URL generated via <h:outputLink>, you can
use the ExternalContext.getApplicationContextPath method
of JSF 2.2. For example, take a look at the following code:

<h:outputLink value="#{facesContext.externalContext.
applicationContextPath}/next.xhtml">Next</h:outputLink>

The declarative version of this is as follows—thanks to implicit navigation, this code
is not needed:

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/success.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

JSF Configurations Using XML Files and Annotations – Part 1

[170]

The outcome of <h:link> and <h:button> are evaluated during the Render Response
phase; therefore, the URLs are available right from the start of the corresponding view.
On the other hand, when the button (<h:commandButton>) or link (<h:commandLink>)
is clicked, JSF will merge the action value success with the XHTML extension and
find the view name success.xhtml in the current page directory.

Wildcard ("*") is supported to specify a navigation rule that applies
to all pages. It can be useful for a logout page.

The navigation case can also pass through a bean method, as follows:

<h:commandButton value="Success" action="#{playerBean.playerDone()}"/>

Also, the PlayerBean method is defined as follows:

public String playerDone() {
 logger.log(Level.INFO, "playerDone method called ...");
 return "success";
}

In these examples, the outcome/action values and the target view ID matches.
However, the outcome/action values and target view ID are not always that simple.
The outcome/action values are used to determine the target view ID even if they
don't have the same root. For example, refer to the following code:

<h:commandButton value="Success" action="done"/>

The preceding code indicates the done.xhtml page, but this page doesn't exist;
therefore, no navigation happens. We need to add a declarative navigation rule in
faces-config.xml in order to link the action value (or the outcome value that is
fetched via preemptive navigation, which we will see soon), done, with target view
ID, success.xhtml. This navigation rule can be seen in the following code:

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>done</from-outcome>
 <to-view-id>/success.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

Chapter 4

[171]

If the bean method returns the outcome done, then the navigation rules are modified
as follows:

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{playerBean.playerDone()}</from-action>
 <from-outcome>done</from-outcome>
 <to-view-id>/success.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

By default, between forward and redirect, JSF will navigate from one page to another
using the forward mechanism (HTTP POST). When JSF receives the user action, it will
forward the user to the determined target page, which means that the URL displayed
by the browser will not be updated to reflect the current target. Keeping the browser
URL updated implies the page redirection mechanism; in this case, JSF, delegates the
browser to send a separate GET request to the target page.

You can use the page redirection mechanism by attaching the faces-redirect=true
parameter to the outcome query string as follows:

<h:commandButton value="Success" action="success?faces-
redirect=true;"/>

Alternatively, you can use the <redirect/> tag inside the navigation rule as follows:

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>done</from-outcome>
 <to-view-id>/success.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

In the forward case, the browser URL is not updated (is with a step
behind navigation URL), but there is a single request. In the redirect case,
the browser URL is up to date, but there are two requests. Since forward
needs a single request, it is faster than page redirection. The speed is
lower, but page redirection solves the duplicated form submission
problem found in the Post-Redirect-Get design pattern. Of course, this is
not the case for <h:link>, <h:button>, and <h:outputLink>.

These examples are grouped in the ch4_5_1 application in the code bundle of
this chapter.

JSF Configurations Using XML Files and Annotations – Part 1

[172]

Conditional navigation
Conditional navigation allows us to specify preconditions for choosing the desired
navigation case; a precondition must be met in order for the navigation case to be
accepted. For this, we use the <if> tag as a child of the <navigation-case> tag and
use an EL expression that can be evaluated to a Boolean value; here the true value
matches the navigation case.

Let's have a simple button that logs the user into the application. This is done using
the following code:

<h:commandButton value="Login" action="#{playerBean.playerLogin()}"/>

When the Login button is clicked, JSF will call the playerLogin method. This
method will not return an outcome, actually it returns void. In this example, we
simulate a login process through a random number and set a Boolean value, login,
accordingly, as shown in the following code:

private boolean login = false;
...
public boolean isLogin() {
 return login;
}

public void setLogin(boolean login) {
 this.login = login;
}

public void playerLogin() {

 Random random = new Random();
 int r = random.nextInt(10);
 if (r <= 5) {
 login = false;
 } else {
 login = true;
 }
 }

Next, we can use the <if> tag to decide if we navigate to the success.xhtml page
(equivalent to login equals true) or to the failed.xhtml page (equivalent to login
equals false):

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>

Chapter 4

[173]

 <from-action>#{playerBean.playerLogin()}</from-action>
 <if>#{playerBean.login}</if>
 <to-view-id>/success.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
 <navigation-case>
 <from-action>#{playerBean.playerLogin()}</from-action>
 <if>#{!playerBean.login}</if>
 <to-view-id>/failed.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

In conditional navigation, the navigation cases are evaluated even
when the outcome is null or void. Notice that there is no <else>
tag or multiple conditional checking; therefore, in such cases, you
have to emulate a switch statement. If you want to simply match
the null outcome in any case, then you can use a condition of type:
<if>#{true}</if>.
Moreover, the sequence of the navigation rule affects the navigation flow;
therefore, it is a good practice to prioritize conditions.

You can find the complete example in the code bundle of this chapter, under the
name ch4_5_2.

We can write conditional navigation cases without the <if> tag by delegating the
decision of choosing the navigation case to a bean method. For this, we have to
replace the static value of the <to-view-id> tag with an EL expression, as follows:

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{playerBean.playerLogin()}</from-action>
 <to-view-id>#{playerBean.navigateHelper()}</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

JSF Configurations Using XML Files and Annotations – Part 1

[174]

Notice that this is not a real conditional navigation (since <if> is missing); therefore,
we need to return an outcome from the playerLogin method:

public String playerLogin() {

 Random random = new Random();
 int r = random.nextInt(10);
 login = r > 5;
 return "done";
}

When the login property is set and the outcome done is returned, JSF will follow the
preceding navigation case and reach for the navigateHelper method:

public String navigateHelper() {
 if (!login) {
 return "failed.xhtml";
 } else {
 return "success.xhtml";
 }
}

In a real application, the method that returns the outcome and the method that
chooses the navigation case will probably be in different beans. If you take into
account that you can pass arguments to the decisional method, then many
navigation cases can be solved.

You can find the complete example in the code bundle of this chapter, under the
name ch4_5_3.

Preemptive navigation
Preemptive navigation is available starting with JSF 2.0. The navigation rules are
more permissive and they are evaluated during the Render Response phase instead
of the Invoke Application phase.

This is known as predetermined navigation or preemptive navigation.
The current view ID and specified outcome are used to determine
the target view ID. Afterwards, the target view ID is translated into a
bookmarkable URL and used as the hyperlink's target. Practically, the
URL is prepared without user interaction.

Chapter 4

[175]

The main usage of preemptive navigation appears in bookmarkable component tags,
<h:link> and <h:button>. For example, the following are two classical examples of
preemptive navigation:

<h:link value="Success" outcome="success"/>
<h:button value="Success" outcome="success"/>

When the application starts, you can check the source code of the page to see how
the corresponding URLs were mapped in the HTML tag <a> in case of <h:link>,
and the HTML tag <input type="button"> in case of <h:button>. Even if you
never use those URLs, they are ready to serve.

Well, before JSF 2.0, navigation rules were explicitly the domain of POST requests
(NavigationHandler.handleNavigation was doing the dirty job behind the
scene), but the new support for GET-based navigation and bookmarkability
takes navigation to another level of flexibility and transparency (for example,
the ConfigurableNavigationHandler API).

The interesting part here is how the query string of a URL is assembled. The simplest
case consists of the implicit query string parameter as shown in the following code:

<h:link value="Done" outcome="done?id=done"/>

In Chapter 2, Communication in JSF, you saw how to build the query string using
<f:param> and <f:viewParam>.

Another way consists in using the <view-param> tag nested in a <redirect> tag in a
navigation case. For example, we can add query string parameters to a redirect URL
in the navigation rules. Let's create the following button:

<h:commandButton value="Success" action="#{playerBean.playerDone()}"/>

Also, a silly method named playerDone is as follows:

private String player;

 public String getPlayer() {
 return player;
 }

 public void setPlayer(String player) {
 this.player = player;
 }

 public String playerDone() {
 player = "Rafael Nadal";
 return "done";
 }

JSF Configurations Using XML Files and Annotations – Part 1

[176]

Now, we can add the player property value (of course, you can add any other
value) as a parameter in the query string of the redirection navigation URL:

<navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{playerBean.playerDone()}</from-action>
 <from-outcome>done</from-outcome>
 <to-view-id>/success.xhtml</to-view-id>
 <redirect>
 <view-param>
 <name>playerparam</name>
 <value>#{playerBean.player}</value>
 </view-param>
 </redirect>
 </navigation-case>
</navigation-rule>

A URL like this will be of the format (notice how the request parameter was
attached based on the navigation rule) http://host:port/app-name/faces/success.
xhtml?playerparam=Rafael+Nadal.

The playerparam value will be available through the param implicit object:

#{param['playerparam']}

You can find the complete example in the code bundle of this chapter, under the
name ch4_5_4.

Programmatic Navigation
Sometimes, you need to control navigation directly from the application.
JSF provides the NavigationHandler and ConfigurableNavigationHandler
APIs that can be used for tasks such as accessing navigation cases, customizing
navigation handlers, conditional navigations, and so on. It is good to know that,
programmatically speaking, we can do the following:

1.	 Obtain access to navigation handler (NavigationHandler) using the
following code:
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
NavigationHandler nh = application.getNavigationHandler();

Chapter 4

[177]

2.	 Invoke navigation case using NavigationHandler as follows:
nh.handleNavigation(context,fromAction,outcome);
nh.handleNavigation(context,fromAction,outcome,toFlowDocumentId);

3.	 Access the ConfigurableNavigationHandler API using the following code:
ConfigurableNavigationHandler cnh =
 (ConfigurableNavigationHandler) FacesContext.
 getCurrentInstance().getApplication().
 getNavigationHandler();

4.	 Invoke navigation case using ConfigurableNavigationHandler as follows:
cnh.handleNavigation(context,fromAction,outcome);
cnh.handleNavigation(context,fromAction,outcome,
 toFlowDocumentId);

5.	 Retrieve one NavigationCase object by the action expression signature and
outcome as shown in the following code:
NavigationCase case = cnh.getNavigationCase(context,
 fromAction,outcome);
NavigationCase case = cnh.getNavigationCase(context,
 fromAction,outcome, toFlowDocumentId);

6.	 Access all navigation rules into Map<String, Set<NavigationCase>>,
where the keys are the <from-view-id> values as follows:
Map<String, Set<NavigationCase>> cases =
 cnh.getNavigationCases();

Starting with JSF 2.2, we have wrappers for many classes that provide
basic implementations and help developers to extend those classes and
override only the necessary methods. Among them, we have a wrapper
class for NavigationHandler, named NavigationHandlerWrapper,
one for ConfigurableNavigationHandler, named
ConfigurableNavigationHandlerWrapper, and one for
NavigationCase, named NavigationCaseWrapper.

In Chapter 3, JSF Scopes – Lifespan and Use in Managed Beans Communication, you
saw a custom implementation of ConfigurableNavigationHandler in The flow
scope section, and you saw a custom implementation of NavigationHandler in the
Controlling the custom scope lifespan with the navigation handler section.

JSF Configurations Using XML Files and Annotations – Part 1

[178]

Configuring action listeners
Action listeners are a great facility provided by JSF for dealing with action events.
Commonly, action listeners are attached to command buttons (<h:commandButton>)
or command links (<h:commandLink>) using the actionListener attribute.

When a button/link is clicked, JSF calls the action listener during the Invoke
Application phase. Notice that if you are using immediate="true", then the action
listener is called during the Apply Request Values phase. The method, indicated as a
listener, should be public, should return void, and should accept an ActionEvent
object (this object can be used to access the component that invoked the action),
which can perform specific tasks. When its execution has finished, JSF will call the
method bound by the action attribute (if it exists!). This method is responsible
to indicate the navigation case. The action listener method can alter the response
returned by the action method.

As a practice, actionListener is used to have some "fun"
before the real business and navigation task, which is the
responsibility of action. So, do not abuse actionListener
for solving business logic tasks!

Let's use an example of a simple command button that uses an action listener,
as shown in the following code:

<h:commandButton value="Player Listener 1"
 actionListener="#{playerBean.playerListener}"
 action="#{playerBean.playerDone()}"/>

The PlayerBean contains the following code:

public void playerListener(ActionEvent e) {
 logger.log(Level.INFO, "playerListener method called ...");
}

public String playerDone() {
 logger.log(Level.INFO, "playerDone method called ...");
 return "done";
}

Well, the log messages reveal the order of calls as follows:

INFO: playerListener method called ...
INFO: playerDone method called ...

This kind of listener doesn't need any special configuration.

Chapter 4

[179]

Another type of listener can be written by implementing the ActionListener
interface and overriding the processAction method. In this case, we need to use the
<f:actionListener> tag for attaching the action listener to a command button/link:

<h:commandButton value="Player Listener 2"
 action="#{playerBean.playerDone()}">
 <f:actionListener type="book.beans.PlayerListener"/>
</h:commandButton>

Well, the PlayerListener is defined as follows:

public class PlayerListener implements ActionListener {

 private static final Logger logger =
 Logger.getLogger(PlayerListener.class.getName());

 @Override
 public void processAction(ActionEvent event)
 throws AbortProcessingException {

 logger.log(Level.INFO, "Player listener class called ...");
 }
}

And, the output of the log messages will be as follows:

INFO: Player listener class called ...
INFO: playerDone method called ...

Again, these kinds of listeners do not need any special configurations.

Starting with JSF 2.2 the ActionListener interface was wrapped
in a simple implementation named, ActionListenerWrapper.
You need to extend this class and override getWrapped to return
the wrapped instance.

For example, the PlayerListener may be called via the following wrapper:

public class PlayerListenerW extends ActionListenerWrapper {

 PlayerListener playerListener = new PlayerListener();

 @Override
 public ActionListener getWrapped() {
 return playerListener;
 }
}

JSF Configurations Using XML Files and Annotations – Part 1

[180]

You can even combine these two listeners into a single command button, as follows:

<h:commandButton value="Player Listener 3"
 actionListener="#{playerBean.playerListener}"
 action="#{playerBean.playerDone()}">
 <f:actionListener type="book.beans.PlayerListener"/>
</h:commandButton>

In this case, the log messages are as follows:

INFO: playerListener method called ...
INFO: Player listener class called ...
INFO: playerDone method called ...

Well, this example gives us an important rule: the action listeners
are invoked before action and in the same order as they are
declared inside the component.

Application action listeners
So far so good! The last category of action listeners are known as application
action listeners. They are set on the application level and are called by JSF even
for command buttons/links that do not specify any action listener explicitly.
Such an action listener may look like the following code:

public class ApplicationPlayerListener implements ActionListener {

 private static final Logger logger =
 Logger.getLogger(PlayerListener.class.getName());
 private ActionListener actionListener;

 public ApplicationPlayerListener() {
 }

 public ApplicationPlayerListener(ActionListener actionListener) {
 this.actionListener = actionListener;
 }

 @Override
 public void processAction(ActionEvent event)
 throws AbortProcessingException {

 logger.log(Level.INFO, "Application player listener class called
...");

Chapter 4

[181]

 actionListener.processAction(event);
 }
}

This action listener will be called for a command button/link even if it doesn't
specify it, as shown in the following code:

<h:commandButton value="Player Listener 4"
 action="#{playerBean.playerDone()}" />

The output will be as follows:

INFO: Application player listener class called ...
INFO: playerDone method called ...

In JSF 2.2, we can write this implementation by extending ActionListenerWrapper
as follows:

public class ApplicationPlayerListenerW extends ActionListenerWrapper
{

 private ActionListener actionListener;
 private static final Logger logger =
 Logger.getLogger(ApplicationPlayerListenerW.class.getName());

 public ApplicationPlayerListenerW(){}

 public ApplicationPlayerListenerW(ActionListener actionListener){
 this.actionListener = actionListener;
 }

 @Override
 public void processAction(ActionEvent event)
 throws AbortProcessingException {
 logger.log(Level.INFO, "Application player listener
 (wrapper) class called ...");
 getWrapped().processAction(event);
 }

 @Override
 public ActionListener getWrapped() {
 return this.actionListener;
 }
}

JSF Configurations Using XML Files and Annotations – Part 1

[182]

Application action listeners are called after the action listeners
that are explicitly set via the actionListener attribute or
the <f:actionListener> tag.

In order to be called, such listeners must be configured in faces-config.xml.
For example, the preceding listener can be configured as follows:

<application>
 <action-listener>book.beans.ApplicationPlayerListener</action-
listener>
</application>

When you are using application action listeners, it is important to
keep in mind a few things:

•	 Application action listeners cannot invoke other listeners.
•	 Application action listeners are responsible for processing

the action attribute.
•	 Application action listeners cannot catch events from other

listeners.

You have probably noticed that an action listener throws an
AbortProcessingException exception. When this exception appears, JSF will
directly jump to render the response and ignore further action listeners. The error
is swallowed by default, so don't expect to see it! You can make it visible by altering
the default mechanism of treating exceptions.

You might think that action listeners rock! Wait till you see this starting with JSF 2.2.
We can use the injection mechanism for injecting CDI managed beans and EJBs in
action listener classes. For example, the simple bean shown in the following code:

@Named
@RequestScoped
public class DemoBean {

 private String demo = "TEST INJECTION VALUE ...";

 public String getDemo() {
 return demo;
 }

 public void setDemo(String demo) {
 this.demo = demo;
 }
}

Chapter 4

[183]

This bean can be injected in our application action listener as follows:

public class ApplicationPlayerListener implements ActionListener {

 @Inject
 private DemoBean demoBean;
...

Obviously, this facility opens new perspectives in implementing applications. And,
as you will see next, injection mechanism is available for many other JSF artifacts that
do not support it in JSF 2.0.

A complete example named ch4_1, is available in the code bundle of this chapter.

Configuring system event listeners
JSF 2.0 allows us to use system events. These are events that can be fired by arbitrary
objects at arbitrary points during the request processing lifecycle. Since the number
of these events is quite big, you will not see them entirely covered here, but the next
five examples should clarify the basic aspects of system events. You can find all of
them in the javax.faces.event package.

Using <f:event>
The easiest way to use system event listeners consists in passing the name of the
managed bean method in the listener attribute of the <f:event> tag. For example,
PostValidateEvent is a system event that gets fired after all components are
validated. This can be useful to validate multiple components. Suppose, that a user
submits a form that contains his name, surname, bank account, and the confirmation
of that bank account (like a password that should be typed twice for confirmation).
In order to check if the same bank account was typed in both fields, we can use
PostValidateEvent, as follows:

<h:body>
 <h:form id="registerForm">
 <f:event listener="#{playersBean.validateAccount}"
 type="postValidate" />
 ...
 <h:inputText id="bankAccountId" value="#{playersBean.bank}"
 required="true" />
 <h:message for="bankAccountId" style="color: red;" />
 <h:inputText id="confirmBankAccountId"

JSF Configurations Using XML Files and Annotations – Part 1

[184]

 value="#{playersBean.cbank}" required="true" />
 <h:message for="confirmBankAccountId" style="color: red;" />
 <h:commandButton action="done" value="Send" />
 </h:form>
</h:body>

Now, in PlayersBean, we need to implement the validateAccount method
as follows:

public void validateAccount(ComponentSystemEvent event) {

 UIComponent uis = event.getComponent();

 //obtain bank account
 String bankAccount = null;
 UIInput uiBankAccount = (UIInput)
 uis.findComponent("bankAccountId");
 Object bankAccountObj = uiBankAccount.getLocalValue();
 if (bankAccountObj != null) {
 bankAccount = String.valueOf(bankAccountObj).trim();
 }

 //obtain bank account confirmation
 String bankAccountC = null;
 UIInput uiBankAccountC = (UIInput)
 uis.findComponent("confirmBankAccountId");
 Object bankAccountCObj = uiBankAccountC.getLocalValue();
 if (bankAccountCObj != null) {
 bankAccountC = String.valueOf(bankAccountCObj).trim();
 }

 if ((bankAccount != null) && (bankAccountC != null)) {
 if (!bankAccount.equals(bankAccountC)) {
 FacesContext facesContext =
 FacesContext.getCurrentInstance();
 FacesMessage facesMessage = new FacesMessage("Bank
 account must match bank account confirmation !");

 facesMessage.setSeverity(FacesMessage.SEVERITY_ERROR);

 facesContext.addMessage(uiBankAccount.getClientId(),
 facesMessage);
 facesContext.renderResponse();
 }
 }
}

Chapter 4

[185]

Done! If you don't provide the same bank account, then you will see the
corresponding message. The complete application is named ch4_7.

Implementing SystemEventListener
Another approach of handling system events is based on the following steps:

1.	 Implementing the SystemEventListener interface.
2.	 Overriding the processEvent and isListenerForSource methods.
3.	 Configuring the listener in faces-config.xml.

The registered system event can be fired by many kinds of sources (components).
We can sort and accept certain sources in the isListenerForSource method. It
returns true when the listener should receive events from the source passed to it
as an argument (usually a simple test using the instanceof operator should do the
work). When a source is accepted, the processEvent method is called and we can
add a custom behavior.

For example, let's suppose that we want to remove certain resources included
by JSF, such as CSS style sheets or JS scripts (it could be even resources added by
third-party libraries). Speaking about CSS resources, they are always rendered in
the HEAD section of an HTML page. Knowing that, we can configure our listener to be
executed if the event source is a UIViewRoot instance. Further, we exploit JSF API to
loop through the CSS resources and remove some of them (or, all of them). The code
of our listener is pretty simple, as you can see in the following code:

public class ResourcesListener implements SystemEventListener {

 @Override
 public void processEvent(SystemEvent event)
 throws AbortProcessingException {

 FacesContext context = FacesContext.getCurrentInstance();

 int i = context.getViewRoot().
 getComponentResources(context, "HEAD").size() - 1;

 while (i >= 0) {
 UIComponent resource = context.getViewRoot().
 getComponentResources(context, "HEAD").get(i);

 String resourceLibrary = (String)
 resource.getAttributes().get("library");

JSF Configurations Using XML Files and Annotations – Part 1

[186]

 String resourceName = (String) resource.getAttributes().
get("name");

 if ((resourceLibrary.equals("default")) &&
 (resourceName.equals("css/roger.css"))) {
 context.getViewRoot().removeComponentResource
 (context, resource, "HEAD");
 }
 i--;
 }
 }

 @Override
 public boolean isListenerForSource(Object source) {
 return (source instanceof UIViewRoot);
 }
}

The listener should be configured in faces-config.xml, as follows:

<system-event-listener>
 <system-event-listener-class>
 book.beans.ResourcesListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PreRenderViewEvent
 </system-event-class>
 <source-class>
 javax.faces.component.UIViewRoot
 </source-class>
</system-event-listener>

So, even if initially we write the following code:

<h:head>
 <h:outputStylesheet library="default" name="css/rafa.css"/>
 <h:outputStylesheet library="default" name="css/roger.css"/>
</h:head>

JSF will render the following code:

<head>
 <title></title>
 <link type="text/css" rel="stylesheet"
 href="/ch4_9_1/faces/javax.faces.resource/css/rafa.
css?ln=default">
</head>

Chapter 4

[187]

The <source-class> tag is actually overriding the condition
from the isListenerForSource method. So, you can always
return true from the isListenerForSource method and use
this tag, or vice versa.

You can find the complete example under the name ch4_9_1, in the code bundle of
this chapter.

Now, let's see another example. A common approach, when some form input fields
are invalid, is to color the background in red. In JSF 2.0, we can do that using the
following code:

.ui-invalid {
 background-color:red
}
...
<h:inputText value="#{...}" required="true" styleClass="#{not
component.valid ? 'ui-invalid' : ''}" />

Well, that is really cool! But, if the form has several input fields, then we have to
repeat the condition again and again, which isn't cool anymore! But, with a little
magic, we can generalize this behavior. We can write a listener that will be executed
only from the UIInput objects and modify their styleClass attribute based on the
result returned by the isValid method:

public class InputValidationListener implements SystemEventListener {

 @Override
 public void processEvent(SystemEvent event)
 throws AbortProcessingException {

 UIInput inputSource = (UIInput) event.getSource();

 if(!inputSource.isValid()) {
 inputSource.getAttributes().put("styleClass", "ui-invalid");
 }
 }

 @Override
 public boolean isListenerForSource(Object source) {
 return (source instanceof UIInput);
 }
}

JSF Configurations Using XML Files and Annotations – Part 1

[188]

Of course, this is simple and there is nothing to explain. Actually, the key lies in
the configuration file, because we have to choose the right system event from the
plethora of available events. Since we need to color the background of invalid
input fields in red, the right choice should be PostValidateEvent, as shown
in the following code:

<system-event-listener>
 <system-event-listener-class>
 book.beans.InputValidationListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PostValidateEvent
 </system-event-class>
 <source-class>
 javax.faces.component.html.HtmlInputText
 </source-class>
</system-event-listener>

Done! A functional example is available in the code bundle of this chapter and is
named ch4_9_3. The JSF 2.2 programmatic reflection of this configuration is listed
as follows:

public class Initializer extends
 ApplicationConfigurationPopulator {

 @Override
 public void populateApplicationConfiguration
 (Document toPopulate) {

 String ns = toPopulate.getDocumentElement().getNamespaceURI();

 Element applicationEl = toPopulate.
 createElementNS(ns, "application");
 Element systemeventlistenerEl = toPopulate.
 createElementNS(ns, "system-event-listener");
 Element systemeventlistenerclassEl =
 toPopulate.createElementNS(ns,
 "system-event-listener-class");
 systemeventlistenerclassEl.appendChild
 (toPopulate.createTextNode
 ("book.beans.InputValidationListener"));

Chapter 4

[189]

 Element systemeventclassEl = toPopulate.
 createElementNS(ns, "system-event-class");
 systemeventclassEl.appendChild(toPopulate.
 createTextNode("javax.faces.event.PostValidateEvent"));
 Element sourceclassEl = toPopulate.
 createElementNS(ns, "source-class");
 sourceclassEl.appendChild(toPopulate.createTextNode
 ("javax.faces.component.html.HtmlInputText"));

 systemeventlistenerEl.appendChild(systemeventlistenerclassEl);
 systemeventlistenerEl.appendChild(systemeventclassEl);
 systemeventlistenerEl.appendChild(sourceclassEl);
 applicationEl.appendChild(systemeventlistenerEl);
 toPopulate.getDocumentElement().appendChild(applicationEl);

 //serializeFacesConfig(toPopulate, "D://faces-config.xml");
 }
 ...
}

The complete application is named ch4_14_2.

Starting with JSF 2.2, we can use dependency injection in system event
listeners(@Inject and @EJB). For example, instead of hardcoding
the CSS resources that we need to remove from HEAD, we can pass
them through injection of a CDI bean or an EJB session bean. You can
see a complete example in the code bundle of this chapter. This one is
named ch4_9_2.

After you map the CSS classes names in a CDI bean (for example
StyleResourcesBean) or EJB bean (for example StyleResourcesEJBBean),
you can use any of the following injections:

@Inject
StyleResourcesBean styleResourcesBean;
@Inject
StyleResourcesEJBBean styleResourcesEJBBean;
@EJB
StyleResourcesEJBBean styleResourcesEJBBean;

JSF Configurations Using XML Files and Annotations – Part 1

[190]

Besides the injection facility, JSF 2.2 comes with a set of four brand new
system events dedicated to Flash scope. These are:

•	 PostKeepFlashValueEvent: This event is fired when a value
is kept in the Flash

•	 PostPutFlashValueEvent: This event is fired when a value is
stored in the Flash

•	 PreClearFlashEvent: This event is fired before the Flash is
cleared

•	 PreRemoveFlashValueEvent: This event is fired when a
value is removed from the Flash

Remember that in Chapter 2, Communication in JSF, you saw an application based on
the Flash scope. In this chapter, we will write a system event listener to monitor two
of these events, PostKeepFlashValueEvent and PreClearFlashEvent. The code for
this is as follows:

public class FlashListener implements SystemEventListener {

 private final static Logger LOGGER =
 Logger.getLogger(FlashListener.class.getName());

 @Override
 public void processEvent(SystemEvent event)
 throws AbortProcessingException {

 if (event.getSource() instanceof String) {
 LOGGER.log(Level.INFO, "The following parameter was added
 in flash scope: {0}", event.getSource());
 } else if (event.getSource() instanceof Map) {
 LOGGER.info("Preparing to clear flash scope ...");
 LOGGER.info("Current content:");
 Iterator iterator = ((Map) event.getSource()).entrySet().
iterator();
 while (iterator.hasNext()) {
 Map.Entry mapEntry = (Map.Entry) iterator.next();
 LOGGER.log(Level.INFO, "{0}={1}", new
 Object[]{mapEntry.getKey(), mapEntry.getValue()});
 }
 }
 }

 @Override
 public boolean isListenerForSource(Object source) {
 return ((source instanceof String) || (source instanceof Map));
 }
}

Chapter 4

[191]

Do not forget to configure the listener in faces-config.xml as follows:

<system-event-listener>
 <system-event-listener-class>
 book.beans.FlashListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PostKeepFlashValueEvent
 </system-event-class>
</system-event-listener>
<system-event-listener>
 <system-event-listener-class>
 book.beans.FlashListener
 </system-event-listener-class>
 <system-event-class>
 javax.faces.event.PreClearFlashEvent
 </system-event-class>
</system-event-listener>

A functional example is available in the code bundle of this chapter, and is
named ch4_9_4.

Generally speaking, from JSF 2.2 onwards, the
PostRestoreStateEvent system event is published using
Application.publishEvent without making UIComponents
default listeners, but still doing the traditional tree traversal. This
event was an exception for the rule in the previous JSF versions!

Configuring phase listeners
As the name suggests, a phase listener is capable to listen to the start and end of
each of the six JSF life-cycle phases (a detailed diagram of how JSF phases interact
with each other is available in Appendix, The JSF Life Cycle):

•	 Restore the View phase
•	 Apply the Request Values phase
•	 Process the Validations phase
•	 Update the Model Values phase
•	 Invoke the Application phase
•	 Render the Response phase

JSF Configurations Using XML Files and Annotations – Part 1

[192]

You can easily capture the events of each phase by following these three steps:

1.	 Implementing the PhaseListener interface.
2.	 Overriding the afterPhase, beforePhase, and getPhaseId methods.
3.	 Configuring the phase listener in faces-config.xml.

A good point to start is a simple but useful PhaseListener that can be used to
debug the phases. If you ever had the curiosity to see what is happening in JSF
request lifecycle, then you can use this phase listener, which is defined as follows:

public class DebugPhaseListener implements PhaseListener {

 public DebugPhaseListener() {
 }

 @Override
 public void afterPhase(PhaseEvent event) {
 System.out.println("After Phase: " + event.getPhaseId());
 }

 @Override
 public void beforePhase(PhaseEvent event) {
 System.out.println("Before Phase:" + event.getPhaseId());
 }

 @Override
 public PhaseId getPhaseId() {
 return PhaseId.ANY_PHASE;
 }
}

Finally, configure the custom phase listener in faces-config.xml as follows:

<lifecycle>
 <phase-listener>book.beans.DebugPhaseListener</phase-listener>
</lifecycle>

Now, you can play different scenarios with different pages and components to see
the output. A simple scenario consists in an implicit navigation case, as you can see
in application ch4_8_3, available in the code bundle of this chapter.

Chapter 4

[193]

The programmatic reflection of this configuration in JSF 2.2 is as follows:

public class Initializer extends
 ApplicationConfigurationPopulator {

 @Override
 public void populateApplicationConfiguration
 (Document toPopulate) {

 String ns = toPopulate.getDocumentElement().getNamespaceURI();

 Element lifecycleEl = toPopulate.createElementNS(ns, "lifecycle");
 Element phaselistenerEl = toPopulate.
 createElementNS(ns, "phase-listener");
 phaselistenerEl.appendChild(toPopulate.
 createTextNode("book.beans.DebugPhaseListener"));
 lifecycleEl.appendChild(phaselistenerEl);
 toPopulate.getDocumentElement().appendChild(lifecycleEl);

 serializeFacesConfig(toPopulate, "D://faces-config.xml");
 }
 ...
}

The complete application is named ch4_14_3.

The getPhaseId method is used to determine the phases that pass
through the listener. For capturing all the phase events, the method
needs to return PhaseId.ANY_PHASE.

Phase listeners can also be used to alter components. For example, you can color
the background of UIInput, based on the submitted value, by intercepting the
Render Response phase as follows:

public class PlayerPhaseListener implements PhaseListener {

 @Override
 public void afterPhase(PhaseEvent event) {
 }

 @Override
 public void beforePhase(PhaseEvent event) {

JSF Configurations Using XML Files and Annotations – Part 1

[194]

 processComponents(event.getFacesContext().getViewRoot());
 }

 @Override
 public PhaseId getPhaseId() {
 return PhaseId.RENDER_RESPONSE;
 }

 private void processComponents(UIComponent root) {
 for (UIComponent child : root.getChildren()) {
 if (child.getId().equals("playerId")) {
 HtmlInputText inputText = (HtmlInputText) child;
 String value = (String) inputText.getValue();

 if (value != null) {
 if (value.equalsIgnoreCase("rafa")) {
 inputText.setStyleClass("rafa-style");
 } else if (value.equalsIgnoreCase("roger")) {
 inputText.setStyleClass("roger-style");
 }
 }
 }
 processComponents(child);
 }
 }
}

The complete example is available in the code bundle of this chapter, and is
named ch4_8_1.

Starting with JSF 2.2, we can use dependency injection in phase
listeners (@Inject and @EJB). For example, instead of hardcoding
the CSS classes or the text against which we choose the CSS class, we
can pass them through the injection of a CDI bean or an EJB session
bean. You can see a complete example in the code bundle of this
chapter under the name ch4_8_2.

After you map the CSS class' names in a CDI bean (for example,
StyleResourcesBean) or an EJB bean (for example, StyleResourcesEJBBean),
you can use any of the following injections in the phase listener as follows:

@Inject
StyleResourcesBean styleResourcesBean;
@Inject

Chapter 4

[195]

StyleResourcesEJBBean styleResourcesEJBBean;
@EJB
StyleResourcesEJBBean styleResourcesEJBBean;

A phase listener can alter many kinds of JSF artifacts, not just UI components. For
example, the following phase listener collects all FacesMessages and modifies the
global ones. Obviously, you can choose to do anything else such as filter them by ID
or save them in a special place.

public class MsgPhaseListener implements PhaseListener {

 private static final Logger logger =
 Logger.getLogger(MsgPhaseListener.class.getName());

 @Override
 public void afterPhase(PhaseEvent event) {}

 @Override
 public void beforePhase(PhaseEvent event) {
 FacesContext facesContext = event.getFacesContext();
 Iterator<String> ids = facesContext.getClientIdsWithMessages();

 while (ids.hasNext()) {
 String id = ids.next();
 Iterator<FacesMessage> messages = facesContext.getMessages(id);
 while (messages.hasNext()) {
 FacesMessage message = messages.next();
 logger.log(Level.INFO, "User ID:{0} Message: {1}"
 , new Object[]{id, message.getSummary()});
 if(id == null){
 message.setSummary(message.getSummary() +
 "alerted by a phase listener!");
 }
 }
 }
 }

 @Override
 public PhaseId getPhaseId() {
 return PhaseId.RENDER_RESPONSE;
 }
}

The complete application is named ch4_15.

JSF Configurations Using XML Files and Annotations – Part 1

[196]

Working with @ListenerFor and
@ListenersFor
The @ListenerFor annotation is an interesting annotation available from JSF 2.0.
This annotation allows a component to subscribe to particular events with the
component itself being the listener. For this, we need to follow the ensuing steps:

1.	 Implement the ComponentSystemEventListener interface (the name indicates
that the event will always be associated with a UIComponent instance).

2.	 Override the processEvent method (here we can play with the component).
3.	 Use the @ListenerFor to indicate the event that the UI component will

subscribe for, and the source class of the UI component.

For example, the UIInput component can subscribe to the PostAddToViewEvent
event for adding attributes to the component, for example, following is a case,
where we add some CSS to each UIInput component:

@ListenerFor(systemEventClass = PostAddToViewEvent.class, sourceClass
= javax.faces.component.UIInput.class)
public class PlayerRenderer extends TextRenderer
 implements ComponentSystemEventListener {

 @Override
 public void processEvent(ComponentSystemEvent event)
 throws AbortProcessingException {

 UIInput inputSource = (UIInput) event.getComponent();
 inputSource.getAttributes().put("styleClass", "rafa-style");
 }
}

The complete application is available in the code bundle of this chapter and is
named ch4_10_1.

The @ListenersFor annotation allows a component to subscribe to more than
one event. In the previous example, we have added some CSS to each UIInput
component. Next, we want to extend this functionality by adding a separate CSS to
the invalid UIInput components. For this, the UIInput components must subscribe
to PostValidateEvent. This approach will help us to distinguish between the valid
UIInput instances and invalid UIInput instances. The code for the same is as follows:

@ListenersFor({
 @ListenerFor(systemEventClass=PostAddToViewEvent.class,
 sourceClass = javax.faces.component.UIInput.class),

Chapter 4

[197]

 @ListenerFor(systemEventClass=PostValidateEvent.class,
 sourceClass = javax.faces.component.UIInput.class)
})
public class PlayerRenderer extends TextRenderer
 implements ComponentSystemEventListener {

@Override
 public void processEvent(ComponentSystemEvent event)
 throws AbortProcessingException {

 UIInput inputSource = (UIInput) event.getComponent();
 inputSource.getAttributes().put("styleClass", "rafa-style");

 if(!inputSource.isValid()){
 inputSource.getAttributes().put("styleClass", "ui-invalid");
 }
 }
}

The complete application is available in the code bundle of this chapter and is
named ch4_10_2.

Starting with JSF 2.2, we can use dependency injection with
@ListenerFor/@ListenersFor (@Inject and @EJB).
For example, instead of hardcoding the CSS classes from the
previous examples, we can pass them through injection of a CDI
bean or an EJB session bean. You can see a complete example in
the code bundle of this chapter, under the name ch4_10_3.

Summary
Well, this was a pretty heavy chapter, but many of the important aspects in JSF were
touched upon here. You learned how to create, extend, and configure several of the
main JSF 2.x artifacts and how they have been improvised upon by JSF 2.2, especially
with the dependency injection mechanism.

There are still a lot of things that were not discussed here; however, in the next
chapter, we will continue this journey and cover other things, such as renders,
handlers, and factories.

JSF Configurations
Using XML Files and
Annotations – Part 2

In this chapter, we will continue to explore more situations where the faces-config.
xml file will help us to accomplish different configuration tasks (of course, for some of
them we have the alternative of annotations, while for others, we need to switch to the
XML configuration level). Besides the examples presented in the previous chapter, this
chapter will go deeper and cover the further list of tasks, which are as follows:

•	 Configuring resource handlers
•	 Configuring the View handler
•	 Overriding JSF renders
•	 Working with client behavior functionality
•	 Configuring the Global Exception handler
•	 Configuring render kit factory
•	 Configuring partial view context
•	 Configuring visit context
•	 Configuring external context
•	 Configuring Flash
•	 JSF 2.2 Window ID API

JSF Configurations Using XML Files and Annotations – Part 2

[200]

•	 Configuring lifecycle
•	 Configuring application
•	 Configuring VDL
•	 Combining multiple factory's powers

Configuring resource handlers
Starting with JSF 2.0, all the web resources, such as CSS, JavaScript, and images
are loaded from a folder named resources, present under the root of your web
application or from /META-INF/resources in JAR files. A folder under the
resources folder is known as a library or theme, which is like a collection of client
artifacts. We can also create a special folder matching the regex \d+(_\d+)* under
the library folder for providing versioning. In this case, the default JSF resource
handler will always retrieve the newest version to display. The various approaches
that can be followed for structuring the resources folder are as shown in the
following figure:

Chapter 5

[201]

In the preceding figure, part A depicts a common structure of the resources
folder without versioning, and in part B, you have the versioning approach. The
folders css, js, img, and others usually denote the content type of files inside them;
however, this is not mandatory.

Note that the library name shouldn't denote the
content type.

Part C, represents the complete structure of the subfolders supported under the
resources folder. In this case, we entirely exploit the automatic localization and
version management, which works if we respect the following structure under the
resources folder and is known as resourceIdentifier (the [] demarcate optional parts):

[localePrefix/][libraryName/][libraryVersion/]resourceName[/
resourceVersion]

In the case of face flows packaged within JAR files, resources
packaged in CLASSPATH must reside under the JAR entry name
META-INF/flows/resourceIdentifier.

We will also discuss the case referred to in part A, since this is the most used case.
But for the sake of completeness, you can check the complete application named
ch5_12, which represents an implementation case from part C (that includes
part B as well).

So, having the structure from the preceding figure, we can easily load a CSS file
(rafa.css) using the following code:

<h:outputStylesheet library="default" name="css/rafa.css"/>

Alternatively, you can load a JavaScript file (rafa.js) using the following code:

<h:outputScript library="default" name="js/rafa.js"/>

Alternatively, you can load an image file (rafa.png) using the following code:

<h:graphicImage library="default" name="img/rafa.png"/>

JSF Configurations Using XML Files and Annotations – Part 2

[202]

So, this is how the JSF default resource handler deals with resources. But what can
we do if we don't respect this inflexible structure of folders? For example, if we have
the CSS files under the application web root in /players/css/, or we want to place
resources in a protected folder, such as WEB-INF (probably the biggest disadvantage
of the resources folder is that everything in it is accessible from outside by default).
In this case, there is no directly accessible resources folder and we have no idea
what a library is. If we write something like the following code, it will not work:

<h:outputStylesheet name="rafa.css" />

Among the possible solutions, we have the facility to write a custom resource
handler. It is much simpler than it sounds, because JSF provides several wrappers
(implements FacesWrapper) that help us to write custom handlers and factories by
overriding only the methods that we want to affect. In case of a custom resource
handler, we need to perform the following steps:

1.	 Extend the ResourceHandlerWrapper class.
2.	 Write a delegating constructor. JSF will call this constructor for passing the

standard resource handler, which we will wrap in a ResourceHandler instance.
We can also obtain this instance by overriding the getWrapped method.

3.	 Override the createResource method. Here, we can sort the resources and
decide which of them go to the default resource handler and which of them
go to our custom resource handler.

The following implementation is based on the preceding three steps:

public class CustomResourceHandler extends
 javax.faces.application.ResourceHandlerWrapper {

 private ResourceHandler wrapped;

 public CustomResourceHandler(ResourceHandler wrapped) {
 this.wrapped = wrapped;
 }

 @Override
 public ResourceHandler getWrapped() {
 return this.wrapped;
 }

 @Override

Chapter 5

[203]

 public Resource createResource(String resourceName, String
libraryName){

 if ((!resourceName.equals("rafa.css")) &&
 (!resourceName.equals("roger.css"))) {
 //in JSF 2.0 and JSF 2.2
 //return super.createResource(resourceName, libraryName);
 //only in JSF 2.2
 return super.createResourceFromId
 (libraryName+"/"+resourceName);
 } else {
 return new PlayerResource(resourceName);
 }

 }
}

The PlayerResource class is our custom resource. The main aim of PlayerResource
is to indicate the correct path /players/css/, which is not recognized by
default. For this, we extend another wrapper named ResourceWrapper and
override the method getRequestPath, as follows, where we delegate all calls to
ResourceWrapper except one call, getRequestPath:

public class PlayerResource extends
 javax.faces.application.ResourceWrapper {

 private String resourceName;

 public PlayerResource(String resourceName) {
 this.resourceName = resourceName;
 }

 @Override
 public Resource getWrapped() {
 return this;
 }

 @Override
 public String getRequestPath() {
 return "players/css/" + this.resourceName;
 }
}

JSF Configurations Using XML Files and Annotations – Part 2

[204]

Next, you have to configure the custom resource handler in faces-config.xml
as follows:

<application>
 <resource-handler>book.beans.CustomResourceHandler</resource-handler>
</application>

Now, if you try to load the rafa.css (or roger.css) file, you can add the following
lines of code:

<h:outputStylesheet name="rafa.css"/>
<h:outputStylesheet name="roger.css"/>

The complete application is named ch5_1_1 and is available in the code bundle of
this chapter.

However, remember that I said "Among the possible solutions ..."? Well, starting
with JSF 2.2, we can indicate the folder of resources through a context parameter
in the web.xml descriptor, as follows (mapped by the ResourceHandler.WEBAPP_
RESOURCES_DIRECTORY_PARAM_NAME field):

<context-param>
 <param-name>javax.faces.WEBAPP_RESOURCES_DIRECTORY</param-name>
 <param-value>/players/css</param-value>
</context-param>

Or, we can place the resources folder under WEB-INF, which can be accessed by JSF
from inside WEB-INF but never from outside:

<context-param>
 <param-name>javax.faces.WEBAPP_RESOURCES_DIRECTORY</param-name>
 <param-value>/WEB-INF/resources</param-value>
</context-param>

A complete example named ch5_1_2 is available in the code bundle of this chapter.

A custom resource handler can be useful to pass extra parameters to the linking
file (for example CSS, JS, images, and so on). We can use this approach to reset the
browser cache. Browsers cache static resources such as CSS, JS, and images; therefore
they are not requested from the server each time the web page loads. We can force
this by adding a parameter to the linking file in the query string, representing a
version number or something that makes the browser to understand that it should
load the resource from the server, not from the cache.

Chapter 5

[205]

In this case, we assume that the rafa.css file is under the /resources/default/css/
folder and it is loaded using the following code:

<h:outputStylesheet library="default" name="css/rafa.css"/>

At this moment, the generated HTML is as follows:

<link type="text/css" rel="stylesheet"
 href="/ch5_1_3/faces/javax.faces.resource/css/rafa.css?ln=
 default" />

Also, we want to obtain something like the following code:

<link type="text/css" rel="stylesheet" href="/ch5_1_3/faces/javax.
faces.resource/css/rafa.css?ln=default&v=v4.2.1">

For this, we need to override the createResource method as follows:

@Override
public Resource createResource(String resourceName, String
libraryName) {
 Resource resource = super.createResource(resourceName, libraryName);
 return new PlayerResource(resource);
}

Also, PlayerResource is responsible to add the version parameter in the
getRequestPath method:

@Override
public String getRequestPath() {
 String requestPath = resource.getRequestPath();

 logger.log (Level.INFO, "Initial request path is: {0}", requestPath);

 String new_version = "v4.2.1";

 if(requestPath.contains("?"))
 requestPath = requestPath + "&v=" + new_version;
 else
 requestPath = requestPath + "?v=" + new_version;

 logger.log (Level.INFO, "New request path is: {0}", requestPath);

 return requestPath;
}

JSF Configurations Using XML Files and Annotations – Part 2

[206]

The complete application is available in the code bundle named ch5_1_3.

Of course, in real cases, unlike in the preceding code, the version number is not
hardcoded. Knowing that JSF 2.2 allows us to use dependency injection in custom
resource handlers, we can inject the parameter values from a bean that can play the
role of a version tracking system using the following code:

public class CustomResourceHandler extends
 javax.faces.application.ResourceHandlerWrapper {

@Inject
private VersionBean versionBean;

...
@Override
public Resource createResource(String resourceName, String
libraryName) {

 Resource resource = super.createResource(resourceName, libraryName);
 return new PlayerResource(resource, versionBean.getVersion());
}
...

The complete example is named ch5_1_4.

You can also use the versioning system of JSF for invalidate browser
cache, but you need to create the right folder under the library folder.
- JSF will automatically load the last version. Passing parameters as
we have seen earlier can be useful for many other things, such as
generating customized JS and CSS response. Servers can access such
parameters and JS as well.

Browser caching can also be controlled with two context parameters in the web.xml
descriptor (specific to Mojarra) as follows:

•	 com.sun.faces.defaultResourceMaxAge: This parameter can be used to set
the expiry time in milliseconds.

•	 com.sun.faces.resourceUpdateCheckPeriod: This parameter gives
frequency in minutes to check for changes in web application artifacts
that contain resources.

Chapter 5

[207]

JSF resource handling provides solid advantages such as caching and loading
resources within a JAR or writing custom UI components that contain CSS or JS,
but it also has some disadvantages. For example, web designers use the static
approach to add images in CSS, as follows:

background-image: url(link_to_image)

However, when importing CSS style sheets using <h:outputStyleSheet>, the
style sheet is imported and processed by FacesServlet through the /javax.faces.
resource/* folder, which makes the picture relative path unavailable (in this case,
the CSS file becomes a JSF resource). One of the solutions is to force the image URL
to become a JSF resource, using the resource mapper in EL, #{resource}, as #{re
source['library:location']}. For example, in rafa.css (loaded in the page via
<h:outputStylesheet>), we can load the rafa.png image using the following code:

body {
 background-image: url('#{resource["default:img/rafa.png"]}')
}

Based on this, <h:graphicImage> can load rafa.png as follows:

<h:graphicImage value="#{resource['default:img/rafa.png']}"/>

You can check these examples in the application named ch5_13.

As an alternative, you can use OmniFaces library's UnmappedResourceHandler,
which spares us from modifying the CSS files (http://showcase.omnifaces.org/
resourcehandlers/UnmappedResourceHandler). Moreover, another approach
consists in writing a custom ResourceHandler that can fix this issue.

From JSF 2.2 onwards, ResourceResolver has been merged
into ResourceHandler, and ResourceResolver itself has been
deprecated. These two are detailed in Chapter 12, Facelets Templating.

Adding CSS and JS resources
programmatically
Sometimes, you may need to load the CSS and JS resources by specifying them in
a managed bean method. For example, the following method loads rafa.css and
rafa.js in a programmatic fashion:

public void addResourcesAction() {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 UIOutput rafa_css = new UIOutput();

http://showcase.omnifaces.org/resourcehandlers/UnmappedResourceHandler
http://showcase.omnifaces.org/resourcehandlers/UnmappedResourceHandler

JSF Configurations Using XML Files and Annotations – Part 2

[208]

 UIOutput rafa_js = new UIOutput();

 rafa_css.setRendererType("javax.faces.resource.Stylesheet");
 rafa_css.getAttributes().put("library", "default");
 rafa_css.getAttributes().put("name", "css/rafa.css");
 rafa_js.setRendererType("javax.faces.resource.Script");
 rafa_js.getAttributes().put("library", "default");
 rafa_js.getAttributes().put("name", "js/rafa.js");
 facesContext.getViewRoot().addComponentResource
 (facesContext, rafa_css, "head");
 facesContext.getViewRoot().addComponentResource
 (facesContext, rafa_js, "head");
}

The complete application is named ch5_14.

Configuring the view handler
JSF provides a view handler that can be used for working with views. It can be a very
handy tool when you want to interact with a view or create/restore/extend/modify
a view. It is also good practice to deal with URLs here, which is exactly what you will
see next.

A view handler is not a good choice when you need to work with
components! Even if this is possible, view handlers were not created
for such tasks.

Sometimes you may need to convert absolute URLs into relative URLs. For example,
if you run an application behind a reverse proxy, you may need to provide relative
URLs. By default, the browser appends each absolute URL to the host, which is
obviously a big issue.

In order to convert absolute URLs into relative URLs, we need to perform the
following steps:

•	 Create a new view handler by extending the ViewHandlerWrapper class.
Extending this wrapper allows us to override only the required methods.

•	 Override the getActionURL and getResourceURL methods.
•	 Configure the view handler in faces-config.xml.

Chapter 5

[209]

Although it may sound pompous, the following code is self-explanatory:

public class URLHandler extends ViewHandlerWrapper {

 private ViewHandler baseViewHandler;

 public URLHandler(ViewHandler baseViewHandler) {
 this.baseViewHandler = baseViewHandler;
 }

 @Override
 public String getActionURL(FacesContext context, String viewId) {
 return convertToRelativeURL(context,
 baseViewHandler.getActionURL(context, viewId));
 }

 @Override
 public String getResourceURL(FacesContext context, String path) {
 return convertToRelativeURL(context,
 baseViewHandler.getResourceURL(context, path));
 }

 @Override
 public ViewHandler getWrapped() {
 return baseViewHandler;
 }

 private String convertToRelativeURL(FacesContext context,
 String theURL){

 final HttpServletRequest request = ((HttpServletRequest)
 context.getExternalContext().getRequest());
 final URI uri;
 String prefix = "";

 String string_uri = request.getRequestURI();

 try {
 uri = new URI(string_uri);
 } catch (URISyntaxException ex) {
 Logger.getLogger(URLHandler.class.getName()).
 log(Level.SEVERE, null, ex);

JSF Configurations Using XML Files and Annotations – Part 2

[210]

 return "";
 }

 String path = uri.getPath();
 String new_path = path.replace("//", "/");

 if (theURL.startsWith("/")) {
 int count = new_path.length() - new_path.replace("/", "").
length();
 for (int i = 0; i < (count - 1); i++) {
 prefix = prefix + "/..";
 }
 if (prefix.length() > 0) {
 prefix = prefix.substring(1);
 }
 }

 return (prefix + theURL);
 }
}

The required configuration in faces-config.xml is as follows:

...
<application>
 <view-handler>book.beans.URLHandler</view-handler>
</application>
...

The complete application is available in the code bundle named ch5_2_1.

If you check the source code of the index.xhtml page, you will notice that instead of
an absolute URL for the CSS resource, there is a relative one, of the following type:

<link type="text/css" rel="stylesheet" href="../ch5_2_1/faces/javax.
faces.resource/css/rafa.css?ln=default">

Done! Now you can run the application behind a reverse proxy.

Another useful view handler is the one that "swallows" the ViewExpiredException
exception. This exception is thrown when a user session expires. Through a view
handler, we can treat this exception by recreating the user view. Redirect the flow
to a special page (let's name it expired.xhtml).

Chapter 5

[211]

When the user session expires, UIViewRoot of the application is set to null.
We can use this check in the restoreView method, as follows:

public class ExceptionHandler extends ViewHandlerWrapper {

 private static final Logger logger =
 Logger.getLogger(ExceptionHandler.class.getName());
 private ViewHandler baseViewHandler;

 public ExceptionHandler(ViewHandler baseViewHandler) {
 this.baseViewHandler = baseViewHandler;
 }

 @Override
 public UIViewRoot restoreView(FacesContext context, String viewId) {

 UIViewRoot root;

 root = baseViewHandler.restoreView(context, viewId);
 if (root == null) {
 logger.info("The session has expired ...
 I will not allow ViewExpiredException ...");
 root = createView(context, viewId);

 //root = createView(context, "/expired.xhtml");
 //context.renderResponse();
 }
 return root;
 }

 @Override
 public ViewHandler getWrapped() {
 return baseViewHandler;
 }
}

The configuration in faces-config.xml is as follows:

...
<application>
 <view-handler>book.beans.ExceptionHandler</view-handler>
</application>
...

JSF Configurations Using XML Files and Annotations – Part 2

[212]

The complete application is available in the code bundle and is named ch5_2_2.

Starting with JSF 2.2, we can use dependency injection with
the view handler (@Inject and @EJB).

Overriding JSF renders
The main responsibilities of a Renderer consists of generating the appropriate
client-side markup, such as HTML, WML, and XUL, and converting information
coming from the client to the proper type for the component.

JSF provides a set of built-in renders and has the capability to extend them with
custom behavior. If you consider a proper workaround to override a built-in render,
then perform the following steps:

1.	 Extend the desired built-in renderer (for example, Renderer, TextRenderer,
LabelRenderer, MessagesRenderer, and so on).

2.	 Override the built-in renderer methods.
3.	 Configure the new renderer in faces-config.xml or using the

@FacesRenderer annotation.

Well, let's see some examples of writing a custom render. For example, let's
suppose that we have three attributes (player-nickname, player-mother-name,
and player-father-name) that we want to use inside the <h:inputText> tag.
If you try to write the following code:

<h:inputText value="Rafael Nadal" player-nickname="Rafa"
 player-mother-name="Ana Maria Parera" player-father-name=
 "Sebastián Nadal" player-coach-name=" Toni Nadal"/>

Then, the built-in renderer will give the following output:

<input id="..." name="..."
 value="Rafael Nadal" type="text">

Obviously, our three attributes were ignored. We can fix this by extending
TextRenderer as follows:

public class PlayerInputTextRenderer extends TextRenderer {

public PlayerInputTextRenderer(){}

@Override
 protected void getEndTextToRender(FacesContext context,

Chapter 5

[213]

 UIComponent component, String currentValue)
 throws java.io.IOException {

 String[] attributes = {"player-nickname",
 "player-mother-name", "player-father-name"};
 ResponseWriter writer = context.getResponseWriter();
 for (String attribute : attributes) {
 String value = (String) component.getAttributes().
get(attribute);
 if (value != null) {
 writer.writeAttribute(attribute, value, attribute);
 }
 }
 super.getEndTextToRender(context, component, currentValue);
 }
}

Done! Configure the new renderer in faces-config.xml as follows:

<application>
 <render-kit>
 <renderer>
 <component-family>javax.faces.Input</component-family>
 <renderer-type>javax.faces.Text</renderer-type>
 <renderer-class>book.beans.PlayerInputTextRenderer</renderer-class>
 </renderer>
 </render-kit>
</application>

Now, the renderer input field will be as follows:

<input id="..." name="..." player-nickname="Rafa" player-mother-
name="Ana Maria Parera" player-father-name="Sebastián Nadal"
value="Rafael Nadal" type="text">

Instead of configuring the custom renderer in faces-config.xml,
we could use the @FacesRenderer annotation, as follows:

@FacesRenderer(componentFamily="javax.faces.
Input",rendererType="javax.faces.Text")

But, unfortunately this isn't working. There seems to be a bug here!

The complete example is named ch5_4_1.

JSF Configurations Using XML Files and Annotations – Part 2

[214]

Let's look at another example in order to fortify the knowledge about writing custom
renderers. The next example will modify the built-in LabelRenderer class by adding
an image in front of each <h:outputText> tag, as shown in the following code:

public class RafaLabelRenderer extends LabelRenderer{

 public RafaLabelRenderer(){}

 @Override
 public void encodeEnd(FacesContext context,
 UIComponent component)throws IOException{

 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.write("");
}
}

Don't forget to configure the renderer in faces-config.xml as follows:

 <component-family>javax.faces.Output</component-family>
 <renderer-type>javax.faces.Text</renderer-type>
 <renderer-class>book.beans.RafaLabelRenderer</renderer-class>

Starting with JSF 2.2, we can use dependency injection in renderers
(@Inject and @EJB). The complete example of the preceding
renderer is named ch5_4_2 (the image name was provided by
another bean through injection dependency).

The upcoming example in this section is a little bit tricky.

If you have used PrimeFaces, especially the <p:messages> tag, then you know that
this tag accepts an attribute named escape. The attribute's value can be true or
false, and it defines whether HTML would be escaped or not (defaults to true).

Unfortunately, JSF 2.2 still doesn't provide such attributes for the <h:messages>
tag, but there is at least a workaround to solve this. You can implement a custom
renderer that is capable of understanding the escape attribute.

JSF provides a class named ResponseWriter, which is useful in this case because
it provides methods capable of producing elements and attributes for markup
languages such as HTML and XML. Moreover, JSF provides a wrapper for this class
named ResponseWriterWrapper. We can easily extend this class, and override the
method writeText, which is useful for writing escaped strings obtained from objects
by conversions. Un-escaped strings are written by the write method.

Chapter 5

[215]

So, based on this information, we can easily write our response writer, as follows:

public class EscapeResponseWriter extends ResponseWriterWrapper {

 private ResponseWriter responseWriter;

 public EscapeResponseWriter(ResponseWriter responseWriter) {
 this.responseWriter = responseWriter;
 }

 @Override
 public ResponseWriter getWrapped() {
 return responseWriter;
 }

 @Override
 public void writeText(Object text, UIComponent component,
 String property) throws IOException {

 String escape = (String) component.getAttributes().get("escape");
 if (escape != null) {
 if ("false".equals(escape)) {
 super.write(String.valueOf(text));
 } else {
 super.writeText(String.valueOf(text), component, property);
 }
 }
 }
}

So far, so good! Now we need to write the custom renderer, as shown in the
following code, by extending the MessagesRenderer class, which is the default
renderer for JSF messages. The only method we need to affect is the encodeEnd
method, by placing our response writer instead of the default one. In the end,
we restore it to default.

public class EscapeMessagesRenderer extends MessagesRenderer {

 public EscapeMessagesRenderer(){}

 @Override
 public void encodeEnd(FacesContext context,
 UIComponent component) throws IOException {

 ResponseWriter responseWriter = context.getResponseWriter();

JSF Configurations Using XML Files and Annotations – Part 2

[216]

 context.setResponseWriter(new EscapeResponseWriter(responseWriter));
 super.encodeEnd(context, component);
 context.setResponseWriter(responseWriter);
 }
}

Finally, configure the new renderer in faces-config.xml as follows:

<renderer>
 <component-family>javax.faces.Messages</component-family>
 <renderer-type>javax.faces.Messages</renderer-type>
 <renderer-class>book.beans.EscapeMessagesRenderer</renderer-class>
</renderer>

Now, you can add HTML content in your messages by setting the escape attribute
as follows:

<h:messages escape="false" />

The complete example is named ch5_4_3.

In the preceding examples, we saw a few use cases of extending an existing renderer.
The last example of this section will go a little bit further, and will represent a
use case for writing a custom RenderKit and a custom renderer by extending the
abstract class Renderer.

While the Renderer class converts the internal representation of UI components into
the output stream, RenderKit represents a collection of Renderer instances capable
to render JSF UI component's instances for a specific client (for example, a specific
device). Each time JSF needs to render a UI component, it will call the RenderKit.
getRenderer method which is capable of returning an instance of the corresponding
renderer based on two arguments that uniquely identifies it: the component family
and the renderer type.

Let's suppose that we want to alter the default behavior of the renderer used for
all UI components grouped under the javax.faces.Input family, by adding a
custom style using some CSS. This can be easily accomplished by writing a custom
RenderKit and overriding the getRenderer method. Starting with JSF 2.2, we can do
this pretty fast, because we can extend the new wrapper class that represents a simple
implementation of the abstract class, RenderKit. This is named RenderKitWrapper
and allows us to override only the desired methods.

Chapter 5

[217]

For example, we override the getRenderer method as follows:

public class CustomRenderKit extends RenderKitWrapper {

 private RenderKit renderKit;

 public CustomRenderKit() {}

 public CustomRenderKit(RenderKit renderKit) {
 this.renderKit = renderKit;
 }

 @Override
 public Renderer getRenderer(String family, String rendererType) {
 if (family.equals("javax.faces.Input")) {
 Renderer inputRenderer = getWrapped().
 getRenderer(family, rendererType);
 return new RafaRenderer(inputRenderer);
 }
 return getWrapped().getRenderer(family, rendererType);
 }

 @Override
 public RenderKit getWrapped() {
 return renderKit;
 }
}

So, when JSF needs to render a UI component that belongs to javax.faces.Input
family, we take the original renderer used for this task and wrap it into a custom
renderer named RafaRenderer. This custom renderer will extend the JSF 2.2
RendererWrapper (a simple implementation of Renderer) and will override
the encodeBegin method, as follows:

@ResourceDependencies({
@ResourceDependency(name = "css/rafastyles.css",
 library = "default", target = "head")
})
@FacesRenderer(componentFamily = "javax.faces.Rafa",
 rendererType = RafaRenderer.RENDERER_TYPE)
public class RafaRenderer extends RendererWrapper {

 private Renderer renderer;
 public static final String RENDERER_TYPE =

JSF Configurations Using XML Files and Annotations – Part 2

[218]

 "book.beans.RafaRenderer";

 public RafaRenderer() {}

 public RafaRenderer(Renderer renderer) {
 this.renderer = renderer;
 }

 @Override
 public void encodeBegin(FacesContext context,
 UIComponent uicomponent) throws IOException {
 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.writeAttribute("class", "rafastyle", "class");
 getWrapped().encodeBegin(context, uicomponent);
 }

 @Override
 public Renderer getWrapped() {
 return renderer;
 }
}

It is good to know that we can specify external resources (such as
CSS and JS) for a JSF renderer using the @ResourceDependency
and @ResourceDependecies annotations.

Finally, you need to configure the custom RenderKit in faces-config.xml,
as follows:

<render-kit>
 <render-kit-class>
 book.beans.CustomRenderKit
 </render-kit-class>
</render-kit>

The complete application is named ch5_15.

Working with client behavior functionality
JSF 2 comes with the ability to define specific client-side behavior to a component in
a reusable approach. The client-side behavior is actually a piece of JavaScript code
that can be executed in a browser.

Chapter 5

[219]

For example, when the user has access to buttons that perform irreversible changes;
for example, deletion, copy, and move is a good practice to inform the user about
consequences and ask for a confirmation before the action is performed.

For implementing a client behavior functionality, we perform the following steps:

1.	 Extend the ClientBehaviorBase class.
2.	 Override the getScript method.
3.	 Annotate the created class with the @FacesBehavior (value="developer_id")

annotation where developer_id is used to refer to our custom client behavior.
This is needed when we define a tag for the behavior.

4.	 Define a custom tag for the behavior—a tag is needed for specifying in the
JSF pages, which components receive our client behavior (the JS code).

5.	 Register the custom tag in the descriptor of the web.xml file.

The following code shows you how to write a client behavior for displaying a
JavaScript confirmation dialog when the user clicks on a button that emulates a
deletion action, which covers the first three steps mentioned earlier:

@FacesBehavior(value = "confirm")
public class ConfirmDeleteBehavior extends ClientBehaviorBase {

@Override
 public String getScript(ClientBehaviorContext behaviorContext) {
 return "return confirm('Are you sure ?');";
 }
}

The fourth step consists of writing a custom tag for the behavior. Create a file named
delete.taglib.xml under the WEB-INF folder as follows:

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-
 facelettaglibrary_2_2.xsd">
 <namespace>http://www.custom.tags/jsf/delete</namespace>
 <tag>
 <tag-name>confirmDelete</tag-name>
 <behavior>
 <behavior-id>confirm</behavior-id>
 </behavior>
 </tag>
</facelet-taglib>

JSF Configurations Using XML Files and Annotations – Part 2

[220]

The <behavior-id> tag value must match the value member
of the FacesBehavior annotation (developer_id). The tag name
can be freely chosen.

The final step consists of registering the tag in web.xml:

<context-param>
 <param-name> javax.faces.FACELETS_LIBRARIES</param-name>
 <param-value>/WEB-INF/delete.taglib.xml</param-value>
</context-param>

We can attach a client behavior to every component that
implements the ClientBehaviourHolder interface. Fortunately,
almost all components implement this interface, such as buttons,
links, input fields, and so on.

Done! Now, we can pick up the fruits in a JSF page as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:b="http://www.custom.tags/jsf/delete">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:form>
 <h:commandButton value="Delete" action="done">
 <b:confirmDelete/>
 </h:commandButton>
 </h:form>
 </h:body>
</html>

If the user doesn't confirm deletion, the action is aborted.

Starting with JSF 2.2, we can use dependency injection with client
behavior (@Inject and @EJB). For example, instead of hardcoding
the confirmation question, "Are you sure?", we can pass it through
injection of a CDI bean or an EJB session bean. A complete example
can be found in the code bundle of this chapter. It is named ch5_5_1.

Chapter 5

[221]

Notice that the example works fine even if we do not specify any event that starts
the client behavior JS code. This is happening because the JS code is attached to the
onclick event of the button, which is the default event for <h:commandButton>.
Now, we will write another example that will attach the client behavior to two other
events simultaneously.

We can attach the client behavior code to some other event by
specifying the event name with the event attribute of the tag.

In the next example, we assume the following scenario: an input field that is colored
in green when it gains focus (onfocus JS event) and turns back to blank when it loses
focus (onblur JS event). Now, we have to subscribe to two events.

In the previous example, we explicitly link the client behavior functionality
to the <confirmDelete> tag. Even if this is still possible for this scenario,
we choose to come with another approach. Instead of a direct link, we will
use a tag handler (TagHandler).

A custom tag handler allows us to manipulate the created DOM
tree (add/remove nodes from the tree).

When we write a custom tag handler, we need to focus on the apply method,
especially on the second argument of this method that is named parent and
represents the parent of the tag, which in our case will be <h:inputText>.
We can add both the events to <h:inputText>, as follows:

public class FocusBlurHandler extends TagHandler {

 private FocusBlurBehavior onfocus = new FocusBlurBehavior();
 private FocusBlurBehavior onblur = new FocusBlurBehavior();

 public FocusBlurHandler(TagConfig tagConfig) {
 super(tagConfig);
 }

 @Override
 public void apply(FaceletContext ctx, UIComponent parent)
 throws IOException {

 if (parent instanceof ClientBehaviorHolder) {
 ClientBehaviorHolder clientBehaviorHolder =

JSF Configurations Using XML Files and Annotations – Part 2

[222]

 (ClientBehaviorHolder) parent;

 clientBehaviorHolder.addClientBehavior("focus", onfocus);
 clientBehaviorHolder.addClientBehavior("blur", onblur);
 }
 }
}

Remember that in the preceding section, we saw how to override a few JSF
renderers. Well, here is one more! Instead of overriding the getScript method
of the ClientBehaviorBase, as in the previous example, we will write a custom
renderer, which is easy to achieve because JSF provides a dedicated renderer for
client behavior, named ClientBehaviorRenderer. This renderer contains its own
getScript method as shown in the following code:

@FacesBehaviorRenderer(rendererType = "focusblurrenderer")
@ResourceDependency(name="player.css", target="head")
public class FocusBlurRenderer extends ClientBehaviorRenderer {

 private static final String FOCUS_EVENT = "focus";
 private static final String BLUR_EVENT = "blur";

 @Override
 public String getScript(ClientBehaviorContext behaviorContext,
 ClientBehavior behavior) {

 if (FOCUS_EVENT.equals(behaviorContext.getEventName())) {
 return "this.setAttribute('class','focus-css');";
 }

 if (BLUR_EVENT.equals(behaviorContext.getEventName())) {
 return "this.setAttribute('class','blur-css');";
 }

 return null;
 }
}

The @ResourceDependency annotation can be used for loading
resources such as CSS and JS in custom UIComponent and Renderer
components. In several versions of JSF, @ResourceDependency is not
working as expected for Renderers (seems to be a bug). In case you
have such issues, you have to hardcode the CSS for testing.

Chapter 5

[223]

Finally, the client behavior will point out the above renderer as follows:

@FacesBehavior(value = "focusblur")
public class FocusBlurBehavior extends ClientBehaviorBase {

 @Override
 public String getRendererType() {
 return "focusblurrenderer";
 }
}

The complete example containing the CSS source, the tag definition, and specific
configurations is available in the code bundle and is named ch5_5_2.

JSF factories
The following note is a good point to start for the last part of this chapter, which
is dedicated to JSF factories. In JSF, the factories are initialized by FactoryFinder,
which recognizes if a custom factory has a delegating constructor—a one argument
constructor for the type of the factory.

This is useful when we want to wrap standard factory from JSF, because
FactoryFinder will pass in the previously known factory, usually the
built-in one. Factory instances are obtained as follows:

XXXFactory factory = (XXXFactory) FactoryFinder.
getFactory(FactoryFinder.XXX_FACTORY);

For example, RenderKitFactory can be found using the following
code:

RenderKitFactory factory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.
 RENDER_KIT_FACTORY);

Next to FaceletFactory, another new factory obtainable via
FactoryFinder in JSF 2.2 is the new FlashFactory. We will discuss
about FaceletFactory in the last chapter of this book, Chapter 12,
Facelets Templating.

JSF Configurations Using XML Files and Annotations – Part 2

[224]

Configuring the global exception handler
During the JSF lifecycle, we need to treat different kinds of exceptions in different
points of the application. Starting with JSF 2, we have a generic API that allows us to
write a global exception handler. This can be very handy, especially when we need
to avoid "silent" exceptions that are not caught by the application.

In order to write a global exception handler, we need to do the following:

•	 Extend ExceptionHandlerFactory, which is a factory object that is capable
of creating and returning a new ExceptionHandler instance—the central
point for handling unexpected Exceptions that are thrown during the
JSF lifecycle.

•	 Extend ExceptionHandlerWrapper, which is a simple implementation of
ExceptionHandler.

•	 Configure the custom exception handler in faces-config.xml.

Therefore, we can write a custom exception handler factory as follows:

public class CustomExceptionHandlerFactory
 extends ExceptionHandlerFactory {

 private ExceptionHandlerFactory exceptionHandlerFactory;

 public CustomExceptionHandlerFactory(){}

 public CustomExceptionHandlerFactory(ExceptionHandlerFactory
 exceptionHandlerFactory) {
 this.exceptionHandlerFactory = exceptionHandlerFactory;
 }

 @Override
 public ExceptionHandler getExceptionHandler() {
 ExceptionHandler handler = new CustomExceptionHandler
 (exceptionHandlerFactory.getExceptionHandler());

 return handler;
 }
}

Chapter 5

[225]

Our implementation for dealing with the exception is to send each error to a
log and navigate to an error page, as shown in the following code (notice that
ViewExpiredException can be caught here as well):

public class CustomExceptionHandler extends ExceptionHandlerWrapper {

 private static final Logger logger =
 Logger.getLogger(CustomExceptionHandler.class.getName());
 private ExceptionHandler exceptionHandler;

 CustomExceptionHandler(ExceptionHandler exceptionHandler) {
 this.exceptionHandler = exceptionHandler;
 }

 @Override
 public ExceptionHandler getWrapped() {
 return exceptionHandler;
 }

 @Override
 public void handle() throws FacesException {

 final Iterator<ExceptionQueuedEvent> queue =
 getUnhandledExceptionQueuedEvents().iterator();

 while (queue.hasNext()) {

 //take exceptions one by one
 ExceptionQueuedEvent item = queue.next();
 ExceptionQueuedEventContext exceptionQueuedEventContext =
 (ExceptionQueuedEventContext) item.getSource();

 try {
 //log error
 Throwable throwable = exceptionQueuedEventContext.
getException();
 logger.log(Level.SEVERE, "EXCEPTION: ", throwable.
getMessage());

 //redirect error page
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Map<String, Object> requestMap =
 facesContext.getExternalContext().getRequestMap();
 NavigationHandler nav =

JSF Configurations Using XML Files and Annotations – Part 2

[226]

 facesContext.getApplication().
getNavigationHandler();

 requestMap.put("errmsg", throwable.getMessage());
 nav.handleNavigation(facesContext, null, "/error");
 facesContext.renderResponse();
 } finally {
 //remove it from queue
 queue.remove();
 }
 }

 getWrapped().handle();
 }
}

Finally, we need to configure the exception handler in faces-config.xml as follows:

<factory>
 <exception-handler-factory>
 book.beans.CustomExceptionHandlerFactory
 </exception-handler-factory>
</factory>

The complete example is named ch5_3.

Starting with JSF 2.2, we can use dependency injection with
exception handler (@Inject and @EJB).

Notice that a special case exists in treating AJAX exceptions. By default, most
of them are invisible to the client. AJAX errors are returned to the client, but
unfortunately JSF AJAX clients aren't prepared to deal with arbitrary error
messages, so they simply ignore them. But a custom exception handler is specially
created for this task by OmniFaces (it works for AJAX and non-AJAX exceptions).
The handler is named FullAjaxExceptionHandler, and the factory is named
FullAjaxExceptionHandlerFactory.

Once you install OmniFaces, you can exploit the AJAX exception handler with a
simple configuration in faces-config.xml:

<factory>
 <exception-handler-factory>
 org.omnifaces.exceptionhandler.FullAjaxExceptionHandlerFactory
 </exception-handler-factory>
</factory>

Chapter 5

[227]

The behavior of the OmniFaces exception handler is configured in web.xml:

<error-page>
 <exception-type>
 java.lang.NullPointerException
 </exception-type>
 <location>/null.jsf</location>
</error-page>
<error-page>
 <exception-type>
 java.lang.Throwable
 </exception-type>
 <location>/ throwable.jsf</location>
</error-page>

Error pages for OmniFaces exception handler should be JSF
2.0 (or more) pages. A comprehensive demo can be found in
OmniFaces showcase at http://showcase.omnifaces.org/
exceptionhandlers/FullAjaxExceptionHandler.

Configuring RenderKit factory
Earlier in this chapter, we have written a custom RenderKit, which was loaded
by JSF because we have configured it in faces-config.xml using the <render-
kit> tag. But, behind the scene, JSF uses RenderKitFactory, which is capable of
registering and returning RenderKit instances. Therefore, we can write custom
RenderKitFactory for returning our custom RenderKit. For writing such a factory,
you need to do the following:

1.	 Extend the RenderKitFactory class that is responsible for registering and
returning RenderKit instances.

2.	 Override the addRenderKit method that registers the specified RenderKit
instance using the specified ID.

3.	 Override the getRenderKit method that returns RenderKit with the
specified ID.

4.	 Override the getRenderKitIds method and return an Iterator over the set
of render kit identifiers registered with this factory.

http://showcase.omnifaces.org/exceptionhandlers/FullAjaxExceptionHandler
http://showcase.omnifaces.org/exceptionhandlers/FullAjaxExceptionHandler

JSF Configurations Using XML Files and Annotations – Part 2

[228]

Based on these steps, we can register our custom RenderKit as follows:

public class CustomRenderKitFactory extends RenderKitFactory {

 private RenderKitFactory renderKitFactory;

 public CustomRenderKitFactory() {}

 public CustomRenderKitFactory(RenderKitFactory renderKitFactory){
 this.renderKitFactory = renderKitFactory;
 }

 @Override
 public void addRenderKit(String renderKitId,
 RenderKit renderKit){
 renderKitFactory.addRenderKit(renderKitId, renderKit);
 }

 @Override
 public RenderKit getRenderKit(FacesContext context,
 String renderKitId) {
 RenderKit renderKit = renderKitFactory.
 getRenderKit(context, renderKitId);
 return (HTML_BASIC_RENDER_KIT.equals(renderKitId)) ?
 new CustomRenderKit(renderKit) : renderKit;
 }

 @Override
 public Iterator<String> getRenderKitIds() {
 return renderKitFactory.getRenderKitIds();
 }
}

Now, instead of configuring the custom RenderKit using the <render-kit> tag,
we can configure the custom RenderKitFactory, as follows:

<factory>
 <render-kit-factory>
 book.beans.CustomRenderKitFactory
 </render-kit-factory>
</factory>

The complete application is named ch5_16.

Chapter 5

[229]

Configuring PartialViewContext
The PartialViewContext class is responsible for processing partial requests and
rendering partial responses on a view. In other words, JSF processes execution,
rendering, and so on, of AJAX requests and responses using PartialViewContext.
We refer to it as follows:

FacesContext.getCurrentInstance().getPartialViewContext();

Writing a custom PartialViewContext implementation implies the following steps:

1.	 Extending PartialViewContextFactory, will result in a factory object
capable of creating and returning a new PartialViewContext instance,
the central point for handling partial request-responses.

2.	 Extending PartialViewContextWrapper, which is a simple implementation
of PartialViewContext.

3.	 Configuring the custom PartialViewContext implementation in
faces-config.xml.

Now, let's suppose that we have multiple forms that are submitted through
AJAX. Each <f:ajax> tag will contain the execute attribute and the one that we
are especially interested in, the render attribute. This attribute should contain client
IDs for the components to re-render. When multiple partial requests re-render the
same component, the ID of that component is present in each partial request (in each
render attribute).

A common case is the global <h:messages> tag. The ID of this tag should be added
to each partial request that needs to re-render it. Instead of re-typing the client IDs in
the render attribute, we can write a custom PartialViewContext implementation
to do that. First, we create the factory instance as follows:

public class CustomPartialViewContextFactory
 extends PartialViewContextFactory {

 private PartialViewContextFactory partialViewContextFactory;

 public CustomPartialViewContextFactory(){}

 public CustomPartialViewContextFactory
 (PartialViewContextFactory partialViewContextFactory) {
 this.partialViewContextFactory = partialViewContextFactory;
 }

 @Override

JSF Configurations Using XML Files and Annotations – Part 2

[230]

 public PartialViewContext getPartialViewContext(FacesContext context)
{

 PartialViewContext handler = new CustomPartialViewContext
 (partialViewContextFactory.getPartialViewContext(context));

 return handler;
 }
}

Next, we write our custom PartialViewContext and override the getRenderIds
method. Basically, we locate the ID of the <h:messages> tag, check if this ID is
already in the render IDs list, and add it to the list if it has not yet been added,
as follows:

public class CustomPartialViewContext extends
PartialViewContextWrapper {

 private PartialViewContext partialViewContext;

 public CustomPartialViewContext(PartialViewContext
partialViewContext) {
 this.partialViewContext = partialViewContext;
 }

 @Override
 public PartialViewContext getWrapped() {
 return partialViewContext;
 }

 @Override
 public Collection<String> getRenderIds() {

 FacesContext facesContext = FacesContext.getCurrentInstance();
 if (PhaseId.RENDER_RESPONSE == facesContext.getCurrentPhaseId()) {
 UIComponent component = findComponent("msgsId",
 facesContext.getViewRoot());
 if (component != null && component.isRendered()) {
 String componentClientId = component.
getClientId(facesContext);
 Collection<String> renderIds = getWrapped().getRenderIds();
 if (!renderIds.contains(componentClientId)) {
 renderIds.add(componentClientId);
 }
 }

Chapter 5

[231]

 }
 return getWrapped().getRenderIds();
 }

 private UIComponent findComponent(String id, UIComponent root) {
 if (root == null) {
 return null;
 } else if (root.getId().equals(id)) {
 return root;
 } else {
 List<UIComponent> childrenList = root.getChildren();
 if (childrenList == null || childrenList.isEmpty()) {
 return null;
 }
 for (UIComponent child : childrenList) {
 UIComponent result = findComponent(id, child);
 if (result != null) {
 return result;
 }
 }
 }
 return null;
 }
}

Finally, we need to configure PartialViewContext in faces-config.xml
as follows:

<factory>
 <partial-view-context-factory>
 book.beans.CustomPartialViewContextFactory
 </partial-view-context-factory>
</factory>

The complete example is named ch5_6_1.

Starting with JSF 2.2, we can use dependency injection with
partial view context (@Inject and @EJB). A complete
example can be found in the code bundle of this chapter,
under the name ch5_6_2.

JSF Configurations Using XML Files and Annotations – Part 2

[232]

Configuring visitContext
According to the documentation, VisitContext is an object used to hold the state
relating to performing a component tree visit.

Why do we need such an object? Well, imagine that you want to programmatically
find a certain component. You will probably think of findComponent or
invokeOnComponent built-in methods. When you need to find several components,
you can apply the process recursively (as you saw in a few examples earlier). The
recursive process performs a clean traversal of the component's tree (or subtree) by
visiting each node in a hierarchical approach.

However, JSF 2 also provides an out-of-the-box method to accomplish a component's
tree traversal named UIComponent.visitTree, declared as follows:

public boolean visitTree(VisitContext context,
 VisitCallback callback)

The first argument is an instance of VisitContext, and the second one is an instance
of the VisitCallback interface that provides a method, named visit, which is
called for each node that is visited. If the tree was successfully traversed, then
visitTree returns true.

Based on this knowledge, we can write a custom VisitContext implementation
for resetting the editable components of a form. Such a component implements the
EditableValueHolder interface and provides a method resetValue.

The steps for writing a custom VisitContext implementation are as follows:

1.	 Extending VisitContextFactory, which is a factory object capable of
creating and returning a new VisitContext instance.

2.	 Extending VisitContextWrapper, which is a simple implementation
of VisitContext.

3.	 Configuring the custom VisitContext implementation in faces-config.xml.

So, first we need to extend the built-in factory as follows:

public class CustomVisitContextFactory extends VisitContextFactory {

 private VisitContextFactory visitContextFactory;

 public CustomVisitContextFactory() {}

 public CustomVisitContextFactory(VisitContextFactory
 visitContextFactory){
 this.visitContextFactory = visitContextFactory;

Chapter 5

[233]

 }

 @Override
 public VisitContext getVisitContext(FacesContext context,
 Collection<String> ids, Set<VisitHint> hints)
 {
 VisitContext handler = new CustomVisitContext(visitContextFactory.
 getVisitContext(context, ids, hints));

 return handler;
 }
}

Note that we can also specify a collection of client IDs to be visited. We
can also specify some visit hints. When all components should be visited
with the default visit hints, these arguments can be null.

The custom visit context is represented programmatically as follows—the method
invokeVisitCallback is called by visitTree to visit a single component:

public class CustomVisitContext extends VisitContextWrapper {

 private static final Logger logger =
 Logger.getLogger(CustomVisitContext.class.getName());
 private VisitContext visitContext;

 public CustomVisitContext(VisitContext visitContext) {
 this.visitContext = visitContext;
 }

 @Override
 public VisitContext getWrapped() {
 return visitContext;
 }

 @Override
 public VisitResult invokeVisitCallback(UIComponent component,
 VisitCallback callback) {
 logger.info("Custom visit context is used!");
 return getWrapped().invokeVisitCallback(component, callback);
 }
}

JSF Configurations Using XML Files and Annotations – Part 2

[234]

So, our custom VisitContext implementation doesn't do much; it just fires some log
messages and delegates the control to the original VisitContext class. Our aim is
to write a custom VisitCallback implementation for resetting editable values of a
form using the following code:

public class CustomVisitCallback implements VisitCallback{

 @Override
 public VisitResult visit(VisitContext context, UIComponent target) {

 if (!target.isRendered()) {
 return VisitResult.REJECT;
 }

 if (target instanceof EditableValueHolder) {
 ((EditableValueHolder)target).resetValue();
 }

 return VisitResult.ACCEPT;
 }
}

Well, we are almost done! Just configure the custom VisitContext implementation
in faces-config.xml form using the following code:

<factory>
 <visit-context-factory>
 book.beans.CustomVisitContextFactory
 </visit-context-factory>
</factory>

Let's start the process of visiting nodes using the following code:

FacesContext context = FacesContext.getCurrentInstance();
UIComponent component = context.getViewRoot();
CustomVisitCallback customVisitCallback = new CustomVisitCallback();
component.visitTree(VisitContext.createVisitContext
 (FacesContext.getCurrentInstance()), customVisitCallback);

Note that the starting point in the traversal process is the view root. This is not
mandatory; you can pass any other subtree.

An obvious question arises here! Since this custom VisitContext doesn't do
something important (only fires some log messages), why don't we skip it?

Chapter 5

[235]

Yes, it is true that we can skip this custom VisitContext, since all we need
is the custom VisitCallback implementation, but it was a good opportunity
to see how it can be done. Maybe you can modify invokeVisitCallback to
implement some kind of client ID filtration before getting the action into the
VisitCallback.visit method.

A complete example can be found in the code bundle of this chapter, which is
named ch5_7.

Starting with JSF 2.2, we can use dependency injection with
visit context (@Inject and @EJB).

Configuring ExternalContext
The FacesContext and ExternalContext objects are two of the most important
objects in JSF. Each of them provides powerful capabilities and each of them covers
an important area of artifacts provided by JSF (in case of FacesContext) and
Servlet/Portlet (in case of ExternalContext).

Furthermore, both of them can be extended or modified by the developers. For
example, in this section we will write a custom ExternalContext implementation for
downloading a file. Sometimes, you may need to download a file by programmatically
sending its content to the user. The default ExternalContext can do that, as shown in
the following code—of course, you can easily adapt this code for other files:

public void readFileAction() throws IOException, URISyntaxException {

 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExternalContext externalContext = facesContext.getExternalContext();
 Path path = Paths.get(((ServletContext)externalContext.getContext())
 .getRealPath("/resources/rafa.txt"));

 BasicFileAttributes attrs = Files.readAttributes(path,
 BasicFileAttributes.class);

 externalContext.responseReset();
 externalContext.setResponseContentType("text/plain");
 externalContext.setResponseContentLength((int) attrs.size());
 externalContext.setResponseHeader("Content-Disposition",
 "attachment; filename=\"" + "rafa.txt" + "\"");

 int nRead;
 byte[] data = new byte[128];

JSF Configurations Using XML Files and Annotations – Part 2

[236]

 InputStream inStream = externalContext.
 getResourceAsStream("/resources/rafa.txt");

 try (OutputStream output = externalContext.getResponseOutputStream())
 {
 while ((nRead = inStream.read(data, 0, data.length)) != -1) {
 output.write(data, 0, nRead);
 }
 output.flush();
 }

 facesContext.responseComplete();
}

Normally, this approach uses the default response output stream. But let's suppose
that we have written our "dummy" response output stream which, obviously, does a
dummy action: for each chunk of bytes, replace the 'a' character with the 'A' character
as shown in the following code:

public class CustomResponseStream extends OutputStream {

 private OutputStream responseStream;

 public CustomResponseStream(OutputStream responseStream) {
 this.responseStream = responseStream;
 }

 @Override
 public void write(byte[] b, int off, int len) throws IOException {
 String s = new String(b, off, len);
 s = s.replace('a', 'A');

 byte[] bb = s.getBytes();
 responseStream.write(bb, off, len);
 }

 @Override
 public void write(int b) throws IOException {
 }
}

Chapter 5

[237]

Now, we want to use this response output stream instead of the default one, but
there is no externalContext.setResponseOutputStream(OutputStream os)
method. Instead, we can write a custom ExternalContext, by performing the
following steps:

1.	 Extending ExternalContextFactory, which is a factory object capable of
creating and returning a new ExternalContext.

2.	 Extending ExternalContextWrapper, which is a simple implementation of
ExternalContext.

3.	 Configuring the custom ExternalContext implementation in
faces-config.xml.

The custom external context factory code is as follows:

public class CustomExternalContextFactory extends
ExternalContextFactory{

 private ExternalContextFactory externalContextFactory;

 public CustomExternalContextFactory(){}

 public CustomExternalContextFactory(ExternalContextFactory
 externalContextFactory){
 this.externalContextFactory = externalContextFactory;
 }

 @Override
 public ExternalContext getExternalContext(Object context,
 Object request, Object response) throws FacesException {

 ExternalContext handler = new
 CustomExternalContext(externalContextFactory
 .getExternalContext(context, request, response));

 return handler;
 }
}

JSF Configurations Using XML Files and Annotations – Part 2

[238]

The custom external context is given as follows. Here, we override the
getResponseOutputStream method to return our custom response output stream.

public class CustomExternalContext extends ExternalContextWrapper {

 private ExternalContext externalContext;

 public CustomExternalContext(ExternalContext externalContext) {
 this.externalContext = externalContext;
 }

 @Override
 public ExternalContext getWrapped() {
 return externalContext;
 }

 @Override
 public OutputStream getResponseOutputStream() throws IOException {
 HttpServletResponse response =
 (HttpServletResponse)externalContext.getResponse();
 OutputStream responseStream = response.getOutputStream();
 return new CustomResponseStream(responseStream);
 }
}

Finally, do not forget to configure the custom external context in faces-config.xml:

<factory>
 <external-context-factory>
 book.beans.CustomExternalContextFactory
 </external-context-factory>
</factory>

The complete example can be downloaded from the code bundle of this chapter
named ch5_8.

Starting with JSF 2.2, we can use dependency injection with
external context and faces context (@Inject and @EJB).

JSF also provides factory (FacesContextFactory) and wrapper
(FacesContextWrapper) classes for extending the default FacesContext class.
This can be extended when you need to adapt JSF to Portlet environment, or use
JSF to run inside another environment.

Chapter 5

[239]

Configuring Flash
Starting with JSF 2.2, we have a hook for overriding and/or wrapping the default
implementation of Flash. Usually, we refer a Flash instance using the following code:

FacesContext.getCurrentInstance().getExternalContext().getFlash();

When advanced topics require a custom implementation, you can perform the
following steps:

1.	 Extend FlashFactory, which is a factory object capable of creating and
returning a new Flash instance.

2.	 Extend FlashWrapper, which is a simple implementation of Flash that
allows us to selectively override methods.

3.	 Configure the custom Flash implementation in faces-config.xml.

For example, a custom Flash factory can be written using the following code:

public class CustomFlashFactory extends FlashFactory {

 private FlashFactory flashFactory;

 public CustomFlashFactory() {}

 public CustomFlashFactory(FlashFactory flashFactory) {
 this.flashFactory = flashFactory;
 }

 @Override
 public Flash getFlash(boolean create) {
 Flash handler = new CustomFlash(flashFactory.getFlash(create));

 return handler;
 }
}

The CustomFlash instance returned by the getFlash method is as follows:

public class CustomFlash extends FlashWrapper {

 private Flash flash;

 public CustomFlash(Flash flash){

JSF Configurations Using XML Files and Annotations – Part 2

[240]

 this.flash = flash;
 }

//... override here Flash methods

 @Override
 public Flash getWrapped() {
 return this.flash;
 }
}

In the CustomFlash class, you can override the methods of javax.faces.context.
Flash that need to have a custom behavior. For example, you can override the
setKeepMessages method to output some logs using the following code:

@Override
public void setKeepMessages(boolean newValue){
 logger.log(Level.INFO, "setKeepMessages()
 was called with value: {0}", newValue);
 getWrapped().setKeepMessages(newValue);
}

A custom flash factory is configured in faces-config.xml using the following code:

<factory>
 <flash-factory>book.beans.CustomFlashFactory</flash-factory>
</factory>

The complete example is named ch5_9.

Starting with JSF 2.2, we can use dependency injection
with Flash (@Inject and @EJB).

JSF 2.2 Window ID API
The origin of the Window ID mechanism relies on an HTML gap—this protocol is
stateless, which means that it doesn't associate clients with requests. JSF solves this
issue using a cookie for tracking user sessions, but sometimes this is not enough, and
a fine-grained tracking mechanism is needed. For example, if a user opens several
tabs/windows, then the same session is used in all of them, meaning that the same
cookie is sent to the server and the same login account is used (when login exists).
This can be a real issue if the user operates modifications in these tabs/windows.

Chapter 5

[241]

In order to provide a workaround for this problem, JSF 2.2 has introduced the
Window ID API, which allows developers to identify separate tabs/windows
of the same session.

Under certain circumstances, you can track users' window IDs
using view scope and flash scope. But Window ID is easier to use
and is dedicated to this purpose.

Developers can choose the method used for tracking window IDs by setting the
context parameter javax.faces.CLIENT_WINDOW_MODE in web.xml as follows—in JSF
2.2, the supported values are url (tracking activated) and none (tracking deactivated):

<context-param>
 <param-name>javax.faces.CLIENT_WINDOW_MODE</param-name>
 <param-value>url</param-value>
</context-param>

When url is specified, the user's window IDs are tracked using a hidden field or a
request parameter named jfwid. In the following screenshot, you can see both of
them, the request parameter and hidden field:

When the hidden field (available after a postback) and request
parameter are available, the hidden field has a bigger precedence.

You can easily get the Window ID using the following code:

public void pullWindowIdAction() {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExternalContext externalContext=facesContext.getExternalContext();

 ClientWindow clientWindow = externalContext.getClientWindow();
 if (clientWindow != null) {
 logger.log(Level.INFO, "The current client window id is:{0}",
 clientWindow.getId());

JSF Configurations Using XML Files and Annotations – Part 2

[242]

 } else {
 logger.log(Level.INFO, "Client Window cannot be determined!");
 }
}

The ClientWindow instance can be obtained using
ExternalContext.getClientWindow and can be
provided as ExternalContext.setClientWindow.

You can enable/disable user window tracking in at least two ways which are
as follows:

•	 In <h:button> and <h:link>, you can use the disableClientWindow
attribute whose value can be true or false, as shown in the following code:
Enable/Disable client window using h:button:

<h:button value="Enable Client Window" outcome="index"
 disableClientWindow="false"/>

<h:button value="Disable Client Window" outcome="index"
 disableClientWindow="true"/>

<hr/>
Enable/Disable client window using h:link:

<h:link value="Enable Client Window" outcome="index"
 disableClientWindow="false"/>

<h:link value="Disable Client Window" outcome="index"
 disableClientWindow="true"/>

•	 Alternatively, we can use the disableClientWindowRenderMode and
enableClientWindowRenderMode methods as shown in the following code:
private FacesContext facesContext;
private ExternalContext externalContext;
...
ClientWindow clientWindow = externalContext.getClientWindow();
//disable
clientWindow.disableClientWindowRenderMode(facesContext);
//enable
clientWindow.enableClientWindowRenderMode(facesContext);

A complete application is available in the code bundle of this chapter which is
named ch5_10_1.

Chapter 5

[243]

Developers can write custom ClientWindow implementations by extending the
ClientWindowWrapper class, which is a simple and convenient implementation that
allows us to override only the necessary methods. One way to tell JSF to use your
custom ClientWindow is based on the following steps:

1.	 Extend ClientWindowFactory, which is a factory that is capable of creating
ClientWindow instances based on the incoming request.

2.	 Override ClientWindowFactory.getClientWindow to create an instance of
the custom ClientWindow implementation for the current request.

3.	 Check the value of the context parameter ClientWindow.CLIENT_WINDOW_
MODE_PARAM_NAME, before creating an instance of the custom ClientWindow
implementation. The value of the context parameter should be equal to url.

Based on these three steps, we can write a custom ClientWindowFactory
implementation using the following code:

public class CustomClientWindowFactory
 extends ClientWindowFactory {

 private ClientWindowFactory clientWindowFactory;
 public CustomClientWindowFactory() {}

 public CustomClientWindowFactory(ClientWindowFactory
 clientWindowFactory) {
 this.clientWindowFactory = clientWindowFactory;
 }

 @Override
 public ClientWindow getClientWindow(FacesContext context) {
 if (context.getExternalContext().getInitParameter
 (ClientWindow.CLIENT_WINDOW_MODE_PARAM_NAME).equals("url")) {
 ClientWindow defaultClientWindow =
 clientWindowFactory.getClientWindow(context);
 ClientWindow customClientWindow = new
 CustomClientWindow(defaultClientWindow);
 return customClientWindow;
 }
 return null;
 }

 @Override
 public ClientWindowFactory getWrapped() {
 return clientWindowFactory;
 }
}

JSF Configurations Using XML Files and Annotations – Part 2

[244]

The CustomClientWindow implementation is an extension of ClientWindowWrapper,
which allows us to override only the needed methods. In our case, we are interested
in two methods. The first one is named getId, which returns a String value that
uniquely identifies ClientWindow within the scope of the current session. The other
one is named decode, which is responsible for providing the value returned by getId.
In order to provide this value, the decode method should follow the given checks:

1.	 Request a parameter under the name given by the value of
ResponseStateManager.CLIENT_WINDOW_PARAM.

2.	 If this check doesn't return a favorable ID, look for a request parameter under
the name given by the value of ResponseStateManager.CLIENT_WINDOW_
URL_PARAM.

3.	 If an ID value is not found, then fabricate an ID that uniquely identifies this
ClientWindow within the scope of the current session.

Furthermore, we can write a custom ClientWindow implementation that will
generate a custom ID, of type CUSTOM—current date in milliseconds. The code is
listed as follows–pay attention to see how the decode method is implemented:

public class CustomClientWindow extends ClientWindowWrapper {

 private ClientWindow clientWindow;
 String id;

 public CustomClientWindow() {}

 public CustomClientWindow(ClientWindow clientWindow) {
 this.clientWindow = clientWindow;
 }

 @Override
 public void decode(FacesContext context) {

 Map<String, String> requestParamMap =
 context.getExternalContext().getRequestParameterMap();
 if (isClientWindowRenderModeEnabled(context)) {
 id = requestParamMap.
 get(ResponseStateManager.CLIENT_WINDOW_URL_PARAM);
 }
 if (requestParamMap.containsKey
 (ResponseStateManager.CLIENT_WINDOW_PARAM)) {
 id = requestParamMap.get
 (ResponseStateManager.CLIENT_WINDOW_PARAM);
 }
 if (id == null) {

Chapter 5

[245]

 long time = new Date().getTime();
 id = "CUSTOM-" + time;
 }
 }

 @Override
 public String getId() {
 return id;
 }

 @Override
 public ClientWindow getWrapped() {
 return this.clientWindow;
 }
}

Finally, configure the custom ClientWindowFactory implementation in faces-
config.xml using the following code:

<factory>
 <client-window-factory>
 book.beans.CustomClientWindowFactory
 </client-window-factory>
</factory>

Done! The complete application is named ch5_10_3.

If you want to create an ID of type UUID-uuid::counter then, you can write the
decode method, as follows:

@Override
public void decode(FacesContext context) {
 Map<String, String> requestParamMap =
 context.getExternalContext().getRequestParameterMap();
 if (isClientWindowRenderModeEnabled(context)) {
 id = requestParamMap.get
 (ResponseStateManager.CLIENT_WINDOW_URL_PARAM);
 }
 if (requestParamMap.
 containsKey(ResponseStateManager.CLIENT_WINDOW_PARAM)) {
 id = requestParamMap.get
 (ResponseStateManager.CLIENT_WINDOW_PARAM);
 }
 if (id == null) {
 synchronized (context.getExternalContext().getSession(true)) {
 final String clientWindowKey = "my.custom.id";

JSF Configurations Using XML Files and Annotations – Part 2

[246]

 ExternalContext externalContext =
 context.getExternalContext();
 Map<String, Object> sessionAttrs =
 externalContext.getSessionMap();
 Integer counter = (Integer) sessionAttrs.get(clientWindowKey);
 if (counter == null) {
 counter = 0;
 }
 String uuid = UUID.randomUUID().toString();
 id = "UUID-" + uuid + "::" + counter;
 sessionAttrs.put(clientWindowKey, ++counter);
 }
 }
}

In this case, the complete application is named ch5_10_4.

Using a counter may be very useful when you decide to use an ID of type SESSION_
ID::counter. Since the session ID will be the same over multiple windows/tabs,
you need the counter to differentiate between the IDs. This kind of ID can be easily
obtained thanks to the ExternalContext.getSessionId method of JSF 2.2, which is
as follows:

String sessionId = externalContext.getSessionId(false);
id = sessionId + "::" + counter;

Configuring lifecycle
As you know, JSF lifecycle contains six phases. In order to be processed, each
JSF request will go through all these phases, or only through a part of them. The
abstraction of lifecycle model is represented by the javax.faces.lifecycle.
Lifecycle class, which is responsible for executing JSF phases in two methods:

•	 The execute method will execute all the phases except the sixth phase,
that is, the Render Response phase.

•	 The render method will execute the sixth phase.

The custom Lifecycle can be written by implementing the following steps:

1.	 Extend LifecycleFactory, which is a factory object capable of creating and
returning a new Lifecycle instance.

2.	 Extend LifecycleWrapper, which is a simple implementation of
LifecycleLifecycle that allows us to selectively override methods.

Chapter 5

[247]

3.	 Configure the custom Lifecycle implementation in faces-config.xml.
4.	 Configure the custom Lifecycle implementation in web.xml.

Let's begin with a generic custom Lifecycle, by extending LifecycleFactory
as follows—notice how we register a custom Lifecycle implementation using a
unique identifier:

public class CustomLifecycleFactory extends LifecycleFactory {

 public static final String CUSTOM_LIFECYCLE_ID = "CustomLifecycle";
 private LifecycleFactory lifecycleFactory;

 public CustomLifecycleFactory(){}

 public CustomLifecycleFactory(LifecycleFactory lifecycleFactory) {
 this.lifecycleFactory = lifecycleFactory;
 Lifecycle defaultLifecycle = this.lifecycleFactory.
 getLifecycle(LifecycleFactory.DEFAULT_LIFECYCLE);
 addLifecycle(CUSTOM_LIFECYCLE_ID, new
 CustomLifecycle(defaultLifecycle));
 }

 @Override
 public final void addLifecycle(String lifecycleId,Lifecycle
lifecycle) {
 lifecycleFactory.addLifecycle(lifecycleId, lifecycle);
 }

 @Override
 public Lifecycle getLifecycle(String lifecycleId) {
 return lifecycleFactory.getLifecycle(lifecycleId);
 }

 @Override
 public Iterator<String> getLifecycleIds() {
 return lifecycleFactory.getLifecycleIds();
 }
}

JSF Configurations Using XML Files and Annotations – Part 2

[248]

Furthermore, CustomLifecycle extends LifecycleWrapper and overrides
the required methods. In order to have access to the instance of the class being
wrapped, we need to override the getWrapped method as follows:

public class CustomLifecycle extends LifecycleWrapper {

 private Lifecycle lifecycle;

 public CustomLifecycle(Lifecycle lifecycle) {
 this.lifecycle = lifecycle;
 }

 ...
@Override
 public Lifecycle getWrapped() {
 return lifecycle;
 }
}

Next, we need to configure our custom lifecycle factory in faces-config.xml
as follows:

<factory>
 <lifecycle-factory>book.beans.CustomLifecycleFactory</lifecycle-
factory>
</factory>

Finally, we need to register the custom lifecycle in web.xml using its identifier (see
the highlighted code):

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <init-param>
 <param-name>javax.faces.LIFECYCLE_ID</param-name>
 <param-value>CustomLifecycle</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

Chapter 5

[249]

At this moment, we have a functional dummy custom lifecycle. Next, we
will add some real functionality, and for this we focus on the Lifecycle.
attachWindow method. This method was introduced in JSF 2.2 and is used for
attaching a ClientWindow instance to the current request. The ClientWindow
instance is associated with the incoming request during the Lifecycle.
attachWindow method. This method will cause a new instance of ClientWindow
to be created, to be assigned an ID, and then to be passed to ExternalContext.
setClientWindow(ClientWindow).

In the JSF 2.2 Window ID API section, you saw how to explore the default mechanism
for identifying different windows/tabs of users. Based on this knowledge, we
have written a custom ClientWindow implementation to provide a custom ID for
the jfwid request parameter of type CUSTOM—current date in milliseconds—
and of type UUID::counter. The custom client window was set via a custom
ClientWindowFactory implementation. Further, we set the same custom client
window by overriding the attachWindow method as shown in the following code:

public class CustomLifecycle extends LifecycleWrapper {

 private static final Logger logger =
 Logger.getLogger(CustomLifecycle.class.getName());
 private Lifecycle lifecycle;

 public CustomLifecycle(Lifecycle lifecycle) {
 this.lifecycle = lifecycle;
 }

 @Override
 public void attachWindow(FacesContext context) {

 if (context.getExternalContext().getInitParameter
 (ClientWindow.CLIENT_WINDOW_MODE_PARAM_NAME).equals("url")) {
 ExternalContext externalContext =
 context.getExternalContext();
 ClientWindow clientWindow = externalContext.getClientWindow();
 if (clientWindow == null) {
 clientWindow = createClientWindow(context);
 if (clientWindow != null) {
 CustomClientWindow customClientWindow = new
 CustomClientWindow(clientWindow);
 customClientWindow.decode(context);

 externalContext.setClientWindow(customClientWindow);
 }

JSF Configurations Using XML Files and Annotations – Part 2

[250]

 }
 }
 }

 private ClientWindow createClientWindow(FacesContext context) {
 ClientWindowFactory clientWindowFactory = (ClientWindowFactory)
 FactoryFinder.getFactory(FactoryFinder.CLIENT_WINDOW_FACTORY);
 return clientWindowFactory.getClientWindow(context);
 }
...
}

Done! The complete application is named ch5_10_2.

Configuring the application
The application represents a per-web-application singleton object, which is the
heart of the JSF runtime. Through this object we can accomplish many tasks, such as
adding components, converters, validators, subscribing to events, setting listeners,
locales, and messaging bundles. It represents the entry point for many JSF artifacts.
We refer to it using the following code:

FacesContext.getCurrentInstance().getApplication();

The application can be extended and customized by following these steps:

1.	 Extend ApplicationFactory, which is a factory object capable of creating
and returning a new Application instance.

2.	 Extend ApplicationWrapper, which is a simple implementation of
Application that allows us to selectively override methods.

3.	 Configure the custom Application implementation in faces-config.xml.

For example, we can use a custom Application implementation for adding a
list of validators to an application. We start by writing a custom application
factory as follows:

public class CustomApplicationFactory extends ApplicationFactory {

 private ApplicationFactory applicationFactory;

 public CustomApplicationFactory(){}

 public CustomApplicationFactory(ApplicationFactory
applicationFactory) {
 this.applicationFactory = applicationFactory;

Chapter 5

[251]

 }

 @Override
 public void setApplication(Application application) {
 applicationFactory.setApplication(application);
 }

 @Override
 public Application getApplication() {
 Application handler = new CustomApplication(
 applicationFactory.getApplication());
 return handler;
 }
}

Now, the job is accomplished by CustomApplication as follows:

public class CustomApplication extends ApplicationWrapper {

 private Application application;

 public CustomApplication(Application application) {
 this.application = application;
 }

 @Override
 public Application getWrapped() {
 return application;
 }

 @Override
 public void addValidator(java.lang.String validatorId,
 java.lang.String validatorClass) {
boolean
 flag = false;
 Iterator i = getWrapped().getValidatorIds();
 while (i.hasNext()) {
 if (i.next().equals("emailValidator")) {
 flag = true;
 break;
 }
 }

 if (flag == false) {
 getWrapped().addValidator("emailValidator",

JSF Configurations Using XML Files and Annotations – Part 2

[252]

 "book.beans.EmailValidator");
 }

 getWrapped().addValidator(validatorId, validatorClass);
 }
}

Finally, configure the new custom application in faces-config.xml as follows:

<factory>
 <application-factory>
 book.beans.CustomApplicationFactory
 </application-factory>
</factory>

Starting with JSF 2.2, we can use dependency injection with
application objects (@Inject and @EJB). The preceding example,
with the list of validators provided by a CDI bean as a Map, is
available in the code bundle of this chapter under the name ch5_11.

Configuring VDL
The abbreviation VDL stands for View Declaration Language, which represents the
contract that a view declaration language must implement in order to interact with
the JSF runtime. The ViewDeclarationLanguageFactory class is used to create and
return instances of the ViewDeclarationLanguage class.

In order to alter how the runtime transforms an input file into a tree of components,
you need to write a custom ViewDeclarationLanguageFactory implementation,
which can be accomplished by extending the original class and overriding the
getViewDeclarationLanguage method, as shown in the following code:

public class CustomViewDeclarationLanguageFactory
 extends ViewDeclarationLanguageFactory{

 private ViewDeclarationLanguageFactory
 viewDeclarationLanguageFactory;

 public CustomViewDeclarationLanguageFactory
 (ViewDeclarationLanguageFactory viewDeclarationLanguageFactory){
 this.viewDeclarationLanguageFactory =

Chapter 5

[253]

 viewDeclarationLanguageFactory;
 }

 @Override
 public ViewDeclarationLanguage
 getViewDeclarationLanguage(String viewId) {
 return new
 CustomViewDeclarationLanguage(viewDeclarationLanguageFactory.
 getViewDeclarationLanguage(viewId));
 }
}

The CustomViewDeclarationLanguage implementation can be written by extending
ViewDeclarationLanguage and overriding all methods, or extending the new
JSF 2.2 ViewDeclarationLanguageWrapper class and overriding only the needed
method. Our CustomViewDeclarationLanguage implementation represents a
simple skeleton based on the wrapper class as shown in the following code:

public class CustomViewDeclarationLanguage extends
 ViewDeclarationLanguageWrapper {

 private ViewDeclarationLanguage viewDeclarationLanguage;

 public CustomViewDeclarationLanguage
 (ViewDeclarationLanguage viewDeclarationLanguage) {
 this.viewDeclarationLanguage = viewDeclarationLanguage;
 }

 //override here the needed methods

 @Override
 public ViewDeclarationLanguage getWrapped() {
 return viewDeclarationLanguage;
 }
}

This factory can be configured in faces-config.xml as follows:

<factory>
 <view-declaration-language-factory>
 book.beans.CustomViewDeclarationLanguageFactory
 </view-declaration-language-factory>
</factory>

Done! The complete application is named ch5_17.

JSF Configurations Using XML Files and Annotations – Part 2

[254]

At https://code.google.com/p/javavdl/, you can see an implementation of a
JSF VDL that allows pages or complete JSF applications to be authored in pure Java,
without the need for any XML or other declarative markup (for example, Facelets).

Combined power of multiple factories
In the last several sections, you saw how to customize and configure the most used
JSF factories. In the final section of this chapter, you will see how to exploit a few
factories in the same application. For example, a convenient scenario will assume
that we want to fire a non-JSF request and get as response a JSF view. An approach
of this scenario consists in writing a Java Servlet capable of converting a non-JSF
request into a JSF view.

In order to write such a Servlet, we need to obtain access to FacesContext. For this,
we can combine the power of the default LifecycleFactory class with the power
of the default FacesContextFactory class. Further, we can access Application via
FacesContext, which means that we can obtain the ViewHandler that is responsible
for creating JSF views via the createView method. Once the view is created, all we
need to do is to set UIViewRoot and tell Lifecycle to render the response (execute the
Render Response phase). In lines of code, the Servlet looks like the following:

@WebServlet(name = "JSFServlet", urlPatterns = {"/jsfServlet"})
public class JSFServlet extends HttpServlet {
...
protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String page = request.getParameter("page");

 LifecycleFactory lifecycleFactory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);
 Lifecycle lifecycle = lifecycleFactory.getLifecycle
 (LifecycleFactory.DEFAULT_LIFECYCLE);

 FacesContextFactory facesContextFactory = (FacesContextFactory)
 FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);
 FacesContext facesContext = facesContextFactory.getFacesContext
 (request.getServletContext(), request, response, lifecycle);

 Application application = facesContext.getApplication();
 ViewHandler viewHandler = application.getViewHandler();
 UIViewRoot uiViewRoot = viewHandler.
 createView(facesContext, "/" + page);

https://code.google.com/p/javavdl/

Chapter 5

[255]

 facesContext.setViewRoot(uiViewRoot);
 lifecycle.render(facesContext);
}
...

Now, you can test very easily using the <h:outputLink> tag as follows:

Navigate page-to-page via h:outputLink - WON'T WORK!
<h:outputLink value="done.xhtml">done.xhtml</h:outputLink>
Navigate page-to-page via h:outputLink, but add context path for the
application to a context-relative path - WORK!
<h:outputLink value="#{facesContext.externalContext.
 applicationContextPath}/faces/done.xhtml">
 done.xhtml</h:outputLink>
Navigate to a JSF view via a non-JSF request using servlet - WORK!
<h:outputLink value="jsfServlet?page=done.xhtml">
 done.xhml</h:outputLink>

The complete application is named ch5_18.

Summary
Well, this was a pretty heavy chapter, but JSF's important aspects were touched
upon here. You learned how to create, extend, and configure several of the main
JSF 2.x artifacts, and how they have been improved by JSF 2.2, especially with
the dependency injection mechanism. There are still a lot of things that were not
discussed in this chapter, such as state management, facelet factory, and so on,
but keep on reading.

See you in the next chapter, where we will discuss about working with tabular data
in JSF.

Working with Tabular Data
Data that makes sense when displayed in a spreadsheet (or a tabular structure) is
known as tabular data. In web applications, tabular data is commonly obtained from
databases, where the data is natively represented in relational tables. The main JSF
component for displaying tabular data is represented by the <h:dataTable> tag,
which is capable of producing HTML classical tables. This chapter is a tribute to
this tag, since tabular data is very commonly used and can be manipulated in many
ways. Therefore, in this chapter, you will learn about the following topics:

•	 Creating a simple JSF table
•	 The CollectionDataModel class of JSF 2.2
•	 Sorting tables
•	 Deleting a table row
•	 Editing/updating a table row
•	 Adding a new row
•	 Displaying a row number
•	 Selecting a single row
•	 Selecting multiple rows
•	 Nesting tables
•	 Paginating tables
•	 Generating tables with the JSF API
•	 Filtering tables
•	 Styling tables

Working with Tabular Data

[258]

This chapter focuses more on the tables that are populated with data
that comes from collections (databases). But, you can include in and
manipulate the content in the table with almost any JSF UI component.

Creating a simple JSF table
Most commonly, everything starts from a POJO class (or a EJB entity class), as shown
in the following code—note that tables with hardcoded information were skipped:

public class Players {

 private String player;
 private byte age;
 private String birthplace;
 private String residence;
 private short height;
 private byte weight;
 private String coach;
 private Date born;
 private int ranking;

 public Players() {}

 public Players(int ranking, String player, byte age, String
 birthplace, String residence, short height, byte weight,
 String coach, Date born) {

 this.ranking = ranking;
 this.player = player;
 this.age = age;
 this.birthplace = birthplace;
 this.residence = residence;
 this.height = height;
 this.weight = weight;
 this.coach = coach;
 this.born = born;
 }
 ...
 //getters and setters

}

Chapter 6

[259]

Each instance of this POJO class is actually a row in the table displayed to the
user (it's not mandatory, but usually this is how things work). Next, a JSF bean
(or CDI bean) will provide a collection of POJO's instances. (The List, Map, and
Set instances are the ones that are most commonly used.) In the following code,
the List instance is shown:

@Named
@ViewScoped
public class PlayersBean implements Serializable{

 List<Players> data = new ArrayList<>();
 final SimpleDateFormat sdf = new SimpleDateFormat("dd.MM.yyyy");

 public PlayersBean() {
 try {
 data.add(new Players(2, "NOVAK DJOKOVIC", (byte) 26,
 "Belgrade, Serbia", "Monte Carlo, Monaco", (short) 188,
 (byte) 80, "Boris Becker, Marian Vajda",
 sdf.parse("22.05.1987")));
 data.add(new Players(1, "RAFAEL NADAL", (byte) 27, "Manacor,
 Mallorca, Spain", "Manacor, Mallorca, Spain", (short) 185,
 (byte) 85, "Toni Nadal", sdf.parse("03.06.1986")));
 data.add(new Players(7, "TOMAS BERDYCH", (byte) 28,
 "Valasske Mezirici, Czech", "Monte Carlo, Monaco",
 (short) 196, (byte) 91, "Tomas Krupa",
 sdf.parse("17.09.1985")));
 ...

 } catch (ParseException ex) {
 Logger.getLogger(PlayersBean.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }

 public List<Players> getData() {
 return data;
 }

 public void setData(List<Players> data) {
 this.data = data;
 }
}

Note that, usually, data is queried from a database, but this is not quite relevant here.

Working with Tabular Data

[260]

This common scenario ends with a piece of code that displays the data on the screen.
The code is shown as follows:

...
<h:dataTable value="#{playersBean.data}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{t.player}
 </h:column>
 <h:column>
 <f:facet name="header">Age</f:facet>
 #{t.age}
 </h:column>
 <h:column>
 <f:facet name="header">Birthplace</f:facet>
 #{t.birthplace}
 </h:column>
 <h:column>
 <f:facet name="header">Residence</f:facet>
 #{t.residence}
 </h:column>
 <h:column>
 <f:facet name="header">Height (cm)</f:facet>
 #{t.height}
 </h:column>
 <h:column>
 <f:facet name="header">Weight (kg)</f:facet>
 #{t.weight}
 </h:column>
 <h:column>
 <f:facet name="header">Coach</f:facet>
 #{t.coach}
 </h:column>
 <h:column>
 <f:facet name="header">Born</f:facet>
 <h:outputText value="#{t.born}">
 <f:convertDateTime pattern="dd.MM.yyyy" />
 </h:outputText>
 </h:column>
</h:dataTable>
...

Chapter 6

[261]

The output is shown in the following screenshot:

The complete example is available in the code bundle of this chapter, and is
named ch6_1.

The CollectionDataModel class of JSF 2.2
Until JSF 2.2, the supported types for the <h:dataTable> tag contains java.util.
List, arrays, java.sql.ResultSet, javax.servlet.jsp.jstl.sql.Result,
javax.faces.model.DataModel, null (or empty list), and types used as scalar values.

Starting with JSF 2.2, we can also use java.util.Collection.
This is especially useful to Hibernate/JPA users, who are usually
using the Set collections for entity relationships. Therefore, nothing
can stop us from using a HashSet, TreeSet, or LinkedHashSet
set for feeding our JSF tables.

The next example is like a test case for the most-used Java collections. First, let's
declare some collections of Players as follows:

•	 java.util.ArrayList: This library implements java.util.Collection.
The java.util.ArrayList collection is declared as follows:
ArrayList<Players> dataArrayList = new ArrayList<>();

•	 java.util.LinkedList: This library implements java.util.Collection.
The java.util.LinkedList collection is declared as follows:
LinkedList<Players> dataLinkedList = new LinkedList<>();

Working with Tabular Data

[262]

•	 java.util.HashSet: This library implements java.util.Collection. The
java.util.HashSet collection is declared as follows:
HashSet<Players> dataHashSet = new HashSet<>();

•	 java.util.TreeSet: This library implements java.util.Collection.
The java.util.TreeSet collection is declared as follows:
TreeSet<Players> dataTreeSet = new TreeSet<>();

For the TreeSet collection, you have to use Comparable
elements, or provide Comparator. Otherwise, the TreeSet
collection can't do its job since it wouldn't know how to order
the elements. This means that the Players class should
implement Comparable<Players>.

•	 java.util.LinkedHashSet: This library implements java.util.
Collection. The java.util.LinkedHashSet collection is declared
as follows:
LinkedHashSet<Players> dataLinkedHashSet = new
 LinkedHashSet<>();

•	 java.util.HashMap: This library doesn't implement java.util.
Collection. The java.util.HashMap collection is declared as follows:
HashMap<String, Players> dataHashMap = new HashMap<>();

•	 java.util.TreeMap: This library doesn't implement java.util.
Collection. The java.util.TreeMap collection is declared as follows:
TreeMap<String, Players> dataTreeMap = new TreeMap<>();

•	 java.util.LinkedHashMap: This library doesn't implement java.util.
Collection. The java.util.LinkedHashMap collection is declared as follows:
LinkedHashMap<String, Players> dataLinkedHashMap = new
 LinkedHashMap<>();

Supposing that these collections are populated and the getters are available; they are
used to display their content in a table in the following ways:

•	 java.util.ArrayList: This library implements java.util.Collection..
The following is the code of the java.util.ArrayList collection:
<h:dataTable value="#{playersBean.dataArrayList}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}

Chapter 6

[263]

 </h:column>
...
</h:dataTable>

In the same manner, we can display in a table the LinkedList,
HashSet, TreeSet, and LinkedHashSet collection classes.

•	 java.util.LinkedList: This library implements java.util.Collection.
The following is the code of the java.util.LinkedList collection:
<h:dataTable value="#{playersBean.dataLinkedList}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
...
</h:dataTable>

•	 java.util.HashSet: This library implements java.util.Collection.
The following is the code of the java.util.HashSet collection:
<h:dataTable value="#{playersBean.dataHashSet}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
...
</h:dataTable>

•	 java.util.TreeSet: This library implements java.util.Collection.
The following is the code of the java.util.TreeSet collection:
<h:dataTable value="#{playersBean.dataTreeSet}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
...
</h:dataTable>

Working with Tabular Data

[264]

•	 java.util.LinkedHashSet: This library implements java.util.Collection.
The following is the code of the java.util.LinkedHashSet collection:
<h:dataTable value="#{playersBean.dataLinkedHashSet}"
 var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
...
</h:dataTable>

Use the following examples to display a Map collection in a table.
(HashMap, TreeMap, and LinkedHashMap are displayed in the
same way.)

•	 java.util.HashMap: This library doesn't implement java.util.
Collection. The following is the code of the java.util.HashMap collection:
<h:dataTable value="#{playersBean.dataHashMap.entrySet()}"
 var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.key}
 </h:column>
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{t.value.player}
 </h:column>
...
</h:dataTable>

•	 java.util.TreeMap: This library doesn't implement java.util.
Collection. The following is the code of the java.util.TreeMap collection:
<h:dataTable value="#{playersBean.dataTreeMap.entrySet()}"
 var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.key}
 </h:column>
 <h:column>

Chapter 6

[265]

 <f:facet name="header">Name</f:facet>
 #{t.value.player}
 </h:column>
...
</h:dataTable>

•	 java.util.LinkedHashMap: This library doesn't implement java.util.
Collection. The following is the code of the java.util.LinkedHashMap
collection:
<h:dataTable value="#{playersBean.dataLinkedHashMap.
 entrySet()}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.key}
 </h:column>
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{t.value.player}
 </h:column>
...
</h:dataTable>

For a Map collection, you can have a getter method, as follows:

HashMap<String, Players> dataHashMap = new HashMap<>();

public Collection<Players> getDataHashMap() {
 return dataHashMap.values();
}

In this case, the code of the table will be as follows:

<h:dataTable value="#{playersBean.dataHashMap}" var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.ranking}
 </h:column>
...
</h:dataTable>

Working with Tabular Data

[266]

The CollectionDataModel class is an extension of the DataModel
class that wraps a Collection class of Java objects. Furthermore, in
this chapter, you will see some examples that will alter this new class.

The complete example is available in the code bundle of this chapter, and is
named ch6_2.

Sorting tables
In the previous examples, the data is arbitrarily displayed. Sorting the data provides
more clarity and accuracy in reading and using the information; for example, see
the screenshot of the Creating a simple JSF table section. You can try to visually
localize the number 1 in the ATP ranking, and number 2 and number 3, and so on,
but it is much more useful to have the option of sorting the table by the Ranking
column. This is a pretty simple task to implement, especially if you are familiar with
Java's List, Comparator, and Comparable features. It is beyond the scope of this
book to present these features, but you can accomplish most of the sorting tasks by
overriding the compare method, which has a straightforward flow: it compares both
of its arguments for order and returns a negative integer, zero, or a positive integer,
as the first argument is less than, equal to, or greater than the second. For example,
let's see some common sortings:

•	 Sort the list of strings, such as player's names. To do this sorting, the code of
the compare method is as follows:
...
String dir="asc"; //or "dsc" for descending sort

Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 if (dir.equals("asc")) {
 return key_1.getPlayer().
 compareTo(key_2.getPlayer());
 } else {
 return key_2.getPlayer().
 compareTo(key_1.getPlayer());
 }
 }
});
...

Chapter 6

[267]

•	 Sort the list of numbers, such as the player's rankings. To do this sorting, the
code of the compare method is as follows:
...
int dir = 1; //1 for ascending, -1 for descending

Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 return dir * (key_1.getRanking() - key_2.getRanking());
 }
});
...

•	 Sort the list of dates, such as player's birthdays (this works as in the case of
strings). To do this sorting, the code of the compare method is as follows:
...
String dir="asc"; //or "dsc" for descending sort

Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 if (dir.equals("asc")) {
 return key_1.getBorn().compareTo(key_2.getBorn());
 } else {
 return key_2.getBorn().compareTo(key_1.getBorn());
 }
 }
});
...

The data argument stands for a List collection type because not
all types of collections can take the place of this one. For example,
List will work perfectly, while HashSet won't. There are different
workarounds to sort collections that are not List collections. You
have to ensure that you choose the right collection for your case.

Working with Tabular Data

[268]

If you know how to write comparators for the selected collection, then everything
else is simple. You can encapsulate the comparators in managed beans methods
and attach buttons, links, or anything else that calls those methods. For example,
you can add these comparators to the PlayersBean backing bean, as shown in the
following code:

@Named
@ViewScoped
public class PlayersBean implements Serializable{

 List<Players> data = new ArrayList<>();
 final SimpleDateFormat sdf = new SimpleDateFormat("dd.MM.yyyy");

 public PlayersBean() {
 try {
 data.add(new Players(2, "NOVAK DJOKOVIC", (byte) 26,
 "Belgrade, Serbia", "Monte Carlo, Monaco", (short) 188,
 (byte) 80, "Boris Becker, Marian Vajda",
 sdf.parse("22.05.1987")));
...
 } catch (ParseException ex) {
 Logger.getLogger(PlayersBean.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }

 public List<Players> getData() {
 return data;
 }

 public void setData(List<Players> data) {
 this.data = data;
 }

 public String sortDataByRanking(final int dir) {

 Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 return dir * (key_1.getRanking() - key_2.getRanking());
 }
 });

Chapter 6

[269]

 return null;
 }

 public String sortDataByName(final String dir) {

 Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 if (dir.equals("asc")) {
 return key_1.getPlayer().compareTo(key_2.getPlayer());
 } else {
 return key_2.getPlayer().compareTo(key_1.getPlayer());
 }
 }
 });
 return null;
 }

 public String sortDataByDate(final String dir) {

 Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 if (dir.equals("asc")) {
 return key_1.getBorn().compareTo(key_2.getBorn());
 } else {
 return key_2.getBorn().compareTo(key_1.getBorn());
 }
 }
 });
 return null;
 }
...

Next, you can easily modify the code of the index.xhtml page to provide access to
the sorting feature as follows:

...
<h:dataTable value="#{playersBean.data}" var="t" border="1">
 <h:column>
 <f:facet name="header">
 <h:commandLink action="#{playersBean.sortDataByRanking(1)}">
 Ranking ASC
 </h:commandLink>
 |

Working with Tabular Data

[270]

 <h:commandLink action="#{playersBean.
 sortDataByRanking(-1)}">
 Ranking DSC
 </h:commandLink>
 </f:facet>
 #{t.ranking}
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:commandLink
 action="#{playersBean.sortDataByName('asc')}">
 Name ASC
 </h:commandLink>
 |
 <h:commandLink
 action="#{playersBean.sortDataByName('dsc')}">
 Name DSC
 </h:commandLink>
 </f:facet>
 #{t.player}
 </h:column>
 ...
 <h:column>
 <f:facet name="header">
 <h:commandLink
 action="#{playersBean.sortDataByDate('asc')}">
 Born ASC
 </h:commandLink>
 |
 <h:commandLink
 action="#{playersBean.sortDataByDate('dcs')}">
 Born DSC
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{t.born}">
 <f:convertDateTime pattern="dd.MM.yyyy" />
 </h:outputText>
 </h:column>
</h:dataTable>
...

Chapter 6

[271]

The output is shown in the following screenshot:

The complete example is available in the code bundle of this chapter, and is
named ch6_3_1.

As you can see, each sorting provides two links: one for ascending and one for
descending. We can easily glue these links in a switch-link, by using an extra
property in our view scoped bean. For example, we can declare a property
named sortType, as follows:

...
private String sortType = "asc";
...

Add a simple condition to make it act as a switch between ascending and descending
sort as shown in the following code:

...
public String sortDataByRanking() {

 Collections.sort(data, new Comparator<Players>() {
 @Override
 public int compare(Players key_1, Players key_2) {
 if(sortType.equals("asc")){
 return key_1.getRanking() - key_2.getRanking();
 } else {
 return (-1) * (key_1.getRanking() - key_2.getRanking());
 }
 }
 });

 sortType = (sortType.equals("asc")) ? "dsc" : "asc";
 return null;
}
...

Working with Tabular Data

[272]

Now, the index.xhtml page contains a single link per sort, as shown in the
following code:

...
<h:dataTable value="#{playersBean.data}" var="t" border="1">
 <h:column>
 <f:facet name="header">
 <h:commandLink action="#{playersBean.sortDataByRanking()}">
 Ranking
 </h:commandLink>
 </f:facet>
 #{t.ranking}
 </h:column>
...

The output of this trick can be seen in the following screenshot:

The complete example is available in the code bundle of this chapter, and is
named ch6_3_2.

Sorting and DataModel – CollectionDataModel
A more complex sorting example involves a decorator class that extends the javax.
faces.model.DataModel class. JSF uses a DataModel class even if we are not aware
of it, because each collection (List, array, HashMap and so on) is wrapped by JSF in
a DataModel class (or, in a subclass, as ArrayDataModel, CollectionDataModel,
ListDataModel, ResultDataModel, ResultSetDataModel, or ScalarDataModel).
JSF will call the table DataModel class's methods when it renders/decodes table
data. In the following screenshot, you can see all directly known subclasses of the
DataModel class:

Chapter 6

[273]

As you will see in this chapter, sometimes you need to be aware of the DataModel
class because you need to alter its default behavior. (It is recommended that
you take a quick look at the official documentation of this class's section at
https://javaserverfaces.java.net/nonav/docs/2.2/javadocs/ to obtain a
better understanding.) The most common cases involve the rendering row numbers,
sorting, and altering the row count of a table. When you do this, you will expose the
DataModel class instead of the underlying collection.

For example, let's suppose that we need to use a collection, such as HashSet.
This collection doesn't guarantee that the iteration order will remain constant
over time, which can be a problem if we want to sort it. Of course, there are a
few workarounds, such as converting it to List or using TreeSet instead, but
we can alter the DataModel class that wraps the HashSet collection, which is the
new JSF 2.2 class, CollectionDataModel.

We can accomplish this in a few steps, which are listed as follows:

1.	 Extend the CollectionDataModel class for overriding the default behavior
of its methods, as shown in the following code:
public class SortDataModel<T> extends
 CollectionDataModel<T> {
...

2.	 Provide a constructor and use it for passing the original model (in this case,
CollectionDataModel). Besides the original model, we need an array
of integers representing the indexes of rows (For example, rows[0]=0,
rows[1]=1, ... rows[n]= model.getRowCount()). Sorting the row indexes
will actually sort the HashSet collection, as shown in the following code:
...
CollectionDataModel<T> model;

https://javaserverfaces.java.net/nonav/docs/2.2/javadocs/

Working with Tabular Data

[274]

private Integer[] rows;

public SortDataModel(CollectionDataModel<T> model) {
 this.model = model;
 initRows();
}

private void initRows() {
 int rowCount = model.getRowCount();
 if (rowCount != -1) {
 this.rows = new Integer[rowCount];
 for (int i = 0; i < rowCount; ++i) {
 rows[i] = i;
 }
 }
}
...

3.	 Next, we need to override the setRowIndex method to replace the default
row index, as shown in the following code:
@Override
public void setRowIndex(int rowIndex) {

 if ((0 <= rowIndex) && (rowIndex < rows.length)) {
 model.setRowIndex(rows[rowIndex]);
 } else {
 model.setRowIndex(rowIndex);
 }
}

4.	 Finally, provide a comparator as follows:
public void sortThis(final Comparator<T> comparator) {
 Comparator<Integer> rowc = new Comparator<Integer>() {
 @Override
 public int compare(Integer key_1, Integer key_2) {
 T key_1_data = getData(key_1);
 T key_2_data = getData(key_2);
 return comparator.compare(key_1_data, key_2_data);
 }
 };
 Arrays.sort(rows, rowc);
}

private T getData(int row) {

Chapter 6

[275]

 int baseRowIndex = model.getRowIndex();
 model.setRowIndex(row);
 T newRowData = model.getRowData();
 model.setRowIndex(baseRowIndex);

 return newRowData;
}

5.	 Now, our custom CollectionDataModel class with sorting capabilities is
ready. We can test it by declaring and populating HashSet, wrapping it
in the original CollectionDataModel class, and passing it to the custom
SortDataModel class, as shown in the following code:
private HashSet<Players> dataHashSet = new HashSet<>();
private SortDataModel<Players> sortDataModel;
...
public PlayersBean() {
 dataHashSet.add(new Players(2, "NOVAK DJOKOVIC",
 (byte) 26, "Belgrade, Serbia", "Monte Carlo, Monaco",
 (short) 188, (byte) 80, "Boris Becker, Marian Vajda",
 sdf.parse("22.05.1987")));
...

 sortDataModel = new SortDataModel<>(new
 CollectionDataModel<>(dataHashSet));
}
...

6.	 Since we are the caller, we need to provide a comparator. The complete
example is available in the code bundle of this chapter, and is named ch6_3_3.

Deleting a table row
Deleting a table row can be easily implemented by performing the following steps:

1.	 Define a method in the managed bean that receives information about
the row that should be deleted, and remove it from the collection that
feeds the table.
For example, for a Set collection, the code will be as follows
(HashSet<Players>):
public void deleteRowHashSet(Players player) {
 dataHashSet.remove(player);
}

Working with Tabular Data

[276]

For Map<String, Players>, the code will be as follows:
public void deleteRowHashMap(Object key) {
 dataHashMap.remove(String.valueOf(key));
}

2.	 Besides columns containing data, add a new column in the table named
Delete. Each row can be a link to the deleteXXX method.
For example, we can delete a value from Set (HashSet<Players>), as shown
in the following code:
<h:dataTable value="#{playersBean.dataHashSet}" var="t">
...
 <h:column>
 <f:facet name="header">Delete</f:facet>
 <h:commandLink value="Delete"
 action="#{playersBean.deleteRowHashSet(t)}" />
 </h:column>
...
</h:dataTable>

And from Map<String, Players>, as follows:
<h:dataTable value="#{playersBean.dataHashMap.entrySet()}"
 var="t">
...
 <h:column>
 <f:facet name="header">Delete</f:facet>
 <h:commandLink value="Delete"
 action="#{playersBean.deleteRowHashMap(t.key)}" />
 </h:column>
...
</h:dataTable>

In the following screenshot, you can see a possible output:

Chapter 6

[277]

The complete example is available in the code bundle of this chapter, and is
named ch6_4.

Editing/updating a table row
One of the most convenient approaches for editing/updating a table row consists
of using a special property to track the row edit status. This property can be named
edited and it should be of the type boolean (default false). Define it in the POJO
class, as shown in the following code:

public class Players {
 ...
 private boolean edited;
 ...
 public boolean isEdited() {
 return edited;
 }

 public void setEdited(boolean edited) {
 this.edited = edited;
 }
}

If your POJO class is an entity class, then define this new property as
transient, using the @Transient annotation or transient modifier.
This annotation will tell JPA that this property doesn't participate in
persistence and that its values are never stored in the database.

Next, assign an Edit link to each row. Using the rendered attribute, you can
easily show/hide the link using a simple EL condition; initially, the link is
visible for each row. For example, take a look at the following use cases:

•	 For a Set collection, the code is as follows:
...
<h:column>
 <f:facet name="header">Edit</f:facet>
 <h:commandLink value="Edit"
 action="#{playersBean.editRowHashSet(t)}"
 rendered="#{not t.edited}" />
</h:column>
...

Working with Tabular Data

[278]

•	 For a Map collection, the code is as follows:
...
<h:column>
 <f:facet name="header">Edit</f:facet>
 <h:commandLink value="Edit"
 action="#{playersBean.editRowHashMap(t.value)}"
 rendered="#{not t.value.edited}"/>
</h:column>
...

When the link is clicked, the edited property will be switched from false to true
and the table will be re-rendered as follows:

•	 For a Set collection, the code of the editRowHashSet method is as follows:
public void editRowHashSet(Players player) {
 player.setEdited(true);
}

•	 For a Map collection, the code of the editRowHashSet method is as follows:
public void editRowHashMap(Players player) {
 player.setEdited(true);
}

This means that the link is not rendered anymore and the user should be able to edit
that table row. You need to switch between the <h:outputText> tag, used to display
data (visible when the edited property is false), and the <h:inputText> tag,
which is used to collect data (visible when the edited property is true). Using the
rendered attribute again will do the trick, as follows:

•	 For a Set collection, the code is modified as follows:
...
<h:column>
 <f:facet name="header">Name</f:facet>
 <h:inputText value="#{t.player}"
 rendered="#{t.edited}" />
 <h:outputText value="#{t.player}"
 rendered="#{not t.edited}" />
</h:column>
...

•	 For a Map collection, the code is modified as follows:
...
<h:column>
 <f:facet name="header">Name</f:facet>

Chapter 6

[279]

 <h:inputText value="#{t.value.player}"
 rendered="#{t.value.edited}" />
 <h:outputText value="#{t.value.player}"
 rendered="#{not t.value.edited}" />
</h:column>
...

Finally, you need a button to save changes; this button will set the edited property
back to false, preparing the table for more edits, as follows:

•	 For a Set collection, the code for the button is as follows:
<h:commandButton value="Save Hash Set Changes"
 action="#{playersBean.saveHashSet()}" />

•	 For a Map collection, the code for the button is as follows:
<h:commandButton value="Save Hash Map Changes"
 action="#{playersBean.saveHashMap()}" />

This is a straightforward action, as you can see in the following points—values
inserted in the input textbox are automatically saved in the collection:

•	 For a Set collection, the code is as follows:
public void saveHashSet() {
 for (Players player : dataHashSet) {
 player.setEdited(false);
 }
}

•	 For a Map collection, the code is as follows:
public void saveHashMap() {
 for (Map.Entry pairs : dataHashMap.entrySet()) {
 ((Players) pairs.getValue()).setEdited(false);
 }
}

Done! In the following screenshot, you can see a possible output:

The complete example is available in the code bundle of this chapter, and is
named ch6_5.

Working with Tabular Data

[280]

Adding a new row
Adding a new row is also a simple task. First, you need to provide a form that
reflects a table row content, as shown in the following screenshot:

This form can be easily implemented using the following code:

...
<h:inputText value="#{playersBean.player}"/>
<h:inputText value="#{playersBean.age}"/>
<h:inputText value="#{playersBean.birthplace}"/>
<h:inputText value="#{playersBean.residence}"/>
<h:inputText value="#{playersBean.height}"/>
<h:inputText value="#{playersBean.weight}"/>
<h:inputText value="#{playersBean.coach}"/>
<h:inputText value="#{playersBean.born}">
 <f:convertDateTime pattern="dd.MM.yyyy" />
</h:inputText>
<h:inputText value="#{playersBean.ranking}"/>
<h:commandButton value="Add Player"
 action="#{playersBean.addNewPlayer()}"/>
...

The button labeled Add Player will call a managed bean method that creates a new
Players instance and adds it in the collection that feeds the table, as shown in the
following code:

public void addNewPlayer() {
 Players new_player = new Players(ranking, player, age,
 birthplace, residence, height, weight, coach, born);
 //adding in a Set

Chapter 6

[281]

 dataHashSet.add(new_player);
 //adding in a Map
 dataHashMap.put(String.valueOf(ranking), new_player);
}

In the following screenshot, you can see the newly added row from the data shown
in the preceding screenshot:

The complete example is available in the code bundle of this chapter, and is
named ch6_6_1.

A more elegant approach is to add a row directly in the table and eliminate this user
form. This can be easily accomplished by following these simple steps:

1.	 Use linked collections (for example, use LinkedHashSet instead of HashSet
or LinkedHashMap instead of HashMap). A table is populated by iterating the
corresponding collection, but some collections, such as HashSet or HashMap,
do not provide an iteration order, which means that the iteration order is
unpredictable. This is important because we want to add a row at the end of
the table, but this is hard to achieve with an unpredictable iteration order. But
a linked collection would fix this issue, which is shown in the following code:
LinkedHashSet<Players> dataHashSet = new LinkedHashSet<>();
LinkedHashMap<String, Players> dataHashMap = new
 LinkedHashMap<>();

2.	 Add a new row by creating a new item in the corresponding collection and
activate the editable mode using the Set and Map collections as follows:

°° The following is the code for a linked Set collection:
...
<h:commandButton value="Add New Row"
 action="#{playersBean.addNewRowInSet()}" />
...
public void addNewRowInSet() {
 Players new_player = new Players();
 new_player.setEdited(true);
 dataHashSet.add(new_player);
}

Working with Tabular Data

[282]

°° The following is the code for a linked Map collection:
...
<h:commandButton value="Add New Row"
 action="#{playersBean.addNewRowInMap()}" />
...

public void addNewRowInMap() {
 Players new_player = new Players();
 new_player.setEdited(true);
 dataHashMap.put(String.valueOf(dataHashMap.size() + 1),
 new_player);
}

Check out the following screenshot for a possible output:

The complete example is available in the code bundle of this chapter, and is
named ch6_6_2.

Displaying row numbers
By default, JSF doesn't provide a method for displaying row numbers. But as you can
see in the screenshot depicting the output in the Editing/updating a table row section,
there is a column named No that displays row numbers. You can obtain this column
in at least two ways. The simplest workaround consists of binding the table to the
current view, as shown in the following code:

<h:dataTable value="..." binding="#{table}" var="t">
 <h:column>
 <f:facet name="header">No</f:facet>
 #{table.rowIndex+1}.
 </h:column>
...

Another approach is to obtain it using the DataModel class, which has the
getRowIndex method to return the currently selected row number. In order
to do that, you need to wrap the collection in a DataModel class.

The example named ch6_7 contains the first approach of this task.

Chapter 6

[283]

Selecting a single row
The easiest implementation of such a task is to provide a button for each row in
the table. When a button is clicked, it can pass the selected row, as shown in the
following code:

<h:dataTable value="#{playersBean.dataHashSet}" var="t"
 border="1">
 <h:column>
 <f:facet name="header">Select</f:facet>
 <h:commandButton value="#"
 action="#{playersBean.showSelectedPlayer(t)}"/>
 </h:column>
...

Since the showSelectedPlayer method receives the selected row, it can process it
further with no other requirements. The complete example is available in the code
bundle of this chapter, and is named ch6_8_1.

Generally speaking, selecting one item from a bunch of items is a job for a group of
radio buttons. In a JSF table, items are rows, and adding a radio button per row will
result in a column as shown in the following screenshot:

However, adding radio buttons in the <h:column> tag using the
<h:selectOneRadio> tag doesn't behave as expected. The main functionality of
radio buttons doesn't work; selecting one radio will not deselect the rest of radios in
the group. It is now acting more like a group of checkboxes. You can fix this issue by
implementing a deselection mechanism through JavaScript. Moreover, at this point,
you can set a JSF hidden field with the value of the selected row. For example, if the
table is populated by Map, you use the following code:

<script type="text/javascript">
//<![CDATA[

Working with Tabular Data

[284]

 function deselectRadios(id, val) {

 var f = document.getElementById("hashMapFormId");
 for (var i = 0; i < f.length; i++)
 {
 var e = f.elements[i];
 var eid = e.id;
 if (eid.indexOf("radiosId") !== -1) {
 if (eid.indexOf(id) === -1) {
 e.checked = false;
 } else {
 e.checked = true;
 document.getElementById("hashMapFormId:
 selectedRowId").value = val;
 }
 }
 }
 }
 //]]>
</script>

First, you need to find the form containing the radios by the ID. Afterwards, iterate
through the form's children, and identify each radio by a fixed part of its ID. Check
only the radio that was selected by the user, and uncheck the rest of them. Next,
populate a hidden field with the value of the selected row. The ID of the selected
radio and the row value are provided as arguments, as follows (in this case, the table
is populated from Map):

<h:dataTable value="#{playersBean.dataHashMap.entrySet()}"
 var="t">
 <h:column>
 <f:facet name="header">Select</f:facet>
 <h:selectOneRadio id="radiosId"
 onclick="deselectRadios(this.id, '#{t.key}');">
 <f:selectItem itemValue="null"/>
 </h:selectOneRadio>
 </h:column>
...

Besides the hidden field for storing the selected row information, you need a button
labeled Show Hash Map Selection, as shown in the following code:

<h:inputHidden id="selectedRowId"
 value="#{playersBean.selectedPlayerKey}"/>
<h:commandButton value="Show Hash Map Selection"
 action="#{playersBean.showSelectedPlayer()}" />

Chapter 6

[285]

The following showSelectedPlayer method is ready to process the selected row:

public void showSelectedPlayer() {
 Players player = dataHashMap.get(selectedPlayerKey);

 if (player != null) {
 logger.log(Level.INFO, "Selected player:{0}",
 player.getPlayer());
 } else {
 logger.log(Level.INFO, "No player selected!");
 }
}

Done! The complete example is available in the code bundle of this chapter and is
named ch6_8_2.

If you feel that using a hidden field is not a very elegant approach, then you can replace
its role by using the valueChangeListener attribute of the <h:selectOneRadio> tag.

In the code bundle of this chapter, you can find an example that uses the
valueChangeListener attribute named ch6_8_3.

Selecting multiple rows
Multiple selection is commonly achieved using groups of checkboxes. One of the most
convenient approaches for multiple selections consists of using a special property for
tracking the row selection status. This property can be named selected and it should
be of type boolean (default false). You can define it in the POJO class as follows:

public class Players {
...
 private boolean selected;
 ...
 public boolean isSelected() {
 return selected;
 }

 public void setSelected(boolean selected) {
 this.selected = selected;
}
...

Working with Tabular Data

[286]

If your POJO class is an entity class, then define this new property as
transient, using the @Transient annotation or transient modifier.
This annotation will tell JPA that this property doesn't participate in
persistence and his values are never stored in the database.

Next, assign a checkbox to each row (<h:selectBooleanCheckbox>). Using the
value attribute and the selected property, you can easily track the selection status,
as shown in the following code:

<h:dataTable value="#{playersBean.dataHashSet}" var="t">
 <h:column>
 <f:facet name="header">Select</f:facet>
 <h:selectBooleanCheckbox value="#{t.selected}" />
 </h:column>
...

So the <h:selectBooleanCheckbox> tag will do the hard work for us (we just
exploit its natural behavior), therefore, all you need is a button labeled Show
Selected Players, as shown in the following line:

<h:commandButton value="Show Selected Players"
 action="#{playersBean.showSelectedPlayers()}" />

The showSelectedPlayers method has an easy task. It can iterate the collection
and check the status of the selected property for each item; this is a good chance to
reset the selected items as well. For example, you can extract the selected items in a
separate list, as follows:

...
HashSet<Players> dataHashSet = new HashSet<>();
List<Players> selectedPlayers = new ArrayList<>();
...
public void showSelectedPlayers() {
 selectedPlayers.clear();
 for (Players player : dataHashSet) {
 if(player.isSelected()){
 logger.log(Level.INFO, "Selected player: {0}",
 layer.getPlayer());
 selectedPlayers.add(player);
 player.setSelected(false);
 }
 }

 //the selected players were extracted in a List ...
}

Chapter 6

[287]

The complete example is available in the code bundle of this chapter, and is
named ch6_8_4.

If you don't want to use an extra property, such as selected, you can use a Map
<String, Boolean> map. The code is pretty straightforward; therefore, a quick
look over the complete code, ch6_8_5, will clarify things instantly.

Nesting tables
It's most likely that you won't need to display a table inside another table, but there
are cases when this workaround can be useful in obtaining a clear presentation of the
data. For example, nested collections can be presented as nested tables as follows:

HashMap<Players, HashSet<Trophies>> dataHashMap = new HashMap<>();

Here, players are stored in HashMap as keys, and each player has a collection
(HashSet) of trophies. Each HashSet value is a value in HashMap. Therefore, you
need to display the table of players; however, you need to display each player's
trophies. This can be achieved as shown in the following code:

<h:dataTable value="#{playersBean.dataHashMap.entrySet()}"
 var="t">
 <h:column>
 <f:facet name="header">Ranking</f:facet>
 #{t.key.ranking}
 </h:column>
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{t.key.player}
 </h:column>
 ...
 <h:column>
 <f:facet name="header">Trophies 2013</f:facet>
 <h:dataTable value="#{t.value}" var="q" border="1">
 <h:column>
 #{q.trophy}
 </h:column>
 </h:dataTable>
 </h:column>
</h:dataTable>

Working with Tabular Data

[288]

A possible output for the preceding code can be seen in the following screenshot:

The complete application is named ch6_9, and is available in the code bundle of
this chapter.

Paginating tables
When you need to display large tables (with many rows), it can be useful to
implement a pagination mechanism. There are many advantages, such as its fancy
look, the clear presentation of data, saving space in web pages, and lazy loading.

In a standard version of such a table, we should be able to navigate to the first page,
last page, next page, previous page, and in some tables, to select the number of rows
displayed on one page.

When you bind a table to its backing bean, you have access to three handy
properties, which are listed as follows:

•	 first: This property represents the first row number that is displayed in
the current table page (it starts from the default value 0). The value for this
property can be specified using the first attribute of the <h:dataTable>
tag. In the JSF API, this is accessible through the HtmlDataTable.getFirst
and HtmlDataTable.setFirst methods.

•	 rows: This property represents the number of rows displayed in a single
page, starting from first. The value for this property can be specified using
the rows attribute of the <h:dataTable> tag. In the JSF API, this is accessible
through the HtmlDataTable.getRows and HtmlDataTable.setRows methods.

•	 rowCount: This property represents the total number of rows, from all pages,
starting from row 0. There is no attribute for this property. In the JSF API,
this is accessible through the HtmlDataTable.getRowCount method. Setting
the row count can be accomplished through the data model, as you will see
later. By default, is determined by JSF.

Chapter 6

[289]

In the following screenshot, these properties can be seen in detail:

The preceding information is very useful for to implementing the pagination
mechanism. First, we bind the table, and set the first row number and the
number of rows per page, as follows:

<h:dataTable value="#{playersBean.dataHashSet}"
 binding="#{playersBean.table}"
 rows="#{playersBean.rowsOnPage}" first="0" var="t">
...

Based on some arithmetic and EL condition's support, we can conclude the following:

•	 The first row number, the row number per page, and the total row count are
accessible via the following code:
FIRST: #{playersBean.table.first}
ROWS: #{playersBean.table.rows}
ROW COUNT: #{playersBean.table.rowCount}

•	 Navigate to the first page by using the following code:
public void goToFirstPage() {
 table.setFirst(0);
}

A button that accomplishes this navigation can be disabled by an EL
condition, as shown in the following code:
<h:commandButton value="First Page"
 action="#{playersBean.goToFirstPage()}"
 disabled="#{playersBean.table.first eq 0}" />

Working with Tabular Data

[290]

•	 Navigate to the next page by using the following code:
public void goToNextPage() {
 table.setFirst(table.getFirst() + table.getRows());
}

A button that accomplishes this navigation can be disabled by an EL
condition, as shown in the following code:
<h:commandButton value="Next Page"
 action="#{playersBean.goToNextPage()}"
 disabled="#{playersBean.table.first +
 playersBean.table.rows ge playersBean.table.rowCount}" />

•	 Navigate to the previous page by using the following code:
public void goToPreviousPage() {
 table.setFirst(table.getFirst() - table.getRows());
}

A button that accomplishes this navigation can be disabled by an EL
condition, as shown in the following code:
<h:commandButton value="Previous Page"
 action="#{playersBean.goToPreviousPage()}"
 disabled="#{playersBean.table.first eq 0}" />

•	 Navigate to the last page by using the following code:
public void goToLastPage() {
 int totalRows = table.getRowCount();
 int displayRows = table.getRows();
 int full = totalRows / displayRows;
 int modulo = totalRows % displayRows;

 if (modulo > 0) {
 table.setFirst(full * displayRows);
 } else {
 table.setFirst((full - 1) * displayRows);
 }
}

A button that accomplishes this navigation can be disabled by an EL
condition, as shown in the following code:
<h:commandButton value="Last Page"
 action="#{playersBean.goToLastPage()}"
 disabled="#{playersBean.table.first +
 playersBean.table.rows ge playersBean.table.rowCount}" />

Chapter 6

[291]

•	 Display the current page of the total pages message by using the
following code:
<h:outputText value="#{(playersBean.table.first div
 playersBean.table.rows) + 1}">
 <f:converter converterId="javax.faces.Integer"/>
</h:outputText>
of
<h:outputText value="#{playersBean.table.rowCount mod
 playersBean.table.rows eq 0 ? (playersBean.table.rowCount
 div playersBean.table.rows) :
 ((playersBean.table.rowCount div playersBean.table.rows)
 + 1)-(((playersBean.table.rowCount div
 playersBean.table.rows) + 1) mod 1)}">
 <f:converter converterId="javax.faces.Integer"/>
</h:outputText>

Merging all these chunks of code in a sample application (see the application
ch6_10_1), will result in something like the following screenshot:

The biggest issue here is that even if the data is displayed in pages, they are
still loaded in the memory as a bulk. In this case, pagination is just a slicer of the
collection, which has only visual effect. In reality, the pagination is the effect of lazy
loading, which represents a technique for querying only a portion of data from
a database (instead of slicing the data in memory, you slice it from the database
directly). There are many kinds of querying in a database, but in Java web/enterprise
applications, EJB/JPA is the most used. EJB and JPA are large technologies that can't
be covered here, but with some assumptions it will be very easy to understand the
upcoming example.

If you feel that EJB/JPA are not good choices, you should can take
into account the fact that the <h:dataTable> tag also supports
java.sql.ResultSet, javax.servlet.jsp.jstl.Result,
and javax.sql.CachedRowSet. So, for tests, you can use plain
JDBC as well.

Working with Tabular Data

[292]

Instead of the Players POJO class, this time you will use a Players JPA entity that
is bounded to a table named PLAYERS. This table contains the data that should be
displayed in the JSF table and it was created in Apache Derby RDBMS, in the APP
database (if you have NetBeans 8.0 with GlassFish 4.0, then this RDBMS and the
APP database are out of the box). The idea is to query this table to obtain only the
rows from first to first + rows, which is exactly the amount of rows displayed
per page. This can be easily accomplished by JPA using the setFirstResult and
setMaxResults methods of a query (the loadPlayersAction method was defined
in a EJB component, named PlayersSessionBean), as shown in the following code:

public HashSet<Players> loadPlayersAction(int first, int max) {

 Query query = em.createNamedQuery("Players.findAll");
 query.setFirstResult(first);
 query.setMaxResults(max);

 return new HashSet(query.getResultList());
}

So, passing the right first and max arguments will return the needed rows!

But pagination works if we know the total number of rows, since without this we
can't calculate the number of pages, or the last page, and so on. In JPA, we can do
this easily (the countPlayersAction method was defined in a EJB component,
named PlayersSessionBean) by using the following code:

public int countPlayersAction() {
 Query query = em.createNamedQuery("Players.countAll");
 return ((Long)query.getSingleResult()).intValue();
}

Knowing the total number of rows (without actually extracting the data from the
database) is great, but we need to tell JSF that number! Since HtmlDataTable doesn't
provide a setRowCount method, we have to take another approach into account. One
solution is to extend the DataModel class (or one of its subclasses) and provide the row
count explicitly; since we are using HashSet, we can extend the CollectionDataModel
class of JSF 2.2 as follows:

public class PlayersDataModel extends CollectionDataModel {

 private int rowIndex = -1;
 private int allRowsCount;
 private int pageSize;

Chapter 6

[293]

 private HashSet hashSet;

 public PlayersDataModel() {}

 public PlayersDataModel(HashSet hashSet, int allRowsCount,
 int pageSize)
 {
 this.hashSet = hashSet;
 this.allRowsCount = allRowsCount;
 this.pageSize = pageSize;
 }

 @Override
 public boolean isRowAvailable() {
 if (hashSet == null) {
 return false;
 }

 int c_rowIndex = getRowIndex();
 if (c_rowIndex >= 0 && c_rowIndex < hashSet.size()) {
 return true;
 } else {
 return false;
 }
 }

 @Override
 public int getRowCount() {
 return allRowsCount;
 }

 @Override
 public Object getRowData() {
 if (hashSet == null) {
 return null;
 } else if (!isRowAvailable()) {
 throw new IllegalArgumentException();
 } else {
 int dataIndex = getRowIndex();
 Object[] arrayView = hashSet.toArray();
 return arrayView[dataIndex];

Working with Tabular Data

[294]

 }
 }

 @Override
 public int getRowIndex() {
 return (rowIndex % pageSize);
 }

 @Override
 public void setRowIndex(int rowIndex) {
 this.rowIndex = rowIndex;
 }

 @Override
 public Object getWrappedData() {
 return hashSet;
 }

 @Override
 public void setWrappedData(Object hashSet) {
 this.hashSet = (HashSet) hashSet;
 }
}

So, creating a PlayersDataModel class can be accomplished in the following manner:

...
@Inject
private PlayersSessionBean playersSessionBean;
private int rowsOnPage;
private int allRowsCount = 0;
...
@PostConstruct
public void initHashSet() {
 rowsOnPage = 4; //any constant in [1, rowCount]
 allRowsCount = playersSessionBean.countPlayersAction();
 lazyDataLoading(0);
}
...
private void lazyDataLoading(int first) {
 HashSet<Players> dataHashSet =
 playersSessionBean.loadPlayersAction(first, rowsOnPage);
 playersDataModel = new PlayersDataModel(dataHashSet,
 allRowsCount, rowsOnPage);
}

Chapter 6

[295]

Finally, each time a page navigation is detected in the table, we just need to call the
following method:

lazyDataLoading(table.getFirst());

The complete example is available in the code bundle of this chapter, and is
named ch6_10_2.

Generating tables with the JSF API
JSF tables can be programmatically generated as well. The JSF API provides
comprehensive support to accomplish such tasks. First, you prepare the place
where the generated table will be added, as follows:

<h:body>
 <h:form id="tableForm">
 <h:panelGrid id="myTable">
 </h:panelGrid>
 <h:commandButton value="Add Table"
 action="#{playersBean.addTable()}"/>
 </h:form>
</h:body>

The idea is simple: when the button labeled Add Table is clicked, the generated table
should be attached in the <h:panelGrid> tag identified by the myTable ID.

Before creating a JSF table in a programmatic fashion, you need to know how to
create a table, a header/footer, a column, and so on. Let's have a short overview as
follows—the code is self-explanatory and straightforward, since JSF provides very
intuitive methods:

1.	 Let's create the simplest table, <h:dataTable value="..." var="t"
border="1"> using the following code:
public HtmlDataTable createTable(String exp, Class<?> cls) {
 HtmlDataTable table = new HtmlDataTable();
 table.setValueExpression("value",
 createValueExpression(exp, cls));
 table.setVar("t");
 table.setBorder(1);

 return table;
}

Working with Tabular Data

[296]

2.	 Now, we will create a column with a header, a footer, and a possible
converter, as follows:
public HtmlColumn createColumn(HtmlDataTable table,
 String header_name, String footer_name, String exp,
 Class<?> cls, Class<?> converter) {

 HtmlColumn column = new HtmlColumn();
 table.getChildren().add(column);

 if (header_name != null) {
 HtmlOutputText header = new HtmlOutputText();
 header.setValue(header_name);
 column.setHeader(header);
 }

 if (footer_name != null) {
 HtmlOutputText footer = new HtmlOutputText();
 footer.setValue(footer_name);
 column.setFooter(footer);
 }

 HtmlOutputText output = new HtmlOutputText();
 output.setValueExpression("value",
 createValueExpression(exp, cls));
 column.getChildren().add(output);

 if (converter != null) {
 if (converter.getGenericInterfaces()[0].
 equals(Converter.class)) {
 if (converter.equals(DateTimeConverter.class)) {
 DateTimeConverter dateTimeConverter = new
 DateTimeConverter();
 dateTimeConverter.setPattern("dd.MM.yyyy");
 output.setConverter(dateTimeConverter);
 }
 //more converters ...
 } else {
 //the passed class is not a converter!
 }
 }

 return column;
}

Chapter 6

[297]

3.	 Now, attach the table in DOM (in order to do that, you need to find the
desired parent component) using the following code:
public void attachTable(HtmlDataTable table,
 String parent_id) throws NullPointerException {
 UIComponent component = findComponent(parent_id);
 if (component != null) {
 component.getChildren().clear();
 component.getChildren().add(table);
 } else {
 throw new NullPointerException();
 }
}

The findComponent method uses the JSF visit method, which is very useful
for traversing a tree of components, which is shown in the following code:
private UIComponent findComponent(final String id) {
 FacesContext context = FacesContext.getCurrentInstance();
 UIViewRoot root = context.getViewRoot();
 final UIComponent[] found = new UIComponent[1];
 root.visitTree(new FullVisitContext(context),
 new VisitCallback() {

 @Override
 public VisitResult visit(VisitContext context,
 UIComponent component) {
 if (component.getId().equals(id)) {
 found[0] = component;
 return VisitResult.COMPLETE;
 }
 return VisitResult.ACCEPT;
 }
 });
 return found[0];
}

In Mojarra, the FullVisitContext method comes from the
com.sun.faces.component.visit package. In MyFaces,
this class comes from the org.apache.myfaces.test.mock.
visit package. Both the implementations extend javax.faces.
component.visit.VisitContext.

Working with Tabular Data

[298]

4.	 The necessary expressions are then added as shown in the following code
(you saw another example of this in Chapter 2, Communication in JSF):
private ValueExpression createValueExpression(String exp,
 Class<?> cls) {
 FacesContext facesContext =
 FacesContext.getCurrentInstance();
 ELContext elContext = facesContext.getELContext();
 return facesContext.getApplication().
 getExpressionFactory().
 createValueExpression(elContext, exp, cls);
}

5.	 Finally, merge these methods in a helper class, TableHelper.
Remember the button labeled Add Table? Well, when that button is clicked,
the addTable method is called. This method exploits the TableHelper class
for programmatically creating a table, as shown in the following code:
public void addTable() {

 TableHelper tableHelper = new TableHelper();
 HtmlDataTable tableHashSet = tableHelper.createTable
 ("#{playersBean.dataHashSet}", HashSet.class);
 tableHelper.createColumn(tableHashSet, "Ranking",
 null, "#{t.ranking}", Integer.class, null);
 tableHelper.createColumn(tableHashSet, "Name",
 null, "#{t.player}", String.class, null);
 tableHelper.createColumn(tableHashSet, "Age",
 null, "#{t.age}", Byte.class, null);
 tableHelper.createColumn(tableHashSet, "Birthplace",
 null, "#{t.birthplace}", String.class, null);
 tableHelper.createColumn(tableHashSet, "Residence",
 null, "#{t.residence}", String.class, null);
 tableHelper.createColumn(tableHashSet, "Height (cm)",
 null, "#{t.height}", Short.class, null);
 tableHelper.createColumn(tableHashSet, "Weight (kg)",
 null, "#{t.weight}", Byte.class, null);
 tableHelper.createColumn(tableHashSet, "Coach",
 null, "#{t.coach}", String.class, null);
 tableHelper.createColumn(tableHashSet, "Born",
 null, "#{t.born}", java.util.Date.class,
 DateTimeConverter.class);
 tableHelper.attachTable(tableHashSet, "myTable");
}

Done! The complete application is available in the code bundle of this chapter, and is
named ch6_11.

Chapter 6

[299]

A programmatically generated table would be an apt approach for generating tables
with variable number of columns, or dynamic columns. Let's suppose that we have
two JPA entities, Players and Trophies. The first entity should produce a table
with nine columns, while Trophies should produce a table with three columns.
Moreover, the column names (headers) differ. It may sound complicated, but
actually is more simple than you would have expected.

Think that each table is mapped by a JPA entity, which means that we can write
specific queries by indicating the entity name. Moreover, each entity can be passed
through Java's reflection mechanism to extract the field's names (we are focusing
on the private fields), which gave us the column headers. (If you alter the column
names using @Column(name="alias_name"), then the process will be a little tricky to
reflect the alias names.) So, we can use the following code (the package name is fixed):

@Inject
//this is the EJB component that queries the database
private QueryBean queryBean;
HashSet<Object> dataHashSet = new HashSet<>();
...
public void addTable(String selectedTable) {

 try {
 dataHashSet.clear();

 dataHashSet = queryBean.populateData(selectedTable);

 String tableToQuery = "book.ejbs." + selectedTable;

 Class tableClass = Class.forName(tableToQuery);
 Field[] privateFields = tableClass.getDeclaredFields();

 TableHelper tableHelper = new TableHelper();
 HtmlDataTable tableHashSet = tableHelper.createTable
 ("#{playersBean.dataHashSet}", HashSet.class);

 for (int i = 0; i < privateFields.length; i++) {
 String privateField = privateFields[i].getName();
 if ((!privateField.startsWith("_")) &&
 (!privateField.equals("serialVersionUID"))) {
 tableHelper.createColumn(tableHashSet, privateField,
 null, "#{t."+privateField+"}",
 privateFields[i].getType(), null);

Working with Tabular Data

[300]

 }
 }

 tableHelper.attachTable(tableHashSet, "myTable");

 } catch (ClassNotFoundException ex) {
 Logger.getLogger(PlayersBean.class.getName()).
 log(Level.SEVERE, null, ex);
}

So, as long as we pass the table name (entity name) to this method, it will return the
corresponding data. For the complete example, check the application named ch6_12
in the code bundle of this chapter.

Filtering tables
Filtering data is a very useful facility in a table. It allows the user to see only the set of
data that matches a certain set of rules (criteria); most commonly, filter by column(s).
For example, the user may need to see all players younger than 26 years, which is a
filter applied in the column labeled Age.

Basically, a filter can have only visual effect, without modifying the filtered data
(using some CSS, JS code, or duplicating the filter results in a separate collection
and displaying that collection), or by removing the unnecessary items for the initial
collection (which requires restoring its content when the filter is removed).

In JSF, we can write a nice filter by playing with some CSS code, which can be used
to hide/show rows of a table; this is not a recommended approach in production,
since all the data is still available in the source page, but it might be useful when
you don't need anything fancy. The idea is to hide all of the table's rows that do not
match the filter criteria, and for this, we can exploit the rowClasses attribute of the
<h:dataTable> tag. This attribute's value is represented by a string of CSS classes
separated by a comma; JSF iterates the CSS classes and applies them sequentially
and repeatedly over rows.

Consider the following two CSS classes:

.rowshow
{
 display:visible;
}

.rowhide
{
 display:none;
}

Chapter 6

[301]

Now, a filter can use the rowshow CSS class to display a row containing valid data,
and the rowhide CSS class to hide the rest of the rows. For example, iterating over a
collection of five elements can reveal the following string of CSS classes:

rowshow, rowhide, rowshow, rowhide, rowhide

So, only the first and the third row will be visible.

Let's have a look at the steps involved in the writing of such a filter:

1.	 A convenient way to add a filter selection per column consists of using the
<h:selectOneMenu> tag. For example, we add a filter selection in the Age
column, as follows:
...
<h:column>
 <f:facet name="header">
 Age

 <h:selectOneMenu value="#{playersBean.criteria}">
 <f:selectItem itemValue="all" itemLabel="all" />
 <f:selectItem itemValue="<26" itemLabel="<26" />
 <f:selectItem itemValue=">=26" itemLabel=">=26" />
 </h:selectOneMenu>
 <h:commandButton value="Go!"
 action="#{playersBean.addTableFilter()}"/>
 </f:facet>
 <h:outputText value="#{t.age}"/>
</h:column>
...

2.	 The addTableFilter method is called when the button labeled Go! is
clicked. It checks the value of the criteria property, and if the value equals
<26 or >=26, then it iterates over the table rows and builds the corresponding
string of CSS classes. Otherwise, if the criteria property is equal to all, the
filter is removed, as shown in the following code:
public void addTableFilter() {

 if (!criteria.equals("all")) {
 String c = "";
 for (int i = 0; i < table.getRowCount(); i++) {
 table.setRowIndex(i);
 Players player = (Players) table.getRowData();
 if (criteria.equals("<26")) {
 if (player.getAge() >= 26) {

Working with Tabular Data

[302]

 c = c + "rowhide,";
 } else {
 c = c + "rowshow,";
 }
 }
 if (criteria.equals(">=26")) {
 if (player.getAge() < 26) {
 c = c + "rowhide,";
 } else {
 c = c + "rowshow,";
 }
 }
 }

 String css = "rowshow";
 if (!c.isEmpty()) {
 css = c.substring(0, c.length() - 1);
 }

 rowsOnPage = table.getRowCount();
 table.setRowClasses(css);
 table.setFirst(0);
 } else {
 removeTableFilter();
 }
}

3.	 The following removeTableFilter method will restore the CSS class;
therefore, all data will be visible again:
public void removeTableFilter() {
 String css = "rowshow";
 rowsOnPage = 4; //any constant in [1, rowCount]
 table.setRowClasses(css);
 table.setFirst(0);
}

For the complete example, check the application named ch6_13_1 in the code bundle
of this chapter.

Chapter 6

[303]

It's important to notice that the number of rows per page is modified when the filter
is applied. Actually, when the filter results are displayed, the rows per page become
equal to table row count, and when the filter is removed, they take a value anything
from 1 to row count. The conclusion is that the filtered data is displayed in a table
without pagination.

In some cases, like filtering by age, you can apply a sort before generating the string
of CSS classes. This will help you to display the filter results, without affecting data,
and with pagination available. A complete example can be found in the code bundle
of this chapter, named ch6_13_2.

You can obtain the same results by removing from the initial collection the items
that do not match the filter criteria. For example, notice that before applying a filter,
you need to restore the initial data of the collection—the initHashSet method can
do that:

public void addTableFilter() {

 initHashSet();

 Iterator<Players> i = dataHashSet.iterator();
 while (i.hasNext()) {
 Players player = i.next();
 if (criteria.equals("<26")) {
 if (player.getAge() >= 26) {
 i.remove();
 }
 }
 if (criteria.equals(">=26")) {
 if (player.getAge() < 26) {
 i.remove();
 }
 }
 }

 table.setFirst(0);
}

If you want to apply a chain of filters, then restore the data before entering in
the chain. A complete example can be found in the code bundle of this chapter
named ch6_13_3.

Working with Tabular Data

[304]

Since collections that feed tables are usually populated from databases, you can
apply filters directly on databases. A common case is represented by tables with a
lazy loading mechanism; since you have only a slice of data in memory, you need to
apply the filter on the database instead of filtering the collection that populates the
table. This means that the filtration process is accomplished through SQL queries.
For example, our filter can be modeled through SQL queries, by performing the
following steps (this example is based on the lazy loading application presented
earlier in this chapter):

1.	 You pass the filter criteria to the EJB component (copy_criteria acts as
a flag—you don't want to count the number of rows each time the user
navigates through table pages using the same filter), as shown in the
following code:
@Inject
private PlayersSessionBean playersSessionBean;
private PlayersDataModel playersDataModel;
private String criteria = "all";
private String copy_criteria = "none";
private int allRowsCount = 0;
...
private void lazyDataLoading(int first) {
 if (!copy_criteria.equals(criteria)) {
 allRowsCount =
 playersSessionBean.countPlayersAction(criteria);
 copy_criteria = criteria;
 }

 HashSet<Players> dataHashSet =
 playersSessionBean.loadPlayersAction(first, rowsOnPage,
 criteria);
 playersDataModel = new PlayersDataModel(dataHashSet,
 allRowsCount, rowsOnPage);
}

2.	 Count the number of rows returned by the filter as follows:
public int countPlayersAction(String criteria) {

 if (criteria.equals("all")) {
 Query query = em.createNamedQuery("Players.countAll");
 return ((Long) query.getSingleResult()).intValue();
 }

 if (criteria.equals("<26")) {

Chapter 6

[305]

 Query query = em.createQuery("SELECT COUNT(p) FROM
 Players p WHERE p.age < 26");
 return ((Long) query.getSingleResult()).intValue();
 }

 if (criteria.equals(">=26")) {
 Query query = em.createQuery("SELECT COUNT(p) FROM
 Players p WHERE p.age >= 26");
 return ((Long) query.getSingleResult()).intValue();
 }

 return 0;
}

3.	 Finally, round off by applying the filter criteria using SQL queries as follows:
public HashSet<Players> loadPlayersAction(int first,
 int max, String criteria) {

 if (criteria.equals("all")) {
 Query query = em.createNamedQuery("Players.findAll");
 query.setFirstResult(first);
 query.setMaxResults(max);
 return new HashSet(query.getResultList());
 }

 if (criteria.equals("<26")) {
 Query query = em.createQuery("SELECT p FROM Players
 p WHERE p.age < 26");
 query.setFirstResult(first);
 query.setMaxResults(max);
 return new HashSet(query.getResultList());
 }

 if (criteria.equals(">=26")) {
 Query query = em.createQuery("SELECT p FROM Players p
 WHERE p.age >= 26");
 query.setFirstResult(first);
 query.setMaxResults(max);
 return new HashSet(query.getResultList());
 }

 return null;
}

Done! The complete example is available in the code bundle of this chapter and it is
named ch6_13_4.

Working with Tabular Data

[306]

Styling tables
Almost all JSF UI components support the style and styleClass attributes for
creating custom designs using CSS. But the <h:dataTable> tag supports attributes,
such as captionClass, captionStyle, columnClasses, rowClasses, headerClass,
and footerClass. Therefore, we should have no problem in adding a CSS style to every
single part of a table (header, footer, caption, and so on). Obviously, there are plenty of
examples that can be built, but let's see three of the most impressive and used ones.

Alternate row colors with the rowclasses
attribute
The rowClasses attribute is used to indicate a string of CSS classes separated by
a comma. The string is parsed by JSF, and the styles are applied sequentially and
repeatedly to rows. For example, you can color the even rows with one color, and
the odd rows with some other color, as follows:

<h:dataTable value="#{playersBean.data}" rowClasses="even, odd"
 var="t">
...

Here, even and odd are the following CSS classes:

.odd {
 background-color: gray;
}

.even{
 background-color: darkgray;
}

A possible output can be seen in the following screenshot:

Chapter 6

[307]

You can obtain the same effect for columns, by using the
columnClasses attribute instead of the rowClasses attribute.

The complete example is named ch6_14_1.

Highlighting rows on mouse hover
Highlighting rows on mouse hover is a nice effect that can be accomplished with a
piece of JavaScript. The idea is to set the onmouseover and onmouseout attributes,
as shown in the following self-explanatory code:

...
<script type="text/javascript">
 //<![CDATA[
 function onmouseOverOutRows() {
 var rows = document.getElementById('playersTable').
 getElementsByTagName('tr');
 for (var i = 1; i < rows.length; i++) {
 rows[i].setAttribute("onmouseover",
 "this.bgColor='#00cc00'");
 rows[i].setAttribute("onmouseout",
 "this.bgColor='#ffffff'");
 }
 }
 //]]>
</script>
...

<h:body onload="onmouseOverOutRows();">
 <h:dataTable id="playersTable" value="#{playersBean.data}"
 var="t">
...

The complete example is named ch6_14_2.

Another approach does not involve using the JavaScript code. In this case, you can
try CSS pseudo-classes, as follows:

tbody tr:hover {
 background-color: red;
}

Done! The complete application is named ch6_14_3.

Working with Tabular Data

[308]

Highlighting rows on mouse click
Highlighting rows with a mouse click can be done with another piece of JavaScript
code. You have to add the onclick attribute to each row and control the color
alternation when the user clicks repeatedly on the same row, as shown in the
following code:

<script type="text/javascript">
 //<![CDATA[
 function onClickRows() {
 var rows = document.getElementById('playersTable').
 getElementsByTagName('tr');
 for (var i = 1; i < rows.length; i++) {
 rows[i].setAttribute("onclick", "changeColor(this);");
 }
 }

 function changeColor(row) {
 var bgcolor = row.bgColor;
 if (bgcolor === "") {
 row.bgColor = "#00cc00";
 } else if (bgcolor === "#00cc00") {
 row.bgColor = "#ffffff";
 } else if (bgcolor === "#ffffff") {
 row.bgColor = "#00cc00";
 }
 }
 //]]>
</script>
...
<h:body onload="onClickRows();">
 <h:dataTable id="playersTable" value="#{playersBean.data}"
 var="t">
...

The complete example is named ch6_14_4 in the code bundle of this chapter.

Chapter 6

[309]

Summary
Tabular data is very commonly used in web applications, and this chapter is a tribute
to the powerful JSF DataTable component (<h:dataTable>). JSF 2.2 brought even
more power by allowing developers to render more collections than before, by adding
the new CollectionDataModel class. This chapter covers the most common tasks that
a table should accomplish, such as sorting, filtering, lazy loading, and CSS support.
Notice that a cool and comprehensive extension of the <h:dataTable> tag is provided
by PrimeFaces (http://primefaces.org/) under the tag named <p:dataTable>
(http://www.primefaces.org/showcase/ui/datatableHome.jsf).

In the next chapter, we will be covering the AJAX technique for JSF applications.

http://primefaces.org/
http://www.primefaces.org/showcase/ui/datatableHome.jsf

JSF and AJAX
JSF and AJAX have been a great team for a long time. The potential of this combination
has been heavily exploited by many JSF extensions (Ajax4Jsf, OmniFaces, PrimeFaces,
RichFaces, ICEfaces, and so on) that provide many AJAX built-in components, extend
AJAX default capabilities, increase AJAX security and reliability, and add more control
to developers who need to manipulate the bowels of AJAX mechanism.

By default, JSF contains a JavaScript library that encapsulates AJAX methods
for dealing with AJAX requests or responses. This library can be loaded in the
following two ways:

•	 Using the <f:ajax> tag, the built-in AJAX library is loaded implicitly.
•	 Using jsf.ajax.request(), the AJAX library is loaded explicitly and

developers have access to AJAX code. This approach is commonly used
when the default AJAX behavior must be altered. It should be performed
only by developers with high expertise, because modifying the default AJAX
behavior may lead to undesirable issues and gaps.

In this chapter, you will learn the following topics:

•	 A brief overview of the JSF-AJAX lifecycle
•	 A simple JSF-AJAX example
•	 How the execute, render, listener, and event attributes work
•	 Monitoring AJAX state on client
•	 Monitoring AJAX errors on client
•	 Grouping components under the <f:ajax> tag
•	 Updating input fields with AJAX after a validation error
•	 Mixing AJAX and flow scope
•	 How postback and AJAX work together

JSF and AJAX

[312]

•	 How to determine whether a request is AJAX or non-AJAX
•	 How AJAX and <f:param> work
•	 Queue control for AJAX requests
•	 How jsf.js can be loaded explicitly
•	 How to write an AJAX progress bar / indicator

A brief overview of the JSF-AJAX
lifecycle
AJAX's request-response cycle is characterized by partial processing and partial
rendering stages; this means that AJAX partially affects the current view. As such,
requests are not typical JSF requests, they follow a different lifecycle dictated by the
javax.faces.context.PartialViewContext class. The methods of this class know
how to deal with AJAX requests, which means that they are responsible for solving
partial processing and rendering of the component tree.

The kernel of an AJAX request is represented by two attributes of the <f:ajax> tag:
execute and render. The execute attribute indicates the components that should be
processed on the server (partial processing), while the render attribute indicates the
components that should be rendered (or re-rendered) on the client (partial rendering).

In the upcoming sections, you will see many examples of how these attributes works.

A simple JSF-AJAX example to get
started
The simplest JSF-AJAX example can be written in a matter of a few seconds.
Let's consider a JSF form with an input text and a button that sends the user input
to the server. The user input (a string) is converted by the server to uppercase and is
displayed to the user in an output text component. Next, you can ajaxify this scenario
as shown in the following example code:

<h:form>
 <h:inputText id="nameInputId" value="#{ajaxBean.name}"/>
 <h:commandButton value="Send" action="#{ajaxBean.ajaxAction()}">
 <f:ajax/>
 </h:commandButton>
 <h:outputText id="nameOutputId" value="#{ajaxBean.name}"/>
</h:form>

Chapter 7

[313]

The presence of the <f:ajax> tag is sufficient to transform this request into an AJAX
request. Well, it is true that this request is not very useful because we did not specify
which components should be executed and what components should be re-rendered.
But the good part is that you will not receive any errors; JSF will use the default
values for the execute and render attributes, which ask JSF to process the element
that triggered the request and to re-render nothing.

When the execute or render attribute is missing, JSF will process
the element that triggered the request and re-render nothing.

Adding the execute attribute with the value of the inputText ID (nameInputId) tag
will tell JSF to pass to the server the user input. This means that the user input will
be available in the ajaxAction method and will be converted to uppercase. You can
check the effect of this method in the application server log because it is not visible
on the client side, since the render attribute still defaults to nothing. Therefore, you
need to add the render attribute and indicate the IDs of the components that should
be re-rendered; in this case, the output text with the ID nameOutputId:

<h:form>
 <h:inputText id="nameInputId" value="#{ajaxBean.name}"/>
 <h:commandButton value="Send" action="#{ajaxBean.ajaxAction()}">
 <f:ajax execute ="nameInputId" render="nameOutputId"/>
 </h:commandButton>
 <h:outputText id="nameOutputId" value="#{ajaxBean.name}"/>
</h:form>

Done! This is a simple and functional AJAX application. You can find the complete
code in the code bundle of this chapter, named ch7_1.

The JSF-AJAX attributes
In this section, you will see what the main attributes supported by <f:ajax> are.
We start with execute and render, continue with listener and event, and finish
with onevent and onerror.

JSF and AJAX

[314]

The execute and render attributes
In the previous example, the execute and render attributes affect a single
component indicated by its ID. When multiple components are affected, we can
specify a list of IDs separated by space, or we can use the following keywords:

•	 @form: This keyword refers to all component IDs in the form that contains
the AJAX component. If it is present in the execute attribute, then the entire
<h:form> is submitted and processed. In case of the render attribute, the
entire <h:form> is rendered.

•	 @this: This keyword refers to the ID of the element that triggers the request
(default when execute is missing). For the execute attribute, @this will
submit and process only the component that contains the AJAX component,
while for the render attribute, it will render only the component that
contains the AJAX component.

•	 @none: No component will be processed/re-rendered. But for the execute
attribute, JSF will still execute the lifecycle, including its phase listeners;
while for the render attribute, JSF will perform the Render Response phase,
including firing any preRenderView events. This is the default value for the
render attribute.

•	 @all: This keyword represents all components IDs. For execute,
all components in a page are submitted and processed—like a full page
submit. For the render attribute, JSF will render all components in the page;
this will update the page, but will allow preserving some client-side states
outside the JSF.

Depending on the application's needs, these keywords and component IDs can
be mixed to obtain cool AJAX requests. For example, go through the following
AJAX requests:

•	 Process and re-render the current form using the following code:
<f:ajax execute="@form" render="@form"/>

•	 Process form, re-render none, as follows:
<f:ajax execute="@form" render="@none"/>

•	 Process the element that triggers the request and re-renders the form,
as follows:
<f:ajax execute="@this" render="@form"/>

Chapter 7

[315]

•	 Process the form and re-render all as follows:
<f:ajax execute="@form" render="@all"/>

•	 Process the form and re-render the components with IDs nameInputId
phoneInputId inside the form as follows:
<f:ajax execute="@form" render="nameInputId phoneInputId"/>

We can continue with many other examples, but I think you got the idea.

The keywords (@form, @this, @all, and @none) and component
IDs can be mixed in the same value of the render and execute
attribute. Don't forget to separate them with spaces.

The complete application can be seen in the code bundle of this chapter, and is
named as ch7_2.

A special case consists in re-rendering components outside the form that contains the
AJAX element that triggers the request. Take a look at the following example:

<h:message id="msgId" showDetail="true" showSummary="true"
 for="nameId" style="color: red;"/>
<h:form>
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:commandButton value="Submit">
 <f:ajax execute="@form" listener="#{ajaxBean.upperCaseName()}"
 render="@form :msgId :trackRequestId:trackId"/>
 </h:commandButton>
</h:form>
<h:form id="trackRequestId">
 Request number: <h:outputText id="trackId"
 value="#{ajaxBean.request}"/>
</h:form>

Use the : notation for updating components outside the form,
which contains the element that triggers the AJAX request.
This notation represents the default separator returned by the
UINamingContainer.getSeparatorChar method. This can be
specified via the javax.faces.SEPARATOR_CHAR context parameter.

The complete application can be found in the code bundle of this chapter, and is
named ch7_3.

JSF and AJAX

[316]

The listener attribute
Another important attribute of <f:ajax> is named listener. This attribute indicates
a server-side method that should be executed when an AJAX request is fired by a
client action. For example, you can do this using the following code:

<h:form>
 <h:inputText value="#{ajaxBean.name}"/>
 <h:commandButton value="Send"
 action="#{ajaxBean.upperCaseName()}">
 <f:ajax execute="@form" render="@form"/>
 </h:commandButton>
</h:form>

Well, using the listener attribute you can transform the preceding code into the
following code:

<h:form>
 <h:inputText value="#{ajaxBean.name}"/>
 <h:commandButton value="Send">
 <f:ajax listener="#{ajaxBean.upperCaseName()}"
 execute="@form" render="@form"/>
 </h:commandButton>
</h:form>

An obvious question arises here. What is the difference between these two and why
should I use listener and not action? Well, there are a few differences between
these two, and the following are the most important ones:

•	 A server-side method called through the action attribute can return String
representing a navigation case (outcome), while a server-side method called
through listener cannot provide a navigation case.

•	 If the client disables JavaScript in the browser configuration, the listener
attribute will not work anymore—the server-side method will not be called.
The action attribute still works.

•	 Components that do not support the action attribute can use
listener instead.

•	 The server-side method called through the listener attribute accepts an
argument of type AjaxBehaviorEvent, which represents the component
behavior specific to AJAX. This is not accepted in case of the action
attribute. For example, refer to the following code:
<h:form>
 <h:inputText value="#{ajaxBean.name}"/>
 <h:commandButton value="Send">

Chapter 7

[317]

 <f:ajax listener="#{ajaxBean.upperCaseName}"
 execute="@form" render="@form"/>
 </h:commandButton>
</h:form>
...

public void upperCaseName(AjaxBehaviorEvent event){
...
}

Remember that the client behavior (the ClientBehavior interface)
is responsible for generating reusable JavaScript code that can be
added to JSF components. The AJAX (<f:ajax>) is a client-side
behavior, which means it is always attached as a behavior to another
UI component(s). You can find more details about ClientBehavior
in the Working with client behavior functionality section in Chapter 5, JSF
Configurations Using XML Files and Annotations – Part 2.

The complete application can be found in the code bundle of this chapter, and is
named ch7_4.

The event attribute
Each AJAX request is fired by an event indicating a user or programmatic
action. JSF defines default events based on the parent components; according to
documentation "The default event is action for ActionSource components such as
<h:commandButton>, and valueChange for EditableValueHolder components such
as <h:inputText>". Most of the time, the default events are exactly what you need,
but in case that you want to explicitly set an event for a component, you can use the
event attribute. Some of the most common values for this attribute are click, focus,
blur, keyup, and mouseover.

Do not confuse these events with JavaScript events, which are prefixed
with the on notation (onclick, onkeyup, onblur, and so on). The
JavaScript events are behind AJAX events; or, with other words, AJAX
events are based on JavaScript events. For example, AJAX click event
is based on the onclick JavaScript event.

JSF and AJAX

[318]

In the following code, the event that triggers the AJAX action is keyup:

<h:form>
 <h:inputText value="#{ajaxBean.name}">
 <f:ajax event="keyup" listener="#{ajaxBean.upperCaseName()}"
 render="@this"/>
 </h:inputText>
</h:form>

The complete application can be found in the code bundle of this chapter, and is
named ch7_5.

The onevent attribute – monitoring AJAX state
on client
During an AJAX request, JSF is capable of calling a client-defined JavaScript method
and passing an object named data to it, containing information about the current
state of the request. The JavaScript function is called when the request begins,
completes, and succeeds.

The data objects encapsulate the following properties:

•	 type: This property gives the type of the AJAX call, event
•	 status: This property returns the begin, complete, or success status

(can be used to implement an indeterminate progress bar).

When the status property has the value begin, which means that
the AJAX request has not been sent yet. When it equals complete, it
means that the AJAX response has successfully reached to the client,
but it hasn't been processed yet. If the received response is successfully
processed (without errors), the status value becomes success.

•	 source: This property returns the DOM element representing the source of
the AJAX event

•	 responseXML: This is the AJAX response in XML format
•	 responseText: This is the AJAX response in text format
•	 responseCode: This is the AJAX response code

Chapter 7

[319]

You need to indicate the name of the JavaScript method through the onevent
attribute (in jsf.js, the JavaScript method representing implementation of
this attribute is named addOnEvent(callback)):

<h:commandButton value="Submit">
 <f:ajax onevent="ajaxMonitoring" execute="@form"
 listener="#{ajaxBean.upperCaseName()}" render="@form"/>
</h:commandButton>

Next, the ajaxMonitoring function can use the data object and its properties to
accomplish different client-side tasks. For example, the following implementation
feeds up some div tags with details about the AJAX request:

<script type="text/javascript">
 function ajaxMonitoring(data) {
 document.getElementById("statusId").innerHTML += data.status +
 " | ";
 document.getElementById("responseCodeId").innerHTML +=
 status.responseCode + "| ";
 if(data.status === "complete") {
 document.getElementById("typeId").innerHTML += data.type;
 document.getElementById("sourceId").innerHTML +=
 data.source;
 ...
</script>

In the following figure, you can see a possible output:

The complete application can be found in the code bundle of this chapter, and is
named ch7_21.

JSF and AJAX

[320]

The onerror attribute – monitoring AJAX
errors on client
In the preceding section, you saw how to monitor the state of AJAX requests using a
client-defined JavaScript function and the data object. Based on the same technique,
we can obtain information about the possible errors that can occur during AJAX
requests. The passed data object encapsulates the following properties (notice that
this is the same data object from the preceding section; therefore you still have
access to those properties): description, errorName, and errorMessage.

The data.type property will be error and the data.status property will be one of
the following:

•	 serverError: This is the response of the AJAX request that contains an error
•	 malformedXML: This is an XML well-formed error
•	 httpError: This is a valid HTTP error
•	 emptyResponse: This is a server-side code that did not provide a response

The name of the JavaScript method is indicated through the onerror attribute
(in jsf.js, the JavaScript method representing implementation of this attribute is
named addOnError (callback)). So at this point, we can update the application from
the previous section to report errors on the client as well, as shown in the following
code (note that onevent and onerror calls the same method, ajaxMonitoring;
however this is not mandatory as you can use separate JavaScript methods as well):

<script type="text/javascript">
 function ajaxMonitoring(data) {
 document.getElementById("statusId").innerHTML += data.status +
 " | ";
 if(data.status === "serverError" || data.status
 === "malformedXML" ||
 data.status === "httpError" || data.status
 === "emptyResponse"){
 document.getElementById("descriptionId").innerHTML +=
 data.description;
 document.getElementById("errorNameId").innerHTML +=
 data.errorName;
 document.getElementById("errorMessageId").innerHTML +=
 data.errorMessage;
 }
 document.getElementById("responseCodeId").innerHTML +=
 status.responseCode + "| ";
 if (data.status === "complete") {
 document.getElementById("typeId").innerHTML += data.type;

Chapter 7

[321]

 document.getElementById("sourceId").innerHTML +=
 data.source +
 "
<xmp>" + new XMLSerializer().
 serializeToString(data.source) +
 "</xmp>";
 document.getElementById("responseXMLId").innerHTML +=
 data.responseXML + "
<xmp>" + new
 XMLSerializer().serializeToString(data.responseXML)
 + "</xmp>";
 document.getElementById("responseTextId").innerHTML +=
 "<xmp>" +
 data.responseText + "</xmp>";
 }
 }
</script>

Now, you can test this code by adding an intentional error, such as calling
nonexistent server-side method, as shown in the following code:

<h:commandButton value="Submit">
 <f:ajax onevent ="ajaxMonitoring" onerror="ajaxMonitoring"
 execute="@form" listener="#{ajaxBean.unexistedMethod()}"
 render="@form"/>
</h:commandButton>

A possible output is shown in the following screenshot:

The complete application can be found in code bundle of this chapter, and is
named ch7_6.

JSF and AJAX

[322]

Grouping components under <f:ajax> tag
Sometimes, it may be useful to group multiple components under the same
<f:ajax> tag. For example, the following code snippet groups two <h:inputText>
components under the same <f:ajax> tag (you can nest other components as well):

<f:ajax event="click" execute="submitFormId" render="submitFormId">
 <h:form id="submitFormId">
 Name:
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:message id="msgNameId" showDetail="true" showSummary="true"
 for="nameId" style="color: red;"/>
 Surname:
 <h:inputText id="surnameId" value="#{ajaxBean.surname}"
 validator="nameValidator"/>
 <h:message id="msgSurnameId" showDetail="true"
 showSummary="true"
 for="surnameId" style="color: red;"/>
 </h:form>
</f:ajax>

So, how does it work? When you click either of the input components, an AJAX
request is fired for the input component and one for the form (two requests in our
example) and all the components in the form are re-rendered. Since the click
event will generate AJAX requests/responses, you will not be able to enter keys
in those <h:inputText> unless you are using the Tab key to gain focus in each
<h:inputText> component.

The components grouped under <f:ajax> can still use inner
(or locally used) <f:ajax> tags. In this case, the effect is
cumulative. Of course, you have to be extra careful when you
use this technique, because undesired behaviors may occur.

The complete application can be found in the code bundle of this chapter, and is
named ch7_7.

Chapter 7

[323]

Updating input fields with AJAX after
validation error
Updating input fields with AJAX after validation error is a very old, well-known,
and annoying issue for JSF developers. When an AJAX request fails in the validation
phase, there is no built-in way to update the input fields with some valid values
because JSF does not allow access to the model value after a validation error (usually,
you want to clear up those fields or provide some default values, or even some
old values provided by the same user). Of course, JSF developers found different
workarounds, or used other libraries, such as PrimeFaces or OmniFaces, but a JSF
solution was required.

Starting with JSF 2.2, all components that should be re-rendered (components
indicated in the render attribute) will be reset if we set the resetValues attribute
to true. The easiest way to understand this is to proceed with a comparison test.
First, let's use an AJAX request without resetValues:

<h:form>
 <h:message id="msgId" showDetail="true" showSummary="true"
 for="nameId" style="color: red;"/>
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:commandButton value="Submit">
 <f:ajax execute="@form" resetValues="false"
 listener="#{ajaxBean.upperCaseName()}" render="nameId
 msgId"/>
 </h:commandButton>
</h:form>

Let's suppose that a valid value for our input field is an alphanumeric string
(with respect to the [^a-zA-Z0-9] pattern). In the following screenshot, on the
left-hand side, you can see the AJAX result after inserting a valid value, and on
the right-hand side, you can see the AJAX result after inserting an invalid value:

JSF and AJAX

[324]

As you can see in the preceding screenshot, on the right-hand side, the invalid value
was not reset. The invalid value retains and is very annoying.

Next, we proceed with the same case, but we add the resetValues attribute:

<h:form>
 <h:message id="msgId" showDetail="true" showSummary="true"
 for="nameId"
 style="color: red;"/>
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:commandButton value="Submit">
 <f:ajax execute="@form" resetValues="true"
 listener="#{ajaxBean.upperCaseName()}" render="nameId
 msgId"/>
 </h:commandButton>
</h:form>

Now, we repeat the test. In the following screenshot, on the left-hand side, the
submitted value is valid, while on the right-hand side, it is invalid:

Now, when the submitted value was invalid, the input field was reset
(in this case, cleared).

From this example, you may misunderstand that resetValues works
as a clear (empty) field's action. Well, it does not! When an input field
is reset, the valid value that replaces the invalid one is related to the
managed bean (the renderer will pick up the value from the bean). If
the managed bean is in the request scope, the replacer (valid value)
will be the one used for initialization of corresponding property (which
may be anything, not just an empty string). But, if the managed bean
is in view scope, then the replacer will be the currently valid value of
the corresponding property, which may be the initialization value, or
the previous valid value inserted by the user (of course, altered or not
altered in a server-side method).

Chapter 7

[325]

Keep this note in mind while testing the complete application available in the code
bundle of this chapter, named ch7_8_1. By default, this application comes with a
request scoped managed bean, but you can easily transform it into a view scoped for
more tests.

Besides the resetValues attribute for AJAX requests, JSF 2.2 comes with a tag,
named <f:resetValues>, for non-AJAX requests. Basically, this is an action
listener that can be easily attached to any ActionSource instance (for example,
<h:commandButton>). The effect will consist of resetting all components that are
given in its render attribute (use only component IDs, not keywords such as @form,
@all, and so on):

<h:commandButton value="Submit"
 action="#{nonAjaxBean.upperCaseName()}">
 <f:resetValues render="nameId" />
</h:commandButton>

The complete application can be found in the code bundle of this chapter, and is
named ch7_8_2. This tag is not recognized in all JSF 2.2 (Mojarra and MyFaces)
versions, therefore you have to test it in order to be sure that you can use it.

The Cancel and Clear buttons
Buttons of type Cancel (which resets the form's fields to the initial state or to the
most recent valid state) and Clear (which clears up the form's fields) are not very
popular in web applications, but sometimes they can be useful to end users. When
implementing the Cancel/Clear buttons, you need to find a way to skip the Process
Validation phase (which is needed for the Submit button). The motivation is simple:
when a user cancels/clears a form's values, we certainly don't need valid values in
order to accomplish these tasks; therefore, no validation is needed.

In non-AJAX requests, a common technique consists of using the immediate="true"
attribute, which, for command components (for example, <h:commandButton>),
will transfer the invocation of action in Apply Request Values phase. This attribute
is available for AJAX requests as well, but AJAX provides a better solution for
these kinds of tasks. Instead of using immediate="true", we can use the @this
keyword. Furthermore, we can use the resetValues feature to simplify and fortify
the Cancel/Clear buttons.

Now, let's look at some scenarios. We will keep things simple, therefore we need
a form with a single input field and three buttons: Submit, Cancel, and Clear.
The validator will allow only alphanumeric characters (with respect to the
[^a-zA-Z0-9] pattern).

JSF and AJAX

[326]

Value submitted to a view scoped managed bean
In this case, run the following code:

<h:form>
 <h:message id="msgId" showDetail="true" showSummary="true"
 for="nameId" style="color: red;"/>
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:commandButton value="Submit">
 <f:ajax execute="@form" resetValues="true"
 listener="#{ajaxBean.upperCaseName()}" render="nameId
 msgId"/>
 </h:commandButton>
 <h:commandButton value="Cancel">
 <f:ajax execute="@this" render="@form"/>
 </h:commandButton>
 <h:commandButton value="Clear">
 <f:ajax execute="@this" render="@form"
 listener="#{ajaxBean.cancelName()}"/>
 </h:commandButton>
</h:form>

Press the Submit button. In case of an invalid value, you will see a specific error
message (<h:message>), and resetValues will reset the input field to the initial
value (empty string or some suggestion) or the most recent valid value.

Press the Cancel button. Since we are using execute="@this", the input field
will not be processed on the server; therefore no validation happens. The re-render
process will have the same effect as resetValues for the input field, but will clear
the <h:message> tag as well.

Press the Clear button. This button uses execute="@this", too. But, instead of
resetting the input field to resetValues, it clears up the input field and <h:message>.
For this, an additional method is needed in the managed bean as follows:

private String name = "RafaelNadal";
...
public void cancelName() {
 name = "";
}

The complete application can be found in the code bundle of this chapter, which is
named ch7_9_1.

Chapter 7

[327]

As a simple tip and trick, for the Clear button you may want to use a place holder
as follows:

xmlns:f5="http://xmlns.jcp.org/jsf/passthrough"
...
<h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator" f5:placeholder
 ="Enter your name ..."/>

Value submitted to a request scoped managed bean
Since the submitted value is not persisted across multiple AJAX requests, the
resetValues method and the Cancel button will reset the input field to the
initialization value (empty string or suggestion). The Cancel button will also reset
the <h:message> tag. The Clear button will clear up input text and <h:message>. Of
course, under some circumstances (such as using an empty string for initialization), the
Cancel and Clear buttons will do the same thing; therefore, you can drop one of them.

The complete application can be seen in the code bundle of this chapter, and is
named ch7_9_2.

More examples of how to use resetValues and implement the
Cancel and Clear buttons can be found in the source code that
accompanies this book. A set of examples using the keyup event
in an input field with cancel/clear facilities contain the following
applications: ch7_9_3, ch7_9_4, ch7_9_5, and ch7_9_6.

Everything seems to work pretty straightforward, but there is an issue that we have
to fix. Let's take a closer look at the following code (there is nothing tricky in it):

<h:form>
 Name:
 <h:inputText id="nameId" value="#{ajaxBean.name}"
 validator="nameValidator"/>
 <h:message id="msgNameId" showDetail="true" showSummary="true"
 for="nameId" style="color: red;"/>
 Surname:
 <h:inputText id="surnameId" value="#{ajaxBean.surname}"
 validator="nameValidator"/>
 <h:message id="msgSurnameId" showDetail="true"
 showSummary="true"
 for="surnameId" style="color: red;"/> ..

 <h:commandButton value="Submit">
 <f:ajax execute="@form"

JSF and AJAX

[328]

 listener="#{ajaxBean.upperCaseNameAndSurname()}"
 render="@form"/>
 </h:commandButton>
 <h:commandButton value="Cancel">
 <f:ajax execute="@this" render="@form"/>
 </h:commandButton>
 <h:commandButton value="Clear/Reset">
 <f:ajax execute="@this" render="@form"
 listener="#{ajaxBean.cancelNameAndSurname()}"/>
 </h:commandButton>
</h:form>

Let's focus on the submit process. When we submit a valid name and surname, the
form is re-rendered and everything looks as expected, but if one value (or both) is
invalid, then the input fields are not reset and the corresponding error messages
appear. This is normal since the resetValues method is not present; therefore, the
first thought would be to add resetValues="true" to <f:ajax> that corresponds
to the Submit button. However, this will not work as expected, because nothing
happens in case of invalid values. While you may think that the input fields will
be reset for invalid values, you will be surprised to see that everything remains
unchanged and the invalid values are still there after re-render. The cause seems to
be the presence of @form in the render attribute of the Submit button. If you replace
this with the components IDs that should be re-rendered (nameId, msgNameId,
surnameId, and msgSurnameId), the resetValues method works perfectly.

But, what you can do if there are many input fields and you don't want to list all
the components IDs? Or you just want to use the @form keyword in the render
attribute? In this case, you should be aware that the invalid input fields will not be
automatically reset (the resetValues method is useless) and the end user should
manually cancel/clear input fields by clicking on the Cancel or Clear button. While
the Cancel button works fine, there is a big Oops! for the Clear button because JSF
will not clear the input fields that are not executed (listed in the execute attribute)
and are re-rendered (listed in the render attribute), unless you submit only valid
values. In other words, if the name is valid and the surname is not (or any other
combination involving invalid values), then after submit and clear, the input field
for the name is not cleared.

One solution to this problem is given on OmniFaces (https://code.google.
com/p/omnifaces/), which provides an action listener named org.omnifaces.
eventlistener.ResetInputAjaxActionListener (http://showcase.omnifaces.
org/eventlisteners/ResetInputAjaxActionListener). This listener is capable of
fixing the Clear button and other issues of the same category:

<h:commandButton value="Clear/Reset">
 <f:ajax execute="@this" render="@form"

https://code.google.com/p/omnifaces/
https://code.google.com/p/omnifaces/
http://showcase.omnifaces.org/eventlisteners/ResetInputAjaxActionListener
http://showcase.omnifaces.org/eventlisteners/ResetInputAjaxActionListener

Chapter 7

[329]

 listener="#{ajaxBean.cancelNameAndSurname()}"/>
 <f:actionListener type="org.omnifaces.eventlistener.
 ResetInputAjaxActionListener"/>
</h:commandButton>

The complete application can be found in the code bundle of this chapter, which is
named ch7_9_7.

Mixing AJAX and flow scope
AJAX requests are usually associated with beans in view scope (@ViewScoped),
which means that data can be persisted (stored) over multiple AJAX requests as long
as the current view is not destroyed by a navigation case (or other causes). A flow is
defined as a collection of logical related pages/views; therefore AJAX cannot survive
across flow transitions.

For better understanding, we will adapt the application developed in Chapter 3, JSF
Scopes – Lifespan and Use in Managed Beans Communication (the ch3_7_3 application,
which you need to be familiar with) to support AJAX requests in the registration.
xhtml view (the first page in flow). The main idea is to write a view scoped bean
that may populate the player name and surname defined in the flow scoped bean,
RegistrationBean. The view-scoped bean, named ViewRegistrationBean, will
randomly generate a name-surname pair and will present them as a suggestion to
the end user. The user can provide the name and surname or he can choose to use
the suggested ones. So, the flow-scoped bean looks like the following code:

import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped(value = "registration")
public class RegistrationBean {

 private String playerName ="";
 private String playerSurname="";

 //getters and setters

 public void credentialsUpperCase(){
 playerName = playerName.toUpperCase();
 playerSurname = playerSurname.toUpperCase();
 }

 public String getReturnValue() {

JSF and AJAX

[330]

 return "/done";
 }

 public String registrationAction() {
 return "confirm";
 }
}

Notice that the getReturnValue method represents a flow return (exits flow), while
the registrationAction method navigates to the next page in the flow. Both of
them will break down the current view.

Next, the view-scoped bean is the method annotated with @PostConstruct that will
help us to see if AJAX uses the same instance of this bean over multiple requests:

@Named
@ViewScoped
public class ViewRegistrationBean implements Serializable {

 @Inject
 RegistrationBean registrationBean;
 private String playerNameView = "nothing";
 private String playerSurnameView = "nothing";
 private static final Map<Integer, String> myMap = new
 HashMap<>();
 static {
 myMap.put(1, "Nadal Rafael");
 myMap.put(2, "Federer Roger");
 ...
 }

 @PostConstruct
 public void init() {
 Random r = new Random();
 int key = 1 + r.nextInt(9);
 String player = myMap.get(key);
 String[] fullname = player.split(" ");

 playerNameView = fullname[0];
 playerSurnameView = fullname[1];
 playerNameView = playerNameView.toUpperCase();
 playerSurnameView = playerSurnameView.toUpperCase();
 }

 public String getPlayerNameView() {

Chapter 7

[331]

 return playerNameView;
 }

 public void setPlayerNameView(String playerNameView) {
 this.playerNameView = playerNameView;
 }

 public String getPlayerSurnameView() {
 return playerSurnameView;
 }

 public void setPlayerSurnameView(String playerSurnameView) {
 this.playerSurnameView = playerSurnameView;
 }

 public void generateCredentials() {
 registrationBean.setPlayerName(playerNameView);
 registrationBean.setPlayerSurname(playerSurnameView);
 }
}

We can easily monitor the values of name and surname by displaying them in
registration.xhtml using the following code:

Your registration last credentials (in flow):
<h:outputText id="credentialsFlowId"
 value="#{registrationBean.playerName}
 #{registrationBean.playerSurname}"/>
<hr/>
Random credentials (in view) [as long as we are in this view
this value won't change]:
<h:outputText id="credentialsViewId"
 value="#{viewRegistrationBean.playerNameView}
 #{viewRegistrationBean.playerSurnameView}"/>

Now, two buttons will fire AJAX requests. One button will call the server-side
method credentialsUpperCase (from flow-scoped bean, RegistrationBean)
and the other one will call the server-side method generateCredentials
(from view-scoped bean, ViewRegistrationBean). In both cases, we will
re-render the player name and surname from the beans as follows:

<h:form>
 Name: <h:inputText value="#{registrationBean.playerName}"/>
 Surname: <h:inputText
 value="#{registrationBean.playerSurname}"/>

JSF and AJAX

[332]

 <h:commandButton value="Register To Tournament (AJAX call a
 method of a
 flow bean)" action="#{registrationBean.credentialsUpperCase()}">
 <f:ajax execute="@form"
 render="@form :credentialsFlowId :credentialsViewId"/>
 </h:commandButton>
 <h:commandButton value="Register To Tournament (AJAX call a
 method of a
 view bean)"
 action="#{viewRegistrationBean.generateCredentials()}">
 <f:ajax execute="@this"
 render="@form :credentialsFlowId :credentialsViewId"/>
 </h:commandButton>
</h:form>

Now, the end user can register to the tournament in two ways: by manually inserting
the name and surname through the input fields and register by pressing the first
button (the result will be the inserted name and surname in uppercase), or he/she
can choose to use the suggested name and surname and register by pressing the
second button (the result will be the random name and surname in uppercase).

A few important things can be noticed here, which are listed as follows:

•	 Firing AJAX requests, by pressing the first button, will put the submitted
name and surname in the flow scope (manually entered or imported from
random suggestion)

•	 Firing AJAX requests, by pressing the second button, will assign the suggested
name and surname to their counterparts in the flow-scoped bean. It will not
generate new names and surnames for each request, since we are in the same
view across multiple AJAX requests, and the init method is called only when
a new instance of the ViewRegistrationBean bean is created.

•	 If we exit and re-enter in the flow, the persisted name and surname lose their
values. When we exit from the flow, we reach the flow-scope boundaries,
which means a new RegistrationBean instance must be created when
entering in the flow again. Moreover, this outcome will change the current
view; therefore, a new instance of ViewRegistrationBean is also needed.

•	 When we navigate to the next page in the flow, the submitted name and
surname have the same values because they were persisted in flow scope;
while the suggested name and surname are randomly generated again, the
outcome has changed the view, even if we are in the same flow, as shown in
the following screenshot:

Chapter 7

[333]

Now you know how AJAX works with flow scope combined with view scope.
The complete application can be found in the code bundle of this chapter,
which is named ch7_10.

Postback and AJAX
Throughout this book, we have mentioned the postback request several times. For
those who are not familiar with it, or just need a quick reminder, let's say that JSF
recognizes the initial request and the postback request.

Initial request (for example, HTTP GET) is the first request that the browser sends for
loading the page. You can obtain such a request by accessing the application URL
in a browser or by following a link (it can be a link to any page of the application).
Moreover, the initial request happens in page_B when page_A contains a redirection
(faces-redirect=true) to page_B (this is not true for forwarding mechanism). This
kind of request is processed in Restore View phase and Render Response phase.

Postback request happens when we click on a button/link for submitting a form.
Unlike the initial request, the postback request passes through all the phases.

JSF provides a method named isPostback that returns a Boolean value: it returns
true for postback request and false for initial request. Speaking in the code lines,
we can:

•	 Check the initial/postback request in a managed bean using the
following code:
FacesContext facesContext =
 FacesContext.getCurrentInstance();
logger.log(Level.INFO, "Is postback: {0}",
 facesContext.isPostback());

JSF and AJAX

[334]

•	 Check the initial/postback request in the page using the following code:
Is postback ? <h:outputText
 value="#{facesContext.postback}"/>

For example, you can check the initial/postback request for AJAX with a simple
application. The JSF page is as follows:

<h:form>
 <h:commandButton value="Click Me!">
 <f:ajax listener="#{ajaxBean.requestAction()}"
 render=":postbackId"/>
 </h:commandButton>
</h:form>
<h:panelGrid id="postbackId" columns="1">
 <h:outputText value="Is postback ?: #{facesContext.postback}"/>
 <h:outputText value="REQUEST NUMBER: #{ajaxBean.request_number}"/>
</h:panelGrid>

The managed bean is as follows:

@Named
@ViewScoped
public class AjaxBean implements Serializable{

 private static final Logger logger =
 Logger.getLogger(AjaxBean.class.getName());
 private int request_number = 1;

 public int getRequest_number() {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 logger.log(Level.INFO, "Is postback (getRequest_number
 method): {0}",
 facesContext.isPostback());
 return request_number;
 }

 public void setRequest_number(int request_number) {
 this.request_number = request_number;
 }

 public void requestAction(){
 FacesContext facesContext = FacesContext.getCurrentInstance();
 logger.log(Level.INFO, "Is postback (requestAction method):
 {0}", facesContext.isPostback());
 request_number ++;
 }
}

Chapter 7

[335]

The code is very simple; therefore we can jump directly to inspect the initial/postback
requests, as follows:

•	 First request: The first page of the application is loaded by accessing the
application URL. The client side indicates an initial request as it is shown in
the following screenshot on the left-hand side, and the server side indicates
the same, as shown in the same screenshot on the right-hand side:

•	 Second request: The Click Me! button is clicked for the first time (the
result is true for the second time, third time, and so on). The client side
(in the browser) indicates a postback request as it is shown in the following
screenshot on the left-hand side, and the server side indicates the same as
shown in the same screenshot on the right-hand side:

It would be useful to know when the request is initial or postback. For
example, you may want to accomplish a task a single time, at initial
request (for example, the initialization tasks), or every time, except for
the first time (for example, display a message, which is not proper to
appear when a page is displayed as a result of the initial request).

Postback request's conditional
rendering/executing
We can use initial/postback request detection to conditionally render UI components
(of course, you can use it for partial processing also). Take a look at the following code:

<h:form id="ajaxFormId">
 <h:commandButton id="buttonId" value="Click Me!">
 <f:ajax listener="#{ajaxBean.requestAction()}"
 render="#{facesContext.postback eq true ?
 ':postbackId': 'ajaxFormId'}"/>
 </h:commandButton>
 Is postback ? <h:outputText value="#{facesContext.postback}"/>
</h:form>

JSF and AJAX

[336]

<h:panelGrid id="postbackId" columns="1">
 <h:outputText value="REQUEST NUMBER:
 #{ajaxBean.request_number}"/>
</h:panelGrid>

So, let's see how it works! When the page is loaded, we have an initial request
(#{facesContext.postback} returns false), which means that the server response
will contain something like the following code snippet (we need to focus on the
<f:ajax> component):

<input id="ajaxFormId:buttonId" type="submit"
 name="ajaxFormId:buttonId" value="Click Me!"
 onclick="mojarra.ab(this,event,'action',0,'ajaxFormId');
 return false" />

On the server side, the log line from the getRequest_number method will also reveal
an initial request. Moreover, notice that the reported request number is 1, which is
the initial value of the request_number property.

Next, let's click once on the Click Me! button. Now, the AJAX request will look like
the following line of code:

ajaxFormId=ajaxFormId&javax.faces.ViewState
 =411509096033316844%3A7611114960827713853&javax.faces.source
 =ajaxFormId%3AbuttonId&javax.faces.partial.event
 =click&javax.faces.partial.execute
 =ajaxFormId%3AbuttonId%20ajaxFormId%3AbuttonId&
 javax.faces.partial.render
 =ajaxFormId&javax.faces.behavior.event
 =action&javax.faces.partial.ajax=true

The highlighted code provides important information! This is a postback request,
but the render attribute contains the ID of the <h:form> component, not the ID
of the <h:panelGrid> component (as you may have thought); this happens
because the #{facesContext.postback} expression was evaluated to false in
the previous request. So, with the first click on our button, AJAX will not re-render
the <h:panelGrid> component. Meanwhile, on the server side, the request_number
property was successfully incremented to 2; however for the end user, it still appears
as 1.

Now, the server response for this AJAX will contain the following code:

<input id="ajaxFormId:buttonId" type="submit"
 name="ajaxFormId:buttonId" value="Click Me!"
 onclick="mojarra.ab(this,event,'action',0,'postbackId');
 return false">

Chapter 7

[337]

Note that the postbackId, which is the <h:panelGrid> ID, is present in the response.
The next click (the second click) on the button will generate the next AJAX request:

ajaxFormId=ajaxFormId&javax.faces.ViewState
 =270275638491205347%3A7563196939691682163&javax.faces.source
 =ajaxFormId%3AbuttonId&javax.faces.partial.event
 =click&javax.faces.partial.execute
 =ajaxFormId%3AbuttonId%20ajaxFormId%3AbuttonId
 &javax.faces.partial.render=postbackId
 &javax.faces.behavior.event=action&javax.faces.partial.ajax=true

Now, when the AJAX request completes, the <h:panelGrid> component will be
re-rendered. The request_number property reaches the value 3, and it will be
displayed on the client side. Further AJAX requests will be the postback requests.

In the following screenshot, you can see the initial request, first click on the button
and second click from client and server sides:

JSF and AJAX

[338]

It would be helpful to know this behavior of AJAX with initial/postback requests—
it is not a bug. Of course, once you know this issue, there are many workarounds
depending on what you really want to accomplish.

Further, you can try to test the execute attribute in a similar approach.

The complete application can be found in the code bundle of this chapter, which is
named ch7_11.

Is it a non-AJAX request?
JSF can answer this question by inspecting request headers or checking the
PartialViewContext.isAjaxRequest method. The request headers that provide
information about the request type are Faces-Request and X-Requested-With. For
an AJAX request, the Faces-Request header will have the value partial/ajax,
while the X-Requested-With request type will have the value XMLHttpRequest
(in JSF 2.2, X-Requested-With doesn't seem to work; however, for the sake of
completeness, you can test them again). In the following screenshot, you can see the
headers of a typical JSF 2.2 AJAX request:

In a managed bean, you can determine the type of the request, as shown in the
following code:

public void requestTypeAction() {

 FacesContext facesContext = FacesContext.getCurrentInstance();
 ExternalContext externalContext = facesContext.getExternalContext();
 Map<String, String> headers = externalContext.getRequestHeaderMap();
 logger.info(headers.toString());

 //determination method 1
 PartialViewContext partialViewContext =
 facesContext.getPartialViewContext();
 if (partialViewContext != null) {
 if (partialViewContext.isAjaxRequest()) {
 logger.info("THIS IS AN AJAX REQUEST (DETERMINATION 1)
 ...");
 } else {

Chapter 7

[339]

 logger.info("THIS IS A NON-AJAX REQUEST(DETERMINATION
 1)...");
 }
 }

 //determination method 2
 String request_type_header_FR = headers.get("Faces-Request");
 if (request_type_header_FR != null) {
 if (request_type_header_FR.equals("partial/ajax")) {
 logger.info("THIS IS AN AJAX REQUEST (DETERMINATION 2)
 ...");
 } else {
 logger.info("THIS IS A NON-AJAX REQUEST(DETERMINATION
 2)...");
 }
 }

 //determination method 3
 String request_type_header_XRW = headers.get
 ("X-Requested-With");
 if (request_type_header_XRW != null) {
 if (request_type_header_XRW.equals("XMLHttpRequest")) {
 logger.info("THIS IS AN AJAX REQUEST (DETERMINATION 3)
 ...");
 } else {
 logger.info("THIS IS A NON-AJAX REQUEST(DETERMINATION
 3)...");
 }
 }
}

Alternatively, on a JSF page, you can write the following code:

AJAX/NON-AJAX:
#{facesContext.partialViewContext.ajaxRequest ? 'Yes' : 'No'}
FACES-REQUEST HEADER:
 #{facesContext.externalContext.requestHeaderMap
 ['Faces-Request']}
X-REQUESTED-WITH HEADER:
 #{facesContext.externalContext.requestHeaderMap
 ['X-Requested-With']}

The complete application can be found in the code bundle of this chapter, which is
named ch7_12.

JSF and AJAX

[340]

AJAX and <f:param>
The <f:param> tag can be used to pass request parameters to a managed bean.
Since we have discussed this tag in detail in Chapter 2, Communication in JSF,
we can continue here with an example of using it inside <f:ajax>:

<h:form>
 <h:inputText id="nameInputId" value="#{ajaxBean.name}"/>
 <h:commandButton value="Send" action="#{ajaxBean.ajaxAction()}">
 <f:ajax execute ="nameInputId" render="nameOutputId">
 <f:param name="surnameInputId" value="Nadal"/>
 </f:ajax>
 </h:commandButton>
 <h:outputText id="nameOutputId" value="#{ajaxBean.name}"/>
</h:form>

Remember that the parameter that was passed is available in the request
parameter map:

FacesContext fc = FacesContext.getCurrentInstance();
 Map<String, String> params =
 fc.getExternalContext().getRequestParameterMap();
 logger.log(Level.INFO, "Surname: {0}",
 params.get("surnameInputId"));

Keep in mind that <f:param> can be used with buttons and links
only. Trying to add <f:param> in inputs will not work. Further
details are available in Chapter 2, Communication in JSF.

The complete application can be found in the code bundle of this chapter, which is
named ch7_13.

Queue control for AJAX requests
Queuing AJAX requests on the client side is a common practice meant to ensure that
only one request is processed at a time. The goal of this approach is to protect the
server from being overwhelmed and the client browser from blocking or receiving
AJAX responses in an undefined order. While AJAX queuing is available in JSF 2.0,
queue control for AJAX is available starting with JSF 2.2.

Chapter 7

[341]

In order to provide AJAX queue control, JSF 2.2 introduced an attribute named
delay for the <f:ajax> tag. The value of this attribute is a string that represents a
number of milliseconds (defaults to none). During this time interval, only the most
recent request is actually sent to the server, while the rest of them are ignored. In
other words, JSF will wait n milliseconds until the most recent AJAX request is
executed. By default, it will not wait.

Here is an example of using the default delay attribute, and an explicit delay
of 1000 milliseconds. In order to point out the delay effect, we've built a simple
application that sends an AJAX request (submit an input text value) on the keyup
event, and waits for a suggestion text as a server response. In the following
screenshot, you can compare the number of entered keys until the server responds
with the first suggestion text. In both the cases, this is the first triggered AJAX
request. It is obvious that in the second case, a number of seven requests (keystrokes)
were not sent because they were fired during the1000 milliseconds range. Generally
speaking, every time a new key is entered, prior AJAX requests are removed, and
only the last request is taken into account.

The complete application can be found in the code bundle of this chapter, and
is named ch7_14. You may also want to check out the Customizing jsf.js section,
where you'll see the delay attribute at work.

You can disable the effect of the delay attribute by setting its
value to none. This is the default value.

JSF and AJAX

[342]

Explicit loading of jsf.js
The AJAX mechanism used by JSF is encapsulated in a JavaScript file, named jsf.
js. This file is available in the javax.faces library. When we are using <f:ajax>,
this file is loaded behind the scene without any explicit requirements.

However, jsf.js can be loaded explicitly with any of the following methods:

•	 Using the <h:outputScript> component as follows:
<h:outputScript name="jsf.js" library="javax.faces"
target="head"/>

•	 Using the @ResourceDependency keyword as follows:
@ResourceDependency(name="jsf.js" library="javax.faces"
target="head")

Focusing on <h:outputScript>, you can attach AJAX to a component as shown in
the following example code:

<h:form prependId="false">
 <h:outputScript name="jsf.js" library
 ="javax.faces" target="head"/>
 <h:inputText id="nameInId" value="#{ajaxBean.name}"/>
 <h:outputText id="nameOutId" value="#{ajaxBean.name}"/>
 <h:commandButton id="submit" value="Send"
 action="#{ajaxBean.upperCaseAction()}"
 onclick="jsf.ajax.request(this, event,
 {execute:'nameInId',render:'nameOutId'});
 return false;" />
</h:form>

The jsf.ajax.request method defined in jsf.js is capable of dealing with AJAX
requests. It takes the following three parameters:

•	 source: This is the DOM element (for example, <h:commandButton>,
<h:commandLink>, and so on) that triggers the AJAX request (this is a
mandatory parameter)

•	 event: This is an optional parameter representing the DOM event that
triggers the request

•	 options: This is an optional parameter that can contain the values: execute,
render, onevent, onerror, delay, and params.

The complete application for explicitly loading the jsf.js file is available in the code
bundle of this chapter, which is named ch7_15.

Chapter 7

[343]

Depicting the params value
While the execute, render, delay, onevent, and onerror values are very well
known from previous sections, the params value is something new, so let's give
it some attention. The params value is actually an object that allows us to add
supplementary parameters into the request.

For example, the following code is a fancy solution for sending a JavaScript JSON
object to a managed bean. The code is straightforward as follows:

<script type="text/javascript">
 var myJSONObject =
 [{
 "name": "Rafael",
 "surname": "Nadal",
 "age": 27,
 "isMarried": false,
 "address": {
 "city": " Mallorca",
 "country": "Spain"
 },
 "websites": ["http://www.rafaelnadal.com",
 "http://rafaelnadalfans.com/"]
 },
 ...
 }]
</script>
...
<h:form prependId="false">
 <h:outputScript name="jsf.js" library="javax.faces"
 target="head"/>
 Data type (e.g. JSON): <h:inputText id="typeInId"
 value="#{ajaxBean.type}"/>
 <h:commandButton id="submit" value="Send"
 action="#{ajaxBean.processJSONAction()}"
 onclick='jsf.ajax.request(this, event, {execute:
 "typeInId", render: "typeOutId playersId",
 params: JSON.stringify(myJSONObject)});
 return false;' />
 <h:outputText id="typeOutId" value="#{ajaxBean.type}"/>
 <h:dataTable id="playersId" value="#{ajaxBean.players}" var="t">
 ...
 </h:dataTable>
</h:form>

JSF and AJAX

[344]

On the server side, the params value is available in the request parameter map
as follows:

FacesContext facesContext = FacesContext.getCurrentInstance();
String json = facesContext.getExternalContext().
 getRequestParameterMap().get("params");
JsonArray personArray;
try (JsonReader reader = Json.createReader(new StringReader(json))) {
 personArray = reader.readArray();
 }
...

The complete application can be found in the code bundle of this chapter, and is
named ch7_16.

Non-UICommand components and jsf.ajax.
request
The <f:ajax> tag is far more popular than jsf.ajax.request. This is absolutely
normal, since <f:ajax> fits more natural in context and is much more easy to use
and understand. Moreover, <f:ajax> supports the listener attribute, which allows
us to call the server-side methods even when the <f:ajax> tag is nested in other
components than in UICommand. By default, jsf.ajax.request cannot do that!

For example, let's say that we have a table (<h:dataTable>) that displays a Map
object containing several tennis players (the Map key is an integer of type: 1, 2,3, ... n,
and the Map value is the player name):

private Map<Integer, String> myMap = new HashMap<>();
...
myMap.put(1, "Nadal Rafael");
myMap.put(2, "Federer Roger");
...

Next, we want to add a column labeled Delete that contains a delete icon for each
row, as shown in the following screenshot:

Chapter 7

[345]

We want to capture the client-side onclick event and trigger an AJAX request
using jsf.ajax.request for each icon. The idea is to send the player number
(1, 2, 3, ... n) to a server-side method named deletePlayerAction. This method
will find and delete the record from the Map object and when the table is re-rendered,
the corresponding row will disappear. So, the code can be written as follows:

<h:form prependId="false">
 <h:outputScript name="jsf.js" library="javax.faces"
 target="head"/>
 <h:dataTable id="playersTableId"
 value="#{ajaxBean.myMap.entrySet()}" var="t">
 <h:column>
 <f:facet name="header">
 Delete
 </f:facet>
 <h:graphicImage value="./resources/default/imgs/delete.png"
 onclick="jsf.ajax.request(this, event,
 {execute: '@this', render:
 'playersTableId',
 params: '#{t.key}'});"/>
 </h:column>

 ...
 </h:dataTable>
</h:form>

We can use the params value to send the player number to delete; this will be
available through the request parameter map. But the big issue here is that we
can't call the server-side method, deletePlayerAction, because we don't have a
UICommand component (such as a button) and jsf.ajax.request doesn't have a
listener value for the options parameter.

Well, the solution comes from the JSF extensions such as PrimeFaces (check
<p:remoteCommand>), OmniFaces (check <o:commandScript>), or RichFaces
(check <a4j:jsfFunction>), but you can also solve the problem through pure
JSF. First, you need to add a UICommand component that is not visible, such as a
<h:commandLink> tag, as added in the following code snippet:

<h:form prependId="false">
 <h:commandLink id="commandDeleteId" immediate="true"
 action="#{ajaxBean.deletePlayerAction()}"
 style='display: none;'/>
 <h:outputScript name="jsf.js" library="javax.faces"
 target="head"/>

JSF and AJAX

[346]

Next, we bind the AJAX request to this UICommand component, as shown in the
following code snippet:

<h:graphicImage value="./resources/default/imgs/delete.png"
 onclick="jsf.ajax.request('commandDeleteId',
 event, {'javax.faces.behavior.event': 'action',
 execute: '@this', render:
 'playersTableId', params: '#{t.key}'});"/>

At this moment, when we click on a delete icon, the server-side method is executed.
The code of this method is pretty simple, which is as follows:

public void deletePlayerAction() {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 String nr = facesContext.getExternalContext().
 getRequestParameterMap().get("params");

 if(nr!=null){
 myMap.remove(Integer.valueOf(nr));
 }
}

Done! The complete application can be found in the code bundle of this chapter,
which is named ch7_17.

Of course, as the section name suggests, this was an example of using jsf.ajax.
request, not the best solution to this scenario. Nevertheless, there are simple
solutions for this, such as using a <h:commandLink> tag in conjunction with the icon
and ajaxify the link (proposed by Michael Muller at http://blog.mueller-bruehl.
de/tutorial-web-development/), The following code snippet shows this approach:

<h:form id="playersFormId">
 <h:dataTable id="playersTableId"
 value="#{ajaxBean.myMap.entrySet()}" var="t">
 <h:column>
 <f:facet name="header">Delete</f:facet>
 <h:commandLink id="commandDeleteId" immediate="true"
 action="#{ajaxBean.deletePlayerAction(t.key)}">
 <f:ajax render="playersFormId:playersTableId"/>
 <h:graphicImage value=
 "#{resource['default:imgs/delete.png']}"/>
 </h:commandLink>
 </h:column>
 ...

The complete example can be found in the code bundle of this chapter named ch7_18.

http://blog.mueller-bruehl.de/tutorial-web-development/
http://blog.mueller-bruehl.de/tutorial-web-development/

Chapter 7

[347]

Customizing jsf.js
The biggest advantage of explicitly loading jsf.js is the fact that we can customize
the AJAX mechanism by altering the default code. First, we need to isolate the
default jsf.js file in a separate place—you can easily save it in a folder such as
resources/default/js in the web pages folder. Afterwards, you can edit the
JavaScript file and perform the desired modifications. Of course, modify this code
only if you really know what you are doing, because you may cause undesired
issues! It is not recommended that you modify the code, unless you really need to.

As an example, we can modify the Mojarra, the jsf.js code to see how the AJAX
queue works. More precisely, to see how requests are added in queue and removed
from queue depending on the delay value, perform the following steps:

1.	 In jsf.js, find the enqueue function. This function is called by JSF to add an
AJAX request in queue:
this.enqueue = function enqueue(element) {
 // Queue the request
 queue.push(element);
};

2.	 Modify this function to call a JavaScript custom function and pass to it the
AJAX queue:
this.enqueue = function enqueue(element) {
 // Queue the request
 queue.push(element);
 monitorQueue(queue);
};

3.	 Do the same thing in the dequeue function. This function is called by JSF to
remove an AJAX request from the queue:
this.dequeue = function dequeue() {
 ...
 // return the removed element
 try {
 return element;
 } finally {
 element = null; // IE 6 leak prevention
 }
 };

JSF and AJAX

[348]

4.	 Modify this function to call the same JavaScript custom function:
this.dequeue = function dequeue() {
 ...
 monitorQueue(queue);
 // return the removed element
 try {
 return element;
 } finally {
 element = null; // IE 6 leak prevention
 }
 };

At this point, a JavaScript custom function will be called every time an AJAX request
is added/removed in/from the queue and the current queue will be passed in. Each
entry in the queue is an AJAX request; therefore, we can loop the queue and extract
information about each of them:

<script type="text/javascript">
 function monitorQueue(q) {
 document.getElementById("ajaxqueueId").innerHTML = "";
 if (q.length > 0)
 {
 //<![CDATA[
 var report = "";
 document.getElementById("ajaxqueueId").innerHTML =
 "TOTAL REQUESTS: " + q.length + "<hr/>";
 for (var i = 0; i < q.length; i++) {
 var request = q[i];
 report += (i + 1) + ".Request Type: " +
 request.xmlReq + " Source Id: " +
 request.context.sourceid + " URL: " +
 request.url + " Taken Off Queue ?: " +
 request.fromQueue + "<hr/>";
 }

 document.getElementById("ajaxqueueId").innerHTML += report;
 //]]>
 }
 }
</script>

Chapter 7

[349]

Each request object has a suit of properties, which can be easily seen in the following
code (this is extracted directly from the jsf.js source code):

var AjaxEngine = function AjaxEngine(context) {

 var req = {}; // Request Object
 req.url = null; // Request URL
 req.context = context; // Context of request and
 response
 req.context.sourceid = null; // Source of this request
 req.context.onerror = null; // Error handler for request
 req.context.onevent = null; // Event handler for request
 req.xmlReq = null; // XMLHttpRequest Object
 req.async = true; // Default - Asynchronous
 req.parameters = {}; // Parameters For GET or POST
 req.queryString = null; // Encoded Data For GET or POST
 req.method = null; // GET or POST
 req.status = null; // Response Status Code From
 Server
 req.fromQueue = false; // Indicates if the request was
 taken off the queue
...

All you have to do now is to trigger some AJAX requests and monitor the queue
report generated in the monitorQueue function. As you can see in the following
code, each button has a different delay value:

<h:body>
 <h:outputScript name="js/jsf.js" library="default"
 target="head"/>
 <hr/>
 MONITOR AJAX QUEUE
 <hr/>
 <h:form prependId="false">
 <h:commandButton id="button_1_Id" value="Send 1 (no delay)"
 action="#{ajaxBean.ajaxAction()}"
 onclick='jsf.ajax.request(this,
 event, {execute: "@this", render: "@this"});
 return false;' />
 <h:commandButton id="button_2_Id" value="Send 2 (delay:600)"
 action="#{ajaxBean.ajaxAction()}"
 onclick='jsf.ajax.request(this,
 event, {delay: 600, execute: "@this", render: "@this"});
 return false;' />

JSF and AJAX

[350]

 <h:commandButton id="button_3_Id" value="Send 3 (delay:1000)"
 action="#{ajaxBean.ajaxAction()}"
 onclick='jsf.ajax.request(this,
 event, {delay: 1000, execute: "@this", render: "@this"});
 return false;' />
 </h:form>
 AJAX QUEUE CONTENT:
 <div id="ajaxqueueId"></div>
</h:body>

As you can see, all AJAX requests are referring the same server-side method,
ajaxAction. This method can easily simulate some business logic by sleeping for a
random number of milliseconds for each request, as shown in the following code:

public void ajaxAction() {
 Random rnd = new Random();
 int sleep=1000 + rnd.nextInt(4000);
 try {
 //sleep between 1 and 5 seconds
 Thread.sleep(sleep);
 } catch (InterruptedException ex) {
 Logger.getLogger(AjaxBean.class.getName()).
 log(Level.SEVERE,null, ex);
 };
}

Once you know how to monitor the queue content, you can go further and alter
its content by queuing only certain requests, changing their priority of execution,
accepting a limited number of entries in queue, and so on.

The complete application can be found in the code bundle of this chapter, and is
named ch7_19.

AJAX and the progress bar/indicator
While testing on localhost, AJAX requests seem pretty fast, but in real production
environments they cannot be solved as fast because many aspects slow down the
process (Internet connection speed, number of concurrent users, and so on).

A common practice consists of using a progress bar/indicator that signals the user
that requests are being processed and he/she should wait until the AJAX response
is received and rendered accordingly. For example, PrimeFaces provides a cool
determinate progress bar for upload tasks (<p:fileUpload>) and an indeterminate
progress indicator for any other AJAX request (check <p:ajaxStatus>). RichFaces
also have similar capabilities.

Chapter 7

[351]

In the next chapter, you will see how to implement a progress bar for upload tasks.
Without writing a custom component, such as <p:ajaxStatus>, we can easily
implement a progress indicator using the onevent attribute, the data object,
and a small piece of CSS, as shown in the following code:

<script type='text/javascript'>
 function progressIndicator(data) {
 if (data.status === "begin") {
 document.getElementById("progressDivId").style.display =
 "block";
 }
 if (data.status === "complete") {
 document.getElementById("progressDivId").style.display =
 "none";
 }
 }
</script>
...
<h:body>
 <h:panelGrid columns="2">
 <h:form>
 <h:inputText id="nameInputId" value="#{ajaxBean.name}"/>
 <h:commandButton value="Send"
 action="#{ajaxBean.ajaxAction()}">
 <f:ajax onevent="progressIndicator" execute ="nameInputId"
 render="nameOutputId"/>
 </h:commandButton>
 <h:outputText id="nameOutputId" value="#{ajaxBean.name}"/>
 </h:form>

 <div id="progressDivId" style="display:none;">

 </div>
 </h:panelGrid>
</h:body>

In the following screenshot, you can see an example of running the complete
application, named ch7_20 in the code bundle of this chapter:

JSF and AJAX

[352]

Summary
In this chapter, we covered the AJAX support in JSF 2.2 Core. Besides common
tasks such as using render, execute, listener, and other attributes, you learned
how to use AJAX with JSF 2.2 flow scope, how to use the JSF 2.2 delay attribute,
and how to update input fields with AJAX after validation error, using the new
JSF 2.2 resetValues attribute and the <f:resetValues> tag. Moreover, you
saw how to use postback with AJAX, how to determine if a request is AJAX or
non-AJAX, customize jsf.js, how to write a progress bar/indicator, how to create
the Cancel/Clear buttons, how to monitor AJAX queue, and so on.

In conclusion, JSF framework (including major extensions, such as PrimeFaces,
OmniFaces, RichFaces, ICEfaces, and so on) has the most comprehensive and
easy-to-use AJAX capabilities.

See you in the next chapter, where we will cover the JSF 2.2 support for HTML5 and
the new upload mechanism.

JSF 2.2 – HTML5 and Upload
This chapter can be read in two parts. The first part will present the JSF 2.2
support for HTML5, while the second part discusses the new upload component
of JSF 2.2. Apparently, these two parts are not related, but as you will see, the
upload component of JSF 2.2 can be spiced up with HTML5 features and the
new pass-through attributes can be very helpful to extend the upload component
of JSF 2.2 with HTML5 upload component facilities.

Working with HTML5 and JSF 2.2
Everybody involved in web application development is enthusiastic to explore and
use HTML5, which comes with a suite of new components and features, such as
<audio>, <video>, <keygen>, and so on. Starting with version 2.2, JSF developers
can interact with HTML5 using the following:

•	 Pass-through attributes
•	 Pass-through elements (HTML-friendly markup)

Although pass-through elements and pass-through attributes are
inspired by HTML5, they are JSF elements that might be used
with other HTML versions as well.

These mechanisms are the alternative to writing custom render kits. This is a great
solution, because HTML5 is in the developing stage, which means that writing and
adapting render kits to constant HTML5 changes can be a real challenge.

If you want to use HTML5 with JSF 2.0, then you need to write custom render kits
for supporting the new components and attributes.

JSF 2.2 – HTML5 and Upload

[354]

Pass-through attributes
Starting with JSF 2.2, we have attributes that are processed by JSF components
on the server side and pass-through attributes that are processed at runtime
on the client side.

A handy HTML5 element that can be used for exemplifying pass-through attributes
is the <input> element. Among the new supported features, we have new values
for type attribute (such as, email, tel, color, and reset) and the new attribute,
placeholder (a text used as a hint in empty fields).

In pure HTML5, such an element can be as shown in the following code:

<input placeholder="Enter player e-mail" type="email">

The same thing can be obtained with pass-through attributes in five different ways:

•	 Place the pass-through attributes in the new namespace http://xmlns.
jcp.org/jsf/passthrough (any JSF developer is familiar with namespaces
and prefixed elements. There is no trick to use this namespace or prefixed
attributes). Let's see how to obtain the preceding HTML5 element using JSF
pass-through attributes, as follows:
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f5="http://xmlns.jcp.org/jsf/passthrough"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

 ...
 <h:body>
 <h:inputText value="#{playersBean.email}"
 f5:type="email" f5:placeholder="Enter player
e-mail"/>
...

When this book was written, there was still a debate about which is
the proper prefix for this namespace. Initially, p was chosen, but this is
recognized as the prefix of PrimeFaces; therefore, another prefix had to
be used. So, when you read this book, feel free to replace f5 (used here)
with the one that wins this debate and becomes more popular.

Chapter 8

[355]

•	 Use <f:passThroughAttribute> nested in <h:inputText>, as follows:
<h:inputText value="#{playersBean.email}">
 <f:passThroughAttribute name="placeholder"
 value="Enter player e-mail" />
 <f:passThroughAttribute name="type" value="email" />
</h:inputText>

•	 Pass-through attributes might come from a managed bean also. Place them
in a Map<String, String>, where the map key is the attribute name and the
map value is the attribute value, as follows:
private Map<String, String> attrs = new HashMap<>();
...
attrs.put("type", "email");
attrs.put("placeholder", "Enter player e-mail");

Further, use <f:passThroughAttributes> tag, as shown in the
following code:
<h:inputText value="#{playersBean.email}">
 <f:passThroughAttributes value="#{playersBean.attrs}" />
</h:inputText>

•	 Using Expression Language 3 (part of Java EE 7), multiple attributes can
also be directly defined, as follows (practically, you define a Map<String,
String> via EL 3):
<h:inputText value="#{playersBean.email}">
 <f:passThroughAttributes value='#{{"placeholder":"Enter player
e-mail", "type":"email"}}' />
</h:inputText>

The complete example is available in the code bundle of this chapter and is
named ch8_1.

•	 Pass-through attributes can be added programmatically. For example, you
can generate an HTML5 input element and add it into a form, as follows:
<h:body>
 <h:form id="playerForm">
 ...
 </h:form>
</h:body>

JSF 2.2 – HTML5 and Upload

[356]

...
FacesContext facesContext = FacesContext.getCurrentInstance();
UIComponent formComponent = facesContext.getViewRoot().
 findComponent("playerForm");

HtmlInputText playerInputText = new HtmlInputText();
Map passThroughAttrs = playerInputText.getPassThroughAttributes();
passThroughAttrs.put("placeholder", "Enter player email");
passThroughAttrs.put("type", "email");

formComponent.getChildren().add(playerInputText);
...

The complete example is available on the code bundle of this chapter and is
named ch8_1_2.

Pass-through elements
JSF developers hide HTML code behind JSF components. For web designers, the JSF
code may look pretty strange, but the generated HTML is more familiar. In order to
alter the generated HTML, web designers have to modify the JSF code, which can
be difficult for them. But JSF 2.2 comes with friendly markup for HTML5, known
as pass-through elements. Using this feature, web designers can write pure HTML
code and JSF developers can come over and link the HTML elements to the server
side by adding/replacing the necessary attributes. JSF recognizes such attributes if
they are in the http://xmlns.jcp.org/jsf namespace. For example, we can write a
JSF page without any JSF tag, as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf">

 <head jsf:id="head">
 <title></title>
 </head>

 <body jsf:id="body">
 <form jsf:id="form">
 Name:<input type="text" jsf:value="#{playersBean.playerName}"/>
 Surname:<input type="text" jsf:value="#{playersBean.
playerSurname}"/>
 <button jsf:action="#{playersBean.playerAction()}">Show</button>
 </form>
 </body>
</html>

Chapter 8

[357]

JSF scans the HTML elements for attributes in the namespace
http://xmlns.jcp.org/jsf. For such elements, JSF will
determine the element type and will add the corresponding JSF
component instead (<h:head> for <head> and <h:inputText> for
<input>). JSF will add the components in the component tree, which
will be rendered as HTML code to the client. This JSF component will
be linked to the particular element and will receive the attributes as
"normal" attributes or as pass-through attributes, depending on their
origins. The correspondence between JSF components and HTML
elements is available at http://docs.oracle.com/javaee/7/
api/javax/faces/view/facelets/TagDecorator.html. For
HTML elements that don't have a direct correspondent (for example
<div> and), JSF will create a special component, component-
family, such as javax.faces.Panel, and render-type javax.
faces.passthrough.Element as detailed at http://docs.
oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/
facelets/jsf/element.html.

The complete example is available in the code bundle of this chapter and is
named ch8_1_3.

Since JSF replaces the HTML elements with JSF components, we can use these
components at full capacity, meaning that we can use them as in JSF. For example,
we can use validators, converters, and <f:param>, as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

 <head jsf:id="head">
 <title></title>
 </head>
 <body jsf:id="body">
 <form jsf:id="form">
 Name:
 <input type="text" jsf:value="#{playersBean.playerName}">
 <f:validator validatorId="playerValidator"/>
 </input>
 <!-- or, like this -->
 <input type="text" jsf:value="#{playersBean.playerName}"
 jsf:validator="playerValidator"/>
 Surname:
 <input type="text" jsf:value="#{playersBean.playerSurname}">
 <f:validator validatorId="playerValidator"/>
 </input>

http://docs.oracle.com/javaee/7/api/javax/faces/view/facelets/TagDecorator.html
http://docs.oracle.com/javaee/7/api/javax/faces/view/facelets/TagDecorator.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/jsf/element.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/jsf/element.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/jsf/element.html

JSF 2.2 – HTML5 and Upload

[358]

 <!-- or, like this -->
 <input type="text" jsf:value="#{playersBean.playerSurname}"
 jsf:validator="playerValidator"/>
 <button jsf:action="#{playersBean.playerAction()}">Show
 <f:param id="playerNumber" name="playerNumberParam" value="2014"/>
 </button>
 </form>
 </body>
</html>

The complete example is available in the code bundle of this chapter and is
named ch8_1_4.

JSF 2.2 – HTML5 and Bean Validation 1.1
(Java EE 7)
The Bean Validation 1.1 (see http://docs.oracle.com/javaee/7/tutorial/doc/
partbeanvalidation.htm) can be the perfect choice for validating user inputs in a
JSF 2.2/HTML5 application. For example, we can validate the submitted name and
surname in PlayersBean, as follows—we don't accept null values, empty values, or
values shorter than three characters:

@Named
@RequestScoped
public class PlayersBean {

 private static final Logger logger = Logger.getLogger(PlayersBean.
class.getName());

 @NotNull(message = "null/empty values not allowed in player name")
 @Size(min = 3,message = "Give at least 3 characters for player
name")
 private String playerName;
 @NotNull(message = "null/empty values not allowed in player
surname")
 @Size(min = 3,message = "Give at least 3 characters for player
surname")
 private String playerSurname;
 ...

http://docs.oracle.com/javaee/7/tutorial/doc/partbeanvalidation.htm
http://docs.oracle.com/javaee/7/tutorial/doc/partbeanvalidation.htm

Chapter 8

[359]

JSF can interpret empty string submitted values as null if you set the following
context parameter in web.xml:

<context-param>
 <param-name>
 javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL
 </param-name>
 <param-value>true</param-value>
</context-param>

So in this case, there is no need to use the <f:validator> or validator attribute.
Check out the complete application named ch8_2.

OmniFaces provides an HTML5 render kit that extends
support for HTML5 specific attributes. You may want to
check it out at http://showcase.omnifaces.org/.

JSF 2.2 upload feature
JSF developers have waited a long time for a built-in upload component. Until
JSF 2.2, the workarounds consisted of using JSF extensions, such as PrimeFaces,
RichFaces, and third-party libraries such as Apache Commons FileUpload.

JSF 2.2 comes with an input component dedicated for upload tasks (that renders
an HTML input element of type file). This component is represented by the
<h:inputFile> tag and it can be used as any other JSF component. The entire
list of supported attributes is available at http://docs.oracle.com/javaee/7/
javaserverfaces/2.2/vdldocs/facelets/h/inputFile.html, but the most
important ones are as follows:

•	 value: This represents the file to be uploaded as a javax.servlet.http.
Part object.

•	 required: This is a Boolean value. If it is true, the user must provide a value
to submit.

•	 validator: This indicates a validator for this component.
•	 converter: This indicates a converter for this component.
•	 valueChangeListener: This indicates a method that will be called when the

component's value is changed.

http://showcase.omnifaces.org/
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/h/inputFile.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/h/inputFile.html

JSF 2.2 – HTML5 and Upload

[360]

The <h:inputFile> component is based on Servlet 3.0, which is part of Java EE since
version 6. Servlet 3.0 provides an upload mechanism based on the javax.servlet.
http.Part interface and the @MultipartConfig annotation. A simple Servlet 3.0 for
upload files looks like the following code—keep in mind this servlet because we will
use it in the last section of this chapter:

@WebServlet(name = "UploadServlet", urlPatterns = {"/UploadServlet"})
@MultipartConfig(location="/folder", fileSizeThreshold=1024*1024,
 maxFileSize=1024*1024*3,
maxRequestSize=1024*1024*3*3)
public class UploadServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 for (Part part : request.getParts()) {
 String filename = "";
 for (String s: part.getHeader("content-disposition").
split(";")) {
 if (s.trim().startsWith("filename")) {
 filename = s.split("=")[1].replaceAll("\"", "");
 }
 }
 part.write(filename);
 }
 }
}

If you take a quick look over the JSF 2.2 FacesServlet source code,
you will notice that it was annotated with @MultipartConfig
especially for handling multipart data.

If you are not familiar with uploading files using Servlet 3.0, then you can try the
tutorial at http://docs.oracle.com/javaee/6/tutorial/doc/glrbb.html.

On the client side, you can use a <form> tag and an HTML5 input of type file:

<form action="UploadServlet" enctype="multipart/form-data"
method="POST">
 <input type="file" name="file">
 <input type="Submit" value="Upload File">
</form>

Basically, JSF 2.2 upload component is just a wrapper of this example.

http://docs.oracle.com/javaee/6/tutorial/doc/glrbb.html

Chapter 8

[361]

A simple JSF 2.2 upload example
In this section, we will cover the fundamental steps of a JSF 2.2 upload application.
Even if this is a simple example, you will see that further examples are based on this
one. So in order to use the <h:inputFile> component, you need to focus on the
client side and on the server side:

On the client side, we need to perform the following steps:

1.	 First, the <h:form> encoding must be set to multipart/form-data, which
will help the browser to build the POST request accordingly, as shown in
the following code:
<h:form id="uploadFormId" enctype="multipart/form-data">

2.	 Second, the <h:inputFile> must be configured to respect your needs, Here,
we provide a simple case, as follows:
<h:inputFile id="fileToUpload" required="true"
 requiredMessage="No file selected ..."
 value="#{uploadBean.file}"/>

3.	 Further, you need a button (or a link) to start the upload process, as follows:
<h:commandButton value="Upload" action="#{uploadBean.upload()}"/>

Optionally, you can add some tags for handling upload messages, as shown in the
following code:

<h:messages globalOnly="true" showDetail="false"
 showSummary="true" style="color:red"/>
<h:form id="uploadFormId" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" required="true"
 requiredMessage="No file selected ..."
 value="#{uploadBean.file}"/>
 <h:commandButton value="Upload" action="#{uploadBean.upload()}"/>
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload" style="color:red"/>
</h:form>

JSF 2.2 – HTML5 and Upload

[362]

On the server side, we need to perform the following steps:

1.	 Usually, the value attribute of <h:inputFile> contains an EL expression of
type #{upload_bean.part_object}. If you replace upload_bean with uploadBean
and part_object with file, you will obtain #{uploadBean.file}. The file
object is used to store the uploaded data as an instance of javax.servlet.
http.Part in the UploadBean bean. All you have to do is to define the
file property in the same manner as any other property, as shown in
the following code:
import javax.servlet.http.Part;
...
private Part file;
...
public Part getFile() {
 return file;
}

public void setFile(Part file) {
 this.file = file;
}
...

The uploaded data can be read through the getInputStream
method of Part.

2.	 When the button labeled Upload is clicked, the upload method is called.
When this method is called, the file object is already populated with the
uploaded bytes; therefore, you can obtain the data as a stream (use the
getInputStream method) and process it accordingly. For example, you
can use the Scanner API to extract the data into a String, as follows:
public void upload() {
 try {
 if (file != null) {
 Scanner scanner = new Scanner(file.getInputStream(),
 "UTF-8").useDelimiter("\\A");
 fileInString = scanner.hasNext() ? scanner.next() : "";

 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Upload successfully ended!"));
 }
 } catch (IOException | NoSuchElementException e) {

Chapter 8

[363]

 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Upload failed!"));
 }
}

The complete application is available in the code bundle of this chapter and is named
ch8_3. In this case, the uploaded data is converted into string and displayed in a log;
therefore, try to upload readable information, such as plain text files.

Using multiple <h:inputFile> elements
If you ask yourself whether you can use more than one <h:inputFile> element in
a <h:form> form, the answer is yes. Specify an ID for each <h:inputFile> element
and associate it with a unique Part instance. In order to use two <h:inputFile>
elements, the <h:form> form will change to the following code—you can easily
extrapolate this example for three, four, or more <h:inputFile> elements:

<h:form id="uploadFormId" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload_1" required="true"
 requiredMessage="No file selected ..."
 value="#{uploadBean.file1}"/>
 <h:inputFile id="fileToUpload_2" required="true"
 requiredMessage="No file selected ..."
 value="#{uploadBean.file2}"/>
 ...
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload_1" style="color:red"/>
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload_2" style="color:red"/>
 ...
 <h:commandButton value="Upload" action="#{uploadBean.upload()}"/>
</h:form>

Now, on the server side, you need two Part instances, defined as follows:

...
private Part file1;
private Part file2;
...
//getter and setter for both, file1 and file2
...

JSF 2.2 – HTML5 and Upload

[364]

In the upload method, you need to process both Part instances:

...
if (file1 != null) {
 Scanner scanner1 = new Scanner(file1.getInputStream(),
 "UTF-8").useDelimiter("\\A");
 fileInString1 = scanner1.hasNext() ? scanner1.next() : "";
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended for file 1!"));
}

if (file2 != null) {
 Scanner scanner2 = new Scanner(file2.getInputStream(),
 "UTF-8").useDelimiter("\\A");
 fileInString2 = scanner2.hasNext() ? scanner2.next() : "";
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended for file 2!"));
}
...

Done! The complete application is available in the code bundle of this chapter and is
named ch8_4.

Extracting info about a file to be uploaded
Filename, size, and content type are the most common types of information needed
when uploading a file. In JSF, this information is available on both the client side and
the server side. Let's consider the following <h:inputFile> element:

<h:form id="formUploadId" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" value="#{uploadBean.file}"
 required="true" requiredMessage="No file selected ...">
 ...
 </h:inputFile>
</h:form>

Now you will see how to extract the information about the file selected for upload.

On the client side, we need to perform either of the following steps:

•	 Extracting the filename, size (in bytes), and the content type on the client side
can be accomplished in a JavaScript function, as follows:
var file = document.getElementById('formUploadId:fileToUpload').
files[0];
...

Chapter 8

[365]

alert(file.name);
alert(file.size);
alert(file.type);

•	 Another approach is to use EL in a JSF page, as follows (of course, this works
after the file is uploaded):
// the id of the component, formUploadId:fileToUpload
#{uploadBean.file.name}

// the uploaded file name
#{uploadBean.file.submittedFileName}

// the uploaded file size
#{uploadBean.file.size}

// the uploaded file content type
#{uploadBean.file.contentType}

On the server side, we need to perform either of the following steps:

•	 Extracting the filename, size (in bytes), and the content type on server side can
be accomplished through several methods of the Part interface, as follows:
...
private Part file;
...
System.out.println("File component id: " + file.getName());
System.out.println("Content type: " + file.getContentType());
System.out.println("Submitted file name:" +
 file.getSubmittedFileName());
System.out.println("File size: " + file.getSize());
...

If the string returned by this method represents the entire path
instead of the filename, then you have to isolate the filename as
a substring of this string.

•	 The filename can be obtained from the content-disposition header as well
using the following code:
private String getFileNameFromContentDisposition(Part file) {

 for (String content:file.getHeader("content-disposition").
split(";")) {
 if (content.trim().startsWith("filename")) {
 return content.substring(content.indexOf('=') +
 1).trim().replace("\"", "");

JSF 2.2 – HTML5 and Upload

[366]

 }
 }

 return null;
}

An example of the content-disposition header can be seen in the
following screenshot:

This is very easy to understand if you inspect the POST request (you
can do this with Firebug or any other specialized tool). In the preceding
screenshot, you can see the relevant chunk of request that is depicted in the
getFileNameFromContentDisposition method.

The complete application is available in the code bundle of this chapter and is
named ch8_5.

Writing uploaded data to a disk
In the previous examples, the uploaded data was converted to String and displayed
on a console. Normally, when you upload a file, you want to save its content on
a disk in a specific location (let's say, the D:\files folder). For this, you can use
FileOutputStream, as follows:

 try (InputStream inputStream = file.getInputStream();
 FileOutputStream outputStream = new FileOutputStream("D:" +
 File.separator + "files" + File.separator +
 getSubmittedFileName())) {

 int bytesRead = 0;
 final byte[] chunck = new byte[1024];
 while ((bytesRead = inputStream.read(chunck)) != -1) {
 outputStream.write(chunck, 0, bytesRead);
 }

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended!"));
 } catch (IOException e) {
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload failed!"));
 }

Chapter 8

[367]

If you want buffered I/O, then add BufferedInputStream
and BufferedOutputStream into your code.

The complete application is available in the code bundle of this chapter and is named
ch8_6. If you prefer to obtain the filename from the content-disposition header,
you better check the application ch8_7.

Another approach consists of using the Part.write method. In this case, you have
to indicate the location where the file should be saved through the <multipart-
config> tag (http://docs.oracle.com/javaee/7/tutorial/doc/servlets011.
htm). Moreover, you can set the maximum file size, request size, and the file size
threshold; these configurations should be added in web.xml, as follows:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 <multipart-config>
 <location>D:\files</location>
 <max-file-size>1310720</max-file-size>
 <max-request-size>20971520</max-request-size>
 <file-size-threshold>50000</file-size-threshold>
 </multipart-config>
</servlet>

If you don't specify a location, the default one will be used.
The default location is "".

The uploaded file will be saved in the indicated location under the name passed to
the Part.write method, as shown in the following code:

try {
 file.write(file.getSubmittedFileName());
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended!"));
 } catch (IOException e) {
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload failed!"));
 }

The complete application is available in the code bundle of this chapter and is
named ch8_8.

http://docs.oracle.com/javaee/7/tutorial/doc/servlets011.htm
http://docs.oracle.com/javaee/7/tutorial/doc/servlets011.htm

JSF 2.2 – HTML5 and Upload

[368]

Upload validator
In most cases, you need to restrict the user upload based on certain constraints.
Commonly, you will limit the filename length, file size, and file content type.
For example, you may want to reject the following:

•	 Files that have names bigger than 25 characters
•	 Files that are not PNG or JPG images
•	 Files that are bigger than 1 MB in size

For this, you can write a JSF validator, as follows:

@FacesValidator
public class UploadValidator implements Validator {

 private static final Logger logger =
 Logger.getLogger(UploadValidator.class.getName());

 @Override
 public void validate(FacesContext context, UIComponent component,
 Object value) throws ValidatorException {

 Part file = (Part) value;

 //VALIDATE FILE NAME LENGTH
 String name = file.getSubmittedFileName();
 logger.log(Level.INFO, "VALIDATING FILE NAME: {0}", name);
 if (name.length() == 0) {
 FacesMessage message = new FacesMessage("Upload Error: Cannot
 determine the file name !");
 throw new ValidatorException(message);
 } else if (name.length() > 25) {
 FacesMessage message = new FacesMessage("Upload Error:
 The file name is to long !");
 throw new ValidatorException(message);
 }

 //VALIDATE FILE CONTENT TYPE
 if ((!"image/png".equals(file.getContentType())) &&
 (!"image/jpeg".equals(file.getContentType()))) {
 FacesMessage message = new FacesMessage("Upload Error: Only
 images can be uploaded (PNGs and JPGs) !");

Chapter 8

[369]

 throw new ValidatorException(message);
 }

 //VALIDATE FILE SIZE (not bigger than 1 MB)
 if (file.getSize() > 1048576) {
 FacesMessage message = new FacesMessage("Upload Error: Cannot
 upload files larger than 1 MB !");
 throw new ValidatorException(message);
 }
 }
}

Next, add the validator to the <h:inputFile> element, as follows:

<h:inputFile id="fileToUpload" required="true"
 requiredMessage="No file selected ..."
 value="#{uploadBean.file}">
 <f:validator validatorId="uploadValidator" />
</h:inputFile>

Now, only the files that meet our constraints will be uploaded. For each rejected file,
you will see an info message that will signal if the filename or its size is too big, or
whether the file is a PNG or JPG image.

The complete application is available in the code bundle of this chapter and is
named ch8_9.

Ajaxify the upload
A JSF upload can take advantages of the AJAX mechanism by combining the
<h:inputFile> tag with <f:ajax> or the <h:commandButton> tag (upload
initialization) with <f:ajax>. In the first case, a common ajaxified upload
will look like the following code:

<h:form enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" value="#{uploadBean.file}"
 required="true" requiredMessage="No file selected ...">
 <!-- <f:ajax listener="#{uploadBean.upload()}"
 render="@all"/> use @all in JSF 2.2.0 -->
 <f:ajax listener="#{uploadBean.upload()}"

JSF 2.2 – HTML5 and Upload

[370]

 render="fileToUpload"/> <!-- works in JSF 2.2.5 -->
 </h:inputFile>
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload" style="color:red"/>
</h:form>

The render attribute should contain the IDs of components to re-render
after upload. In JSF 2.2.0, you need to use @all instead of IDs because
there is a bug associated that was fixed in the later versions. For example,
in JSF 2.2.5 everything works as expected.

The complete application is available in the code bundle of this chapter and is
named ch8_10.

In the second case, place <f:ajax> in <h:commandButton>, as follows:

<h:form enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" value="#{uploadBean.file}"
 required="true" requiredMessage="No file selected ..."/>
 <h:commandButton value="Upload" action="#{uploadBean.upload()}">
 <!-- <f:ajax execute="fileToUpload"
 render="@all"/> use @all in JSF 2.2.0 -->
 <f:ajax execute="fileToUpload"
 render="fileToUpload"/> <!-- works in JSF 2.2.5 -->
 </h:commandButton>
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload" style="color:red"/>
</h:form>

The complete application is available in the code bundle of this chapter and is
named ch8_11.

Uploading images with preview
A nice feature of the upload components is that they allow us to preview images
before they are uploaded. In the following screenshot, you can see what we will
develop next:

Chapter 8

[371]

So when the user browses an image, you need to proceed with a behind the
scene auto AJAX upload, which should cause the user to see the image preview
immediately after he/she chooses the image from the local machine. The POST
request generated by AJAX will populate the server-side Part object (let's call
it file). When AJAX completes, you need to re-render a component capable of
displaying an image, such as <h:graphicImage>. This component will call a servlet
using a GET request. The managed bean responsible with upload should be session
scoped; therefore, the servlet will be able to extract the bean instance from the session
and use the file object representing the image. Now, the servlet can pass the image
bytes directly to the response output stream, or create a thumbnail of the image and
send a small number of bytes. Further, when the user clicks the button that initializes
the upload, you need to write the file object on the disk.

This is the main idea. Next, you will implement it and spice it up with some
validation capabilities, a cancel button, and some image information displayed
next to the preview.

In order to achieve this, you need to perform the following steps:

1.	 Write an auto upload based on AJAX, as follows:
<h:form enctype="multipart/form-data">
 <h:inputFile id="uploadFileId" value="#{uploadBean.file}"
 required="true" requiredMessage="No file selected ...">
 <f:ajax render=":previewImgId :imgNameId :uploadMessagesId"
 listener="#{uploadBean.validateFile()}"/>
 </h:inputFile>
</h:form>

2.	 AJAX will call the validateFile method. This server-side method is
capable of validating the filename, length, size, and the content type.
The validateFile method is defined as follows:
...
private Part file;
...
public void validateFile() {

 //VALIDATE FILE NAME LENGTH
 String name = file.getSubmittedFileName();
 if (name.length() == 0) {
 resetFile();

 FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage("Upload

JSF 2.2 – HTML5 and Upload

[372]

 Error: Cannot determine the file name !"));
 } else if (name.length() > 25) {
 resetFile();
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload Error: The file name is to long !"));
 } else //VALIDATE FILE CONTENT TYPE
 if ((!"image/png".equals(file.getContentType())) &&
 (!"image/jpeg".equals(file.getContentType()))) {
 resetFile();
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload Error: Only images can be uploaded
 (PNGs and JPGs) !"));
 } else //VALIDATE FILE SIZE (not bigger than 1 MB)
 if (file.getSize() > 1048576) {
 resetFile();
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload Error: Cannot upload files larger than
 1 MB !"));
 }
}

3.	 If the constraints are violated, then the resetFile method is called. This is a
simple method that resets the file object to its initial state. Moreover, it calls
the delete method, which deletes the underlying storage for the file item
(including temporary files on the disk).The resetFile method is defined
as follows:
public void resetFile() {
 try {
 if (file != null) {
 file.delete();
 }
 } catch (IOException ex) {
 Logger.getLogger(UploadBean.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 file = null;
}

Chapter 8

[373]

4.	 When the AJAX request is complete, it will re-render the components with
IDs: previewImgId, imgNameId, and uploadMessagesId. The following code
reveals the components having the previewImgId and imgNameId IDs—here
the uploadMessagesId ID corresponds to a <h:messages> component:
...
<h:panelGrid columns="2">
 <h:graphicImage id="previewImgId"
 value="/PreviewServlet/#{header['Content-
Length']}"
 width="#{uploadBean.file.size gt 0 ? 100 : 0}"
 height="#{uploadBean.file.size gt 0 ? 100 : 0}"/>
 <h:outputText id="imgNameId" value="#{uploadBean.file.
submittedFileName}
 #{empty uploadBean.file.submittedFileName ? '' : ','}
 #{uploadBean.file.size} #{uploadBean.file.size gt 0 ? 'bytes' :
''}"/>
</h:panelGrid>
...

5.	 The value of <h:graphicImage> accesses PreviewServlet. This servlet can
serve the image for preview through the response output stream. In order
to avoid the caching mechanism, you need to provide a URL with a random
part (the request content length can be a convenient choice). This technique
will load the correct image every time, instead of loading the same image for
all requests. The relevant part of the servlet is as follows:
protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 //decorate with buffers if you need to
 OutputStream out = response.getOutputStream();

 response.setHeader("Expires", "Sat, 6 May 1995 12:00:00 GMT");
 response.setHeader("Cache-Control","no-store,no-cache,must-
revalidate");
 response.addHeader("Cache-Control", "post-check=0, pre-check=0");
 response.setHeader("Pragma", "no-cache");

 int nRead;
 try {
 HttpSession session = request.getSession(false);
 if (session.getAttribute("uploadBean") != null) {
 UploadBean uploadBean = (UploadBean)

JSF 2.2 – HTML5 and Upload

[374]

 session.getAttribute("uploadBean");
 if (uploadBean.getFile() != null) {
 try (InputStream inStream =
 uploadBean.getFile().getInputStream()) {
 byte[] data = new byte[1024];
 while ((nRead =inStream.
 read(data, 0, data.length)) != -1) {
 out.write(data, 0, nRead);
 }
 }
 }
 }
 } finally {
 out.close();
 }
}

6.	 The preceding code will send all bytes of the uploaded image to the response
output stream. A common technique consists of scaling down the image to
obtain a thumbnail that contains a smaller number of bytes. In Java, scaling
an image can be accomplished in many ways, but a quick approach can be
seen in the following code:
protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 OutputStream out = response.getOutputStream();

 response.setHeader("Expires", "Sat, 6 May 1995 12:00:00 GMT");
 response.setHeader("Cache-Control","no-store,no-cache,must-
revalidate");
 response.addHeader("Cache-Control", "post-check=0, pre-check=0");
 response.setHeader("Pragma", "no-cache");

 try {
 HttpSession session = request.getSession(false);
 if (session.getAttribute("uploadBean") != null) {
 UploadBean uploadBean = (UploadBean)
 session.getAttribute("uploadBean");
 if (uploadBean.getFile() != null) {
 BufferedImage image = ImageIO.read(uploadBean.
 getFile().getInputStream());
 BufferedImage resizedImage = new BufferedImage(100,
 100, BufferedImage.TYPE_INT_ARGB);

Chapter 8

[375]

 Graphics2D g = resizedImage.createGraphics();
 g.drawImage(image, 0, 0, 100, 100, null);
 g.dispose();
 ImageIO.write(resizedImage, "png", out);
 }
 }
 } finally {
 out.close();
 }
}

7.	 Further, you add two buttons: one button labeled Upload and another one
labeled Cancel. The first one will initialize the upload, and the second one
will cancel the upload, as shown in the following code:
<h:form>
 <h:commandButton value="Upload Image"
 action="#{uploadBean.saveFileToDisk()}"/>
 <h:commandButton value="Cancel" action="#{uploadBean.
resetFile()}"/>
</h:form>

8.	 When the button labeled Upload is clicked, the saveFileToDisk method will
save the uploaded data to the disk, as shown in the following code:
public void saveFileToDisk() {

 if (file != null) {
 //decorate with buffers if you need too
 try (InputStream inputStream = file.getInputStream();
 FileOutputStream outputStream = new
 FileOutputStream("D:" + File.separator + "files" +
 File.separator + getSubmittedFileName())) {

 int bytesRead;
 final byte[] chunck = new byte[1024];
 while ((bytesRead = inputStream.read(chunck)) != -1) {
 outputStream.write(chunck, 0, bytesRead);
 }

 resetFile();

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended!"));
 } catch (IOException e) {

JSF 2.2 – HTML5 and Upload

[376]

 FacesContext.getCurrentInstance().addMessage(null,
 new FacesMessage("Upload failed!"));
 }
 }
 }

Done! The complete application, without thumbnail, is available in the code bundle
of this chapter and is named ch8_13. The complete application, with thumbnail, is
named ch8_12.

The validation process can be eliminated from the server side and can be
accomplished on the client side also. Such an example can be found in the
code bundle of this chapter and is named ch8_14. The JavaScript code is
pretty straightforward, as follows:

<script type="text/javascript">
function validateFile() {
 // <![CDATA[
 document.getElementById('formSaveId:uploadHiddenId').value = false;
 document.getElementById('validationId').innerHTML = "";

 var file= document.getElementById('formUploadId:fileToUpload').
files[0];

 document.getElementById('fileNameId').innerHTML =
 "File Name: " + file.name;
 if (file.size > 1048576)
 fileSize = (Math.round(file.size * 100 /
 (1048576)) / 100).toString() + 'MB';
 else
 fileSize = (Math.round(file.size * 100
 / 1024) / 100).toString() + 'KB';

 document.getElementById('fileSizeId').innerHTML =
 "File Size: " + fileSize;
 document.getElementById('fileContentTypeId').innerHTML =
 "File Type: " + file.type;

 //VALIDATE FILE NAME LENGTH
 if (file.name.length === 0) {
 clearUploadField();
 document.getElementById('validationId').innerHTML =

Chapter 8

[377]

 "Upload Error: Cannot determine the file name !</
ul>";
 return false;
 }

 if (file.name.length > 25) {
 clearUploadField();
 document.getElementById('validationId').innerHTML =
 "Upload Error: The file name is to long !</
ul>";
 return false;
 }

 //VALIDATE FILE CONTENT TYPE
 if (file.type !== "image/png" && file.type !== "image/jpeg") {
 clearUploadField();
 document.getElementById('validationId').innerHTML =
 "Upload Error: Only images can be uploaded
 (PNGs and JPGs) !";
 return false;
 }

 //VALIDATE FILE SIZE (not bigger than 1 MB)
 if (file.size > 1048576) {
 clearUploadField();
 document.getElementById('validationId').innerHTML =
 "Upload Error: Cannot upload files
 larger than 1 MB !";
 return false;
 }

 document.getElementById('formSaveId:uploadHiddenId').value = true;
 return true;
 //]]>
}

function clearUploadField() {

 document.getElementById('previewImgId').removeAttribute("src");
 document.getElementById('imgNameId').innerHTML = "";

JSF 2.2 – HTML5 and Upload

[378]

 document.getElementById('uploadMessagesId').innerHTML = "";
 var original = document.getElementById("formUploadId:fileToUpload");
 var replacement = document.createElement("input");

 replacement.type = "file";
 replacement.id = original.id;
 replacement.name = original.name;
 replacement.className = original.className;
 replacement.style.cssText = original.style.cssText;
 replacement.onchange = original.onchange;
 // ... more attributes

 original.parentNode.replaceChild(replacement, original);
}

</script>

Uploading multiple files
By default, JSF 2.2 does not provide support for uploading multiple files, but with
some adjustments, we can easily achieve this goal. In order to have multiple file
uploads, you need to focus on two aspects, which are listed as follows:

•	 Making multiple file selections possible
•	 Uploading all the selected files

Regarding the first task, the multiple selection can be activated using an HTML5
input file attribute (multiple) and the JSF 2.2 pass-through attribute feature. When
this attribute is present and its value is set to multiple, the file chooser can select
multiple files. So, this task requires some minimal adjustments:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f5="http://xmlns.jcp.org/jsf/passthrough">
...
<h:form id="uploadFormId" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" required="true" f5:multiple="multiple"
 requiredMessage="No file selected ..." value="#{uploadBean.
file}"/>
 <h:commandButton value="Upload" action="#{uploadBean.upload()}"/>
</h:form>

Chapter 8

[379]

The second task is a little bit tricky, because when multiple files are selected, JSF
will overwrite the previous Part instance with each file in the uploaded set. This
is normal, since you use an object of type Part, but you need a collection of Part
instances. Fixing this issue requires us to focus on the renderer of the file component.
This renderer is named FileRenderer (an extension of TextRenderer), and the
decode method implementation is the key for our issue (the bold code is very
important for us), as shown in the following code:

@Override
public void decode(FacesContext context, UIComponent component) {

 rendererParamsNotNull(context, component);

 if (!shouldDecode(component)) {
 return;
 }

 String clientId = decodeBehaviors(context, component);

 if (clientId == null) {
 clientId = component.getClientId(context);
 }

 assert(clientId != null);
 ExternalContext externalContext = context.getExternalContext();
 Map<String, String> requestMap =
 externalContext.getRequestParameterMap();

 if (requestMap.containsKey(clientId)) {
 setSubmittedValue(component, requestMap.get(clientId));
 }

 HttpServletRequest request = (HttpServletRequest)
 externalContext.getRequest();
 try {
 Collection<Part> parts = request.getParts();
 for (Part cur : parts) {
 if (clientId.equals(cur.getName())) {
 component.setTransient(true);
 setSubmittedValue(component, cur);
 }

JSF 2.2 – HTML5 and Upload

[380]

 }
 } catch (IOException ioe) {
 throw new FacesException(ioe);
 } catch (ServletException se) {
 throw new FacesException(se);
 }
}

The highlighted code causes the override Part issue, but you can easily modify it to
submit a list of Part instances instead of one Part, as follows:

try {
 Collection<Part> parts = request.getParts();
 List<Part> multiple = new ArrayList<>();
 for (Part cur : parts) {
 if (clientId.equals(cur.getName())) {
 component.setTransient(true);
 multiple.add(cur);
 }
 }
 this.setSubmittedValue(component, multiple);
} catch (IOException | ServletException ioe) {
 throw new FacesException(ioe);
}

Of course, in order to modify this code, you need to create a custom file renderer and
configure it properly in faces-config.xml.

Afterwards, you can define a list of Part instances in your bean using the
following code:

...
private List<Part> files;

public List<Part> getFile() {
 return files;
}

public void setFile(List<Part> files) {
 this.files = files;
}
...

Chapter 8

[381]

Each entry in the list is a file; therefore, you can write them on the disk by iterating
the list using the following code:

...
for (Part file : files) {
 try (InputStream inputStream = file.getInputStream();
 FileOutputStream
 outputStream = new FileOutputStream("D:" + File.separator +
 "files" + File.separator + getSubmittedFileName())) {

 int bytesRead = 0;
 final byte[] chunck = new byte[1024];
 while ((bytesRead = inputStream.read(chunck)) != -1) {
 outputStream.write(chunck, 0, bytesRead);
 }

 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload successfully ended: " +
 file.getSubmittedFileName()));
 } catch (IOException e) {
 FacesContext.getCurrentInstance().addMessage(null, new
 FacesMessage("Upload failed !"));
 }
}
...

The complete application is available in the code bundle of this chapter and is
named ch8_15.

Upload and the indeterminate progress bar
When users upload small files, the process happens pretty fast; however, when large
files are involved, it may take several seconds, or even minutes, to end. In this case,
it is a good practice to implement a progress bar that indicates the upload status. The
simplest progress bar is known as an indeterminate progress bar, because it shows
that the process is running, but it doesn't provide information for estimating the time
left or the amount of processed bytes.

JSF 2.2 – HTML5 and Upload

[382]

In order to implement a progress bar, you need to develop an AJAX-based upload.
The JSF AJAX mechanism allows us to determine when the AJAX request begins
and when it completes. This can be achieved on the client side; therefore, an
indeterminate progress bar can be easily implemented using the following code:

<script type="text/javascript">
 function progressBar(data) {
 if (data.status === "begin") {
 document.getElementById("uploadMsgId").innerHTML="";
 document.getElementById("progressBarId").
 setAttribute("src", "./resources/progress_bar.gif");
 }

 if (data.status === "complete") {
 document.getElementById("progressBarId").removeAttribute("src");
 }
 }
</script>
...
<h:body>
 <h:messages id="uploadMsgId" globalOnly="true" showDetail="false"
 showSummary="true" style="color:red"/>
 <h:form id="uploadFormId" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" required="true"
 requiredMessage="No file selected ..." value="#{uploadBean.
file}"/>
 <h:message showDetail="false" showSummary="true"
 for="fileToUpload" style="color:red"/>
 <h:commandButton value="Upload" action="#{uploadBean.upload()}">
 <f:ajax execute="fileToUpload" onevent="progressBar"
 render=":uploadMsgId @form"/>
 </h:commandButton>
 </h:form>
 <div>

 </div>
</h:body>

Chapter 8

[383]

A possible output is as follows:

The complete application is available in the code bundle of this chapter and is
named ch8_16.

Upload and the determinate progress bar
A determinate progress bar is much more complicated. Usually, such a progress bar
is based on a listener capable to monitor the transferred bytes (if you have worked
with Apache Commons' FileUpload, you must have had the chance to implement
such a listener). In JSF 2.2, FacesServlet was annotated with @MultipartConfig for
dealing multipart data (upload files), but there is no progress listener interface for it.
Moreover, FacesServlet is declared final; therefore, we cannot extend it.

Well, the possible approaches are pretty limited by these aspects. In order to
implement a server-side progress bar, we need to implement the upload component
in a separate class (servlet) and provide a listener. Alternatively, on the client
side, we need a custom POST request that tricks FacesServlet that the request is
formatted by jsf.js.

In this section, you will see a workaround based on HTML5 XMLHttpRequest Level
2 (can upload/download streams as Blob, File, and FormData), HTML5 progress
events (for upload it returns total transferred bytes and uploaded bytes), HTML5
progress bar, and a custom Servlet 3.0. If you are not familiar with these HTML5
features, then you have to check out some dedicated documentation.

After you get familiar with these HTML5 features, it will be very easy to understand
the following client-side code. First we have the following JavaScript code:

<script type="text/javascript">
 function fileSelected() {
 hideProgressBar();
 updateProgress(0);
 document.getElementById("uploadStatus").innerHTML = "";
 var file = document.getElementById('fileToUploadForm:

JSF 2.2 – HTML5 and Upload

[384]

 fileToUpload').files[0];
 if (file) {
 var fileSize = 0;
 if (file.size > 1048576)
 fileSize = (Math.round(file.size * 100 / (1048576)) /
 100).toString() + 'MB';
 else
 fileSize = (Math.round(file.size * 100 / 1024) /
 100).toString() + 'KB';

 document.getElementById('fileName').innerHTML = 'Name: ' +
 file.name;
 document.getElementById('fileSize').innerHTML = 'Size: ' +
 fileSize;
 document.getElementById('fileType').innerHTML = 'Type: ' +
 file.type;
 }
 }

 function uploadFile() {
 showProgressBar();
 var fd = new FormData();
 fd.append("fileToUpload", document.getElementById('fileToUploadForm:
 fileToUpload').files[0]);

 var xhr = new XMLHttpRequest();
 xhr.upload.addEventListener("progress", uploadProgress, false);
 xhr.addEventListener("load", uploadComplete, false);
 xhr.addEventListener("error", uploadFailed, false);
 xhr.addEventListener("abort", uploadCanceled, false);
 xhr.open("POST", "UploadServlet");
 xhr.send(fd);
 }

 function uploadProgress(evt) {
 if (evt.lengthComputable) {
 var percentComplete = Math.round(evt.loaded * 100 / evt.total);
 updateProgress(percentComplete);
 }
 }

 function uploadComplete(evt) {
 document.getElementById("uploadStatus").innerHTML = "Upload
 successfully completed!";

Chapter 8

[385]

 }

 function uploadFailed(evt) {
 hideProgressBar();
 document.getElementById("uploadStatus").innerHTML = "The upload
 cannot be complete!";
 }

 function uploadCanceled(evt) {
 hideProgressBar();
 document.getElementById("uploadStatus").innerHTML = "The upload was
 canceled!";
 }

 var updateProgress = function(value) {
 var pBar = document.getElementById("progressBar");
 document.getElementById("progressNumber").innerHTML=value+"%";
 pBar.value = value;
 }

 function hideProgressBar() {
 document.getElementById("progressBar").style.visibility = "hidden";
 document.getElementById("progressNumber").style.visibility =
"hidden";
 }

 function showProgressBar() {
 document.getElementById("progressBar").style.visibility = "visible";
 document.getElementById("progressNumber").style.visibility =
"visible";
 }
</script>

Further, we have the upload component that uses the preceding JavaScript code:

<h:body>
 <hr/>
 <div id="fileName"></div>
 <div id="fileSize"></div>
 <div id="fileType"></div>
 <hr/>
 <h:form id="fileToUploadForm" enctype="multipart/form-data">
 <h:inputFile id="fileToUpload" onchange="fileSelected();"/>
 <h:commandButton type="button" onclick="uploadFile()"
 value="Upload" />

JSF 2.2 – HTML5 and Upload

[386]

 </h:form>
 <hr/>
 <div id="uploadStatus"></div>
 <table>
 <tr>
 <td>
 <progress id="progressBar" style="visibility: hidden;"
 value="0" max="100"></progress>
 </td>
 <td>
 <div id="progressNumber" style="visibility: hidden;">0 %</div>
 </td>
 </tr>
 </table>
 <hr/>
</h:body>

A possible output can be seen in the following screenshot:

The servlet behind this solution is UploadServlet that was presented earlier.
The complete application is available in the code bundle of this chapter and is
named ch8_17.

For multiple file uploads and progress bars, you can extend
this example, or choose a built-in solution, such as PrimeFaces
Upload, RichFaces Upload, or jQuery Upload Plugin.

Chapter 8

[387]

Summary
In this chapter, you saw how to exploit HTML5 through JSF 2.2 using the
pass-through attribute and the pass-through elements techniques. Moreover,
in the second part of this chapter, you saw how to work with the new JSF 2.2
upload component (simple upload, multiple file uploads, upload images with
preview, and indeterminate/determinate progress bars for upload).

See you in the next chapter, where we will go further with a great feature of JSF 2.2,
that is, stateless views.

JSF State Management
Commonly, the JSF applications' performance is directly related to CPU memory,
serialization/deserialization tasks, and network bandwidth. When these variables
start to become the source of headache, or errors of type ViewExpiredException or
NotSerializableException occur, it is time to find out about JSF's managing view
state feature and how it can be finely tuned to increase the performance. Therefore,
in this chapter, we will discuss about JSF saving the view state (JSF's partial saving
view state feature, JSF saving the view state on server/client, logical and physical
views, and so on) and JSF 2.2 stateless views.

JSF saving the view state
First, you have to know that JSF saves and restores the view state between requests
using the ViewHandler/StateManager API. JSF does this during its lifecycle, the
view state is saved in the session (or on the client machine) at the end of a request
and is restored at the beginning of a request.

JSF uses this technique because it needs to preserve the views state over the HTTP
protocol, which is a stateless protocol. Since JSF is stateful, it needs to save the state
of views in order to perform the JSF lifecycle over multiple requests from the same
user. Each page has a view state that acts as a ping-pong ball between the client and
the server. A view is basically a component tree that may be dynamically changed
(altered) during HTTP GET and POST requests. Each request will successfully go
through the JSF lifecycle only if the component tree was previously saved and is
fully capable to provide the needed information, that is, Faces Servlet succeeds to
call the needed view handler implementations to restore or build the view. So, when
the component tree is programmatically changed (for example, from backing beans
or static components) it can't be successfully recreated from scratch (or rebuilt). The
only solution is to use the existing state saved at the Render Response phase. Trying
to recreate it from scratch will make the programmatic changes useless, since they
would no longer be available.

JSF State Management

[390]

Keep in mind that the component tree is just a hand of UI
components hierarchically and logically related. The view
state maintains the tree structure and the components state
(selected/deselected, enabled/disabled, and so on). Therefore,
the component tree contains only references to backing beans
properties/actions through EL expressions, and does not store
the model values.

JSF partial saving view state
Starting with JSF 2.0, the performance of managing the state was seriously increased
by adding the partial state saving feature. Basically, JSF will not save the entire
component tree, only a piece of it. Obviously this will require less memory. In other
words, this means that instead of saving the entire component tree (the whole view,
<html>), now, for every request during restore view, JSF will recreate the entire
component tree from scratch and initialize the components from their tag attributes.
In this way, JSF will save only the things that are deserved to be saved. These are
the things that are susceptible to changes (for example, <h:form>) that cannot be
recreated from scratch and/or represent inland details of components. These details
are: dynamic (programmatic) changes that alter the component tree, different kinds
of values that were determined for some components (usually at first postback), and
values that were changed for components but have not been submitted (for example,
moving a slider or checking a checkbox). On the other hand, the things that cannot
be changed by the client will not be saved.

Partial state saving and tree visiting
In JSF 2.0, the JSF partial state saving feature raised a question similar to how a JSF
implementation should visit all the components in the component tree and ask them
for their state (partial)? The answer in JSF 2.1 (and earlier versions) was specific
to this implementation: Mojarra used a tree visiting algorithm, while MyFaces
used a so-called "facets + children" traversal. But, technically speaking, these two
approaches are pretty different, because Mojarra provides a pluggable algorithm,
while MyFaces doesn't. Moreover, the Mojarra approach is in context (before
children are visited, the parent component can choose to use a context/scope), while
the MyFaces approach follows a pointer design. Furthermore, the Mojarra algorithm
can visit virtual components. (These kinds of components are obtained by looping
components such as UIData.) On the other hand, from the saving state perspective,
using a context/scope and looping virtual components is not desirable, even if
affecting the visiting process can be major and useful.

Chapter 9

[391]

In order to solve this problem, JSF 2.1 offers some hints, which can be considered
deprecated starting with JSF 2.2. Starting with JSF 2.2, tree visiting is fully capable
of partial state saving; thanks to the StateManagementStrategy.saveView and
StateManagementStrategy.restoreView methods. These two methods are meant
to replace their counterparts from the StateManager class, and their implementations
are now mandatory to use the visit API. (A good point to start studying may be the
UIComponent.visitTree method.) As a JSF developer, you will probably never
interact with this feature, but for the sake of completeness, it may be good to be
aware of it.

JSF saving view state on the server or client
Saving the view state can be accomplished on the server that hosts the application,
or on the client machine. We can easily choose between the client and the server by
adding the context parameter named javax.faces.STATE_SAVING_METHOD to the
web.xml file. The value of this method can be server or client as shown in the
following code:

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
</context-param>

Starting with JSF 2.2, the values of this context parameter are case insensitive.

Saving the state on the server means to save it in a session with a special ID known
as the view state ID that refers to the state stored in the server memory. This is sent
to the client as the value of a hidden input field named, javax.faces.ViewState.
This can be easily tested by running the ch9_1_1 application, which produces the
HTML code that contains this field, as shown in the following screenshot:

If the state is saved on the client, JSF stores it as the value of the same hidden input
field. This value is a base64 encrypted string representing the serialization of the
state. Running the ch9_1_2 application will produce the following output:

JSF State Management

[392]

Specifying where the view state will be saved is a piece of cake, but choosing
between saving the view state on a client or on a server can be a difficult choice,
because each has its own advantages and disadvantages. Both have a cost, and
everybody wants to pay a lower price. Choosing the client will increase network
traffic because the serialized state will generate a larger value for the javax.faces.
ViewState input field. Moreover, encoding/decoding the view state and possible
trespasser attacks are also important drawbacks of this approach. On the other hand,
the server uses less memory because nothing is stored in the session. Moreover,
storing the view state on the client will also be a good solution to prevent losing
it when the server is down, and to prevent ViewExpiredException that occurs
when the session has expired, or when the maximum number of opened views was
reached. Saving the state on the server has an opposite effect: the network traffic is
lower, the usage of memory by the server increases, and the server failures will result
in loss of the state and possible ViewExpiredException instances.

Usually, developers prefer to have a lower network traffic and use
more memory on the server, because memory is easy to provide to
an application server. But this is not a rule; you just have to think
what's cheaper for you. Some heavy benchmarks can also provide
compelling indications about storing the state on the client or on
the server.

In order to make the right choice, do not forget that JSF 2.0 comes, by default, with
partial state saving, which will be reflected in a smaller size of the javax.faces.
ViewState input field (the state saved on the client) or in less memory needed
(the state saved on the server). You can disable partial state saving by adding the
following context parameter in web.xml:

<context-param>
 <param-name>javax.faces.PARTIAL_STATE_SAVING</param-name>
 <param-value>false</param-value>
</context-param>

For a simple visual test, you can choose to save the state on the client and run the
same application twice (you can use the application named, ch9_1_2): first time,
enable partial state saving, and second time, disable it—the result shown in the
following screenshot speaks for itself:

Chapter 9

[393]

Furthermore, in the same application, you can use partial state saving for some views
and full state saving for other views. Skip the javax.faces.PARTIAL_STATE_SAVING
context parameter and use the javax.faces.FULL_STATE_SAVING_VIEW_IDS context
parameter. The value of this context parameter contains a list of view IDs for which
the partial state saving will be disabled. The IDs should be comma separated, as
shown in the following code (suppose you have three pages: index.xhtml, done.
xhtml, and error.xhtml, partial state saving is used only for index.xhtml):

<context-param>
 <param-name>javax.faces.FULL_STATE_SAVING_VIEW_IDS</param-name>
 <param-value>/done.xhtml,/error.xhtml</param-value>
</context-param>

Programmatically, you can check if the state is saved on the client as follows:

•	 In view/page the code is as follows:
#{facesContext.application.stateManager.

 isSavingStateInClient(facesContext)}

•	 In backing bean, the code is as follows:
FacesContext facesContext = FacesContext.getCurrentInstance();
Application application = facesContext.getApplication();
StateManager stateManager = application.getStateManager();
logger.log(Level.INFO, "Is view state saved on client ? {0}",
 stateManager.isSavingStateInClient(facesContext));

JSF State Management

[394]

JSF logical and physical views
So far, so good! We know that JSF can store a full or partial view state on server or on
client with some advantages and disadvantages. Further, you have to know that JSF
differentiates views in logical views (specific to the GET requests) and physical views
(specific to the POST requests). Each GET request generates a new logical view. By
default, JSF Mojarra (the reference implementation of JSF) manages 15 logical views,
but this number can be adjusted through the context parameter, com.sun.faces.
numberOfLogicalViews, as shown in the following code:

<context-param>
 <param-name>com.sun.faces.numberOfLogicalViews</param-name>
 <param-value>2</param-value>
</context-param>

You can easily perform a test of this setting by starting the browser and opening the
ch9_2 application three times, in three different browser tabs. Afterwards, come back
to the first tab and try to submit the form. You will see a ViewExpiredException
because the first logical view was removed from the logical views map, as shown in
the following screenshot:

If you open the application in one or two tabs, this error will not occur.

There is another story with the POST requests (non-AJAX), because, in this case,
JSF (Mojarra implementation) will store every single form in the session until the
maximum size is reached. A POST request creates a new physical view (except AJAX
requests which use the same physical view repeatedly) and JSF Mojarra can store
15 physical views per logical view (Map<LogicalView, Map<PhysicalView, and
ViewState>>). Obviously, a physical view can contain multiple forms.

You can control the number of physical views through the context parameter named
com.sun.faces.numberOfViewsInSession. For example, you can decrease its value
to 4 as shown in the following code:

<context-param>
 <param-name>com.sun.faces.numberOfViewsInSession</param-name>
 <param-value>4</param-value>
</context-param>

Chapter 9

[395]

This small value allows you to perform a quick test. Open the application named
ch9_3 in the browser and submit that form four times. Afterwards, press the browser's
back button four times, to return to the first form and try to submit it again. You will
see an exception, because this physical view was removed from the physical view's
map. This will not happen if you submit the form less than four times.

In case you need more than 15 logical/physical views, then you
can increase their number or choose to save the state on the client.
Saving the state on the client is recommended since it will totally
eliminate this problem.

In case of navigation between pages, JSF doesn't store anything in the session for the
GET requests, but will save the state of forms for the POST requests.

Saving the state in a database – an
experimental application
Combining the client saving state and complex views can really stress up the network
bandwidth. The root of this drawback is represented by the size of the serialized state
that should be passed between the client and the server at each request-response
cycle. Usually, this string increases the server's response size significantly. An
interesting idea is to save the view state in a database and send to the client only an
identifier to the corresponding record. In this section, you will see how to accomplish
this task using a MongoDB database and a custom implementation of saving the
client view state. The implementation is tight coupled to JSF Mojarra (there are com.
sun.faces.* specific dependencies requiring Mojarra). So, since it is not utilizing the
standard API methods, this approach won't work in MyFaces.

If you are not familiar with MongoDB (or NoSQL database
systems), you can use SQL RDBMSs (for example, MySQL)
and plain JDBC.

In order to pass the client view state into a database, you have to be aware of how
JSF deals with it by default, and perform the corresponding adjustments. The magic
of saving the state begins in the ViewHandler/StateManager pair of classes, which
guides the tasks of saving/restoring the views between requests. Both of them use
a helper class, named ResponseStateManager, which knows how to determine
where the state should be saved (based on the default settings or on web.xml explicit
settings) and delegates the saving/restoring task to one of the two helper classes,
named ClientSideStateHelper and ServerSideStateHelper.

JSF State Management

[396]

Getting more in details, when the view state should be saved, the StateManager.
writeState method is called from the ViewHandler.renderView method.
In the StateManager.writeState method, JSF will obtain an instance of
ResponseStateManager. This object can inspect each rendering-technology-
specific request, because it knows the rendering technology used. The instance of
ResponseStateManager comes from the RenderKit class (by calling the RenderKit
method, named getResponseStateManager) and delegates the writing task to
the ResponseStateManager.writeState method. In the ResponseStateManager
constructor, JSF will determine where the view state should be saved (on the client
or the server), and indicates that the writing task should happen in one of the two
helper classes, which are responsible for effectively writing the view state.

On the way back, during restore view, the ViewHandler uses the
ResponseStateManager class to test if the request is an initial request or a postback
request. In case of a postback request, JSF will call the ViewHandler.restoreView
method.

Since we are interested in saving view state on the client, we will focus on the
ClientSideStateHelper class, which defines the following important methods:

•	 writeState: This method generates the hidden input field and populates its
value with the encrypted version of the serialization view state

•	 getState: This method inspects the incoming request parameters for the
standardized state parameter name and decrypts the string

So, we need to write our helper class, named CustomClientSideStateHelper. The
writeState method is a convenient point to start. The idea is to modify the default
method for sending the encrypted state into a MongoDB database, instead of sending
it to the client. The client will receive the primary key used for storing the state in the
database. The modifications are highlighted in the following code:

@Override
public void writeState(FacesContext ctx, Object state,
 StringBuilder stateCapture) throws IOException {

 if (stateCapture != null) {
 doWriteState(ctx,state,new StringBuilderWriter(stateCapture));
 } else {
 ResponseWriter writer = ctx.getResponseWriter();

 writer.startElement("input", null);
 writer.writeAttribute("type", "hidden", null);
 writer.writeAttribute("name",

Chapter 9

[397]

 ResponseStateManager.VIEW_STATE_PARAM, null);
 if (webConfig.isOptionEnabled(EnableViewStateIdRendering)) {
 String viewStateId = Util.getViewStateId(ctx);
 writer.writeAttribute("id", viewStateId, null);
 }
 StringBuilder stateBuilder = new StringBuilder();
 doWriteState(ctx,state,new StringBuilderWriter(stateBuilder));

 WriteStateInDB writeStateInDB = new WriteStateInDB();
 String client_id =
 writeStateInDB.writeStateDB(stateBuilder.toString());

 if (client_id != null) {
 writer.writeAttribute("value", client_id, null);
 } else {
 writer.writeAttribute("value",
 stateBuilder.toString(), null);
 }
 if (webConfig.isOptionEnabled(AutoCompleteOffOnViewState)) {
 writer.writeAttribute("autocomplete", "off", null);
 }
 writer.endElement("input");

 writeClientWindowField(ctx, writer);
 writeRenderKitIdField(ctx, writer);
 }
 }

Further, a subsequent client request will pass the primary key to the default
getState method. Therefore, you need to write a custom getState method
that will extract the corresponding state from the database by its ID (primary key):

@Override
public Object getState(FacesContext ctx, String viewId)
 throws IOException {

 String stateString = ClientSideStateHelper.getStateParamValue(ctx);

 if (stateString == null) {
 return null;
 }

 if ("stateless".equals(stateString)) {

JSF State Management

[398]

 return "stateless";
 } else {
 WriteStateInDB writeStateInDB = new WriteStateInDB();
 stateString = writeStateInDB.readStateDB(stateString);
 if (stateString == null) {
 return null;
 }
 }

 return doGetState(stateString);
}

Writing the custom ResponseStateManager class
At this point, we can save/restore the client view state using a MongoDB database.
Looking forward, we need to tell JSF to use our CustomClientSideStateHelper
class instead of the default ClientSideStateHelper class. This task can be easily
accomplished if we write a custom implementation of the ResponseStateManager
class. This will be almost the same as the Mojarra implementation, but
with a small adjustment in the constructor (notice how we slipped the
CustomClientSideStateHelper class here) as shown in the following code:

public class CustomResponseStateManager extends ResponseStateManager {

 private StateHelper helper;

 public CustomResponseStateManager() {
 WebConfiguration webConfig = WebConfiguration.getInstance();
 String stateMode =
 webConfig.getOptionValue(StateSavingMethod);
 helper = ((StateManager.STATE_SAVING_METHOD_CLIENT.
equalsIgnoreCase(stateMode)
 ? new CustomClientSideStateHelper()
 : new ServerSideStateHelper()));
 }
...

Chapter 9

[399]

Following the same reasoning, we need to tell JSF to use our custom
ResponseStateManager class. Remember that JSF obtains an instance of this
class through the default RenderKit class; therefore, we can easily write our
custom RenderKit class and override the getResponseStateManager method,
which is responsible for creating an instance of the ResponseStateManager class.
In order to write a custom RenderKit class, we will extend the wrapper class,
RenderKitWrapper, which represents a simple implementation of the RenderKit
abstract class and spares us the implementation of all the methods as shown in the
following code:

public class CustomRenderKit extends RenderKitWrapper {

 private RenderKit renderKit;
 private ResponseStateManager responseStateManager =
 new CustomResponseStateManager();

 public CustomRenderKit() {}

 public CustomRenderKit(RenderKit renderKit) {
 this.renderKit = renderKit;
 }

 @Override
 public synchronized ResponseStateManager getResponseStateManager() {

 if (responseStateManager == null) {
 responseStateManager = new CustomResponseStateManager();
 }
 return responseStateManager;
 }

 @Override
 public RenderKit getWrapped() {
 return renderKit;
 }
}

JSF State Management

[400]

The custom RenderKit class must be appropriately configured in the
faces-config.xml file as follows:

<render-kit>
 <render-kit-class>
 book.beans.CustomRenderKit
 </render-kit-class>
</render-kit>

Done! Now, the default StateManager class will require a ResponseStateManager
instance from our RenderKit class, which will provide an instance of the
CustomResponseStateManager class. Further, the CustomResponseStateManager
class will use CustomClientSideStateHelper for saving/restoring the client state.

Adding MongoDB in equation
The missing part of the preceding section is the WriteStateInDB class. This is
a class capable of writing/reading data from a MongoDB (Version 2.2.2 or later)
database using the MongoDB Java Driver (Version 2.8.0 or later), and is listed in the
following code (for those who are familiar with the MongoDB Java Driver, this is a
very simple code):

public class WriteStateInDB {

 private DBCollection dbCollection;

 public WriteStateInDB() throws UnknownHostException {
 Mongo mongo = new Mongo("127.0.0.1", 27017);
 DB db = mongo.getDB("jsf_db");
 dbCollection = db.getCollection(("jsf"));
 }

 protected String writeStateDB(String state) {

 //TTL Index
 BasicDBObject index = new BasicDBObject("date", 1);
 BasicDBObject options = new BasicDBObject("expireAfterSeconds",
 TimeUnit.MINUTES.toSeconds(1));
 dbCollection.ensureIndex(index, options);

 BasicDBObject basicDBObject = new BasicDBObject();
 basicDBObject.append("date", new Date());
 basicDBObject.append("state", state);

 dbCollection.insert(basicDBObject);

Chapter 9

[401]

 ObjectId id = (ObjectId) basicDBObject.get("_id");

 return String.valueOf(id);

 }

 protected String readStateDB(String id) {

 BasicDBObject query = new BasicDBObject("_id", new ObjectId(id));
 DBObject dbObj = dbCollection.findOne(query);
 if (dbObj != null) {
 return dbObj.get("state").toString();
 }
 return null;

 }
}

Moreover, this class exploits a great facility of MongoDB, named TTL (http://docs.
mongodb.org/manual/tutorial/expire-data/), which is capable of automatically
removing the data after a specified number of seconds or at a specific clock time.
This is useful for cleaning up the database for the expired sessions (orphans). In this
demo, each state will be deleted after 60 seconds from the insertion of data into the
database, but setting the time to 30 minutes can be more realistic. Of course, even
so, you are under the risk of deleting the states that are currently active; therefore,
supplementary checks or an alternative solution is needed. Unfortunately, we can't
provide more details regarding MongoDB, since this is beyond the scope of this
book. Therefore you have to go for a research (http://www.mongodb.org/). In the
following screenshots, you can see a simple test that reveals the page size difference
between the default client view state saving (1.3 KB) and the customized client view
state. The default approach is as follows:

http://docs.mongodb.org/manual/tutorial/expire-data/
http://docs.mongodb.org/manual/tutorial/expire-data/
http://www.mongodb.org/

JSF State Management

[402]

The custom approach is as follows:

Of course, this approach brings into discussion the main drawback represented by
the need of hitting the database for each save/restore state (caching can solve this).

The complete application is named ch9_9. In order for it to work, you need to install
MongoDB 2.2.2 (or later). The application comes with the MongoDB Java Driver
Version 2.8.0, but you can provide a more recent one.

As a final note to this section, keep in mind that a custom StateManager class can
be written by extending the wrapper class, StateManagerWrapper, as shown in the
following code (starting with JSF 2.0, we can use this wrapper class to easily decorate
the StateManager class):

public class CustomStateManager extends StateManagerWrapper {

 private StateManager stateManager;

 public CustomStateManager() {
 }

 public CustomStateManager(StateManager stateManager) {
 this.stateManager = stateManager;
 }

 @Override

Chapter 9

[403]

 // ... override here the needed methods

 @Override
 public StateManager getWrapped() {
 return stateManager;
 }
}

The custom state manager should be configured in the faces-config.xml
file as follows:

<application>
 <state-manager>
 book.beans.CustomStateManager
 </state-manager>
</application>

Handling ViewExpiredException
When a user session expires (for any reason) ViewExpiredException occurs.
The scenario behind this exception is based on the following steps:

•	 The user view state is saved on the server (the javax.faces.STATE_SAVING_
METHOD context parameter's value is server).

•	 The user receives the view state ID as the value of the hidden input field,
javax.faces.ViewState. This points out the view state saved on the server.

•	 The user session expires (for example, timeout session) and the view state is
removed from the server session, but the user still has the view state ID.

•	 The user sends a POST request, but the view state ID indicates an unavailable
view state; therefore, ViewExpiredException occurs.

JSF State Management

[404]

In order to deal with this exception, you have two choices: to avoid it or to treat it.
Suppose that you are in view A and you click on the Logout button that invalidates
the session and redirects control to view B (when the session is invalidated the state
is automatically removed from the session). Since this is a POST non-AJAX request,
the user can press the browser back button, which will load the view A again. Now,
he can click on the Logout button again, but this time, instead of view B, he/she
will see ViewExpiredException, because, most probably, view A is not requested
to the server again, and is loaded from the browser cache. Since it is loaded from the
cache, the javax.faces.ViewState view state ID is the same as it was at first logout;
therefore, the associated state is not available anymore. The flow is shown in the
following screenshot:

Obviously, this is not the desired behavior. You have to tell the browser to make
a new request to the server instead of loading the view A from the cache. This can
be accomplished by a filter that sets the right headers in order to disable browser
caching. The filter will be applied to the Faces Servlet class as shown in the
following code:

@WebFilter(filterName = "LogoutFilter", servletNames = {"Faces
Servlet"})
public class LogoutFilter implements Filter {
...
@Override
public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {

 HttpServletRequest requestHTTP = (HttpServletRequest) request;
 HttpServletResponse responseHTTP = (HttpServletResponse) response;
 try {
 String resourceURI = requestHTTP.getContextPath() +
 requestHTTP.getServletPath() +

Chapter 9

[405]

 ResourceHandler.RESOURCE_IDENTIFIER;
 String requestURI = requestHTTP.getRequestURI();

 if (!requestURI.startsWith(resourceURI)) {
 responseHTTP.setHeader("Expires",
 "Sat, 6 May 1995 12:00:00 GMT");
 responseHTTP.setHeader("Cache-Control",
 "no-store,no-cache,must-revalidate");
 responseHTTP.addHeader("Cache-Control",
 "post-check=0, pre-check=0");
 responseHTTP.setHeader("Pragma", "no-cache");
 }
 chain.doFilter(request, response);
 } catch (IOException | ServletException t) {
 }
}

Now, repeat the scenario and note that instead of ViewExpiredException, view A
receives a new view state ID in javax.faces.ViewState.

You can see two examples in the code bundle of this chapter. One is named ch9_4_1,
and the other one is named ch9_4_2.

The preceding solution may be a little bit confusing to the user, since it doesn't provide
any explicit information about what is happening. Moreover, a session may expire
for many other reasons; therefore it would be a better idea to display an error page to
the user instead of using a filter to prevent browser cache. The error page can be the
login page or just an intermediary page containing a link to the login page. This can be
accomplished by adding in the web.xml file as shown in the following code:

<error-page>
 <exception-type>
 javax.faces.application.ViewExpiredException
 </exception-type>
 <location>/faces/expired.xhtml</location>
</error-page>

A simple expired.xhtml will be as follows:

<h:body>
 Your session expired ...
 <h:link value="Go to Login Page ..." outcome="index" />
</h:body>

The complete example is named ch9_5 and is available in the code bundle of
this book.

JSF State Management

[406]

There is at least one more approach that comes from JSF 1.2 that works in JSF 2.2
also. You can try to set the following context parameter:

<context-param>
 <param-name>
 com.sun.faces.enableRestoreView11Compatibility
 </param-name>
 <param-value>true</param-value>
</context-param>

Well, this can be interpreted as: when the current view expires, generate a brand new
one and do not throw ViewExpiredException.

The complete example is named ch9_6 and is available in the code bundle of
this book.

More details about this exception (including how you can deal with it in AJAX
environments) are available in the Configuring the view handler and Configuring
the global exception handler sections in Chapter 5, JSF Configurations Using XML
Files and Annotations – Part 2.

Server-state serialization in a session
On the server side, the state can be stored as a shallow copy or as a deep copy. In
a shallow copy, the state is not serialized in the session (JSF stores only pointers to
the state in a session and only the container deals with serialization stuff), which
requires less memory and allows you to inject EJBs in the view scoped beans (use
this technique carefully, since the changes that affect objects in one copy will be
reflected in the rest of the copies). The deep copy represents a full serialization of the
state in a session, which requires more memory and doesn't allow injecting EJBs.

By default, JSF Mojarra uses shallow copy, while JSF MyFaces
uses deep copy. Anyway, perform a quick test to be sure which
is the default.

We can easily alter the default behavior by explicitly setting the javax.faces.
SERIALIZE_SERVER_STATE context parameter in web.xml. This context parameter
was introduced starting with JSF 2.2 and represents the standard context parameter
for setting the server state serialization in Mojarra and MyFaces. You can indicate
that the shallow copy should be used as follows:

<context-param>
 <param-name>javax.faces.SERIALIZE_SERVER_STATE</param-name>
 <param-value>false</param-value>
</context-param>

Chapter 9

[407]

In order to avoid exceptions of type, java.
io.NotSerializableException (and warnings of type Setting
non-serializable attribute value ...), keep in mind that
serializing the state in a session implies serializable backing beans.
(They import java.io.Serializable and their properties are
serializable. Special attention to nested beans, EJBs, streams, JPA
entities, connections, and so on.) This is also true when you are storing
the view state in the client since the entire state should be serializable.
When a bean property should not (or cannot) be serialized, just declare
it transient and do not forget that it will be null at deserialization.

In addition to the preceding note, a common case implies java.
io.NotSerializableException, when the state is saved on the client. But when
switching the state on the server, this exception miraculously disappears on Mojarra,
while it is still present in MyFaces. This can be confusing, but is perfectly normal if you
are using Mojarra implementation, the state should be fully serializable while saving
it on the client (and it is not, since this exception occurred), while this is not true on the
server, where Mojarra by default doesn't serialize the state in a session. On the other
hand, MyFaces defaults to serialize the state; therefore, the exception persists.

Sometimes, you may optimize memory usage and save server resources
by redesigning the application state, which contains view or session
or application backing beans (don't cache the data that can be queried
from a database and try to reduce the number of such beans). Besides
managing the view state, this is also an important aspect that reflects
directly in performance. When more memory is needed, the container
may choose to serialize the parts of the application state, which
means that you have to pay the price of deserialization also. While the
price of saving in the session is represented by memory, the price of
serialization/deserialization is represented by the time and insignificant
disk space (at least it should be insignificant).

JSF 2.2 is stateless
The notion of being stateless is pretty confusing, because every application must
maintain some kind of state (for example, for runtime variables). Generically
speaking, a stateless application will follow the rule of a state per request, which
means that a state's lifecycle is the same as the request-response lifecycle. This is an
important issue in web applications, where we need to use session/application scope
that, obviously, breaks down the notion of stateless.

JSF State Management

[408]

Even so, one of the most popular features of JSF 2.2 consists of stateless views
(and is actually available starting with Version 2.1.19). The idea behind this concept
assumes that JSF will not save/restore the view state between requests and will
prefer to recreate the view state from the XHTML tags on every request. The goal
is to seriously increase performances: the gain time used for the save/restore
view state, more efficient usage of server memory, more support for clustered
environments, and the prevention of ViewExpiredExceptions. So, JSF developers
have certain requirements of the stateless feature.

Nevertheless, it seems that the stateless feature doesn't affect too much of the
time used for saving/restoring the view state (this is not expensive, especially
when the state is saved on a server session and is not going to be serialized) and
memory performances. On the other hand, when an application is deployed on
several computers (in clustered environments), the stateless feature can be a real
help because we don't need session replication (refers to replicating the data
stored in a session across different instances) and/or sticky sessions (refers to the
mechanism used by the load balancer to improve efficiency of persistent sessions
in a clustered configuration) anymore. For stateless applications, the nodes do
not need to share states, and client postback requests can be resolved by different
nodes. This is a big achievement, because in order to resolve many requests, we can
add new nodes without worrying about sharing the state. In addition, preventing
ViewExpiredException is also a big advantage.

Stateless views can be used to postpone session creation or
dealing with big (complex) component trees that implies
an uncomfortable state.

Starting with JSF 2.2, the developers can choose between saving the view state and
creating stateless views in the same application, which means that the application
can use dynamic forms in some views (stateful) and create/recreate them for every
request in other views (stateless). For a stateless view, the component tree cannot be
dynamically generated/changed (for example, JSTL and bindings are not available
in the stateless mode) and resubmitting forms will probably not work as expected.
Moreover, some of the JSF components are stateful, which will lead to serious issues
in a stateless view. But, it is not so easy to nominate those components and the
issues, since their behavior is dependent on the environment (context). Some specific
tests may be helpful.

In order to write a JSF stateless application, you have to design everything to work
only with the request scoped bean. In some cases, we can use different tricks to
accomplish this task, like using hidden fields and special request parameters for
emulating a session. While session and application beans will break down the idea
of stateless (even if it is possible to use), the view bean will act as request beans.

Chapter 9

[409]

Programmatically speaking, defining a view as stateless is a piece of cake: just add
the attribute named, transient to the <f:view> tag and set its value to true. Note
that in order to have a stateless view, the presence of <f:view> tag is mandatory,
even if it doesn't have any other use. Each stateless view of an application needs
this setting because there isn't a global setting for indicating that the stateless effect
should be applied at the application level.

<f:view transient="true">
 ...
</f:view>

When a view is stateless, the javax.faces.ViewState value will be stateless,
as shown in the following screenshot:

The view scoped beans and the stateless
feature
In a stateless environment, the view scoped beans act as request scoped beans.
Besides the fact that you can't create/manipulate views dynamically, this is one
of the big disadvantages that comes with the stateless feature, because it will affect
AJAX-based applications that usually use view scoped beans. You can easily test this
behavior with a set of beans with different scopes (the complete application is named
ch9_7). The view scoped bean can be defined as follows:

@Named
@ViewScoped
public class TimestampVSBean implements Serializable{

 private Timestamp timestamp;

 public TimestampVSBean() {
 java.util.Date date = new java.util.Date();
 timestamp = new Timestamp(date.getTime());
 }

 public Timestamp getTimestamp() {
 return timestamp;
 }

 public void setTimestamp(Timestamp timestamp) {
 this.timestamp = timestamp;
 }
}

JSF State Management

[410]

Just change the scope to request, session, and application to obtain the other
three beans.

Next, we will write a simple stateless view as follows:

<f:view transient="true">
 <h:form>
 <h:commandButton value="Generate Timestamp"/>
 </h:form>
 <hr/>
 Request Scoped Bean:
 <h:outputText value="#{timestampRSBean.timestamp}"/>
 <hr/>
 View Scoped Bean:
 <h:outputText value="#{timestampVSBean.timestamp}"/>
 [keep an eye on this in stateless mode]
 <hr/>
 Session Scoped Bean:
 <h:outputText value="#{timestampSSBean.timestamp}"/>
 <hr/>
 Application Scoped Bean:
 <h:outputText value="#{timestampASBean.timestamp}"/>
 <hr/>
</f:view>

Afterwards, just submit this form several times (click on the Generate Timestamp
button) and notice that the timestamp generated by the view scoped bean changes
at every request as shown in the following screenshot:

The request, session, and application scopes work as expected!

Chapter 9

[411]

Detecting stateless views programmatically
Programmatically speaking, you can detect if a view is stateless by using the
following options:

•	 In view or page, enter the following code:
<f:view transient="true">
 Is Stateless (using transient) ? #{facesContext.viewRoot.
transient}
 ...
</f:view>

•	 In view or page, enter the following code. This works only for the
postback requests:
Is Stateless (using stateless) ?
#{facesContext.postback ? facesContext.renderKit.
responseStateManager.
 isStateless(facesContext, null) : 'Not postback yet!'}

•	 In backing bean, enter the following code:
FacesContext facesContext = FacesContext.getCurrentInstance();
UIViewRoot uiViewRoot = facesContext.getViewRoot();
logger.log(Level.INFO, "Is stateless (using isTransient) ? {0}",
 uiViewRoot.isTransient());
logger.log(Level.INFO, "Is stateless (using isStateless) ?
{0}", facesContext.getRenderKit().getResponseStateManager().
isStateless(facesContext, null));

Notice that the isStateless method can be used only on
the postback requests.

The complete application is named ch9_8.

JSF security notes
Dissertations about JSF saving state also imply some aspects regarding JSF security.
It appears that saving the JSF state on the client is less secure than saving the JSF
state on the server. For the most common security concerns (for example, XSS, CSRF,
SQL injection, and phishing), JSF provides implicit protection.

JSF State Management

[412]

Cross-site request forgery (CSRF)
CSRF and phishing attacks can be prevented by saving state on the server. JSF
2.0 comes with implicit protection against CSRF attacks based on the value of the
javax.faces.ViewState hidden field. Starting with JSF 2.2, this protection was
seriously fortified by creating a powerful and robust value for this field.

Cross-site scripting (XSS)
XSS attacks are implicitly prevented by JSF through the escape attribute, which
is set to true by default (<h:outputText/>, <h:outputLabel/>). The following
are the examples:

<p>Hi, <h:outputText value="#{loginbean.name}" /></p>
<p>Hi, #{loginbean.name}</p>

The preceding examples are XSS protected because they are both escaped.

But, if you write the following example, then an XSS attack is possible:

<p>Hi, <h:outputText value="#{loginbean.name}" escape="false" /></p>

In order to allow HTML tags, you have to focus on a specialized tool, which will be
able to parse the HTML code.

In the stateless mode, the escape attribute should always
be set to true, because an XSS gap can facilitate an easy
way for CSRF attacks.

SQL injection
SQL injection is usually an attack that speculates SQL queries that are created based
on user inputs/selections. JSF itself cannot prevent these kinds of attacks, because it
is not implicated in generating and executing SQL transactions. On the other hand,
you can use JSF to filter/validate user inputs or selections, which may prevent such
attacks. Outside JSF, it is a good technique to prevent these attacks consisting of
writing parameterized queries instead of embedding user inputs in the statements
and be extra careful at filtering escape characters and type handling.

Chapter 9

[413]

Summary
I hope you found this as an interesting dissertation about the JSF state. This was a
controversial subject for a long time, and starting with JSF 2.2, the stateless views
pour more gas on the fire of this controversy. Nevertheless, choosing the right way
of managing states is a serious decision that affects the applications' performance;
therefore, choose wisely and try to be documented about the existing benchmarks
and workarounds regarding the JSF state.

See you in the next chapter, where we will discuss about custom and composite
components in JSF.

JSF Custom Components
JSF is a component-based framework, and JSF custom components are the major proof
that sustain JSF flexibility and extensibility. In order to write custom components or
extend the existing ones, JSF provides a powerful API that allows us to develop two
types of components: custom components, and, from JSF 2.0 onwards, composite
components. A custom component implementation is responsible for providing an
aspect (optional for non-UI components, such as custom validators, converters, and
renderers) and a behavior. Usually the decision to write custom components and the
skills for accomplishing it belong to advanced JSF developers.

Before you decide to write a custom component, which can be a time-consuming
task, you have to overview the following bullets (especially the first bullet):

•	 Check the Internet (for example, http://jsfcentral.com/) to make
sure the component doesn't exist yet. Many JSF extensions, such as
PrimeFaces, ICEfaces, OmniFaces, and RichFaces, already come with
hundreds of custom components.

•	 Make sure that you need a custom component and not just a Facelet
template (see Chapter 12, Facelets Templating) or some custom logic
over the existing components.

•	 Try to redesign the application goals to use the existing components
(sometimes you can combine several existing components to obtain the
desired aspect and behavior).

•	 Take a closer look at non-JSF components, such as jQueryUI, ComponentJS,
and AmplifyJS (as you are not forced to solely use JSF components in your
JSF applications!).

If your application has some specific goals that just cannot be solved by any of the
preceding bullets, it is time to start coding your own components.

http://jsfcentral.com/

JSF Custom Components

[416]

In the first part of this chapter, you will see how to write noncomposite custom
components, and in the second part you will learn about composite components.
The noncomposite components have been available for a long time in JSF, and the
technique of writing such components is based on writing several Java classes. The
new concept, which came along with composite components, is available from JSF 2
onwards, and the idea behind it is to replace the Java classes with XHTML pages.

Building noncomposite custom
components
Let's jump directly to the cool stuff and say that in JSF 2.0 a custom component was
made available to page authors by configuring it in a Facelet tag library (*taglib.xml).

Moreover, when the component is mapped in a JAR, a special entry in web.xml is
needed to point to the *taglib.xml file. See the application named ch10_3.

As of JSF 2.2, we don't need these files anymore. A JSF 2.2 simple custom component
contains a single class, and it may look like the following code:

@FacesComponent(value = "components.WelcomeComponent", createTag =
true)
public class WelcomeComponent extends UIComponentBase {

 @Override
 public String getFamily() {
 return "welcome.component";
 }

 @Override
 public void encodeBegin(FacesContext context) throws IOException {

 String value = (String) getAttributes().get("value");
 String to = (String) getAttributes().get("to");

 if ((value != null) && (to != null)) {
 ResponseWriter writer = context.getResponseWriter();
 writer.writeAttribute("id", getClientId(context), null);
 writer.write(value + ", " + to);
 }
 }
}

Chapter 10

[417]

Most of the hard work is accomplished by the @FacesComponent annotation
(javax.faces.component.FacesComponent). All we need to do is set the
createTag element to true, and JSF should create the tag for us. Further,
we can easily exploit our custom components, as shown in the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:t="http://xmlns.jcp.org/jsf/component">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <t:welcomeComponent value="Welcome" to="Rafael Nadal"/>
 </h:body>
</html>

Notice that the default namespace of the component is http://xmlns.
jcp.org/jsf/component. This is true for all components that don't
have an explicit namespace.

The complete application is named ch10_1.

The entire list of elements supported by JSF 2.2 @FacesComponent is as follows:

•	 createTag: This can be set to true or false. When it is set to true, JSF will
generate the tag for us (to be more specific, JSF will create, at runtime, a
Facelet tag handler that extends ComponentHandler). This element can be
used only in JSF 2.2.

•	 tagName: This allows us to indicate the tag name. When createTag is set to
true, JSF will use this name for the generated tag. This element can only be
used in JSF 2.2.

•	 namespace: This allows us to indicate the tag namespace. When createTag
is set to true, JSF will use this namespace for the generated tag. When
namespace is not specified, JSF will use the http://xmlns.jcp.org/jsf/
component namespace. This element can be used only in JSF 2.2.

•	 value: This element comes from JSF 2.0 and indicates the component type.
The component type can be used as the argument of the Application.
createComponent(java.lang.String) method for creating instances of
the Component class. As of JSF 2.2, if the value element is missing or is null,
JSF will obtain it by calling the getSimpleName method on the class to which
@FacesComponent is attached and lowercasing the first character.

JSF Custom Components

[418]

By the component type, we understand a small chunk of data, specific to each
UIComponent subclass, that can be used in conjunction with an Application
instance to programmatically obtain new instances of those subclasses. Moreover,
each UIComponent subclass belongs to a component family (for example javax.
faces.Input). This is important when we write a custom component and declare it
under a certain family, because we can exploit the renderer specific to that family of
components. Next to the component family, we can use the renderer type property
to select a Renderer instance from a RenderKit collection (for example, an input
field belongs to the javax.faces.Input family and to the javax.faces.Text
renderer type).

Each custom component must extend UIComponent or one of its subtypes, such
as UIComponentBase, which is actually just a default implementation of all
abstract methods of UIComponent. Anyway, there is one exception represented
by the getFamily method that must be overridden even when you extend
UIComponentBase. As a common practice, when a custom component needs
to accept end user inputs, it will extend UIInput, and when it needs to act as a
command, it will extend UICommand.

Further, let's modify our application as follows to indicate a custom namespace and
tag name:

@FacesComponent(value = "components.WelcomeComponent", createTag
= true, namespace = "http://atp.welcome.org/welcome", tagName =
"welcome")
public class WelcomeComponent extends UIComponentBase {
...
}

Next, the component will be used as follows:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:t="http://atp.welcome.org/welcome">
...
 <t:welcome value="Welcome" to="Rafael Nadal"/>

The complete application is named ch10_2. Moreover, the JSF 2.0 version of this
application (containing the *taglib.xml descriptor and the specific entry in web.
xml) is named ch10_3.

Chapter 10

[419]

Writing a custom tag handler
Notice that *taglib.xml is still needed in some cases. For example, if you
decide to write a custom tag handler for your component, then you still need
this file to configure the handler class. In this rare case, you will extend the
ComponentHandler class and override the desired methods. Most developers exploit
the onComponentCreated and onComponentPopulated methods. The first one is
called after the component has been created but before it has been populated with
children, and the second one is called after the component has been populated with
children. As of JSF 2.2, a new method was added for developers who wish to take over
the task of instantiating the UIComponent. This method is named createComponent.
If it returns null, then this method will be required to create the component by
TagHandlerDelegate instead. Since this is a pretty rare case, we do not insist on it,
and we just provide a simple stub of ComponentHandler:

public class WelcomeComponentHandler extends ComponentHandler {

 private static final Logger logger =
 Logger.getLogger(WelcomeComponentHandler.class.getName());

 public WelcomeComponentHandler(ComponentConfig config) {
 super(config);
 }

 @Override
 public UIComponent createComponent(FaceletContext ctx) {
 logger.info("Inside 'createComponent' method");
 return null;
 }

 @Override
 public void onComponentCreated(FaceletContext ctx,
 UIComponent c, UIComponent parent) {
 logger.info("Inside 'onComponentCreated' method");
 super.onComponentCreated(ctx, c, parent);
 }

 @Override
 public void onComponentPopulated(FaceletContext ctx,
 UIComponent c, UIComponent parent) {
 logger.info("Inside 'onComponentPopulated' method");
 super.onComponentPopulated(ctx, c, parent);
 }
}

JSF Custom Components

[420]

In order to indicate that our class handler should be used, we need to configure it in
the *taglib.xml file, as shown in the following code:

<handler-class>book.beans.WelcomeComponentHandler</handler-class>

The complete example is named ch10_24_1. Another stub that can be
used as a starting point can be found in ch10_24_2. The latter one defines
the minimum implementation for a custom ComponentHandler, a custom
TagHandlerDelegateFactory, and a custom TagHandlerDelegate.

Dissecting a custom component
So far you can see that our component class overrides the encodeBegin method. This
method belongs to a set of four methods used for rendering a component where each
component can render itself (the setRendererType method gets a null value for
its argument) or delegate the rendering process to a Renderer class (built-in or user
defined). These methods are as follows:

•	 decode: In order to parse the input values and save them into the
component, each request passes through the decode method. Usually,
when this method is overridden, the developer extracts the needed values
from the request map (or from the Map attributes using the UIComponent.
getAttributes method) and sets them into the component by calling the
setSubmittedValue(value) method.

•	 encodeBegin: This method starts the rendering process of the custom
component. It writes to the response stream obtained through the
FacesContext.getResponseWriter method. This method is overridden
when we need to encode child components, but we want to output a
response to the user before that.

The ResponseWriter object (FacesContext.
getResponseWriter) contains special methods
for generating a markup, such as startElement,
writeAttribute, writeText, and endElement.

•	 encodeChildren: This method renders the custom component children. It
is very rarely overridden; however, if you want to alter the default recursive
process of encoding component children, then go ahead and override it.

Chapter 10

[421]

•	 encodeEnd: Probably this is the most overridden method. As its name
suggests, this method is called at the end. Here, we write the custom
markup to the response stream. When the custom component accepts end
user inputs, the encodeEnd is preferred against encodeBegin because in the
case of encodeBegin, the inputs may not be passed yet through a potential
attached converter.

The four methods we just discussed are available for all custom
components and for all renderers. In both cases, they have the same
name, and the difference between them consists of one argument.
When they are overridden in a custom component class, they get
a single argument representing FacesContext. On the other
hand, when they are overridden in a custom renderer, they get as
arguments the FacesContext instance and the corresponding
custom component (UIComponent).

So we are at a point where we can conclude that a custom component is based on a
subclass of UIComponent and it can render itself or delegate this task to a Renderer
class, which is capable of rendering UIComponent instances and decoding the POST
requests for obtaining user inputs.

An important aspect of custom components involves managing their state. You
should already be familiar with the concept of states from Chapter 9, JSF State
Management. For this reason, we can say that JSF 2.0 comes with the StateHelper
interface, which basically allows us to store, read, and remove data across multiple
requests (postbacks). This means we can use it to preserve states of the components.

It can be a little tricky to understand how to use the StateHelper methods in
conjunction with custom components, but a common example can be useful to
clear things up. Let's consider the following custom component usage:

<t:temperature unitto="Celsius" temp="100" />

In the custom component class, we can easily map these attribute names and default
values, as shown in the following code:

// Attribute name constant for unitto
private static final String ATTR_UNITTO = "unitto";
// Default value for the unitto attribute
private static final String ATTR_UNITTO_DEFAULT = "Fahrenheit";
// Attribute name constant for temp
private static final String ATTR_TEMP = "temp";
// Default value for the temp attribute
private static final Float ATTR_TEMP_DEFAULT = 0f;

JSF Custom Components

[422]

Next, we want to preserve the value of unitto under the constant ATTR_UNITTO
(for temp it is exactly the same). For this, we use the StateHelper.put method,
as shown in the following code:

public void setUnitto(String unitto) {
 getStateHelper().put(ATTR_UNITTO, unitto);
}

These examples use the Object put(Serializable key, Object value) method,
but StateHelper also has a method Object put(Serializable key, String
mapKey, Object value), which can be used to store values that would otherwise be
stored in a Map instance variable. Moreover, StateHelper has a method named void
add(Serializable key, Object value) that can be used to preserve values which
would otherwise be stored in a List instance variable.

Next, you can retrieve the value stored under the ATTR_UNITTO constant, as shown in
the following code:

public String getUnitto() {
 return (String) getStateHelper().eval(ATTR_UNITTO, ATTR_UNITTO_
DEFAULT);
}

The Object eval(Serializable key, Object defaultValue) method will
search for the ATTR_UNITTO constant. If it can't find it, then the default value (ATTR_
UNITTO_DEFAULT) is returned. This is a very useful approach because it spears us to
perform null value checks. Besides this method, StateHelper also has the Object
eval(Serializable key) and Object get(Serializable key) methods.

In order to remove an entry from StateHelper, we can call Object
remove(Serializable key) or Object remove(Serializable key,
Object valueOrKey).

At this moment, we have plenty of information that can be translated into code,
so let's write a custom component to exemplify the above knowledge. Let's name
it the Temperature custom component. Basically, the next custom component will
expose a public web service as a JSF component. The web service is capable of
converting the temperature from Celsius to Fahrenheit and vice versa for which we
need to pass the temperature value and the conversion unit as arguments. Based on
these two arguments, we can intuit that the corresponding JSF tag will look like the
following code:

<t:temperature unitto="celsius/fahrenheit" temp="number_of_degrees" />

Chapter 10

[423]

We can start by implementing a helper class to deal with the web service underlying
the communication tasks. The name of this class is TempConvertClient, and it
can be seen in the complete application named ch10_4. It's relevant part is the
declaration of the following method:

public String callTempConvertService(String unitto, Float temp) {
...
}

Custom component implementation
Now we can focus on the important part for us, the custom component
implementation. For this we can follow the ensuing steps:

1.	 Write a class annotated with @FacesComponent.
2.	 Use StateHelper to preserve the component's attribute values over

multiple requests.
3.	 Call the callTempConvertService method.
4.	 Render the result.

The first three steps can be coded as follows:

@FacesComponent(value = TempConvertComponent.COMPONENT_TYPE, createTag
= true, namespace = "http://temp.converter/", tagName = "temperature")
public class TempConvertComponent extends UIComponentBase {

 public TempConvertComponent() {
 setRendererType(TempConvertRenderer.RENDERER_TYPE);
 }

 public static final String COMPONENT_FAMILY =
 "components.TempConvertComponent";
 public static final String COMPONENT_TYPE =
 "book.beans.TempConvertComponent";
 private static final String ATTR_UNITTO = "unitto";
 private static final String ATTR_UNITTO_DEFAULT = "fahrenheit";
 private static final String ATTR_TEMP = "temp";
 private static final Float ATTR_TEMP_DEFAULT = 0f;
 public String getUnitto() {
 return (String) getStateHelper().
 eval(ATTR_UNITTO, ATTR_UNITTO_DEFAULT);
 }

 public void setUnitto(String unitto) {

JSF Custom Components

[424]

 getStateHelper().put(ATTR_UNITTO, unitto);
 }

 public Float getTemp() {
 return (Float) getStateHelper().eval(ATTR_TEMP, ATTR_TEMP_DEFAULT);
 }

 public void setTemp(Float temp) {
 getStateHelper().put(ATTR_TEMP, temp);
 }

 public String getTempConvert() {
 TempConvertClient tempConvertClient = new TempConvertClient();
 return String.format("%.1f", Float.valueOf(tempConvertClient.
 callTempConvertService(getUnitto(), getTemp())));
 }

 @Override
 public String getFamily() {
 return TempConvertComponent.COMPONENT_FAMILY;
 }
}

For step number four there is a hint in the preceding code. If you look carefully at the
class constructor, you can see that the rendering tasks are delegated to an external
class (renderer). This class will render a simple styled HTML div containing the web
service response as follows:

@ResourceDependencies({
 @ResourceDependency(name="css/temp.css",library="default",target="he
ad")
})
@FacesRenderer(componentFamily = TempConvertComponent.COMPONENT_
FAMILY, rendererType = TempConvertRenderer.RENDERER_TYPE)
public class TempConvertRenderer extends Renderer {

public static final String RENDERER_TYPE =
 "book.beans.TempConvertRenderer";

public TempConvertRenderer() {
}

@Override

Chapter 10

[425]

public void encodeEnd(FacesContext context, UIComponent uicomponent)
 throws IOException {

 ResponseWriter responseWriter = context.getResponseWriter();
 TempConvertComponent component = (TempConvertComponent) uicomponent;

 String unit = component.getUnitto();

 responseWriter.startElement("div", component);
 responseWriter.writeAttribute("class", "tempClass", null);
 responseWriter.writeAttribute("id", component.getClientId(), "id");
 responseWriter.write("°");
 if (unit.equals("fahrenheit")) {
 responseWriter.write("F ");
 } else {
 responseWriter.write("C ");
 }
 responseWriter.write(component.getTempConvert());
 responseWriter.endElement("div");
 }
}

The @ResourceDependency and @ResourceDependencies
annotations are used for linked external resources (for example,
JavaScript, and CSS) in custom components and renderers.

In order to register this class as a Renderer class, you need to annotate it
with @FacesRenderer or configure it in faces-config.xml, as shown in
the following code:

<application>
 <render-kit>
 <renderer>
 <component-family>
 components.TempConvertComponent
 </component-family>
 <renderer-type>book.beans.TempConvertRenderer</renderer-type>
 <renderer-class>book.beans.TempConvertRenderer</renderer-class>
 </renderer>
 </render-kit>
</application>

Another important characteristic of a Renderer class consists of the fact that it must
define a public zero-argument constructor.

JSF Custom Components

[426]

Notice that the <renderer-type> tag corresponds to the renderedType element
and the <component-family> tag corresponds to the componentFamily element.
Moreover, the value of componentFamily is the same as the value returned by the
component's getFamily method. A RenderKit can provide a Renderer instance
based on this information.

Of course, in this example you can implement the rendering process in the custom
component class also, since there is no real justification for writing a separate class.
Usually, you will want to write a separate renderer class when you need to support
multiple client devices and you need special renderers to be registered through a
RenderKit collection.

The following is an example of code that uses our custom component (the code is
self explanatory):

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:t="http://temp.converter/"
 xmlns:f="http://xmlns.jcp.org/jsf/core">
...
 <h:form>
 Convert to:
 <h:selectOneMenu value="#{tempBean.unitto}">
 <f:selectItem itemValue="fahrenheit" itemLabel="fahrenheit" />
 <f:selectItem itemValue="celsius" itemLabel="celsius" />
 </h:selectOneMenu>
 Insert value:
 <h:inputText value="#{tempBean.temp}"/>
 <h:commandButton value="Convert">
 <f:ajax execute="@form" render=":tempId" />
 </h:commandButton>
 </h:form>

 <t:temperature id="tempId"
 unitto="#{tempBean.unitto}" temp="#{tempBean.temp}" />

Alternatively, we can provide the conversion unit and temperature as constants
(if one, or both attributes are missing, then the default value(s) will be used):

 <t:temperature id="tempId" unitto="celsius" temp="10" />

Chapter 10

[427]

The TempBean is just a simple backing bean, as shown in the following code:

@Named
@SessionScoped
public class TempBean implements Serializable {

 private String unitto = "fahrenheit";
 private Float temp = 0f;
 ...
 //getters and setters
}

The complete application is in the code bundle of this chapter under the name ch10_4.
In the following screenshot, you can see the result of running this application:

So, our custom component just renders a div block containing the result of the
temperature conversion. Further, we want to write a custom component that,
besides this div, will render the user interface for collecting data (conversion unit
and temperature) and submit it through AJAX. In other words, the content of the
preceding form will be a part of the custom component.

This time we need to deal with user inputs directly into the custom component,
which means that our custom component can extend UIInput instead of
UIComponentBase. This major change will bring us the advantages of an
UIInput component. We can submit the custom component value (using the
setSubmittedValue method during the decoding process) and obtain the resultant
value (using the getValue method during the encoding (rendering) process).

The big problem is that our custom component value is made up of two values: the
conversion unit and the temperature value. There are a few workarounds to solve
this kind of issue. In this case, we can simply concatenate these values into one, such
as the one shown in the following example (conversion_unit/temperature):

<t:temperature value="celsius/1" />

JSF Custom Components

[428]

Now we can write the custom component class, as shown in the following code:

@FacesComponent(createTag = true, namespace = "http://temp.
converter/", tagName = "temperature")
public class TempConvertComponent extends UIInput
 implements NamingContainer {

 public TempConvertComponent() {
 setRendererType(TempConvertRenderer.RENDERER_TYPE);
 }

 public String getTempConvert(String unitto, float temp) {
 TempConvertClient tempConvertClient = new TempConvertClient();
 return String.format("%.1f",
 tempConvertClient.callTempConvertService(unitto, temp));
 }
}

Notice that we don't need to specify the component family anymore and the
getFamily method is inherited from the UIInput class. Going further, we need
to write the renderer class.

If you want to allow the component to render itself, use
setRendererType(null) and override the corresponding
methods in the component class.

We need to render four HTML tags (the drop-down list, the input field, the button
for submit, and the result div). For this, we can override the encodeEnd method, as
shown in the following code:

@Override
public void encodeEnd(FacesContext context, UIComponent uicomponent)
 throws IOException
{

 TempConvertComponent component = (TempConvertComponent) uicomponent;

 String clientId = component.getClientId(context);
 char separator = UINamingContainer.getSeparatorChar(context);
 encodeSelectOneMenu(context,
 component, clientId + separator + "selectonemenu");
 encodeInput(context, component, clientId + separator + "inputfield");
 encodeButton(context, component, clientId + separator + "button");
 encodeResult(context, component, clientId + separator + "div");
 }

Chapter 10

[429]

The identifier of each component was obtained from the client ID of the main
component (using the getClientId method) concatenated with the char naming
container separator and a string hinting the component type.

In this example, the NamingContainer interface (implemented by
UINamingContainer) is queried for obtaining the separator used
to separate segments of client ID, but its main purpose is to ensure
the uniqueness of the components declared within it.

Next, the method that renders the drop-down component is as follows:

private void encodeSelectOneMenu(FacesContext context,
TempConvertComponent component, String clientId) throws IOException {

 String cv = String.valueOf(component.getValue());
 String unitto = cv.substring(0, cv.indexOf("/"));

 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.startElement("span", component);
 responseWriter.write("Convert to:");
 responseWriter.endElement("span");
 responseWriter.startElement("select", component);
 responseWriter.writeAttribute("name", clientId, "clientId");
 responseWriter.writeAttribute("size", 1, "size");
 responseWriter.startElement("option", component);
 responseWriter.writeAttribute("value", "fahrenheit", "value");
 if (unitto.equals("fahrenheit")) {
 responseWriter.writeAttribute("selected", "selected",
"selected");
 }
 responseWriter.writeText("fahrenheit", "fahrenheit");
 responseWriter.endElement("option");
 responseWriter.startElement("option", component);
 responseWriter.writeAttribute("value", "celsius", "value");
 if (unitto.equals("celsius")) {
 responseWriter.writeAttribute("selected", "selected",
"selected");
 }
 responseWriter.writeText("celsius", "celsius");
 responseWriter.endElement("option");
 responseWriter.endElement("select");
}

JSF Custom Components

[430]

The first two lines of this code are important where we extract the conversion
unit part from the component value, and select the corresponding item in the
drop-down component.

Next, we render the input field, as shown in the following code:

private void encodeInput(FacesContext context, TempConvertComponent
component, String clientId) throws IOException {

 String cv = String.valueOf(component.getValue());
 String temp = cv.substring(cv.indexOf("/") + 1);

 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.startElement("span", component);
 responseWriter.write("Insert value:");
 responseWriter.endElement("span");
 responseWriter.startElement("input", component);
 responseWriter.writeAttribute("name", clientId, "clientId");
 responseWriter.writeAttribute("value", temp, "value");
 responseWriter.writeAttribute("type", "text", "type");
 responseWriter.endElement("input");
}

Now we will extract the temperature value from the component value. To
accomplish this, we render the button labeled Convert, which is responsible
to submit the user input via AJAX as follows:

private void encodeButton(FacesContext context, TempConvertComponent
component, String clientId) throws IOException {

 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.startElement("input", component);
 responseWriter.writeAttribute("type", "Submit", null);
 responseWriter.writeAttribute("name", clientId, "clientId");
 responseWriter.writeAttribute("value", "Convert", null);
 responseWriter.writeAttribute("onclick",
 "jsf.ajax.request(this,event,{execute:'" + "@form" + "',"
 + "render:'" + "@form" + "'," + "});"
 + "return false;", null);
 responseWriter.endElement("input");
}

Chapter 10

[431]

After the user inputs are submitted, we need to render the result obtained from the
web service:

private void encodeResult(FacesContext context, TempConvertComponent
component, String clientId) throws IOException {

 String cv = String.valueOf(component.getValue());
 String unitto = cv.substring(0, cv.indexOf("/"));
 String temp = cv.substring(cv.indexOf("/") + 1);
 String result = component.getTempConvert(unitto, Float.
valueOf(temp));

 ResponseWriter responseWriter = context.getResponseWriter();
 responseWriter.startElement("div", component);
 responseWriter.writeAttribute("class", "tempClass", null);
 responseWriter.writeAttribute("name", clientId, "clientId");
 responseWriter.write("°");
 if (unitto.equals("fahrenheit")) {
 responseWriter.write("F ");
 } else {
 responseWriter.write("C ");
 }
 responseWriter.write(result);
 responseWriter.endElement("div");
}

The backing bean, TempBean, is pretty simple, as shown in the following code:

@Named
@SessionScoped
public class TempBean implements Serializable {

 private String value = "celsius/0";

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }
}

JSF Custom Components

[432]

The final step involves decoding the user input and submitting it to the component,
as shown in the following code:

@Override
public void decode(FacesContext context, UIComponent uicomponent) {

 TempConvertComponent component = (TempConvertComponent) uicomponent;
 Map requestMap = context.getExternalContext().
getRequestParameterMap();
 String clientId = component.getClientId(context);
 char separator = UINamingContainer.getSeparatorChar(context);
 String temp = ((String)
 requestMap.get(clientId+ separator + "inputfield"));
 String unitto = ((String)
 requestMap.get(clientId + separator +
"selectonemenu"));
 component.setSubmittedValue(unitto+"/"+temp);
}

Done! Now you can see both the tests, as shown in the following code:

Specified unit and temperature from bean:
<h:form id="tempForm1">
 <t:temperature id="temp1" value="#{tempBean.value}" />
 <h:message for="temp1"/>
</h:form>
<hr/>
Specified unit and temperature as constants:
<h:form id="tempForm2">
 <t:temperature id="temp2" value="celsius/1" />
 <h:message for="temp2"/>
</h:form>

The complete application is present in the code bundle of this chapter under the
name ch10_5.

Chapter 10

[433]

Building composite components
Maybe the idea behind composite components originates from the fact that JSF
page authors and JSF component authors have different perspectives regarding
components. While JSF page authors perceive components as tags that can be
used in XHTML pages, JSF component authors see components as a mixture of
UIComponent, UIComponentBase, NamingContainer, Renderer, Validator, and
Converter elements—these are elements that shape up a JSF component. Based on
this, it seems that custom components can be written only by JSF component authors,
since they have knowledge about these JSF elements and Java language. This fact,
however, has begun to change as of JSF 2 and composite components, which are
practically custom components written in XHTML pages using markup tags. This
means that JSF page authors can start writing their components without having the
same level of knowledge and skills as dedicated JSF component authors—at least,
simple, composite components.

For example, the skeleton of a JSF 2.2 composite component looks as shown in the
following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite">

 <!-- INTERFACE -->
 <cc:interface>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 </cc:implementation>
</html>

The structure is pretty simple! As you can see, there are two main tags that belong
to the http://xmlns.jcp.org/jsf/composite library. The first tag demarcates the
interface section and represents the component use contract. Here, we can define the
component's attributes that may be changed by the end user (in principle, anything
that can be used by the page author). The second tag marks the implementation
section, which contains the component itself. This will be rendered to the end user.
Moreover, in this section, we define the component behavior based on the attributes
defined in the interface section (the use contract implementation).

JSF Custom Components

[434]

Composite components are basically XHTML pages stored in libraries
under the resources folder (placed as a top-level folder under
the web application root or under the META-INF folder in JARs).
Remember that a library is just a subfolder of the resources folder.
Based on this, a composite component path is of type http://xmlns.
jcp.org/jsf/composite/library_name.

So, let's have a quick test. Remember that the first custom component
developed in this chapter, WelcomeComponent, was built from a class annotated
with @FacesComponent. In that class, we have overridden the encodeBegin method
for rendering the component. Well, now let's see the same component, but this time
as a composite component. We store this page under resources/customs/welcome.
xhtml, as shown in the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite">

 <!-- INTERFACE -->
 <cc:interface>
 <cc:attribute name="value"/>
 <cc:attribute name="to"/>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 <p>#{cc.attrs.value}, #{cc.attrs.to}</p>
 </cc:implementation>
</html>

It is very simple to make the analogy between the custom component and the
composite version of it. The important thing here is to notice how attributes were
declared using the <cc:attribute> tag. Besides the name, an attribute can have a
type, can be required or not, can have a default value, can target component(s), and
so on (during this chapter, you will have the chance to explore different kinds of
attributes). As a general rule, JSF determines if the attribute is MethodExpression
(or it has a special name such as actionListener, valueChangeListener, action,
and so on) or ValueExpression.

Chapter 10

[435]

The first case is a little bit tricky; JSF will try to match the attribute with the
components from the implementation based on the list of IDs defined in the
targets attribute (the list of IDs are separated by space and relative to top-level
component). If the targets attribute is not present, then JSF will take the value of
the name attribute as the client ID (relative to the top-level component) and try to
find the corresponding component in the implementation section. Well, in the simple
case, the attribute is a ValueExpression, and JSF will just store the attribute in the
attributes map that is accessible via UIComponent.getAttributes.

In the implementation section, the attributes are used via the #{cc} implicit object.

It may be useful to know that JSF will implicitly create a top-level
component for all the components that form a composite component.
This component is the parent of all components in the page and is
named UINamingContainer (available through the UIComponent.
getNamingContainer method). Now the #{cc} implicit object
actually refers to this top-level component and can be used to obtain
various information, but it is especially used for obtaining the client
ID (#{cc.clientId}) and for accessing the composite component
attributes (#{cc.attrs}).

Now it's time to test our composite component. This is very easy—just import the
composite namespace, set a prefix, and start using it, as shown in the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:t="http://xmlns.jcp.org/jsf/composite/customs">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <t:welcome value="Welcome" to="Rafael Nadal"/>
 </h:body>
</html>

Learning the techniques for writing composite components can be achieved by a
lot of practice. This is why, in the upcoming sections you will see several types of
composite components that explore different kinds of implementations.

The complete application is named ch10_6.

JSF Custom Components

[436]

Developing the Temperature composite
component
Starring: backing component

Remember the Temperature custom component that we implemented in the
preceding section? Well, we are sure you do. So let's see how to develop a composite
component that looks and behaves the same. The composite component page can be
named temperature.xhtml, and we can store it in the temperature folder under
the resources folder. First, let's see it in the following code; afterwards we can
dissect it:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

 <!-- INTERFACE -->
 <cc:interface componentType="book.beans.TempConvertComponent">
 <cc:attribute name="value" type="java.lang.String"
 default="celsius/0"/>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 <h:outputStylesheet name="temperature/temp.css" />
 <div id="#{cc.clientId}">
 <h:outputLabel for="selectonemenu" value="Convert to:"/>
 <h:selectOneMenu id="selectonemenu" binding="#{cc.unittoI}">
 <f:selectItem itemValue="fahrenheit" itemLabel="fahrenheit" />
 <f:selectItem itemValue="celsius" itemLabel="celsius" />
 </h:selectOneMenu>
 <h:outputLabel for="inputfield" value="Insert value:"/>
 <h:inputText id="inputfield" binding="#{cc.temptI}"/>
 <h:commandButton id="button" value="Convert">
 <f:ajax execute="@form" render="@form"/>
 </h:commandButton>
 <h:panelGroup id="div" layout="block" class="tempClass">

Chapter 10

[437]

 <h:outputText value="° #{cc.unittoI.value eq
 'fahrenheit' ? 'F ': 'C ' } #{cc.getTempConvert()}"/>
 </h:panelGroup>
 </div>
 </cc:implementation>
</html>

In the interface section, we have defined the attribute named value, which is specific
to an UIInput component. Further, we indicate that the accepted value is of type
String and the default value, applicable when the attribute is missing, is celsius/0.
Usually, the type attribute is used to link the element(s) to the bean's properties (for
its value, use the fully qualified name, as shown in the preceding code).

The implementation section is more interesting, because here we need to define
the subcomponents of our component: the drop-down menu, the input field,
the submit button, and the result div (notice that JSF generates an HTML <div>
from <h:panelGroup layout="block"/>). When your composite component
contains multiple components, it is a good practice to place them inside a <div> or
a tag with the ID set to #{cc.clientId}. This ID is the client identifier of
the composite itself and is useful when the page author needs to refer to the entire
composite component via a simple ID.

External resources, such as CSS and JS, don't need any special treatment. You can
place them under the same library with composite components or under any other
library, and you can load them using <h:outputScript> and <h:outputStylesheet>.

After a quick look, an obvious question arises: where is the implementation of the
getTempConvert method and the backing beans properties used for linking these
components according to the binding attribute? Well, all these are in a Java class,
known as backing component (do not confuse this with the backing bean!). Yes, I
know that earlier I said composite components don't need Java code, but sometimes
they do, like in this case, where we need to write the code for calling the web service!
In order to write a backing component, you need to keep in mind the following steps:

1.	 Annotate the backing component with @FacesComponent
2.	 Extend UINamingContainer or implement NamingContainer and override

the getFamily method as follows:
 @Override
 public String getFamily() {
 return UINamingContainer.COMPONENT_FAMILY;
 }

JSF Custom Components

[438]

3.	 Link the composite component with the backing component by adding
the componentType attribute to the <cc:interface> tag. The value of this
attribute is the component-type (this tells JSF to create an instance of the class
indicated here):
@FacesComponent(value = "component type value")
...
<cc:interface componentType="component type value">

A backing component can define getters for exposing its properties via
the #{cc} implicit object (#{cc} has access to action methods also).
On the other hand, the <cc:attribute> attributes are available in a
backing component via the UIComponent.getAttributes method.

Keeping these in mind, the backing component for our composite component is
as follows:

@FacesComponent(value = "book.beans.TempConvertComponent",
 createTag = false)
public class TempConvertComponent extends UIInput implements
NamingContainer {

 private UIInput unittoI;
 private UIInput temptI;

 public TempConvertComponent() {
 }

 public UIInput getUnittoI() {
 return unittoI;
 }

 public void setUnittoI(UIInput unittoI) {
 this.unittoI = unittoI;
 }

 public UIInput getTemptI() {
 return temptI;
 }

 public void setTemptI(UIInput temptI) {
 this.temptI = temptI;
 }

 public String getTempConvert() {

Chapter 10

[439]

 TempConvertClient tempConvertClient = new TempConvertClient();
 return String.format("%.1f",
 tempConvertClient.callTempConvertService(String.valueOf(unittoI.
 getValue()), Float.valueOf(String.valueOf(temptI.getValue()))));
}

 @Override
 public void decode(FacesContext context) {
 this.setSubmittedValue(temptI.getSubmittedValue() + "/" +
 unittoI.getSubmittedValue());
 }

 /*
 * you can override getSubmittedValue instead of decode
 @Override
 public Object getSubmittedValue() {
 return temptI.getSubmittedValue() + "/" + unittoI.
getSubmittedValue();
 }
 */

 @Override
 public void encodeBegin(FacesContext context) throws IOException {

 if (getValue() != null) {
 String cv = String.valueOf(getValue());
 String unitto = cv.substring(0, cv.indexOf("/"));
 String temp = cv.substring(cv.indexOf("/") + 1);
 if (temptI.getValue() == null) {
 temptI.setValue(temp);
 }
 if (unittoI.getValue() == null) {
 unittoI.setValue(unitto);
 }
 }
 super.encodeBegin(context);
 }

 @Override
 public String getFamily() {
 return UINamingContainer.COMPONENT_FAMILY;
 }
}

JSF Custom Components

[440]

The story of our backing component is pretty clear. In the encodeBegin method, we
ensure that the component value is parsed and each subcomponent (the dropdown
and the input field) received the correct part of the value. When the user submits the
data, we deal with it in the encode method, where we take the value of the dropdown
and of the input field and build a string of type conversion_unit/temperature. This
becomes the submitted value.

This is a good time to point out how JSF chooses the top-level component. JSF tries to
do the following:

•	 Locate the componentType attribute in the <cc:interface> tag. If it is
present, then the backing component is instantiated and used as a top-level
component. This is the case with the Temperature composite component.

•	 Locate a UIComponent implementation that fits the composite component
page. This can be a Groovy script with the same name and location as the
composite component page (of course, with the .groovy extension).

•	 Locate a Java class named component_library_name.composite_component_page_
name and instantiate it as a top-level component. This approach spears us to
use @FacesComponent.

•	 Generate a component with the component type javax.faces.
NamingContainer.

The complete application is named ch10_8. Based on the knowledge introduced
through this didactical example, you can check out another example, named
Timezone, as shown in the following screenshot. The complete application is
named ch10_25.

Transforming a jQuery component into
composite component
Starring: JavaScript closures

The jQuery UI is a great collection of user interface interactions, effects, widgets, and
themes built on top of the jQuery JavaScript library. In this section, you will see how
to expose a jQuery component as a JSF composite component. More precisely, we
will transform the jQuery range slider (https://jqueryui.com/slider/#range),
as shown in the following screenshot:

https://jqueryui.com/slider/#range

Chapter 10

[441]

The main code behind this component is listed as follows:

<!doctype html>
<html lang="en-US">
 <head>
 <meta charset="utf-8">
 <title>Range Slider with jQuery UI</title>
 <link rel="stylesheet" type="text/css" media="all"
 href="css/styles.css">
 <link rel="stylesheet" type="text/css" media="all" href="https://
ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/themes/base/jquery-ui.
css">
 <script type="text/javascript" src="https://ajax.googleapis.com/
ajax/libs/jquery/1.9.1/jquery.min.js"></script>
 <script type="text/javascript" src="https://ajax.googleapis.com/
ajax/libs/jqueryui/1.10.3/jquery-ui.min.js"></script>
 </head>

 <body>
 <div id="w">
 <div id="content">
 <h2>Ranged Slider</h2>
 <div id="rangedval">
 Range Value: 90 - 290
 </div>
 <div id="rangeslider"></div>
 </div>
 </div>
 <script type="text/javascript">
 $(function(){
 $('#rangeslider').slider({
 range: true,
 min: 0,
 max: 100,
 values: [5, 20],
 slide: function(event, ui) {
 $('#rangeval').html(ui.values[0]+" - "+ui.values[1]);
 }

JSF Custom Components

[442]

 });
 });
 </script>
 </body>
</html>

The JSF composite component should look like the following code (the important
part is highlighted):

<h:form id="sliderFormId">
 <h:panelGrid columns="1">
 <t:range-slider id="sliderId" min="#{sliderBean.min}"
 max="#{sliderBean.max}" leftside="#{sliderBean.leftside}"
 rightside="#{sliderBean.rightside}"/>
 <h:commandButton value="Send" action="#{sliderBean.
sliderListener()}">
 <f:ajax execute="@form" render="@form"/>
 </h:commandButton>
 </h:panelGrid>
</h:form>

We can start by defining the composite component attributes. These will allow the
end user to set the minimum (min attribute), maximum (max attribute) and the initial
range (leftside and rightside attributes). These attributes will be declared in the
interface section, as shown in the following code:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="min" type="java.lang.Integer"
 default="0" required="true"/>
 <cc:attribute name="max" type="java.lang.Integer"
 default="1000" required="true"/>
 <cc:attribute name="leftside" type="java.lang.Integer"
 default="450" required="true"/>
 <cc:attribute name="rightside" type="java.lang.Integer"
 default="550" required="true"/>
</cc:interface>

The implementation section can be divided into three logical parts. In the first part
we define the external resources (CSS and JS files). Notice that <h:outputScript>
and <h:outputStylesheet> cannot load such resources for an absolute URL
(http://...), so you need to have these resources on your local machine:

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:outputStylesheet name="range-slider/css/styles.css"/>

Chapter 10

[443]

 <h:outputStylesheet name="range-slider/css/jquery-ui.css"/>
 <h:outputScript target="head" name="range-slider/js/jquery.min.js"/>
 <h:outputScript target="head" name="range-slider/js/jquery-ui.min.
js"/>
 ...

In the second part, we render the divs that expose the range slider. For this, we
follow the exact model of the original component, but we add our attributes,
leftside and rightside, as shown in the following code:

<div id="#{cc.clientId}:w" class="w">
 <div id="#{cc.clientId}:content" class="content">
 <div id="#{cc.clientId}:rangedval" class="rangedval">
 Range Value:
 #{cc.attrs.leftside} - #{cc.attrs.rightside}
 </div>
 <div id="#{cc.clientId}:slider">
 </div>
 </div>
 <h:inputHidden id="leftsideId" value="#{cc.attrs.leftside}"/>
 <h:inputHidden id="rightsideId" value="#{cc.attrs.rightside}"/>
</div>

While the min and max attributes can be set to certain values, we are especially
interested in the leftside and rightside attributes, which should be treated as the
end user inputs. For this, we have added two hidden fields (one for leftside and
one for rightside) that can easily transport this information to the server.

In the third part, we need to adapt the JavaScript code, which represents the
component engine. This code has to be correctly generated when multiple range
sliders are added in the same page, so we need to modify it as follows to fit the
correct IDs and attribute values:

<script type="text/javascript">
 $(function() {
 var rangeval = "${cc.clientId}:rangeval".replace(/:/g, "\\:");
 var slider = "${cc.clientId}:slider".replace(/:/g, "\\:");
 $('#' + slider).slider({
 range: true,
 min: #{cc.attrs.min},
 max: #{cc.attrs.max},
 values: [#{cc.attrs.leftside}, #{cc.attrs.rightside}],
 slide: function(event, ui) {
 $('#' + rangeval).html(ui.values[0] + " - " + ui.values[1]);
 $("#${cc.clientId}:leftsideId".
 replace(/:/g, "\\:")).val(ui.values[0]);

JSF Custom Components

[444]

 $("#${cc.clientId}:rightsideId".
 replace(/:/g, "\\:")).val(ui.values[1]);
 }
 });
 });
 </script>
</cc:implementation>

A common issue of combining JSF and jQuery involves using the colon
(:). While JSF uses it as a separator of ID segments, the jQuery selector
has other jobs for it. In order to work in jQuery, we need to escape the
colon. This can be easily accomplished if you use a PrimeFaces method,
as shown in the following code:

escadpeClientId:function(a){return"#"+a.
replace(/:/g,"\\:")}

Done! Now you can test the composite component in your page. The complete
application is named ch10_11.

Well, if you add multiple range sliders in the page, you will see that the preceding
JavaScript code will be generated and added each time. The size of this code is
insignificant, and the chances that you'll need multiple range sliders in the same
page are pretty small, so it will not be a big issue. But, when such an issue arises,
you need to know that there are a few workarounds for it.

For example, we can take out JavaScript from the composite component and place it
into the page, or as a component should be self contained it would be better to place
the code in a separate JavaScript file and reference it in the composite component
with <h:outputScript>. After that, we parameterize the JavaScript code with the
desired attributes, and call it from the composite component. So, the parameterized
version might look like the following code (place this in a file named slider.js):

 var rangeslider = {
 init: function(clientId, min, max, leftside, rightside) {
 var rangeval = (clientId + ":rangeval").replace(/:/g, "\\:");
 var slider = (clientId + ":slider").replace(/:/g, "\\:");
 $('#' + slider).slider({
 range: true,
 min: min,
 max: max,
 values: [parseInt(leftside), parseInt(rightside)],
 slide: function(event, ui) {

Chapter 10

[445]

 $('#' + rangeval).html(ui.values[0] + " - " + ui.values[1]);
 $("#" + (clientId + ":leftsideId").
 replace(/:/g, "\\:")).val(ui.values[0]);
 $("#" + (clientId + ":rightsideId").
 replace(/:/g, "\\:")).val(ui.values[1]);
 }
 });
 }
 };

Further, we adapt the composite component implementation section for calling the
following reusable JavaScript code:

<cc:implementation>
 ...
 <h:outputScript target="head" name="range-slider/js/slider.js"/>
 ...
 <script>
 rangeslider.init('#{cc.clientId}', '#{cc.attrs.min}',
 '#{cc.attrs.max}', '#{cc.attrs.leftside}', '#{cc.attrs.
rightside}');
 </script>
</cc:implementation>

Probably you already know that you just saw a technique of JavaScript closures. The
idea is to speculate the fact that JavaScript is a dynamic language that lets us modify
the DOM at runtime. Using the JSF client identifier and this JavaScript capability can
help us to solve the issue of repeating code for multiple components. Sometimes, a
good practice is to place the entire composite component inside a div element whose
ID is the JSF client identifier. Moreover, you can identify and manage each div
content directly from JavaScript.

The complete application for this example is named ch10_9. If you want to place
the JavaScript code directly into the page, check the application named ch10_26.
Besides this application, another complete example of using JavaScript closures is
named ch10_7. In this example, a composite component encapsulates an HTML5
SSE (Server-sent Events) example. For those who are not familiar with SSE, a good
starting point is the tutorial at http://www.html5rocks.com/en/tutorials/
eventsource/basics/.

http://www.html5rocks.com/en/tutorials/eventsource/basics/
http://www.html5rocks.com/en/tutorials/eventsource/basics/

JSF Custom Components

[446]

Writing the HTML5 date picker as a composite
component
Starring: <cc:clientBehavior> and <cc:insertChildren />

In this section, you will see how to transform the HTML5 date picker component into
a composite component. There are a few attributes that allow us to customize the
native date picker component. The following is a list of three examples:

•	 The code for the simplest case is as follows:
<input id="exId" type="date" value="" />

•	 The code for the constrained date picker is as follows:
<input id="exId" type="date" value="2015-01-05"
 min="2015-01-01" max="2015-01-31" />

•	 The code for the date picker with data list is as follows:
<input id="exId" type="date" value="" list="listId" />
<datalist id="listId">
 <option label="Day 1" value="2015-01-01"/>
 <option label="Day 2" value="2015-01-02" />
 <option label="Day 3" value="2015-01-03" />
</datalist>

Our composite component should reflect these forms, so it might look like the
following code:

Date-time without data-list:
<h:form>
 <t:datetime value="#{dateTimeBean.date}"
 min="#{dateTimeBean.min}" max="#{dateTimeBean.max}">
 <f:ajax event="change" execute="@form"
 listener="#{dateTimeBean.selectedDate()}"/>
 </t:datetime>
</h:form>

Alternatively, use a data list, as shown in the following code:

Date-time with data-list:
<h:form>
 <t:datetime list="listId" value="#{dateTimeBean.date}">
 <f:ajax event="change" execute="@form"
 listener="#{dateTimeBean.selectedDate()}"/>
</t:datetime>
<t:datalist id="listId">

Chapter 10

[447]

 <t:option label="Day 1" value="2015-01-01"/>
 <t:option label="Day 2" value="2015-01-02"/>
 <t:option label="Day 3" value="2015-01-03"/>
</t:datalist>

So, let's focus on the interface definition. First, we have a set of attributes that are
very easy to define, such as value, list, step, required, and readonly:

<cc:attribute name="value" type="java.util.Date" required="true" />
<cc:attribute name="list" type="java.lang.String" default="" />
<cc:attribute name="step" type="java.lang.String" default="1" />
<cc:attribute name="required" type="java.lang.String"
 default="false" />
<cc:attribute name="readonly" type="java.lang.String"
 default="false" />

This was easy! Now we need to take a closer look at the min and max attributes,
which delimitate the range of selection. Practically, they are just some dates, but
NOT instances of java.util.Date, because their format is specific to HTML 5
(y-m-d), not to Java. This means that we need some Java code for accomplishing
the conversion from Java date format to HTML5 date format. We need a backing
component to do this (notice that we can't use any converter here):

@FacesComponent(value = "datetime")
public class DateTimeComponent extends UINamingContainer {

 private static final DateTimeFormatter HTML5_FORMAT =
 DateTimeFormat.forPattern("yyyy-MM-dd");
 private String minHTML5Date = "";
 private String maxHTML5Date = "";

 public String getMinHTML5Date() {
 return minHTML5Date;
 }

 public String getMaxHTML5Date() {
 return maxHTML5Date;
 }

 @Override
 public void encodeBegin(FacesContext context) throws IOException {

 Date min = (Date) getAttributes().get("min");
 if (min != null) {
 DateTime minDateTime = new DateTime(min);
 minHTML5Date = HTML5_FORMAT.print(minDateTime);

JSF Custom Components

[448]

 }
 Date max = (Date) getAttributes().get("max");
 if (max != null) {
 DateTime maxDateTime = new DateTime(max);
 maxHTML5Date = HTML5_FORMAT.print(maxDateTime);
 }
 super.encodeBegin(context);
 }
}

Of course, we don't forget to indicate the backing component in the interface and
the restriction selection attributes, which can now be declared as java.util.Date,
as shown in the following code:

<cc:interface componentType="datetime">
 <cc:attribute name="min" type="java.util.Date" />
 <cc:attribute name="max" type="java.util.Date" />
...

We need to do one more thing in the interface. When the end user selects a date,
we want it to be submitted via AJAX to a backing bean. For this, we need to
allow him/her to attach a client behavior (we spoke about client behavior several
times in this book, but a perfect tutorial can be found at DZone, http://java.
dzone.com/articles/jsf-2-client-behaviors), and for this we need the
<cc:clientBehavior> tag, as shown in the following code. The name attribute
contains the name of the event that will listen (for example, change here) and the
targets attribute indicates the component(s) from the implementation, which will
support the declared JavaScript event via the event attribute (do not use the prefix
on for JavaScript events).

<cc:clientBehavior name="change" targets="#{cc.id}" event="change" />

So far, the interface is ready! Going further, we need an implementation. This
is pretty simple and is based on JSF 2.2 pass-through elements, as shown in the
following code:

<cc:implementation>
 <div id="#{cc.clientId}:dt">
 <input jsf:id="#{cc.id}" type="date" jsf:value="#{cc.attrs.value}"
 jsf:readonly="#{cc.attrs.readonly != 'false' ? 'true':
'false'}"
 min="#{cc.minHTML5Date}" max="#{cc.maxHTML5Date}"
 jsf:required="#{cc.attrs.required != 'false' ? 'true':
'false'}"
 step="#{cc.attrs.step}" list="#{cc.attrs.list}">
 <f:convertDateTime pattern="yyyy-MM-dd" />

http://java.dzone.com/articles/jsf-2-client-behaviors
http://java.dzone.com/articles/jsf-2-client-behaviors

Chapter 10

[449]

 </input>
 </div>
</cc:implementation>

In order to have an easy way to reference <datalist>, we used
#{cc.id}. If the component is used multiple times in a page, then
you have to specify a unique ID for each use. Nevertheless, if you
need a clean solution that avoids nonunique IDs in the rendered
XHTML document, you might require some additional ID
resolving to be done (with JavaScript or in a backing component
for instance).

At this moment, we can use our composite component, except the data list (see the
preceding HTML5 <datalist>). For this, we need to write two more composite
components. As you can see, a data list is just a set of several options (items)
and each option has two attributes, named label and value. So, we can easily
encapsulate an option in a composite component, as shown in the following code:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="label" type="java.lang.String" default="" />
 <cc:attribute name="value" type="java.lang.String" default="" />
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <option value="#{cc.attrs.value}" label="#{cc.attrs.label}" />
</cc:implementation>

Now we need to nest several options in <datalist>, but this is inappropriate
here, because the number of options is indeterminate. Fortunately, for these kinds
of situations, JSF provides the <cc:insertChildren> tag, which is used to insert
the child component within a parent component (the child components will be
automatically re-parented by JSF). Knowing this, we can write the following
composite component for <datalist>:

<!-- INTERFACE -->
<cc:interface>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <datalist id="#{cc.id}">
 <cc:insertChildren />
 </datalist>
</cc:implementation>

JSF Custom Components

[450]

Use the <datalist> tag only in <cc:implementation> and
be careful to avoid duplicate ID errors. In order to avoid this, it
is recommended that you use this tag only once. To find out the
number of children, use #{cc.childCount}.

Done! Now you can try to test the complete application named ch10_12.

For the sake of completeness, you can treat the case when the
browser doesn't support HTML5 by getting back to the jQuery
UI version of this component. This can be accomplished via the
Modernizr library (http://modernizr.com/), which is able to
detect this kind of issue. From our point of view, such browsers
will be obsolete in the future, so we don't think the effort to add this
check and fallback is justified.

Decorating an image with actions
Starring: <cc:actionSource>, Java enum types

Composite components are amazing because they can transform simple things into
a real powerful component. For example, in this section we will decorate a simple
image to become a composite component with AJAX and action capabilities by
adding action and action listener support. Moreover, we will force the page author
to use only a range of values for a certain attribute.

First, we take care of the interface section, and we can start by declaring an attribute
that represents the image location, as shown in the following code:

<cc:attribute name="src" required="true"/>

After this quick warm up, we can declare the action attribute. The page author will
use this attribute to indicate an action method of a backing bean. Notice that the
action method signature must be declared here, as shown in the following code:

<cc:attribute name="action" method-signature="void action()"/>

When you write a method signature, you need to indicate the return type (void
in this case), the method name and the argument types. For example, an action
method that returns String and gets two Integer arguments will be declared
as follows:

method-signature="java.lang.String
myMethod(java.lang.Integer, java.lang.Integer)"

http://modernizr.com/

Chapter 10

[451]

Furthermore, we add support for the <f:actionListener> tag. For this, we use the
<cc:actionSource> tag as follows:

<cc:actionSource name="imgActionListener" targets="#{cc.
clientId}:imgForm:imgAction"/>

The value of the name attribute will be used by the page authors as the value for the
<f:actionListener> for attribute. The targets attribute points the component(s)
from the implementation section, which receives this capability.

The <cc:actionSource> tag specifies the implementation
of ActionSource2.

Next, we declare a client behavior using the <cc:clientBehavior> tag as follows:

<cc:attribute name="item" targets="#{cc.clientId}:
 imgForm:imgAction" required="true"/>

As the final touch, we add an attribute that will accept only a range of values, as
shown in the following code:

<cc:attribute name="item" targets="#{cc.clientId}:
 imgForm:imgAction" required="true"/>

The interface section is ready, so let's focus on the implementation section. For a
better understanding, let's have a look at it as follows:

<cc:implementation>
 <h:outputStylesheet library="default" name="css/styles.css" />
 <ui:param name="range" value="#{cc.attrs.item}" /> <!-- or c:set -->
 <ui:fragment rendered="#{range == 'item_1' or
 range == 'item_2' or range == 'item_3'}">
 <div id="#{cc.clientId}:img">
 <h:form id="imgForm">
 <h:commandLink id="imgAction" immediate="true"
 action="#{cc.attrs.action}" styleClass="linkopacity">
 <h:inputHidden id="itemId" value="#{cc.attrs.item}"/>
 <h:graphicImage value="#{cc.attrs.src}"/>
 </h:commandLink>
 </h:form>
 </div>
 </ui:fragment>
</cc:implementation>

JSF Custom Components

[452]

There are a few interesting points here! Let's dissect the code from the inside to the
outside in the following points:

•	 First, the image is loaded in JSF classic style through the <h:graphicImage>
tag. Nothing fancy here!

•	 The <h:graphicImage> tag is nested in a <h:commandLink> tag, which
supports action and action listener capabilities. Notice that this component
is targeted from the interface section. Moreover, we nest a hidden field here
(<h:inputHidden>) that associates (holds) a value with our image. This
value comes from a range of allowed values via the item attribute.

•	 The <h:commandLink> tag is nested in a <h:form> tag and everything is
added into a <div> tag. Notice that, usually, it is not a good practice to add
<h:form> in a composite component, since the page author may want to
use the composite component in his/her <h:form>. This will lead to nested
forms, which leads to invalid HTML code.

•	 In order to restrict an attribute value to a range of values, you may think
of using Java enum types. The problem is that you cannot do that in the
interface section, but you can add a check in the implementation section. For
example, we choose not to render the composite component when the value
of the item attribute is different from item_1, item_2, and item_3.

The composite component is ready for testing. A perfect example can be seen in the
code bundle of this chapter under the name ch10_18. Based on the same principle,
we have written another example under the name ch10_13.

Working with composite facets
Starring: <cc:facet>, <cc:renderFacet>, and <cc:insertFacet>

A composite component contains the facets definition in the interface section.
For this, we need to use the <cc:facet> tag and to specify at least the facet name
through the name attribute, as shown in the following code:

<cc:facet name="name" />
<cc:facet name="surname" />

Once the facets are declared in the interface section, they can be used in the
implementation section via the <cc:renderFacet> tag. For this tag, we need to
specify which facet to be rendered, by setting the value of the name attribute in
agreement with the corresponding facet defined in the interface section, as shown
in the following code:

<cc:renderFacet name="name" required="true"/>
<cc:renderFacet name="surname" required="true"/>

Chapter 10

[453]

That's all! You can see a complete example in the code bundle of this chapter under
the name ch10_14.

Besides <cc:renderFacet>, a composite component supports the <cc:insertFacet>
tag. Now things become more interesting, because a common question is, what is
the difference between them? The best answer will come from an example. Let's
take a simple composite component that uses <cc:renderFacet>, as shown in the
following code:

<!-- INTERFACE -->
<cc:interface>
 <cc:facet name="header" />
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <cc:renderFacet name="header"/>
 <!-- this will not render -->
 <!-- <cc:insertFacet name="header"/> -->
</cc:implementation>

This will render correctly through the following usage:

...
xmlns:q="http://xmlns.jcp.org/jsf/composite/renderfacet"
...
<q:renderfacet>
 <f:facet name="header">
 Render Facet
 </f:facet>
</q:renderfacet>

However, replacing <cc:renderFacet> with <cc:insertFacet> will not work.
Nothing will be rendered.

Now let's take a look at the following composite component that uses
<cc:insertFacet>:

<!-- INTERFACE -->
<cc:interface>
 <cc:facet name="header" />
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:dataTable border="1">

JSF Custom Components

[454]

 <cc:insertFacet name="header"/>
 <!-- this will not render -->
 <!-- <cc:renderFacet name="header"/> -->
 </h:dataTable>
</cc:implementation>

The following code snippet will render the desired result:

<t:insertfacet>
 <f:facet name="header">
 Insert Facet
 </f:facet>
</t:insertfacet>

But again, replacing <cc:insertFacet> with <cc:renderFacet> will not work.
Nothing will be rendered.

So, we can conclude that <cc:renderFacet> is useful for rendering facets as child
components of the composite component. This means that <cc:renderFacet>
allows us to render facets when the parent component doesn't support facets; the
facet name can be any accepted string. On the other hand, <cc:insertFacet> allows
us to render facets only in components that support facets. Here, the facet name must
exist in the facet map of the top-level component. The facet is inserted as a facet child
of the component in which this element is nested.

The complete application is named ch10_17.

Validating/converting inputs inside composite
components
Starring: <cc:editableValueHolder>

Let's take a quick look at a simple composite component in the following code,
especially at the highlighted parts:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="name" type="java.lang.String" required="true"/>
 <cc:attribute name="surname" type="java.lang.String"
 required="true" />
 <cc:editableValueHolder name="playerId" targets="nameId surnameId"/>
 <cc:attribute name="action"

Chapter 10

[455]

 method-signature="void action()" required="true" />
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:messages/>
 <h:outputLabel for="nameId" value="Player Name:"/>
 <h:inputText id="nameId" value="#{cc.attrs.name}" />
 <h:outputLabel for="surnameId" value="Player Surname:"/>
 <h:inputText id="surnameId" value="#{cc.attrs.surname}" />
 <h:commandButton id="button" value="Submit" action="#{cc.attrs.
action}">
 <f:ajax execute="@form" render="@form"/>
 </h:commandButton>
</cc:implementation>

Now we write a page that uses this component and attaches a custom converter and
a custom validator to it as follows:

<h:form id="playerFormId">
 <t:player name="#{playerBean.name}" surname="#{playerBean.surname}"
 action="#{playerBean.playerAction()}">
 <f:converter converterId="playerConverter" for="playerId"/>
 <f:validator validatorId="playerValidator" for="playerId"/>
 </t:player>
</h:form>

Everything works as expected, thanks to <cc:editableValueHolder>. In this
case, this tag tells JSF that any converter/validator that has the value of the
for attribute equal to playerId should be applied to the targeted components,
nameId and surnameId. Generally speaking, < cc:editableValueHolder>
indicates the components that implement EditableValueHolder, so any attached
objects suitable for implementations of EditableValueHolder may be attached to
the composite component.

The complete application is named ch10_10.

As you know, EditableValueHolder is an extension of ValueHolder. Besides
<cc:editableValueHolder>, JSF defines a tag named <cc:valueHolder>, which
indicates the components that implement ValueHolder.

JSF Custom Components

[456]

Checking the presence of an attribute
Sometimes you need to render a composite component only if a certain attribute is
present in the author page. For example, the following composite component checks
for the presence of the mandatory attribute:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="value" required="true"/>
 <cc:attribute name="mandatory" type="java.lang.Boolean"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:panelGroup rendered="#{not empty cc.attrs.mandatory}">
 <h:inputText value="#{cc.attrs.value}"
 required="#{cc.attrs.mandatory}"/>
 </h:panelGroup>
</cc:implementation>

Now the composite component will be rendered only if the mandatory attribute is
present, as shown in the following code:

<t:attrcheck value="some_text" mandatory="false"/>

The complete application is named ch10_22.

Composite components' pitfalls
In the next part of this chapter, we will discuss a few pitfalls of composite
components, such as: null values within composite component attributes, hidden
pass-through attributes in composite components, number of children of composite
components, and rendered top-level component in <h:panelGrid>.

Null values within a composite component's
attributes
As of version 2.2, JSF can determine the right type of a composite component
attributes even when that value is null. This is an issue in version 2.1.

Chapter 10

[457]

Let's have a simple composite component, as shown in the following code:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="value"/>
 <cc:editableValueHolder name="test"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:inputText id="test" value="#{cc.attrs.value}"/>
</cc:implementation>

Also, a simple page that uses this composite component is as follows:

<h:form>
 <t:nullTest value="#{dummyBean.dummy}">
 <f:validator for="test" binding="#{dummyBean.dummyValidator}"/>
 </t:nullTest>
 <h:commandButton value="Send"/>
</h:form>

Now if you supply a null value from this component, it will work correctly in
JSF 2.2, but will not work in JSF 2.1. The complete example is named ch10_19.

Hiding pass-through attributes in composite
components
A composite component can hide pass-through attributes. For example, let's take a
simple composite component as follows:

<!-- INTERFACE -->
<cc:interface componentType="book.beans.PtaComponent">
 <cc:attribute name="value"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:inputText value="#{cc.attrs.value}"/>
</cc:implementation>

JSF Custom Components

[458]

Next, let's use this composite component in a page by adding two pass-through
attributes to it as follows:

<h:form>
 <t:pta value="leoprivacy@yahoo.com">
 <f:passThroughAttribute name="placeholder"
 value="Type an e-mail address" />
 <f:passThroughAttribute name="type" value="email" />
 </t:pta>
 <h:commandButton value="Submit"/>
</h:form>

At this moment, if you check the list of attributes (using the UIComponent.
getAttributes method) and the list of pass-through attributes (using the
UIComponent.getPassThroughAttributes method), you will notice that the
placeholder and type attributes are in the list of pass-through attributes. We can
easily move them into the attributes list by encapsulating them into the composite
component, as shown in the following code:

<!-- INTERFACE -->
<cc:interface componentType="book.beans.PtaComponent">
 <cc:attribute name="value"/>
 <cc:attribute name="placeholder"/>
 <cc:attribute name="type"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:inputText value="#{cc.attrs.value}">
 <f:passThroughAttribute name="placeholder"
 value="#{cc.attrs.placeholder}" />
 <f:passThroughAttribute name="type" value="#{cc.attrs.type}" />
 </h:inputText>
</cc:implementation>

Also, you can use the composite component in the page, as follows:

<h:form>
 <t:pta value="leoprivacy@yahoo.com"
 placeholder="Type an e-mail address" type="email" />
 <h:commandButton value="Submit"/>
</h:form>

Chapter 10

[459]

Done! Now the placeholder and type attributes are not present in the
pass-through attributes list. They were added in the attributes list returned
by the getAttributes method.

The complete application is named ch10_16.

Counting the children of a composite component
Suppose that you have a composite component that accepts children via the
<cc:insertChildren/> tag. Sometimes you may need to render a certain message
when the list of children is empty, and for this you may think of writing a composite
component implementation, as shown in the following code:

<!-- IMPLEMENTATION -->
<cc:implementation>
 <div id="#{cc.clientId}">

 <cc:insertChildren/>
 <h:panelGroup rendered="#{cc.childCount == 0}">
 The list of names is empty!
 </h:panelGroup>

 </div>
</cc:implementation>

Now if the composite component is used as follows, you may think that the message
The list of names is empty! will be rendered:

<t:iccc/>

Well, you are right! But, the same message, next to the list content, will be rendered
when the component is used as follows:

<t:iccc>
 Mike
 Andrew
</t:iccc>

In order to solve this issue, you can use the following code:

<cc:implementation>
 <div id="#{cc.clientId}">

 <cc:insertChildren/>

JSF Custom Components

[460]

 <c:if test="#{cc.childCount == 0}">
 The list of names is empty!
 </c:if>

 </div>
</cc:implementation>

Done! The complete application is named ch10_20.

Top-level component's pitfall
Remember that we have said earlier in this chapter that each composite component
receives UINamingContainer as the top-level component. Well, it is important to not
forget this when you define a composite component, as shown in the following code:

<!-- INTERFACE -->
<cc:interface>
 <cc:attribute name="labelvalue"/>
 <cc:attribute name="imgvalue"/>
</cc:interface>

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:outputLabel for="img" value="#{cc.attrs.labelvalue}"/>
 <h:graphicImage id="img" value="#{cc.attrs.imgvalue}"/>
</cc:implementation>

And, you try to use it, as shown in the following code:

<h:panelGrid columns="2" border="1">
 <t:pg labelvalue="SMILEY"
 imgvalue="#{resource['default/images:smiley.gif']}"/>
 <t:pg labelvalue="SAD SMILE"
 imgvalue="#{resource['default/images:sad_smile.gif']}"/>
</h:panelGrid>

If you forgot about the top-level component, you probably expect to see something
like the left-hand side of the following screenshot, while in reality, you will see
something like the right-hand side of the following screenshot:

Chapter 10

[461]

This is normal, since <h:panelGrid> perceives the composite component as
a whole. All components that define the composite component are the children
of the top-level component and are invisible to <h:panelGrid>.

The complete example is named ch10_15.

Distributing composite components as JARs
in JSF 2.2
As of JSF 2, we can add composite components in custom tag libraries (taglibs). After
placing the composite component artifacts in the correct folders, we need to write
a file of type (this filename should be suffixed with taglib.xml), as shown in the
following code:

<facelet-taglib version="2.0">
 <namespace>http://some/namespace</namespace>
 <composite-library-name>
 library_name
 </composite-library-name>
</facelet-taglib>

Based on this file's content, and more precisely on <composite-library-name>,
JSF 2 detects the composite components belonging to this library. This means that
the composite components mapped in this JAR must come from this library only.

As of JSF 2.2, this restriction doesn't exist anymore, and we can add, in the same JAR,
composite components that come from different libraries.

Let's see an example! Suppose that we want to add in the same JAR the Temperature
component (developed in application ch10_8) and the Range-slider component
(developed in application ch10_11). The JAR will be named jsfcc.jar. The steps
for accomplishing this are as follows:

1.	 Create an empty JAR named jsfcc.jar.
2.	 In jsfcc.jar, create the folder META-INF/resources.
3.	 Copy the libraries that contain the composite components in META-INF/

resources (copy the resources/temperature folder from the application
ch10_8 and resources/range-slider from the application ch10_11).

4.	 For the Temperature composite component, copy the classes book.beans.
TempConvertClient.class and book.beans.TempConvertComponent.
class under the JAR root.

JSF Custom Components

[462]

5.	 Create an empty faces-config.xml file and place it under the META-INF
folder as follows:
<?xml version="1.0"?>
<faces-config xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"
 version="2.2">
</faces-config>

6.	 Create the following cc.taglib.xml file and place it under the META-INF
folder. Notice that we don't need a <composite-library-name> tag, and
we have configured both composite components under the same namespace,
http://jsf/cc/packt/taglib. Using this example, it is very easy to define
more components as follows:
<facelet-taglib version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaeehttp://
xmlns.jcp.org/xml/ns/javaee/web-facelettaglibrary_2_2.xsd"

 <namespace>http://jsf/cc/packt/taglib</namespace>
 <tag>
 <tag-name>range-slider</tag-name>
 <component>
 <resource-id>
 resources/range-slider/range-slider.xhtml
 </resource-id>
 </component>
 </tag>
 <tag>
 <tag-name>temperature</tag-name>
 <component>
 <resource-id>
 resources/temperature/temperature.xhtml
 </resource-id>
 </component>
 </tag>
</facelet-taglib>

Chapter 10

[463]

7.	 In the following screenshot, you can see how the JAR structure should look:

Specially for testing jsfcc.jar, you can run the application ch10_21. Notice that
even if NetBeans doesn't recognize the tags of the composite components, they work
like a charm.

Adding composite components
programmatically
The last section in this chapter discusses adding composite components
programmatically. Before JSF 2.2, there wasn't any official API for instantiating
composite components as a Java instance via user code. But, there were at least
two facile options for unofficially accomplishing this:

•	 Using the Components.includeCompositeComponent method available in
OmniFaces from JSF Version 1.5 onwards (https://code.google.com/p/
omnifaces/).

•	 Using the Components.includeCompositeComponent source code
as an inspiration to write your own implementation. This kind of
implementation is listed in the complete application named ch10_23. In
that application, you can see how to programmatically add in a page the
Welcome and Temperature composite components (you need to pass to
the addCompositeComponent method the following data: the composite
component parent, the library name and path, and a unique ID).

https://code.google.com/p/omnifaces/
https://code.google.com/p/omnifaces/

JSF Custom Components

[464]

As of JSF 2.2, we can use an explicit API for instantiating composite components
programmatically. The core of this API is based on the new createComponent
method added in the ViewDeclarationLanguage class. The signature of this
method is as follows:

public UIComponent createComponent(FacesContext context, String
taglibURI, String tagName, Map<String,Object> attributes)

Besides FacesContext, you need to pass the tag library URI, the tag name, and
the tag's attributes, or null, if there are no attributes. For example, the Welcome
component can be added via this API as follows (we append the Welcome
component to a <h:panelGroup> with the welcomeId ID):

public void addWelcomeCompositeComponent() {
 FacesContext context = FacesContext.getCurrentInstance();
 ViewDeclarationLanguage vdl = context.getApplication().
 getViewHandler().getViewDeclarationLanguage(context,
 context.getViewRoot().getViewId());

 Map<String, Object> attributes = new HashMap<>();
 attributes.put("value", createValueExpression("#{welcomeBean.value}",
 java.lang.String.class).getExpressionString());
 attributes.put("to", createValueExpression("#{welcomeBean.to}",
 java.lang.String.class).getExpressionString());

 UINamingContainer welcomeComponent = (UINamingContainer)
 vdl.createComponent(context, "http://xmlns.jcp.org/jsf/composite/
 customs", "welcome", attributes);
 UIComponent parent = context.getViewRoot().
findComponent("welcomeId");
 welcomeComponent.setId(parent.getClientId(context) + "_" +
"welcomeMsgId");
 parent.getChildren().add(welcomeComponent);
}

The complete application is named ch10_27_1.

A side-effect of this API includes the fact that it allows us to add regular components
also. For example, you can append an UIOutput component to <h:panelGroup>
with the myPlayerId ID, as follows:

public void addComponent() {
 FacesContext context = FacesContext.getCurrentInstance();

Chapter 10

[465]

 ViewDeclarationLanguage vdl = context.getApplication().
 getViewHandler().getViewDeclarationLanguage(context,
 context.getViewRoot().getViewId());

 Map<String, Object> attributes = new HashMap<>();
 attributes.put("value", createValueExpression("#{playersBean.
player}", java.lang.String.class).getExpressionString());
 UIOutput outputTextComponent = (UIOutput) vdl.
createComponent(context,
 "http://java.sun.com/jsf/html", "outputText", attributes);

 UIComponent parent = context.getViewRoot().
findComponent("myPlayerId");
 outputTextComponent.setId(parent.getClientId(context) +
 "_" + "nameId_"+ new Date().getTime());
 parent.getChildren().clear();
 parent.getChildren().add(outputTextComponent);
}

The complete application is named ch10_27_2. In Chapter 12, Facelets Templating, you
can see an example of adding <ui:include> using this API.

Summary
In this chapter, you saw at work one of the greatest facilities of JSF. The custom and
composite components feature represents the way how JSF expresses the respect for
its developers. Writing custom/composite components is definitely a mandatory test
of each JSF developer, since the difference between an ordinary and an extraordinary
component resides in his skills. I hope that, next to many other books and tutorials
about JSF custom/composite components, you have found this chapter as an
interesting dissertation about this wide topic.

As a final note of this chapter, we have to apologize to all JSP fans who felt
ignored in this chapter by the fact that we did not mention anything about
writing custom/composite components compatible with JSP. As you know,
such components can be made compatible with JSP via tag classes (not tag
handlers), but JSP was deprecated as of JSF 2. I think that this is a plausible
excuse for not covering or even mentioning JSP.

See you in the next chapter, where we will explore the new JSF 2.2 themes!

JSF 2.2 Resource Library
Contracts – Themes

Starting with version 2.0, JSF developers exploit Facelets as the default View
Declaration Language (VDL). Facelets provide many advantages, but we
are especially interested in using Facelet templates, which represent a mix of
XHTML and other resources such as CSS, JS, and images. A Facelet template acts
as a base (or a model) for the application pages. Practically, it represents a piece
of reusable code that serves as a consistent and standard look and feel for the
application pages. In the final chapter of this book, we will get more into the details
of Facelets and templating, while in this chapter we will focus on the new JSF 2.2
feature known as Resource Library Contracts.

This new feature fortifies and simplifies the implementation of themes (such as
PrimeFaces or RichFaces) by allowing us to easily decorate and use Facelet templates
over the entire application in a reusable and flexible approach.

In this chapter, you will see how to do the following:

•	 Work with contracts
•	 Style the JSF tables and UI components using contracts
•	 Style contracts across different kinds of devices
•	 Write contracts for composite components
•	 Write a theme switcher
•	 Configure contracts in XML
•	 Package contracts in JARs

JSF 2.2 Resource Library Contracts – Themes

[468]

Further, keep in mind to correctly interpret the contracts word
in the current context. It can be used to define the concepts
such as the contracts folder, the contracts attribute, or
the <contracts> tag. Sometimes, it may get confusing.

Working with contracts
Contracts consist of templates and CSS files that are grouped under the contracts
folder. In order to define contracts, we need to respect some conventions under the
root directory of Web application. The most important conventions (for example,
names, structure, and content) concern folders that are involved in the defining of
contracts. All contracts are stored under a special folder—named contracts—placed
directly under the Web root of the application, or under the META-INF folder that
resides in a JAR file.

We can alter the location and the name of this folder via WEBAPP_
CONTRACTS_DIRECTORY_PARAM_NAME context parameter. The
value of this context parameter must not start with a slash (/),
though it may contain a slash. The runtime will interpret this value
as a path relative to the Web root of the application.

Commonly, under the contracts folder, we define a subfolder for each contract
(the subfolder's name represents the contract's name), which contains the contract's
artifacts such as the CSS, JS, images, and XHTML templates (you can separate
resources such as CSS, JS, and images from the XHTML templates by adding them
into representative subfolders).

In the following screenshot, you can see the folder structure for two contracts
(rafa1 and rafa2) in the same application, named ch11_1:

Chapter 11

[469]

In our example, the source code for rafa1/template.xhtml and rafa2/template.
xhtml is identical (of course, this is not mandatory); however, they just use different
CSS files. These XHTML files serve as templates for the application pages. The listing
of rafa1/template.xhtml is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:outputStylesheet name="styles.css"/>
 <div class="header">
 <ui:insert name="header"/>
 </div>
 <div class="content">
 <ui:insert name="content"/>
 </div>
 <div class="footer">
 <ui:insert name="footer"/>
 </div>
 </h:body>
</html>

JSF 2.2 Resource Library Contracts – Themes

[470]

Further, you can use the contracts directly in the application web pages, thanks to
the new JSF 2.2 attribute of the <f:view> tag named contracts (this has to be placed
in the template client). The value of this attribute should be the contract name that
you want to use. For example, if you want to use the contract named rafa2, you can
write this in the index.xhtml page as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <f:view contracts="rafa2"><!-- switch to rafa1 to see
 first theme -->
 <ui:composition template="/template.xhtml">
 <ui:define name="header">
 <p>Rafael Nadal photos - header</p>
 </ui:define>
 <ui:define name="content">
 <h:graphicImage
 value="#{resource['default/images:RafaelNadal.jpg']}"/>
 </ui:define>
 <ui:define name="footer">
 <p>Rafael Nadal photos - footer</p>
 </ui:define>
 </ui:composition>
 </f:view>
 </h:body>
</html>

In order to use the contract named rafa1, you just need to specify this name as the
value of the contracts attribute.

The complete application is named ch11_1.

Chapter 11

[471]

Styling tables with contracts
Now that you know how to write and use contracts, you can try to play around with
this great feature for creating different kinds of styles/themes for your pages. Most
of the time, creating cool themes involves two things: having a cool and flexible
templating mechanism and having solid knowledge of CSS and JS.

For example, we can try to write two cool themes for the JSF tables. First, we'll define
two contracts named tableBlue and tableGreen. The XHTML template, in both the
cases, will have the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:outputStylesheet name="styles.css"/>
 <div class="content">
 <ui:insert name="content"/>
 </div>
 </h:body>
</html>

Now, you can use the tableBlue or tableGreen contract, as shown in the
following code:

...
 <h:body>
 <f:view contracts="tableBlue">
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
 <h:dataTable value="#{playersBean.data}" var
 ="t" border="1">
 <h:column>
 <f:facet name="header">
 Ranking
 </f:facet>

JSF 2.2 Resource Library Contracts – Themes

[472]

 #{t.ranking}
 </h:column>
 ...
 </h:dataTable>
 </ui:define>
 </ui:composition>
 </f:view>
 </h:body>
...

The result will be as shown in the following screenshot:

As you can see, there is no need to specify a class or a style attribute for
<h:dataTable>. The idea is pretty simple; JSF renders <h:dataTable> using HTML
tags such as <table>, <tr>, <td>, <tbody>, <thead>, and <tfoot>. So, if we write a
CSS style sheet that customizes the aspect of these HTML tags, then we will obtain
the desired results. For <h:dataTable>, a basic CSS may contain the following classes
(content matches the value of the name attribute of the <ui:define> component):

.content {}

.content table {}

.content table td,.content table th {}

.content table thead th {}

.content table thead th:first-child {}

.content table tbody td {}

.content table tbody .alt td {}

.content table tbody td:first-child {}

.content table tbody tr:last-child td {}

Sometimes, you may need to add pagination to your tables. JSF doesn't provide
attributes for this task (unlike the <p:dataTable> tag in PrimeFaces). But, as
an example, you may fix this issue if you write a footer, like the following code
snippet—of course, the <div> content should be dynamically generated and
controlled (for more details, see Chapter 6, Working with Tabular Data):

 ...
 <f:facet name="footer">
 <div id="paging">

Chapter 11

[473]

 Previous

 ...

 </div>
 </f:facet>
</h:dataTable>

Now, you need to add a few CSS classes to control the pagination aspect, as follows:

.content table tfoot td div {}

.content table tfoot td {}

.content table tfoot td ul {}

.content table tfoot li {}

.content table tfoot li a {}

.content table tfoot ul.active,.content table tfoot ul a:hover {}

The result is shown in the following screenshot:

Special thanks to Eli Geske, the author of Learning DHTMLX Suite UI (http://www.
packtpub.com/learning-dhtmlx-suite-ui/book). His free online CSS3 table
generator (you can find HTML Table Style Generator at http://tablestyler.com/)
was really useful to accomplish the result in this section.

The complete application is named ch11_3.

http://www.packtpub.com/learning-dhtmlx-suite-ui/book
http://www.packtpub.com/learning-dhtmlx-suite-ui/book
http://tablestyler.com/

JSF 2.2 Resource Library Contracts – Themes

[474]

Styling UI components with contracts
Based on the preceding example, we can write styles/themes for all the
JSF UI components. In this section, you can see an example that focuses on
JSF UI components that usually appear in forms such as <h:inputText>,
<h:inputTextarea>, <h:selectOneMenu>, <h:selectManyCheckbox>,
and so on. Practically, we want to obtain something like the following
screenshot (this is just a sample form):

Chapter 11

[475]

We start by defining a new contract named jsfui. The template is pretty simple,
as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:outputStylesheet name="styles.css"/>
 <div class="content">
 <ui:insert name="content"/>
 </div>
 </h:body>
</html>

Now, we just need to write the CSS classes that correspond to the HTML elements
rendered by JSF, as follows:

.content input[type=text] {} /* <h:inputText> */

.content input[type=submit] {} /* <h:commandButton> */

.content textarea {} /* <h:inputTextarea> */

.content label {} /* <h:outputLabel> */

.content select {} /* <h:selectOneMenu>,
 <h:selectOneListbox>,
 <h:selectManyMenu>,
 <h:selectManyListbox> */
.content input[type=radio] {} /* <h:selectOneRadio> */
.content input[type=checkbox] {} /* <h:selectManyCheckbox> */

You can easily add CSS classes for the rest of UI components. Further, you can write
JSF forms with a custom theme, just by specifying the theme name as the value of the
contracts attribute:

...
<f:view contracts="jsfui">
<ui:composition template="/template.xhtml">
<ui:define name="content">
...

The complete application is named ch11_2.

JSF 2.2 Resource Library Contracts – Themes

[476]

Styling contracts across different
devices
In the preceding examples, we saw how to write the JSF contracts and how to use
them by explicitly setting them by name in the contracts attribute of the <f:view>
tag. Sometimes, you may need to dynamically set a contract (theme); for example,
you may need to choose the right contract based on the device type that should
display the application (PC, tablet, smartphone, mobile phone, and so on). In this
case, you need to provide the contracts attribute value from a managed bean.

It is beyond the scope of this book to provide a powerful code (or algorithm) for
detecting device types, resolutions, and so on. With minimum involvement in the
mobile area, we will try to write a JSF application capable of choosing the right
contract depending on the device type. Practically, we will define the following
four contracts (do not consider the following associations between resolutions and
devices as a certified or authorized decision):

•	 contracts/browserpc: This contract applies to PCs (it will be the default)
•	 contracts/Device640: This contract applies to tablets (we suppose that, for

any kind of tablet, a resolution of 640 pixels width is a reasonable choice)
•	 contracts/Device480: This contract applies to smartphones (we suppose

that, for any kind of smartphone, a resolution of 480 pixels width is a
reasonable choice)

•	 contracts/Device320: This contract applies to normal mobile phones
(we suppose that, for any kind of mobile phone, a resolution of 320 pixels
width is a reasonable choice)

Now, we will write a simple managed bean that will detect the device type based on
the helper class named UAgentInfo (visit http://blog.mobileesp.com/). Basically,
this class detects different kinds of devices based on the HTTP request headers,
User-Agent and Accept. Based on this detection, we can set a managed bean
property with the name of the correct contract. The managed bean code is as follows:

@Named
@SessionScoped
public class ThemeBean implements Serializable {

 private String theme = "browserpc";

 public String getTheme() {
 return theme;
 }

 public void setTheme(String theme) {

http://blog.mobileesp.com/

Chapter 11

[477]

 this.theme = theme;
 }

 publicThemeBean() {
 Map<String, String>getRequestMap
 = FacesContext.getCurrentInstance()
 .getExternalContext().getRequestHeaderMap();
 String userAgent = getRequestMap.get("User-Agent");
 String httpAccept = getRequestMap.get("Accept");

 UAgentInfo detector = new UAgentInfo(userAgent, httpAccept);

 if (detector.isMobilePhone) {
 if ((detector.detectSmartphone())) {
 System.out.println("SMARTPHONE THEME!");
 theme = "Device480";
 } else {
 System.out.println("SIMPLE MOBILE THEME!");
 theme = "Device320";
 }
 } else {
 if (detector.detectTierTablet()) {
 System.out.println("TABLET THEME!");
 theme = "Device640";
 } else {
 System.out.println("BROWSER THEME!");
 theme = "browserpc";
 }
 }
 }
}

Each of these contracts contains an XHTML template and a CSS file named styles.
css. Each CSS file contains classes for styling the output for a resolution type. The
template is the same for all contracts and is pretty simple, as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 <meta http-equiv="X-UA-Compatible"
 content="IE=edge,chrome=1"/>

JSF 2.2 Resource Library Contracts – Themes

[478]

 <meta name="HandheldFriendly" content="true"/>
 <meta name="viewport" content="width=device-width, initial-
 scale=1,maximum-scale=1,user-scalable=no"/>
 </h:head>
 <h:body>
 <h:outputStylesheet name="styles.css"/>
 <div class="content">
 <ui:insert name="content"/>
 </div>
 </h:body>
</html>

Let's take a simple page, as shown in the following screenshot. (The JSF code is
straightforward and you can see it in the complete application named ch11_4.)
This view is for desktop browsers.

Chapter 11

[479]

The relevant JSF code for this page consists of adding the right contract:

<h:body>
 <f:view contracts="#{themeBean.theme}">
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
...

Done! Now, you can easily perform some test using a mobile emulator, such as
Opera Mobile Operator. In the following screenshot, you can see the same page
as that on a Samsung Galaxy Tab, at a resolution of 1024x600 (PPI: 240):

JSF 2.2 Resource Library Contracts – Themes

[480]

Further, the same page can be rendered for mobile phone devices: shown on the left
is Motorola Atrix4G at a resolution of 540x960 (PPI: 267) and on the right is a Nokia
N9 mobile phone at resolution of 320x480 (PPI: 252):

Notice that we can reduce the preceding example to a single contract and without a
managed bean, by using responsive CSS. Instead of using four contracts (browserpc,
Device640, Device480, and Device320), you can use a single contract; let's name it
alldevices. We place two CSS files under the alldevices contract: a general CSS
file (styles.css) and the responsive CSS file (responsive.css). Further, we modify
the template.xhtml file to load both the CSS files using the following code:

<h:body>
 <h:outputStylesheet name="styles.css"/>
 <h:outputStylesheet name="responsive.css"/>
 ...
</h:body>

Chapter 11

[481]

In the final step, we set this contract on the JSF page of the application, as follows:

<f:view contracts="alldevices">
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
...

Done! The complete application is named ch11_5.

Another approach consists of writing a custom RenderKitFactory class, a custom
RenderKit class and a set of custom Renderers classes—one for each device. For
example, using these artifacts, the application named ch11_15 shows you how to
render, for different devices, the Temperature custom component developed in
Chapter 10, JSF Custom Components.

Writing contracts for composite
components
In this section, you will see how to write contracts for composite components. For
this, we will use the Temperature composite component developed in Chapter 10,
JSF Custom Components. The implementation section in the code is given as follows:

<cc:implementation>
 <div id="#{cc.clientId}:tempconv_main">
 <h:outputLabel id="tempconv_smlabel"
 for="tempconv_selectonemenu" value="Convert to:"/>
 <h:selectOneMenu id="tempconv_selectonemenu"
 binding="#{cc.unittoI}">
 <f:selectItem itemValue="fahrenheit" itemLabel
 ="fahrenheit" />
 <f:selectItem itemValue="celsius" itemLabel="celsius" />
 </h:selectOneMenu>
 <h:outputLabel id="tempconv_iflabel"
 for="tempconv_inputfield" value="Insert value:"/>
 <h:inputText id="tempconv_inputfield"
 binding="#{cc.temptI}"/>
 <h:commandButton id="tempconv_button" value="Convert">
 <f:ajax execute="@form" render="@form"/>
 </h:commandButton>
 <h:panelGroup id="tempconv_result" layout="block">
 <h:outputText value="°
 #{cc.unittoI.valueeq 'fahrenheit' ? 'F ': 'C ' }
 #{cc.getTempConvert()}"/>
 </h:panelGroup>
 </div>
</cc:implementation>

JSF 2.2 Resource Library Contracts – Themes

[482]

The IDs of subcomponents are used to define the CSS file used for styling the
composite component. Therefore, we need to write the following CSS classes.
Notice how we exploit CSS wildcards to find the subcomponents.

.content {}

.content *[id*='tempconv_main'] {}

.content *[id*='tempconv_result'] {}

.content *[id*='tempconv_inputfield'] {}

.content *[id*='tempconv_button'] {}

.content *[id*='tempconv_inputfield']:hover {}

.content *[id*='tempconv_inputfield']:active {}

.content *[id*='tempconv_smlabel'] {}

.content *[id*='tempconv_iflabel'] {}

.content *[id*='tempconv_selectonemenu'] {}

Further, we place this CSS file under the same contract with the following
XHTML template:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:outputStylesheet name="styles.css"/>
 <div class="content">
 <ui:insert name="content"/>
 </div>
 </h:body>
</html>

Finally, use the composite component as follows:

...
<f:view contracts="tempStyleGray">
 <ui:composition template="/template.xhtml">
 <ui:define name="content">
 <h3>Composite component with contract:</h3>
 <h:form id="tempForm">
 <t:temperature id="temp" value="#{tempBean.value}" />
 </h:form>
 </ui:define>
 </ui:composition>
</f:view>
...

Chapter 11

[483]

Notice that we have defined two contracts: tempStyleGray (first bar in the following
screenshot) and tempStyleGreen (second bar in the following screenshot):

The complete application is named ch11_6.

Writing a theme switcher
If you are a PrimeFaces fan, then I'm sure you have seen the PrimeFaces theme
switcher. Basically, a theme switcher is represented by a drop-down menu that
contains themes' names and thumbnails. End users can switch between application's
themes just by selecting it from the list.

In this section, you will see how to develop a theme switcher using the JSF 2.2
contracts. The goal is to obtain a theme switcher so that:

•	 It can be added as a JAR in any JSF 2.2 application
•	 It can automatically detect and list the themes of an application
•	 It can give a nice look and feel, as shown in the following screenshot (shown

on the left-hand side is the PrimeFaces theme switcher, and on the right-hand
side is our theme switcher)

JSF 2.2 Resource Library Contracts – Themes

[484]

Obviously, this kind of a drop-down menu cannot be generated using the built-in
<h:selectOneMenu> tag. In order to customize a drop-down menu with images and
description, we can write a dedicated Renderer, or try to use a JavaScript plugin
capable of rendering it like in the preceding screenshot. Well, the second option is
much easier to accomplish and doesn't require us to reinvent the wheel. Practically,
we can use a free and cool jQuery plugin named ddSlick (http://designwithpc.
com/Plugins/ddSlick), which is a free light-weight jQuery plugin that allows you
to create a custom drop-down menu with images and description. There are many
other such plugins that do the same thing.

Basically, this plugin is capable of transforming a simple drop-down menu (defined
using <select> and <option>) into a fancy drop-down menu that contains images
and descriptions. For this, we start with a pure HTML5 <select> tag, as shown in
the following code snippet:

<select id="demo-htmlselect">
 <option value="0" data-imagesrc="http://..."
 data-description="Description ...">text</option>
 <option value="1" data-imagesrc="http://..."
 data-description="Description ...">text</option>
 ...
</select>

When this <select> tag passes through ddSlick, it will result in the desired
drop-down menu. Basically, ddSlick will render the <select> tag as a tag
and each <option> tag as . The images and descriptions are rendered using
 and <small>, while the option's text is rendered using <label>. Moreover,
an input hidden will be generated for each <option> value. The HTML5 attributes
data-imagesrc and data-description are used to tell ddSlick what images and
descriptions to use for each <option>.

It is important to understand how ddSlick works, because we will wrap it into a
composite component named ThemeSwitcher. The interface section is very simple
and contains a single attribute named theme. This attribute represents the selected
theme, as follows:

<!-- INTERFACE -->
<cc:interfacecomponentType="book.beans.ThemeSwitcherComponent">
<cc:attribute name="theme" default=""
 type="java.lang.String" required="true"/>
</cc:interface>

http://designwithpc.com/Plugins/ddSlick
http://designwithpc.com/Plugins/ddSlick

Chapter 11

[485]

In the implementation section, we accomplish several tasks. First, we load the
JavaScript libraries needed by our component:

<!-- IMPLEMENTATION -->
<cc:implementation>
 <h:outputScript library="themeswitcher"
 name="js/jquery.min.js"/>
 <h:outputScript library="themeswitcher"
 name="js/modernizr-2.0.6-development-only.js"/>
 <h:outputScript library="themeswitcher"
 name="js/jquery-ui.min.js"/>
 <h:outputScript library="themeswitcher"
 name="js/prettify.js"/>
 <h:outputScript library="themeswitcher"
 name="js/ddslick.js"/>
 ...

Further, we define HTML's <select> component encapsulated in <h:form> (ideally,
this component is not used in <h:form> with other components; therefore, we don't
have to worry about the nested forms):

<div id="#{cc.clientId}:themeswitcher">
 <h:form id="themeswitcherForm">
 <!--<h:outputScript name="jsf.js"
 library="javax.faces" target="head"/> -->
 <select id="#{cc.clientId}:
 themeswitcherForm:themeswitcher_content">
 <ui:repeat value="#{cc.contracts}" var="t">
 <option value="#{t}" data-imagesrc
 ="#{request.contextPath}#{request.servletPath}/
 javax.faces.resource/#{t}.png?con=#{t}" data-description
 ="Description: #{t} theme">#{t}
 </option>
 </ui:repeat>
 <option selected="true" style="display:none;
 " data-description="Current theme: #{cc.attrs.theme}">
 Select theme ...
 </option>
 </select>
 <h:inputHidden id="selectedTheme" value="#{cc.attrs.theme}"/>
 </h:form>
</div>

JSF 2.2 Resource Library Contracts – Themes

[486]

The contracts are automatically detected and added as <option> using the
<ui:repeat> component. The selected theme (<option>) is submitted to a
managed bean using a hidden field, <h:inputHidden>. After submission
(via AJAX or non-AJAX), the entire page is loaded and the contracts attribute
(of <f:view>) will receive and apply the selected theme. For this, we need a little
JavaScript code. First, we call the ddslick method, which will do the magic of
transforming the boring drop-down menu into a cool one. Further, we indicate a
JavaScript callback method, which will be automatically called when a theme is
selected. In this method, we refresh the value of the hidden field, and submit the
form (via AJAX or non-AJAX):

<cc:implementation>
...
<script type="text/javascript">
 $(document).ready(function() {

 var themeForm = ("#{cc.clientId}:themeswitcherForm").
 replace(/:/g, "\\:");
 var themeSelectElem =
 ("#{cc.clientId}:themeswitcherForm:themeswitcher_content").
 replace(/:/g, "\\:");
 var themeHiddenElem =
 ("#{cc.clientId}:themeswitcherForm:selectedTheme").
 replace(/:/g, "\\:");

 $('#' + themeSelectElem).ddslick({
 onSelected: function(data) {
 if (data.selectedData.text !== "Select theme ...") {
 setTheme(data);
 }
 }
 });

 // callback function
 functionsetTheme(data) {
 $('#' + themeHiddenElem).val(data.selectedData.text);
 //jsf.ajax.request(this, null, {execute:
 '#{cc.clientId}:themeswitcherForm:selectedTheme',
 render: "@all"});
 $('#' + themeForm).submit(); // without AJAX
 }
 });

</script>
</cc:implementation>

Chapter 11

[487]

It was very handy to work with this callback method to submit the selected theme,
since ddSlick provides this feature out of the box. There are many other possibilities
such as writing a value change listener, firing a custom event, and so on.

I'm sure that you notice that our composite components indicate the presence of
a backing component. This component is responsible to detect the application's
contracts and add their names into List. This list is transformed in <option> by
<ui:repeat>. Its code is pretty straightforward, which is as follows:

@FacesComponent(value = "book.beans.ThemeSwitcherComponent",
 createTag = false)
public class ThemeSwitcherComponent extends
 UIComponentBase implements NamingContainer {

 private List<String> contracts = new ArrayList<>();

 public List<String>getContracts() {
 return contracts;
 }

 publicThemeSwitcherComponent() throws IOException {
 FacesContextfacesContext
 = FacesContext.getCurrentInstance();
 ExternalContextexternalContext
 = facesContext.getExternalContext();
 Path path = Paths.get(((ServletContext)
 externalContext.getContext()).getRealPath("/contracts"));
 try (DirectoryStream<Path> ds
 = Files.newDirectoryStream(path)) {
 for (Path file : ds) {
 if (Files.readAttributes(file,
 BasicFileAttributes.class).isDirectory()) {
 contracts.add(file.getFileName().toString());
 }
 }
 } catch (IOException e) {
 throw e;
 }
 }

 @Override
 public String getFamily() {
 returnUINamingContainer.COMPONENT_FAMILY;
 }
 }

JSF 2.2 Resource Library Contracts – Themes

[488]

A developer who wants to use this ThemeSwitcher component must add, in each
contract, a PNG image with the same name as the contract (recommended size is
40 x 40 pixels). By convention, for each contract, the ThemeSwitcher component will
look for such an image to display it next to the theme name and description. You can
improve this backing component to ensure that such images exist. Moreover, you
can extend its functionality in order to allow the user of the component to provide
custom descriptions.

Done! The complete application is named ch11_10.

The ThemeSwitcher composite component was packaged as a JAR file and used as
an example in the ch11_7 application as follows:

<html ...
 xmlns:t="http://jsf/cc/packt/taglib">
 ...
 <h:body>
 <f:view contracts="#{themeSwitcherBean.theme}">
 <t:themeswitcher theme="#{themeSwitcherBean.theme}"/>
 ...

The ThemeSwitcherBean source code is very simple, as follows:

@Named
@RequestScoped
public class ThemeSwitcherBean {

 private String theme = "tableBlue";

 public String getTheme() {
 return theme;
 }

 public void setTheme(String theme) {
 this.theme = theme;
 }
}

Chapter 11

[489]

The output of the ch11_7 application is shown in the following screenshot:

If you decide to programmatically alter the contracts attribute value of <f:view>,
you don't need this bean anymore. Moreover, if you consider a disadvantage in
loading this jQuery plugin, you can write pure JavaScript code. Or, if you want a
JavaScript code, a custom renderer can be a good choice.

A ThemeSwitcher component example, based on pure JavaScript, is developed in the
application named ch11_11 and is exemplified as a JAR file in the application named
ch11_12. The example modifies the free JavaScript UI library named iconselect.
js (http://bug7a.github.io/iconselect.js/) and uses the complete rewritten
iScroll 4 library (http://cubiq.org/iscroll-4). Both of these libraries are pure
JavaScript; they don't use additional libraries such as jQuery. Moreover, they are
very small, free to be copied, modified, distributed, adapted, and commercially used.

http://bug7a.github.io/iconselect.js/
http://cubiq.org/iscroll-4

JSF 2.2 Resource Library Contracts – Themes

[490]

The composite component that wraps these libraries can be used as shown in the
following code. Notice that you can customize the aspect (which is a grid) and you
can optionally specify which contracts to be ignored (not listed in theme switcher).

<t:themeswitcher theme="#{themeSwitcherBean.theme}"
 ignore="default" columns="1" rows="1"/>

The output is as shown in the following screenshot:

If you don't want any JavaScript code, you can write a custom Renderer code or
extend the existing MenuRenderer code (Mojarra or MyFaces implementation) or
write a composite component that uses the JSF UI components to create a nice theme
switcher. Writing a custom Renderer code (or extending the MenuRenderer code)
doesn't seem to be an easy job, and I don't know if it deserves the effort. But writing
a composite component based on JSF UI components is pretty simple. You can see
such an implementation in the application named ch11_13 and exemplified as a JAR
file in the application named ch11_14. In this example, the themes are listed in a
<h:dataTable> component, as you can see in the following screenshot:

Chapter 11

[491]

Configuring contracts in XML
Contracts can be associated with the JSF pages, as you saw in the previous sections.
As an alternative, we can accomplish the same thing by configuring contracts
in the faces-config.xml file. For example, let's suppose that we have three
contracts: default, tableGreen, and tableBlue. Their association with
different pages is as follows:

•	 The default contract is associated with the tables/defaultTablePage.
xhtml page

•	 The tableGreen contract is associated with the greenTablePage.xhtml page
•	 The tableBlue contract is associated with the blueTablePage.xhtml page

In faces-config.xml, we can do these associations using a few tags—the following
example code speaks for itself:

<application>
 <resource-library-contracts>
 <contract-mapping>
 <url-pattern>/blueTablePage.xhtml</url-pattern>
 <contracts>tableBlue</contracts>
 </contract-mapping>
 <contract-mapping>
 <url-pattern>/greenTablePage.xhtml</url-pattern>
 <contracts>tableGreen</contracts>
 </contract-mapping>

JSF 2.2 Resource Library Contracts – Themes

[492]

 <contract-mapping>
 <url-pattern>/tables/*</url-pattern>
 <contracts>default</contracts>
 </contract-mapping>
 </resource-library-contracts>
</application>

As a note, take a quick look at the third association. Notice how
you can associate a contract with all the XHTML pages from a
folder using the * wildcard. Do not try to use EL in <contracts>.
It will not work!

The complete application is named ch11_8.

Packaging contracts in JARs
In order to distribute contracts, you can place them into a JAR file. This is a very
simple job that can be accomplished in just three steps, which are as follows:

1.	 Consider an empty JAR file.
2.	 Create, in JAR, a folder named META-INF.
3.	 Copy the contracts folder from your application into META-INF.

For example, a JAR file that contains the default, tableGreen, and tableBlue
contract folders has the structure shown in the following screenshot:

A complete example that uses this JAR file is named ch11_9.

Chapter 11

[493]

Summary
I hope that you have enjoyed this penultimate chapter.

The JSF 2.2 Resource Library Contracts is one of the big ticket features. For a long
time, JSF developers requested for a mechanism that allows writing and using
themes in JSF, just like in other systems. As you just saw, JSF 2.2 contracts open a
door in this direction and encourage developers to write and use themes. Of course,
there are many other things that should be added, such as a theme repository,
administration console for themes, switch between themes on the fly, and so on.
But, this is a good start!

See you in the final chapter where we will discuss about Facelets.

Facelets Templating
In this chapter, we will cover several aspects of Facelets templating and some
related aspects.

JSF is defined as a component-based application development framework. When we
say Facelets, we mean friendly page development, reusability of code, templating,
composition components, custom logic tags, expression functions, high-performance
rendering, optimized compilation time, and so on. But what actually is Facelets?
Well, Facelets represents a VDL (View Declaration Language), and initially, it was
created as an alternative to JSP. During JSF 1.1 and 1.2, this view handler can be
used only after a separate download and configuration, while JSP was the default
view handler. Things started to change with JSF 2.0, when the mismatch between JSF
and JSP allowed Facelets to become the standard and default VDL, while JSP was
deprecated. Starting with JSF 2.2, this concept was seriously fortified and Facelets
was boosted with new features and capabilities.

A brief overview of the Facelets tags
Templating is a concept based on code reusability. Templates, or tiles, represent the
portions of reusable code that can be puzzled together to obtain JSF pages. In order
to accomplish this, we exploit a handful of tags from http://xmlns.jcp.org/jsf/
facelets namespace.

Usually, prefixed with ui, these tags are listed as follows:

•	 The <ui:composition> tag (TagHandler): This defines a page composition
that can use a template (any content outside of this tag is ignored). The
template attribute is optional and is used for indicating a template to which
the enclosed content should be applied. Multiple compositions can use the
same template, thus encapsulating and reusing the layout. Facelets will
paste the enclosed content into the component's hierarchy, usually under
UIViewRoot. The <ui:composition> tag is used in the following manner:
<ui:composition template="template_path">

http://xmlns.jcp.org/jsf/facelets namespace
http://xmlns.jcp.org/jsf/facelets namespace

Facelets Templating

[496]

•	 The <ui:define> tag (TagHandler): This defines the content that is
inserted into a page by a template. It may appear in the <ui:composition>,
<ui:component>, <ui:decorate>, and <ui:fragment> tags and it has a
matching <ui:insert> tag, which is capable of inserting the defined content
into a page. Most commonly, it appears in the <ui:composition> tag. The
<ui:define> tag is used in the following manner:
<ui:define name="ui_insert_name">

•	 The <ui:insert> tag (TagHandler): This inserts the content into a
template. Usually, that content is defined by the <ui:define> tag in a
<ui:composition>, <ui:component>, <ui:decorate>, or <ui:fragment>
tag. This tag indicates the exact place where the content will be inserted.
When the name attribute is missing, Facelets will add the body content of this
tag to the view. The <ui:insert> tag is used in the following manner:
<ui:insert name="ui_insert_name">

•	 The <ui:include> tag (TagHandler): This is used to encapsulate and
reuse content from multiple pages. The included content can be plain
XHTML and XHTML pages that have either a <ui:composition> tag or a
<ui:component> tag. This tag can be easily combined with <ui:param> to
provide parameters to the included pages, but is also combined with the
<ui:fragment>, <ui:decorate>, and <ui:insert> tags. This is one of the
most used tags since it sustains the idea of reusing templated code. The
<ui:include> tag is used in the following manner:
<ui:include src="filename_to_include_path">

Starting with JSF 2.2, the UIViewRoot.restoreViewScopeState(FacesCont
ext context, Object state) method was added to allow the use of view
scoped beans for EL expressions in the template from which the component
tree is built. This means that the following code is useful:
<ui:include src="#{viewScopedBean.includeFileName}"/>

•	 The <ui:param> tag (TagHandler): This passes parameters to an included
file or a template. It is used in the <ui:include>, <ui:composition>,
or <ui:decorate> tags. A parameter is characterized by a name-value
pair—both can be string literals or EL expressions. In the included file
or template, the parameter is available via EL. The <ui:param> tag is
used in the following manner:
<ui:param name="param_name" value="param_value">

Chapter 12

[497]

•	 The <ui:repeat> tag (ComponentHandler): This is used as an alternative for
loop tags such as <c:forEach> and <h:dataTable>. Since <ui:repeat> is
a component handler, while <c:forEach> is a tag handler, you have to pay
attention when you choose between them! The <ui:repeat> tag is used in
the following manner:
<ui:repeat value="some_collection" var="var_name">

•	 The <ui:debug> tag (ComponentHandler): This defines a debug
component in the component tree capable to capture debugging
information such as component tree, scoped variables, and view state.
By default, this information appears in a debug pop-up window when
you press Ctrl + Shift + D (in Windows OS). You can alter the D key by
explicitly setting another keyboard using the optional hotkey attribute.
The <ui:debug> tag is used in the following manner:
<ui:debug hotkey="key" />

•	 The <ui:component> tag (ComponentHandler): This is similar to
<ui:composition>, only that it defines a component directly into the
component tree without an associated template. The <ui:component>
tag is used in the following manner:
<ui:component>

•	 The <ui:fragment> tag (ComponentHandler): Again, this is similar to
<ui:component> tag, but doesn't ignore the content outside this tag.
Its main skill consists of the rendered attribute, which is very useful
for deciding if the enclosed content will be displayed or not. This tag
doesn't produce client-side effects, which makes it a great alternative
to <h:panelGroup>, which has the client side effect of producing the
 or <div> tags. If you want to work with <h:panelGroup> without
producing the or <div> tags, then skip adding an explicit ID to it.
An <h:panelGroup> tag produces a tag if it has an explicit ID, and a
<div> tag if it has an explicit ID and the value of the layout attribute set to
the block value. The <ui:fragment> tag is used in the following manner:
<ui:fragment>

•	 The <ui:decorate> tag (TagHandler): This is similar to the
<ui:composition> tag, but doesn't ignore the content outside this tag.
This is a nice feature, since it allows us to apply any element in the page
to a template. The template attribute is mandatory. The <ui:decorate>
tag is used in the following manner:
<ui:decorate template="template_path">

Facelets Templating

[498]

•	 The <ui:remove> tag: This removes the content from a page. The
<ui:remove> tag is used in the following manner:
<ui:remove>

You can read about further details of these tags at http://docs.oracle.com/
javaee/7/javaserverfaces/2.2/vdldocs/facelets/ui/tld-summary.html.

Creating a simple template – PageLayout
When these eleven tags combine their skills, we can create amazing templates.
For example, let's suppose that we want to create the template from the following
diagram and we name it PageLayout:

Notice that with just a few clicks, NetBeans can generate the code behind
several templates of Facelets, including the preceding abstractization.
But, this time we will write it manually, in order to exemplify the Facelets
tags. While NetBeans provides a compact code, based on a single XHTML
page, we will write an expanded approach using six XHTML pages. In
this way, you will have two ways of writing this kind of template.

As you can see, there are five distinctive sections: Header, Footer, Left, Center, and
Right. For each of these sections, we will write a separate XHTML page. The header
is generated in the topDefault.xhtml page, that simply uses the <ui:composition>
tag to provide the default content as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:body>

http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/ui/tld-summary.html
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/facelets/ui/tld-summary.html

Chapter 12

[499]

 <ui:composition>
 <h1>This is default header</h1>
 </ui:composition>
 </h:body>
</html>

The same approach can be used for the remaining four sections. Just replace the
default header text and create the following XHTMLs: bottomDefault.xhtml for the
footer, contentDefault.xhtml for the center, leftDefault.xhtml for the left-hand
side, and rightDefault.xhtml for the right-hand side.

These five XHTMLs are like five pieces of the puzzle and they serve as the default
content for our template. Now, we can compose the puzzle (this is known as the
template file or simply the template) by writing an XHTML page that uses the
<ui:insert> and <ui:include> tags as shown in the following code—this is
layout.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <h:head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <h:outputStylesheet name="css/default.css"/>
 <h:outputStylesheet name="css/cssLayout.css"/>
 <title>My Template</title>
 </h:head>

 <h:body>
 <div id="top">
 <ui:insert name="top">
 <ui:include src="/template/default/topDefault.xhtml" />
 </ui:insert>
 </div>
 <div>
 <div id="left">
 <ui:insert name="left">
 <ui:include src="/template/default/leftDefault.xhtml" />

Facelets Templating

[500]

 </ui:insert>
 </div>
 <div id="right">
 <ui:insert name="right">
 <ui:include src="/template/default/
 rightDefault.xhtml" />
 </ui:insert>
 </div>
 <div id="content">
 <ui:insert name="content">
 <ui:include src="/template/default/
 contentDefault.xhtml" />
 </ui:insert>
 </div>
 </div>
 <div id="bottom">
 <ui:insert name="bottom">
 <ui:include src="/template/default/bottomDefault.xhtml" />
 </ui:insert>
 </div>
 </h:body>
</html>

Each section was represented by an <ui:insert> tag and the default content was
included using <ui:include>. Some <div> tags and CSS were used for arranging
and styling the pieces of the puzzle in the main template file.

Now, the template, as shown in the following code, is ready to be used in
index.xhtml; this is known as the template client:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <ui:composition template="template/layout.xhtml" />
 </h:body>
</html>

Chapter 12

[501]

At this moment, we can alter the default content of our template using the
<ui:define> tag, for example, if we want to replace the text that appears in the
center section. This is the default content, with the Rafael Nadal Home Page text,
as shown in the following code:

...
<ui:composition template="template/layout.xhtml">
 <ui:define name="content">
 Rafael Nadal Home Page
 </ui:define>
</ui:composition>
...

In the same way, you can redefine the content for the remaining four sections.
The complete application is named ch12_1.

This is a pretty simple template that can serve us as support for presenting the rest
of Facelets tags. We will continue with several punctual examples for <ui:param>,
<ui:decorate>, <ui:fragment>, <ui:repeat>, and so on.

Passing parameters via <ui:param>
The <ui:param> tag is a tag handler that is capable of sending parameters
to an included file or to a template. A quick example will make you understand
how <ui:param> works. In the following code, we are in the template client,
index.xhtml, and we send a parameter to the template file, layout.xhtml:

<ui:composition template="template/layout.xhtml">
 <ui:param name="playername" value="Rafael " />
</ui:composition>

We can also access this parameter in layout.xhtml using its name via EL. We
can do that anywhere in the template file; for example, we can use this parameter
for creating a new parameter to be sent to an included file, in this case, to the
contentDefault.xhtml file, as shown in the following code:

<div id="content">
 <ui:insert name="content">
 <ui:include src="/template/default/contentDefault.xhtml">
 <ui:param name="playernamesurname"
 value="#{playername} Nadal" />
 </ui:include>
 </ui:insert>
</div>

Facelets Templating

[502]

From the same template, we can send parameters to different included pages.
Besides the playernamesurname parameter, let's send one to the topDefault.xhtml
page using the following code:

<ui:insert name="top">
 <ui:include src="/template/default/topDefault.xhtml">
 <ui:param name="headertext" value="This is default header
 (passed through ui:param)" />
 </ui:include>
</ui:insert>

Next, send one parameter to the bottomDefault.xhtml page using the
following code:

<ui:insert name="bottom">
 <ui:include src="/template/default/bottomDefault.xhtml">
 <ui:param name="footertext" value="This is default footer
 (passed through ui:param)" />
 </ui:include>
</ui:insert>

Now, the playernamesurname parameter is accessible via EL in the
contentDefault.xhtml page as shown in the following code:

<ui:composition>
 #{playernamesurname} (passed through ui:param)
</ui:composition>

Moreover, headertext and footertext are accessible via EL in the topDefault.
xhtml and bottomDefault.xhtml pages. Now, the result of using <ui:param> will
be as shown in the following screenshot:

The complete application is called ch12_11.

Chapter 12

[503]

Passing bean properties and action
methods via <ui:param>
In the previous example, you saw how to exploit <ui:param> for sending literal
strings to a template or included page, but <ui:param> can be used for more than
this. Let's suppose that we have the following code of the bean, TemplatesBean:

@Named
@ViewScoped
public class TemplatesBean implements Serializable {

 private String msgTopDefault="";
 private String msgBottomDefault="";
 private String msgCenterDefault="No center content ...
 press the below button!";

 //getters and setters

 public void topAction(String msg){
 this.msgTopDefault = msg;
 }

 public void bottomAction(String msg){
 this.msgBottomDefault = msg;
 }

 public void centerAction(){
 this.msgCenterDefault="This is default content";
 }
}

Further, we want to display the value of the msgCenterDefault property in
contentDefault.xhtml. Of course, this is very easy to accomplish using the
following line of code:

<h:outputText value=#{templatesBean.msgCenterDefault} />

But we want to pass the name of the bean and the name of the property via
<ui:param>. This can be accomplished using the following code:

<ui:insert name="content">
 <ui:include src="/template/default/contentDefault.xhtml">
 <ui:param name="templatesBeanName" value="#{templatesBean}"/>
 <ui:param name="contentPropertyName"
 value="msgCenterDefault"/>
 </ui:include>
</ui:insert>

Facelets Templating

[504]

Next, in contentDefault.xhtml, you can display the value of the
msgCenterDefault property as shown in the following line of code:

<h:outputText value="#{templatesBeanName[contentPropertyName]}"/>

Well, that was easy! But how about calling the centerAction method, which
modifies the value of the msgCenterDefault property? For this, we add the method
name between single quotes, in square brackets, followed by a pair of parentheses
indicating a method without arguments, as shown in the following code:

<h:form>
 <h:commandButton value="Center Button"
 action="#{templatesBeanName['centerAction']()}"/>
</h:form>

Finally, we want to call the topAction (or bottomAction) method. This time, we
want to pass via <ui:param> the bean name, action method name, and the argument
value. For this, we will write the following code:

<ui:insert name="top">
 <ui:include src="/template/default/topDefault.xhtml">
 <ui:param name="templatesBeanName" value="#{templatesBean}"/>
 <ui:param name="topActionName" value="topAction"/>
 <ui:param name="arg" value="Hello from topDefault.xhtml .."/>
 </ui:include>
</ui:insert>

In topDefault.xhtml, we can exploit the information passed through these three
parameters, as shown in the following code:

<h:form>
 <h:commandButton value="Top Button"
 action="#{templatesBeanName[topActionName](arg)}"/>
</h:form>

In the following screenshot, you can see that everything worked as expected:

The complete application is named ch12_13.

Chapter 12

[505]

A <ui:param> value can be accessed from a managed bean, as shown in the
following code:

FaceletContext faceletContext = (FaceletContext)
 FacesContext.getCurrentInstance().getAttributes().
 get(FaceletContext.FACELET_CONTEXT_KEY);
String paramValue = (String) faceletContext.getAttribute("param");

Exploiting the <ui:decorate> and
<ui:fragment> tags
First, let's talk about the <ui:decorate> tag. As its name suggests, this tag is used for
decorating pieces of a page. Unlike <ui:composition>, this tag doesn't ignore the
content that is not enclosed in it, which may be an added advantage sometimes. Well, a
simple example is shown in the following code (the template attribute is mandatory):

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 <h:head>
 <title></title>
 </h:head>
 <h:body>
 <h:outputText value="You can see this header text
 thanks to ui:decorate!"/>
 <ui:decorate template="template/layout.xhtml">
 <ui:define name="content">
 Rafael Nadal Website
 </ui:define>
 </ui:decorate>
 <h:outputText value="You can see this footer text
 thanks to ui:decorate!"/>
 </h:body>
</html>

Facelets Templating

[506]

The preceding snippet produces the following screenshot:

The complete example is named ch12_10. Basically, this example decorates a
page with a template and proves the effect of the <ui:decorate> tag against the
<ui:composition> tag. However, let's see a better example of decorating a part
of a page.

In this example, we will decorate a <div> element with an list. The items of
list come from two separated pages, and the technique for accomplishing this
is based on nested <ui:decorate> tags. The template client, index.xhtml, uses
<ui:decorate> to decorate the <div> element with a template that contains the
list, as shown in the following code:

<h:body>
 <div style="border:2px solid; border-radius:25px;width:180px;">
 <ui:decorate template="/files/ul.xhtml"/>
 </div>
</h:body>

Furthermore, the ul.xhtml template provides the list and a part of items,
but also uses the <ui:decorate> tag to decorate the list with the remaining
items, which are available via the li.xhtml template, as shown in the following code:

 <li style="color: red;">Andy Murray
 <ui:decorate template="/files/li.xhtml"/>
 <li style="color: red;">Stanislas Wawrinka

The li.xhtml template uses the <ui:fragment> tag to provide the rest of the
list. But since <ui:fragment> doesn't block the unclosed content, we can slip some
 items outside of it as well, as shown in the following code:

<li style="color: green;">John Isner
 <ui:fragment>

Chapter 12

[507]

 Rafael Nadal
 Roger Federer
 Novak Djokovic
 </ui:fragment>
<li style="color: green;">Fabio Fognini

Done! We have especially used different colors for items. This is very
useful, because it really helps us understand how the page is composed
using the <ui:decorate> tag. Please refer to the following screenshot:

The complete application is named ch12_24.

The same result can be obtained using different kinds of approaches. But,
another one that can be used as a templating technique consists in replacing
the <ui:decorate> tag from the ul.xhtml template with a combination of the
<ui:insert>, <ui:define>, and <ui:include> tags. In order to do that, we change
the ul.xhtml template using the following code:

 <li style="color: red;">Andy Murray
 <ui:insert name="content"/>
 <li style="color: red;">Stanislas Wawrinka

This will change the code for the template client to the following:

<h:body>
 <div style="border:2px solid; border-radius:25px;width:180px;">
 <ui:decorate template="/files/ul.xhtml">
 <ui:define name="content">
 <ui:include src="/files/li.xhtml"/>
 </ui:define>
 </ui:decorate>
 </div>
</h:body>

The complete application is named ch12_23.

Facelets Templating

[508]

Iterating with <ui:repeat>
The <ui:repeat> tag is a component handler that is capable of iterating over a
collection, and at each iteration, it adds a copy of its child elements in the component
tree. We can say that <ui:repeat> acts as a <h:dataTable> tag without rendering
an HTML table. Of course, you can do that explicitly, by wrapping its mechanism in
a <table>, <tr>, and <td> suite (you will see an example in the upcoming section,
Using the jsfc attribute).

It contains a set of very handy attributes that deserve to be mentioned before an
example. Besides the well known attributes, value (representing the collection to
iterate as java.lang.Object) and var (representing the iterator as java.lang.
Object), we have––all the following attributes that are optional:

•	 step: This attribute allows us to indicate, as an int value, the number of
items that will be skipped for each iteration. By default, the <ui:repeat>
tag iterates over each item of the collection, which indicates a step attribute
equal to 1, and indicates that the process starts with the first one item.

•	 size: This is the size of the collection over which to iterate; it has to be
evaluated to an int value.

•	 offset: By default, <ui:repeat> begins the iteration process from the first
item of the collection. This attribute allows us to jump over a number of
items, by telling Facelets to start the iteration process for a certain offset.
This offset is settled before the iteration process begins; it has to be evaluated
to an int value.

•	 varStatus: This attribute reveals the status of the current item via a POJO
object. An explicit example of using it will follow shortly, but for now let's
have several examples of iterating different kinds of Java collections.

A simple example of iterating an ArrayList collection looks like the following code
(the same approach can be applied to any java.util.List package):

<ui:repeat value="#{myBean.dataArrayList}" var="t">
 <h:outputText value="#{t}" />
</ui:repeat>

However, <ui:repeat> can also iterate over a HashSet collection using the
toArray method, as follows (the same approach can be applied to TreeSet
and LinkedHashSet):

<ui:repeat value="#{myBean.dataHashSet.toArray()}" var="t">
 <h:outputText value="#{t}" />
</ui:repeat>

Chapter 12

[509]

Or, even more, <ui:repeat> can also iterate over a Map collection
(HashMap, TreeMap, and LinkedHashMap) using the following approaches:

•	 The following is the code for the first approach:
<ui:repeat
 value="#{myBean.dataHashMap.entrySet().toArray()}"
 var="t">
 <h:outputText value="key:#{t.key} value:#{t.value}" />
</ui:repeat>

•	 The following is the code for the second approach:
<ui:repeat value="#{myBean.dataHashMap.keySet().toArray()}"
 var="t">
 <h:outputText value="key:#{t}
 value:#{myBean.dataHashMap.get(t)}" />
</ui:repeat>

•	 The following is the code for the third approach:
<ui:repeat value="#{myBean.dataHashMap.values().toArray()}"
 var="t">
 <h:outputText value="#{t}" />
</ui:repeat>

•	 The following is the code for the fourth approach:
<ui:repeat value="#{myBean.dataHashMap.entrySet()}"
 var="t">
 <ui:repeat value="#{t.toArray()}" var="q">
 <h:outputText value="key:#{q.key} value:#{q.value}" />
 </ui:repeat>
</ui:repeat>

The preceding examples iterate the entire collection. But if you want to iterate only
the items from even positions, then we can bring the step attribute into the scene,
as shown in the following code:

<ui:repeat value="#{myBean.dataArrayList}" var="t" step="2">
 <h:outputText value="#{t}"/>
</ui:repeat>

For odd items, you may want to combine the powers of the step and offset
attributes, using the following code:

<ui:repeat value="#{myBean.dataArrayList}" var="t" step="2"
 offset="1">
 <h:outputText value="#{t}"/>
</ui:repeat>

Facelets Templating

[510]

Another common approach for displaying even/odd items consists of using the
varStatus attribute. The POJO object, representing the value of this attribute,
contains several read-only JavaBeans properties. Between these properties, we
have the even and odd properties, which can be easily used in combination with
<ui:fragment>, as follows:

•	 For the even properties, the code is given as follows:
<ui:repeat value="#{myBean.dataArrayList}" var="t"
 varStatus="vs">
 <ui:fragment rendered="#{vs.even}">
 <h:outputText value="#{vs.index}. #{t.player}"/>
 </ui:fragment>
</ui:repeat>

•	 For the odd properties, the code is given as follows:
<ui:repeat value="#{myBean.dataArrayList}" var="t"
 varStatus="vs">
 <ui:fragment rendered="#{vs.odd}">
 <h:outputText value="#{vs.index}. #{t.player}"/>
 </ui:fragment>
</ui:repeat>

The entire set of properties is exposed in the following snippet of code:

<ui:repeat value="#{myBean.dataArrayList}" var="t" varStatus="vs">
 Index: #{vs.index}
 First: #{vs.first}
 Last: #{vs.last}
 Begin: #{vs.begin}
 End: #{vs.end}
 Step: #{vs.step}
 Current: #{vs.current}
 Even: #{vs.even}
 Odd: #{vs.odd}
</ui:repeat>

All the preceding examples presented are united under the complete application
named ch12_6.

Chapter 12

[511]

Working with <ui:include> and
<f:viewParam>
You may think that combining <ui:include> with <f:viewParam> is a strange
combination, and maybe it is. But, as you know, <ui:include> is able to encapsulate
and reuse content from multiple pages, while <f:viewParam> can be useful for
adding view parameters in links (using the GET query string). This means that we
can take parameters passed on the current page via <f:viewParam> and use them
in <ui:include>.

For example, in the current page, we can include a random page, or a page whose
name was hardcoded as the value of a view parameter in an outcome. We can also
use the includeViewParams attribute to tell other pages to include the same content
as the current page. These three examples are just on open gate to more scenarios.
The following example speaks for itself:

<h:head>
 <title></title>
 <f:metadata>
 <f:viewParam name="in" value="#{randomInBean.in}"/>
 </f:metadata>
</h:head>
<h:body>
 <ui:include src="#{randomInBean.in}"/>

 <h:button value="Tell mypage.xhtml To Include The Same Page As
 You Did" outcome="mypage.xhtml" includeViewParams="true"/>
 <h:button value="Random Page" outcome="index.xhtml"
 includeViewParams="false"/>

 <h:button value="Include in_index_A.xhtml Page"
 outcome="index.xhtml?in=in_index_A.xhtml"/>
 <h:button value="Include in_index_B.xhtml Page"
 outcome="index.xhtml?in=in_index_B.xhtml"/>
 <h:button value="Include in_index_C.xhtml Page"
 outcome="index.xhtml?in=in_index_C.xhtml"/>
</h:body>

Facelets Templating

[512]

The code for RandomInBean is as follows:

@Named
@RequestScoped
public class RandomInBean {

 private String in = "";

 public RandomInBean() {
 int in_rnd = new Random().nextInt(3);
 if (in_rnd == 0) {
 in = "in_index_A.xhtml";
 } else if (in_rnd == 1) {
 in = "in_index_B.xhtml";
 } else if (in_rnd == 2) {
 in = "in_index_C.xhtml";
 }
 }

 public String getIn() {
 return in;
 }

 public void setIn(String in) {
 this.in = in;
 }
}

So, we have several buttons to prove the symbiosis between the <ui:include> and
<f:viewParam> tags. First, we have three buttons labeled Include in_index_A.xhtml
Page, Include in_index_B.xhtml Page, and Include in_index_C.xhtml Page. All
three act the same way; they pass a view parameter named in. The value of the view
parameter is a string literal, and represents the page that should be included. This
will generate a URL of the following type:

http://localhost:8080/ch12_12/faces/index.xhtml?in=in_index_B.xhtml

So, conforming to this URL, the <ui:include> tag will include the
in_index_B.xhtml page.

Further, we have a button labeled Random Page. This button will randomly
choose between those three pages. In order to obtain this, we need to add
includeViewParams="false", as shown in the following code:

<h:button value="Random Page" outcome="index.xhtml"
 includeViewParams="false"/>

Chapter 12

[513]

Finally, we can tell other pages to include the same content as the current page.
When you click on the button labeled Tell mypage.xhtml To Include The Same
Page As You Did, the mypage.xhtml page will include the same page as the current
page. For this, we need to add includeViewParams="true".

The complete application is named ch12_12.

Working with <ui:include> and
<ui:param>
The <ui:include> and <ui:param> tags are two tag handlers that can be used for
accomplishing many kinds of tasks; as long as we keep in mind that tag handlers
are efficient only when the view tree is built, we can exploit them for our benefit.
For example, we can use them to generate a tree node structure as shown in the
following screenshot:

In order to accomplish this task, we will spice up the <ui:include> and <ui:param>
tags with a dash of JSTL (the <c:if> and <c:forEach> tag handlers) and recursivity.

First, we need a class that represents the abstractization of the tree node concept.
Basically, a tree node representation is a hierarchical structure of labels that can be
recursively traversed. Based on this, we can write a generic tree node class as shown
in the following code:

public class GenericTreeNode {

 private final List<GenericTreeNode> descendants;
 private final String label;

 public GenericTreeNode(String label, GenericTreeNode...
 descendants) {

Facelets Templating

[514]

 this.label = label;
 this.descendants = Arrays.asList(descendants);
 }

 public boolean isHasDescendants() {
 return !descendants.isEmpty();
 }

 public List<GenericTreeNode> getDescendants() {
 return descendants;
 }

 public String getLabel() {
 return label;
 }
}

This class can serve a bean capable of defining a particular tree node, as follows:

@Named
@RequestScoped
public class TreeNodeBean {

 private GenericTreeNode root = new GenericTreeNode("Players",
 new GenericTreeNode("Rafael Nadal",
 new GenericTreeNode("2013",
 new GenericTreeNode("Roland Garros",
 new GenericTreeNode("Winner")),
 new GenericTreeNode("Wimbledon",
 new GenericTreeNode("First round"))),
 new GenericTreeNode("2014", new GenericTreeNode("..."))),
 new GenericTreeNode("Roger Federer",
 new GenericTreeNode("2013"), new GenericTreeNode("...")));

 public GenericTreeNode getRoot() {
 return root;
 }
}

Chapter 12

[515]

The interesting part is how to display this structure as a tree node. HTML provides
the and tags that are able to represent data as a list. Moreover, nested
 tags output a hierarchical structure, which is very useful since it spears us
for finding a custom representation. In order to reflect the tree node defined in
TreeNodeBean, we write a page named node.xhtml capable of autoinclusion
in an iterative-recursive process using the <ui:include> tag, as follows:

<h:body>
 <ui:composition>
 #{node.label}
 <c:if test="#{node.hasDescendants}">

 <c:forEach items="#{node.descendants}" var="node">
 <ui:include src="node.xhtml" />
 </c:forEach>

 </c:if>

 </ui:composition>
</h:body>

The node parameter is passed via <ui:param> from the main page named index.
xhtml. From the main page, we pass the tree node root. Furthermore, in node.xhtml,
we iterate the descendants of the root in a recursive approach and display each node
as shown in the following code:

<h:body>

 <ui:include src="node.xhtml">
 <ui:param name="node" value="#{treeNodeBean.root}" />
 </ui:include>

</h:body>

If you didn't find this example useful, at least keep in mind that <ui:include> can
be used in a recursive process. The complete application is named ch12_14.

Facelets Templating

[516]

Debugging with <ui:debug>
The <ui:debug> tag (ComponentHandler) defines a debug component in the
component tree that is capable of capturing debugging information such as
component tree, scoped variables, and view state. For example, you can add
the <ui:debug> tag into a template using the following code:

<ui:debug hotkey="q" rendered="true"/>

Now, when you press Ctrl + Shift + Q, you will see something like the
following screenshot:

The complete application is named ch12_9. The <ui:debug> tag was added
in layout.xhtml.

Removing the content with <ui:remove>
The <ui:remove> tag is used for removing the content. This tag is rarely used, but
a perfect example of this is removing comments of type <!-- -->. You probably
thought of something like the following line:

<!-- <h:outputText value="I am a comment!"/> -->

Chapter 12

[517]

It doesn't have any side effects on the HTML rendered code. Well, that isn't
true, because in the HTML source code, you will see something similar to the
following screenshot:

But if we encapsulate this in <ui:remove>, then the preceding client side effect will
not be produced anymore, which has the following code.

<ui:remove>
 <!-- <h:outputText value="I am a comment!"/> -->
</ui:remove>

The same effect will have the following code:

<ui:remove>
 <h:outputText value="I am a comment!"/>
</ui:remove>

In order to remove comments from the generated HTML code, you add the context
parameter in web.xml, as shown in the following code:

<context-param>
 <param-name>javax.faces.FACELETS_SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
</context-param>

Alternatively, for backwards compatibility with existing Facelets tag libraries,
the code is given as follows:

<context-param>
 <param-name>facelets.SKIP_COMMENTS</param-name>
 <param-value>true</param-value>
</context-param>

The complete application is named ch12_8.

Facelets Templating

[518]

Using the jsfc attribute
Facelets comes with an attribute named jsfc. Its main goal consists in converting
HTML elements in JSF components (the HTML prototype in the JSF page). For
example, in the following code, we have an HTML form converted into a JSF form:

<form jsfc="h:form">
 <input type="text" jsfc="h:inputText"
 value="#{nameBean.name}" />
 <input type="submit" jsfc="h:commandButton" value="Send"/>
</form>

This attribute stands for fast prototyping and is easy to use. The following is another
example—this time the jsfc attribute is combined with <ui:repeat> for generating
a <table> tag:

<table>
 <thead>
 <tr>
 <th>Ranking</th>
 <th>Player</th>
 <th>Age</th>
 <th>Coach</th>
 </tr>
 </thead>
 <tbody>
 <tr jsfc="ui:repeat" value="#{playersBean.dataArrayList}"
 var="t">
 <td>#{t.ranking}</td>
 <td>#{t.player}</td>
 <td>#{t.age}</td>
 <td>#{t.coach}</td>
 </tr>
 </tbody>
</table>

The first example is named ch12_7 and the second one is named ch12_25.

Chapter 12

[519]

Extending the PageLayout template
Remember the PageLayout template developed at the beginning of this chapter?
Well, that is a decent template, but let's extend it so it becomes a bit more realistic.
Usually, a web template contains the sections title, login, search, logo, header, menu,
left, center, right, and footer over and above the five sections that we have used. It
would also be nice to have a template that allows us to do the following:

•	 Remove sections without side effects and without manually removing
orphan CSS code (usually, you can remove a section by writing an empty
<ui:define> tag, but this will not remove the corresponding CSS code for
that section). Moreover, an empty <ui:define> tag will still have a side
effect of type the empty <div> tag or the empty or <td> tag. This
happens because, usually, <ui:define> is wrapped in a <div>, , or
<td> tag.

•	 Set the width of the template, that is, the left and right panels without
altering CSS. These are common adjustments; therefore we can expose
them via <ui:param> and spear the page author to scroll through CSS files.

•	 Add a menu section. We can provide support for adding it via <ui:include>
as a separate file or having a convention mechanism that allows the page
author to add it much easily.

At the end, the template will look like the following screenshot:

Facelets Templating

[520]

There is no secret that most websites place the content in multiple columns, which
are created using the <div> or <table> elements. Afterwards, these elements
are positioned in the page using CSS. Basically, this is the main idea behind most
templates, and this one is no exception. In the following diagram, you can see the
layout of our template, which is based on the <div> elements (in the diagram, you
can see each <div> ID):

Well, since each section is wrapped in a <div> element, we can easily remove it
using the <ui:fragment> tag and its rendered attribute. We can wrap each section
in a <ui:fragment> tag and remove it by setting the value of the rendered attribute
to false via a <ui:param> tag. This will remove the section without any side effects.
When a section is removed, we need to skip loading the corresponding CSS code. For
this, we can split the CSS files into the following three categories:

•	 A CSS file that holds general styles for templates (usually this is a small file)
•	 A CSS file that holds styles for positioning each section on a page (usually

this is a small file)
•	 A CSS file per section, which holds styles specific to each section (these can

be pretty large files)

Having this structure, we can easily decide not to load the CSS code for the sections
that have been removed. This can be accomplished in the <h:outputStylesheet>
tag with a simple condition based on the same parameters passed for removing the
sections. When a section is removed, we load an empty CSS file named dummy.css
for it.

Chapter 12

[521]

So, the template file (layout.xhtml) may be changed to the following:

<h:head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <h:outputStylesheet name="css/default.css"/>
 <h:outputStylesheet name="css/cssLayout.css"/>
 <h:outputStylesheet name="#{title eq false ?
 'css/dummy.css' : 'css/titleStyle.css'}"/>
 <h:outputStylesheet name="#{loginsearch eq false ?
 'css/dummy.css' : 'css/login_and_searchStyle.css'}"/>
 <h:outputStylesheet name="#{top eq false ?
 'css/dummy.css' : 'css/topStyle.css'}"/>
...
</h:head>

<h:body>
 <div id="wrapper"
 style="width: #{empty wrapperWidth ? '100%' : wrapperWidth}">
 <ui:fragment rendered="#{empty title ? true : title}">
 <div id="title">
 <ui:insert name="title">
 <ui:include src="/template/default/titleDefault.xhtml"/>
 </ui:insert>
 </div>
 </ui:fragment>
 ...
 <ui:fragment rendered="#{empty bottom ? true : bottom}">
 <div id="bottom">
 <ui:insert name="bottom">
 <ui:include src="/template/default/bottomDefault.xhtml"/>
 </ui:insert>
 </div>
 </ui:fragment>
 </div>
</h:body>

So, in the template client, we can easily remove a section (for example, the title
section), using the following line of code:

<ui:param name="title" value="false"/>

Facelets Templating

[522]

At this moment, in the template client, we can easily use <ui:define> to provide
our content to the template, and <ui:param> for the following settings:

•	 Remove the title section: This sets the title parameter to false
•	 Remove the login and search sections: This sets the loginsearch parameter

to false
•	 Remove only login section: This sets the login parameter to false
•	 Remove only search section: This sets the search parameter to false
•	 Remove the logo section: This sets the logo parameter to false
•	 Remove the top section: This sets the top parameter to false
•	 Remove the menu section: This sets the menu parameter to false
•	 Remove the left section: This sets the left parameter to false
•	 Remove the right section: This sets the right parameter to false
•	 Remove the bottom section: This sets the bottom parameter to false
•	 Set template fixed width: This sets the wrapperWidth parameter to widthpx
•	 Set left panel fixed width: This sets the leftWidth parameter to widthpx

(default 150px)
•	 Set right fixed width: This sets the rightWidth parameter to widthpx

(default 150px)

Now, let's focus on adding a menu. The template user can define a menu in a
separate file, as long as it respects the following simple convention of writing:

<h:body>
 <ui:composition>

 <h:link value="..." outcome="..."/>

 <h:link value="..." outcome="..."/>

 ...

 </ui:composition>
</h:body>

This file can be included as follows:

<ui:define name="menu">
 <ui:include src="myMenu.xhtml"/>
</ui:define>

Chapter 12

[523]

Another approach consists of passing menu items via <ui:param> using the
following code:

<ui:param name="items" value="item#outcome,item#outcome,..."/>

This will work because the menuDefault.xhtml page provides a default
implementation that looks like the following code:

<ui:composition>
 <c:if test="${not empty items}">

 <ui:repeat value="${fn:split(items, ',')}" var="t">

 <h:link value="${fn:substringBefore(t, '#')}"
 outcome="${fn:substringAfter(t, '#')}"/>

 </ui:repeat>

 </c:if>
</ui:composition>

The complete application is named ch12_18. In the application ch12_19, you can see
a usage example of this template, which looks similar to the following screenshot:

Notice that we have dropped the search and right panel sections.

Facelets Templating

[524]

Facelets' programmatic aspects
In the second part of this chapter, we will focus more on several programmatic aspects
of Facelets. We will start with a new feature of JSF 2.2 regarding FaceletFactory,
which produces Facelets relative to the context of the underlying implementation.

FaceletFactory considerations
In JSF 2.0, the FaceletFactory class was not accessible via the standard API for
accessing factories, FactoryFinder. This means that something like the following
line was not working:

FaceletFactory faceletFactory = (FaceletFactory)
FactoryFinder.getFactory
 (javax.faces.view.facelets.FaceletFactory);

But starting with JSF 2.2, the preceding snippet of code should work. At least this
is what the list of JSF 2.2 features said. Unfortunately, it doesn't work because
the specification doesn't contain a class named javax.faces.view.facelets.
FaceletFactory. In Mojarra 2.2.6 implementation, the FaceletFactory class
doesn't even exist; there is a public class named com.sun.faces.facelets.impl.
DefaultFaceletFactory. On the other hand, in MyFaces 2.2.2, we have the abstract
class, org.apache.myfaces.view.facelets.FaceletFactory. So, keep these aspects
in mind when you decide to use, decorate, or write a new FaceletFactory class.

In the near future, we may have the ability to programmatically create a Facelet and
call the apply method in order to build a component tree.

Working with FaceletCache
Starting with JSF 2.1, Facelets are created and cached via the FaceletCache
API. The cache handles two different kinds of Facelets: View Facelets and
View Metadata Facelets. For each type, the FaceletCache API provides a
method that returns/creates a cached instance based on the URL that is passed
(getFacelet/getViewMetadataFacelet) and a method capable of determining
whether a cached Facelet instance exists for the given URL (isFaceletCached/
isViewMetadataFaceletCached).

View Metadata Facelets is a special kind of Facelet that corresponds to
ViewDeclarationLanguage.getViewMetadata(javax.faces.
context.FacesContext, java.lang.String).

Chapter 12

[525]

Facelets instances are created in the getFacelet/getViewMetadataFacelet method
using the public static interface, FaceletCache.MemberFactory; this interface is
responsible for the creation of Facelet or View Metadata Facelet instances using a
method named newInstance(URL key). The getFacelet method has access to
FaceletCache.MemberFactory via the protected method, getMemberFactory. The
getViewMetadataFacelet method has access to the same interface via the protected
method, getMetadataMemberFactory.

The FaceletCache API's instances are obtained from FaceletCacheFactory. This is
a factory class that provides two methods: getFaceletCache and getWrapped. The
first one returns a FaceletCache instance, the latter one returns an instance of the
class being wrapped.

In order to return a custom FaceletCache instance, we can start with a custom
implementation of FaceletCacheFactory, as shown in the following code:

public class CustomFaceletCacheFactory extends FaceletCacheFactory {

 private FaceletCacheFactory faceletCacheFactory;

 public CustomFaceletCacheFactory() {}

 public CustomFaceletCacheFactory(FaceletCacheFactory
 faceletCacheFactory) {
 this.faceletCacheFactory = faceletCacheFactory;
 }

 @Override
 public FaceletCache getFaceletCache() {
 return new CustomFaceletCache();
 }

 @Override
 public FaceletCacheFactory getWrapped() {
 return this.faceletCacheFactory;
 }
}

This factory has to be configured in faces-config.xml using the following code:

<factory>
 <facelet-cache-factory>
 book.beans.CustomFaceletCacheFactory
 </facelet-cache-factory>
</factory>

Facelets Templating

[526]

Now, our CustomFaceletCache class will override the getFacelet and
getViewMetadataFacelet methods for disabling the cache mechanism; our
implementation will not cache Facelets. The code of the CustomFaceletCache
class is as follows:

public class CustomFaceletCache extends FaceletCache<Facelet> {

 public CustomFaceletCache() {}

 @Override
 public Facelet getFacelet(URL url) throws IOException {
 MemberFactory<Facelet> memberFactory = getMemberFactory();
 Facelet facelet = memberFactory.newInstance(url);

 return facelet;
 }

 @Override
 public boolean isFaceletCached(URL url) {
 return false;
 }

 @Override
 public Facelet getViewMetadataFacelet(URL url) throws
 IOException {
 MemberFactory<Facelet> metadataMemberFactory =
 getMetadataMemberFactory();
 Facelet facelet = metadataMemberFactory.newInstance(url);

 return facelet;
 }

 @Override
 public boolean isViewMetadataFaceletCached(URL url) {
 return false;
 }

 public FaceletCache<Facelet> getWrapped() {
 return this;
 }
}

The complete application is named ch12_15.

Chapter 12

[527]

In order to update the cache, JSF performs periodic checks of Facelets views changes.
In the development stage, you may need to perform this check much often than in
production. For this, you can set the javax.faces.FACELETS_REFRESH_PERIOD
context parameter as shown in the following example (the value represents the
number of seconds between two consecutive checks):

<context-param>
 <param-name> javax.faces.FACELETS_REFRESH_PERIOD</param-name>
 <param-value>2</param-value>
</context-param>

Alternatively, for backwards compatibility with existing Facelets tag libraries, the
following is the code:

<context-param>
 <param-name>facelets.REFRESH_PERIOD</param-name>
 <param-value>2</param-value>
</context-param>

If you want to disable these checks, then set the javax.faces.FACELETS_REFRESH_
PERIOD (or facelets.REFRESH_PERIOD) parameter to -1.

ResourceResolver swallowed by
ResourceHandler
JSF 2.0 promotes the ResourceResolver class as the custom approach for loading
Facelets views from other locations beside the application web root (like a hook that
allows us to alter the way that the Facelets loads template files). Custom locations
represent any location for which we can write a URL.

For example, let's suppose that the Facelets views of our PageLayout template
are stored on the local machine, in the facelets folder in D:. A custom
ResourceResolver class can load the Facelets views from this location—just
override the resolveUrl method, as shown in the following code:

public class CustomResourceResolver extends ResourceResolver {

 private ResourceResolver resourceResolver;

 public CustomResourceResolver(){}

 public CustomResourceResolver(ResourceResolver
 resourceResolver){

Facelets Templating

[528]

 this.resourceResolver = resourceResolver;
 }

 @Override
 public URL resolveUrl(String path) {

 URL result = null;
 if (path.startsWith("/template")) {
 try {
 result = new URL("file:///D:/facelets/" + path);
 } catch (MalformedURLException ex) {
 Logger.getLogger(CustomResourceResolver.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 } else {
 result = resourceResolver.resolveUrl(path);
 }

 return result;
 }
}

A custom ResourceResolver class is recognized by JSF if we configure it properly in
the web.xml file, as shown in the following code:

<context-param>
 <param-name>javax.faces.FACELETS_RESOURCE_RESOLVER</param-name>
 <param-value>book.beans.CustomResourceResolver</param-value>
</context-param>

However, starting with JSF 2.2, we can skip this configuration and use the
@FaceletsResourceResolver annotation as follows:

@FaceletsResourceResolver
public class CustomResourceResolver extends ResourceResolver {
...

The complete application using the web.xml configuration is named ch12_2.
The same application, using the @FaceletsResourceResolver annotation,
is named ch12_5.

Chapter 12

[529]

On the other hand, the ResourceHandler class is recommended to be used for
serving different kinds of resources to the client, such as CSS, JS, and images; see
the Configuring resource handlers section in Chapter 5, JSF Configurations Using XML
Files and Annotations – Part 2. By default, the preferred location of ResourceHandler
is the /resources folder (or META-INF/resources on the CLASSPATH). A custom
ResourceHandler class is recognized by JSF if we configure it properly in the
faces-config.xml file, as follows:

<application>
 <resource-handler>fully_qualified_class_name</resource-handler>
</application>

Since this was a pretty awkward approach, JSF 2.2 unifies these classes into a
single one. More exactly, the functionality of the ResourceResolver class has
been merged into the ResourceHandler class, and the ResourceResolver class
itself has been deprecated. The main result of this action was a new method in
ResourceHandler named createViewResource. The purpose of this method is to
replace the resolveUrl method. So, instead of loading Facelets views from custom
locations via ResourceResolver, we can use a custom ResourceHandler class and a
createViewResource method, as shown in the following code:

public class CustomResourceHandler extends ResourceHandlerWrapper {

 private ResourceHandler resourceHandler;

 public CustomResourceHandler() {}

 public CustomResourceHandler(ResourceHandler resourceHandler) {
 this.resourceHandler = resourceHandler;
 }

 @Override
 public Resource createResource(String resourceName,
 String libraryOrContractName) {

 //other kinds of resources, such as scripts and stylesheets
 return getWrapped().createResource(resourceName,
 libraryOrContractName);
 }

 @Override
 public ViewResource createViewResource(FacesContext context,
 String resourceName) {

Facelets Templating

[530]

 ViewResource viewResource;
 if (resourceName.startsWith("/template")) {
 viewResource = new CustomViewResource(resourceName);
 } else {
 viewResource = getWrapped().
 createViewResource(context, resourceName);
 }

 return viewResource;
 }

 @Override
 public ResourceHandler getWrapped() {
 return this.resourceHandler;
 }
}

When the ResourceResolver class was deprecated, the existing type javax.faces.
application.Resource class has been given a base class named javax.faces.
application.ViewResource. This class contains a single method named getURL.
So, when a Facelets view should be loaded from a custom location, we tell JSF to
use our CustomViewResource class as follows:

public class CustomViewResource extends ViewResource {

 private String resourceName;

 public CustomViewResource(String resourceName) {
 this.resourceName = resourceName;
 }

 @Override
 public URL getURL() {
 URL url = null;
 try {
 url = new URL("file:///D:/facelets/" + resourceName);
 } catch (MalformedURLException ex) {
 Logger.getLogger(CustomViewResource.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 return url;
 }
}

Chapter 12

[531]

The createViewResource method provides several advantages,
because it is applicable to general view resources and by default is functional
equivalent to the existing createResource method. Besides being much
more consistent, this means it's now also possible to load Facelets from a JAR
file without needing to provide a custom resolver.

The complete application is named ch12_3.

For backward compatibility, JSF will let the default resolver to call the new
createViewResource method as shown in the following code:

public class CustomResourceResolver extends ResourceResolver {
...
 @Override
 public URL resolveUrl(String path) {

 URL result;
 if (path.startsWith("/template")) {
 ViewResource viewResource = new CustomViewResource(path);
 result = viewResource.getURL();
 } else {
 FacesContext facesContext =
 FacesContext.getCurrentInstance();
 ResourceHandler resourceHandler =
 facesContext.getApplication().getResourceHandler();
 result = resourceHandler.createViewResource
 (facesContext, path).getURL();
 }

 return result;
 }
}

The complete application is named ch12_4.

Include Facelets programmatically
You already know how to include Facelets using the <ui:include> tag. But,
sometimes you may need to programmatically reproduce something like the
following code:

<ui:include src="/files/fileA.xhtml">
 <ui:param name="bparam" value="string_literal"/>
</ui:include>
<ui:include src="/files/fileB.xhtml">

Facelets Templating

[532]

 <ui:param name="cparam" value="#{managed_bean_property}"/>
</ui:include>
<ui:include src="/files/fileC.xhtml"/>

Programmatically speaking, the same thing can be accomplished if you know:
how to obtain access to FaceletContext, how to use the FaceletContext.
includeFacelet method, and how to set attributes using FaceletContext.
setAttribute. For example, the programmatic version of the preceding
snippet of code is:

public void addFaceletAction() throws IOException {

 FacesContext context = FacesContext.getCurrentInstance();
 FaceletContext faceletContext = (FaceletContext)
 context.getAttributes().
 get(FaceletContext.FACELET_CONTEXT_KEY);

 faceletContext.includeFacelet(context.getViewRoot(),
 "/files/fileA.xhtml");
 faceletContext.setAttribute("bparam",
 "file B - text as ui:param via string literal...");
 faceletContext.includeFacelet(context.getViewRoot(),
 "/files/fileB.xhtml");
 faceletContext.setAttribute("cparam", cfiletext);
 faceletContext.includeFacelet(context.getViewRoot(),
 "/files/fileC.xhtml");
}

The complete application is named ch12_22.

Creating a TagHandler class
You already know that several Facelets tags are tag handlers, while the others are
component handlers—in Chapter 10, JSF Custom Components, you saw how to write a
ComponentHandler class for a custom component. In this section, you will see how
to write a TagHandler class.

Tag handlers are efficient only when the view tree is built.

Chapter 12

[533]

In order to write a TagHandler class, you need to perform the following steps:

1.	 Extend the TagHandler class and override the apply method; this method
process changes on a particular UIComponent class. Access the tag attributes
via the getAttribute and getRequiredAttribute methods, which returns
a TagAttribute instance that exposes the attribute value, namespace, local
name, tag (the latter is new in JSF 2.2, see the getTag/setTag documentation),
and so on. Moreover, use the tag and tagId fields to refer to the Tag instance
corresponding to this TagHandler instance. Delegate control to the next tag
handler using the nextHandler field.

2.	 Write a *taglib.xml file to configure the tag namespace, name,
and handler class.

3.	 Indicate the location of the *taglib.xml file using the javax.faces.
FACELETS_LIBRARIES context parameter in the web.xml file.

For example, let's suppose that we need the following functionality: we provide a
piece of text, the number of times it should be displayed, and the possibility to be
displayed in uppercase. We may think of a tag as follows:

<t:textrepeat text="Vamos Rafa!" repeat="10" uppercase="yes"/>

A TagHandler class can be the response to our need. First, we extend the
TagHandler class, as shown in the following code:

public class CustomTagHandler extends TagHandler {

 protected final TagAttribute text;
 protected final TagAttribute repeat;
 protected final TagAttribute uppercase;

 public CustomTagHandler(TagConfig config) {
 super(config);
 this.text = this.getRequiredAttribute("text");
 this.repeat = this.getRequiredAttribute("repeat");
 this.uppercase = this.getAttribute("uppercase");
 }

 @Override
 public void apply(FaceletContext ctx, UIComponent parent)
 throws IOException {
 String s = "";
 UIOutput child = new HtmlOutputText();

Facelets Templating

[534]

 for (int i = 0; i < Integer.valueOf(repeat.getValue()); i++) {
 s = s + text.getValue() + " ";
 }

 if (uppercase != null) {
 if (uppercase.getValue().equals("yes")) {
 s = s.toUpperCase();
 } else {
 s = s.toLowerCase();
 }
 }

 child.setValue(s);
 parent.getChildren().add(child);

 nextHandler.apply(ctx, parent);
 }
}

Furthermore, you need to write the *taglib.xml file and configure it in the web.xml
file. The complete application is named ch12_17.

Writing custom Facelets taglib functions
When you need a value to be evaluated directly in EL, then Facelets taglib functions
(or expression functions) are a great solution. For example, let's say that we want to
encrypt/decrypt text and the result to be placed directly into an EL expression. In
order to do this, you need to perform the following general steps of writing a function:

1.	 Write a Java public final class.
2.	 In this class, implement the desired functionality using public

static methods.
3.	 Write a *taglib.xml file for linking the public static methods (functions)

with JSF pages. For each static method, you need to specify the name
(<function-name>), the fully qualified class name that contains the static
method (<function-class>), and the declaration of the static method
(<function-signature>).

4.	 Indicate the location of the *taglib.xml file using the javax.faces.
FACELETS_LIBRARIES context parameter in the web.xml file.

Chapter 12

[535]

So, based on these steps, we can write a class that contains two functions, one for
encryption and one for decryption, as shown in the following code:

public final class DESFunction {

 ...

 public static String encrypt(String str) {
 ...
 }

 public static String decrypt(String str) {
 ...
 }
}

The *taglib.xml file is straightforward as can be seen in the following snippet:

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facelettaglibrary_2_0.xsd"
 version="2.0">

 <namespace>http://packt.com/encrypts</namespace>

 <function>
 <function-name>encrypt</function-name>
 <function-class>book.beans.DESFunction</function-class>
 <function-signature>String encrypt(java.lang.String)
 </function-signature>
 </function>

 <function>
 <function-name>decrypt</function-name>
 <function-class>book.beans.DESFunction</function-class>
 <function-signature>String decrypt(java.lang.String)
 </function-signature>
 </function>
</facelet-taglib>

Facelets Templating

[536]

After you configure the preceding *taglib.xml file in web.xml, you can try to call
the encrypt/decrypt functions, as follows:

<h:outputText value="#{des:encrypt('Rafael Nadal')}"/>
<h:outputText value="#{des:decrypt('9QnQL04/hGbJj/PqukPb9A==')}"/>

The complete application is named ch12_16.

Facelets pitfalls
It is a well-known fact that JSF pitfalls are not easy to understand and fix. This is
mostly because their roots originate in: JSF life cycle, bad practices of using listeners
and events, misunderstandings regarding EL processing and evaluation, conflicting
combinations of tag handlers with components, and so on.

In this section, we will focus on three common Facelets pitfalls.

AJAX and <ui:repeat>
There is a common scenario to use AJAX for re-rendering the content of an
<ui:repeat> tag. It is absolutely intuitive to write something like the following code:

<h:form>
 <ui:repeat id="playersId" value="#{playersBean.dataArrayList}"
 var="t">
 <h:outputText value="#{t.player}" />
 </ui:repeat>
 <h:commandButton value="Half It"
 action="#{playersBean.halfAction()}">
 <f:ajax execute="@form" render="playersId" />
 </h:commandButton>
</h:form>

So, initially, there is a list of n players and when we click on the button labeled Half
It, we want to remove half of the players and re-render the list. The problem is that
the preceding snippet of code will not work as expected, because the <ui:repeat>
tag doesn't render HTML code; therefore, there will be no HTML element with
the ID, playersId. Instead of seeing a list with only five players, we will get a
malformedXML error.

This more of a pitfall of using JSF AJAX with components
that do not get rendered as expected.

Chapter 12

[537]

A simple workaround will be to enclose the <ui:repeat> tag inside a <div> tag,
as shown in the following code:

<h:form>
 <h:panelGroup id="playersId" layout="block">
 <ui:repeat value="#{playersBean.dataArrayList}" var="t">
 <h:outputText value="#{t.player}" />
 </ui:repeat>
 </h:panelGroup>
 <h:commandButton value="Half It"
 action="#{playersBean.halfAction()}">
 <f:ajax execute="@form" render="playersId" />
 </h:commandButton>
</h:form>

The complete application is named ch12_26.

Exemplifying <c:if> versus <ui:fragment>
Another common scenario is to render a table data based on a <c:if> condition,
as follows:

<h:dataTable value="#{playersBean.dataArrayList}" var="t">
 <h:column>
 <c:if test="#{t.age gt 26}">
 <h:outputText value="#{t.player}, #{t.age}"/>
 </c:if>
 </h:column>
</h:dataTable>

Again, the result will not be as expected. The problem is that <c:if> is a tag handler;
therefore, it is efficiently reflected when the tree is built. A perfect workaround will
be to replace <c:if> with the <ui:fragment> tag, which is a component handler.
The rendered attribute of <ui:fragment> can successfully replace the <c:if> test
using the following code:

<h:dataTable value="#{playersBean.dataArrayList}" var="t">
 <h:column>
 <ui:fragment rendered="#{t.age gt 26}">
 <h:outputText value="#{t.player}, #{t.age}"/>
 </ui:fragment>
 </h:column>
</h:dataTable>

Facelets Templating

[538]

Alternatively, in an even simpler way, use the rendered attribute of
<h:outputText>; this approach is particular to this example:

<h:dataTable value="#{playersBean.dataArrayList}" var="t">
 <h:column>
 <h:outputText value="#{t.player}, #{t.age}"
 rendered="#{t.age gt 26}"/>
 </h:column>
</h:dataTable>

Instead, even cooler, using a lambda expression (EL 3.0), you can write the
following code:

<h:dataTable value="#{(playersBean.dataArrayList.stream().
 filter((p)->p.age gt 26)).toList()}" var="t">
 <h:column>
 <h:outputText value="#{t.player}, #{t.age}"/>
 </h:column>
</h:dataTable>

The complete application is named ch12_20.

Exemplifying <c:forEach> versus <ui:repeat>
Apparently, you may think that the <ui:repeat>/<ui:include> pair is the perfect
choice for including a list of Facelets pages using the following code:

<ui:repeat value="#{filesBean.filesList}" var="t">
 <ui:include src="#{t}"/>
</ui:repeat>

Well, the <ui:include> tag is a tag handler; therefore it will be available when the
view is built, while the <ui:repeat> tag is a component handler available during
the rendering process. In other words, when <ui:include> needs the t variable,
<ui:repeat> is not available. Therefore, <ui:repeat> should be replaced by a tag
handler, as <c:forEach>, as shown in the following code:

<c:forEach items="#{filesBean.filesList}" var="t">
 <ui:include src="#{t}"/>
</c:forEach>

The complete application is named ch12_21.

Chapter 12

[539]

Summary
Facelets is a large subject with many interesting aspects which are pretty hard to
cover in a few chapters of a book. As you know, there are books entirely dedicated to
Facelets, but I hope that in the final three chapters I managed to cover a decent part
of the JSF 2.2 default VDL. Probably, the most used part of Facelets is templating;
therefore, I have tried to cover some handy techniques for writing flexible and
cool templates. Of course, besides skills and techniques, writing templates is also
a test of the imagination. Once we master the Facelets tags and choose the right
techniques, we are ready to start writing templates. If we choose some naming
conventions as well, then we can easily share our templates with the JSF world, like
Mamadou Lamine Ba tried in a Java.Net project at https://weblogs.java.net/
blog/lamineba/archive/2011/10/03/conventional-ui-design-facelets-
and-jsf-22. In addition, if we spice up our template files with some Facelets
programmatic tricks, then we can really rock the world of JSF templating!

https://weblogs.java.net/blog/lamineba/archive/2011/10/03/conventional-ui-design-facelets-and-jsf-22
https://weblogs.java.net/blog/lamineba/archive/2011/10/03/conventional-ui-design-facelets-and-jsf-22
https://weblogs.java.net/blog/lamineba/archive/2011/10/03/conventional-ui-design-facelets-and-jsf-22

The JSF Life Cycle
The initial and postback requests in JSF go through a JSF life cycle. When an initial
request is processed, it only executes the Restore View and Render Response phases,
because there is no user input or actions to process. On the other hand, when the
life cycle handles a postback request, it executes all of the phases.

Moreover, JSF supports AJAX requests. An AJAX request consists of two parts: partial
processing (the execute attribute) and partial rendering (the render attribute).

In the following diagram, you can have a look at the different phases of the JSF life cycle:

The JSF Life Cycle

[542]

The symbols from the preceding diagram I, P, E, and R stand for:

•	 I: This is the phase executed for the initial request
•	 P: This is the phase executed for the postback request
•	 E: This is the phase executed at partial processing
•	 R: This is the phase executed at partial rendering

Index
Symbols
@all keyword 314
#{application} object 18
#{applicationScope} object 18
<cc:editableValueHolder> tag

inputs, converting 454, 455
inputs, validating 454, 455

<cc:facet> tag
using 452

<cc:insertFacet> tag
using 452-454

#{cc} object 18
<cc:renderFacet> tag

using 452-454
<c:forEach>

versus <ui:repeat>, exemplifying 538
<c:if>

versus <ui:fragment>, exemplifying 537
#{component} object 18
<context-param> tag

used, for defining context parameters 42
#{cookie} object 19
<datalist> tag

using 450
<default-locale> tag

used, for indicating default locale 158, 159
@FaceletsResourceResolver annotation 528
@FacesComponent default namespace 148
@FacesComponent supported elements

createTag 417
namespace 417
tagName 417
value 417

#{facesContext} object 18
<f:actionListener> tag

using 179
<f:ajax> tag

components, grouping 322
<f:attribute> tag

used, for passing attributes 58-61
<f:convertDateTime> converter

using 52
<f:event> tag

using 183-185
#{flash} object 19
<f:loadBundle> tag

using 158
@FlowDefinition annotation 114
#{flowScope} object 18
@form keyword 314
<f:param> tag

and AJAX 340
replacing, with JSTL's <c:set> tag 69
used, for passing request parameters 42-45

<f:resetValues> tag 325
<f:setPropertyActionListener> tag

property value, setting 61-64
<f:viewAction> tag

using 53-58
versus preRenderView event listener 54-58

<f:viewParam> tag
and <ui:include> tag, working

with 511-514
using, example 46-48

<h:commandLink> tag 452
#{header} object 19
#{headerValue} object 19

[544]

<h:form> tag 452
<h:graphicImage> component 371
<h:graphicImage> tag 452
<h:inputFile> component 360
<h:inputFile> tag 359
<h:inputText> components

grouping, under same <f:ajax> tag 322
<h:outputScript> component

used, for explicitly loading jsf.js 342
<h:selectBooleanCheckbox> tag 286
#{initParam} object 18
@ListenerFor annotation

working with 196
@ListenersFor annotation

working with 196, 197
<managed-property> tag

used, for initializing managed beans'
properties 151

<message-bundle> option
using 160

@none keyword 314
#{param} object 19
#{paramValues} object 19
#{request} object 18
#{requestScope} object 18
<resource-bundle> tag

versus <message-bundle> tag 160
@ResourceDependency annotation 222
#{resource} object 19
<select> tag 484
#{session} object 18
#{sessionScope} object 18
@this keyword 314
<ui:component> tag 497
<ui:composition> tag

about 495
versus <ui:decorate> tag 505, 506

<ui:debug> tag
about 497
used, for debugging 516

<ui:decorate> tag
about 497
exploiting 505-507
versus <ui:composition> tag 505, 506

<ui:define> tag 496

<ui:fragment> tag
about 497
exploiting 506, 507
versus <c:if>, exemplifying 537

<ui:include> tag
about 496
and <f:viewParam>, working with 511-513
and <ui:param> tag, working with 513-515

<ui:insert> tag 496
<ui:param> tag

about 496
and <ui:include> tag,

working with 513-515
used, for passing action methods 503-505
used, for passing bean properties 503-505
used, for passing parameters 501, 502

<ui:remove> tag
about 498
used, for removing content 516, 517

<ui:repeat> tag
about 497
and AJAX 536
iterating, over Map collection 509
iterating with 508-510
versus <c:forEach>, exemplifying 538

<ui:repeat> tag attributes
offset 508
size 508
step 508
varStatus 508

#{view} object 18
#{viewScope} object 18

A
AbortProcessingException exception 182
absolute ordering

about 157
example 157, 158

ActionEvent object 178
actionListener attribute 178
action listeners

about 178
application action listeners 180-183
configuring 178-180

[545]

used, for controlling custom
scope lifespan 137, 138

used, for setting property value 61-64
action methods

passing, via <ui:param> tag 503-505
actions

calling, on GET requests 53-58
addCompositeComponent method 463
addTableFilter method

used, for filtering tables 301
addTable method

using 298
AJAX

and flow scope, mixing 329-333
and <f:param> tag 340
and postback request 333-335
and progress bar/indicator 350, 351
and <ui:repeat> tag 536
Cancel and Clear buttons 325-329
used, for updating input fields after

validation error 323-325
ajaxMonitoring function

about 319
using, example 319

AJAX requests
about 314
queue control, providing 341

application action listeners
about 180
configuring 182, 183
implementation, writing 181

application map
programmatic access 96
used, for communication between managed

beans 78-80
application scope

about 94
testing 95
using 95

Apply Request Values phase 57, 325
assignment operator

working with 36
ATPSinglesRankings class

getSinglesRankings method, defining in 30

ATPVarResolver class 26
attribute presence

checking 456
attributes

passing, with <f:attribute> tag 58-61
ATTR_UNITTO constant 422

B
backing component

about 437
working with 440
writing 438-440

bean properties
passing, via <ui:param> tag 503-505

beans, flow
about 107
RegistrationBean 108
using 108, 109

beans injection
about 142
advantages 143-145

binding attribute
communication via 75, 76

bottom parameter 522

C
Cancel button

about 325
value submission, to request scoped

managed bean 327-329
value submission, to view scoped managed

bean 326, 327
CDI beans, JSF version 89
CDI scopes

versus JSF scopes 83-86
centerAction method 504
children, composite components

counting 459
Clear button

about 325
value submission, to request scoped

managed bean 327-329

[546]

value submission, to view scoped managed
bean 326, 327

client behavior functionality
working with 218-223

ClientSideStateHelper class
about 396
getState() method 396
writeState() method 396

client view state, saving in database
custom ResponseStateManager class,

writing 398-400
MongoDB, adding 400-403

CollectionDataModel class, JSF 2.2
about 261-266
table, sorting 272-275

collection objects
working with 38, 39

collections
referencing 16, 17

component family 216
componentFamily element 426
ComponentHandler class

extending 419
components

grouping, under same <f:ajax> tag 322
component type 417
componentType attribute 440
composite components

about 415
attribute presence, checking 456
building 433-435
contracts, writing for 481, 482
distributing, as JARs in JSF 2.2 461-463
facets 452-454
HTML5 date picker, writing as 446-450
image, decorating with actions 450-452
inputs, converting 454, 455
inputs, validating 454, 455
jQuery component, transforming

into 440-445
pass-through attributes,

hiding 457-461
pitfalls 456
programmatically adding 463-465

Composite Components namespace 148

composite facets
<cc:facet> tag 452
<cc:insertFacet> tag 453
<cc:renderFacet> tag 452
working with 452-454

com.sun.faces.defaultResourceMaxAge
parameter 206

com.sun.faces.resourceUpdateCheckPeriod
parameter 206

conditional navigation
using 172-174

conditional text, JSF
about 21
creating 22-25

ConfigurableNavigationHandler API 176
ConfigurableNavigationHandler.inspectFlow

method
used, for inspecting flow navigation

cases 119
ConfigurableNavigationHandlerWrapper

class 119
configuration, ExternalContext 235-238
configuration, Flash 239, 240
configuration, global exception

handler 224-227
configuration, partial view context 229-231
configuration, render kit factory 227, 228
configuration, resource handlers

about 200-207
CSS resources, adding

programmatically 207
JS resources, adding programmatically 207

configuration, VDL 252-254
configuration, view handler 208-212
configuration, visitContext 232-234
context parameters

using 42
contracts

configuring, in XML 491, 492
contracts/Device320 476
contracts/Device480 476
contracts/Device640 476
packaging, in JARs 492
styling, across different devices 476-481
used, for styling tables 471-473

[547]

used, for styling UI components 474, 475
working with 468-470
writing, for composite

components 481, 482
conversation identifier 99
conversation scope

about 96
conversation identifier 99
using, example 99
working with 98-99

converters
configuring 165-168
configuring, via forClass attribute 166

cookies
data, sending through 70, 71

createComponent method
about 419
signature 464

CreateCustomScope class
ActionListener interface,

implementing 137, 138
createTag element 417
createValueExpression method

using 80
createViewResource method 531
credentialsUpperCase method 331
Cross-site request forgery. See CSRF
Cross-site scripting. See XSS
CSRF 412
CSS files

splitting, in categories 520
custom components

about 415
dissecting 420-422
implementing 423-432

custom EL resolver
writing 26-35

CustomFaceletCache class 526
custom implicit variables

adding 26
CustomParameter class

flow parameters implementation 129, 130
custom ResponseStateManager class

writing 398-400

custom scope
about 131
EL expression, resolving 133-136
implementing 132

custom scope class
writing 132, 133

custom scope lifespan
controlling, action listeners used 137, 138
controlling, navigation

handler used 139-142
CustomScopeNavigationHandler

class 139, 140
custom tag handler

writing 419, 420

D
data

sending, through cookies 70, 71
data object properties

responseCode 318
responseText 318
responseXML 318
source 318
status 318
type 318

data.status properties
emptyResponse 320
httpError 320
malformedXML 320
serverError 320

data validation 160
ddSlick

URL 484
ddslick method 486
decode method 420
default locale

indicating, <default-locale> used 158, 159
deferred evaluation 10
delay attribute

using, example 341
deletePlayerAction method 345
dependent pseudo-scope

about 130
working with 130, 131

[548]

DestroyCustomScope class
ActionListener interface, implementing 138

determinate progress bar, upload
component

implementing 383-386
Document (tree node) 149

E
EAR

about 162
EJB, deploying in 163

editRowHashSet method, Map collection
code 278

editRowHashSet method, Set collection
code 278

EJB
about 162
deploying, in EAR 163

EL
about 7
deferred evaluation 10
immediate evaluation 10
reserved words 9

EL 3.0
assignment operator 36
features 35
lambda expressions, exploring 36-39
overview 35
semicolon operator 36
string concatenation operator 36

EL expression, custom scope
resolving 133-136

EL method expressions
about 19
examples 19-21

EL operators
about 8, 9
precedence 9
ternary operator 9

EL syntax
about 8
operator precedence 9
operators 8, 9
reserved words 9

encodeBegin method 420
encodeChildren method 420
encodeEnd method

about 421
overriding 428

Enterprise ARchive. See EAR
Enterprise JavaBeans. See EJB
escape attribute 412
evaluateExpressionGet method

using 80
event attribute

about 317
keyup event 318
values 317

event parameter 342
execute attribute

about 312-314
@all keyword 314
@form keyword 314
@none keyword 314
@this keyword 314

Expression Language. See EL
ExternalContext

configuring 235-238

F
FaceletCache API

working with 524-527
FaceletFactory class

considerations 524
Facelets

programmatically including 531, 532
Facelets pitfalls

about 536
AJAX and <ui:repeat> 536
<c:forEach> versus <ui:repeat>

exemplification 538
<c:if> versus <ui:fragment>

exemplification 537
Facelets programmatic aspects

custom Facelets taglib functions,
writing 534-536

FaceletCache API, working with 524-527
FaceletFactory class considerations 524

[549]

Facelets, including programmatically 531
ResourceResolver and ResourceHandler

classes 527-531
TagHandler class, creating 532-534

Facelets taglib functions
writing 534-536

Facelets tags
<ui:component> tag 497
<ui:composition> tag 495
<ui:debug> tag 497
<ui:decorate> tag 497
<ui:define> tag 496
<ui:fragment> tag 497
<ui:include> tag 496
<ui:insert> tag 496
<ui:param> tag 496
<ui:remove> tag 498
<ui:repeat> tag 497
about 495
URL 498

Facelets Templating namespace 148
Facelet templates 467
Faces Core namespace 148
Faces Servlet class 404
finalizer

using 120-123
first property 288
Flash

configuring 239, 240
Flash scope

used, for passing parameters 64-69
FlowBuilder API

used, for configuring flows 114
FlowBuilder.finalizer method

using 120
FlowBuilder.initializer method

using 120
flow scope

about 100
and AJAX, mixing 329-333
and navigation cases 116-119
beans 107-109
finalizer, using 120-122
flow definition 102
flow switch, using 123-125

inbound parameters 102
initializer, using 120-122
navigation cases, inspecting 119, 120
nested flow 110-114
outbound parameters 102
packaging 125, 126
parameters implementation 129
programmatic access 126-129
programmatic configuration 114-116
return node 100
simple flow 104-107
start node 100
using 102
using, benefits 101
using, example 102, 103

flow switch
using 123-125

forClass attribute
used, for configuring converters 166

FullVisitContext method 297

G
generateCredentials method 331
getCommonPropertyType method

implementing 29
getFacelet method 525
getFeatureDescriptors method

implementing 29
getInitParameter method

context parameters, accessing via 42
getPhaseId method

using 193
GET requests

actions, calling on 53-58
getReturnValue method 330
getSinglesRankings method 30
getState() method 396, 397
getter method, Map collection

about 265
table code 265

getType method
implementing 27

getValue method
implementing 26

[550]

getViewMetadataFacelet method 525
global exception handler

configuring 224-227
global resource bundle

configuring 158

H
handleFileUpload method 60
hidden fields

working with 72
hidden parameters

passing 72
HTML5 date picker

writing, as composite component 446-450
HTML5 exploiting, with JSF 2.2

pass-through attributes, using 354, 355
pass-through elements 356, 357

HTML_BASIC namespace 148

I
image

decorating, actions used 450-452
immediate evaluation 10
implicit navigation

about 169
using 169-171

implicit objects, EL
#{application} 18
#{applicationScope} 18
#{cc} 18
#{component} 18
#{cookie} 19
#{facesContext} 18
#{flash} 19
#{flowScope} 18
#{header} 19
#{headerValue} 19
#{initParam} 18
#{param} 19
#{paramValues} 19
#{request} 18
#{requestScope} 18
#{resource} 19
#{session} 18

#{sessionScope} 18
#{view} 18
#{viewScope} 18
about 17

includeViewParams attribute 511
indeterminate progress bar, upload

component
implementing 382

initHashSet method
using 303

initializer
using 120-123

initial request
about 333
checking, for AJAX 334

input fields
updating, with AJAX after

validation error 323-325
intermediate operations 38
Invoke Application phase 57
isPostback method

using 333
isReadOnly method

implementing 28
isStateless method 411

J
JARs

composite components,
distributing as 461-463

contracts, packaging in 492
Java Naming and Directory Interface.

See JNDI
Java SE enumerated types

referencing 15
java.util.ArrayList collection

about 261
content, displaying with getter 262

java.util.HashMap collection
about 262
content, displaying with getter 264

java.util.HashSet collection
about 262
content, displaying with getter 263

[551]

java.util.LinkedHashMap collection
about 262
content, displaying with getter 265

java.util.LinkedHashSet collection
about 262
content, displaying with getter 264

java.util.LinkedList collection
about 261
content, displaying with getter 263

java.util.List
initializing 153

java.util.Map
initializing 152

java.util.TreeMap collection
about 262
content, displaying with getter 264

java.util.TreeSet collection
about 262
content, displaying with getter 263

javax.faces.FACELETS_REFRESH_PERIOD
context parameter 527

javax.faces.SERIALIZE_SERVER_STATE
context parameter 406

JNDI 162
jQuery component

transforming, into composite
component 440-445

JSF 2.2
Bean Validation 1.1 358
CollectionDataModel class 261-266
HTML5, working with 353
stateless feature 407-411

JSF 2.2 namespaces
@FacesComponent default namespace 148
Composite Components 148
Facelets Templating 148
Faces Core 148
HTML_BASIC 148
JSTL Core 148
JSTL Functions 148
Pass Through Attributes 148
Pass Through Elements 148

JSF 2.2 programmatic configuration 149, 150
JSF 2.2 upload

about 359

Ajaxifying 369, 370
determinate progress bar,

implementing 383-386
example 361-363
file info, extracting 364, 365
images, uploading with preview 370-376
indeterminate progress bar,

implementing 381-383
multiple files, uploading 378-381
multiple <h:inputFile> elements, using 363
uploaded data, writing to disk 366, 367
upload validator 368, 369

JSF 2.2 Window ID API 240-246
JSF-AJAX attributes

event attribute 317
execute attribute 314, 315
listener attribute 316, 317
onerror attribute 320, 321
onevent attribute 318, 319
render attribute 314, 315

JSF-AJAX example
writing 312, 313

JSF-AJAX lifecycle
overview 312

jsf.ajax.request
about 342
and Non-UICommand

components 344-346
jsf.ajax.request method parameters

event 342
options 342
source 342

JSF API
used, for generating

tables 295-300
jsfc attribute

using 518
JSF factories

about 223
application, configuring 250-252
ExternalContext, configuring 235-238
Flash, configuring 239, 240
JSF 2.2 Window ID API 240-246
lifecycle, configuring 246-250
partial view context, configuring 229-231

[552]

render kit factory, configuring 227, 228
VDL, configuring 252, 253
visitContext, configuring 232-234

jsf.js
customizing 347-350
explicit loading 342
explicit loading, <h:outputScript>

component used 342
explicit loading, @ResourceDependency

keyword used 342
Non-UICommand components and jsf.ajax.

request 344-346
params value, depicting 343, 344

JSF life cycle
about 541
phases 542
render response phase 541
restore view phase 541

JSF life-cycle phases
about 191, 192
events, capturing 192
E phase 542
I phase 542
P phase 542
R phase 542

JSF renders
overriding 212-218

JSF scopes
versus CDI scopes 83-86

JSF security concerns
CSRF 412
SQL injection 412
XSS 412

JSF table
creating 258-261

JSTL Core namespace 148
JSTL Functions namespace 148
JSTL's <c:set> tag

<f:param> tag, replacing with 69

L
lambda expressions

about 37
collection objects 38, 39

example 37
working with 37

lazy instantiation. See managed bean
instantiation

left parameter 522
leftWidth parameter 522
listener attribute

about 316
using 316
versus action attribute 316, 317

locales
configuring 158-160

local resource bundle
configuring 158

logical view 394, 395
login parameter 522
loginsearch parameter 522
logo parameter 522
lvalue 10

M
managed bean

injecting, into another 77, 78
nested properties, referencing 13-15
programmatically accessing 80, 81
properties, referencing 12, 13
referencing 10-12

managed bean communication
managed beans, injecting into another 78

managed bean instantiation 142
managed bean property value

setting, via action listeners 61-64
managed beans

configuring, in XML 150-156
managed beans communication

about 76
application/session map, used 78, 79
managed bean, injecting into another 77, 78
programmatic access 80, 81

managed beans' properties
initializing, <managed-property>

tag used 151
menu parameter 522

[553]

method expressions
parameters, passing via 74

Modernizr library
URL 450

MongoDB
adding 400-403
URL 401

msgCenterDefault property 503, 504
msg variable 159
multiple configuration files

working with 156-158
multiple factories

power, combining 254, 255
multiple <h:inputFile> elements

using 363
multiple rows

selecting 285, 286
MyFaces CODI

URL 165

N
namespace element 417
navigateHelper method 174
navigation

conditional navigation 172-174
configuring 168
implicit navigation 169-171
preemptive navigation 174-176
programmatic navigation 176, 177

navigation cases
inspecting 119, 120
using, in flows 116-119

navigation handler
used, for controlling custom

scope lifespan 139-142
NavigationHandler API 176
NavigationHandlerWrapper class 118
nested flows

about 110
<flow-call> tag 110
<flow-reference> tag 110
<inbound-parameter> tag 110
<outbound-parameter> tag 110
working with 111-114

nested properties, managed bean
referencing 13-15

nesting tables
displaying 287, 288

node parameter 515
non-AJAX request

determining 338, 339
noncomposite custom components

building 416-418
custom tag handler, writing 419, 420
dissecting 420-422

none scope 131
none scoped beans 131
Non-UICommand components

and jsf.ajax.request 344-346
normal scopes 130

O
offset attribute 508
OmniFaces

URL 463
OmniFaces showcase

URL 227
onerror attribute

used, for monitoring AJAX
errors on client 320, 321

onevent attribute
about 318
data object 318, 319
used, for monitoring AJAX

state on client 318, 319
options parameter 342

P
PageLayout template

creating 498-501
extending 519-523

parameters
passing, Flash scope used 64-69
passing, via method expressions 74
passing, via <ui:param> tag 501, 502

parametersAction method 63
params value

depicting 343, 344

[554]

partial ordering
about 156
example 156, 157

partial processing stage 312
partial rendering stage 312
partial state saving feature

about 390
and tree visiting 390, 391

PartialViewContext class
about 229
configuring 229-231

pass-through attributes
hiding, in composite components 457, 458
using 354

Pass Through Attributes namespace 148
pass-through elements

about 356
using 357

Pass Through Elements namespace 148
passwords

sending 72
PhaseListener interface

using 192
phase listeners

configuring 191, 192
using 193-195

physical view 394, 395
pitfalls, composite components

null values within attributes 457
PlayerListener class

defining 179
playerLogin method 172
playernamesurname parameter 502
PlayerResource class 203
PlayersBean class

managed bean 14
PlayersDetails class 13, 14
POJO class 258
populateApplicationConfiguration

method 149
postback request

about 333
and AJAX 333-338
conditional rendering/executing 335-338

preemptive navigation
using 175, 176

PreviewServlet 373
PrimeFaces

URL 59
Process Validation phase 325
programmatic flow scope

accessing 126-130
programmatic navigation

configuring 176
progress bar/indicator

using 350
properties, managed bean

referencing 12, 13

R
registrationAction method 330
removeTableFilter method

used, for removing table filter 302
render attribute

@all keyword 314
@form keyword 314
@none keyword 314
@this keyword 314
about 312

rendered attribute 23
using 277

Renderer class 425
renderer type 216
renderer type property

using 418
RenderKit factory

configuring 227, 228
render response phase 541
request map

programmatic access 89
request_number property 336
request parameters

passing, <f:param> tag used 42-45
request scope

about 86
using 86-89
using, example 87

[555]

resetFile method 372
resetValues attribute

about 325
AJAX request, using with 324

resource bundle
about 158
configuring 158

ResourceHandler class
versus ResourceResolver class 527-531

resource handlers
configuring 200-207

Resource Library Contracts 467
ResourceResolver class

versus ResourceHandler class 527-531
responseCode property 318
ResponseStateManager class 396
ResponseStateManager.writeState()

method 396
responseText property 318
ResponseWriter object 420
responseXML property 318
restore view phase 541
right parameter 522
rightWidth parameter 522
rowclasses attribute

used, for coloring alternate
table rows 306, 307

rowCount property 288
row numbers

displaying 282
rows property 288
rvalue 10

S
saveFileToDisk method 375
schedule-flow.xml file

programmatic translation 115, 116
search parameter 522
semicolon operator

working with 36
server-state serialization, session 406, 407
session map

programmatic access 91

used, for communication between managed
beans 78-80

session scope
about 90
invalidating 92
using 90-92

setPropertyResolved method 30
setRowIndex method

overriding 274
setValue method

implementing 27, 28
showHideRacquetPicture method 25
showSelectedPlayer method 283
showSelectedPlayers method 286
simple flow

confirm.xhtml page 106
defining 104-106
done.xhtml page 106
faces-config.xml file 107
registration-flow.xml file 106
registration.xhtml page 105

single row, table
selecting 283-285

size attribute 508
source 38
source parameter 342
source property 318
SQL injection 412
StateHelper.put method

using 422
stateless view

programmatic detection 411
StateManager.writeState() method 396
status property 318
step attribute 508
streams 38
string concatenation operator

working with 36
Submit button

value submission, to request scoped
managed bean 328

value submission, to view scoped managed
bean 326

[556]

SystemEventListener interface
implementing 185-191

system event listeners
<f:event> tag, using 183-185
configuring 183
PostValidateEvent 183
SystemEventListener,

implementing 185-191
system events 183

T
table row

adding 280-282
deleting 275-277
editing/updating 277-279
highlighting, on mouse click 308
highlighting, on mouse hover 307
selecting 283-285

tables
dates list, sorting 267
filtering 300-305
generating, JSF API used 295-300
nesting 287, 288
numbers list, sorting 267
paginating 288-294
sorting 266-272
sorting and DataModel –

CollectionDataModel 272-275
strings list, sorting 266, 267
styling 306-308
styling, contracts used 471-473

tables, styling
rowclasses attribute, using 306, 307
rows, highlighting on mouse click 308
rows, highlighting on mouse hover 307

tabular data 257
TagHandler class

creating 532-534
tagName element 417
targets attribute 435
TempConvertClient class 423
Temperature composite component

developing 436-440
template attribute 505

template client 500
templating 495
terminal operation 38
termsAcceptedAction method 68
termsRejectedAction method 68
ternary operator 9
theme switcher

writing 483-490
ThemeSwitcher component

about 484-486
example 489
using 487, 488

title parameter 522
top-level component

pitfalls 460
top parameter 522
tournamentInitialize method

about 121
implementation 122

TreeSet collection 262
type property 318

U
UI component attributes

programmatically accessing 73, 74
UIComponent implementation 440
UI components

styling, contracts used 474, 475
UIInput component

subscribing, to PostAddToViewEvent
event 196

UnmappedResourceHandler 207
Update Model phase 47
upload component. See JSF 2.2 upload
UploadServlet 386

V
validateAccount method

implementing 184
validateFile method 371
validators

configuring 160-164
configuring, @FacesValidator annotation

used 161

[557]

configuring, <validator> tag used 161
value element 417
value expressions

about 10
collections, referencing 16, 17
EL implicit objects 17-19
Java SE enumerated types, referencing 15
managed bean, referencing 10-12
managed bean's nested properties,

referencing 13-15
managed bean's properties,

referencing 12, 13
vamosRafa_1 void bean method

calling, with no arguments 19
vamosRafa_2 bean method

calling, with no arguments 20
vamosRafa_3 bean method

calling, with one argument 20
vamosRafa_4 bean method

calling, with two arguments 20
vamosRafa_5 bean method

calling, for auto-navigation 20
varStatus attribute

about 508
using 510

VDL
about 467, 495
configuring 252-254

View Declaration Language. See VDL
view action feature

using 53-58
ViewExpiredException

handling 403-406
view handler

configuring 208-212
View Metadata Facelets 524

view parameters
about 46
working with 46-53

view scope
about 92
PlayersBean scope, modifying 93
using 92-94

view scoped beans
and stateless feature 409, 410

view state
logical and physical views 394, 395
partial state saving and

tree visiting 390, 391
saving 389, 390
saving, in database 395-402
saving, on server or client 391-393
saving partially 390
session server-state serialization 406, 407
ViewExpiredException, handling 403-406

visitContext
configuring 232-234

void add(Serializable key, Object value)
method 422

W
Web application ARchive (WAR) 162
wrappers 177
wrapperWidth parameter 522
writeState() method 396

X
XML

contracts, configuring in 491, 492
managed beans, configuring in 150-156

XSS 412

Thank you for buying
Mastering JavaServer Faces 2.2

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Java EE Development with
Eclipse
ISBN: 978-1-78216-096-0 Paperback: 426 pages

Develop Java EE applications with Eclipse and
commonly used technologies and frameworks

1.	 Each chapter includes an end-to-end sample
application.

2.	 Develop applications with some of the
commonly used technologies using the
project facets in Eclipse 3.7.

3.	 Clear explanations enriched with the necessary
screenshots.

Java EE 6 Cookbook for
Securing, Tuning, and Extending
Enterprise Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1.	 Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework.

2.	 Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services.

3.	 Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks.

Please check www.PacktPub.com for information on our titles

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with
this essential reference guide

1.	 Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference.

2.	 Understand the architecture of the Java EE
platform and then apply the new Java EE 7
enhancements to benefit your own
business-critical applications.

3.	 Learn about integration test development on
Java EE with Arquillian Framework and the
Gradle build system.

BPEL and Java Cookbook
ISBN: 978-1-84968-920-5 Paperback: 382 pages

Over 100 recipes to help you enhance your SOA
composite applications with Java and BPEL

1.	 Easy to understand recipes for integrating
Java and BPEL.

2.	 Covers wide range of integration possibilities
for orchestrating business processes.

3.	 Provides step-by-step instructions on examples
stretching throughout the chapters, covering
all phases of development from specification
to testing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dynamic Access to
JSF Application Data
through Expression Language (EL 3.0)
	EL syntax
	EL operators
	EL precedence of operators
	EL reserved words

	EL immediate and deferred evaluation
	EL value expressions
	Referencing a managed bean
	Referencing a managed bean's properties
	Referencing a managed bean's nested properties
	Referencing Java SE enumerated types
	Referencing collections
	EL implicit objects

	EL method expressions
	The conditional text in JSF
	Writing a custom EL resolver
	EL 3.0 overview
	Working with the assignment operator
	Working with the string concatenation operator
	Working with the semicolon operator
	Exploring lambda expressions
	Working with collection objects

	Summary

	Chapter 2: Communication in JSF
	Passing and getting parameters
	Using context parameters
	Passing request parameters with the <f:param> tag
	Working with view parameters
	Calling actions on GET requests
	Passing attributes with the <f:attribute> tag
	Setting property values via action listeners
	Passing parameters using the Flash scope
	Replacing the <f:param> tag with the JSTL <c:set> tag
	Sending data through cookies
	Working with hidden fields
	Sending passwords
	Accessing UI component attributes programmatically
	Passing parameters via method expressions
	Communicating via the binding attribute

	Managed bean communication
	Injecting a managed bean into another bean
	Communication between managed beans using the application/session map
	Accessing other managed beans programmatically

	Summary

	Chapter 3: JSF Scopes – Lifespan and Use in Managed Beans Communication
	JSF scopes versus CDI scopes
	The request scope
	The session scope
	The view scope
	The application scope
	The conversation scope
	The flow scope
	The simple flow
	Flows with beans
	Nested flows
	Configuring flows programmatically
	Flows and navigation cases
	Inspecting flow navigation cases
	Using the initializer and finalizer
	Using the flow switch
	Packaging flows
	Programmatic flow scope

	Dependent pseudo-scope
	The none scope
	The custom scope
	Writing the custom scope class
	Resolving a custom scope EL expression
	Controlling the custom scope lifespan with action listeners
	Controlling the custom scope lifespan with the navigation handler

	Managed bean instantiation
	Beans injection
	Summary

	Chapter 4: JSF Configurations
Using XML Files and Annotations – Part 1
	JSF 2.2 new namespaces
	JSF 2.2 programmatic configuration
	Configuring managed beans in XML
	Working with multiple configuration files
	Configuring locales and resource bundles
	Configuring validators and converters
	Configuring navigation
	Implicit navigation
	Conditional navigation
	Preemptive navigation
	Programmatic Navigation

	Configuring action listeners
	Application action listeners

	Configuring system event listeners
	Using <f:event>
	Implementing SystemEventListener

	Configuring phase listeners
	Working with @ListenerFor and
@ListenersFor
	Summary

	Chapter 5: JSF Configurations
Using XML Files and Annotations – Part 2
	Configuring resource handlers
	Adding CSS and JS resources programmatically

	Configuring the view handler
	Overriding JSF renders
	Working with client behavior functionality
	JSF factories
	Configuring the global exception handler
	Configuring RenderKit factory
	Configuring PartialViewContext
	Configuring visitContext
	Configuring ExternalContext
	Configuring Flash
	JSF 2.2 Window ID API
	Configuring lifecycle
	Configuring the application
	Configuring VDL

	Combined power of multiple factories
	Summary

	Chapter 6: Working with Tabular Data
	Creating a simple JSF table
	The CollectionDataModel class of JSF 2.2
	Sorting tables
	Sorting and DataModel – CollectionDataModel

	Deleting a table row
	Editing/updating a table row
	Adding a new row
	Displaying row numbers
	Selecting a single row
	Selecting multiple rows
	Nesting tables
	Paginating tables
	Generating tables with the JSF API
	Filtering tables
	Styling tables
	Alternate row colors with the rowclasses attribute
	Highlighting rows on mouse hover
	Highlighting rows on mouse click

	Summary

	Chapter 7: JSF and AJAX
	A brief overview of the JSF-AJAX lifecycle
	A simple JSF-AJAX example to get started
	The JSF-AJAX attributes
	The execute and render attributes
	The listener attribute
	The event attribute
	The onevent attribute – monitoring AJAX state on client
	The onerror attribute – monitoring AJAX errors on client

	Grouping components under <f:ajax> tag
	Updating input fields with AJAX after validation error
	The Cancel and Clear buttons
	Value submitted to a view scoped managed bean
	Value submitted to a request scoped managed bean

	Mixing AJAX and flow scope
	Postback and AJAX
	Postback request's conditional
rendering/executing

	Is it a non-AJAX request?
	AJAX and <f:param>
	Queue control for AJAX requests
	Explicit loading of jsf.js
	Depicting the params value
	Non-UICommand components and jsf.ajax.request
	Customizing jsf.js

	AJAX and the progress bar/indicator
	Summary

	Chapter 8: JSF 2.2 – HTML5 and Upload
	Working with HTML5 and JSF 2.2
	Pass-through attributes
	Pass-through elements
	JSF 2.2 – HTML5 and Bean Validation 1.1 (Java EE 7)

	JSF 2.2 upload feature
	A simple JSF 2.2 upload example
	Using multiple <h:inputFile> elements
	Extracting info about a file to be uploaded
	Writing uploaded data to a disk
	Upload validator
	Ajaxify the upload
	Uploading images with preview
	Uploading multiple files
	Upload and the indeterminate progress bar
	Upload and the determinate progress bar

	Summary

	Chapter 9: JSF State Management
	JSF saving the view state
	JSF partial saving view state
	Partial state saving and tree visiting
	JSF saving view state on the server or client
	JSF logical and physical views
	Saving the state in a database – an experimental application
	Writing the custom ResponseStateManager class
	Adding MongoDB in equation

	Handling ViewExpiredException
	Server-state serialization in a session

	JSF 2.2 is stateless
	The view scoped beans and the stateless feature
	Detecting stateless views programmatically

	JSF security notes
	Cross-site request forgery (CSRF)
	Cross-site scripting (XSS)
	SQL injection

	Summary

	Chapter 10: JSF Custom Components
	Building noncomposite custom components
	Writing a custom tag handler
	Dissecting a custom component
	Custom component implementation

	Building composite components
	Developing the Temperature composite component
	Transforming a jQuery component into composite component
	Writing the HTML5 date picker as a composite component
	Decorating an image with actions
	Working with composite facets
	Validating/converting inputs inside composite components
	Checking the presence of an attribute
	Composite components' pitfalls
	Null values within a composite component's attributes

	Hiding pass-through attributes in composite components
	Counting the children of a composite component
	Top-level component's pitfall

	Distributing composite components as JARs in JSF 2.2
	Adding composite components programmatically

	Summary

	Chapter 11: JSF 2.2 Resource Library Contracts – Themes
	Working with contracts
	Styling tables with contracts
	Styling UI components with contracts
	Styling contracts across different devices
	Writing contracts for composite components
	Writing a theme switcher
	Configuring contracts in XML
	Packaging contracts in JARs
	Summary

	Chapter 12: Facelets Templating
	A brief overview of the Facelets tags
	Creating a simple template – PageLayout
	Passing parameters via <ui:param>
	Passing bean properties and action methods via <ui:param>
	Exploiting the <ui:decorate> and <ui:fragment> tags
	Iterating with <ui:repeat>
	Working with <ui:include> and <f:viewParam>
	Working with <ui:include> and <ui:param>
	Debugging with <ui:debug>
	Removing the content with <ui:remove>
	Using the jsfc attribute
	Extending the PageLayout template
	Facelets' programmatic aspects
	FaceletFactory considerations
	Working with FaceletCache
	ResourceResolver swallowed by ResourceHandler
	Include Facelets programmatically
	Creating a TagHandler class
	Writing custom Facelets taglib functions

	Facelets pitfalls
	AJAX and <ui:repeat>
	Exemplifying <c:if> versus <ui:fragment>
	Exemplifying <c:forEach> versus <ui:repeat>

	Summary

	Appendix: The JSF Life Cycle
	Index

